O
VSPERRY RAND ~ (

a9

LINIVAC

1H00...
NU ALGOL

PROGRAMMER
REFERENCE

This document contains the latest information available at the time of publi-
cation. However, the Univac Division reserves the right to modify or revise its
contents. To ensure that you have the most recent information, contact your
local Univac Representative.

UNIVAC is a registered trademark of the Sperry Rand Corporation.

Other trademarks of the Sperry Rand Corporation in this publication are:

FASTRAND

©1971 - SPERRY RAND CORPORATION PRINTED IN U.S.A.

7884 UNIVAC 1100 SERIES SYSTEMS

Acknowledgment 1
UP.NUMBER PAGE REVISION

PAGE

ACKNOWLEDGEMENT

The NU (Norwegian University) ALGOL System was designed and implemented
as a joint effort of the Norwegian Computing Center, Oslo, and the Com-
puting Center at the Technical University of Norway, Trondheim.

Contents 1
PAGE REVISION PAGE

7884 UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER

CONTENTS
ACKNOWLEDGEMENT 1ol
CONTENTS 1to6
1. INTRODUCTION 1-1 to 1-3
1.1 GENERAL 1-1
1.2 THE NU ALGOL COMPILER 1-1

1.3 DEVIATIONS FROM ALGOL 60 1-2
1.3.1 Extensions to ALGOL 60 1-2
1.3.2 Deletions to ALGOL 60 1-3
2. BASIC INFORMATION 2-1 to 2-4
2.1 BASIC SYMBOLS 2.1
2.1.1 Simple Symbols 2-1
2,1.2 Compound Symbols 2-1
2,2 IDENTIFIERS 2-2
2.3 FORM OF AN ALGOL PROGRAM 2-2
2.4 LAYOUT OF AN ALGOL PROGRAM 2-3
2.5 SPECIAL IDENTIFIERS 2-3
2.5.1 Reserved Identifiers 2-3
2.5.2 Standard Procedure Identifiers 2-4
3. DECLARATIONS 3-1 to 3-7
3.1 GENERAL 3-1
3.2 TYPE DECLARATIONS 3-1
3.3 DECLARATION OF SIMPLE VARIABLES 3-2
3.3.1 Declaration of a Simple String 3-2
3.3.2 Declaration of a Substring 3-3
3.3.3 Storage Required by Simple Variables 3-3
3.4 DECLARATION OF SUBSCRIPTED VARIABLES (ARRAYS) 3-4
3.4.1 Rules for Array Declarations 3-5
3.4.2 Meaning of Array Declarations 3-5
3.4.3 Declaration of a String Array 3-6
3.4.4 Meaning of String Array Declarations 3-6
3.5 OTHER DECLARATIONS 3-7

7884

UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

I PAGE REVISION

Contents 2
PAGE

4.

EXPRESSTIONS

.1 GENERAL

ARITHMETIC EXPRESSIONS
1 Types of Values

2 Arithmetic Operands

2.1 Arithmetic Constants

2.2 Arithmetic Variables

2.3 Arithmetic Type Procedures

.3 Arithmetic Operators

3.1 The Operators

3.2 Precedence of Arithmetic Operators
3.3 Use of Parentheses

4 Type of Arithmetic Expressions

BOOLEAN EXPRESSIONS
1 Boolean Operators
.2 Relational Operators

PRECEDENCE OF ARITHMETIC, BOOLEAN, AND RELATIONAL OPERATORS

STRING EXPRESSIONS
1 String Operands
2 String Operators
2.1 Arithmetic Operations on Strings
2.2 Relational Operations on Strings
.3 Substrings
3.1 Declared Substring
3.2 Substring Expressions
3.3 Substrings of Members of String Arrays

DESIGNATIONAL EXPRESSIONS
1 Labels
.2 Switches

4.7 CONDITIONAL EXPRESSIONS

STATEMENTS

5.1 GENERAL

5.2 ASSIGNMENT STATEMENTS

5.2.1 Rules for Performing Assignment

5.2.2 Type Rule for Multiple Assignment Statements
5.2.3 Transfer Functions in Assignment Statements
5.2.4 String Assignment

5.3 COMPOUND STATEMENTS
5.4 GO TO STATEMENTS

5.9 CONDITIONAL STATEMENTS

4-1 to 4-15

1
—

&AAAA;{&-&AA.&A 1~
U WWWWNDH - -

O N NN
] AL] R
O @~

[}
I N el)

MHEHRHREROOO

[N TN A&?&AAA&A

!
—
w

7884

UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER

| PAGE REVISION

Contents 3
PAGE

1 Conditional Statement Form Without Alternative

2 Conditional Statement Form With Alternative

3 Conditional Statement Action Without Alternative

4 Conditional Statement Action With Alternative
REPETITION STATEMENTS ~ FOR STATEMENTS

1 Simple List Element

2 STEP - UNTIL List Element

.3 WHILE List

4 Special Rules for FOR Statements

9.7 OTHER TYPES OF STATEMENTS

6.1 GENERAL

6.2 NESTED BLOCKS

6.3 LOCAL AND GLOBAL IDENTIFIERS
6.4 LOCAL AND GLOBAL LABELS

6.5 USE OF BLOCKS

PROCEDURES AND TYPE PROCEDURES

PROCEDURES
1 Procedure Declaration

d.1 Identifiers in the Procedure Body

1.2 Specification Part

1.3 Procedure Body

2 Classification of Formal Parameters

3 Value Part

4 Comments in a Procedure Heading

S Procedure Statement

3.1 Actual Parameter List

3.2 Execution of a Procedure Statement
6 Recursivity

TYPE PROCEDURES
.1 Type Procedure Declaration
.2.2 Use of a Type Procedure

BN [P I [P P P I RS R PR R P

EXTERNAL PROCEDURES

External Declaration

ALGOL External Procedures

FORTRAN Subprograms

Assembler Language Procedures
1 External Assembler Procedure
.2 External LIBRARY Procedure
.3 String Parameters
.4 Array Parameters

.
IS S TS VI G
.

LDWLWwwWwLWwwWwwWwwow

PN PR PR R PP P

2
4
5-14
6-1
6-1
6-1
6-2

MR
= b W

| I I IR
o WO N

VNN NNNNNNNNNNNN N

1 1 1)
NolNoNao) [ao2EN W &) I)

NNNNNNN~N
DN PO = b bt e
LDRDNRNHOO

to 6-4

to 7-38

7884 UNIVAC 1100 SERIES SYSTEMS Contents 4

UP.NUMBER l PAGE REVISION I PAGE

)
[N\

S String Array Parameters
6 Storage Diagrams

STANDARD PROCEDURES

Available Procedures

Special Routine Descriptions
1 Pseudo-~Random Number Streams
.2 Random Drawing Procedures
Transfer Functions

NN AN N
NNNNNN N
€0 0O 0O Lo IO DD

SO G

8. INPUT/OUTPUT 8-1 to 8-46

P
—

8.1 GENERAL

P
Y

8.2 PARAMETERS TO INPUT/OUTPUT PROCEDURES

DEVICES

1 Possible Devices

2 Actual Devices

3 Implied Devices

4 Devices CARDS and PUNCH
S Device PRINTER

6 Devices for File Handling
6

6

6

7

Sequential Files

1
.2 Indexed Files
3

Alternate Symbiont Files

[}
== OO0 U DR

= O

Device CORE

Possible Modifiers

[}
I R e L L L

1

2 General Description
3 Restrictions

4 Modifier KEY
5
6

Modifier EOF
Modifier EOI

LABEL LIST
Action with READ when Device is Implied, CARDS, or ACARDS
Action with READ for Sequential File Devices
Action with READ or WRITE for Indexed File Devices
Action with READ or WRITE when Device is CORE
Action with WRITE when Device is Implied, CARDS,
PRINTER, PUNCH, or Alternate Symbiont Files
Action with WRITE for Sequential File Devices
Action with POSITION for Sequential File Devices

GDGDC|OC0® [eclecNucNuoNaoNasNaol [eclacNeoNaoNacNaclaoNuolaclaoNao
= :

[acleolaclaclaclao) [acleclacNacNacNaoNao) (sclaclecaceclaoNecNaoNaoaoNae}
]
QO O®~~ = U O W W

3
3
3
3
3
3
3
3
3
3
3
4 MODIFIER LIST
4
4
4
4
4
4
S
S
S
S
S
S

U'IA.COI\:H—-
L}

-~ &

GDC|OCO
=
NoRNoNao]

FORMAT LIST 8-20
1 Implied or Free Format 8-20
2 Declared Format 8-24
.3 Inline Format 8-24
.4 Format Phrases with WRITE 8-25
) Format Phrases with READ 8-33
6 Repeat Phrases 8-39

OCPOD®OO® [acae}

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

| PAGE REVISION |

Contents 5
PAGE

oo
.
[\

Definite Repeats
Indefinite Repeats

INPUT/OUTPUT LIST
Inline List
Declared List
Rules for Lists

Arrays
Other Expressions

1
2
.3 Format in Lists
4

List with MAX and MIN
Sublists

INPUT/OUTPUT PROCEDURE CALLS
READ
WRITE
POSITION -
REWIND and REWINT
MARGIN

COMMENTS

OPTIONS
Processor Card Options
XQT Card Options

10. ERROR MESSAGES

10.1
10.2

10.3

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

INDEX

A,

GENERAL
COMPILE-TIME ERROR MESSAGES

RUN-TIME ERROR MESSAGES

BASIC SYMBOLS

EXAMPLES OF PROGRAMS

JENSEN'S DEVICE AND INDIRECT RECURSIVITY

UNIVAC 1106/1108 ALGOL AND NU ALGOL DIFFERENCES

SYNTAX CHART

EXEC II NU ALGOL

L‘;OCO

1
el N N S N B W

1
B D

[acaolaclaclaclao) COC|OCOCOCOCOCOCOCO

LMD EHE [N

U b b b QO W

9-1 to 9-3

9-1

9-2
9-2
9-3

10-1 to 10-12

10-1
10-1

10-8

A-1 to A-2

B-1
C-1
D-1
E-1

F-1

I-1

to

to

to

to

to

B-4

D-3
E-37

F-6

I-5

7884 UNIVAC 1100 SERIES SYSTEMS Contents 6
UP.NUMBER PAGE REVISION PAGE

TABLES

4-1. Rules for Arithmetic Constant Formation 4-2
4-2, Arithmetic Operator Meaning 4-3
4-3. Arithmetic Operator Examples and Results 4-4
4-4, Boolean Operators 4-7
4-3. Relational Operators 4-8
4-6. Resulting Type of Expression 4-14
5-1, Transfer Functions 5-2
5-2. Conditional Statement Action Without Alternative 5-3
5-3. Conditional Statement Action With Alternative 5-5
7-1. Specifiers and Parameters 7-2
7-2. Actual and Formal Parameter Correspondence 7-6
7-3. Formal and Actual Parameter Combinations 7-22
7-4. Available Procedures 7-27
7-5. Transfer Functions 7-38
8-1. Format Phrases for WRITE 8-26
8-2., Format Phrases for READ 8-34
10-1. Compile-Time Error Messages 10-2
10-2. Run-Time Error Messages 10-9
A-1. NU ALGOL Characters A-1
A-2, NU ALGOL Basic Symbols A-2

7884 UNIVAC 1100 SERIES SYSTEMS

1-1
UP.NUMBER l PAGE REVISION

PAGE

1. INTRODUCTION

1.1 GENERAL

NU (Norwegian University) ALGOL is a language for communicating scientific and data
processing problems to the UNIVAC 1100 Series Systems. The basis for this language
is the "Revised Report on the Algorithmic Language, ALGOL 60" (Communications of
the ACM, Vol. 6, January 1963, 1-17). This implementation of ALGOL 60 is very
close to that of the report. Its one significant difference is the omission of all
OWN variables. Some of its more significant additions include three new data types
(STRING, COMPLEX, and REAL2). Provision is made for inclusion of procedures writ-
ten in assembler language of FORTRAN V.

NU ALGOL is compatible with UNIVAC 1106/1108 ALGOL with the few exceptions noted in
Appendix D, "UNIVAC 1106/1108 ALGOL and NU ALGOL Differences." The major differ-
ences between the two languages are the actual method of compilation, the extended
input/output facilities, and a major improvement in both run-time and compile-time
security and speed.

This manual has been designed to provide quick reference to all features of the
language so that programmers familiar with ALGOL may look up points easily. At the
same time, many examples have been inserted to allow inexperienced programmers to
become familiar with NU ALGOL.

No attempt has been made to illustrate all possible constructions; however, Appendix
E contains a complete syntax chart for NU ALGOL.

Although the ALGOL report previously cited uses underlining to delineate basic
symbols, this manual does not. All explanations and examples give the basic symbols
as they appear on the printer output from the computer; that is, in upper case
letters with no underlining.

In describing forms of constructions (syntax), the bracket pair < and > are used to

isolate the constructions under definition. For a complete and unambiguous defi-
nition of syntax, see Appendix E.

1.2 THE NU ALGOL COMPILER

The NU ALGOL compiler is a program which accepts statements expressed in ALGOL and
produces programs for the UNIVAC 1100 Series Systems.

*See UP~-7544 (latest revision) UNIVAC 1106/1108 ALGOL

-2
' PAGE REVISION | PAGE

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

An ALGOL program is a sequence of statements written in ALGOL language. These
statements are translated by the compiler into the language of the computer:
Machine Language. The ALGOL statements are called the Source Code, and the trans-
lated statements are called the Object Code. The Compiler itself is a program
written in machine language and is called the UNIVAC NU ALGOL Compiler. While
translating the ALGOL statements, the compiler looks for errors in syntax (that is,
for errors in the forms or construction of statements) and reports these errors to
the programmer,

The compiler operates in four passes. Upon successful compilation, the object code
can be read into the main storage and executed. Activities that occur during com-
pilation are sometimes referred to as compile-time activities; for instance,
compile-time diagnostics. The execution phase is referred to as run-time,

1.3 DEVIATIONS FROM ALGOL 60

There are several differences between ALGOL 60,as defined in the revised report, and
NU ALGOL. Since ALGOL is intended as a standard language and compatibility of
programs between machines is becoming more and more important, those differences
must be explicitly pointed out. They fall into two classes: extensions to ALGOL 60
and definition of things left undefined by the report, and modifications or omis-
sion of ALGOL 60 entities.

1.3.1 Extensions to ALGOL 60

Extensions to ALGOL 60 include the following:

B The addition of STRING and STRING ARRAY variables has been made to enhance
the value of ALGOL as a data processing language.

B The addition of the arithmetic types COMPLEX and REAL2 has been made to
enhance the value of ALGOL to scientific users.

® XOR has been added to the list of logical operators.

m EXTERNAL PROCEDURE declarations have been implemented to allow easier
programming of large problems and the building of program libraries.

B Input and output routines have been defined along with FORMAT and LIST
declarations to be used by the routines.

B A compact form for GO TO and FOR statements has been provided.

B Variables are zeroed upon entry to a block so that initialization statements
are not required.

The controlled variable of a FOR statement has a defined value when the
statement is terminated by exhaustion of the FOR list.

7884

UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

| PAGE REVISION I PAGE

1-3

1.3.2 Deletions from ALGOL 60

Deletions from ALGOL 60 are as follows:

1.

The following limitations have been imposed.

a. Identifiers are unique only with respect to their first 12 characters,
b, Identifiers and numbers may not contain blanks,

c. Certain ALGOL words may only be used in a specific context.

OWN variables are excluded.

Numeric labels are not allowed.

The comma is the only delimiter allowed in a procedure call.

The result of an integer raised to an integer power is always of type REAL.
All the formal parameters of a procedure must be specified.

In a Boolean expression, only those operands necessary for determining the
result are evaluated.

UNIVAC 1100 SERIES SYSTEMS 2-1
PAGE REVISION | P

7884
AGE

UP.NUMBER

2. BASIC INFORMATION

2.1 BASIC SYMBOLS

The following symbols have meaning in NU ALGOL.

2.1.1 Simple Symbols
B The letters A - Z
® The digits O - 9
® The logical constants TRUE FALSE

8 The ALGOL symbols:

Arithmetic operators + -/ ®
Special Characters =0, $.
p &< > 'T]

A space (blank) symbol

2.1.2 Compound Symbols

Some multiples of characters are given meaning as if they constitute a single
character:

// (integer divide)

#% (exponentiation)

&& base 10 scale factor for double precision constants
:= assignment (same as =)

.o colon same as :

<< literal format left bracket

> > 1literal format right bracket

' string quote within a string constant

7884 UNIVAC 1100 SERIES SYSTEMS 2-2

UP-NUMBER | PAGE REVISION I PAGE

A set of reserved words such as:

BEGIN END IF THEN

A complete list of reserved words is given in 2.5.1. For details of the character
set, see Appendix A.

2.2 IDENTIFIERS

Identifiers have no inherent meaning, but are names that the programmer chooses to
use to refer to various objects (operands, procedures, labels, etc.).

The following rules apply to identifiers:

An identifier is a combination of characters taken from the set letters
(A - Z) and the set of digits (0 - 9),.

The first character of an identifier must be a letter.
Spaces are not allowed within an identifier.

Although up to 72 characters may be used to make an identifier, only the
first 12 uniquely specify the identifier.

It is often easier to read the program if the identifier is a mnemonic.

EXAMPLES :
A P060 2174 KAF1

NONLINEARRESIDUE
NONLINEARRESULT

The two identifiers in the second example above are considered identical
because their first 12 characters are the same.
2.3 FORM OF AN ALGOL PROGRAM
ALGOL programs are made up of one or more blocks. The concept of blocks is treated
in Section 6. 1In brief, an ALGOL program containing only one block has the follow-
ing form:

BEGIN

<Declarations>$
<Statements>

END$

Declarations are described in Section 3.

7884 UNIVAC 1100 SERIES SYSTEMS

2-3
UP-NUMBER I PAGE REVISION

PAGE

Statements are described in detail in Section 5. Briefly,the following are
true:

1. Statements are orders to perform one or more computations or input/output
operations.

2. Statements are separated from each other by the symbol $ or the symbol ;
(either may be used).

3. Exit from a block must be through the final END or through a jump to a
label in an enclosing block.
2.4 LAYOUT OF AN ALGOL PROGRAM

The source code to the compiler must be input on a line-by-line basis; for instance,
from punched cards or a typewriter terminal.

The following rules should be followed:
Only columns 1 through 72 are read for information.
Columns 73 and beyond may be used for any purpose.
One or more statements may be placed on one line or one statement may occupy

several lines. A number, identifier, or reserved word may not be broken up
to continue on the next line.

2.5 SPECIAL IDENTIFIERS

There are two sets of special identifiers; reserved identifiers and standard pro-
cedure identifiers,

2.5.1 Reserved Identifiers

The following sets of characters have special meanings and may not be used as

identifiers.
ALGOL EXTERNAL LEQ SLEUTH
AND FALSE LIBRARY STEP
ARRAY FOR LIST STRING
ASSEMBLER FORMAT LOCAL SWITCH
BEGIN FORTRAN LSS THEN
BOOLEAN GEQ NEQ TO
COMMENT GO NOT TRUE
COMPLEX GOTO OFF UNTIL
DN GTR OPTION VALUE
ELSE IF OR WHILE
END IMPL PROCEDURE XOR
EQIV INTEGER REAL

EQL LABEL REAL2

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

2-4
PAGE REVISION PAGE

2.5.2 Standard Procedure Identifiers

The following identifiers may be used without explicit declarations for calling
standard procedures:

ABS EOF POISSON
ACARDS EOI POSITION
ALPHABETIC ERLANG PRINTER
APRINTER EXP : PSNORM
APUNCH FILE PUNCH
ARCCOS FILEINDEX RANK
ARCSIN HISTD RANDINT
ARCTAN HISTO RE
CARDS IM READ
CBROOT INT REWIND
CLOCK KEY REWINT
COMPL LENGTH SIGN
CORE LINEAR SIN

COS LN SINH
COSH MARGIN SQRT
DISCRETE MAX TAN
DRAW MIN TANH
DRUM MOD TAPE
DRUMPOS NEGEXP TIME
DOUBLE NORMAL UNIFORM
ENTIER NUMERIC WRITE

These identifiers may, however, be redeclared for other use. For details on
standard procedures, see 7.4.

7884 UNIVAC 1100 SERIES SYSTEMS 3-1

UP-NUMBER | PAGE REVISION ' PAGE

3. DECLARATIONS

3.1 GENERAL

An ALGOL program may be broken into logical segments called blocks, which are com-
plete and independent units. Block structure is discussed in Section 6. One
important property of a block is that, at the beginning of the block, all local
entities that are to be referenced inside the block must be declared. Declarations
determine how the compiled program will treat certain of its elements; thus it is
necessary to precede the use of an identifier with a declaration of type. An
identifier may appear in only one declaration within a block; however, a block may
contain blocks within itself (as shown in 6.2). Any of these blocks may declare
variables taking on names used in outer blocks, thus redefining variables for the
inner block. All identifiers used in a program, except standard procedure identi-
fiers, must be declared.

3.2 TYPE DECLARATIONS

The type declaration defines the type of variable named by an identifier, Variables
are names which are said to possess values. These values may, in the mathematical
sense, be integers, real numbers, or complex numbers. In addition, the values may
be string values and truth values, all of which are different types of values. A
variable of a certain type can only possess certain values, partially according to
the rules of mathematics and partially because of hardware limitations.

In this manual, the symbol < type > will be used to mean that this symbol can be
replaced with one of the following ALGOL types which then impose the limits shown.

< TYPE > VALUE LIMITS
INTEGER Integral values [-34359738367,
+34359738367]
REAL Real values (-3.37 x 1038, -1.48 x 10-39),

0, (1.48 x 10-39, 3,37 x 1038)
Up to 8 significant digits

BOOLEAN Truth values FALSE, TRUE

COMPLEX Complex values Same limits as for REAL since the real
and imaginary parts are treated as two
separate real numbers,

REAL2 (=9.0 x 10597, -3.6 x 107308y,
0, (3.6 x 10~308_ 9 0 x 10307)
Up to 18 significant digits

7884 UNIVAC 1100 SERIES SYSTEMS 3-2

URP-NUMBER l PAGE REVISION l PAGE

<TYPE > VALUE LIMITS
STRING Alphanumeric Any character in the UNIVAC 1100
characters Series character set.

All variables declared in a block are initially set when the block is entered. For
variables of type INTEGER, REAL, REAL2, and COMPLEX, the initial value is zero (0).
For BOOLEAN variables, the initial value is FALSE. For STRING variables, the
initial value is a sequence of blanks.

3.3 DECLARATION OF SIMPLE VARIABLES
A simple variable is a nonsubscripted name for a value of a given type. The dec-

laration of a simple variable defines the type of value the identifier for that
variable may assume.

EXAMPLES :
INTEGER A$
REAL B1,C2,D $
BOOLEAN RIGHT, ANSWER $
COMPLEX ROOTS $
REAL2 BIGNUMBER,EVENBIGGER $

The declaration takes the form:

<type><list of identifiers> §
@ <type> is defined in 3.2,

@ List of identifiers means one identifier (see 2.2) or several identifiers
separated by commas,

@ The declaration ends with the character $ or ;

3.3.1 Declaration of a Simple String
The declaration of a simple-string variable provides a means of storing and referring
to a collection of alphanumeric characters in Fieldata code by the use of a single
identifier,
The declaration of a simple string has the form:
STRING <identifier> string part>)
® Tdentifier is defined in 2.2,
® String part is an integer expression (in the outermost block of a program,

an integer constant), whose value is the maximum number of characters to
be kept in the string.

7884 UNIVAC 1100 SERIES SYSTEMS 3-3

UP-NUMBER I PAGE REVISION IPAGE

In a substring declaration, string part may also be a list of integer expressions
and string declarations separated by commas. (See 3.3.2.)

EXAMPLES :

STRING S1 (25) $
STRING S2 (14), CHARAC (22), LTRS (4) $

In an inner block also:

STRING CHARS (N) $

3.3.2 Declaration of a Substring

A substring is a part of main string and has the same properties as a string. A
substring is declared by placing an identifier and a string part in the string part
of the main string. The length of the main string is then the sum of the lengths
of its substrings plus any other lengths specified.

NOTE: The length of a string may not be specified by means of a subscripted
variable or the call of a type procedure, as these will be taken as a
substring declaration, If the type procedure or array and the main string
are declared in the same block, this ambiguity will give the error message
"DOUBLE DECLARATION,"

EXAMPLE:

STRING SOUT (SIN1(20),SIN2(42))$
B SOUT has a length of 62 characters.

@ SINl is a substring of length 20 and is the same as characters 1 through
20 of the main string SOUT.

m SIN2 is a substring of length 42 and is the same as characters 21 through
62 of the main string SOUT.

STRING LTRS (10,NUMBS(12),4,CHRS(6))$%
m LTRS has a length of 32,

m NUMBS has a length of 12 and is the same as characters 11 through 22 of the
string LTRS.

®m CHRS has a length of 6 and is the same as characters 27 through 32 of the
string LTRS.
3.3.3 Storage Required by Simple Variables

The storage of the UNIVAC 1000 Series Systems is divided into "words," each con-
sisting of 36 bits. Each identifier reserves a number of words depending on its
type.

34
PAGE REVISION PAGE

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

TYPE NUMBER OF WORDS
INTEGER 1
REAL 1
BOOLEAN 1
COMPLEX 2 - one for real part

-~ one for imaginary part

REAL2 2 - to allow the carrying of more significant digits
STRING The integer value given by ENTIER (Length + start

pos. + 11)/6) where start position goes from O to 5
and length is the number of characters in the string.
3.4 DECLARATION OF SUBSCRIPTED VARIABLES (ARRAYS)
An array is a set of variables, each of which can be accessed by referring to an
identifier with one or more subscripts. Each member of the set has all the prop-
erties of a simple variable. The declaration of an array defines the type of value

each member of the array may assume, the number of subscripts required, and their
limits,

The declaration of an array has the form:
<type> ARRAY <array list>$
B <type> is defined in 3.2. If type is omitted, the type REAL is assumed.
Array list is a list of array segments, which have the form:
<list of identifiers> (<bound pair list>)

m A bound pair list consists of one bound pair or several bound pairs separated
by commas.

m A bound pair has the form:
<arithmetic expression>: <arithmetic expression>
m Section 4 defines arithmetic expression,
NOTE: 1In the outermost block, the arithmetic expression can only be a constant.
EXAMPLES :
In an outermost block:

INTEGER ARRAY AT (0:23) $
REAL ARRAY AR (1:3,1:3) $

7884 UNIVAC 1100 SERIES SYSTEMS 3-5

UP.NUMBER l PAGE REVISION | PAGE

COMPLEX ARRAY AC (-2:20),AD,AE(14:24) $
BOOLEAN ARRAY BA,BC,BD(0:5) ,BE(1:4) $
REAL2 ARRAY K1,K2,KL,KF(-1:10) $

In an inner block also:

INTEGER ARRAY Al (N:N*4) $

3.4.1 Rules for Array Declarations
The rules for array declarations are as follows.

m Each bound pair defines the values the corresponding subscript may take.
In NU ALGOL, the number of subscripts is limited to 10.

® In a bound pair, the first arithmetic expression is called the lower bound;
the second arithmetic expression is the upper bound. The lower bound must
always be less than or equal to the upper bound.

@ The arithmetic expressions must be of type INTEGER or of a type which can
be converted to INTEGER (REAL,REAL2).

3.4.2 Meaning of Array Declarations

The meaning of an array declaration can best be explained by examples. An array
declaration with one subscript position such as:

REAL ARRAY A(0:10)$
declares 11 REAL subscripted variables:
A(0),A(1),A(2),A(3),A(4),A(5),A(6),A(T),A(8),A(9),A(10)
An array declaration with two subscript positions such as:
ARRAY XY(-2:1,1:3)

declares 12 REAL subscripted variables:

Xy(-2,1) Xy(2,2) Xy(-2,3)
Xy(-1,1) XY (-1,2) Xy(-1,3)
Xy(0,1) XY(0,2) Xy(0,3)
Xy(1,1) Xy(1,2) Xy(1,3)

The use of a subscripted variable consumes substantially more processor time and
program space than the use of a simple variable.

If several identifiers are followed by only one bound pair list, then these
identifiers each refer to an array with the number of subscripts and the bounds
given in that bound pair list.

7884 UNIVAC 17100 SERIES SYSTEMS 3-6

UP.NUMBER | PAGE REVISION | PAGE

EXAMPLE:

COMPLEX ARRAY CAD,CM,KF(4:20) $

This declaration defines three arrays each of type COMPLEX, with 17 members and
with a lower bound of 4 and upper bound of 20,

All of these arrays occupy different areas of storage.

3.4.3 Declaration of a String Array
Subscripted STRING variables may be declared using the STRING ARRAY declaration.
A string array is an array whose elements are strings. A string array declaration
has the form:
STRING ARRAY <identifier> (<string part> : <bound pair list>) $
B An identifier is defined in 2.2,
@ The term string part is defined in 3.3.1.

@ The term bound pair list is defined in 3.4.

A string array declaration must obey the rules for both string declarations and
array declarations with the exception that each identifier must be followed by:

(<string part> : <bound pair list>)

even if all characteristics are the same for the string arrays being declared.

EXAMPLES :
STRING ARRAY SAX(14:0:5,1:4)$
STRING ARRAY SAK(2,LAK(16):20:31)$
STRING ARRAY KAS (KAL(2),4,KAT(20):-2:4,1:2)
STRING ARRAY MEL(10:0:5),MELT(10:0:5)$

3.4.4 Meaning of String Array Declarations

The meaning can best be shown in an example. The declaration:
STRING ARRAY L(2,M(5):0:3,1:2)%

defines 8 strings each of length 7:

L(0,1) L(0,2)
L(1,1) L(1,2)
L(2,1) L(2,2)

L@3,1) L(3,2)

7884 UNIVAC 1100 SERIES SYSTEMS

LRMNUMBER

37
PAGE REVISION | PAGE

and the 8 substrings of length 5:

M(0,1) M(0,2)
M(1,1) M(1,2)
M(2,1) M(2,2)
M(@3,1) M(3,2)

3.5 OTHER DECLARATIONS

The following special declarations are described in the sections listed.

DECLARATION PARAGRAPH
FORMAT 8.6.3
LIST 8.7.2
EXTERNAL PROCEDURE 7.3.2
PROCEDURE 7.1.2
LABEL 4.6.2
SWITCH 4.6.3

7884 UNIVAC 1100 SERIES SYSTEMS

UPNUMBER

41
PAGE REVISION | PAGE

4. EXPRESSIONS

4.1 GENERAL

An expression is a rule for computing a value. There are four kinds of expressions:
arithmetic, Boolean, string, and designational. Expressions are composed of oper-
ands, operators, and parentheses. Operands are constants, variables, function
designators, or other expressions. Operators are symbols which designate arith-
metic, relational, or logical operations.

B Operators cause certain actions to be performed on the operands.
m Certain operators may only be used in certain types of expressions.
Parentheses are used as in algebra to group certain operators and operands

and thus determine the sequence of the operations to be performed. Paren-
theses have a special meaning in conditional expressions.

4.2 ARITHMETIC EXPRESSIONS

An arithmetic expression is a rule for computing a numeric value. A constant or a
simple variable is the simplest form of an arithmetic expression. In the more
general arithmetic expressions, which include conditions (if clauses), one out of
several simple arithmetic expressions is selected on the basis of the actual values
of the Boolean expressions.

4.2,1 Types of Values

An arithmetic expression may produce a value with one of the following types (see
3.2).

INTEGER
REAL
REAL2
COMPLEX

4.2,2 Arithmetic Operands

The operands of arithmetic expressions are constants, variables, type procedures,
or other arithmetic expressions.

7884 UNIVAC 1100 SERIES SYSTEMS

I PAGE REVISION | PAGE

4-2
UP-NUMBER
4,2,2.1 Arithmetic Constants
The type of a constant depends on the form in which it is written. No blanks are
allowed in a constant. See 3.2 for the limits of arithmetic constants. The rules

given in Table 4-1 apply.

Table 4-1. Rules for Arithmetic Constant Formation
TYPE OF CONSTANT RULES FOR FORMATION EXAMPLES
INTEGER A string of 11 or fewer digits 70
possible preceded by a + or -, -204
0
+0
=25
REAL 1. A string of 8 or fewer digits 1.2
with a decimal point within .1
the string or at either end -0.111
and possibly preceded by a 75.333333
+ or a -, +40.0
+1.

2. A power-of-ten symbol (&) +&7
followed by an integer &-2
indicating the power, and &+6
possibly preceded by a -&-1
+ or -,

3. An integer or a real 166
number of type (1) followed 1.066
by an exponent of type (2). -17.4466-3

+6.&617
REAL2 1. A number of the same form 1.20001272]11
as REAL types (1) or (3) -203456789.12
but having between 9 and 1.0314628736-22
18 significant digits.

2. A number of the same form 1.0662
as REAL types (2) or (3) 4680
but using the symbol && +3.162966-4
to mean power-of-ten. 0.0&660

COMPLEX Two constants of the form <+7.06-2,-2>
for REAL or INTEGER <1.0, 0.0 >
separated by a comma and <=2, -I>
enclosed within the symbols <2.0,-1>

< and > where the first

constant represents the real

part and the second the

imaginary part of the complex

constant.

NOTES: 1&6 or 1666 means 1 x 10© or 1000000.0

3.162986-4 or 3,16296-4 means 3.1629x10-4 or 0.00031629.

7884 UNIVAC 1100 SERIES SYSTEMS

4-3
UPNUMBER I PAGE REVISION |PAGE

4,2.2.2 Arithmetic Variables

Arithmetic variables are those variables which have been declared to have one of
the types:

INTEGER
REAL
REAL2
COMPLEX

An arithmetic variable may be simple or subscripted (i.e., an element of an array).

4.2.2,3 Arithmetic Type Procedures

The declaration of a type procedure is described in 7.2. In an arithmetic ex-
pression, procedures declared to have the following types may be used:

INTEGER
REAL
REAL2
COMPLEX

All standard procedures (e.g., SIN, COS, ENTIER, LN, etc.) which return a value of
type INTEGER, REAL, REAL2, or COMPLEX may also occur in arithmetic expressions.

4.2.3 Arithmetic Operators

4.2.3.1 The Operators

The following arithmetic operators are defined in NU ALGOL and have the meanings
indicated in Tables 4-2 and 4-3.

Table 4-2. Arithmetic Operator Meaning

OPERATOR MEANING

+ If not preceded by an operand then unary plus - that
is, the following operand has its sign unchanged.

