
Preface 

It was 1975, and Colin Broughton and I were a couple of college buddies and hot shot 
programmers at the University of Saskatchewan (Canada). 

Colin discovered this amazing thing called Algol68.  His initial interest was in the 
description: VW grammars were an intriguing invention.  As he studied the Revised 
Report on Algol68, though, he became fascinated by the language itself.  How could it be 
implemented?  Could it be implemented at all? 

A visit to Saskatoon by Barry Mailloux, the “first et al editor of the report” as he called 
himself, caught my attention.  While Colin became captivated by the challenges of 
parsing and compiling Algol68, I was drawn to the complexities of executing the 
resulting programs. 

We were young, ambitious, and a bit foolish, and decided we would implement a 
compiler and its run time system.  Not just any compiler, a full language compiler.  Flex 
arrays.  Parallelism.  Garbage collection. Transput.  And not only that, we would make it 
a checkout compiler in the heritage of WATFIV, so it could be used for teaching. 

Being young, ambitious, and (mostly) unattached, we pulled off the improbable.  Two 
years later we had a working version, and a year after that we commercialized it.  
Ultimately, 15 sites around the world, most of them universities, leased FLACC.  
Thousands of students learned their craft using Algol68 and FLACC.  I still bump into a 
few now, some 25 years later. 

Part of this journey took us to the University of Alberta (Canada), where Barry was my 
Master’s supervisor.  Colin and I finished up the implementation, and I wrote my thesis 
about how the run time system worked.  It is that thesis that follows. 

I have reproduced it exactly here.  It was after the thesis was published that we changed 
the name from FLASC to FLACC (student to checkout) for commercial purposes, and 
also extended it in several ways, including producing object modules. 

 

One note to the less-than-grizzled reader: in 1975, IBM was king and System/370 
mainframes ruled.  Unix and C had just escaped Bell Labs, and VAX was still on the 
drawing boards. There were no PCs.  All serious systems programming was done in 370 
Assembler, and everyone knew that a pointer was three bytes.  These notions seem quaint 
now, but their pervasiveness at the time strongly influenced the FLACC design and 
implementation. 

 

I reproduce and republish this thesis in the hopes that it will provide some elucidation or 
at least entertainment to students of Algol68 or of compilation techniques. General 
permission is granted to copy in whole, or extract portions, provided it is without 
modification and with attribution. 

 

Chris Thomson 
Pleasanton, California, May, 2011 
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Abstract

A run-time structure suitable for implementing a

checkout compiler for ALGOL 68 is described. First, a set

of design objectives are given; then the structures and

algorithms used at run time are described. Difficulties

with tracing are discussed. An outline is given of how

dumping might be done. Finally, some pragmatic

considerations are presented.
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Chapter 1

Introduction

1~ Design Goal§

ALGOL 68 is, in many ways, a suitable language for
teaching Computing Science. The language has well-defined
syntax and semantics, and em~loys many of the concepts of
Computing Science. It is also a "growth" language, in that
a student can continue to use it as he becomes more
sophisticated. This is not to say, however, that it is
complete: there is still a need for other languages.
However, there is no doubt that a student-oriented compiler
system for ALGOL 68 is necessary to its acceptance as a tool
for instruction.

In this thesis, such a system is described. The
thesis concerns itself primarily with the design of the run-
time system, or object-machine interpreter. The primary
emphasis is on error checking, tracing and dumping, and how
they are accomplished. The design described herein has been
implemented (as a separate project) on an IBM /370 as the

1



2

FLASC system (Full Language ALGOL 68 Studant Compiler,
( 4, 10]).

Many definitions have been given fort-he term
"student compiler" [1. 3, 5, 6, 7], each differing
slightly_ Our design goals reflect what we mean by this
term:

1. Fast compilation
In a student "cafeteria" programming environment,
the emphasis is on compilation: programs are
compiled repeatedly until they appear to be
correct, then are thrown awaYe For this reason,
efficiency of execution is a strictly secondary
consideration.

2. Extensive run-time error checking
It is essential that checks be made ·for
uninitialized values, sUbscripts out of range,
scope violations, arithmetic overflows, and
similar errors. All of t~ese checks must be made
at run time, since it cannot be guarant€ed that a
compile-time check will suffice in general.

3. Tracing and dumping
It is important that the user be able to trace the
flow of his program, as well as the values of key
variables. Symbolic dumps are also ot great use
in discovering what has actually occurred in a
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program run.

4. Lucid error messages
Nothing is less informative than a "something went
wrcng somewhere" message. Care must be taken to
ensure that error
describe the error
manner. It is often

messages both locate and
in a clear, comprehensible
advisable to give typical

causes and solutions.

5. Indestructability
The system must be secure, in that the user must
be restricted to his work space.

6. Cost limitation
There must be provisions for imposing time and
output limits on student runs.

7. Memory residency
The use of overlays
both to increase cost
performance.

and utility datasets tends
and to degrade real-time

8. No object modules
The compiler/run-time system interface is much
simpler if object modules are not produced. This
simplicity is reflected in lower cost of
compilation. Independent compilation is genera11y
unnecessary in a student facility, and is properly
the domain of production compilers. This does
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not, however, preclude this compiler from
processing obj.€ctmodules from other compilers (of
course, this violates security).

Many of the techniques described in this thesis are
very time- and space-consuming. Some can be done more
cheaplY6 but most cannot be improved by more than a factor
of about two, which would have little impact upon the
running time of a typical program. Program size is not
considered to be very important.

1~ Aspects of the banguage

At the outset o£ the project, the decision was made
to implement as nearly as possible the full language ALGOL
68, as described in [11], hereafter referred to as "-the
report". There were several reasons for this: (a) it was
considered desirable to have a full-language implementation
(as opposed to yet another subset); (b) the language
described in the report has been carefully checked for
ambiguities, and these have been removed; (c) a final
authority exists for appeals about the meaning of obscure
constructs; and perhaps most importantly, (d) no effort had
to be expended in the design of the language to be
implemented; rather, design of the implementation could
begin immediately.

During the course of the implementation, some
problems were encountered in the language, almost all in the

-.- .-- ------ -- ----
• - 'M _~. ~ ~ •• .,. ~"'~~ "-'-:", '-, ••••.•• .0.;'" L-J ••"-~~~ ..•.•- ~-~ ~ - - '" ~.
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area of transput. This is primarily because, unlike the
rest of the language, transput is not at all well described
(the method of descr~ption being a program), and is riddled
with errors a A few deviations were made to enhance the
human-engineering aspects of the system. One aspect of the
handling of loops may be considered different from the
report's definition. This is discussed later.

There are several aspects of the language which other
implementations have generally excluded, but which have been
implemented in FLASC.:parallel pcocessLnq , flexible rows,
and unions. Parallel processing is usually omitted because
it precludes the use of· a traditional Algol· 60· stack.
Flexible rows are often omitted because they also cannot be
done in a stack model. Unions are usually omitted because
they complicate the object code. Because the FLASC system
implements all of these, it requires some nonstandard data
structures to support them. These data structures are
outlined in Chapter TVOe

Of course, the primary purpose of a checkout compiler
is to discover errors. tet us cons.i.der some of the types of
errors that can be made in an ALGOL 68 program. Most
obvious are syntax errors. These are not considered in this
thesis, which is concerned with run-time errors only. Errors
can be made in the formati~n or use of modes: these can all
be detected at compile time. Tags can be used without being
declared. This can usually (but not always!) be detected at
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compile time. Attempts can be made to dereference names
which have never been assigned to, or which are nil. This
can be detected only at run time. other errors which ust be
checked for at run time include: out-of-range subscripts,
arithmetic overfloHs, transput errors, scope violations,
mamory overflows, nonterminating loops, runaway recursion,
deadlock of parallel proc~sses, assertions that do not hold,
and arguments out of range for standard operators and
procedures. Chapter Three describes these errors in more
detail, and outlines their handling in the FLASC system.

One other important function of a checkout compiler
is to aid the user in tracing the flow of his program, and,
in the event of an error, dumping the values of variables.
There are many aspects of ALGOL 68 which make dumping
difficult and tracing ineffective. Chapter Four deals with
these difficulties and some possible solutions to them.

Chapter Five discusses some of the pragmatic
considerations of the ELASC system.

- - - . - ~,,~ ~---.-•..------
- -~'!C .•••_ ••~.••••""~"""._.u;,_ .w..w •••••.£.Ii..w-..-.L •.•• " ••••• "" ~ • ~~-, - -



Chapter 2

Run-Time structu~e

The first and most important decision to be made in
the design of an object machine is its basic nature; i.e.,
whether it is to be a stack, accumulator, or general
register machine. This decision pervades the rest of the
design.

