
>

R

PROGRAMMER
REFERENCE

UNIVAC
IIDDsEAIEs
NUALGOL

UP- 7884

1

This document contains the latest information available at the time of publi­
cation. However, the Univac Division reserves the right to modify or revise its
contents. To ensure that you have the most recent information, contact your
local Univac Representative.

UNIVAC is a registered trademark of the Sperry Rand Corporation.

Other trademarks of the Sperry Rand Corporation in this pUblication are:

FASTRAND

© 1971 - SP ERRY RAND CORPORA nON PRINTED IN U.S.A.

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Acknowledgment 1
PAGE REVISION PAGE

ACKNOWLEDGEMENT

The NU (Norwegian University) ALGOL System was designed and implemented
as a joint effort of the Norwegian Computing Center, Oslo, and the Com­
puting Center at the Technical University of Norway, Trondheim.

.,

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 1
PAGE REVISION PAGE

CONTENTS

ACKNOWLEDGEMENT 1 to 1

CONTENTS 1 to 6

1. INTRODUCTION 1-1 to 1-3

1.1 GENERAL 1-1

1.2 THE NU ALGOL COMPILER 1-1

1.3 DEVIATIONS FROM ALGOL 60 1-2
1.3.1 Extensions to ALGOL 60 1-2
1.3.2 Deletions to ALGOL 60 1-3

2. BASIC INFORMATION 2-1 to 2-4

2.1 BASIC SYMBOLS 2-1
2.1.1 Simple Symbols 2-1
2.1.2 Compound Symbols 2-1

2.2 IDENTIFIERS 2-2

2.3 FORM OF AN ALGOL PROGRAM 2-2

2.4 LAYOUT OF AN ALGOL PROGRAM 2-3

2.5 SPECIAL IDENTIFIERS 2-3
2.5.1 Reserved Identifiers 2-3
2.5.2 Standard Procedure Identifiers 2-4

3. DECLARATIONS 3-1 to 3-7

3.1 GENERAL 3-1

3.2 TYPE DECLARATIONS 3-1

3.3 DECLARATION OF SIMPLE VARIABLES 3-2
3.3.1 Declaration of a Simple String 3-2
3.3.2 Declaration of a Substring 3-3
3.3.3 Storage Required by Simple Variables 3-3

3.4 DECLARATION OF SUBSCRIPTED VARIABLES (ARRAYS) 3-4
3.4.1 Rules for Array Declarations 3-5
3.4.2 Meaning of Array Declarations 3-5
3.4.3 Declaration of a String Array 3-6
3.4.4 Meaning of String Array Declarations 3-6

3.5 O'IlIER DECLARATIONS 3-7

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 2
PAGE REVISION PAGE

4. EXPRESSIONS 4-1 to 4-15

4.1 GENERAL 4-1

4.2 ARITHMETIC EXPRESSIONS 4-1
4.2.1 Types of Values 4-1
4.2.2 Arithmetic Operands 4-1
4.2.2.1 Arithmetic Constants 4-2
4.2.2.2 Arithmetic Variables 4-3
4.2.2.3 Arithmetic Type Procedures 4-3
4.2.3 Arithmetic Operators 4-3
4.2.3.1 The Operators 4-3
4.2.3.2 Precedence of Arithmetic Operators 4-5
4.2.3.3 Use of Parentheses 4-5
4.2.4 Type of Arithmetic Expressions 4-5

4.3 BOOLEAN EXPRESSIONS 4-7
4.3.1 Boolean Operators 4-7
4.3.2 Relational Operators 4-8

4.4 PRECEDENCE OF ARITHMETIC, BOOLEAN, AND RELATIONAL OPERATORS 4-9

4.5 STRING EXPRESSIONS 4-10
4.5.1 String Operands 4-10
4.5.2 String Operators 4-10
4.5.2.1 Arithmetic Operations on Strings 4-11
4.5.2.2 Relational Operations on Strings 4-11
4.5.3 Substrings 4-11
4.5.3.1 Declared Substring 4-11
4.5.3.2 Substring Expressions 4-11
4.5.3.3 Substrings of Members of String Arrays 4-12

4.6 DESIGNATIONAL EXPRESSIONS 4-12
4.6.1 Labels 4-13
4.6.2 Switches 4-13

4.7 CONDITIONAL EXPRESSIONS 4-14

5. STATEMENTS 5-1 to 5-14

5.1 GENERAL 5-1

5.2 ASSIGNMENT STATEMENTS 5-1
5.2.1 Rules for Performing Assignment 5-1
5.2.2 Type Rule for Multiple Assignment Statements 5-1
5.2.3 Transfer Functions in Assignment Statements 5-2
5.2.4 String Assignment 5-3

5.3 COMPOUND STATEMENTS 5-3

5.4 GO TO STATEMENTS 5-3

5.5 CONDITIONAL STATEMENTS 5-4

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 3

5.5.1
5.5.2
5.5.3
5.5.4

5.6
5.6.1
5.6.2
5.6.3
5.6.4

5.7

6. BLOCKS

6.1

6.2

6.3

6.4

6.5

Conditional Statement Form Without Alternative
Conditional Statement Form With Alternative
Conditional Statement Action Without Alternative
Conditional Statement Action With Alternative

REPETITION STATEMENTS - FOR STATEMENTS
Simple List Element
STEP - UNTIL List Element
WHILE List
Special Rules for FOR Statements

OlliER TYPES OF STATEMENTS

GENERAL

NESTED BLOCKS

LOCAL AND GLOBAL IDENTIFIERS

LOCAL AND GLOBAL LABELS

USE OF BLOCKS

7. PROCEDURES AND TYPE PROCEDURES

7.1
7.1.1
7.1.1.1
7.1.1.2
7.1.1.3
7.1.2
7.1.3
7.1.4
7.1.5
7.1.5.1
7.1.5.2
7.1.6

7.2
7.2.1
7.2.2

PROCEDURES
Procedure Declaration

Identifiers in the Procedure Body
Specification Part
Procedure Body

Classification of Formal Parameters
Value Part
Comments in a Procedure Heading
Procedure Statement

Actual Parameter List
Execution of a Procedure Statement

Recursivity

TYPE PROCEDURES
Type Procedure Declaration
Use of a Type Procedure

7.3
7.3.1
7.3.2
7.3.3
7.3.4
7.3.4.1
7.3.4.2
7.3.4.3
7.3.4.4

EXTERNAL PROCEDURES
External Declaration
ALGOL External Procedures
FORTRAN Subprograms
Assembler Language Procedures

External Assembler Procedure
External LIBRARY Procedure
String Parameters
Array Parameters

PAGE REVISION PAGE

5-4
5-4
5-5
5-5

5-6
5-7
5-8
5-12
5-14

5-14

6-1 to 6-4

6-1

6-1

6-2

6-3

6-4

7-1 to 7-38

7-1
7-1
7-1
7-2
7-3
7-4
7-4
7-5
7-5
7-6
7-7
7-8

7-8
7-9
7-9

7-10
7-10
7-11
7-12
7-14
7-15
7-18
7-23
7-23

UNIVAC 1100 SERIES SYSTEMS 7884
UP.NUMBER PAGE REVISION

7.3.4.5
7.3.4.6

7.4
7.4.1
7.4.2
7.4.2.1
7.4.2.2
7.4.3

String Arrar Parameters
Storage Diagrams

STANDARD PROCEDURES
Available Procedures
Special Routine Descriptions

Pseudo-Random Number Streams
Random Drawing Procedures

Transfer Functions

8. INPUT/OUTPUT

8.1

8.2

8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.3.6
8.3.6.1
8.3.6.2
8.3.6.3
8.3.7

8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6

8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.5.5

8.5.6
8.5.7

GENERAL

PARAMETERS TO INPUT/OUTPUT PROCEDURES

DEVICES
Possible Devices
Actual Devices
Implied Devices
Devices CARDS and PUNCH
Device PRINTER
Devices for File Handling

Sequential Files
Indexed Files
Alternate Symbiont Files

Device CORE

MODIFIER LIST
Possible Modifiers
General Description
Restrictions
Modifier KEY
Modifier EOF
Modifier EOI

LABEL LIST
Action with READ when Device is Implied, CARDS, or ACARDS
Action with READ for Sequential File Devices
Action with READ or WRITE for Indexed File Devices
Action with READ or WRITE when Device is CORE
Action with WRITE when Device is Implied, CARDS,
PRINTER, PUNCH, or Alternate Symbiont Files
Action with WRITE for Sequential File Devices
Action with POSITION for Sequential File Devices

8.6 FORMAT LIST
8.6.1 Implied or Free Format
8.6.2 Declared Format
8.6.3 Inline Format
8.6.4 Format Phrases with WRITE
8.6.5 Format Phrases with READ
8.6.6 Repeat Phrases

7-24
7-25

7-26
7-26
7-35
7-35
7-35
7-38

8-1

8-1

8-2

8-4
8-4
8-4
8-5
8-6
8-7
8-8
8-8
8-10
8-11
8-12

8-13
8-13
8-13
8-14
8-14
8-15
8-17

8-17
8-17
8-18
8-18
8-18

8-18
8-19
8-19

8-20
8-20
8-24
8-24
8-25
8-33
8-39

Contents 4
PAGE

to 8-46

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 5

8.6.6.1
8.6.6.2

8.7
8.7.1
8.7.2
8.7.3
8.7.3.1
8.7.3.2
8.7.3.3
8.7.3.4
8.7.4

8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.8.5

Definite Repeats
Indefinite Repeats

INPUT/OUTPUT LIST
Inline List
Declared List
Rules for Lists

Arrays
Other Expressions
Format in Lis ts
List with MAX and MIN

Sublists

INPUT/OUTPUT PROCEDURE CALLS
READ
WRITE
POSITION .
REWIND and REWINT
MARGIN

9. COMMENTS AND OPTIONS

9.1

9.2
9.2.1
9.2.2

COMMENTS

OPTIONS
Processor Card Options
XQT Card Options

10. ERROR MESSAGES

10.1 GENERAL

10.2 COMPILE-TIME ERROR MESSAGES

10.3 RUN-TIME ERROR MESSAGES

APPENDIX A. BASIC SYMBOLS

APPENDIX B. EXAMPLES OF PROGRAMS

APPENDIX C. JENSEN'S DEVICE AND INDIRECT RECURSIVITY

APPENDIX D. UNIVAC 1106/1108 ALGOL AND NU ALGOL DIFFERENCES

APPENDIX E. SYNTAX CHART

APPENDIX F. EXEC II NU ALGOL

INDEX

PAGE REVISION PAGE

8-39
8-40

8-41
8-41
8-42
8-42
8-42
8-43
8-43
8-43
8-43

8-43
8-43
8-44
8-44
8-44
8-45

9-1 to 9-3

9-1

9-2
9-2
9-3

10-1 to 10-12

10-1

10-1

10-8

A-I to A-2

B-1 to 8-4

C-1

D-1 to D-3

E ... 1 to E-37

F-1 to F-6

1 ... 1 to 1-5

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS Contents 6

TABLES

4-1. Rules for Arithmetic Constant Formation

4-2. Arithmetic Operator Meaning

4-3. Arithmetic Operator Examples and Results

4-4. Boolean Operators

4-5. Relational Operators

4-6. Resulting Type of Expression

5-1. Transfer Functions

5-2. Conditional Statement Action Without Alternative

5-3. Conditional Statement Action With Alternative

7-I. Specifiers and Parameters

7-2. Actual and Formal Parameter Correspondence

7-3. Formal and Actual Parameter Combinations

7-4. Available Procedures

7-5. Transfer Functions

8-I. Format Phrases for WRITE

8-2. Format Phrases for READ

10-I. Compile-Time Error Messages

10-2. Run-Time Error Messages

A-I. NU ALGOL Characters

A-2. NU ALGOL Basic Symbols

PAGE REVISION PAGE

4-2

4-3

4-4

4-7

4-8

4-14

5-2

5-5

5-5

7-2

7-6

7-22

7-27

7-38

8-26

8-34

10-2

10-9

A-I

A-2

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 1-1
PAGE REVISION PAGE

1. INTRODUCTION

1.1 GENERAL

NU (Norwegian University) ALGOL is a language for communicating scientific and data
processing problems to the UNIVAC 1100 Series Systems. The basis for this language
is the "Revised Report on the Algorithmic Language, ALGOL 60" (Communications of
the ACM, Vol. 6, January 1963, 1-17). This implementation of ALGOL 60 is very
close to that of the report. Its one significant difference is the omission of all
OWN variables. Some of its more significant additions include three new data types
(STRING, COMPLEX, and REAL2). Provision is made for inclusion of procedures writ­
ten in assembler language of FORTRAN V.

NU ALGOL is compatible with UNIVAC 1106/1108 ALGOL with the few exceptions noted in
Appendix D, "UNIVAC 1106/1108 ALGOL and NU ALGOL Differences." The maj or differ­
ences between the two languages are the actual method of compilation, the extended
input/output facilities, and a major improvement in both run-time and compile-time
security and speed.

This manual has been designed to provide quick reference to all features of the
language so that programmers familiar with ALGOL may look up points easily. At the
same time, many examples have been inserted to allow inexperienced programmers to
become familiar with NU ALGOL.

No attempt has been made to illustrate all possible constructions; however, Appendix
E contains a complete syntax chart for NU ALGOL.

Although the ALGOL report previously cited uses underlining to delineate basic
symbols, this manual does not. All explanations and examples give the basic symbols
as they appear on the printer output from the computer; that is, in upper case
letters with no underlining.

In describing forms of constructions (syntax), the bracket pair < and > are used to
isolate the constructions under definition. For a complete and unambiguous defi­
nition of syntax, see Appendix E.

1.2 THE NU ALGOL COMPILER

The NU AlSOL compiler is a program which accepts statements expressed in ALGOL and
produces programs for the UNIVAC 1100 Series Systems.

':'See UP-7S44 (latest revision) UNIVAC 1106/1108 ALGOL

7884
UP-NUMBER

UNIVAC noo SERIES SYSTEMS 1-2
PAGE REVISION PAGE

An ALGOL program is a sequence of statements written in ALGOL language. These
statements are translated by the compiler into the language of the computer:
Machine Language. The ALGOL statements are called the Source Code, and the trans­
lated statements are called the Object Code. The Compiler itself is a program
written in machine language and is called the UNIVAC NU ALGOL Compiler. While
translating the ALGOL statements, the compiler looks for errors in syntax (that is,
for errors in the forms or construction of statements) and reports these errors to
the programmer.

The compiler operates in four passes. Upon successful compilation, the object code
can be read into the main storage and executed. Activities that occur during com­
pilation are sometimes referred to as compile-time activities; for instance,
compile-time diagnostics. The execution phase is referred .to as run-time.

1.3 DEVIATIONS FROM ALGOL 60

There are several differences between ALGOL 60,as defined in the revised reportvand
NU ALGOL. Since ALGOL is intended as a standard language and compatibility of
programs between machines is becoming more and more important, those differences
must be explicitly pointed out. They fall into two classes: extensions to ALGOL 60
and definition of things left undefined by the report, and modifications or omis­
sion of ALGOL 60 entities.

1.3.1 Extensions to ALGOL 60

Extensions to ALGOL 60 include the following:

• The addition of STRING and STRING ARRAY variables has been made to enhance
the value of ALGOL as a data processing language.

• The addition of the arithmetic types COMPLEX and REAL2 has been made to
enhance the value of ALGOL to scientific users.

• XOR has been added to the list of logical operators.

• EXTERNAL PROCEDURE declarations have been implemented to allow easier
programming of large problems and the building of program libraries.

• Input and output routines have been defined along with FORMAT and LIST
declarations to be used by the routines.

• A compact form for GO TO and FOR statements has been provided.

• Variables are zeroed upon entry to a block so that initialization statements
are not required.

• The controlled variable of a FOR statement has a defined value when the
statement is terminated by exhaustion of the FOR list.

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 1-3
PAGE REVISION PAGE

1.3.2 Deletions from ALGOL 60

Deletions from ALGOL 60 are as follows:

1. The following limitations have been imposed.

a. Identifiers are unique only with respect to their first 12 characters.

b. Identifiers and numbers may not contain blanks.

c. Certain ALGOL words may only be used in a specific context.

2. OWN variables are excluded.

3. Numeric labels are not allowed.

4. The comma is the only delimiter allowed in a procedure call.

5. The result of an integer raised to an integer power is always of type REAL.

6. All the formal parameters of a procedure must be specified.

7. In a Boolean expression, only those operands necessary for determining the
result are evaluated.

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 2-1

2.1 BASIC SYMBOLS

The following symbols have meaning in NU ALGOL.

2.1.1

• The

• The

• The

• The

Simple Symbols

letters A - Z

digits 0 - 9

logical constants TRUE FALSE

ALGOL symbols:

Arithmetic operators

Special Characters

A space (blank) symbol

+ - / *
= (), $
;&<>'[]:

2.1.2 Compound Symbols

PAGE REVISION PAGE

2. BASIC INFORMATION

Some multiples of characters are given meaning as if they constitute a single
character:

II (integer divide)

(exponentiation)

base 10 scale factor for double precision constants

assignment (same as =)

colon same as :

« literal format left bracket

> > literal format right bracket
, ,

string quote within a string constant

7884
UP.NUMBER

UNIVAC 1100 SE RIES SYSTEMS 2-2
PAGE REVISION PAGE

A set of reserved words such as:

BEGIN END IF THEN

A complete list of reserved words is given in 2.5.1. For details of the character
set, see Appendix A.

2.2 IDENTIFIERS

Identifiers have no inherent meaning, but are names that the programmer chooses to
use to refer to various objects (operands, procedures, labels, etc.).

The following rules apply to identifiers:

An identifier is a combination of characters taken from the set letters
(A - Z) and the set of digits (0 - 9).

The first character of an identifier must be a letter.

Spaces are not allowed within an identifier.

Although up to 72 characters may be used to make an identifier, only the
first 12 uniquely specify the identifier.

It is often easier to read the program if the identifier is a mnemonic.

EXAMPLES:

A P060 ZlZ4

NONLINEARRESIDUE
NONLINEARRESULT

KAFl

The two identifiers in the second example above are considered identical
because their first 12 characters are the same.

2.3 FORM OF AN ALGOL PROGRAM

ALGOL programs are made up of one or more blocks. The concept of blocks is treated
in Section 6. In brief, an ALGOL program containing only one block has the follow­
ing form:

BEGIN

< Declarations>$
< Statements>

END$

Declarations are described in Section 3.

7884
UP·NUMBER

UNIVAC 1100 SERIES SYSTEMS
PA GE RE VISION PAGE

Statements are described in detail in Section 5. Briefly,the following are
true:

2-3

1. Statements are orders to perform one or more computations or input/output
operations.

2. Statements are separated from each other by the symbol $ or the symbol
(either may be used).

3. Exit from a block must be through the final END or through a jump to a
label in an enclosing block.

2.4 LAYOUT OF AN ALGOL PROGRAM

The source code to the compiler must be input on a line-by-line basis; for instance,
from punched cards or a typewriter terminal.

The following rules should be followed:

Only columns 1 through 72 are read for information.

Columns 73 and beyond may be used for any purpose.

One or more statements may be placed on one line or one statement may occupy
several lines. A number, identifier, or reserved word may not be broken up
to continue on the next line.

2.5 SPECIAL IDENTIFIERS

There are two sets of special identifiers; reserved identifiers and standard pro­
cedure identifiers.

2.5.1 Reserved Identifiers

The following sets of characters have special meanings and may not be used as
identifiers.

ALGOL EXTERNAL LEQ SLEUTII
AND FALSE LIBRARY STEP
ARRAY FOR LIST STRING
ASSEMBLER FORMAT LOCAL SWITCH
BEGIN FORTRAN LSS TIIEN
BOOLEAN GEQ NEQ TO
COMMENT GO NOT TRUE
COMPLEX GOTO OFF UNTIL
Dn GTR OPTION VALUE
ELSE IF OR WHILE
END IMPL PROCEDURE XOR
EQIV INTEGER REAL
EQL LABEL REAL2

7884 UNIVAC 1100 SERIES SYSTEMS 2-4
UP.NUMBER PAGE REVISION PAGE

2.5.2 Standard Procedure Identifiers

The following identifiers may be used without explicit declarations for calling
standard procedures:

ABS EOF POISSON
ACARDS EOI POSITION
ALPHABETIC ERLANG PRINTER
APRINTER EXP PSNORM
APUNCH FILE PUNCH
ARCCOS FILE INDEX RANK
ARCSIN HISTD RANDINT
ARCTAN HISTO RE
CARDS 1M READ
CBROOT INT REWIND
CLOCK KEY REWINT
COMPL LENGTH SIGN
CORE LINEAR SIN
COS LN SINH
COSH MARGIN SQRT
DISCRETE MAX TAN
DRAW MIN TANH
DRUM MOD TAPE
DRUMPOS NEGEXP TlME
DOUBLE NORt'IJ1AL UNIFORM
ENTlER NUMERIC WRITE

These identifiers may, however, be redeclared for other use. For details on
standard procedures, see 7.4.

7884 UNIVAC 1100 SERIES SYSTEMS 3-1
UP.NUMBER PAGE REVISION PAGE

3. DECLARATIONS

3.1 GENERAL

An ALGOL program may be broken into logical segments called blocks, which are com­
plete and independent units. Block structure is discussed in Section 6. One
important property of a block is that, at the beginning of the block, all local
entities that are to be referenced inside the block must be declared. Declarations
determine how the compiled program will treat certain of its elements; thus it is
necessary to precede the use of an identifier with a declaration of type. An
identifier may appear in only one declaration within a block; however, a block may
contain blocks within itself (as shown in 6.2). Any of these blocks may declare
variables taking on names used in outer blocks, thus redefining variables for the
inner block. All identifiers used in a program, except standard procedure identi­
fiers, must be declared.

3.2 TYPE DECLARATIONS

The type declaration defines the type of variable named by an identifier. Variables
are names which are said to possess values. These values may, in the mathematical
sense, be integers, real pumbers, or complex numbers. In addition, the values may
be string values and truth values, all of which are different types of values. A
variable of a certain type can only possess certain values, partially according to
the rules of mathematics and partially because of hardware limitations.

In this manual, the symbol < type> wi 11 be used to mean that this symbol can be
replaced with one of the following ALGOL types which then impose the limits shown.

< TYPE> VALUE

INTEGER Integral values

REAL Real values

BOOLEAN Truth values

COMPLEX Complex values

REAL2

LIMITS

[-34359738367,
+34359738367]

(-3.37 x 1038 , -1.48 x 10-39),
0, (1.48 x 10-39 , 3.37 x 1038)
Up to 8 significant digits

FALSE, TRUE

Same limits as for REAL since the real
and imaginary parts are treated as two
separate real numbers.

(-9.0 x 10307 , -3.6 x 10-308),
0, (3.6 x 10-308 , 9.0 x 10307)
Up to 18 significant digits

7884
UP-NUMBER

UNIVAC noo SERIES SYSTEMS 3-2
PAGE REViSiON PAGE

<TYPE> VALUE LIMITS

STRING Alphanumeric Any character in the UNIVAC 1100
characters Series character set.

All variables declared in a block are initially set when the block is entered. For
variables of type INTEGER, REAL~ REAL2, and COMPLEX, the initial value is zero (0).
For BOOLEAN variables, the initial value is FALSE. For STRING variables, the
initial value is a sequence of blanks.

3.3 DECLARATION OF SIMPLE VARIABLES

A simple variable is a nonsubscripted name for a value of a given type. The dec­
laration of a simple variable defines the type of value the identifier for that
variable may assume.

EXAMPLES:

INTEGER
REAL
BOOLEAN
COMPLEX
REAL 2

A $
Bl,C2,D $
RIGHT,ANSWER $
ROOTS $
BIGNUMBER,EVENBIGGER $

The declaration takes the form:

<type><list of identifiers> $

.. <type> is defined in 3.2 •

.. List of identifiers means one identifier (see 2.2) or several identifiers
separated by commas •

.. The declaration ends with the character $ or

3.3.1 Declaration of a Simple String

The declaration of a simple-string variable provides a means of storing and referring
to a collection of alphanumeric characters in Fieldata code by the use of a single
identifier.

The declaration of a simple string has the form:

STRING < identifier> « string part»

.. Identifier is defined in 2.2.

.. String part is an integer expression (in the outermost block of a program,
an integer constant), whose value is the maximum number of characters to
be kept in the string.

7884 UNIVAC 1100 SERIES SYSTEMS 3-3
UP.NUMBER PA GE RE VISION PA G E

In a substring declaration, string part may also be a list of integer expressions
and string declarations separated by commas. (See 3.3.2.)

EXAMPLES:

STRING
STRING

Sl (25) $
S2 (14), CHARAC (22), LTRS (4) $

In an inner block also:

STRING CHARS (N) $

3.3.2 Declaration of a Substring

A substring is a part of main string and has the same properties as a string. A
substring is declared by placing an identifier and a string part in the string part
of the main string. The length of the main string is then the sum of the lengths
of its substrings plus any other lengths specified.

NOTE: The length of a string may not be specified by means of a subscripted
variable or the call of a type procedure, as these will be taken as a
substring declaration. If the type procedure or array and the main string
are declared in the same block, this ambiguity will give the error message
"DOUBLE DECLARATION."

EXAMPLE:

STRING SOUT (SINl(20),SIN2(42))$

• SOUT has a length of 62 characters.

• SINI is a substring of length 20 and is the same as characters 1 through
20 of the main string SOUTo

• SIN2 is a substring of length 42 and is the same as characters 21 through
62 of the main string SOUTo

STRING LTRS (10,NUMBS(12),4 vCHRS(6))$

• LTRS has a length of 32.

• NUMBS has a length of 12 and is the same as characters 11 through 22 of the
string LTRS.

• CHRS has a length of 6 and is the same as characters 27 through 32 of the
string LTRS.

3.3.3 Storage Required by Simple Variables

The storage of the UNIVAC 1000 Series Systems is divided into "words," each con­
sisting of 36 bits. Each identifier reserves a number of words depending on its
type.

7884 UNIVAC 1100 SERIES SYSTEMS 3-4
UP.NUMBER PAGE REVISION PAGE

TIPE

INTEGER

REAL

BOOLEAN

COMPLEX

REAL2

STRING

NUMBER OF WORDS

1

1

1

2 - one for real part
- one for imaginary part

2 - to allow the carrying of more significant digits

The integer value given by ENTlER (Length + start
pos. + 11)/6) where start position goes from 0 to 5
and length is the number of characters in the string.

3.4 DECLARATION OF SUBSCRIPTED VARIABLES (ARRAYS)

An array is a set of variables, each of which can be accessed by referring to an
identifier with one or more subscripts. Each member of the set has all the prop­
erties of a simple variable. The declaration of an array defines the type of value
each member of the array may assume, the number of subscripts required, and their
limi ts.

The declaration of an array has the form:

<type> ARRAY <array list>$

• <type> is defined in 3.2. If type is omitted, the type REAL is assumed.

Array list is a list of array segments, which have the form:

<list of identifiers> «bound pair list»

• A bound pair list consists of one bound pair or several bound pairs separated
by commas.

• A bound pair has the form:

<arithmetic expression>: <arithmetic expression>

• Section 4 defines arithmetic expression.

NOTE: In the outermost block, the arithmetic expression can only be a constant.

EXAMPLES:

In an outermost block:

INTEGER ARRAY

REAL ARRAY

AI (0:25) $

AR 0:3,1:3) $

7884
UP.NUMBER

UNIVAC noo SERIES SYSTEMS 3-5

COMPLEX ARRAY

BOOLEAN ARRAY

REAL2 ARRAY

In an inner block also:

INTEGER ARRAY

AC (-2:20),AD,AE(14:24) $

BA,BC,BD(0:5),BE(1:4) $

Kl,K2 vKL,KF(-1:10) $

Al (N:N*4) $

3.4.1 Rules for Array Declarations

The rules for array declarations are as follows.

PAGE REVISION PAGE

• Each bound pair defines the values the corresponding subscript may take.
In NU ALGOL, the number of subscripts is limited to 10.

• In a bound pair, the first arithmetic expression is called the lower bound;
the second arithmetic expression is the upper bound. The lower bound must
always be less than or equal to the upper bound.

• The arithmetic expressions must be of type INTEGER or of a type which can
be converted to INTEGER (REAL,REAL2).

3.4.2 Meaning of Array Declarations

The meaning of an array de~laration can best be explained by examples. An array
declaration with one subscript position such as:

REAL ARRAY A(O:lO)$

declares 11 REAL subscripted variables:

A(0),A(1),A(2),A(3),A(4),A(5),A(6),A(7),A(8)v A(9),A(10)

An array declaration with two subscript positions such as:

ARRAY XY(-2:1,1:3)

declares 12 REAL subscripted variables:

XY(-2, l)
XY(-l,l)
XY(0vl)
XY(l,l)

XY(2,2)
XY(-1,2)
XY(0,2)
XY(1,2)

XY(-2,3)
XY(-1,3)
XY(0,3)
XY(1,3)

The use of a subscripted variable consumes substantially more processor time and
program space than the use of a simple variable.

If several identifiers are followed by only one bound pair list, then these
identifiers each refer to an array with the number of subscripts and the bounds
given in that bound pair list.

7884 UNIVAC 1100 SERIES SYSTEMS 3-6
UP.NUMBER PAGE REVISION PAGE

EXAMPLE:

COMPLEX ARRAY CAD,CM,KF(4:20) $

This declaration defines three arrays each of type COMPLEX, with 17 members and
with a lower bound of 4 and upper bound of 20.

All of these arrays occupy different areas of storage.

3.4.3 Declaration of a String Array

Subscripted STRING variables may be declared using the STRING ARRAY declaration.
A string array is an array whose elements are strings. A string array declaration
has the form:

STRING ARRAY <identifier> «string part> : <bound pair list» $

• An identifier is defined in 2.2.

• The term string part is defined in 3.3.1.

• The term bound pair list is defined in 3.4.

A string array declaration must obey the rules for both string declarations and
array declarations with the exception that each identifier must be followed by:

«string part> : <bound pair list»

even if all characteristics are the same for the string arrays being declared.

EXAMPLES:

STRING ARRAY

STRING ARRAY

STRING ARRAY

STRING ARRAY

SAX(14:0:5,1:4)$

SAK(2,LAK(16):20:31)$

KAS(KAL(2),4,KAT(20):-2:4,1:2)

MEL(10:0:5),MELT(10:0:5)$

3.4.4 Meaning of String Array Declarations

The meaning can best be shown in an example. The declaration:

STRING ARRAY L(2,M(5):0:3,1:2)$

defines 8 strings each of length 7:

L(O,U
LU,U
L(2,U
L(3,U

L(0,2)
LU,2)
L(2,2)
L(3,2)

and the 8 substrings of length 5:

3.5 OTHER DECLARATIONS

M(O,I)
MO,l)
M(2,1)
M(3, l)

M(O,2)
MO,2)
M(2,2)
M(3,2)

The following special declarations are described in the sections listed.

DECLARATION PARAGRAPH

FORMAT 8.6.3

LIST 8.7.2

EXTERNAL PROCEDURE 7.3.2

PROCEDURE 7.1.2

LABEL 4.6.2

SWITCH 4.6.3

•

•

•

7884 UNIVAC 1100 SERIES SYSTEMS
UP.NUMBER PAGE REVISION

4-1
PAGE

4. EXPRESSIONS

4.1 GENERAL

An expression is a rule for computing a value. There are four kinds of expressions:
arithmetic, Boolean, string, and designational. Expressions are composed of oper­
ands, operators, and parentheses. Operands are constants, variables, function
designators, or other expressions. Operators are symbols which designate arith­
metic, relational, or logical operations.

• Operators cause certain actions to be performed on the operands.

• Certain operators may only be used in certain types of expressions.

Parentheses are used as in algebra to group certain operators and operands
and thus determine the sequence of the operations to be performed. Paren­
theses have a special meaning in conditional expressions.

4.2 ARITHMETIC EXPRESSIONS

An arithmetic expression is a rule for computing a numeric value. A constant or a
simple variable is the simplest form'of an arithmetic expression. In the more
general arithmetic expressions, which include conditions (if clauses), one out of
several simple arithmetic expressions is selected on the basis of the actual values
of the Boolean expressions.

4.2.1 TYpes of Values

An arithmetic expression may produce a value with one of the following types (see
3.2).

4.2.2 Arithmetic Operands

INTEGER
REAL
REAL2
COMPLEX

The operands of arithmetic expressions are constants, variables, type procedures,
or other arithmetic expressions.

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PA GE RE VISION

4-2
PAGE

4.2.2.1 Arithmetic Constants

The type of a constant depends on the form in which it is written. No blanks are
allowed in a constant. See 3.2 for the limits of arithmetic constants. The rules
given in Table 4-1 apply.

Table 4-1. Rules for Arithmetic Constant Formation

TYPE OF CONSTANT

INTEGER

RE·AL

REAL2

COMPLEX

RULES FOR FORMATION

A string of 11 or fewer digits
possible preceded by a + or -.

1. A string of 8 or fewer digits
with a decimal point within
the string or at either end
and possibly preceded by a
+ or a -.

2. A power-of-ten symbol (&)
followed by an integer
indicating the power, and
possibly preceded by a
+ or -.

3. An integer or a real
number of type (1) followed
by an exponent of type (2).

1. A number of the same form
as REAL types (1) or (3)
but having between 9 and
18 significant digits.

2. A number of the same form
as REAL types (2) or (3)
but using the symbol &&
to mean power-of-ten.

Two constants of the form
f or REAL or INTEGER
separated by a comma and
enclosed within the symbols
< and> where the fi rs t
constant represents the real
part and the second the
imaginary part of the complex
constant.

NOTES: 1&6 or 1&&6 means 1 x 106 or 1000000.0

EXAMPLES

70
-204

o
+0

-25

1.2
.1

-0.111
75.333333
+40.0
+1.
+&7
&-2
&+6

-&-1

1&6
1.0&6

-17.446&-3
+6.&17

1. 2000127211
-203456789.12
1.031462873&-22

1.0&&2
4&&0

+3. 1 629&&-4
0.0&&0

<+7.0&-2,-2>
<1.0, 0.0>

<-2, -1>
<2.0,-1>

3.l629&&-4 or 3~1629&-4 means 3.l629xlO-4 or 0.00031629.

7884 UNIVAC 1100 SERIES SYSTEMS
UP.NUMBER PAGE REVISION PAGE

4.2.2.2 Arithmetic Variables

Arithmetic variables are those variables which have been declared to have one of
the types:

INTEGER
REAL
REAL2
COMPLEX

4-3

An arithmetic variable may be simple or subscripted (i.e. w an element of an array).

4.2.2.3 Arithmetic Type Procedures

The declaration of a type procedure is described in 7.2. In an arithmetic ex­
pression, procedures declared to have the following types may be used:

INTEGER
REAL
REAL2
COMPLEX

All standard procedures (e.g., SIN, COS, ENTlER, LN, etc.) which return a value of
type INTEGER, REAL, REAL2, or COMPLEX may also occur in arithmetic expressions.

4.2.3 Arithmetic Operators

4.2.3.1 The Operators

The following arithmetic operators are defined in NU ALGOL and have the meanings
indicated in Tables 4-2 and 4-3.

Table 4-2. Arithmetic Operator Meaning

OPERATOR MEANING

+ If not preceded by an operand then unary plus - that
is, the following operand has its sign unchanged.

If preceded by an operand and followed by an operand
then the algebraic sum of the two operands is to be
calculated.

If not preceded by an operand then unary minus - that
is the following operand has its sign changed.

If preceded by an operand and followed by an operand then
subtract the following operand from the preceding one.

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

Table 4-2. Arithmetic Operator Meaning (cont)

4-4
PAGE REVISION PAGE

OPERATOR MEANING

I

**

II

EXAMPLES

+ A

- B

A+ B

A - B

A * B

A I B

A ** B

A II B

The operand preceding the operator is to be multiplied
by the following operand.

The operand preceding the operator is to be divided by
the following operand.

The operand preceding the operator is to be raised to
the power of the operand following. (Note that the
preceding operand cannot be negative if the operand
following is not an integer).

