ALGOL -20

A LANGUAGE MANUAL

JANET W. FIERST, EDITOR
DAVID M. BLOCHER
ROBERT T. BRADEN
ARTHUR EVANS JR.
RICHARD B. GROVE

CENTER FOR THE STUDY OF
INFORMATION PROCESSING

CARNEGIE INSTITUTE OF TECHNOLOGY

ADVANCED RESEARCH PROJECTS AGENCY
DEPARTMENT OF DEFENSE

>

=

ALGOL -20

A LANGUAGE MANUAL

JANET W. FIERST, EDITOR
DAVID M. BLOCHER
ROBERT T. BRADEN
ARTHUR EVANS JR.
RICHARD B. GROVE

FIRST PRINTING FEBRUARY 1965

THIS WORK WAS SUPPORTED BY THE
ADVANCED RESEARCH PROJECTS AGENCY OF THE
OFFICE OF THE SECRETARY OF DEFENSE:
CONTRACT SD-146

CARNEGIE TINSTITUTE OF TECHNOLOGY

Acknowledgements

The construction of the programming system described here is
the result of the combined effort of many people. The following
were involved with coding the translator: David M. Blocher,

Arthur Evans, Jr., Janet W, Fierst, Richard B. Grove and Carol H.
Thompson. Ronald R. Bushyager, IIT, wrote WHAT, the assembly language
processor included in the translator. Charles L. Thornton wrote a
table loader (the "Metz-compiler'} which is an essential part of the
process of assembling the translator. Grove wrote the relocator and
the librarian. Special thanks are owed to Robert T. Braden for acting
as the conscience of the group with many useful suggestions on "ALGOL
esthetics", The entire task was directed by Evans.

This document has been edited by Fierst, who also did much of the
writing. The following people, in addition, contributed to the writing
and editing of the document: Blocher, Braden, Evans and Grove. Ronald
P. Hackleman wrote many of the relocatable library routine descriptions
appearing in Chapter 5. The typing has been done by Edythe Simmons, and

Robert D. Smith contributed materiaily with his editorial assistance. .

I1

PREFACE

ALGOL-20 is a realization of the international language
ALGOL-60. The international language, although a valuable vehicle
for the description of algorithms, does not really become useful
until it is implemented on computers. However, each implementer
has found it necessary in some cases and desirable in others to make
changes in the language. Further, additions to the language such
as input/output are necessary. This ALGOL-20 Manual is a description
of the realization of ALGOL as implemented at Carnegie Institute of

Technology.

Two additional documents are needed to complete the description
of Carnegie Tech ALGOL, One is a description of ALIBN - the librarian
used in comnection with the two libraries. The other document describes
the assembly language - WHAT - which is built into the Algol translator.
The user may include assembly code as part of his program, as described

in the WHAT manual. These manuals are currently in preparation.

The internal operation of the translator has not been adequately

described. However, An ALGOL 60 Compiler, by A. Evans, which was

printed in Annual Review of Automatic Programming, Volume 4, Pergamon

Press, describes part of the translator. A preliminary version of the
format language used was described in A Format Lanpuage, by Alan J.

Perlis, in Comm. ACM, 7(Feb. 1964), pp. 89-96.

Arthur Evans, Jr.

January, 1965

Introduction

The manual is organized as follows: Chapter 0 is & ready
reference containing in summary form the information the experienced
programmer will need. It is not suitable for reading by itself,
but is useful for reference to particular points, Chapter 1 is an
introduction which includes bibliographical citations to several
introductory texts on ALGOL, for the programmer who does not yet
know the language. Chapter 2 describes in considerable detail how
the local system differs from the international language, Chapter 3
contalins a detailed description of the input/output system provided
at Carnegie Tech. A format language of some sophistication is defined.
Chapter 4 contains a description of system statements - those state-
ments used to communicate to the translator information which is not
part of the ALGOL language. Chapter 5 contains a description of the
two libraries available to the translator and contains descripticns of
the routines currently in the libraries. Chapter & is a collection of
miscellaneous topics, including keypunch conventions, error codes, etc,
Chapter 7 includes the ALGOL-60 report as revised in 1962 and a
summarized list of differences between ALGOL-60 and local ALGOL.

Page numbers are of the form AL.m.n, where m indicates the chapter
number and n is the page in the chapter. Two chapters -- three and
six -- are divided into sub-chapters distinguished by lower case
letters, e.g., Chapter 3b. The sub-chapters are also paged individually
so that the first page of Chapter 3b is AL.3b.l, immediately following
AL.3a.2.

v

CONTENTS

CHAPTER O ALGOL Ready Reference
L Irntroduction
2 Notes on ALGOL at Carnegie Tech
3 ALGOL-20 Input/Output
a. Introduction
b. Primer on PRINT
c¢. Primer on READ
d. Complete Description of All
1/0 Commands
4. System Statements
5. The ALGOL Library
a. Introduction
. Routines in the Library
6. Miscellancous
a. ALGOL-20 Card Format and

oo o

Keypunching Conventions
ALGOL-20 Error Messages
Printing of the Compiled Program
Privileged Identifiers
Machine-Dependent Features

Octal Constants

String Constants

Logic Variables

Half Variables

Index Variables

f. Segments
2. Disc/Tape Routines
h. Storage Allocation
7. ALGOL-50
a. The Revised ALGOL-60 Report
b. Features of ALGOL-60 Which are
Changed in ALGOL-20
¢. Restrictions on ALGOL-20 to

Transform it inte a Subset
of ALGOL-60

e e
e e

6b.
be .,
od.
be .

6f.

oh.

7a.
7b.

Ic.

e

Ga.

&b.

6d.
be.

éh .

7a.
7b.

7c.

1

AL.O.,1

Chapter 0 - ALGOL READY REFERENCE

ALGOL Notes and Error Messages 2
Compile Errors 2
Notes >
Run Errors 5

Kezgunching 6

Precedence Rules for Operators and Relations 6

Format Instructions 7
Control Instructions 7
Tnstructions for PRINT and PUNCH 7
Instructions for READ 9

Library Routines and Standard Functions 11

Relocatable Routines

Symbolic Routines
. Standard Functions

Regerved Identifiers

Privileged Identifiers

AL.G.2

ALGOL READY REFERENCE

ALGOL Notes and Error Messapes (Chapter 6b)

Compile Errors

Phase I Errors (Each of these errors terminates Phase I11.)

26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40

The program does not start with begin.

A statement starts with an illegal character or an illegal reserved word.

A statement starts with an identifier followed by an illegal character.

In an expression an operand was expected and was not found.

In an expression a binary operator was expected and was not found.
(Possibly caused by a semicolon missing after the preceding statement.)

A ﬁ]" does not have a matching "[”.

An array element has been used illegally.

":" has appeared incorrectly.

""" or ":-" has appeared incorrectly.

™" does not have a matching (.

"' has appeared incorrectly.

then has appeared without if.

else has appeared without then.

Characters are still in the stack after a or an end.

A procedure statement is followed by other than end, else, or

for is not followed by an identifier.

The for variable is not followed by a "' or ":="".

step has appeared without for.

until has appeared without step.

while has appeared without for.

do has appeared without for.

go to is not followed by an identifier or "(" or if.

go to if...then...is not followed by else.

o e e

n.mn
3

1".n
.

An obscure error in a go to statement.

An impossible error after begin. (”k—" is not the second element in the
stack. See Error 98.)

own is followed by something other than <type>.

An array declaration does not specify subscript bounds.

The identifier list of a declaration is not followed by a ';".

switch is not followed by an identifier.

The identifier of a switch declaration is not followed by a "' or '":i=".

procedure is not followed by an identifier,

A procedure identifier is not followed by '"(" or ";".

A formal parameter list is not followed by ")'.

The """ following a parameter list is not followed by a ";".

The identifier list in a specification is not followed by a ";".
An identifier did not follow the "," in an identifier list,

The illegal construction "then if" has occurred.

A switch with more than one subscript position has been used.
m,n

The value part of a procedure declaration was not followed by a 7;

AL.0.3

ALGOL READY REFERENCE

41: The name of a permanent subroutine (such as "SIN") is not tollowed by "(".
42: There is an extra "," or else a missing ":" in an array declaration.

431 More begin's than end's have occurred when the end-of-file is reached,

44: Impossible - see Error 98.

£5: max or min is not followed by "(".

46: In an array declaration the identifier list is not followed by wlr,

47: Array specifier has subscript bounds, which it should not.
48: library is not followed by <type> or procedure.
49

Phase I Frrors {(format and name statementsy {(Each of these errvors terminates
Pirase I11.)

50; A reserved input/output word is not followed by " (' .
51: A format list element starts with an illegal character. (Should be "<"

M oar "SY or identifier).

or

52:; "' is missing: i.e., a replicator was expected but not found.

53: for is missing after "$".

54: "' ig not followed by "$" or an identifier.

55: ™" or ">'" is not followed by ")'" or ",".

56: A name statement or format statement is not followed by end, else or ";'.
57: A replicator is not followed by "(" or "<'.

58: "< oor M. is feollowed by an illegal character,

59: An integer is followed by an illegal character.
60: A format instruction is not followed by '>" or ","
61: An illegal prefix to a numeric primary has been used.

62: An illegal numeric primary has been used.

63: ".'" appears in a numeric primary in a read statement.

64: In a numeric primary, E, F or § is not followed by an integer.
65

66:

67:

68:

691

Phase II Errors (Only those errors marked '"*" turn off Phase IL.)

%70: A reserved word which is not yet available has been used.

71: A label has been used but not defined. {The name of the label is
printed prior to this error message)

72: An identifier has been used but not declared.

73: An identifier has been declared twice in this block.

74: An identifier in the value list is not a parameter.

75: An identifier which has been used as a procedure has not been declared to
be one.

76: A subscripted identif{ier has not been declared to be an array or switch.

77: The program is tco leng.

78: A procedure identifier which is not a function designator has been used
in an expression,

% Turns off Phase IIL.

AL.0.4

ALGOL READY REFERENCE

79: An identifier which has been used as a switch has not been declared to
be one.

80: An array identifier has been used without subscripts,

8l: Too many index variables have been declared.

82: A label or array or switch has been called by wvalue.

83: An identifier in a specification list is not a parameter.

84: In a procedure declaration a parameter is not specified,

85: 1In a procedure declaration a parameter is specified twice.

86: A procedure, switch or label appears on the left of a "o oor M.
*87: The W2 stack is too Ffull,

88: More than 100 relocatable library procedures have been declared.

89: A constant has been used in place of an identifier, e.g., 33lkj.
*90: A subscripted for variable has been used {this is not yet availabie in

ALGOT.-20) .
#9]1: The next-command pointer is less than the base of the program,
92:
93:
94
95:

Miscellaneous Errors

96:

97: A possible translator error - bring listing to Janet Fierst at the
Computation Center,

98: Impossible: bring your listing to A. Evans at the Computation Center.

99: Same as 98.

Subscan Errors

100: A card column contains an illegal combination of punches.

101: Too many abcons or adcons have been used (numerical constants and
alphanumeric string constants).

102: Too many decimal points appear in a number,

103: Too many ",''s appear in a number.

104: An error has appeared in a parameter delimiter comment: "<any string
not containing:>: (",
105: An illepgal bar ("1" } variable has been used,.

106: A constant has been used which is too large to fit intc a real variable.
107: A "." is followed by something other than "+", """ or <digit>.
108: A string goes over the end of a card.
*#109: The symbol table has been exceeded.
110:
111:
112:
113:
li4:

* Turns off Phase IT,

AL,0.5

. ALGOL READY REFERENCE

System Statement Errors

115: An abcon system statement has occurred after code has been compiled.

L16:

117: An abcon system statement has requested more space than there is in
user memory.

118

119: An illegal SY card has occurred., (This may be caused by a LIBRARY card
after the symbolic library has been released.)

120: The library procedure nesting exceeds 5,

121:

122: WHAT has been called after it has been released,

123: An illegal segment statement has been used.

124: An SY LIBRARY card has asked for a routine not in the symbolic library.

125: A library procedure declaration has named a routine not in the relocatable

library.
Notes
Note 1: end comment convention was used on preceding card. That is, every-
. thing was ignored up to ";", end, or else.

Note 2: A function designator has been used as a procedure statement.

Note 3: 1In an arithmetic or boolean expression, the construction if...then if
has occurred. This is syntactically illegal but unambiguous, and is
therefore accepted by the translator.

Note 4: An arithmetic (boolean) (designational) expression has been used
where a simple arithmetic (boolean) (designational) expression
should have been used.

Note 5: In a designational expression, the construction if...then if has
occurred. This is syntactically illegal but unambiguous.

Note 6: Phase IT has been turned off.

Note 7: The construction if...then for...do...else... which is tegal in
ALGOL 60 but illegal in ALGOL 62 has been used.

Nete 8: TAB appears as a character.,

Note 9: Fifty errors have been found on a single card; compilation has been
terminated.

Run Errors

ADRP address--opcode fault
CFLG command flag erroxr
EXP EXP (x) called with X > 160.116998
EXP0 exponent overflow
LN IN {(x} called with X =< O
. RADL upper < lower in a bound pair in an array declaration
RAD?2 declared arrays exceed available space

READ an error has occurred in reading a data card

AL.0.6

ALGOL READY REFERENCE

SIN the argument to SIN or COS is greater than 8t21.
SQRT SQRT (X) called with X < 0
TIMR time limit exceeded
Xt Al X-0and A< O
Xt A2 A * LN (X) > 160.116998
Xt A3 X < 0 and A not integer valued
Keypunching (Chapter 6a)

111 L 1 111 11 2:222 2222223333333333...R
column — 12 3 45678 9012 3 4 567 89 0 123 4567890123456789 M
WHAT WH .LOC. ¥ OP. M Addr, Index;comment.,.
A1.GOL AL L. Creaeanaaae ALGOL teXt.wuerasnorsrossens
system SY an e cevesrssas.System LeXt..o.iirerrnaaauns
comment co teeamaaaes P o 011 11=31 | S A

RM is the right margin. (Initially BM = 72, It may be changed by
SY RIGHT MARGIN - see Chapter 4.)

Precedence rules for operators and relatiomns (Chapter 2)
l (performed first)

MOD

R

+ - (unary)

*/

+ - {(binary)

<> < > = F
—

5

v (performed last)

AL.0.7

ALGOL READY REFERENCE

Format Instructions (Chapter 3)

Control Instructions

nC

nR
nL

Sets CP to column n {CP « n). _
Moves CP n columns to the right (CP « CP + n).
Moves CP n columns to the left {(CP «CP - n).

Instructions for PRINT and PUNCH

Control and Alphanumerics

nE

nW

'<string>'

nB

nQ
nA

nT

Numeric Instructions
1. Prefix
LS
$

I+(L-)

Prints or punches the contents of the appropriate
buffer, clears the buffer to blanks, prints or
punches n-1 blank lines, and sets CP to left margin.
Prints or punches the contents of the appropriate
buffer n times. CP and the buffer are not changed.
Upspaces the paper to a new page and prints a page
header on the first line. CP and the buffer are
not changed. This instruction is ignored in PUNCH.
Stores the characters of the string into the appro-
priate buffer.

Stores n blanks,

Stores n quotes (').

Stores n characters which are taken from | ((n+3)/4)
names.

Stores min (5, n) characters which are taken from
one of the internal strings 'TRUE ', 'FALSE' or
"UNDEF', according to the boolean value of the

corresponding name.

Stores a dollar sign left-justified.
Stores a dollar sign immediately before the first
digit.

Stores the sign (sign if minus) left-justified or

immediately after a '$' stored by "L$'".

AL.0.8

2.

3.

+(-)

Numeric Primary

nD

n

Suffix

L

E(F)+n

S+n

H

ALGOL READY REFERENCE

Stores the sign (sign if minus) immediately before
the first digit or a '$' stored by "$8". If the
number is negative, a minus sign is stored; if
the number is non-negative, a plus sign (blank) is

stored,

Stores n digits or blanks. Leading (or trailing)
zeros are replaced by blanks.
Stores n digits.

Stores a decimal point, '.'

Shifts the number until the left-most digit is non-
zero (if possible) and stores the resultant
exponent.

Shifts the number until its exponent equals + n,

The resultant exponent is (is not) printed.

Shifts the number until the left-most digit is
non-zero (if possible). The decimal point is
inserted in the position to give an exponent equal
to +n and the exponent is stored. The numeric pri-
mary must be of the form "mD." or "mZ.".

Converts and stores the number in octal (base 8)
instead of decimal,

Invokes special spacing. If the prefix contains
"L§" or "§$", the digits of the number are stored

in groups of three separated by commas. If neither
"LS" nor "$" appears, the digits are stored in
groups of five, separated by blanks,

Suppresses error printing which may occur when
left-most non-zero digits overflow the field speci-
fied by the numeric primary.

Truncates the anumber at the last digit stored. I

Normally, numbers are rounded by adding five to the

first digit not printed.

Instructions for READ

AL.O.9

ALGOL READY REFERENCE

Control and Alphanumeric Instructions

nE

nW

'<string>'

ni

nT

Numeric Instructions
1. Numeric Primary

nD

nz

2. Suffix

Reads n card images into the READ buffer and sets
CP to left margin. Only the last card image read
is available after the instruction is executed.
Functions as '"nE" except that the card images are
also listed on the printer.

Causes the n characters of the string to be

stored, four per word, intc the next L({n+3) /4y
names. If n is not a multiple of four, characters
in the last name are stored right-justified, The
CP and buffer are not changed.

Scans the characters in the next n positions of the
buffer and stores them as in the '<string>' instruc-
tion,

Scans the characters in the next n positions of the
buffer, If the first non-blank character is the
letter "T", the value true is stored in the next

name; otherwise, the value of the name is set to

false. The corresponding name must be of type

boolean or logic.

Scans the number represented in the next n positions
of the buffer. Blanks are ignored, Numbers are in
free field format and may contain signs, decimal
points, and exponents. Numbers preceded by a "/"
are treated as octal quantities.

Scans as "nD" except that blanks are treated as

Zeros.

Assumes the number read to be octal (base 8)

instead of decimal.

AL.0.10

Ein

3. Free Read
nF

ALGOL READY REFERENCE

Multiplies the number read by ten (eight) raised
to the power +n.
Causes illegal characters (such as letters) to be

ignored.

Scans and concatenates n octal or decimal numbers

in fields separated by commas. Blanks are ignored
with the exception that if an entire field is blank,
the corresponding name is unchanged. Numbers pre-
ceded by a "/" are treated as octal. A number field
may be continued over the end of a card image. The
last number in the data group must be followed by

either a "," or a "*",

Library Routines and Standard Functions

AL.0.11

ALGOL READY REFERENCE

(Chapter 53)

Relocatable Routines (i.e., library procedures)

AND,CALL
AND.FILE
DISC,READ
DISC.WRITE
GOOF . STAR
GO.SEG
LINK
RUN.ERROR
SLEW
SYSTEM. DUMP

Symbolic Routines

AND, PUNCH
BANSOLV

COMDIV
CURVEFIT

CURFIT

ELIPS

GAME

GJR

HERMJA

JACOBI

MULLER

sets the scratch pointer and enters AND
assigns a logical file type to an AND file
reads from disc or tape

writes on disc or tape

prints a run-error message

slews to a segment

links to a segment

gsets up run-error recovery

slews to a record

dumps an ALGOL program as a system

punches an AND record onto cards

solves a system of linear equations whose coefficient
matrix is a band matrix

computes the quotient of two complex numbers
determines the best least squares polynomial approxi-
mation to a given curve, with or without constraints
determines the best least squares polynomial approxi-
mation to a given curve, with constraints

computes the values of the complete elliptic integrals
of the first and second kinds

determines the frequency distribution of a given set
of data

solves a finite, zero-sum, two-person game

computes the inverse of a given matrix

finds all the eigenvectors and eigenvalues of a given
Hermitian matrix

finds all eigenvectors and eigenvalues of a given
symmetric matrix

finds the real and complex roots of a general equation

of the form f(z) = O

AL.0,12

ALGOL READY REFERENCE

NEVILLE computes approximate values of a tabulated function
by interpolation

NORMRAN computes a sequence of normally distributed pseudo-
random numbers

PLOT produces the graph of one to ten functions

RANDOM computes a sequence of uniformly distributed pseudo-
random numbexs

SIM performs numerical integration by Simpson's method

SORTL sorts a list of numbers into ascending order

Standard Functions (i.e., built-in functions)

ABS absolute value

ARCTAN arctangent

BUFFERSET redefines the input/output buffers

CLOCK time since the last job-card minus parameter (in seconds)

COs cosine

DEBUGPRINT a fixed format print routine

ENTIER the largest integer which is not greater than the
parameter

EXP exponential (ex)

HALT halt

LN natural logarithm

MAX maximuni} (see page AL.2.10 in the ALGOL manual)

MIN minimum

PAGES number of pages since the jobcard

PAUSE saves the program for restart

PRINT controls printing

SIGN -1 if parameter negative, +1 if positive, 0 if zero

SIN sine

SQRT square root

TIME time since midnight (in seconds)

MOD is an operator such that for integer m and n the quantity m MOD n is the

remainder on dividing m by n.

Library Routines and Standard Functions

AL.O,11

ALGOL READY REFERENCE

(Chapter 5)

Relocatable Routines (i.e., library procedures)

AND,CALL
AND,FILE
DISC.READ
DISC.WRITE
GOOF, STAR
GO.5EG
LINK
RUN.ERROR
SLEW
SYSTEM,DUMP

Symbolic Routines

AND, PUNCH
BANSOLV

COMDIV
CURVEFIT

CURFIT

ELIPS

FREQ

GAME

GJR

HERMJA

JACOBI

MULLER

sets the scratch pointer and enters AND
assigns a lagical file type to an AND file
reads from disc or tape

writes on disc or tape

prints a run-error message

slews to a segment

links to a segment

sets up run-eryror recovery

slews to a record

dumps an ALGOL program as a system

punches an AND record onto cards

solves a system of linear equations whose coefficient
matrix is a band matrix

computes the quotient of two complex numbers
determines the best least squares polynomial approxi-
mation to a given curve, with or without constraints
determines the best least squares polynomial approxi-
mation to a given curve, with constraints

computes the values of the complete elliptic integrals
of the first and second kinds

determines the frequency distribution of a given set
of data

solves a finite, zero-sum, two-person game

computes the inverse of a given matrix

finds all the eigenvectors and eigenvalues of a given
Hermitian matrix

finds all eigenvectors and eigenvalues of a given
symmetric matrix

finds the real and complex roots of a general equation

of the form f(z) = 0

AL.0.12

NEVILLE

NORMRAN

PLOT
RANDOM

SIM
SORT1

Standard Functions

(i.

ALGOL READY REFERENCE

computes approximate values of a tabulated function
by interpolation

computes a sequence of normally distributed pseudo-
random numbers

produces the graph of one to ten functions

computes a sequence of uniformly distributed pseudo-
random numbers

performs numerical integration by Simpson's method

sorts a list of numbers into ascending order

e., built-in functions)

ABS

ARCTAN
BUFFERSET
CLOCK

Ccos
DEBUGPRINT
ENTIER

EXP
HALT
LN
MAX
MIN
PACGES
PAUSE
PRINT
SIGN
SIN
SQRT
TIME

absolute value

arctangent

redefines the input/output buffers

time since the last job-card minus parameter (in seconds)
cosine

a fixed format print routine

the largest integer which is not greater than the
parameter

exponential (ex)

halt

natural logarithm

maximuni} (see page AL.2.10 in the ALGOL manual)
minimum

number of pages since the jobcard

saves the program for restart

controls printing

-1 if parameter negative, +l if positive, 0 if zero
sine

square root

time since midnight (in seconds)

MOD is an operator such that for integer m and n the quantity m MOD n is the

remainder on dividing m by n.

ALGOL READY REFERENCE

AL.0 .13

Regerved Identifiers (Chapter 2)

ABS (2) GO TO (1) PRINT (3-3.1££)
ARCTAN (2) HALF (3-2.5) PROCEDURE (1)

ARRAY (1) IF (1) PUNCH (3-3.1ff)
BEGIN (1) INDEX (3-2.5) READ (3-3.1€E)
BOOLEAN (1) INPUT (3-Na) REAL (1)
COMMENT (1) INTEGER (1) SIGN (2)

cos (2) LABEL (1, 3-2.10) SIN (2)

DO (1) LIBRARY (3-5.1i£) SQRT (2)

ELSE (1) LN (2) STEP (1)

END (1) LOGIC (3-2.5) STRING (L)
ENTIER (2) MAX (3-2.9) SWITCH (L)

EXP (2) MIN (3-2.9) THEN (1)

FALSE (1) MOD (3-2.9) TRUE (1)

FOR (1) MONITOR (3-NA) UNTIL (1)
FORWARD (3-NA) NAME (3-3.1£f) VALUE (1)

GO (1) OUTPUT (3-NA) WHILE (L)

GOTO 'eH) OWN (L)

(1) ALGOL 60 "built in" word.
(2} ALGOL 60 reserved function identifier.

(3) ALGOL 20 reserved word--see page reference.

(NA means not now available.)

Privileged Identifiers {Chapter 6d)

ACC real Accumulator

CLOCK integer prucedure (time in seconds since job-card) minus parameter
DAY logic 'udda' dd = day of month

DEBUGPRINT procedure fixed format print routine

EPSILON real smallest positive number = 8t-63

HALT procedure halt

INFINITY real largest positive number = (8%14-1)*8163
MONTH logic '‘mmmy' mmm = name of month

PAGES integer procedure number of pages since job-card

PAUSE procedure save for restart

PRINT procedure controls printing on teletype

TIME integer procedure time in seconds since midnight

YEAR logic "yyud yy = last two digits of year

AL.0.14

labels in WHAT and ALIBN

=0 Complement 9 when accessed arithmetically

=1 L flag

— 2 2 flag

— 3 3 flag

— 4 Function variable for relocatable library procedures
-5 INFINITY == (8114-1) * 8113 (Chapter 6d)

— b EPSILON = ¥1(-63) (Chapter &6d}

-/ Dynamic block level - pointer to array stack (an index register)
— 8

- 9

= 10 Exit from FORMAT and NAME

— 11 Current NAME list

- 12 Current FORMAT list

— 13 NAME routine

— 14 PRINT routine

= 15 PUNCH routine

— 1o READ routine

= 17 FORMAT routine

— 18 Page-and-print-page-header routine

= 19

— 20 go_to <label> routine

— 21 RAD - run-~time array declaration routine

— 22 begin administration routine

— 23 end administration routine

— 24 procedure begin administration routine

= 25 procedure end administration routine

- 26 GOOF* : Run Error routine

= 27 ADDR-0OP routine

— 28 LINK routine

— 29

— 30 Last location ¢f user memory + 1

— 31 Contains base of compiled code

— 32 Contains end of relocated subroutines

— 33 Contains maximum location used by scalars

— 34 Base of array stack

= 35 Contains compile-time block level of current procedure
- 306 Contains run=-time block level of current procedure
— 37 Base of run-time procedure nesting stack

— 38 Run-error recovery cell

— 39 Contains segment number

— 40 Contains physical right margin for READ

- 4041 Centains physical right margin for PRINT

— 40+2 Contains physical right margin for PUNCH

- 41 RUN.ERROR switch for end

— 42 Run-time ervor printing mode switch (Chapter 5,RUNERROR)
— 43

— 44

— 45

AL,0.15

| variables in ALGOL

| 200
| 201
1202
| 203
| 204
| 205
| 206
| 207
| 208
1209
|210
[211
|212
|213
| 214
|215
| 250
|251
|252

READ character pointer for standard buffer
READ right margin for standard buffer
READ left margin for standard buffer

PRINT and PUNCH character pointer for standard buffer
PRINT and PUNCH right margin for standard buffer
PRINT and PUNCH left margin for standard buffer

Format switch

NAME switch

Page counter

Page header switch
Up-space counter
Left-justify switch
Current READ buffer
Current PRINT buffer
Current PUNCH buffer

AL.0.16

System Statements (Chapter &)

Print Control for Compilaticn Listing

PAGE
LINE n

* SINGLE
* DOUBLE

INDENT n or INDENT + n

PRINT <parameter string>

Miscellancous

RIGHT MARGIN n
LIBRARY <identifier

n ABCONS

SEGMENT n n

L* 2
RELEASE WHAT

RELEASE SYMBOLIC LIBRARY

DEBUG n

* not printed

$ may not contain comments

Eject printer paper to top of next page.

Skip n lines.

Single space the listing.

Double space the listing.

Set the left margin of tlhe listing te n
or Kin.

Print or don't print selected parts of

the listing.

Scan cards to column n for text.

Fetch <identifier> from the symbolic
library.

Reserve space for n abcons and n abcons.
Treat this program as segment n, of
length n, -
WHAT will no longer be used. Free the
space for compilation.

The symbolic library will no longer be
used, Free the space for compilation.

If n > 0 print the results produced by the

three phases of the translator. If n=0

do not print the results.

t must occur before the first begin

THIS PUBLICATION IS AVAILABLE AT:

THE BOOK STORE

BAKER HALL

CARNEGIE INSTITUTE OF TECHNOLOGY
PITTSBURGH, PENNSYLVANIA 15213

THE SALE PRICE ($1.25)% REFLECTS THE COST
OF PRINTING AND DISTRIBUTION ONLY.

*(Add $.06 sales tax for purchase in Pa,)
*(Add $.20 postage for mail orders)

AL, 1.1

CHAPTER I

INTRODUCTION TO ALGOL

ALGOL is an international algorithmic programming language designed
for problems whose solution cen be expressed in algebraic notation. It is
internat ‘¢oal in that its specifications have been agreed upon by an
international committee and it has received wide acceptance throughout the
world., [£ ig algorithmic in that it is designed for the natural representa-
tion of algorithms. It permits the programmer to write his code in such a
way that it is highly readable with an c¢bviouns flow of control. The exist-
ence of an ever-growing body of published algorithms increases the utility
of the language to the user.

The ALGOL language as it cxists at Carnegic Tech contains essentially
all the features which have been specified for the international language,
the only major exception being recursive procedures. Thus the user of
ALGOL at Carnegie Tech is using a language with worldwide acceptance and
understanding. Our local version has been augmented by certain features
nct now available in the international language, the most notable of which
is an extensive input/Output facility.

It is not the purpose of this document to provide the user who is
unfamiliar with ALGOL with an introduction Lo that language, since the lit-
erature now includes several very fine works which perform this function
admirably. For the user who is learning programming at the same time that

he is iearning ALGOL, McCracken's Guide to ALGOL Programming is an casy

introducticn. (See the bibliography at the end of this chapter for a
complete citation.} [t is used as the text for the introductory program-
ming course at Carnegie Tech. Chapter i1 of the present work contains a
detailed listing of the ways in which the ALGOL system at Carpegie Tech
differs from ALGOL as described by McCranken, including references to
section numbers in McCracken's text. Unfortumately, McCracken does not
give an adequate discussion of ALGOL procedures or of the structure and

syntax of conditional statements and expressions.

AL.1.72

Bettenbruch's tutorial article in the ACM Journal is a complete intro-
duction, and features good discussions of ALGOL preocedures with explanations
and examples and of conditional statements and expressicns.

For the more expecrienced programmer who wishes to learn ALGOL, Christian
Anderson’s text will be worthwhile. Anderson provides a readable introduction
to what is tmportant in ALGOL-6U,

Another introduction which might be considered is that of E. W. Dijkstra.
This 1s a very complete book degeribing all of ALGOL. Tt contains some com-
mentary which is not elsewhere available on the effects of the limited range
of number represcentation in computers. It also contains a good discussion
of ALGOL esoterica including Suneakv Procedures.

The basic document which defines the ALGOL language is the Revised

Report on the Algorithmic Language ALGOL-60 edited by Peter Naur. This report

defines the language completely and uvnambigucusly. It is, however, not easy

reading and it is not recommended to the beginner inm ALGOL. It is reproduced

as Chapter 7 of this report.

Bibliovgraphy

Anderson, C., An Introduction to ALGOL 60, Addison Wesley Publishing Co, Inc.,
Reading, Mass.

Bottenbruch, H., Structure and Use of ALGOL 60, Journal of the ACM, 9, No. 2
(1962), 161-221.

Dijkstra, E. W., A Primer of ALGOL 60 Programming, Academic Press, London,
England.

McCracken, D, D., A Guide_to_ALGOL Programming, John Wiley and Sons, Inc.,
New York.

Naur, P., editor. Revised Report on the Algorithmic Language ALGOL 60,
Communications of the ACM, 6, No. 1 (1963), L-17.

AL, Z.1

CHAPTER 2

Notes on ALGOL at Carnegie Tech

INTRODUCTION

ALGOL-60 has been designed to be both a universal language for describing

and publishing numerical algorithms, and a programming language for executing
algorithms on computing machines. The "reference language' ALGOL-60 has been

precisely and elegantly defined in the Revised ALGOL-60 Report (Communications

0i the ACM, 6, 1 (Jan. 1963)). When ALGOL is actually implemented on a par-
ticular computer, however, some changes of notation and some restrictions are
usually added te this definition.

The ALGOL translator which has been written at Carnegie Tech for the
CDC G-20 computer accepts a language which we call ALGOL-20 to distinguish it
from ALGOL-60 when we need to be purists., As a matter of fact, most of the
differences between ALGOL-20 and the reference language ALGOL-60 are minor;
however, a kncwledge of them is needed to use the CIT ALGOL system successfully.
In this document, a reference to simply "ALGOL" wil! always mean ALGOL-6C, the
reference language.

This chapter describes those aspects of ALGOL-20 which differ from
ALGOL-60, As such, it is the primary documentation of our ALGOL system. It
is keyed to both the Revised ALGOL-60 report and to the text, A Guide to Algol,

by D. D. McCracken. References to the former are by section numbers given in
square brackets, and to the latter by section numbers given in round brackets.

Thus the paragraph at the top of the next page relates to section 2.3 c¢f the

Revised Algol Report and to section 1.4 of McCracken.

AL.2.2

SYMBOLS (1.4)(2.3]
The G-20 accepts all of the special symbols of ALGOL-60 except for those

shown in the f{ollowing table:

ALGOL- 60 ALGOL-20

= ("implies') Not available, but "." may be used with "' to

obtain the same effect. GSee page 2.8,

= ("is equivalent') Use "-". See page 2.8.

||:l‘_1l

X {multiplication) Use

<+ Not available, but "i" may be used with "/"
with the same ecffect. Sce page 2.7.

~ M

= Use '4>'.
= | Use "=<'',
“¥ (string quotcs) Both represented by ‘. See page 2.3.