In the FLASC system, a form of stack machine was
chosen. There are several reasons for this choice. The
most important is that compilation is greatly simplified,
code generation being essentially a traversal of the parse
tree. All the problems associated with register and
temporary storage location allocation are thus avoided.
Somewhat less important is that the treatment of values at
run time is completely uniform; operands are always found in
a standard order at the top of the work stack, and all
results are left there. The stack machine has one important
drawback, however: execution is very slow {eSpecially on a

7

-- - -- -----
~-~ - ~ ...•- '"- ~-- -- ~~-,---" ~h..:.""",<=""""",~~~_._=--.;.;u.'.ill'~~b~""'~~ ~'dIo~ -"""~~-"...,.."'~-. ~.-. • ••
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/370). This is considered to be much less important than
the speed of compilation. One ramification of using a stack
model is that support of garbage collection is quite
costly. This is because the garbage collector must be aware
of what is stored in the work stack during all phases of
computations, since a heap generator may be used during a
calculation; this means that the only pointer to the
generated object is in the work stacke This is the only
situation where the work stack contents need be considered.
There are several methods of coping with this need: using
self-identifying data structures, keeping a separate stack
containing the modes of all the objects on the work stack,
or keeping a separate stack containing all pointers inside
Objects on the work stack. The last method was chosen in
FLASC, primarily because it is fastest. Note, however, t-hat
this method may preclude a compressing garbage collector, if
(as in FLASC), only significant, rather than all, pointers

are kept. Significant pointers are discussed later, after
memory allocation has been described.

Use of a stack model specifies a great deal about the
object code, but two more major decisions must be made:
whether to generate standalone or threaded code (2], and
whether or not to generate object modules. In FLASC, both
decisions were made with simplicity of compilation in mind:
threaded code, no object modules. This implies that the

-- - ----
- ~ ~ ..;;.~•.. ~~~-~~"""""""'- ,-~-~-~ ..•.....-- ~~-- "--"- ~-.- "'- - ~ --...:>- ~
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code is generated directly into memory, and is not relocated

after compilation. Thus the entire language processor (LP,

by which both the compiler and run-time system are intended)

is resident at all timese This consumes a great deal of

space, but has the advantage that, since the LP is reusable,

no part of it need be reloaded between runs. More
importantly, the generated code can call directly those

parts of the run-time system (RTS) which are needed. There

is no need to "link edit" the generated code with the RTS.

Threaded code is a series of subroutine calls,
interspersed with inline constants. On the /370, the calls

are BAL instructions, which provide a means of accessing the

inline constants. For example, the call to add two integers

already on the work stack would appear as:

BAL RET,XINTADD
DC AL2(line,column)

The second word {two halfwords} is the source-listing
coordinate: this is provided for the error processor, in the
event of overflow. Note that when XINTADD is entered, RET
points at the coordinate. To exit, XINTADD branches to
offset four from RET. This is the address of the next BAL

in the code sequence. Use of this scheme implies two
important attributes of the RTS: at least part of it must be
addressable from the generated code (i.e.., there must be at
least one base register pointing at the RTS), and the RTS

will be essentially a large collection of subroutines, most
of them quite smalls Of course, not all of the RTS can be
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directly addressa~le; even if all fifteen available
registers were used, this would limit its size to 60K bytes,
and not leave any work registers! Instead, a compro ise was
reached: three registers are set aside for base registers,
and a special routine was written which calls other routines
not normally addressable. Small, often-used routines such
as integer addition are in the addressable portion, and
large, seldom-used routines such as formatted input are in
the portion not directly addressable.

One very important attribute of this threaded-code
scheme is that (for generated code at least), the common
/370 problems of addressability are completely avoided. This
vastly simplifies code emission. Equally important is the
fact that only offsets of entry points in the RTS need be
known by the code emitter. This means that a much smaller
number of relocations n€ed be made when the LP is loaded,
further reducing the cost of its use.

Memory allocation in FLASC is fairly simple. All
memory is allocated in blocks which start with a standard
"title". All blocks are allocated in the heap area. First-
fit allocation is used, employing a roving pointer (9, pp.
437~ 597]. First-fit is used because little (if anything)
is known about the effectiveness (or lack thereOf) of any
other algorithm in an ALGOL 68 environment. It was chosen
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for its speed and simplicity. standard titles are used to

simplify garbage collection.

Note that there is no Algol 60-type stack in this

scheme. On the contrary, because of the needs of parallel

processing, a cactus-stack arrangement is used. To make the
stack model work, local stack frames (LSFs) are used, each

of which contains the work stack area needed by the code

generated for the range concerned. LSFs are described

later.

Each block has two portions: a title and a data

The title contains four parts: flags, including the

,
I F I -> next block I
A • I
! I -> mode I• + -j

I I nest level I
A I -I
I I
• I
I data I
I I
f I

A Block

garbage collector marks and free/allocated bit; a "next"

pointer used to chain blocks and also determine their sizes;
a mode pointer which points at a tree used by the garbage

collector to determine the form of vhe data area; and a nest

level which is used in the scope check. Garbage collection

and scope checking are described in later sections.

--- - -----
" ~~._~...;_M......-...••...•.•....- ----"-._..•....~~_~.~ .•~.>,o'""-'""~.•.t.L ._~ .•..•_ .•."'" ~ _~ - . ~. - ..- ~ - & -- ~



12

Local and heap cells differ primarily in the manner
by which they are freed. Local objects are collected into
stack frames, and freed explicitly when the range is exited,
whereas heap objects are allocated individually, andfr-eed
when the garbage collector discovers they are no longer in
use. Under this scheme, it is normal to call the memory
allocator only once per range, to allocate its LSF.

2e4 Storgge ~!ructures

ALGOL 68, due to its complexity, requires many data
structures at run time. In an effort to minimize complexity
in the FLASC RTS, two goals were adopted: a minimum number
of structures should be used, and the use of them should be
uniform. Under this scheme, all refs, for example, look ~he
same, regardless of what they refer to. This methodology
simplifies all the algorithms which process the structures,
especially the garbage collector.

~t is essential that a student LP check for the use
of uninitialized variables. The FLASC system uses a special
bit, the def bit, to determine the defined/undefined status
of each cell. Because more than one name may refer to any
one cell, def bits must be associated with values, not
names, even though they are checked only when names are
being dereferenced. Most, but not all, values have def

~ - ~ ..--~-.~-
• ~, ~ •• - - A'l,~ ,,~n· '" """'_, ;,.,.•"" ~ ~..i!~""", ~ ••...•• !I..:{""'~. '_'~I '~"_--1:...~"""" or "",,- -"'"'"....-.!.
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bits. Anything possessed by a tag has one. The only time

an object does not have a def bit is wh€n it is a structure

or row (in which .case the subobjects have them), or when it

is known to be defined. The latter most commonly occurs in

strings, which are assigned as units and thus normally must

be well-defined. More on def bits later.

Def bits are checked whenever an object is moved onto

the work stack. Most commonly this will be while

dereferencing a name or pushing an object possessed by a tag

onto the stack. Under no circumstances is an undefined

value allowed on the work stack (skip is considered to be

defined) •

- .
As mentioned above, refs have a standard form. They

consist of a title pointer, which points to the title of the

r I "1
I I -> title I
J ,

A

D VM I -> value I
I ., •J DM j -> def bit •

A Name (ref)

storage block containing the value; a value pointer; and a

def bit pointer. If the value is a bool, then the VM field

is used as a mask to tell which bit within the byte is
used. Similarly, the DM £ield is a mask for th-e def bit.
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The VM field could have been eliminated by storing bools one
to a byUe, thus achieving complete uniformity in addressing,
but it was decided (and later regretted) that rows of bools
should be packed, since these rows are typically huge,
making the 8:1 space improvement desirable. Under the
scheme used, bools are always treated as special cases.

Rows are represented by two data structures. One, of
constant size (determined by the number of dimensions), is
the descr~ptor, which is normally stored in the LSF. A flag
field indicates whether there is really a bunch (sometimes
there is no bunch). A bunch is the dynamic part of a rov;
bunches are described below. The descriptor also contains a
bunch title pointer, for use by the garbage collector, a
bunch value pointer, which points at the first element in
the bunch, and a def vector pointer (which may be zero). Def
bits of row elements are collected into a vector and stored
in the bunch.

The remainder of the fields are used for slicing.
Each dimension has a three-word descriptor, consisting of
the upper and lover bound, and the stride. The stride is a
multiplication factor used in indexing, and is the product
of the "si'Zes" of the previous dimensions. It thus
indicates the spacing of the elements of a given dimension.
The item spacing is normally the size of each element in
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j 1

I F I -) bunch title I
j ~ oj

I I -) bunch valuesl
• -+ ••
« I -) def vector I
I I -i
I def spacing I

J I
I item spacing I
1 i
I def offset I
•• j
I item offset I
~ ••
I dim#l upb I
l- '.:. f
I dim#1 lwb !
j-- i
j dim#l stride I
I I
I dim#2 upb I
~ -I
I I
J ...... a
I I
L -II

A Row Descriptor

bits, but may increase during multiple selections. The def
bit spacing is normally one, but may also increase during
multiple selections. The item and def bit offsets are
normally zero, but usually increase during slicing.