If preceded by an operand and followed by an operand
then the algebraic sum of the two operands is to be
calculated.

- If not preceded by an operand then unary minus - that
is the following operand has its sign changed.

If preceded by an operand and followed by an operand then
subtract the following operand from the preceding one.

7884 UNIVAC 1100 SERIES SYSTEMS 4—s

UP.NUMBER | PAGE REVISION | PAGE

Table 4-2. Arithmetic Operator Meaning (cont)

OPERATOR MEANING

The operand preceding the operator is to be multiplied
by the following operand.

/ The operand preceding the operator is to be divided by
the following operand.

w The operand preceding the operator is to be raised to
the power of the operand following. (Note that the
preceding operand cannot be negative if the operand
following is not an integer),

// The operand preceding the operator is to be divided by
the operand following the operator. Both operands, if
necessary, are converted to type integer. The result of
this division is then the integral part of the quotient.
(A//B=SIGN(A/B)*ENTIER(ABS(A/B)))

Table 4-3. Arithmetic Operator Examples and Results

EXAMPLES RESULT
+ A Do not change sign of A,
- B Change the sign of B.
A+ B Add B to A.
A-B Subtract B from A.
A#*B Multiply A by B.
A/ B Divide A by B.
A ** B Raise A to the power B.
A// B Change A and B to type INTEGER if of type REAL or REAL2.

Divide A by B. The result is the integer part of A/B.

NOTE: If A or B are not of type INTEGER, a compilation
warning is given since the ALGOL 60 report states
that only INTEGER operands may be used.

4-5
PAGE REVISION PAGE

7884 J UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

4.2.3.2 Precedence of Arithmetic Operators

The precedence of the arithmetic operators is:

]_. £33
2. * /., //
3. +, -

This means that in a parenthesis-free expression, all exponentiations will be
carried out (from left to right), all multiplications and divisions are executed
(also from left to right), and all additions and subtractions are done. Paren-
theses may, of course, be inserted in the usual manner to give any desired grouping
of subexpressions. (See also 4.4.)

EXAMPLES ;
A*®B* =P 1. B and P are operands for **
2. A and B * * P are operands for *
A+ B/C * D 1. B and C are operands for /

2. B/C and D are operands for *

3. A and B/C*D are operands for +
4.2.3.3 Use of Parentheses
It may be useful to group operations by means of parentheses, even when not strictly
necessary, so that the intended order of evaluation is immediately visible to the
reader of a program,
4.2.4 Type of Arithmetic Expressions

The value obtained by evaluating an arithmetic expression has a specific type ac-
cording to the following rules.

B Type of resulting value for operators +, -, *

OPERAND OPERAND FOLLOWING IS OF TYPE

PRECEDING

IS OF TYPE: INTEGER REAL REAL?2 COMPLEX
INTEGER INTEGER REAL REAL2 COMPLEX
REAL REAL REAL REAL2 COMPLEX
REAL2 REAL2 REAL2 REAL2 COMPLEX

COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

7884

UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

I PAGE REVISION

m Type of resulting value for operators / and **

OPERAND OPERAND FOLLOWING IS OF TYPE

PRECEDING

IS OF TYPE: INTEGER REAL REAL2 COMPLEX
INTEGER REAL REAL REAL2 COMPLEX
REAL REAL REAL REAL2 COMPLEX
REAL2 REAL?2 REAL?2 REAL2 COMPLEX
COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

m Type of resulting value for the operator // is always INTEGER, if the types of
the operand are INTEGER, REAL, or REAL2,

If either of the operands are of any other type, a compile-time error will occur.
EXAMPLE:

If the following declarations are used:

INTEGER I$

REAL R$

REAL2 D$

COMPLEX C$
then:

EXPRESSION HAS TYPE
I*71 INTEGER
I/R REAL
D+ R REAL2
C-D+1I COMPLEX
I *% 1 REAL
D//R INTEGER

7884 UNIVAC 1100 SERIES SYSTEMS 47
PAGE REVISION | P

UP-NUMBER AGE

4.3 BOOLEAN EXPRESSIONS

A Boolean expression is a rule for computing a Boolean value, that is, TRUE or
FALSE. In a Boolean expression, only those operands necessary for determining the
result are evaluated. A Boolean expression may only produce a value of type
BOOLEAN. Boolean constants are written as the character sequences TRUE or FALSE
for the appropriate values. Boolean variables are those variables whose identi-
fiers have been declared to have type BOOLEAN. They may be simple or subscripted
(i.e., a member of a BOOLEAN array).

The declaration of a type procedure is described in 7.2. In a Boolean expression,
procedures of type BOOLEAN may occur. The standard procedures which return a value
of type BOOLEAN (for example ALPHABETIC and NUMERIC) may be used in Boolean ex-

pressions.

4.3.1 Boolean Operators

The Boolean operators given in Table 4-4 are defined in NU ALGOL to have the follow-
ing meanings only if A and B are BOOLEAN expressions.

Table 4-4. Boolean Operators

VALUE OF EXPRESSION
EXPRESSION MEANING A = TRUE A = TRUE A = FALSE A = FALSE
B = TRUE B = FALSE B = TRUE B = FALSE
NOT A (Unary) Negation FALSE FALSE TRUE TRUE
AOR B Disjunction TRUE TRUE TRUE FALSE
A AND B Conjunction TRUE FALSE FALSE FALSE
A IMPL B Implication TRUE FALSE TRUE TRUE
A EQIV B Equivalence TRUE FALSE FALSE TRUE
A XOR B Exclusive OR FALSE TRUE TRUE FALSE

The precedence of Boolean operators is as follows:

1. NOT

2. AND

3. XOR, OR
4. IMPL

5. EQIV

The remarks on the precedence of the arithmetic operators apply also for Boolean
operators (see 4.2.4 and 4.4).

7884 UNIVAC 1100 SERIES SYSTEMS l] 4-8
PAGE REVISION

UP.-NUMBER PAGE

4.3.2 Relational Operators

Relational operators are defined in NU ALGOL to have the meanings given in Table
4-5. C and D are arithmetic or string expressions.

NOTE: If C or D are of type COMPLEX, only EQL or NEQ may be used.

Table 4-5. Relational Operators

VALUE OF EXPRESSION

EXPRESSTON MEANING FOR FOR FOR
cC>D C=D C<D

CLSSD LeSS than FALSE FALSE TRUE
CLEQD Less than or EQual FALSE TRUE TRUE

C EQL D EQuaL FALSE TRUE FALSE

C GEQ D Greater than or EQual TRUE TRUE FALSE
CGIR D GreaTeR than TRUE FALSE FALSE

C NEQ D Not EQual TRUE FALSE TRUE

For strings, the comparisons are made on a character by character basis, starting
with the leftmost character. If the strings are of unequal length, the string of
shorter length is considered to be filled with blanks to the longer length. To
determine the greater or lesser relations, the characters are ranked by their in-
ternal value as shown in Appendix A, Table A-l.

EXAMPLES :

For the following declarations and statements;:

STRING S(M$

REAL X,Y$

INTEGER ARRAY IA(-5:2)$

BOOLEAN B$

S = 'ABCDEFG'$ X = 12.4% Y = 15.0%
IA(-5) = 22% IA(0) = 21$ B = TRUE$

7884 UNIVAC 1100 SERIES SYSTEMS 4-9

UP.NUMBER | PAGE REVISION I PAGE

The expression has the value:

EXPRESSION VALUE
X GTR Y FALSE
S EQL ' ABCDEF" FALSE
S NEQ 'ACDEFGA' TRUE
IA(-5) LSS IA(O0) FALSE
IA(0) LEQ IA(-5) TRUE
NOT B FALSE
Y GEQ X TRUE
NOT B AND X GTR Y FALSE
S EQL 'ABCDEFG' OR S EQL 'XYZ' TRUE
IA(-5) LEQ 12 IMPL B TRUE
Y GTR 10.0 EQIV X LSS 12.0 FALSE
NOT B XOR X EQL Y FALSE

4.4 PRECEDENCE OF ARITHMETIC, BOOLEAN, AND RELATIONAL OPERATORS
Arithmetic, Boolean, and relational operators have the following precedences.

1. Ses

2. */ /]

3. + -

4. Relational operators LSS, LEQ, EQL, GEQ, GTR, NEQ

5. NOT

6. AND

7. OR, XOR

8. IMPL

9. EQIV

Operations are carried out in order of ascending rank number. Operations of equal
rank are carried out from left to right. Parentheses may be used to change the

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

FPAGE REVISION

410
PAGE

order of operations. The use of parentheses is suggested to ensure that the
calculation wanted is the one performed. (See also 4.2.4.)

EXAMPLE:
BOOLEAN A, B, C, D $
INTEGER X, Y, Z, W, T $
= A EQIV B IMPL C OR D AND NOT Y+Z*W**T GTR X $
Evaluation:
1. W=*T
2. Z¥{W¥*T)
3. Y+(Z#(W**T))
4., (Y+(Z*=(W**T))) GIR X
5. NOT (Y+(Z*(W**T))) GTR X)
6. D AND (NOT((Y+(Z*(W**T))) GIR X))
7. C OR (D AND (NOT((Y+(Z*(W**T))) GTR X)))
8. B IMPL (result of 7)
9. A EQIV (result of 8)

10. A = (result of 9)

4.5 STRING EXPRESSIONS

A string expression is a rule for obtaining a string of characters.

4.5.1 String Operands

String constants are written as a string of characters not containing a string quote
(') and enclosed by string quotes. A string quote may be made part of a string

constant by the use of a double string quote ('').
EXAMPLES :

'NU ALGOL'

'THIS IS A STRING CONSTANT'

"BAD * 2 | / + - WORDS'

'HE SAID: "YES".'

7884 UNIVAC 1100 SERIES SYSTEMS a-11

UP-NUMBER l PAGE REVISION | PAGE

String variables are those variables appearing in a STRING declaration. String
variables may be simple or subscripted, that is, a member of a STRING ARRAY.

4.5.2 String Operators

For strings, no operators giving a string result are defined.

4.5.2.1 Arithmetic Operations on Strings

Arithmetic operators may be used between string operands if the string involved
contains only digits in the form of INTEGER constants (including sign). If the
string is not in the form of an integer constant (containing either non-digits or
too many digits), then a run-time error message will be given. If the string is
in the form of an integer constant, then the value of this integer will be used
as the operand.

EXAMPLE:
STRING S(12) $ INTEGER X $

S

'ANS IS 56345' $

X = S(8,5)+20 $

COMMENT THE VALUE ASSIGNED TO X IS 56365 $

4,5.2.2 Relational Operations on Strings

The equality or collating sequence of strings may be tested using the relational
operators (see 4.3.2).

4.5.3 Substrings

A substring may be used to refer to a part of a string variable.

4.5.3.1 Declared Substring

Substrings may be declared in the declaration of the main string (see 3.3.2).

4.5.3.2 Substring Expressions

A substring of a main string may be referenced by giving a start character number
in the main string and the length of the substring in the form:

<string identifier> (<start character number>, <length of substring>)

7884 UNIVAC 17100 SERIES SYSTEMS

URP-NUMBER

412
FAGE REVISION | PAGE

EXAMPLE -

STRING K(50)$

K(20,6) is a substring referring to characters 20, 21, 22, 23, 24, 25 in the
main string K.

If no length is given, the substring is assumed to consist of one character.
EXAMPLE:

K(29) is a substring consisting of character number 29 in the whole string
K.

If no start position or length is given, the main string is referenced.
EXAMPLE:
STRING K(50)$

K and K(1,50) are equivalent

4.5.3.3 Substrings of Members of String Arrays

A reference to a substring of a subscripted string variable is written in the form:

<string array identifier> (<start character number>,
<length of substring>: < subscript, or subscripts separated by commas>).

EXAMPLE :

STRING ARRAY SA(10:0:10,1:2)$% defines a string array consisting of 22
strings each of 10 characters.

SA(5,2:1,2) is the substring made up of characters 5 and 6 of the element
SA(1,2).

SA(10:0,1) is the substring made of character 10 of the array element
SA(0,1).

The declaration of substrings of string array variables is described in 3.4.3.

4.6 DESIGNATIONAL EXPRESSIONS

ALGOL statements are executed one after another in the order they appear in the
program, unless a GOTO statement forces the execution to begin at a different point
in the program. This point is given by the value of a designational expression. A
designational expression may be:

® a label

4-13
PAGE REVISION | PAGE

7884 1 UNIVAC 1100 SERIES SYSTEMS

UP.MNUMBER

B a switch identifier with an index

m IF<Boolean expression >THEN< simple designational expression> ELSE <desig-
national expression>

where Boolean expression is described in 4.3. Simple designational ex-
pression is either (1) or (2) or (3) enclosed in parentheses.

These expressions have the following meanings:

1. A label refers to that point in the program where the label is declared
(see 4.6.1).

2. A switch identifier with an index (e.g.,i) refers to the designational
expression in the ith position of the list of designational expressions
in the switch declaration (see 4.6.2). If an actual switch index is
less than 1 or greater than the number of designational expressions in
the list, then the GOTO statement is not executed.

3. 1In the case of the designational expression IF <Boolean expression > THEN
<simple designational expression> ELSE < designational expression>, the
simple designational expression is used if the Boolean expression is
evaluated to the value TRUE, the designational expression is used if the
Boolean expression is evaluated to the value FALSE.

4.6.1 Labels

Control may be transferred to a specific program point by the use of a GOTO state-
ment. This program point is called a label. Labels are declared by placing an
identifier in front of a statement and separating it from the statement by the
colon symbol (:).
EXAMPLE:

LABl : X = 5%
Since NU ALGOL labels are identifiers (see 2.2), numeric labels are not allowed.
Only one label with the same identifier may be used within a block. Labels are
local to the block in which they have been declared.

4.6.2 Switches

A switch allows the programmer to select a certain label depending on an index.
The SWITCH declaration has the following form:

SWITCH<identifier> =< 1list of designational expressions> $
B Identifier is as defined in 2.2.

® List of designational expressions is a set of designational expressions
separated by commas, Designational expressions are described in 4.6.

7884 UNIVAC 1100 SERIES SYSTEMS 414

URPNUMBER I PAGE REVISION | PAGE

EXAMPLES :

SWITCH CHOICE = P1, IF A GTR 2 THEN L ELSE Z $
SWITCH JUMP = CHOICE(1), CHOICE(2) $

COMMENT NOTICE THAT A SWITCH IDENTIFIER WITH INDEX IS
A DESIGNATIONAL EXPRESSION $

4.7 CONDITIONAL EXPRESSIONS

It is possible to use different operands in an expression according to the value of
a Boolean expression by placing the operands in a conditional expression. Con-
ditional expressions have the form:

IF < Boolean expression> THEN < simple expression>
ELSE < expression >

m Boolean expression is described in 4.3.
Simple expression is any of the expressions (arithmetic, Boolean, or string) de-
scribed in Section 4, or a conditional expression enclosed in parentheses. Ex-
pression can be either a simple expression as described above or a conditional
expression.

Expressions follow these rules:

The 'simple expression' and the 'expression' used in an expression must be
of the same kind. That is, both must be of kind: arithmetic, Boolean,
string, or designational.

If the 'simple expression' and the 'expression' are both of kind arithmetic
but are of different types, then the value of the expression will have the
type given in Table 4-6.

Conditional expressions used as operands must be enclosed by parentheses.

Table 4-6. Resulting Type of Expression

SIMPLE EXPRESSION EXPRESSION HAS TYPE
HAS TYPE INTEGER REAL REAL2 COMPLEX
INTEGER INTEGER REAL REAL2 COMPLEX
REAL REAL REAL REAL?2 COMPLEX
REAL2 REAL2 REAL?2 REAL?2 COMPLEX

COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

7884 UNIVAC 1100 SERIES SYSTEMS 4-15

UP-NUMBER ’ l PAGE REVISION | PAGE

EXAMPLES :
BOOLEAN B$
REAL X,Y$
REAL2 D,E$
COMPLEX C$
STRING LETTERS (14) $

X=1IF B THEN X ELSE D $
TR

Arithmetic expression of type REAL2

LETTERS = IF X GTR Y THEN LETTERS (1,4) ELSE LETTERS (4,8)$

o

String expression

B= IF D LSS E THEN NOT B ELSE D LSS E$

W

Boolean expression

C = (IF B THEN (IF NOT B THEN X ELSE Y)
ELSE IF X GTR Y THEN D ELSE E) + 20%

i -4
W

Arithmetic expression of type REAL2

5—1
PAGE REVISION | PAGE

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

5. STATEMENTS

5.1 GENERAL

The ALGOL statement is the fundamental unit of operation within the language. The
operations to be performed are specified by statements which may be divided into
two classes:

B Assignment statements

Control statements

This section discusses assignment statements (see 5.2), and combination of state-
ments (see 5.3).

The compiler translates successive statements in the order in which they appear in
the program. The statements are also executed in this same order unless the pro-
grammer interrupts this normal sequence with a "transfer of control."” Once the
transfer has taken place, successive statement sequencing continues from the new
point of reference.

Transfer of control in ALGOL is accomplished through use of three kinds of control
statements - unconditional (see 5.4), conditional (see5.35), and repetitive (see 5.6).

5.2 ASSIGNMENT STATEMENTS

An assignment statement is of the form:
V1:V2: _______ :Vn:E$

where the Vi are variables (either simple or subscripted) and E is an expression.
The sign (=) or (:=) means "assign" or "replace.”

5.2.1 Rules for Performing Assignment

If V is a subscripted variable, evaluate its subscript expressions, thus determining
the actual variable. If there is more than one V in the statement, determine the
actual variables from left to right.

Evaluate the expression E and assign this value to the variable or variables deter-
mined by the rule above.

5.2.2 Type Rule for Multiple Assignment Statements

All variables in the left part list (Vi), that is, all variables to the left of the
rightmost assignment sign (=), must be of the same type.

7884 UNIVAC 1100 SERIES SYSTEMS I l 52
PAGE REVISION

UP-NUMBER PAGE

EXAMPLES:

INTEGER ARRAY A(1:5)$

REAL X, Y$

REAL ARRAY Z(3:10)%

INTEGER 1,3$

=55 J=4$% COMMENT SIMPLE ASSIGNMENT $

AI) =I=1+J% COMMENT A(5) GETS THE VALUE 9,
I GETS THE VALUE 9%

X=Y=1I$ COMMENT ONLY VARIABLES IN THE

LEFT PART LIST MUST BE OF SAME
TYPE, HERE X BECOMES 9.0,Y BE-
COMES 9.0%

5.2.3 Transfer Functions in Assignment Statements
If the type of the expression is different from that of the variable or variables

in the assignment statement, then automatic type transfer occurs, if possible,
according to rules given in Table 5-1.

Table 5-1., Transfer Functions

TYPE OF EXPRESSION
TYPE OF
VARIABLE INTEGER REAL REAL2 COMPLEX STRING BOOLEAN
INTEGER Rounded to |Rounded to | Not allowed | Changed to | Not
INTEGER INTEGER INTEGER allowed
if possible
REAL Converted to Truncated Not allowed | Not Not
REAL to REAL allowed allowed
REAL2 Converter to Zero filled Not allowed | Not Not
REAL2 to REAL2 allowed allowed
COMPLEX Becomes Becomes Truncated Not Not
real part of |real part of}to real allowed allowed
COMPLEX COMPLEX part of
COMPLEX
STRING Integer is Not allowed |Not allowed|{ Not allowed | See below | Not
left justified allowed
in string
BOOLEAN Not allowed Not allowed |Not allowed| Not allowed | Not
allowed

7884 UNIVAC 1100 SERIES SYSTEMS

53
UP-NUMBER IPAGEREWSWN

PAGE

5.2.4 String Assignment

If the string expression has fewer characters than the string variable, the remainder
of the string variable is filled with blanks. If the string expression has more
characters than the string variable then these extra characters are not transferred
to the string variable. The assignment is a character by character transfer start-
ing at the left.

EXAMPLE :
STRING ST(15) $
ST = 'ABC' $
ST(2,14) = ST(1,14) $

COMMENT THE RESULT OF THIS ASSIGNMENT IS THAT THE ENTIRE STRING
ST IS 'AAAAAAAAAAAAAAA®.$

5.3 COMPOUND STATEMENTS

A compound statement is a group of ALGOL statements enclosed by the words BEGIN
and END. A compound statement may be used wherever one ALGOL statement is allowed.
Compound statements are very useful in conditional and repetitive statements (see
5.5 and 5.6) where only one statement is allowed.

EXAMPLES :
BOOLEAN B$ REAL X,Y,Z $
IF B THEN
BEGIN X = 5.0 Y = 15.0% = 22.1%
END $

FOR X = 20.0 STEP 1 UNTIL 50.0 DO
BEGIN Y=Y+ X$ Z=X*20.0+Z2$

END $

5.4 GO TO STATEMENTS

The purpose of a GO TO statement is to break the normal sequence of execution of
statements in a program. The statement executed after a GO TO statement is the
statement following the label given by the designational expression in the GO TO
statement. (Labels and designational expressions are described in 4.6.)

7884 UNIVAC 1100 SERIES SYSTEMS | I 5—4
PAGE REVISION

UP-NUMBER PAGE

There are three possible ways of writing a GO TO statement. All have the same
meaning.

® GO TO < designational expression > $

B GOTO < designational expression> §$

B GO < designational expression> $
EXAMPLES:
SWITCH KF = XY,ZW $ BOOLEAN B $
GO TO XY $

SW: GOTO KF(1)$
GO IF B THEN ZW ELSE XY $

XY: GO TO IF NOT B THEN KF(2) ELSE SW $

5.5 CONDITIONAL STATEMENTS

Conditional statements may be used to select the next statement depending on the
value of a Boolean expression. There are two types of conditional statements, one
with alternative and one without. The forms are given below.

5.5.1 Conditional Statement Form Without Alternative

IF < Boolean expression > THEN < unconditional statement > $
Boolean expression is described in 4.3. An unconditional statement is either any
statement other than a conditional statement, including a compound statement, or a
conditional statement enclosed by BEGIN and END.
EXAMPLE:

IF AGTRB THEN A=A -B $

5.5.2 Conditional Statement Form With Alternative

IF < Boolean expression> THEN < unconditional statement >
ELSE < statement > $

® Boolean expression is described in 4.3.

® Unconditional statement is any statement other than a conditional statement,
including a compound statement. A $ or; must never appear before ELSE.

m Statement is any statement including a conditional statement or a compound
statement.

55
PAGE REVISION | PAGE

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

EXAMPLE :

IF AGTRB THEN A= A -BELSEA=B -A%

5.5.3 Conditional Statement Action Without Alternative

The action of a conditional statement without alternative is given in Table 5-2.

Table 5-2. Conditional Statement Action Without Alternative

BOOLEAN
EXPRESSION ACTION
EVALUATES TO
TRUE Execute unconditional statement after
THEN
FALSE Execute statement after conditional
statement

5.5.4 Conditional Statement Action With Alternative

The action of a conditional statement with alternative is given in Table 5-3.

Table 5-3. Conditional Statement Action With Alternative

BOOLEAN
EXPRESSION ACTION
EVALUATES TO
TRUE Execute unconditional statement after
THEN
FALSE Execute statement after ELSE
EXAMPLES :
BEGIN

REAL X,Y$ BOOLEAN B $
SWITCH SK = LAB,LIN $

IF NOT B THEN X = Y = 20.1 $
COMMENT B IS FALSE, SO X AND Y ARE SET TO 20.1 $

7884 UNIVAC 1100 SERIES SYSTEMS

56
UP.NUMBER PAGE REVISION | PAGE

EXAMPLES: (cont)

LIN: IF X NEQ Y THEN B = FALSE

ELSE B

TRUE $
COMMENT X AND Y ARE EQUAL, SO B IS SET TO TRUE $
IF B THEN BEGIN IF X EQL 25.0 THEN Y = 24.9 END
ELSE GO TO SK(2) $
COMMENT B IS TRUE BUT X IS NOT EQUAL TO 25.0, SO
THE NEXT STATEMENT IS EXECUTED $
B = FALSE $
LAB: IF Y GTR 20.1 THEN GO TO LIN $
COMMENT Y EQUALS 20.1, SO THE PROGRAM FINISHES $

END $

5.6 REPETITION STATEMENTS - FOR STATEMENTS

The FOR statement facilitates programming iterative operations. A part of the pro-
gram is iterative if it is to be executed repeatedly a specified number of times, if
it is to be executed for each one of a designated set of values assigned to a vari-
able, or if it is to be executed repeatedly until some condition is fulfilled. The
FOR statement handles any of these three conditions.
The FOR statement has the form:
FOR V = < 1list of FOR list elements > DO < statement > $
B V is the controlled variable.

B FOR list element is described below.

B Statement is one ALGOL statement of any kind, including conditional or compound
Statements.

The controlled variable may only be of type INTEGER or REAL., If the controlled
variable is a formal parameter, then the type of the actual parameter must coincide
with that of the formal. When the controlled variable is subscripted, the sub-
script(s) is evaluated once, before entering the loop.

There are three possible kinds of FOR list elements:

@ <arithmetic expression >

7884 UNIVAC 1100 SERIES SYSTEMS 57

UP-NUMBER I PAGE REVISION l PAGE

B < arithmetic expression> STEP < arithmetic expression> UNTIL < arithmetic
expression >

B < arithmetic expression> WHILE < Boolean expression >

5.6.1 Simple List Element

The controlled variable V is successively given the values of the arithmetic ex-
pressions, e;, es, €3, - - - ey, as seen below, and the statement S is executed
once for each value of V.

FOR V

< arithmetic expression > DO S $
or
FORV = e}, €9, €3, €4, ~ - ~ey DOS $
The FOR list element is an arithmetic expression of type INTEGER or REAL only, If
the controlled variable is of type INTEGER when an expression is of type REAL, the
value of the expression will be rounded to INTEGER.
EXAMPLE :

Step 1. Evaluate the expression,

Step 2. Assign the value to the controlled variable, converting to the type
of the controlled variable if necessary.

Step 3. Execute the statement following DO.

Step 4. If there are no more FOR list elements, then execute the next state-
ment,

Step 5. If there is another FOR list element, repeat from step 1.
INTEGER A,B,C,TOTAL $
A=10$ B=5%
FORC=A+5, A+ 20, B+ 1, B DO
TOTAL = TOTAL + C $

A has the value 10, B the value 3.

EXPRESSION VALUE OF C VALUE OF
STEP TOTAL
NOMBER VALUE 0 0
1 1 15
2 15
3 15

7884 UNIVAC 1100 SERIES SYSTEMS

UPNUMBER

58
PAGE REVISION | PAGE

EXPRESSION VALUE oF c | VALUE OF
STEP TOTAL

NUMBER VALUE 0 0
4 ~ Another FOR list element follows
5 2 30
2 30
3 45
4 Another FOR 1ist element follows
5 3 6
2 6
3 51
4 Another FOR list element follows
5 4 5
2 5
3 56
4 No more FOR ﬂést elements go to next statemenf

1

5.6.2 STEP - UNTIL List Element
In both following cases, A, B, and C are all arithmetic expressions. They may only
be of type INTEGER or REAL. If the controlled variable is of type INTEGER while
any of the A, B, or C are of type REAL, the value obtained is rounded to INTEGER.
FOR V= A STEP B UNTIL C DO S $
or
FOR V= (A,B,C) DO S $
@ A is the starting or initial value of V

B B is the increment by which V is increased algebraically

B C is the limiting or terminal value of V

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 5_9

I PAGE REVISION I PAGE

EXAMPLE:
Step

Step

Step

Step

Step

Step
Step
Step
Step

Step

Evaluate the expression A; call this value X.

Assign the value X to the controlled variable, converting it to the
type of the controlled variable if necessary.

Evaluate the expressions B and C and convert to the type of the con-
trolled variable if necessary.

If the value of B is negative, then go to step 6.

If the value of X is greater than the value of C, then go to step 10,
otherwise go to step 7.

If the value of X is less than the value of C, then go to step 10.
Execute the statement after DO.
Add the value of X to the value of B - call the result X,
Start again at step 2.
If there are more FOR list elements, start to perform them - (note
that the controlled variable has been stepped) otherwise execute the
statement after the FOR statement.

INTEGER I $ REAL J,K $

INTEGER ARRAY Z(1:4) $

J=52% K=20.6% I=23%
FOR Z (I) = J + K STEP - J - I UNTIL - 41

DOI=I+2Z($

® In this example the initial value expression A is J + K.

@ the step Bis - J -1

® the limit C is - 41

@ the controlled variable is Z(2)

UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

l PAGE REVISION lPAGE

5—10

STEP VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE
OF A OF B OF C X OF Z(2) | OF I OF J OF K

START 0 2 5.2 20.6

1 25.8 26

2 26

3 -7 -41

4 Go to step 6

6 26> 41 - do next step

7 28

8 -7

9 Go to step 2

2 -7

3 =33 41

4 Go to step 6

6 -7> =41 - do next step

7 21

8 -33

9 Go to step 2

2 =33

3 =26 -41

4 Go to step 6

6 -33> -41 - do next step

7 -12

8 -26

9 Go to step 2

2 =26

3 7 -41

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION | PAGE

511

STEP VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE
OF A OF B OF C X OF Z(2) OF I OF J OF K
4 Go to step 5
5 -26 > -41 - Go to step 10
10 No more FOR list elements, go to next statement
l | | | |
EXAMPLE ;

In a more simple case,set all members of an array to a value,.
REAL D $
REAL ARRAY DA(-25 : 20) $
INTEGER I $
FOR I = (-25,1,20) DO DA(I) =D $
Perform a group of statements N times.
REAL

INTEGER I,N $ X,Y $

FOR I = (1,1,N) DO

BEGIN
READ (X) $ COMMENT WILL READ N CARDS $
Y=50 *X$
WRITE (Y) $ COMMENT WILL PRINT N LINES $
END $
Set specific members of an array to a certain value.
INTEGER I $ REAL ARRAY X(1:200) $
REAL R $
FOR I = 1 STEP 1 UNTIL 5, 8, 9, 20 STEP 10
UNTIL 60, 100, 200 DO
X(I) =R $
COMMENT X(1), X(2), X(3), X(4), X(5), X(8), X(9), X(20), X(30),

X(40), X(50), X(60), X(100), X(200) WILL BE GIVEN
THE VALUE OF R $

7884 UNIVAC 1100 SERIES SYSTEMS 5—12

UP.NUMBER | PAGE REVISION |PAGE

5.6.3 WHILE List

Arithmetic and Boolean expressions used below are as described in Section 4.
FOR V = < arithmetic expression> WHILE < Boolean expression> DO S $
EXAMPLE :
Step 1. Evaluate the arithmetic expression.

Step 2. Assign the value of the arithmetic expression to the controlled
variable, V, converting if necessary.

Step 3. Evaluate the Boolean expression.

Step 4. If the Boolean expression has the value FALSE then go to step 7.
Step 5. Execute the statement after DO,

Step 6. Go to step 1.

Step 7. If there are no more FOR list elements, execute the statement after
the FOR statement, otherwise take the next FOR list element.

INTEGER I, COUNT $

STRING S(350), SD(21)$
SD = 'OVERWRITE BLANK AREAS' $
FORI = I + 1 WHILE S(I) EQL ' ' AND I LSS 22 DO S(I) = SD(I) $
This FOR list element is useful when adding terms into a series.
REAL X, TOTAL $
X=25.0$%
FOR X = 0.5 * SQRT (X) WHILE X GTR 0.5 DO

TOTAL = TOTAL +X $

7884 UNIVAC 1100 SERIES SYSTEMS 5_13

UP-NUMBER I PAGE REVISION IPAGE

EXAMPLE : (cont)

VALUE OF VALUE VALUE OF VALUE
STEP ARITHMETIC OF BOOLEAN OF
EXPRESSION X EXPRESSION TOTAL
START 25.0 0.0

1 2.5

2 2.5

3 TRUE

4 Value is TRUE, so do next step

5 2.5

6 Go to step 1

1 .791

2 0.791

3 TRUE

4 Value is TRUE, so do next step

5 3.291

6 Go to step 1

1 .445

2 .445

3 FALSE

4 Value is FALSE, so go to step 7

7 No more FOR list elements, so do next statement

5-14
PAGE REVISION | PAGE

7884 J UNIVAC 1100 SERIES SYSTEMS

UPNUMBER

5.6.4 Special Rules for FOR Statements

Upon exit from a FOR statement either because there are no more FOR list elements
or because of a GO TO statement, the controlled variable has a specific value.
This value may be calculated by referring to the rules for the type of FOR list
element being used.

A GOTO leading to a label within the FOR statement is illegal. A label may, how-
ever, be used for a jump within the statement following DO.

5.7 OTHER TYPES OF STATEMENTS

Input/Output statements are described in Section 8.

Procedure statements or calls on procedures which do not have a type are described
in Section 7.

Blocks as statements are described in Section 6.

The OPTION feature, which may be used as a statement, is described in Section 9.

6—1
PAGE REVISION PAGE

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

6. BLOCKS

6.1 GENERAL

The ALGOL block affects a grouping of a set of variables and the statements in-
volving those variables. The block structure of ALGOL reflects the dynamic storage
of variables, and may be used to economize on storage space. An ALGOL program is
an example of a block.

A block has the following form:

BEGIN

<declarations>$ Block head

<statements > Block body
END $

The only difference between a block and a compound statement is that a block has
declarations.

6.2 NESTED BLOCKS

A block may appear in the body of another block. This inner block is then said to
be nested in the outer block.

EXAMPLE «
OUTERBL: BEGIN
REAL A, B $
A=1.5% B=2.6%
INNERBL1: BEGIN
INTEGER C, D $
C=A+B$D=A-B$

END $

x>
I

50.0 $

INNERBLZ2: BEGIN

7884 UNIVAC 1100 SERIES SYSTEMS

6-2
UP.NUMBER l PAGE RE VISION IPAGE

EXAMPLE: (cont)

REAL E, F $

E=A*BS$ = A/B $

END $
A=A+BS$
END $

The blocks in the preceding example with the labels INNERBL1 and INNERBLZ2 are nested
in the outer block with the label OUTERBL. The blocks with the labels INNERBL1 and
INNERBLZ are non-nested.

6.3 LOCAL AND GLOBAL IDENTIFIERS

All identifers declared within a block are called local identifers (i.e., local to
the given block). Any identifiers that do not occur in declarations in the given
block, but appear in a block containing the given block, are called global, or
nonlocal (to the given block) identifiers. Each block introduces, at the time it
is entered, a new level of nomenclature in the sense that all identifiers declared
for the block assume the meaning implied by the declaration.