In four cases, ALGOL-20 uses a pair of adjacent symbols te stand for a
single symbol of ALGOL-60. For example, the ALGOL-60 assignment operator ":="
is strictly a single symbol, but it must be punched into an ALGOL-206 program
card as a colon and an equal sign in adjacent columns. There must be no blanks
separating the symbols of the pair, and they must both be on the same card.

Note: punching them into the same column will give a "hash” of holes which the

G-20 will interpret as some other (erroneous) character. The four double-

symbol characters are

ALGOL-60 character ALGOL-20 character pair
== ({ PR
= i >
z i
= ("$#" is also allowed)

non-existant
non-existant
non-existant

AL.2.3

NUMBERS (2.1)[2.5)

(a) A number, N, in an ALGOL-20 program must either be zero {(which may be
punched with or without a decimal point) or else its absolute value N must

satisfy:
1,275,-57 = N = 3.450,+69

{b) Because of the nature of the G-20 computer, the distinction between
real and integer numbers [s unimportant. The programmer may write an integer-
valued constant with or without a decimal point (e.g., "34", "34.", or "34.0")
without changing the type of arithmetic performed with the constant,

Numbers are represented in the G-20 in "floating point" form with a maxi-
mum of 42 binary digits of mantissa, corrvespending toe approximately 12 decimal
digits of precision. If more than 12 digits are written, the extra (least
significant) digits will be ignored. (The number is rounded at the 1l4th octal
digit.)

(c) 1In ALGOL-20, the last character of a real number may be a decimal
point; thus, the number "6.'" is legal.

(d) Octal numbers may be written in ALGOL-20. See Chapter be.

STRINGS (2.6}

(a) A string cannot contain a string since ALGOL-20 has no way of dis-
tinguishing between the left and right string quotes.

{(b) Strings of four characters or less may be used as logic constants
and assigned to logic variables. If more than four letters appear in such a
string, only the leftmost four are used. Strings of less than four characters

are stored right-justified,

IDENTIFIERS AND VARIABLES 2.2){2.3, 3.1

(a) Only upper case (capital) letters are available in ALGOL-20.
(b) 1n ALGOL-20, certain identifiers have special meanings and are
thercfore reserved. The programmer may never use these reserved ALGOL identi-

fiers as variables or, indeed, for any purpose other than their reserved mean-

ings. These reserved identifiers must be separated from adjacent identifiers

AL, 2.4

by at least one blank. For example, if the blank betwecen the reserved

identifier IF and the identifier "X were omitted in "IF X > 0", then the
ALGOL translator would interpret "IFX" as a single variable identifier; as
a result, the statement would have no meaning at all.

The reserved identifiers in ALGOL-20 are

ABS GO TO PRINT
ARCTAN HALF PROCEDURE
ARRAY IF PUNCH
BEGIN INDEX READ
BOOLEAN INPUT REAL
COMMENT INTEGER SIGN
cOs LABEL SIN
Do LIBRARY SQRT
ELSE LN STEP
END LOGIC STRING
ENTIER MAX SWITCH
EXP MIN THEN
FALSE MQD TRUE
FOR MONITOR UNTIL
FORWARD NAME VALUE
GO CUTPUT WHILE
GOTO OWN

Same pf these reserved identifiers have no ALGOL-6Q equivalent; in particu- .

lar:

HALF, INDEX, LOGIC (see page 2.5 below)
MAX, MIN, MOD (see page 2.9 below)

NAME, INPUT, OUTPUT, PRINT, PUNCH, READ
(see Chapter 3 - Input/Cutput)

LIBRARY (sce Chapter 5)
FORWARD
MONITOR

FORWARD and MONITOR have not yet been implemented, but will be described

when they are available,

All of the ALGOL-60 standard functions are available in ALGOL-20, and

their names are reserved identifiers:

ABS ENTIER SIGN (2.4)
ARCTAN EXP SIN {3.1.4]
Cos LN SQRT

See Chapter 5 for further information on these functions.

"TQ" is reserved only when it follows immediately after the reserved

identifier GO, In any other context, "TO" may be used as an ordinary

AL.2.5

identifier by the programmer., See page 2.10 of thesc notes.

in addition teo the rescrved words listed above, ALGOL-20 includes a set
of "privileged" identifiers which have bullt-in meanings without being
declared; they are, in cifect, doclared by the translator in a block head
outside of the outer-wost block of the program. Therefore, if the programmer
does not wish to use cne of these identifiers in its privileged meaning, he
may simply ignore the [act that it is privileged and declare and use it as he
would any non-special identifier. Further, if a privileged identifier 1Is
declared in an inner block, it vesumes its privileged meaning as soon as the
end of the inner block is passed. These identiliers are listed and their
meanings are explained in Chapter 6d. ldentificers may be added to this list
Sy the Computation Center at sowe future time. Since they are not reserved,
addirional privileged identifiecrs cannot accldentally interfere with identi-
fiers written into a corrent ALGOL program,

(c) Sp.-es may not appear within en idontifier in ALGOL-20. The pro-
grammer may, how.-er, [reely sprinkle periods 1.) within identifiers to
geparate Lhem into words and improve cthe readabilitvy of the program. These
periods are ignored by th. ALGOL-20 trenslator; therefore, the following are

all instances of the same identifier::

READACARD
READ.A,.CARD
R.E.A.D.A.CARD.,

(d) ALGOL-20 aliows hoth simple and subscripted variables . rype half,

and lopic, as well as real, integer, and Boolean. Also, simple variac'es may
be of type index.

Real wvariables are stored in the G-20 with a precision of 47 binary dig:i s,
requiring two successive memory cells per variable, Half variables are stored
with a precision of only 21 binary digits (about & significant decimal digits)
and cccupy only a single location, but otherwise act as real varjables. Theve-
fore, the programmer may use half varjables to gain memory space al Lhe
expense of precision.

Logic variables are unsigned 32 bit G-20 logic words, which way be used

for bit and character manipulation processes. They may be used in either

arithmetic or Boolean cxpressions. Simple varviables of type index will be

assigned to G-20 index registers but act oihoiwise as variahles of tyue

AL,2.6

integer. The uscs of logic and index variables are complex to explain but

obvious to those ALGOL programmers who are also knowledgeable in G-20 machine

language For more information sce Chapter be.
(¢) The value of a real or half variable must either be zero or else

lie within the range given below:

i

abs (R}
abs (H)

1A

3.450 469
L.045,,+63

real: 1.275,-57
half: 1.275.,,-57

1A
A

integer and index variables will always take on integer values in the range

221

-2007152 < I < 2097152 (=)

logic variables are always positive., 1If used as strings, they are four or
less characters in length, and If used as numeric quantities they arc restricted
to

0 = L < 4294 967296 (. 232)

The values of Boolean variables nust be either true or false.

The G-20 replaces by zero any non-zero arithmetic result which is smaller
than 1.175..-57 in magnitude; this situation is ealled an underflow. An inter-

mediate arithmetic result which is greater than 3.450,+69, the largest number

representable in the G-20, is called an overflow. An overflow duriung execution
of the object program will cause the run-time error message "RUN ERROR-EXPQ'" to
be printed, and terminate execution of the program (unless error recovery is in
use) . See Chapter ob for further details cn run-time errors.

An exponent overflow cannct occur during translation of the ALGAL source
prosram; violation of the restricticns o ALGOL-20 numbers given above will
causc a normal syntactic crror message which will not, however, terminate
translation.

The number 3,450,469 is the upper limit for the result of each individual
arithmetic operation in the evaluation of any arithmetic expression, regardless
of the types of the variables ia the expression. However, if the result of
the cxpression is assigned to a half variable, then a value greater than
1,645 +63 will result in an exponent overflow message as explained above. A
value assigned to an integer variable, on the other hand, will be truncated
medulo 221 - 2097152; while a value assigned to a logic variable will be trun-

32 . A . . .
cated modulo 2 (and given a positive sign); in either case, no overflow

message will occur.

AL.2.7

ARITHMETIC EXPRESSLONS (2.3)[3.3]

(a) In ALGOL-20, the asterisk ("*") is used in place of the multipli-
cation sign ("«") of ALGOL-60.

(b) ALGOL-20 arithwmetic expressions may contain the truncation opera-

tor defined mathematically by

iX - sign (X) * entier (abs(X))

That is, iX is simply the integer part of X if X = 0, and is -{integer

part (-X)) for X < 0. Thus, 1(L.7) = 1, 1(-1.7) = -1. Truncation is per-
32)
formed wodulo 2 = 4294967296; for example, 14294967298 - 2.
The truncation operator is umary, having exactly one operand which is

tig i

the complete expression immediately toc the right of the "i" symbol. ithe

precedence of ™" is very high, so that '"i" will be executed before "t"

or
any other arithmetic operation {unless parentheses are used to force a dif-
ference order). For example, "1X/Y" means (1X)/Y and "X1iY" means Xt (4Y).
(Truncation is done by an add-logical in mode xzero of zero.)

(¢) The truncation operator, 1", can be used to get the effect of the

integer divide operation, "', which is not available in ALGOL-20. If [and

bl

J are integer variahles, then
T+ J - i (1D

Notice that the "i" operater can operate on any integer or real expression,

and is therefore more general than ":"

(d) When a variable of type half appears in an arithmetic expression,
the rules for determining the type of the result are exactly as if the half
variable had been of type real. In [act, full precision (42 bit) floating
poine arithmetic is always performed on all variables other than boolean and
logic in ~ue G-20.

(e} The "+ and "-" can be used either as binary operators or else as
T

unary operators. “.ep "+" gnd "-" are used as unary operators with "1 in

. . s g g 1 ,
the combination "t+7 o " " hayentheses around the exponent may be omitted.

3

AL.2.8

The following table shows some examples of this rule:

The ALGOL-.20 Expressions i Means: (hoth in ALGOQL-20 and ALGOL-60)
4y 5 Xt (+Y)
X-y Xt (-Y)
Xti-Y i X1 {4 (-¥))

(f) The precedence of coperators and relations in ALGOL-20 is

b (done first)
mod

-+ (used as unary operators)
/e

-+ (used as binary operators)

£ -Aar»-a< > <

>

v (done last)

That is, unless parentheses force a different order, ! will be performed,
then mod, then t, and sc on. The unary operators + and - are special cases,
Unary + is ignored. Unary - is performed on the expression on its right whose

operators have higher precedence than it. For example,

qmed - at bmod ¢ ¥d
is

q mod{((-(a 1 (b mod c})) * d)

BOOLEAN EXPRESSIONS (3.6)[3.4)

{a) The Boolean operater "5" ("Implies') is not available in ALGOL-20.
However, for any Boolean expressions Bl and BZ' the ALGOL-60 expression

Bl = 52 may be replaced by either of the equivalent forms:

— B ¥ B

1 2

- (Bl ~ - Bz)

(b) ALGOL-20 substitutes the equality symbol "=" for the Boolean

equivalence operator "=". Note that the ALGOL 60 report gives = very

AL,2.9

low precedence, ALGOL-2U cannot distinguish between = and = and

thus gives them the same preccdence, Thus A~ B = €~ D 1is taken as

A~ (B - C) -~ D, and parentheses must be used 1f any other meaning is
intended.
STANDARD FUNCTIONS (2.4y[3.2.4)

ALCOL-20 has three built-in operators, MAX, MIN and MOD, which are
not in ALGOL, These are defined mathematically as follows, where El’ E2,...E

are arithmetic expressions.

E,.} - the largest algebraic value of the N

MAX (hl, hz, e By

expressions;

MIN (£ By, e EN) .~ the smallest algebraic value of the N
e¥pressions,
B, w0 . B, E, ¥ | (Ei/Ez)

MAX and MIN may have any number of expressions as arguments.
Note that MOD is written as an .,-rator betyeen its twa arguments. The above

definition for MOD holds for all vat.-=s of El and EZ’ but in the case where

both arguments are positive integer-valucd gxpressions, then E1 MOD E, is

the remainder for El divided by E, (and l(Elfv\) is the integer quotient).

Although E1 and E. cach appear twice in the defi. ‘tion, they are actually

2
evaluated only once,

ASSICNMENT STATEMENTS 2.5y {4.2)

{a) [n addition to the ":_" operator of the reference language,
! guag

ALGOL-20 allows the leit arrvow ("<!) as an assigoment operator. The left

o

arrow has the same meaning as except when a non-integer expression

ig assigned to an integer variable. The assignment statement

<integer variable» « <non-integer expression®

rounding. If "::" {s used instead, the value will be rounded to an integer
in conformity with the reflerence language; however, the ! operator pro-
duces more efficient object cede,

(b) In a multiple assignment statcment, the "left part" variables

need not all be of the same type. For example, the sequence

AL.2.10

REAL X

I« X T 12 37X,

1

is allowed in ALGOL-20. The rule given in (a) above determines for each

integer left part variable whether or not vounding will occur,

LABELS AND GO TO STATEMENTS (3.2) (4.3}

(a) Only jdentifiers may be used as labels inr ALGOL-20; integer

labels are not permitted.

(b) In ALGOL-20, GOTO and GO are both reserved identifiers, and TO

is ignored when it follows after GG, Hence
GO TO lahel
GOTO Label
GO Label

are alt equivalent and permissible.

CONDITIONAL STATEMENTS (3.3)(4.5)

{a) Because of character set restrictions, ALGOL-20 must make the

following substitutions for relational operators:

ALGOL- 60 ALGOL-20
= —<
= -

In addition, hoth "#'" and 'L-=" are allowed in ALGOL-20,

(b) There are some complex syntactic construction which were allowed
by the original ALGOL-60 report but were subseguently found to be ambiguous
or controversial. One such ambiguity arises when a for statement comes

within the scope of an if clause.

(1) Consider the [ollowing construction:

if ... then
for . . do
begin
if ... then <unconditional statement>

glse <statement>

end ;

@

AL.2,11

If the "begin ... end" pair is omitted, this construction becomes
Degth gng
ambicuous since Che phrase 'else Zstatement>" ¢ould belong to either the
g { L B

inner or the cuter if clause. ALGOL-20, in agreement with the 1962

revision of ALGOL-60, allows the 'begin ... end" pair to be omitted, and
considers “else <statement>" Lo belong with the second <if clause>; i.e.,
the construction is treated as if the "begin ... end" pair were actually
present.

(2) The foilowing construction:
if ... Ehen
for ... do ~unconditional statement>
else <statement>
1s not actually ambiguous, However, the revision of ALGOL-60 syntax which
took care of case (1) also had the undesirable effect of outlawing con-
struction (2) which is perfectly respectable. Therefore, ALGOL-20 will
allow (2) but will print a "Note 7" (see Chapter 6b)} to peoint out that it

is inconsistent with revised ALGOL-60 syntax.

CONDITIONAL EXPRESSIONS (3.5)

(a) ALGOL-20 allows certain constructions with conditional expres-
sions which are unambiguous but illegal in revised ALGOL-60. The ALGOL-20
translator will flag any of these constructious with a "Note 4" message
(see Chapter 6b) to call the programmer’s attention to the violation of
ALGOL syntax.

In ALGOL-20 the right-hand operand of a binary operator may be a
conditicnal expression without parentheses; e.g., the second set of

parentheses may be omitted in:
(if X>0 then X else Y) + (if Y >0 then 3 else X
Note, however, that omission of the first set of parentheses, surrounding

the conditional expression which is the lefit-hand operand of the binary

operator "+", would change the meaning to the following:

if X0 then X else (Y+ if ¥ >0 then 3 else X .

Similarly, the following construction is legal in ALGOL-20:

AL,2 .12

but will cause a '"Note 4'". It will be interpreted as:
X* (if A> B then 3 glse (Y + 7))

ALGOL-20 allows the analogous constructions with binary Boolean
operators and conditional Boolean expressions, and with relational
operators and conditional arithmetic expressions. An example of the

last is the Boolean expression

(if BOOL then X else Y) < if BOOL then 3 else Z

The expression with the [irst set of parentheses omitted would be inter-

preted as

if BOOL then X else (Y < (if BOOL then 3 else 2))

FOR_STATEMENTS (4.1 [%.8)

{(a) A left arrow may be used instead of '":=' in an ALGOL-20 for

m,omn il

clause; "' will truncate and "::" will round each implicit assignment toc
a for variable of type integer.

(b) The value of the controlled variable is not undefined upon nor-
mal cxit [rom an ALGOL-20 for statement. The value of the for variable
upon exit depends upon the form of the last element in the [or list, and
is in general just what would be obtained if the equivalent basic programs
(sce section 4,1 of McCracken or section 4.6.4 ol the report) were sub-
stituted for the for statement. Thus, upon exit [rom an until or while

form of for list element, the for variable has the first value for whiru

the final test failed. For example:
FOR I - 1 STEP 1 UNTIL 10 DO 5

leaves I - 11 when the for list is exhausted and control .asses to the

next statement.

(c) A fourth form of for list element is permitted in ALGOL-20:

FOR Ve El STEP 72 WHILE B DD 55

where El and E. are arithmetic expressiuns, B is a Boolean expressien, and

2

AL,2,13

S is any statement. This is equivalent to the simple program:

VeEl;

LOOP: TIF B THEN

BEGIN
5 ;
v « VvV + E2; GO TO LOOP

END ;
Notice that if the Boolean expression B is: (V - E3) * (EZ) = 0 then
the new step ... while form of for list element is identical to the
step ... until form. However, when (as is usual) the sign of the step
expression E, is known to the programmer, the step ... while form

2
(omitting the multiplication by EZ) will be more efficient in both space

and time.

ARRAYS .2, 5.9(5.2, 3.1.4]

(a) ALGOL-20 arrays may be of type inteper, real, Boolean, half, or

logic. 1Index arrays are not permitted,

(b) A non-integer value of a subscript expression in ALGOL-20 is
not rounded. only truncated. This may lead to hard-to-detect errors. For
example, suppose that the result computed for a subscript expression is
3.9999,.. instead of 4 because of round-off error; this value will be trun-
cated to 3, referring to the wrong clement of the array., Thus, the plaus-

ible program:

FOR X « 0O STEP 0.2 UNTIL 1.0 DO
A [5rx «x;

may not work correctly because of the round-off error in ¢.2 which cannot
be exactly represented in a binary computer like the G-20. The following

alternative will work:

FOR 1 « 0O STEP 1 UNTIL 5 DO
Al < 1/5,

(¢} The speed of execution of an ALGOL-20 program does not depend

upon the lower or upper bounds of an array subscript, upon the order of

the dimensions, or upon the types of variables appearing in subscript

AL.2.14

expressions, however, the number of memory cells required by an array
does depend upon the order of the dimensions; the least number of cells

is required if the longer dimension is listed last.

OWN VARIABLES (6.6)(5.0]

Own arrays may be used in ALGOL-Z0, but they must have fixed sub-
script bounds so that storage may be allocated to them before execution
begins; that is, "dynamic own arrays’ are not allowed.

Own simple variables and gwn arrays are initialized to zero (or

false, in the case of Boolean quantities or in the case of logic

quantities) before execution begins.

PROCEDURES
(a) Parameters (7-4)[4-7]

When the first occurrence of a label in a block is as an actual

parameter in a procedure call, then the ALGOL-20 processor must be fore-

warned that this identifier is a label. This requires that the label
identifier appear in a label declaration in the block head. For example: .
BEGIN
INTEGER I, J; LABEL L;
PROC (X, L) ;
L:I«1I+1,;
END ;

This is the only circumstance in which a label declaration is required in
ALGOL-20,
(b) Specifications (7.5)[5.4.5]
All formal parameters in an ALGOL-20 procedure declaration must appear

in the specification part of the procedure heading.

{(c) Recursive Procedures (7.7)
Recursive procedures are not now available in ALGOL-20.

{d) Arrays, switches, and labels cannot be called by value.

AL,3a.l
CHAPTER 3

Input/Output Statements

3a. Introduction

The official ALGOL-60 language does not include input/output
statements, Thus, ALGOL-60 can be used to describe computaticnal
algorithms but not the process of reading input data from punched
cards, magnetic tape or disc, or the process of outputting intermed-
jate and final answers onto printed pages, punched cards, magnetic
tape or disc. Each ALGOL translator, therefore, must contain itfs own
scheme for programming input and output operations.

ALGOL-20 includes an input/output ("I/0™) system derived from
the system used previously in the GATE language at Carnegie Tech.1
The following pages contain both an introductory explanation and a
complete technical descripticon of ALGOL-20 statements for reading data
cards and for printing and punching answers.

Chapter 3b is a primer on ALGOL-20 I/O which takes a particular
example of printed output and builds up its solution, It is introduc-
torv in nature, and concerns only printing. Punching requires only
simple extensions oif the concepts used in printing. Chapter 3c is a
primer on READ which includes a completely worked-out example. Chapter 3d
contains a complete summary of all input/output instructions.

ALGOL-20 also contains provision for reading and updating files of
information stored on magnetic tape or disc. This mechanism is related
to the card reading, printing and card punching statements, but involves

additional complexity. It is described separately in Chapter 6g.

1 The GATE input/output system is described in the manual: "20-GATE:
Algebraic Compiler for the Bendix G-20", Carnegie Tech Computation Center,
September 1962. The general principles of the ALGOL-2C input/output

system were the subject of a paper presented by A, J. Perlis at the Work-

ing Conference on Mechanical Language Structures, August, 1963, published

in Comm. A,C.M., 7 (Feb. 1964) p. 89.

AL.3a.2

AL.3b.1
CHAPTER 3b

Primer on ALGOL-20 Input/Output

Consider the task of programming a computer to print answers.
To control printing, such a program must specify two distinct kinds

of information:

(1) Which values are to be printed, and

(2) The format in which the values are to appear on the page.

To supply these two kinds of information, ALGOL-20 contains two types
of statements: NAME statements, which select the values to be printed,
and PRINT statements, which specify the printed format for these
values. "NAME" and "PRINT" are reserved identifiers in ALGOL-20. In
general, each NAME statement is paired with a PRINT statement and the
two are used in parallel to control printing; each value specified by
the NAME statement must be matched with a format specification from the
PRINT statement.

The remainder of Chapter 3b is divided into sections, as follows:

A. The NAME Statement: Introduction
B. The Format Program: Introduction
C. The Print Buffer

D. An Example of Print Format

E. Replicators: Introduction

A. The NAME Statement: Introduction

A NAME statement in ALGOL-20 has the following form: The reserved
identifier NAME followed by a pair of parentheses enclosing a name list.
For printing (or punching), the name list is a list of values to be
output and therefore is simply a list of arithmetic expressions (separated

by commas) :

NMAME (< Arith Expr >,..., < Arith Expr >)

AL.3b.2

When a value is needed by a PRINT statement, the value of the next
expression in the NAME list is computed and supplied to the appropriate
PRINT instruction. Expressions in the NAME list are evaluated in left
to right order, and the corresponding values are printed in the formats
specified by the PRINT instructions.

For example, to print the values of the ALGOL variables A, B and C

and also the value of the expression a/ B2 - 4AC, the programmer may use
the NAME statement:

NAME (A,B,C,SQRT(B t 2 - &4¥A%C))

along with an appropriate PRINT statement.

NAME statements may be more complicated. For example, they may
contain for clauses and other forms of replicators which repeat the
selection of values in a manner analogous to the repeated execution of
an ALGOL statement by an ALGOL for clause. Replicators are discussed in

Section E.

B. The Format Program: Introduction

Suppose that the value 1.7 has been computed and is to be printed
by an ALGOL program., This number could be printed in any one of many
different formats; for example, one of the following forms might be

appropriate in a specific case:
1.7 +1.7 +00001.700 170 01 L.70 ,+00 17000 =04

However, there is more to format control than specification of the forms
of individual numbers. Answers are generally to be printed in 2 readable
manner: separated by blank columns and accompanied by suitable headings
and titles to identify the printed results. Therefore, a PRINT statement
must give the programmer control over the position of each number and
title on the line, the assignment of numbers to different lines, the

spacing of printed lines on the page, and the sequencing of pages, as well

as the form of numbers.

AL.3b.3

To control all these aspects of format, ALGOL-20 contains a
special "format language", which is used within PRINT statements. A

series of instructions in this format language forms a format program.

The individual instructions within a format program are separated by
commas .

The format language uses some of the same characters that ALGOL
uses, but with different meanings. Therefore, special brackets must
be placed around each format program to set it apart from the ALGOL
program in which it is embedded. Unfortunately, there are no unused
symbols available in the G-20 alphabet for these format brackets, so
we use "<" (less than) and '">" (greater than) for this purpose. The
syntax of a PRINT statement is such that "< and '">" symbols surround-
ing format programs cannot be confused with the same symbols in Boolean
expressions.

The simplest form which a PRINT statement may have is the reserved
word PRINT followed by a pair of parentheses which enclose a single
format program, or enclose a series of format programs separated by
commas. Each format program is itself enclosed in "<" and '">" brackets.
The following PRINT statement, for example, contains a single format

program which consists of five format instructions:
PRINT (< P, 37C, 'A=', + 2D.3Z, 2E >)

The meanings of these instructions will be explained below. The effect
of this PRINT statement would not be changed if each format instruction
were enclosed in format brackets, so that the PRINT statement contained

five format programs each consisting of a single format instruction:

PRINT (< P >, < 37C >, < 'A=' >, < +2D.3Z >, < 2E >)

AL.3b.4

C. The Print Buffer

Associated with the G-20 printer is a block of 120 consecutive
cells in memecry, called the print buffer. These cells, numbered

1, 2,3

sers, 120, correspond to the 120 physical print positions ox

3 >

"columns" in a line of printing.

The process of printing takes place in two steps: First, a
format program in a PRINT statement places the characters to be printed
into the print buffer, each character being placed into the cell
corresponding to the column in which it is to be printed. In this
manner, the format program builds up an "image" of the line to be
printed. Second, when the entire line has been formed, a format control
instruction must be executed to send ail 120 characters from the print
buffer to the printer and actually print the line on the paper. The
format instruction which is generally used for the latter purpose is
'E', which is mnemonic for Execute. The E instruction prints the image
in the print buffer and afterwards automatically "erases" the print buffer

(i.e., clears it to 120 blank characters) in preparation for the next

line.

The print buffer behaves like other memory cells: Storing a new
character into a buffer cell replaces the character which was there
previously, while sending a character to the printer to be printed does
not (necessarily) erase it from the print buffer. 1In particular, the
control instruction 'W' executes the same printing operation as 'E' but
does not erase the buffer afterwards. Thus, the programmer may, if he
wishes, save part (or all) of the print image for printing on successive
iines.

Associated with the buffer is a pointer called the "echaracter pointer™
or "CP", The value of CF is always the number of the print buffer column
into which the next character will be stored by a format instruction. As
each character is stored, CP is automatically stepped ahead (to the right)
by one so that successive characters are stored in left-to-right order
into successive cells, Therefore, execution of a format instruction which
stores characters into the print buffer automatically leaves CP set to

the first column after the last character stored. For example, if CP is .

AL.3b.5

47 and a format instruction stores a number requiring 5 columns, CP
will be left at column 52.

Another pointer contains the '"left margin" or "LM". The value
of LM is the number of the left-most column into which characters may
be stored. Execution of the instruction "E" leaves CP reset to the
value of LM. (Execution of "W'" leaves CP unchanged.) There is also
a pointer which contains the "right margin" or "RM" -- the number of
the right-most column into which characters may be stored. Initially,
LM and RM have the values 1 and 120 respectively. Before each charac-

ter is stored into the print buifer, a check is made to insure that:
1M < CP < RM

If this relation does not hold, an "E" is automatically executed: the
characters already in the buffer are printed, the buffer is cleared,
and CP is reset to the value of LM, The character is then stored into
the buffer. The mechanism for changing LM or RM is explained in

Section E of Chapter 3d.

D. An Example of Print Format

A particular print program will now be discussed in detail. Assume
that an ALGOL program computes all the values in a 40 x 10 array
{40 rows x 10 columns) COEF; these 400 values are to be printed along
with a value of a simple variable DELTA. A sample of the desired print-
ing is shown on page AL.3b.7.

The printing begins with a title, "ADJUSTED COEFFICIENT MATRIX",
which starts in print position 37 of the first line on the page. The "1"
in the next printed line is in column 17, the "2" in column 28, etc,

The row numbers, down the left-hand column, are in print positions 6 and 7.
Each matrix element occupies nine positions in the printed line and is
separated from its neighbors by two blank spaces. The numbers to be
printed are all less than 1000 in magnitude, and four digits are to be

printed to the right of the decimal point. A minus sign is to be printed

AL.3b.6

immediately before the first digit if the number is negative. The

value of DELTA is to be printed with two significant digits in
"scientific notation'", with a power of ten, as shown. No sign is
to be printed for DELTA. The step by step construction of the

necessary NAME and PRINT statements for printing this example follows.

First, consider printing the title, Three different types of

formating operations are needed for this purpose:

(1) An instruction is needed to begin printing at the
top of a page.

(2) An instruction is needed to indicate that the
information is to be printed starting in column 37.

(3) Instructions are needed to specify the information

to be printed.

Since the title is a fixed string of alphabetic information, it is
convenient to include it entirely in the PRINT statement, with no
corresponding value in a NAME statement. In fact, if only fixed infor-

mation such as a title were to be printed, no NAME statement would be .

needed with the PRINT statement; this is an important exception to the
general rule that NAME and PRINT statements come in pairs.
To specify a title or any other fixed string of alphabetic charac-

ters to he printed, we use a format instruction called an alphanumeric

string instruction. This is simply the string of characters to be

printed, enclosed in quote marks. Such an instruction can thus be used
to print any character except the quote mark, since a quote within the
string cannot be distinguished from the quote terminating the string.
(A special format instruction is provided for printing a gquote mark --
see page AL.3d.6) The alphanumeric string imstruction used to specify

the title is:

'ADJUSTED COEFFICIENL MATRIX_-u DELTAL=('

(Here and in the sequel we use the symbol "_)' to represent a blank

column, where it is necessary to emphasize that a column is to be blank.)
Biank is a legitimate alphabetic character, so all blanks appearing in the

alphanumeric string instruction will appear as blank columns in the title

as printed.

AL.3b.7

Ti00*
gesl’
pooo?
96"
Tep0”

Teoo”
gege
eigl’
geel!’
voco:®

2650"
erT0*
el
XA
L990°

Deie*
B9¢9’
At
CASRN
£99c”

copo*
trog*
A 24-N
Tooot
6866

gooo-
SEGe”
9¢10°
CATAS
gL’

ocoo*®
gooo
poog*
0Bge”
Té60

vLGE"
vQoo0*
Tl
gooo"”
14T

0

0
L
v
IS
0

O oo o

Ge
0~

G-

Te
ﬁ.
Ge
T
T

U
vT
(=
0
g

(1
(1
¢
3
Lw

¢
¢
U
L
3

(1=
0
Ol
U
A

1

?RTI9'E
6TEv 912
000
£L68'99
BTIOO" 0~

R A e
2000 0=
€000t 0
cpeo"a
10000~

0LCT QB
bev6' 08¢
TCo0t0
Letetwig-
pogo*e

LBYSE*D
opoo*o~-
Too0to0
918692
poogre

i52e'e
TRUE -
repdtl-
L90L' 9=
0Tpe*ETc

y080* 0~
€T1e 102~
EEvs*d
vgce" 0
SEEL T

T000*0
gooo*o
9zg0*' 0~
0E0E*961-
L4800

gLp0 0
20100~
9p50° 0=
IR
0T9T TT=

]

B9CE*Br G~
nogo*o-
LL2200
2vI10*0
99698 T~

g900°
2o60’
¥ezo’
8600°
£xeot

O oo o0

gopoo"o
L7000~
EETAVREIE
GoeLtBEE
£ETI0'0

60040
gzl
9pTR*QEE
a0o0* o
GEIL'0

L0g2tes-
£120'0-
£100°'0-
$100°0
FAVFAVIN

0ogo*o-
9¢9¢*0z
r&00°0-
£00G*0
cllg*vés~

BLivtovi
£700°0

Bl/0'2¢
p0ps 62=
T900'0=

8601 G-
geon'T
118G 'p-
gzc* o=
£LG0 0~

&

cveT 0=

TH09'8LE
paee T~

£686*5¢

gooo=0

p2¢0°0-
D900 0~
cT98*8BET
PRTLTER
£¢o00°0-

oopc*0-
$670* 0~
v6c0* 0=
cLEBGL
v 08 ET-

EREZLCLCE-
b 008
Zr96 6l
$g08' 21T~
fpestl

2099*9LS
£Z2698E-
£600°*0
v0/0*65¢
cZT0' e~

qTI0*0
grTsE-
poo0*o~-
Tnoo*o-
0T10°'89¢%

oTcb e
699T0

26500~
Ly00t 0~
10000

peel* 0~
3Tet D
$5I18'86-
2EELCT
pe00*0

vQ=" 0°'5

£IE6° 2T~
Gpoo*o=
Czeg -
oooo*o
T£00°0

AT AA
SLs6" =
€961 L
geL0'CTE-
£600* 0~

G499 'vBY -
CARSIREY
gele'l
£I00°D
6400° 0=

gegoty-
zo00o"0~-
60800
£e00* 0~
9286 ' HT1~

5z20° 0=
bNZZ* 62
gz6T ¢~
62bb 9b-
bC60° 9

ooGo*o
0666°'0TT
TrG0* 0=
codg"p~
gzon*o~

Cp62°' 8T~
¥100°0
znog*e
gz0T 0«
PIS0T AT

¢coo*c
cg0T* 0~
GoéET el
99Z2L'97-
podg"C=

9

= Y1733

v/G82'6BE
groo*n
6100
1000'0-
9998 '0b=

9/6b*T
noaog*n
2000 Q=
0eC0*D
LETO 0=

2eazZt
Gpu6* /06~
gplo*eg
T190*TT=-
Gpaf*tEEs

v 00D
6RUE L
AR
4¢F0'0-
p/00'D-

ooog*o0~
LpBO'D
cel0T cege-
9486 46T~
apO0*d

T200°0
/900*0-
opobo*o
poldo*0=-
2L900

VR SAAN
zulc*c=
gzYe Ll
gooo*n-
To0o* o=

biE0*CLE
gte6°0c=
cg00* 0=
L0800

05000~

¢gd0*n~-
(p9TthEn~
Yepp e
G168 LEp=
cHEy b~

Ipgl*Cva-
£p00*0
£81LtT
TO0ET*6ET
etni*o-

eLst
999 * Q6T
£oga*o
1686712~
o000~

LA R
86000~
Tuoo*to
gleTred
0000*0

gLt e
g0o00°0~-
#0000

L8329
90s6'212

$662°559
Ct00°0-
LL0ETEY
5¢00*0
6G6L°6LT

£geety
croet o~
AR
gegntedl
Te00*0

T000°0
suobto
9G04 0=
g6l
gOGLD

t312'apg-
L9b2 516
19612
19L2°69T =
PEEG D

ST30'0
ALU0" 0=
ZLAG'GEY-
gecérzei-
PO L e

cocoto-
T A8
gocoto-
5TET 0=
68000

TTRe 88~
Z3700*n
6612212~
#0490
PLEF*EE-

A3 N
6690 n-
T500¢C-
3T21*0
2gch*'0~

L1u0t
¢ese’t
1000
cLN0'eT~
LI8LEr T~

oo o0

2ogot
GOGET?
aGud”
0g%n*a
26Vl

ho o

nooo*g-
geuora-
LETUCO-

40000

0oco*o

XTs8lvw LIN312144300 031SNrov

9Ty "
Ceat?
DN
gauot
agn”

L3628
66éo*
n860"
v000"
1 TATA

nonge
ce9g”
AR
g0gqQ0°”
T000"

LLTR”
Jeags”
Irpe "
arbg’
600"

2iLrer
cersst
riEH "
tyiv®
L6L9"

Tege!
6T’
onte
guen’
zelo®

L5671
LTV
Cado
£T60
9eTe”

o R I B N 3]

ceve”
S9cEg”
400"
cGQTs”
tooo”

¢

[NV ST o B o B 4
L}

I AN
@ M~ T
L

TN~ D

o e
B
L}

)

o

o

L B o B SR o= BN« 4}
E ™ ¥

cpndtor-
gnnatn-
cérgrie
Ennp*o

P20 0=

eonpto
PCge'0TT
50000
Loaptilg-
agng*o

wLngte
Lvist0
gLl 0
AR
gaeet o

0Inn'0-
CECTO
et 0T
BI00t0
Sige* 0

21000
Sea0*0-
2Ty0t /42T
te/e"C-
tOD0" D

LEGT)=
PO 0~
ppPe e~
CpeDtl=
¢ind*cC

13670
LTRyGY
Tieg' 0
reegtc-
rage'c

H61T'0~
07691~
T1ag' 0=
Tog0*p-
2helt T

T

(1%4
6%
Y
LE
9¢

0e
6T
8t
(3
Ch

AL.3Db.8

This string is to be stored in the print buffer starting at
column 37, so CP must be set to 37 before the alphanumeric string
instruction is executed. The format instruction to do this is "37C";
here "C" is mnemonic for "Column". Generally, executing an instruction
of the form "nC", where n may be any integer in L = n = 120, will have
the effect of setting CP to column n: CP < n. The format program
<1C, 37R> might also have been used. 1C sets CP to column one, and
37R moves CP 37 columns to the Right. Similarly, nL moves CP n columns

to the Left. To summarize:

nC has the effect CP «—n
nk has the effect CP « CP + n
nL has the effect CP «CP -n

Therefore, the following format program will set CP to 37, place
the 40 characters of the string into print positions 37 to 76 of the

print buffer, and then print the buffer:
<37C, 'ADJUSTED COEFFICIENT MATRIX - DELTA = ', E>

This could just as well have been written as three successive format

programs by putting brackets around each instruction:
<37C>, <'ADJUSTED COEFFICIENT MATRIX =~ DELTA = >, <E>

but the first form is easier to punch. The instruction necessary to
store the value of DELTA into the print buffer is still missing. For

reasons which will be discussed later, the appropriate numeric instruction

is 1D.1ZL. Further, the title is to be printed at the top of the page.
The format instruction used to upspace the paper to the top of the next
page is "P". Thus, a complete ALGOL-20 program to print the first line

of the example might be

NAME (DELTA) ; PRINT (<P, 37C, 'ADJUSTED COEFFICIENT MATRIX - DELTA = ',
iD.1ZL, E>);

Equivalently, the following might be used:

PRINT (<P, 37C, 'ADJUSTED COEFFICIENT MATRIX - DELTA = '»);
NAME (DELTA) ; PRINT(<1D.1ZL, E>);

AL.3b.9

Next consider the format for printing the number DELTA and the

numbers of the matrix itself. Numeric instructions are those instruc-

tions which place numbers into the print buifer; these numbers are
values which are obtained from the evaluation within the parallel NAME
statement.