As mentioned above, a bunch is the dynamic part of a
row. As such, its size can be determined only at run time.
Thus, bunches are not put in LSFs, but are allocated at
generation time in the heap area. Each bunch starts with a
standard title. An element-count field tells the garbage
collector how many items are in the bunch. The transient-
name-count field is used for error checking during flexing
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I

J F I -> next block I
•• • I•
i I -> mode I
1- -+ I
j J nest I
j -i
I element count I
I I
I trans name count I
~ I
f I
J data vector I
I I
i j
I I
i def vector I
I I
i. J

A Bunch

operations. The actual row elements are stored seguentially

in the data vector, and their def bits (if any) are stored

in the same order in the def vector. If the elements ~re

stowed, or known to be defined, then there will be no def

vector.. If tile row is flat, there will still be one element

(even though the element count will be zero), which is used
during bounds checking.

structures

structures are very simple. They are concatenations

of their constituent fields, possibly in order of their

aligillmentrequirements, followed by def bits for the fields,
in any order. If a field is in turn a structure, the field

is treated as a separate structure; i.e., substructures are
not broken apart to increase storage utilization. This
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method leads to uniform trea~ment of structures, even when

they are parts of other structures.

A complex number is a structure of two fields, the

real and the imaginary parts. Following these are the two

def bits. Thus a complex is just like any other structure,

although the RTS treats it in the same manner as an int or

real im most cases.

A union consists of two fields. The first points at

the mode of tlliecurrent value, and the second contains the

value. The second field is large enough to hold the longest

of the possible values.

A procedure value has two fields. The first is a

code pointer and the second contains the nest level (scope)
of the routine.

A format is stored as a tree, in much the same manner

as outlined in the report. A format value has two fields.

The first points at the format tree and the second contains
the nest level.

A semaphore is a structure of one field, a ref int,
as suggested in the report. The int is allocated on the
heap to avoid scope restrictions.

A channel is simply an int at run time, although the

~~--~-- -~~~-
. '--'-"~----~-- --- ---"'~"-'--~""'<"-~--'~'------ ~- ~ ~ _._-
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user is not able to make use of this fact. A file is a
structure with a single field, a pointer to an ~nternal
block. The def bit for the field indicates the open/close
status of tbe file. The internal file block is much the
same as that described in the report.

As previously mentioned, each range in the user
program has a local stack frame (LSF) associated with it
(provided it contains declarations other than loop control
variables). LSFs consist of four main parts. The overhead
portion is a standard title followed by a flags field, a
pointer back to the task display (TD, described below), a
pointer to the last (chronologicall~ LSF, a pointer to the
last (recursively) LSF, and save areas for the work and
title stack pointer registers. The USer data area is next.
It consists of al1 the local storage declared by the user,
together with any def bits required (this area is just a
structure). At the end are the work and title stacks.

LSFs are chained chronologically (via the last LSF
field) for the benefit of range exit, return, and goto,
which always process LSFs in reverse chronological order.
These routines often make use of the mode field in the title
to distinguish LSFs. A separate chain (the pushed LSF
field) is used for recursion. All LSFs on the pUSh chain
are of the same type (~.e.,belong to the same routine).

- - -.. --~-......--.~
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A Local Stack Frame

This chain is used to keep the task display accurate.

The work-stack area is used for the storage of all

temporary and intermediate results. Its size is bounded and

is determined at compile time by simple-minded "simulation"

of the code generated. The amount of work space needed is
bounded because elaboration of any construct which requires

an unbounded amount of work space (e.g., recursion) causes a
block entry, and therefore allocates a new work-stack area,

the size of which can be calculated later (but which will
also be bounded). The title stack is provided for the

-~- ~-~~
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benefit of the garbage collector. Each time an object
containing a title pointer is pushed onto the work stack,
this title pointer is also pushed onto the title stack.
Thus title pointers are considered to be "significant11

pointers (in the sense of Section 2.1)8 while value and def
pointers are not. These stacks grow from the bottom of the
diagram; ±hat is, toward lov memorYe This facilitates
access to values inside the stacks, since the /370 does not
handle negative displacements very well.

Due to the blocK-structured nature of the language,
values stored in outer ranges must be accessible. This
requires seme sort of task display (TD). Parallel
processing requires multiple TDs. In FLASC, each task or
process has a TD, which points to all the LSFs which are
active in that task. All TDs have the same shape: creation
of a new task merely involves replicating the old TD, then
chaining appropriately. This ensures that all sibling
processes· start out with identical access to values. The
initial TD is the "root" of all blocks in memory; the
garbage collector s-r.artshere in determining what blocks are
active.

A TD consists of two main parts: an overhead region
and an LSF vector. The overhead region consists of a
standard title; a flags field; pointers to the parent, next
sibling, and eldest child TDs; a counter of the number of

children alive; a pointer to any semaphore upon which the
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A Task Display

task may be waiting; the coordinates of the point of

suspension (if any); and a register save area. The LSF
vector has one entry for each type of LSF in the program.

Each range which has an LSF has its ovn slot in the TD. The

offset of any particular LSF is computed at compile time,

and is used as an inline constant for primitives which
access global values.

whenever it is necessary to know the mode of some

object (such as a block headed by a title), a pointer to a



mode template is used. Mode templates are trees, each node
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A Mode Template Node

of which is a word in the cannonical mode spelling.
Structures and LSFs have nodes with field descriptors,

causing multi-way b~anches in the trees. Other mode words,

such as ref, result in unary nodes.

The T and IOT fields indicate the type of node; the F

field is for flags. The mode-number and routine- and field-
name fields are used for dumping. The TD-Offset, and worK-

and title-stack (WS and TS) base-offset fieldS are used by
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block entry. In the implementation, several of the fields
are overlapped to save space, since a typical program will
have many templates.

Mode templates are used by most utilities dealing
with arbitrary objects. These include the garbage
collector, dereference routine, most error checks, including
defined, scope an~ bounds checks, generators, copy routines,
transput, etc. In general, when a mode is not simple (e.g.,
real, -ref int), a mode template pointer is given to describe
it..

l'!ost of the algorithms which massage the data
structures outlined above are quite simple in nature,
although some are not obvious. The algorithms described
here can be broken into two broad classes: data-manipulation
algorithms, and control-structure algorithms. The former
are described first.

Most denotations are handled by the compiler and
require no run-time action other than copying them to the
work stack. String denotations are somewhat different. The
compiler passes a pointer and a length to the RTS and a
descriptor is built on the stack. Note, however, that no
bunch is allocated and the string is not copied. This is

- ~ - - --- --- ..
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one of the two cases when a row does not have a bunch.

Rowand structure denotations (i.e., displays} are

done by first elaborating the fields, then either enrowi~g

or enstructing (described later). Note that in the case of

structures, space is allocated in the work stack before

elaborating the fields, to give "enstruct" a place to build

the structure from the fields.

Dereferencing

Dereferencing is normally quite simple. For simple

modes such as ref int, it consists of using the ref on the

top of the work stack to address the value and def bit,

check the def bit, then copy the value to the work stack,

after popping off the ref. More complicateed modes require

more effort. often a mode template will have to be

traversed looking for and checking the def bits. Copying

the value to the work stack may not be sufficient; if the

object points at any bunches or files, they, and any bunches

they refer to, etc., must be replicated.

In an effort to speed up theRTS, special routines
were written to handle the common modes such as int.

strings, .in particular, are singled out for special

treatment. Normally, dereferencing a string would involve
copying the bunch, which would involve a memory allocation.

If, however, the dereferenced value is destined to be used

by a standard routine or operator, then no copy is made.

. , ~---:--~----=-
, "-'~_''''''''''''''''''-a~.'''''''~ ..,..,._." •." ~ "" _ __ _ -' ~., _... _ ~ _., ~ • " ~""'~_



25

Because more than one dereference can be ade at a

single coordinate, the user is told the mode of the ref if

there is an error (i.e., if the ref is nil or the value is

undefined).

Assignment and Ascription

There are three kinds of assignment and two .kinds of

ascription. Assignment can be done to a row, a flex row, or

a nonrow. Ascription can be done during a declaration or a

call.

Assignment to a nonrow is simple, since a contiguous

object is copied from the work stack to the area specified

by the receiving ref. After the copy, the stack is popped
. .

and the def bit (if any) is turned on. Note that a scope

check or bounds check will often have to be made, especially
if a structure or a ref is involved. Also, if the value

contains rows, then any bunches must be replicat'.ed..For

reasons of efficiency, separate routines were written for

each of the simple modes.