EXAMPLE :

BEGIN

BEGIN
B2

END $

BEGIN
B3

END $

Bl

END $
Where blocks B2 and B3 are nested in block Bl.

@ Identifiers that are declared in Bl, but not in B2 or B3, are local in Bl
and global in B2 and B3.

BIdentifiers that are declared in B2 are undefined in Bl and B3. They are
local in B2,

@ Identifiers declared in B3 are undefined in Bl and B2. They are local in B3.
BIf the same identifier is declared in both Bl and B2, then the declaration

in Bl is ignored within B2. If the identifier is used in Bl or B3, the
declaration given in Bl will be used.

7884 UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER

6—3
PAGE REVISION PAGE

B Upon entering a block, variables are initialized to O if arithmetic, to FALSE
if Boolean, and to blanks if string.

B B] is the block with the label OUTERBL,
B B2 is the block with the label INNERBL1,
B B3 is the block with the label INNERBL2.

B Jdentifiers A and B are local to block OUTERBL, and global to blocks INNERBL1
and INNERBLZ2,

® Jdentifiers C and D are local to block INNERBL1 and undefined in the other
two blocks.

B Jdentifiers E and F are local to block INNERBLZ and undefined in the other
two blocks.

EXAMPLE:
BEGIN
REAL A $
A=50.0% COMMENT A IS LOCAL AND REAL $

BEGIN

INTEGER A $
A=5% COMMENT A IS LOCAL AND INTEGER $
END $
BEGIN
= 25.0 $ COMMENT A IS GLOBAL AND REAL $
END $

END $

6.4 LOCAL AND GLOBAL LABELS

Labels are declared, as explained in 4.6.1, by placing an identifier and a : in
front of the statement to which the label applies. Labels can thus be local or
global, depending on where they are declared.

Only labels which are local or global may be used in a designational expression in
a certain block. That is, GO TO statements may only lead to statements in the same
block or in an enclosing block, never to statements in a non-nested block.

6—4
PAGE REVISION PAGE

7884 [UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

NOTE: 1In NU ALGOL, the outermost block may not have a label, since jumps to this
label have no meaning.

6.5 USE OF BLOCKS

Blocks are used to give the values to expressions in declarations. In Section 3,

Declarations, it is stated that the bounds for arrays, and the length of a string,
may be arithmetic expressions. Variables or type procedures may be used in these

expressions only if they are global to the block in which the declaration appears.

Blocks are used to save main storage. Non-nested blocks on the same block level
use the same area of core for the storage of their local variables.

EXAMPLES :
BEGIN
INTEGER X,Y,Z,N $
READ (X,Y,Z,N) $
BEGIN
REAL ARRAY A(1:X,1:Y), B(1:Y,1:Z) $

STRING ST(X+Y+Z-N) $

END $
BEGIN
INTEGER ARRAY K(N:X,N:Z) $

COMMENT THIS ARRAY USES THE SAME MAIN STORAGE AREA AS A AND B
IN THE BLOCK ABOVE $

END $

END $

7884 UNIVAC 1100 SERIES SYSTEMS 7-1

UP-NUMBER I PAGE REVISION l PAGE

7. PROCEDURES AND TYPE PROCEDURES

7.1 PROCEDURES

The ALGOL procedure provides a convenient means of defining an algorithm and giving
it a name so that it may be referenced or called anywhere within the scope of the
declaration of the procedure identifier. Furthermore, different actual parameters
or arguments may be passed to the procedure at each call.

7.1.1 Procedure Declaration

The procedure declaration consists of the procedure heading and the procedure body.
The identifier of the procedure appears in the procedure heading, followed by a list
of names which designate formal parameters. The formal parameter list may be empty,
but if it is not, each formal parameter name must be further defined by the speci-
fication part. The procedure declaration has the form:

PROCEDURE identifier (formal parameter list) $

Procedure

<value part>$
heading

<specification part>$
Procedure

<statement>$
body

value part is described in 7.1.3
identifier is as described in 2.2
formal parameter is described in 7.1.2

specification part is described in 7.1.1.2

7.1.1.1 Identifiers in the Procedure Body

The statement which is the procedure body may be a block. Identifiers declared in
the block are local to the block. (See 6.2.) Identifiers declared in the block
containing the procedure declaration are global to the procedure and may be refer-
enced by statements in the procedure body.

7884 UNIVAC 1100 SERIES SYSTEMS

7-2
UP-NUMBER | PAGE REVISION

PAGE

EXAMPLE :
BEGIN
INTEGER I $
PROCEDURE P $ COMMENT PROCEDURE HEAD WITH
NO PARAMETERS OR SPECIFICATIONS $
BEGIN
INTEGER K $ COMMENT K IS LOCAL $
K=5%
I=I+KS$ COMMENT I IS GLOBAL $
END $
END $

7.1.1.2 Specification Part

The specification part gives the type and kind of the formal parameters, and may
also indicate the modes of transmission-of the actual parameters, The form of a
specification is:

<specifier><list of identifiers>$

list of identifiers has the usual meaning, except that in this case the
identifiers may only be formal parameters.

Table 7-1 gives the possible specifiers.

Table 7-1. Specifiers and Parameters

USE THE SPECIFIER WHEN A FORMAL
PARAMETER IS TO BE

INTEGER)

REAL

REALZ2 A simple variable of the
[specified type

COMPLEX

BOOLEAN

STRING J

7884
UP-NUMBER

UMNIVAC 1100 SERIES SYSTEMS

l PAGE REVISION l PAGE

Table 7-1.

Specifiers and Parameters (cont)

USE THE SPECIFIER

WHEN A FORMAL
PARAMETER IS TO BE

INTEGER ARRAY
REAL ARRAY OR ARRAY
REAL2 ARRAY
COMPLEX ARRAY
BOOLEAN ARRAY
STRING ARRAY
LABEL

SWITCH

PROCEDURE

INTEGER PROCEDURE
REAL PROCEDURE
REAL2 PROCEDURE

BOOLEAN PROCEDURE
COMPLEX PROCEDURE
FORMAT

LIST

VALUE

An array of the specified
type

A label
A switch

A procedure

A type procedure of the
specified type

A format
A list

Special meaning
see 7.1.3

7—3

NOTE: The value part must come before the specifications.

7.1.1.3 Procedure Body

The procedure body must be only one statement, This statement may be a compound
statement or a block. A formal parameter used on the left hand side of an assign-
ment statement must have a variable for actual parameter, unless the format param-
eter has appeared in the value part.

EXAMPLE OF PROCEDURE DECLARATION:

PROCEDURE EXAMPLE (A,B,ANS,C)$
VALUE B $ COMMENT VALUE PART $

REAL ARRAY B $ COMMENT OTHER SPECIFICATIONS $
INTEGER A $

7884 UNIVAC 1100 SERIES SYSTEMS I L 7-4
PAGE REVISION

UP-NUMBER PAGE

EXAMPLE OF PROCEDURE DECLARATION: (cont)

REAL ANS $
LABEL C $

BEGIN COMMENT START OF PROCEDURE BODY $
REAL2 TEMP $ COMMENT LOCAL VARIABLE $

TEMP = B(A) + B(A+l) $

ANS = TEMP/2.0664 $

IF ANS LSS 0.0 THEN GO TO C $
END $

7.1.2 Classification of Formal Parameters

The formal parameters may be classified by the way they are used in the procedure
body.

B ARGUMENTS are those parameters (variables or type procedures) which bring
into the procedure values that will be used by the procedure body.

® RESULTS are those parameters which are assigned values in the procedure body.

B EXITS consist of those formal parameters which are labels or switches. Exits
may be used as a special way of returning from a procedure.

NOTE: A parameter may be both an argument and a result.

7.1.3 Value Part

The value part causes the value or values of the actual parameter to be copied
into a temporary area. These values can then be manipulated or changed without
destroying the values of the actual parameter. The form of the value part is:

VALUE <identifier list> $

A main advantage of the value part is that if the actual parameters are expres-
sions, they are evaluated only once. The main implications of this can be seen
in 7.1.5.2.

The following kinds of formal parameters may not be placed in a value part:

LABEL, SWITCH, FORMAT, PROCEDURE, LIST

EXAMPLE:
PROCEDURE COUNT (N,ANS) $
VALUE N $ COMMENT N IS AN ARGUMENT WHICH SHOULD

NOT BE CHANGED $
INTEGER N, ANS $ COMMENT ANS IS THE RESULT $

7884 UNIVAC 1100 SERIES SYSTEMS 75

UP-NUMBER l PAGE REVISION IPAGE

EXAMPLE: (cont)

BEGIN
INTEGER I,J $
FOR J = N/2 WHILE N NEQ O DO
BEGIN

IF 2#J NEQ N THEN I=1I+1 $

N=N//2$ COMMENT NOTICE THAT THE FORMAL PARAMETER
IS CHANGED, BUT NOT THE ACTUAL $
END $
ANS =1 $
END $

7.1.4 Comments in a Procedure Heading

Comments may be placed anywhere in the procedure declaration after the delimiter
$ or ; (see Section 9). Comments may also be placed in the formal parameter list
by using the following delimiter instead of a comma.

)string of letters not including : or $ followed by :(
EXAMPLES :

PROCEDURE EXAMPLE (A,N,S) $
COMMENT N IS THE DIMENSION OF THE ARRAY A
S IS AN EXIT $

PROCEDURE EXAMPLE (A) IS AN ARRAY WITH DIMENSION : (N)
IF ERROR EXIT TO : (S) $
COMMENT THE FORMAL PARAMETERS ARE A,N,S $

7.1.5 Procedure Statement

A procedure statement calls for the sequential execution of a previously defined
procedure body. The procedure identifier designates the particular procedure body
to be executed and the actual parameter part supplies the arguments to be passed
to the procedure.

A procedure statement -has the form:

< identifier>(<actual parameter list>) $

7884 UNIVAC 1100 SERIES SYSTEMS 7-6

UP-NUMBER I PAGE REVISION I PAGE

identifier is the identifier of the wanted procedure

actual parameter list is a list of variables or expressions

7.1.5.1 Actual Parameter List

The i'th element of the actual parameter list corresponds to the i'th parameter
in the formal parameter list. There must be the same number of actual parameters
as there are formal parameters for a certain procedure. For type and kind cor-
respondence of actual and formal parameters, the rules given in Table 7-2 apply.

Table 7-2., Actual and Formal Parameter Correspondence

FORMAL PARAMETER ACTUAL PARAMETER CAN BE

Simple variable Simple or subscripted variable, constant,
or expression of the same type as the
formal parameter or of a type that can be
converted to that of the formal parameter.
(See restriction below.)

Array Array of the same type and with the same
number of subscripts as the array used in
the procedure body.

Label Designational expression
Switch Switch
Procedure Procedure with a formal parameter list

compatible with the list of actual
parameters used in the call of the formal
procedure,

Type procedure Type procedure of the same type as the
formal procedure or of a type compatible
to that of the formal procedure and with
a formal parameter list compatible with
the actual parameter list used in the
call of the formal procedure.

A formal parameter used on the left side of an assignment statement or as the con-
trolled variable in a FOR statement can only have as actual parameter a simple sub-
scripted variable, not an expression or a constant.

A formal parameter whose actual parameter is a constant or an expression may be used
for temporary storage if the formal parameter is included in the value part. In this
case, once something has been assigned to the formal parameter, the value of the
actual parameter is lost to further calculations in the procedure.

7884 J UNIVAC 1100 SERIES SYSTEMS

7-7
UP.NUMBER

l PAGE REVISION | PAGE

EXAMPLES :

For the procedure declared in 7.1.1.3.
REAL ARRAY ARY(1:25) $ INTEGER RESULT $
EXAMPLE (15,ARY,RESULT,L1) $
Ll:

For the procedure declared in 7.1.3.
INTEGER K,SIZE $

K= 25 $ COUNT (K,SIZE) $

7.1.5.2 Execution of a Procedure Statement

The procedure statement causes the execution of the statement in the procedure body
just as if the procedure statement were replaced by the statement in the procedure
body with the following modifications:

@ All formal parameters which have not been included in the value part (name
parameters), are treated as if they were textually replaced by the cor-
responding actual parameters in the procedure body. Parameters are re-
evaluated each time they are referenced within the procedure body.

Formal parameters which have been included in the value part are evaluated,
and these values are assigned to the formal parameters, which are then used
in the procedure body. The corresponding actual parameters are inaccessible
to the procedure,
EXAMPLES :
Without value specification
COMMENT PROCEDURE DECLARATION $
PROCEDURE VOLUME (LENGTH,WIDTH,HEIGHT,ANS) $
REAL LENGTH,WIDTH,HEIGHT,ANS $
ANS = LENGTH * WIDTH * HEIGHT $
COMMENT PROCEDURE STATEMENT $
VOLUME (P+5.0,0+3.1,Z+4.0, RESULT) $

The procedure statement is executed as if the following statement had been
written,

RESULT = (P+5.0) * (Q+3.1) * (Z+4.0) $

7884 UNIVAC 1100 SERIES SYSTEMS

7-8
UP.NUMBER I PAGE REVISION |PAGE

EXAMPLES: (cont)

With value specification
PROCEDURE VOLUME (LENGTH,WIDTH,HEIGHT,ANS) $
VALUE LENGTH,WIDTH,HEIGHT $
REAL LENGTH,WIDTH,HEIGHT,ANS $
ANS = LENGTH * WIDTH * HEIGHT $
COMMENT PROCEDURE STATEMENT $
VOLUME (P+5.0,Q0+3.1,Z+4.0,RESULT) $

The procedure statement is executed as if the following block had been written
in its place.

BEGIN
REAL LENGTH,WIDTH,HEIGHT $
LENGTH = P+5.0 $

WIDTH = Q+3.1 $

HEIGHT = Z+4.0 $
RESULT = LENGTH * WIDTH * HEIGHT $

COMMENT NOTE THAT THE ACTUAL PARAMETER RESULT IS STILL USED BECAUSE
ANS WAS NOT IN THE VALUE PART $

END $

7.1.6 Recursivity

A procedure may be called within its own procedure declaration. This feature is
known as the recursive use of a procedure and is fully implemented in NU ALGOL.

7.2 TYPE PROCEDURES

Procedures will often calculate a single value. Type procedures calculate a value
and assign this value to the identifier given as the name of the procedure. In
addition to all of the rules for procedures stated in 7.1.1, a few additional rules

apply.

7884 UNIVAC 1100 SERIES SYSTEMS 79

UP.NUMBER l PAGE REVISION I PAGE

7.2.1 Type Procedure Declaration

The type procedure declaration has the form:
< type> PROCEDURE<identifier>k formal parameter list>) $
<value part> $
<specifications> $
<statements> §
B <type> is described in 3.2
@ identifier is described in 2.2
® formal parameter list, value part are described in 7.1.3
The statement should contain an assignment statement which assigns a value to the
identifier used as the name of the procedure.
7.2.2 Use of a Type Procedure

A type procedure may be used as an operand in an expression by using the following
construction:

<identifier>(<actual parameter list>)
Refer to Section 4 concerning operands in expressions,
In its declaration, the type procedure identifier may be used in an expression.
This use is recursive because the procedure uses itself in the calculation. (See

7.1.6.)

The standard procedures (library functions) are examples of type procedures. How-
ever, the standard procedures do not have to be declared.

EXAMPLES::
COMMENT TYPE PROCEDURE DECLARATION $
REAL PROCEDURE VOLUME (LENGTH,WIDTH,HEIGHT) $
VALUE LENGTH,WIDTH ,HEIGHT $
REAL LENGTH,WIDTH,HEIGHT $
VOLUME = LENGTH * WIDTH * HEIGHT $

COMMENT USE OF A TYPE PROCEDURE $
P=5.0% Q=3.0% Z=4.0%
WRITE (VOLUME (P+5.0,0+3.1,Z+4.0)) $

7884 UNIVAC 1100 SERIES SYSTEMS 7—10

UP.NUMBER I PAGE REVISION ‘ PAGE

This statement is executed as if the following block had been written:

BEGIN
REAL LENGTH,WIDTH,HEIGHT,VOLUME $
LENGTH = P+5.0 $
WIDTH = Q+3.1 $

HEIGHT

Z+4.0 $

VOLUME

LENGTH * WIDTH * HEIGHT $
WRITE (VOLUME) $

END $

7.3 [EXTERNAL PROCEDURES

External procedures are procedures whose bodies do not appear in the main program,
They are compiled separately and linked to the main program at its execution,

External procedures allow the user to build a library of procedures which are useful
to him and which can be easily accessed by declaring the required procedure to be
EXTERNAL PROCEDURE.

7.3.1 External Declaration
The external declaration informs the compiler of the existence of external pro-
cedures, of their type (if any), and of the proper manner to construct the necessary
linkages,
The external declaration has the form:

EXTERNAL < kind><type> PROCEDURE <identifier list> $

B <type> is as defined in 3.2.

B If no type is given, then the external procedure is a pure procedure as
described in 7.1.

® < kind> can be <empty>, ALGOL, FORTRAN, ASSEMBLER, or LIBRARY.

B <empty>or ALGOL means an external procedure in the ALGOL language; these
are treated just like ordinary procedures declared within the program,

8 FORTRAN means an external procedure written in the FORTRAN language.

® ASSEMBLER and LIBRARY means the external procedure is written in the
assembler language.

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

7-11
PAGE REVISION | PAGE

The following descriptions require an adequate knowledge of the UNIVAC 1100 Series
Operating Systems, FORTRAN, and assembler language.

7.3.2 ALGOL External Procedures

An ALGOL procedure declaration (see Section 3) may be compiled separately if an

E option (see 9.2) is used on the ALGOL processor card, Several procedures may be
compiled using the same ALGOL processor card. A program containing externally
compiled procedures does not require an enclosing BEGIN-END pair. An ALGOL pro-
cedure compiled in this way will have only the first twelve characters of the
procedure name marked as an entry point. Such a procedure may be referenced from
another ALGOL program as an external procedure if the appropriate declaration and
identifier are used.

EXAMPLES:
1. The externally compiled procedure.
V¥ ALG,EIS < name >
PROCEDURE RESIDUES (X,Y)$
VALUE X,Y$ REAL X,Y$

BEGIN

.

END$
The main program
V ALG, IS <main name >
BEGIN
EXTERNAL PROCEDURE RESIDUES$

REAL A,B$

RESIDUES (A,B)$

#

END$

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

7-12
PAGE REVISION | PAGE

2. The externally compiled procedure.

V ALG,EIS <name>
REAL PROCEDURE DET(A,N)$
VALUE A,N$
REAL ARRAY A$
INTEGER N$
BEGIN

COMMENT THIS PROCEDURE FINDS THE DETERMINANT OF A REAL NxN
MATRIX A, LEAVING A UNCHANGED AND ASSIGNING THE VALUE TO DET$

L]

DET=---3%
END DET$
The main program

ALG,IS <main name >

BEGIN
REAL ARRAY MATRIX (1:10,1:10)%

EXTERNAL REAL PROCEDURE DET$

3
L3

WRITE(DET(MATRIX,10))$

END OF MAIN PROGRAM$

7.3.3 FORTRAN Subprograms

A FORTRAN SUBROUTINE or a FORTRAN FUNCTION may be made available to an ALGOL program
by the declaration:

CXTERNAL FORTRAN <type> PROCEDURE<identifier list>

7834 UNIVAC 1100 SERIES SYSTEMS J I 7-13
PAGE REVISION

UPNUMBER PAGE

® type is described in 3.2

@ identifier list described in 2.2
Actual parameters in calls on such FORTRAN subprograms may be either expressions,
arrays or labels. Procedures, formats, and lists may not be used. Strings may be
used if the FORTRAN program handles them correctly. The address of the string
itself, not of the string descriptor, is transmitted. Labels may be used only if
they are local to the block where the calls occur,
The inclusion of <type> in the declaration implies that the FORTRAN subprogram
begins with <type> FUNCTION < name>. The absence of < type> implies that the FORTRAN
subprogram begins with SUBROUTINE < name>,
EXAMPLE:
FORTRAN subprogram
V¥ FOR,IS <namel >
FUNCTION DET (A,N)
DIMENSION A (N,N)
C DET FINDS THE DETERMINANT

C OF A REAL NxN MATRIX A,

C DESTROYING A (SINCE 'VALUE' IS
C NOT ALLOWED IN FORTRAN), AND

C ASSIGNING THE VALUE TO DET

DET=~~-
END
ALGOL mainprogram
V ALG,IS <name2 >
BEGIN
ARRAY MATRIX (1:10,1:10)%

EXTERNAL FORTRAN REAL PROCEDURE DET$

7884 UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER

7-14
PAGE REVISION | PAGE

EXAMPLE: (cont)
WRITE (DET(MATRIX,10))$

END OF MAIN PROGRAMS$

7.3.4 Assembler Language Procedures

Assembler language procedures are necessary for certain special applications (for
example, bit manipulation). These procedures are available through the use of the

EXTERNAL ASSEMBLER or the EXTERNAL LIBRARY declarations.

The following remarks apply only to non-recursive assembler language procedures.
The required information for writing recursive assembler language procedures may be

found in the ALGOL technical documentation.

If <type> is used in the EXTERNAL procedure declaration, the value of the procedure
must be left in register AO for single word length types (BOOLEAN, INTEGER, REAL)
and A0 and Al for double word length types (COMPLEX, REAL2).

Only the volatile registers (B11l, A0, Al, A2, A3, A4, A5, Rl, R2, R3) may be used

without restoring.

The first twelve characters of the name in the identifier list of the EXTERNAL
PROCEDURE declaration must be the first twelve characters of the external entry
point of the machine language procedure. Simple strings and all arrays including
string arrays used as parameters require special handling as explained in the next

sections.

The following listing shows a comparison of ASSEMBLER and LIBRARY procedures.,

ASSEMBLER
1. Method of parameter By means of parameter
transmission descriptors in main
storage
2. Security Checking of the legality

of the actual parameter
list must be done at
run-time in the ASSEMBLER

procedure,
3. Speed of parameter Fairly slow because of the
transmission need for indirect address-

ing and run-time checking.

LIBRARY

Parameter addresses or
values are delivered
through the arithmetic
registers.

Full checking is done at
compile-time.

Fast because values of
correct type and kind are
delivered through regis-
ters.

7884 UNIVAC 1100 SERIES SYSTEMS l l 715
PAGE REVISION

UP.NUMBER PAGE

ASSEMBLER LIBRARY
4, Flexibility Complete information Less flexible because
available at run-time allowable actual param-
about the parameters, eters are determined at
The number of actual compile-time. The number
parameters may vary of actual parameters must
from one call to another. be equal to the number of

formal ones.

3. Example
Declaration: EXTERNAL ASSEMBLER EXTERNAL LIBRARY
PROCEDURE ES$ PROCEDURE EL(X,Y)$
REAL X,Y$$
Call: ES (A,B)$ EL(A,B)$
A and B may be of any A and B must be REAL

type or kind.
7.3.4.1 External ASSEMBLER Procedure
The external ASSEMBLER procedure has the form:
EXTERNAL ASSEMBLER <type> PROCEDURE <identifier list> $

EXAWPLES :

EXTERNAL ASSEMBLER PROCEDURE BIT, PACK $
EXTERNAL ASSEMBLER COMPLEX PROCEDURE ARRAYSUM$

The call to a procedure which has been declared as an EXTERNAL ASSEMBLER PROCEDURE
produces the following coding:

F5 FORM 18,6,12

F1 FORM 6,6,6,18

LMJ X11,<procedure name>
FS <not used>,<type of procedure>,<number of parameters>
Fl <type>,<kind><base register>,<relative data address>

® Fl1 is the parameter descriptor; there is one descriptor for each parameter
in the call.

B <type> can have the following values and meanings:
INTEGER

REAL

BOOLEAN

7884 UNIVAC 1100 SERIES SYSTEMS 7-16

UP.NUMBER I PAGE REVISION | PAGE

COMPLEX
REAL2

STRING

B <kind> can have the following values and meanings:
Simple, constant, expression, or subscripted variable
ARRAY
LABEL

B The absolute data address (ADA) or location of the parameter is found from

<absolute data address>=<relative data address> + contents
of <base register >

B The <base register> field may be zero in which case nothing should be
added to the data address.

For all simple expressions, the <absolute data address> contains the value of the
parameter, For strings it contains the <string descriptor>. For arrays it con-
tains the first word of the <array descriptor>,

The return point for a call with N parameters is the contents of register X11 +
N+ 1.

EXAMPLE:

Call: BIT (X,Y,Z,D.E,F)$

Return: J 7,X11
Values of parameters should be obtained by the use of an indirect command.
EXAMPLE :

Call: PACK(A,B,C)$

To load value of B: L A2, =2 X11

If C is a label exit to C is J #3,X11

See Sections 7.3.4.3, 7.3.4.4 and 7.3.4.5 for description of STRING, ARRAY,
and STRING ARRAY parameters respectively.

Assembler language program example:

V ASM,SI < namel >
e THE FOLLOWING PROGRAM HAS NO PURPOSE

e OTHER THAN TO ILLUSTRATE THE ABOVE NOTES

7884 I UNIVAC 1100 SERIES SYSTEMS l] 7—17
UP-NUMBER PAGE REVISION | PAGE
$(1) EQUIV SET UP MNEMONICS
ESp#* HAS THE CALL ESP (INT,STRING,EXIT LABEL)$
L,T1 Al,1,X11, PICK UP TYPE AND KIND
TE,U Al,0101. IF NOT SIMPLE
J *3,X11. INTEGER GO TO ERROR EXIT
L A0,*1,X11. PICK UP VALUE OF INTEGER
16,0 A0,1024. IF THE INTEGER GEQ 1024
J *3,X11. THEN GO TO ERROR EXIT
L,T1 Al,2,X11. PICK UP TYPE/KIND FOR SECOND PARAMETER
TE,U Al,0701. IF NOT SIMPLE STRING
J *3,X11, THEN GO TO ERROR EXIT
L,H2 Al,*2,X11. PICK UP ADDRESS FROM STRING DESCRIPTOR
L AS5,1,Al. PICK UP SECOND WORD OF STRING
J 4,X11. RETURN WITH AO CONTAINING THE ACCEPTABLE
INTEGER

* THE NEXT ROUTINE

e HAS THE CALL TIMER (ARRAY IDENTIFIER, ROW, COLUMN, ANSWER)
e THIS ROUTINE MULTIPLIES THE FIRST THIRD

e OF THE SPECIFIED ARRAY ELEMENT BY 3600

e THE SECOND THIRD BY 60 AND ADDS THE

e RESULTS TO THE THIRD THIRD

TIMER* L,U A0,*1,X11. GIVES ADA
L A3,%#3,X11. PICK UP COLUMN
MSI ,H1 A3,1,40, MULTIPLY BY D2
A A3.%2,X11. ADD ON ROW
A,H1 A3,0,A0. ADD ON BA

L,H2 Al,0,A0. PICK UP FA

7884 j UNIVAC 1100 SERIES SYSTEMS [l 7-18
PAGE REVISION | PAGE

UP-NUMBER

AU,H1 A1,0,Al. ADD LENGTH TO FA
W Al,A3, IF ELEMENT NOT IN ARRAY
ER ERR$

L,Tl 40,0,A3 PICK UP FIRST THIRD

MSI,U 40,60, MULTIPLY BY 60

A, T2 40,0,A3. ADD ON SECOND THIRD

MSI,U 40,60, MULTIPLY BY 60

A, T3 40,0,A3. ADD ON THIRD THIRD

S A0,%4,X11. STORE RESULT IN

J 5,X11. FOURTH PARAMETER AND RETURN
END.

Main program example:
V ALG,IS <name2 >

BEGIN

EXTERNAL ASSEMBLER INTEGER PROCEDURE ESP$
EXTERNAL ASSEMBLER PROCEDURE TIMER$

INTEGER INT$

STRING SOUT(4,SIN(7))$

INTEGER ARRAY A1(1:50,0:10),RESULTS(-5:12)$%
WRITE(ESP(INT,SIN,ERR))$ GO TO L1$

ERR: WRITE ('WRONG PARAMETER')$

L1: TIMER(AL,5,9,RESULTS(12))$

END$

7.3.4.2 External LIBRARY Procedure

In order to make possible the compile-time checking of parameters, the declaration
of a LIBRARY procedure must contain specifications. The specification list is
terminated by ; or $. The LIBRARY procedure therefore has the appearance of an
ALGOL procedure with an empty body.

7884 UNIVAC 1100 SERIES SYSTEMS I I 7-19
PAGE REVISION

UPNUMBER PAGE

The form of the declaration is:

EXTERNAL LIBRARY<type>PROCEDURE<identifier>(<formal parameter list>)$
<value part>
<specification part>$
EXAMPLE:
EXTERNAL LIBRARY INTEGER PROCEDURE COM(I,B1,CA)$
VALUE I,Bl1$
INTEGER I$
BOOLEAN B1$%
COMPLEX ARRAY CA$$
When a library procedure is called, parameter values or addresses are loaded into
consecutive arithmetic registers. If the formal parameter is by value, the value
of the actual parameter is loaded, otherwise the address of the parameter is loaded.
The first parameter goes into AO, the second into Al and so on. REAL2 or COMPLEX
parameters called by value, occupy two consecutive registers. The number of param-

eters allowed in the call is therefore limited by the number of arithmetic regis-
ters available and can at most be 16.

Generally the type and kind of the formal and actual parameter must be the same,
However, if the formal is a simple value parameter, the actual parameter need only
be convertible to the formal type. A label must be local to the block where the
call occurs,

Table 7-3 shows possible combinations of formal and actual parameters and the
corresponding content of the arithmetic register., Blank fields indicate illegal
combinations which will give compile-time errors.

Return from a LIBRARY procedure is always to 0,X11.
EXAMPLE:
V ALG,IS MAIN
BEGIN
COMMENT T:IS EXAMPLE SHOWS HOW TO PACK THREE INTEGER
NUMBERS INTO ONE 1100 SERIES PROCESSOR WORD IN ORDER TO
SAVE CORE SPACE, AND THEN UNPACK THEM AGAIN FOR COMPUTATION.

FOR SUCH PACKING THE NUMBERS MUST HAVE ABSOLUTE VALUES LESS
THAN 2047.

7984 UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER

7-20
PAGE REVISION [PAaGE

EXAMPLE: (cont)

LARGER NUMBERS WILL BE TRUNCATED;
INTEGER I,J,K,M,N;
INTEGER ARRAY NUMBERS (1:10000);
EXTERNAL LIBRARY PROCEDURE PACK (N,I,J,K);
VALUE I,J,K;
INTEGER N,I,J,K;
COMMENT THE PROCEDURE PACKS I,J,K INTO N;
EXTERNAL LIBRARY PROCEDURE UNPACK (N,I,J,K);;
INTEGER N,I,J,K;
COMMENT THE PROCEDURE UNPACKS N INTO I,J,K;;

COMMENT READ 30000 NUMBERS FROM CARDS;

FOR M = (1,1,10000) DO

BEGIN

READ(I,J,K); PACK(NUMBERS(M),I,J,K);
COMMENT THE CALL ON PACK WILL GENERATE THE FOLLOWING

SEQUENCE:

L AO,<address of array element>

L Al,IX2
L A2,J,X2
L A3,K,X2

LMJ X11,PACK
END;
COMMENT DO SOME CALCULATIONS;
FOR M=(1,1,5000) DO

BEGIN

7884

UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

I PAGE REVISION l

7-21
PAGE

UNPACK(NUMBERS (M), I,J,K);

COMMENT THE CALL ON UNPACK WILL GENERATE:
L AO,<address of array element>
L,U A1,I,X2
L,U A2,J,X2
L,U A3,K,X2
LMJ X11,UNPACK;

N=I+J*K;

UNPACK (NUMBERS (10000-M) ,I,J,K);
N=N*K//I+1J;

WRITE(N);

END;

END MAIN PROGRAM;

V ASM,S1

PACK*

UNPACK*

PUNP
s, m A1,0,A0. I GOES INTO T1
S, T2 AZ2,0,A0. J GOES INTO T2
S, T3 A3,0,A0. K GOES INTO T3
J 0,X11 RETURN TO MAIN PROGRAM

L,T1 A4,0,A0. GET NUMBER IN T1
S A4,0,Al. STORE INTO I
L,T2 A4,0,A0.

S A4,0,A2,

L, T3 A4,0,A0.

S A4,0,A3.

J 0,X11 RETURN TO MAIN PROGRAM

Table 7-3. Formal and Actual Parameter Combinations
ACTUAL SIMPLE OR STRING ARRAY
FORMAL FORMAL FORMAL FORMAL LOCAL
\\\\\\\\\\\\\\\ VALUE NAME CONSTANT SUBSCR, EX- AND NON- {AND NON- LABEL
FORMAL SIMPLE SIMPLE VARIABLE | PRESSION FORMAL FORMAL
Value Value of Value of Value of Value of |Value of
simple parameter parameter | constant parameter |expression
Simple not | Address of Address of
by value parameter parameter
Value String
string descrip-
tor
(see
7.3.4.3)
String Address
not by of the
value string
descrip-
tor
(see
7.3.4.3)
Array Address
of the
array
descrip-
tor
(see
7.3.4.4)
Label Program
address

3ovd

2¢—L

H3IAaWNN*dN

NOISIA3Y 39Vvd

¥88L

SWILSAS S3iA3S 00LL DVAINN

|

7884 UNIVAC 1100 SERIES SYSTEMS 7-23

UP.NUMBER l PAGE REVISION IPAGE

7.3.4.3 String Parameters

The absolute data address is the location of the string descriptor. The string
descriptor can be described as follows:

F4 FORM 12,6,18
F4 <length>,<start>, < address>
® <length> is the number of characters in the string.
B <start> is the start position of the string in the first word used
S1=0, S2=1, S3=2, S4=3, S5=4, S6=5; it will be different from zero only

for substrings.

B <address> is the location of the first word used for the string.

7.3.4.4 Array Parameters
The absolute data address (ADA) is the start address of the array descriptor.

The array descriptor has the following format:

Address H1 H2
ADA BA FA

ADA+1 D2 D3 Dope vector elements -
ADA+2 D4 DS as many as required
ADA+3 D6 D7 maximum of 9 since the
ADA+4 D8 D9 maximum number of
ADA+S D10 dimensions is 10.

B BA - Base Address is the value to be added to the calculated subscript
to give the exact location of the element,

B FA - First Address is the absolute address of the check word which
stands just before the first element in the array.