A numeric instruction may be regarded as giving a "picture'" of the
number to be printed. Generaily, the following items must be specified

to define a number format:

(1) The form for printing the sign, if at all.

(2) The number of places, if any, to the left of the
decimal point, and whether leading zeroes are to
be inserted or left as blanks.

{(3) The decimal point, if any.

(4) The number of places, if any, to the right of the
decimal point, and whether trailing zeroes are to
be inserted or left as blanks.

(5) The "exponent part" (power of ten), if any.

Items (2), (3) and (4), defining the format of the numeric part of
the number without sign or exponent, are specified by the number form
portion of a numeric instruction. Item (1), the sign, is specified by
the sign part, which is part of the prefix, while item (5) is specified
by the suffix of the numeric instruction. The form of a numeric instruc-

tion then is given by:
<numeric instructiom> ;:= <prefix> <number form> <suffix>

(We will see later that the prefix includes, in addition to the sign part,
a part which controls the printing of dollar signs.) The number form
gives a simple picture of the basic form of the number; as an illustration,

the matrix values in the example may be printed with the number form:
3D.4Z

Here "3D" indicates three Digits to the left of the decimal point, with
leading zeroes replaced by blanks; the period is a picture of the decimal
point which is to be printed; and "4Z" means four digits to the right of
the decimal point, with trailing Zeroes printed. For example, the number

3.74 will be printed:

AL.3b.10

by 3D.4D in the form Uudeldinyg
by 3D.4Z in the form uud 7400
by 3Z.42 in the form 003.,7400
by 3Z.4D in the form 003,74,
by 37 in the form 004,
by 3D in the form g

All blanks stored are shown explicitly byri. Notice in the last two
examples that the number was rounded by adding five to the first digit
not printed, and then truncating the result. The syntax of number form

is as follows:

<number form> ::= <integer part> | <integer part>,

<integer part>.<fractionmal part> |.<fractional part>
<integer part> ::= <unsigned integer> D | <unsigned integer> 2

<fractional part> ::= <unsigned integer> D] <unsigned integex> Z

If the integer part (fractional part) appears, at least one digit will be
printed before (after) the decimal point. For example, the number zero
printed with the numeric primary 3D.2D appears as ' 0.0 ', The total
number of digits specified must be less than 15,

In our example, DELTA is to be printed with one digit preceding and
one digit following the decimal point, so it may be printed with any one

of the following number forms:
1D.1D 1D.1Z 1Z.1D 12.12

The program which actually printed the sample included 1D.1Z to print
DELTA.

The prefix includes the sign part to specify the form for printing the
sign of the number, If no sign is to be printed, this part is left empty,
as is the case for DELTA. The array elements are to be printed with a
minus sign immediately preceding the first significant digit of each
negative number. The sign part to use in this case is "-", If in addition
plus signs were to be printed before each non-negative number, the prefix
"+ would be used instead.

The suffix portion of a numeric instruction is used to supply supple-
mentary information, such as scaling the number, printing an exponent or
special spacing. The format for the array elements is completely specified

by the prefix and the numeric primary portions, so the proper numeric

AL.3b.11

. instruction is -3D.4%Z, DELTA is to bhe printed in scientific notation:
shifted so that the left-most digit is non-zerc (if possible) and the
resultant exponent printed. The suffix "L" provides such printing, so

the numeric instruction 1D,.1ZL is to be used to print DELTA.

E. Replicators; Introduction

in principle, everything which is necessary to print the example
has now been discussed. However, writing or punching the NAME and
PRINT statements for the example using only the NAME and PRINT machinery
discussed so far would be very lengthy and tedious., For example, it seems
as if the NAME statement would have to be a simple list of all of
the 401 variable names DELTA, COEF[1,1), ..., COEF[40,10], while the
PRINT statement would have to contain 401 distinct numeric instructions
in addition to alphanumeric string instructions and control instructions.
What is needed is a "loop" mechanism analogous to the ALGOL for state-

. ment; this mechanism is provided by replicators.

An ALGOL program which would operate in some way upon each element

of each row of the matrix COEF would presumably have the form of two

nested for statements:

FOR I « STEP 1 UNTLL 40 DO
FOR J «] STEP 1 UNTIL 10 DO
something with COEF[I,J] ;

This is essentially the form which is used in the NAME statement; the
"action" to be performed on COEFEI,J] is simply "naming" its value
under the control of these FOR clauses. The following NAME statement

will supply all 400 values from the array COEF for printing:

NAME($ FOR I « 1 STEP 1 UNTIL 40 DO $
($ FOR J « 1 STEP 1 UNTIL 10 DO $
(coEF [1,3])));

AL,3b.12

The "$" signs are necessary around a FOR clause when it is used as a
replicator in a NAME {or PRINT) statement. Also, the phrase being
replicated must be enclosed in parentheses, whether it is only a single
expression like (COEF[I,JJ) or a complex expression which itself con-

tains a replicator, like:
(5 FOR J «D0 § (COEF[1,J]))

This accounts for the three sets of parentheses in the example above.

The following is the syntax of a NAME statement:

<name statement> ::= NAME (<name list>)

<name list> ::= <name list element>] <name list>, <name list element>
<name list element> ::= <name expressior> | <replicator> (<name list>)
<name expressior> :!:= <arithmetic expressiomn> 1 <Boclean expression> }

<logic expressiomn>

"names'" may be

This syntax shows that any simple or complex list of
enclosed in parentheses and replicated; such a replicated list may then
be a single element in another list. The following legal name statement

illustrates lists and replicated lists:

aME (A{1], § FOR J « 1 STEP 2 UNTIL 3 DO $
(3, ala), coer(1,3)y, al7))

This example is equivalent to the following more simple statement:
aave a(1], 1, al1), coer(z,1], 3, a(3]), coer(1,3), A7)

As ancther illustration, refer again to the example, where the row
number is to be printed on every line of the matrix. The simplest way
to print these numbers is to give their values in the NAME statement and
use numeric instructions to place them into the print buffer. Thus, the
following NAME statement will supply (in addition to the array value),

the row number I just before the first element in each row:

NAME ($ FOR I « 1 STEP 1 UNTIL 40 DO $
(I, $ FOR J « 1 STEP 1 UNTIL 10 DO $
(coEF[1,3))));

AL.3b,.13

Since for clause replicators used in format programs very frequently
start at one and increase in steps of one, an abbreviated notation has

been provided for this special case. The replicator
<yariable» — § <arithmetic expressiom> §
has the same meaning as:
$FOR <variable>» « 1 STEP 1 UNTIL <arithmetic expression>$

Therefore, the NAME statement given above for the matrix with row numbers

may be written more compactly as:
NAME (I — $408(I,J — 10(COEF[1,3)))) ;

One more simplification is possible in this form; in the special case that

the <arithmetic expressior> giving the upper limit of replication is a

constant (like "40"), or a simple variable (like '"N"), it need not be

surrounded by "$" signs. Thus, for example, "I - N" is a correct replica-
tor. "I — N-1" is incorrect since dollar signs are required around the
arithmetic expression; the correct replicator would be " — $N-18",

To print the column headings in the example, the values 1, 2, ...,
10 must be supplied in a NAME statement., The simplest NAME statement for

the column headings is:
NAME(I — 10(I)) ;

That is, I runs from 1 to 10, and it is the value of I itself which 1is
to be printed.

The same forms of replicators which are used in NAME statements may
also be used to execute repeatedly format programs or lists of format
programs in PRINT statements, Thus, instead of writing “<2D, 2D, 2D, 2D>",
we may write "J — 4 <2D>", In the case of a replicator in a PRINT state-
ment, however, the actual value of the replicated variable frequently is
not referred to; that is, the replicator is used simply as a counter. In
such a case, the variable in a " — " replicator may be omitted; thus,

" 4 <2D>" may be used to get four repetitions of the format instruction

"2Dll .

AL.3b.14

Following is the syntax of replicators:

<replicator> ::= § <for clause> 8 [<simple variable> — <limit> 1
- <limit>
<limit> ::= § <arithmetic expression> § ! <simple wvariable> |

<unsigned integer>
Some examples of these forms follow:

S FOR J < 2, 3, K+ 2 STEP 3 WHILE A[K) < K DO $
g% @l /2 +3
J — N
J =3
~s 1) /2) +3
— N

-3

If the upper limit of replication has a value such that zero or
fewer replications are called for, then the phrase which is being
replicated will be skipped entirely.

As an illustration, the NAME and the PRINT statement for printing

the column heading of the example are:

NAME (I — 10(I));
PRINT (<16C>, — 10 <2D, 9R>, <E>);

Notice that the entire format program <2D, 9R>» is replicated ten times.
The replicators are not part of the format language, and must therefore
appear outside the format brackets.

The variable I cannot be omitted from the replicator "I — 10" in
the NAME statement, since I is referred to, and is, in fact, the value
to be "named". It would definitely have been incorrect to have used the
identical notation "I — 10" in our PRINT statement, since the same
variable I is already being used for a different replicator in the NAME
statement. Horrible confusion will result from using the same variable
as a replicator at the same time in both a NAME statement and its parallel
PRINT statement.

After the instructions "<l6C>», — 10<2D, 9R>" have been executed, CP

will be set to print position 126, past the RM of 120. However, this

does not cause error printing because the two digits stored on the tenth

AL.3b.15

replication will be put into positions 115 and 116, and no attempt will
be made to store characters in positions greater than RM.

Finally, we set up a PRINT statement for the matrix itself. Notice
the extra blank line every five lines. To get this blank line, we need
only execute an E instruction while the print buffer contains only blanks.

Thus, our PRINT statement will have the form:
PRINT { — 8(<E>, — 5 (format program for one line)))
The format program for one line could be:
<6C, 2D, 5R>, — 10 <-3D.4Z, ZR>

The entire program for the printed output of the example has now been

developed:
PRINT (<P, 37C, 'ADJUSTED COEFFICIENT MATRIX - DELTA = '>);
NAME (DELTA) ; PRINT (<1D.1ZL, 4E>);
NAME (I — 10(I)); PRINT (<16C>, — 10 <2D, 9R>,);
NAME (I — 40(1,J ~» LO(COEF [1,J1)));
PRINT (— 8(<E>, — 5 (<6C, 2D, 5R>, — 10 <-3D.4Z, ZR>, <E>Y));

AL,3b.16

AL.3c.1

CEAPTER 3c

Introduction to READ

A useful way to visualize the process of reading alphanumeric
information from cards is to consider READ te be the reverse process
of PRINT. Recall that in printing, an image was formed in a buffer
and then sent to the printer to he printed. In READ, however, the
image originates at the input hardware and is then sent to an input
buffer which is used by the READ statement in scanning string or
numeric values; these are then locaded into variables named by a NAME
statement. This buffer has a "CP", "LM", and "RM".

The NAME statement used with READ has the same form as with PRINT
except that it supplies the names of variables rather than the values
of the variables named. Therefore, the NAME statement used with READ
forms a list of ALGOL variables (either simple or subscripted), not
general arithmetic expressions, as are allowed with PRINT. Each numeric
or alphanumeric instruction assigns a value to successive variables
suppiied by the NAME statement. Replicators may be used in the READ
statement with the same meaning as in a PRINT statement,

The following sequence is incorrect:
NAME (A+ B); READ (< 3D >)

since the NAME statement names an expression which is not a simple or
subscripted variable.

The READ format program contains a list of instructions, very
similar to those im PRINT, which control the reading of new cards and
which specify the location and type of information expected to be found
in the READ buffer. Thus, the programmer, by using suitable READ format
instructions, is free to arrange his data cards in any format he desires.

The remainder of this chapter is divided into sections:

. Control Instructions

A
B. Alphanumeric Instructions
C. Numeric Instructions

D

. Card Overflow

E. An Example Using READ

It is assumed that the reader has read Chapter 3b.

AL, 3c.2

A, Control Instructions

Just as the user uses E or W in a print format to control printing,

so does he use E or W in read format to control reading.

nE Read n card images into the current READ buffer
and set CP to LM. Only the last card image read
is available after executing this instruction;
hence, "1E" or "E" is the most common use of the
instruction,

nW The action is the same as in "nE" except that the

card images are also printed on the program listing.

In a READ format program, as opposed to a PRINT program, the E or W is
usually the first instruction, rather than the last. The remainder of
the format program then controls the scanning of the characters read

into the read buffer. As in PRINT, the user has the ability to move CP:

nC Set CP to column n. CP «n

nR Move CP to the right n columns. CP «CP + n
nL Move CP to the left n columns. CP «CP - n
nB Equivalent to nR.

B. Alphanumeric Instructions

As in printing, the user has the ability to input any string infor-

mation with an nA instruction:

ni Scan the next n character positions of the read
buffer and store the information there into
l((n+3)/4) words from a NAME statement. The
information is stored four characters per word,
with the possible exception of the last word.
If the last word does not get four characters,

those characters it does get are stored right-

justified.

AL.3c.3

As an example, assume that the characters 'ABCDEL' appear on a card,

with the 'A' in column 15, The effect of executing the statements
NAME (L, M); READ(<15C, 6A>)

will be to store 'ABCD' into L and "5uEy' into M. CP will be left at
21.

Another possibility is to supply fixed string information directly
from the READ statement, rather than from the card image. This ability
is particularly useful in setting successive elements of an array to

contain alphanumeric string information. We have

'“string>' The n characters between the quote marks
are stored into L((n+3)/4) words from a
NAME statement, just as for nA, CP is

left unchanged.
Again, an example may be useful. Executing the statements

NAME(L > 5 (A[I))); READ(<"*THIS.IS,A_STRING*'>)

is equivalent to executing

Al1) « =rHr'; Al2) « 's.1s'; A(3) < 'uaus'; ale) < 'TRIN';
A[5] — LG

The number of characters between the quotes is 18, not a multiple of
four. Thus, the last two characters are stored right-justified in the

fifth named wvariable.

The last alphanumeric instruction provides the ability to read

Boolean values from a card.

nT The next n columns are scanned, but only the first
non-blank column is examined., If it contains 'T',
the corresponding name is set to true; otherwise,
the corresponding name is set to false. If the
corresponding name is not of type Boolean or logic,

the error situation "WILLEGAL BOOLEAN" exists and will

be treated as described below in Section D of Chapter

3d.

AL.3c.4
C. DNumeric Instructions

Two essentially different metheds are provided for reading numbers
from cards: fixed field and [ree field. In the former, the programmer
must specify (and therefore he must know) when he writes the program
the columns on data cards in which the numbers will be punched. This
format information is then part of the compiled program. With free
field reading, the programmer specifies in his program only the number
of quantities to be rcad. The numbers may then be punched in any format
on the cards, separated by commas. Whether fixed field or free field is
selected, however, the same rules govern the actual form of the numbers
read, (The distinction between fixed field and free field only has to do
with the columns used.} Numbers on data cards obey the same syntax as
decimal numbers in program, with one addition: If a "/" is punched
before the number, either before or after the sign, the number will be
treated as an octal number. If an exponent appears, it will then be
treated as an octal power of eight. (In summary: / on data cards is
equivalent to 8F in program, but the latter notation is not allowed on
data cards. 8L and 8R are also not allowed on data cards.)

Fixed field reading will be described first. For each number, the

programmer may specify the following information:

1. Number of columns to be read.
2. Treatment of blank columns. Blanks may either be ignored
or may be treated as if they were punched with a zero,
3. Decimal or octal conversion. The programmer may indicate
that the number is to be read as an octal rather than a decimal quantity.
4, Scaling. The programmer may indicate that the value read is to
be multiplied by a power of ten (or of eight for octal conversion).
5. Alarm suppression. Normally, reading a character other than a
digit, +, -, decimal peoint, / or 5 will cause an alarm. However, the

programmer may suppress this feature and cause such illegal characters to

be ignored.

The syntax for a read numeric instruction is as follows:

AL.3c.5

<read numeric instructiom> ::= <unsigned integer> D <read suffix>

<unsigned integer> Z <read suffix> | <int> F

<read sufiix> :.= <empty~ 1 <read suffix> <read suifix part>
<read suffix parts> :1:= 1 | N | E <integer>
<int> ::= <empty> | <unsigned integer>

The unsigned integer gives the number of columns to be scanned, and
may be as large as 127, If D is used, blank columns are ignored, while
using Z causes such columns to be treated as though they were punched
with a zero. The suffix H causes the number to be treated as an octal
quantity, regardless of whether or not a / is punched., A suffix of the
form E4n causes the number read to be multiplied by ten (or eight)
raised to the +n power. The suffix N causes illegal symbols to be ignored.

Two error conditions may be detected in reading numbers: ILLEGAL
SYMBOL and IMPROPER NUMBER. (A detailed description of error messages
in READ is given in Section D of Chapter 3d.) The first indicates that a
character other than a digit, +, -, decimal point, / or ,, has been read.

It is this error message which is suppressed by the N suffix. The second
message indicates that the number is improperly formed. For example, it
may have more than one decimal point, more than one ., 2 decimal point
after a ,,etc.

In the numeric instructions just described, the field width or
number of columns to be scanned is specified by "nD" or "nZ" and is fixed.

A more flexible type of numeric instruction exists in the form of "nF" or
free field read. "nF" specifies that n numbers are to be read and stored
into the next n names. Each number field is terminated by a comma, thus
allowing the data to be punched without reference to particular card
columns. Numbers may be punched in the same forms as for the fixed=-field
READ and may continue from one card to the next. Blanks are ignored except
that if an entire field is blank, the value of the corresponding name is
not altered instead of being set to zero.

An ™" may be used in place of a comma to terminate a number field, This
will stop the scanning of the card. If fewer than n numbers have been read,
the remaining names will be left unaltered as though the corresponding number

fields were left blank. For example, executing the statements

NAME(A, B, C, D, E, F); READ(<E, 6F>)

AL.3c .o

on the data card

12.6, /la,t5, , 0 =
is equivalent to executing the statements
A« 12.6; B « 8Fl4,,+5; D « O;

It is clear, of course, that these statements leave C, E and F unaltered.

D. Card Overflow

If a READ statement attempts to scan past the right margin, a card
overflow situation is said to exist. This situation is not treated as an
error, but is taken care of automatically by the system. As soon as an
attempt is made to read past the right margin, another card is read into
the buffer using either an E or a W, depending which of these the user
used last to read a card., CP is then set to LM (as usual), and the

character is read from that column.

E. An Example using READ

To illustrate many of the concepts which have been discussed, a com-
plete example follows, programmed in several ways. Assume an array A has

been declared

real array A[l:SO]

and that values for all 80 elements are to be read from cards. From the

programmer's point of view, the simplest way to do this is the sequence
NAME (I — 80 (A[1))); READ(<E, 80F>)

Thus the numbers may be punched, as desired, on as many cards as needed,
with successive numbers separated by commas., Assume instead that the data

cards are already punched, without commas. Each card contains eight

numbers, and each number is punched in nine columns with a column between .

AL.3e.7

numbers whose contents are to be ignored. In this case, the READ

statement given above might be replaced by
READ(- 10 (<E>, — 8 <9D, 1R>))

A more interesting possibility is the following: Suppose that the
numbers are punched onto 80 cards and that each card has punched in
colums 9 and 10 a subscript and between columns 12 and 30 a value.
That is, the 80 cards may be placed in any order and the number in
columns 9 and 10 indicates into which element of the array the value

is to be stored. One way to program this is the following:

for i « 1 step 1 until 80 do
begin NMAME (j, A(j)); READ(<E, 9C, 2D, IR, 19D>) end

This sort of construction will work since the code for naming A[j] is
not executed until after a value has been read into j. The reader

should satisfy himself that the following will also work:

NAME(— 80(j, A(3)); READ(— 80 <E, 9C, 2D, 1R, 19D>)

AL.3c.8

AL.3d.1
CHAPTER 3d

A Complete Description of ALGOL-20 Input/Output
A, Introduction

Chapter 3d is a complete, detailed description of input /output
statements in ALGOL-20. This material is organized te be used for
reference rather than for instruction. The user unfamiliar with the
concepts involved should read first Chapters 3b and 3c which are primers
on printing and reading, respectively.

Chapter 3d is divided into sections, as follows:

Introduction

. NAME Statements and Replicators
PRINT and PUNCH Statements

READ Statements

Buffer Manipulations and "| variables

T I B o T = R

Control and Execution of I/O Statements

In the following, the term "format statement' will be used to refer to
either a READ statement, a PRINT statement or a PUNCH statement, since
the latter three types of statement are used to indicate the format of
data, The term "output statement'" will be used to refer to a PRINT state-

ment or a PUNCH statement.

B, NAME Statements and Replicators

NAME statements are used to specify values to be cutput in a print
or punch operation or to specify locations into which data is to be stored
in a read operation. The NAME statement is not executed directly: 1instead
it becomes active and functions as a list of values or locations which are
evaluated when needed by a format statement. To clarify this concept,

consider the program segment:

AL.3d.2

I .7; NAME(A[T)); T «12; PRINT(<3D, E>»)

The value of A[lZ] will be printed -- not that of A[?].

Only one NAME statement may be active at any given time, If several
NAME statements appear before a format statement, only the last executed
NAME statement will be available to the format statement, Hence in the
program segment:

yame(a{1) s mam(alz))

PRINT (<format list>)
only the one element, A[i}, is available to the PRINT statement. This
topic is discussed in detail in Section F, below.

A replicator is used in a NAME statement to indicate that an expression
or list of expressions is to be used repeatedly. The replicator acts on the
list of expressions in a manner analagous to a for statement acting on a
statement in ALGOL, A replicator appears in one of three forms, the first

of which is:
$ <for clause> §

This replicator causes the replicated name list to be used repeatedly until .

the for list is exhausted., An example is:

$ for T « 1 step 1 until 3 do $ (al1}, B[1))

which is equivalent to
a(1), s(1], al2), s(2), al3), s(3)
The second form of replicator is:
<simple variable> — $ <arithmetic expressiom> $
This form is equivalent to
$ for <simple variable> « 1 step 1 until <arithmetic expression> do 3

with one important exception: The <arithmetic expression> is evaluated only

once, when the first name is actually called for. If the arithmetic expres-
sion is a simple variable or an unsigned constant, the enclosing dollar

signs may be omitted. For example:

AL.3d.3

I-N (3 —=$ 221§ afr, 9]
The third form of replicator is:
— § <arithmetic expressiom> §

This form functions in a manner similar to the one immediately above, except
that the translator creates an internal counter to use in place of the
simple variable, This form may be used whenever the controlled variable is
not needed in the name list. As in the above form, the dollar signs may be
omitted if the arithmetic expression 1s a simple variable or an unsigned

integer. For example, the construction
I8 (-1 ("%), al1])
is equivalent to

._‘J\,;,A[l]’ CANLA A[Z], et el Mkt A[S], cea, A[N]

Syntax for NAME Statements and Replicators

<name statement> ::= NAME { <name list>)

<name list> ::= <name list element> I <name list> , <name list element>

<name list element> ::- <name expression> | <replicator> (<name list>)

<name expression> ::= <arithmetic expression> ! <Boolean expression>]
<logic expression>

<replicator> ::= § <for clause> $ | <simple variable> — <limit> | — <limit>

<limit> ::= $ <arithmetic expressiom> $] <simple variable> | <unsigned integer>

C, PRINT Statements and PUNCH Statements

Most of the instructions in an output statement serve to control the form

and positioning of information as it is entered in the output buffer; hence,

it is natural to discuss PRINT and PUNCH statements together. Because the

AL.3d.4

statements are so similar in function and in order to conserve memory .

locations, PRINT and PUNCH initially share a common cutput buffer. This

means that storing characters with a PRINT statement alters any information
which may have been stored by PUNCH statements, and vice-versa. In addition,
PRINT and PUNCH share the same CP, LM, and RM, so that changing CP in PRINT
changes it for PUNCH also. Initially CP and LM are set to I, and RM is set
to 120, Characters stored to the right of position 80 are ignored when
executing an "E" or "W" instruction in PUNCH. Users may have independent
buffers for PRINT and PUNCH by using the methods described in Section F of
this chapter.

Instructions appearing in output statements fall into one of three

classes: Control instructions to specify the position of information in

the output bulfer, alpha-numeric instructions to store constant information

and alpha~-numeric strings, and numeric instructions to specify the form in

which numbers are to be stored.

Control Instructions

Associated with the output buffer are three variables: CP, LM and RM,
the character pointer, the left margin and the right margin, respectively.
CP points to the "next" position in the buffer into which information may
be stored. LM and RM refer to the left-most and right-most positions in
the buffer into which characters may be stored. The following instructions

may be used to set or change CP or to output information:

nC Set CP to position n (column n). That is, CP < n,

nR Move CP n positions to the right, That is, GF « CP + n.

nL Move CP n positions to the left. That is, CP « CP - n.
Moving CP to the left or right with nL or nR does not effect the
contents of the positions in the buffer which are passed over.

nE Print (punch) one copy of the contents of the output buffer, output

n - 1 blank lines (cards), clear the output buffer to blanks and set

AL.3d.5

. CP to the left margin LM.

nW Print (punch) n identical copies of the output buffer on n
successive lines (cards). The output is not cleared and CP is not
moved .

3 Upspace the paper to the top of the next page. (P is ignored in
punch statements.) In general a message will be printed as the
first line of the new page giving the date and a page number.

The date is printed starting at the left margin in the form
' 04 JUL 64', and the page number is printed in the last ten
columns before the right margin in the form 'PAGE nnnn ', where
nnnn represents the number of pages printed since the end of com=-
pilation, in <4D> format. Printing of the page header is under the
control of the programmer., He may restart the page numbering or
suppress the header completely. See Section E below for details.
Executing "P" does not disturb the output buffer or CP. nP is

treated as 1P or P, for any n.

In the above control instructions, and in the following alphanumeric instruc-
. tions, n is assumed to be a positive, unsigned integer less than 512. If n

is to be one, it may be omitted. For example, "E" is treated as "1E".

Alphanumeric Instructions

Alphanumeric instructions are used for all storage into the output buffer,
except for storing of numbers. There is provision for storing strings which
appear in the output statement, for storing quote marks, for storing alpha-
numeric information from a NAME statement, for storing blanks, and for storing
Boolean quantities., Whenever a character is stored into the output buffer,
it is steored into the position indicated by CP and CP is then incremented hy
one., However, before the storing is done, a check is made that LM = CP < RM,

If this condition is not met, an "E" is executed and the character is then

stored at the LM of the next line.

AL.3d.6

'<string>' The characters of the string appearing between the quote .
marks are stored, Any G-20 character except quote may be stored
by this instruction.

nQ n quote marks are stored.

nA n alphanumeric characters are stored. These characters come from
l((n+3)/4) names from a NAME statement. Each name, with the possi-
ble exception of the last, supplies four characters to be stored.
The characters from the last name are taken from the right end of
the word.

An example of an A primary may help. Assume that A[l] and

A[2) have been named, containing "STRI' and '"**NG' respectively.
Executing <6A> will cause 'STRING' to be stored into the output
buffer. Had <7A> been executed instead, 'STRI*NG' would have been
stored.

nB n blanks are stored. nB has the same effect as a string instruction
with n blanks between the quotes,

nT A Boolean value is stored. The number of characters stored into the

output buffer is min(5, n). The characters stored are taken from

one of three strings, depending on the value, v, of the next NAME,
If v is true, the string used is 'TRUE,'; if v is false the string
is 'FALSE'; and in all other cases the string is 'UNDEF'. (The
latter may occur if the NAME is not a Boolean quantity.) The two
most useful forms of this instruction are 1T, which stores 'T', 'F'

or 'U', and 5T, which stores 'TRUE.', 'FALSE' or 'UNDEF',

Numeric Instructions

Numeric instructions are those instructions used to store numbers into

"picture"

the output buffer. Such an instruction may be regarded as giving a
of the number to be stored, It includes the following information, some of

which may be omitted if not needed:

(1) sSign control: The sign may be omitted or it may be stored. 1f the

AL,3d.7

latter, two more choices are available: Positive numbers may or may not
have an explicit plus sign, and the sign may be either left-justified in
the field or it may appear just before the left-most digit.

(2) Dollar control: Numbers may be stored as dollar amounts, with
the dollar sign either left-justified or just before the left-most printed
digit.

(3) Digits to the left of the decimal point: The number of such digits,
if any, is specified. Leading zeros may be replaced by blanks.

(4) Decimal point: The decimal point may or may not appear, although if
(5) is used it must appear.

(5) Digits to the right of the decimal point: The number of such digits,
if any, is specified. Trailing zeros may be replaced by blanks.

(6) Exponent part: Several forms of "floating point" notation are avail-
able,

{(7) Miscellaneous - the user may specify four more options: The number
may be stored decimal or octal; special spacings may be used; alarm output may

be suppressed; and the number may be truncated rather than rounded.
The syntax of a numeric instruction is as follows:
<numeric instructiom> ::= <prefix> <number form> <suffix>

The prefix contains the specification of items (1) and (2); the number form
contains the specification of items (3), (4) and (5); and the suffix contains
the specification of items (6) and (7).

Consider first the number form, with the following syntax:

<number form> ::= <integer part>] <integer part> .
<integer part> . <fractional part>] . <fractional part>
<integer part> ::= <unsigned integer> D | <unsigned integer> Z

<fractional part> ::= <unsigned integer> D ! <unsigned integer> Z

Let the integer part be of the form vD or uZ, and the fractional part be of
the form TD or TZ. If the integer (fractional) part is missing, let v (T}
be zero, Then the number will be stored with v digits to the left of the
decimal point and T digits to the right. If the integer (fractional) part
contains a D, leading (trailing) zeros will be replaced by blanks, while the

Z form causes such zeros to be stored. If v (T) is zero, then no digits will

AL,3d.8

be stored to the left (right) of the decimal point. If v (7)) is non-zero,
at least one non-blank character will be stored to the left {(right) of the
decimal point, even though a zero must be stored where D format would other-
wise indicate a blank. The decimal point is stored whenever it is present
in the number form. The number is normally rounded by adding five to the
first digit to the right of the last digit stored. The sum of v and T must
be less than 15.

The prefix is the specification of sign and dollar sign. The syntax

of the prefix is as follows:

<prefix> <$ part> <sign part> | <sign part> <$§ part>

1l

<§ part> ::= <empty> l L$ | $

<sign part> ::= <empty> | L+ [L- | + | -

1l

In both the sign part and the $ part, the presence of "L" indicates left-
justified. A sign or dollar sign specified by "I+", "L-" or "L$" will be
stored into the output buffer before any digits or blanks, while a sign or

dollar sign specified by "+", "-" or "$" will be stored just before the first

non-blank digit stored by the number form. The order of storing is as follows:

. % specified by "LS"
. sign specified by "L+" or "L-"
. blanks from suppressed leading zeros in D-type integer part

1
2
3
4. sign specified by "+" or "-"
5. $ specified by "§"

5

first non-blank character from number form

o

The sign part specifies one of three possible formats for storing the
sign of the number. If it is empty, no sign is stored, even though the number
may be negative. Lf it is "+" or "L+, a sign, either '+' or '-', will be
stored, taking one space. If it is "-" or "L-", a '-' will be stored if the
number is negative and a blarnk will be stored otherwise.