The operand preceding the operator is to be divided by
the operand following the operator. Both operands, if
necessary, are converted to type integer. The result of
this division is then the integral part of the quotient.
(AIIB=SIGN(A/B)*ENTIER(ABS(A/B)))

Table 4-3. Arithmetic Operator Examples and Results

RESULT

Do not change sign of A.

Change the sign of B.

Add B to A.

Subtract B from A.

Multiply A by B.

Divide A by B.

Raise A to the power B.

Change A and B to type INTEGER if of type REAL or REAL2.
Divide A by B. The result is the integer part of AlB.

NOTE: If A or B are not of type INTEGER, a compilation
warning is given since the ALGOL 60 report states
that only INTEGER operands may be used.

UNIVAC 1100 SERIES SYSTEMS 4-5 7884
UP.NUMBER PAGE REVISION PAGE

4.2.3.2 Precedence of Arithmetic Operators

The precedence of the arithmetic operators is:

1. **
2. *, I, II
3. +,-

This means that in a parenthesis-free expression, all exponentiations will be
carried out (from left to right), all multiplications and divisions are executed
(also from left to right), and all additions and subtractions are done. Paren­
theses ma~ of course,be inserted in the usual manner to give any desired grouping
of subexpressions. (See also 4.4.)

EXAMPLES:

A * B * * P 1. Band P are operands for **
2. A and B * * P are operands for *

1\+ B/C * D I. Band C are operands for I
2. B/c and D are operands for *
3. A and B/c~'D are operands for +

4.2.3.3 Use of Parentheses

It may be useful to group operations by means of parentheses, even when not strictly
necessaryv so that the intended order of evaluation is immediately visible to the
reader of a program.

4.2.4 TYpe of Arithmetic Expressions

The value obtained by evaluating an arithmetic expression has a specific type ac­
cording to the following rules •

• TYpe of resulting value for operators +, - *
OPERAND OPERAND FOLLOWING IS OF TYPE

PRECEDING
IS OF TYPE: INTEGER REAL REAL 2 COMPLEX

INTEGER INTEGER REAL REAL 2 COMPLEX

REAL REAL REAL REAL2 COMPLEX

REAL2 REAL2 REAL2 REAL2 COMPLEX

COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

• Type of resulting value for operators I and **

OPERAND OPERAND FOLLOWING IS OF TYPE
PRECEDING

IS OF TYPE: INTEGER REAL REAL 2

INTEGER REAL REAL REAL 2

REAL REAL REAL REAL 2

REAL 2 REAL2 REAL2 REAL 2

COMPLEX COMPLEX COMPLEX COMPLEX

PA GE RE VISION

COMPLEX

COMPLEX

COMPLEX

COMPLEX

COMPLEX

4-6
PAGE

• TYpe of resulting value for the operator II is always INTEGER, if the types of
the operand are INTEGER, REAL, or REAL2.

If either of the operands are of any other type, a compile-time error will occur.

EXAMPLE:

If the following declarations are used:

INTEGER 1$

REAL R$

REAL 2 D$

COMPLEX C$

then:

EXPRESSION HAS TYPE

I * I INTEGER

I I R REAL

D + R REAL2

C - D + I COMPLEX

I ** I REAL

D II R INTEGER

7884
UP.NUMBER

4.3 BOOLEAN EXPRESSIONS

UNIVAC 1100 SERIES SYSTEMS 4-7
PAGE REVISION PAGE

A Boolean expression is a rule for computing a Boolean value, that is, TRUE or
FALSE. In a Boolean expression, only those operands necessary for determining the
result are evaluated. A Boolean expression may only produce a value of type
BOOLEAN. Boolean constants are written as the character sequences TRUE or FALSE
for the appropriate values. Boolean variables are those variables whose identi­
fiers have been declared to have type BOOLEAN. They may be simple or subscripted
(i.e., a member of a BOOLEAN array).

The declaration of a type procedure is described in 7.2. In a Boolean expression,
procedures of type BOOLEAN may occur. The standard procedures which return a value
of type BOOLEAN (for example ALPHABETIC and NUMERIC) may be used in Boolean ex­
pressions.

4.3.1 Boolean Operators

The Boolean operators given in Table 4-4 are defined in NU ALGOL to have the follow­
ing meanings only if A and B are BOOLEAN expressions.

Table 4-4. Boolean Operators

VALUE OF EXPRESSION

EXPRESSION MEANING A = TRUE A = TRUE A = FALSE A = FALSE
B = TRUE B = FALSE B = TRUE B = FALSE

NOT A (Unary) Negation FALSE FALSE TRUE TRUE

A OR B Disj unction TRUE TRUE TRUE FALSE

A AND B Conj unction TRUE FALSE FALSE FALSE

A IMPL B Implication TRUE FALSE TRUE TRUE

A EQIV B Equivalence TRUE FALSE FALSE TRUE

A XOR B Exclusive OR FALSE TRUE TRUE FALSE

The precedence of Boolean operators is as follows:

1. NOT

2. AND

3. XOR, OR

4. IMPL

5. EQIV

The remarks on the precedence of the arithmetic operators apply also for Boolean
operators (see 4.2.4 and 4.4).

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 4-8
PAGE REVISION PAGE

4.3.2 Relational Operators

Relational operators are defined in NU ALGOL to have the meanings given in Table
4-5. C and D are arithmetic or string expressions.

NOTE: If C or D are of type COMPLEX, only EQL or NEQ may be used.

Table 4-5. Relational Operators

VALUE OF EXPRESSION

EXPRESSION MEANING FOR FOR FOR
C > D C = D C < D

C LSS D LeSS than FALSE FALSE TRUE

C LEQ D Less than or EQual FALSE TRUE TRUE

C EQL D EQuaL FALSE TRUE FALSE

C GEQ D Greater than or EQual TRUE TRUE FALSE

C GTR D GreaTeR than TRUE FALSE FALSE

C NEQ D Not EQual TRUE FALSE TRUE

For strings, the comparisons are made on a character by character basis, starting
with the leftmost character. If the strings are of unequal length, the string of
shorter length is considered to be filled with blanks to the longer length. To
determine the greater or lesser relations, the characters are ranked by their in­
ternal value as shown in Appendix A, Table A-I.

EXAMPLES:

For the following declarations and statements:

STRING S(7)$

REAL X,Y$

INTEGER ARRAY IA(-5:2)$

BOOLEAN B$

S = 'ABCDEFG'$ X = 12.4$

IA(-5) = 22$ lAW) = 21$

Y = 15.0$

B = TRUE$

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 4-9
PAGE REVISION PAGE

The expression has the value:

EXPRESSION VALUE

X GTR Y FALSE

S EQL 'ABCDEF' FALSE

S NEQ 'ACDEFGA' TRUE

IA(-5) LSS IA(O) FALSE

IA(O) LEQ IA(-5) TRUE

NOT B FALSE

Y GEQ X TRUE

NOT B AND X G TR Y FALSE

S EQL 'ABCDEFG' OR S EQL 'XYZ' TRUE

IA(-5) LEQ 12 IMPL B TRUE

Y GTR 10.0 EQIV X LSS 12.0 FALSE

NOT B XOR X EQL Y FALSE

4.4 PRECEDENCE OF ARITHMETIC, BOOLEAN, AND RELATIONAL OPERATORS

Arithmetic, Boolean, and relational operators have the following precedences.

1. **
2. * / II

3. + -

4. Relational operators LSS, LEQ, EQL, GEQ, GTR, NEQ

5. NOT

6. AND

7. OR, XOR

8. IMPL

9. EQIV

Operations are carried out in order of ascending rank number. Operations of equal
rank are carried out from left to right. Parentheses may be used to change the

7884
UP.NUMBER

order of operations.
calculation wanted is

EXAMPLE:

BOOLEAN A, B, C,

INTEGER X, Y, Z,

R

The use of parentheses is suggested to ensure that the
the one performed. (See also 4.2.4.)

D $

WI T $

A = A EQIV B IMPL C OR D AND NOT Y+Z*W**T GTR X $

Evaluation:

4. (Y+(Z*(W**T») GTR X

5. NOT (Y+(Z*(W**T») GTR X)

6. D AND (NOT«Y+(Z*(W**T») GTR X»

7. C OR (D AND (NOT((Y+(Z* (W**T») GTR X»)

8. B IMPL (result of 7)

9. A EQIV (result of 8)

10. A = (result of 9)

4.5 STRING EXPRESSIONS

A string expression is a rule for obtaining a string of characters.

4.5.1 String Operands

String constants are written as a string of characters not containing a string quote
(') and enclosed by string quotes. A string quote may be made part of a string
constant by the use of a double string quote (").

EXAMPLES:

'NU ALGOL'

'THIS IS A STRING CONSTANT'

'BAD * ? I / + - WORDS'

'HE SAID; "YES".'

7884 UNIVAC 1100 SERIES SYSTEMS 4-11
UP·NUMBER PA GE RE VISION PA G E

String variables are those variables appearing in a STRING declaration. String
variables may be simple or subscripted, that is, a member of a STRING ARRAY.

4.5.2 String Operators

For strings, no operators giving a string result are defined.

4.5.2.1 Arithmetic Operations on Strings

Arithmetic operators may be used between string operands if the string involved
contains only digits in the form of INTEGER constants (including sign). If the
string is not in the form of an integer constant (containing either non-digi ts or
too many digits), then a run-time error message will be given. If the string is
in the form of an integer constant, then the value of this integer will be used
as the operand.

EXAMPLE:

STRING S(12) $ INTEGER X $

S = 'ANS IS 56345' $

X = S(8 v5)+20 $

COMMENT THE VALUE ASSIGNED TO X IS 56365 $

4.5.2.2 Relational Operations on Strings

The equality or collating sequence of strings may be tested using the relational
operators (see 4.3.2).

4.5.3 Substrings

A substring may be used to refer to a part of a string variable.

4.5.3.1 Declared Substring

Substrings may be declared in the declaration of the main string (see 3.3.2).

4.5.3.2 Substring Expressions

A substring of a main string may be referenced by gIvIng a start character number
in the main string and the length of the substring in the form:

<string identifier> «start character number>, < length of substring»

STRING K(50)$

K(20,6) is a substring referring to characters 20, 21, 22, 23, 24, 25 in the
main string K.

If no length is given, the substring is assumed to consist of one character.

EXAMPLE:

K(29) is a substring consisting of character number 29 in the whole string
K.

If no start position or length is given, the main string is referenced.

EXAMPLE:

STRING K(50)$

K and K(1,50) are equivalent

4.5.3.3 Substrings of Members of String Arrays

A reference to a substring of a subscripted string variable is written in the form:

<string array identifier> «start character number
<length of substring>: < subscript, or subscripts separated by commas».

EXAMPLE:

STRING ARRAY SA(10:0:10,1:2)$ defines a string array consisting of 22
strings each of 10 characters.

SA(5,2:1,2) is the substring made up of characters 5 and 6 of the element
SA(1,2).

SA(lO:O,l) is the substring made of character 10 of the array element
SA(O,l).

The declaration of substrings of string array variables is described in 3.4.3.

4.6 DESIGNATIONAL EXPRESSIONS

ALGOL statements are executed one after another in the order they appear in the
program, unless a GOTO statement forces the execution to begin at a different point
in the program. This point is given by the value of a designational expression. A
designational expression may be:

• a label

7884 UNIVAC 1100 SERIES SYSTEMS
UP.NUMBER PAGE REVISION

4-13
PAGE

• a switch identifier with an index

II IF < Boolean expression> THEN < simple designational expression> ELSE <desig­
national expression>

where Boolean expression is described in 4.3. Simple designational ex­
pression is either (1) or (2) or (3) enclosed in parentheses.

These expressions have the following meanings~

1. A label refers to that point in the program where the label is declared
(see 4.6.1).

2. A switch identifier with an index (e.g.,i) refers to the designational
expression in the ith position of the list of designational expressions
in the switch declaration (see 4.6.2). If an actual switch index is
less than 1 or greater than the number of designational expressions in
the list, then the GOTO statement is not executed.

3. In the case of the designational expression IF < Boolean expression> THEN
<simple designational expression> ELSE < designational expression> I the
simple designational expression is used if the Boolean expression is
evaluated to the value TRUE, the designational expression is used if the
Boolean expression is evaluated to the value FALSE.

4.6.1 Labels

Control may be transferred to a specific program point by the use of a GOTO state­
ment. This program point is called a label. Labels are declared by placing an
identifier in front of a statement and separating it from the statement by the
colon symbol (:).

EXAMPLE:

LABI : X = 5$

Since NU ALGOL labels are identifiers (see 2.2), numeric labels are not allowed.
Only one label with the same identifier may be used within a block. Labels are
local to the block in which they have been declared.

4.6.2 Switches

A switch allows the programmer to select a certain label depending on an index.
The SWITCH declaration has the following form:

SWITCH<identifier> = < list of designational expressions> $

• Identifier is as defined in 2.2.

• List of designational expressions is a set of designational expressions
separated by commas. Designational expressions are described in 4.6.

UNIVAC 1100 SERIES SYSTEMS 7884
UP.NUMBER PAGE REVISION

4-14
PAGE

EXAMPLES:

SWITCH CHOICE = PI, IF A GTR 2 THEN L ELSE Z $

SWITCH JUMP = CHOICE(I), CHOICE(2) $

COMMENT NOTICE THAT A SWITCH IDENTIFIER WITH INDEX IS
A DESIGNATIONAL EXPRESSION $

4.7 CONDITIONAL EXPRESSIONS

It is possible to use different operands in an expression according to the value of
a Boolean expression by placing the operands in a conditional expression. Con­
ditional expressions have the form:

IF < Boolean expression> THEN < simple expression>
ELSE < expression>

• Boolean expression is described in 4.3.

Simple expression is any of the expressions (arithmetic, Boolean, or string) de­
scribed in Section 4, or a conditional expression enclosed in parentheses. Ex­
pression can be either a simple expression as described above or a conditional
expression.

Expressions follow these rules:

The 'simple expression' and the 'expression' used in an expression must be
of the same kind. That is, both must be of kind: arithmetic, Boolean,
string, or designational.

If the 'simple expression' and the 'expression' are both of kind arithmetic
but are of different types, then the value of the expression will have the
type given in Table 4-6.

Conditional expressions used as operands must be enclosed by parentheses.

Table 4-6. Resulting Type of Expression

SIMPLE EXPRESSION EXPRESSION HAS TYPE
HAS TYPE INTEGER REAL REAL2 COMPLEX

INTEGER INTEGER REAL REAL2 COMPLEX

REAL REAL REAL REAL2 COMPLEX

REAL2 REAL2 REAL2 REAL2 COMPLEX

COMPLEX COMPLEX COMPLEX COMPLEX COMPLEX

7884 UNIVAC 1100 SERIES SYSTEMS
UP-NUMBER

EXAMPLES:

BOOLEAN

REAL

REAL 2

COMPLEX

STRING

B$

X,Y$

D,E$

C$

LETTERS (4) $

X = IF B THEN X ELSE 0 $

Arithmetic expression of type REAL2

LETTERS = IF X GTR Y THEN LETTERS 0,4) ELSE LETTERS (4,8) $

String expression

B = IF 0 LSS E THEN NOT B ELSE 0 LSS E$

Boolean expression

C = (IF B THEN (IF NOT B THEN X ELSE Y)
ELSE IF X GTR Y THEN 0 ELSE E) + 20$

Arithmetic expression of type REAL2

PAGE REVISION
4-15

PAGE

•

•

7884 UNIVAC 1100 SERIES SYSTEMS 5-1
UP-NUMBER PAGE REVISION PAGE

5. STATEMENTS

5.1 GENERAL

The ALGOL statement is the fundamental unit of operation within the language. The
operations to be performed are specified by statements which may be divided into
two classes:

• Assignment statements

• Control statements

This section discusses assignment statements (see 5.2), and combination of state­
ments (see 5.3).

The compiler translates successive statements in the order in which they appear in
the program. The statements are also executed in this same order unless the pro­
grammer interrupts this normal sequence with a "transfer of control." Once the
transfer has taken place, successive statement sequencing continues from the new
point of reference.

Transfer of control in ALGOL is accomplished through use of three kinds of control
statements - unconditional (see 5.4), conditional (see5.5), and repetitive (see 5.6),

5.2 ASSIGNMENT STATEMENTS

An assignment statement is of the form:

VI = V2 = ------- = Vn = E$

where the Vi are variables (either simple or subscripted) and E is an expression.
The sign (=) or (:=) means "assign" or "replace."

5.2.1 Rules for Performing Assignment

If V is a subscripted variable, evaluate its subscript expressions, thus determining
the actual variable. If there is more than one V in the statement, determine the
actual variables from left to right.

Evaluate the expression E and assign this value to the variable or variables deter­
mined by the rule above.

5.2.2 Type Rule for Multiple Assignment Statements

All variables in the left part list (Vi), that is, all variables to the left of the
rightmost assignment sign (=), must be of the same type.

7884
UP-NUMBER

EXAMPLES:

INTEGER ARRAY

REAL

REAL ARRAY

INTEGER

I = 5$ J = 4$

A(I) = I = I + J$

X = Y = 1$

UNIVAC 1100 SERIES SYSTEMS

A(l:5)$

X, Y$

Z(3: 10)$

I,J$

PAGE REVISION

COMMENT SIMPLE ASSIGNMENT $

COMMENT A(5) GETS THE VALUE 9,
I GETS THE VALUE 9$

COMMENT ONLY VARIABLES IN THE
LEFT PART LIST MUST BE OF SAME
TYPE, HERE X BECOMES 9.0,Y BE­
COMES 9.0$

5-2
PAGE

5.2.3 Transfer Functions in Assignment Statements

If the type of the expression is different from that of the variable or variables
in the assignment statement, then automatic type transfer occurs, if possible,
according to rules given in Table 5-1.

Table 5-1. Transfer Functions

TYPE OF EXPRESSION
TYPE OF
VARIABLE INTEGER REAL REAL2 COMPLEX STRING BOOLEAN

INTEGER Rounded to Rounded to Not allowed Changed to Not
INTEGER INTEGER INTEGER allowed

if possible

REAL Converted to Truncated Not allowed Not Not
REAL to REAL allowed allowed

REAL2 Converter to Zero filled Not allowed Not Not
REAL2 to REAL2 allowed allowed

COMPLEX Becomes Becomes Truncated Not Not
real part of real part of to real allowed allowed
COMPLEX COMPLEX part of

COMPLEX

STRING Integer is Not allowed Not allowed Not allowed See below Not
left jus ti fied allowed
in string

BOOLEAN Not allowed Not allowed Not allowed Not allowed Not
allowed

5.2.4 String Assignment

If the string expression has fewer characters than the string variable, the remainder
of the string variable is filled with blanks. If the string expression has more
characters than the string variable then these extra characters are not transferred
to the string variable. The assignment is a character by character transfer start­
ing at the left.

EXAMPLE:

STRING ST(15) $

ST = 'ABC' $

ST(2,14) = ST(1,14) $

COMMENT THE RESULT Of THIS ASSIGNMENT IS THAT THE ENTIRE STRING
ST IS 'AAAAAAAAAAAAAAA~.$

5.3 COMPOUND STATEMENTS

A compound statement is a group of ALGOL statements enclosed by the words BEGIN
and END. A compound statement may be used wherever one ALGOL statement is allowed.
Compound statements are very useful in conditional and repetitive statements (see
5.5 and 5.6) where only one statement is allowed.

EXAMPLES:

5.4 GO TO STATEMENTS

BOOLEAN B$ REAL X,Y,Z $

IF B THEN

BEGIN X = 5.0$ Y = 15.0$

END $

Z = 22.1$

FOR X = 20.0 STEP 1 UNTIL 50.0 DO

BEGIN Y = Y+ X $ Z = X * 20.0 + Z $

The purpose of a GO TO statement is to break the normal sequence of execution of
statements in a program. The statement executed after a GO TO statement is the
statement following the label given by the de~ignational expression in the GO TO
statement. (Labels and designational expressions are described in 4.6.)

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION

There are three possible ways of writing a GO TO statement. All have the same
meaning.

• GO TO < designational expression> $

• GOTO < designational expression> $

• GO < designational expression> $

EXAMPLES:

SWITCH KF = XY,ZW $

GO TO XY $

SW: GOTO KFO)$

BOOLEAN B $

GO IF B THEN ZW ELSE XY $

XY: GO TO IF NOT B THEN KF(2) ELSE SW $

5.5 CONDITIONAL STATEMENTS

5-4
PAGE

Conditional statements may be used to select the next statement depending on the
value of a Boolean expression. There are two types of conditional statements, one
with alternative and one without. The forms are given below.

5.5.1 Conditional Statement Form Without Alternative

IF < Boolean expression> WEN < uncondi tional statement> $

Boolean expression is described in 4.3. An unconditional statement is either any
statement other than a conditional statement, including a compound statement, or a
conditional statement enclosed by BEGIN and END.

EXAMPLE:

IF A GTR B THEN A = A - B $

5.5.2 Conditional Statement Form With Alternative

IF < Boolean expression> THEN < uncondi tional statement>
ELSE < statement> $

• Boolean expression is described in 4.3.

• Unconditional statement is any statement other than a conditional statement,
including a compound statement. A $ orj must never appear before ELSE.

• Statement is any statement including a conditional statement or a compound
statement.

7884 UNIVAC noc SERIES SYSTEMS 5-5
UP.NUMBER PAGE REVISION PAGE

EXAMPLE:

IF A GTR B THEN A = A - B ELSE A = B - A $

5.5.3 Conditional Statement Action Without Alternative

The action of a conditional statement without alternative is given in Table 5-2.

Table 5-2. Conditional Statement Action Without Alternative

BOOLEAN
EXPRESSION ACTION

EVALUATES TO

TRUE Execute unconditional statement after
THEN

FALSE Execute statement after conditional
statement

5.5.4 Conditional Statement Action With Alternative

The action of a conditional statement with alternative is given in Table 5-3.

Table 5-3. Conditional Statement Action With Alternative

BOOLEAN
EXPRESSION ACTION

EVALUATES TO

TRUE Execute unconditional statement after
THEN

FALSE Execute statement after ELSE

EXAMPLES:

BEGIN

REAL X, Y$ BOOLEAN B $

SWITCH SK = LAB,LIN $

IF NOT B THEN X = Y = 20.1 $

COMMENT B IS FALSE, SO X AND Y ARE SET TO 20.1 $

7884 UNIVA.C 1100 SERIES SYSTEMS 5-6
UP.NUMBER PAGE REVISION PAGE

EXAMPLES: (cont)

LIN: IF X NEQ Y THEN B = FALSE

ELSE B = TRUE $

COMMENT X AND Y ARE EQUAL, SO B IS SET TO TRUE $

IF B THEN BEGIN IF X EQL 25.0 THEN Y = 24.9 END

ELSE GO TO SK(2) $

COMMENT B IS TRUE BUT X IS NOT EQUAL TO 25.0, SO

THE NEXT STATEMENT IS EXECUTED $

B = FALSE $

LAB; IF Y GTR 20.1 THEN GO TO LIN $

COMMENT Y EQUALS 20.1, SO THE PROGRAM FINISHES $

END $

5.6 REPETITION STATEMENTS - FOR STATEMENTS

The FOR statement facilitates programming iterative operations. A part of the pro­
gram is iterative if it is to be executed repeatedly a specified number of times, if
it is to be executed for each one of a designated set of values assigned to a vari­
able, or if it is to be executed repeatedly until some condition is fulfilled. The
FOR statement handles any of these three conditions.

The FOR statement has the form;

FOR V = <list of FOR list elements> DO < statement> $

• V is the controlled variable.

• FOR list element is described below.

• Statement is one ALGOL statement of any kind, including conditional or compound
s ta tements •

The controlled variable may only be of type INTEGER or REAL. If the controlled
variable is a formal parameter, then the type of the actual parameter must coincide
with that of the formal. When the controlled variable is subscripted, the sub­
script(s) is evaluated once, before entering the loop.

There are three possible kinds of FOR list elements:

• < ari thmetic expression>

UNIVAC 1100 SERIES SYSTEMS 5-7 7884
UP.NUMBER PAGE REVISION PAGE

II < arithmetic expression> STEP < arithmetic expression> UNTIL < arithmetic
expression>

III < ari thmetic expression> WHILE < Boolean expression>

5.6.1 Simple List Element

The controlled variable V is successively given the values of the arithmetic ex­
pressions, el' e2' e3' - - - eN' as seen below, and the statement S is executed
once for each value of V.

FOR V = < arithmetic expression> DO S $

or

DO S $

The FOR list element is an arithmetic expression of type INTEGER or REAL only. If
the controlled variable is of type INTEGER when an expression is of type REAL, the
value of the expression will be rounded to INTEGER.

EXAMPLE:

Step 1. Evaluate the expression.

Step 2. Assign the value to the controlled variable, converting to the type
of the controlled variable if necessary.

Step 3. Execute the statement following DO.

Step 4. If there are no more FOR list elements, then execute the next state­
ment.

Step 5. If there is another FOR list element, repeat from step 1.

INTEGER A,B,C,TOTAL $

A = 10$ B = 5$

FOR C = A + 5, A + 20, B + 1, B DO

TOTAL = TOTAL + C $

A has the value 10, B the value 5.

EXPRESSION VALUE OF C
STEP NUMBER VALUE 0

1 1 15

2 15

3

VALUE OF
TOTAL

0

15

7884
UP.NUMBER

UNIVAC noo SERIES SYSTEMS 5-8
PAGE REVISION PAGE

EXPRESSION VALUE OF C VALUE OF
TOTAL STEP NUMBER VALUE 0 0

I

4 Another FOR list element follows

5 2 30

2 30

3 45

4 Another FOR list element follows

5 3 6

2 6

3 51

4 Another FOR list element follows

5 4 5

2 5

3 56

4 No more FOR list elements go to next statement
I I I

5.6.2 STEP - UNTIL List Element

In both following cases, A, B, and C are all arithmetic expressions. They may only
be of type INTEGER or REAL. If the controlled variable is of type INTEGER while
any of the A, B, or C are of type REAL, the value obtained is rounded to INTEGER.

FOR V = A STEP B UNTIL C DO S $

or

FOR V = (A,B,C) DO S $

• A is the starting or initial value of V

• B is the increment by which V is increased algebraically

• C is the limiting or terminal value of V

UNIVAC 1100 SERIES SYSTEMS 5-9 7884
UP.NUMBER PAGE REVISION PAGE

EXAMPLE:

Step 1. Evaluate the expression Ai call this value X.

Step 2. Assign the value X to the controlled variable, converting it to the
type of the controlled variable if necessary.

Step 3. Evaluate the expressions Band C and convert to the type of the con­
trolled variable if necessary.

Step 4. If the value of B is negative, then go to step 6.

Step 5. If the value of X is greater than the value of C, then go to step 10,
otherwise go to step 7.

Step 6. If the value of X is less than the value of C, then go to step 10.

Step 7. Execute the statement after DO.

Step 8. Add the value of X to the value of B - call the result X.

Step 9. Start again at step 2.

Step 10. If there are more FOR list elements, start to perform them - (note
that the controlled variable has been stepped) otherwise execute the
statement after the FOR statement.

INTEGER I $ REAL J, K $

INTEGER ARRAY Z(1:4) $

J = 5.2 $ K = 20.6 $ I = 2 $

FOR Z (I) = J + K STEP J - I UNTIL - 41

DO I = I + Z (2) $

• In this example the initial value expression A is J + K.

• the step B is - J - I

• th e Ii mi t Cis - 41

• the controlled variable is Z(2)

7884 UNIVAC noo SERIES SYSTEMS
UP.NUMBER

STEP VALUE VALUE VALUE VALUE VALUE
OF A OF B OF C X OF Z(2)

START 0

1 25.8 26

2 26

3 -7 -41

4 Go to step 6

6 26 > _41 - do next step

7

8 -7

9 Go to step 2

2 -7

3 -33 -41

4 Go to step 6

6 -7> -41 - do next step

7

8 -33

9 Go to step 2

2 -33

3 -26 -41

4 Go to step 6

6 -33> -41 - do next step

7

8 -26

9 Go to step 2

2 -26

3 7 -41

VALUE
OF I

2

28

21

-12

PAGE REVISION
5-10

PAGE

VALUE VALUE
OF J OF K

5.2 20.6

7884 UNIVAC 1100 SERIES SYSTEMS 5-11
UP.NUMBER PAGE REVISION PAGE

STEP VALUE VALUE VALUE VALUE VALUE VALUE
OFA OF B OF C X OF Z(2) OF I

4 Go to step 5

5 -26 > -41 - Go to step 10

I I
10 No more FOR list elements, go to next statement

I I I I L

EXAMPLE:

In a more simple case,set all members of an array to a value.

REAL D $

REAL ARRAY DA(-25 20) $

INTEGER I $

FOR I = (-25,1,20) DO DA(I) = D $

Perform a group of statements N times.

INTEGER I,N $ REAL X, Y $

FOR I = (l,lvN) DO

BEGIN

READ (X) $ COMMENT WILL READ N CARDS $

Y = 50 * X $

WRITE (Y) $ COMMENT WILL PRINT N LINES $

END $

Set specific members of an array to a certain value.

INTEGER I $ REAL ARRAY XU :200) $

REAL R $

FOR I = 1 STEP 1 UNTIL 5, 8, 9, 20 STEP 10

UNTIL 60, 100, 200 DO .
X(I) = R $

VALUE VALUE
OF J OF K

COMMENT X(l), X(2), X(3), X(4), X(5), X(8), X(9), X(20), X(30),
X(40) , X(50), X(60), X(lOO), X(200) WILL BE GIVEN
THE VALUE OF R $

UNIVAC 1100 SERIES SYSTEMS 5-12 7884
UP.NUMBER PAGE REVISION PAGE

5.6.3 WHILE List

Arithmetic and Boolean expressions used below are as described in Section 4.

FOR V = < arithmetic expression> WHILE < Boolean expression> DO S $

EXAMPLE:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Evaluate the arithmetic expression.

Assign the value of the arithmetic expression to the controlled
variable, V, converting if necessary.

Evaluate the Boolean expression.

If the Boolean expression has the value FALSE then go to step 7.

Execute the statement after DO.

Go to step 1.

If there are no more FOR list elements, execute the statement after
the FOR statement, otherwise take the next FOR list element.

INTEGER I, COUNT $

STRING S(350), SD(21)$

SD = 'OVERWRITE BLANK AREAS' $

FOR I = I + 1 WHILE S(I) EQL ' , AND I LSS 22 DO S(I) = SD(I) $

This FOR list element is useful when adding terms into a series.

REAL X, TOTAL $

X = 25.0 $

FOR X = 0.5 * SQRT (X) WHILE X GTR 0.5 DO

TOTAL = TOTAL + X $

7884
UP.NUMBER

EXAMPLE:

STEP

START

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

7

UNIVAC noo SERIES SYSTEMS

(cont)

VALUE OF VALUE
ARITHMETIC OF
EXPRESSION X

25.0

2.5

2.5

Value is TRUE, so do next step

Go to step 1

.791

0.791

Value is TRUE, so do next step

Go to step 1

.445

.445

Value is FALSE, so go to step 7

No more FOR list elements, 10 do

PAGE REVISION

VALUE OF VALUE
BOOLEAN OF

EXPRESSION TOTAL

0.0

TRUE

2.5

TRUE

3.291

FALSE

next statement

5-13
PAGE

7884
UP.NUMBER

UNIVAC 1100 SE RIES SYSTEMS

5.6.4 Special Rules for FOR Statements

PAGE REVISION
5-14

PAGE

Upon exit from a FOR statement either because there are no more FOR list elements
or because of a GO TO statement, the controlled variable has a specific value.
This value may be calculated by referring to the rules for the type of FOR list
element being used.

A GOTO leading to a label within the FOR statement is illegal. A label may, how­
ever, be used for a jump within the statement following DO.

5.7 OTHER TYPES OF STATEMENTS

Input/Output statements are described in Section 8.

Procedure statements or calls on procedures which do not have a type are described
in Section 7.

Blocks as statements are described in Section 6.

The OPTION feature, which may be used as a statement, is described in Section 9.

7884 UNIVAC 1100 SERIES SYSTEMS 6-1
UP-NUMBER PAGE REVISION PAGE

6. BLOCKS

6.1 GENERAL

The ALGOL block affects a grouping of a set of variables and the statements in­
volving those variables. The block structure of ALGOL reflects the dynamic storage
of variables, and may be used to economize on storage space. An ALGOL program is
an example of a block.

A block has the following form;

BEGIN

< declarations>$ Block head

< statements> Block body

END $

The only difference between a block and a compound statement is that a block has
declarations.

6.2 NESTED BLOCKS

A block may appear in the body of another block. This inner block is then said to
be nested in the outer block.

EXAMPLE:

OUTERBL: BEGIN

REAL A, B $

A = 1.5 $ B = 2.6 $

INNERBLl: BEGIN

INTEGER C, D $

C = A + B $ D = A - B $

END $

A = 50.0 $

INNERBL2: BEGIN

7884 UNIVAC 1100 SERIES SYSTEMS 6-2
U P.NUMBER PAGE REVISION PAGE

EXAMPLE: (cont)

REAL E, F $

E = A * B $ F = AlB $

END $

A = A + B $

END $

The blocks in the preceding example with the labels INNERBLI and INNERBL2 are nested
in the outer block with the label OUTERBL. The blocks with the labels INNERBLI and
INNERBL2 are non-nested.

6.3 LOCAL AND GLOBAL IDENTIFIERS

All identifers declared within a block are called local identifers (i.e., local to
the given block). Any identifiers that do not occur in declarations in the given
block, but appear in a block containing the given block, are called global, or
nonlocal (to the given block) identifiers. Each block introduces, at the time it
is entered, a new level of nomenclature in the sense that all identifiers declared
for the block assume the meaning implied by the declaration.

EXAMPLE:

BEGIN

BEGIN
} 82

END $
Bl

BEGIN
}B3

END $

END $

Where blocks B2 and B3 are nested in block Bl.

-Identifiers that are declared in Bl, but not in B2 or B3, are local in Bl
and global in B2 and B3.

-Identifiers that are declared in B2 are undefined in Bl and 83. They are
local in B2.

-Identifiers declared in B3 are undefined in Bl and B2. They are local in 83.

-If the same identifier is declared in both Bl and B2, then the declaration
in Bl is ignored within B2. If the identifier is used in Bl or 83, the
declaration given in Bl will be used.

7884 UNIVAC 1100 SERIES SYSTEMS 6-3
UP_NUMBER PAGE REVISION PAGE

• Upon entering a block, variables are initialized to 0 if arithmetic, to FALSE
if Boolean, and to blanks if string.

II Bl is the block with the label OUTERBL,

II B2 is the block with the label INNERBLl ,

1183 is the block with the label INNERBL2.

II Identifiers A and B are local to block OUTERBL, and global to blocks INNERBLl
and INNERBL2.

II Identifiers C and D are local to block INNERBLl and undefined in the other
two blocks.

II Identifiers E and F are local to block INNERBL2 and undefined in the other
two blocks.

EXAMPLE:

BEGIN

REAL A $

A = 50.0 $

BEGIN

INTEGER A $

A = 5 $

END $

BEGIN

A = 25.0 $

END $

END $

COMMENT A IS LOCAL AND REAL $

COMMENT A IS LOCAL AND INTEGER $

COMMENT A IS GLOBAL AND REAL $

6.4 LOCAL AND GLOBAL LABELS

Labels are declared, as explained in 4.6.1, by placing an identifier and a : in
front of the statement to which the label applies. Labels can thus be local or
global v depending on where they are declared.

Only labels which are local or global may be used in a designational expression in
a certain block. That is, GO TO statements may only lead to statements in the same
block or in an enclosing block, never to statements in a non-nested block.

7884 UNIVAC 1100 SERIES SYSTEMS 6-4
UP.NUMBER PAGE REVISION PA GE

NOTE: In NU ALGOL, the outermost block may not have a label, since jumps to this
label have no meaning.

6.5 USE OF BLOCKS

Blocks are used to give the values to expressions in declarations. In Section 3 v
Declarations, it is stated that the bounds for arrays, and the length of a string,
may be arithmetic expressions. Variables or type procedures may be used in these
expressions only if they are global to the block in which the declaration appears.