B D, - are the "dope vector elements" which are only present if the array
has more than one dimension. Their use is explained by the following
algorithm.

For an array with n dimensions the element with subscripts Sj, So, S3...S, has
the following address:

< absolute address of array element (S7,So...Sy)>=

(..((Sp*Dp+Sy-1)*Dy-1+54-2)*Dy_2...)*D2+S1+BA

7--24
PAGE

7884 J UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER

| PAGE REVISION

For COMPLEX or REAL2 arrays the algorithm has the form:

<absolute address of double array element (S;,S2,...S5q)>
(2% [(.. ((Sy*Dy#Sn-1)%Dn-1+5p-2)*Dy_2. .. }*D2+S1] +BA
EXAMPLE:
The array element A(I,J,K) has the address:
(K*D3+J)*D2+I+BA.
The checkword at location FA has the following format:
F3 FORM 18,18
F3 <length of array in machine words>,
< not used>
7.3.4.5 String Array Parameters
The absolute data address (ADA) is the start address of the string array descriptor.
The string array descriptor has the following format:

Address

ADA < Belative string descriptor >
ADA+L)
ADA+2
ADA+3 Same as words ADA through ADA+5
ADA+4 for ordinary arrays

ADA+S

ADA+6

/
The relative string descriptor has the following form:

F4 FORM 12,6,18

F4 < length>,<start>,<relative position>.

® <length> is the number of characters in the string.

8 <start>is the start position of the string in the first word it occupies;
S1=0 52=1 S3=2 S4=3 S5=4 S6=5 (not 0 only for subarray elements).

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

7—25
PAGE

I PAGE REVISION

@ <relative position>is the amount to be added to the address given in the
string descriptor to get the address of the first word containing the string.

The address of an element is calculated in the same way as for ordinary arrays.
An element in a string array is a string descriptor:

F4 FORM

12,6,18

F4 < length><start>,< address of string>

B <length> and <start> have the same meaning as above; in the case of a main
string they will have the same values as well.

B <address of string>is the location of the first word used for the main

string.

To find the address of the first word used for a substring, it is necessary to add
the address of string to the relative position,

EXAMPLE:

7.3.4.6 Storage Dia

ADA for S1

ADA for S2

ADA for S3

STRING ARRAY S1(7,

EXTERNAL ASSEMBLER

XYZ(S1,52,53)$

grams

$2(5,53(4)),2:1:2,1:5)%

PROCEDURE XYZ$

18

BA

D2

FA

BA

D2

FA

BA

D2

FA

7884

UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

I PAGE REVISION | PAGE

7-26

SA

SA+3

FA 10 SA = Start address

18 0 SA

18 0 SAH3 ,

18 0 SA+6

18 0 SA+9

18 0 SA+12

18 0 SA+15

18 0 SA+18

18 0 SA+21

18 0 SA+24

18 0 SA+27

S1(1,1;1,1) §S1(2,1:1,1) [S1(3,1:1,1) |S1(4,1:1,1) {S1(5,1:1,1) {S1(6,1:1,1)

S1(7,1:1,1)

S1(8,1:1,1)

S2(1,1:1,1)

S1(9,1:1,1)

S2(2,1:1,1)

S$1(10,1:1,1)

S2(3,1:1,1)

S1(11,1:1,1)

S2(4,1:1,1)

S1(12,1:1,1)

S52(5,1:1,1)

S1(13,1:1,1)

S2(6,1:1,1)

| S3(1,1:1,1)

S1(14,1:1,1)
S2(7,1:1,1)

s3(2,1:1,1)

S1(15,1:1,1)
S2(8,1:1,1)

S3@3,1:1,1)

S1(16,1:1,1)
S2(9,1:1,1)

S3(4,1:1,1)

S1(17,1:1,1)

S1(18,1:1,1)

S1(1,1:2,1)

S1(2,1:2,1)

7.4 STANDARD PROCEDURES

7.4.1 Available Procedures

The procedures given in Table 7-4 are available for use without declaration.
some identifiers with special meaning are listed.
identifiers and may be redefined in any block.

first parameter, Y the second.

Also

These names are not reserved

X is used to mean the value of the

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

| PAGE REVISION IPAGE

7-27

Table 7-4. Available Procedures
NUMBER TYPES
" NAME or OF RESULT TYPE OF
PARAMETERS | PARAMETERS OR USE RESULT
ABS 1 INTEGER The absolute value of the INTEGER
parameter,
REAL REAL
REAL2 REAL2
COMPLEX REAL
ACARDS 1 STRING To direct I/0 from or to an
INTEGER alternate card file (see
8.3.6.3).
ALPHABETIC 1 STRING TRUE if the string consists BOOLEAN
only of spaces or alphabetics
(A-Z), FALSE otherwise.
APRINTER 1 STRING Output to alternate print file
INTEGER (see 8.3.6.3).
APINCH 1 STRING Output to alternate card file
INTEGER (see 8.3.6.3).
ARCCOS 1 INTEGER
arccos (X) REAL
REAL
REAL2 arccos (X) REAL2
ARCSIN 1 INTEGER
arcsin (X) REAL
REAL
REAL2 arcsin (X) REAL2
ARCTAN 1 INTEGER l
arctan (X) REAL
REAL
REAL2 arctan (X) REAL2
CARDS 0 - To specify to the input routine
that the device is the card
reader or to the output routine
that the device is the card
punch (see 8.3.4).

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

| PAGE REVISION | PAGE

7-28

Table 7-4., Available Procedures (cont)
NUMBER TYPES
NAME OF OF RESULT TYPE OF
PARAMETERS PARAMETERS OR USE RESULT
CBROOT 1 INTEGER
cube root of X REAL
REAL
REAL2 cube root of X REAL2
COMPLEX cube root of X COMPLEX
CLOCK 0 - Present time of day in INTEGER
seconds since midnight.
For example, at 13:30 the
result is 48600.
COMPL 2 (1) INTEGER |A complex number with the COMPLEX
real part equal to X and
REAL the imaginary part equal
to Y.
REAL2
(2) INTEGER |Example:
REAL COMPL(1,2) gives the complex
number <1.0,2,0>,
REAL2
CoS 1 INTEGER
cos (X) REAL
REAL
REAL2 cos (X) REAL2
COMPLEX cos (X) COMPLEX
COSH 1 INTEGER
cosh (X) REAL
REAL
REAL2 cosh (X) REAL2
COMPLEX cosh (X) COMPLEX
DISCRETE 2 (1) REAL Drawing from a discrete INTEGER
(cumulative) distribution
ARRAY function (for full
description see 7.4.2).
(2) INTEGER

7884
UR-NUMBER

UNIVAC 1100 SERIES SYSTEMS

| PAGE REVISION I PAGE

7-29

Table 7-4., Available Procedures (cont)
NUMBER TYPES
NAME OF OF RESULT TYPE OF
PARAMETERS PARAMETERS OR USE RESULT
DRAW 2 (1) REAL TRUE with the probability BOOLEAN
X, FALSE with the prob-
(2) INTEGER | ability 1-X (see 7.4.2).
DRUM 0orl INTEGER Gives input/output routine
access to relative address
X of random drum. If X is
not specified then the next
relative address available
is used (see 8.3.6).
DRUMPOS 0 - Gives next relative drum INTEGER
address (see 8.3.6.2).
DOUBLE 1 INTEGER Value of type REALZ, REAL2
REAL
ENTIER 1 REAL Largest integer 1 such that INTEGER
1<X,
REAL2 Example:
ENTIER(-0.99) is -l.
EOF 0Oorl INTEGER Used by WRITE and POSITION
(see 8.4.5). Only the first
REAL six characters of the string
are used.
STRING
EOI 0 - Used by WRITE and POSITION -
(see 8.4.6).
ERLANG 3 (1) REAL A drawing from the Erlang
distribution with mean 1/X
(2) REAL and standard deviation REAL
1/XVY (for full description
(3) INTEGER | see 7.4.2).
EXP 1 INTEGER
exp (X) REAL
REAL
REAL2 exp (X) REAL2
COMPLEX exp (X) COMPLEX

7884 UNIVAC 1100 SERIES SYSTEMS l l 7-30
PAGE REVISION

URP-NUMBER PAGE

Table 7-4. Available Procedures (cont)

NUMBER TYPES
NAME OF OF RESULT TYPE OF
PARAMETERS PARAMETERS OR USE RESULT
FILE 1 or 2 1. STRING Directing I/0 from or to -
INTEGER a specified file (see
8.3.6),
2. INTEGER
FrILEINDEX 1 STRING Next relative INTEGER -
INTEGER address of an indexed file
(see 8.3.6.2),
HISTD 2 (1) REAL A drawing from a histogram INTEGER

(for full description see
ARRAY 7.4.2).

(2) INTEGER

HISTO 4 (1) REAL or | To update a histogram -
according to observation
INTEGER | (third parameter) using
the weight given as the
ARRAY fourth parameter (for
full description see

(2) REAL or | 7.4.2).

INTEGER
ARRAY
(3) REAL
(4) REAL
IM 1 COMPLEX Imaginary part of the REAL
complex number X,
INT 1 REAL Value of type INTEGER. INTEGER
REAL2
STRING
KEY Oorl INTEGER Used by WRITE and POSITION

(see 8.4.4). Only the first
six characters of the string
are used.

UNIVAC 1100 SERIES SYSTEMS 7-31

I PAGE REVISION | PAGE

7884
UP.NUMBER

Table 7-4. Available Procedures (cont)
NUMBER TYPES
NAME OF OF RESULT TYPE OF
PARAMETERS PARAMETERS OR USE RESULT
LENGTH 1 STRING Number of characters in the INTEGER
string including blanks.
Example:
STRING S(42)$
LENGTH (S) has the value 42
LINEAR 3 (1) REAL A drawing from a (cumulative) REAL
distribution using linear
ARRAY interpolation in a non-
equidistant table (for full
(2) REAL description see 7.4.2).
ARRAY
(3) INTEGER
LN 1 INTEGER
In (X) REAL
REAL
REAL2 In (X) REAL2
COMPLEX In (X) COMPLEX
MARGIN 1 STRING To change the vertical -
dimensions on a printer page
(see 8.8.5).
MAX List of ex- | INTEGER Algebraic largest element of REAL
pressions list,
(any number) | REAL Example: REAL
Value of MAX (FOR 1=(1,1,99)
DO I) is 99.0 (see 8.7.3).
MIN List of ex- | INTEGER Algebraic smallest element REAL
pressions of list.
(any number) | REAL Example: REAL
Value of MIN
1.2,3.3,-8.6,-99.2,-4,0)
is -99.2 (see 8.7.3).
MOD 2 (1) INTEGER | If REAL or REALZ then round INTEGER
X and Y to nearest integer,
REAL then the expression
X-ENTIER(X/Y)*Y is computed.
REAL2

7884 UNIVAC 1100 SERIES SYSTEMS

7-~32
UP.NUMBER l PAGE REVISION [PAGE

Table 7-4. Available Procedures (cont)
NUMBER TYPES
NAME OF OF RESULT TYPE OF
PARAMETERS PARAMETERS OR USE RESULT
(2) INTEGER |Example:
Value of MOD(-48,5) is 2
REAL
REAL2
NEGEXP 2 (1) REAL A drawing from the nega- REAL
tive exponential dis-
(2) INTEGER |tribution with mean 1/X
(for full description see
7.4.2).
NORMAL 3 (1) REAL A drawing from the normal REAL
distribution with mean X
(2) REAL and standard deviation Y
(see 7.4.2).
(3) INTEGER
NUMERIC 1 STRING TRUE if string has the form BOOLEAN
of an integer, FALSE other-
wise (see 4.2.3).
POISSON 2 (1) REAL A drawing from the Poisson INTEGER
distribution (see 7.4.2).
(2) INTEGER
POSITION special - To position a tape (see -
list 8.8.3).
PRINTER 0 - To assign the printer as -
device to the WRITE state-
ment (see 8.3.35).
PSNORM 4 (1) REAL An approximate drawing REAL
from the normal distribution
(2) REAL with mean X and standard
deviation Y (see 7.4.2).
(3) INTEGER
(4) INTEGER
PUNCH 0 - Same as CARDS on output -
(see 8.3.4).

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

Table 7-4. Available Procedures (cont)
NUMBER TYPES
NAME OF OF RESULT TYPE OF
PARAMETERS PARAMETERS OR USE RESULT
BRANK 1 STRING The Fieldata equivalent of INTEGER
the first character of the
string.
Example:
STRING S(12)$
S='DEVICE'$
RANK(S) will have the value
9 (D=118).
RANDINT 3 (1) INTEGER | A drawing of one of the INTEGER
integers between X and Y
(2) INTEGER | with equal probability (see
description in 7.4.2).
(3) INTEGER
RE 1 COMPLEX The real part of the complex REAL
number X:
READ Special list - To bring input from a speci- -
fied device.
REWIND Special list - To rewind a file (see 8.8.4). -
REWINT Special list - To rewind a file and lock if -
it is a tape (see 8.8.4).
SIGN 1 INTEGER INTEGER
REAL
Value of Value of
REAL2 X .SIGN (X)
x>0 1
X=0 0
X<0 -1
Example:
Value of SIGN(128) is 1
SIN 1 INTEGER
sin (X) REAL
REAL
REAL?2 sin (X) REAL?2

7-33
PAGE REVISION § PAGE

7884
UB-NUMBER

UNIVAC 1100 SERIES SYSTEMS

iPAGE REVISION ‘ PAGE

734

Table 7-4. Available Procedures (cont)
NUMBER TYPES
NAME OF OF RESULT TYPE OF
PARAMETERS PARAMETERS OR USE RESULT
COMPLEX sin (X) COMPLEX
SINH 1 INTEGER
sinh (X) REAL
REAL
LEAL2 sinh (X) REAL2
COMPLEX sinh (X) COMPLEX
SQRT 1 INTEGER
} vx REAL
REAL
REAL2 S REAL2
COMPLEX '3 COMPLEX
TAN 1 INTEGES
tan (X) REAL
REAL
REAL2 tan (X) REAL2
COMPLEX tan (X) COMPLEX
TANH 1 INTEGER
tanh (X) REAL
REAL
REAL2 tanh (X) - REAL2
COMPLEX tanh (X) COMPLEX
TIME 0 - Net CPU-time in 0.1 msec, INTEGER
elapsed since previous.
call of TIME
UNIFORM 3 1. REAL The value is uniformly REAL
distributed in the interval
2. REAL [x,Y] (see 7.4.2).
3. INTEGER
WRITE Special list - To send output to a Speci- -
fied device (see 8.8.2).

7884 J UNIVAC 1100 SERIES SYSTEMS 7-35
PAGE REVISION

UP.-NUMBER PAGE

7.4.2 Special Routine Descriptions

Included in the run-time system of this ALGOL are many of the Random Drawing and
some of the Data Analysis routines of SIMULA (0.J. Dahl, K. Nygaard: Simula, NCC.
Sept. 1967, ch. 7-8). The following descriptions explain their uses and methods.

7.4.2.1 Pseudo-Random Number Streams

All random drawing procedures of SIMULA use the same technique of obtaining basic
drawings from the uniform distribution in the interval <O0,1>. A basic drawing
will replace the value of a specified integer variable, e.g. U, by a new value
according to the following algorithm,

Uj41 = remainder ((U; x 52p+ly //2M),
U; is the i'th value of U.

It can be proved that, if Uy is a positive odd integer, the same is true for all Uj,
and the sequence Up, Uy, U2, ... is cyclic with the period 2n-2, (The last two

bits of U remain constant, while the other n-2 take on all possible combinations.)
For UNIVAC 1100 Series, n = 35; p is chosen equal to 6.

The real numbers uj = Uj x 27" are fractions in the range <0,1>. The sequence uj,
u2, ... n is called a streamof pseudo-random numbers, and uj (i = 1,2, ... n) is
the result of the i'th basic drawing in the stream U. A stream is completely
determined by the initial value Ug of the corresponding integer variable. Never-
theless it is a "good approximation” to a sequence of truly random drawings.

By reversing the sign of the initial value Ug of a stream variable the antithetic
drawings 1 - uj3, 1 - ug, ... n are obtained. In certain si‘tuations it can be proved
that means obtained from samples based on antithetic drawings have a smaller
variance than those obtained from uncorrelated streams. This can be used to reduce
the sample size required to obtain reliable estimates.

7.4.2.2 Random Drawing Procedures

The following procedures all perform a random drawing of some kind. Unless other-
wise explicitly stated, the drawing is affected by means of one single basic drawing,
i.e.,the procedure has the side effect of advancing the specified stream by one step.
The necessary type conversions are effected for the actual parameters, with the ex-
ception of the last one, The latter must always be an integer variable specifying

a pseudo-random number stream. All parameters except the last one and arrays are
called by value.

1. BOOLEAN PROCEDURE DRAW (a,U); REAL a; INTEGER U;
The value is true with the probability a, false with the probability 1 -a.
It is always true if a 2 1, always false if a < O.

2. INTEGER PROCEDURE RANDINT (a, b, U); INTEGER a, b, U;
The value is one of the integers a, a +1, ..., b - 1, b with equal
probability. It is assumed that b 2 a.

7884 UNIVAC 1100 SERIES SYSTEMS l J 7.-36
PAGE REVISION | PAGE

URP-NUMBER

3. REAL PROCEDURE UNIFORM (a, b, U): REAL a, b; INTEGER U;
The value is uniformly distributed in the interval [a, b]. It is assumed
that b>a,

4. REAL PROCEDURE NORMAL (a, b, U); REAL a, b; INTEGER U;
The value is normally distributed with mean a and standard deviation b,
An approximation formula is used for the normal distribution function.

See M. Abramowitz & I.A. Stegun (ed);

Handbook of Mathematical Functions, National Bureau of Standard Applied
Mathematics Series No. 55, p. 952 and C. Hastings formula (26.2,23) on
p. 933.

5. REAL PROCEDURE PSNORM (a, b, ¢, U); REAL a, b; INTEGER ¢, U;
The value is formed as the sum of ¢ basic drawings, suitably transformed
So as to approximate a drawing from the normal distribution. The following
formula is used:

c
a+b (C 3 u)-c/2)/12/c
i 1

1 =

This procedure is faster, but less accurate than the preceding one. ¢ is
assumed < 12,

6. REAL PROCEDURE NEGEXP (a, U); REAL a; INTEGER yj;
The value is a drawing from the negative exponential distribution with
mean 1/a, defined by -1n(u)/a, where u is a basic drawing. This is the
same as a random "waiting time"” in a Poisson distributed arrival pattern
with expected number of arrivals per time unit equal to a.

7. INTEGER PROCEDURE POISSON (a, U); REAL a; INTEGER U;
The value is a drawing from the Poisson distribution with parameter a.
It is obtained by n+l basic drawings, uj, where n is the function value.
n is defined as the smallest non-negative integer for which

n
T uj<e 2.
i=0

The validity of the formula follows from the equivalent condition

n
> -1n(u;)/a > 1,
i=0

where the left-hand side is seen to be a sum of "waiting times" drawn from
the corresponding negative exponential distribution.

When the parameter a is greater than 20.0, the value is approximated by
integer (normal (a,sqrt(a),u)) or, when this is negative, by zero.

7884 UNIVAC 1100 SERIES SYSTEMS J | 7-37
PAGE REVISION PAGE

UP-NUMBER

8. REAL PROCEDURE ERLANG (a, b, U); VALUE a, b; REAL a, b; INTEGER U;
The value is a drawing from the Erlang distribution with mean 1/a and

standard deviation 1/(avf3). It is defined by b basic drawings Uje if b is
an integer value,

b
- 2 1ln(uy),
= 2P

and by c+1 basic drawings u; otherwise, where ¢ is equal to entier (b),

c In (uj) (b-c) 1n (uc+1)
-2 a.b - a.b
i=1

Both a and b must be greater than zero.

9, INTEGER PROCEDURE DISCRETE (A, U); ARRAY A; INTEGER U;
The one-dimensional array A, augmented by the element 1 to the right, is
interpreted as a step function of the subscript, defining a discrete
(cumulative) distribution function. The array is assumed to be of type
real.

The function value is an integer in the range [1sb, usb+l1], where 1sb and
usb are the lower and upper subscript bounds of the array. It is defined
as the smallest i such that A(i)> u, where u is a basic drawing and A
(usb+1) = 1.

10. REAL PROCEDURE LINEAR (A, B, U): ARRAY A, B; INTEGER U;
The value is a drawing from a (cumulative) distribution function F, which
is obtained by linear interpolation in a non-equidistant table defined by
A and B, such that A (i) = F(B(i)).

It is assumed that A and B are one-dimensional real arrays of the same
length, that the first and last elements of A are equal to O and 1
respective and that A (i) 2 A (j) and B (i) >B (j) for i>j.

11. INTEGER PROCEDURE HISTD (A, U); ARRAY A; INTEGER U;
The value is an integer in the range [1sb, usb], where 1sb and usb are the
lower and upper subscript bounds of the one-dimensional array A, The
latter is interpreted as a histogram defining the relative frequencies of
the values,

This procedure is more time-consuming than the procedure discrete, where
the cumulative distribution function is given, but it is more useful if the
frequency histogram is updated at run-time.

12. PROCEDURE HISTO (A, B, ¢, d); ARRAY A, B; REAL ¢, d;
will update a histogram defined by the one-dimensional arrays A and B
according to ‘the observation ¢ with the weight d. A (i) is increased by d,
where i is the smallest integer such that ¢<B (i). It is assumed that the

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

I PAGE REVISION |

length of A is one greater than that of B.
responds to those observations which are greater than all elements of B.
The procedure will accept parameters of any combination of real and integer

types.

7.4.3 Transfer Functions

The last element of A cor-~

Transfer functions are those functions used to transfer a value of one type to

another type. These functions are evoked automatically by the compiler whenever
necessary. In some cases, they may be called explicitly.
given in Table 7-5, are not evoked automatically when the formal and actual types

for array identifiers are not the same.

Table 7-5. Transfer Functions
TYPE OF TRANSFERRED
VARTABLE TO TYPE FUNCTION USED
INTEGER REAL Implicit
REAL2 DOUBLE(X) or Implicit
STRING Implicit
COMPLEX COMPL (X,0) or Implicit
REAL INTEGER INT(X) or Implicit
REAL2 DOUBLE(X) or Implicit
COMPLEX COMPL(X,0) or Implicit
REAL2 INTEGER INT(X) or Implicit
REAL Implicit
COMPLEX COMPL(X,0) or Implicit
COMPLEX REAL RE(X)
IM(X)
STRING INTEGER INT(X) or Implicit

Transfer functions,

7884 [UNIVAC 1100 SERIES SYSTEMS l l 8-1
UP-NUMBER PAGE REVISION | PAGE

8. INPUT/OUTPUT

8.1 GENERAL

Input and output operations are accomplished in UNIVAC 1100 NU ALGOL by means of
calls to library procedures. The procedures, READ and WRITE, are more flexible
than ordinary procedures written in ALGOL because the number of parameters in an
actual call or even the order of the parameters is not rigidly specified, The
general form of I/0 call is:

< I/0 procedure> (<device>, < format>, < modifier list>, < input/
output list>, < label list >)

B <I/0 procedure> is READ, WRITE, or one of the file-handling procedures
(POSITION, REWIND, REWINT);

B <device> specifies the external medium;

B <format> is the name of the format specifying output editing or card layout
for input;

B <modifier list > specifies parameters whose action is to output markers in the
information which later may be used for positioning;

B <input/output list> is a list of I/0 variables and expressions;

<label list> specifies where control will be transferred in case of con-
tingencies.

This section is organized so that the parameters < device> , <modifier list >,
< label list >, < format> and <input/output list > are described in separate
paragraphs. Each of the procedures is then described in terms of the parameters

it requires.
EXAMPLE :
BEGIN FORMAT FORM1 (A,3R10.2)$%
REAL X,Y,Z$%
ARRAY ARRY (1:200)%
WRITE (FILE ('A'),EOF('ABC'),LABL1,ARRY)$

READ (CARDS,FORM1,LABL2,LABL2,X,Y,Z)$

7884 UNIVAC 1100 SERIES SYSTEMS

8—2
UP-NUMBER l PAGE REVISION

PAGE

EXAMPLE: (cont)
READ (CARDS,X,Y,FILE('B'),ARRY)$
COMMENT MORE THAN ONE DEVICE ALLOWED$

The available input/output procedures are:

PROCEDURE PARAGRAPH

READ 8.8.1

WRITE 8.8.2

POSITION 8.8.3

REWIND 8.8.4 Classed as
FILE

REWINT 8.8.4 operations

8.2 PARAMETERS TO INPUT/OUTPUT PROCEDURES
The procedures allow a variable number of parameters. In the simplest case, only
the input/output list needs to appear. The other parameters are then automatically
supplied by the compiler. See 8.8.
EXAMPLE :

FORMAT F(10112,A1)$

INTEGER ARRAY A(~6:3)$

WRITE (A)$

WRITE (PRINTER,F,A)$ COMMENT THESE TWO ARE THE SAME$

WRITE (CARDS,A)$

WRITE (CARDS,F,A)$ COMMENT THESE TWO ARE THE SAME$

In general, all statements should have their parameters in the order given by the
form in 8.1, If this order is not observed, the following rules hold.

B Labels may come anywhere and need not be together. However, their order is
important, (See 8.5, label list.)

B If device is not before the input/output list, then the device is assumed to be
implied device. (See 8.3.3, implied device.)

8 The insertion of more device parameters in an I/0 call changes the device
dynamically, the new device applying to the parameter items which follow.

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

8-3
PAGE REVISION | PAGE

EXAMPLE :

ARRAY A(0:500)%
WRITE (A,FILE ('B"),A)$

COMMENT WILL WRITE ARRAY A ON THE PRINTER AND ON THE SEQUENTIAL FILE
ASSIGNED AS B $

B Modifiers may be placed where desired. That is, KEY will usually come before
the output list, and EOF after it, but notice the placement in the following
example.

EXAMPLE :
ARRAY A(0:500),B(0:300)%
WRITE(FILE('B') ,KEY('A') ,A)$
WRITE(FILE('B'),EOF('A') ,KEY('B'),B,EOI)$
COMMENT THE FILE WILL HAVE
(1) KEY RECORD WITH IDENTIFICATION ‘A’

(2) THE VALUES OF THE ARRAY A

(3) EOF RECORD WITH IDENTIFICATION ‘A’

(4) KEY RECORD WITH IDENTIFICATION 'B’

(5) THE VALUES OF THE ARRAY B

(6) AN EOI MARKER$

B Formats must come before the input/output list to which they apply. If a list

comes before a format parameter has been specified, then the format is taken to
be implied or free format.
EXAMPLE :

INTEGER I,J,K$

REAL X,Y,Z$

FORMAT F(3D10.6,A1)$

1=123% J=456% K=789%

WRITE (I,J,K,F,I,J,K)$

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

8-4
PAGE REVISION PAGE

EXAMPLE: (cont)

COMMENT WILL PRODUCE THE FOLLOWING PRINT LINES$
123 456 789
123 .00000 456 .00000 789 .00000
® Formats must come after the device to which they apply.
® Input/output lists have their position determined by the fact that they must
conform to the above rules,

8.3 DEVICES

8.3.1 Possible Devices

The 1list of possible devices follows.

DEVICE PARAGRAPH
(implied) 8.3.3
CARDS 8.3.4
PUNCH 8.3.4
PRINTER 8.3.5
FILE 8.3.6
DRUM 8.3.6.2
ACARDS 8.3.6.3
APRINTER 8.3.6.3
APUNCH 8.3.6.3
CORE 8.3.7

8.3.2 Actual Devices

The list of actual devices follows.

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

| PAGE REVISION |PAGE

ACTUAL DEVICE
DEVICE ACTUAL DEVICE ACTUAL DEVICE WITH POSITION,
WITH READ WITH WRITE REWIND, REWINT
(implied) Card reader Line printer Not allowed
CARDS Card reader Card punch Not allowed
PUNCH Not allowed Card punch
PRINTER Not allowed Line printer Not allowed
FILE Tape unit, drum or Tape unit, drum Tape unit, drum
FASTRAND file or FASTRAND file or FASTRAND file
specified specified specified
DRUM FASTRAND or FASTRAND or Not allowed
drum file drum file
CGORE The string which The string which Not allowed
is parameter is parameter
ACARDS Symbiont file Symbiont file Not allowed
APRINTER Not allowed Symbiont file Not allowed
APUNCH Not allowed Symbiont file Not allowed
EXAMPLES :
INTEGER I$

8-5

READ (CARDS,I)$

READ(I)$ COMMENT ARE THE SAME$

8.3.3 Implied Devices

Implied devices are used for reading cards or printing. The device parameter is
left out for implied devices. READ produces the same action as for device CARDS,
WRITE produces the same action as for device PRINTER.
Implied devices have the following restrictions:

@ Cannot be used with FILE operations.

® On input only 80 columns may be read from a card.

@ On output only 132 columns may be printed.

7884 UNIVAC 1100 SERIES SYSTEMS 8-

UP-NUMBER | PAGE REVISION IPAGE

EXAMPLE :

INTEGER A,B,C$
FORMAT F1(A,3(112,X10))%
READ (F1,A,B,0)$

COMMENT WILL READ CARDS$

8.3.4 Devices CARDS and PUNCH

The devices CARDS and PUNCH are used for reading or punching cards (PUNCH is only
allowed with WRITE). The card reader (CARDS) is assigned as the device for the
procedure READ to use for input.

NOTE: If a format is specified, no new card is read until an A phrase (activate)
is met in a format or a format extends beyond column 80 of the current card.
The very first data card, however, will be read automatically in the absence
of an A-phrase.

Reading card images over again is possible by using a format without an activate
phrase.

EXAMPLE :

BEGIN
COMMENT READ THE SAME CARD IN THREE DIFFERENT WAYS$
ARRAY A,B,C(1:5)$
FORMAT F1(A,515),

F2(J1,511),
F3(J1,512)$
COMMENT NOTE THAT J-PHRASE MUST BE USED TO START AT
COLUMN ONES
READ (F1,A,F2,B,F3,C)$
ENDS
Data card form is:

1234567891011121314151617

8-7

PAGE

7884 J UNIVAC 1100 SERIES SYSTEMS J
PAGE REVISION

UP-NUMBER

At the end the arrays will have the following values:

A(1) 12345.0 B(1) 1.0 c(1) 12.0
A(2) 67891.0 B(2) 2.0 Cc(2) 34.0
A@) 1112.0 B(3) 3.0 C(3) 56.0
A(4) 13141.0 B(4) 4.0 c(4) 78.0
A(5) 51617.0 B(5) 5.0 C(3) 91.0

The card punch (CARDS or PUNCH) is assigned as the device for the procedure WRITE
to use for output.

EXAMPLE :
FORMAT F(I12,A1)$
INTEGER I$
I = -8523%

WRITE (CARDS,F,I)$

COMMENT WILL PUNCH ONE CARD WITH -8523 IN COLUMNS 8 THROUGH 12$

CARDS and PUNCH have the following restrictions:
B They cannot be used with the FILE operations,

B On both input and output there is a maximum length of 80 columns.

8.3.5 Device PRINTER

The device PRINTER is used for printing on a printer. The line printer (PRINTER)
is assigned as the device for the procedure WRITE to use for output.

NOTE: If a format is specified, no line is printed until an activate (A) phrase is
processed. The A-phrase may be delayed until a later WRITE-statement.

EXAMPLE:
INTEGER I,J$
WRITE (PRINTER, <<I15,A1,16>> ,I,D$
COMMENT J IS NOT PRINTED$
WRITE (PRINTER, <<I10,Al>> ,I)$

COMMENT PRINTS J AND I ON THE SAME LINE$

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

8-8
PAGE

PAGE REVISION

PRINTER has the following restrictions:
B A run-time error is caused if PRINTER is used with READ or the FILE operations.
8 One line has 132 columns.
EXAMPLE :
ARRAY A(-5:6)$
INTEGER I$
FORMAT F1(12(I11,X1),A1)$

WRITE (PRINTER,F1,FOR I=(-£,1,6) DO A(I))$
8.3.6 Devices for File Handling

8.3.6.1 Sequential Files

A sequential file can be magnetic tape or simulated on random access storage. It
has the form:

FILE (<filename >)!
< filename> , if integer, is converted to string. The twelve first characters
of the string are taken to be the internal name of the file, If the string is
shorter than twelve characters it is space filled to the right. If a non-
existent file is referenced, a temporary FASTRAND mass storage file is assigned
automatically.
EXAMPLES :
ARRAY B,C(1:1000)$
WRITE (FILE('DATA'),B)$
REWIND (FILE('DATA'))$
READ (FILE('DATA'),C)$
WRITE (FILE(1),B)$
Use the specified sequential file for input or output (READ or WRITE). Both input

and output are double buffered. If the file is on tape it may consist of more than
one physical reel. Transition to the next reel is automatic.

The form TAPE (<filename >) is also implemented for sequential files to provide
compatibility with EXEC II NU ALGOL (see Appendix F).

8-9
PAGE REVISION | PAGE

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

EXAMPLE :

REAL2 ARRAY D(0:400)$ INTEGER I$

READ (FILE(20),FOR I=(1,1,320) DO D(I))$

WRITE (FILE('A'),FOR I=(1,1,300) DO D(I))$
The action with REWINT is as follows:

B If the filename refers to a magnetic tape then this tape is rewound and released
so that it can no longer be used. The buffers are released.

B If the filename refers to a sequential drum or FASTRAND file, then the current
position of this file is reset to the starting position,

The action with REWIND is as follows:

B For magnetic tapes, the tape is rewound but not released so that it may be used
again, The buffers are released.

B The action for sequential drum or FASTRAND files is the same as for REWINT.
EXAMPLE:

BOOLEAN DRUMORTAPE$

DRUMORTAPE=TRUE$
REWIND (FILE(IF DRUMORTAPE THEN O ELSE 6))$

COMMENT WILL REWIND TAPE ASSIGNED AS A, OR THE FILE HAVING THE NAME 0$

The action with POSITION follows:
B The specified sequential drum file is to be used by POSITION.
The file will then be searched according to certain parameters. This operation
is described in 8.8.3.
EXAMPLE:
POSITION (FILE('D'),EOF)$

Restriction: 1If the file consists of more than one reel of tape, it is not possible
to position backwards to a preceding reel.

Sequential files have the following restrictions:

B Sequential files on random access storage can only be accessed in a serial
manner. If random access is required it must be done as described in 8.3.6.2.

B FILE does not allow READ or WRITE to use a format. To write formatted output
use WRITE (CORE(S),...) and then output the resulting string.

