
MACHINE INDEPENDENCE IN 

COMPILING* 
Harry D. Huskey 

University of California 
Berkeley, California, USA 

Since 1958, there has been a substantial interest in the devel
opment of problem-oriented languages as a means of controlling 
computers or data processing systems. All of these efforts have 
had as a primary purpose the goal of reducing the human effort 
necessary to prepare a problem for computation or processing 
on such a computing system. 

Perhaps the most significant of these developments is the pub
lication of the international algorithmic language called ALGOL 
in 1958 and a revised version in 1960. ALGOL can be described 
as a very general scientific language suitable for scientific or 
engineering computation. It has two purposes: one of these is 
for the communication or the publication of algorithms for solv
ing problems, and the other is its direct use as an input language 
to computing machines. It has perhaps been more successful in 
the first case than it has in the second. However, there is a sub
stantial number of translators which will accept ALGOL state
ments and produce machine language for the appropriate com
puter. In all cases, however, compromises have been made with 
the complete language. In some cases, these are very minor 
compromises; in other cases, they are very extensive compro
mises. Perhaps a more significant aspect of the development of 
ALGOL is the effect it is expected to have on the future design 
of computing machines. 

Another language development, which has been sponsored by 
the Department of Defense of the United States, is that of COBOL, 
a common business-oriented language. In the meantime, the 

*This research was supported by the Bell Telephone Labora
tories under Grant D-603513 and by the Air Force Office of Scien
tific Research of the Office of Aerospace Research; the Department 
of the Army. Army Hasearch Office; and the-Department of the Navy. 
Office of Naval Research under Grant AF-AFOSR-62-340. 

219 



220 HARRY D. HUSKEY 

problem-oriented language which has been used most Widely is 
the FORTRAN system, developed by the International Business 
Machines Corporation. 

Simultaneous with the development of ALGOL 58, the author 
participated in the development of a problem-oriented language 
with a restricted field of application, namely that of simulation. 
In this particular problem there was no need for the various 
general features of ALGOL so a restricted language called 
NELIAC was developed and put into operation. This activity took 
place at the U.S. Naval Electronics Laboratory ~t San Diego. 
The unique feature of the NELIAC development has been that the 
translating system has always been written in the problem
oriented language itself. Consequently, revisions were easy to 
make and the description of the compiler on punched cards or 
punched tape was the up-to-date documentation of the system. 
Since this system was developed simultaneously with the develop
ment of the specifications of ALGOL 58, some of its features are 
more similar to ALGOL 58 than to ALGOL 60. 

THE NELIAC SYSTEM 

In the NELIAC system, it is possible to modify the command 
generators so that they will generate commands for a machine B 
on a computing ' machine A. 

The original NELIAC system was written for a military com
puter called the Sperry-Rand M-460, and the first version gener
ated commands for the same computer. Early in the development, 
the system which ran on the M-460 was modified so as to gener
ate commands for the Datatron 205 and also for the Datatron 220. 
In another effort, the M-460 system was modified to generate 
commands for the CDC 1604. 

With some help in the way of hand operations, the whole trans
lating system was transformed from the M-460 to the Datatron 
220 to obtain a NELIAC system which runs on the Datatron 220 
and generates commands for the 220. The need for the hand 
operations arose primarily from the fact that the Datatron 220 
is a decimal machine without access to binary bits, whereas the 
M-460 is a<strictly binary machine. In a similar way, the system 
was transformed onto the CDC 1604 so as to have a NELIAC sys
tem which woUld generate CDC 1604 commands on that computer. 

In another effort, the NELIAC system on the M-460 was modi-



MAClllNE INDEPENDENCE IN COMPILING 221 

fied so as to generate IBM709 commands, and in a boot-strap type 
operation, the whole compiler was transformed onto the IBM 709 
computer. A version of this was developed which generated 
IBM 704 commands, and of course the 709 version runs on the 
7090. Various features have been added to the 7090 system to 
take care of the special machine features available. 

In each of these cases, the NELIAC system is written in its 
source language form and can be recompiled on the specific 
computer. Consequently, if some variation in the translator i,s 
desired for a particular purpose, this is easily accomplished 
with a minimum of man-hour effort. 