Blocks are used to save main storage. Non-nested blocks on the same block level
use the same area of core for the storage of their local variables.

EXAMPLES:

BEGIN

INTEGER X,Y,Z,N $

READ (X,YvZ,N) $

BEGIN

REAL ARRAY A(l:X,l:Y), B(l:Y,l:Z) $

STRING ST(X+Y+Z-N) $

END $

BEGIN

INTEGER ARRAY K(N:X,N:Z) $

COMMENT TIllS ARRAY USES TIlE SAME MAIN STORAGE AREA AS A AND B
IN TIlE BLOCK ABOVE $

END $

END $

7884 UNIVAC 1100 SERIES SYSTEMS 7-1
UP.NUMBER PAGE REVISION PAGE

7. PROCEDU ES AND TYPE PROCEDURES

7.1 PROCEDURES

The ALGOL procedure provides a convenient means of defining an algorithm and gIvIng
it a name so that it may be referenced or called anywhere within the scope of the
declaration of the procedure identifier. Furthermore, different actual parameters
or arguments may be passed to the procedure at each call.

7.1.1 Procedure Declaration

The procedure declaration consists of the procedure heading and the procedure body.
The identifier of the procedure appears in the procedure heading, followed by a list
of names which designate formal parameters. The formal parameter list may be empty,
but if it is not, each formal parameter name must be further defined by the speci­
fication part. The procedure declaration has the form:

~
PROCEDURE identifier

Procedure
<value part>$

heading
<specification

Procedure {
<statement>$

body

value part is described in 7.1.3

identifier is as described in 2.2

part>$

formal parameter is described in 7.1.2

(formal parameter

specification part is described in 7.1.1.2

7.1.1.1 Identifiers in the Procedure Body

list) $

The statement which is the procedure body may be a block. Identifiers declared in
the block are local to the block. (See 6.2.) Identifiers declared in the block
containing the procedure declaration are global to the procedure and may be refer­
enced by statements in the procedure body.

7884
UP.NUMBER

EXAMPLE;

BEGIN

BEGIN

END $

END $

UNIVAC 1100 SERIES SYSTEMS

INTEGER I $

PROCEDURE P $ COMMENT PROCEDURE HEAD WITH

PA GE REVISION

NO PARAMETERS OR SPECIFICATIONS $

INTEGER K $

K = 5 $

COMMENT K IS LOCAL $

I = I + K $ COMMENT I IS GLOBAL $

7.1.1.2 Specification Part

7-2
PAGE

The specification part gives the type and kind of the formal parameters, and may
also indicate the modes of transmission·of the actual parameters. The form of a
specification is:

<specifier><list of identifiers>$

list of identifiers has the usual meaning, except that in this case the
identifiers may only be formal parameters.

Table 7-1 gives the possible specifiers.

Table 7-1. Specifiers and Parameters

USE THE SPECIFIER WHEN A FORMAL
PARAMETER IS TO BE

INTEGER

REAL

REAL2 A simple variable of the
specified type

COMPLEX

BOOLEAN

STRING

Table 7-1. Specifiers and Parameters (cont)

USE THE SPECIFIER WHEN A FORMAL
PARAMETER IS TO BE

INTEGER ARRAY

REAL ARRAY OR ARRAY

REAL2 ARRAY
An array of the specified
type

COMPLEX ARRAY

BOOLEAN ARRAY

STRING ARRAY I

LABEL A label

SWITCH A switch

PROCEDURE A procedure

INTEGER PROCEDURE

REAL PROCEDURE

REAL2 PROCEDURE > A type procedure of the
specified type

BOOLEAN PROCEDURE

COMPLEX PROCEDURE

FORMAT A format

LIST A list

VALUE Special meaning
see 7.1.3

NOTE: The value part must come before the specifications.

7.1.1.3 Procedure Body

The procedure body must be only one statement.
statement or a block. A formal parameter used
ment statement must have a variable for actual
eter has appeared in the value part.

EXAMPLE OF PROCEDURE DECLARATION:

PROCEDURE EXAMPLE (A,B,ANS,C)$

This statement may be a compound
on the left hand side of an assign­
parameter, unless the format param-

VALUE B $ COMMENT VALUE PART $

REAL ARRAY B $

INTEGER A $

COMMENT OTHER SPECIFICATIONS $

7884 UNIVAC 1100 SERIES SYSTEMS 7-4
UP.NUMBER PAGE REVISION PAGE

EXAMPLE OF PROCEDURE DECLARATION: (cont)

REAL ANS $

LABEL C $

BEGIN

REAL2 TEMP $

COMMENT START OF PROCEDURE BODY $

COMMENT LOCAL VARIABLE $

TEMP = B(A) + B(A+l) $

ANS = TEMP/2.0&&4 $

IF ANS LSS 0.0 THEN GO TO C $

END $

7.1.2 Classification of Formal Parameters

The formal parameters may be classified by the way they are used in the procedure
body •

• ARGUMENTS are those parameters (variables or type procedures) which bring
into the procedure values that will be used by the procedure body.

• RESULTS are those parameters which are assigned values in the procedure body •

• EXITS consist of those formal parameters which are labels or switches. Exits
may be used as a special way of returning from a procedure.

NOTE: A parameter may be both an argument and a result.

7.1.3 Value Part

The value part causes the value or values of the actual parameter to be copied
into a temporary area. These values can then be manipulated or changed without
destroying the values of the actual parameter. The form of the value part is:

VALUE < identifier list> $

A main advantage of the value part is that if the actual parameters are expres­
sions, they are evaluated only once. The main implications of this can be seen
in 7.1.5.2.

The following kinds of formal parameters may not be placed in a value part:

LABEL, SWITCH, FORMAT, PROCEDURE, LIST

EXAMPLE:

PROCEDURE COUNT (N,ANS) $

VALUE N $ COMMENT N IS AN ARGmlENT WHICH SHOULD
NOT BE CHANGED $

INTEGER N, ANS $ COMMENT ANS IS THE RESULT $

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 7-5

EXAMPLE; (cont)

BEGIN

INTEGER I,J $

FOR J = N/2 WHILE N NEQ 0 DO

BEGIN

IF 2*J NEQ N THEN I = I + 1 $

N = N/ /2 $

END $

ANS = I $

END $

COMMENT NOTICE THAT THE FORMAL PARAMETER
IS CHANGED, BUT NOT THE ACTUAL $

7.1.4 Comments in a Procedure Heading

PAGE REVISION PAGE

Comments may be placed anywhere in the procedure declaration after the delimiter
$ or ; (see Section 9). Comments may also be placed in the formal parameter list
by using the following delimiter instead of a comma.

)string of letters not including: or $ followed by :(

EXAMPLES:

PROCEDURE EXAMPLE (A,N,S) $
COMMENT N IS THE DIMENSION OF THE ARRAY A
S IS AN EXIT $

PROCEDURE EXAMPLE (A) IS AN ARRAY WITH DIMENSION (N)
IF ERROR EXIT TO : (S) $
COMMENT THE FORMAL PARAMETERS ARE A, N ,S $

7.1.5 Procedure Statement

A procedure statement calls for the sequential execution of a previously defined
procedure body. The procedure identifier designates the particular procedure body
to be executen and the actual parameter part supplies the arguments to be passed
to the procedure.

A procedure statement has the form:

< identifier>«actual parameter list» $

7884 UNIVAC 1100 SERIES SYSTEMS 7-6
UP.NUMBER PAGE REVISION PAGE

identifier is the identifier of the wanted procedure

actual parameter list is a list of variables or expressions

7.1.5.1 Actual Parameter List

The i'th element of the actual parameter list corresponds to the i'th parameter
in the formal parameter list. There must be the same number of actual parameters
as there are formal parameters for a certain procedure. For type and kind cor­
respondence of actual and formal parameters, the rules given in Table 7-2 apply.

Table 7-2. Actual and Formal Parameter Correspondence

FORMAL PARAMETER ACTUAL PARAMETER CAN BE

Simple variable Simple or subscripted variable, constant,
or expression of the same type as the
formal parameter or of a type that can be
converted to that of the formal parameter.
(See restriction below.)

Array Array of the same type and with the same
number of subscripts as the array used in
the procedure body.

Label Designational expression

Switch Switch

Procedure Procedure with a formal parameter list
compatible with the list of actual
parameters used in the call of the formal
procedure.

Type procedure Type procedure of the same type as the
formal procedure or of a type compatible
to that of the formal procedure and with
a formal parameter list compatible with
the actual parameter list used in the
call of the formal procedure.

A formal parameter used on the left side of an assignment statement or as the con­
trolled variable in a FOR statement can only have as actual parameter a simple sub­
scripted variable v not an expression or a constant.

A formal parameter whose
for temporary storage if
case, once something has
actual parameter is lost

actual parameter is a constant or an expression may
the formal parameter is included in the value part.
been assigned to the formal parameter, the value of
to further calculations in the procedure.

be used
In this

the

7884 UNIVAC 1100 SERIES SYSTEMS
UP.NUMBER

EXAMPLES:

For the procedure declared in 7.1.1.3.

REAL ARRAY ARY(1:25) $ INTEGER RESULT $

EXAMPLE (15,ARY,RESULT,Ll) $

Ll:

For the procedure declared in 7.1.3.

INTEGEH K,SIZE $

K = 25 $ COUNT (K,SIZE) $

7.1.5.2 Execution of a Procedure Statement

7-7
PA GE RE VISION PAGE

The procedure statement causes the execution of the statement in the procedure body
just as if the procedure statement were replaced by the statement in the procedure
body with the following modifications:

• All formal parameters which have not been included in the value part (name
parameters), are treated as if they were textually replaced by the cor­
responding actual parameters in the procedure body. Parameters are re­
evaluated each time they are referenced within the procedure body.

• Formal parameters which have been included in the value part are evaluated,
and these values are assigned to the formal parameters, which are then used
in the procedure body. The corresponding actual parameters are inaccessible
to the procedure.

EXAMPLES:

Without value specification

COIVI~IENT PROCEDURE DECLARATION $

PROCEDURE VOLUME (LENGTH ,WIDTH ,HEIGHT,ANS) $

REAL LENGTH,WIDTH,HEIGHT,ANS $

ANS = LENGTH :;. WIDTH .:. HEIGHT $

COMMENT PROCEDURE STATEMENT $

VOLUME (P+5.0,Q+3.1,Z+4.0, RESULT) $

The procedure statement is executed as if the following statement had been
written.

RESULT = (P+5. 0) .:. (Q+3.l) >:. (Z+4. 0) $

7884 UNIVAC 1100 SE RIES SYSTEMS
UP.NUMBER

EXAMPLES: (cont)

With value specification

PROCEDURE VOLUME (LENGTH, WIDTI-I ,HEIGHT ,ANS) $

VALUE LENGTH,WIDTH,HEIGHT $

REAL LENGTH,WIDTH,HEIGHT,ANS $

ANS = LENGTH * WIDTH * HEIGHT $

COMMENT PROCEDURE STATEMENT $

VOLUME (P+5.0,Q+3.l,Z+4.0,HESULT) $

PAGE REVISION PAGE

The procedure statement is executed as if the following block had been written
in its place.

BEGIN

REAL LENGTH ,WIDTH ,HEIGHT $

LENGTH = P+5.0 $

WIDTH = Q+3.l $

HEIGHT = Z+4.0 $

RESULT = LENGTH >t: WIDTH f" HEIGHT $

COMMENT NOTE THAT THE ACTUAL PARAMETER RESULT IS STILL USED BECAUSE
ANS WAS NOT IN THE VALUE PART $

END $

7.1.6 Recursivity

A procedure may be called within its own procedure declaration. This feature is
known as the recursive use of a procedure and is fully implemented in NU ALGOL.

7.2 TYPE PROCEDURES

7-8

Procedures will often calculate a single value. Type procedures calculate a value
and assign this value to the identifier given as the name of the procedure. In
addition to all of the rules for procedures stated in 7.1.1, a few additional rules
apply.

7884 UNIVAC 1100 SERIES SYSTEMS 7-9
UP.NUMBER PAGE REVISION PAGE

7.2.1 Type Procedure Declaration

The type procedure declaration has the form:

< type> PROCEDUREddentifier>k formal parameter list» $

<value part> $

< specifications> $

< statements> $

II <type> is described in 3.2

II identifier is described in 2.2

II formal parameter list, value part are described in 7.1.3

The statement should contain an assignment statement which assigns a value to the
identifier used as the name of the procedure.

7.2.2 Use of a Type Procedure

A type procedure may be used as an operand in an expression by using the following
construction:

< identifier>{< actual parameter lis t»

Refer to Section 4 concerning operands in expressions.

In its declaration, the type procedure identifier may be used in an expression.
This use is recursive because the procedure uses itself in the calculation. (See
7.1.6.)

The standard procedures (library functions) are examples of type procedures. How­
ever, the standard procedures do not have to be declared.

EXAMPLES:

COMMENT TYPE PROCEDURE DECLARATION $

REAL PROCEDURE VOLUME (LENGTH,WIDTH,HEIGHT) $

VALUE LENGTH,WIDTH,HEIGHT $

REAL LENGTH,WIDTH,HEIGHT $

VOLUME = LENGTH f.: WIDTH :;, HEIGHT $

CO~WENT USE OF A TYPE PROCEDURE $

P = 5.0 $ Q = 3.0 $ Z = 4.0 $
WRITE {VOLUME (P+5.0,Q+3.l,Z+4.0)) $

7884 UNIVAC 1100 SERIES SYSTEMS 7-10
UP.NUMBER PAGE REVISION PAGE

This statement is executed as if the following block had been written:

BEGIN

END $

REAL LENGTH,WIDTH,HEIGHT,VOLUME $

LENGTH = P+5.0 $

WIDTH = Q+3.l $

HEIGHT = Z+4.0 $

VOLUME = LENGTH * WIDTH :;. HEIGHT $

WRITE (VOLUME) $

7.3 EXTERNAL PROCEDURES

External procedures are procedures whose bodies do not appear in the main program.
They are compiled separately and linked to the main program at its execution.

External procedures allow the user to build a library of procedures which are useful
to him and which can be easily accessed by declaring the required procedure to be
EXTERNAL PROCEDURE.

7.3.1 External Declaration

The external declaration informs the compiler of the existence of external pro­
cedures, of their type (if any), and of the proper manner to construct the necessary
linkages.

The external declaration has the form:

EXTERNAL < kind><type> PROCEDURE <identifier list> $

II <type> is as defined in 3.2.

II If no type is given, then the external procedure is a pure procedure as
described in 7.1.

II < kind> can be <empty>, ALGOL, FORTRAN, ASSEMBLER, or LIBRARY.

II < empty> or ALGOL means an external procedure in the ALGOL language; these
are treated just like ordinary procedures declared within the program.

II FORTRM~ means an external procedure written in the FORTRAN language.

II ASSEMBLER and LIBRARY means the external procedure is written in the
assembler language.

7884 UNIVAC 1100 SERIES SYSTEMS
UP.NUMBER PAGE REVISION

7-11
PAGE

The following descriptions require an adequate knowledge of the UNIVAC 1100 Series
Operating Systems, FORTRAN, and assembler language.

7.3.2 ALGOL External Procedures

An ALGOL procedure declaration (see Section 3) may be compiled separately if an
E option (see 9.2) is used on the ALGOL processor card. Several procedures may be
compiled using the same ALGOL processor card. A program containing externally
compiled procedures does not require an enclosing BEGIN-END pair. An ALGOL pro­
cedure compiled in this way will have only the first twelve characters of the
procedure name marked as an entry point. Such a procedure may be referenced from
another ALGOL program as an external procedure if the appropriate declaration and
identifier are used.

EXAMPLES:

1. The externally compiled procedure.

'il ALG, EIS < name>

PROCEDURE RESIDUES (X,Y)$

VALUE X,Y$ REAL X,Y$

BEGIN

END$

The main program

'il ALG, IS <main name>

END$

BEGIN

EXTERNAL PROCEDURE RESIDUES$

REAL A,B$

RESIDUES (A,B)$

•

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 7-12

2. The externally compiled procedure.

'il ALG,EIS <name>

REAL PROCEDURE DET(A,N)$

VALUE A,N$

REAL ARRAY A$

INTEGER N$

BEGIN

PAGE REVISION PAGE

COMMENT THIS PROCEDURE FINDS THE DETERMINANT OF A REAL NxN
MATRIX A, LEAVING A UNCHANGED AND ASSIGNING THE VALUE TO DET$

DET=---$

END DET$

The main program

ALG, IS <main name>

BEGIN

REAL ARRAY MATRIX (1:10,1:10)$

EXTERNAL REAL PROCEDURE DET$

WRITE (DET(MATRIX, 10))$

END OF MAIN PROGRAM$

7.3.3 FORTRAN Subprograms

A FORTRAN SUBROUTINE or a FORTRAN FUNCTION may be made available to an ALGOL program
by the declaration:

EXTERNAL FORTRAN <type> PROCEDURE<identifier list>

7884 UNIVAC 1100 SERIES SYSTEMS 7-13
UP.NUMBER PAGE REVISION PAGE

• type is described in 3.2

• identifier list described in 2.2

Actual parameters in calls on such FORTRAN subprograms may be either expressions,
arrays or labels. Procedures, formats, and lists may not be used. Strings may be
used if the FORTRAN program handles them correctly. The address of the string
itself, not of the string descriptor, is transmitted. Labels may be used only if
they are local to the block where the calls occur.

The inclusion of <type> in the declaration implies that the FORTRAN subprogram
begins with <type> FUNCTION < name>. The absence of < type> implies that the FORTRAN
subprogram begins with SUBROUTINE < name>.

EXAMPLE:

FORTRAN subprogram

'il FOR, IS < namel >

FUNCTION DET (A,N)

DIMENSION A (N,N)

C DET FINDS THE DETERMINANT

C OF A REAL NxN MATRIX A,

C DESTROYING A (SINCE 'VALUE' IS

C NOT ALLOWED IN FORTRAN) I AND

C ASSIGNING THE VALUE TO DET

DET=---

END

ALGOL mainprogram

'il ALG, IS < name2 >

BEGIN

ARRAY MATRIX 0:10,1:10)$

EXTERNAL FORTRAN REAL PROCEDURE DET$

7884
UP.NUMBER

UNIVAC 1 HHl SERIES SYSTEMS 7-14

EXAMPLE: (cont)

WRITE (DET{MATRIX,lO))$

END OF MAIN PROGRAM$

7.3.4 Assembler Language Procedures

PAGE REVISION PAGE

Assembler language procedures are necessary for certain special applications (for
example, bit manipulation). These procedures are available through the use of the
EXTERNAL ASSEMBLER or the EXTERNAL LIBRARY declarations.

The following remarks apply only to non-recursive assembler language procedures.
The required information for writing recursive assembler language procedures may be
found in the ALGOL technical documentation.

If <type> is used in the EXTERNAL procedure declaration, the value of the procedure
must be left in register AO for single word length types (BOOLEAN, INTEGER, REAL)
and AO and Al for double word length types (COMPLEX, REAL2).

Only the volatile registers (Bll, AO, AI, A2, A3, A4, A5, Rl, R2, R3) may be used
without restoring.

The first twelve characters of the name in the identifier list of the EXTERNAL
PROCEDURE declaration must be the first twelve characters of the external entry
point of the machine language procedure. Simple strings and all arrays including
string arrays used as parameters require special handling as explained in the next
sections.

The following listing shows a comparison of ASSEMBLER and LIBRARY procedures.

1. Method of parameter
transmission

2. Security

3. Speed of parameter
transmission

ASSEMBLEH

By means of parameter
descriptors in main
storage

Checking of the legality
of the actual parameter
list must be done at
run-time in the ASSEMBLER
procedure.

Fairly slow because of the
need for indirect address­
ing and run-time checking.

LIBRARY

Parameter addresses or
values are delivered
through the arithmetic
registers.

Full checking is done at
compile-time.

Fast because values of
correct type and kind are
delivered through regis­
ters.

7884 UNIVAC 1100 SERIES SYSTEMS
UP.NUMBER PAGE REVISION

7-15
PAGE

4. Flexibility

5. Example
Declaration:

Call:

ASSEMBLER

Complete information
available at run-time
about the parameters.
The number of actual
parameters may vary
from one c9ll to another.

EXTERNAL ASSEMBLER
PROCEDURE ES $

ES (A,B)$
A and B may be of any
type or kind.

7.3.4.1 External ASSEMBLER Procedure

The external ASSEMBLER procedure has the form:

LIBRARY

Less flexible because
allowable actual param­
eters are determined at
compile-time. The number
of actual parameters must
be equal to the number of
formal ones.

EXTERNAL LIBRARY
PROCEDURE EL(X,Y)$
REAL X,Y$$

EL(A,B)$
A and B must be REAL

EXTERNAL ASSEMBLER < type> PROCEDURE <identifier list> $

~XAMPLES:

EXTERNAL ASSEMBLER PROCEDUHE BIT, PACK $

EXTERNAL ASSEMBLER COMPLEX PROCEDURE ARRAYSUM$

TIle call to a procedure which has been declared as an EXTERNAL ASSEMBLER PROCEDURE
produces the following coding:

F5 FORM 18,6,12

Fl FORM 6 9 6,6 9 18

LMJ Xll ,< procedure name>

F5 < not used>,<type of procedure>,<number of parameters>

Fl < type>,< kind >,<base register>,<relative data address>

• Fl is the parameter descriptor; there is one descriptor for each parameter
in the call.

• <type> can have the following values and meanings:

INTEGER

REAL

BOOLEAN

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

COMPLEX

REAL2

STRING

• <kind> can have the following values and meanings:

PAGE REVISION

Simple, constant, expression, or subscripted variable

ARRAY

LABEL

7-16
PAGE

• The absolute data address (ADA) or location of the parameter is found from

<absolute data address>=<relative data address> + contents
of <base register>

• The <base register> field may be zero in which case nothing should be
added to the data address.

For all simple expressions, the <absolute data address> contains the value of the
parameter. For strings it contains the < string descriptor>. For arrays it con­
tains the first word of the <array descriptor>.

The return point for a call with N parameters is the contents of register XII +
N + l.

EXMIPLE:

Call: BIT (X,Y,Z,D,E,F)$

Return: J 7,Xll

Values of parameters should be obtained by the use of an indirect command.

~XAMPLE:

Call: PACK(A,B,C)$

To load value of B: L A2,*2,XII

If C is a label exit to C is J f,'3,Xll

See Sections 7.3.4.3, 7.3.4.4 and 7.3.4.5 for description of STRING, ARRAY,
and STRING ARRAY parameters respectively.

Assembler language program example:

'il ASM,SI < namel >

• THE FOLLOWING PROGRAM HAS NO PURPOSE

• OTIIER iriAN TO ILLUSTRATE THE ABOVE NOTES

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 7-17
PAGE REVISION PAGE

$(1) EQUIV SET UP MNEMONICS

ESP~: HAS THE CALL ESP (INT,STRING,EXIT LABEL)$

L, Tl Al,l,XU. PICK UP TYPE AND KIND

TE,U Al v01Ol. IF NOT SIMPLE

J *3,Xll. INTEGER GO TO ERROR EXIT

L AO, *1 ,XU. PICK UP VALUE OF INTEGER

TG,U AO,1024. IF THE INTEGER GEQ 1024

J *3 vXll. THEN GO TO ERROR EXIT

L,Tl Al,2,Xll. PICK UP TYPE/KIND FOR SECOND PARAMETER

TE,U Al,0701. IF NOT SIMPLE STRING

J ';:3,XU. THEN GO TO ERROR EXIT

L,H2 AI, *2, XU. PICK UP ADDRESS FROM STRING DESCRIPTOR

L A5, 1,Al. PICK UP SECOND WORD OF STRING

J 4, XU. RETURN WITH AO CONTAINING THE ACCEPTABLE
INTEGER

• THE NEXT ROUTINE

• HAS idE CALL TIMER (ARRAY IDENTIFIER, ROW, COLUMN, ANSWER)

• THIS ROUTINE MULTIPLIES THE FIRST THIRD

• OF THE SPECIFIED ARRAY ELEMENT BY 3600

• THE SECOND THIRD BY 60 AND ADDS THE

• RESULTS TO THE THIRD THIRD

TIMER* L,U AO, *1 ,XU. GIVES ADA

L A3, *3,XU. PICK UP COLUMN

MSI,Hl A3,1 ,AO. MULTIPLY BY D2

A A3. *2,XU. ADD ON ROW

A,Hl A3,0,AO. ADD ON BA

L,H2 Al,O,AO. PICK UP FA

7884 UNIVAC 1100 SERIES SYSTEMS 7-18
U P.NUMBER PAGE REVISION PAGE

AU,Hl AI,O,AI. ADD LENGT'rI TO FA

TW AI,A3. IF ELEMENT NOT IN ARRAY

ER ERR$

L, Tl AO,0,A3 PICK UP FIRST THIRD

MSI,U AO,60. MULTIPLY BY 60

A,T2 AO,0,A3. ADD ON SECOND TrlIRD

MSI,U AO,60. MULTIPLY BY 60

A,T3 AO,0,A3. ADD ON TIURD TIURD

S AO, *4,Xll. STORE RESULT IN

J 5,Xll. FOURTII PARAMETER A."lD RETURN

END.

Main program example:

'iJ ALG, IS < name2 >

BEGIN

EXTERNAL ASSEMBLER INTEGER PROCEDURE ESP$

EXTERNAL ASSEMBLER PROCEDURE TIMER$

INTEGER INT$

STRING SOUT(4,SIN(7))$

INTEGER ARRAY AI(I:50,0:10),RESULTS(-5:12)$

WRITE(ESP(INT,SIN,ERR))$ GO TO LI$

ERR: WRITE ('WRONG PARAMETER')$

LI: TIMER(AI,5,9,RESULTS(12))$

END$

7.3.4.2 External LIBRARY Procedure

In order to make possible the compile-time checking of parameters, the declaration
of a LIuRARY procedure must contain specifications. The specification list is
terminated by ; or $. The LIBRARY procedure therefore has the appearance of an
ALGOL procedure with an empty body.

7884
UP.NUMI3ER

UNIVAC 1100 SERIES SYSTEMS 7-19
PAGE REVISION PAGE

The form of the declaration is:

EXTERNAL LIBRARY<type>PROCEDURE<identifier>«formal parameter list»$

<value part>

<specification part>$

EXMIPLE:

EXTERNAL LIBRARY INTEGER PROCEDURE COM (I ,81 ,CA) $

VALUE 1,81$

INTEGER 1$

BOOLEAN 81$

COMPLEX ARRAY CA$$

When a library procedure is called, parameter values or addresses are loaded into
consecutive arithmetic registers. If the formal parameter is by value, the value
of the actual parameter is loaded, otherwise the address of the parameter is loaded.
The first parameter goes into AO, the second into Al and so on. REAL2 or COMPLEX
parameters called by value, occupy two consecutive registers. The number of param­
eters allowed in the call is therefore limited by the number of arithmetic regis­
ters available and can at most be 16.

Generally the type and kind of the formal and actual parameter must be the same.
However, if the formal is a simple value parameter~ the actual parameter need only
be convertible to the formal type. A label must be local to the block where the
call occurs.

Table 7-3 shows possible combinations of formal and actual parameters and the
corresponding content of the arithmetic register. Blank fields indicate illegal
combinations which will give compile-time errors.

Return from a LIBRARY procedure is always to O,Xll.

EXAMPLE:

'iJ ALG, IS MAIN

BEGIN

COMMENT THIS EXAMPLE SHOWS HOW TO PACK TIlREE INTEGER
NUMBERS INTO ONE 1100 SERIES PROCESSOR WORD IN ORDER TO
SAVE CORE SPACE, AND TIlEN UNPACK TIIEM AGAIN FOR COMPUTATION.
FOR SUCH PACKING TIlE NUMBERS MUST HAVE ABSOLUTE VALUES LESS
TIlAN 2047.

7884 UNIVAC 1100 SERIES SYSTEMS 7-20
UP.NUMBER PAGE REVISION PAGE

EXAMPLE~ (cont)

LARGER NUMBERS WILL BE TRUNCATED;

INTEGER I,J,K,M,N;

INTEGER ARRAY NUMBERS (1:10000);

EXTERNAL LIBRARY PROCEDURE PACK (N,I,J,K);

VALUE I,J,K;

INTEGER N, I ,J, K;

COMMENT THE PROCEDURE PACKS I,J,K INTO N;

EXTERNAL LIBRARY PROCEDURE UNPACK (N,I,J,K);;

INTEGER N, I, J , K;

COMMENT THE PROCEDURE UNPACKS N INTO I,J,K;;

COMMENT READ 30000 NUMBERS FROM CARDS;

FOR M = (1,1,10000) DO

BEGIN

READ(I,J,K); PACK(NUMBERS(M),I,J,K);

COMMENT THE CALL ON PACK WILL GENERATE THE FOLLOWING

SEQUENCE:

L AO,<address of array element>

L Al,I,X2

L A2,J,X2

L A3,K,X2

LMJ XU, PACK

END;

COMMENT DO SOME CALCULATIONS;

FOR M=(1,1,5000) DO

BEGIN

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS

UNPACK(NUMBERS(M),I,J,K);

COMMENT THE CALL ON UNPACK WILL GENERATE;

L AO,<address of array element>

L,U Al,I,X2

L, U A2', J , X2

L,U A3,K,X2

LMJ XU, UNPACK;

N = I + J .!< K;

UNPACK(NUMBERS(lOOOO-M),I,J,K);

N = N * K II I + J;

WRITE(N);

END;

END MAIN PROGR~1;

'iJ ASM,Sl PUNP

PACK*

S, Tl AI,O,AO. I GOES INTO Tl

S, T2 A2,O, AO. J GOES INTO T2

S,T3 A3,O,AO. K GOES INTO 1'3

J O,XU RETURN TO MAIN PROGRAM

UNPACK*

L, Tl A4,O,AO. GET NUMBER IN Tl

S A4,O,Al. STORE INTO I

L,T2 A4,O,AO.

S A4,O,A2.

L,T3 A4,O,AO.

S A4·,O,A3.

J O,Xll RETURN TO MAIN PROGRAM
END.

PAGE REVISION
7-21

PAGE

Table 7-3. Formal and Actual Parameter Combinations

~
SIMPLE OR STRING

FORMAL FORMAL FORMAL
VALUE NAME CONSTANT SUBSCR. EX- AND NON-

FORMAL SIMPLE SIMPLE VARIABLE PRESSION FORMAL

Value Value of Value of Value of Value of Value of
simple parameter parameter constant parameter expression

Simple not Address of Address of
by value parameter parameter

Value String
string descrip-

tor
(see
7.3.4.3)

String Address
not by of the
value string

descrip-
tor
(see
7.3.4.3)

Array

Label

ARRAY
FORMAL LOCAL

AND NON- LABEL
FORMAL

Address
of the
array
descrip-
tor
(see
7.3.4.4)

Program
address

!

!

-..J cO)
1J0)
• -I>
Z
C
~
OJ
111
:II

1J
»
Gl
111

:II
111
<
III

o
Z

1J
»

c:
z
<
:I>
n
.....
o
o
VI
m
::IC

m
VI

VI
-<
VI
-4
m
:1C
VI

Gl
111-..J

I
N
N

7884 UNIVAC 1100 SERIES SYSTEMS 7-23
UP.NUMBER PAGE REVISION PAGE

7.3.4.3 String Parameters

The absolute data address is the location of the string descriptor. The string
descriptor can be described as follows:

F4 FORM 12,6,18

F4 < length>,<start>, < address>

• <length> is the number of characters in the string •

• <start> is the start position of the string in the first word used
Sl=O, S2=l, S3=2, S4=3, S5=4, S6=5; it will be different from zero only
for substrings •

• <address> is the location of the first word used for the string.

7.3.4.4 Array Parameters

The absolute data address (ADA) is the start address of the array descriptor.

The array descriptor has the following format:

Address HI H2

ADA BA FA

ADA+l 02 03 Oope vector elements -

ADA+2 04 05 as many as required

ADA+3 06 07 maximum of 9 since the

ADA+4 08 09 maximum number of

ADA+5 010 dimensions is 10.

• SA - Base Address is the value to be added to the calculated subscript
to give the exact location of the element.

• FA - First Address is the absolute address of the check word which
stands just before the first element in the array.

• On - are the "dope vector elements" which are only present if the array
has more than one dimension. Their use is explained by the following
algorithm.

For an array with n dimensions the element with subscripts Sl, S2' S3 •.. Sn has
the following address:

< absolute address of array element (Sl,S2 •.• Snb=

(.. «Sn*On+Sn-l):::On-l +Sn-2) ':'On-2 ...)*02+S1+BA

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 7~24
PAGE REVISION PAGE

For COMPLEX or REAL2 arrays the algorithm has the form:

<absolute address of double array element (Sl,S2, ... Sn»

(2':< [(. . «Sn'::On+Sn-l)*Dn-l +Sn-2)'::On-2 •.•) '::0 2+S 1] +BA

EXAMPLE:

The array element A(I,J,K) has the address:

(K*03+J)*02+I+BA.

The checkword at location FA has the following format:

F3 FORM

F3

7.3.4.5 String Array Parameters

18,18

<length of array in machine words>,
< not used>

The absolute data address (AOA) is the start address of the string array descriptor.

The string array descriptor has the following format:

Address

ADA < Relative string descriptor>

ADA+l

ADA+2

ADA+3 Same as words ADA through ADA+5

ADA+4 for ordinary arrays

ADA+5

ADA+6

The relative string descriptor has the following form:

F4 FORM 12,6,18

F4 < length>,<start>,<relative position>.

• <length> is the number of characters in the string •

• <start> is the start position of the string in the first word it occupies;
Sl=O S2=l S3=2 S4=3 S5=4 S6=5 (not 0 only for subarray elements).

UNIVAC 1100 SERIES SYSTEM.S 7-25 7884
UP.NUMBER PAGE REVISION PAGE

• < relati ve position> is the amount to be added to the address given in the
string descriptor to get the address of the first word containing the string.

The address of an element is calculated in the same way as for ordinary arrays.
An element in a string array is a string descriptor:

F4 FORM 12,6,18

F4 < length>,<start>,< address of string>

• <length> and <start> have the same meaning as above; in the case of a main
string they will have the same values as well.

• < address of string> is the location of the first word used for the main
string.

To find the address of the first word used for a substring, it is necessary to add
the address of string to the relative position.

EXAMPLE:

STRING ARRAY Sl(7,S2(5,S3(4)),2:1:2,1:5)$

EXTERNAL ASSEMBLER PROCEDURE XYZ$

XYZ(Sl,S2,S3)$

7.3.4.6 Storage Diagrams

ADA for Sl 18 10 0
BA FA

D2

ADA for S2 9 11 1

BA FA

D2

ADA for S3 4 10 2

BA FA

D2

7884 UNIVAC 1100 SERIES SYSTEMS 7-26
UP.NUMBER PAGE REVISION PAGE

FA 10 SA = Start address

18 0 SA

18 0 SA+3

18 0 SA+6

18 0 SA+9

18 0 SA+12

18 0 SA+15

18 0 SA+18

18 0 SA+21

18 0 SA+24

18 0 SA+27

SA S10,1;1,1) S1(2 y l:l,1) S1(3 y l:l,1) S1(4,1:1,1) S1(5,1:1,1) S1(6,1:1,1)

S1(7,1:1,1) S1(8 y l:l,1) S1(9 y l:l,1) S1(10,1:1,1) S1(11,l:l,1) S1(12,1:l y 1)

S20,1:1,1) S2(2,1:l y 1) S2(3,1:1,1) S2(4,1:1,1) S2(5,1:1,1)

S103,1:1,1) S1(14,1:1,1) S105,1:1,1) S106,1:1,1) S1(17,1:1,1) S108,1:1,1)

S2(6,1:1,1) S2(7,1:1,1) S2(8,1:1,1) S2(9,1:1,1)

. S30,1:1,1) S3 (2, 1 : 1 , 1) S3(3,1:1,1) S3 (4,1: 1,1)

SA+3 S10,1:2,1) S1(2,1:2,1)

7.4 STANDARD PROCEDURES

7.4.1 Available Procedures

The procedures given in Table 7-4 are available for use without declaration. Also
some identifiers with special meaning are listed. These names are not reserved
identifiers and may be redefined in any block. X is used to mean the value of the
first parameter, Y the second.