7884 UNIVAC 1100 SERIES SYSTEMS

UPRP-NUMBER

8-10
PAGE REVISION | PAGE

B The input list (see 8.7) must have its number of elements less than or equal to
the number of elements in the output list which produced the record being read.

If the number is greater, a run-time error occurs,

If the input list is smaller than the output list then the remainder of the
record is lost.

8.3.6.2 1Indexed Files

Indexed files are random access files on drum or FASTRAND. Each file has an associ-
ated file index or address which is set to indicate where an I/0 operation is to be
performed. After the I/0 operation the file index will be updated to point to the
position following the one last used. The file index is initialized to zero which
is the first position of the file. Indexed files have the form:

FILE (< filename > , < file index >)

DRUM (< file index >) or DRUM

B < filename > is explained in 8.3.6.1.

B <file index > is an arithmetic expression which is rounded to integer if
necessary. If the file is on FASTRAND, the file index is truncated to a
multiple of 28 which is the FASTRAND sector length.

® DRUM without an explicit file index means that the current index is to be used.

B DRUM refers to a temporary file of 20,000 words in a word-addressable drum
which is automatically assigned.

EXAMPLE:

REAL X,Y,Z;

INTEGER I;

I = 56;

WRITE(FILE('DATA',1) ,X,Y,2Z);

COMMENT WILL WRITE THE VALUES OF THE VARIABLES X,Y,Z INTO POSITIONS 56,57
AND 58 OF THE FILE 'DATA';

WRITE(DRUM(I) ,X,Y,Z);

COMMENT WRITE THE VALUES INTO THE SAME POSITIONS OF THE FILE PROVIDED FOR
DEVICE DRUM;

WRITE(DRUM,X,Y,Z);

COMMENT WRITE THE VALUES INTO POSITIONS 59,60 AND 61;

The file index is obtained by means of the integer procedures FILEINDEX & filename>)
or DRUMPOS. 1If < file name> refers to a FASTRAND file the file index returned will
point to the first word of the next sector. If the file is non-existent the file
index will be zero.

7884 UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER

8-11
PAGE REVISION | PAGE

EXAMPLE:

INTEGER I;

ARRAY A,B(1:20):

COMMENT 'F1' IS A FASTRAND FILE;

WRITE(FILE('F1',0),A);

WRITE(FILE('F1',FILEINDEX('F1')),B);

I=FILEINDEX('F1');

COMMENT A GOES INTO POSITIONS 0-19 AND B INTO 28-47 THE VALUE OF I IS 56;
READ(DRUM(100) ,A) ;

I=DRUMPOS; COMMENT I IS 120;

The action with WRITE means the values of the variables of the output list are
transferred to consecutive positions in the file starting at the position speci-
fied by the file index.

The action with READ means the values of the consecutive positions in the file,
starting with the position specified by the file index, are transferred to the
input list variables. The current file index after a READ or WRITE may be com-
puted by means of the lengths given in 3.3.3. One exception is that strings will
occupy one word less on a file than in core storage.

POSITION sets the file index to the specified position.
EXAMPLE:

POSITION(FILE('DATA',30));

COMMENT IF 'DATA' IS ON FASTRAND THE FILEINDEX IS SET TO 28

OTHERWISE TO 30;
POSITION(DRUM(500));

REWIND and REWINT sets the file index to zero and the buffer areas ‘in core are
released.

8.3.6.3 Alternate Symbiont Files

Alternate symbiont files are used to read from or write on card, punch, or print
files other than the standard ones, They have the form:

ACARDS(< filename >)

APRINTER(< filename >)
only allowed with WRITE
APUNCH(< filename>)

From the point of view of the program, these devices behave like the standard
CARDS, PRINTER, and PUNCH, as described in 8.3.4 and 8.3.5. < filename > is ex-
plained in 8.3.6.1. The files are sequential with no possibilities for position-
ing or rewinding.

READ only allows device ACARDS (<filename >). It will read any file in System
Data File (SDF) format. The file may, for instance, have been preparéd by means
of a WRITE(ACARDS(--)---) statement or by the DATA processor,

7884 UNIVAC 1700 SERIES SYSTEMS

8-12
UP-NUMBER PAGE REVISION

PAGE

WRITE writes a file in card or printer SDF format. The files may then later on
be output on the appropriate equipment by means of executive conirol statements.
If the file is temporary, output is done automatically at the end of the run.

8.3.7 Device CORE

The device CORE allows editing to and from a string without using an external de-
vice, It has the form:

CORE (<string expression >)

WRITE edits the output list according to the given or implied format into the
string supplied as the parameter to CORE,

EXAMPLE :

BEGIN

STRING S(24)$

FORMAT F(614,M)$

INTEGER ARRAY A(1:6)$

INTEGER I$

FOR 1=(1,1,6) DO A(I)=I$

WRITE(CORE(S) ,F,A)$

COMMENT WILL CAUSE S TO BE FILLED AS IF THE FOLLOWING ASSIGNMENT HAD

TAKEN PLACE

Ss' 1 2 3 4 5 6'$

END$

READ edits the string according to the given or implied format and the values
assigned to the input list.

EXAMPLE :
BEGIN
STRING S(14)$ 1INTEGER I$ REAL R$
FORMAT F(A,D12.2,12)$
S=' 1234.5678421'$
READ (CORE(S),F,R,I)$
COMMENT R NOW HAS THE VALUE 1234.56784 AND I HAS THE VALUE 21$
END$
CORE has the following restrictions:
@ CORE cannot be used with the FILE operations.
B On input (READ) only 80 characters may be edited.
B On output (WRITE) only 132 characters may be edited.

B The entire string is used by CORE.

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

8-13
PAGE REVISION | PAGE

EXAMPLE:

STRING S(30)$

S(27,3)="ABC'

WRITE (CORE(S),1,2)$

COMMENT THE 'ABC' HAS BEEN CLEARED TO BLANKS$

B Note that nothing is transferred to or from the string until the activate (A)

phrase is reached in the format specified.

® If no format is specified, the rules for free format (see 8.6.1) are applied.

8.4 MODIFIER LIST

The modifier list contains directions as to the type of markers to be used on

sequential files.

8.4.1 Possible Modifiers

The list of possible modifiers follows.

MODIFIER PARAGRAPH

EOF 8.4.5

EOF (< parameter >) 8.4.5
-EOF 8.4.5
-EOF (< parameter >) 8.4.5

KEY 8.4.4

KEY (< parameter >) 8.4.4
-KEY 8.4.4
-KEY (< parameter>) 8.4.4

EOI 8.4.6
-EOI 8.4.6
< integer expression> 8.3

8.4.2 General Description

When WRITE is used, the modifier 1list contains a directive to output a certain

marker which later can be searched for using POSITION.

8-14
PAGE

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

I PAGE REVISION

When POSITION is used, the modifier list contains the marker to be searched for.

8.4.3 Restrictions

The modifier list cannot be used with the operations READ, REWIND or REWINT.
Modifiers can only be used with sequential files,

8.4.4 Modifier KEY

The modifier KEY is used to specify that a KEY record with a certain identification
is to be output or searched for., It has the form:

KEY (< parameter >) or KEY

-KEY (< parameter >) or -KEY
The parameter can either be an arithmetic expression or a string expression. When
the parameter is a string, only the first six characters are used. If the string

is shorter, it is filled with master spaces up to six characters,

The minus (-) sign specifies the backward direction when used with POSITION., It
has no meaning for WRITE.

NOTE: KEY means the same as KEY (0)

-KEY means the same as -KEY (0)

EXAMPLE :

WRITE (FILE('A'),KEY('ABCDEF'))$

WRITE (FILE('A'),KEY('ABCDEFGHK'))$

COMMENT WILL PROCEDURE TWO IDENTICAL KEY RECORDS$
EXAMPLE :

POSITION (FILE('A'),KEY)$

POSITION (FILE('A') ,KEY(0))$

COMMENT HAVE THE SAME MEANINGS$

WRITE outputs a KEY record with its identification given by the parameter on the
sequential file,

EXAMPLE :

INTEGER I,J,K,L,M$

WRITE(FILE('F') ,KEY(I),J,K,LM$

7884 UNIVAC 1100 SERIES SYSTEMS 8—15

UP-NUMBER l PAGE REVISION |PAGE

EXAMPLE: (cont)

COMMENT THE KEY RECORD COMES BEFORE THE DATA RECORD$

REWIND (FILE('F'))$

READ (FILE('F'),I,J,K,L,M)$

COMMENT WILL READ THE VALUES INTO I,J,K,L,M IGNORING THE KEY RECORD$
With BREAD, KEY records are ignored. The action with POSITION is as follows:

m If no minus sign (-) then the action is to search forward until a KEY record
with the given identification is found.

B If there is a minus sign (-) then the action is to search backward until the
KEY with the specified identification is found.

B KEY records are ignored when positioning to EOF or EOI.

@ For more information see 8.8.3.

EXAMPLE :

BOOLEAN B$

B = TRUE$

POSITION (FILE('B'), KEY (IF B THEN 10 ELSE 15), KEYNOTFOUND)$

COMMENT WILL SEARCH FORWARD FOR THE KEY RECORD WITH IDENTIFICATION 10.
IF THIS RECORD IS NOT FOUND, THEN THE PROGRAM WILL JUMP TO THE STATEMENT
WITH THE LABEL KEYNOTFOUND$

For more information on labels in POSITION see 8.5.7.

8.4.5 Modifier EOF

The EOF modifier is used to specify that an EOF (end-of-file) record with a certain
identification is to be output or searched for, It has the form:

EOF (< parameter >) or EOF
-EOF (< parameter >) or -EOF
The parameter can either be an arithmetic expression or a string. When the param-

eter is a string, only the first six characters are used. If the string is shorter,
it is filled with master spaces up to six characters.

7884 UNIVAC 1100 SERIES SYSTEMS

8-16
UPR-NUMBER FPAGE REVISION

PAGE

The minus sign (-) specifies that the search is to be performed in a backward
direction when used with POSITION. It has no meaning for WRITE.

NOTE: EOF means the same as EOF (0)
~EOF means the same as -EOF (0).

WRITE outputs an EOF record with its identification given by the parameter on Lhe
sequential file, A minus sign has no meaning.

EXAMPLE :
ARRAY A(0:500)$
WRITE (FILEC'E'),A,EQF('END'))$
COMMENT WILL WRITE OUT THE RECORD CONTAINING THE VALUES OF A AND THEN THE
EOF RECORD WITH IDENTIFICATION WORD 'END'$

If the READ operation encounters an EOF record, it will exit via a label in its
label list, if such a list exists. See 8.5. The modifier EOF must not be placed

in a READ 1list.
The action with POSITION is as follows:

B If there is no minus sign (-), then the action is to search forward until an
EOF record with the given identification is found.

® If there is a minus sign (-), then the action is to search backward (only on
certain units) until the EOF record with the specified identification is found.

NOTE: When positioning backwards, the positioning goes to the front of the EOF
record so that the next READ action will encounter the EOF record.

EXAMPLE:
ARRAY A(0:12)$
POSITION (FILE('4'),-EOF)$
READ (FILE('4'),EOFLB,A)$
COMMENT WILL JUMP TO THE STATEMENT WITH THE LABEL EOFLB SINCE AN EOF
RECORD WAS READ INSTEAD OF A RECORD WITH THE VALUES FOR A$

~ B EQF records are ignored when positioning to EOI.

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

8-17
PAGE

I PAGE REVISION

8.4.6 Modifier EOI

The EOI modifier is used to specify that an EOI (end-of-information) record is to be
output or searched for. It has the form:

EOI or -EOI

where the minus sign (-) indicates that search is to be performed in a backward
direction, when used with POSITION. It has no meaning for WRITE.

WRITE outputs an EOI record.
EXAMPLE :
COMPLEX ARRAY C(-4:200)$
WRITE (FILE('5')C,E0D)$

COMMENT WILL WRITE ARRAY C TO FILE AND THEN PLACE AN EOI MARKER$

If the READ operation encounters an EOI marker, it will exit via a specific label

in its label list, if such a list exists.

See 8.5.

The file is positioned by POSITION in the indicated direction, past the first EOI

record found.

8.5 LABEL LIST

The label list allows the user to specify where he would like his program to go

if certain conditions occur during the input or output operation,

If the operation

ends normally, exit is made to the next statement, otherwise it is a run-time error.

A label list consists of from zero to three labels together or scattered throughout

the parameter list to the input/output procedure.

input list may have three labels, an output list only one.

Their order is important. An

8.5.1 Action with READ when Device is Implied, CARDS, or ACARDS
ACTION WHEN ACTION WHEN A rOn ot an
NUMBER OF EOF CARD ANOTHER CONTROL

LABELS READ CARD READ INCLUDING INPUT
OR FORMAT ERRORS

0 Terminate program Terminate program Terminate program

1 Jump to this label Jump to this label Terminate program

2 Jump to first label Jump to second label Terminate program

3 Jump to first label Jump to second label Jump to third label

8—-18
PAGE REVISION | PAGE

7884 UNIYAC 1100 SERIES SYSTEMS l

UP-NUMBER

8.5.2 Action with READ for Sequential File Devices

ACTION WHEN ACTION WHEN ACTION WHEN
NUMBER OF EOF RECORD EOI RECORD AN ERROR
LABELS READ READ OCCURS
0 Terminate program Terminate program Terminate program
1 Jump to this label Jump.to this label Terminate program
2 Jump to first label Jump to second label Terminate program
3 Jump to first label Jump to second label Jump to third label

8.5.3 Action with READ or WRITE for Indexed File Devices

READ WRITE
WHEN ADDRESS WHEN A DRUM WHEN ADDRESS WHEN A DRUM
NUMBER BEYOND RANDOM READ ERROR BEYOND RANDOM WRITE ERROR
OF LABELS DRUM LIMITS OCCURS DRUM LIMITS OCCURS
0 Terminate Terminate Terminate Terminate
program program program program
1 Jump to this Terminate Jump to this Jump to this
label program label label
2 Jump to second
label, first Terminate
label ignored program
Only one label
3 Jump to second allowed with WRITE
label, first Jump to
label ignored third label

8.5.4 Action with READ or WRITE when Device is CORE

The only errors that can occur when using CORE are format errors in reading. If
no third label is given, the program is terminated. Otherwise, exit is made to the
third label ignoring other labels.

8.5.5 Action with WRITE when Device is Implied, CARDS, PRINTER, PUNCH, or Alternate
Symbiont Files

All errors other than editing errors terminate the program, Editing errors cause a
warning message, but the program continues.

7884 UNIVAC 1100 SERIES SYSTEMS

8-19
UP.NUMBER PAGE REVISION { PAGE

8.5.6 Action with WRITE for Sequential File Devices

ACTION ON END OF
NUMBER OF SEQUENTIAL FASTRAND ACTION ON
LABELS OR DRUM FILE TAPE ERROR
0 Terminate program Terminate program
1 Jump to this label Jump to this label

8.5.7 Action with POSITION for Sequential File Devices

POSITION Action With POSITION
arameter
Tape . . .
Contents KEY or Arithmetic Expression EOF EOI
Physical End Physical End | Physical End
Number of of File or of File or of File or
Labels Transmission Transmission | Transmission
ECF EOI Error EOI Error Error
0 Terminate | Terminate | Terminate Terminate | Terminate Terminate
program program program program program program
1 Jump to Jump to Terminate Jump to Terminate Terminate
label label progran label program program
2 Jump to Jump to Terminate Jump to Terminate Terminate
first second program second program program
label label label,
ignore
first
label
3 Jump to Jump to Jump to Jump to Jump to Jump to
first second third second third third
label label label label, label label,
ignore ignore
first first and
label second
EXAMPLE :
BEGIN
COMMENT STOP READING DATA CARDS WHEN EOF CARD READ$

INTEGER ARRAY A(0:1000)$ INTEGER I$

7884 UNIVAC 1100 SERIES SYSTEMS

UPRP.NUMBER

8-20
PAGE REVISION | PAGE

EXAMPLE: (cont)

LO: READ (CARDS,A(I),L1,L2,L3)$

I=1+1$ GO TO LO$
L3: WRITE ('ERROR IN CARD',I)$ GO TO LO$
L2: WRITE ('EOF CABRD MISSING')$ GO TO STOP$
L1: WRITE ('ALL CARDS READ')$

STOP: END$

8.6 FORMAT LIST

The format list is a means of specifying how values should be edited. It may have
any number of formats. Each format should come before the input or output list to
which it applies. Each format may have one of the three following forms.

NAME PARAGRAPH
Implied or free format 8.6.1
Declared format 8.6.2
Inline format 8.6.3

The devices FILE and DRUM do not allow format lists. A run-time error is caused
if an attempt is made to use a format with these devices,

8.6.1 Implied or Free Format

No format is specified before an input/output list. Eighty character images are
input at a time, usually from punched cards, and for all devices which allow for-
matted input, 80 characters are brought into a "read buffer,” an area in main
storage from which editing can be done.

Values are separated by one or more blanks or end of card. Within a string, end of
card is ignored.

The characters encountered are scanned and converted into a value according to
their form, The type of value is determined by the rules for constants as described
in 4.2.4, 4.3,and 4.5.1.

The two exceptions to the preceding rules follow.

& In real constants, a comma (,) or the letter E may be substituted for & as the
power of ten symbol,

B Complex constants should appear as two reals. (<, > must not be used).

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

8-21
PAGE REVISION [PAGE

EXAMPLE :

Constant Would be Edited as Type
123 INTEGER

TRUE BOOLEAN

1.24,-3 REAL
1.2483212145 REAL2

'THIS IS A STRING' STRING

1.245 3.217 COMPLEX

If the type of the value thus edited does not match the type of the list element to
which it is to be assigned, a transfer function (if available) is invoked. If the
types match, the values are assigned directly to the list element.

At the end of the image or when an asterisk (*) outside of string quotes is met,
the next image is input.

The action ends when all elements in the input list have had values assigned to
them. Any further information in the read buffer is lost since each free format
READ starts with a new image.

EXAMPLE :
BEGIN
ARRAY X,Y(1:5,1:2)%
REAL A,B$
COMPLEX C$
INTEGER W
READ(A,B,C,W,X,Y)$
END$
Data card form is:
=7.2 .099 1.0 3.5 362236
1 2 3 4 5 6 * NOTE THAT ARRAYS ARE READ BY COLUMN
2.4 3.5 8.6 9.2 5.562,-4 4.398,-3

1.862,-1 12.842 18.623 1.5 1.6 1.7 1.8 1.9 2.0

7884 UNIVAC 1100 SERIES SYSTEMS

822
UR-NUMBER PAGE REVISION

PAGE

VALUES AFTER READ IS PERFORMED
VARIABLE HAS THE VALUE EXPLANATION
A -7.2
B .099
C 1.0+i%¥3.5,
W 362236
X(1,1) 1.0 Shift to next card since
not all list elements are
X(2,1) 2.0 filled. A transfer function
is used here.
X(3,1) 3.0
X(4,1) 4.0
X(5,1) 5.0 A1l characters after an *
are ignored.
X(1,2) 6.0
X(2,2) 2.4
X(@3,2) 3.5 Arrays are decomposed by
column,
X{4,2) 8.6
X(5,2) 9.2
Y(1,1) .0005562
Y(2,1) .004398
Y(@3,1) .1862
Y4,1) 12,842
Y(5,1) 18 .623
Y(1,2) 1.5
Y(2,2) 1.6
Y(3,2) 1.7
Y(4,2) 1.8
Y@5,2) 1.9
The value 2.0 is not assigned
to any variable but is lost.

7884 UNIVAC 1100 SERIES SYSTEMS

8-23
UP-NUMBER PAGE REVISION

PAGE

EXAMPLE :

BEGIN
STRING S(24)$
INTEGER I,J,K,L,M,N$
S='1 -2.1 3.5 8 4 6 '$

READ (CORE(S),I,J,K,L,M,N)$

END$
VALUES AFTER READ IS PERFORMED
VARTABLE VALUE
I 1
J -2
K 4
L 8
M 4
N 6

The action of WRITE is to evaluate the expressions in the order they appear in the
output list and then edit the values according to the following rules. (The format
phrases used are described in 8.6.3).

Type Format phrase used

INTEGER 112

BOOLEAN X1,B11

REAL R12.5

REAL2 R12.5

COMPLEX 2R12.5

STRING of Sw,Xm - where m is the number of
length w blanks required to fill out

a multiple of 12 columns.

8-24
PAGE

7884 UNIVAC 1100 SERIES SYSTEMS

URP-NUMBER PAGE REVISION

EXAMPLE:

BEGIN
INTEGER I$ BOOLEAN N$ REAL R$
REAL2 D$ COMPLEX C$ STRING S(26)%
FORMAT F(S6,X6,112,X1,B11,R12.5,R12.5,2R12.5,526,X10,A1)$
STRING CONSTANT(6)$

I = 123$% B = TRUE$ R = 1.3216-2%

D = 1234.6789012%

C=<11.2,-12.4> %

S = 'IS THE WAY THE RESULTS ARE'$
CONSTANT = 'START'$

WRITE ('START',I,B,R,D,C,S)$

WRITE (F,CONSTANT,I,B,R,D,C,S)$

COMMENT WILL PRODUCE SIMILAR PRINTOUTS$

END$

8.6.2 Declared Format

A specific sequence of phrases is declared and an identifier attached,which can be
used in the format list. It has the form:

FORMAT <identifier> (< list of format phrases>), < identifier > () IR $
EXAMPLE :
FORMAT F1(X10,D7.2,X5,R17.8,A1.1),

F2(A,B6,S10,15,X2,ND)$

8.6.3 1Inline Format

A 1ist of format phrases enclosed between the delimiters << >> mady be a param-
eter in the format list.

EXAMPLE:

WRITE (<<313,Al1> ,I1,J,K)$

UP-NUMBER

7884 UNIVAC 1100 SERIES SYSTEMS 8—25
PAGE REVISION

PAGE

8.6.4 Format Phrases with WRITE

Format phrases are used with WRITE, as shown in Table 8-1, to specify the output
form of each parameter as well as the exact position for the placement of the value
of the parameter,
A format phrase has the form:
Qw.d
or Q(Ej,E9)

B Q represents one of the letters given below. Qw.0 may be abbreviated to Qw,
and Q0.0 or Q0 to Q.

B E; must be an arithmetic expression with the same restrictions as w.
® E;, must be an arithmetic expression with the same restrictions as d.
B w and d are positive integers and are defined in Table 8-1.
The print buffer is a string of 132 characters for devices implied, PRINTER and
CORE and 80 for CARDS into which the values given as parameters are edited accord-

ing to the corresponding format phrase,

The following actions occur when any of the restrictions stated above are broken,

1. The print buffer at the error point is output on the appropriate device.
2, The message

EDITING ERROR AT LINE XXXX. CHECK YOUR FORMAT

is output on the PRINTER,

3. The corresponding parameter (if any) is bypassed.

4, Editing continues with the next parameter., The next field starts in the
last column used by the phrase before the error occurred.

Common errors are:
1. Parameter is of a type not allowed.by the format phrase.
2. Field width is 0, too small to accept value, or too large.
The action when the end of the print buffer is reached is:
1. For devices implied, PRINTER or CORE, if an editing phrase will cause
editing beyond column 132 then the print buffer is output and editing

begins again in column 1,

2, For device CARDS or PUNCH, the limit is column 80,

Table 8-1, Format Phrases for WRITE
POSITION ALLOWED
PHRASE ACTION w or El d or E2 IN TYPES OF
MEANING |MIN [MAX MEANING | MIN | MAX FIELD PARAMETERS
Activate | Device implied or PRINTER
Aw.d Print 1 line Skip w 0 63 Skip d 0 31 Nonediting
or lines lines does not
A(El1,E2) before after require a
printing printing parameter
Device CARDS or PUNCH
Punch 1 card ignored ignored
Device CORE
Transfer as many charac- ignored ignored
ters from the print
buffer into the string
as the length of the
string or print buffer
allows
Boolean Devices implied, PRINTER,
CARDS, CORE, PUNCH
Bw Place as many characters Field 1 132 Not Left- BOOLEAN
or as possible of the strings | width allowed justified
B(E1l) TRUE or FALSE depending (number 80 for
on the value of the of char- CARDS
parameter, Fill the rest | acters
of the field with blanks used in
if necessary. the print
buffer)

y88L

HIEWAN AN

SWALSAS S31Y3S 0011 OVAINN

| NOISIAZY 3Dva

asvd

9¢—8

Table 8-1, Format Phrases for WRITE (cont)
POSITION ALLOWED
PHRASE ACTION w or El d or E2 IN TYPES OF
MEANING | MIN | MAX MEANING | MIN ; MAX FIELD PARAMETERS
Decimal Devices implied, PRINTER,
CARDS, CORE, PUNCH
Dw.d Transfers a decimal Field 2 63 Provide 0 31 | Right- INTEGER
or number with d digits width d digits justified | REAL
D(E1,E2) | after the decimal after REAL2
point - leading zeroes decimal COMPLEX
suppressed, minus sign point
if negative.
Eject Devices implied, PRINTER
Ew Eject to logical line w-1. | Logical 1 72 Not Nonediting
or If the present position is | line allowed does not
E(El) past line w-1l, ejection is | number require a
to line w-1 on the next on page parameter
page. (Usually used to
start at top of a page.)
Devices CARDS, CORE, PUNCH
Ignored
Free Devices implied, PRINTER,
CARDS, CORE, PUNCH
Fw Transfer a field of Field 1 132 INTEGER
or w characters in free width (80 REAL
F(El1) format. See 8.6.1. for BOOLEAN
CARDS COMPLEX
or REAL2
PUNCH) STRING

HIAWNAN-dN

NOISIAZY 3IS5Vd

Iovvd

{28

v88L

SWILSAS S31¥3S 00LL DVAINN

Table 8-1. Format Phrases for WRITE (cont)
POSITION ALLOWED
PHRASE ACTION w or El d or E2 IN TYPES OF
MEANING | MIN | MAX MEANING | MIN | MAX FIELD PARAMETERS
Integer Device implied, PRINTER,
CARDS, CORE, PUNCH
Iw.d Transfer an integer Field 1 63 Base 0 10 | Right- INTEGER
or number with minus sign width for justified | REAL
I(E1,E2) |if negative. The value integer COMPLEX
is given to the base d. (e.g. REAL2
Where d=0 and d=10 have octal BOOLEAN
the same meaning. use 8) (TRUE 1)
(FALSE 0)
Absolute
position | Devices implied, PRINTER,
to column | CARDS, CORE, PUNCH
Jw The next phrase will start | Column 1 132 Not Non-
or from column w, number allowed editing
J(E1) 80
for
CARDS
PUNCH
Middle Devices implied, PRINTER,
string CARDS, CORE, PUNCH
Mw The characters of the Field 1 132 Not Center- STRING
or parameter are placed into |width allowed justified
M(E1) the middle of the field. 80
If the field width w is for
greater than the string CARDS
length L then the string PUNCH
is preceded by (w-L)/2
blanks. If w is less than
L then the rightmost L-w
characters of the param-
eter are lost,

HIGWNN-dN

NOISIASY 39 vd

IDvd

8Z—8

¥88L

SWILSAS S3iyIS 00LL DYAINN

Table 8-1. Format Phrases for WRITE (cont)
POSITION ALLOWED
PHRASE ACTION w or El d or E2 IN TYPES OF
MEANING { MIN | MAX MEANING | MIN | MAX FIELD PARAMETERS
Left- Nevices implied, PRINTER,
justified | CARDS, CORE, PUNCH
Integer
Nw Edit an integer decimal Field 1 63 Not 0 10 | Left- Same as
or number left justified with [width allowed justified |1 phrase
N(E1) a leading minus sign if
negative or a leading
space if positive
Real Devices implied, PRINTER,
CARDS, CORE, PUNCH
Rw.d Edits the parameter into Field 7 63 Number 1 31 | Right- INTEGER
or the form width of justified | REAL
R(E1,E2) X XXX * X, +XX signi- REAL2
d significant digits ficant COMPLEX
Note: w > d+6. If the digits
parameter is REAL2 and
needs three digits for the
exponent, the no, of
significant digits will
be d-1.
String Devices implied, PRINTER,
CARDS, CORE, PUNCH
Sw The characters of the pa- |(Field 1 132 Not Left- STRING
or rameter are placed into the|width allowed justified
S(E1) field starting from the 80
left. 1If the string length for
L exceeds the field width CARDS
w then only the leftmost w
characters are transferred;
if w exceeds L then the
rest of the field is blank.

HIGWNNG N

3ovd

¥88L

SWILSAS S31A3S 00LL DVAINN

NOISIA3Y 39Vvd |

628

Table 8-1.

Format Phrases for WRITE (cont)

POSITION ALLOWED
PHRASE ACTION w or El d or E2 IN TYPES OF
MEANING (| MIN | MAX MEANING | MIN | MAX FIELD PARAMETERS
Real zero | Devices implied, PRINTER,
gives CARDS, CORE, PUNCH
blanks
If value of the param- Field 1 63 Ignored
Uw.d eter is exactly zero width
or then treat as Xw,
U(E1,E2) |otherwise treat as Dw.d Field 1 63 Provide 0 31 {Right- INTEGER
width d digits justified | REAL
after REAL2
the COMPLEX
decimal
point
Integer Devices implied, PRINTER,
Zero CARDS, CORE, PUNCH
gives
blanks If value of the param- Field 1 63 Ignored
eter is exactly zero then | width
treat as Xw,
Vw.d otherwise treat as Iw.d Field 1 63 Base 0 10 ([Right- INTEGER
~or width for justified | REAL
V(E1,E2) integer REAL2
COMPLEX
BOOLEAN
Place Devices implied, PRINTER,
blanks CARDS, CORE, PUNCH
Xw Place w blanks into the Number 1 132 Not Non-
or print buffer of allowed editing
X(El) blanks 80
for
CARDS

HIFgWNNdN

IDVd

0€—-8

¥88L

SWIALSAS SFIY3S 00LL DVAINA

| NOISIASY 35 vd I

Table 8-1. Format Phrases for WRITE (cont)
POSITION ALLOWED
PHRASE ACTION w or El d or E2 IN TYPES OF
MEANING | MIN | MAX MEANING | MIN | MAX FIELD PARAMETERS

String Devices implied, PRINTER,
Constant CARDS, CORE, PUNCH
String of {Place the characters in Non-
characters |the number of columns editing
enclosed |required.
in L L

d3gnWnNNedn

NOISIA3Y 39Vvd

Isvd

LE—8

¥88L

SWILSAS $31A43S 0011 JVAINN

7884] UNIVAC 1100 SERIES SYSTEMS

URP.NUMBER

| PAGE REVISION |

8-32
PAGE

EXAMPLE :
Differences between D, R and U phrases
BEGIN
REAL X,Y,Z$
FORMAT F(D12.4,R12.4,U12.4,A1)$
X=Y=7-3.14159&+1$
WRITE (F,X,Y,2)$
X=Y=2=0.0%
WRITE (F,X,Y,2)$
END$
Print lines
31.4159 3.1416,+01 31.4159
0 0
EXAMPLE :
Differences between I, N and V phrases
BEGIN
INTEGER I,J,K$
FORMAT F(I10,N10,V10,A1)$
I=J=K=-31415%
WRITE (F,I,J,K)$
I=J=K=0%
WRITE (F,I,J,K)$
END$
Print lines
-31415-31415 31415

00

7884 UNIVAC 1100 SERIES SYSTEMS 8-33
PAGE REVISION

UP.NUMBER

PAGE

EXAMPLE:

Differences between M and S phrases
BEGIN
STRING S(29)$
FORMAT F(S40,A1,M40,A1)$
S='THIS STRING HAS 29 CHARACTERS'$
WRITE (F,S,S)$
END$
Print lines
THIS STRING HAS 29 CHARACTERS

THIS STRING HAS 29 CHARACTERS

8.6.5 Format Phrases with READ

Format phrases are used to inform READ, as shown in Table 8-2, exactly where the
characters making up the parameter can be found. There is also the special format
F which allows free format to be used for a specified number of characters in the
read buffer.

The read buffer is a string of 80 characters in length into which the contents of
the card (for devices implied or CARDS) or of the string (device CORE) are placed
for editing.

A format phrase has the form:

Qw.d
or
Q(E1,E2)

Q represents a formatting character (see following explanation).
B E]l must be an arithmetic expression with the same restrictions as w,
B E2 must be an arithmetic expression with the same restrictions as d.
B w and d are positive integers and are defined in Table 8-2.
The following actions occur when any of the restrictions given above are broken.

1. 1If an error label is present (the third label of the label list), a jump is
made to that label.

Table 8-2.

Format Phrases

for READ

PHRASE

ACTION

w or El

d or E2

MEANING

MIN

MAX

MEANING

MIN

MAX

POSITION
IN
FIELD

ALLOWED
TYPES OF
PARAMETERS

Activate

A

Boolean

Bw
or
B(E1)

Devices implied, CARDS

Transfer the contents of
1 card into the read buf-
fer, Place the start for
editing at the first char-
acter of the read buffer.

Device CORE

Transfer the contents of
the string into the read
buffer. If the string is
greater than 80 characters
transfer only the first 80
characters. If the string
is less than 80 charac-
ters - say L characters,
then the last 80 - L char-
acters in the read buffer
are unchanged. Place the
start for editing at the
start of the read buffer,

Devices implied, CARDS,
CORE

If the field contains any-
where in it the string
TRUE or the character T

or the integer constant 1
set the parameter to TRUE,
For the string FALSE,
character F or integer O

set the parameter to FALSE.

Anything else in the field
will cause an error.