Assignment of a flex row is also simple. Here a

check of the transient-name count must be made, in addition

to the scope and bounds checks, but the operation is
essentially a copy of the descriptor. Provision is made for

row of plain, to avoid the scope and bounds checks and

replications. This is primarily f6r strings (flex rov of

~-~ ~=----~--
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char). Note that the row values never have def bits since
they are on the work stack, and thus must be defined.

Assignment of a row is complicated. If the receiving
row is a contiguous slice (i.e., the whole row, or some part
in which all elements are adjacent in memory), then the
assignment can proceed via a simple copy, after scope and
bounds checkse If, however, the receiving row is a
noncontiguous slice, then each receiving element must be
indexed individually, then a copy made from the bunch being
assigned. Note that in any event, the elements of the row
being assigned are in order in memory, and can be copied
simply, after any subbunches have been replicated.

Ascription is always a copy operation, the source
being on either the current or the previous work stack
(depending on whether in a declaration or call), and the

destination in the current LSF. Both the work and title
stacks are popped after the copy is made. Usually, the def
bit associated with the receiving location is not turned on
in the case of a declaration (see Chapter Three), but it is
always turned on in the case of a call.

Slicing

There are several kinds of slicing: indexing, which
causes the number of dimensions to decrease; subscripting,
which yields a scalar; and trimming, which does not Change
the number of dimensions. Of course, all these can be done
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on both ref rows and rows.

One of t'he first decisions made regarding slicing vas

that rows would not he operated on directly_ Rather, they

are "enrefer·enced", then sliced, then dereferenced. This

reduces the amount of copying done, and simplifies the

algorithms greatly.

Subscripting is probably the most common of slices,

so an attempt was made to make it fast. In contrast to

indexes and trims, which in the interest of simplicity are

done one dimension at a time, subscripting is done all at

once. That is, all the sUbscripts are pushed onto the work

stack, and the addressing calculation is done in a tight

loop. This may not seem significant until it is realized

that indexing and trimming yield new descriptors, which must

be allocated specially.

The subscript calculation proceeds according to the

formula

ace +:= (index(i)-lwb(i»*stride(i)

The result of this calculation is the offset (in items) of

the element within the bunch. The calculation of the actual

addresses of the element and its def bit are' done by

mUltiplying this value by the appropriate spacing, and

adding the offset, then converting from bits to bytes, and
adding the value or def pointer.

Indexing is quite straightforward. The arguments are

-
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the ref row, the index, and the bound number. Anew
descriptor is built in the heap area, having one less
dimension than the old one. Next, all the di ension
descriptors are copied, except the one being deleted. These
remain unchanged because the spacing of the remaining
elements in the bunch remains unchanged. The value and def
offsets, however, are changed according to the formula

offset +:= (index-lwb)*stride * spacing
This is to account for the shift in the addressing caused by
selecting an element other than the first (i.e., that
selected by the. lower bound) as the index for the
operation.

There are four kinds of trims: renumber, triml (lower
bound only), trimu (upper bound only), and trimb (both
bounds)• The algorithms for the last three are very
similar. Renumbering (establishing a new lower bound)
involves copying the descriptor and adjusting the upper and
lower bounds. Offsets and strides remain unchanged, because
the bunch is not affected. Trimu is also simple. It copies
the descriptor, then adjusts the specified upper bound.
strides and offsets are not changed. Triml and trimb,
because they Change a lower bound, are more complicated.
After copying the descriptor and changing the bound(s), new
offsets are calculated according to the formula

offset +:= (newlwb-oldlwb)*stride * spacing
This is to account for the shift in the addressing caused by
selecting an element other than the first as the lover bound
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of the operation. The strides are not changed. Note that

trimu, triml, and trimb are all required to involve implicit

renumbering (the new lwb is 1). This is done last, by

simply adjusting the bounds. No other change is involved.

In an effort to spe€d things up, trims allocate new

descriptors only when instructed to do so by the compiler.

If a series of trims is being done, then only one descriptor

need be allocated, and then reused in subsequent

operations.

Of course, in all slicing operations, the indices are
checked against the bounds to ensure correct specification.

Multiple selection is really more like slicing than

selection, since both the argument and result are ref rows
(again row values are enreferenced). Normally, a new

descriptor is allocated by a multiple selection.

Only the item offset, and the def offset and spacing

are affected during the selection. The item offset is

increased by the offset of t~e field within the structure.

The item spacing remains unchanged, because the items are
still embedded within the structures (i..e., no copy is
made). If there is no def bit associated with the field

(i ..e., it is stowed) , then nothing else is done. If the
field has a def bit, then the def offset (which must

-*~,--.-~ .- ._- -"'-' - - - ~-~- .-~ -."""'-----"'"-- •......•... ~_ ---~,;...;" -'" ,~- - ~~-~ - --~
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previously have been zero, since the row elements were
stowed and thus had no def bits) is set to the su of the
old item offset and the def bit offset within the
structure. The def spacing is set equal to the item spacing
(which is equal to the length of the structure).

~~!ectio.n

There are two kinds of aeLect.Lo ns e ref selections and
value selections. Here again, enreferencing could have been
used, but it was decided (arbitrarily) to implement two
different routines.

Ref selections are very straightforwardj after
checking for nil, the offset of the field is added to the
value pointer in the ref, and the def offset of the fie~d
~if any) is added to the def pointer.

Value selections are a bit more complicated. Since
the structure is on the work stack, the field must be copied
out of the structure, then the work and title stacks popped,
then the field pushed onto the work stack, and the title
stack pushed (for the field titles). It was decided that a
memory allocation was undesirable, so the field is copied
onto a lower part of the work stack (i.e., the WS is
pushed), then copied back after suitable adjustments are
made to the WS pointer. This is one of several routines
which use "extra" work-stack space.
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Rowing and Enrowing

Th,ere are four kinds of rowing, and two kinds of
enrowing (used in row displays). A value can be rowed to
form a row of mode; a ref to mode can be rowed to form a ref
to row of mode; a rows of mode can be rowed to ferm a row
rows of mode; or a ref to rows of mode can be rowed to form
a ref to row rows of mode. A collection of mode can be
enrowed to row of mode; or a collection of rows of mode can
be enrowedto row rows of mode.

In all types of rowing, there is one object on the
top of the work stack at entry, and a row or ref to row
there on exit. A new descriptor is always built. In the
first case (mode to rov of mode), a bunch is also built. In
the second case, no bunch is built, since the rules for refs
in the language require that no copy be done. This is one
of the two cases when a row descriptor has the "no bunch"
flag turned on. In the third case, the descriptor on the
work s-tack is simply stretched by one dimension. The same
is true in the fourth case, except that, since the
descriptor is not on the stack, a new one must be allocated,
and a copy made.

In both types of enrowing, there is a group of
Objects on the stack at entry, and a row descriptor there on
9xit. In both cases, fi9Vbunches are alloca~d, and copies
made of all subelements. In the first case, the objects on
the stack are copied sequentially into the bunch. In the
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second case, each of the old bunches (i.e., each element
within them) is copied into the n€w bunch.

In rowing, none of the strides, offsets or spacings
is changed 0 The new stride is the largest of the old
stridese In enrowing, the def spacing is set to one, the
def offset to zero, the item spacing to the size of the
objects, and the item offset to zero. The stride of the nev
dimension is the largest of the old strides times the number
of objects copied from the stack. Any bunches created by

rowing or enrowing are without def vectors, since all the
elements within the bunches must be defined (they came off
the work stack).

Declarations, generators and skips are either trivial
or nearly impossible, depending on the mod€ involved. Plain
modes are trivial. Stowed and united modes are difficult.

Declaring a variable of plain or complex mode
consists only of building the ref (if any). No action is
taken to generate a plain mode, since space is allocated in
the LSF at compile time, and this is left as zeros.
Generating plain skips consists simply of pushing some zeros
onto the work stack, and, in the case of complex, turning on
the def bits.

Generating a complicated value involves more work. If
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the mode contains rows, then the bunches must be allocated.
In order to do thisg all structures must be traversed,
looking for rows as fields, and all rows recursed, looking
for subrows. For this purpose, as well as the handling of
heap allocation, a generate routine is needed. If it is
given a location for the value to be generated, then this
space is used; otherwise, space is allocated in the heap for
it. only the top level of any mode (except rows) is so
allocated; space for the entire value is obtained in one
piece. Scope can be either local or primal, depending on
another parameter given by the compiler. Aside from the
initialization of row d.escriptorsaft·erallocating bunches,
all areas are left as zeros. This includes all def bit
locations, so values are initially undefined.

The declaration of a complicated value involves
elaborating the bounds (if any), possibly replicating them
for repeated fields or modes, then calling the generator,
ascribing the re£ which is returned, then popping the bounds
(which are not popped by the generator, to allow for joined
declarations), and turning on the def bits for the tags
deClared. The reason for turning on the def bits last is
given in Chapter Three.