Ie

7884
U P.NUMBER

NAME

ABS

ACARDS

ALPHABETIC

APRINTER

APUHC;i

ARCCOS

ARCSIN

ARCTAN

CARDS

NUMBER
OF

PARAMETERS

1

1

1

1

1

1

1

1

o

UNIVAC 1100 SERIES SYSTEMS 7-27

Table 7-4. Available Procedures

TYPES
OF

PARAMETERS

INTEGER

REAL

REAL2

COMPLEX

STRING
INTEGER

STRING

STRING
INTEGER

STRING
INTEGER

INTEGER}

REAL

REAL2

INTEGER }

REAL

REAL2

INTEGER t
nEAL)

REAL2

RESULT
OR USE

The absolute value of the
parameter.

To direct I/O from or to an
alternate card file (see
8.3.6.3).

TRUE if the string consists
only of spaces or alphabetics
(A-Z), FALSE otherwise.

Output to alternate print file
(see 8.3.6.3).

Output to alternate card file
(see 8.3.6.3).

arccos (X)

arccos (X)

arcsin (X)

arcsin (X)

arctan (X)

arctan (X)

To specify to the input routine
that the device is the card
reader or to the output routine
that the device is the card
punch (see 8.3.4).

PAGE REVISION PAGE

TYPE OF
RESULT

INTEGER

REAL

REAL2

REAL

BOOLEAN

REAL

REAL2

REAL

REAL2

REAL

REAL2

7884 UNIVAC 1100 SERIES SYSTEMS 7-28
UP_NUMBER PAGE REVISION PAGE

Table 7-4. Available Procedures (cont)

NUMaER TYPES
NAME OF OF RESULT TYPE OF

PARAMETERS PARAMETERS OR USE RESULT

CBROOT 1 INTEGER } cube root of X REAL
REAL

REAL2 cube root of X REAL2

COMPLEX cube root of X COMPLEX

CLOCK 0 - present time of day in INTEGER
seconds since midnight.
For example, at 13:30 the
resul t is 48600.

COMPL 2 (1) INTEGER A complex number with the COMPLEX
real part equal to X and

REAL the imaginary part equal
to Y.

REAL2

(2) INTEGER Example:

REAL COMPLCl,2) gives the complex
number < 1.0,2.0>.

REAL2

COS 1 INTEGER } cos (X) REAL
REAL

REAL2 cos (X) REAL2

COMPLEX cos (X) COMPLEX

COSH 1 INTEGER } cosh (X) REAL
REAL

REAL2 cosh (X) REAL2

COMPLEX cosh (X) COMPLEX

DISCRETE 2 (1) REAL Drawing from a discrete INTEGER
(cumulative) distribution

ARRAY function (for full
description see 7.4.2).

(2) INTEGER

7884
UP-NUMBER

NAME

DRAW

DRUM

DRUMPOS

DOUBLE

ENTlER

EOF

EOI

ERLANG

EXP

NUMBER
OF

PARAMETERS

2

o or 1

o

1

1

o or 1

o

3

1

UNIVAC 1100 SERIES SYSTEMS 7-29
PAGE REVISION PAGE

Table 7-4. Available Procedures (cont)

TYPES
OF

PARAMETERS

(1) REAL

(2) INTEGER

INTEGER

INTEGER

REAL

REAL

REAL2

INTEGER

REAL

STRING

Cl) REAL

(2) REAL

(3) INTEGER

RESULT
OR USE

TRUE with the probability
Xv FALSE with the prob­
ability I-X (see 7.4.2).

Gives input/output routine
access to relative address
X of random drum. If X is
not specified then the next
relative address available
is used (see 8.3.6).

Gives next relative drum
address (see 8.3.6.2).

Value of type REAL2.

Largest integer 1 such that
1 ~ X.
Example:
ENTIER(-O.99) is -1.

Used by WRITE and POSITION
(see 8.4.5). Only the first
six characters of the string
are used.

Used by WRITE and POSITION
(see 8.4.6).

A drawing from the Erlang
distribution with mean l/X
and standard deviation
l/X~(for full description
see 7.4.2).

INTEGER

REAL
} exp (Xl

REAL2

COMPLEX

exp (X)

exp (X)

TYPE OF
RESULT

BOOLEAN

INTEGER

REAL2

INTEGER

REAL

REAL

REAL2

COMPLEX

7884
UP-NUMBER

NAME

FILE

FILE INDEX

HISTD

HISTO

1M

INT

KEY

NUMBER
OF

PARAMETERS

1 or 2

1

2

4

1

1

o or 1

UNIVAC 1100 SERIES SYSTEMS 7-30
PAGE REVISION PAGE

Table 7-4. Available Procedures (cont)

TYPES
OF

PARAMETERS

1. STRING
INTEGER

2. INTEGER

STRING
INTEGER

(1) REAL

ARRAY

(2) INTEGER

RESULT
OR USE

Directing I/O from or to
a specified file (see
8.3.6).

Next relative INTEGER
address of an indexed file
(see 8.3.6.2).

A drawing from a histogram
(for full description see
7.4.2).

(1) REAL or To update a histogram
according to observation

INTEGER (thir"d parameter) using
the weight given as the

ARRAY fourth parameter (for
full description see

(2) REAL or 7.4.2).

INTEGER

ARRAY

(3) REAL

(4) REAL

COMPLEX

REAL

REAL2

STRING

INTEGER

Imaginary part of the
complex number X.

Value of type INTEGER.

Used by WRITE and POSITION
(see 8.4.4). Only the first
six characters of the string
are used.

TYPE OF
RESULT

INTEGER

REAL

INTEGER

7884
UP.NUMBER

NAME

LENGTH

LINEAR

LN

MARGIN

!\!AX

MIN

MOD

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION

7-31
PAGE

Table 7-4. Available Procedures (cont)

NUMBER
OF

PARAMETERS

1

3

TYPES
OF

PARAMETERS

STRING

(1) REAL

ARRAY

(2) REAL

ARRAY

(3) INTEGER

RESULT
OR USE

Number of characters in the
string including blanks.
Example:
STRING S(42)$
LENGTH (S) has the value 42

A drawing from a (cumulative)
distribution using linear
interpolation in a non­
equidistant table (for full
description see 7.4.2).

1 INTEGER

REAL
} In (Xl

REAL2

COMPLEX

1 STRING

List of ex- INTEGER
pressions
(any number) REAL

List of ex- INTEGER
pressions
(any number) REAL

2 (1) INTEGER

In (X)

In (X)

To change the vertical
dimensions on a printer page
(see 8.8.5).

Algebraic largest element of
list.
Example:
Value of MAX (FOR 1=(1,1,99)
DO I) is 99.0 (see 8.7.3).

Algebraic smallest element
of list.
Example:
Value of MIN
(1.2,3.3,-8.6,-99.2,-4,0)
is -99.2 (see 8.7.3).

If REAL or REAL2 then round
X and Y to nearest integer,

REAL then the expression
X-ENTIER(X/Y)*Y is computed.

REAL2

TYPE OF
RESULT

INTEGER

REAL

REAL

REAL2

COMPLEX

REAL

REAL

REAL

REAL

INTEGER

7884
UP-NUMBER

NUMBER
NAME OF

NEGEXP

NORMAL

NUMERIC

POISSON

POSITION

PRINTER

PSNORM

PUNCH

PARAMETERS

2

3

1

2

special
list

o

4

o

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION

Table 7-4. Available Procedures (cont)

TYPES
OF

PARAMETERS
RESULT
OR USE

(2) INTEGER Example:
Value of MOD(-48,5) is 2

REAL

REAL2

(1) REAL A drawing from the nega­
tive exponential dis-

(2) INTEGER tribution with mean l/X
(for full description see
7.4.2).

(1) REAL A drawing from the normal
distribution with mean X

(2) REAL and standard deviation Y
(see 7.4.2).

(3) INTEGER

STRING

(l) REAL

(2) INTEGER

(l) REAL

(2) REAL

(3) INTEGER

(4) INTEGER

TRUE if string has the form
of an integer, FALSE other­
wise (see 4.2.3).

A drawing from the Poisson
distribution (see 7.4.2).

To position a tape (see
8.8.3).

To assign the printer as
device to the WRITE state­
ment (see 8.3.5).

An approximate drawing
from the normal distribution
with mean X and standard
deviation Y (see 7.4.2).

Same as CARDS on output
(see 8.3.4).

TYPE OF
RESULT

REAL

REAL

BOOLEAN

INTEGER

REAL

7884 UNIVAC 1100 SERIES SYSTEMS
UP-NUMBER PAGE REVISION

7-33
PAGE

Table 7-4. Available Procedures (cont)

NUMBER TYPES
NAME OF OF RESULT

PARAMETERS PARAMETERS OR USE

RANK 1 STRING The Fieldata equivalent of
the first character of the
string.
Example:
STRING S(12)$
S='DEVICE'$
RANK(S) will have the value
9 (0=118).

RANDINT 3 (1) INTEGER A drawing of one of the
integers between X and Y

(2) INTEGER with equal probability (see
description in 7.4.2).

RE

READ

REWIND

REWINT

SIGN

SIN

(3) INTEGER

1 COMPLEX

Special list -

Special list -

Special list -

1 INTEGER

REAL

REAL2

The real part of the complex
number X:

To bring input from a speci­
fied device.

To rewind a file (see 8.8.4).

To rewind a file and lock if
it is a tape (see 8.8.4).

Value of
X

x>O
X=O
X<O

Example:

Value of
.SIGN (X)

1
o

-1

Value of SIGN(128) is 1

1 INTEGER
} sin (Xl

REAL

REAL2 sin (X)

TYPE OF
RESULT

INTEGER

INTEGER

REAL

INTEGER

REAL

REAL2

7884 UN VAC 1 00 51: R ES SYSTEMS
GE

!"-NUMBER

Table 7-4. Available Procedures (cont)

NUMBER TYPES
NAME OF OF RESULT TYPE OF

PARAMETERS PARAMETERS OR USE RESULT

COMPLEX sin (X) COMPLEX

SINH 1 INTEGER } sinh (X) REAL
REAL

~~:EAL2 sinh (X) REAL2

COMPLEX sinh (X) COMPLEX

SQRT 1 INTEGER } ./X REAL
REAL

REAL2 ..IX REAL2

COMPLEX ..IX COMPLEX

TAN 1 INTEGr:~i } tan (X) REAL
REAL

REAL2 tan (X) REAL2

COMPLEX tan (X) COMPLEX

TANH 1 INTEGER } tanh (X) REAL
REAL

REAL2 tanh (X) REAL2

COMPLEX tanh (X) COMPLEX

TIME 0 - Net CPU-time in 0.1 msec. INTEGER
elapsed since previous
call of TIME

UNIFORM 3 1. REAL The value is uniformly REAL
distributed in the interval

2. REAL [X,Y] (see 7.4.2).

3. INTEGER

WRITE Special list - To send output to a speci- -
fied device (see 8.8.2).

7884 UNIVAC 1100 SERIES SYSTEMS 7-35
UP.NUMBER PAGE REVISION PAGE

7.4.2 Special Routine Descriptions

Included in the run-time system of this ALGOL are many of the Random Drawing and
some of the Data Analysis routines of SIMVLA (O.J. Dahl, K. Nygaard: Simula. NCC.
Sept. 1967, ch. 7-8). The following descriptions explain their uses and methods.

7.4.2.1 Ps eudo-Ra ndom Number Streams

All random drawing procedures of SINIDLA use the same technique of obtaining basic
drawings from the uniform dis tribution in the interval < 0,1>. A basic drawing
will replace the value of a specified integer variable, e.g. V, by a new value
according to the following algorithm.

Vi+l = remainder ((Vi x 52P+l) //2n),

Vi is the i'th value of V.

It can be proved that, if Vo is a positive odd integer, the same is true for all Vi,
and the sequence VO, VI, V2, ••• is cyclic with the period 2n-2. (The last two
bits of V remain constant, while the other n-2 take on all possible combinations.)
For VNIVAC 1100 Series, n = 35; p is chosen equal to 6.

The real numbers ui = Vi x 2-n are fractions in the range < 0, 1>. The sequence ul,
u2, ••• n is called a stream of pseudo-random numbers, and ui Ci = 1,2, ••• n) is
the result of the i'th basic drawing in the stream V. A stream is completely
determined by the initial value Vo of the corresponding integer variable. Never­
theless it is a "good approximation" to a sequence of truly random drawings.

By reversing the sign of the initial value Vo of a stream variable the antithetic
drawings 1 - ul, 1 - u2, ••• n are obtained. In certain si~uations it can be proved
that means obtained from samples based on antithetic drawings have a smaller
variance than those obtained from uncorrelated streams. This can be used to reduce
the sample size required to obtain reliable estimates.

7.4.2.2 Random Drawing Procedures

The following procedures all perform a random drawing of some kind. Unless other­
wise explicitly stated, the drawing is affected by means of one single basic drawing,
i.e.,the procedure has the side effect of advancing the specified stream by one step.
The necessary type conversions are effected for the actual parameters v with the ex­
ception of the last one. The latter must always be an integer variable specifying
a pseudo-random number stream. All parameters except the last one and arrays are
called by value.

1. BOOLEAN PROCEDVRE DRAW (a,V); REAL a; INTEGER V;
The value is true with the probability a v false with the probabil:i.ty 1 -a.
It is always true if a ~ If always false if a ~ O.

2. INTEGER PROCEDVRE RANDINT (a, b f V); INTEGER a, b v V;
The value is one of the integers a, a + 1, ••• , b - 1, b with equal
probability. It is assumed that b ~ a.

7884 UNIVAC 1100 SERIES SYSTEMS 736
UP-NUMBER PAGE REVISION PAGE

3. REAL PROCEDURE UNIFORM (a, b, U); REAL a, b; INTEGER U;
The value is uniformly distributed in the interval [a, b]. It is assumed
tha t b> a.

4. REAL PROCEDURE NORMAL (a, b, U); REAL a, b; INTEGER U;
The value is normally distributed with mean a and standard deviation b.
An approximation formula is used for the normal distribution function.

See M. Abramowitz & I.A. Stegun (ed);
Handbook of Mathematical Functions, National Bureau of Standard Applied
Mathematics Series No. 55, p. 952 and C. Hastings formula (26.2.23) on
p. 933.

5. REAL PROCEDURE PSNORM (a, b, c, U); REAL a, b; INTEGER c, U;
The value is formed as the sum of c basic drawings, suitably transformed
so as to approximate a drawing from the normal distribution. The following
formula is used:

c
a + b ((L ui) - c/2)m/c

i = 1

This procedure is faster, but less accurate than the preceding one. c is
assumed !S 12.

6. REAL PROCEDURE NEGEXP (a, U); REAL a; INTEGER U;
The value is a drawing from the negative exponential distribution with
mean 1/a 9 defined by -In(u)/a, where u is a basic drawing. This is the
same as a random "waiting time" in a Poisson distributed arrival pattern
with expected number of arrivals per time unit equal to a.

7. INTEGER PROCEDURE POISSON (a, U); REAL a; INTEGER U;
The value is a drawing from the Poisson distribution with parameter a.
It is obtained by n+l basic drawings, ui, where n is the function value.
n is defined as the smallest non-negative integer for which

n
-a

7r ui < e

i=O

The validity of the formula follows from the equivalent condition

n

L -In(ui)/a > 19
i=O

where the left-hand side is seen to be a sum of "waiting times" drawn from
the corresponding negative exponential distribution.

When the parameter a is greater than 20 0, the value is approximated by
integer (normal (a,sqrt(a),u» or, when this is negative, by zero.

7884 UNIVAC 1100 SERIES SYSTEMS 7-37
UP-NUMBER PAGE REVISION PAGE

8. REAL PROCEDURE ERLANG (a, b, U)i VALUE a, bi REAL a, b; INTEGER Ui
The value is a drawing from the Erlang distribution with mean l/a and
standard deviation l/(avfb). It is defined by b basic drawings ui' if b is
an integer value,

b

- ~

i=l

and by c+l basic drawings ui otherwise, where c is equal to entier (b),

c

~
i=l

Both a and b must be greater than zero.

(b-c) In (Uc+l)

aeb

9. INTEGER PROCEDURE DISCRETE (A, U); ARRAY A; INTEGER Ui
The one-dimensional array A, augmented by the element 1 to the right, is
interpreted as a step function of the subscript, defining a discrete
(cumulative) distribution function. The array is assumed to be of type
real.

The function value is an integer in the range (lsb, usb+l], where Isb and
usb are the lower and upper subscript bounds of the array. It is defined
as the smallest i such that A(i» u, where u is a basic drawing and A
(usb+l) = 1.

10. REAL PROCEDURE LINEAR (A, B, U); ARRAY A, B; INTEGER U i
The value is a drawing from a (cumulative) distribution function F, which
is obtained by linear interpolation in a non-equidistant table defined by
A and B9 such that A (i) = F(B(i».

It is assumed that A and B are one-dimensional real arrays of the same
length, that the first and last elements of A are equal to 0 and 1
respective and that A (i) ~ A (j) and B (i) >B (j) for i > j.

11. INTEGER PROCEDURE HISTD (A, U)i ARRAY Ai lNTEGER Ui
The value is an integer in the range [lsb, usb], where Isb and usb are the
lower and upper subscript bounds of the one-dimensional array Ae The
latter is interpreted as a histogram defining the relative frequencies of
the values.

This procedure is more time-consuming than the procedure discrete, where
the cumulative distribution function is given, but it is more useful if the
frequency histogram is updated at run-time.

12. PROCEDURE HISTO (A, B, c, d); ARRAY A, B; REAL c, di
will update a histogram defined by the one-dimensional arrays A and B
according to 'the observation c with the weight d. A (i) is increased by d,
where i is the smallest integer such that c ~ B (i). It is assumed that the

7884 UNIVAC 1100 SERIES SYSTEMS 7-38
UP-NUMBER PAGE REVISION PAGE

length of A is one greater than that of B. The last element of A cor­
responds to those observations which are greater than all elements of B.
The procedure will accept parameters of any combination of real and integer
types.

7.4.3 Transfer Functions

Transfer functions are those functions used to transfer a value of one type to
another type. These functions are evoked automatically by the compiler whenever
necessary. In some cases, they may be called explicitly. Transfer functions,
given in Table 7-5, are not evoked automatically when the formal and actual types
for array identifiers are not the same.

Table 7-5. Transfer FUnctions

TYPE OF TRANSFERRED
VARIABLE TO TYPE FUNCTION USED

INTEGER REAL Implici t

REAL2 DOUBLE(X) or Implici t

STRING Implici t

COMPLEX COMPL(X,O) or Implicit

REAL INTEGER INT(X) or Implicit

REAL2 DOUBLE (X) or Implicit

COMPLEX COMPL(X,O) or Implicit

REAL2 INTEGER INT(X) or Implicit

REAL Implici t

COMPLEX COMPL(X,O) or Implicit

COMPLEX REAL RE(X)

IM(X)

STRING INTEGER INT(X) or Implicit

7884 UNIVAC 1100 SERIES SYSTEMS 8~1
UP-NUMBER PAGE REVISION PAGE

8. INPUT/OUTPUT

8.1 GENERAL

Input and output operations are accomplished in UNIVAC 1100 NU ALGOL by means of
calls to library procedures. The procedures, READ and WRITE, are more flexible
than ordinary procedures written in ALGOL because the number of parameters in an
actual call or even the order of the parameters is not rigidly specified. The
general form of I/O call is:

< I/O procedure> « device>, < format>, < modifier lis t >, < input/
output list>, < label list>)

I11III < I/O procedure> is READ, WRITE, or one of the file-handling procedures
(POSITION, REWIND, REWINT);

II <device> specifies the external medium;

III < format> is the name of the format specifying output edi ting or card layout
for input;

II <modifier list> specifies parameters whose action is to output markers in the
information which later may be used for positioning;

iii < input/output list> is a list of I/O variables and expressions;

III < label lis t > specifies where control will be transferred in case of con­
tingencies.

This section is organized so that the parameters <device> ,<modifier list>,
< label list>, < format> and < input/output list> are described in separate

paragraphs. Each of the procedures is then described in terms of the parameters
it requires.

EXAMPLE:

BEGIN FORMAT FORMl (A,3RIO.2)$

REAL X,Y,Z$

ARRAY ARRY (1:200)$

WRITE (FILE C'A'),EOFC'ABC'),LABLl,ARRY)$

READ CCARDS,FORMl,LABL2,LABL2,X,Y,Z)$

7884 UNIVAC 1100 SERiES SYSTEMS
UP-NUMBER

EXAMPLE: (cont)

READ (CARDS,X,Y,FILE('B'),ARRY)$

COMMENT MORE THAN ONE DEVICE ALLOWED$

The available input/output procedures are:

PROCEDURE

READ

WRITE

POSITION

REWIND

REWINT

8.2 PARAMETERS TO INPUT/OUTPUT PROCEDURES

PARAGRAPH

8.8.1

8.8.2

8.8.3

8.8.4

8.8.4

PAGE REVISION

~ Classed as
FILE
operations

8-2
PAGE

The procedures allow a variable number of parameters. In the simplest case, only
the input/output list needs to appear. The other parameters are then automatically
supplied by the compiler. See 8.8.

EXAMPLE:

FORMAT F(10112,Al)$

INTEGER ARRAY A(-6:3)$

WRITE (A)$

WRITE (PRINTER,F,A)$ COMMENT THESE TWO ARE THE SAME$

WRITE (CARDS,A)$

WRITE (CARDS,F,A)$ COMMENT THESE TWO ARE THE SAME$

In general, all statements should have their parameters in the order given by the
form in 8.1. If this order is not observed, the following rules hold.

• Labels may come anywhere and need not be together. However, their order is
important. (See 8.5, label list.)

• If device is not before the input/output list, then the device is assumed to be
implied device. (See 8.3.3, implied device.)

• The insertion of more device parameters in an I/O call changes the device
dynamically, the new device applying to the parameter items which follow.

7884 UNIVAC 1100 SERIES SYSTEMS 8-3
UP.NUMBER PAGE REVISION PAGE

EXAMPLE:

ARRAY A(O :500)$

WRITE (A,FILE ('B'),A)$

COMMENT WILL WRITE ARRAY A ON THE PRINTER AND ON THE SEQUENTIAL FILE
ASSIGNED AS B $

• Modifiers may be placed where desired. That is, KEY will usually come before
the output list, and EOF after it, but notice the placement in the following
example.

EXAMPLE:

ARRAY A(0:500),B(0:300)$

WRITE(FILE('B'),KEY('A'),A)$

WRITE(FILE('B'),EOF('A'),KEY('B'),B,EOI)$

COMMENT THE FILE WILL HAVE

(1) KEY RECORD WITH IDENTIFICATION 'A'

(2) THE VALUES OF THE ARRAY A

(3) EOF RECORD WITH IDENTIFICATION 'A'

(4) KEY RECORD WITH IDENTIFICATION 'B'

(5) THE VALUES OF THE ARRAY B

(6) AN EOI MARKER$

• Formats must come before the input/output list to which they apply. If a list
comes before a format parameter has been specified, then the format is taken to
be implied or free format.

EXAMPLE:

INTEGER I, J, K$

REAL X, Y ,2$

FORMAT F(3DlO.6, AI) $

1=123$ J=456$ K=789$

WRITE (I,J,K,F,I,J,K)$

7884 UNIVAC 1100 SERIES SYSTEMS 8-4
UP-NUMBER PAGE REVISION PAGE

EXAMPLE: (cont)

COMMENT WILL PRODUCE THE FOLLOWING PRINT LINES$

123 456 789

123.00000 456.00000 789.00000

• Formats must come after the device to which they apply .

• Input/output lists have their position determined by the fact that they must
conform to the above rules.

8.3 DEVICES

8.3.1 Possible Devices

The list of possible devices follows.

DEVICE PARAGRAPH

(implied) 8.3.3

CARDS 8.3.4

PUNCH 8.3.4

PRINTER 8.3.5

FILE 8.3.6

DRUM 8.3.6.2

ACARDS 8.3.6.3

APRINTER 8.3.6.3

APUNCH 8.3.6.3

CORE 8.3.7

8.3.2 Actual Devices

The list of actual devices follows.

7884 UNIVAC 1100 SERIES SYSTEMS 8-5
UP·NUMBER PAGE REVISION PAGE

ACTUAL DEVICE
DEVICE ACTUAL DEVICE ACTUAL DEVICE WITH POSITION,

WITH READ WITH WRITE REWIND, REWINT

(implied) Card reader Line printer Not allowed

CARDS Card reader Card punch Not allowed

PUNCH Not allowed Card punch

PRINTER Not allowed Line printer Not allowed

FILE Tape unit, drum or Tape unit, drum Tape uni t, drum
FASTRAND file or FASTRAND file or FASTRAND file
specified specified specified

DRUM FASTRAND or FASTRAND or Not allowed
drum file drum file

CORE The string which The string which Not allowed
is parameter is parameter

ACARDS Symbi ont file Symbiont file Not allowed

APRINTER Not allowed Symbiont file Not allowed

APUNCH Not allowed Symbiont file Not allowed

EXAMPLES:

INTEGER 1$

READ (CARDS,I)$

READ(I)$ COMMENT ARE THE SAME$

8.3.3 Implied Devices

Implied devices are used for reading cards or printing. The device parameter is
left out for implied devices. READ produces the same action as for device CARDS.
WRITE produces the same action as for device PRINTER.

Implied devices have the following restrictions:

• Cannot be used with FILE operations.

~ On input only 80 columns may be read from a card •

• On output only 132 columns may be printed.

UNIVAC noo SERIES SYSTEMS 8-6 7884
UP-NUMBER PAGE REVISION PAGE

EXAMPLE:

INTEGER A,B,C$

FORMAT Fl(A,3(112,X10))$

READ (Fl,A,B,C)$

COMMENT WILL READ CARDS$

8.3.4 Devices CARDS and PUNCH

The devices CARDS and PUNCH are used for reading or punching cards (PUNCH is only
allowed with WRITE). The card reader (CARDS) is assigned as the device for the
procedure READ to use for input.

NOTE: If a format is specified, no new card is read until an A phrase (activate)
is met in a format or a format extends beyond column 80 of the current card.
The very first data card, however, will be read automatically in the absence
of an A-phrase.

Reading card images over again is possible by using a format without an activate
phrase.

EXAMPLE:

BEGIN

COMMENT READ THE SAME CARD IN THREE DIFFERENT WAYS$

ARRAY A,B,C(1:5)$

FORMAT Fl(A,5I5),

F2CJl ,5Il) ,

F3(Jl,5I2)$

COMMENT NOTE THAT J-PHRASE MUST BE USED TO START AT

COLUMN ONES

READ (Fl,A,F2,B,F3,C)$

ENDS

Data card form is:

1234567891011121314151617

7884 UNIVAC 1100 SERIES SYSTEMS 8-7
UP-NUMBER PAGE REVISION PAGE

At the end the arrays will have the following values:

A(l) 12345.0 B(1) 1.0 CO) 12.0

A(2) 67891.0 B(2) 2.0 C(2) 34.0

A(3) 1112.0 B(3) 3.0 C(3) 56.0

A(4) 13141.0 B(4) 4.0 C(4) 78.0

A(5) 51617.0 B(5) 5.0 C(5) 91.0

The card punch (CARDS or PUNCH) is assigned as the device for the procedure WRITE
to use for output.

EXAMPLE:

FORMAT F(I12,Al)$

INTEGER 1$

I = -8523$

WRITE (CARDS,F,I)$

COMMENT WILL PUNCH ONE CARD WITH -8523 IN COLUMNS 8 THROUGH 12$

CARDS and PUNCH have the following restrictions:

11/ They cannot be used wi th the FILE operations.

II On both input and output there is a maximum length of 80 columns.

8.3.5 Device PRINTER

The device PRINTER is used for printing on a printer. The line printer (PRINTER)
is assigned as the device for the procedure WRITE to use for output.

NOTE: If a format is specified, no line is printed until an activate (A) phrase is
processed. The A-phrase may be delayed until a later WRITE-statement.

EXAMPLE:

INTEGER I, J$

WRITE (PRINTER, «lI5,Al,I6» ,I,J)$

COMMENT J IS NOT PRINTED$

WRITE (PRINTER, «lIO ,AI» , 1)$

COMMENT PRINTS J AND I ON THE SAME LINE$

7884 UNIVAC 1100 SERIES SYSTEMS 8-8
UP.NUMBER PAGE REVISION PAGE

PRINTER has the following restrictions:

• A run-time error is caused if PRINTER is used with READ or the FILE operations.

III One line has 132 columns.

EXAMPLE:

ARRAY A(-5: 6) $

INTEGER 1$

FORMAT Fl(12(Ill,Xl),Al)$

WRITE (PRINTER,Fl,FOR 1=(-5,1,6) DO A(I))$

8.3.6 Devices for File Handling

8.3.6.1 Sequential Files

A sequential file can be magnetic tape or simulated on random access storage. It
has the form:

FILE (< filename>) 1

< filename> , if integer, is converted to string. The twelve first characters
of the string are taken to be the internal name of the file. If the string is
shorter than twelve characters it is space filled to the right. If a non­
existent file is referenced, a temporary FASTRAND mass storage file is assigned
a utoma tically.

EXAMPLES:

ARRAY B,C(l:lOOO)$

WRITE (FILE('DATA'),B)$

REWIND (FILE('DATA'))$

READ (FILE('DATA'),C)$

WRITE (FILE(l),B)$

Use the specified sequential file for input or output (READ or WRITE). Both input
and output are double buffered. If the file is on tape it may consist of more than
one physical reel. Transition to the next reel is automatic.

1
The form TAPE « filename» is also implemented for sequential files to provide
compatibility with EXEC II NU ALGOL (see Appendix F).

7884 UNIVAC 1100 SERIES SYSTEMS 8-9
UP.NUMBER PAGE REVISION PAGE

EXAMPLE:

REAL2 ARRAY D(0:400)$ INTEGER 1$

READ (FILE(20).FOR 1=(1.1.320) DO D(I))$

WRITE (FILE(·A·).FOR 1=(1.1,300) DO D(I))$

The action wi th REWINT is as follows:

• If the filename refers to a magnetic tape then this tape is rewound and released
so that it can no longer be used. The buffers are released.

• If the filename refers to a sequential drum or FASTRAND file. then the current
position of this file is reset to the starting position.

The ac ti on wi th REWIND is as follows:

• For magnetic tapes. the tape is rewound but not released so that it may be used
again. The buffers are released.

• The action for sequential drum or FASTRAND files is the same as for REWINT.

EXAMPLE:

BOOLEAN DRUMORTAPE$

DRUMORTAPE=TRUE$

REWIND (FILE(IF DRUMORTAPE THEN 0 ELSE 6))$

COMMENT WILL REWIND TAPE ASSIGNED AS A, OR THE FILE HAVING THE NAME 0$

The action with POSITION follows:

• The specified sequential drum file is to be used by POSITION.
The file will then be searched according to certain parameters. This operation
is described in 8.8.3.

EXAMPLE:

POSITION (FILE('D·).EOF)$

Restriction: If the file consists of more than one reel of tape. it is not possible
to position backwards to a preceding reel.

Sequential files have the following restrictions:

• Sequential files on random access storage can only be accessed in a serial
manner. If random access is required it must be done as described in 8.3.6.2.

• FILE does not allow READ or WRITE to use a format. To write formatted output
use WRITE (CORE(S) ••••) and then output the resulting string.

~ The input list (see 8.7) must have its number of elements less than or equal to
the number of elements in the output list which produced the record being read.

If the number is greater, a run-time error occurs.

If the input list is smaller than the output list then the remainder of the
record is los t.

8.3.6.2 Indexed Files

Indexed files are random access files on drum or FASTRAND. Each file has an associ­
ated file index or address which is set to indicate where an I/O operation is to be
performed. After the I/O operation the file index will be updated to point to the
position following the one last used. The file index is initialized to zero which
is the first position of the file. Indexed files have the form:

FILE « filename> ,< file index»

DRUM « fi Ie index» or DRUM

iii! < filename> is explained in 8.3.6.1.

II < file index> is an ari thmetic expression which is rounded to integer if
necessary. If the file is on FASTRAND, the file index is truncated to a
multiple of 28 which is the FASTRAND sector length.

• DRUM without an explicit file index means that the current index is to be used •

• DRUM refers to a temporary file of 20,000 words in a word-addressable drum
which is automatically assigned.

EXA.MPLE:

REAL X, Y,Z;
INTEGER I;
I = 56;
WRITE(FILE('DATA',I),X,Y,Z);
COMMENT WILL WRITE THE VALUES OF THE VARIABLES X,Y,Z INTO POSITIONS 56,57

AND 58 OF THE FILE 'DATA';
WRITE(DRUM(I),X,Y,Z);
COMMENT WRITE THE VALUES INTO THE SAME POSITIONS OF THE FILE PROVIDED FOR

DEVICE DRUM;
WRITE(DRUM,X,Y,Z);
COMMENT WRITE THE VALUES INTO POSITIONS 59,60 AND 61;

The file index is obtained by means of the integer procedures FILEINDEX k filename»
or DRUMPOS. If < file name> refers to a FASTRAND file the file index returned will
point to the first word of the next sector. If the file is non-existent the file
index will be zero.

7884 UNI VAC 1100 SE RI ES SYSTEMS 8-11
UP.NUMBER

EXAMPLE:

INTEGER I;
ARRAY A,B(l:20);
COMMENT 'Fl' IS A FASTRAND FILE;
WRITE(FILE('Fl ' .0) ,A);
WRITE(FILE('FI ',FILEINDEX('Fl')),B);
I=FILEINDEX('FI ');

PAGE REVISION PAGE

COMMENT A GOES INTO POSITIONS 0-19 AND B INTO 28-47 THE VALUE OF I IS 56;
READ(DRUM(lOO) ,A);
I=DRUMPOS; COMMENT I IS 120;

The action with WRITE means the values of the variables of the output list are
transferred to consecutive positions in the file starting at the position speci­
fied by the file index.

The action with READ means the values of the consecutive positions in the file,
starting with the position specified by the file index, are transferred to the
input list variables. The current file index after a READ or WRITE may be com­
puted by means of the lengths given in 3.3.3. One exception is that strings will
occupy one word less on a file than in core storage.

POSITION sets the file index to the specified position.

EXAMPLE:

POSITION(FILE('DATA',30));
COMMENT IF 'DATA' IS ON FASTRAND THE FILEINDEX IS SET TO 28

OTHERWISE TO 30;
POSITION(DRUM(500));

REWIND and REWINT sets the file index to zero and the buffer areas 'in core are
released.

8.3.6.3 Alternate Symbiont Files

Alternate symbiont files are used to read from or write on card, punch, or print
files other than the standard ones. They have the form:

ACARDS(< filename»

APRINTER(< fi lename » ~

APUNCH(< filename» \
only allowed with WRITE

From the point of view of the program, these devices behave like the standard
CARDS, PRINTER, and PUNCH, as described in 8.3.4 and 8.3.5. < filename> is ex­
plained in 8.3.6.1. The files are sequential with no possibilities for position­
ing or rewinding.

READ only allows device ACARDS (< filename>). It will read any file in System
Data File (SDF) format. The file may, for instance, have been prepared by means
of a WRITE(ACARDS(--)---) statement or by the DATA processor,

7884 UNIVAC 1100 SERIES SYSTEMS 8-12
UP.NUMBER PAGE REVISION PAGE

WRITE writes a file in card or printer SDF format. The files may then later on
be output on the appropriate equipment by means of executive control statements.
If the file is temporary, output is done automatically at the end of the run.

8.3.7 Device CORE

The device CORE allows editing to and from a string without using an external de­
vice. It has the form:

CORE «string expression »

WRITE edits the output list according to the given or implied format into the
string supplied as the parameter to CORE.