Ignored

Ignored

Field
width
(number
of
columns

reserved

for the
param-
eter)

80

Ignored

Ignored

Not
allowed

Non-
editing

Non-
editing

BOOLEAN

H3gWNNdN

aAoVvd

y€—8

¥88L

SWILSAS $3143S 0011 DVAINN

‘ NOISIAZY 39Vvd |

Table 8-2. Format Phrases for READ (cont)
POSITION ALLOWED
PHRASE ACTION w or El d or E2 IN TYPES OF
MEANING | MIN | MAX MEANING {MIN | MAX FIELD PARAMETERS
Decimal Devices implied, CARDS,
CORE
Dw.d Accept a numeric constant (Field 1 63 If the 0] 31 INTEGER
or in the form of INTEGER, width number REAL
D(E1,E2) REAL or REAL2 as described has no REAL2
in 4.2.,2, Make it negative decimal COMPLEX
if preceded by a minus point
sign. A comma (,) or the insert a
letter E may be used in- decimal
stead of & as the power of point to
ten symbol, the right
of the
(d+1) at
digit
(counting
from the
right) in
the field,
else
ignore
Eject Ignored by all devices
Ew
or
E(El)
Free Devices implied, CARDS,CORE
Fw Read the next w columns in |Number 1 80 Not INTEGER
or the manner described in of allowed REAL
F(E1) 8.6.1. (Implied or free columns BOOLEAN
format) to be COMPLEX
read in REAL2
this way STRING

3ovd

HIGWNN N

NOISIAZY 3DV d

¥88L

SWILSAS S3143S 0011 DVAINN

g9E—8

¥88L

HIsWNNdN

SWILSAS SI1A3S 0011 DVAINN

| NOISIA3Y 39vd l

Table 8-2. Format Phrases for READ (cont)
POSITION ALLOWED
PHRASE ACTION w or El d or E2 IN TYPES OF
MEANING | MIN [MAX MEANING | MIN MAX FIELD PARAMETERS
Integer Devices implied, CARDS,
CORE
Iw.d (1) Accept a numeric con- |Field 1 63 Base of 0 10 INTEGER
or stant in the form of width integer REAL
I(E1,E2) INTEGER, REAL, or REAL2 (d=0 is REAL?2
as described in 4.2.2. the same
Make it negative if pre- as d=10)
ceded by a minus sign.
(2) Give the value a type
according to the form
of the number read
(see 4.2.3 for form
of numbers).
(3) Convert the number to
integer,
(4) Convert the result to
the type of the param-
eter,
Position | Devices implied, CARDS,
to CORE
column
Jw The next field to be edited |[Column 1 80 Not Non-
or starts in column w. number allowed editing
J(E1) (Useful for reread). of start phrases
of next
field
Middle
String
Mw Exactly the same as S.
or
M(E1)

35vd

9€—8

HIawniNedn

Table 8-2. Format Phrases for READ (cont)
POSITION ALLOWED
PHRASE ACTION w or El d or E2 IN TYPES OF
MEANING | MIN | MAX MEANING | MIN | MAX FIELD PARAMETERS
Integer
Nw Exactly the same as Iw.
or
N(E1)
Real
Rw.d Exactly the same as D.
or
R(E1,E2)
String Devices implied, CARDS,
CORE
Sw Transfer as many char- Field 1 2047 | Not STRING
or acters as possible from width allowed
S(E1) the read buffer to the (number
string given as param- of
eter., Start with the columns
leftmost character in the | reserved
field into the leftmost for the
character in the string. string)
If the field is shorter
than the string, fill the
rest of the string with
blanks., If the string is
shorter than the field
then the rest of the
characters in the field
are lost.
Note: A string quote is
not taken as a string de-
limiter, but transferred
like any other character,

NOISIAZY 39vd

3o5vd

LE-8

¥88L

SWILSAS S3IA3S 0011 OYAINN

Table 8-2., Format Phrases for READ (cont)
POSITION ALLOWED
PHRASE ACTION w or El d or E2 IN TYPES OF
MEANING { MIN | MAX MEANING | MIN | MAX FIELD PARAMETERS
No change |Devices implied, CARDS,
if blanks | CORE
real
(1) If the field re- Field 1 63 Ignored INTEGER
Uw.d served is completely width REAL
or blank treat as Xw. REAL2
U(E1,E2) (2) Otherwise treat as Field 1 63 Same as 0 31 COMPLEX
Dw.d. width for D
No change |Devices implied, CARDS,
if blanks | CORE
integer
(1) If the field reserved | Field 1 63 Ignored INTEGER
Vw.d is completely blank width REAL
or treat as Xw. REAL2
V(E1,E2) (2) Otherwise treat as Iw.| Field 1 63 Same as 0 10 COMPLEX
width for 1
Blanks Devices implied, CARDS,
CORE
Xw Skip the next field of w Field 1 80 Not Non-
or columns. width allowed editing
(E1)
String
Constant
String of |Completely ignored. Non-
characters editing
enclosed
by A 1]

H3IaWNN-dN

39vd

8¢—8

SWSLSASSBIH!SOOH JVAINN

¥88L

|Nm$M3&39Vd|

7884 UNIVAC 1100 SERIES SYSTEMS

8-39
UP.NUMBER PAGE REVISION [PAGE

2. If no error label is present, the read buffer is printed on the printer and
a marker is printed showing the exact position where the error occurred and
the line number of the program being executed.

Common errors are:
1. Parameter is of a type not allowed by the format phrase.
2. Restrictions on w or d have been broken.
3. The characters in the field specified are illegal or do not have the correct
form. (For example spaces are not allowed in a numeric constant.)

8.6.6 Repeat Phrases

8.6.6.1 Definite Repeats
Instead of writing out the same format phrase or group of phrases several times, it
is possible to specify the number of times the phrase or phrases should be referred
to by using a repeat phrase. It has the form:

nQw.d

n(Qw.d,Qw.d,....... Qw.d)

:E: (Qw.d)
:E: (nQw.d, :E: (Qw.d),:E:(nQw.d))
etc.

B n is a positive integer constant.

@ Q is any format phrase (editing or nonediting).

B E must be an arithmetic or Boolean expression.

#® w and d have the meanings given in 8.6.4 and 8.6.5.

The following rules apply to definite repeats:

1. The expression E is evaluated when the repeat phrase is activated. That
is when the format phrase is required, before the parameter is evaluated.

2. If E >0 the format phrase (S) are repeated that many times. If E = TRUE
the phrases are taken once,

3. If E< O or E= FALSE the format phrase(s) which this repeat controls will
be skipped.

7884 UNIVAC 1100 SERIES SYSTEMS 8—40

UP.NUMBER | PAGE REVISION | PAGE

EXAMPLES :

BEGIN
COMMENT PRINT AN ARRAY WITH ONE COLUMN PER LINE$
INTEGER N,M$ READ(N,M)$
BEGIN
ARRAY X(1:N,1:M)$
FORMAT F6(:M:(:N:(R16.8),A1))$
WRITE (F6,X)$
END$

END$

8.6.6.2 1Indefinite Repeats

It is possible to repeat certain groups of format phrases an indefinite number of
times depending only on the number of elements in the input/output list.

The groups of phrases to be repeated are enclosed in parentheses without a repeat

expression preceding. The delimiters << >> of an inline format and the outer-

most brackets of a declared format also denote indefinite repeat.

NOTES: 1. Indefinite repeat groups should in most cases have an activate (A)
phrase in them since all format phrases beyond the group are ignored.
If they do not, a warning message is given.

2. Errors can occur when two cards are read instead of one because the
input list is longer than the number of phrases in the format.

3. Attempts to cause an indefinite repeat of a format containing only
nonediting phrases will cause the format to be cancelled.

EXAMPLES :
BEGIN
COMPLEX ARRAY COMPARRAY (1:50,1:50)%
INTEGER SIZE,I$
FORMAT FREAD(A,I12,(A,10R8.2)),

FWRITE('COMPARRAY OF SIZE',I12,

Al.2,(10(R9.2,X2),A1))$

8—41
PAGE REVISION | PAGE

7884 J UNIVAC 1100 SERIES SYSTEMS

UP.NUMBER

EXAMPLES: (cont)

READ (CARDS,FREAD,SIZE,FOR I=(1,1,SIZE)

DO FOR J=(1,1,SIZE) DO COMPARRAY A(I,J))$
COMMENT WILL READ IN THE PART OF THE ARRAY REQUIRED$
WRITE (PRINTER,FWRITE,FOR I=(1,1,SIZE)

DO FOR J=(1,1,SIZE) DO COMPARRAY(I,J))$
COMMENT WILL PRINT OUT HEADING AND THEN THE PART OF
THE ARRAY REQUIRED$
END$
BEGIN
INTEGER I$
COMPLEX C$
FORMAT FREAD(A,I12,R12.6)$

READ (CARDS,FREAD,I,C)$

COMMENT WILL READ TWO CARDS SINCE COMPLEX VALUES REQUIRE
TWO PHRASES$

END$

8.7 INPUT/OUTPUT LIST

The input list is an ordered set of variables into which values can be transferred.
The output list is an ordered set of expressions which can be evaluated and their
values transferred to the required output device.

The list may have two forms:

Declared list

Inline list

8.7.1 1Inline List

The inline list gives the input or output statement a list of expressions to or from
which values may be transferred. Any ordered group of expressions which are param-
eters to an input or output procedure is an inline list.

UP.NUMBER PAGE

7884 UNIVAC 1100 SERIES SYSTEMS I l 8-42
PAGE REVISION

EXAMPLES :

FORMAT F(A,3R12.2)$

REAL X,Y,Z,A,B,C$

WRITE (X,Y,2)$

READ (CARDS,F,EOFLB,A,B,C)$

EOFLB: COMMENT THE EXPRESSIONS X,Y,Z,A,B,C, ARE ALL MEMBERS OF INLINE LISTS$

8.7.2 Declared List

When several input or output calls require the same expressions in the same order,
a declared list may be used. It has the form:

LIST <identifier >(< 1list elements >)$
It must obey the rules for declarations. Several lists may use one declaration.
EXAMPLES :

LIST L1(FOR I=(1,1,5) DO A(I),X,Y),

L2(IF B THEN X ELSE Y,Z2)$
8.7.3 Rules for Lists

8.7.3.1 Arrays

An array identifier may be used without subscripts in a list, i.e., every element
in the array is to be used in the list.

For multidimensional arrays, the leftmost subscript varies most frequently, i.e.,
a two-dimensional array will be decomposed by columns.

EXAMPLE :
ARRAY X(1:2,1:3,1:4)$
WRITE (CARDS,X)$
COMMENT WILL PUNCH OUT THE ELEMENTS IN THE FOLLOWING ORDER
X@1,1,1), x,1,1), x(1,2,1), X(2,2,1),

X(1,3,1), X(2,3,1), X(1,1,2), X(2,1,2),

X(1,2,2), X(2,2,2), X(1,3,2), X(2,3,2),

7884 UNIVAC 1100 SERIES SYSTEMS

8-43
UP-NUMBER PAGE REVISION

PAGE

EXAMPLES: (cont)

X(1,1,3), X(2,1,3), X(1,2,3), X(2,2,3),
X(1,3,3), X(2,3,3), X(1,1,4), X(2,1,4),

X(1,2,4), X(2,2,4), X(1,3,4), X(2,3,4)%

8.7.3.2 Other Expressions

The expression is evaluated at the time the list element is referenced. Expressions
other than variables or array names may not be used as list elements in an input
list.

8.7.3.3 Format in Lists

A format identifier or inline format may be placed in a declared list.

8.7.3.4 List with MAX and MIN

The parameters to MAX and MIN are given in the form of declared or inline lists,
see 7.4.1.

8.7.4 Sublists

Lists or list elements may be grouped so that they can be repeated in a specific
order. Sublists are formed by enclosing the list elements with brackets.

EXAMPLE:
LIST L1(FOR I=(1,1,2) DO (A(I),B(I)))$
NOTE: List elements are expressions and therefore cannot be enclosed within

BEGIN END. Sublists must be used whenever such a construction is
required.

8.8 INPUT/OUTPUT PROCEDURE CALLS

8.8.1 READ

READ is used to specify that values are to be input according to the given param-
eters. It has the form:

READ(<device >, < format list> , < input list> ,< label list>)$

All devices are allowed except PRINTER, APRINTER, PUNCH, and APUNCH (see 8.3). Up
to three labels may be used. See 8.5.

7884 UNIVAC 1100 SERIES SYSTEMS 8—44

UP.-NUMBER | PAGE REVISION l PAGE

8.8.2 WRITE

WRITE is used to specify that values are to be output according to the given
parameters, It has the form:

WRITE (<device>,<format list>,<modifier list>,<output list>,<label list>)$
All devices are allowed, see 8.3.
EXAMPLE :
WRITE(FILE('A') ,ERRLB,EOF('XYZ') ,X,Y,2)$
WRITE(CORE(S), <<3R12.2,A> ,X,Y,2)$

Only one label is allowed. See 8.5.

8.8.3 POSITION
POSITION is used as follows:
B Sequential file - To position a file to a previously written KEY or EOF record,
to the end of information or advance it over a given number

of records.

B Indexed file - To position a file to a position specified by a file index.

The POSITION statement has the form:

POSITION(FILE(< filename >),< modifier list>,<integer expression>,<label list>)$
POSITION(FILE(<filename>, < fileindex>))$

Only FILE or DRUM are allowed as devices. See 8.3. Up to three labels may be
used. See 8.4 and 8.5.

The integer expression specifies the number of records to be positioned. If it is

positive, the positioning is done in the forward direction, if negative in a back-
wards direction., Certain tape units cannot be positioned backwards. See 8.4.3.

8.8.4 REWIND and REWINT
REWIND positions a file to its starting position, and releases its buffers. REWINT
does the same as REWIND except when the file is on magnetic tape. In that case, the
tape is also locked, so that it can no longer be used,.

REWIND(FILE(< filename >))$

REWINT(FILE(< filename >))$

REWIND(FILE(< filename >,< fileindex >))$
Only FILE or DRUM devices are allowed with these operations. See 8.3.6.

7884 UNIVAC 1100 SERIES SYSTEMS 8—45

UPRP.NUMBER I PAGE REVISION IPAGE

8.8.5 MARGIN

MARGIN is used to change the margin settings on the printer. Depending on the
size of paper used at an installation, there will be a certain number of lines per
print page. Procedure MARGIN allows the user to specify which is to be the first
line and which is to be the last line on page. It can also be used when special
print forms such as labels or envelopes are being printed. It has the form:

MARGIN(<control string >)

B control string is a string containing one or more control functions.

Spaces are ignored prior to the first, or between functions. Each function begins
with a single letter, followed by a comma, followed by any special information
required, and terminated by a period. The format of the information character
string varies according to the function but must not contain a period.

The following control functions are allowed:

B [- Space printer to logical line nn, where logical line is defined as the line
number relative to the top margin setting (see M following). All line
positioning and printing is performed within the defined margin settings.
(The bottom logical line of a page is identical to the top logical line -1
of the next page.) Positioning to a logical line on printers with space-
print operation is to logical line n - 1; therefore when n = 1, the logical
line setting is the last line of the current page. This is also true when
n =0, or when n is greater than the length of the logical page. When n is
less than or equal to the current line of the current page, the succeeding
page is positioned to the logical line n - 1. The format of this function
is:

L,nn,

® H - Initiate heading printing. This function provides the user with an auto-
matic means of printing a heading on each succeeding page of his print file.
The format of this function is:

H, option, page , text of heading.

If the option field contains the letter X, a page and date will not be
printed as part of the heading. Option N turns the heading off. A page
count is maintained by the processing symbiont. When the page field is
blank, the page count current to the field is used to begin page numbering.
When coded, page 1is made the page number. 1In addition to the page number,
the current date is included in the heading, and both will appear in the
upper right corner of each page. This position of the heading is the
second line above logical line 1. If the upper margin is one line or
non-existent, no heading is printed. As many as 17 words of heading text
may be supplied.

@ M - Set margins, This function supplies the information for readjusting page
length and top and bottom margins. The standard print page definition is
66 lines per page with a top margin setting of six lines, and a bottom
margin setting of three lines. Note that the top and bottom margins refer

7884 UNIVAC 1100 SERIES SYSTEMS

8—-46
UP.NUMBER PAGE REVISION

PAGE

to the number of blank lines at the top and bottom of the page respectively.
Thus the standard margin setting is 66,6,3. giving 57 printable lines. The
page definition is assumed at the beginning of each print file. When the M
function is used, a page alignment procedure is initiated with the page
length parameter. This function is also used to return to the standard
page length. The format of this function is:

M, length, top, bottom.

B W - Set maximum line width to allow error checking on image length at run-time.
The standard of 22 words is assumed unless the W control is used. The
format of the function is:

W, width.

where width specifies the maximum line width in words. The program is
errored out when W is exceeded.

B S - Special form request. This function enables the user to instruct the
operator to load a special form required to process the print of punch
file. The format of this function is:

S, message text.
where the message text can be up to ten words long. When this function

is encountered by the processing symbiont, the message is displayed on
the operator's console in the form:

run ID/filename c¢/u options
message text
The user's message text is displayed on the line following the symbiont
message. The options available to the operator for answering the message
depend on the symbiont. The following options are included in the 0755
HSP, Card Punch and the 1004 Printer and Card Punch symbionts:

A - Begin processing the output file.

Q - Return file to symbiont queue. The print or punch file will be
passed temporarily and placed behind the next file of this
symbiont queue.

EXAMPLE :
Set the margin to print 72 lines per page:

MARGIN('M,72,0,0.");

7884

UPMUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION

9-1

PAGE

9.1

9. COMMENTS AND OPTIONS

COMMENTS

The use of explanatory messages is encouraged to aid readability of the program and

to help in finding errors in the source text. The following are methods of us
comments :
@ After BEGIN or any $ or ; the following construction may be placed.
@ COMMENT any characters not including ; or $ followed by ; or $
@ After END comments can be placed. However, the characters ; or $ or the
words END or ELSE cause the ending of the comment.
m In a procedure declaration, comments may be placed in the formal parameter
list by substituting the comma with the construction:
)<letter string>:(
(See Section 7.)
EXAMPLE:

COMMENT THIS PROGRAM SHOWS COMMENTS$
BEGIN COMMENT CAN COME AFTER BEGIN$
INTEGER I$
COMMENT CAN COME AFTER DECLARATION$
PROCEDURE SHOW (K) WORDS CAN BE PLACED HERE: (L)$
REAL K,L$
K=L$ COMMENT CAN COME AFTER A STATEMENT$
IF I GTR 50 THEN
BEGIN
SHOW (I,50-I)%
END YOU CAN ALSO PUT COMMENTS HERE

ELSE

ing

7884 UNIVAC 1100 SERIES SYSTEMS 9-2

UP-NUMBER | PAGE REVISION I PAGE

EXAMPLE: <(cont)

SHOW (I,50+I)$%
END OF THIS PROGRAM SHOWING COMMENTS$

NOTE: A comment may come before the first BEGIN of a program.

9.2 OPTIONS
It is possible to control certain actions of the ALGOL compiler and run-time system
by placing a specific option letter after the masterspace on the ALGOL processor
card or the XQT card. Only options that are particular to NU ALGOL are described
in this section, For the use of other options, consult the manual of the relevant
operating system. At compile time, these same options may also be turned on by
using a statement of the form:

OPTION 'string of option letters'$
They may be turned off by using:

OPTION 'string of option letters' OFF$

These statements are accepted wherever declarations or statements are allowed.

NOTE: OPTION may come before the first BEGIN.

9.2.1 Processor Card Options
The following are the available options on the processor card:

A - Accept the compiled program even if errors are found. No warning messages
are given,

B - List serial number and level number at the beginning and end of each block
in the program during compilation,

E -~ All external procedures when they are compiled require this option,.

F - The compiled code is listed and punched into cards which are accepted by
the assembler,

L -~ The assembler code produced by the compiler will be listed. If there is
no N option, the source code will also be listed. The instructions
resulting from each line of ALGOL text will appear just before the
corresponding source line.

N - The source text listing is suppressed. No warnings are given, but error
messages are printed together with the source lines to which they apply.

0 - This option has the same effect as R.

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 9-3

| PAGE REVISION IPAGE

This option removes the instructions which check whether the subscript
being used is within the bounds declared for the array. It is suggested
that this option should not be used during debugging. Production programs
can benefit greatly from the saving in time when the check is removed.

At the end of the listing, times are given for the four passes of the
compiler and the total time taken for the compilation. The number of words
used on drum for the intermediate output from the passes of the compiler is
also printed.

Suppress warning messages.

Correction cards used to update a symbolic version are listed before the
normal source text listing.

If errors are detected in the compilation, the entire run is aborted.

No run-time diagnostic information is prepared. When this option is used,

a PMD card may not be used. The program will not keep track of the line
numbers being executed so that run-time error message will not be completed.
The use of this option saves time and core space in production programs,

but should not be used when debugging.

9.2.2 XQT Card Options

The following are the available options on the XQT card:

A - Accept the program for execution even though errors have been found during

compilation or allocation. If compile-time errors have occurred, execution
will proceed up to the point of the first error and then the program is
terminated with the message:

SOURCE LANGUAGE ERROR AT LINE XXX

I - List data images as they are read. The line number of the READ statement

andVVVVVVare inserted in front of the image.

X - Abort the rest of the run if errors occur.

7884 UNIVAC 1100 SERIES SYSTEMS

UPNUMBER

10-1

PAGE REVISION PAGE

10. ERROR MESSAGES

10.1 GENERAL

The compiler tries to find and properly diagnose all errors in the text given to it.
Sometimes the syntax is so incorrect that it confuses the compiler to the point
where spurious messages are printed or certain internal errors may occur. When such
internal errors occur, all other errors diagnosed should be corrected. In most
cases, the internal error will then disappear.

Where possible, the exact syntax causing the error is marked with an asterisk. The
following list suggests the possible problem and if possible gives a reference to
where the required rules are explained.

There are three levels of errors.
1. Warnings - are given when a construction may cause an error if not used
correctly, or the construction is inefficient. They are not counted in

the total given in the line:

XX ERROR(S) WERE FOUND

Warnings can be suppressed by using the V option or as a side effect of the
A or N options.

2. Errors - These are the usual diagnostics given when the compiler cannot
translate the given source code into meaningful object code. The pro-
gram produced by the compilation may be loaded and executed by using
an A option on the XQT card but when a statement containing an error is
executed, a jump will be made to a run-time error routine which termi-
nates the program.

3. Compilation killers - For certain internal compiler errors or table over-
flows and such unresolvable problems as IMPROPER BLOCK STRUCTURE,
compilation is immediately stopped. Not all errors are detected. In
these cases an XQT card even with an A option will do nothing because no
program has been produced.

10.2 COMPILE-TIME ERROR MESSAGES

Compile-time error messages are given in Table 10-1.

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

10-2
PAGE REVISION | PAGE

Table 10-1. Compile-Time Error Messages

ERROR
NUMBER

MESSAGE

POSSIBLE PROBLEM

1

10

11

12

15

16

Illegal number

Illegal character
Correction card error
Improper use of reserved
identifier

Too long string

Missing delimiter

Wrong delimiter

Improper operand, or
operand is missing

Missing operand

Illegal construction

Missing specification of
<name of variable>

Pass 1 stack overflow
Double specification of
<name of variable>

Illegal value specification
of < name of variable >

The number does not conform to the syntax
of 4.2.3.

Some special characters cannot be used
outside strings or comments. (See 2.1.)

Line number on correction cards is not in
ascending order.

Reserved identifiers (see 2.2) may only
be used with their special meaning.

String constants may not have more than
200 characters. A string quote may be
missing or an extra one has been punched.

Missing operator such as + or - or missing
$ on previous statement.

The compiler is expecting some other de-
limiter. Also VALUE must come before all
specifications.

Usually two operators have been placed
together. For example A*-B is not allowed.
A*(-B) must be used.

Improper construction of an IF statement.
(See 5.5.)

Often caused by a mismatched number of left
and right parentheses or any other non-
standard construction.

No specification given for a parameter to
a procedure. (See 7.1.4.)

An internal compiler error usually caused
by other errors or a too large program.

A parameter to a procedure has been speci-
fied twice. (See 7.1.)

LABEL, LIST, FORMAT, SWITCH and PROCEDURE
cannot be given a value specification,.

7884
UR.NUMBER

UNIVAC 1100 SERIES SYSTEMS

l PAGE REVISION PAGE

variable> at line <line of
declaration >

Table 10-1. Compile-Time Error Messages (cont)
ERROR
NUMBER MESSAGE POSSIBLE PROBLEM
17 Missing formal parameter A specification has been given for a

variable which is not a parameter to the
procedure, Often it should be a declar-
ation of a local variable and come inside
the BEGIN of the procedure,

18 *Warning® Improper All BEGIN's have been matched with END's
termination - remaining but still some cards remain.
cards ignored

19 *Warning™ Missing end - The block structure may not be quite correct
extra end inserted or the final END has been forgotten.

20 Too many nested Only 34 nested BEGIN-END pairs or 9 block
BEGIN-END pairs levels are permitted.

21 Improper block structure Some BEGIN's or END's missing, possibly

caused by other errors,

22 Too many errors - compil- Have you read the programmer's guide?
ation suppressed

23 Double declaration of Two identifiers in which the first twelve
<name of variable >at line |or less characters are the same, have been
<line of second declaration>jdeclared in the same block.

24 Missing declaration of An identifier has been misspelled or the
<name of variable> user has forgotten to declare it.

25 Redeclaration stack There are too many identifiers with similar
overflow spellings in nested blocks.

26 Interphase 1 error An internal compiler error. Check for other

serious errors,

27 Internal error The user has totally confused the compiler.

Correct all other errors and try again.

29 Accumulator stack over- There are too many intermediate results
flow (simplify this in an arithmetic expression for the com-
expression) puter to handle.

30 Mixed types in left part In multiple assignments all variables must
list have the same type.

31 Illegal (after <name of Possibly a delimiter is missing or a simple

variable is being used with a subscript.

10-3

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

I PAGE REVISION PAGE

Table 10-1. Compile-Time Error Messages (cont)
ERROR
NUMBER MESSAGE POSSIBLE PROBLEM

32 Wrong number of subscripts The number of subscripts used must always
to array match the number of dimensions given for

an array in the declaration.

33 Improper type in expression |Only certain transfer functions exist be-
tween different variable types. This
expression requires one which does not
exist., (See 7.4.)

34 Wrong parameter kind to Formal and actual parameter kinds must
procedure <procedure name > match. For example the actual parameter
at line<line of declaration> {may not be an array identifier when the

formal one is a simple variable. (Line 0
refers to a standard procedure,)

35 Wrong parameter type to The type of an actual parameter must
procedure < procedure name > match that of its formal parameter unless
at line <line of declaration>|a transfer function exists. Note that no

transfer functions are allowed for arrays.
(Line O refers to a standard procedure.)

36 Illegal assignment A transfer function which does not exist
has been called for.

37 Constant table overflow The program contains a constant expression
which is too complicated, or the total
number of constants in the program is too
large.

38 Wrong number of parameters The number of parameters in a procedure
to procedure <procedure call does not match the declaration.
name> at line <line of (Line O refers to a standard procedure.)
declaration >

39 Improper type in bound pair |{Only INTEGER, REAL and REAL2 are allowed
list of array <array name> types for subscript bounds in array

declarations.

40 *Warning® Do you want to Possible punching error.
compare constants?

41 Improper type before THEN Only Boolean expressions are allowed

before the delimiter THEN.

42 Improper relation between Complex numbers can only be compared for
complex expressions equality or nonequality.

10-4

7884 UNIVAC 1100 SERIES SYSTEMS I 10-5
URNUMBER PAGE REVISION PLGE
Table 10-1. Compile-Time Error Messages (cont)
ERROR
NUMBER MESSAGE POSSIBLE PROBLEM

43 Undefined transfer function |An implicit nonexistent conversion has
been called for. (See 7.3.)

44 Operand stack overflow Internal compiler error. Check carefully
for other errors. The program is too
complicated.

45 Improper type of controlled |The controlled variable in a FOR loop

variable <name of variable > |may only be of type INTEGER or REAL.
at line <line of declaration>

46 *Warning* Zero step The controlled variable will not be
changed in a FOR statement when the step
is zero.

47 Improper type in FOR list Only INTEGER and REAL types are allowed

element in a FOR list,

48 Wrong type of subscript for |Only INTEGER, REAL and REAL2 are legal

array <array name > types for subscripts.
49 Operator stack overflow Internal compiler error. Check carefully
for other errors. The program is too
large and complicated.
50 FOR stack overflow Only 24 nested FOR statements are allowed
or a FOR list may contain about 40 elements|
51 *Warning®™ Reference into Jumps to labels in FOR statements are
FOR statement by label hazardous since the loop control may not
<label name> at line be initialized correctly.
<line of declaration>

52 *Warning® Test for equality |Variables of types REAL, REAL2 and COMPLEX
between nonintegers may be are only approximations to a value and
meaningless hence may not be exactly equal.

53 Too many different The number will depend upon how much the

identifiers compiler is allowed to expand dynamically.
Normally, several thousand identifiers are
allowed for.

54 Pass 2 stack overflow Internal compiler error. Check for other
errors which may have caused the compiler
confusion. The program may have too many
declarations.

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

l PAGE REVISION IPAGE

Table 10-1. Compile-Time Error Messages (cont)
ERROR
NUMBER MESSAGE POSSIBLE PROBLEM

35 Unrecoverable error in Internal compiler error. Check for other
ALGOL drum file errors which may have confused the com-

piler - or for a machine failure.

56 Overflow in ALGOL drum The intermediate outputs from the compiler
files-program too large are larger than the scratch area on drum.

57 Improper format construction | Some rule for formats has been broken
(see 8.6).

58 Zero replicator Although replicator expressions may have
the value zero, the constant replicator
zero has no meaning.

59 Missing right or extra left | The number of right and left parentheses

parenthesis used in a format do not match.

60 Missing left or extra right | The number of right and left parentheses
parenthesis used in a format do not match.

61 Improper field specification | The field width part of a format phrase

(w) is not formed properly. (See 8.6.)

62 *Warning®* Missing activate Indefinite repeat formats usually require
within indefinite repeat an A-phrase to perform properly.

63 *Warning® Specified field The field width part of a format phrase
is longer than one line (w) has little meaning if it exceeds 132

columns,

64 Format stack overflow Only 10 sets of nested brackets are
allowed in a format.

65 *Warning* Time consuming It is allowable to use noninteger ex-
conversion to integer sub- pressions for subscripts, but it is very
script in array <array name> | slow,

66 Illegal format character Only certain characters are meaningful

within a format. (See 8.6.)

67 This feature is not imple- The construction cannot yet be compiled.
mented

68 Unrecoverable error in Trouble with reading symbolic version of
source input files program from the source input file.

Usually a hardware error.

10-6

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

l PAGE REVISION ! PAGE

Table 10-1. Compile-Time Error Messages (cont)
ERROR
NUMBER MESSAGE POSSIBLE PROBLEM

69 Interphase 2 error Internal compiler error - check for other
possible errors,

70 Pass 1 stack underflow Internal compiler error - check for other
possible errors,

71 Operand stack underflow Internal compiler error - check for other
possible errors.

72 Improper use of formal A formal parameter not specified as a
parameter < parameter name > procedure is being used like a procedure,
at line <line of Example:
specification>

PROCEDURE P(X);
REAL X;
BEGIN X; END;

73 Conversion to integer causes| REAL and REAL2 constants mag have a largest
overflow absolute value of about 1038 o 10308

respectively, but integer constants have a
largest absolute value of only about 1011,

74 Improper parameter to string| The parameters to a string may only be
<string name > INTEGER, REAL or REAL2 expressions,

75 Too many parameters to Strings require either no parameters or
string <string name> only a starting character position and the

length. (See 4.5.)

76 Operator stack underflow Internal compiler error - check for other
possible errors which could have confused
the compiler.

7 *Warning* Inconsistent use A formal array has been used with different

of dimensions to array numbers of subscripts.
<array name >

78 Parameter out of range in Certain standard procedures require
procedure parameters to have value in a certain
<procedure name > range.

79 Missing BEGIN All programs except externally compiled
procedures must start with BEGIN. It is
not allowed to place a label before the
first BEGIN.

10-7

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

10-8
PAGE REVISION | PAGE

Table 10-1. Compile-Time Error Messages (cont)
ERROR
NUMBER MESSAGE POSSIBLE PROBLEM
80 *Warning* Operand for / / Integer divide (/ /) is only allowed for
is not integer integers. Conversion will be attempted.
This warning is given to the rules for
ALGOL 60.

81 Division by zero Division by zero has been attempted in
a constant expression being evaluated by
the compiler,

82 Too many string constants There may be at most 200 string constants
in a program except for the ones used in
formats.

83 Too many labels A program may contain 200 label declar-
ations,

84 Too many external references |A program may reference 50 external pro-
cedures including standard procedures and
system subroutines.

85 Too many procedure A procedure may have up to 63 parameters.

parameters For LIBRARY procedures the number is
determined as shown in 7.3.4.2.

86 Prototype table overflow The program contains too many and too
large blocks or procedures.

87 Too many external procedures | Only 10 external procedures may be com-
piled within the same element.

88 Too many array and string The program has too many arrays or strings

declarations with different bounds.

10.3 RUN-TIME ERROR MESSAGES

Because the evaluation of many expressions is left to the run-time routines, certain

errors can occur. These are caught by the run-time system and the appropriate

messages given, together with the line number of the element where the error oc-

curred.

Table 10-2 lists the run-time error messages.

7884 UNIVAC 1100 SERIES SYSTEMS | 10-9
UP.NUMBER PAGE REVISION PAGE
Table 10-2. Run-Time Error Messages
ERROR
NUMBER MESSAGE POSSIBLE PROBLEM

0 Internal error Trouble in an ALGOL run-time routine.
Consult your systems support people.

1 Improper type conversion A transfer function which is not allowed
has been requested.

2 This feature is not The run-time routines of the compiler

implemented cannot process this construction.

3 Incorrect number of The number of parameters in the procedure

parameters call does not match the number given in
the procedure declaration.

4 An attempt has been made A formal parameter appearing to the left

to store into a constant of an assignment has a constant as its
actual parameter. There may be a missing
value specification or the parameters in
the procedure call may not be in the
correct order,

S An attempt has been made A formal parameter appearing to the left

to store into an expression | of an assignment has an expression as
its actual parameter. Perhaps the
parameters in the procedure call are not
in the same order as those in the pro-
cedure declaration, or a value specifi-
cation is missing.

6 Number too large A REAL, REALZ or the real or imaginary
parts of a COMPLEX number having absolute
value larger than allowable has been
produced.

7 Attempted division by An attempt was made to divide by zero.

Zero

8 (Not Used)

9 Illegal operation Missing external procedure or incorrect
return from a FORTRAN or assembly language
procedure,

10 Result undefined for The result produced by a transfer function
conversion is not a meaningful value.
11 (Not Used)

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

| PAGE REVISION PAGE

Table 10-2.

Run-Time Error Messages (cont)

ERROR
NUMBER

MESSAGE

POSSIBLE PROBLEM

12

13

14

15

16

17

18

19

20

21

Memory capacity exceeded

Improper type of parameter

Improper kind of parameter

Argument out of range

Subscript out of range

(Not Used)

Read error

Improper array bound in
declaration

(Not Used)

A control card was read by
the READ statement

Usually caused by array bounds which are
too big, or by the dynamic creation of
too many or too large procedures. Too
many files requiring buffer space may be
open at one time.