The suffix part of a numeric instruction is used to supply supplementary

information: scaling of the number, storing the exponent, special spacing

and other options. The syntax is as follows:

AL,3d.9

<suffix> ::= <empty> | <suffix> <suffix element>
<suffix element> ::=L | 5 <integer> | F <integer> | E <integer>
HIK|N|T

The various suffix elements are explained below. If an exponent is stored,

it takes six positions in the output buffer, in the form: |'ug=ddy'. No

more than one of the suffix elements S5, L, F or E should be used on a given

suffix.

L

E4n

F£n

S+n

The number is left-justified in the field specified by the number
form, and the resultant exponent is stored. This is "scientific
notation".

The number is shifted so that its exponent equals #*n and the
exponent is stored,

The number is shifted so that its exponent equals #n, but the
exponent is not stored.

The number form portion of a numeric instruction containing this
suffix must be of the form "<integer part> . ", (The decimal point
must appear.) The number is shifted so that its exponent equals
+n, The resultant mantissa is then left-justified in the specified
field. The two shifting operations determine the position of the
decimal point, which is then inserted where needed. The resulting
exponent is stored.

The number is stored octal rather than decimal, If an exponent is
stored, it 1s to be interpreted as a power of eight.

One of two special spacings is used in storing the number., If a §
part appears in the prefix, the digits of the number are stored in
groups of three, separated by commas. If a § part does not appear,
the digits are stored in groups of five separated by spaces. 1In
either case, the groups are counted left and right from the decimal
point. The decimal point, if present, serves as one of the spaces.
Possible alarm output is suppressed (see the text below), and any
digits which overflow the left end of the field are lost.

The number is truncated after the last stored digit, rather than

rounded as usual,

AL.3d.10

If any format other than L is used, it is possible that the magnitude of .
the number is such that there are more digits to the left of the decimal

point than can be stored using the specified number form. In such a case

(providing that the suffix "N" was not used), alarm cutput will take place

with the use of "L" format. If E or 3 format was called for, no extra

spaces will be taken. Otherwise the number will take six more spaces

than expected., For example, the number 123 will be stored as 12 ,+01 by

2D, but as 23 by 2DN,

Examples of Numeric Instructions

The value of the number to be stored is 4673900, The numeric instruc-
tions listed on the left side of the page will cause the storing; of the
corresponding strings of characters. The numbers at the right indicate

the numbers of buffer positions used.

7D 4673900 7
8D L4 673900 8
9Z 00467 3900 9
7D.4D 4673900 ,05 o0 12
7D.42 4673900 .0000 12
8DL 46739000 L, -0T1u 14
3D.1DL 467 b L+ 04 11
12 ,22E+7 0 .47 12,+070 10
1Z ,22F+7 0 .47 4
3D.3ZF+7 L0 .46 7 7
IZF+7 . 467 4
+7D +4673900 8
-7/D ~4 673900 8
1548D S +4673900 10
L$-8D S 4673900 10
$+8D L+ 54673900 10
8Z.K 04673900 10
L$8D.2ZK $.04 ,673,900.,.00 14
3D.1DF+4 467 .4 5
3D.1DF+4T 4 6 7 3 5
8Z .5+43 4 67 3 . 000 5, + 034 15
87 .5+ 467 .39000 1, +0 4w 15
41N 3900 4
4D 467 45 0+ 03 10 =
8DH 21650554 8
4D, 2ZHL 21653 ,06 4, +04 13
3ZHNTF+3 650 3

* Alarm output used.

AL.3d.11

Syntax for Print and Punch

For the purpose of this syntax, the G-20 characters "<' and ">" will
be replaced by "<" and "»" , respectively. "<" and '">" will be reserved

for meta-linguistic brackets in the Backus Naur Form syntax.

<print statement> ::= PRINT (<format list>)

<punch statement> ::= PUNCH (<format list>)

1l

<format list> ::= <format list element> | <format list> , <format list element>
<format list element> ::= € <format program> » l
<replicator> « <format program> » | <replicator> (<format list>)
<format program> ::= <format instruction> |
<format progrant> , <format instruction>
<format instruction> ::= <control instruction> | <alphanumeric instruction> |
<numeric instruction>
<control instructiom> ::= <int> C | <int> R | <int> L | <int> E | <int> W |
<int> P
<alphanumeric instruction> ::= <string> | <int> B | <int> Q I <int> A |
<int> T
<numeric instruction> ::= <prefix> <number form> <suffix>
<prefix> t:= <§ part> <sign part> | <sign part> <§ part>
<sign part> ::= <empLy>] L+ | L~] + | -
<$ part> ::= <empty> | L$ | $
<numeric primary> ::= <integer part> | <integer part> ,
<integer part> . <fractional part> | . <fractional part>
<integer part> ::= <unsigned integer> D | <unsigned integer> Z
<fractional part> ::= <unsigned integer> D | <unsigned integer> Z
<suffix> ::= <empty> | <suffix> <suffix element>
<suffix element> ::= L | H | N l K l T | S <integer> E <integer>
F <integer>
<unsigned integer> ::= <digit> | <unsigned integer> <digit>
<integer> ::= <unsigned Lnteger> | + <unsigned integer> - <unsigned integer>
<int> ::= <empty> | <unsigned integer>
<string> ::= ' <proper string> '
<proper string> ::= <empty> 1
<proper sting> <any G-20 character other than quote>

AL.3d.12

Execution of Print and Punch Statements

From the definitions of PRINT and PUNCH statements, it is evident that

the forms of these statements are:

PRINT (fle, fie, ..., fle)
PUNCH (fle, fle, ..., fle)

where "fle" denotes a format list element. The fle's are executed in order
of appearance, from left to right. After the rightmost fle is executed, the
statement is terminated., Each fle is either a format program bracketed by
"< >" and possibly replicated, or a replicated list of fle's, separated by
commas., In turn each format program may be a list of format instructions

{ Eg., "3C, 2Q, E"). These instructions are also executed in left to

right order., It should also be noted that no replicators may appear inside

the "<" ">" brackets., If a format instruction requires a value, it will

cause a call on the corresponding NAME statement and evaluate the next expres-

sion to obtain a value.

D. READ Statements

Most instructions in a READ statements are used to scan data which
has been read into an input buffer and to store data values into variables
which have been named in a NAME statement. As in PRINT and PUNCH, the

instructions fall into three classes: control instructions to control the

reading of data card images into the buffer and the positioning of CP,

alphanumeric instructions to specify the manner in which alphanumeric data

is to be scanned and stored into variables, and numeric instructions to

specify the manner in which numbers are to be scanned, interpreted and stored

into wvariables.

AL,.3d.13

Control Instructions

Associated with the input buffer are three variables: CP, LM, and

RM -- the Character Pointer, the Left Margin, and the Right Margin. CP

points to the "next" position in the buffer which is to be scanned. LM

and RM refer to the left-most and right-most positions in the buffer which

may be scanned.

nG
nk
nR
nb

The following instructions may be used to set or change CP:

Set CP to position n (Column n). That is, CP < n.
Move CP n positions to the Left. That is, CP « CP - n,
Move CP n positionms to the Right. That is, CP <« CP + n.

Equivalent to "mR".

The following two instructions may be used to read data card images

into the input buffer:

nE

oW

Read n card images into the current READ buffer, and
set CP to LM. At the completion of this instruction,
only the last card image read is available to be scanned.
The action is as in "nE", except that the card images

are also printed on the program listing.

In the above control instructions, and in the following alphanumeric

instructions, n is assumed to be a positive, unsigned integer less than 512,

If n is one, it may be omitted. For example, "W" is treated ad "1W".

Alphanumeric Instructions

Alphanumeric instructions are used to scan alphanumeric characters and

store string or Boolean values into variables named in a NAME statement:

nA

The next n character positions of the input buffer are
scanned, and the string of n characters there is stored,
four characters per word, into the next !{({n + 3)/4)

named variables. If n is not a multiple of four, the

AL, 3d.14

'<string>'

nT

characters stored in the last variable are right-
justified,

The n characters of the string are stored as in A",
CP is not changed.

The next n character positions are scanned and a Boolean
value is stored in the next variable named. If the
first non-blank character scanned is the letter "T", the
value of the variable is set to TRUE; otherwise, it is
set to FALSE. CP is incremented by n. If the variable
named is not of type Boolean or logic, the error condi-
tion "ILLEGAL BOOLEAN" is detected and treated as described

below.

Numeric Instructions

READ numeric instructions are either fixed-field of free-field. Fixed~

field instructions consist of a primary specifying field width (the number of

characters to be scanned) and possibly a suffix specifying additional infor-~

mation, such as scaling or octal conversion,

nD {(nZ)

The instructions '"mD" and "nZ" are used to form READ
primaries. ''nD" scans the next n character positions
of the buffer for a real or integer number and stores

it in the corresponding name. Any blanks scanned are

ignored, with the exception that if the entire field of
n character positions is blank, the value zero is stored.
A number preceded by a "/" is treated as an octal (base
eight) number. n must be a positive integer less than
128. The instruction "nZ" functions as "nD" except that

blanks are treated as zeros. The forms "nD.", "nD.nD"

",nD" and the corresponding Z primaries are not correct

in READ.

AL.34.15

. The suffix of the fixed-field instruction may be empty or may consist

of one or more of the following suffix parts:

H The number is converted in octal (base eight) regardless
of whether or not it is preceded by a "/". If the num-

ber has an exponent, the exponent is treated as a power

of eight.

E+n The number read is multiplied by ten (or eight) to the
power =+n.

N Any character othexr than a digit, +, -, decimal point,

/, or , is ignored if it is scanned. CP is incremented
by one, and the next character is scanned. Normally,
scamning any character other than those listed above will
result in the detection of the error condition "ILLEGAL

SYMBOL".

In the numeric instructions just described, the field width or number
of columns to be scanned is specified by "nD" or "nzZ" and is fixed. A more

flexible type of numeric instruction exists in the form of "nF" or free

. read:

nF n numbers are to be scanned and stored into the next
n variables named. Numbers may be punched in the same
forms as for fixed-field read, and each number field is

non e
s .

terminated by a or a Blanks are ignored,
except that if an entire field is blank, the value of
the corresponding variable is left unaltered instead
of being set to zero.

A """ terminates the scanning of the "nF" instruc-
tion. If fewer than n numbers have been scanned, the
values of the remaining variables named are left unaltered,
as though the corresponding number fields were left blank.
After execution of "nF", CP points to the character posi-

tion one position to the right of the last "," or "*"

scanned.,

AL.3d.16

Card Overflow

If a READ instruction attempts to scan character positions past the
right margin, a new card image is read using a pseudo control instruction.
This instruction functicons as an "E" or "W" instruction, whichever has been
executed most recently. Scanning continues with CP set to LM. Initially,

CP =1, LM = 1, and RM = 84,

2

Error Messages

Several situations are detected by the input routine as indicating an
error by the user, either in his ALGOL 1/0 call or in his data cards. A
standard error printout is provided, containing the following information:

1. The last card read is printed. (If it was read by a W, it will
thus be printed twice.) The next line will contain an integer giving the
present value of CP and will also have a vertical arrow (1)} pointing to
the column indicated by CP., Usually, this will be the column just past the
error,

2. A single line is printed identifying the particular error.

3. The standard ALGOL run error mechanism is invoked with RUN ERROR -

READ. The following error messages (item 2, above) are detected:

ILLEGAL BOOLEAN An attempt has been made to read with a T instruction

into a variable of type other than Boolean or logic,

$$ - CARD READ An attempt has been made to read past an end-of-file
mark, Reading meore card images than are in the current input file results
in reading an end-of-file mark, This mark consists of special dollar signs
(internal representation 1658) in columns one and two. Attempting to read
still another card image causes the error condition '"$§ CARD READ" to be

detected.

NO CARD READ An attempt has been made to scan information hefore an

E or W instruction has loaded the input buffer.

AL.3d.17

IMPROPER NUMBER In scanning a number with a numeric instruction,
an illegal sequence such as more than one decimal point, more than one 4,

or a decimal peint after a , has been detected.

ILLEGAL S5YMBOL In scanning a number with a numeric instruction, a
character other than a digit, +, -, decimal point, / or ,, has been read.

This message is suppressed by the suffix N.

E. Buffer Manipulation and - variables

As has been mentioned, an input buffer and an output buffer exist in
the 1/0 system. Associated with each buffer are three pointers: CP, LM
and RM. It is frequently convenient for the programmer to be able to make
direct reference to these buffers instead of being restricted to using
format instructions to refer to them., For example, in all that has been
said up to this point no mention has been made of any way the programmer
can change LM or RM. To permit reference to the various pointers of the
I/O system, ALGOL-20 includes a special class of reserved words: the bar-
variables., These variables consist of a vertical bar ("|") followed by
an integer. The and the first digit of the integer must be in successive
columns of the same card, with no intervening blanks,.

The format of a buffer will now be described using the print buffer
for definiteness. The buffer itself consists of 120 consecutive locations
in memory, corrcsponding to the 120 columns of the printer. Characters are
stored into the buffer by placing the G-20 representation of each character
in the corresponding word, right-justified. The three pointers associated
with the buffer are stored in the three locations immediately before that
containing column one. "Column zero'" contains CP, "column -1" contains RM

"eolumn -2" contains LM. Each of these three pointers has a name which

and
is available to the user, the name being a bar-variable., For the print
buffer, CP is in |205, RM is in |206 and LM is in [207. Thus the assignment

statement

205 « 5

AL.3d.18

is equivalent to the format statement .
PRINT (<5C>)

Similarly, the programmer may change the right margin by storing into 1206
with an assignment statement.

A similar situation exists for the input buffer. 84 consecutive
locations are provided for the actual read buffer. Column zero, called
|200, contains CP for reading; column -1, j201, contains the read RM; and
column -2, |202, contains the read LM.

Since PRINT and PUNCH share a common buffer, it follows that they
share a common CP, RM and LM,

The following table may help to clarify the preceding discussion:

Location Initial Ceontents Meaning
|202 1 LM
"

(201 84 RM READ
| 200 1 GP

next 84 words - the buffer
|207 1 1M
|206 120 RM PRINT and PUNCH
| 205 1 CP

next 120 words - the buffer

This gives the programmer convenient access to the three pointers, but
it does not provide a way to refer to the words in the buffer. Since it is
frequently desirable for the user to have this ability, a means has been
provided for the user to cause a buffer to be in his own data area instead
of in the I/O system. Again considering PRINT, the user may direct that a
particular 123 eclement array is to be used as the buffer. The system will
then use the first three locations of this array as the three pointers and
the other 120 locations as the print buffer, Since the array is in the
user's memory, he may refer to any column or tu any pointer by the ALGOL

name he has given it. For example, assume that the declaration

logic array BUFF[=2 1120]

AL.3d.19

has been used and that the procedure call
BUFFER,SET ("PRINT', BUFF[0])

has been executed. (BUFFER.SET is a privileged identifier.) Then for any
k between one and 120, column k will be in BUFF(k]. CP will be in BUFF[0],
RM will be in BUFF[~1] and LM will be in BUFF[-2]. It is important to
note that]205, [206 and |207 are specific machine locations and that after
executing the above BUFFER.SET call they will no louger contain the pointers.
BUFFER.SET may alsoc be used to change the READ or PUNCH buffer, using
the string 'READ' or 'PUNCH' as the first parameter to the procedure. As
for PRINT, the second parameter should be an array element which will be
set to correspond to "column zero" of the buffer.
Before calling BUFFER.SET, the programmer should be sure that the three
pointers he is about to put into effect contain reasonable values. BUFFER.SET

only makes one check: it insists that the relationship
0 < LM < RM

be satisfied. If it is not, LM will be set to one and RM will be set to 84,
120 or 80 for READ, PRINT or PUNCH, respectively.

BUFFER.SET detects two error conditions which are treated as run errors:
a first parameter which is not one of the three legal strings allowed, or a
second parameter which is not in the user's memory.

There are certain other bar variables associated with the input/output
system which are available to the user. |210 and |211 are switches for
format and NAME, respectively., At any given time during the running of a
program when the user has NAMEd variables which have not yet been printed,
|211 will be non-zero. (Its value is the location of a routine which will
supply the names Lo succeeding statements.) If the programmer wishes to
cancel the eifect of the extra names which have been supplied, he may do so
by setting [21]1 to zero. Similarly, extra format elements which have been
supplied may be cancelled by setting ‘2]0 to zero. The programmer should
under no circumstances set either of these variables to non-zero values, or

chaos will result.

|212 and |213 are associated with the message printed at the top of each

AL.3d.20

page. Whenever the printer is moved to the top of a new page by the .

execution of a P, the user may have a message and page number printed if he so
chooses. The system has been set so that the page numbers will start with
page one on the first after the completion of the compilation. If the user
does nothing about it, each time a P is executed the first line of the new
page will contain on the left the date on which the program was run, and
on the right the page number. The page number is calculated by finding
out from the monitor the total number of pages which have been printed
since the run began and subtracting from this number the contents of 212,
The contents of 1212 is set on entry to the program to the number of pages
used by the compiler in compiling the program. The user may change it at
any time if he wishes to alter the page numbering sequence.

|213 controls the message to be printed as part of the page header. If
it is negative, no page heading at all will be printed. If it is zero, the
date and page number will be printed, as explained above. Positive values
should not be used in this location. In the present version [213 > 0 will
be treated as suppressing the header, but in planned expansion it will have

a different meaning.

|214 is the up-space counter. After each line is printed, the printer
is up-spaced the number of lines indicated by |214. This location is set
on entry to the program to one, for single spacing. The user may set it to
two for double spacing, but other values are not recommended. In particular,
setting it to zero saves paper but makes it hard to read the output.

215 is the left-justify switch. In processing number forms there are
certain occasions when either blanks or zeroes will be stored depending on
whether the programmer has used D or Z in his format. If a blank would have
been stored and if, further, |215 is zero, then ne space will be taken in
the print line instead of leaving a blank. Thus setting]215 to zero permits
the user to get left-justified numbers. |215 is initialized to be non-zero.

These last few bar-variables may be summarized as follows:

‘210 NAME switch., # 0 = there are names to be processed
|211 format switch., # 0 = there are formats to be processed
|212 page count

|213 page header switch., < 0 = suppress; = 0 = print; > 0 (do not use)

AL.3d.21

|214 upspace counter

|215 left-justify switch. = 0 = left-justify; # 0 = don't

F. Control and Execution of I/0 Statements

The relationship between NAME and format statements is given in the
following description of the execution of an input/output operation.

(1) An execution of a NAME statement sets the name switch, '|211, to
a positive integer, and sets an internal variable & to point to the first
name expression., Whenever }211 is positive the NAME statement which set
it so is said to be active. A NAME statement becomes active as encountered,
cancelling any previously active name statement.

When a NAME statement becomes active, a test is made to determine if
a format statement is already active (|210 > 0). If no format statement
is active (|210 = 0), control passes to the successor of the NAME state-
ment. If a format statement is active, the first name expression is evalu-
ated and sent to the format instruction pointed to by y. (See (2).) & is
changed to point to the next name expression, and control passes to the
active format statement.

(2) An execution of a format statement sets the format switch, |[210,
to a positive integer. The format statement is then said to be active.
Because PRINT, PUNCH, and READ statements share the switch, at most one
format statement may be active at any given time, A format statement becomes
active when encountered, cancelling any previously active format statement.

The value (address) of a name expression may be needed during the exe-
cution of a format statement. If so, an internal variable, v, is set to
point to the format instruction requesting the value (address), and a test
is made to determine if a NAME statement is active (|211 > 0)., If not
(|211 = 0), control passes to the successor of the format statement., If
a NAME statement is active, control passes to the expression pointed to by §.

(3) In attempting to evaluate a name expression, a check is made to

determine whether § points to an expression or to the end of the NAME

AL,3d.22

statement. If & points to an expression, it is evaluated and &§ is set to .
point to the next name expression (or to the end of the NAME statement),

and the value (address) of the expression is sent back to the requesting

format instruction. When all name expressions have been evaluated, & points

to the end of the NAME statement. In this case, no expression can be evalu-

ated, and {211 is set to zero indicating that no NAME statement is active.

Control is passed to the common successor of the now inactive NAME statement

and the active format statement. (See (5)}.)
(4) After the last format instruction in a format statement 1is executed,
[210 is set to zero, and control is passed to the common successor. (See (5).)
(5) The common successor of an active statement and a statement which
has just become inactive is the successor of that statement which was most

recently encountered during the execution of the ALGOL program.

To clarify the above points, consider some examples of sequences of
input/output operations. In the following, N(P) denotes a NAME statement with
P name expressions, F(P) denotes a format statement (PRINT, PUNCH or READ)
which requires P values or addresses, 5 denotes an arbitrary ALGOL statement,

and S' denotes any ALGOL statement which is not an input/output statement.

A N(6); S'; F(8); S;

Executing N(6) sets |211 > 0 and sets & to point to the first name
expression., S' is executed and eventually F(6) is entered., Because N(6) is
already active, each request for a value or address will be filled by N(6).
When the execution of the last format instruction is complete, F(6) becomes
inactive, and S is executed. N(6) is still active, but § points to the end
of statement. In this state, any request for a name expression will render
N(6) immediately inactive. A NAME statement followed by a format statement

is the simplest and most frequently used sequence,
B: F(5); S'; N(5); 8

B illustrates an alternate sequence, in which the format statement pre-
cedes the NAME statement. Executing F(53) sets [210 > 0, but no requests for
name expressions can be filled because there is no active NAME statement,

vy is set to point to the first requesting format instruction, and S' is exe-

cuted. When N(5) becomes active, it determines that F(5) is already active.

AL,3d.23

. The first name expression is evaluated and sent to the format instruction
indicated by vy. Eventually, the last format instruction in F(5) is exe-
cuted and F(5) becomes inactive. As in example A, N(5) is still active
but any request for a name expression will render it inactive, Control

then passes to S.
C: N(4); N(2); F(3); 8'; N(1); s

C illustrates a more complex situation which is probably a programming
error. N{4) becomes active, but is cancelled by N(2). N(2) and F(3) function
as in example A, except that when F(3) requests a third name expression, N(2)
becomes inactive. S' is executed and N{I) encountered. N{(1) now supplies
the requested name expression to F(3) and F(3) becomes inactive, passing
control to 8. Users should be wary about using sequences such as described
in C as it is very easy to produce an error which has repercussions on many

other input/output operations in the program. As a safeguard, the name and

format switches may be zeroed as described in Section E of Chapter 3d.

AL.3d.24

AL.4.L
CHAPTER 4

SYSTEM STATEMENTS

System statements are instructions to the ALGOL-20 translator wliich may
be used to modify certain aspects of the translation process. That is, a
system statement is exccuted by the translator at compile time rather than
by the object program at execution time. System statements are executed as
they arc encountered by the translater as it scans once through the ALGOL
source program and take effect immediately therealter. All system statements
except those marked with "+" may be used anywhere in the source program.

Each system statement is punched on a separate card which contains "8Y"
in columns 1 and 2. The system statement itself may be punched on the card
anywhere between column 4 and the current right margin (see RIGHT MARGIN
below) .

A system statement generally has the form:
< statement name > < parameters >

Those system statements which have a fixed number of parameters are terminated
by & blank following the last parameter. The rest of the card may be used for
comments. The system statements which have a variable number of parameters
are terminated by the end of the card, so comments cannot be included on such
a card. System statements which may not contain a comment on the same card
are marked with a dollar sign ($).

Esch system statement type will now be described and explained. 1In the
following, "n" will always stand for an unsigned integer. The system statements
marked with asterisks (¥) control printing but will never themselves be
printed. Printing of the other system statements may be suppressed by the
system statement: '"PRINT NO SYSTEM'.

Blanks are not lgnored when scanning system statements. There must be at

least one blank between words and/or numbers and none in words or numbers.

-

AL.4.2

PRINT CONTROL

{1y PAGE (No parameters)
The effect is te skip the compilation listing to the top of
the next page. The PAGE statement itself will be printed on

the first line of the new page.

*(2) LINE n
The effect is to upspace the printer by n lines. An attempt
to upspace beyend the bottom of tie current page will leave

the paper at the top of the next page.

*(3) SINGLE (No parameters)
*(4) DOUBLE {(No parameters)
These statements cause the compilation listing which follows
to be printed with single or double line spacing, respectively.

If neither statement is given, the translator assumes SINGLE.

*(5) INDENT n K «—n
INDENT +n K«<K+n
INDENT -n K—<K -n

The indentation constant, K, specifies the number of print posi-

tions to the right of tle text left margin that the compilation
listing will be printed. %The translator ncrmally assumes

"IDENT ©". An IDENT card modifies K as given above. If this
rule leaves K outside of the range 0 2 K £ 21, then

K « max(0, min (K,21)). Note the difference between "IDENT 2"
and "IDENT +2": The former sets K to 2 and the latter increments

K by 2. See Chapter 6c for a discussion of the format of the

compilation listing,

$(6) PRINT
The user has the ability fo turn on or off the printing cof various
aspects of his source program. In general, if he does not spec-

ify otherwise, his source program along with octal addresses,

notes from the translator, and system statements will be printed,

while routines accessed from the symbolic library will not. The

1

* Not printed
$ Comment not allowed

AL.4.3

printing of each of ADDRESSES, NOTES, SYSTEM statements and LIBRARY
routines may be controlled individually by the programmer by suit-

able PRINT statements. We have the following syntax:

<PRINT statement> :;:: PRINT «parameter string>
<parameter string> 1:= <parameter>, | <parameter string> <parameter>,
<parameter> ::= <control word>] NO <control word> | NO | EACH

<control word> ::= PROCRAM | ADDRESSES | NOTES | SYSTEM | LTBRARY

A PRINT statement is interpreted by treating each of the parameters
in the parameter string in order from left to right across the card.
The control word ADDRESSES refers to the octal addresses printed
down the left side of the page. NOTES refers to possible error
notes printed by the translator. (See Chapter 6b.) SYSTEM refers
to system statements (except those which never print). LIBRARY
refers to routines accessed from the symbolic library, as described
below. PROGRAM refers to the listing of the source statements,

along with notes, addresses and associated system statements.

A parameter consisting solely of a control word has the effect of
turning on the printing of the corresponding part of the assembly
listing as described above, while a parameter of NO followed by a

control word turns off that part.

The parameter EACH is equivalent to the par ameter string ""PROGRAM,
ADDRESSES, NOTES, SYSTEM, LIBRARY", and the parameter NO is equiva-
lent to "NO PROGRAM, NO LIBRARY'.

The parameter NO PROGRAM suppresses printing of the source program
along with the assoclated addresses, notes and system statements,
overriding any previous parameter of ADDRESSES, NOTES or 5 YSTEM.

If PRINT PROGRAM is in effect, however, then NO NOTES, NO ADDRESSES
or NO SYSTEM will suppress printing of these individual features.
It is not possible to print notes, addresses or system statements
withoul printing the corresponding source program images. 1If

PRINT NO PROGRAM is in effect, PAGE and LINE have no meaning and

thus are ignored by the translator.

The parameter LIBRARY has a function analogous to PROGRAM, except

that LIBRARY takes effectl only when a subsequent 5Y LIBRARY system

AL .4 .4

MISCELLANEQUS

statement starts inserting library images; then, having

PRINT LIBRARY (PRINT NO LIBRARY) in the "main" program text

has the same effect as having PRINT PROGRAM (PRINT NO PROGRAM)
as the first library image. These library images may them-
selves contain PRINT system statements; these will control
printing only within tl.e library segment, so that the PRINT
status in effect wien the SY LIBRARY statement was encountered
will be restored at tie end of tite LIBRARY segment. If 5Y
LIBRARY occurs within a set of library images, print contrel
works, as described above, calling the outer set of library
images the main program and the inner set the library images.
The PRINT parameters are always "pushed down" when an SY LIBRARY
system statement is encountered, and tlie "LIBRARY" switch on one

level becomes "PROGRAM" switch on the next level,

in the absence of any PRINT system statements, the ALGOL-20
translator assumes PRINT EACH, NO LIBRARY.

(7)

(8)

(9

RIGHT MARGIN n

Starting on the next card, the translator will scan column 4
through n for the text of ALGOL, WHAT, and system statements,
where 40 = n 2 80. If n is not in the proper range, an error
message is given and the right margin is not changed., The trans-

lator initially assumes RIGHT MARGIN 72.

LIBRARY <lidentifier>
The translator inserts into the program at this point the segment
of ALGOL source program text (generally a procedure) which is

filed in the symbolic library under the nawme <identifier>,

n ABGONS
The translator will reserve un G-20 locations for storing “abcons”
and n locations for storing "adcons" during both translation and

execution. Abcons are numbers and alpha-numeric strings which do

not appear in format primaries. Adcons are constants and temps

t Before the first begin only

(19)

(11)
(12)

AL.4.5

for format replicators and small integer constants used as
actual parameters to procedures.

If no ABCON statement is given, the translator assumes
"2030 ABCONS".

An ABCON statement may only occur at the very beginning of the

program before the first begin.

SEGMENT nl, n2

>
The integer nl specifies the segment number, and must usually
satisfy | £ nl = N. Segments | through N are temporary segment
and thus are not saved after the end of the user's run; perman-
ent segments with numbers greaster than N, are available upon
request to the Computation Center. Since the number of temporary
segments may change in the future, no value for N is given here.
Its value can be found in the Users Manual, Section 1.5. The
integer n2 specifies the number of files which will be required

for the segment; each file contains 10240, words. Lf segment |

requires 2 files, the next available segment is segment 3.

The number of "words"™ printed out at the end of an Algel program
is the number that must be dumped out if the program is dumped as

a segment.

See Chapter 6f for a complete discussion of segments.

RELEASE WHAT

RELEASE SYMBOLIC LIBRARY

The user wiho does not need WHAT or the symbolic library may reclaim
the space used by these parts of the ALGOL compiler. This allows
longer programs to be compiled. 8ince WHAT is below the library
processor in memory, no space can be reclaimed until WHAT is
released. The RELEASE's may be done, however, in either order and
at any time during the compilation. Releasing WHAT reclaims /1400
(768.,) words; releasing the library will reclaim an additional

S0 (384,) words. Attempting to use WHAT or the symbolic library

after it is released will cause a compile error.

AL.4.0

(13)

DEBUG n

This system statement is designed for the user with some
knowledge of G-20 machine code and a general knowledge ol
tlie Algol=2U0 translator who wishes more specific informa-
tion on the translation of a particular statement. This
sLatement controls the printing of up to four columns of

information after each ALGOL text card:

character scapned
postfix produced
code produced

internal variable equivalents

This information is printed one item per line as it is

generated. An internal variable equivalent is printed out
for each identifier declared. n > O turns on the printing,

n =0 turns it off.

AL.5.1
CHAPTER 5

THE ALGOL LIBRARY

The primitive operators available to the ALGOL programmer include
arithmetic operators such as +, *, and 1 (exponentiation), and elemen-
tary mathematical functions such as SIN, EXP and ARCTAN. However, the
programmer may need matrix inversion, numerical integration, least-
squares curve-fitting, or calculation of eigenvalues and eigenvectors
as basic operations in the solution of a particular programming problem.
Since the last are somewhat less frequently used operations, they have
not been provided as a part of the ALGOL language itself. Instead, these
and other standard procedures are provided in a procedure library from
which the programmer may call any library procedures which he needs in a
particular program. Since the library is in no sense complete, existing
procedures of general interest or the need for new procedures should be
brought to the attention of the Computation Center staff.

There are two libraries in the ALGOL-Z0 system: the relocatable

library and the symbolic library. The relocatable library contains for

the most part those procedures which must be coded in machine language,
such as DISC.READ and DISC.WRITE. The routines in this library are
assembled once by the Center staff and placed in the library as relocat-
able binary machine instructions. From there they may be accessed by che
user and loaded into any ALGOL program. This loading process is signifi-
cantly faster than compiling a copy of the procedure into the user's
program.

The symbolic library contains pieces of ALGOL text. This text will
typically be a procedure declaration, but it need not; text for several
procedures, a block, or an arbitrary sequence of ALGOL instructions may
be filed as a single entry in the symbolic source language library. Pro-
cedures in this library are usually those which can be written more
conveniently in ALGOL than in machine language; for example, SIM, the
Simpson's Rule integration procedure. While a more etflicient procedure
might be written in relocatable machine language, there are at least two
advantages to writing the procedure in ALGOL: First, the routine can be
written and debugged in less time and with less effort by using ALGOL,

and sccond, ALGOL text is more easily read. Anyone who is interested in

AL.5.2

the detailed operation of the procedure may get an ALGOL listing of the
procedure as it is compiled into his program, (See the discussion of
print-control statements in Chapter 4.)

Since all the objects in the libraries are not procedures, the term
"routine' is applied to an entity in either library. Thus, 4 routine may
be a closed subroutine, a procedure, several procedures or an arbitvary
sequence of ALGOL instructions. The descriptions of all routines in this
chapter state whether the particular routine is in the symbolic or relocat-
able library.

Since there are different processes involved in processing symbolic
source lansuage and relocatable binary routines, there are different
mechanisms for accessing symbolic and relocatable routines. Symbolic
library reoutines are accesscd by means of a SYSTEM statement. (See Chapter &4

for a complete discussion of SYSTEM statements.) The card image
5Y LIBRARY <identifier>

will cause the text for the reoutine <identifler> teo be compiled into the
program at that point. The routine may then be used in the same way as
any other routine which appears In the program,

Relocatable routines are accessed by a slightly more complex mechanism;

they must be declared as library procedures in the head of the block in
which they are used. The syntax of declarations is extended to include a

library procedure declaration:

<library procedure declaratior> ::.. library procedure <identifier list>

llibrarz <type> procedure <identifier list>
Thus the following are examples of library procedure declarations:

library procedure DISC.READ, DISC.WRITE,SLEW;

library real procedure ZILCH, SINU, GOSH;

These declarations have the same scope as any other ALGOL declarations; thus
the name of a library procedure may be redeclared in other blocks to be any
other ALGOL construct. Therefore, it may be necessary to declare the same
library procedure in several different blocks. No matter how many Cimes the
procedure is declared only one copy of the routine will be added to the

program,

AL.5.3

. As with any other library, the ALGOL libravy alsec has a librarian,
which is used to update and edit the library. Using the librarian, the
user may add his own roulines to the library on a temporary basis. For
a description of the librarian, see the ALIBN Manual.