Elaborating the bounds of certain modes may require a
call. In particular, modes whose actual bounds contain
generators vhich involve the current mode recursively will
cause the code generator to recurse indefinitely if the
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actual bounds are not made into a routine and called. Note,
however, that this does not solve all problems: the routine
must have the same scope as the declaration, or bogus scope
errors may arise. This implies a special kind of block
entry which does not change the scope level.

Skips of complicated modes are done as generators,
for simplicity. Since generators return refs, a
dereferencing must occur. However, since skip is required
to be de£ined, all the def bits within the value must be
turned on. This requires a special routine. Note that it
is also necessary to fill in some value for unions. To
enable this, the compiler suggests some mood (via the mode
field of the template) for the "make defined" routine to
use. If this mode is a row, then a bunch must be
allocated.

Control-Structure Algorith~§

control-struct.ure algorithms
implement syntactic structures which
control, or which manage stack frames
block exit).

are those which
imply transfer of
(i.e., block entry,

Block entry allocates space for a new stack frame,
and the nest level is set to that of the old LSF, plus one.
This increment does not occur if this is a block created by
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the compiler around an actual bound. The old LSF is chained
to the new one, then the pointer in the task display is
updated, after being saved in the new LSF (this is the push
chain). Finally, the new work- and title-stack pointers are
set up, after saving the old ones in the old LSF.

If there is a vaLue to be yielded by the block, then
the value is copied to the old work stack before the block
is exited. There is a special routine to do this. Note
that a scope check may be required here. If there is no
value, then this routine is simply not called.

CallS are done in several stages. First, a return
address and coordinate are put on the work stack: then tne
arguments are elaborated; then the call primary is
elaborated. At this time the actual call takes place.
Control is transfered to the address given by the call
primary (proc value). At the start of the proc, a block
entry is made; then the parameters are ascribed from the old
work stack. At this point the call is complete. Note that
the arguments have been popped off the old stack, and all
that remains there is the return address and coordinate.

Before returning, if a value is to be yielded, it is

copied onto the old work stack, and popped off the current
one.. A scope check must be made here. The value copied
goes above the return address on the old stack. Because of

-
-"- _ __ _ _ .•._~ __ ••.•~_~ .,_~ __ --.....~ •..•.._~ __ ~~""""""" -.do.T-...,. .•.~""""'" ""'"""'......••.~---~-'-"--~~



36

this, a different routine is used from that which copies
values at block exit.

When the value (if any) has been copied, a block exit
is done. Now the actual return takes place. Control is
transferred to the return address, and the address and
coordinate are popped off the work stack. The returned
value, if any, is at the top of the stack.

The coordinate of the call is pushed for the benefit
of the traceback routine. In the event of an error, a trace
of work stacks is used to find the coordinates of any
calls. In order to distinguish calls from ordinary block
entries, a flag is turned on in the LSF during a call, and
turned off during the return.

There are two major kinds of loop: those with and
those without control ints. Loops without control ints
(loops with no for, from, by or to part) consist of the

elaboration of the while part (if any), followed by a
conditional jump to the exit (omitted if no while part), the
loop body, then an unconditional branch back to the top of
the loop.

Loops with control ints are of two types: those with
to partsg and those without them. In either case, the from
and by parts are elaborated (they may be implicit and
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supplied ~y the compiler), and initialization of the control

int takes Flace. Next, the to part (if any) is elaborated,

and the test of the control int is made, provided there is a

to part. Now the while part is done, followed by the loop

body. At the end of t'he loop, the increment is performed.

If there is a to part, then overflow is not an error, and if

one occurs while incrementing the control int, the values of

the control, by, and to ints are juggled to cause the test

to fail. This will happen if "TO rnaxint" is given. If
there is no to part, then overflow causes an errore In any

event, the control int is updated, and a branch is made to

the test at the top of tfue loop.

Choice CI£"y,§,§,§

Boolean choices (if clauses) are very

straightforward. The boolean expression is elaborated, and
a conditional branch is made around the then part. There is

an unconditional branch at the end of the then part, if

there is an else part. The else part, if any, follows.

Integral choices (case clauses) are also quite

simple. The integral expression is elaborated, and checked

for being in range. If it is in range, then a pointer is

selected from the branch table, and the appropriate clause

is invoked. If the int is out of range, the out branch is

taken. If the clause has no out part, the compiler supplies
one. Following the branch table are the cases, each (except
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the last) followed by an unconditional branch around the
remaining cases.

United choices (case conformity clauses) are ore
complicated. First, the current mood of the chooser is
found, then a search is made of the branch table to see
which part (in or out) should be chosen. If no match is
found, then the stack is popped, and the out part is taken.
If a match is found, then the stack is compressed (the value
required may be smaller than the union which contained it),
and the selected in part is taken. If the mode required by
the in part is a union, then the value must be reunited (the
old union camnot be used, since it may be of a different
size). As in the integral choice, each part (in or ou~ is
followed by an unconditional jump to the end of the clause.
If there is no out part, the compiler provides·one, u~less
all the moods in the union have been mentioned in the in
parts.

Parallel processes are handled as coroutines. Only
one process is ever running at any time; all others are then
waiting for service. Each process (task) has a task
display, and these displays are chained together to form a
tree. Scheduling is very simple: the task tree is traversed
looking for some process which is ready to run (i.e., which
has no live children, and is not waiting on a semaphore).
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The first process found is started. If no process is found,

the program has deadlocked. No effort is made at either

deadlock prevention or aggrevation. A process gives up the

CPU only when it "down"s a semaphore and is thus required to

wait, or when it creates children via a parallel clause.

More elaborate schemes could be used for scheduling, perhaps
even timeslicing, but the cost would be very high, and

everyone would have to pay, not just those using

parallelism.

When a new task is created, the old task display is

replicated, and chained. All stack frame pointers remain

unaltered, since the new process is allowed to access all

values global to the creating one. Note that since several

processes are always created together (a parallel clause

must have more than one unit), each process will initially

have a sibling. The old process is made inactive by making
the number of active children nonzero, and storing the

registers and coordinates. The new processes have their

registers initialized to the same values as in the· old
processe This implies that in the new proaesses, all the

LSF pointers will point at the same LSF. No harm arises

from this, however, because every new process allocates a

new LSF immediately, so the same work- and title-stack
pointers are stored repeatedly in the old LSP.

When a process terminates,
task display from the others in the

it simply unchains its
task tree, decrements
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its parent's child count, and calls the scheduler. Processes
ter~inate only at the ends of parallel clauses or during
gatos.

At first sight, gatos may seem ghastly and impossible
to implement, since they can jump out of an indefinite
number of blocks, and an indefinite depth of recursion, as
well as terminating an indefinite number of processes and
transput operations. However, with the structures outlined
here, the gate is very simple to implement. The compiler
gives the branch address, and the mode of the LSF belonging
to the range containing the label. The goto routine then
loops, searching the LSF chain for a stack frame of the
correct mode. Each LSF of the incorrect mode is exited.
When the correct LSF is found, the pointer from it to its
task display is followed, and the children fields of this
task display are zeroed. Thus all stack frames are properly
exited, and all processes terminated. The task displays and
LSFs associated with the terminated processes are later
garbage collected. Any transput operations in progress
during the jump are implicitly shut down, since event
routines are called using the same conventions as any other
call, and all transput routines expect the case where no
return is made~

This simple implementation of goto can be seen as a
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cl.earcase of good triumphing over evil.

A special case of a goto occurs
"stop". stop is not handled as a label, but

with the label
rather as a

special routine, since if the user were to invoke it in the
middle of his program, it would be highly undesirable to
throwaway all the information which might appear in a dump
by exiting all the blocks in the program. Termination
occurs immediately, and in the block containing the applied
occurrence of stop.

~~ The g~~bag§ Collector

The garbage collector is a standard noncompressing
mark-and-free garbage collector. The first stage marks all
blocks (titles) which can be reached from the program, ana
the second stage passes sequentially through memory, turning
off the marks and consolidating those areas not marked into
the free list. The garbage collector is invoked only when
an attempt to allocate a block of memory fails. If
insufficient space is collected to satisfy the request
causing the collect, the program is terminatedD Note that
runaway recursion will cause this type of termination.

The marking algorithm is a limited-stack, hard/soft-
mark scheme, carefully designed to accept storage structures
of arbitrary size and complexity. Initially, standard
recursion is used (employing a pre-allocated, fixed-size
stack)6 and each block €ncountered is hard marked. Whenever
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a hard-marked block is encountered, a return is made
immed~ately. If the stack overflows, then a pointer to the
block is added to a secondary (and much smaller, pre-
allocated) stack, so that marking can be resumed there
later. A return is mad,efrom the overflow as if marking had
continued normally beyond that point. Under this scheme,
one phase of marking will mark the tree (or graph) up to a
certain depth from the start node, and pointers will be kept
to unmarked nodes at that depth. Thus, when the primary
stack is about to underflow (signifying that marking is
complete), a pointer is removed from the secondary stack,
and marking is resumed. If that stack is empty, marking is
finished, provided there are no soft marks.

soft marks occur when the secondary stack overflows.
The block causing the overflow is soft marked, and a count
is updated. Then, marking is continued as though all·were
well, but ~hen the marking would normally he complete (hoth
stacks emptn, the count is checked. If nonzero, then a
scan of memory is made to locate a soft-marked block, and
marking resumes at this block. If by some stroke of
providence a soft mark is encountered during normal marking,
it is made hard, and the count is decremented. Marking is
complete when the stacks are both empty, and the soft-mark
count is zero.