EXAMPLE:

BEGIN
STRING S(24)$
FORMAT F(6I4,A)$
INTEGER ARRAY A(1:6)$
INTEGER 1$
FOR 1=(1,1,6) DO A(I)=I$
WRITE(CORE(S),F,A)$
COMMENT WILL CAUSE S TO BE FILLED AS IF THE FOLLOWING ASSIGNMENT HAD

TAKEN PLACE
S=' 1 2 3 4 5 6'$

END$

READ edits the string according to the given or implied format and the values
assigned to the input list.

EXAMPLE:

BEGIN
STRING S(14)$ INTEGER 1$ REAL R$
FORMAT F(A,D12.2,I2)$
S=' 1234.5678421'$
READ (CORE(S) ,F,R,I)$
COMMENT R NOW HAS THE VALUE 1234.56784 AND I HAS THE VALUE 21$

END$

CORE has the following restrictions:

• CORE cannot be used with the FILE operations.

• On input (READ) only 80 characters may be edited.

• On output (WRITE) only 132 characters may be edited.

• The entire string is used by CORE.

7884 UNIVAC 1100 SERIES SYSTEMS 8-13
UP_NUMBER

EXAMPLE;

STRING S(30)$
S(27,3)='ABC'
WRITE (CORE(S),l,2)$
COMMENT THE 'ABC' HAS BEEN CLEARED TO BLANKS$

PAGE REVISION PAGE

• Note that nothing is transferred to or from the string until the activate (A)
phrase is reached in the format specified •

• If no format is specified, the rules for free format (see 8.6.1) are applied.

8.4 MODIFIER LIST

The modifier list contains directions as to the type of markers to be used on
sequential files.

8.4.1 Possible Modifiers

The list of possible modifiers follows.

MODIFIER PARAGRAPH

EOF 8.4 .5

EOF « parameter>) 8.4 .5

-EOF 8.4 .5

-EOF « parameter>) 8.4 .5

KEY 8.4 .4

KEY « parameter » 8.4 .4

-KEY 8.4 .4

-KEY (< parameter>) 8.4 .4

EOI 8.4 .6

-EOI 8.4 .6

<.. integer expression> 8.3

8.4.2 General Description

When WRITE is used, the modifier list contains a directive to output a certain
marker which later can be searched for using POSITION.

7884 UNIVAC 1100 SERIES SYSTEMS 8-14
UP.NUMBER PAGE REVISION PAGE

When POSITION is used, the modifier list contains the marker to be searched for.

8.4.3 Restrictions

The modifier list cannot be used with the operations READ, REWIND or REWINT.
Modifiers can only be used with sequential files.

8.4.4 Modifier KEY

The modifier KEY is used to specify that a KEY record with a certain identification
is to be output or searched for. It has the form:

KEY « parameter » or KEY

-KEY « parameter» or -KEY

The parameter can either be an arithmetic expression or a string expression. When
the parameter is a string, only the first six characters are used. If the string
is shorter, it is filled with master spaces up to six characters.

The minus (-) sign specifies the backward direction when used with POSITION. It
has no meaning for WRITE.

NOTE: KEY means the same as KEY (0)

-KEY means the same as -KEY (0)

EXAMPLE:

WRITE (FILE('A'),KEY('ABCDEF'))$

WRITE (FILE('A'),KEY('ABCDEFGHK'))$

COMMENT WILL PROCEDURE TWO IDENTICAL KEY RECORDS$

EXAMPLE:

POSITION (FILE('A'),KEY)$

POSITION (FILE('A') ,KEY(O))$

COMMENT HAVE rdE SAME MEANING$

WRITE outputs a KEY record with its identification given by the parameter on the
sequential file.

EXAMPLE:

INTEGER I,J,K,L,M$

WRITE(FILE('F') ,KEY(I) ,J,K,LM$

7884 UNIVAC 1100 SERIES SYSTEMS 8-15
UP.NUMBER PAGE REVISION PAGE

EXAMPLE: (cont)

COMMENT THE KEY RECORD COMES BEFORE THE DATA RECORD$

REWIND (FILE('F'))$

READ (FILE('F'),I,J,K,L,M)$

COMMENT WILL READ THE VALUES INTO I,J,K,L,M IGNORING THE KEY RECORD$

With READ, KEY records are ignored. The action with POSITION is as follows:

• If no minus sign (-) then the action is to search forward until a KEY record
with the given identification is found.

• If there is a minus sign (-) then the action is to search backward until the
KEY with the specified identification is found.

• KEY records are ignored when positioning to EOF or EOI.

• For more information see 8.8.3.

EXAMPLE:

BOOLEAN B$

B = TRUE$

POSITION (FILE('B'), KEY (IF B THEN 10 ELSE 15), KEYNOTFOUND)$

COMMENT WILL SEARCH FORWARD FOR THE KEY RECORD WITH IDENTIFICATION 10.

IF THIS RECORD IS NOT FOUND, THEN THE PROGRAM WILL JUMP TO THE STATEMENT

WITH THE LABEL KEYNOTFOUND$

For more information on labels in POSITION see 8.5.7.

8.4.5 Modifier EOF

The EOF modifier is used to specify that an EOF (end-of-file) record with a certain
identification is to be output or searched for. It has the form:

EOF « parameter» or EOF

-EOF « parameter» or -EOF

The parameter can either be an arithmetic expression or a string. When the param­
eter is a string, only the first six characters are used. If the string is shorter,
it is filled with master spaces up to six characters.

7884 UNIVAC 1100 SERIES SYSTEMS 8 16
UP-NUMBER PAGE REVISION PAGE

The minus sign (-) specifies that the search is to be performed in a backward
direction when used with POSITION. It has no meaning for WRITE.

NOTE: EOF means the same as EOF (0)

-EOF means the same as -EOF (0).

WRITE outputs an EOF record with its identification given by the parameter on Lhe
sequential file. A minus sign has no meaning.

EXAMPLE:

ARRAY A(O:500)$

WRITE (FILE('E'),A,EOF('END'))$

COMMENT WILL WRITE OUT THE RECORD CONTAINING THE VALUES OF A AND THEN THE

EOF RECORD WITH IDENTIFICATION WORD 'END'$

If the READ operation encounters an EOF record, it will exit via a label in its
label list, if such a list exists. See 8.5. The modifier EOF must not be placed
in a READ list.

The action with POSITION is as follows:

• If there is no minus sign (-), then the action is to search forward until an
EOF record with the given identification is found.

• If there is a minus sign (-), then the action is to search backward (only on
certain units) until the EOF record with the specified identification is found.

NOTE: When positioning backwards, the positioning goes to the front of the EOF
record so that the next READ action will encounter the EOF record.

EXAMPLE:

ARRAY A(O: 12)$

POSITION (FILE('4'),-EOF)$

READ (FILE('4'),EOFLB,A)$

COMMENT WILL JUMP TO THE STATEMENT WITH THE LABEL EOFLB SINCE AN EOF

RECORD WAS READ INSTEAD OF A RECORD WITH THE VALUES FOR A$

• EOF records are ignored when positioning to EOI.

7884 UNIVAC 1100 SERIES SYSTEMS 8-17
UP.NUMBER PAGE REVISION PAGE

8.4.6 Modifier EOI

The EOI modifier is used to specify that an EOI (end-of-information) record is to be
output or searched for. It has the form:

EOI or -EOI

where the minus sign (-) indicates that search is to be performed in a backward
direction, when used with POSITION. It has no meaning for WRITE.

WRITE outputs an EOI record.

EXAMPLE:

COMPLEX ARRAY C(-4:200)$

WRITE (FILE{'5')C,EOI)$

COMMENT WILL WRITE ARRAY C TO FILE AND THEN PLACE AN EOI MARKER$

If the READ operation encounters an EOI marker, it will exit via a specific label
in its label list, if such a list exists. See 8.5.

The file is positioned by POSITION in the indicated direction, past the first EOI
record found.

8.5 LABEL LIST

The label list allows the user to specify where he would like his program to go
if certain conditions occur during the input or output operation. If the operation
ends normally, exit is made to the next statement, otherwise it is a run-time error.

A label list consists of from zero to three labels together or scattered throughout
the parameter list to the input/output procedure. Their order is important. An
input list may have three labels, an output list only one.

8.5.1 Action with READ when Device is Implied, CARDS, or ACARDS

ACTION WHEN ACTION WHEN ACTION WHEN AN

NUMBER OF EOF CARD ANOTHER CONTROL ERROR OCCURS

LABELS READ CARD READ INCLUDING INPUT
OR FORMAT ERRORS

0 Terminate program Terminate program Terminate program

1 Jump to this label Jump to this label Termina te program

2 Jump to first label Jump to second label Terminate program

3 Jump to first label Jump to second label Jump to third label

7884 UNIVAC 1100 SERIES SYSTEMS 8-18
UP-NUMBER PAGE REVISION PAGE

8.5.2 Action with READ for Sequential File Devices

ACTION WHEN ACTION WHEN ACTION WHEN
NUMBER OF EOF RECORD EOI RECORD AN ERROR

LABELS READ READ OCCURS

0 Terminate program Terminate program Terminate program
.

I Jump to this label Jump to this label Terminate program

2 Jump to firs t label Jump to second label Terminate program

3 Jump to fi rst label Jump to second label Jump to third label
'----.

8.5.3 Action with READ or WRITE for Indexed File Devices

READ WRITE
WHEN ADDRESS WHEN A DRUM WHEN ADDRESS WHEN A DRUM

NllVIBER BEYOND RANDOM READ ERROR BEYOND RANDOM WRITE ERROR
OF LABELS DRUM LIMITS OCCURS DRUM LIMITS OCCURS

0 Terminate Terminate Terminate Terminate
program program program program

I Jump to this Terminate Jump to this Jump to this
label program label label

2 Jump to second
label, first Terminate
label ignored program

Only one label
3 Jump to second allowed with WRITE

label, first Jump to
label ignored third label

8.5.4 Action with READ or WRITE when Device is CORE

The only errors that can occur when using CORE are format errors in reading. If
no third label is given, the program is terminated. Otherwise, exit is made to the
third label ignoring other labels.

8.5.5 Action with WRITE when Device is Implied, CARDS, PRINTER, PUNCH, or Alternate
Symbiont Files

All errors other than editing errors terminate the program. Editing errors cause a
warning message, but the program continues.

7884 UNIVAC 1100 SERIES SYSTEMS 8-19
U P.NUMBER PAGE REVISION PAGE

8.5.6 Action with WRITE for Sequential File Devices

ACTION ON END OF
NUMBER OF SEQUENTIAL FASTRAND ACTION ON

LABELS OR DRUM FILE TAPE ERROR

0 Terminate program Terminate program

1 Jump to this label Jump to this label
L._._ ..•

8.5.7 Action with POSITION for Sequential File Devices

POSITION
Action Wi th POSITION Parameter

Tape KEY or Ari thmetic Expression EOF EOI Contents
.. ~~~

Physical End Physical End Physical End
Number of of File or of File or of File or
Labels Transmission Transmission Transmission

EOF EOI Error EOI Error Error
..

0 Terminate Terminate Terminate Terminate Terminate Terminate
program program program program program program

1 Jump to Jump to Terminate Jump to Terminate Terminate
label label progra:n label program program

2 Jump to Jump to Terminate Jump to Terminate Terminate
first second program second program program
label label label,

ignore
first
label

3 Jump to Jump to Jump to Jump to Jump to Jump to
first second third second third third
label label label label, label label,

ignore ignore
first firs t and
label second

1--.. _ •. ____ .. _ '-_

EXAMPLE:

BEGIN

COMMENT STOP READING DATA CARDS WHEN EOF CARD READ$

INTEGER ARRAY A(O:lOOO)$ INTEGER 1$

7884 UNIVAC 1100 SERIES SYSTEMS 8-20
UP.NUMBER PAGE REVISION PAGE

EXAMPLE: (cont)

LO: READ (CARDS,A(I),Ll,L2,L3)$

I=I+ 1$ GO TO LO$

L3: WRITE ('ERROR IN CARD' ,1)$ GO TO LO$

L2: WRITE ('EOF CARD MISSING')$ GO TO STOP$

Ll: WRITE ('ALL CARDS READ')$

STOP: END$

8.6 FORMAT LIST

The format list is a means of specifying how values should be edited. It may have
any number of formats. Each format should come before the input or output list to
which it applies. Each format may have one of the three following forms.

NAME PARAGRAPH

Implied or free format 8.6.1

Declared format 8.6.2

Inline format 8.6.3

The devices FILE and DRUM do not allow format lists. A run-time error is caused
if an attempt is made to use a format with these devices.

8.6.1 Implied or Free Format

No format is specified before an input/output list.
input at a time, usually from punched cards, and for
matted input, 80 characters are brought into a "read
storage from which editing can be done.

Eighty character images are
all devices which allow for­
buffer," an area in main

Values are separated by one or more blanks or end of card. Within a string, end of
card is ignored.

The characters encountered are scanned and converted into a value according to
their form. The type of value is determined by the rules for constants as described
in 4.2.4, 4.3,and 4.5.1.

The two exceptions to the preceding rules follow •

• In real constants, a comma (,) or the letter E may be substituted for & as the
power of ten symbol •

• Complex constants should appear as two reals. «, > must not be used).

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS 8-21

EXAMPLE:

Constant

123

TRUE

1.24, -3

1.2483212145

'THIS IS A STRING'

1.245 3.217

Would

PAGE REVISION PAGE

be Edi ted as Type

INTEGER

BOOLEAN

REAL

REAL2

STRING

COMPLEX

If the type of the value thus edited does not match the type of the list element to
which it is to be assigned, a transfer function (if available) is invoked. If the
types match, the values are assigned directly to the list element.

At the end of the image or when an asterisk (*) outside of string quotes is met,
the next image is input.

The action ends when all elements in the input list have had values assigned to
them. Any further information in the read buffer is lost since each free format
READ starts with a new image.

EXAMPLE:

BEGIN

ARRAY X,Y(1:5,l:2)$

REAL A,B$

COMPLEX C$

INTEGER W$

READ(A,B,C,W,X,Y)$

END$

Data card form is:

-7.2 .099 1.0 3.5 362236

1 2 3 4 5 6 ~ NOTE THAT ARRAYS ARE READ BY COLUMN

2.4 3.5 8.6 9.2 5.562,-4 4.398,-3

1.862,-1 12.842 18.623 1.5 1.6 1.7 1.8 1.9 2.0

7884
UP-NUMBER

VARIABLE

A

B

C

W

XO,I)

X(2, I)

X(3,I)

X(4 v I)

X(5, I)

XO,2)

X(2,2)

X(3,2)

X(4,2)

X(5,2)

YO,I)

Y(2,1)

Y(3, I)

Y(4,1)

Y(5,I)

YO,2)

Y(2,2)

Y(3,2)

Y(4,2)

Y(5,2)

UNIVAC 1100 SERIES SYSTEMS 8-22
PAGE REVISION PAGE

VALUES AFTER READ IS PERFORMED

HAS THE VAL UE

-7.2

.099

1.0+i *3.5.

362236

1.0

2.0

3.0

4.0

5.0

6.0

2.4

3.5

8.6

9.2

.0005562

.004398

.1862

12.842

18.623

1.5

1.6

1.7

1.8

1.9

EXPLANATION

Shift to next card since
not all list elements are
filled. A transfer function
is used here.

All characters after an *
are ignored.

Arrays are decomposed by
column.

The value 2.0 is not assigned
to any variable but is lost.

7884 UNIVAC 1100 SERIES SYSTEMS 8-23
UP-NUMBER PAGE REVISION PAGE

EXAMPLE:

BEGIN

STRING S(24)$

INTEGER I,J,K,L,M,N$

S='l -2.1 3.5 8 4 6 '$

READ (CORE(S),I,J,K,L,M,N)$

END$

VALUES AFTER READ IS PERFORMED

VARIABLE VALUE

I 1

J -2

K 4

L 8

M 4

N 6

The action of WRITE is to evaluate the expressions in the order they appear in the
output list and then edit the values according to the following rules. (The format
phrases used are described in 8.6.3).

~

INTEGER

BOOLEAN

REAL

REAL2

COMPLEX

STRING of
length w

Format phrase used

Il2

Xl,B11

R12.5

R12.5

2R12.5

SW,Xm - where m is the number of
blanks required to fill out
a multiple of 12 columns.

7884 UNIVAC 1100 SERIES SYSTEMS 8~24
UP-NUMBER

EXAMPLE:

BEGIN

INTEGER 1$ BOOLEAN N$

REAL2 D$ COMPLEX C$

REAL R$

STRING S(26)$

FORMAT F(S6,X6,I12,Xl,Bll,R12.5,R12.5,2R12.5,S26,X10,Al)$

STRING CONSTANT(6)$

I = 123$ B = TRUE$ R = 1.321&-2$

D = 1234.6789012$

C = < 11.2, -12.4 > $

S = 'IS THE WAY THE RESULTS ARE'$

CONSTANT = 'START'$

WRITE ('START',I,B,R,D,C,S)$

WRITE (F,CONSTANT,I,B,R,D,C,S)$

COMMENT WILL PRODUCE SIMILAR PRINTOUTS$

END$

8.6.2 Declared Format

PAGE REVISION PAGE

A specific sequence of phrases is declared and an identifier attached,which can be
used in the format list. It has the form;

FORMAT < identi fier> « lis t of format phrases>), < identifier> () , $

EXAMPLE:

FORMAT Fl(X10,D7.2,X5,R17.8,Al.l),

F2(A,B6,SlO,I5,X2,N4)$

8.6.3 Inline Format

A list of format phrases enclosed between the delimiters «
eter in the format list.

EXAMPLE:

WRITE («3I3,Al» ,I,J,K)$

» may be a param-

7884 UNIVAC 1100 SERIES SYSTEMS 8-25
UP-NUMBER PAGE REVISION PAGE

8.6.4 Format Phrases with WRITE

Format phrases are used with WRITE, as shown in Table 8-1, to specify the output
form of each parameter as well as the exact position for the placement of the value
of the parameter.

A format phrase has the form:

• Q represents one of the letters given below. Qw.O may be abbreviated to Qw,
and QO.O or QO to Q.

• EI must be an arithmetic expression with the same restrictions as ~.

• E2 must be an arithmetic expression with the same restrictions as Q.

• wand d are positive integers and are defined in Table 8-1.

The print buffer is a string of 132 characters for devices implied, PRINTER and
CORE and 80 for CARDS into which the values given as parameters are edited accord­
ing to the corresponding format phrase.

The following actions occur when any of the restrictions stated above are broken.

1. The print buffer at the error point is output on the appropriate device.

2. The message
EDITING ERROR AT LINE XXXX. CHECK YOUR FORMAT
is output on the PRINTER.

3. The corresponding parameter (if any) is bypassed.

4. Editing continues with the next parameter. The next field starts in the
last column used by the phrase before the error occurred.

Common errors are:

1. Parameter is of a type not allowed.by the format phrase.

2. Field width is 0, too small to accept value, or too large.

The action when the end of the print buffer is reached is:

1. For devices implied, PRINTER or CORE, if an editing phrase will cause
editing beyond column 132 then the print buffer is output and editing
begins again in column 1.

2. For device CARDS or PUNCH, the limit is column 80.

Table 8-1. Format Phrases for WRITE

PHRASE ACTION w or El d or E2
MEANING MIN MAX MEANING MIN

Activate Device implied or PRINTER

AW.d Print 1 line Skip w 0 63 Skip d 0
or lines lines

A(El, E2) before after
printing printing

Device CARDS or PUNCH

Punch 1 card ignored ignored

Device CORE

Transfer as many charac- ignored ignored
ters from the print
buffer into the string
as the length of the
string or print buffer
allows

Boolean Devices implied, PRINTER,
CARDS, CORE, PUNCH

Bw Place as many characters Field 1 132 Not
or as possible of the strings width allowed

B(El) TRUE or FALSE depending (number 80 for
on the value of the of char- CARDS
parameter. Fill the res t ac ters
of the field with blanks used in
if necessary. the pri nt

buffer)

POSITION ALLOWED
IN TYPES OF

MAX FIELD PARAMETERS

31 Nonediting
does not
require a
parameter

Left- BOOLEAN
jus tified

I

I

I
I
I

!
I

I

...... c 00
1J 00 . "" z
c
l:
OJ
f11
AI

1)
:po
Gl
1'1

AI
1'1
<

'" o
z

1)
:po

c
z
<:
:I>
n
.....
<::I
<::I

VI
m
;;0

m
VI

VI
-<
VI
-I
m
~
VI

Gl

moo
I

I'-)
O'l

Table 8-1. Format Phrases for WRITE (cont)

PHRASE ACTION w or El d or E2
MEANING MIN MAX MEANING MIN

Decimal Devices implied, PRINTER,
CARDS, CORE, PUNCH

Dw.d Transfers a decimal Field 2 63 Provide 0
or number with d digits width d digi ts

D(El,E2) after the decimal after
point - leading zeroes decimal
suppressed, minus sign point
if negative.

Eject Devices implied, PRINTER

Ew Eject to logical line w-l. Logical 1 72 Not
or If the present position is line allowed

E(El) past line w-l, ejection is number
to line w-l on the next on page
page. (Usually used to
start at top of a page.)

Devices CARDS, CORE, PUNCH

Ignored

Free Devices implied, PRINTER,
CARDS, CORE, PUNCH

Fw Transfer a field of Field 1 132
or w characters in free width (80

F(El) format. See 8.6.1. for
CARDS
or
PUNCH)

-- -----_ .. _--

POSITION ALLOWED
IN TYPES OF

MAX FIELD PARAMETERS

31 Right- INTEGER
j usti fied REAL

REAL2
COMPLEX

Nonediting
does not
require a
parameter

INTEGER
REAL
BOOLEAN
COMPLEX
REAL2
STRING

-------- ---- ------------

-..J C (Xl
1) (Xl . ."
Z
C
s:
m
(TJ

1I

1)

l>
Gl
(TJ

1I
(TJ

<
III

o
Z

1)

l>
Gl

c::
z
<:
l>
n
<:)
<:)

'" m
AI

m
'" '" -<
'" -t
m
~

'"

(TJ (Xl

I
I\.l
-..J

Table 8-1. Format Phrases for WRIlE (cont)

PHRASE ACTION w or El d or E2
MEANING MIN MAX MEANING MIN

Integer Device implied, PRINTER,
CARDS, CORE, PUNCH

Iw.d Transfer an integer Field 1 63 Base 0
or number with minus sign width for

HEl, E2) if nega ti ve. The value integer
is given to the base d. (e.g.
Where d=O and d=lO have octal
the same meaning. use 8)

Abs 01 ute
position Devices implied, PRINTER,
to column CARDS, CORE, PUNCH

Jw The next phrase will start Column 1 132 Not
or from column w. number allowed

J(E1) 80
for
CARDS
PUNCH

Middle Devices implied, PRINTER,
string CARDS, CORE, PUNCH

Mw The characters of the Field 1 132 Not
or parameter are placed into width allowed

M(El) the middle of the field. 80
If the field width w is for
greater than the string CARDS
length L then the string PUNCH
is preceded by (w-L)/2
blanks. If w is less than
L then the rightmost L-w
characters of the param-
eter are lost.

- ~-----

POSITION ALLOWED
IN TYPES OF

MAX FIELD PARAMETERS

10 Right- INTEGER
jus tified REAL

COMPLEX
REAL2
BOOLEAN
(TRUE 1)
(FALSE 0)

Non-
editing

Center- STRING
justified

I

!

,

I

I

c !Xl
1) 00
'':> Z
c:
s:
ro
f11
II

1)

l>
Gl
m
II
m
<

'" o
z

1)

l>

c:::
z
<:
)l-

n

I:)
I:)

(I)

m
;:0

m
(I)

(I)

-<
(I)

--I
m
~
(I)

Gl

fl100

I
I\.l
00

Table 8-1. Format Phrases for WRITE (cont)

PHRASE ACTION w or El d or E2
MEANING MIN MAX MEANING MIN

Left- ~evices implied, PRINTER,
justified CARDS, CORE, PUNCH
Integer

Nw Edit an integer decimal Field 1 63 Not 0
or number left justified with width allowed

N(E!) a leading minus sign if
negative or a leading
space if positive

Real Devices implied, PRINTER,
CARDS, CORE, PUNCH

Rw.d Edits the parameter into Field 7 63 Number 1
or the form width of

R(El, E2) ±,X.XXX·· ·X,±.XX signi-
d significant digits ficant

Note: w :> d+6. If the digits
parameter is REAL2 and
needs three digits for the
exponent, the no. of
significant digits will
be d-l.

String Devices implied, PRINTER,
CARDS, CORE, PUNCH

Sw The characters of the pa- Field 1 132 Not
or rameter are placed into the width allowed

S(El) field starting from the 80
left. If the string length for
L exceeds the field width CARDS
w then only the leftmost w
characters are transferred;
if w exceeds L then the
rest of the field is blank.

POSITION ALLOWED
IN TYPES OF

MAX FIELD PARAMETERS

10 Left- Same as
justified 1 phrase

31 Right- INTEGER
justified REAL

REAL2
COMPLEX

Left- STRING
justified

i

c Cil
1) 00
Z .!»
C
3:
III
fI1
;0

1)

»
en
1'1
;0
1'1
<
til

0
Z

1)

»
en

c:::
::z
<
~
n

o
o
VI
m
;;0

m
VI

VI
-<
VI
m
~
VI

1'100

I
IV
<0

Table 8-1. Format Phrases for WRITE (cont)

PHRASE ACTION w or El d or E2
MEANING MIN MAX MEANING MIN

Real zero Devices implied, PRINTER,
gives CARDS, CORE, PUNCH
blanks

If value of the param- Field 1 63 Ignored
Uw.d eter is exactly zero width

or then treat as Xw,
U(El,E2) otherwise treat as Dw.d Field 1 63 Provide 0

width d digits
after
the
decimal
point

Integer Devices implied, PRINTER,
zero CARDS, CORE, PUNCH
gives
blanks If value of the param- Field 1 63 Ignored

eter is exactly zero then width
treat as Xw,

VW.d otherwise treat as Iw.d Field 1 63 Base 0
or width for

V(El,E2) integer

Place Devices implied, PRINTER,
blanks CARDS, CORE, PUNCH

Xw Place w blanks into the Number 1 132 Not
or print buffer of allowed

X(El) blanks 80
for
CARDS

POSITION
IN

MAX FIELD

31 Right-
jus ti fied

10 Right-
justified

ALLOWED
TYPES OF

PARAMETERS

INTEGER
REAL
REAL2
COMPLEX

INTEGER
REAL
REAL2
COMPLEX
BOOLEAN

Non-
editing

",--. ---~ --

....,
c 00
1) 00
• .t>
Z
C
s::
ID
1'1
;0

1)

l>
Gl
1'1
;0
1'1
<
~
o
z

1)

l>

c::
z
<
:l>­
n

o
o
VI
m
;;0

m
VI

VI
-<
VI
-4
m
~
VI

Gl
1'100

I
w o

Table 8-1. Format Phrases for WRITE (cont)

PHRASE ACTION w or El d or E2
MEANING MIN MAX MEANING MIN

String Devices implied, PRINTER,
Constant CARDS, CORE, PUNCH

String of Place the characters in
characters the number of columns
enclosed required.
in '

,

- ---------- - -_ .. - ---------

POSITION ALLOWED
IN TYPES OF

MAX FIELD PARAMETERS

Non-
editing

I

'" c 00
'U 00
Z ./l>
C
~
ID
(TJ

:u

'U
»
Gl
(TJ

:u
(TJ

<
~
o
z

'U
»

c::::
:z
<
:l>­
n

o
o
V'
m
;;c

m
V'

V'
-<
V'
-t
m
~
V'

Gl
(TJ00

L,
~

7884 UNIVAC 1100 SERIES SYSTEMS 8-32
UP.NUMBER

EXAMPLE:

Differences between D, Rand U phrases

BEGIN

REAL X, Y,Z$

FORMAT F(D12.4,R12.4,U12.4,A1)$

X=Y=2=3.14159&+1$

WRITE (F,X,Y,Z)$

X=Y=Z;::() .0$

WRITE (F,X,Y,Z)$

END$

Print lines

31.4159

°
EXAMPLE:

3.1416,+01

°
31.4159

Differences between I, N and V phrases

BEGIN

INTEGER I ,J ,K$

FORMAT F(I10,N10,V10,A1)$

I=J=K=-31415$

WRITE (F,I,J,K)$

I=J=K=O$

WRITE (F,I,J,K)$

END$

Print lines

-31415-31415

° °
31415

PAGE REVISION PAGE

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 8-33

EXAMPLE:

Differences between M and S phrases

BEGIN

STRING S(29)$

FORMAT F(S40,Al,M40,Al)$

S='THIS STRING HAS 29 CHARACTERS'$

WRITE (F,S,S)$

END$

Print lines

THIS STRING HAS 29 CHARACTERS

THIS STRING HAS 29 CHARACTERS

8.6.5 Format Phrases with READ

PAGE REVISION PAGE

Format phrases are used to inform READ, as shown in Table 8-2, exactly where the
characters making up the parameter can be found. There is also the special format
F which allows free format to be used for a specified number of characters in the
read buffer.

The read buffer is a string of 80 characters in length into which the contents of
the card (for devices implied or CARDS) or of the string (device CORE) are placed
for editing.

A format phrase has the form:

Qw.d

or

Q(El, E2)

• Q represents a formatting character (see following explanation).

• El must be an arithmetic expression with the same restrictions as w.

• E2 must be an arithmetic expression with the same restrictions as d.

• wand d are positive integers and are defined in Table 8-2.

The following actions occur when any of the restrictions given above are broken.

1. If an error label is present (the third label of the label list), a jump is
made to that label.

Table 8-2. Format Phrases for READ

PHRASE ACTION w or El d or E2
MEANING MIN MAX MEANING MIN MAX

Activate Devices implied, CARDS

A Transfer the contents of Ignored Ignored
1 card into the read buf-
fer. Place the start for
editing at the first char-
acter of the read buffer.

Device CORE

Transfer the contents of Ignored Ignored
the string into the read
buffer. If the string is
greater than 80 characters
transfer only the first 80
characters. If the string
is less than 80 charac-
ters - say L characters,
then the last 80 - L char-
acters in the read buffer
are unchanged. Place the
start for editing at the
start of the read buffer.

Boolean Devices implied, CARDS,
CORE

Bw If the field contains any- Field 1 80 Not
or where in it the string width allowed

B(El) TRUE or the character T (number
or the integer constant 1 of
set the parameter to TRUE. columns
For the string FALSE, reserved
character F or integer 0 for the
set the parameter to FALSE. param-
Anything else in the field eter)
will cause an error.

L.- .-

POSITION ALLOWED
IN TYPES OF

FIELD PARAMETERS

Non-
editing

Non-
editing

BOOLEAN

c <Xl
11 (X)

i: .j>.

c
~
!D
/TI
:II

11
»
Gl
/TI

:II
/TI
< ..
o
z

11
»

c:
z
<
~
n
.....
o
o
VI
m
::tI

m
VI

VI
-<
VI
-4
m
~
VI

Gl
/TI oo

I
w
.j>.

Table 8-2. Format Phrases for READ (cont)

POSITION ALLOWED !

PHRASE ACTION w or E1 d or E2 IN TYPES OF I

MEANING MIN MAX MEANING MIN MAX FIELD PARAMETERS

Decimal Devices implied, CARDS,
CORE

Dw.d Accept a numeric constant Field 1 63 If the 0 31 INTEGER
or in the form of INTEGER, width number REAL

D(El,E2) REAL or REAL2 as described has no REAL2
in 4.2.2. Make it negative decimal COMPLEX
if preceded by a minus point
sign. A comma (,) or the insert a
letter E may be used in- decimal
stead of & as the power of point to
ten symbol. the right

of the
(d+l) at
digit
(counting
from the
righ t) in
the field
else
ignore

Eject Ignored by all devices

Ew
or

E(El)

Free Devices implied, CARDS,CORE

Fw Read the next w columns in Number 1 80 Not INTEGER
or the manner described in of allowed REAL

F(El) 8.6.1. (Implied or free columns BOOLEAN
format) to be COMPLEX

read in REAL2
this way STRING

-..J
C 00
'U 00 . ~
z
c
!:
OJ
171
:0

'U
»
Gl
171

:0
171
<

'" o
z

'U
»
Gl

c::
:::z::

<: »
n
....
o
o
V'
m
;;0

m
V'

V'
-<
V'
....j
m
~
V'

171 00
I
w
(J'1

Table 8-2. Format Phrases for READ (cont)

PHRASE ACTION w or El d or E2
MEANING MIN • MAX MEANING MIN

Integer Devices implied, CARDS,
CORE

IW.d (1) Accept a numeric con- Field 1 63 Base of 0
or stant in the form of width integer

HE1, E2) INTEGER, REAL, or REAL2 (d=O is
as described in 4.2.2. the same
Make it negative if pre- as d=1O)
ceded by a minus sign.

(2) Give the value a type
according to the form
of the number read
(see 4.2.3 for form
of numbers).

(3) Convert the number to
integer.

(4) Convert the result to
the type of the param-
eter.

Posi tion Devices implied, CARDS,
to CORE
column

Jw The next field to be edited Column 1 80 Not
or starts in column w. number allowed

J(E1) (Useful for reread). of start
of next
field

Middle
String

Mw Exactly the same as S.
or

M(El)
.

POSITION ALLOWED
IN TYPES OF

MAX FIELD PARAMETERS

10 INTEGER
REAL
REAL2

Non-
editing
phrases

-..I
C co
1] co . ~ z
c
3:
CD
(11

II

1]

»
G\
(11

II
(11

<
en
o
z

1]

»
G\

c:
z
<:
>
n

o
o
VI
m
;.a

m
VI

VI
-<
VI
-4
m
3:
VI

(11 co
I
~

Table 8-2. Format Phrases for READ (cont)

PHRASE ACTION w or El d or E2
MEANING MIN MAX MEANING MIN

Integer

Nw Exactly the same as Iw.
or

N(El)

Real

RW.d Exactly the same as D.
or

R(El, E2)

String Devices implied, CARDS,
CORE

Sw Transfer as many char- Field 1 2047 Not
or acters as possible from width allowed

S(El) the read buffer to the (number
string given as param- of
eter. Start with the columns
leftmost character in the reserved
field into the leftmost for the
character in the string. string)
If the field is shorter
than the string, fill the
rest of the string with
blanks. If the string is
shorter than the field
then the rest of the
characters in the field
are lost.

Note: A string quote is
not taken as a string de-
limiter, but transferred
like any other character.

~ -

POSITION ALLOWED
IN TYPES OF

MAX FIELD PARAMETERS

STRING

c Oil
11 00

Z "'" c
~
m
fl'I
II

11
l>
Gl
fl'I

II
fl'I

~
<II

o
Z

11
l>

c:::
z
-<
:s>­
o

o
o
c.n
m
;::0

m
c.n
c.n
~
c.n
-I
m
~
c.n

Gl
fl'Ioo

I
w
-..J

Table 8-2. Format Phrases for READ (cont)

PHRASE ACTION w or El d or E2
MEANING MIN MAX MEANING MIN

No change Devices implied, CARDS,
if blanks CORE
real

(1) If the field re- Field 1 63 Ignored
UW.d served is completely width
or blank treat as Xw.

U(El,E2) (2) Otherwise treat as Field 1 63 Same as 0
Ow.d. width for D

No change Devices implied, CARDS,
if blanks CORE
integer

(1) If the field reserved Field 1 63 Ignored
VW.d is completely blank width

or treat as Xw.
V(El,E2) (2) Otherwise treat as Iw. Field 1 63 Same as 0

width for I

Blanks Devices implied, CARDS,
CORE

Xw Skip the next field of w Field 1 80 Not
or columns. width allowed

(E1)

String
Constant

String of Completely ignored.
characters
enclosed
by , ,

-

POSITION ALLOWED
IN TYPES OF

MAX FIELD PARAMETERS

INTEGER
REAL
REAL2

31 COMPLEX

INTEGER
REAL
REAL2

10 COMPLEX

Non-
editing

Non-
edi ti ng

i

I

C -..J
11 00
• 00
Z -1>0
C
~
ID
III
:II

11
l>
Gl
III

:II
III
<
en
o
Z

11
l>
Gl

c:
z
<
> n

o
o
Vl
m
;;0

m
Vl

Vl
-<
Vl
-I
m
~
Vl

III 00

I
w
00

7884 UNIVAC 1100 SERIES SYSTEMS 8-39
UP.NUMBER PAGE REVISION PAGE

2. If no error label is present, the read buffer is printed on the printer and
a marker is printed showing the exact position where the error occurred and
the line number of the program being executed.