In all this development, however, whenever a new machine is 
conSidered, it is necessary to change the command generators 
so that they will generate commands for the new machine. If the 
logic of the new machine is different, or if there are features 
which are of sufficient interest to be used, then perhaps even the 
logic of the compiling has to be modified to some extent. Thus, 
it may require as much effort as six man-months to establish a 
NELIAC system on a new computer. 

TRANSFERRING A COMPILER TO A NEW COMPUTER 

Therefore, since new computers are going to replace old com
puters and it is very important that substantial programming 
efforts do not have to be done over again, it is of very consider
able interest to be able to transform a compiling system onto a 
new computer without modifying the source language so that the 
body of the existing programming can be transferred onto the 
new computer as well. Programs written in ALGOL satisfy the 
restriction that they do not have to be revised in order to run on 
a new computer; however, all the current translators would h~ve 
to be done again for any new computer. Therefore, one of the 
purposes of the activities described in this paper has been to 
minimize the man-hour effort required to transform a translating 
system onto a new computer. 

In order to do thiS, the translating system has been concep
tually divided into three major parts. The first part is c~lled a 
preprocessor; the second part is called a translator; and the 
third part is called an assembly program. The preprocessor 
effectively takes care of identifiers and a few other features of 
the source language in such a way as to minimize the activities 
of the translator and the assembly program as faras identifiers 



222 HARRY D. HUSKEY 

are concerned. Thus, one could say that the preprocessor essen
tially converts general identifiers into relative addresses in an 
appropriate computer. Along with these relative addresses cer
tain flag information is established, indicating for example 
whether the identifier is a label, or relates to real, integer or 
Boolean-type quantities. Thus, the assembly program can 
quickly compile a correct object machine program; the pre
processor makes almost no changes in the syntax of the source 
program. The translating portion of the system accepts the out
put of the preprocessor and effectively passes the identifiers on 
through without modification. The syntax of the statements, how
ever, is processed completely so as to obtain a sequential list 
of operations appropriate for a computer in any of a large num
ber of types. In other words, the output of the translator might 
be said to be a type of Polish string, in which identifiers and 
operations are developed in the order in which they must be con
sidered in the object computer. The output of the translator is 
called an intermediate language. 

CHARACTERISTICS OF THE INTERMEDIATE LANGUAGE 

It is clear that if the intermediate language is to serve for a 
number of computers, then it must be as general as the most 
general of any of the machine languages of the object computer. 
Another way to state this is that any information present in the 
source language about the problem which can be used in assem
bling the final machine language must be carried over to the 
intermediate language. For example, if the intermediate language 
referred to a single accumulator, whereas one of the object ac
cumulators had many accumulators, it would be difficult to write 
an assembly program which could analyze the intermediate lan
guage and decide how to distribute the activity among the several 
accumulators. Consequently, such information must be developed 
in the preprocessor and the translator, and must survive in the 
intermediate language form of the program. In the same way, in
formation about index registers must not be collapsed in any way 
so that if a sufficient number of index registers are present in 
one of the object computers, then indices can be handled in an 
efficient way to solve the problem. 

Consequently, the intermediate language is set up on the basis 
that there may be an infinite memory, that there may be infinite
ly many index registers, that there may be, in fact, infinitely 



MACIDNE INDEPENDENCE IN COMPILING 223 

many accumulators. In order to allow for extensions of the 
source language, there is provision for flagging the identifiers 
in the preprocessor so that the assembly program can be ex
panded to handle new types of identifiers. In this way more 
classes of variables may be considered than have been treated 
in the various problem-oriented languages. This "no limit" re
striction on index registers and accumulators requires the pos
sibility of variable length identifiers in the intermediate lan
guage. Consequently, simple identifiers, or ones that occur fre
quently in source problems, are represented in simple form, 
and as more and more variables are needed, then more lengthy 
identifiers may be used. Also, since this intermediate language 
must be machine independent, it is not feasible to talk about 
words. Thus the intermediate language deals with characters 
and groups of characters called identifiers, operators or flags. 
On the other hand, in order to obtain efficient operation, those 
symbols and operators which occur frequently are simply repre
sented, and the first identifiers that appear in a problem are 
likewise simply represented. As the list gets longer, provision 
is made for more complicated representation for the identifiers. 