The occurrence of a soft mark is clearly a disaster.
This is the reason £or having the second stack. It is
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believed that while chaining of blocks in an ALGOL 68
program may often be deep, it will rarely be both wide and
deep_ That is, there will rarely be more than a few
(perhaps five) deep chains in a program. For this reason, a
small secondary stack (say, thirty-two entries) should be
sufficient to ensure that only the user testing the garbage
collector will ever cause it to generate a soft mark.

Marking begins with the initial task display. Under
normal circumstances, all blocks can be reached from there.
However, under some circumstances the general copy routine
causes a disconnection in the program tr~e, so a special
mark pass may be required if the copy routine was active
when the garbage collect was initiated. Similarly, the user
may have associat€d texts with files which have no other
pointers to them, so marking must be done on all file
texts.

When marking is complete, a pass is made along the
block chain and all marks turned off. If a block is found
which is not marked, or which has not been flagged as a
system block (e.g., file, book, profile block), then it is
marked as being free, and merged with any free neighbours.
Note is made of the largest free block so found, to see
whether allocation will be successful.

Implicit in the above algorithm is that blocks are
being collected, not words or bytes. This is because the
principal entity handled by the garbage collector is a
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title. Thus if a row.is allocated, and only on-e element can

still be reached, the entire bunch (and anything pointed at

by refs in it) will be saved. This is considered too rare

an event to be concerned about. More important is the fact

that only title information is kept about the contents of

the work stack. That is, when an object is put on the work

stack (so that the collector need know about it it may

be the only pointer to some other object), only its embedded

title pointers are noted for the garbage collector (by

putting them on the title stack, which is used during

marking to handle temporaries). This precludes having a

compressing garbage collector, since not all pointers are
being considered.

There were several reasons for not having a

compressing garbage collector. First, and probably

foremost, compressing garbage collectors are very complex

and nearly impossible to debug (and they always have bugs

the SP~TBOL garbage collector still had bugs three years
after distribution, in spite of several attempts by the

~uthors to clean it up). Second, they are slower, and the

gain in memory utilization does not appear to be great

(first fit is almost always over ninety-five percent

effective in its use of memory (9, pp. 447-450]). Third,
they require complete knowledge of any temporaries, Which,
in this case, vould either miean pushing all pointers of any

type, or pushing the modes of Objects on the work stack.

This, however, would mean that both stacks would be pushed

c
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for modes like int, which is much too costly.

The only apparent advantage in having a compressing
garbage collector is that memory allocation is very si pIe:
typically a subtraction from a pointer. However, since
there is little reason to believe that memory allocation is
a bottleneck, the extra cost of allocating by block is
deemed to be acceptable.

- .----...---'-
- ~~ -- - - - - ~ #-.. '.:..0 - ~ _~-"" •...•••~ • .1__ ~••• •..•••.4.-' I, A:;,., _. ~ _ •..•..•~.•._ .•..• , __ _ • ~ • • ,,-- -



Chapter 3

Error Checking

There are some sixty types of error which can occur
at run time in ALGOL 68. This chapter describes some of
these, and the methods of detection used in FLASC.

Unfortunately, there are whole classes of errors which are
not detected by FLASC. These are discussed later.

The most common run-time rrors include: arithmetic
overflows, undefined values, divis"on by zero, undeclared
tags (this really is a run-time e ror; more on this later),
attempts to slice, dereference, as to or select from
nil, memory overflows, scope iolations,deadlocks of
parallel processes, SUbscripts out of range, bounds which do
not match (during assignment), indefinite loops or
recursion, assertions which do not hold, page or line limits
exceeded, invalid characters in "nput, several dozen other
transput errors, and arguments of tandard functions out of
range.

46
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To gain an appreciation for just how many error

checks need be made in a typical program, consider the

following clause:

a := b + c;

la', 'b', and 'Cl are all ref ints. How many checks must be

performed here?

Clearly, an overflow check must be made for the

addition. Also, it is apparent that undefined value checks

must he made on 'b' and ·c'. It is less obvious that 'a',
'be, or 'c' mignt be nil. (They may have been ref int

parameters, and nil could have been passed in.) Least

evident is the fact that 'a', 'b', or 'c' may never have

been declared, since declarations may have been skipped (s~e

next example). Thus this innocuous-looking clause requires

ni~ checks, even though most production compilers would
produce only three machine instructions!

Because declarations are elaborated at run time, and

because units used for initialization may contain gotos, it
is possible to jump over some declarations:

BOOL f;
read (f) ;BEG..IN

INT i := IF f THEN 1 ELSE GOTO a FI;
INT j := 2;

a: printt(i+j)
BND

ijl is de~lared if and only if 'f' is 'true'. This can be
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determined only at run time.. Thus, in a naive compiler, the

occurrence of a tag must involve a run-time check to

determine whether it is declared, even though it appears in

a declaration! This kind of problem need not involve a

goto: ordering of declarations is also important; for

example, in

REAL a:= p(2);
FRee (REAL) REAL P = sin;

Gp' is unknown when fa' is to be initialized. Note that the

identification rules of ALGOL 68 require that the inner 'pI

be identified, rather than some outer one.

In a similar vein, consider:

INT a:=3, b:=a+1, c:=b*2;

Here, GaS and 'bl are being used before they are guaranteed

to be defined, because of the rules of collateral

elaboration.

Now, also with respect to collateral elaboration,

consider the following example:

STRING s := "abc";
s(3] := (s := "abll)(3];

If the right-hand side of the second assignment is
elaborated before the left-hand side, then a subscript error

occurs. If the left-hand side is elaborated before the
right-hand side, then an attempt viII be made to flex's'
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while there is a transient name outstanding (on the work

stack) •

Perhaps the ugliest of all checks is the scope check,

which ensures that no ref can be made to refer to a value

which will IIgoaway" before the ref does (i.e., no refs can

be left pointing off into outer space). Perhaps the

simplest example which demonstrates that this check must be

done at run time is the following:

PROC copy = (REF INT i) REF INT i;
REF INT j;
BEGIN

INT k;
j := copy(k)

END

Here, 'copy' could have been made arbitrarily complex,

without changing its function, so that no compiler couTd

detect the scope violation in the fifth line. This means

that the check must be done at run time. The check is often

far from simple, though, as the following shows:

(3] REF INT ii :=
BEG.IN

i3] REF INT jj := (NIL, NIL, NIL);
INT k;
BOOL f; read(f);
IF f THEN jj[2] := k FI;
jj

END;

Here, a row of ref int is being yielded by the -'begin'
clause. The scope of this row will depend on the refs

within it. In particular, it is initially of primal scope

(and hence can be assigned to anything), because a~l its
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constituent parts are nil (and thus primal). Now, depending

on the run-time value of Iff, the scope is made local, by

assigning 'to. Thus, depending on If', there may be a scope

error. But the only way to detect this is to break open the

row, ~nd check each element for invalid scope. This same

sort of tbing has to be done with structures.

An overflow error can arise in loops:

FOR i FROM maxint-2 DO
print (i)

OD

Here, 'i' will clearly overflow on the fourth iteration. The

only reason this is remarkable is that the report could be
interpreted to state that the loop should continue past the

fourth iteration, but gives no clue what to print. It is

also important to consider the inverse situation:

FOR i FROM maxint-2 TO maxint DO
print (i)

OD

Here, no overflow should occur, and the loop should

terminate without incident after three iterations. However,

if the algorithm given in the report is followed, an

overflow will cccur during the iBcrement at the end of the

third iteration. This was the special case mentioned in
Chapter Two.

sadly, there is a very large class of very common
errors which are not detected by FLASC, and, indeed, cannot
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be detected by any LP. These involve constructs ~hich are

undefined due to the rules of collaterality. These rules

state that the order of elaboration of the two sides of

assignations and operations, the arguments of calls and

slices, and a host of other things is left undefined. Thus,

any program which could yield different results with
different "legal" orders of elaboration is undefined. Here

are some examFles of this phenomemon:

INT i := 1;
PRoe inc = (REF ~NT a) INT
i + inc (L) ;
(i := 2) + i;
STRING s := "abc";
s( 1] + (s := "ab");
S1 inc (i)] := s(i ];
[6,6] INT j;
j( inc (i),inc (i) J : = 1;

a +:= 1;
#boom#
#boom#

#boom#
#boom#

#boom#

The first two examples are probably the Simplest. Here,

depending on which side is done first, differen-t results

will occure The third involves a more subtle problem. One

of the valid orders is to perform an index, then go do the
other side, then come back and dereference. This results in

an attempt to flex while there is a transient name
out.s ta ndd nq , The fourth will duplicate one of the

characters within the string, but which one? The fifth
could select dif£eren± elements of the array.