Common errors are:

1. Parameter is of a type not allowed by the format phrase.

2. Restrictions on w or d have been broken.

3. The characters in the field specified are illegal or do not have the correct
form. (For example spaces are not allowed in a numeric constant.)

8.6.6 Repeat Phrases

8.6.6.1 Definite Repeats

Instead of writing out the same format phrase or group of phrases several times, it
is possible to specify the number of times the phrase or phrases should be referred
to by using a repeat phrase. It has the form:

nQw.d

n(Qw.d.Qw.d •••.•••• Qw.d)

:E: (Qw.d)

:E:(nQw.d.:E:(Qw.d),:E:(nQw.d))

etc.

• n is a positive integer constant.

• Q is any format phrase (editing or nonediting).

• E must be an arithmetic or Boolean expression.

• wand d have the meanings given in 8.6.4 and 8.6.5.

The following rules apply to definite repeats:

1. The expression E is evaluated when the repeat phrase is activated. That
is when the format phrase is required, before the parameter is evaluated.

2. If E > 0 the format phrase (S) are repeated that many times. If E = TRUE
the phrases are taken once.

3. If E ~ 0 or E = FALSE the format phrase(s) which this repeat controls will
be skipped.

7884 UNIVAC 1100 SERIES SYSTEMS 8-40
UP.NUMBER PAGE REVISION PAGE

EXAMPLES:

BEGIN

COMMENT PRINT AN ARRAY WITH ONE COLUMN PER LINE$

INTEGER N, M$ READ(N,M)$

BEGIN

ARRAY X(l:N,l:M)$

FOHMAT F6(:M:(:N:(R16.8),Al))$

WRITE (F6,X)$

END$

END$

8.6.6.2 Indefinite Repeats

It is possible to repeat certain groups of format phrases an indefinite number of
times depending only on the number of elements in the input/output list.

The groups of phrases to be repeated are enclosed in parentheses without a repeat
expression preceding. The delimiters « » of an inline format and the outer-
most brackets of a declared format also denote indefinite repeat.

NOTES: 1. Indefinite repeat groups should in most cases have an activate (A)
phrase in them since all format phrases beyond the group are ignored.
If they do not, a warning message is given.

2. Errors can occur when two cards are read instead of one because the
input list is longer than the number of phrases in the format.

3. Attempts to cause an indefinite repeat of a format containing only
nonediting phrases will cause the format to be cancelled.

EXAMPLES:

BEGIN

COMPLEX ARRAY COMPARRAY (1:50,1:50)$

INTEGER SIZE, I$

FORMAT FREAD(A, Il2, (A, 10R8 .2)),

FWRITE('COMPARRAY OF SIZE',I12,

Al.2,(lO(R9.2,X2),Al))$

7884 UNIVAC 1100 SERIES SYSTEMS 8-41
UP.NUMBER

EXAMPLES: (cont)

READ (CARDS,FREAD,SIZE,FOR I=(l,l,SIZE)

DO FOR J=(l,19SIZE) DO COMPARRAY A(I,J))$

COMMENT WILL READ IN THE PART OF THE ARRAY REQUIRED$

WRITE (PRINTER,FWRITE,FOR I=(l,l,SIZE)

DO FOR J=(l,l,SIZE) DO COMPARRAY(I,J))$

COMMENT WILL PRINT OUT HEADING AND THEN THE PART OF

THE ARRAY REQUIRED$

END$

BEGIN

INTEGER I$

COMPLEX C$

FORMAT FREAD(A,I12,R12.6)$

READ (CARDS,FREAD,I,C)$

COMMENT WILL READ TWO CARDS SINCE COMPLEX VALUES REQUIRE

TWO PHRASES$

END$

8.7 INPUT/OUTPUT LIST

PAGE REVISION PAGE

The input list is an ordered set of variables into which values can be transferred.
The output list is an ordered set of expressions which can be evaluated and their
values transferred to the required output device.

The list may have two forms:

Declared lis t

Inline lis t

8.7.1 Inline List

The inline list gives the input or output statement a list of expressions to or from
which values may be transferred. Any ordered group of expressions which are param­
eters to an input or output procedure is an inline list.

7884 UNIVAC 1100 SERIES SYSTEMS 8-42
UP.NUMBER PA GE RE VISION PA G E

EXAMPLES:

FORMAT F(A,3R12.2)$

REAL X,Y,Z,A,B,C$

WRITE (X,Y,Z)$

READ (CARDS,F,EOFLB,A,B,C)$

EOFLB: COMMENT THE EXPRESSIONS X,Y,Z,A,B,C, ARE ALL MEMBERS OF INLINE LISTS$

8.7.2 Declared List

When several input or output calls require the same expressions in the same order,
a declared list may be used. It has the form:

LIST < identifier> (< lis t elements »$

It must obey the rules for declarations. Several lists may use one declaration.

EXAMPLES:

LIST Ll(FOR 1=(1,1,5) DO A(I),X,Y),

L2(IF B THEN X ELSE Y,Z)$

8.7.3 Rules for Lists

8.7.3.1 Arrays

An array identifier may be used without subscripts in a list, i.e., every element
in the array is to be used in the list.

For multidimensional arrays, the leftmost subscript varies most frequently, i.e.,
a two-dimensional array will be decomposed by columns.

EXAMPLE:

ARRAY X(l:2,1:3,1:4)$

WRITE (CARDS,X)$

COMMENT WILL PUNCH OUT THE ELEMENTS IN THE FOLLOWING ORDER

X(l,l,l), X(2,1,1), X(l,2,1), X(2,2,1),

X(l,3,1), X(2,3,1), X(l,1,2), X(2,1,2),

X(l,2,2), X(2,2,2), X(l,3,2), X(2,3,2),

7884 UNIVAC 1100 SERIES SYSTEMS
UP.NUMBER

EXAMPLES: (cont)

X(1,1,3), X(2,1,3), X(l,2,3), X(2,2,3),

X(1,3,3), X(2,3,3), X(l,1,4), X(2,1,4),

X(1,2,4), X(2,2,4), X(1,3,4), X(2,3,4)$

8.7.3.2 Other Expressions

PAGE REVISION
8-43

PAGE

The expression is evaluated at the time the list element is referenced. Expressions
other than variables or array names may not be used as list elements in an input
list.

8.7.3.3 Format in Lists

A format identifier or inline format may be placed in a declared list.

8.7.3.4 List with MAX and MIN

The parameters to MAX and MIN are given in the form of declared or inline lists,
see 7.4.1.

8.7.4 Sublists

Lists or list elements may be grouped so that they can be repeated in a specific
order. Sublists are formed by enclosing the list elements with brackets.

EXAMPLE:

LIST Ll(FOR 1=(1,1,2) DO (A(I),B(I)))$

NOTE: List elements are expressions and therefore cannot be enclosed within
BEGIN END. Sublists must be used whenever such a construction is
required.

8.8 INPUT/OUTPUT PROCEDURE CALLS

8.8.1 READ

READ is used to specify that values are to be input according to the given param­
eters. It has the form:

READ(< device> , < format lis t > , < input lis t > ,< label lis t >)$

All devices are allowed except PRINTER, APRINTER, PUNCH, and APUNCH (see 8.3). Up
to three labels may be used. See 8.5.

7884 UNIVAC 1100 SERIES SYSTEMS 8-44
UP.NUMBER PAGE REVISION PAGE

8.8.2 WRITE

WRITE is used to specify that values are to be output according to the given
parameters. It has the form:

WRITE «device>,<format list>,<modifier list>,<output list>,<label list»$

All devices are allowed, see 8.3.

EXAMPLE:

WRITE(FILE('A') ,ERRLB,EOF('XYZ') ,X,Y,Z)$

WRITE(CORE(S), «3RI2.2, A» ,X, Y, Z)$

Only one label is allowed. See 8.5.

8.8.3 POSITION

POSITION is used as follows:

• Sequential file - To position a file to a previously written KEY or EOF record,
to the end of information or advance it over a given number
of records.

• Indexed file - To position a file to a position specified by a file index.

The POSITION statement has the form:

POSITION(FILE(< filename» ,< modifier list>,<integer expression>,<label list»$
POSITION(FILE«filename>, < fileindex»)$

Only FILE or DRUM are allowed as devices. See 8.3. Up to three labels may be
used. See 8.4 and 8.5.

The integer expression specifies the number of records to be positioned. If it is
positive, the positioning is done in the forward direction. if negative in a back­
wards direction. Certain tape units cannot be positioned backwards. See 8.4.3.

8.8.4 REWIND and REWINT

REWIND positions a file to its starting position, and releases its buffers. REWINT
does the same as REWIND except when the file is on magnetic tape. In that case, the
tape is also locked, so that it can no longer be used.

REWIND(FILE(< filename »)$

REWINT(FILE(< filename »)$

REWIND(FILE(< filename> ,< fileindex »)$

Only FILE or DRUM devices are allowed with these operations. See 8.3.6.

7884 UNIVAC 1100 SERIES SYSTEMS 8-45
UP.NUMBER PAGE REVISION PAGE

8.8.5 MARGIN

MARGIN is used to change the margin settings on the printer. Depending on the
size of paper used at an installation, there will be a certain number of lines per
print page. Procedure MARGIN allows the user to specify which is to be the first
line and which is to be the last line on page. It can also be used when special
print forms such as labels or envelopes are being printed. It has the form:

MARGIN(< control string»

• control string is a string containing one or more control functions.

Spaces are ignored prior to the first, or between functions. Each function begins
with a single letter, followed by a comma, followed by any special information
required, and terminated by a period. The format of the information character
string varies according to the function but must not contain a period.

The following control functions are allowed:

• L - Space printer to logical line nn, where logical line is defined as the line
number relative to the top margin setting (see M following). All line
positioning and printing is performed within the defined margin settings.
(The bottom logical line of a page is identical to the top logical line -1
of the next page.) Positioning to a logical line on printers with space­
print operation is to logical line n - 1; therefore when n = I, the logical
line setting is the last line of the current page. This is also true when
n = 0, or when n is greater than the length of the logical page. When n is
less than or equal to the current line of the current page, the succeeding
page is positioned to the logical line n - 1. The format of this function
is:

L,nn.

• H - Initiate heading printing. This function provides the user with an auto­
matic means of printing a heading on each succeeding page of his print file.
The format of this function is:

H, option, page, text of heading.

If the option field contains the letter X, a page and date will not be
printed as part of the heading. Option N turns the heading off. A page
count is maintained by the processing symbiont. When the page field is
blank, the page count current to the field is used to begin page numbering.
When coded, page is made the page number. In addition to the page number,
the current date is included in the heading, and both will appear in the
upper right corner of each page. This position of the heading is the
second line above logical line 1. If the upper margin is one line or
non-existent, no heading is printed. As many as 17 words of heading text
may be supplied •

• M - Set margins. This function supplies the information for readjusting page
length and top and bottom margins. The standard print page definition is
66 lines per page with a top margin setting of six lines, and a bottom
margin setting of three lines. Note that the top and bottom margins refer

7884 UNIVAC 1100 SERIES SYSTEMS
UP.NUMBER PAGE REVISION

8-46
PAGE

to the number of blank lines at the top and bottom of the page respectively.
Thus the standard margin setting is 66,6,3. giving 57 printable lines. The
page definition is assumed at the beginning of each print file. When the M
function is used, a page alignment procedure is initiated with the page
length parameter. This function is also used to return to the standard
page length. The format of this function is:

M, length, top, bottom.

• W - Set maximum line width to allow error checking on image length at run-time.
The standard of 22 words is assumed unless the W control is used. The
format of the function is:

W, width.

where width specifies the maximum line width in words. The program is
errored out when W is exceeded.

• S - Special form request. This function enables the user to instruct the
operator to load a special form required to process the print of punch
file. The format of this function is:

S, message text.

where the message text can be up to ten words long. When this function
is encountered by the processing symbiont, the message is displayed on
the operator's console in the form:

run IO/filename c/u options

message text

The user's message text is displayed on the line following the symbiont
message. The options available to the operator for answering the message
depend on the symbiont. The following options are included in the 0755
HSP, Card Punch and the 1004 Printer and Card Punch symbionts:

EXAMPLE:

A - Begin processing the output file.

Q - Return file to symbiont queue. The print or punch file will be
passed temporarily and placed behind the next file of this
symbiont queue.

Set the margin to print 72 lines per page:

MARGIN('M,72,0,0. ');

UNIVAC 1100 SERIES SYSTEMS 9-1 7884
UP.NUMBER PAGE REVISION PAGE

9. COMMENTS AND OPTIONS

9. 1 COMMENTS

The use of explanatory messages is encouraged to aid readability of the program and
to help in finding errors in the source text. The following are methods of using
comments:

• After BEGIN or any $ or ; the following construction may be placed.

• COMMENT any characters not including ; or $ followed by ; or $

• After END comments can be placed. However, the characters ; or $ or the
words END or ELSE cause the ending of the comment.

• In a procedure declaration, comments may be placed in the formal parameter
list by substituting the comma with the construction:

)<letter string>: (

(See Section 7 .)

EXAMPLE:

COMMENT THIS PROGRAM SHOWS COMMENTS$

BEGIN COMMENT CAN COME AFTER BEGIN$

INTEGER 1$

COMMENT CAN COME AFTER DECLARATION$

PROCEDURE SHOW (K) WORDS CAN BE PLACED HERE: (L)$

REAL K,L$

K=L$ COMMENT CAN COME AFTER A STATEMENT$

IF I GTR 50 THEN

BEGIN

SHOW (I,50-I)$

END YOU CAN ALSO PUT CO~ThffiNTS HERE

ELSE

7884 UNIVAC 1100 SERIES SYSTEMS 9-2
UP.NUMBER PA GE RE VISION PA G E

EXAMPLE: (cont)

SHOW (I, 50+ I) $

END OF TIllS PROGRAM SHOWING COJV'lI\1ENTS$

NOTE: A comment may come before the first BEGIN of a program.

9.2 OPTIONS

It is possible to control certain actions of the ALGOL compiler and run-time system
by placing a specific option letter after the masterspace on the ALGOL processor
card or the XQT card. Only options that are particular to NU ALGOL are described
in this section. For the use of other options, consult the manual of the relevant
operating system. At compile time, these same options may also be turned on by
using a statement of the form:

OPTION 'string of option letters'$

They may be turned off by using:

OPTION 'string of option letters' OFF$

These statements are accepted wherever declarations or statements are allowed.

NOTE: OPTION may come before the first BEGIN.

9.2.1 Processor Card Options

The following are the available options on the processor card:

A - Accept the compiled program even if errors are found. No warning messages
are given.

B - List serial number and level number at the beginning and end of each block
in the program during compilation.

E All external procedures when they are compiled require this option.

F - The compiled code is listed and punched into cards which are accepted by
the assembler.

L - The assembler code produced by the compiler will be listed. If there is
no N option, the source code will also be listed. The instructions
resulting from each line of ALGOL text will appear just before the
corresponding source line.

N - The source text listing is suppressed. No warnings are given, but error
messages are printed together with the source lines to which they apply.

o - This option has the same effect as R.

7884 UNIVAC 1100 SERIES SYSTEMS 9-3
UP.NUMBER PAGE REVISION PAGE

R - This option removes the instructions which check whether the subscript
being used is within the bounds declared for the array. It is suggested
that this option should not be used during debugging. Production programs
can benefit greatly from the saving in time when the check is removed.

T - At the end of the listing, times are given for the four passes of the
compiler and the total time taken for the compilation. The number of words
used on drum for the intermediate output from the passes of the compiler is
also printed.

v - Suppress warning messages.

W - Correction cards used to update a symbolic version are listed before the
normal source text listing.

X If errors are detected in the compilation v the entire run is aborted.

Z - No run-time diagnostic information is prepared. When this option is used,
a PMD card may not be used. The program will not keep track of the line
numbers being executed so that run-time error message will not be completed.
The use of this option saves time and core space in production programs,
but should not be used when debugging.

9.2.2 XQT Card Options

The following are the available options on the XQT card:

A - Accept the program for execution even though errors have been found during
compilation or allocation. If compile-time errors have occurred v execution
will proceed up to the point of the first error and then the program is
terminated with the message:

SOURCE LANGUAGE ERROR AT LINE XXX

I - List data images as they are read. The line number of the READ statement
and'iJ'iJ'iJ'iJ'iJ'iJare inserted in front of the image.

X - Abort the rest of the run if errors occur.

7884 UNIVAC 1100 SERIES SYSTEMS 10-1
UP.NUMBER PAGE REVISION PAGE

10. ERROR MESSAGES

10.1 GENERAL

The compiler tries to find and properly diagnose all errors in the text given to it.
Sometimes the syntax is so incorrect that it confuses the compiler to the point
where spurious messages are printed or certain internal errors may occur. When such
internal errors occur, all other errors diagnosed should be corrected. In most
cases, the internal error will then disappear.

Where possible, the exact syntax causing the error is marked with an asterisk. The
following list suggests the possible problem and if possible gives a reference to
where the required rules are explained.

There are three levels of errors.

1. Warnings - are given when a construction may cause an error if not used
correctly, or the construction is inefficient. They are not counted in
the total given in the line:

xx ERROR(S) WERE FOUND

Warnings can be suppressed by using the V option or as a side effect of the
A or N options.

2. Errors - These are the usual diagnostics given when the compiler cannot
translate the given source code into meaningful object code. The pro­
gram produced by the compilation may be loaded and executed by using
an A option on the XQT card but when a statement containing an error is
executed, a jump will be made to a run-time error routine which termi­
nates the program.

3. Compilation killers - For certain internal compiler errors or table over­
flows and such unresolvable problems as IMPROPER BLOCK STRUCTURE,
compilation is immediately stopped. Not all errors are detected. In
these cases an XQT card even with an A option will do nothing because no
program has been produced.

10.2 COJ';lPILE-TIME ElmOR ~lESSAGES

Compile-time error messages are given in Table 10-1.

7884
UP.NUMBER

ERROR
NUMBER

1

2

3

4

5

6

7

8

9

10

11

12

15

16

UNIVAC 1100 SERIES SYSTEMS 10-2
PAGE REVISION PAGE

Table 10-1. Compile-Time Error Messages

MESSAGE

Illegal number

Illegal character

Correction card error

Improper use of reserved
identifier

Too long string

Missing delimiter

Wrong delimiter

Improper operand, or
operand is missing

Missing operand

Illegal construction

Missing specification of
< name of variable>

Pass 1 stack overflow

Double specification of
<name of variable>

Illegal value specification
of < name of variable>

POSSIBLE PROBLEM

The number does not conform to the syntax
of 4.2.3.

Some special characters cannot be used
outside strings or comments. (See 2.1.)

Line number on correction cards is not in
ascending order.

Reserved identifiers (see 2.2) may only
be used with their special meaning.

String constants may not have more than
200 characters. A string quote may be
missing or an extra one has been punched.

Missing operator such as + or - or missing
$ on previous statement.

The compiler is expecting some other de­
limiter. Also VALUE must come before all
specifications.

Usually two operators have been placed
together. For example A>!'-B is not allowed.
A*(-B) must be used.

Improper construction of an IF statement.
(See 5.5.)

Often caused by a mismatched number of left
and right parentheses or any other non­
standard construction.

No specification given for a parameter to
a procedure. (See 7.1.4.)

An internal compiler error usually caused
by other errors or a too large program.

A parameter to a procedure has been speci­
fied twice. (See 7.1.)

LABEL, LIST, FORMAT, SWITCH and prrOCEDURE
cannot be given a value specification.

7884
UP.NUMBER

ERROR
NUMBER

17

18

19

20

21

22

UNIVAC 1100 SERIES SYSTEMS 10-3
PAGE PAGE REVISION

Table 10-1. Compile-Time Error Messages (cont)

MESSAGE

Missing formal parameter

:;'Warning':' Improper
termination - remaining
cards ignored

::'Warning>!' Missing end -
extra end inserted

Too many nested
BEGIN-END pairs

Improper block structure

Too many errors - compil­
ation suppressed

POSSIBLE PROBLEM

A specification has been given for a
variable which is not a parameter to the
procedure. Often it should be a declar­
ation of a local variable and come inside
the BEGIN of the procedure.

All BEGIN's have been matched wi th END's
but still some cards remain.

The block structure may not be quite correct
or the final END has been forgotten.

Only 34 nested BEGIN-END pairs or 9 block
levels are permitted.

Some BEGIN's or END's missing, possibly
caused by other errors.

Have you read the programmer's guide?

23 Double declaration of Two identifiers in which the first twelve
<name of variable> at line or less characters are the same, have been
<line of second declaration> declared in the same block.

24

25

26

27

29

30

31

Missing declaration of
< name of variable>

Redeclaration stack
overflow

Interphase 1 error

Internal error

Accumulator stack over­
flow (simplify this
expression)

Mixed types in left part
list

Illegal (after < name of
variable> a t line < line of
declaration>

An identifier has been misspelled or the
user has forgotten to declare it.

There are too many identifiers with similar
spellings in nested blocks.

An internal compiler error. Check for other
serious errors.

The user has totally confused the compiler.
Correct all other errors and try again.

There are too many intermediate results
in an arithmetic expression for the com­
puter to handle.

In multiple assignments all variables must
have the same type.

Possibly a delimiter is missing or a simple
variable is being used with a subscript.

7884
UP.NUMBER

ERROR
NUMBER

32

33

34

35

36

37

38

39

40

41

42

UNIVAC 1100 SERIES SYSTEMS 10-4
PAGE REVISION PAGE

Table 10-1. Compile-Time Error Messages (cont)

MESSAGE

Wrong number of subscripts
to array

Improper type in expression

Wrong parameter kind to
procedure < procedure name>
at line<line of declaration>

Wrong parameter type to
procedure < procedure name>
at line <line of declaration>

Illegal assignment

Constant table overflow

Wrong number of parameters
to procedure <procedure
name> at line <line of
declaration>

Improper type in bound pair
list of array <array name>

:;'Warning~~ Do you want to
compare constants?

Improper type before THEN

Improper relation between
complex expressions

POSSIBLE PROBLEM

The number of subscripts used must always
match the number of dimensions given for
an array in the declaration.

Only certain transfer functions exist be­
tween different variable types. This
expression requires one which does not
exist. (See 7.4.)

Formal and actual parameter kinds must
match. For example the actual parameter
may not be an array identifier when the
formal one is a simple variable. (Line 0
refers to a standard procedure.)

The type of an actual parameter must
match that of its formal parameter unless
a transfer function exists. Note that no
transfer functions are allowed for arrays.
(Line 0 refers to a standard procedure.)

A transfer function which does not exist
has been called for.

The program contains a constant expression
which is too complicated, or the total
number of constants in the program is too
large.

The number of parameters in a procedure
call does not match the declaration.
(Line 0 refers to a standard procedure.)

Only INTEGER, REAL and REAL2 are allowed
types for subscript bounds in array
declarations.

Possible punching error.

Only Boolean expressions are allowed
before the delimiter THEN.

Complex numbers can only be compared for
equality or nonequality.

7884
UP.NUMBER

ERROR
NUMBER

43

44

45

46

47

48

49

50

51

52

53

54

UNIVAC 1100 SERIES SYSTEMS 10-5
PAGE REViSION PI GE

Table 10-1. Compile-Time Error Messages (cont)

MESSAGE

Undefined transfer function

Operand stack overflow

Improper type of controlled
variable <name of variable>
at line <line of declaration>

Warning Zero step

Improper type in FOR list
element

Wrong type of subscript for
array <array name>

Operator stack overflow

FOR stack overflow

Warning Reference into
FOR statement by label
<label name> at line
<line of declaration>

';'Warning':' Test ·for equality
between nonintegers may be
meaningless

Too many different
identifiers

Pass 2 stack overflow

POSSIBLE PROBLEM

An implicit nonexistent conversion has
been called for. (See 7.3.)

Internal compiler error. Check carefully
for other errors. The program is too
complicated.

The controlled variable in a FOR loop
may only be of type INTEGER or REAL.

The controlled variable will not be
changed in a FOR statement when the step
is zero.

Only INTEGER and REAL types are allowed
in a FOR list.

Only INTEGER, REAL and REAL2 are legal
types for subscripts.

Internal compiler error. Check carefully
for other errors. The program is too
large and complicated.

Only 24 nested FOR statements are allowed
or a FOR list may contain about 40 elements

Jumps to labels in FOR statements are
hazardous since the loop control may not
be initialized correctly.

Variables of types REAL, REAL2 and COMPLEX
are only approximations to a value and
hence may not be exactly equal.

The number will depend upon how much the
compiler is allowed to expand dynamically.
Normally, several thousand identifiers are
allowed for.

Internal compiler error. Check for other
errors which may have caused the compiler
confusion. The program may have too many
declarations.

7884
UP.NUMBER

ERROR
NUMBER

55

56

57

58

59

60

61

62

63

64

65

66

67

68

UNIVAC 1100 SERIES SYSTEMS 10-6
PAGE REVISION PAGE

Table 10-1. Compile-Time Error Messages (cont)

MESSAGE

Unrecoverable error in
ALGOL drum file

Overflow in ALGOL drum
files-program too large

Improper format construction

Zero replica tor

Missing right or extra left
parenthesis

Missing left or extra right
parenthesis

Improper field specjfication

Warning Missing activate
within indefinite repeat

Warning Specified field
is longer than one line

Format stack overflow

Warning Time consuming
conversion to integer sub­
script in array < array name>

Illegal format character

This feature is not imple­
mented

Unrecoverable error in
source input files

POSSIBLE PROBLEM

Internal compiler error. Check for other
errors which may have confused the com­
piler - or for a machine failure.

The intermediate outputs from the compiler
are larger than the scratch area on drum.

Some rule for formats has been broken
(see 8.6).

Although replicator expressions may have
the value zero, the constant replicator
zero has no meaning.

The number of right and left parentheses
used in a format do not match.

The number of right and left parentheses
used in a format do not match.

The field width part of a format phrase
(w) is not formed properly. (See 8.6.)

Indefinite repeat formats usually require
an A-phrase to perform properly.

The field width part of a format phrase
(w) has little meaning if it exceeds 132
columns.

Only 10 sets of nested brackets are
allowed in a format.

It is allowable to use noninteger ex­
pressions for subscripts, but it is very
slow.

Only certain characters ate meaningful
within a format. (See 8.6.)

The construction cannot yet be compiled.

Trouble with reading symbolic version of
program from the source input file.
Usually a hardware error.

7884 UNIVA.C 1100 SERIES SYSTEMS 10-7
UP.NUMBER PAGE REVISION PAGE

Table 10-1. Compile-Time Error Messages (cont)

ERROR
NUMBER MESSAGE

69 Interphase 2 error

70 Pass 1 stack underflow

71 Operand stack underflow

72

73

74

75

76

77

78

79

Improper use of formal
parameter < parameter name>
at line < line of
specification>

Conversion to integer causes
overflow

Improper parameter to string
<s tring name>

Too many parameters to
string < string name>

Operator stack underflow

Warning Inconsistent use
of dimensions to array
< array name>

Parameter out of range in
procedure
<procedure name >

Missing BEGIN

POSSIBLE PROBLEM

Internal compiler error - check for other
possible errors.

Internal compiler error - check for other
possible errors.

Internal compiler error - check for other
possible errors.

A formal parameter not specified as a
procedure is being used like a procedure.
Example:

PROCEDURE P(X);

REAL Xi

BEGIN Xi END;

REAL and REAL2 constants may have a largest
absolute value of about 1038 or 10308
respectivelyv but integer constants have a
largest absolute value of only about lOll.

The parameters to a string may only be
INTEGER, REAL or REAL2 expressions.

Strings require either no parameters or
only a starting character position and the
length. (See 4.5.)

Internal compiler error - check for other
possible errors which could have confused
the compiler.

A formal array has been used with different
numbers of subscripts.

Certain standard procedures require
parameters to have value in a certain
range.

All programs except externally compiled
procedures must start with BEGIN. It is
not allowed to place a label before the
first BEGIN.

7884
UP.NUMBER

ERROR
NUMBER

80

81

82

83

84

85

86

87

88

UNIVAC noo SERIES SYSTEMS 10-8
PAGE REVISION PAGE

Table 10-1. Compile-Time Error Messages (cont)

MESSAGE

Warning Operand for / /
is not integer

Division by zero

Too many string constants

Too many labels

Too many external references

Too many procedure
parameters

Prototype table overflow

Too many external procedures

Too many array and string
declarations

POSSIBLE PROBLEM

Integer divide (/ /) is only allowed for
integers. Conversion will be attempted.
This warning is given to the rules for
ALGOL 60.

Division by zero has been attempted in
a constant expression being evaluated by
the compiler.

There may be at most 200 string constants
in a program except for the ones used in
formats.

A program may contain 200 label declar­
ations.

A program may reference 50 external pro­
cedures including standard procedures and
system subroutines.

A procedure may have up to 63 parameters.
For LIBRARY procedures the number is
determined as shown in 7.3.4.2.

The program contains too many and too
large blocks or procedures.

Only 10 external procedures may be com­
piled within the same element.

The program has too many arrays or strings
with different bounds.

10.3 RUN-TIME ERROR MESSAGES

Because the evaluation of many expressions is left to the run-time routines, certain
errors can occur. These are caught by the run-time system and the appropriate
messages given, together with the line number of the element where the error oc­
curred. Table 10-2 lists the run-time error messages.

7884
UP.NUMBER

ERROR
NUMBER

o

1

2

3

4

5

6

7

UNIVAC 1100 SERIES SYSTEMS 10-9
PAGE REVISION PAGE

Table 10-2. Run-Time Error Messages

MESSAGE

Internal error

Improper type conversion

This feature is not
implemented

Incorrect number of
parameters

An attempt has been made
to store into a constant

An attempt has been made
to store into an expression

Number too large

Attempted division by
zero

POSSIBLE PROBLEM

Trouble in an ALGOL run-time routine.
Consult your systems support people.

A transfer function which is not allowed
has been requested.

The run-time routines of the compiler
cannot process this construction.

The number of parameters in the procedure
call does not match the number given in
the procedure declaration.

A formal parameter appearing to the left
of an assignment has a constant as its
actual parameter. There may be a missing
value specification or the parameters in
the procedure call may not be in the
correct order.

A formal parameter appearing to the left
of an assignment has an expression as
its actual parameter. Perhaps the
parameters in the procedure call are not
in the same order as those in the pro­
cedure declaration, or a value specifi­
cation is missing.

A REAL, REAL2 or the real or imaginary
parts of a COMPLEX number having absolute
value larger than allowable has been
produced.

An attempt was made to divide by zero.

8 (Not Used)

9

10

Illegal operation

Result undefined for
conversion

11 (Not Used)

Missing external procedure or incorrect
return from a FORTRAN or assembly language
procedure.

The result produced by a transfer function
is not a meaningful value.

7884
UP.NUMBER

ERROR
NUMBER

12

13

14

15

16

UNIVAC 1100 SERIES SYSTEMS 10-10
PAGE REVISION PAGE

Table 10-2. Run-Time Error Messages (cont)

MESSAGE

Memory capacity exceeded

Improper type of parameter

Improper kind of parameter

Argument out of range

Subscript out of range

POSSIBLE PROBLEM

Usually caused by array bounds which are
too big, or by the dynamic creation of
too many or too large procedures. Too
many files requiring buffer space may be
open at one time.

The type of an actual parameter must match
that of its formal parameter unless a
transfer function exists.

NOTE: No transfer functions are allowed
for arrays.

Formal and actual parameter kinds must
match. For example the actual parameter
may not be an array identifier when the
formal one is a simple variable.

A parameter to a standard procedure or an
operand in an exponentiation is not within
the limits accepted.

The subscript computed for an array element
does not fall within the bounds specified
in the array declaration.

17 (Not Used)

18

19

Read error

Improper array bound in
declaration

20 (Not Used)

21 A control card was read by
the READ statement

Problem with using the READ statement,
usually because of an undefined transfer
function or a constant not in the correct
format.

The evaluation of the expressions in an
array bound has produced a lower bound
that is greater than the upper bound.

If not done for a reason, this message
usually implies that the amount of input
data is known incorrectly. Sometimes when
reading cards, it is caused by reading two
or more cards instead of one because of an
incorrect FORMAT or LIST, or because free
format READ always starts on a new card.

7884
UP.NUMBER

ERROR
NUMBER

22

UNIVAC 1100 SERIES SYSTEMS 10-11
PAGE REVISION PAGE

Table 10-2. Run-Time Error Messages (cont)

MESSAGE POSSIBLE PROBLEM

Improper parameter Improper parameter in size or sign.

23 (Not Used)

24

25

26

27

28

29

30

31

32

33

34

36

•

Input/output error

Source language error

Improper type of controlled
variable

Write error

Zero or negative string
length in declaration

Checksum error

File error

Too many labels

Position error

List longer than record

Formats are not allowed
with FILE, TAPE or DRUM

Only ten nested sets of
parentheses allowed

Error with device DRUM or TAPE. Often
caused when the length of an input list
is not the same as that of the correspond­
ing output list.

Executions done with A-option can only
proceed as far as the first error.

The controlled variable of a FOR statement
is a formal parameter which is not VALUE
specified and the corresponding actual
parameter is not of the same type.

Improper parameters given to the WRITE
statement.

The expression given as the length of the
string has a value less than 1.

The checksum on a sequential file record
is not correct. Possible hardware error
or incompatible file format.

I/O attempted beyond file limits, or a
transmission error has occurred.

WRITE may only have 1 label. READ and
POSITION may have 3 labels.

Improper parameters given to the POSITION
statement or trouble in positioning a file.

The input list given to READ with devices
FILE or TAPE is longer than the record
input from the file.

Devices FILE, TAPE and DRUM may not read
or write formatted data.

In a format there can only be 10 nested
sets of parentheses •

7884
UP-NUMBER

ERROR
NUMBER

37

38

39

40

UNIVAC 1100 SERIES SYSTEMS 10~12
PAGE REVISION PAGE

Table 10-2. Run-Time Error Messages (cont)

MESSAGE

Neither labels nor lists
allowed in lists

Input or format error in
READ

Editing error in WRITE
Check your format

Sequential file referenced
as indexed or indexed file
referenced as sequential

POSSIBLE PROBLEM

The list elements for a declared list can
only be expressions, array identifiers or
formats.

The form of an item being read and the
format used are not compatible. The input
image is printed with an asterisk showing
where the error occurred.

The value to be edited is too large for 9

or in some other way incompatible with
the format. The output buffer is printed
showing how far the editing has progressed.
The editing will continue with the next
value.

The same file name cannot appear with both
one and two parameters to FILE.

7884 UNIVAC lHlO SERIES SYSTEMS A-1
UP-NUMBER PAGE REVISION PAGE

APPENDIX A. BASIC SYMBOLS

Out of the 64-character set of the UNIVAC 1100 Series processors, 55 characters
are recognized by the NU ALGOL compiler as being meaningful within an ALGOL program.
(See 2.1.) The remaining 9 characters have no inherent meaning and are allowed only
within strings and comments. They may thus be installation defined.

To the compiler, the meaning of a character is determined by the value of its
internal representation ("field data" value). Table A-I lists the characters by
their internal representation together with a common graphic representation. The
corresponding punched-card codes are not shown because they may be installation
defined. For the installation defined characters, no graphic symbol is shown.

Table A-I. NU ALGOL Characters

INTERNAL GRAPHIC INTERNAL GRAPHIC INTERNAL GRAPHIC VALUE VALUE VALUE
(OCTAL) SYMBOL (OCTAL) SYMBOL (OCTAL) SYMBOL

00 25 P 52
01 [26 Q 53
02] 27 R 54
03 30 S 55
04 31 T 56 ,
05 SPACE 32 U 57
06 A 33 V 60 0
07 B 34 W 61 1
10 C 35 X 62 2
11 D 36 Y 63 3
12 E 37 Z 64 4
13 F 40) 65 5
14 G 41 - 66 6
15 H 42 + 67 7
16 I 43 < 70 8
17 J 44 = 71 9
20 K 45 > 72 ,
21 L 46 & 73 . ,
22 M 47 $ 74 /
23 N 50)~ 75 .
24 0 51 (76

77

The basic symbols of the NU ALGOL language are represented by means of the preceding
characters. Table A-2 shows these symbols along with the corresponding symbols of
the ALGOL 60 reference language.