The remainder of this chapter is a set of descriptions of the
routines currently available in the relocatable and symbolic libraries;
these are arranged within each library alphabetically according to the
procedure name. Also, for completencss, writeups are Included for "standard

routines" - those routines which are built intc the system and whose names

are reserved identifiers., As these routines are automatically included in
any program which calls con them, they do not have to be declared. 1In fact,
any attempt to fetch them with an SY LIBRARY card or with a library
procedure declaration will be detected as an error.

The reference for numerical methed given for many of these routines is

"1604 Routines". This refers to the book, Some Basic 1604 Mathematical Sub-

routines, Publication 061 of Control Data Corporation, Minneapolis, Minnesota.

A copy of this book is available at the Computation Center for reference.

AL.5.4

AL,5.ARCTAN.1

. Standard Function

PROCEDURE SPECIFICATION
real procedure ARCTAN (X); value X; real X;

PURPOSE
ARCTAN finds the inverse tangent of X in radians in the range
from - /2 to + m/2. 1t operates correctly on any number given as

input.

METHOD
Described on page G-1 of "1604 Routines™.

TIMING and ACCURACY

The result is produced in 1.25 milliseconds.

The error is less than 1,-11l.

AL.ARCTAN.Z

AL.5.C05.1

Standard Function

PROCEDURE SPECIFICATION

real procedure COS (X); value X3 real X;

PURPOSE
COS finds the cosine of X, where X is in radians and may be either

positive or negative.

METHOD

COS uses the sine routine, using the identity
CoS (X) - SIN (X + 1/2).
ALARMS
RUN ERROR - SINu (x| > 2,097,152 = 2t 21

For values beyond this point the algerithm breaks down.

TIME and ACCURACY

The result is produced in 1.08 milliseconds. The relative error

is about 5,.-11.

AL.C0S.2

AL.5.CURFIT.1

. ALGOL Symbolic Library

PROCEDURE SPECIFICATION

PROCEDURE CURFIT (K, A, B, M, X, Y, W, N, ALPHA, BETA, S, SCMSQ, X0, GAMMA, C, Z,
R, ORTH, POW, ERROR);

VALUE K, M, N, X0, GAMMA, R; INTEGER K, M, N. R;

ARRAY A, B, X, Y, W, ALPHA, BETA, S, SGMSQ, C, Z;

REAL XO, GAMMA; BOOLEAN ORTH, POW; LABEL ERROR;

REFERENCES

1., Algorithm 74, Comm. ACM, January 1962
2. Peck, J.E.L. Polynomial Curve Fitting with Constraints, SIAM Review, April
1962, pp. 135-14l

PURPOSE

CURFIT finds the polynomial of degree N which passes through the K points

(1), B(1)),...,a(k), B{X)) and fits the M points (1), v()y,..., &0, v in

the least squares sense, where W IJ is the weight attached to the point (th}, b IJ),

I-=1,...,M. The cogfficients of this polynomial are stored in the array C; CUJJ 1is
. the coefficient of X° for J = 0,...,N. The sum of the squares of the deviations is

computed for each polynomial of degree greater than K-1 but not greater than N, and

is stored in the array SGMSQ, i.e., if FL(X) is the least squares polynomial of de-

gree L, then M

seMsq (L) :Z e(1) - FL(x[ﬂ) 32 L = K,...,N
T -1

CURFIT will also evaluate the pelynomial which it has determined, if the user desires,
for the set of values of the independent variable which it finds in the array Z. The
options available are explained under USAGE.

RESTRICTIORS

(Note: In all that follows, upper case letters refer to formal parameters, while
lower case letters denote the corresponding actual parameters.)
1. 1In the calling program, the arrays used by CURFIT must be declared to include
the subscript bounds as shown below.
(a) Input Arrays:
real array a, b[l:k], X, ¥, w[l:nd, z[l:r];
(b) Output Arrays:
real array alpha, beta [O:n-lJ, s, c[O:n] sgmsq[k:n];

9. The values of the actual parameters must satisfy the following conditions:
(a) l=<=k<sn<m+k

. () mz1

(¢) gamma # o

AL.5.CURFIT.2

3, The user [s reminded of the ALGOL-20 restriction regarding labels used as actual
parameters in procedure calls, See page AL.2.14 of the ALGOL-20 Manual
for details, The conditions which will cause the procedure to transfer con-
trol to the statement which has the label error are:
(a) One or more of restrictions 2 {(a), {b) has been violated,
(b) Division by zero was about to be attempted during a calculation. The
usual cause of this is improper or inconsistent data in the input
arrays x and v,

4. The arrays a and ®x must not contain an clement in common, or the effect of the
procedure is undefined.

5, CURFIT destroys the contents of the arrays a, x, y and w. Consequently, provision
must be made to save these data (if desired) before GURFIT is called.
METHOD

CURFIT uses the method of orthogonal polynomials, which can be defined recursively

by
Pﬂlkt) = 0 5 Po(t) =1 3
py +1 () = (£ -0, py (£} ~pP oy (&3 , 1=0,...,n-1. (L)

The coefficients o, , B, and s, are determined such that the nth degree polynomial .

Foo(0) = sgpy () F sipy (8) + ... + sppg(6) (2)
minimizes the quantity m

8% - Z w ly, - F (e)"

r - 1

The coefficients s, can now be used to compute the coefficients of the standard polyno-

. .. r .
mail representation of F, . Suppose that Vi is the coefficient of t in pi(t), i.e.,

3

pilt) = Vy o +V, jt+ ... + v, e

Then from equaticn (1}, with Vb,o =0, Vy.=0 forall i, and V; v = 0 for r> i,
we have
Vit ,r = Vy,r-s - @Ps,r - BiVier,r
for 0= 1i<n and 0 < r < n. Hence by equation (2},
n
c L SyVir 5 T = 0,0..,0,

r ooy :

and we have

AL.5.GURFIT.3

USAGE

1. Round off errors are teduced if all the abscissas lie in the interval
{-2,2} (see Refercnce 2?). Consequently, a change of scale is introduced by the pro-
cedure, using the transformaticn

x'{1) « (1] - x0) / camma |,

where X0 and GAMMA must be supplied by the user in accordance with the size of the
data. The appropriate values of these parameters can be determined from the equations

x0 - yg[maxix[lj,a[lj) + min(x[lj,a[lj)j
gamma = 74 [max(x[lj,a[lj)- min(x[IJ,a[IJ)].

2. The coefficients oy ,p;,5¢, and ¢, as well as the sums of the squared devi~
ations, are accessible to the user as the contents of the arrays alpha, beta, ¢, s,
and sgmsq, respectively

3. In addition, there are two built-in print options:

(a) 1f orth is true then the value of the least squares pclynomial
F,(t) 1is computed using equation (2) for each element of the
array Z. A message to this effect is printed, followed by r
rows of output, each consisting of the number (subscript) J
of the array element, the value z[J] of the array element, and
the value FD(Z[J]) of the polynemial.

(b} If pow is true, then the value of the least squares polyromial
F_(t) is computed using equation (3). The format of the output
is the same as part (a).

In some cases method (a) will yield more accuracy then method (b).

However, the corresponding values will usually agree to four or
five significant figures.

TIME AND ACCURACY

With all internal printing turned off (orth and pow both false), CURFIT
determined an eighth degrec polynomial, passing through two points and approximating
eight other points, in approximately one second. The sum of the squares of the
deviations at the eight approximated points was approximately 10% of the difference
between the maximum and minimum ordinates of the curve.

AL.5.CURFIT.4

AL.5.ELIP5.1

ALGOL Symbolic Library

PROCEDURE SPECIFICATION

PROCEDURE ELTIPS (M1, X, E, TOL, ALARM);
VALUE M1, TOL; REAL M1, K, E, TOL; LABEL ALARM;

REFERENCES
1. Algorithm 165, Comm, ACM, April 1963

2. M, Abramvotiz and I. A. Stegun, Handbook of Mathematical Functions, National
Bureau cof Standards, 1964, p. 598.

PURPOSE

Given a value of the (complementary) parameter ML, this procedure computes the
numerical values of K and E, the complete elliptic integrals of the first and second
kinds, which are defined by

/e
dx

First kind: K(ML) = i

\OV 1 - (1-M1) sin®x

it

/2

;e-"_

N

Second kind: E{Ml) =

i
\\J- L - (1 - M) sin’x dx
fa

e

RESTRICTIONS

1. The user is reminded of the ALGOL-20 restriction regarding labels used as
actual parameters in procedure calls. See page AL.2.14 of the ALGOL-20 Manual

for details.

2. If ML <0 or ML >1 the elliptic integrals are undefined, and the procedure
transfers control to the statement whose label is the actual parameter corresponding
to ALARM.

3. The actual parameter corresponding to TOL determines the accuracy (and also
the execution time) of the procedure. The size of this parameter is limited by the
relative accuracy of the buiit-in ALGOL square root routine, and must not be less than

10'12

AL.5.ELIP5.2

METHOD .

The arithmetic-geometric mean process is used (see reference 2}. Starting with
the triple (a5, by, <) - (L,n/ mb , 1 - ml), new values are computed using the iterative

scheme

a4 = (3~ + by by *\fai-L by ¢y =+/z ag-p = b))

During the calculation, the quantity 5; , defined by
i
i =
5 . E?JLJ
1 b
j:k}

is accumulated. The process stops when the two conditions

i i.2
les < TOL and 27y

a; S¢ -

< TOL
are both met. The desired elliptic integrals are then found using the relations

K = E = K(1 -~/ S,).

TIME AND ACCURACY

-4
Using a value of TOL = 10 , nine to ten significant decimal digits were obtained
for both elliptic integrals in approximately ten milliseconds of computation time.

AL.5.EXP.1

. Standard Function

PROCEDURE SPECIFICATION
real procedure EXP (X); value X; real X;

PURPOSE
EXP computes the exponential function

EtX where E = 2.71828182845...

METHOD
A continued fraction approximation is used.

For [urther details see page AA-42 of "1604 routines'.

RANGE
For X < -161, the result is given as zero.
It is an error if X >»160.116998, since in that case EXP(X) will
exceed the largest number representable in the 6-20.
o
ALARMS
RUN ERROR - EXP 1 if X > 160.116996.

TIMING and ACCURACY

The result is produced in about Ll to 2 milliseconds.

The error is less than 1,-10.

AL.EXP,2

AL.5.FREQ.1
ALGOL Symbolic Library

PROCEDURE SPECIFICATION
PROCEDURE FREQ (N, A, B, IUL, X, X, KA);
INTEGER N, IUL; INTEGER ARRAY Ka;
REAL A, B, K; REAL ARRAY X;

REFERENCE
Algorithm 212, Comm. ACM, October 1963

PURFPOSE

FREQ determines the frequency distribution of N real variables, the elements of the
vector X, over the interval [A, B]. Each element of X is assigned te one of K equal,
hal f-open subintervals of [A, B], and the frequency of X in the Jth subinterval is stored

in KA[J].

RESTRICT IONS

1. A is assumed to be the left end-point of the interval, and hence must be less
than B.

2. The elements of the vector X must satisfy the inequalities A < min (X [I])
max (X{1]) < B for T = 1,..., N.

3. The number N of variables being classified must be less than or equal to the
order of the array X.

4. Upon entry, the array KA is assumed identically zero. lIn the calling program,
the array declaration for the actual parameter ka corresponding to the formal parameter

KA should be: 1integer array ka [l : k]; where k 1is the actual parameter cocrresponding

to K.

METHOD
The interval EA, B] is transformed inte the interval [O, K] with unit subintervals

and the elements of the array X classified there by
v (1) - x (1) -4) /(B -4 /K for I =1,...,N.

USAGE

The user has the option of having the subintervals closed at either the upper or
lower end, and must specify his choice according to the following scheme: If TFREQ is
called with IUL = O, then the lower end-point is included and the upper end-peint is
omitted from each subinterval (except, of course, the Kth). Tf IUL # 0, then the

upper end-point is included and the lower omitted, in each subinterval except the first.

AL.>.FREQ.2

TIME

FREQ classifies approximately one thousand numbers per secend.

AL.5.GJR.1
ALGOL Symboiic Library

PROCEDURE SPECIFICATION

PROCEDURE GJR(A, N, EPS);
VALUE N, EPS; ARRAY A; INTEGER N; REAL EPS;

REFERENCES
1, Certification of Algorithm 120, Comm. ACM, Jan. 1963
2. H.R. Schwarz, An Introduction to ALGOL, Comm. ACM, February 1962, p. 94

PURPOSE
GJR computes the inverse of the N by N matrix A and stores the resulting inverse

in A.

RESTRICTIONS

l. The actual parameter a which corresponds to the matrix A must be declared
in the calling program as: REAL ARRAY 3 [l :n, 1 : n], where n is the actual para-
meter corresponding to N.

2. An exit, labeled SINGULARUmust be supplied in the main program. TIf any pivot
element of the given matrix is less than EPS in absolute value, control will be trans-
ferred to the statement which has the label SINGULAR.

3. The parameter EPS is impossible to describe in absolute terms; the correct
value to use depends upon the matrix being inverted and also on the precision of the
computer. If EPS is too large, GJR will not be able to invert the matrix and will
exit to the label SINGULAR, in which case the contents of the array corresponding to A
will be meaningless. If EPS is too small and the given matrix is ill-conditioned
{close to being singular), the results may be meaningless anyway due to round-off
errors in division.

The following scheme is suggested: Use an EPS in the range 10-5 te 10_7. If
GJR inverts the matrix and tliere is any doubt that the inverse is correct, multiply
the original matrix by the calculated inverse and compare the result with the unit
matrix to determine the accuracy of the inverse. If GJR does not invert the matrix,
decrease EPS (e.g., divide by 10) and repeat until an inverse is obtained; check
this inverse by the above method.

4, The order of the matrix to be inverted must not exceed seventy.

METIIOD
The Gauss=Jordan direct elimination method, preceded by a pivotal search, is used.

See K.S. Kunz, Numerical Analysis, McGraw-Hill, 19537, pp. 220-22, 234 and reference 2

for details.

AL .5.GJR.Z

USAGE .

The user is warned again that GJR replaces the glven matrix by its inverse.

Consequently, if e.g., the matrix to be inverted arises as a result ol a computation
and is to be saved, provision must be made in the main program to store this array

elsewhere or else print it out before GJR is called.

TIME and ACCURACY

. . PRV P . . .
GJR requires approximately ©.5N 10 seconds of execution time, where N is the
order of the matrix being inverted. Typical accuracy is eight significant decimal

digits.

AL.5.GOOFSTAR.1

ALGOL Relocatable Library

PROCEDURE SPECIFICATION

procedure GOOF .STAR (PROCEDURE .NAME, ERROR.CODE) ;
value ERROR,CODE;

procedure PROCEDURE.NAME; string ERROR.CODE;

PURPOSE

GOOF.STAR calls the ALGOL run-error routine which prints the diag-
nostic error message described in Chapter bb. This routine may be of
particular use to the programmer writing routines for the ALGOL Symbolic

Library who wishes to use the ALGOL run-errotr machinery.

RESTRICTIONS

The actual parameter PROCEDURE.NAME must not be a function designator;

that is, it must have been declared as a procedure, not as a real procedure,

Boolean procedure, etc.

METHOD
A call of GOOF.STAR causes the ALGOL error routine to print the diag-

nostic message
RUN ERROR - eceee

where 'eeee' is the actual parameter corresponding to ERROR.CODE. The name of
the procedure must be given as PROCEDURE.NAME so that the error routine can
find the entry to the erring routine and thus print the commands in the user's
program which (presumably) caused the error. The evror routine will execute

a HALT, unless an error-recovery switch has been set by RUN.ERROR.

USAGE
Suppose a procedure PIP is used, one of whose pavameters is a non-negative

number, DELTA. The statement within PIP
if DELTA < O then GOOF.STAR (PIP, 'PIPL');

will check the validity of the given DELTA and, if there is an error, wiil call

GOOF.STAR to print

RUN ERRCR - PIPL

AL.5.GOOFSTAR.?

and the
section
because

recover

ALARMS

usual dizgnostic information. The user may then look in the ALARMS
ol the description of PIP and discover that the PIPL error resulted
DELTA was negative. The user may use the procedure RUKN.ERROR to

from error conditions whicli invoked calls of GOOF.S5TAR.

A run-error CGOOF will result if the parameter procedure.name is the

name of

a function designator.

AL.5.GOSEG.1

ALGOL Relocatable Library

PROCEDURE SPECIFICATION

procedure GO.SEG (I);

value I; integer I;

PURPCSE
GO,.5EG positions the segment tape to segment i. The use of this routine can

substantially increase the running speed of a segmented program.

METIIOD
Tn the usual case, some ccomputation will be carriced out bhefore a new segment

is to be loaded. The statement
GO.SEG (i);

will initiate a slew to segment i. Computation will resume until the next call for
LINK. At that time, computation will cease until the tape is positioned and the
segment is loaded. Thus, it is possible to overlap time spent slewing to a segment

with useful computation. Since it takes about

(600 + 500%

N—M—ll) ms

to slew & tape from segment M to segment N, it is worthwhile to overlap as much

slew time as possible.

AL.GOSEG.2

AL.5.LINK.1

ALGOL Relocatable Library

PROCEDURE SPECIFICATION

procedure LINK (I);

value 1; integer I;

PURPOSE

LIKK loads segment i into core and enters it at the first begin.

METHOD

LINK loads segment i from bulk storage, reading only as many words
as there are in tne compiled segment. If the calling program and the
called segment have identical declarations of own scalars and own arrays,
none of these own variables will be disturbed.

Executing LINK causes all non-own variables to be made undefined.

In addition, certain internal variables are reset:

(1) The READ, PUNCH, and PRINT buffers, which may have been
set by BUFFER.SET, are reset te the standard buffers
supplied by ALGOL.

(2) All error-recovery switches created by RUN-ERROR are

cleared.

Finally, control is transferred to the outermost begin of the newly loaded
segment; that is, the [irst statement executed is always the first state-

ment of the segment.

ALARMS
A run error LINK will occur if

(1) i< 1, or if

(2) segment i was not previously dumped as an ALGOL segment.

TIMING

Each call of LINK takes approximately
(600 + 500 % | N-M-1|)ms

where M is the segment at which the tape is currently positioned and

N is the segment to be loaded. Running time can frequently be substanti-

ally reduced by use of the procedure GO.SEG.

AL,LINK.2

AL.5.LN.1

Standard Function

PROCEDURE SPECIFICATION

real procedure LN (X); value X; real Xj

PURPOSE

LN computes the natural logarithm of X.

METHOD
A Chebychev polynomial approximation is used.

For further details sce page AA-17 of "1604 Routines".

ALARMS
RUN ERROR - LN ,ui if X 0.

TIMING and ACCURACY

The result is produced in 1.75 milliseconds.

The errocr is less than 5,-11.

AL.5 .MULLER.1

ALGOL Symbulic Library

PROCEDURE SPECIFICATICN

PROCEDURE MULLER (PL, P2, P3, MXM, NRTS, EPL, EP2, SWl, SW2. SW3, SWR, RRT, IRT,
FUNCTION) ;

VALUE P1, P2, P3, MXM, NRIS, RPl, EP2, SWl, SW2, SW3, SWR; INTEGER MXM, NRTS;

BOOLEAN SW1, SW2, SW3, SWR;, REAL PlL, P2, P3, EPl, EP2; ARRAY RRT, IRT;

PROCEDURE FUNCTION;

REFERENCES

1. Algorithm 196, Comn ACM, Angust 1963,

Muller, D.E., A Method for Solving Algebraic Equations Using an Automatic
Computer, MTAC, vol. 10 (1956), pp. 208-215.

3. Frank, W.L., Finding Zeros of Arbitrary Functions, JACM, Vol. 5, No. 2 (1958)

R

pp. 154-160.
PURPOSE
MULLER solves a general equation of the form f(z)} = 0, where £(2) is analytic in

a neighborhcod of the roots. The value of parameter NRTS is the number of solutions to be
determined. Both real and complex roots are found; the Ith root determined is stared

. by placing the real part in RRT["[] and the imaginary part_in IRT[IJ for T = 1,...,NRTS.
Various print options and search techniques are controlled by the Boolean parameters
SWL, SW2, SW3, and SWR, as explained below. No prior knowledge of the location of the
roots is required. Multiple roots are also obtainable, although with less accuracy
than for isclated roots,

RESTRICTIONS

{Lower case letters denote actual parameters, while upper case letters refer to
formal parameters.)

1. The arrays rrt and irt must be declared in the calling program to include the
subscript bounds shown below:

real array rrt, irt[l:nrtsJ

2. The procedure function must be declared in the program before MULLER is called.
It must be able to supply the real and imaginary parts of the value of f(z) for any
desired value of 2 = x + iy. The declartion of this procedure must be as follows:

procedure function (RE.Z, IM.Z, RE.F, IM.F);
value RE.Z, IM.Z; real RE.Z, IM.Z, RE.F, IM F;

T begin
(procedure body)

end ;

. In the above declaration, RE Z and IM.Z are the real and Imaginary parts of the inde-
pendent variable, while RE F and IM.F are the real and imaginary parts of the function

AL.5 .MULLER.Z

evaluated at the point (RE.Z, IM.Z).

Obscrve that since FUNCTLON is a parameter of MULLER, several equations may be
solved in the same program by declaring the appropriate function generator for each
ecquation with a different identiticr. {f this technigue is smployed, the user must
eithoer: (ay print cut the contents of ret and ivt after cach call of MULLER; or (b)
supply a different pair of arrays corvesponding to RRT and IRT in each call of MULLER,

3. L[the equation to be sclved is known te bave only real roots, swr must have
the value true when MULLER is called.

4. pl, p?, and p3 are the veal ports of three arbitvary starting points. If the
equation Lo be solved is suspected Lo bave multiple voots, the choice of pl, pZ, and p3
should be such that no one uf them is exactly equal to a multiple root. 1L this re-

striction is not met, MULLER will not discover that the function has multiple zeros at

this particular root.

5. 1{ the equation to be ~olved is a polynomlal, swi should be set true. This
causes the procedure Lo accept ue vonjugate vl cach ool found as a root, when appli-
cable (i.e., when the reoot is not real).

6. If the function has singularities, pl, p2, and p3 sbould be chosen such that

none of them is a singular point.

7. epl and ep2 are parameters which specily convergence criteria, while the
value of mxm dictates the maximum number of iterations to be made in locating any one
root. If neither of the convergence criteria has been satisfied after mxm iterations,
the most recent iterant is accepted as a root and MULLER will proceed to find the next
root (or terminate if nrts roots have been found). The user will receive no warning
that this event has occurred unless sw? has the value true. When sw2 is true, each .
root is printed as it is found; thus if convergence does not occur, a message to that
effect will be printed along with the value ol the last iterant and the value of the
function at that point.

METHOD

The algorithm used by MULLER is as follows: given an arbitrary function f(z) = 0
which can be evaluated for any value of z and is analytic in a neighborhood of its
roots, select three arbitrary starting values z., 2oy Zg o Find the second degree
(Lagrange) polynomial which passes through the %hree points (z,, f{z,)), (z,, f(22))
and (z,, f{z,)). Choose z, to be the root of this polyncmial which lies closer t0
Zy- T%en drop z, and repeat the process with z,_, z,, and z,, etc.

The process stops when any of the following three conditions is met:

(1)

< epl
where z, is the i-th iterant.

(2) |f(zl)| < ep?Z and |fr(zi)| < ep? where £(z;) is the value
of the function at the point z;, and fr(zi) ig the value of the "modified function"
evaluated at z,.

(3) The number of iceratious is equal to mxm,

The "modified function' is defined as

AL,5.MULLER.3

£ (z) - ' for t - 2, 3, ...)]

where z; is the j-th root found. If I(z) is not a polynomial, it is not possible to
divide out the roots as they are found in order to reduce the degree of the polynomial
and hence the amount of compuration. This device is valid, however, if the division

is performed only for those numbers z actually entering the algorithm, i.e., the points
z, which are generated during each jteration. Thus, having found r-1 voots, the r-th

1
root is determined by applying the MULLER azlgorithm to the cquation £ _(z) = 0, where

f {z)} is detined by eguaticn (l). This technique should succeed enly for functions
sz) which have no multiple roots, since fr(z) as defined above is indeterminate when
z — z*¥ | where z¥ 15 a root prev1ously found. However, due to the lower accuracy

with which multlpfe roots are determined, they in effect behave like clustered roots
and hence the device has not yet failed.

USAGE

The region near the starting points (p, ,0), (p,,0},) is examined first for
Toots; successive roets are then found (usually) in order o% increasing magnitude. Thus
it is suggested that starting values reasonably close to the origin be used, unless it
is known that the equation has no roots in that vicinity. In the absence of any know-

ledge about the solutions of the equations, it has been found (reference 2} that the
starting value pl = -1, p2 = O, p3 - 1 lead to good pervformance of the algorithm.

The role of the Boolean parameters will be reviewed here bricfly.

(1) If swi is true, then each iterant of each root is printed, aloug with
the corresponding values of the function and modified function,

(2) 1f sw2 is true, then each root is printed as it is found, along with
the corresponding values of the function and modified function.

(3) If sw3 is true, then the complex conjugate of the root just found is,
when the root is not real, admitted as a root. It is computed directly
from the value of the previous root, rather than carrying out the itera-
tive process for its determination.

{4) 1If swr is true, then the imaginary part of each iterant 1s forced to be
zero throughout the iteration, and hence only real roots will be found.

TIME AND ACCURACY

Since it is impossible to adequately describe in general terms the required execution
time and obtainable accuracy for this procedure, several examples are given which indicate
its performance. All results were correct to ten significant decimal digits.

(1) Using the call

MULLER (1, -1, .5, 50, 10, ,-10, , -10, false, false, true,
false, X, Y, FUNCTION);

10~ . .
all ten roots of the equation =z -1 < 0 were found in six seconds.

{2) The five roots closest to the originédhich all lie on the negative real
axis) of the equation

AL.5.MULLER.4

were determined In 44 seconds with the call

MULLER (-.4, =5.5, -3.8, 20, 5, .10, ,-10

y , true, true, false, true,
X, Y, FUNCTICGN}

{3) The single real root ui Lhe equation
X
xe - 2

was located in seven seconds with the call

MULLER (-1, 0, 1, 20, 1, ,-10
X, Y, FUNCTION);

, o-10, true, true, false, true,

(&) Fifty-threc seconds were requeived to determine the eight roots of the eguation
3 7 6 LU0 C 3 . 2
z + . 4+ 3z k227 + is - oz o 2z + 1

using the call

MULLER (-1, 1, O, 20, 8, ,-10, ,-10, true, true, true, false, X, Y,
FUNCTICN} ;

AL.5.NEVILLE.!

ALGOL Symbolic Library

PROCEDURE SPECIFICATIOR

REAL PROCEDURE NEVILLE (W, X, Y, N, ¥, ALARM, EXTRAPOLATE) ;
VALUE W, N, P; ARRAY X, Y; REAL W; INTECER N, Py

TADEL ALARM; BOOLEAN EXTRAPOLATE;

RELFERENCES

I, W. E. Milne, Numerical Calculus, p. 73
2, J. Todd, Survev of Numerical Analysis, McGraw-Hill, 1962, pp. 39-42
FURPOSE

~ Given N abscissas X[Q],...,X[N—L] and N corresponding functional values
Y[OJ,...,Y[N—L] which are related by Y[I] = f(X[i]), I-0,...,N-1, this procedure per-
forms a& P-point Interpolation to find the approximate functional value corresponding to
the input abscissa W, and stores the result in NEVILLE. If the value of W is outside the
range of the table (i.e., W < X[0] or W> X[N-1]), snd ZXTRAPOLATE has been sel L2l::
then the procedure transfers control to the statement whose ransc L is the actual paracoe'or

corresponding to ALARM; if EXTRAPOLATE is true, the P poia.s othe =t 4o the approeuricy:
end of the table are used to compute the approximate vaioe o (W by estrapolation.
RESTRICTIONS

(Note: Formal parameters are denoted by upper case letters, and actual parameters
by lower case letters.)

1. Alarm must be declared in the calling program as a label. See page AL.Z.14 of
the ALGOL-20 Manual.

2. The procedure assumes that there are n points in the table having subscripts O
through n - 1. Consequently, when the arrays x and v are declared in the calling pro-
pram, their subscript bounds must include those shown in the declaration

real array x, y[U:n-lj;

3. The abscissas must be monotone increasing, i.e., X[i] > x[I-l] for T = 1,...n - 1,
but they need not be evenly spaced.

4. The number of points used in the interpolation cannot exceed the number of
entries in the table, 1.e., n2 p

METHOD
A variation due to Neville of Aitken's iterative interpolation scheme is used.

This technique is equivalent to computing the value {at the point of w) of the (p-1)-st
degree Lagrange polynomial which passes through the p points closest to w.

AL.53.NEVILLE.?Z

USACE

Ef cither of restriclions 3 or 4 ars violated the efiect of the proisdurs 18 unde-
fined. Tu the evenl that =x{Il] - x[J] for T £ 1, a division by zere will occur and the
execution of the program will be termivated with an EXPONENT OVERFLOW messags. Ocher-

wise NEVILLE will attempt to carry uvat the vatculations, but will give meaningless
results, Consequently, the user shonld take special vare to ensure that the restrictions
are met.

TiME AND ACCURACY

The approximate execution Lime is

U.6pT 4+ 0 6p + 0.05n + 0.6

milliseconds, where p and n are the actval pavamefers which have beep detined abeve. The
accuracy devends upon the bohavior of the tabulated function and the number of points
used in the interpolacion. Seven to eight significant figures were obrained with n . 20

and p = 5 for the functions SIN(X), COS(X) and EXP(X) over the lnterval [0,1Jﬂ

AL .5 .NORMRAN.1

ALGOL Symbolic Library

PROCEDURE SPECIFICATLON
PROCEDURE NORMRAN (MU, SIGSQR, NR, M, SV);
REAL ARRAY NR; INTEGER M; REAL MU, SIGSQR, SV;

REFERENCE

R. W. Hamming, Num. Meth. for Science and Engineering,

McGraw-Hill, 1962, p. 389

PURPOSE
NORMRAN generates a sequence of M pseudo-random numbers, normally
distributed with mean MU and variance SIGSQR, and stores the sequence

in the vector NR.

RESTRICTIONS

(1) The starting value SV must be an odd positive eleven digit
number in integer form (no decimal point). S8V is used to supply the
subprocedure RANDOM which genervates uniformly distributed pseudo-
random numbers.

(2) The actual parameter which is substituted for SIGSQR in the
call of NORMRAN must have a positive value.

(3) The desired amount of numbers M must be less than or equal to
the order of the array which is the actual parameter corresponding to NR.

(4) RANDOM is a procedure local to NORMRAN.

METHQOD

NORMRAN makes use of RANDOM and the central limit theorem of proba-
bility in the following way: I1f X[J] is a uniformly distributed random
number with variance V, then the sequence of numbers

N
wR{1) = o + o2 (& x(3))y SV, T=1,..., M

J=1

very nearly approximates a sequence of normally distributed random numbers
with mean p and variance o being good for N = 10. Procedure NORMRAN adds
the X[J] in blocks of twelve. Since -l = X[J] < 1 for all J, the above

formula reduces to

w1 =p + (V=2 /2 ¢ x(3), 1=1,..., M

TIME

NORMRAN generates and stores one hundred numbers in approximately 3 seconds.

AL.5.NORMRAND,2

AL .5 .RANDOM. 1

ALGOL Symbolic Library

PROCEDURE SPECIFICATION
REAL PROCEDURE RANDOM (A, B, X0);

VALUE A, B, XO; REAL A, B, XO;

REFERENCES
I, Algeorithm 133, Comm. ACM., Nov. 1902

2. R, W. Hamming

¢, Num., Meth. for Scicn. and Engr., McGraw-llill, 1982, p. 384.

PURPOSE
RANDOM generates the next member of a sequence of pseudo-random numbers from

a uniform (rectangular) distribution on the inmterval (A, B).

RESTRICTIONS

1. The [irst time RANDOM is called, the starting value X0 should be an odd,
positive, eleven digit integer; on subsequent calls in the same program, usc X0=0.
The procedure declares an own variable which saves the current value of RANDOM ler
use as a starting value on successive calls.

2. A is assumed to be the left end point of the interval of the distribution,

so that ip most applications A should be less than B.

METHOD
The metnod of cengruences i1s used for the generation:
35

A D M — 3 % NDOM 2 .
RANDO Ly 5 RANDO : (mod)

3 . . -, 33
If RANDOM is called repeatedly, this results in a sequence with a peried of 2 .
USAGE

As an example of the use of RANDOM, the following short ALGOL program generates
5000 pseudo-random numbers uniformly distributed on the interval (0,1} and stores

the numbers in the vector DATA:

AL begin real array DATA [1:5000J;

integer I ;
SY L1IBRARY RANDOM
paTA [1) - RANDOM (0,1, 13343288379) ;

for I « 2 step L until 35000 do

DATA [T) RANDOM (4, 1, 0);

end

AL.5.RANDOM, 7

TIME .

Approximately 2.2 seconds are required for the generation ¢f one thousand pseudo-

random numbers using this procedure.

AL.5.RUNERROR. L

. ALGOL Relocatable Library

PROCEDURE SPECIFICATION

procedure RUN.ERROR(L1, ERROR.TYPE, ERROR.PRINTING) ;
value ERROR,TYPE, ERROR.PRINTING;
label L1; string ERROR.TYPE; Boolean ERROR.PRINTING;

or
srocedure RUNJERROR(L1, ERROR.TYPE);
value ERROR.TYPE; label L1; string ERROR.TYPE;

PURPOSE

There are certain programming problems in which the programmer 1s
able to predict that error conditions, as detected by ALGOL at runtime,
may well occur in some data sets. It iIs, however, frequently as much
trouble to check a data set for errors as to process the data set.
Thus bad or missing data may lead to subroutine errors, exponent over-
flows, or address-opcode faults., The use of RUN.ERROR allows the pro-

. grammer to recover control im such situations, print diagnostic informa-

tion, correct for the error, and continue processing.

METHOD
Error conditions detected by the G-21 hardware or by a subroutine

during the execution of ALGOL program ordinarily result in the message
RUN ERROR - eeece

and the termination of the run; the string 'ceee' specifies the type of
error detected. In the case of errors detected by libraxry procedures,
'eeee' is specified in the ALARMS section of the procedure description;
for other runtime error codes and details concerning the diagnostic
messages, sce Chapter oOb.