Many of the error checks are very straightforwarde

For example, subscript checking is done during slicing,
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since the descriptors have the necessary information

available.

Checks for nil are very simple: vhen a name is

reguired which cannot be nil, a check for a zero value

pointer field is made (nil is always zero).

Most arithmetic errors (such as overflow, underflow,

divide by zero; etc.) are handled as program interrupts,

which are caught by the operating system interfacem The

method used to tell the RTS that an interrupt has occurred

is via a BPI (branch on program interrupt) "instruction".

This is a noop which follows any instruction expected to
interrupt, specifying a branch address and interrupt type.

If an Lnt errupe of the specified type occurs, then the

branch is taken. This allows the RTS to recover from

interrupts in a very controlled manner. Note that not all

interrupts result in an error. Overflow during a loop

increment (if the loop has a to part) is not an error.

Memory overflows, as mentioned earlier, are caught by

the garbage collector, after it tries and fails to recover
sufficient space to satisfy the current request for memory.

Stack overflow (i.e., runaway recursion) is caught in the

same way.

Deadlock is detected by the achadu.Lar , when it cannot

find a ready task to dispatch.

output limit overruns are caught by the newline and
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newpage routines. This check is made only on the standard

output file. Time limit overruns are caught by the

operating system interface, and a global flag is set. The

RTS checks this flag prior to executing any function which

might result in a loop. This includes gotos, loop bottoms,

and calls.

Assertions, which are handled by the ASSERT operator,

are trivial to check.

The checks which pose difficulties are the undefined,

scope, bounds, and transient-name checks. These are now

described in some detail.

Undefined-value checking is the most pervasive and

expensive check made. ~t is estimated that as much as 25%

of the run time is spent doing undefined-value checking. By
way of justification, this is also the most common error
made by students.

It was considered essential that an accurate way be

found to perform the undefined-value check. By accurate, it

is intended that all programs containing errors be stopped,

and that no valid programs be stopped. This criterion rules

out the method of setting aside a special value as undefined

(besides, it is not clear what value of bool or char to make

undefined). It should be noted that both WATFIV [6] and

PL/C (5] use this method, and in both it is possible to

cause erroneous terminations. For example, in the WATFIV
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program,

INTEGER I, J, K
INTEGER M/Z01010101/
DO 10 1=1,256
J = (1-1)*11
K = J

10 PRINT 1, K
1 FORMAT(' ',A4)

STOP
END

the message "J UNDEFINED IN LINE 5" is given, even though

this is patent~y untrue. The simplest way to solve this

problem is to use a separate bit {a def bit) to give the

defined status of the value. Having decided to use an

"extra" bit, it must next be decided where this hit should

be put. Two possibilities arise: the bit can be put at some
fixed point· with respect to the value (e.g., at the

beginning or end), or it can be put at some arbitra~y

location, unrelated to the location of the value. The

former has the advantage of higher speed and smaller names,
while the latter has the advantage of better storage

utilization, especially in arrays. It should also be noted

that unless the def bit is put at the front of the value,

neither def bits nor values are handled in a uniform manner,

which violates a previous design goal. It was decided on

the basis of better packing in rows, and the uniform

treatment, to make the def bit separate from the value.

As some of the examples in the last section Shoved,

there are ways other than a lack of initialization to give

rise to an undefined value. ~n FLASC, all these situations
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are taken care of by associating a def bit with the entity
in question. In particular, each tag has a def bit (as does
any value it may refer to). This is regardless of what mode
the tag may bee Thus, whenever a tag is encountered, its
def bit is checked to see if the tag has been declared. In
order to catch collaterality errors in declarations, the def
bits for the tags being declared are turned on at the very
end~ so that if the tags appear in initializations, an error
viII result.

Not all def checks are simple and straightforward.
Only those cases vhere the mode is not stowed lead to simple
solution (i.e., simply checking the bit pointed at by the
ref). Stowed modes have multiple def bits, which may be
difficult to address. In particular, a structure is not
required to have the def bits of its fields contiguous and
starting on a nice boundary, so each must be addressed
separately. The addresses of tbe bits can, of course, be
determined from the mode template, but this is a slow
process.

Rows mayor may not have fast def checks. . If the def
vector pointer is zero, then there is no check at all, since
this condition assures that the entire row is defined. If
there is a def vector, then chances are that it is
contiguous (this happens when the elements of the row are
contiguous) • If so. then a trick can be used to chec~ all
the bits at once. This is done by use of the COMPARE LONG

:0.. -- -
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instruction of the /370. A pad character of X'FF' is used

in conjumction with a length of zero to check all the def

bits in all but the first and last bytes. These must be

handled separately.

If, however, the row is not contiguous, and so the

def bits are not contiguous,. then each def bit must be
addressed separately. This is very slow. This situation
can arise when a ref row has been sliced_ To implement this

addressing, a work area is needed to store the indices. This

gives rise to one of the few implementation restrictions on

the language acc.epted: in FLASC, rows can have only up to

255 dimensions. The question now arises where to put this
work area. Fortunately, a ref must appear between any two

noncontiguous rows in a path through a data structure (ieeeQ
it is possible to have ncrow of ref to ncrow, but not to

have ncrow of ncrow). This means that the work area for

indices can be statically allocated, since the def check

stops if it encounters a ref. (Incidentally, other

recursive utilities have the same property, and use the same

static work area.)

Of course this "extended" def check is recursive in

the mode. That is, if the mode is struct of row of union of

struct _._, then the routine will recurse. This implies a

stack. This stack is also statically allocated, and implies

another of the implementation restrictions or fLASC; rows,
structures and unions can be nested to a maximum depth of
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255 without an intervening ref. (Again, other recursive
utilities use this stack.)

Scope checking corresponds rather closely to def
checking. Here again, tbe mode must be recursed (in
general), looking for all title pointers, to compare their
scope with that of the receiving namee Again, if a ref is
encountered, the check does not go below that level, since
that ref must have the correct scope (it has been assigned,
so a previous scope check was done).

Bounds checking must alSo do this recursion,
comparing the bounds of the source rows with those of t~e
destination rows (bounds checking is done only during
assignment)• There are two complications, though. If a
particular level is flex, then the check is bypassed, but
only for that level. other levels must still be checked. If
a particular level is flat, then not only must the bounds be
identical at this level (1:0 does not match 2:0, even though
both are flat), but checking must continue to levels below
that which is flat. This means that even flat bunches must
have at least one element, as mentioned in Chapter Two.

Even though many (most?) collaterality errors having
to do with transient names will never be detected (because
FLASC does things in a left-to-right order), some sort of
check is required to maintain integrity of the data
structures. This check is accomplished by having a
transient-name count (TNC) associated with each bunch. This
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count is updated whenever a transient name pointing into

that bunch is created (via slicing), and down dated when the

name is destroyed (via voiding or dereferencing). Assignment

to a flex row checks this count, and gives an error if it is

not zero ..

This count updating is done via two routines: deflex

and dectnc. Deflex takes a ref flex row, and returns a TNC

pointer and a transient ref row (transient refs look the

same as other refs). In the process, it increments the
THe. The TNC pointer is above the ref in the stack, and

stays there though subsequent actions (e.g., slicing,

roving, etc.). ~hen a transient ref is to be voided or
dereferenced, dectnc is called. It chases the TNC pointer,

decrements the THe, and deletes the pointer from the stack.

Note that when a balance of ref and transient ref is

made (yielding transient ref), a call is made to another

routine, maketrans, which pushes a zero TNC pointer onto the

stack~ Therefore, dectnc must be prepared to accept a zero

pointer. This situation will also occur if a nil ref flex

rov is rowed ..
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Tracing and Dumping

Of course, not all errors have the good manners to
make themselves known by causing an immediate and correct
diagnostic message. As we all know, just the opposite is
more commonly the case. For this reason, it is extremely
desirable to have some sort of tracing and dumping
facility. A clear case for this is made in (5], for the
PL/C compiler. Tracing has also been implemented in SNOBOL
[8] and SPITBOL (7]. These systems provide especially
useful tracing facilities. Unfortunately, ALGOL 68 does not
lend itself to tracing.

Dumping can often be as important a debugging aid as
tracing. It has the advantage that it is only done once, as
opposed to tracing, which tends to be a continuous, paper-
wasting process. Dumps are an invaluable aid in determining
what "really happened" in the program. However, unless the
dump is symbolic, it is of little or no use to the student
user. SPITBOL provides an excellent dumping facility.