7884 UNIVAC 1100 SERIES SYSTEMS A-2
UP-NUMBER PAGE REVISION PAGE

Table A-2. NU ALGOL Basic Symbols

ALGOL 60 NU ALGOL ALGOL 60 NU ALGOL

true TRUE step STEP
false FALSE until UNTIL

+ + while WHILE
- - comment COMMENT
x * ((

I I))

II [(or [
t ~.=*]) or]
< LSS <

s LEQ >

= EQL «
2: GEQ »

> GTR , ,
("in strings)

t NEQ , , ("in strings)
- EQIV begin BEGIN
:> IMPL end END

V OR own
XOR Boolean BOOLEAN

/\ AND integer INTEGER
-, NOT real REAL
go to GO TO REAL2

or GOTO or GO COMPLEX
if IF STRING
then THEN array ARRAY
else ELSE switch SWITCH
for FOR FORMAT
do DO LIST

OPTION LOCAL
OFF EXTERNAL

, , ALGOL

· . FORTRAN
10 & or && LIBRARY
· ; cr SLEUTII · ..
· . or $ procedure PROCEDURE , ,
.- = or .- label LABEL .-

value VALUE

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS
PAGE REVISION

B-1
PAGE

APPENDIX B. EXAMPLES OF PROGRAMS

This appendix contains some simple examples illustrating the use of UNIVAC 1100
Series NU ALGOL. Each example has been run, and some sample input and results are
shown.

BEGIN
COMMENT EXAMPLE 1

CALCULATION OF VALUE OF ARITHMETIC EXPRESSION
WITH READ IN VAPIABLES $

REAL A,B,C $
INTEGER TOILL $

READ (CARDS,A,B.C) $
TOILL = A+B**C/A $
WRITE (PRINTER,A,B,C,TOILL) $

DATA

5 6.2 1.222

RESULTS:

5.0000,+00 6.2000,+00 1.2220,+00 7

BEGIN
COMMENT EXAMPLE 2

CALCULATION OF SQUAREROOT, B, OF A REAL NUMpER,
A, WITH 6 DIGITS ACCURACY BY NEWTON-RAPHSON ITERATION $

REAL A,B,OLDB $
READ (CARDS,A) $
OLDB = 1.0 $
FOR B = O.5*(A/OLDB+OLDB) WHILE ABS(B-OLDS) GTR 10*-*(-6)*B 00

OLDB = B $
WRITE (PRINTER.A'B) $

END PROGRAfv1 $

DATA

5.77777

RESULTS:

5.7778,+00 2.4037,+00

7884 UNIVAC 1100 SERIES SYSTEMS 8-2
UP-NUMBER

BEGIN
COMMENT

PAGE REVISION PAGE

EXAMPLE 3

REAL
INTEGER

READ
COMMENT

VALUE OF A POLYNOMIAL Y=B(0)+B(1)*X ••••••• +e(N)*X~*~ $
X,y $

BEGIN

K,N $
(CARDS,N) $

DEGREE OF POLYNOMIAL READ FROM CARDS. INNER BLOCK PERFOR~S
READING OF COEFFICIENTS AND CALCULATIONS AND PRINTING OF
RESULTS $

REAL ARRAY B(O:N) $
READ (CARDS,B) $
READ (CARDS,X) $
Y = B(N) $
FOR K=N-1 STEP -1 UNTIL 0 DO Y = Y*X+A(K) $
WRITE (PRINTER,'VALUE OF A POLYNOMIAL OF DEGREE,,'N=',N) $

WRITE (tCOEFFICIENTS"B)~ WRITE ('X=',X,'Y=',Y) $
END CALCULATION $

END PROGRAM $

DATA

4
1.223 3.5 7.52 -4.02 -33.5
5.55

RESULTS:

VALUE OF A POLYNOMIAL OF DEGREE N=4

COEF~ICIENTS 1.2230,+00 3.5000,+00 7.5200,+00 -4.0200,+00 -3.3500,+01
X=5.5500.+00
Y::-3.2220,+04

7884 UNIVAC 1100 SERIES SYSTEMS 8-3
UP-NUMBER PAGE REVISION PAGE

OEGIN
COMMENT EXA~PLF 4

PROGRAM WITH A REAL PROCEDURE' RIG, WHICH FrNDS THE LARGFST
OF THE N LOWER-INDEXED ELEMENTS (STARTING WITH INDEX:l) OF A
ONE-DIMENSIONAL ARRAY, A' WITH POSITIVE ELP'ENTS $

REAL PROCEDURE BIG(N,A) $
VALUE N $
INTEGER N $
REAL ARRAY A $
BEGIN

INTEGER B $
REAL C,D $
B : 1 $
o : A(l) $

L: C: D - A C.8+ 1) $
IF C LSS 0 THEN 0 : A(B+l) $
B : 1:3+1 $
IF B LSS N THEN GO TO L ~
BIG : 0 $

END BIG $
REAL ARRAY F(I:50) ,
REAL H,K $

READ (CARDS,F) $
COMMENT CALL OF BIG TO FIND THE LARGEST OF THE 20 L~WER
ELEMENTS OF F $ H : BIG(20,F) $

WRITE (PRINTER,H) $
COMMENT LARGEST ELEMENT IN F $

K : BIG(50,F) $
COMMENT USE OF BIG IN MORE COMPLEX EXPRESSION $

H : H + BIG(10,F)/K*BIG(15,F) $
WRITE (PRINTER,H,K) $

END PROGRAM $

DATA

1,22 3.55 1 22.2 0.5 7.2 8.12 21.4 4.1 22.5 0.422
55.2 0.12345 5.88 3.55 7.53 4 5 2 3 1 77 5 22.1
5.1 2.3 3,2 4.2 9.85 8.99 5.66 66 44 11 2 44.7
55.12 44.1 2.89 7.521 8.56 5.42 4.88 6.7B9 5.423
7.1234 9.753 8.741 5 6

RESULTS:

5.5200,+01
7.1330,+01 7e7000,+01

7884 UNIVAC 1100 SERIES SYSTEMS 8-4
UP-NUMBER

BEGIN
COMMENT EXAMPLE 5

REAL AREA, RADIUS, SMALL, G $
INTEGER I, K $
REAL ARRAY ANGLE(1:10), CHANGE(1:9) $

PAGE REVISION PAGE

FORMAT FI0(X9"ITERATION·,X5"ANGLE"X9"CHANGE"~1.1),
Fl1(X13,Il,D15.6,D14.5,Al),
F12(X9"THE ITERATION PROCEDURE HAS CONVER~ED"Al) $

COMMENT SET UP VALUES TO BE USED IN PROBLEM $
AREA = 1.5 $
RADIUS = 5.0 $
SMALL = 1.08-5 $
G = (2.0*AREA)/(RADIUS**2) $

COMMENT OEGIN ITERATION LOOP MAXIMUM OF 9 ITEPATIONS $
ANGLE (1) = 1.0 $
FOR I = 1 STEP 1 UNTIL 9 DO

BEGIN
COMMENT COMPUTE CHANGE IN APPROXIMATE SOLUTIO'" $

CHAMGE(I) = (ANGLE(I)-SYN(ANGLE(I»-G)/(1.0-COS(ANGLE(I») $
COMM~NT TEST FOR CONVERGENCE OF APPROXIMATE SrLUTION $

IF ABS(CHANGE(I» LSS SMALL THEN GO TO LII0 $
COMMENT APPROXIMATION HAS NOT CONVERGED - COMPUTE NEXT

APPROXIMATION $
ANGLE(I+l) = ANGLE(I) - CHANGE(I)

END $
COMMENT END OF LOOP - ITERATION PROCEDURE HAS NOT CONVERGED $

GO TO FIN $
COMMENT THE ITERATION PROCEDURE HAS CONVERGED $

LII0: WRITE (PRINTER,FI0) $
WRITE (PRINTER,Fll, FOR K=l STEP 1 UNTIL I DO

(K,ANGLE(K),CHANGE(K») S
WRITE (F12) $

FIN:
END OF PROGRAM $

Note that a completely blank card gives a blank line in print.

The sample gave the following result:

ITERATION ANGLE CHANGE
1 1.000000 .08381
2 .916186 .00742
3 .908770 .00006
4 .908714 .00000

THE ITERATION PROCEDURE HAS CONVERGED

1884 UNIVAC 1100 SERIES SYSTEMS C-1
UP.NUMBER PAGE REVISION PAGE

APPENDIX C. JENSEN'S DEVICE A D I DIRECT RECURSIVITY

The purpose of this appendix is to acquaint the reader with two interesting program­
ming techniques, namely Jensen's Device and Indirect Recursivity. A thorough
treatment of the recursive concept may be found in "The Use of Recursive Procedures
in ALGOL 60," H. Rutishauser The Annual Review in Automatic Programming 9 Pergamon
Press, London, 1963.

Jensen's Device comprises the use of two parameters in a procedure call, in which
one parameter is a function of the other. Neither may be a value parameter.

The following example is a method of evaluating an approximation to the definite
integral of a function by means of Simpson's Rule over one interval. The algorithm
may be written:

REAL PROCEDURE SIMPS (X.ARITH, A, B) $
VALUE A,B $ REAL X, ARITH, A,B $
BEGIN REAL FA, FM, FB $

X=A $ FA=ARITH $ X=B $ FB=ARITH S
X=£B-A)/? $ FM=ARITH $
SIMPS=(B-A>*(FA+4*FM+FB)/6

END SIMPSON INTEGRATION $

In a call of SIMPS, ARITH may be any arithmetic expression. Jensen's Device refers
to the case when ARITH is a function of X. For example, the call:

would cause ARITH to be replaced by EXP(Z::<Z) in the running program. This call
evaluates an approximation to the integral:

1 2 f eZ dz
o

In evaluating an approximation to the double integral:

indirect recursivity may be used by making the parameter corresponding to ARITH a
call to SIMPS itself, thus:

I=SIMPS(X,SlMPS(Y,EXP(X*Y). 0.0, 1.0), 0.0, 1.0)

More material may be found in: E.W. Dijkstra, A Primer of ALGOL 60 Programming,
Bound Variables, Academic Press, London, 1962, pp. 57-59.

•

•

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 0-1
PAGE REVISION PAGE

APPENDIX D. UNIVAC 1106/1108 ALGOL
AND NU ALGOL DIFFERENCES

0.1 DIFFERENCES AND RESTRICTIONS

This appendix lists the differences between the UNIVAC 1106/1108 ALGOL and the
NU ALGOL program languages.

0.1.1 External Procedures

• External procedures compiled using the UNIVAC 1106/1108 ALGOL compiler
cannot be run together with ALGOL programs compiled using the NU ALGOL
compiler (and vice versa).

• External procedures compiled using the NU ALGOL compiler must have an E-option
on the compiler control card (ALG card).

• An external procedure must be terminated with a ; or $ as must any other
declaration.

• The declaration EXTERNAL NON-RECURSIVE PROCEDURE is not allowed.

• The declarations for external procedures coded in assembler language are
EXTERNAL ASSEMBLER PROCEDURE or EXTERNAL LIBRARY PROCEDURE depending on the
type of parameter transmission.

0.1.2 Declarations

• The declaration OWN is not allowed.

• The declaration OTHERWISE is not allowed.

• Two new reserved words have been introduced: OPTION and OFF.

• A procedure may have at most 63 parameters.

0.1.3 Formats

• In input or output statements, the format identifier must come before the
list to which it applies.

• The format phrase T is not allowed.

7884 UNIVAC 1100 SERIES SYSTEMS 0-2
UP.NUMBER PAGE REVISION PAGE

0.1.4 Standard Procedures

(I) The following changes have been made in the names of some of the
standard procedures.

OLD NEW

COMPLEX COMPL

IMAGINARY 1M

INTEGER INT

REAL RE

MEANING

Produce a complex number using the
first parameter as the real part, and
the second as the imaginary part.

Obtain the imaginary part of the complex
number given as parameter.

Convert to type INTEGER.

Obtain the real part of the complex number
given as parameter.

(2) The argument of a standard procedure is regarded as being by value.

(3) Standard procedures are not recursive.

0.1.5 FOR Statements

(I) The controlled variable may only be of type REAL or INTEGER.

(2) If the controlled variable is a subscripted variable, the initial
value of the subscript expression (before entering the loop) de­
termines which member of the array becomes the controlled variable.

Example:

I = 3$

FOR A{I) = (1,1,100) DO I = I + 1$

When the FOR statement is finished

A(3) will have the value 101

I will have the value 103

0.1.6 IF Statements

• An IF expression used in an arithmetic expression must be enclosed in
parentheses.

0.1.7 Miscellaneous

• All programs with the exception of external procedures must be enclosed with
BEGIN ENO$.

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS 0-3
PAGE REViSiON PAGE

• In a multiple assignment statement, all of the variables to which the assign­
ment is being made must be of same type.

• The value specification must be placed in front of the type specifications.

• Use of the device DRUM is somewhat different. See 8.3.6.2.

• In input and output, tapes 21 through 27 and CREAD and RREAD are no longer
implemented. Continuous reading and re-reading may be done as shown in 8.3.4.

• The statement REWINT (FILE(l)$ must be used instead of REWIND (FILE(),INTER­
LOCK)$.

• When errors or EOF-conditions are detected during I/O and no labels are pro­
vided, the program is terminated with an appropriate message.

• Positioning to a KEY is halted if an EOF is encountered. See Section 8.5.7.

• When a string is a parameter to a FORTRAN procedure, the address of the string
itself is transmitted, not the address of the string descriptor.

• Numbers on data cards may not contain spaces.

• Strings in free format WRITE are not printed on separate lines.

• In a Boolean expression, all operands are not evaluated when unnecessary to
determine the result.

• If an integer number is input with Dw-d or Rw-d formats v a decimal point is
inserted to the right of the (d+l)st digit (counting from the right) in the
field.

..

..

7884 UNIVAC 1100 SERIES SYSTEMS E-l
UP.NUMBER PAGE REVISION PAGE

APPENDIX E. SYNTAX CHART

This appendix summarizes the syntax of NU ALGOL in chart form. The use of the
chart portion of the appendix is very simple and almost self-explanatory. At the
top of each page is a square box which contains the name of the concept defined on
that page, for example,

type declaration I =

The definition consists of a series of boxes connected by lines indicating the flow
of symbols which define the concept. Two kinds of boxes are distinguished: those
with round corners (or circles) and those with square corners. The round cornered
boxes contain symbols that stand for themselves. Square cornered boxes contain
names of concepts which are defined elsewhere in the chart and may be found by a
quick reference to the index.

In some places a metalinguistic "or" symbol has been used (for reasons of space)
and should be understood as follows:

----Pia-c + I -) •

is equivalent to:

In some sections, a pair of letters may mark two spots in a definition. Underneath
that section will appear that letter pair followed by a name. The name will be used
in lieu of the string of symbols between the letter pair in other parts of the chart.
This chart uses only one of the two possible representations for some symbols in
ALGOL. The following equivalences should be noted:

Sypbol used in this chart

(
)

II

GO TO
$

Alternate representation

[
]

GO or GOTO

In addition, comments may be inserted in the program by means of the following
equivalences:

II $ COMMENT <any sequence not containing a $> $ equivalent to $

7884
UP.NUMBER

UNIVAC 1100 SERIES SYSTEMS E-2
PAGE REVISION PAGE

• BEGIN COMMENT <any sequence not containing a $> $ equivalent to BEGIN

• END < any sequence not containing END or ELSE or $> equi valent to END

This chart makes no mention of the use of spaces within ALGOL. A space has no
meaning in the language (outside of strings) except that it must not appear within
numbers, identifiers, or basic symbols, and must be used to separate contiguous
symbols composed of letters or digits. Spaces may be used freely to facilitate
reading.

List of Charts

Program
Declarations

type
array
string
string array
switch
external procedure
procedure
local
list
format

Statements
block
compound
assignment
go to
conditional
for
dummy
procedure

Expressions
variable
function designator
arithmetic expression
Boolean expression
designational expression

Basic Elements
identifier, letter, digit
number
string, logical value
delimiter
input procedure statement
output procedure statement
position procedure statement
rewind procedure statement

E-3
E-4
E-5
E-6
E-7
E-8
E-9
E-IO
E-ll
E-12
E-13
E-14
E-15
E-16
E-17
E-18
E-19
E-20
E-2l
E-22
E-23
E-24
E-25
E-26
E-27
E-28
E-29

E-30
E-3l
E-32
E-33
E-34
E-35
E-36
E-37

program -l::I

..

• ~~ .. e.!~.!li).tiO!1:

....J nJ:'r:n\~ l-_ l. ,1oP,.1~ .. ::a+; ' • , "'

is a comt-·h·te of dt'clnrations ane s!.'!tcmf:'f1ts which denn£' an :llgorithm for solving 3. proM em .
0: t~is a;coI"!!hm (orrlJctm.'ss} is th'?' busin~s$ of the pJ"0r.rammer. The compiler only checKs

that tilt.· syntax (form) is correct,

NOtiCl' tn:!! tto'? $:5 IIs{"rl to
or statement. ':-':\·vCI·thd£>ss.

dec!'lrations and statl!'ml'nt~; and in no~ inh~rently a p:'trt of a declaration
will be ~hOI"~1 in most f.:x:ttnples (or ch-\l"ity.

:1ftJ»..f 1,'",,"",

In un compiled on the ALG card),
the outermost BEGIN-END

...

c~
1100

Z"'"
c
3::
ID
III
lJ

11
»
(;)

III

lJ
III
<
en
o
Z

11
»
(;)

c::
%

< »
n
.....
0
0

'" m
:::0

m
'" '" -<
'" -f
m
~

'"

111m
I
w

d"clarntion~ ::.

tYIIf> ~h'clarn:ion

nl'ray dl-'clar;ttion

strill:: ch'dal';ltion

striuJ:: array dl'(iaration

siritch ch.'clar:1.tioll

1··.·l·I·I';11 I'I'OC('lllll'l' 111 \.:lariltioll

prOCl'llurr drciaration

local cI('C'l,u'uth..·n

list dl·cl;l.~·ut:r)1I

!01'11l at fit'c laratloll

1.;';~.p.1.nJ!!~~L~r!: Tlwrc> art" 10 tYl){'S of declarations each of whith is l)(·nnN! in detail em th~ !o!Jo\'.'ing pages.

c ~
11 00 Z .".
C
~
OJ
III
:0

11
)-

Cil
III
:0
III
<

'" 0
Z

1]
)-

Cil

c:
z
<
>
n -.....
o
o
CI'
m
:::tI

m
CI'

CI'
-<
CI'
~
m
~
CI'

III m

1.

[--;;~~~~ration :: ..

,E;.xplanationi

Examp!c_s.:

T T

TT~

A tYPf> declaration declares th~ mode of arithmetic the following id~ntifil"rs will assume in the block. Types
REAL2 nnd COMPLEX associat~ 2 words with the identifit'r, the others one. Upon entra:lc(' to a block,
identl.fiers nre given the value zero,

IN'!'F.GER 14, PAK,l..OOPCNT $
BOOLE"!': ANYLEFT, LASTOUT $

CO~IPLEX C, CINV~ $
Rk:AL2 DP $

REAL QIN. QOUT, MAXITEM $

-..J
C !Xl
1] !Xl Z .J>,

c
s::
lJ)

I'll
II

1)
l>
G'\
fl1

II
I'll
<:

'" o
z

'1l
l>

c:::
z
<:
:t>
n

o
o
~
m
;:0

m
~

~

-<
~

~
m
~
~

Gl

fl1m
I

(J1

r arra~~~~on I:: ..

type

BII I bound pair list CC I bound pair 1 uul IIpper bound LL I lower bound

Explanation: An array declnration associatee an identifier with a I-dimensional or larger matrix of values. The arithmetic f"xpresBione
define the lower and upper limits of each dimension. The type plays the same role as (or simple variables. If omltt~d.
type REAL Is assumed.

Examples: COMPLEX ARRAY CCON4 (O:Nr.CPI(I:N+1) $
BOOLEAN ARRAY BAND. BOR. BXOR(-4:4) $
REAL ARRAY B(I-I:I+I).XINITlAL. YINITlAL(-N:N. -N:N, 1:2) $

INTEGER ARRAY 1(1: 5). J. K. L(ENTIER(X): P112) $
ARRAY XYZ4(i:Nx2) $

-.J
C 00
1] 00 . "" z
C
~
ID
1'1
:u

1]

l>
Gl
1'1

:u
1'1
<
III

o
Z

1]

l>

c:
z
<
~
n
...
o
o
CI'
m
;;:0

m
CI'

CI'
-<
CI'
-t
m
~
CI'

Gl
I'Im

J,

CS:ri~~~~~~~n -j:'.

55: [suhstring decl.ratior.

LL: j~~-;;;;-p.rt -j

~~lal1:':l..tJ.f.!!l:

t.x<:t~.!.!!l('s:

8ubs~ rln~ c11·daration

arithmetic t"xprt"ssion

substring declaration

A string declaration associates an identifier with a '/ariablc l,I'hos~ value is a str£ng of ciHlra("'tl~rs. Tilt:! length of the Btring
is it}': m:ml'('r of cilarar.-tcrs. A group of characters of .1. str:ng Inay be nam\?Q as a su!Jstrill":. Thr l('n~th of a string must
h{' 1(!oSl! than 4096.

ST!U~C ST1P6j, NAME(lNlTIALS(2). LAST(16)) $
STHlXG 1'1(1\:+21. QUOTE(1) $

STHlr-:G NI;XTOUT(BO) $
STHI'IG ALPHA(RETA(2. CAMMA(41. 2), nYl.TA(EPSILOi'l(6l!. ~Ol $

cOil
1)00
.4>­
Z
c
I
IJJ
J11
:u

1)

»
til
J11

:u
J11
< ..
o
z

11
»

c:::
z
<: »
n

o
o
VI
m
;:Q

m
VI

VI
-<
VI
ooof
m
~
VI

til
ITIm

I,

[---::'-I~~-=-;~ay d"claration I ::.

l~an~Uon:

~xample8:

lell~:h part hO'Jnd pair list

A string array Is a matrix whoRe elem~nt. are strings. Appp.nded to the length part of thp. declaration are
the bound pairs Cor each dimension. just as for an ordinary array.

STRING AnRAY SA (80:0:100). CARD(!.ABEL(8). OP(6), 2. OPERAND(64): l:N) $
STRING ARRAY LASTFILE (CLF!NGTH:l:507) $

c (Xl
11 (X) ."" Z
C
l:
ID
111
:D

11
»
G)

111

:D
111
:5
en

o
z

11
»
G)

c:
z
<
>
n

<:I
<:I

VI
m
:;c

m
VI

VI
-<
VI
-t
m
~
VI

111m
I

(X)

[.wltch d"c1aratl<>~-J::.

designational expression

Explanation: A switch declaration associates an identifier with an ordered list of designational expressions. A switch is
used lor transfer to a label depending on the valuo 01 .ome variable.

Exampl..s: SWITCH JUMP. Ll,START ,FEIL4,SLUTT $
SWITCH BRANCH, IF BETA EQL 0 THEN Ll ELSE JUMP(J).START $

c(Xl
1lCO
Z ~
C
~
III
111
;u

1l
l>
Iil
111
;U
111
:5
U1

o
Z

1l
l>

c:::
z
<
>­
n
o
<::I

CIt
m
AI

m
CIt

CIt
-<
CIt
---t
m
~
CIt

Iil
111m

I
1.0

external procedure deClarat;;=J::.

Explanation: This declaration specifie~ a list of identifiers which are to be the names of
procedures not found in the program. These procedures may be written in assembly
language (ASSE:-!BLER, LIBRARY), ALGOL or FORTRAN. The type of external procedures
is specified if they are funct10nal procedures.

Examples: EXTERNAL FORTRAN REAL PROCEDURE CBRT$
EXTERNAL FORTRAN PROCEDURE NTRAN,INVS$
EXTERNAL PROCEDURE ROOTFINDER,KEYIN,KEYOUT$
EXTERNAL ASSEI-!BLER PROCEDURE TYrEll':, TYPr:OUT$
EXTERNAL LIBRARY INTEGER PROCEDURE PACK(A,B,C)$

VALUE A,B$
INTEGER A,B,C$ $

co:!
"V (X)

Z ~
C

" til
1'1
:0

"V
l>
iii
1'1

:0
1'1
<
III

o
Z

"V
l>

c::::
z
-<
> n

o
o
CIt
m
;:0

m
CIt

CIt
-<
CIt
m
~
CIt

iii
I'Im

.!.
o

procedure declaration J::.

HH I procedure heading -]

TT I procedur(' body

SS I specificntlon part

VV I value part

F'-I formal parameter part

identifif'r

Explanation' A procedure declaration defines an algorlthm to be associated with a procedure Identl!ler. The principal
constituent of a procedure declaration 1s a statement which 1s executed when the procedure 1s "callen"
(see procedure statement and function designator). The procedure heading specifies that c~rta!.n idC'ntlfhora
appearln~ whlthin the procedure body art! formal parameters. A parameter mtty also be Rpccified as •
"VALUE in which case the proct'dure statement. when called. has acc(l'SS only to the \Oa!uc of the carre·
.aponding actual parameter. and not to the actual parameter itself.

Examples: PROCEDURE ZEROSET (A. N) $
VALUE N $ INTEGER N $ ARRAY A $
BEGIN COMMENT THIS PROCEDURE ZEROES AN ARRAY ASSUMED DECLARED ARRAY A(I:N) $
INTEGER I $
FOR I • I STEP I UNTIL N DO A(I) • 0 END ZEROSET $

INTEGER PROCEDURE FACTuHIAL (NUMBER) $
VALUE NUMBER $ INTEGER NUMBER $
FACTORIAL. IF NUMBER LSS 2 THEN I ELSE NUMBER" FACTORIAL (NUlIHlF.R-I) $

BOOLEAN PROCEDURE BOOL $
BOOL • NOT (FINISHED OR FIRST AND LAST) $

ceil
'1J CO

Z "" c
3:
III
III
;0

'1J
~
G'I
III
;0
III
<
!!'
0
Z

'1J
~
G'I
III

c:
z
< > n

o
o
UI
m
;lO

m
UI

UI
-<
UI
-I
m
~
UI

m
1.

loeal declaration I::.

Explanation: 'l'11e local declaration in NU ALGOL is treat.ed as a dummy
declaration and has been retained only for compatibility with the
with the UNHAC 1106/1108 ALGOL.

1I8t declaration - J::.

arithmetic expression

Boolean expreE8ion

array identifi~~r

string array identHier

1---i 1 list element

list clement

LLI u.~;';:';J

Explanation: A list defines an ordered sequence of expressions and arra:, !c!en:1fiers. A list may only be used a8 a parameter
to a procedure. and. ultimately. only b)' a procedure written In non-Algol language.

Examples: LIST OUT (A--1. N+1. FOR I • (1.1. NMAX)DO(Q(I). QRES(:))) $
LIST LI(A. B. C). L2(IF MOD(Q. 2)EQL 0 THEN B ELSE Q) 5

c a!
'0 co Z .,..
c
3:
ID
(11

:u

'0
»
Gl
(11

:u
(11

<
!!!
0
Z

'0
»
Gl

C
%

<
~
n

--o
o
CIt
m
~

m
CIt

CIt
-<
CIt
-t
m
~
CIt

(11 m

.!.
w

[f~r~~~ declaration 1::=

AA I ph'-<l3e u~ Explanation: A format is a special string of symbols which are passed on to lin input/output
routine for editing and control. Integers in front of a format code specify the
number of times that code is to be repeated.

Examples:

FORMAT NEWPAGE(E,'X-COORDINATE',X28,'Y-COORDINATE',At) $
FORMAT REP(5(4 R16.B'Al)'AO.2,S12"=',Dl0.1.S12"="~10.1,Al) $
FORMAT VECTOR (lOT10.4,Al),PATTERN('SWITCHES ARE',8B6,Al) $
FORMAT MATRIX (:N:(:M:(D4.2.Al»)) $

~~ .. ;;;J::.

block

compound stntemcnt "'
ussicnU1rnt statcm~nt "'" go to 8tntCJn~nt ~~

condItional stat('nlent ~//?

for st:ltem"·Il!
,

/ /fl

dummy statement
,

//

proc,,·dure sUltement

Input/output staten",nt

Explft.!)!!!2!!: Statements define the sequence of ollel'ations to b~ prrformod 'by the pror,ram. The S types
or titntements are each defined in th(· following pngrs.

c al
'II co
.~ z
c
~
OJ
III
;II

c:
Z

<
~
n
(;)
(;)

'" m
;0

m
'"
'" -<
'" -t
m
~

'"

'II
»
Gl
III
;II
III
<
iii
0
Z

'II
»
Gl
111m

1-
0'1

[blOCkJ:::

Explanation: A block automatically introduces a new level of nomcnclatoJre by a set of declarations. This means that any
identiCiur declared In the block will have the meaning assigned by the declaration. and any entity represented
by such an identifier outside the block Is completely unaccessible Inside th~ block. The Identifiers declared
within a block are said to be l!?cal (to that block) while all other Identifiers are non-local or global (to that
block),

Example: L:IlEGIN INTEGER ARRAY A(I:IO) $
A(I) • I $

END $

FOR J • (2.1.10) DO A(J) • A(J-I) + J $
FOR J • (1.1.10) DO WRITE (J. A(J)) $

c ~
1100 Z .f>,

c
~
!D
fl'I
II

1l
l>
(i'l
fl'I

II
fl'I
<
In

0
Z

1l
l>
(i'l

c::
:z
-<
>­n
o
o
VI
m
:::0

m
VI

VI
-<
VI
m
~
VI

fl'I m
.!.
O'l

compound st~~~-l~-;~J ::.

· CCH ~.8 ~.8 •
: label $

Explanation: A compound statement serves to group a set or statements by enclosing them with a BEGIN-END pair.
This Is then treated as a alngl., statement.

E,<umple: BEGIN T. 0 $ FOR I • I STEP 1 UNTIL M DO
T. B(J.II. C(1.K) + T $
IF T GTIt 820 OR OVFLOW THEN 00 TO SPILL S

END S

-.J
C CO
1] CO
.-""
Z
C
3:
to
III
lJ

1]

~
G'I
III

lJ
III
<
In

o
Z

1]

~

c::
%

<:
~
n
....
<:::I
<:::I
VI
m
;:0

m
VI
VI
-<
VI
-t
m
~
VI

G'I
111m

I ...
-.J

[assignment statement I::.

variable arithmetic expreBsion

procedure Identifier Boolean expression

Explanation: An asslgr.ment statement serves to assign the value or the expression on the right-hand side to the variable
and procedure idp.ntifiers on the leCt hand side. A procedure Identifier is only permit!ed on the leCt-hand
side in case the statement appeart in the body of that functional procedure. U any of t:le left part variables
are subscripted variables, they are evaluatt'd before the expression is evaluated. Transfers of type are
automatically evoked when necessary.

Examples: A(I) • B(I) • &35 $
AANDB. A AND B OR EP51 GEQ EP52 $
P • 5QRT(BKK2 - bAKC) $
T , 5 - MYOxEP50x(2KPIKF).,,2$
5(V, K-2) , C05(ANGLE) ... 0.5 K(lF 51 THEN K"K3 ELSE 1(",,5) $
NAME(i. 6: P ... 1) • 'IFTHEN' $

......
c co
11 CO
,.j:o
Z
C
s::
OJ
!II
lJ

11
l>
til
!II

lJ
!II
~
In

o
Z

11
l>

c:::
:z
-< »
n
C
C

CIt
m
::0

m
CIt

CIt
-<
CIt
oat
m
~
CIt

til
!11 m

.!..
co

~~ to .tat~Jt1~-J :::

deslgnatlonal expression

Exr;:~ A go to statement causes transfer of control to the statement with the label determined by the deslg­
national expression .

. ~:~ amples: 00 TO PAR'N $
00 TO OPS (1-2) $
00 TO IF ALPHA GTR 0 THEN 017 ELSE JUMP(-ALPHA) $
00 TO TRACK (IF MOD(P, 2) EQI: I THEN I ELSE A(1)) $

c til
11 CO
Z .j>.

c
3:
ID
/11
:II

11
~
GI
/11

:II
/11
~
In

0
Z

11
~
GI

c:
z
<
> n
....
o
o
VI
m
;;0

m
VI

VI
-<
VI
m
~
VI

/11 m
.!..
(l)

conditional statement J;:.

compound statement

block

aSBignmen~ stateme-nt

Boolean expressio!l go to strltement

dummy statl!mf'nt

for statement

UL1 cncondltlonal statement -]
procedure statement

Explan.!!LOJ:!: The if statement causeR the execution or one of a pair of statlomt'nts dept'nding on the value of a Boolean expression.
If this expr~sslon Is TRUE then the statement arter the THEN Is rxecut~d and the statement aCter the ELSE Is
skipped. If F ALSF.:. then the statem('nt aCter thl' ELSF. is executed. If It e.isls.

ExalT'.:£k!!: IF CI GTR 10 TllE:-I A(O. C) • KMAX(I) ~:LSE GO TO LOOP $
W BOOL(J) IMI'L BOOL (J+i) TlIEN STEP(J) • 'VALII>' EI.S~: STF.P\") • 'INVALID' $
IF' I GEQ 0 1'm:N 1I:':C:1:-l FOR K. ·1 STF:P I t:NTIL I no B(K). -COS(A'l) S

SUM. ADLll,;P(/I) I-:ND ELSE
BEGL'I IF I r':QL -I THEN GO TO ERROR ELSE GO TO Jl:EXT END $

stah.·men~
,
~

c,

~ I
c
~
OJ
III
:0

11
l>
Gl
III

:0
III
<
In

0
Z

11
l>
Gl
III

c:
% -<
~
n
0
0

CIt
m

'" m
CIt

CIt
-<
CIt
-I
m
~
CIt

m
I
I\)
0

(or st~tem('nt]::.

~al·itllrlll.tiC

- - - ~1~L'l'r .. ss,o"

I-'I-.:! for clause -]

I.L: [lor list

F
stat,llIl'1I1

.... "

~.I!!!!1!:".!!.2.r:J:

}o:xamlll~

The FOR !I~:,tl'm(!rlt co"trols ~=H' "l'.t-cut!or 0' th.· st;o(t mt'I;~ fol!uu I:I~ till 1>0 a lIumbt"r of ~~lll(>S while
the val'iab!e to ~he 1c·rt 0: ~ht· ,. LS aSlii";lIl',l th\.' V.IlI.toR dch'l'mflll',l h~ lh.· for !ist. 'rh\.o L,) eonatrllction
!s equ;val.nt to (he ST~:P ·I:STU, conslruction,

FOR I , ! STEP I UNTIL N DO FOil J • I STEP I l':IiTll. ~I 1>0 A(I, J) , 0 $
FOR S • S + I WlIlLl:: P(S) Nf.Q '.-\' AN!) S LEQ 80 1>0 nEGI:\

N.N.IO + P(S) J W ovn,ow I'IlF.N COl' 1'0 SIU.lIlt F::\D $
FOR S • (1,2.5-5,2-.111), -I, -2, -41>0 IF LOGANIJ(S, \·.\H) TUE!'> GO'1O YES $

c o:l
11 0)

Z .".
C
3::
OJ
!II
:u

11
»
Gl
!II

:u
!II
<
!II

0
Z

11
»
Gl
!II

c:
z
<
~
n
..... ...
C
C

YI
m
:::ro
m
YI

YI
-<
YI
m
~
YI

m
I
~

Ey .tatemen~ ::.