The type of an actual parameter must match
that of its formal parameter unless a
transfer function exists.

NOTE: No transfer functions are allowed

for arrays.

Formal and actual parameter kinds must
match, For example the actual parameter
may not be an array identifier when the
formal one is a simple variable.

A parameter to a standard procedure or an
operand in an exponentiation is not within
the limits accepted.

The subscript computed for an array element
does not fall within the bounds specified
in the array declaration.

Problem with using the READ statement,
usually because of an undefined transfer
function or a constant not in the correct
format.

The evaluation of the expressions in an
array bound has produced a lower bound
that is greater than the upper bound.

If not done for a reason, this message
usually implies that the amount of input
data is known incorrectly. Sometimes when
reading cards, it is caused by reading two
or more cards instead of one because of an
incorrect FORMAT or LIST, or because free
format READ always starts on a new card.

1010

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

PAGE REVISION I PAGE

parentheses allowed

Table 10-2. Run-Time Error Messages (cont)
ERROR
NUMBER MESSAGE POSSIBLE PROBLEM

22 Improper parameter Improper parameter in size or sign.

23 (Not Used)

24 Input/output error Error with device DRUM or TAPE, Often
caused when the length of an input list
is not the same as that of the correspond-
ing output list.

25 Source language error Executions done with A-option can only
proceed as far as the first error.

26 Improper type of controlled | The controlled variable of a FOR statement

variable is a formal parameter which is not VALUE
specified and the corresponding actual
parameter is not of the same type.

27 Write error Improper parameters given to the WRITE
Statement.

28 Zero or negative string The expression given as the length of the

length in declaration string has a value less than 1.

29 Checksum error The checksum on a sequential file record
is not correct. Possible hardware error
or incompatible file format.

30 File error I1/0 attempted beyond file limits, or a
transmission error has occurred.

31 Too many labels WRITE may only have 1 label. READ and
POSITION may have 3 labels.

32 Position error Improper parameters given to the POSITION
statement or trouble in positioning a file.

33 List longer than record The input list given to READ with devices
FILE or TAPE is longer than the record
input from the file.

34 Formats are not allowed Devices FILE, TAPE and DRUM may not read

with FILE, TAPE or DRUM or write formatted data.

36 Only ten nested sets of In a format there can only be 10 nested

sets of parentheses,

10—-11

7884 UNIVAC 1100 SERIES SYSTEMS 1012

UP-NUMBER |PAGE REVISION l PAGE

Table 10-2. Run-Time Error Messages (cont)

ERROR
NUMBER MESSAGE POSSIBLE PROBLEM
37 Neither labels nor lists The list elements for a declared list can
allowed in lists only be expressions, array identifiers or
formats.
38 Input or format error in The form of an item being read and the
READ format used are not compatible. The input
image is printed with an asterisk showing
where the error occurred,
39 Editing error in WRITE The value to be edited is too large for,
Check your format or in some other way incompatible with
the format. The output buffer is printed
showing how far the editing has progressed.
The editing will continue with the next
value.
40 Sequential file referenced The same file name cannot appear with both
as indexed or indexed file one and two parameters to FILE.

referenced as sequential

A-1
PAGE REVISION | PAGE

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

APPENDIX A. BASIC SYMBOLS

Out of the 64-character set of the UNIVAC 1100 Series processors, 95 characters

are recognized by the NU ALGOL compiler as being meaningful within an ALGOL program.
(See 2.1.) The remaining 9 characters have no inherent meaning and are allowed only
within strings and comments. They may thus be installation defined.

To the compiler, the meaning of a character is determined by the value of its
internal representation ("field data" value). Table A-1 lists the characters by
their internal representation together with a common graphic representation. The
corresponding punched-card codes are not shown because they may be installation

defined. For the installation defined characters, no graphic symbol is shown.
Table A-1. NU ALGOL Characters
INTERNAL GRAPHIC INTERNAL GRAPHIC INTERNAL GRAPHIC
VALUE SYMBOL VALUE SYMBOL VALUE SYMBOL
(OCTAL) (OCTAL) (OCTAL)
00 25 p 352
01 L 26 Q 53
02 1 27 R 54
03 30 S 55
04 31 T 36 .
05 SPACE 32 U 37
06 A 33 Y 60 0
07 B 34 W 61 1
10 C 35 X 62 2
11 D 36 Y 63 3
12 E 37 Z 64 4
13 F 40) 65 5
14 G 41 - 66 6
15 H 42 + 67 7
16 I 43 < 70 8
17 J 44 = 71 9
20 K 45 > 72 '
21 L 46 G 73 :
22 M 47 $ 74 /
23 N 30 # 75 .
24 0 31 (76
77

The basic symbols of the NU ALGOL language are represented by means of the preceding
characters. Table A-2 shows these symbols along with the corresponding symbols of
the ALGOL 60 reference language.

7884
UP-NUMBER

UNIVAC 1100 §

ERIES SYSTEMS

I FPAGE REVISIONJ

A-2
PAGE

Table A-2. NU ALGOL Basic Symbols
ALGOL 60 NU ALGOL ALGOL 60 NU ALGOL
true TRUE step STEP
false FALSE until UNTIL
+ + while WHILE
- - comment COMMENT
X * ((
/ /))
+ // C (or [
t e .) or]
< LSS <
< LEQ >
= EQL <<
> GEQ >>
> GTR ' ' ("in strings)
* NEQ ' " ("in strings)
= EQIV begin BEGIN
o IMPL end END
A% OR own
XOR Boolean BOOLEAN
A AND integer INTEGER
N NOT real REAL
go to GO TO REAL2
or GOTO or GO COMPLEX
if IF STRING
then THEN array ARRAY
else ELSE switch SWITCH
for FOR FORMAT
do DO LIST
OPTION LOCAL
OFF EXTERNAL
. . ALGOL
. . FORTRAN
10 & or && LIBRARY
: :cro.. SLEUTH
H ;or$ procedure PROCEDURE
= = or := label LABEL
value VALUE

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

B—1
PAGE REVISION | PAGE

APPENDIX B. EXAMPLES OF PROGRAMS

This appendix contains some simple examples illustrating the use of UNIVAC 1100
Series NU ALGOL. Each example has been run, and some sample input and results are
shown.

BEGIN
COMMENT EXAMPLE 1
CALCULATION OF VALUE OF ARITHMETIC EXPRESSION
WITH READ IN VARIABLES %
REAL ArBeC %
INTEGER TOILL %
READ (CARDSrAsBeC) $
TOILL = A+B**C/A %
WRITE (PRINTERe¢A¢B2CeTOILL) $

DATA
5 6.2 1.222

RESULTS:

5.000004+00 6.20000400 1.,2220¢+00 7

BEGIN
COMMENT EXAMPLE 2
CALCULATION OF SQUAREROOT: B¢ OF A REAL NUMPER:
Ar WITH &6 DIGITS ACCURACY BY NEWTON=RAPHSON ITERATION %
REAL A*B2OLDB %
READ (CARDS(A) %
OLDB = 1.0 S
FOR B = 0.,5%(A/0LDB+0OLDB) WHILE ABS(B~OLDRBR) GTR ip¥*(-6)%B DO
OLDB = B %
WRITE (PRINTER+A*'B) $
END PROGRAM $

DATA
Se77777
RESULTS:

5¢7778¢%400 2,40370400

7884 UNIVAC 1100 SERIES SYSTEMS B—2

UP-NUMBER | PAGE REVISION | PAGE

BEGIN
COMMENT EXAMPLE 3

VALUE OF A POLYNOMIAL Y=B(0)+B(1)*Xessoese +B(N)%X*%N g
REAL XY $

INTEGER KeN $
READ (CARDS!'N) $
COMMENT DEGREE OF POLYNOMIAL READ FROM CARDS. INNER BLOCK PERFORMS
READING OF COEFFICIENTS AND CALCULATIONS ANp PRINTING OF
RESULTS $
BEGIN
REAL ARRAY B(O:N) $
READ (CARDS:B) $
READ (CARDS!X) $
Y = B(N) ¢
FOR K=N=1 STEP =1 UNTIL 0 DQ Y = Y*X+B(K) $
WRITE (PRINTER!»'VALUE OF A POLYNOMIAL OF DEGREE'*'N=''N) %
WRITE (*COEFFICIENTS'¢B)S WRITE (eXZ0eXe'YZ',Y) $
END CALCULATION %
END PROGRAM $

DATA

4

10223 Je5 7052 -4,02 =33.5
5455

RESULTS:

VALUE OF A POLYNOMIAL OF DEGREE N=u

COEFFICIENTS 1.2230+400 350000400 7452000400 =4.,0200¢+00 =3,3500,4+01
X=5.5500.,+00
YS=3.22200+04

7884 UNIYAC 1100 SERIES SYSTEMS 8-3

UP-NUMBER i | PAGE REVISION l PAGE

BEGIN
COMMENT EXAMPLF 4
PROGRAM WITH A REAL PROCEDUREr RIGe WHICH FINDS THE LARGFST
OF THE N LOWER=-INDEXED FELEMENTS (STARTING WITH INDEX=1) OF A
ONE-DIMENSIONAL ARRAYe A» WITH POSITIVE ELE“ENTS %
REAL PROCEDURE BIG(NeA) %
VALUE N &
INTEGER N $
REAL ARRAY A $
BEGIN
INTEGER B $
REAL. C¢D %
B=1¢%
D = A(1) 3
Le C =D~ AB+1) 3
IF C LSS 0 THEN D = A(B+1) ¢
B = B+l % '
IF B LSS N THEN GO TO L %
BIG=D %
END BIG %
REAL ARRAY F(1:50) %
REAL H!K %
READ (CARDS(F) 3
COMMENT CALL OF BIG TO FIND THE LARGEST OF THE 20 L~WER
ELEMENTS OF F $ H = BIG(20:F) $
WRITE (PRINTER!H) $
COMMENT LARGEST ELEMENT IN F %
K = BIG(S0¢F) $
COMMENT USE OF BIG IN MORE COMPLEX EXPRESSION $
H = H + BIG(10/F)/KxBIG(15F) &
WRITE (PRINTER!HeK) $
END PROGRAM %

DATA

1022 3655 1 22:2 05 742 8412 21,4 441 2245 NoH22
5542 0,12345 5.88 3.55 7,53 4 52 3 1 77 5 22.1
Sel 2¢3 3¢2 42 9485 8,99 5.66 66 44 11 2 44,7
55412 48,1 2+89 7.521 8456 5,42 U488 64789 5,423
71234 9,753 8,741 5 6

RESULTS:

552000 +01
713300401 7.7000,+01

7884 UNIVAC 1100 SERIES SYSTEMS B-4

UP-NUMBER | PAGE REVISION I PAGE

BEGIN
COMMENT EXAMPLE 5

REAL AREA: RADIUS» SMALL» G $
INTEGER I+ K 9
REAL ARRAY ANGLE(1:10)» CHANGE(1:9) $
FORMAT FIO0(X9r'ITERATION® »XSe *ANGLE**XS» *CHANGE*r21.1)
F11(X13,11+D15.,6¢D14+59A1)
F12(X9»*'THE ITERATION PROCEDURE HAS CONVERGED'rAl) 9
COMMENT SET UP VALUES TO BE USED IN PROBLEM $
AREA = 1.5 %
RADIUS = 5.0 %
SMALL = 1.0&=5 $
G = (2.0%AREA)/(RADIUS*%*2) $
COMMENT BEGIN ITERATION LOOP == MAXIMUM OF 9 ITERATIONS $
ANGLE(1) = 1.0 %
FOR I = 1 STEP 1 UNTIL 9 DO
BEGIN
COMMEMNT COMPUTE CHANGE IN APPROXIMATE SOLUTIOM $
CHANGE(I) = (ANGLE(I)=SIN(ANGLE(I))=G)/(1.0=COS(ANGLE(I))) %
COMMENT TEST FOR CONVERGENCE OF APPROXIMATE ScLUTION $
IF ABS(CHANGE(I)) LSS SMALL THEN GO TO L110 $
COMMENT APPROXIMATION HAS NOT CONVERGED = COMPUTE NEXT
APPROXIMATION $
ANGLE(I+1) = ANGLE(I) = CHANGE(I)
END $
COMMENT END OF LOOP = ITERATION PROCEDURE HAS NOT CONVERGED %
GO TO FIN $
COMMENT THE ITERATION PROCEDURE HAS CONVERGED %
L110: WRITE (PRINTER(F10) %
WRITE (PRINTER»F1lly FOR K=1 STEP 1 UNTIL I DO
(Ke ANGLE(K) + CHANGE(K))) $
WRITE (F12) ¢
FINS
END OF PROGRAM $

Note that a completely blank card gives a blank line in print.

The sample gave the following result:

ITERATION ANGLE CHANGE
1 1.000000 « 08381
2 916186 00742
3 «908770 «00006
4 +908714 «00000

THE ITERATION PROCEDURE HAS CONVERGED

C—1

UP-NUMBER | PAGE REVISION l PAGE

7884 I UNIVAC 1100 SERIES SYSTEMS

APPENDIX C. JENSEN'S DEVICE AND INDIRECT RECURSIVITY

The purpose of this appendix is to acquaint the reader with two interesting program-
ming techniques, namely Jensen's Device and Indirect Recursivity. A thorough
treatment of the recursive concept may be found in "The Use of Recursive Procedures
in ALGOL 60," H. Rutishauser The Annual Review in Automatic Programming, Pergamon
Press, London, 1963.

Jensen's Device comprises the use of two parameters in a procedure call, in which
one parameter is a function of the other. Neither may be a value parameter.

The following example is a method of evaluating an approximation to the definite
integral of a function by means of Simpson's Rule over one interval. The algorithm
may be written:

REAL PROCEDURE SIMPS (X+ARITHe Ar B) $

VALUE AsB $ REAL X¢ ARITHy» A¢B $

BEGIN REAL FAes FMe» FB 9
=A % FA=ARITH % X=B $ FB=ARITH &
X=(P=A)/2 $ FM=ARITH $
SIMPS=(B=A)*{FA+4%FM+FR) /6

END SIMPSON INTEGRATION $

In a call of SIMPS, ARITH may be any arithmetic expression. Jensen's Device refers
to the case when ARITH is a function of X. For example, the call:

I=SSIMPS(ZEXP(2%Z)e 0.0¢ 1.0)

would cause ARITH to be replaced by EXP(Z*Z) in the running program. Thiscall
evaluates an approximation to the integral:

i
f e22 dz
0

In evaluating an approximation to the double integral:

1 1
§ § eXvadydx
0 0

indirect recursivity may be used by making the parameter corresponding to ARITH a
call to SIMPS itself, thus:

IZSIMPS(XeSTHMPS(YEXP(X%Y)s 0,0¢ 1.0)¢ 0,0¢ 1.0)

More material may be found in: E.W. Dijkstra, A Primer of ALGOL 60 Programming,
Bound Variables, Academic Press, London, 1962, pp. 57-59.

7884 UNIVAC 1100 SERIES SYSTEMS J I D1
PAGE REVISION

UP-NUMBER PAGE

APPENDIX D. UNIVAC 1106/1108 ALGOL
AND NU ALGOL DIFFERENCES

D.1 DIFFERENCES AND RESTRICTIONS
This appendix lists the differences between the UNIVAC 1106/1108 ALGOL and the
NU ALGOL program languages.
D.1.1 External Procedures
® External procedures compiled using the UNIVAC 1106/1108 ALGOL compiler
cannot be run together with ALGOL programs compiled using the NU ALGOL

compiler (and vice versa).

External procedures compiled using the NU ALGOL compiler must have an E-option
on the compiler control card (ALG card).

B An external procedure must be terminated with a ; or $ as must any other
declaration.

B The declaration EXTERNAL NON-RECURSIVE PROCEDURE is not allowed.

8 The declarations for external procedures coded in assembler language are
EXTERNAL ASSEMBLER PROCEDURE or EXTERNAL LIBRARY PROCEDURE depending on the
type of parameter transmission.

D.1.2 Declarations
B The declaration OWN is not allowed.
B The declaration OTHERWISE is not allowed.

B Two new reserved words have been introduced: OPTION and OFF.

® A procedure may have at most 63 parameters.

D.1.3 Formats

e In input or output statements, the format identifier must come before the
list to which it applies.

& The format phrase T is not allowed.

7884 UNIVAC 1100 SERIES SYSTEMS D—2

UP.NUMBER | PAGE REVISION |F’AGE

D.1.4 Standard Procedures

(1) The following changes have been made in the names of some of the
standard procedures.

OLD NEW MEANING
COMPLEX COMPL Produce a complex number using the

first parameter as the real part, and
the second as the imaginary part.

IMAGINARY IM Obtain the imaginary part of the complex
number given as parameter.

INTEGER INT Convert to type INTEGER.

REAL RE Obtain the real part of the complex number

given as parameter,
(2) The argument of a standard procedure is regarded as being by value.

(3) Standard procedures are not recursive.

D.1.5 FOR Statements

(1) The controlled variable may only be of type REAL or INTEGER.

(2) If the controlled variable is a subscripted variable, the initial
value of the subscript expression (before entering the loop) de-
termines which member of the array becomes the controlled variable.
Example:

I=23%

FOR A(I) = (1,1,100) DO I =1 + 1%
When the FOR statement is finished

A(3) will have the value 101

I will have the value 103

D.1.6 IF Statements

B An IF expression used in an arithmetic expression must be enclosed in
parentheses.

D.1.7 Miscellaneous

®m All programs with the exception of external procedures must be enclosed with
BEGIN END$.

7884 UNIVAC 1100 SERIES SYSTEMS D-3

UP.-NUMBER l PAGE REVISION l PAGE

B In a multiple assignment statement, all of the variables to which the assign-
ment is being made must be of same type.

B The value specification must be placed in front of the type specifications.
@ Use of the device DRUM is somewhat different. See 8.3.6.2.

® In input and output, tapes 21 through 27 and CREAD and RREAD are no longer
implemented. Continuous reading and re-reading may be done as shown in 8.3.4.

® The statement REWINT (FILE(1)$ must be used instead of REWIND (FILE(),INTER-
LOCK)$.

® When errors or EOF-conditions are detected during I/0 and no labels are pro-
vided, the program is terminated with an appropriate message.

B Positioning to a KEY is halted if an EOF is encountered. See Section 8.5.7.

B When a string is a parameter to a FORTRAN procedure, the address of the string
itself is transmitted, not the address of the string descriptor.

® Numbers on data cards may not contain spaces.
B Strings in free format WRITE are not printed on separate lines.

@ In a Boolean expression, all operands are not evaluated when unnecessary to
determine the result.

@ If an integer number is input with Dw-d or Bw-d formats, a decimal point is
inserted to the right of the (d+l)st digit (counting from the right) in the
field.

7884 UNIVAC 1100 SERIES SYSTEMS [l E—1
PAGE REVISION PAGE

UP.NUMBER

APPENDIX E. SYNTAX CHART

This appendix summarizes the syntax of NU ALGOL in chart form. The use of the
chart portion of the appendix is very simple and almost self-explanatory. At the
top of each page is a square box which contains the name of the concept defined on

that page, for example,

type declaration| . =

The definition consists of a series of boxes connected by lines indicating the flow
of symbols which define the concept. Two kinds of boxes are distinguished: those
with round corners (or circles) and those with square corners. The round cornered
boxes contain symbols that stand for themselves., Square cornered boxes contain
names of concepts which are defined elsewhere in the chart and may be found by a
quick reference to the index.

In some places a metalinguistic "or" symbol has been used (for reasons of space)
and should be understood as follows:

+ | -

is equivalent to:

In some sections, a pair of letters may mark two spots in a definition. Underneath
that section will appear that letter pair followed by a name. The name will be used
in lieu of the string of symbols between the letter pair in other parts of the chart.
This chart uses only one of the two possible representations for some symbols in
ALGOL. The following equivalences should be noted:

Symbol used in this chart Alternate representation
(C
)]
= =
GO TO GO or GOTO
$;
In addition, comments may be inserted in the program by means of the following
equivalences:

® $ COMMENT <any sequence not containing a $> $ equivalent to $

7884 UNIVAC 1100 SERIES SYSTEMS

E-2
UP-NUMBER PAGE REVISION FAGE

B BEGIN COMMENT <any sequence not containing a $> $ equivalent to BEGIN

® END< any sequence not containing END or ELSE or $> equivalent to END

This chart makes no mention of the use of spaces within ALGOL. A space has no
meaning in the language (outside of strings) except that it must not appear within
numbers, identifiers, or basic symbols, and must be used to separate contiguous
symbols composed of letters or digits. Spaces may be used freely to facilitate
reading.

List of Charts Page
Program E-3
Declarations E-4
type E-5
array E-6
string E-7
string array E-8
switch E-9
external procedure E-10
procedure E-11
local E-12
list E-13
format E-14
Statements E-15
block E-16
compound E-17
assignment E-18
go to E-19
conditional E-20
for E-21
dummy E-22
procedure E-23
Expressions E-24
variable E-25
function designator E-26
arithmetic expression E-27
Boolean expression E-28
designational expression E-29
Basic Elements
identifier, letter, digit E-30
number E-31
string, logical value E-32
delimiter E-33
input procedure statement E-34
output procedure statement E-35
position procedure statement E-36

rewind procedure statement » E-37

Explanation:

staicment

A program is a compiete set of declarations and siatements which define an algorithm for solving a probiem.
The logic of this aigorithm {its correctness) is the business of tihe programmer. The compiler only checks
that the syniax {(form)} is correct,

Hotice that the £ is nsed to separate decinrations and siatements and is not inherently a part of a declaration
or statement, Nevertheless, it will be shown in most examples for clarity,

1ly compiled procedurs (E-option on the ALG card),

In an externa
th rmest BEGIN-EWD pair is not requirved.

HIBWNN-dN

3Iovd
3

¥88L

SWILSAS S31d3S 00LL OVAINN

l NOISIA3Y 3o Vd |

£—

laration ite

Lisplanation:

type declaration JI

array declaration]

—

string declaration }

string array declaration

switeh declaration J \\;_\-

SO

eetered procedure slvelaration |

proceilnre deciaration L

J

local declarativn

—

list deeluration

furmat declaration

There are 10 types of declarations vach of which is delined in detail on the following pages.

v

H3gnNN-dnN

Fovd

v—3

¥88L

SWALSAS $3143S 00LL DVAINA

| NOISIA3IY 39Vvd l

type declaration e

identifier

L4
£

i BOOLEAN

TTI type l

Explanation; A type declaration declares the mode of arithmetic the following identifiers will assume in the block. Types
REAL2 and COMPLEX associate 2 words with the identifier, the others one. Upon entrauce to a block,
identifiers are given the value zero,

Examples: INTECER 14, PAK, LOOPCNT ¢
BODLEAN ANVYLEFT, LASTOUT $
COMPLEX C,CINVS §
REALZ2 DP §
REAL QIN,QOUT, MAXITEM $

HIGgWNN-adN

NOISIAZY 395vd

ELR P
3

¥88L

SWILSAS 31435 0011 OVAINN

G

L array declaration J Ste

Explanation: An array declaration associates an identifier with a 1-dimensional or larger matrix of values,

Examples:

type
arithmetic L U arithmetic vc e
Lo identifior expression expresslon
N
BR bound pair list l CCI bound pair] UU| npper bound] LL[lower bound I

The arithmetic expressions

define the lower and upper limits of each dimension. The type plays the same role as for simple variables. If omitted,

type REAL is assumed.

COMPLEX ARRAY CCON4 (0:N), CP1L{1:N+1) $

BOOLEAN ARRAY BAND, BOR, BXOR(-4:4) $

REAL ARRAY B(I-1:I+1), XINITIAL, YINITIAL(-N:N, -N:N, 1:2) §
INTEGER ARRAY I(1:5),J,K, LIENTIER(X): P112) $

ARRAY XYZ4(1:Nx2) $

H3ISNWNN-dN

NOISIA3Y 39vd

3Jovd

9—3

¥88L

SWILSAS S31¥3S 00LL DVAINN

L siring declaration]:'-

SS: r substring declaration]

ST
LL: " length part ’

identilier

subsiring deelaration

8 arithmetic expression
1

substring declaration

A string declaration assoclates an ldentifier with a variable whose value is a string of characters. The length of the string
is ite nemleer of characters, A group of characters of & string may be named as a substring, The lenyth of a string must
he iess than 4096,

STRING ST1{36), NAME{INITIALS{2), LAST{16)) $
STRING PIN+2), QUOTE(1}) $
STHING NEXTOUT(80) $
STHING ALPHA{BETA{Z, GAMMA(4), 2), DFLTA(EPSILON(E)), 20) §

FOVd

L—3

HIGWNN-aN

NOISIA3Y 35 vd

¥88L

SWILSAS S31A3S 00LL DVAINN

[string array declaration] e

P > > B " leng:h part hound palr list

(Ve
N

Explanation: A string array {8 a2 matrix whose elements are strings. Appended to the length part of the declaration are
the bound pairs for each dimension, just as for an ordinary array.

Examples: STRING ARRAY SA (80:0:100), CARD(I.ABEL(8), OP(6), 2, OPERAND(64): 1:N) $
STRING ARRAY LASTFILE (CLENGTH:1:507) $

HIgWNN-dn

3ovd
3

¥88L

SWILSAS S31A3S 00L1 DVAINA

| NOISIATY 39va|

8_

L awiteh declaration]::-

Explanation:

Examples:

SWITCH designational expression

A switch declaration associates an identifier with an ordered list of designational expressions. A switch is
used for transfer to a label depending on the value of some variable.

SWITCH JUMP » L1 START , FEIL4, SLUTT §
SWITCH BRANCH = IF BETA EQL 0 THEN L1 ELSE JUMP(J),START §

|

¥88L

d3anNnNN-d N

[

SWILSAS S3143S 0011 OVAINA

NmsmEHSSle

Idvd
3

6_

external procedure declaration J te

FORTRAN

PROCEDURE

EXTERNAL

w
PROCEDURE procedure heading [

ASSEMBLER)}

Explanation: This declaration specifijes a list of identifiers which are to be the names of
procedures not found in the program. These procedures may be written in assembly
language (ASSEMBLER, LIBRARY), ALGOL or FORTRAN. The type of external procedures
is specified if they are functional procedures.

Examples: EXTERNAL FORTRAN REAL PROCEDURE CBRT$
EXTERNAL FORTRAN PROCEDURE NTRAN,INVS$
EXTERNAL PROCEDURE ROOTFINDER,KEYIN,KEYOUT$
EXTERNAL ASSEMBLER PROCEDURE TYFPEIN,TYPLOUT$
EXTERNAL LIBRARY INTEGER PROCEDURE PACK(A,B,C)$
VALUE A,B$
INTEGER A,B,C$ $

¥88L

HIGWNANAN

SWILSAS SI1A3S 00LL DVAINN

39vd NOISIA3Y A9 vd
L—

[procedure declaration J::-

PROCEDURE identifier

identifier

HR

procedure heading !

TT| procedure body

iy

8s ‘ specification part 1

FF{ {ormal parameter part —!
‘D{ type %

type

STRING

) 5 .
STRING ARRAY —%
. 9 g{ SWITCI

LARKL

p identifier statement e

FORMAT

- J

a

Explanation: A procedure declaration defines an algorithm to be assoclated with a procedure ldentifler, The principal
constituent of a procedure declaration 18 a statement which 18 executed when the procedure 18 "called”
{see procedure statement and function designator). The procedure heading specifies that certain identifisrs
appearinﬁ whithin the procedure body are formal parameters, A parameter muy also be specified as
"VALUE" in which case the procedure statement, when called, has access only to the valae of the corre-
sponding actual parameter, and not to the actual parameter itself,

Examples: PROCEDURE ZEROSET {A,N) $
VALUE N $§ INTEGER N $ ARRAY A §
BEGIN COMMENT THIS PROCEDURE ZEROES AN ARRAY ASSUMED DECLARED ARRAY A{L:N) $
INTEGER 1 $
FOR 1. 1STEP 1 UNTIL N DO A(I) » 0 END ZEROSET $

INTEGER PROCEDURE FACTURIAL {NUMBER) $
VALUE NUMBER $ INTEGER NUMBER §
FACTORIAL = IFf NUMBER LSS 2 THEN | ELSE NUMBER x FACTORIAL (NUMBER-1) §

BOOLEAN PROCEDURE BOOL $
BOOL = NOT (FINISHED OR FIRST AND LAST) §

¥88¢L

HIEWNNdN

[

SWILSAS S3143S 00LL DVAINN

:asval NOISIA3Y 3ovd I

Li—3

[local declaration J::-

L #={ LOCAL

ExBlanation:

PROCEDURE

SWITCl!

FORMAT

T,

‘he local declaration in NU ALGOL is treated as a dummy
declaratior and has been retained only for compatibility with the
with the UHIVAC 1106/1108 ALGOL.

¥88L

HIEWNANdN

SWILSAS S3143S 00LL DOVAINA

aFsvd NOISIASY 39vd
g

L list declaration im

arithmetic expression

Boolean expression 1{

array identifier j

LIST - identifier °

string array ldentifier

for clauge

Explanation:

Examples:

O
O

L L

A list defines an ordered sequence of expressions and array !centifiers, A list may only be used as a parameter
to a procedure, and, ultimately, only by a procedure written in non-Algol language.

LIST OUT (A+1,N+1,FOR I (1,1, NMAX)DO(Q(I), QRES(1))) $
LIST L1(A, B, C). LIF MOD(Q, 2)EQL 0 THEN B ELSE Q] §

HIgWNN-dN

NOISIAZY 39vd

3o vd

€i—3

¥88L

SWILSAS S3143S 00LL DVAINN

format declaration |::= f#T\\ ot

\\uzf ! string k_g/

unsigned
Blriridimjsix integer

s arithmetic
unsigned , exprassion
integer e

il

‘ { unsigned : =l unsigned
AIDIT|N|RJUjV L__integer ‘@__d intsger
ith ' tic i - _ ;
2§;re2§ion 3 | gedarithmetic arithmetic
expression expression
@
CF
o/

g FORMAT identifier

boolean
expression

phrase lis) *‘]’;N\\
::. o/

A | phrase 1ist Explanation: A format is a special string of symbols which are passed on to an input/output

routine for editing and control. Integers in front of a format code specify the
number of times that code is to be repeated.

Exemples:

FORMAT NEWPAGE(E s *X=COORDINATE?9X28¢ * Y=COORDINATE'vA1) $
FORMAT REP(5(4 R16.,8+A1)9A0:2s5120°=9,D10.1+512+9=%9r310,1,A1) $

FORMAT VECTOR (10T10.4+A2)PATTERN{'SWITCHES ARE?¢8BpeAl) $
FORMAT MATRIX (3N:{iM:(D4.2¢01))) S

¥88L

HIGWANGEN

SWILSAS S31¥3S 00LL DVAINN

Iovd NOISIASY 35vd
[

compound statement

assignment statement

]

go to stateinent i

condlitional statement

for statement

dummy statement

1
J

procedure stiatement

input/output statement

Explanation: Statements define the sequence of opterations to be performed ‘by the program,
of statements are each defined in the following pages.

The 9 types

Y

¥88L

HISWNN-dN
SWILSAS S31¥3S 00LL DVAINN

I NOISIAIY S9vd l

3ovd

§1—3

O]

Explanation:

Example:

statement

A block automatically introduces a new level of nomenclature by a set of declarations, This means that any

identifier declared in the block will have the meaning assigned by the declaration, and any entity represented
by such an identifier outside the block is completely unaccessible inside the block. The identifiers declared
within a block are said to be local {to that block) while all other identifiers are non-local or global (to that

block).

L:BEGIN B':TEGER ARRAY A(1:10) §

All)- 18
FOR J = (2,1,10) DOA(J) = A(J-1)+J §
FOR J = (1,1,10) DO WRITE (J, A(J)) §

END $

HIAGWNN-dN

asv

9i—3

¥88L

SWIALSAS SA1U3S O0LL OVAINN

d1 NOISIAZY 39oVvd l

1 compound statement

Explanation: A compound statement serves to group a set of statements by enclosing them with a BEGIN-END pair,

Example:

This is then treated as a single gtatement,

BEGIN T. 0 $§ FOR 1, | STEP 1 UNTIL M DO
Te BJ,I)x C(IK})+ T §
IF T GTR 820 OR OVFLOW THEN GO TO SPILL $

END $

HIGWNNdN

35vd

L1—3

¥88L

SWILSAS S3143S 0011 DVAINA

| NOISIAZY 395V d

I assignment statement]::-

variable : arithmetic expression

Explanation:

Examples:

procedure identifier - Boolean expression

An assignment statement serves to assign the value of the expression on the right-hand side to the variable
and procedure identifiers on the left hand side. A procedure identifier is only permitted on the left-hand
side in case the statement appears in the body of that functional procedure, U any of the left part variables
are subscripted variables, they arec evaluated before the expression is evaluated, Transfers of type are
automatically evoked when necessary.

A(l) « B(I) « &35 §

AANDB = A AND B OR EPS! GEQ EPS2 §

P « SQRT(Bxx2 - 4xAxC) §

T = S - MYOXEPSOx(2xPIxF)xx2$ X
S(V,K-2) : CCS(ANGLE) + 0, 5 x(IF S1 THEN Kxx3 ELSE Kxx5) $
NAME(i,6:P + 1) « ‘IFTHEN® &

H3IgWnNN-dn

Iovd

8i—3

¥88L

SWILSAS S2143S 00LL DVAINNA

Nmsmsuasva'

I go to statement

designational expression —

_J

Exr..nation: A go to atatement causes transfer of control to the atatement with the label determined by the desig-
national expression,

Eramples: GO TO PART $¢
GO TO OPS (I-2) §
GO TO IF ALPYA GTR 0 THEN Q17 ELSE JUMP(-ALPHA) §
GO TO TRACK (IF MOD(P, 2) EQL 1 THEN | ELSE A(])) $

HISBWNNdN

39vd

6L—3

¥88L

SWILSAS S31¥3S 00L1 DVAINNA

|NmSM3H39Vd'

F conditional statement]::-

O

UU[unconditional statement]

compound statement

assignment statement

4@—{7Boolean expression

o to statemen? statemen?