59
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Also of considerable diagnostic use is so e sort of

flow trace (which has also been implemented in PL/C} I and,

in some cases, an execution profile. In almost all cases, a

flow trace of, say, the last 25 branches taken is
sufficient. This is simple to provide. Gathering of

profile information is also quite simple, and can prove

invaluable in avoiding wasted effort speeding up seldom-used

modules. This facility has been provided in ALGOL W [1].

Unlike other languages which provide suitable tracing

facilities (most notably SNOBOL), ALGOL 68 has the

orthogonalized concept of a ref. This causes severe

difficulties in tracing. In fact, it makes tracing

ineffective.

In most languages, "variables" are traced. In ALGOL

68, there are no variables. Instead, tags possess refs,

which point at values. This, in itself, causes no
problems. However, when an argument is passed to a proc, it

may be passed as a ref. For example, in

PIWC P = (REF INT j) VOID ! j+: =1 ;
INT i;
PR trace i PR
i := 1;
p (i)

'i' is passed as a ref. But how can we trace 'it? Inside

0pl, it is known as 8jl, so any message should say "j = 2 in
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line 1"; but then it is not clear that this fjf is the same
thing as Ii'. If, on the other hand, we say "i = 2 in line
1", massive confusion could result.

There iS6 however, a more fundamental pr ble-
involved heree 'p. need not be called with wi' as its
argument. How, then, do we decide whether or not to produce
a trace message? This problem can be solved by associating
a flag (like the def bit; a trace bit) with the value, which
would be checked during assignment, and, if on, would result
in a message. This technique will still not tell us whether
to print 'i' or IjR, though (i.e., what printable
designation to use).

This problem of printable designations is a serious
one. There exist many Objects which will never have them,
e.g., most heap values. The problem is even worse when the
user wishes to trace pointers (i.e., ref refs, or ref ref
refs). Here, not only is it unclear what printable
designation to use, but also what to print as a value.

One possible solution to this dilemma is to disallow
tracing of any but "simple" tags (i.e., variables of plain
modes). This will still not cope with ref parameters,
hovever. There are two alternatives open: associate with
the value not only a trace bit, but also a trace string,
which is to be used as the prin~able designation during
tracing; or make no attempt to trace the value in the proc,
but instead produce a possibly spurious message upon return
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from the proc (this need only be done for ref parameters).
Neither method is really satisfactory. The first prints
messages with incorrect names in them, while the second
produces messages at the wrong time (as well as producing
extra messages).

still another difficulty is the multiple use of
similar tags. It is very common to have several Ii's in a
program, and a message saying only 'it vould be
insufficient. It would also be difficult to tell the
compiler how to trace the various Ii's, especiallY if they
occur in nested blocks. One possible solution vould be to
print the coordinates of the declaration along with the
message.

Due to these and other more esoteric difficulties, it
was decided that tracing shou~d not be attempted in FLASC.
The philosophy behind this decision was that since tracing
could not be guaranteed to work, it should not be included
at all. ~t was felt that the user could perform much better
and (to him) more meaningful tracing than the compiler, by
using the equivalent of print calls. To make this a bit
more palatable, a trace call (which looks and acts like
print) has been included. This routine checks the value of
a user-accessible boolean variable "trace flag", and prints
messages only when it is true.

A particularly useful tracing feature in SNOBOL is
function tracing, which gives a message each time a function
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is entered or left. This message gives the function name,

the level of nesting, and the arguments and result of the

function. Unfortunately, all of the difficulties arising in

value tracing recur here: the proc may not have a printable

designation, and it may not be possible to print the values

of the arguments or result in a meaningful way. This is
very likely to be the case for arguments, since they would

commonly be refs. Function tracing was therefore not

attempted.

Branch tracing and profile gathering have, however,
been included. These keep track of "major decision

points". These are the various points in the program where

control flow is altered from the sequential. Such points

include the branches implicit in 'if', 'case', 'doi and

parallel constructs, as well as the explicit ones in gotos,

calls and returns. The branch trace dumps the last 25 major
points passed, while the profile gives a count of how many

times each major point has been passed. The profile is

output as a bar graph, sorted by coordinate. Profile

information is optional.

Dumping, though more tractable than tracing,. is still

not simple. Here also, the concept of ref is diffcult to

handle. It is possible (and not unreasonably difficult) to

give a complete, absolutely accurate dump_ However, this is
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not likely to be what the user wants, especially not the

first-year student user. Such a dump for the program given

in the last section might look like:

stack frame : p
j : #1

stack frame : main
p : #2
i : #3

primal environ

#1 (ref) : -> #4
#2 (pr oc) : procedure
#3 (ref) : -> #4
#4 (int) : 2

(It is possible in this case for the RTS to give the name

'p@ to the first stack frame, although in some cases it

could not give any name.) In this simple case, the dump may
appear acceptable, but what happens with more complicated

programs? In particular, in such a scheme, strings would be

dumped as rows of characxers. For example:

[3] CHAR s := "abc";
REF CHAR c = s(2];
INT i;

might produce:

stack frame
s .. #10

c e #2.
i . #3•.

#1 (ref) 0 ~> #4·#2 (ref) · -> #7·#3 (ref) · -> #5·#4 U:1:3]) ..
[ 1 ] • #6·[2] · #7·(3] · #8·#5 (int) · undefined·
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#6 (char) · "alf·#7 (char) · "b"..
#8 (char) · "c"0

Note that in general, rows and structures (including LS?s)

have to be broken open in this manner, to display ·he

subnames properly. It is suggested that the user would much

rather see:

stack frame
s = "abe"
c = "b"
i = undefined

even though this does not preserve some of the information

about the refs in the program. Normally this detailed

information is required only for refs to heap values (i.e.,

linked lists) .. In this case, the dump must necessarily

assume a format similar to the first one given, since there

viII not normally be any printable designations to give to

nodes in the lists. Rows, of course, always present a
problem, since they are usually large, and must be displayed

element-by-~lement.

Dumping in FLASC is still undergoing evolution, but

currently the user can sel.ect between a full or partial

dump, in simple or complete format. A partial dump omits

objects not in LSFs (i.e.., rov bunches and heap values).

Complete format is the first shovn above; simple format is
the 1ast. Bows and structures are dumped elem'~nt-by-element

regardless of format, but in complete format, an extra level

of indirec±ion is given.



Chapter 5

Some Pragmatic Considerations

As no doubt became apparent in Chapter Two, the FLASC

system was written in /370 assembler. The reasons for this

are quite simple: all the alternatives examined either

required writing and/or maintaining the version of the
compiler in which FLASC was to be written, or was orders of

magnitude too clumsy or inefficient to be used (PL/I was in

this category). Both authors of FLASC had considerable

prior experience in writing large assembler programs, so it

was felt that few problems would arise due to poor

understanding or programming practice. This has turned out
to be the case.

The compiler and run-time system comprise about 40000

lines of code, and occupy about 120K bytes of memory_ An

additional 40K bytes are required for standard tables. A

small program «200 lines) will compile and run in less than
250K bytes ..

Because it is in assembler, and because the /370
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instruc~ions MVCL, ICM, STCM and CLCL are so useful# FLASC
will not run on a /360 without very costly operati system
support to interpret these very commonly-used /370-specific
instructions. FLASC is, however, operating syste
ind.ependent. It runs under MTS,.OS/VS, and CP/CMS. t.her
operating systems can be accommodated by rewriting tb5

operating system interface, which is about 2000 lines of
code..

At the time of this writing, the compiler is nearing
completion, and the RTS is complete except for some parts of
formatted transput and dumping. Most of the RTS has been
tested by running hand-coded programs.

Possibly the best way to ensure the doom of a student
compiler is to produce obscure and inaccurate diagnostic
messages.. A great d-ealof car.e fuL thought has been put into
the FLASC diagnostics, and it is felt that most of them are
now adequate. This, however, cannot be verified until the
system has actually been used by students. This will occur
soon. When it is known what types of errors are most
common, the diagnostics (and compile-time fixups) can and
will be made much more effective.

A very important consideration concerning any student
compiler is the cost of its use. In the tests performed,
the run-time cost of FLASC compared favorably with that of
PL/C, the only available system which could be considered
comparable. It is expected that cOMRilation costs will be
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somewhat lower than those of PL/C.

Is it worth it? There was a severe an constant

temptation tochang~ the language to make the syste both

easier and more efficient, but this was not yielded to.

Perhaps one of the most valuable lessons to come out of ttis

effort is that a language should be designed with errors in

minde ALGCL 68 was not, and consequently it has many types

of errors which are difficult to understand, detect, or

recover from. Both the syntax and the semantics suffer from
thise However, compared to the other three major general-

purpose languages (FORTRAN, ALGOL 60, and PL/I), ALGOL 68

provides a flexibility and naturalness that makes it a nicer
language to program in. It is therefore considered valuable

to have a c hec kou t; compiler for this language.
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