THE ASSEMBLY PROGRAM 

The assembly program ,takes the output of the translator, or 
the so-called intermediate language, and transforms this into 
absolute machine code for a particular object computer. Con
sequently, a different assembly program is required for each 
computer. 

The identifier which come from the earlier stages of the 
translation process are essentially in relative address form. In 
such cases the assembly program simply adds a base address 
to these identifiers and uses this as the address for the appro
priate object computer. General sequences of arithmetic opera
tions which appear as output of the translator must be trans
formed into the appropriate machine language commands for the 
object computer. In some cases the command specified in the 
intermediate language may not correspond to simple one-com
mand operations in the object computer. For example, the vari
ables being processed may be real and the arithmetic operations 
need to be floating point, whereas the object computer mat be a 
fixed point machine. In this case the assembly program develops 
the appropriate memory reference commands to obtain the oper-



224 HARRY D. HUSKEY 

ands and generates the subroutine transfer into a program which 
will do the floating point arithmetic operation. 

As another example, it may be that there are nested paren
thetical expressions (in an arithmetic statement) requiring the 
use of several working addresses or several accumulators. The 
intermediate language is set up on the basis that there are infi
nitely many accumulators, so as the nesting takes place the com
putation may move from one accumulator to the next. If the ob
ject computer has only one accumulator, then it is necessary 
that the assembly program generates "store in working address" 
commands and corresponding commands which will assemble 
these results as the closing parentheses occur. Also the object 
computer may have none, a few, or hundreds of index registers. 
Consequently, if the source language problem deals with sub
scripted variables, then the development of index operations 
may be quite different in one object computer as compared to 
another. 

On the other hand, there are certain operations which the as
sembly program must do which are very similar in all compu
ters. For example, there are transfers of control or subroutine 
transfers which are to absolute locations which cannot be deter
mined in advance. This is true of transfers into future locations 
(not yet assembled), in that the number of commands down to 
that future position may vary substantially from one computer 
to another. Hence, the assembly program must keep lists of 
so-called future addresses or develop transfer vectors which 
will take care of these connections. This operation may be done 
in essentially the same way in any of a number of different com
puters. 

TRANSFORMING THE SYSTEM ONTO A NEW COMPUTER 

If it is desired to transform the system onto a new computer, 
it is only necessary to rewrite the assembly program for the 
new computer. Once this assembly program has been completed, 
then the preprocessor and the translator may be processed on 
any computer for which the translation system exists, so as to 
obtain them in the intermediate language form. This intermediate 
language form may then be assembled on the new computer. 
Then one has a preprocessor, translator and assembly program 
which will run on the new computer and any problems stated in 
the appropriate source language may be processed on the new 
system. 



MACIDNE INDEPENDENCE IN COMPILING 225 

Actually, the assembly program on the old computer may be 
modified so as to generate new computer commands on the old 
computer. In this way the "bookkeeping" portions of the assem
bly program need not be hand written for the new computer. The 
intermediate language version of the assembly routine may then 
be processed by the modified assembly program on the old com
puter. The output is an assembly program which runs on the new 
computer and transforms intermediate language statements into 
new computer code. 

THE ANALYZER 

In the statement of a problem in a language like ALGOL there 
is considerable redundancy, particularly between declaration
type statements and the way the corresponding variables are 
handled in the body of the program. This has led to the study 
of a proposed analysis system which will look at the ordinary 
statements of a program and will attempt to generate the appro
priate declaration statements. 

There are two schools of thought about the merits of doing 
this. One school says that the redundancy in the statement of the 
problem is of importance because this allows the translator to 
detect errors in a problem. The other school of thought says 
that, if a person is to move on to more and more complicated 
situations, it is necessary that the language that he uses be effi
cient. 

In the current approach to this analysis problem, the idea is 
to analyze the statements of the problem and generate appropriate 
declaration statements whenever no ambiguity is involved. In 
cases where it is not quite clear what declaration should be 
made, that which would most frequently be correct will be made; 
the information will be printed out indicating to the operator that 
such a declaration has been made but that there might be some 
question about it being the proper one. In this way, an operator 

I can program a large problem, run it through the analysis pro
gram, and get a list of questionable declarations which he can 
review for correctness. This analysis routine will also inspect 
multiply-subscripted variables and decide how to handle index 
registers. This allows the possibility of carrying values for a 
particular index appearing as a subscript in a number of differ
ent positions. For example, in a doubly-subscripted variable, a 
single index in the first position will mean one thing, whereas 



226 HARRY D. HUSKEY 

the same index in the second position will mean a different 
thing. In one case, it is the element in the row; in the other case, 
it is the column in the array. If the analysis system detects such 
use of the index register, then it can issue index modification 
statements which will carry both values of the resulting index 
and for any incrementation increment each one in the appropriate 
way. In this way, in the current state of the computing machine 
art, more efficient object programs can be compiled than can be 
compiled by the more general conventional way of multiplying 
the indices in the various positions by the appropriate constants. 