B g B
U H
B dummy statement &

for statement

procedure stateinent

Explanation: The if statement causes the execution of one of a pair of stateuments depending on the value of a Boolean expression,

Examples:

If this expression is TRUE then the statement after the THEN is executed and the statement after the ELSE is
skipped. If FALSE, then the statement after the ELSE is executed, if it exisis,

IF C1 GTR 10 TilEN A(0,0) - KMAX(1) ELSE GO TO LOOP §
1F BOOL(J) IMPL BOOL (J+i) THEN STER(J) » *‘VALID® £LSKE STEPw) = ‘INVALID® §
1IF 1 GEQ 0 THEN BEGIN FOR K = <1 STEP 1 UNTIL 1 DO B(K) = -COS(A:1) 8
SUM = ADDUF(B) END ELSE
BEGIN IF 1 KQL -1 TIIEN GO TO ERROR LELSE GO TO NEXT END §

HIAEWNN-dN

Fovd

0z—3

¥88L

SWILSAS $31¥3S 00L1 DVAINN

| NOISIA3Y 39 vd

label

F
o2 FOR

O

e

arithmetic arithmetic
{ cxpression . eXPression prem———————————— e -

L
variable . -_——
aritlunetic arithnefie
vspression A sion -
}.}-: 1’0011.3"
expregsion peme————— e e o

arithmetlc
expregsian
L

arithmelie
-—— UNTIL eNpresson

¥
I 3 D statamem

i

_J

==

Explanation: ‘The FOR swstement controls e vxecutior o2 the statement follou kg the DO a inmmiber of 2nees while

the variable to the lcft ol the = is awsigned the valnes determined hy U for list. The (,,) eonstruction
!s equivalent to ¢he STEP-1:NTIL. consiruction,

FORI1: 1 STEP 1 UNTIL N DO FOR J = 1 STEP 1 UNTIL. M DO A(L J) = 0 $
FOR S » § + 1 WHILE P(S) NEQ *A‘ AND S LEQ B0 DO BEGIN

NxNx10 + P(8) § 1F OVFLOW I'HEN GG 10 SIZERIt END §
FOR S « (1, 2x5-5, 2xx1H), -1,-2,-4 DO IF LOGAND(S, VAR) THEN GO TO YES $

N Me L

asvdl NOISIAZY 39Vd |

c @
1 ®
y B
c
k<
o
m
2
—

SWILSAS S3143S 00LL DVAINN

le—3

[dummy statement] B

(O]

Explanation: A duinmy statement does nothing., It may serve to place a label,

Examples: FOR 1« (1,1,N) DO FOR J « {1,1,N) DO BEGIN
IF 1 EQL J THEN GO TO ENDLOOP §

... $ ENDLOOP: END §$

S:08
FOR S « S+ 1 WHILE P(S) NEQ ‘A* DO §

HIGWNN-dN

3ovd

¢c—3

¥88L

SWILSAS S3IA3S 0011 DVAINA

I NOISIASY 39 Vvd |

l procedure statement]::-

expression

array identifier

L

string array identifier

identifier

switch identifier I

procedure identificr

format identifier

—

list identifier

AA:Laotual parameter

Explanation:

Examples:

I\ MNa
o/

A procedure statement is a call on a deelared procedure. The actual parameters of the eali replace the formal
or dummy parameters throughout the body of the declared procedure. If the corresponding forinal parameter
has been "VALUE" specified then only the value of the aciual parameter is used by the procedure,

MARGIN (62,56,4) §
P(A,B.C.1,J,K) &
ROOTFINDER (N, O, ERGDET, KOEF, - 4840, &&-5, 5, 0&&-1,1000) $

HIgWNNdN

NOISIA3Y 39Vvd

asvd

€¢—3

$88L

SWILSAS S31¥3S 00LL DOVAINN

expression

arithmetic expression

- 1

\/

-L!'.’.oolean expression I

designational expression

Explanation: There are 3 types of expressions, classified according io their values, An arithmetic expression
has a numerical value or a string value, a Boolean expression cither TRUE or FALSE, and a
designational expression has a label as a value.

HIEWNN-dN

39vd

ve—3

¥88L

SWILSAS S31A3S 00LL DVAINN

l NOISIA3d 39 Vd]

l variable ! B

) 1
variable identifier [

array identifier

L 1 L
arithmetic expression {]

X
O ‘

string identilier

e

arithmetic expression

£ grithmetic expression

20

string array identificr ; o

P subscript list °

substring part ' » ° .

Explanation:
I.l.{ subseript list I
Examples:

88:1 substring part

A varlable is a designation given to a single value, A variable identifier is a variabie-nsined in
a type declaration,

DELTA

BOOLY(7)

CARD

CARID{4)

CARD(1, 6)

A(P(4), NxSIN{ANG),3)
CUROUT{ J,K)
CUROUT(1:J,K)
CUHOUT(L, 6: 4. K)

HIGWANdN

Iovd

g¢—3

¥88L

SWILSAS S31U3S 0011 OVAINA

I NOISIAZN 35 vd

L function designator J::-

Explanation:

Examples:

actual parameter

A function designator defines a single numeric or logical value by applying the rules of the procedure deelaration
to the actual parameters, Only a procedure which has a type associated with it can be a function designator,
Besides those functional procedures deelared in the program, several standard ones are available for ugse without
being declared.

CLOCK
ARCTAN(1, 0)
BACKSLASH(AL, A2)

HIASWNAN-AN

HOVd

9z—3

¥88L

SWILSAS S3143S 00LL DVAINN

| NOISIAZY 39vd I

arithmetic expression J:::

simple arithmetic expression }

Boolean expression }-—(THEN

SS:[simple arithmctic expression |

BUring

unsigned number

variable

function designator

arithmetic
expression

-
O
0
()

o -

Explanation:
Examples:

An arithmetic expression is a rule for computing a numerical value,

A(4) + 2 x SQRT(Dxx3) - DELTA
IF A LSS &-5 THEN 0 ELSE A/&S5
Q(MOD(N, 2} + 1) x {IF FIRST THEN 10 ELSE RATIO) // 3

HIAGWNNdN

NOISIAZY Fovd

3ovd

LT3

¥88L

SWILSAS SIS 00L1 DOVAINN

|

l Boolean expression ‘ e
—

simple Boolean expression __}

logical value

K gwran

variable

function designator jL
simple arithmetic relational simple arithmetic
expression L operaior ==t expression

Boolean expression }—D@

- anmrnaD
o -

SS: [simple Boolean expression J

Explanation: A Boolean expression is a rule for computing a logical value.

Examples: FIRST AND NOT SPECIAL
A LSS DELTA OR ITERATIONS GTIt MAXN
IF BETA THEN TRUE ELSE IF STEP(]) IMPL STEP(1+1) THEN QVALUE(P, 1) ELSE QVALUE(P, I-1)

H3gannN-dn

39vd

¥88L

SWILSAS S321¥3S 00LL DVAINA

| NOISIASY 39Vd |

8¢—3

[designational expression 1 BT

.| 1
7[simple designational expression J

SS;|

simple designational expression]

Explanation:

Examples:

A designational expression is a rule for computing the label of a statement. A switch identifier followed by
an arithmetic «xpression in parenthesis refers to the labnl in the corresponding position in the switch
declaration.

L1o
1IF BETA THEN SLUTT ELSE NEXT (K//2)

| |

HIGWNNCdEN

OV

6C—3

¥88L

SWILSAS SIS 00LL DVAINND

NOISIAZY 3DVe l

e letter

F variable 1dentifier *]::- Larray identifier }:.

I string identifier]::- l string array identifier 1::-

'__—GIBICIDIE

e
I switch identifier]::- ‘ procedure identifier _]::-
r list identificr]::- r format identifier |:::
[label J::= l identifier I
|F|G|H|I|J|K|L|M|NIO|P|QIR|S|T|U|V|W|X|Y ZJ Ll

.—————'(Oll|2l3|4l5|6l'1|8 9)'

\j

Explanation;

Examples:

An identifier is a name chosen to represent a variable, array, etc. Only the first 12 characters
of an identifier uniquely define it,

P47

DELTA
SQRTROOOF 2
F1C4PDQ

H3IaNNNdN

A5vd

0e—3

88L

SWILSAS S3IYIS 0011 DVAINN

I NOISIAIY 39vd I

HIgWNNdnN

¥88L

A g ~
'+|-|xl/ l//lxx
r
5 Lss | LEQI EQLl GEQI GTR I'NEQ} 3
quvi IMPL | XOR | OR | AND I No;\, L
: p :
3
. Go TO| IF l THENl FORI ELSE | DO| OPTION | OFF } 3
. — _ ~
c] o |a jasf: [s | C|) | STEP | UNTIL | WHILE| COMMENT}
' ’ ;
‘ BOOLF:ANI mnf.cunl REAL I REAL2 compwxl STRING
D
ARRAY! SWITCH I pnocr-:nunsl EXTERNALI LIST l FORMAT
"

B

{ I) I ‘ I BIGIN I LEND I << I >>«\
C S ‘\ C
bl VALUE LABEL +*-

I—

AA: [arithinctic operator l pP
RR: [relational operator J DD:
Ll [Boolcan operator ‘ RBB: ‘ bracket i

SS: [sequential operator l CC:I speciricator '

NOISIA3Y 39vd

3o vdg

€e—3

SWILSAS S3I43S 00LL DVAINN

|

L input procedure statement ‘::-

CARDS

>y {ilename’ location

format
identifier . -

format

designational
-——— expression

phrase >>
1ist

designational
expression

Explanation:

Examples:

designational
expression

list identifier
list elemrnt
for clnusil—.tlist element

The READ statement reads data from the specified input device into the

variables indicated by the list elements. The designational expressions
are used as exit points in case end-file or end-information conditions

are met on that device.

READ(CARDS,LEOF,LEOI ,A,B,C,S,EPSILON) $
READ(FILE(INDEX), FOR I=(1,1,KMAX) DO FOR J=(1,1,LMAX) DO ERG(I,J)) $
READ(DATE) $

v88L

HaawnnN-dn

SWILSAS S31Y3S 00LL DVAINN

| NOISIA3Y 3O Vd

aovd

ve—3

[output procedure statement j’::.

{ PRINTER

CARDS

e

arithmetic expression
PRTIIE :
M | : format
Boolean expression . ¥ jdentifier

i i

format
et ¥ phrase
list

list identifier }—' \
designational : _\
————— expression s
list element
jor clause H lis] element
at end of parameter list O-'

Explanation: The WRITE statement outputs the values defined by the lists to the speci-
fied device. Modifiers (XEY;EOF,E0I) produce special marks on tape, a
format controls editing on paper and punched cards, the designational
ex};z'ession is used as a return point if the output device functions abnor-
mally.

at end of parameter liat

Examples: WRITE (PRINTER, F10, FOR I=(1, 1, N) DO A(I,d)) $
WRITE ('CHECKPOINT CHARLIE', A) $ ’
WRITE (FILE(0),KEY(I),ABORTLAB,DUMPLIST) $
WRITE (FILE(OUTPUT),EOF('LAST'),E0I) §

H3aWNN*dnN

NOISIA3Y 39vd

¥88L

SWILSAS S3IY3S 00LL DVAINN

|

3ovd

g€—3

(position procedure statement I::-

POSITION ° ; @ 0

designational

arithmetic expression

arithmetic
expression

expression

designational
expression

designational)
expression

Explanaiion: The procedure POSITION is used to position a tape forward or backward a number of records
or ta svarch for a KEY, EOI", or EOl marker, The designational expressions are used as exits
in cases of srarch failure,

tixamples: POSITION (FILE(0), 2} $
POSITION (FILE(INPUT), KEY("PRICKS"), ABORT) §

POSITION (FILE(OUTPUT), EOI) §

c 2
1 8
z
=
k4
1]
m
1}
I
[(aad
=z
<
>
(@]
ol
=]
o
(=]
w
m
o
m
w
w,
4
w
=1
m
z
w
v
>
[1]
m
b
m
<
a
o]
r4

39vd

9¢—3

-~
58
Z
C
4
o
m
x
[rewind procedure statement I::=
c
z
<
>
O
(N -
A S
wr
m
aritimetic — P]
expression) - jad
m
w
1 %]
-
[7%¢]
o]
m
=
w
Explanation: The REWIND statement will rewind the specified tapes. The REWINT will
cause the units to be rewound with interlock {(read/write protect).
Examples: REWIND (FILE (INPUT), FILE(OUTPUT)) $
~XATR28S REWINT ﬁFILE(I),FILE(A),PILE(J)) $
0
>
[1}
m
a
m
<
»
o
z
L
>
[1]
Mmm
&
~

7884 UNIVAC 1100 SERIES SYSTEMS

F—1
UPNUMBER PAGE REVISION

FPAGE

APPENDIX F. EXEC Il NU ALGOL

This appendix describes those operations of NU ALGOL under EXEC II (1107) that
differ from corresponding operations under EXEC 8, Each item is preceded by a
reference to this manual that describes operation under EXEC 8,

Reference Difference or Addition for EXEC II

(2.2) Identifiers

d) One exception is for external procedures under EXEC II where
only the first 6 characters are unique.

(2.,5.2) For EXEC II, one additional standard procedure CHAIN.

(3.1) REALZ On the 1107, the limits are the same for type REAL, but up
to 16 digits for REAL2.

(4.2.3) REAL2 Add 1107 having between 9 and 16 significant digits.

(7.3.3) Assembler language on 1107 is called SLEUTH II; under EXEC II only

six characters of the procedure name are marked as an entry point:

EXAMPLE:
1. externally compiled procedure
vV E ALG < name >
main program
v ALG < main name >
2. externally compiled procedure
v E ALG < name >
main program
v ALG <main name >
(7.3.4) EXAMPLE :
V FOR name 1

vV ALG name 2

7884 UMIVAC 1100 SERIES SYSTEMS

WRMUMBER

Fo 2
FAGE

FPAGE REVIZSION

ggference - Difference or Addition for EXEC II
(7.3.5) EXEC II -~ The first six characters of the name in the identifier

list of the EXTERNAL PROCEDURE declaration must be the first six
characters of the external entry point of the machine language
procedure.

(7.3.5.1) PROGRAM EXAMPLES :

Assembler Language Program

7 ASM < name 1 >
instead of ER ERR$
EXEC II J MERR$

Main Program

vV ALG < name 2 >
(7.3.5.2) Example for return from a LIBRARY procedure.
V ALG MAIN (EXEC 1II)

after END MAIN PROGRAM;

vV ASM PUNP

(7.4.1) Available Procedures
Name Number Types Result
of of
Parameters Parameters
CHAIN 1 Integer call link X in MAP
EXEC II
MARGIN
MARGIN 3 or 4 Integer
Integer
Integer
String
EXEC II
TAPE 1 Integer Directing I/0 from or to
String a specified sequential
file.

UP-NUMBER PAGE

7884 UNIVAC 1100 SERIES SYSTEMS J | F-3
PAGE REVISION

Reference Difference or Addition for EXEC II

(8.3.1) Add device for EXEC II
TAPE (see following information on EXEC II file handling)
(8.3.6.1) Device for Sequential Files
TAPE (<file name>)

TAPE is also implemented under EXEC 8 to provide compatibility with
EXEC IT NU ALGOL

Meaning of<file name> under EXEC II

If the file name is an integer it must be in the range 0 to 20,

If it is a string the first letter of the string must be one of

the letters A through F. This letter is converted to integer so
that A corresponds to O, B to 1 etc. This letter is the same as
the logical unit assigned to a magnetic tape.

The integer file name is an index to an installation defined file
control table called Y$TTAB. It is possible for the user to supply
his own Y$TTAB table, redefining some of the drum areas. However,
this should only be done with the help of the systems programmer
for his installation,

The following is the implemented Y$TTAB table. Note that the drum
files occupy the same area as the PCF and processor scratch.

Y$TTAB
Parameter
Integer String Meaning
0 ‘A’ Use magnetic tape assigned as A
1 'B’ assigned as B
2 'Cct assigned as C
3 'D’ assigned as D
4 'E* assigned as E
5 'F' assigned as F
Tape
simulating Drum layout
files
6 T Whole
7 Not 1st half
8 2nd half
9 1st quarter
10 Allowed 2nd quarter
11 3rd quarter
12 l 4th quarter
13 1st eight

F—4
PAGE

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

I PAGE REVISION

Reference Difference or Addition for EXEC II
(8.3.6.1) Y$TTAB (cont)
(cont)
Parameter
Integer String Meaning
Tape
simulating Drum layout
files
14 Allowed 2nd eight
15 3rd eight
16 4th eight
17 S5th eight
18 6th eight
19 Tth eight
20 8th eight
(8.3.6.2) Under EXEC II device DRUM refers to the random access user file

which consists of the user PCF and the processor scratch area. The
size of this file will be installation dependent. To provide com-
patibility, DRUM may also be used under EXEC 8. 1In this case a
temporary file of 20,000 words on word-addressable drum is auto-
matically assigned.

Restriction Under EXEC II

Under EXEC I DRUM and TAPE (6 through 20) share an area on drum,
The user should ensure that they do not overwrite each other. They
both overwrite the user PCF area.

Speed Considerations

1. Parameters in a list are automatically placed in consecutive
locations on the file.

EXAMPLE:
WRITE (DRUM(O)'A'B'C' —————)
and
WRITE (DRUM(O),A,DRUM(1),B,DRUM(2),C,~~=-~)

do exactly the same operation - BUT the first case is much
faster.

2. Because of the mechanism used for writing drum - writing
backwards on drum is extremely inefficient.

EXAMPLE:

WRITE (DRUM(25),Z,DRUM(24),Y,DRUM(23),X~~~--)$
COMMENT - IS VERY SLOW$

7884 UNIVAC 1100 SERIES SYSTEMS

UP-NUMBER

F—5
PAGE REVISION PAGE

Reference Difference or Addition for EXEC II
(8.3.6.2) 3. Arrays are normally transferred without being decomposed into
(cont) their elements. For this reason, statements which decompose

an array are very inefficient in comparison.
EXAMPLE :
ARRAY A(1:500)$ INTEGER I$
WRITE (DRUM,A)$ COMMENT IS VERY FAST$
WRITE (DRUM,FOR I1=(1,1,500) DO A(I))$
FOR I=(1,1,500) DO WRITE (DRUM, A(I))$
COMMENT THE LAST TWO STATEMENTS ARE VERY SLOW$
(8.8.5) MARGIN under EXEC II has the form:
MARGIN (<length>, < top line number>,
<bottom line number>,

<string if desired>)$

B <length> is an integer expression specifying the number of
lines per page.

B <top line number> is an integer expression specifying the
logical line number where the first line is to be printed.

B <bottom line number >is an integer expression specifying the
logical number where the last line is to be printed.

B <string> is a string which is typed on the console when margins
are actually changed on the printer.

EXAMPLE:
BEGIN
BOOLEAN B$
MARGIN (IF B THEN 72 ELSE 66,5,

IF B THEN 69 ELSE 63)$
END$
(9.2) OPTIONS - add for EXEC II:
F - On the 1107, this option must be used when using external
FORTRAN, procedures containing double precision or complex

arithmetic. Otherwise the program will terminate with the
message;

ILLEGAL OPERATION AT LINE XXX

7884 UNIVAC 1100 SERIES SYSTEMS F—6

UP-NUMBER I FPAGE REVISION I PAGE

Reference Difference or Addition for EXEC II

(9.2) where the line number refers to the last ALGOL line executed.
(cont)

(9.3) Add 9.3

9.3 CHAINED PROGRAMS AND NU ALGOL (APPLIES ONLY UNDER EXEC II)

1. The EXEC II manual, 6.2, describes how large programs may
be broken into sections or links. NU ALGOL programs may
also take advantage of this feature through the use of the
statement

CHAIN (<integer expression>) $

where the value of the <integer expression> is the number
of the next link to be executed.

2. Sequential drum files may be used across links because
Y$TTAB, their control table, is kept in blank common.

3. Device DRUM may be used across links. The current drum
position, obtained by the procedure DRUMPOS, is not
destroyed.

4. No data from the ALGOL programs is saved across links because
no data is kept in blank common.

5. Users of external FORTRAN or SLEUTH programs which have
blank common, must ensure that their data areas do not
interfere with Y$TTAB. The standard Y$$TAB occupies the
first 150 words of blank common storage.

(10.2) Error Number 53
ERROR
NUMBER MESSAGE POSSIBLE PROBLEM
53 Too many different Approximately 600 different

identifiers identifiers may be used on
a 32 K EXEC II computer,

(Appendix D) Add
D.1.1
m On the 1107 when using external FORTRAN procedures which have
Double Precision or COMPLEX arithmetic, F option must be used
on the XQT card to avoid the run time error 'ILLEGAL OPERATION'.

7884

UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

Index 1
PAGE REVISION | PAGE

A

ABS 7.4.1
absolute data address
7.3.4.4, 7.3.5.5
ACARDS 7.4.1, 8.3.2, 8
activate format 8.6.4,
actual parameter 7.1, 7.1.1.2, 7.1.3,
7.1.5.1, 7.1.5.2, 7.3.3, 7.3.4.2
actual parameter list 7.1.5, 7.1.5.1
ALGOL 60 1.1, 1.3, 1.3.1, 1.3.2
ALGOL extermnal procedures 7.3.2
ALPHABETIC T7.4.1
alternate symbionts
AND 4.3.1, 4.4
APRINTER 1,
APUNCH ., 8
ARCCOS
ARCSIN
ARCTAN
arithmetic
constants 4.2.2.1
expressions 4.2, 4.2.4, 4.3.2, 4.7,
5.6
resulting type 4.
operands 4.2.2
operators 4.1, 4.
4.2.3.2, 4.4, 4.
type procedures 4.2 2.3
variables 4.2.2.2
ARRAYS 3.4, 7.1.1.2
array 3.4, 7.1.5.1
bounds 6.5
descriptor 7.3.4
parameters 7.3.4.
assembler language
assignment
Statement
7.2.1
string 5.2
asterisk 8.6,

7.3.4.1,

.3.6.3, 8.5.1
8.6.5
3

8.3.6.3

7.4.1, 8.3.1, 8.3.6.3
7.4.1 3.1
7.4.1
7.4.1
7.4.1

4, 7.3.4.5
4
7.3.1, 7.3.4, 9.2

B

basic symbols 1.1, 2.1, A

7.3.4.3,

5.2, 5.2.2, 5.2.3, 7.1.5.1,

INDEX
BEGIN 5.3, 7.3.2
blanks format 8.,6.4, 8.6.5
block 2.3, 6.1, 6.2, 6.5, 7.1.1.3
BOOLEAN 3.2, 3.3, 4.3, 7.1.1.2,
8.6.1

ARRAY 7.1.1.2

PROCEDURE 7.1.1.2
boolean

constants 4.3

expressions 4.3

format 8.6.4, 8.6.5

initial value 3.2

operators 4,2,4, 4.3.1, 4.4

type procedures 4.3
values 3.2
variables 4.3

bound pair 3.4, 3.4.1

C
CARDS 7.4.1, 8.3.1, 8.3.2, 8.3.4,
8.5.1, 8.5.5, 8.6.4
CBROOT 7.4.1
CHAIN F
chained programs F
CLOCK 7.4.1
conditional

expressions 4.7

statements 5.5
constant 7.1.5.1

arithmetic 4.2

boolean 4.3

string 4.5.1
controlled variable 5.6, 5.6.1,

5.6.3, 5.6.4, 7.1.5.1
COMMENT 7.1.4, 9.1
comment

after END 9.1

formal parameter list
compiler 1.2
compile-time 1.2

error messages 10.2
COMPL 7.4.1, 7.4.3
COMPLEX 7.1.1.2, 8.6.1

ARRAY 7.1.1.2

2.1

5.6.2,

7.1.4, 9.1

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

Index 2
PAGE REVISION | PAGE

COMPLEX (cont)
PROCEDURE

complex
constants 4.2,2.1
initial value 3.2
value limits 3.2

7.1.1.2

compound
statement 5.3, 6.1, 7.1.1.3
symbols 2.1.2
CORE 8.3.1, 8.3.7, 8.5.4, 8.6.4, 8.6.5
Cos 7.4.1
COSH 7.4.1
D

7.4.2
8.6.4, 8.6.5

data analysis
decimal format
declaration 3.1

external 7.3.2

label 4.6.1, 6.4

procedure 7.1, 7.3.2

switch 4.6.2

type procedure 7.2.1
definite repeats 8.6.6.1

designational expression 4.6, 6.4,
7.1.5.1

device 8.1, 8.2, 8.3, 8.8

DISCRETE 7.4.1

DO 5.6

DOUBLE 7.4.1, 7.4.3

DRAW 7.4.1, 7.4.2

DRULM 7.4.1, 8.3.1, 8.3.6.2, 8.6, F

DRUMPOS 7.4.1, 8.3.6.2

dynamic storage 6.1

E

eject format 8.6.4, 8.6.5
ELSE 4.6, 4.7, 5.5.2, 9.1
END 5.3, 7.3.2

comments 9.1
ENTIER 7.4.1
EOF 7.4.1, 8.4.1, 8.4.4, 8.4.5, 8.5.7
EOI 7.4.1, 8.4.1, 8.4.4, 8.4.7, 8.5.7

EQIV 4.3.1, 4.4
EQL 4.3.2, 4.4
.1

ERLANG 7.4

error
label 8.5.3, 8.5.4, 8.5.7, 8.6.5
messages 10.2, 10.3

EXp 7.4.1

expression 4.1, 7.1.5.1
arithmetic 4.2
boolean 4.3
conditional 4.7
designational 4.6
string 4.5

EXTERNAL 7.3
ALGOL procedure 7.3
FORTRAN procedure 7.3.
LIBRARY procedure 7
ASSEMBLER procedure

external procedures 7.

F

FALSE 3.2, 4.3, 8.6.4
FILE 7.4.1, 8.3.1, 8.3.2, 8.3.6
file
handling 8.3.6
index 8.3.6
FILEINDEX 7.4
filename
FOR 5.6
list element
5.6.4
statement

7
7
format 8,
declared
free 8.2
implied or
inline 8.
list 8.6
8.8.2
phrases with READ
phrases with WRITE
FORTRAN 7.3.1
subprograms
free format
FUNCTION

8.6.5
8.6.4

7.3.3
8.2, 8.3.7, 8.6.1
7.3.3

G

GEQ 4.3.2, 4.4
global
identifiers
label 6.4
GO 5.4

6.3, 7.1.1.1

7884 UNIVAC 1100 SEREES SYSTEMS l Index 3
UP-NUMBER PAGE REVISION PAGE
GOTO 4.6, 5.4 label 4.6, 4.6.,1, 7.1.5.1, 8.2, 8.5,
GO TO 4.6, 5.4 8.8
statements 4.6, 5.4, 6.4 declaration 4.6.1
GTR 4,3.2, 4.4 list 8.1, 8.5

numeric 4.6.1
specification 7.1.1.
H layout of program 2.4
LENGTH 7.4.1

2

HISTD 7.4.1 LEQ 4,3.2, 4.4
HISTO 7.4.1 LIBRARY 2.5.1, 7.3.1, 7.3.4, 7.3.4.2
LINEAR 7.4.1
LIsT 7.1.1.2, 8.7.2
I list declaration 8.7.2
LN 7.4.1
identifiers 2.2 local
declaration of 3.2 identifiers 6.3, 7.1.1.1
reserved 2.5.1 label 6.4
standard procedure 2.5.2 lower bound 3.4.1
IF 4.6, 4,7, 5.5.1, 5.,5.2 LSS 4.3.2, 4.4
IM 7.4.1
IMPL 4.,3.1, 4.4
implied M
device 8.2, 8.3.1, 8.3.2, 8.3.3,
8.5.1, 8.5.5, 8.6.4, 8.6.5 machine language 1.2
format 8.2, 8.3.7, 8.6.1 MARGIN 7.4.1, 8.8.5, F
indefinite repeats 8.6.6.2 MAX 7.4.1, 8.7.3
indexed files 8.3.6.2 MIN 7.4.1, 8.7.3
devices 8.5.3 MOD T7.4.1
initial values 3.2 modifier 8.2, 8.4.1
inline l1list 8.7.1 list 8.1, 8.4, 8.8.2
input 1list 8.3.6, 8.5, 8.7, 8.8.1 multiple assignment 5.2.2
input/output 8
list 8.1, 8.2, 8.6.6, 8.7
procedure calls 8.2, 8.8 N
INT 7.4.1
INTEGER 2.,5.1, 3.2, 3.3, 3.4.1, 4.2.1, NEGEXP 7.4.1
1, 4.2.4, nested blocks 6.2

4,2,2.2, 4.2.2.3, 4.2.3.
.1.1.2

7 NEQ 4.3.2, 4.4
ARRAY 7.1.1.2 NORMAL 7.4.1
constants 4.2,2,1 NOT 4.3.1, 4.4
initial value 3.2 NUMERIC 7.4.1
PROCEDURE 7.1.1.2 numeric labels 4,6.1

value limits 3
8

.2
integer format 6.4, 8.6.5

0
K object code 1.2
OFF 9.2
KEY 7.4.1, 8.2, 8.4.1, 8.4.4, 8.5.7 OPTION 9.2, F

options 9.2

OR 4.3.1, 4.4

operand 4.1
arithmetic 4.2.2

L

LABEL 7.1.3, 7.3.4.1

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS

Index 4
PAGE REVISION | PAGE

operand (cont)
boolean 4.3
string 4.5.1
operator 4.1
arithmetic 4.2.3
boolean 4.3.1
precedence of 4.4
relational 4.3.2
string 4.5.2
output list 8.3.6, 8.5, 8.7, 8.8.2
OWwN 1.3.2

P

parameters
actual 7
7.1.5.2,
formal 7.
7.1.2, 7.
parentheses
POISSON 7.4.
POSITION 7.4.1, 8.3.6.1, 8.3.6.2,
8.4.2, 8.4.4, 8.4.5, 8.4.6, 8.5.7,
8.8.3
position
format
precedence
arithmetic operators 4.,2.4
boolean operators 4.3.1
8

N e

8.8.3
8.6.4

, 8.6.5

operators 4.4
PRINTER 7.4. 1. 8.
8.3.5, 8.
PROCEDURE 7.
7.3.2, 8,
procedure 7.
body T7.1.1,
declaration
EXTERNAL 7.3
heading 7.1.1, 7.1.4
standard 7.4
statement 7.
probability 7
program
form 2.3
layout 2.4
pseudo-random number
PSNORM 7.4.1
PUNCH T7.4.1, 8.3.1, 8.3.2, 8.5.5,
8.8.2

t—-mt—'m

N

7.4.2.1

R

RANDINT 7.4.1

random access 8.3.6.1, 8.3.6.2, F
files 8.3.6.2

random drawing

RANK 7.4.1

RE 7.4,

READ

7.4.2.1, 7.4.2.2

read buffer

REAL 7.1.1.2,
ARRAY 7.1.1
constants 4.2.
initial value
PROCEDURE 7
value limits 3.2

real format 8.6.4, 8.6.5

REAL2 1.3.1, 2.5.1, 3.2, 7.1.1.2,
8.6.1.

ARRAY 7.1.1.2

constants 4.2.2.1

initial value 3.2

PROCEDURE 7.1.1.2

value limits 3.2
records 8.8.3
recursivity 7.1.6
relational operators 4.3.2, 4.4
relative

data address 7.3.4.1

string descriptor 7.3.4.3
re-reading 8.3.4
reserved identifiers 2.5.1
repeat phrases 8.6.6
REWIND 7.4.1, 8.3.6.1, 8.4.3, 8.8.4
REWINT 7.4.1, 8.3.6.1, 8.4.3, 8.8.4
run-time 1.1, 1.2

error messages 10.3

S
sequential
drum files F
files 8.3.6.1
file devices 8.5.2
SIGN 7.4.1

7884 UNIVAC 1100 SERIES SYSTEMS Index &

UP-NUMBER I PAGE REVISION IPAGE

simple symbols 2.1.1 syntax 1.1, 1.2, 1.3, E
simple variable 3.2, 7.1.5.1
declaration 3.3 T
storage required 3.3.3
SIN 7.4.1 TAN 7.4.1
SINH 7.4.1 TANH 7.4.1
SLEUTH F TIME 7.4.1
source text 9.2.1 TAPE F
specification part 7.1.1.2 THEN 4.6, 4.7
specifier 7.1.1.2 transfer functions 5.2.3, 7.4.3
SQRT 7.4.1 TRUE 4.3, 4.3.1, 4.3.2, 8.6.4, 8.6.5
standard procedure 7.2.2, 7.4 type
identifiers 2.5.2 arithmetic expression 4.2.4
statements 5 declaration 3.2
assignment 5.2 type procedure 7.2, 7.2.2
compound 3.3 arithmetic 4.2.3
conditional 5.3 boolean 4.3
FOR 5.6 declaration 7.2.1
GOTO 5.4
input/output 8.1, 8.8 U
procedure 7.1.5
STEP 5.2.4, 5.6.2 UNIFORM 7.4.1
storage space 6.1 UONTIL 5.5, 5.5.2
STRING 3.2, 3.3.1, 8.6.1 upper bound 3.4.1
initial value 3.2
values 3.2 Vv
string
assignment 5.2.4 VALUE 7.1.1.2, 7.1.3
constants 4.5.1 specification 7.1.1.2
declaration 3.3.1 value part 7.1.3, 7.3.4.2
descriptor 7.3.4.3 variables
expressions 4.5 arithmetic 4.2.2.2
format 8.6.4, 8.6.5 array 3.4
length 3.3.1, 3.3.2 boolean 4.3
operands 4.5.1 simple 3.3
operators 4.5.2 string 3.2
parameters 7.3.4.3
variables 4.5.1 W
STRING ARRAY 3.4.3, 4.5.3.3, 7.1.1.2
declaration 3.4.3 warnings 7.2.1
parameters 7.3.4.5 WHILE 5.5
string constant format 8.6.4, 8.6.5 WRITE 7.4.1, 8.3.3, 8.3.4, 8.3.5,
sublists 8.7.4 8.3.6.2, 8.3.6.3, 8.3.6.4, 8.4.3,
subroutine 7.3.4, 7.3.3 8.4.4, 8.4.5, 8.4.6, 8.5.1, 8.5.3,
subscgigt 3.3, 3.3.1, 3.3.2, 7.1.5.1, 8.6.1, 8.8.2
subscripted variable 3.3.1, 7.1.5.1 format phrases 8.6.4
declaration 3.4
substring 4.5.3, 7.3.4.5 X
array 4.5.3.3
declaration 3.3.2, 4.5.3.1 X0R 4.3.1, 4.4
expression 4.5.3.2
SWITCH 4.6.2, 7. é g 7.1.5.1 Y
declaration 4.
specification 7.1.1.2 YSTTAB F