To recover from such an error condition, the programmer must have
previously specified which error types are to result in recovery and
where in his program control is to be translerred for each of these error
conditions. The first Lwo parameters in the call of RUN.,ERROR give this
information: The value of ERROR.TYPE should be the string 'eece' to

. specify recovery from error condition eeee. If error conditicn eece

arises, control is transferred to the label L1, subject to the rules

AL.5.RUNERROR.2

discussed below. The parameter L1 usually should be a simple label and
not the more general form of desjgnational expression; for a discussion
of this sce restriction 2.

he parameter ERRORL,PRINTING, if included in the call, controls
the printing of the usual dlagnostic message for all error conditions.
(See Chapter Ob for a description of this diagnostic message.) Ef
ERROR .PRINTING - [alse, the diagnostics will not be printed; 1if
ERROR.PRINTING = true, diagnostics will be printed. ERRORLPRIRTING is
used to sel Lhe run-time error printing mode switch (— 42) which is
interrogated by the error recovery machinery each time it is called. If
ERROR.PRINTING = false, no diagnostics will be printed for any routine
For which error vecovery is set up. This switceh is only changed when a
call of RUN.ERROR is executed which has three parameters. Thus Ii[the
programmer wishes to get only his own diagnostic printing, he may use the
first form of call for RUN.ERROR, with ERROR.PRINTING = false. If an
error occurs for which a recovery switch was not set, the usual diagnostic
message will be printed. ALGOL initially assumes ERROR,PRINTING = true.

(Sce also restriction 4.)

Scope of Error Recovery

For each call, RUN,ERROR creates a triple of the form
(L1, ERROR.TYPE, block,level),

hereafter called an error-recovery switeh. The scope of these switches is
determined by the block structure of ALGOL.

The use of any error-recovery switch will clear the switch. Thus if
the programmer wishes to re-enable error recovery alter having recovered
from an error, he must reset the switeh by again calling RUN.ERROR. The
use of one error-recovery switch will not affect the status of any others
which have been set.

Blocks, procedure declarations, and procedure calls may be nested
arbitrarily in ALGOL. Since it may be convenient to have different receovery
procedures for the same error condition when it occurs in different blocks,
RUN.ERROR keeps the error-recovery switches in a stack. Thus error-recovery
switches created in a given block will not destroy those set in an outer

block, but will merely “push them down'" in the stack. A newly created
s p ¥

AL.5.RUNERROR.3

switch will be effective for the block in which it is created and for
all blocks and procedure calls nested in that block.

Leaving a block at dynamic level N will pop up the stack, deleting
all error-recovery switches with block.level = N. Calling RUN.ERROR
twice in the same block for the same ERROR.TYPE with actual parameters
L1 and L2 will replace the triple (L1, ERROR.TYPE, block.level) by the
triple (L2, ERROR.TYPE, block.level).

Monitor-Detected Errors

RUN.ERROR called with ERROR.TYPE = 'TIMR' will permit recovery
from TIME LIMIT EXCEEDED, PAGE LIMIT EXCEEDED, OPERATOR TERMINATED, and
MACHINE ERROR. The user's program will regain control and will be
atllowed an extra 30 seconds of running time. Repeated calls with the

parameter 'TIMR' will not give additional intervals of 30 seconds.

One Procedure with Several Error Exits

While some complex procedures have several error exits, the pro-
grammer may wish to use the same recovery technique in more than one
case. Error codes for such procedures are typically of the form 'ABCn',
where n is a non-zero digic. 1If an error 'ARCn' occurs, RUN.ERROR
checks for an error-recovery switch of the form ('ABCn', ,); if there
is none, RUN.,ERROR will then look for a switch of the form ('ABCO' , ,).
(Note that the fourth character is zero, not the letter "g".) Thus the
programmer may handle certain error conditions by special means and

process any other errors by a single general mechanism.

Example: The error codes for DISC.WRITE are "RWR1' ,..., 'RWRS'.

Suppose the following calls of RUN.ERROR are executed:

RUN.ERROR (LL, ‘RWR5');
RUN.ERROR (L3, 'RWRO');

1f an error BWRS occurs in the block, control will be transferred to LL.

Any other DISCWRITE error will cause control to be transferred to L3.

USAGE

The following block of ALGOL code could be used to evaluate the function

xj + 1

X

y:

AL .5 .RUNERROR.4

For various values of x, printing out 'y IS INFINITE AT ...' whenever

an cxponent overflow occurred:

beein label L1; real x, v; library procedure RUN.ERROR;

comment: Note that since the first occurrence ol L1 is
as a parameter to a proecure, we must declare Lt as a
label. See page 2.14 of this report;
RUN.ERROR(LL, 'EXPO', false);
For x:i. -4 step 1 until 4 do
begin yi= (x13 + 1) F'S:
NAME (x, y); PRINT (<-1D.lZ, 10B, -4D.4Z, E>);
go_to end.ol.loop;
Ll: NAME (x); PRINT(<'y I8 INFINITE AT ', -1D.1Z, E>);
RUN.ERROR(L1, 'EXPO');
end.of.loop: end

end

RESTRICTIONS

L. Not more than 20 distinct error-recovery switches are allowed at
any one time.

2. While ERROR.TYPE and ERROR.PRINTIKG are called by value and thus
are evaluated when RUN,ERROR is called, the label L1 is not evaluated
until the error condition ERROR.TYPE actually occurs. If L1 is actually
a general designational expression, it will be evaluated according to the
values of all relevant variables at the time the error occurs, and control
will be transferred to the resultant label. Since this delayed evaluation

is used, the following simple code will not work:

for i— 1 step 1 until 5 do

RUN.ERROR (GOOF[i), 'RWRO" + i);

At the time of any RWRn error, control will be transferred to GOOF[i],

not GOOF[n]. Thus only simple labels should be used for Ll; the programmer
may use designational expressions to take advantage of this delayed evalu-
ation of L1, but should so with great caution.

3. Run errors in RUNERROR are fatal; that is, a call of the form:
RUNERROR(L1, 'RUNR');

will not permit recovery from errors in RUNERROR.

AL.5.RUNERROR.>

. 4. The switch set by supplying the parameter ERROR,PRINTING is kept
in a single cell (-42); it does not invoke the stacking machinery applied

to the error-recovery switches.

ALARMS

The messase RUNLERROR - RUNR will result if

1. An attempt is made Lo have more than 20 errvor-recovery switches
sel at any time, or if

2, The designational expression L1 is undefined at the time ol the

error; this will occur if the actual parameter is a switch element and the

subscript is out of bounds &t the time the error occurs.

AL.RUN ERRCR.6

AL.5.5IM.1
ALGOL Symbelic Library

PROCEDURE SPECIFICATION

REAL PROCEDURE SIM (N, A, B, Y);
VALUE N, A, B; REAL A, B; 1INTEGER N; ARRAY Y;

REFERENCE

Algovithm 84, Comm. ACM, April 1962

PURPOSE

SIM determines the approximate numerical value of the definite integral of a

continuous function:

B
SIM = J f(x)dx
A
RESTRICTIONS
L. The number N of subdivisions must be even.

2. The values Y[I] of the function must be given for equally spaced values
of the independent variable on the interval [A,B] of integration.

5. vlo) = £(a) and Y(N) - £(B)

4. In the program which calls SIM, the actual parameter y corresponding to
the array Y must be declared as ARRAY y[O:n], where n is the actual parameter

corresponding to N,

METHOQOD

Simpson's well-known formula for numerical integration is used. Ii
A = X[O], X[l],...,X[N-lj, X[N] = B are equally spaced points of subdivision of the

interval EA,B] and Y[I] is the value of the function f at the point X[I], I=0,...,N

then
B
[fGdx « _B-a x(0) + av(i) + 2vle) + ...+ ax[n-1) + v)
' 3N
A

TIME and ACCURACY

The approximate execution time required by SIM is

Y
T . 2N%10
where T ¢ time In seconds
N . number of subdivisions.

The accuracy obtained depends very much upon the function being integrated

and the number of subdivisions,

AL.SIM.2

AL.5.8IN.1

Standard Function

PROCEDURE SPECIFLCATION

real procedure SIN (X); value X; real X;

PURPOSE

SIN computes the sine of X, where ¥ is in radians and may be either

positive eor negative.

METHOD

The method is described on page A-1 of "1604 routine™.
ALARMS

RUN ERROR - SIN., |x] » 2,097,151

For values beyond this point the algorithm breaks down.

TIMING and ACCURACY

The result is produced in 1.08 milliseconds. The relative error is

less than 5,-11.

AL,SIN.2

AL.5.SLEW.1

ALGOL Relocatable Library

PROCEDURE SPECIFICATION

procedure SLEW(LFT, RECORID, NUMBER ,EOQF) ;
value LFT, RECORD.NUMBER;
integer LFT, RECORD.NUMBER; label EOF;
PURPOSKE
Reading or writing a tape record is delayed by the amount ol time
required to position the tape to the specified record. SLEW ¢nables
the programmer to position a tape while carrying on other computation,
The use of SLEW can thus substantially decrease the running time of a

rovram which uses magnetic tape.
prog P

METRHOD

A call for SLEW will initiate a tape motion to record record.number
of logical file lft and will return contrel to the user's program.
Computation or other input/output operations may then continue until the
execution of a call for DISC.READ or DISC.WRITE with the parameters 1ft
and record.number. At that time, computation will cease until the
tape is positioned and the tape operation completed. Thus it is possible
to overlap tape-slewing with useful computation. Tf logical file 1ft is

on the disc, no action will be taken and the user's program will continue.

USAGE

The statement
SLEW{3, 40, eof);
will slew to record 40 of the Type 1 RETAP records.
ALARMS

SLEW will exit to the label EOF if RECORD.NUMBER is greater than the

maximum record assoclated with logical file LFT.
Run-error messages are:

SLWl - LFT is not in the range 2 = LFT = 20
SLW2 - logical file LFT is undefined

AL.5,S5LEW.2

TIMING

The time tec position a tape to record M, if it is positioned at

record N, is about
(8 + | M-N -1 | * 20) ms.

The actual time required to instruct Lhe tape unit, which is the time

spent in SLEW itself, is about Z ws.

AL.5.SQRT.1

Standard Function

PROCEDURE SPECIFICATION

real procedure SQRT (X); value X; real Xj

PURPOSE

SQRT computes the square root of X.

METHOD

For details see page M-1 of "1604 routines'.

ALARMS
RUN ERROR SQRT if X < 0.

TIMING and ACCURACY

The result is produced in 1.7 milliseconds.

The relative cerror is less than 1,-12.

AL.SCRT.2

AL.5.ANDFILE.!

ALGOL Relocatable Library

PROCEDURE SPECIFICATION
procedure AND,FILE (USER, PROG, LF.TYPE, BUFF,LOC, ERR.EXIT);

value PROG, LF.TYPE;
string USER; integer PROG, LF.TYPE, BUFF.LOC; label ERR,EXIT;

PURPOSE

AND,FILE asscociates Logical File Type number LF.TYPE with the AND
program ("file") specified by USER and PROG. Thus an ALGOL user may
define (or redefine) entries in the Monitor Logical File Table during the
ALGOL run as well as during execution of the AND system. See Chapter bg

for more information.

PARAMETERS

USER = The AND "User" number for the file, an eight character
alphanumeric string; this string may appear either as an
8-character string constant {e.g. "PH33WWO1') or as the
name of the first of two successive elements of a logic
array which contain the string as value (see example in
Chapter 6g).

PROG = The AND "Program' number of the file,

LF.TYPE - The Logical File Type to be associated with this AND
file; LF.TYPE must lie in 1 = LF.TYPE = 19.

BUFF.LOC = An array element which is the first element of a
vector of at least 320 words; this array will be changed
by AND.FILE.

ERR.EXIT - A label to which AND,FILE will exit if any of its
parameters are improper or if the designated AND file

does not exist in the AND Directory.

METHOD
The AND file "USER, PROG" is looked up in the AND Directory and

Logical File Type LF.TYPE is associated with it. The 320 locations

e .

AL .5.ANDFILE.2

starting at BUFF,LOC are used as a buffer to read the AND Directory.
After the call of AND.FILE, this space is available for other uses.

See Chapter 6g for an example.

ALARMS

If AND.FILE is called to look up an AND file under & man number
differing from the man number appearing on the Job Card, then the cor-
responding Logical File Type will be marked as "read-only".

Any of the following errors will cause AND,FILE to print an ap-
propriate error message and exit to the label ERR,EXIT without assigning
the Logical File Type.

1. Usage number is improperly formed or not in AND Directory.

2. Program number is out of range or not in AND Directory.

3. Designated file is empty (contains O words) and can therefore

be neither read nor written.

4., Logical File Type is < 1 or > 19.

5. Selected AND file is on a tape which is temporarily unavailable,

6. The AND instruction DONT has not besen executed, so the AND
Directory cannot be read by this CP.
7. An attempt has been made to access another man's file which

has been marked "secret" by the AND instruction SECRET,

(See the AND writeup.)

AL,5.ANDCALL. 1

PROCEDURE SPECTIFICATION
procedure AND,CALL (IMAGES . IN, SCRATCH) ;
value IMAGES. IN.SCRATCH;

integer IMAGES,IN,SCRATCH;

PURPOSE
AND, CALL may be used to enter the AND system to operate on c¢ard images

or binary information written into the AND Scratch Area by an ALGOL program.

METHOD

The AND system is loaded and entered by a special entry, which sets the
AND Scratch pointer, ¢, to (IMAGES.IN,.SCRATCH) + 1. If Scratch contains
binary information, IMAGES,IN,SCRATCH should be set to | (Number of words of
binary information + 20) /21. Once loaded, AND wiil operate as usual,
reading and executing AND instruction cards from the Hollerith file which
is currently open for input.

Before executing the AND,CALL procedure, the ALGOL program must have
loaded the AND Scratch Area (Logical File Type = 1 or 2) with card images
using HOLLER,OUT or DISC,WRITE, or binary information using DISC,WRITE,

It is not possible to return to the original ALGOL program after the
execution of AND.CALL, since the AND system overlays all of core; however,
ALGOL may be called from AND to perform a new translation,

EXAMPLE: An ALGOL program has generated 20 card images in AND Scratch, at
which point it executes an AND,CALL (20). The AND system is then loaded
and entered with o « 21, and AND begins reading cards. If the first card
contains the AND instructions:

AN FILE 6/0 ; DUMP; DONE;

then the 20 images generated by the ALGOL program will be dumped as the
20 cards of AND file 6,

AL.5 . HOLLERIN.1

PROCEDURE SPECIFICATION

procedure HOLLER, IN (LF.TYPE) ;
value LF.TYPE ; inteper LF,TYPE;

or
procedure HOLLER.IN (LF.TYPE, POINTER);
value LF.TYPE; integer LF.TYPE, POINTER;
PURPOSE

HOLLER. IN sets the Monitor's card source pointers for Hollerith
card reading to an image in the disc/tape file with Logical File Type =
LF.TYPE. After a call of HOLLER.IN has selected a file in this way,
executions of "E" or "W" primaries in ALGOL read statements {or an
explicit call for |16 in machine language) will bring in successive

card images from this file. See Chapter 6g for more information.

PARAMETERS
LF,TYPE = The Logical File Type to be selected as Hollerith input
source, replacing the previous source. LF,TYPE in the
range: 1 = LF,TYPE = 19 represents one of the pre-
assigned files or an AND file; IF.TYPE = 0 always
represents the "primary" Hollerith card source, the

one in effect when the ALGOL program began execution.

If 1 = LF.TYPE = 19, then:
POINTER - An arithmetic expression whose value is the serial

number of the first image to be read from file LF.TYPE.
If POINTER is omitted, then the first image to be read
will be the one after the last image read during the
last previous selection ef this LF,TYPE by HOLLER.IN;
however, if HOLLER.OUT or HOLLER,OVER have also selected
the same LF,TYPE, then the rule is more complicated;

see Chapter 6g. If file LF,TYPE has not been previously

AL_5 . HOLLERIN, 2

selected during this run, POINTER = 1 will be assumed
if POINTER is omitted,
If LF,TYPE - O then:
POINTER == An arithmetic variable which will be set equal to the
serial number of the next card to be read from the pre-

viously selected file.

METHOD

See Chapter 6g for complete discussion.

ALARMS
RUN ERROR - HINl: LFT < 0 or LFT > 19,
RUN ERROR - HIN2: An attempt has been made to select the primary

source (LFT = 0) when it is already selected.
RUN ERROR - HIN3: The Logical File Type specified has no file
assigned to it.

HIN4: POINTER < 1, or beyond the physical End-of-File. .

RUN ERROR

AL.5.DISC READ/WRITE.

ALGOL Relocatable Library

PROCEDURE SPECTIFICATION

DISC.READ (NWDS, FIRST.LOC, LF.TYPE, BLK,NO, EOF,EXIT);
DISC.WRITE (NWDS, FIRST,LOC, LF.TYPE, BLK.NO, EQOF.EXIT);
value NWDS, LF.TYPE, BLK,NO;
label EOF.EXIT; integer NWDS, LF.TYPE, BLK.NO;

PURPOSE

DISC.READ reads information from disc or tape into an array in
core mewmory; DISC,WRITE writes the contents of an array in core memory
out onto disc or tape. These routines allow the user to move binary and
Hollerith information in bulk between core memory and disc/tape files.

See Chapter 6g for a complete discussion.

PARAMETERS
NWDS - Number of machine words to read or write.

FIRST.LOC = An array element which is the ALGOL name of the first

word in core memory to read or write.

LF.TYPE = Logical File Type (explained in Chapter bg) .

BLK.NO - Number of the first 320-word block to be read or written
(the first block of the file has block number 0).

EQF.EXIT = Label through which the routine will exit if the

physical End-of-File is reached during the operation.

METROD

DISC.READ reads into core memory exactly NWDS words, where NWDS is
not necessarily a multiple of 320, DISC.WRITE will write enough extra
words (generally 'garbage™) to complete the last 320-word physical
record. These routines initiate direct input/output transmission between
core memory and the tape or disc unit; there is no buffering.

Attempting to read or write beyond the physical End-of-File will

cause the routine to complete the operation up to the End-of-File, and

AL.5.DISC READ/WRITE.2

then exit through the EQF.EXIT label.

ALARMS
DISC.READ AND DISC.WRITE give the same error messages, 24 follows:

RUN ERROR - RWR1l: The specified Logical File Type has not been
pre-assigned or assigned by AND or by AND.FILE.

RUN ERROR - BWR2: A negative number of words has been called for.

RUN ERROR - RWR3: The FIRST.LOC address lies outside user's
memory.

RUN ERROR - RWR4: LF,.TYPE is out of range: 1 = LFTYPE = 19.

RUN ERROR - RWR5: DISC,WRITE has been asked to write on a file

which is marked "read-only".

AL.5.HOLLEROUT, 1

PROCEDURE SPECTFICATION

Brocedure HOLLER,OUT (LF.TYPE);
value LF,TYPE ; integer LF,TYPE;

OR
procedure HOLLER,OUT (LF.TYPE, POINTER) ;
value LF,TYPE; integer LF,TYPE, POINTER;
PURPOSE

HOLLER.OUT sets switches which cause subsequent Hollerith print images
to be appended to the disc/tape file with Logical File Type = LF.TYPE.
The cutput file selected by HOLLER.OUT is referred to as the "secondary
output' file. When a secondary output file has been selected by HOLLER,OUT,
each executicn of an "E" or "W'" instruction in an ALGOL print statement
(or a "W" instruction in an ALGOL read statement) copies the first 80
characters of the output line, followed by a four character serial number,
into the secondary output file as the next 84-character image.

A Boolean variable PRINT.OR.NOT, global to HOLLER.OUT, determines
whether or not the print image will be transmitted to the "primary' output
destination(s) (the LP12 printer and/or teletype output file) in addition

to the secondary file.

PARAMETERS

LF.TYPE = The Logical File Type to be selected as the secondary
output file. If another secondary file is currently
selected, then a Hollerith End-of-File image will auto-
matically be written as the next image in this latter
file, and its image pointer will be saved with the
Logical File Type. Then:

If IF.TYPE lies in the range 1 = LF,TYPE = 19,

the file associated with LF,TYPE will be selected as

the secondary output file,

AL, 5. HOLLEROUT,

If 1 = LF.TYPE
POINTER =

If LF.TYPE = O
POINTER =

2

If LF.TYPE - 0. no secondary file will be
selected; all subsequent print images will be
directed to the primary cutput destination,

regardless of the truth value of PRINT.OR,NOT.

A

£ 19 then:

An arithmetic expression whose value is the serial
number of the first image to be appended to the
secondary file. If POINTER is omitted, then the
first image written will be the next after the
last image written during the most recent selectic
of this LF.TYPE by HOLLER.OUT; however, if HOLLER,
or HOLLER.OVER have also selected the same LF.TYPI
then the rule is more complex (see Chapter 6g).
LF.TYPE has not been previcusly selected during t}

run, POINTER = 1 will be assumed if POINTER is

omitted.

then:

An arithmetic variable which will be set equal to
the serial number of the EOF image written into

the previously selected file.

PRINT.OR.NOT = A Boolean variable global to HOLLER.OUT. Th

METHOD

user must declare the variable PRINT.OR.NOT in hi
outer-most block. Its value can be changed by th
main program to turn primary output primting on
(true) or off (false) without calling HOLLER.OUT
again. PRINT.OR.NOT is ignored when no secondary

putput file is selected.

See Chapter b6g for complete discussion.

. AL.5.HOLLEROUT, 3

ALARMS
RUN ERROR - HOTT1: LF,TYPE < 0 or LF.TYPE > 19.
RUN ERRCOR - HOT2: LF,.TYPE = 0, and there is no secondary file currently

selected.

RUN ERROR - HOT3: T.ogical File Type LF.TYPE has no file assigned to it.

RUN ERROR - HOT4: POINTER < 1, or beyond the physical End-of-File.

RUN ERROR - HOTS5: Attempt to write on file marked read-only (i.e.,
another user's file).

USE

Before an ALGOL program using HOLLER.OUT terminates execution, it
must call HOLLER,.OQUT(0) to write out the last physical record of the last-
used secondary cutput file; a Hollerith End-of-File image will be written

onto the file at this time. If the programmer fails to do this, he will

lose up to the last 16 card images.

AL .5 .HOLLEROVER. |

PROCEDURE SPECIFICATION

procedure HOLLER,OVER (LF.TYPE);
value LF,TYPE;

integer LF.TYPE;

OR
procedure HOLLER.OVER (LF,TYPE, POINTER) ;
value LF,TYPE;
integer LF,TYPE, POINTER;
PURPOSE

HOLLER,OVER is basically the same as HOLLER.OUT, While HOLLER,OUT
appends Hollerith output images to a file, however, HOLLER.OVER allows
the user to alter ('overwrite') any individual card images in the middle
of an existing AND file (which may have been created originally by AND
or by HOLLER.OQUT) .

METHOD

HOLLER,OVER differs from HOLLER,OUT in two ways:

(1) HOLLER.OVER does not write a Hollerith End-of-File image onto
the previously selected secondary record., HOLLER,OVER writes
an End-of-File image only if an attempt is made to write on
the last image of the physical file.

(2) BOLLER,OVER reads each block of the file as it currently exists

into the output buffer before new images are entered.

PARAMETERS
See AL,5.HOLLER,OQUT.

ALARMS
See AL,5.HOLLER,OUT.

AL.6a.l

. CHAPTER oa

ALGOL-20 Card Format and Kevpunching Gonventions

ALGOL programs should be punched in the following form:

Column — 12 3 45678 9012 3 4 507 89 0 123 45067890123456789 M
Language

w;AT WH .LOC. F oP. M Addr, Index;Comment. .
ALGOL AL . i iiici i e ianes ALGOL teXt.veeeoeverasscsroas
system 5Y L iiieiiiienenaiaanan SYSEEM LeXE . esenernnrnsnnnen
comment CO . .eeriierneenannnnnns COMMENE v v v e vsvananassonns

The teletype TAB table for these language fields is as follows:

Tab - 1 2 3 4 5
Language field
{
AL 4 7 10 13 15
WH 4 L5 20 24 40
SY 4 tabs after the first are taken as characters and scanned.
. Cco no tabs - tabs are taken as characters.
Tabs taken as characters are printed as '=' on the LP-12.

A blank language field (columns 1 and 2) is interpreted as AL or
WH, as determined by the most recent appearance of AL or WH in the
language field. A blank language field on the first card is interpreted
as AL,

System cards give special instructions to the ALGOL translator.

The system instructicns are described in Chapter 4.

Comment cards are printed as part of the translation listing but
are otherwise ignored. They may be freely inserted Ior purposes of
documentation.

Normally, the programmer may use columns 4-72 for his ALGOL program;
however, there is a system statement with which he may change the right-
hand margin from 72 to any column between 40 and 80, as described in
Chapter 4. The columns beyond the right margin may be used for comments,

etc.

AL.ba.Z

The translator will ignore all columns to the right of a double
vertical bar (}[). This allows the programmer to use the rest of the
card for commenis. (Double vertical bars in strings will not invoke
this convenlion.)

In ALGOL-20, certain constructions may not be split between the
end of one ALGOL text card and the beginning of the next, since the
translator always supplies an imaginary blank column between the right-

hand margin of one card and column 4 of the next:

{1) An identifier may not be continued from one card to
the next. The implied blank will terminate an identi-
fier which ends at the right margin of the card.

(2) The combination characters

- » < — = 8L B8R 8F

must be punched with the two characters in adjacent columns of the sawe

card.

In addition, alphanumeric strings may not be split between two cards.

One reason for this restriction is to provide better errer recovery il 4
quote is accidentally omitted. A long alphanumeric string instruction in
a READ, PRINT, or PUNCH statement may simply be closed by " ', "
{quote comma) after the last character of the string punched on the card
and reopened with another quote on the next card.

The ALGOL program may be punched in any format the programmer desires,
subject only to the above restrictions. There may be one statement per
card or a single statement extended over many cards or many statements on

a single card. Thus, a consistent indentation rule which aligns each end

with its begin can be used to advantage to show clearly the structure of

the program. {See also Chapter oc.)

AL.6b. 1
CHAPTER 6bh

ALGOL-20 Error Messages

Translation Errors

The ALGOL-20 translater prints numerical errvor codes Lo Indicate
syntdx errors in the source program. The translator prints the error
code just below the last card image it has scanned, with an arrow 1!
pointing to the last character scanned on this ILmage. Since each card
is scanncd once from left to right, the 't' pointer will generally be
alead (i.e., to the rvight) of the actual error.

Errors are broadly cateporized as Phase T errors (O through 09),
Phase II errors (70 through 93), miscellaneous errors (906 through 99),
Subscan errors (100 through 109), and System errors (110 through 125).
System errors are those occurring on SY cards. Subscan and Phase 1
errors are purely syntactic and are discovered in the process of scanning
the source program cards. Phase II errors are discovered at a later
stage in the translation process when the actual machine code of the
object program is generated. The miscellaneous errors are those which
indicate a possible problem within the translator. Any listing contain-
ing such an error should be brought to the attention of the User
Consultant or a member of the Computation Center staff immediately.

The translator attempts to "recover" from each error if possible,
so that many independent errors may be found in one pass through the

e

computer. Ifowever, any Phase L error as well as errors marked with ¥ in
the errcr Llist will cause all succeeding Phase II errors to be ignored.
To call the programmer's attention to the fact that subsequent Phase II
errors are being ignored, the translator will print "NOTE 6" (see the

section on notes below) das Phase 11 is turned off.

Any error prevents executlon of the compiled program.

Notes

The Algol-20 translator prints notes on the program listing to call
the programmer's attention to syntactic constructions which are accept-
able but questionable, or constructions which are possibly caused by an

error. Notes do not prevent execution of the compiled program.

AL.6b.2

Translation Zrrors

Phase I Errors (Each oi these errors terminates Phase IL.)

26:
27
28:
29:
30:
31.
32
33:
34
35:
36:
37:
38:
39:
40

The program does not start with begin.

A statement starts with an illegal character or an illegal reserved word.

A statement starts with an identifier follewed by an illegal character.

In an expression an opecrand was expected and was not found.

Iin an expression a binary operator was expected and was not found.
(Possibly caused by a semicolon missing after the preceding statement,)

A'g" does not have a matching ”[”.

An array element has been used illegally.

A ":" has appeared incorrectly.

A" ar ":=" has appeared incorrectly.

A ™" does not have a matching "(".

A "," has appeared incorrectly.

then has appecared without if.

¢lse has appeared without then,

Characters are still in the stack after a or an end,

A procedure statement is followed by other than end, else, or '';".

for is not followed by an identifier.

The for variable is not followed by a "' or ":i=".

step has appeared without for.

until has appeared without step.

while has appeared without for.

do has appeared without for.

go to is not followed by an identifier or "(" or if.

go to if...then...is not followed by glse.

"t
b

An obscure error in a go to statement.

An impossible error after begin. ("}-" is not the second element in the
stack, See Error 98.)

own is followed by something other than <type>.

An array declaration does not specify subscript beunds.

The identifier list of a declaration is not followed by a ';'".

switch is not followed by an identifier.

The identifier of a switch declaration is not followed by a "' or ":=".

procedure is not followed by an identifier.

A procedure identifier is not followed by "(" or ";".

A formal paramecter list is not followed by ")'".

The "}" following a parameter list is not followed by a ";".

The identifier list in a specification is not followed by a '";".
An identifier did not follow the "," in an identifier list,

The illegal construction "then if" has occurred.

A switch with more than one subscript position has been used.

The value part of a procedure declaration was not followed by a '";™.

41:
42
43
44
45:
40
47
48
49 .

AL.6b.3

The name of a permanent subroutine (such as "SIN'") is not followed by "(".
There is an extra "," or ¢lse a missing ":" in an array declaration.
More begin's than end's have occurred when the end-of-file is reached.
Impossible - see Error 98.

max or min is not followed by "(".

In an array declaration the identifier list is not followed by "[".

Array specifier has subscript bounds, which it should not.
library is not followed by <type> or procedure.

Phase I Frrors {format and name statements) (Each of these errors tferminates

50:
5L:

52:
53:
54:
55:
56:
571
58:
59:
60 :
6l:
62:
63:
64
65!
66:
67:
68:
69

Phase I1.)

A reserved input/output word is not followed by "(" .

A format list element starts with an illegal character. (Should be '"<"
or "' or "S$" or identifier).

" is missing: 1i.e., a replicator was expected but not found.

for is missing after "$".

"' is not followed by "S$" or an identifier.

™" oor ™" is not followed by ")" or ",".

A name statement or format statement is not followed by end, else or ';'".
A replicator is not followed by "(" or "<".

"' ar M, is followed by an illegal character.
An integer is followed by an illegal character.

A format instruction is not followed by '">" or ",".

An iilegal prefix to a numeric primary has been used.

An illegal numeric primary has been used,

"." appears in a numeric primary in a read statement.

In a numeric primary, E, F or 5 is not followed by an integer.

Phase Il Errors {Only those errors marked "*'" turn off Phase II.)

'>'f70:
71:

72
73:
74
75:

76:
77
78:

A reserved word which is not yet available has been used.

A label has been used but not defined. (The name of the label is
printed prior to this error message)

An identifier has heen used but not declared.

An identifier has been declared twice in this block.

An identifier in the value list is not a parameter.

Al identifier which has been used as a procedure has not been declared to
be one,

A subscripted identifier has not been declared to be an array or switch.

The program is too leng.

A procedure identifier which is mot a function designator has been used
in an expression.

* Turns off Phase II.

AL.6b.4

79:

80;
81:
82
83
84
85:
86:
“87:
88:
B39:
*90:

*91:
92:
93:
94:
95:

An identifier which has been used as a switch has not been declared to
be one,

An array identifier has been used without subscripts.

Too many index variables have been declared.

A label or array or switch has been called by value.

An identifier in a specification list is not a parameter.

In a procedure declaration a parameter is not specified.

In a procedure declaration a parameter is specified twice.

A procedure, switch or label appears on the left of a M2 oor M.

The W2 stack is too full.

More than L0O0 relocatable library procedures have been declared.

A constant has been used in place of an identifier, e.g., 33 kJ.

A subscripted for variable has been used (this is not yet available in
ALGOL-20) .

The next-command pointer is less than the base of the program,

Miscellaneous Errors

96:
97:

98:
59

A possible translator error - bring listing to Janet Fierst at the
Computation Center.

Impossible: bring your listing to A, Evans at the Computation Center.
Same as 98.

Subscan Errors

100:
101:

102:
103:
104:

105:
106:
107
108;
#*109:
110:
111:
112:
113:
1i4:

* Turns off Phase II.

A card column contains an illegal combination of punches.

Too many abcons or adcons have been used (numerical constants and
alphanumeric string constants) .

Too many decimal points appear in a number.

Too many ',''s appear in a number.

An error has appeared in a parameter delimiter comment: "M<any sgtring
not containing:>: (",

An illegal bar ("|") variable has been used.

A constant has been used which is too large to fit into a real variable.
A" " is followed by something other than M, MM or <digite.

A string goes over the end of a card.
The symbol table has been exceeded.

AL.6b.5

System Statement Errors

115: An abcon system statement has occurred after code has been compiled.

Li6:

117: An abcon system statement has requested more space than there is in
user memory.

118:

119: An illegal SY card has occurred. (This may be caused by a LIBRARY card
after the symbolic library has been released,)

120: The library procedure nesting exceeds 5.

121:

122: WHAT has been called after it has been released.

123: An illegal segment statement has been used.

124: An SY LIBRARY card has asked for a routine not in the symbolic library.

125: A library procedure declaration has named a routine not in the relocatable

library.
Notes
Note l: end comment convention was used on preceding card, That is, every-
thing was ignored up to ";", end, or else.
Note 2: A function designator has been used as a procedure statement,
Note 3: 1In an arithmetic or boolean expression, the construction if...then if

has occurred. This is syntactically illegal but unambiguous, and is
therefore accepted by the tramslator.

Note 4: An arithmetic (boolean) (designational) expression has been used
where a simple arithmetic (boolean) (designational) expression
should have been used.

Note 5: In a designational expression, the construction if...then if has
occurred. This is syntactically illegal but unambiguous.

Note 6: Phase II has been turned off.

Note 7: The construction if...thean for...do...else... which is legal in
ALGOL 60 but illegal in ALGOL 62 has been used.

Note 8: TAB appears as a character.

Note 9: Fifty errors have been found on a single card; compilation has been
terminated.

AL.6b.6

RUN ERRORS

During its execution, an ALGOL-20 program will call upon various
run-time subroutines., Since there are usually restrictions placed
upon the use of these routines, there is a mechanism provided to warn
the user when the restrictions have been violated. 1t is the violat-
ion of these restrictions which is referred to as "run error'.