All the inspection of the source program for consistency and 
for obeying of syntactical rules is moved up into this analysis 
program. This permits the preprocessor translator and assem
bly programs to run at maximum speed. 

THE TRANSLATOR 

The translator inspects the syntactic aspects of the output of 
the preprocessor and transforms it into something more or less 
equivalent to a Polish string. 

Thus, the various operators, separators and bracketing sym
bols are all ranked. These are processed from left to right and, 
depending upon rank, either intermediate language commands 
are developed in the output or entries are made in a stack. With 
each addition to the object program the rank of the last entry in 
the stack is inspected to determine whether processing continues 
with the source language or with the last entry in the stack. 

The intermediate language has been designed in such a way 
that the commands for the output are all obtained from a table. 
This means that the translation process runs exceedingly fast. 
For example, speeds above 20,<100 per minute can be expected 
from currently available commercial high-speed computers. 

In fact, by proper preprocessing and analysis, translations 
may be combined with assembly. 

A PRACTICAL SYSTEM 

The conceptual division into analyzer, preprocessor, trans
lator and assembler is convenient for exposition purposes, or 
for purposes of task assignment in a group effort. However, 



MACHINE INDEPENDENCE IN COMPILING 227 

since much 'Jf the action during assembly is still computer inde
pendent, another approach is suggested. 

A basic subset of ALGOL is chosen including assignment state
ments not using multiply and divide operators nor parentheses. 
Procedures without recursion, with no arguments, are used. Only 
integral-type variables are used. Boolean quantities are repre
sented by zero and non-zero integers. To this is added a decla
ration of the number of characters per word. A concatenation 
operator and a first-character operator are added to the system. 
Two undefined procedures named READ and WRITE are included. 
READ brings the next line of input (next card or. characters from 
a typewriter down to a carriage return) and WRITE records on 
an output medium one line of characters. 

Suppose this language is called L. A translator, T~, for this 

language L is required on some computer, A. An important point 
is that this translator is also written in its basic language L (sub
set of ALGOL with extensions). All translators written in this 
basic language can be transformed into machine language for 

A 
computer A by translator T L. 

In order to transform a body of coding in language L into pro

grams on a new computer, B, a new translator, T~, is required. 

This is accomplished by modifying the command generators of 
A 

translator T L so as to generate commands for computer B. The 

magnitude of this task is less than one expects due to the sim
plified basic language L, which is such that the command genera
tion is a table-look-up "process. Thus, by replacing the tables of 

T~, a translat~r T~ is obtained which runs on computer A and 

generates commands for computer B. 

The translator T~ is processed by translator T!, obtaining 

a translator T: in the machine language of computer B. This 

translator will generate programs for computer B. 
In this transferring to computer B the procedures READ and 

WRITE must be hand written in the machine language of com
puter B. 



228 HARRY D. HUSKEY 

SUMMARY 

Two schemes have been described. The first is a three- or 
four-stage (conceptually) processor in which only the last stage 
is essentially computer dependent. In converting to a new com
puter, parts of the last stage (assembly program) must be hand 
modified. In the second scheme a subset of ALGOL with exten
sions is used to describe the translators and other processors. 
The translator for this simpler system must be hand modified 
for a new computer system. The system is sufficiently simple 
so that this modification consists· of changing tables and input
output routines. 

The following students at the University of California are 
working on various parts of the above schemes: JimSpitze, 
Gary Anderson, Bill Keese, Ralph Middleditch, Ralph Love, 
Norman Josephson, Niklaus Wirth and Ivan Flores. 


	Image
	Image (10)
	Image (2)
	Image (3)
	Image (4)
	Image (5)
	Image (6)
	Image (7)
	Image (8)
	Image (9)