· ~ .. ,,,J ~

~!!!!!ill2!!: A dummy statement doe. nothing, It may serve to place a label,

Exarnplo:s: FOR I • (I, I, N) DO FOR J • (I, I, N) DO BEGIN
IF I EOL J THEN 00 TO END LOOP $

S ENDLOQP: END $

5: 0 $
I'OR S. S + I 'HILE P(S) NEQ 'A' DO $

c~
'000
Z
c
~
OJ
111
:u

'0
l>
Gl
111
:u
111
<
!!!
o
z

'0
l>

c:
!
<
~
n
o
o
CIt
m
;;0

m
CIt

CIt
-<
CIt
-t
m
~
CIt

Gl
111m

I
II.)
II.)

procedure statement]::.

string array identifier

Identifier

switch idt!ntifier

procedure Identlfl~r

Cormat Identifier

list Id~ntlCier

AA[~~.~:;J

Explanation: A procedure statement is a call on a declared procedure. The actual parameters of the coli replace the formal
or dummy parameters throughout the body of the dedared procedure. lf the corresponding formal p:\ramt"ter
has b('t'n "VALUE" Rpt'cified then only the value of the aClual parameter is used by the procedure.

Examplf's: MARG!N (62,56,4) $
P(A,J3,C,I,J,K) $
ROOTnl'IDER (N, 0, ERGDET, KOEF, -4&&0, &&-5, 5.0&&-1.1000) $

c~
1100
Z~
C
~
III
111
;U

11
»
Gl
111
;U
111
:5
!'!
o
z

11
»

c::
z
<
~
n ...
c
c
CIt
m
:;:g

m
CIt

CIt
-<
CIt
-t
m
~
CIt

Gl
111m

~
w

[e-xp-;;~~l~~ j::.

arithmetic expression

Boolean ~xpresBion

desi gnational expression

Explanation: There are 3 types or expressions, classified according 10 their values. An arithmetic expression
has a numerical value or a string value, a Boolean expression (oither TRUE or FALSE, and a
designational expression has a label as a valuf'.

.....
C CO
'0 CO

Z """
C
3:
III
P1
;U

'0
l>
Gl
P1
;U
P1
<
In

0
Z

'0
l>
Gl
P1

c::
:z
<:
)l-
n
C
C
(II

m
;.'ItI

m
(II

(II

-<
(II
m
~
(II

m
I
~

E~I-~--l ::.

variable Identifier

array lrlentlfi~r

string Idt'ntifier

Btl'log array idt>ntl!il'r

I.Ll sUhscri,~-;i~~---l

ss: I ""iI"trinr, part J

arithm etlc expres 810n

arithmetic expression

arithmetic expression

subscript list

substring rart

Exp!anatiEt'.:. A v3.rlaule is a deslf::natlon given to a singh;' va!ue. A variab!t, idcnUfh·r is :l var:abie namt'd in
a. type dp.claration.

Lxample.: DELTA
UOOL\'(7)
CAm>
CARl>(4)
CARD(I,6)
A(I'(4), N.SIN(,\NGI.3)
C\;P.OUT(J,K)
Ct;ROllT(!:J, K)
Ct:I!C)uTll,6: .;, K)

c ex!
11 CO ,.t>
Z
c
3:
OJ
fII
:II

11
>
Gl
fII

:II
fII
<

'" 0
Z

11
>
Gl

c::
:z:;

<:
:l>­
n
..... ...
o
o
CI\
m
;;0

m
CI\

CI\
-<
CI\
.....
m
~
CI\

film
I

I'o.l
0'1

C:U~CtlO;-deSigna;~r I::.

Identiflrr

actual parameter

Explanation: A runctlon designator derlnes a single numeric or logical value by applying the rules or the procedure declaration
to the actual parameters. Only a procedure which has a type associated with it ean be a (unction designator.
Besides those (unctional procedures declared in the program, several standard ones are available (or use without
being declared.

Examples: CLOCK
ARCTAN(1. 0)
BACKSLASH(Al, A2)

cO!
llCXl

:i: "" c
3:
III
111
1I

11
»
Gl
111
1I
111
< ..
0
Z

11
»
Gl

c::
z
<:
~
n
o
o
(I'

m
;;0

m
(I'

(I'

-<
(I'

...of
m
~
(I'

111m
I
I\.l
m

arithmetic expression J:.

simple arithmetic expression

Boolean exprpssion

oil

U: I if clause 1
SS:I simple arlthm~tic expression

Explanation: An arithmetic expression 1s a rule for computing a numerical value.

Examples: A(4) + 2" SQRT(D~d) - DELTA
IF A LSS &-5 THE~ 0 ELSE A/&S
Q(MOD(N,2) ... 1) " (IF ~'IRST THEN 10 ELSE RATIO) II 3

c ~
'llCiO
Z ,J::o

c
l::
III
III
:u

11

" '" III

:u
III
< ..
0
Z

11

" '"

c::::
z
<
)0-

n
....
C
C

VI
m
;::0

m
VI
VI
-<
VI
0004
m
~
VI

III m
I

I\J
-.J

Boolean expr('s~;on-- 1:: '"
I

simple Boolean e)l:pression

logical val ue

varia.ble

tunction designator

Boolean expression

OR I AND I XOR IMPL I EQIV

simpl(~ arithm~Uc
~xprt'ssion

SS: simple Boolean expression

Explanation: A Boolean expr~8Bion i8 A rule for COml)uting a logical value.

Exampl .. : FIRST AND NOT SPECIAL
A LSS DEL,TA OR ITERATIONS GTII MAXN
IF BETA THEN 'rRUf·; ELSE IF STEP(I) lMPL STEP(l+I) THEN QVALUE(P.I) ELSE QVALUF.(P, 1-1)

c (xl
1100
Z ~
c
3:
01
1'1
:II

11
l>
Gl
1'1
:II
1'1
<
In

0
Z

'U
l>
Gl

c::
:z:
<
~
n
.....
o
o
CI'
m
;:0

m
CI'

CI'
-<
CI'
-t
m
~
CI'

1'1 m
I
i')
00

de8ignatiO~~x;~~~~~-J ::.

simple deslgnational expression

S
arithmetic expression

designational expression

u __ -- .. - ---1
55:1 simple designational expression

Explanation:

Exampl£.!l.:

A d~slgnat.lonal expression Is a rule for computing the label of a statement. A switch Identifier followed by
an aritbmetic ··xpression in parenthesis refers to the labl~l in the corr('sponding position in the switch
declaration.

LlO
IF BETA THEN SLUTT ELSE NEXT (K/ /2)

c ex!
11 CO
i: ...
c
s:
III
111
:u

11
l>

'"' 111

:u
111
:5
en
0
Z

11
l>
Cl

C
%

<:
)0-
n
.....
.-
10
10

CI"
m
;ltJ

m
CI"

CI"
-<
CI"
-t
m
~
CI"

111 m
I
"-l
<0

r:d~nUf1er- I::.
variable ldentlfle;---~ ::. -:';:;'~ynl~entl:;:-J:.

string Identifier -l:. string array I~;:::-- -J::.

· C:~ C;~,t2) ~ switch Identifier \::. procedure Identifier 1 ::.

list Identifi~r I::· [for~~tldentlfler I::.
[1;1\:::

Identifier

letter }:.

• G I;T~-rD-IETI~ \~~TJ T~T~-I ~ I N 10 I p I Q I R I SiT I u I V I w I X \ Y \ z) ~

G;J::.

• (OT1-~-14-1516 I 7- I 81;) ~

Explanation: An Identifier is a name chosen to represent a variable. array. etc. Only the first 12 characters
of an Identifier uniquely define It.

Examples: P47
DELTA
SQRTROOOn
F.lC4PDQ

c ~
'!I ~ z
c
.::
m
111
:u

11 ,.
Cil
111
:u
111
:::
In

0
Z

11 ,.
Cil

c:
z
<
>­n
o
o
CIt
m
::u
m
CIt

CIt
-<
CIt
-I
m
~
CIt

111m
I
w
0

delimiter] ::.

+ I -I x 'I I II 'xx}}-_!------______ ___

EQL I GEQ I GTR I" NEQ
R

EQIV I I~1PL I leOR I OR I AND I NOT} ~ ..

GO TO I IF , THn: I FOR' ELSE I DO I OPTION , OFF S

, . I&.' &11., : , S ,. ,< ,) 'STEP , UNTIL , WHILE' COMMEN' 6 -]I"
DOOU:AN' INTI':GEH' HEAL I REAL2 I COMPlEX I STRING

AHRAY! SllITCn , PROCrmllRE:' EXTERNAL' LIST 'FORMAT

. 'm;GDI , END « I »
B

VALUF; LABr.L),.-.. ~;....-________________________ ___J

AA:
r -------1
... arithlnC'tic or(>rator • l'P' C:eparator I

RR: I relational operator DD: I declarator I
LL: I Boolean ot>~rator BB: I bracket

SS: I sequential operator CC: [specilicator

co:! ,.00
.~
Z
C
~
OJ
fII
:II

,.
l>
Gl
fII

:II
fII
:5
!!!
o
z

,.
l>

C
%

<
~
n
....
C>
C>

CIt
m

"" m
CIt

CIt
-<
CIt
-I
m
~
CIt

Gl
film

~

[input procedure statement- ~ l:.

d~signatlonal
expression

uesignatiollnl
('xpr('ssion

d~signational
exprf"Bsion

Explanation: The RLAD statement reads data from the specified input device into the
variables indicated by the list elements. The designational expressions
are used as exit points in case end-file or end-information conditions
are met on that device.

Examples: READ(CARDS,LEOF,LEOI,A,B,C,S,EPSILON) $
READ(FILE(INDEX), FOR I=(l,l,KMAX) DO FOR J=(l,l,LMAX) DO ERG(I,J)) $
READ(DATE) $

c ~
~ ~
z
c
~
III
fII
:II

'U
»
Gl
fII

:II
fII
<
en
o
Z

'U
»

c
:z
<
~
n
o
o
CIt
m
;:It!

m
CIt

CIt
-<
CIt
-I
m
~
CIt

Gl
film

~

output procedure state~;ntJ::'

arithmetic expression

Boolean expression

.at end or parameter liftt

list identifier

MM: [n'Od!fierJ

at end of parameter list

Explanation: The WRITE statement outputs th~ values defined by the lists to the speci­
fied device. Modifiers (KEY;EOr,EOI) produce special marks on tape, a
format controls editing on paper and punched car-ds, the designational
exp!'cssion is used as a return Doint if the outp~t dcvice functions abnor-
mally. -

Examples: WRITE (PRINTER, FlO, FOR 1=(1, I, N) DO A(I,J» $
WRITE (' CHECKPOINT CHARLIE', A) $
WRITE (rI~E(O),KEY(I),ABORTLAB,DUMPLIST) $
WRITE (FILE(OUTPUT) ,EOF('LAS'r') ,EOI) $

-.J
C 00

:u ~
z
c
~
ID
/TI
:u

1J
»
Gl
/TI

:u
/TI
<
on
o
z

1J
»

c:
z
<
~
n
...
C
C

CI'
m
;0

m
CI'

CI'
-<
CI'
m
~
CI'

Gl
/TIm

I
(,)
U1

r- ro~it!on procedure statement I::'

designatlonal
expression

u(>siJ,!national
ex:>rt'ssion

dt"si,::national
ex prtoss: on

arithmetic ex,.,r(>ssioll

K'!£.~lIa:ion: The proctOdurf' POSITION is us~d to poSition a hlpf" !orward n° back"oard A numb(Or of rrcords
or to s\'8:-ch fo,' a l\.F.Y o l!OI', 0" E01 markl"ro Tht' dc's!gnDti(\na1 ~xprcssions a1°(0 used as exits
in ..:aSt·s 01 b,~arch !ailurL'.

!::.xamp1es~ POSITION (l"ILE(O). ,2) $
POSITION (FILE(lNPUT). Kl::Y('PHlCI:S'), AHORT) $
POSITION (F1LE(OUTPUT). foOl) $

~
C 00

" 00 Z ~
c
~
ID
JII
:II

" l>
Cl
JII

:II
JII
<
~
0
Z

" l>
Cl
JII

C
%

<
)0-

n
C
C

VI
m
:;0

m
VI

VI,
0<
VI
-I
m
~
VI

m
I

(N
0)

ru

r~wind procedure statement I::.

Explanation: The REWIND statement will rewind the specified tapes. The REWINT will
cause the units to be rewound with interlock (read/write protect).

Examples: REWIND (FI LE (INPUT), FI LE (OUTPUT» $
REWINT (FILE(I),fILE(A),FILE(J» $

~
cOO
'U oo
.~
Z
c
t
tD
1'1
:D

'U
l>
Gl
1'1

:D
1'1
<
en
o
Z

'U
l>

c:
:z:
< > n
.....
o
o
CI\
m
;lO

m
CI\

CI\
-<
CI\
m
~
CI\

Gl
I'Im

I
w
~

..

7884 UNIVAC noo SERIES SYSTEMS 1"-1
UP.NUMBER PAGE REVISION PAGE

APPENDIX f. EXEC II N ALGOL

This appendix describes those operations of NU ALGOL under EXEC II (1107) that
differ from corresponding operations under EXEC 8. Each item is preceded by a
reference to this manual that describes operation under EXEC 8.

Reference

(2.2)

(2.5.2)

(3.1)

(4.2.3)

(7.3.3)

(7.3.4)

Difference or Addition for EXEC II

Identifiers

d) One exception is for external procedures under EXEC II where
only the first 6 characters are unique.

For EXEC II, one additional standard procedure CHAIN.

REAL2 On the 1107, the limits are the same for type REAL, but up
to 16 digits for REAL2.

REAL2 Add 1107 having between 9 and 16 significant digits.

Assembler language on 1107 is called SLEUTH II; under EXEC II only
six characters of the procedure name are marked as an entry point:

EXAMPLE:

1. externally compiled procedure

\J E ALG < name>

main program

ALG < main name>

2. externally compiled procedure

\J E ALG < name>

main program

ALG <main name>

EXAMPLE:

\J FOR name 1

\J ALG name 2

.3.5)

.3.5.0

(7.4.1)

II-
list
characters

As

'iJ ASM

tead

II

'iJ ALG

'iJ

END

'iJ ASM

ER

J

return

PUNP

Procedures

Name

Parameters

1

II

< name 1 :>

< name 2 >

a LIBRARY

II)

Parameters

call 1 X in

7884
UP-NUMBER

Reference

(8.3.1)

(8.3.6.1)

UNIVAC 1100 SERIES SYSTEMS F-3
PAGE REVISION PAGE

Difference or Addition for EXEC II

Add device for EXEC II

TAPE (see following information on EXEC II file handling)

Device for Sequential Files

TAPE «file name»

TAPE is also implemented under EXEC 8 to provide compatibility with
EXEC II NU ALGOL

Meaning of <file name> under EXEC II

If the file name is an integer it must be in the range 0 to 20.
If it is a string the first letter of the string must be one of
the letters A through F. This letter is converted to integer so
that A corresponds to 0, B to 1 etc. This letter is the same as
the logical unit assigned to a magnetic tape.

The integer file name is an index to an installation defined file
control table called Y$TTAB. It is possible for the user to supply
his own Y$TTAB table, redefining some of the drum areas. However,
this should only be done with the help of the systems programmer
for his installation.

The following is the implemented Y$TTAB table. Note that the drum
files occupy the same area as the PCF and processor scratch.

Y$TTAB

Parameter
Integer String Meaning

0 'A' Use magnetic tape assigned as A
1 'B' assigned as B
2 'C' assigned as C
3 '0' assigned as 0
4 ' E' assigned as E
5 I F I assigned as F

Tape
simulating Drum layout

files

6 i Whole
7 Not 1st half
8 2nd half
9 1st quarter

10 Allowed 2nd quarter
11

1
3r d quarter

12 4th quarter
13 1st eight

7884
UP-NUMBER

Reference

(8.3.6.1)
(cont)

(8.3.6.2)

UNIVAC 1100 SERIES SYSTEMS F-4
PAGE REVISION PAGE

Difference or Addition for EXEC II

Y$TTAB (cont)

Parameter
Integer String Meaning

Tape
simulating Drum layout

files

14 Allowed 2nd eight
15

j
3rd eight

16 4th eight
17 5th eight
18 6th eight
19 7th eight
20 8th eight

Under EXEC II device DRUM refers to the random access user file
which consists of the user PCF and the processor scratch area. The
size of this file will be installation dependent. To provide com­
patibility, DRUM may also be used under EXEC 8. In this case a
temporary file of 20,000 words on word-addressable drum is auto­
matically assigned.

Restriction Under EXEC II

Under EXEC II DRUM and TAPE (6 through 20) share an area on drum.
The user should ensure that they do not overwrite each other. They
both overwrite the user PCF area.

Speed Considerations

1. Parameters in a list are automatically placed in consecutive
locations on the file.

EXAMPLE:

WRITE (DRUM(O),A,B,C,-----)
and

WRITE (DRUM(0),A,DRUM(1),B,DRUM(2),C,-----)

do exactly the same operation - BUT the first case is much
faster.

2. Because of the mechanism used for writing drum - writing
backwards on drum is extremely inefficient.

EXAMPLE:

WRITE (DRUM(25),Z,DRUM(24),Y,DRUM(23),X-----)$
COMMENT - IS VERY SLOW$

7884
UP-NUMBER

Reference

(8.3.6.2)
(cont)

(8.8.5)

(9.2)

UNIVAC 1100 SERIES SYSTEMS F-5
PAGE REVISION PAGE

Difference or Addition for EXEC II

3. Arrays are normally transferred without being decomposed into
their elements. For this reason, statements which decompose
an array are very inefficient in comparison.

EXAMPLE:

ARRAY A(1:500)$ INTEGER 1$
WRITE (DRUM,A)$ COMMENT IS VERY FAST$
WRITE (DRUM,FOR 1=(1,1,500) DO A(I))$
FOR 1=(1,1,500) DO WRITE (DRUM, A(I))$
COMMENT THE LAST TWO STATEMENTS ARE VERY SLOW$

MARGIN under EXEC II has the form:

MARGIN «length>,< top line number>,

< bot tom 1 ine number>,

<string if desired»$

II1II < length> is an integer expression specifying the number of
lines per page.

II < top line number> is an integer expression specifying the
logical line number where the first line is to be printed.

II <bottom line number> is an integer expression specifying the
logical number where the last line is to be printed.

II < string> is a string which is typed on the console when margins
are actually changed on the printer.

EXAMPLE:

BEGIN

BOOLEAN B$

MARGIN (IF B THEN 72 ELSE 66,5,

IF B THEN 69 ELSE 63)$

END$

OPTIONS - add for EXEC II:

F - On the 1107, this option must be used when uSing external
FORTRAN, procedures containing double precision or complex
arithmetic. Otherwise the program will terminate with the
message:

ILLEGAL OPERATION AT LINE XXX

7884
UP-NUMBER

Reference

(9.2)
(cont)

(9.3)

00.2)

UNIVAC 1100 SERIES SYSTEMS F-6
PAGE REVISION PAGE

Difference or Addition for EXEC II

where the line number refers to the last ALGOL line executed.

Add 9.3

9.3 CHAINED PROGRAMS AND NU ALGOL (APPLIES ONLY UNDER EXEC II)

1. The EXEC II manual, 6.2, describes how large programs may
be broken into sections or links. NU ALGOL programs may
also take advantage of this feature through the use of the
statement

CHAIN «integer expression» $

where the value of the < integer expression> is the number
of the next link to be executed.

2. Sequential drum files may be used across links because
Y$TTAB, their control table, is kept in blank common.

3. Device DRUM may be used across links. The current drum
position, obtained by the procedure DRUMPOS, is not
destroyed.

4. No data from the ALGOL programs is saved across links because
no data is kept in blank common.

5. Users of external FORTRAN or SLEUTH programs which have
blank common, must ensure that their data areas do not
interfere with Y$TTAB. The standard Y$$TAB occupies the
first 150 words of blank common storage.

Error Number 53

ERROR
NUMBER

53

MESSAGE

Too many different
identifiers

POSSIBLE PROBLEM

Approximately 600 different
identifiers may be used on
a 32 K EXEC II computer.

(Appendix D) Add
Do1.l

• On the 1107 when using external FORTRAN procedures which have
Double Precision or COMPLEX arithmetic, F option must be used
on the XQT card to avoid the run time error 'ILLEGAL OPERATION'.

7884 UNIVAC HOO SERIES SYSTEMS Index 1
UP-NUMBER

A

ABS 7.4.1
absolute data address 7.3.4.1, 7.3.4.3,

7.3.4.4,7.3.5.5
ACARDS 7.4.1, 8.3.2, 8.3.6.3, 8.5.1
activate format 8.6.4, 8.6.5
actual parameter 7.1, 7.1.1.2, 7.1.5,

7.1.5.1, 7.1.5.2, 7.3.3, 7.3.4.2
actual parameter list 7.1.5, 7.1.5.1
ALGOL 60 1.1, 1.3, 1.3.1, 1.3.2
ALGOL external procedures 7.3.2
ALPHABETIC 7.4.1
alternate symbionts 8.3.6.3
AND 4.3.1, 4.4
APRINTER 7.4.1, 8.3.1, 8.3.6.3
APUNCH 7.4.1, 8.3.1
ARCCOS 7 .4 .1
ARCSIN 7 .4 .1
ARCTAN 7.4.1
arithmetic

cons tants
expressions

5.6

4.2.2.1
4.2, 4.2.4, 4.3.2, 4.7,

resulting type 4.2.4
operands 4.2.2
operators 4.1, 4.2.3, 4.2.3.1,

4.2.3.2, 4.4, 4.5.2.1
type procedures 4.2.2.3
variables 4.2.2.2

ARRAYS 3.4, 7.1.1.2
array 3.4, 7.1.5.1

bounds 6.5
descriptor 7.3.4.4, 7.3.4.5
parameters 7.3.4.4

assembler language 7.3.1, 7.3.4, 9.2
assignment

statement 5.2, 5.2.2, 5.2.3, 7.1.5.1,
7.2.1

string
asterisk

B

5.2.4
8.6.1

basic symbols 1.1, 2.1, A

PAGE REVISION PAGE

INDEX

BEGIN 5.3, 7.3.2
blanks format 8.6.4, 8.6.5
block 2.3, 6.1, 6.2, 6.5, 7.1.1.3
BOOLEAN 3.2, 3.3, 4.3, 7.1.1.2,

8.6.1
ARRAY 7.1.1.2
PROCEDURE 7.1.1.2

boolean
constants 4.3
expressions 4.3
format 8.6.4, 8.6.5
initial value 3.2
operators 4.2.4, 4.3.1, 4.4
type procedures 4.3
values 3.2
variables 4.3

bound pair 3.4, 3.4.1

C

CARDS 7.4.1, 8.3.1, 8.3.2, 8.3.4,
8.5.1, 8.5.5, 8.6.4

CBROOT 7 .4 .1
CHAIN F
chained programs F
CLOCK 7.4.1
condi tional

expressions 4.7
statements 5.5

constant 7.1.5.1
arithmetic 4.2.2.1
boolean 4.3
string 4.5.1

controlled variable 5.6, 5.6.1, 5.6.2,
5.6.3, 5.6.4, 7.1.5.1

COMMENT 7.1.4,9.1
comment

after END 9.1
formal parameter list 7.1.4, 9.1

compiler 1.2
compile-time 1.2

error messages 10.2
COMPL 7.4.1, 7.4.3
COMPLEX 7.1.1.2, 8.6.1

ARRAY 7.1.1.2

7884 UNIVAC 1100 SERIES SYSTEMS Index 2
UP-NUMBER

COMPLEX (cont)
PROCEDURE 7.1.1.2

complex
constants 4.2.2.1
initial value 3.2
value limits 3.2

compound
statement 5.3, 6.1, 7.1.1.3
symbols 2.1.2

CORE 8.3.1, 8.3.7, 8.5.4, 8.6.4, 8.6.5
COS 7.4.1
COSH 7.4.1

D

data analysis 7.4.2
decimal format 8.6.4, 8.6.5
declaration 3.1

external 7.3.2
label 4.6.1, 6.4
procedure 7.1, 7.3.2
switch 4.6.2
type procedure 7.2.1

definite repeats 8.6.6.1
designational expression 4.6, 6.4,

7.1.5.1
device 8.1, 8.2, 8.3, 8.8
DISCRETE 7.4 .1
DO 5.6
DOUBLE 7.4.1, 7.4.3
DRAW 7.4.1, 7.4.2
DRUM 7.4.1, 8.3.1, 8.3.6.2, 8.6, F
DRUMPOS 7.4.1, 8.3.6.2
dynamic storage 6.1

E

eject format 8.6.4, 8.6.5
ELSE 4.6, 4.7, 5.5.2, 9.1
END 5.3, 7.3.2

comments 9.1
ENTlER 7.4.1
EOF 7.4.1, 8.4.1, 8.4.4, 8.4.5, 8.5.7
EOI 7.4.1, 8.4.1, 8.4.4, 8.4.7, 8.5.7
EQIV 4.3.1, 4.4
EQL 4 .3 .2, 4.4
ERLANG 7 .4 .1
error

label 8.5.3, 8.5.4, 8.5.7, 8.6.5
messages 10.2, 10.3

EXP 7.4.1

PAGE REVISION PAGE

expression 4.1, 7.1.5.1
arithmetic 4.2
boolean 4.3
conditional 4.7
designational 4.6
string 4.5

EXTERNAL 7.3
7.3.2, F

7.3.3, F
7.3.4

ALGOL procedure
FORTRAN procedure
LIBRARY procedure
ASSEMBLER procedure

external procedures

F

7.3.4, 7.3.4.1
7.3, F

FALSE 3.2, 4.3, 8.6.4
FILE 7.4.1, 8.3.1, 8.3.20 8.3.6
file

handling 8.3.6
index 8.3.6.2

FILEINDEX 7.4.1, 8.3.6.2
filename 8.3.6.2
FOR 5.6

list element 5.6.1, 5.6.2, 5.6.3,
5.6.4

statement 5.6, 5.6.4, 7.1.5.1
formal parameter 7.1.1, 7.1.1.2,

7.1.1.3, 7.1.2, 7.1.3, 7.3.5.2
list 7.1.1, 7.1.4, 9.1

FORMAT 7.1 .3
format 8.1, 8.2, 8.3, 8.7.3

declared 8.6, 8.6.2, 8.6.3
free 8.2, 8.3.7, 8.6.1
implied or free 8.2, 8.6, 8.6.1
inline 8.6, 8.6.3
list 8.6, 8.6.2, 8.6.3, 8.8.1,

8.8.2
phrases with READ 8.6.5
phrases with WRITE 8.6.4

FORTRAN 7.3 .1
subprograms 7.3.3

free format 8.2, 8.3.7, 8.6.1
FUNCTION 7.3.3

G

GEQ 4.3.2, 4.4
global

identifiers 6.3, 7.1.1.1
label 6.4

GO 5.4

7884 UNIVAC 1100 SERIES SYSTEMS Index 3
UP-NUMBER

GOTO 4 .6, 5 A
GO TO 4.6, 5.4

statements 4.6, 5.4, 6.4
GTR 4 .3 .2, 4 A

H

HISTD 7 04.1
HISTO 7 04.1

I

identifiers 2.2
declaration of 3.2
reserved 2.5.1
standard procedure 2.5.2

IF 4.6, 4.7, 5.5.1, 5.5.2
1M 7 04.1
IMPL 4.3.1, 4.4
implied

device 8.2, 8.3.1, 8.3.2, 8.3.3,
8.5.1,8.5.5, 8.6.4, 8.6.5

format 8.2, 8.3.7, 8.6.1
indefinite repeats 8.6.6.2
indexed files 8.3.6.2

devices 8.5.3
initial values 3.2
inline list 8.7.1
input list 8.3.6, 8.5, 8.7, 8.8.1
input/output 8

list 8.1, 8.2, 8.6.6, 8.7
procedure calls 8.2, 8.8

INT 7 04.1
INTEGER 2.5.1, 3.2, 3.3, 3.4.1, 4.2.1,

4.2.2.2, 4.2.2.3, 4.2.3.1, 4.2.4,
7.1.1.2

ARRAY 7.1.1.2
constants 4.2.2.1
initial value 3.2
PROCEDURE 7.1.1.2
value limits 3.2

integer format 8.6.4, 8.6.5

K

KEY 7.4.1, 8.2, 8.4.1, 8.4.4, 8.5.7

L

LABEL 7.1.3, 7.3.4.1

PAGE REVISION PAGE

label 4.6, 4.6.1, 7.1.5.1, 8.2, 8.5,
8.8

declaration 4.6.1
list 8.1, 8.5
numeric 4.6.1
specification 7.1.1.2

layout of program 2.4
LENGTH 7 A .1
LEQ 4.3.2, 4 A
LIBRARY 2.5.1, 7.3.1, 7.3.4, 7.3.4.2
LINEAR 7 A .1
LIST 7.1.1.2, 8.7.2
list declaration 8.7.2
LN 704.1
local

identifiers 6.3, 7.1.1.1
label 6 A

lower bound 3.4.1
LSS 4.3.2, 4 A

M

machine language 1.2
MARGIN 7.4.1, 8.8.5, F
MAX 7.4.1, 8.7.3
MIN 7.4.1, 8.7.3
MOD 704.1
modifier 8.2, 8.4.1

list 8.1, 8.4, 8.8.2
multiple assignment 5.2.2

N

NEGEXP 7 A .1
nested blocks 6.2
NEQ 4.3.2, 4 A
NORMAL 704.1
NOT 4.3.1, 4.4
NUMERIC 7 04.1
numeric labels 4.6.1

o

object code 1.2
OFF 9.2
OPTION 9.2, F
options 9.2
OR 4.3.1, 4 A
operand 4.1

arithmetic 4.2.2

7884
UP-NUMBER

UNIVAC 1100 SERIES SYSTEMS Index 4
PAGE

operand (cont)
boolean 4.3
string 4.5.1

operator 4.1
arithmetic 4.2.3
boolean 4.3.1
precedence of 4.4
relational 4.3.2
string 4.5.2

output list 8.3.6, 8.5, 8.7, 8.8.2
OWN 1.3.2

P

parameters
actual 7.1, 7.1.1.2, 7.1.5, 7.1.5.1,

7.1.5.2, 7.3.3, 7.3.4.2
formal 7.1.1, 7.1.1.2, 7.1.1.3,

7.1.2, 7.1.3, 7.3.5.2
parentheses 4.1, 4.2.3.3, 4.6, 4.7
POISSON 7 .4 .1
POSITION 7.4.1, 8.3.6.1, 8.3.6.2,

8.4.2, 8.4.4, 8.4.5, 8.4.6, 8.5.7,
8.8.3

position 8.8.3
format 8.6.4, 8.6.5

precedence
arithmetic operators 4.2.4
boolean operators 4.3.1
opera tors 4.4

PRINTER 7.4.1, 8.3.1, 8.3.2, 8.3.3,
8.3.5, 8.5.5, 8.6.4, 8.8.2

PROCEDURE 7.1.1.2, 7.1.3, 7.3, 7.3.1,
7.3.2,8.2

procedure 7.1, 7.1.2, 7.1.5, 7.1.5.1
body 7.1.1, 7.1.1.1, 7.1.1.3
declaration 7.1.1
EXTERNAL 7.3
heading 7.1.1, 7.1.4
standard 7.4
statement 7.1.5, 7.1.5.2

probability 7.4.2.2
program

form 2.3
layout 2.4

pseudo-random number 7.4.2.1
PSNORM 7 .4 .1
PUNCH 7.4.1, 8.3.1, 8.3.2, 8.5.5,

8.8.2

PAGE REVISION

R

RANDINT 7.4.1
random access 8.3.6.1, 8.3.6.2, F

files 8.3.6.2
random drawing 7.4.2.1, 7.4.2.2
RANK 7.4.1
RE 7.4.1, 7.4.3
READ 7.4.1, 8.3.3, 8.3.5, 8.3.6.2,

8.3.6.3, 8.3.6.4, 8.4.3, 8.4.4,
8.4.5, 8.4.6, 8.5.1, 8.5.2, 8.5.3,
8.5.4, 8.6.1, 8.6.5, 8.8.1, F

format phrases 8.6.5
read buffer 8.6.5
REAL 7.1.1.2, 8.6.1

ARRAY 7.1.1.2
constants 4.2.2.1
initial value 3.2
PROCEDURE 7.1.1.2
value limits 3.2

real format 8.6.4, 8.6.5
REAL2 1.3.1, 2.5.1, 3.2, 7.1.1.2,

8.6.1.
ARRAY 7.1.1.2
constants 4.2.2.1
initial value 3.2
PROCEDURE 7.1.1.2
value limits 3.2

records 8.8.3
recursivity 7.1.6
relational operators 4.3.2, 4.4
relative

data address 7.3.4.1
string descriptor 7.3.4.3

re-reading 8.3.4
reserved identifiers 2.5.1
repeat phrases 8.6.6
REWIND 7.4.1, 8.3.6.1, 8.4.3, 8.8.4
REWINT 7.4.1, 8.3.6.1, 8.4.3, 8.8.4
run-time 1.1, 1.2

error messages 10.3

S

sequential
drum files F
files 8.3.6.1
file devices 8.5.2

SIGN 7.4.1

7884 UNIVAC 1100 SERIES SYSTEMS Index 5
PAGE UP-N UM eER

simple symbols 2.1.1
simple variable 3.20 7.1.5.1

declaration 3.3
storage required 3.3.3

SIN 7.4.1
SINH 7.4.1
SLEUTII F
source text 9.2.1
specification part 7.1.1.2
specifier 7.1.1.2
SQRT 7.4.1
standard procedure 7.2.2, 7.4

identifiers 2.5.2
statements 5

assignment
compound
conditional
FOR 5.6
GOTO 5.4

5.2
5.3

5.5

input/output 8.1, 8.8
procedure 7.1.5

STEP 5.2.4, 5.6.2
storage space 6.1
STRING 3.2, 3.3.1, 8.6.1

initial value 3.2
values 3.2

string
assignment 5.2.4
constants 4.5.1
declaration 3.3.1
descriptor 7.3.4.3
expressions 4.5
format 8.6.4, 8.6.5
length 3.3.1, 3.3.2
operands 4.5.1
operators 4.5.2
parameters 7.3.4.3
variables 4.5.1

STRING ARRAY 3.4.3, 4.5.3.3, 7.1.1.2
declaration 3.4.3
parameters 7.3.4.5

string constant format 8.6.4, 8.6.5
sublists 8.7.4
subroutine 7.3.4, 7.3.3
subscript 3.3, 3.3.1, 3.3.2, 7.1.5.1,

9.2
subscripted variable 3.3.1, 7.1.5.1

declaration 3.4
substring 4.5.3, 7.3.4.5

array 4.5.3.3
declaration 3.3.2, 4.5.3.1
expression 4.5.3.2

SWITCH 4.6.2, 7.1.3, 7.1.5.1
declaration 4.6.2
specification 7.1.1.2

PAGE REVISION

syntax 1.1, 1.2, 1.3 0 E

T

TAN 7.4.1
TANH 7.4.1
TIME 7.4.1
TAPE F
THEN 4.6, 4.7
transfer functions
TRUE 4.3, 4.3.1,
type

5.2.3, 7.4.3
4.3.2, 8.6.4, 8.6.5

arithmetic expression 4.2.4
declaration 3.2

type procedure 7.2, 7.2.2
arithmetic 4.2.3
boolean 4.3
declaration 7.2.1

U

UNIFORM 7.4 .1
UNTIL 5.5, 5.5.2
upper bound 3.4.1

V

VALUE 7.1.1.2, 7.1.3
specification 7.1.1.2

value part 7.1.3, 7.3.4.2
variables

arithmetic 4.2.2.2
array 3.4
boolean 4.3
simple 3.3
string 3.2

W

warnings 7.2.1
WHILE 5.5
WRITE 7.4.1, 8.3.3, 8.3.4, 8.3.5,

8.3.6.2, 8.3.6.3, 8.3.6.4, 8.4.3,
8.4.4, 8.4.5, 8.4.6, 8.5.1, 8.5.3,
8.6.1, 8.8.2

format phrases 8.6.4

X

XOR 4.3.1, 4.4

Y

Y$TTAB F

•

•

•

•

•

,

•

•

•