The user may receive his warning in either of two ways: If he
takes no action otherwise, an error wmessage will be pnrinted out as part
of his output listing which will identify the error and the part of
the program in which theerror took place. The run will then be
terminated., On the other hand, however, the programmer may provide for
a "recovery procedure" by calling on 2 subroutine named RUN.ERROR. If
he does this, an occurrence of the error will cause a transfer to a
statement in his program which he has designated. The programmer may
then provide error recovery as he deems appropriate. If the programmer
has provided for error recovery frem a given error type, he has the
opticn of either getting or not getting the normal diagnostic printout.
See Chapter 5.RUNERROR for a description of the recovery procedure.

The normal error printout consists of the two lines

RUN ERROR - ceee
COMMAND IN ERROR - ccccce

followed by fourteen lines of diagnostic output. Here cccce is the (octal)
location of the command which caused the error (or the command which
called the subroutine in which the error was detected) and ecee is a
mnemonic error code. By comparing ccccce with the octal addresses printed
on the left side of the compilation listing, the programmer may determine
the particular statement or declaration whose execution caused the error.
Error codes for library procedures are given in the ALARMS section of the
procedure description in Chapter 5. All other error codes are listed on
the next page. The fourteen lines of diagnostic informaticn refer to the
seven commands before the fauity one, the faulty command, and the six
commands following. On each line, there are four fields: the location,
the command in octal, the command in semi-mnemonic form, and the contents
of the word whose address is in the command. This information is useful
to anyone familiar with G-20 machine coding in analyzing the error. It is

of interest to the average user only in that it may be shown to the User

Consultant.

. Error Code

ADRP
CFLG
EXP
EXFO
LN
RADIL

RAD?2
READ

SIN

SQRT
TIMR
X1A1
X1AZ2
X1TAa3

AL.6b.7

Meaning
address--opcode fault
command flag error
EXP (X) called with X > 160.116998
exponent overflow
LN {X) called with X = O
upper < lower in a bound pair in an
array declaraticn
declared arrays exceed available space
An error has occurred in reading 4
data card. {(sec below)
The argument to SIN or COS exceeds
8121
SQRT (X) called with X<0.
monitor detected errors
X = 0 and A=0 in XMA
A¥ LN (X) > 1L60.116998 in X714

X = 0 and A not integer valued in XTA

When an error is detected by the read subroutine, the "RUN ERROR-READ"

message will be preceded by a printout of the data card containing the

error, an arrow (1) pointing to the erroneous column, the column number,

and one of the following auxiliary messages:

L)

2)

3)

4)

3% - CARD READ

NO CARD READ

IMPROPER NUMBER

ILLEGAL SYMBOL

An End-of-File mark has been reached: i.e.,
the program has attempted to read more data
cards than are in the "deck".

A read statement has attempted to scan
characters from a card image before an "E" or
"W'" primary has been executed to read a card.
An ill-formed number has been scanned; e.g.,
too many decimal points, + or - signs, or

mfs have been found.

A character which cannot be part of a number

n n !|+r| mn_n Tmon

(i.e., not a digit, , . , or ",

has been scanned by a numeric instruction.

This error message is suppressed by the suffix "N,

AL,6b,8

AL.b6c .1
CHAPTER 6c¢

Printing of the Compiled Program

Consistent indentation of each level of nesting of subordinate and
compound ALGOL constructions is useful in writing a clean, readable
program. Themximum possible indentation of the program as punched onto
cards is limited by the width of the card. However, the printed image
is 21 columns wider than the card, so the system statement INDENT has
been provided to let the programmer take advantage of the extra printer
width to get wmore indentation of the printed source program. Normally,

the compiled ALGOL code is printed in the format

PRINT columns |123}4567 |8....12]13,14]15...83{84. .104]105...120]
Contents l Iblank|address}blank] text } blank 1 commentsl
CARD columns IlZB]]4....72i]73 881

Using the system statements INDENT and RIGHT MARGIN (see Chapter 4), the
programmer may change the number of card columns scanned as text and

also may change the print columns in which this text appears. In general,
the compiled code is printed as follows, where K stands for the indent

constant and RM stands for the right margin:

PRINT columns |123|4567 18....12] 13 . 14+K| L5HK. . . T1+KARM| L24K+RM. . . 32+RM| 33+RM. . . 120
Contents ‘]blank address| blank | text | blank] comments [

CARD columns [123] 4. oieiiinn. RM | |RM+1.....88]

The address printed is that of the first instruction generated by the line of

ALGOL text.

AL,6Co2

AL.6d.1
CHAPTER 6d

Privileged Identifiers

In addition to the reserved identifiers, ALGOL-20 includes a set
of "privileged" identifiers which have built-in meanings. These
identifiers can be used with their built-in meanings without being
declared; they are, in effect, declared by the translator in a block
head outside the outer-most block of the program. Therefore, if the
programmer does not wish to use one of these identifiers in its
privileged meaning, he may simply ignore the fact that it is privi-
leged and declare and use it as he would any non-reserved identifier.
I{f a privileged identifier is redeclared within an inner block, it
resumes its privileged meaning as soon as the end of that inner block
is passed.

The currently available privileged identifiers in ALGOL-20 are
described below., As additional privileged identifiers become available,

they will be described on sheets which can be added to this chapter.

ACC
ACC is a symbol denoting the accumulator, which may appear on the

left side of an assignment statement. Thus
acc:- ali, i, k+3];

will fetch an array element to the accumulator. ACC is of particular use
in setting the accumulator before executing a piece of WHAT code. This
mechanism should always be used when accessing array elements or formal
parameters called by name for use in WHAT code. No error will be detected
if ACC appears other than on the left side of an assignment statement, but

such uses will usually cause spurious results.

CLOCK

CLOCK is an integer-valued function designator which is called with
a single parameter. The value of "CLOCK(O)" is the elapsed time in
seconds since the Name-Time card was read. 'CLOCK(V)" is the elapsed time
in seconds minus the integer value of the parameter V, also in seconds;

i.e.,

CLOCK(V) = CLOCK{(0) - V

AL.od.Z

Example:

A: STARTTIME « CLOCK{(0) ;

B: ELAPSE .~ CLOCK(STARTTIME)} ;

This will store in ELAPSE the elapsed time Ln seconds between passing

label A and passing label B.

DAY
MONTH
YEAR

DAY, MONTH, and YEAR are built-in variables of type logic which arec
set by the translator to the four-character alphanumeric string representa-
tions of the current day, wonth, and year, respectively. The format is
best defined by example: On the 9th of April, 19082, we have

DAY . L9l

MONTH = "APR.'
YEAR = '62|_:w_|‘

The statements:
NAME (DAY, MONTIi, YEAR) ; PRINT (<12A, E») ;
would print a line containing:

09 APR 62

DEBUGPRINT

DEBUGPRINT is a procedure with an arbitrary number of parameters which
prints the values of its parameters in a simple rigid format. Its para-
meters may be any arithmetic or Boolean expressions. Arithmetic values are
printed in the format <+.11Z1> ; i.e., in scientific floating peint nota-

tion with 11 significant figures. Boolean values are printed as:

TRUE for true
+,00000000000,+00 for false

Values are printed four petr line; the {irst value printed by cach call of

DEBUGPRINT starts on 4 new line.

aL.6d.3

EPSTLON

EPSILON is a built-in real constant, whose value 1s the smallest
positive number which can be represented in the G-21.

EPSILON - & °°

o 1.274473528903,,-57

HALT

HALT is a parameterless procedure. Lxecucion of a HALT statement
terminates the run-Lime execution of the program and returns contrel to
the monitor. Thus, executing a HALT statement is equivalent to letting

control pass the final end of the program.

EXAMPLE: if X > 8 then HALT ;

INFINITY

INFINITY is a built-in real constant, whose value is the largest
positive number which can be represented in the G-21.

INFINITY = (814 - 1) * 863
~ 3.450873173389,69

PAGES

PAGES is an integer procedure with no parameters. Its value is the
total number of pages which have been completely printed since the job
card was printed. If the printer is positioned to the page which contains

the job card information, the value of PAGES 1s zero.

PAUSE
Executing this parameterless procedure invokes the monitor PAUSE
mechanism, |27, in the usual way. When the program is subsequently

restarted, PAUSE will return to its calling point. For further details,

see the description of |27 in the Monitor Description: THEM THINGS.

AL.5d .4

PRINL

PRINT is a procedure with one parameter which controls the output
of printed information on a teletype. (Note Lhe spelling: the third
character is ¢ oune.) The compilation listing and execution-time output
are always printed on the on-line printer, if a positive number of pages
is requested on the Job Card, PRINT sets a monitor switch which deter-
pines whether execution-time cutput will also be typed on the teletype
which originated the program. If the program did not originate at a

teletype, Lhen PRINT will simply be ignored.

PRINT (1) : Sels switech so output will be on the teletype and printer.
PRINT (M) : Sets switch so output will not be on the teletype, only on

the printer.

The status of the switeh can be changed as often as desired; when an ALGOL
program begins execution, it is set to PRINT (0} unless zero pages have

been requested on the Job Card, in which case, it is set to PRINT (1.

TIME
TIME is a real procedure with no parameters, whose value is the time

of day in seconds, starting at midnight.

AL.be.l
CHAPTER be

Machine-Dependent Features

1. Octal Constants
An octal (base 8) constant may be used in any context in ALGOL-20
where a decimal number is allowed; i.e., as a primary in any arithmetic

or logic expression. Octal constants have the following syntax:

<octal digit> :: =0 | 1 |2 {3 |45]|6]7

<pctalian> = <octal digit> l <octalisn> <octal digit>

<signed octaliam> :: = <octalian> | + <octalian> | - <octalian>

<left-justified octal constant> :: = 8L <octalian>

<right-justified octal constant> :: = 8R <octalian~

<floctaliam> :: = <octalian> <octalian>.<octalian> <octalian>.
<octaliarm>

<power of 8> :: = <signed octaliam>

<floating octal constant> :: = 8F <floctalian> | 8F <power of 8> |

8F <floctalian> <power of &>
<logical octal constant> :: = <left-justified octal constant> l
<right-justified cctal constant>

<octal constant> :: = <floating octal constant: I <logic octal constant>

Despite this syntax, the translator does not treat the digits 8 and 9 in
octal constants as erroneous but will interpret them as 10)8 and 11)8,
respectively., Thus BR495 = BR515.

Local octal constants (8L and 8R) are considered to be of type logic
and so are always accessed in logic mode. Floating octal constants (8F)
are considered to be of arithmetic type, and are always accessed in
arithmetic mode.

The character-pairs 8L, 8R and 8F are treated by the translator as

single entities and must be punched in adjacent columns of the same card,

without intervening blanks.

Al.b6e.2

The value of a floating octal constant is determined by concatena- .
ting the floctalian as an octal number and multiplying it by the appro-
priate power of 8, treating the number which follows the ,, as an octal

integer. For example:

8F,10 = 818
8F11,-5 = 9%81-5

The value of a left (right) justified octal constant is determined
by prefixing (suffixing) to the octalian enough zeros to give eleven
octal digits. This number is then concatenated and stored as a 32-bit
logic word. Since eleven octal digits require thirty-three bits for
representation, the leftmost bit of the leftmost octal digit is lost.

Thus, 8L4 = O and 8L7 = 8L3, a "3-flag'".

2. String Constants
Alphanumeric strings of not more than four characters may be used
as constants in an ALGOL-20 program. Such a string, converted to a set
of G-20 internal characters and stored right-justified in a 32-bit logic .
word in the abcon region, is treated as a logic octal constant. Since the
G-20 internal character for a blank ('4') is zero, the following string

constants all have the same value:
'A' = L.!A' = ';_u_lA' = 'LauuA‘

String constants may be used in any context in which octal constants are

allowed.
Examples:
1. if nextchar = ':' then stringval = !

2. 'ABCD' A 8L377

{The value of the expression in example 2 is 'A.ud")

3. 1if (xA 8R377) = 'A' then

(This tests whether the right-most character of x is 'A'. Note

that the parentheses are needed, since without them, the meaning

is if xA (8R377 = 'A') then which is always false.)

AL .6e.3

3. Bit-Manipulation Operations

In addition to arithmetic, Boolean, and designational expressions,
ALGOL,-20 snytax includes '"logic expressions' which perform bit-by-bit
logic operations on 32-bit G-20 logic words. A logic expression may

include any of the following operands:

1. Logic constant: octal constant or string constant

2 Variable, simple or subscripted, of type logic

3, Function designator of type logic

4. Boolean primary (and, therefore, any Boolean express-
ion in parentheses)

5. Arithmetic primary (and, therefore, any arithmetic

expression in parentheses)

A Boolean primary used as a logic operand is interpreted as one of

the two 32-bit logic words:

8R 37777777777 = 32 one bits for true, or
8R O

1

32 zero bits for false.

I

Each kind of logical operand (except number 5 above, arithmetic
primary) will always be fetched from memory with a "logic access', rather
than a "numeric access"; for example, a CAL command will be used to fetch
a logic variable into the accumulator. When a logic variable or function
designator forms the left-part of an assignment statement, then an STL
command will perform the assignment. Therefore, an assignment statement

of the form
<logic variable> « <arithmetic expressior>

will truncate the absolute value of the expression modulo 232. An STL

cormand is also used for any temporary store of a logical subexpression

(except an arithmetic primary) within a complete logical expression.
Any of the following three logical operators may appear in a logic

expression:

— (complement logic: unary)

A (extract logic: binary)

v (unite logic: binary)

AL.be.4

Each of these cperators periforms the same operation simultaneously
and independently in cach of the 32-bit positions of its operand(s). If
a bit = 1 represents the Boolean value true while a bit = O represents
false, then the logic operators —, A, and ¥V can be considered to perform
the Boolean operations —, A, and V, respectively, in each bit position.
The operators +, -, *, and f may also appear in a logic expression.
Each of these operates in the usual way, considering its logical operands
(except for arithmetic primaries) as 32-bit integers.

The ceomplete syntax for logic construccs is given below:

<logic constant> :: = <string constant> ‘ <logic octal constant>
<leogic primary> :: = <logic constcant> i <logic wvariablex <logic functiom>
<Boolean primary> | (<logic expressior>) l

<arithmetic primary>
<logic factor> .+ = <logic primary> } — <logic primary>
<logic term>» :: = <logic factor> | <leogic term> A <logic factor>
<simple legic expression> :: = <logic term>] <gimple logic expressior> V

<logic term> .

<logic expressiom» :: = <simple logic expression> | <if clause>

<simple logic expression> else <logic expression>

4, Half Variables

A variable of type half behaves exactly as one of type real except that
it contains fewer digits (about 6 instead of about 12), Since half
variables take only one location in the machine and real variables take two,
it is possible to save storage space by declaring large arrays to be of

type half instead of real, if the loss of significance can be tolerated.

5. Index Variables

Simple variables of type index are stored in G-20 index registers.
Eventually, efficient code will be compiled for index wvariables, using the
G-20 index register commands. For the present, however, index is of
interest only in conmection with machine language assembly code ("WHAT")

within an ALGOL-20 program. Index variables behave exactly as do integer

variables. .

AL.6f.1
CHAPTER of

Segments

ALGOL programs which are too long to fit into core memory may be
divided into subportions, called segments. Each segment will be stored
on tape after it is compiled and may then be called into core memory
as 1t is needed,.

Each segment area on tape holds 10240, words. If a segment contains
more than this, it will be stored on successive segment arcas. {(The
nunber of such areas needed is the second parameter to the 5Y Segment
statement.)

A segment is an ALGOL-20 program which includes a SEGMENT system
statement. Each segment must be a complete ALGOL-20 program; that 1s,
it must have a set of matching begin's and end's and declarations of all
identifiers which are used in the segment.

After a segment has been compiled (i.e., after the end which matches
the first begin is found), the code which has been compiled and any
relocated subroutines will be written onto tape as the specified segment.
ALGOL will then continue reading cards, expecting to find ancother program;
this program may also be a segment. Compilation terminates after a program
which is not a segment is processed; control is then transferxred to the first
statement of this program.

If in a program (or seguwent) the statement LINK(i) appears, segment i
will be loaded and control will be transferred Lo its outermest bepgin.

It is convenient to be able to communicate data in core memory between
different segments. However, linking from one segment to another involves
exiting from the outermost block of the current segment, thus making all
variables declared in the segment undefined. To overcome this, the same
block of storage locaztions is used in all segments for own arrays and pwn
scalars. Thus, if identical declarations of own arrays and own scalars
are made in different segments, all these values may be transmitted from
one segment to another. All other scalars and arrays are undefined when a
new segment is loaded; these may be communicated by means of the procedures

DISC.WRITE and DISC.READ.

AL.éfOZ

ERRATA

Two minor features of the HOLLER,OUT and HOLLER,.OVER routines do
not yet function as described in Chapter 6g. These features are as

follows.

(1) HOLLER.OUT (and -- .OVER) do not yet use the complete AND
serial numbering system for serial numbers > 9999; instead,
these routines now supply purely numeric 4-digit serial
numbers, modulo 104. See Section I of Chapter 6g.

(2) Page headings, run error messages, and DEBUG.PRINT output
will appear in an open secondary output file as well as in

the primary output file. See Section V B of Chapter b6g.

Both these features will soon be corrected to correspond to Chapter 6g.

AL.bg, 1

CHAPTER 6g

ALGOL DISC/TAPE ROUTINES

CONTENTS
I. Introductien - Files and Records.
II. Logical File Types.
A. Preassigned Logical File Types.
B. Addressing Disc/Tape Files via Logical File and Relative
Addresser Tables.
TIT. The Binary File Routines - DISC.READ and DISC,WRITE.
A. Parameters and Call.
B. Examples of Use.
C. An Algorithm for Buffered Reading.
IV, The AND,FILE Routine.
V. The Hollerith File Routines.

Introduction.
Primary vs. Secondary Files.
Opening and Closing Hollerith Files.

Card Image Pointer.

Parameters and Call of HOLLER- Reutines.
The Operation of HOLLER,IN.
The Operation of HOLLER,OUT and HOLLER.OVER.

[0 Lo R = I v S o T = = B 3

AL,bg.2

T. TINTRODUCTION - FILES AND RECORDS,

ALGOL-20 includes a set of relocatable library subroutines for
storing binary and Hollerith data in the G-21's disc memory or on
magnetic tapes. This chapter explains these routines and their
relationship to the AND system and to certain parts of the Monitor,
A knowledge of AND is assumed, although no knowledge of the Monitor
is required to understand this chapter.

Disc and tape space is divided into segments of consecutive
storage called files. A file in turn is generally subdivided into
a number of sections with similar (or identical) format, called

logical records. The user may subdivide a file into logical reccrds

in any way he pleases; for example, the logical records could be of
varying lengths, or they could all have a fixed length (c.g., 237 words
each). Files are recorded on disc and tape in units of 320 words,

called physical records or blocks. If the length of the logical

records is mot a multiple of 320 words (the physical record size),
then transmission of logical records to and from disc and tape files
requires the use of buffer areas in core memory to pack and unpack
logical records into physical records.

The G-21 Monitor and the AND System use a standard format for
files of 80-character ''card images' of Hollerith information. A file

with this standard format is called a "Hollerith File', and always

consists of 21-word logical records. TFEach logical record contains 84
characters, packed four-characters-per-word; the last four characters
form a Hollerith serial number, the kth image in the file having serial
number k (excepl see the AND System description, page 4.407 of the User's
Manual, for the numbering system beyond card 9999).

The G-21 Monitor includes a “card read routine", |16, which can
unpack 2l-word logical records of a Hollerith input file from a 320-word

internal buffer area in core memory. The relation of I]6 to ALGOL pro-

grams is explained more fully in Section VB.

AL.6g.3

Each file is assigned space on disc or tape in units of complete
blocks, i.e., in multiples of 320 words. The space allotted to a file
has a fixed length and therefore an end, called its physical (or binary)
End-of-File. ("End-of-File' will be abbreviated teo "EQF" in this chap-
ter.) Disc/Tape routines will detect an attempt to read or write beyond
the physical end of a file, and will notify the programmer of the End-of-
File condition, for example, by returning through a special exit. Thus,
a program which processes a file may use the EOF condition as a signal to
transfer out of the main processing loop.

The routines for reading and writing disc and tape may be divided

into two sets: the binary file routines, and the Hollerith file routines,

1) Binary File Routines: DISC,READ, and DISC,WRITE.

These routines are very efficient for moving large quantities of
data between ALGOL arrays in core memory and bulk storage (i.e., disc or
tape files). They assume no logical record structure for the file, but
read and write in units of complete 320-word physical records. Files
read with DISC,READ and written with DISC,WRITE will be referred to as
"binary files", since no logical record structure is assumed by these
routines; however, such binary files could contain any mixture of binary
numbers and Hollerith strings arranged by the programmer {see the examples
in Scction III). The programmer using the binary file routines may wish
to provide buffering in his ALGOL program to pack and unpack logical
records which are not a multiple of 320 words in length; see Section III

for 2 complete discussion.

2) Hollerith File Routines: HOLLER.IN, HOLLER,OUT, and HOLLER,OVER.

These routines allow ALGOL format READ, PRINT, and NAME statements to
be used to read and create Hollerith files., For example, the HOLLER.IN
("HOLLERith INput”) routine sets switches in the Moniter to cause "E'" and
"W' instructions in READ statements to take successive images from a

selected Hollerith File on disc or tape. Then the full machinery of NAME

and READ statements may be used to scan the images character-by-character

AL,.bg.4

for Hollerith strings and numbers, to convert them to binary, and to
store them into ALGOL variables. The HOLLER.OUT ('HOLLERith OUTput')
and HOLLER,OVER ("HOLLERith OVERwrite") routines provide the correspond-
ing ability for creating Hollerith files, image-by-image, using NAME

and PRINT statements. HOLLER.OUT appends images to the end of a file,
while HOLLER,OVER is used to alter images of an existing Hollerith file.
Since all Hollerith files have identical format, a file created by
HOLLER,OUT (or -.OVER) may subsequently be edited by the AND System.

See Section V for a complete explanation of these routines.

Since a Hollerith file is composed of 21-word logical records,

320
21
length of B blocks can contain at most }(

& 15.24 card images fit into each physical record; a file with binary
320%8B
21
a Hollerith file may contain fewer than this maximum number of images.

) - 1 card images. However,

The end of Hollerith information is indicated by a Hollerith End-of-File

image which normally appears immediately after the last image currently
in the file.

A Hollerith End-of-File image is distinguished by the presence in
columns 1 and 2 of two "lower-case dollar signs", G-20 character codegl65,
This code is the G-20 internal representation of the (+, -, 8, 9) punch
combination which always appears in columns 1 and 2 of a job card; thus,
each job card serves as an EOF card for the preceding job in the card
reader. The rest of the EOF image contains a message indicating which
routine wrote it there; for example, the EOF image: 135 ALGOL END COF
FILE" is written by HOLLER,OUT, An EOF image from the card reader is
blank except the two lower-case dollar signs.

Tt is usually important to have an EOF image in a Hollerith file
since, for example, the Monitor card read routine 16 checks for the
Hollerith EOF image but not for the physical EOF. Hence, if the program-
mer is using the EOF condition to terminate his program when it reaches

the end of reading a Hollerith file, he must have an EOF image in the

file. Hollerith files created by AND always contain EOF images; those

AlL.6g.5

created by HOLLER.OUT will have an EOF image if the programmer properly
"closes" the file - see Section V.

The disc/tape routines DISC.WRITE, HOLLER,OUT, and HOLLER,OVER
allow an ALGOL user to write directly onto any of his AND files -~ i.e.,
any files which are listed under his man number in the AND Directory.
However, these routines never change the dump count of the file being
written. Therefore, a user who writes files using these ALGOL subroutines
and saves the file for later runs must be aware of the possibility (against
which the dump count protects AND users) that all AND files may be set
back one or more days as a result of hardware failure. To protect himself
against this possibility, the programmer may want to keep his own dump
count somewhere in the file, increment the count when he writes on the
file, and check for the value he expects before reading or writing. If
the AND file is written only once and thereafter is only read, or is used
only as a temporary ("scratch") file during a run, then there is no need
for a dump count.

The user should also note that the AND files are stored not only on
the disc but also on two permanently-mounted magnetic tapes. It requires

approximately three minutes of computer time to traverse one of these

tapes end-to-end. An ALGOL user who attempts to access more than one
file on the same tape can easily waste huge amounts of computer time
moving ("slewing'") the tape back and forth between files. On the other

"randomly", i.e.,

hand, any number of files on disc can be accessed
without wasting time slewing. Note: a file is on disc if its First
Block Number in the Directory is less than 21000. A new AND imstruction
will shortly be available to force a file to be created or dumped onto
the disc rather than onto one of the AND tapes; the programmer will

therefore have a convenient way of avoiding severe tape slews due to

the ALGOL disc/tape routines.

AL.6g .6

IT. LOGICAL FILE TYPES,

A. PREASSIGNED LOGICAL FILE TYPES,

The ALGOL disc/tape routines refer to particular files by an integer

value between 1 and 19 called the Logical File Type {("'LF Type'). Some

of the Logical File Types have been pre-assigned to certain fixed files
in the CIT system: e.g., the AND Scratch Area. However, any of the 19
Logical File Types may be assigned to any permanent AND file for the
duration of the run, either by the AND System or by the ALGOL library
procecdure AND,FILE. Normally, a usecr should use AND to set up all LF
Types for all files he will neea, before the ALGOL translator is called
te compile and cxecute his program. In some cases, the user will need to
assign AND files to LF Types during his ALGOL run; the library procedure
AND.FILE is provided for this purpose (see Section 1V),

The LF Types currently pre-assigned are as follows:

LF Type Meaning Length Length
{blocks) (card
) images)
1 Current effective begin- | (see below) (see below)
ning of AND Scratch
Area.
2 Physical beginning of 3072 46811
AND Scratch Area
3 Retap 1 Records 3072 46811
(same as AND Scratch
Area) .
4 Retan 2 Records 1536 23405

{the second half of
AND Scratch).

5 Retap 3 Records =1¢000 = 152381
(on a permanently
mounted system tape)

& Comp Center Records | -=--- | -=---=
(NOT available to
user, unless specifi-
cally allocated by CC
staff!). !

Al.bg.7

in some circumstances (specifically, the execution of a "RUN,
AND, ..." instruction) the AND System moves the effective beginning
of the AND Scratch Area past the end of information already in Scratch.
AND defines Logical File Type 1 to be the effective beginning cof the
Scratch Area when AND loads and executes the ALGOL system. Logical File
Type 2, however, is always defined as the fixed physical beginning of
the Scratch Area. It is recommended that LF Type 1 rather than LF Type
2 be used to refer to AND Scratch so that 'recursive' AND runs can be

performed without changing the operation of the ALGOL program.

B, ADDRESSING DISC/TAPE FILES VIA THE LOGICAL FILE AND RELATIVE ADDRESSER
TABLES,

The correspondence between a particular LF Type and actual block
addresses on the physical input/output devices is established by two
tables in the Monitor: the Logical File table, and the Relative Addresser
table. The ALGOL programmer is thereby removed by two levels of general-
ized (or "symbolic'") addressing from the physical input /output devices.
The process of finding a block on the physical device can be visualized

by the following picture:

Logical File Table Relative Addresser Table
1 0
4 1
: E “){1;/0
RELATIVE . NIT
R.A. TYPE| FELATINE | UNI

e [Tt

19

L.F TYPE

AL, 6g.8

The LF Type is used to select an entry in the Logical File Table
which specifies: (1) a Relative Addresser Type ("RA Type') and (2)
the first block of the file, relative to the first block of the region
defined by the RA Type. This RA Type is used in turn to select an
entry in the Relative Addresser Table, which specifies: (1) the (logical)
number of an actual I/0 unit and (2) the first physical block number of
that RA Type region on that unit. This addressing process can be sum-
marized by the following ALGOL statements: to find block number B of
the file with Logical File Type LF,TYPE, the Monitor uses:

U « TO.UNIT [RA.TYPE [LF.TYPE)];

P . PHYSICAL,FTRST.BLOCK [RA.TYPE [LF,TYPE)]

+ RELATIVE.FIRST,BLOCK [LF,TYPE| + B
where U is the logical I1/0 Unit number, and P is the physical block
number on that unit. The logical unit number U is converted to a physical
IfO unit number through another Monitor Table to achieve flexibility in
the use of the physical tape drives; this last logical-physical corres-
pondence is irrelevant to the programmer, however.

The Relative Addresser Table (discussed on page 14 of the Monitor
"{routine" write-up "THEM THINGS'™) provides a global allocation of space
on tape and disc, generally the same for every program run. The Relative
Addresser Table is changed in two circumstances: (1) The Computer
Operations staff may change the global allocation of space on tapes and
disc, or may convert the entire operation to tapes when the disc is

' on his job card, replacing

"down"; and (2) a user may specify a "User Tape'
one {(or more) of the standard system Relative Addresser entries by
entries pointing to his own magnetic tape, only for the duration of his
run. TIf a User Tape replaces a Relative Addresser Type to which a
Logical File Type is assigned, then the meaning of the Logical File Type

and the length of the file change correspondingly, but only for the

duration of the run.

AL, 6g.9

IIE. THE RINARY FILE ROUTINES: DISC,READ AND DISC,WRITE.

A, PARAMETERS AND CALlL.

DISC.READ will read information from disc or tape into an array
in core memory; DISC,WRITE will write the contents of an array in core
memory out onto disc or tape, These routines allow the user to move
binary and Hollerith information in bulk between core memory and
disc/tape files., Their parameters are as follows:

DISC.READ(NWDS, FIRST.LOC, LF.TYPE, BLK.NO, EOF,EXIT);

DISC.WRITE (NWDS, FIRST.LOC, LF,TYPE, BLK.NO, EOF,EXIT);
Here:

NWDS = Number of machine words to read or write.

FIRST.LOC = An array element which is the ALGOL name of the

first word in core memory to read or write.
LF.TYPE = Logical File Type (explained in Section II).
BLK.NO = Number of the first 320-word block to be read or
written (the first block of the file has block
number 0).
EOF ,EXIT = Label through which the routine will exit if the
physical End-of-File is reached during the operation.
Starting at the block number BLK.NO of the tape/disc file with Logical
File Type LF,TYPE, the routines will read or write as many blocks as
are needed for the number of words NWDS, DISC,READ reads into core
memory exactly NWDS words, where NWDS is not necessarily a multiple of
320. DISC.WRITE will write enough extra words (generally "garbage™) to
complete the last 320-word physical record. These routines initiate
direct input/output transmission between core memory and the tape or
disc unit; there is no buffering,
Attempting to read or write beyond the physical End-of-File will

cause the routine to complete the operation up to the End-of-File, and

AL, bg. 10

then exit through the EOF,EXIT label.
If an AND file assigned to a Logical File Type (by AND,FILE, or
by the AND system) belongs to a programmer different from the man making
the run, then this LF Type will be marked 'read only". Calling
DISC,WRITE {or HOLLER.OUT, or HOLLER,OVER) to write on this file will
cause a run error; thus, a user can write only on his own files. Both
DISC.READ and DISC,WRITE print the same run-error messages, as follows:
RUN ERROR - BWRl: The specified Logical File Type has not been

pre-assigned or assigned by AND or by AND.FILE,

RUN ERROR RWR2: A negative number of words has been called for.
RUN ERROR - RWR3: The FIRST,LOC addrecss lies outside user's

Memory.
RUN ERROR - RWR%4: LF,TYPE is out of range: 1 £ LFTYPE = 19,
RUN ERROR - RWR5: DISC.WRITE has been asked to write on a file

which is marked "“read-only',

B, EXAMPLES OF USE,
Assume the following declarations:
veal array X[0:20, 1:100];
integer arrvay IEO:lOOQ]; logic array L[l:JOOJ;

Then the subroutine call:

DISC.READ (4200, x[0,1), 1, 23, EOF);
reads 4200 words into the X array in core memory from the file with Logical
File Type 1 (the AND Scratch Area), starting from block 23 of this file.
Fach element of the real array X occupies two machine locatjions and
x{0,1] is the first element of X; therefore, this call will exactly £ill
the X array. There is no check in DISC.READ {(or DISC,WRITE) for over-
flowing an array; if this call were changed to read more than 4200 words,
the extra werds would be stored into locations beyond the eand of the X

array, presumably clobbering another array.

AL,b6g. 11

Similarly, the entire I array may be written on records 40 through

43 of AND Scratch by the procedure call

DISC.WRITE (1001, 1{0}, 1, 40, EOF);
Since ecach integer variable is stored in one G-21 memory location, 1001
words are needed for the 1001 elements of the array, A little more than
three blocks are needed for this WRITE operation; the fourth block will
be filled up with whatever happens to be in memory in the locations
following I[lOOd}.

These routines mav be used to read or write alphanumeric strings;
such strings should be stored in core in arrays of type logic. Each
word of the string contains four characters. Thus, the call:

DISC.WRITE (300, L[1), 1, O, EOF);

will write a string of 4 x 300 = 1200 characters from the array L.

C. AN ALGORITHM FOR BUFFERED READING.

In all the above examples, each logical record read or written was
assumed to start at the beginning of a physical record. If the logical
records contain significantly fewer than 320 words, however, this simple
assignment of logical to physical records is wasteful of both time and
space on tape or disc., 1If disc/tape space is important and if the
logical records are short, the user should include buffer routines in
his ALGOL program to pack and unpack logical records from each physical
record. The buffer area would be an ALGOL array whese length was a
suitable multiple of 320,

For example, the procedure declaration below describes the algorithm
for buffered reading from a binary file. The algorithm reads BUFF.SIZE
blocks at a time into a buffer array:

BUFF [1:320%BUFF.SIZE] .
Note that BUFF is a "dynamic own array" (see page AL.2.14 of ALGOL-20

Manual); if this algorithm is used in an ALGOL-20 program, a numerical

AL,6g.12

value must be substituted for BUFF,SIZE before the program is compiled,
or else BUFF must be declared globally to the procedure. Although the
formal parameter A in BUFFERED,READ is a logic array, an array of any
type may be substituted as an actual parameter; however, if a real
array is substituted, then the actual parameter substituted for N must

be doubled.

AL.6g.13

procedure BUFFERED.READ (N, A, LF.TYPE, EOF.EXIT);
value N, LF.TYPE;

integer N, LF,TYPE; logic array A; label EOF.EXIT;

comment Fach call of BUFFERED,READ moves the next logical record of N
logic words inte variables A[l], e A[ﬂ} of a logic array A. If this
process empties the internal buffer array BUFF, DISC.READ is called to
refill the buffer from the file with Logical File Type LF,TYPE. 1If the
physical EOF is encountered before the logical record is obtained,
BUFFERED.READ exits to the label ECF.EXIT.

Calling BUFFERED.READ with LF,TYPE < 0 initializes the record
number and buffer pointer to the beginning of block 0 of the Logical File

Type -LF,TYPE, and moves the first n-word logical record of the file;

begin
own logic array BUFF [I:SZO*BUFF.SIZQ];

own integer PT, BLK.KO; integer I, ULIM;
if LF.TYPE < 0 then
begin BLK.NO ¢~ 0 ; PT « 320%BUFF.3IZE end initialization;
I «1;
MORE:
ULIM ¢ min (N, 320%BUFF.SIZE - PT);

for I <1 step | wuntil ULIM do
A1) < BUFF(PT + 1J;
comment move words until N words moved or buffer empty;
if ULIM < N then
begin comment BUFF is empty and more words are needed;
DISC.READ (320%BUFF.SIZE, BUFF(1], abs (LF,TYPE), BLK.NO,EOF.EXIT);
BLK,NO « BLK.,NOG + BUFF,.SIZE;
PT « PT - 320%BUFF.SIZE;

g0 to MORE
end of refill;
PT « PT + max (N, 0);
end BUFFERED.READ ();

AL.6g. l4

Iv, THE AND,FILE ROUTINE

The relocatable library procedure AND,FILE allows an ALGOL program
to define a Logical File Type as a particular AND file. AND,FILE is
called with the following parameters:

AND.FILE(USER, PROG, LF.TYPE, BUFF.LOC, ERR,.EXIT);
where:

USER = The AND "User" number for the file, an eight character

alphanumeric string; this string may appear either as
an 8 character string constant {e.g., 'PH33WWO1') or as
the name of the first of two successive elements of a
logic array which contains the string as value (see
example below).

PROG .- The AND "Program’ number of the file (not including the

dump-count) .

LF.TYPE _ The Logical File Type to be associated with this AND

LF,TYPE = 19,

1A

file; LF.TYPE must lie in the range: |1

BUFF,LOC = An array element which is the first element of a

vector of at least 320 words.

ERR.EXIT - A label to which AND,FILE will exit if any of the

parameters are improper or if the designated AND file
does not exist in the AND Directory.

The effect of calling AND.FILE is to look up the AND file under
(USER, PROG) in the AND Directory, and assign it to Logical File Type
LE,TYPE, The 320 locations starting at BUFF,LOC are used as a buffer
to read the AND Directory; after the call of AND,FILE, this space is
available for other uses.

It is important to observe that AND,FILE reads but never writes
on the AND Directory; thus, the AND Directory will never be changed as
a result of execution of AND,FILE. This implies that:

(1) the file being looked up must already exist; it will not be

created by AND,FILE if it does not exist;

AL,6g.15

(2) operation of AND,FILE will never change either the physical
(i.e., binary) length of the AND file, or the most-recent-
access date in the Directory, or the Dump Count of the file.

In general, a run using the AND system will be required to create an
AND file or to increase its length. There is an AND instructien
"CREATE" for this purpose.

The user is warned that if he accesses an AND file only in his
ALGOL program via the AND.FILE procedure, never in AND itself, then
the latest-access-date for the file will never be updated. As a re-
sult, the file will eventually be "frozen'", i.e., moved to a history
tape and deleted from the current AND records. On the other hand,
setting up a Logical File Type during an AND run dees update the ac-
cess date of the file in the AND Directory; hence it is generally
preferable to set up L.F. Types during the AND run rather than to use

AND.FILE,

An example of a call of AND.FILE would be:

integer array BUFF [1:320] ;
label GLUG;

logic array USER[1:2] ; integer I, PROG,NO;

name (I — 2(USER[I]) , PROG.NO.) ;
read (<E, 8A, 8b>} ; comment read user number and program number

from a data card;

AND,FILE (USER[1] , PROG.NO, 12, BUFF[1] ,GLUG) ;

GLUG: PRINT (<'NO SUCH FILE EXISTS', 2E>) ; HALT ;

This program will read an 8 character user number string (e.g.,

'S236JP01") and an integer program number from a data card, and look

AL.6g.16

up the corresponding file in the AND Dircctory. If the file exists,
it will become Logical File Type 12; if not, the statement labeled
"GLUG'" will be executed. The 320 words BUFF[1]...BUFF[320] will be
used to read the AND Directory.

If AND.FILE is called te look up an AND file under & man number
differing from the man number appearing on the Job Card, then the cor-
responding Logical File Type entry will be marked "read-only™. Call-
ing DISC.WRITE, HOLLER.OUT, or HOLLER,OVER to write on a read-only
AND file will cause & run error; thus, a user can use the ALGOL disc/
tape routines to write on his own AND files only.

AND.FTILE checks carefully the validity of its parameters. Any
of the fellowing errors will cause it to print an appropriate message
and exit to the label ERR.EXIT without defining the Logical File Type.
A subsequent attempt to operate on this Logical File Type with one of
the other disc/tape routines will cause a run error. The error con-
diticns detected by AND.FILE are:

1. Usage number is improperly formed or not in AND directory.

2. Program number is cut of range or not in the AND directory.

3. Designated file is empty (contains 0 words) and can there-

fore be neither read nor written.

4. Logical File Type does not satisfy 15 L.F. Type = 19.

2. Selected AND file is on a tape which is temporarily unavail-

able.

6. AND instruction DONT has not been executed, so the AND

Directory cannot now be read by this CP. See AND System
Write-up.
7. Attempt has been made to access another man's file which 1is

marked ''secret'". See AND System Write-up.

AL.6g.17

V. THE HOLLERITH FILE ROUTINES

A, INTRODUCTION

The DISC.READ and DISC.WRITE routines move binary and Hollerith
information in bulk between core memory and disc/tape files. The
"HOLLER-'" routines, HOLLER,IN, HOLLER,OUT, and HOLLER.OVER, on the
other hand, provide buffered input and output of Hollerith files using
ALGOL format READ, PRINT, and NAME statements.

Calling HOLLER.IN selects a Hollerith file as the source of card
images for READ statements; each subsequent execution of an YE"™ or "W"
instruction will read the next image from the selected file into the
format read buffer, where it can be scanned character-by-character.
Similarly, HOLLER,OUT (or HOLLER,OVER) will cause each "E" or yn
format instruction in a PRINT statement to output columns 1 through
80 of the 120-column print buffer plus a sequence number in columns
81 to 84, as the next image of a selected Hollerith output file.
HOLLER.OUT {and - .OVER) supply consecutive integer serial numbers,
equal to the ordinal numbers of the images in the file. HOLLER, OUT
appends images to a file, while HOLLER, OVER may be used tc alter

images in the middle of an existing Hollerith file.

B. PRIMARY vs. SECONDARY FILES

When an ALGOL program begins execution under the G-21 Monitor,
there is always one Hollerith input file and one Hollerith output
file; these are referred to as the "primary'" input and output files,
respectively. The primary input file may be a teletype input file,
an AND file, the AND Scratch Area, or a physical deck in the card
reader, for example. The primary output file may be the LP12 printer,
a teletype output file, or both. The HOLLER- routines designate
auxiliary input and output files, referred to as ''secondary files'".

When an "E" or "W" format instruction is executed in a READ

statement, the ALGOL format routine calls the Monitor card read

AL, 6g.18

routine ("|16”) to supply a Hollerith card image. {16 has implicit
parameters which indicate whether the image is to come from the next
physical card in the card reader, or from the next 2l-word logical
record in a particular Hollerith file on disc or tape. In the latter
case, |16 transmits to the (84-character) ALGOL READ buffer® the card
image which is the next 2l-word logical record in a 320-word input buffer
area in core memory. If this image was the last complete image In the
320-word buffer, then %16 automatically reads the next 320-word block
from disc or tape into its buffer area, in anticipation of supplying

the next image. (Note: this description has omitted some details which
are unnecessary to an understanding of the HOLLER- routines; further
information on Moniter routines may be found in Section 2.3 of the CIT
User's Manual.)

The function of HOLLER.IN is to set the source parameters of ‘16
to take Hollerith images from a particular file. Calling L16 either
implicitly with "E" or "W" format READ instructions, or explicitly in
machine language with WHAT code will read successive images from the
file selected by HOLLER.IN. It should be remembered that any routine
in the user's program whose effect is to read "cards" will ultimately
call 216, and will therefore get images from a secondary file if
HOLLER. IN has been called,

Similarly, when the ALGOL format routine executes an "E' or "W"
instruction in a PRINT statement, or a "W' instruction in a READ
statement, it calls the Monitor Hollerith output routine ("|11") to
transmit the print line to the primary andfor a sccondary output file.
The functicn of HOLLER,.OQUT (and -.0OVER) is to set the secondary des-

tination parameter in]11 to a particular secondary output file. The

*Note: the "ALGOL READ buffer', part of the format READ mechanism
of ALGOL, contains exactly one 84-character card image to be scanned
by format instructions; it should not be confused with the 320-word
input buffer area used by 116 to unpack 2l-word legical records from

320-word disc/tape blocks.

Al,6g.19

images sent to a sccondary file are collected in a 320-word buffer in
core memory; when this buffer is filled, its contents are automatically
written onto the next physical bleck on tape/disc. Even if the pro-
grammer calls |11 direcctly in WHAT code, |11 will transmit the print
line to the primary and/or sccondary cutput files as determined by
HOLLER.OQUT (or -.0OVER). On the other hand, ALGOL run-error messugos,
page headings, and output from DEBUG,PRINT are transmitted only to the

primary output file, never to a secondary output file.

C. OPENING AND CLOSING HOLLERITH FTILES
The process of selecting a Hollerith file with HOLLER.IN, HOLLER.OUT,
or HOLLER,OVER will be referred to as "opening' the file; the "de-

selection" of a file will be referred to as "closing'" that file. Cles-
ing a secondary output file writes the last 320-word block froem the
core buffer onto the file on disc or tape. The user cf HOLLER.OUT or
HOLLER,COVER is cautioned that the system does not automatically close

a secondary output file when the ALGOL program terminates. The user
must call HOLLER,QUT(0) or HOLLER,OVER{0), as appropriate, to close

the file and write out the last block, or he will lose up to 16 card
images.

Because input can be read from only one source at a time, there
can be only one open input file at once: either the primary input
file, or a secondary file selected by HOLLER.IN, On the other hand,
the same output line may be transmitted simultaneously to more than
one output file, so one sccondary output file (selected by HOLLER,OUT
or HOLLER.OVER) may be open simultancously with the primary output

file, if the user so chooses.

D. CARD IMAGE POINTER

The Hollerith card read routine }16 has an input card image

pointer which contains the serial number of the next card image to be

read from the current file (unless the input file is a physiecal card

deck, in which casc the card image pointer is undecfined); cach call

AL.6g.20

of }16 increments this pointer automatically. The Hollerith print

routine i1T has a corresponding output card image pointer which con-

tains the serial number of the next card image to be output to a
secondary output file, but is undefined if no secondary cutput file

is open. Note that the output card image pointer is associated only
with a secondary file, and has no necessary connection with the serial
number of the primary output file. If a secondary output file is
open, then each call of [11 converts the value of the image pointer

to & Hollerith characters and stores it as the serial number in col-
umns 81-84 of the image (note: this serial number is also stored into
columns 81-84 of the print line sent to the primary file); then the
image pointer is incremented by 1.

HOLLER.IN sets the input card image pointer when it selects a
new input file; first, however, the previously selected file is
closed, and the previocus value of the card image pointer is saved in
a pointer temporary associated with the previous LF Type. Similarly,
when HOLLER.OUT or HOLLER.OVER selects a new secondary output file,
it closes the previous file and saves the previous value (if any) of
the output card image pointer in the peinter temporary associated
with the LF Type of the previously selected secondary file, before
setting the output card image pointer to a new valuc. The programmer
can reselect (“"reopen") any secondary file which was selected earlier
in the run, either for reading or writing, in such a way as to restore
the card image pointer to the value saved in the peointer temporary for
that LF Type. It is important to note, however, that there is only
one peinter temporary for each LF Type, used for saving both input
and output card image pointers. This makes it convenient to read
through a file until a certain image is found and then start rewriting
the file from that image on,

In addition to the internal pointer temporary mechanism just

described, there is provision in the call of the HOLLER- routines for

AL.6g.21

storing and setting the input and output card image pointers using
ALCOL variables designated by the programmer.

When an ALGOL program begins execution, the pointer temporaries
for all LF Types (except perhaps 0 and 1) are initialized to 1.
Calling AND,.FILE to assign a particular LF Type to an AND file
initializes the pointer temporary of that LF Type to 1.

It is possible to have the same file, with the same LF Type, open
for both Hollerith input and Hellerith output, simultaneously. Fur-
thermore, the same file can be assigned (by the AND system or by AND.=
FILE) to more than one Logical File Type. This gives the user great
flexibility in processing several different parts of the same file at
once. However, the user should avoid doing such an operation on a
file which is on a tape rather than on the disc, or machine time may
be wasted on long tape slews.

Tt is convenient to think of the primary input file as Logical
File Type = 0. For example, when the primary input file is closed by
HOLLER.IN and a secondary input file becomes the card image scurce, the
input image pointer for the primary file is saved in the internal
pointer temporary associated with LF Type = 0. Calling HOLLER.IN to
open LF Type = 0 will reselect the primary input file, after closing
the previously selected secondary input file. LF Type = 0 has no
relation to the primary output file, which cannot be cpened or closed

by the HOLLER- routines.

E. PARAMETERS AND CALL OF HOLLER- ROUTINES

The HOLLER- routines may have one or two parameters, as follows:

HOLLER.IN(LFT) ; or HOLLER.IN(LFT, POINTER) ;
HOLLER,QUT{(LFT) ; or HOLLER.OQUT (LET, POINTER) ;
HOLLER. OVER (LFT} ; or HOLLER.OVER(LFT, POINTER) ;

In each case, the formal parameters could be specified by:

value LFT ; integer L¥FT, POINTER ;

Al,bg.22

LFT is generally the Logical File Type of the file to be opened for in-
put (HOLLER,IN) or output (IIOLLER.OUT or HOLLER.CVER); see the detailed
description of each routine below. Any arithmetic expression may be
substituted for the LFT parameter.

The meaning of the paramcter POINTER depends upon the value of

LET:

-
HA

LFT = 19: Pointer = the serial number teo which the card image
peinter will be initialized in the secondary file with
LF Type = LFT. In this case, any arithmectic express-
ion may be substituted for the parameter POINTER., If
the POINTER parameter is omitted, then the card image
peinter will be initialized instead to the value of the

internal pointer temporary associated with LFT.

LFT = 0: POINTER is a variable which will be set equalpto the
previcus input or cutput card image pointer, i.e.,
the peinter in the f£ile which is being closed; this
same pointer value is also stored in the internal
pointer tempcrary associated with the LF Type being
closed. 1In this case, only a variable, either simple
or subscripted, may be substituted for POINTER. If
POINTER is omitted, then the card image pointer will be

stored only in the internal peinter temporary.

The programmer may wish to find out the serial number of the next
image to be output to, or read from, an open secondary file; notice
that closing and immediately reopening the same Logical File Type will
have no effect other than saving the current image pcinter in POINTER,
if the parameter is present in the statement which closes the file.
The user may also wish to skip about in one file, which means that the
internal image pointer from a preceding file closure will be lost on
a following closure; if the user saves his own copy of the pointer in

POINTER when he closes the file, he may reopen the file later at this

serial number by using POINTER as parameter.

AL, bg.23

¥. THE OPERATION OF HOLLER.IN
A call of the following form:
HOLLER.IN(LFT); or HOLLER,IN(LFT, POINTER};
opens for Hollerith input the file with LF Type = LFT, after closing
for input the file which was previously open. The following steps arc

performed:

(1) The previous value o¢f the input card image pointer is
assigned to the internal pointer temporary for the
LT Tvpe of the file previously open for input.

(2) 1If LFT = 0, (i.c., the primary input file is being
selected) then the previous card image pointer is also
assigned to the variable POINTER (if the POTNTER para-
meter is present).

(3) The card image source is set to the file with LF Type = LFT:

1= ILFT = 19: opens a seccondary input file, and
LFT = 0 : recpens the primary file.

(4) The input card image vointer (i.e., the scrial number of
the first image to be read from the newly opened file) is
sct equal to the value of the pointer temporary for file
LET, unless LFT is > 0 (i.e., a secondary file is being
sclected) and the paramcter POINTER is present; in the
tatter case, the input card image pointer is set to the

value of POINTER.

Thus, the ALGOL programmer can always "get hold of" of the input card
image pointer of a sccondary file by cxccuting: HOLLER.IN(O, HIS.POINTER)
te close the sccondary input file and store the pointer in the ALGOL
variable HIS.POINTER. The user cannot "get hold of'" the card image
pointer for the primary file, since this file may be a physical card

deck for which the pointer 1is undefined. On the other hand, if the

user has arranged it so that the primary file is a particular AND

file or one of the files which have preassigned LF Types, then the uscr

AL.bg.24

can assign the same file a LF Type and select it as a secondary file
with HOLLER,IN; he can then effectively "backspace' and reread such
a primary input file.

Whenever the Moniteor card read routine [16 transmits a Hollerith
EOF image to the ALGOL READ routine or directly to the user, a switch
is set in the Monitor; Lf !16 is called to provide another card image
after this EOF switch is set, the Monitor will terminate the program.
However, calling HOLLER,IN with L.F. Type = 0 not only closes the
secondary file, but also clears this WIb EQF switch. Therefore, the
user can read and detect the Hollerith EOF image in a secondary file
(by testing for the first two characters being 8R165), close the file,
and continue reading images from the primary file or open another
secondary file.

HOLLER. IN may produce any of the following run-error messages:
RUN ERROR - HINI LFT < 0 or LFT > 19
RUN ERROR - HIN2 Attempt to close a secondary input file when

there was no secondary file open for input.
RUN ERROR - HIN3 Attempt to read from a file which was not
predefined or defined by AND or AND,FILE.

RUN ERROR - HIN4 Attempt to set the image pointer to a negative

card number or beyond the physical End-of-File.

G. THE OPERATION OF HOLLER,OUT AND HOLLER. OVER
A call of the form:
HOLLER,OUT (LFT) ; or HOLLER.OUT(LFT, POINTER) ;
will close the secondary file (if any) which was previously open for
Hollerith output; if LFT > 0, it will then open the secondary file
number LFT for Hollerith input.
If 1 = LFT = 19, then.the following steps are performed:
(1) 1If there was previously a secondary output file

open for Hollerith output, then it is closed in

the following manner:

AL.6g.25

(a) The output card image pointer is assigned
to the internal pointer temporary of the
LF Type previously open.

{(b) A Hollerith EOF image is placed after the
last image appended to the file (but the card
image pointer is not incremented, so if the
file is later reopened at this point then the
EOF image will automatically be overwritten by
the next image) .

(¢) The last 320-word block is written from the
secondary output buffer in core onto the disc/
tape file,

(2) The secondary output destination is set to the file
with LF Type = LFT,

(3) The output card image pointer is set equal to the
serial number in the pointer temporary associated
with LFT, unless the parameter POINTER is present,
in which case, the pointer is set equal to the value
of POINTER, The physical block containing this
image is read into the secondary output buffer.

If LFT = 0, then the following steps are performed instead:

(1) The secondary output file which was previously open is
closed, as described above for the case: 1 = LFT = i9;
if none was previously open, a run error - HOTZ will occur.

(2) 1f the parameter POINTER is present, then the same pointer
value which has been stored in the internal pointer
temporary for the previously open file will also be
assigned to POINTER.

If HOLLER.OUT is used, the user must declare the Boolean variable
PRINT.OR.NOT in his outermost block. If PRINT,OR,NOT = true when lll

AL, 6g.26

ig called by an "E" or "W" in a PRINT statement, a "W'" in a READ
statement, or directly in WHAT code, then the print line will be
transmitted to the primary output device as well as to the secondary
output file. T1f no secondary output file is open, PRINT,OR,NOT has
ne effect. WNote that the Boolean value of PRINT.OR,NOT may be set at
any Lime without calling HOLLER,OUT again. When a secondary output
file is closed by HOLLER.OUT, a Hollerith EOF image is appended to
the file, as described above. The serial number of this EOF image
is the pointer to the "next" image which is saved in the pointer
temporary and perhaps passed to the user via the POINTER parameter,
If the file is subsequently reopened for output with this pointer
restored, the End-of-File image will be written over.

Each time a file is opened by HOLLER,OUT, the disc (or tape) block
containing the card image at which the file is opened is read into
core. However, on succeeding blocks, a read does not precede the
write. Thus, HOLLER,OUT may be used to append images to the end of
a Hollerith file but not to alter images in the middle of an existing

file; the routine HOLLER,OVER should be used for the latter purpose.

WARNING: If an ALGOL program terminates before the secondary output
file is closed by a call: HOLLER,OUT(0), as many as the last 16 card

images outputted to that file may be lost

If an attempt is made to "HOLLER.OUT" (or "-.OVER') the last
card image of the entire physical file, an End-of-File image will be
written instead but no error indication will be given; an attempt to
write another image, beyond the physical end of the file, will re-
sult in an error "HOT3". There should always be an EOF image as the
last card image of the physical file; however, closing a file with

HOLLER,OUT(0) may write another EOF image earlier.

AL, 6g,27

A page heading or page number which is output to the primary file
under control of the |212 and !213 switches (see Chapter 3d) will not
appear in the secondary output file, Similarly, run error messages
produced by the ALGOL errcr diagnostic routine as well as output £rom
DEBUG,PRINT will appear only in the primary output file. Thus,

DEBUG, PRINT statements can be inserted inte a program without chafging

the number of images sent to the sccondary file.

The operation of HOLLER.OVER is similar tc HOLLER,OUT with two
differences:

(1) HOLLER.OVER docs not output an End-of-File image
when it closes a secondary file;

(2) HOLLER,OVER reads each block inte core before it
is altered and written out, Thus, HOLLER.OVER may
be used to alter images in the middle of an already
existing Hollerith file.

If an error is detected in the HOLLER.OUT or HOLLER.OVER routine,
the secondary file will be closed if it was open, and no new secondary
file will be opened; however, the last block (up to 16 card images)
may be lost.

Both HOLLER,.OUT and HOLLER,OVER produce the foilowing run error

messages:

RUN ERROR - HOTI LFT < 0 or LFT > 19

RUN ERROR - HOT2Z Attempt to close a secondary file when
there was no secondary output file open.

RUN ERROR - HOT3 Attempt to open a LF Type which was not
predefined or defined by AND.FILE or AND.

RUN ERROR - HOT4 Attempt to write outside the bounds of
the physical file.

RUN ERROR - HOTS Attempt to write on file marked read-only

(i.e., another user's file).

AL.bh.1
CHAPTER 6h

Storage Allocation

Algol programs go through 3 phases: compilation of the program,
loading and relocation of all relocatable subroutines, and rumning of
the program. The same area of memory may be used for different pur-
poses at the three different times. It is necessary to have some
understanding of this storage allocation to understand how much space
is available for program and for data, and to understand how this
space can be expanded. On page AL.bh.2 is a memory map showing storage
allocation at the three times. A vertical arrow (1 or i) indicates an
area of storage which may expand to the next horizontal line. Opposing
vertical arrows (i) indicates areas of storage which may expand until
they meet. A vertical arrow terminated by a horizontal line indicates
that the exact upper (or lower) bound of the area is different for each
program.

At the end of each Algol program the "words" printed is the total
number of words which would be dumped if the program were dumped as a
segment - the space from A to B on the memory map. Call this number NWRDS .

Since the total space available for this information and for data is
C - A = /56720 = 24016,, locations

the total space available for data (scalars, arrays, own scalars, own
arrays) is 24016, - NWRDS. Let the space required for WHAT labels be
NWHAT. Then the space originally available for a program and for WHAT

labels 1is
E -D= /27630 = 12384, locations

The total space permitted the program is thus 12384, - NWHAT. Doing
"Release WHAT" and "Release Symbolic library" increases the program space

to
F - D = /32030 = 13336, locations.

Changing the number of abcons and adcons changes the location of D
and so changes the amount of space available for the program. The system
statement '"n ABCONS'", which is described in detail in Chapter 4, causes

D to be set to G + 2n. Since n is initially 200,, D is G + 400,.

AL.6h.2

COMPILE RELOCATE RUN
77777
MONITOR
73000
SUBROUT INE
RELOCATOR TEMPS
FIXED SUBROUTINES
OWN SCALARS
RELOCATOR
H500() v mm o —— e ——— OWN ARRAYS
TRANSLATOR
l ARRAYS
SCALARS AND
43200 (::) STATEMENT
SYMBOLIC LIBRARY RELOCATABLE TEMPS
DIRECTORY
42400 SUBROUTINES ‘
PROGRAM
WHAT AND
41000 (::) RELOCATABLE
WHAT'S LABEL SUBROUTINES
TABLE PROGRAM
/
Altered by PROGRAM
8Y abcon
(|115o)®
ABCONS AND ADCONS
10330 (::)
SYSTEM CONSTANTS

MONITOR

® 6

(a1l addresses are octal)

AL, 7a,l

Revised Report on the Algorithmic Language

ALGOL 60

Prres Navw (lditor)

JoW. Baekes . Kaz 1L Rvmisnsr=eni Jo L WensTriN
L. Bavee JoMeCarrny . =aaensox Avany WoINGLARDEN
J.o Orees AT Prnas B. Vavqros M. WoancER

Dedivated fo the Uewmary of Wiceian Torassnr

SUAMMARY CONTENTS

The report gives & complete defining deseription of the IxrropUeTION
I g i 2
fnternational algorithmic language ALGOL 60, This is LooSrvertnre or sun Lanarack o
L language suitable for expressing a large class of nu L Formabian Torsvntactic deseription
a l: age suitable for express g large eliass - ‘ . .
R AR X . !) _5" = R K 20 Baswe Svaisors, JDENTIVIERS. NUMBERS. AND STRINGS.
merienl processes in o form sulliclently eoncize for direet Banie Coxcrms,

autetnatic transletion into the languoage of progranned 20, Letters
altomatic computers, 220 Digits, Logieal values,
- g Jimiter
Fhe introduetion contains an aceount of the preparatory 23, Delimiters
. , : 240 Ldentifiers
work leading up to the final conference, where the language 25 Nunber
. L nbers
wi defined. To addition, the notions, reference lunguage, 20, Strings
publication language and hardware representations are 270 uantities, kimds and seopes
(-_xp]aim-(]‘ 2N Values wond fypes
I the Brst chapter, o =urvey of the busie constituents A Larrmssios

. . i . .) 3.1, Variables
and Tewtures of the langlage 1= given, and the fonnal R . .

R X K K . A 3320 Funetton designators
notation. by which the syntaetie strueture 1= defined, = A5 Arithmetic expressiome
explained. 3ob Bonlean expressions

The second chapter s all the basie symbols, ad the 3.5, Designat ional pxpressions

svniaetic nnits known as dentifiers, numbers and <trings o FTEMENTS

. - . . 1o Componnad stadement= ansd Dloeks
are defined, 1urther, =ome hmportant notions saeh s .'
. . Assfgnment #atements
crntity and value are defined,

{
I
1,
The thivd chapter explains the rudes for forming ex- 1
1.
4.
i

2.
G G T statenients
Lo Duannoy stateients

prossions and e weaning of these expressions, Three Ao Condithoal statement»
dilferent types ol expressions exi=t: arithmetic, Boolean . Por statements
. ’ . . T Proeedure statements
Hogieals and designationad. -
N .] 4 } . . . 5.0 Pectarsniovs
Che fonrth chapter deseribes the !)})i‘I.Nllr}]I:ll units ol Tope decluritions
the Tangge, known as statements. The hasie statements Arrav ddectirations

are: assignient statements Gevabeuion of a o formudad, Switeh deelirntions

. g . LI oy el gt <

g to statement= oxphicll break of the sequence of ex) Proceduve declaration

: K Fonavenes v ProcknUse e anaTions

ceution of statements, dununy statements, and pro- ,
o . VirraeeThe Ixpex oF Derisrerions aor {oNesi s axn

codure statements (eall Tor exeenvon ol o elosed provess, Syt acte Usprs

dolined by procedure declarations. The fornunon of

more complex stractures, luiving statenent charaeter, is

explained. These inelnde: eonditionnl =tatements, for
statetnent=, componnd statements, wd bioeks, This report was published simul-
Lo the firth ehupter, the units known ws decloations, taneously in the Communications
serving for defining pernuent propertivs ol the units of the ACM, 6, No. 1 {1963), 1-17,
craering indo w0 proeess deseribed i the langnuge, are the Numerische Mathematik, and the
detined. Computer Journal.
The report ends with two detailed exienples of the nse

of the Tugnage and oo alphabetle index of definitions

Al 7a.?2

REVISED ALGOL 60

INTRODUCTTON

Igil('k,'_’l'l)“llil

After e publication of o prelingnary veport on the

aleorithinie hingiege Vigon, = as prepared at o conterenee
i Ziweh b 19 naned interest o the \icor language
'!l‘\l‘l(ll)"'i.

Veonoresult of wi infornmd veeeting held o Maing i
Juns, atunit

Noveusbar forty interested persons from

evera! Foropenn comntries held wn Ao plementa

ton coufvrencee 0 Copenhagen o Peboey 1058, A
“hardware gronp” was tornoed for working eoopermtively

right down 1o ke Jevel of the paper tipe codes This
conterenee ol-o lad 1o the pubilication by Regnecentralen,
ALGOR Batletin, odinad by Perer

which ~erved w= o Toruu for Inether diseission,

Copertdigren. of an
N,
Pirtng the June 18939 1CTP Conferenee 1
mieeting~. hath fornmd aod iforoal ones, were held,

s ~everad

These mmeetings revealed sone ndsinuderstiondings

to the intent of the group which was prinanly vesponsible

Yo

Sornadatien of the lngingee, ot ar the saoe tine
piade ioeleny it there exises @owide apprecintion ol the
eEort nveived, As o resnit of the disenssions it was de
cicded 1o hold an niernntionsd neetine i Jantaay THGO
for finproving the Ancon langnage wud preparing @ tineld
peport. At o Furopean Avoon Conferenee in Paris i
Novenither 0 whieh was attended By abou iy peopli
seven Furopean representioives were selected o atiennd
the Janmary 1960 Conderence. and they represent the
fullowing erganizations: Associatdon Franewize de Calend,
Briti=h Compurer Society, Gesellschatt for Angewandte
Mathemntik nnd Mechanik, and Nederhinds Reken-
muchine Genoot=chap, The seven representilives held o
il prepaatory aneeting at Maiuz e Deectaber 1938,

Menuwhile, in the United States, anvone who wished to
suggest changes or correetions to ALuon, wis requested 1o
~etd his comments to the Communications of the AC
where they were published. These comments then beeame
the hesis of consideration for changes in the Moo lan
guage. Both the Simvee and USE organizations estab-
lished Anaon working groups. and both organizations
were represented on the ACM Commsittee on Progran
ining Langunges. The ACM Conunittee met in Washing
ton in Noventher 1939 and considered all eomments on
Arncor that had been sent to the ACND Commoriend fons,
Also, seven representatives were xelected to attend the
Jumes 160 international conferenee, These seven
represeniatives hebd afinal preparatory meeting in Boston
i December HI5Y.

Juanuars 1960 Conference

The thirteen representarives” from Denmark, Toglind,
brance, Germeany. Holland, switzerland, and the United
states, conferred 1o Parls irom Janaary TL oo 16, 7960,

Prior to thix meeting @ completely new draft veport was
worked out from the prelinsinary report ind the reconi-
mendations of the preparatory mectings by Peter Naur

and the conterence wdopted this new form as the hasis for
i~ report. The Conferenee then procecded 1o wark for
agrectnent on cach itenc of the report, The present report
represents the union of the Connuittec’s coneepts and the
terseetion ol its agEreenient s,
April 1962 Conference Fdited by MU Waoodger|

A meeting of =onwe of the e hors of Aaon G0 was held
on April 2050 1862 i Rome, Tedys theoughe the facilinies

wiel courtesy of the oternational Compritartion Cenre,
The following were present:

BRI Vi (RIS

I 1 Haoer RS AT Wl van der Dol
Jotireen B Franeiarn A hatrman, TEIE
L TR 1" 7 Tnzernnn T 20 Warking
1 e, Cironp ALGOTL
Srepresentitg O

Brelaas

P Nanr

I Sael=on oo Reegnintler
JOH Wepstein Bl Ui
ALven Wingnanies

MLWoedme: i Lamlin

The purpose of the meeting was 1o correct Known
errors i, altenipt o elimivate appuarent ambigaities i,
aned oilherwise clarify the Aoeon 60 Report, Extensions
to the Lingnage were nel considered ar the mesting.
Varions propasals for correetion and clarifieation that
were submitted by interested parties i response 1o the
Questionnadre in ALGOL Buflefin Noo TH were used ason
auide.

Thix report® constitutes @ <upplement to the Angon 60
Report which <hould resolve a0 number of diflieulties
therein. Not all of the gquestions ruised concerning the
eviginal report condd be resalved. Bather than risk hastily
drawn conelu=ions on a nonber of subtle points, which
migh! create new ambigaities, the cowmittee decided to
report ondy those point= whieh they wanimoeusly felt
could be =tated in clear and unambigues fiehion.

(iestions coneerned with the following areas ave left
for further constderation by Working Group 2.1 of [P,
in the expeetation that eurrent work onwlvaneed pro

Focrows= Nooe, The present edition follows the text which
wis approved b e Counedl of TFTPC A howgh it f= et elear from
the Tt roduetioas the present version s the origiad report of the
Janery P00 conterence andified aeeording o e agrevments
reselied during the Aprib 1962 conferenee. Fhns the eeport men-
Slomedd here i neorporited oo tie present version The soodidien
Chies
cf best s Daith feanpnte; 200 foatoee:; 20 i
[R IR S P R B R [BPGN 176
3 v 13

Clemges af syntas: 3000 VT

Thoems toneh i ortginal report ncs b Tollonying seet bons s

CPrelindnary report-=Intenztional Mpeebrnie Lomguage,
[TTIE IO K VA N SR TA L T

2 Report o che Algorithorie Tangnope ALGOL by the O |
Committec on Progremming Laogoages amd the GANMAD Cone-
mitter on Prograonning, edited by AT Perliz minl K Sselson
N, Madh P 10U GO

SWilliam Tiranski of the Anweviean group was Killed by oan

antontobile Just prior to e Jaoaey 150 Cooferenes

grannning linguages will fead to hetter resolution:

. Side offeets of funetions
20 The eadl Dy nanie coneepl
Gooown: o staiie or dynanie

4 Vor statement: statie or dhvoande

5. Uonllier between specification and decliration

The suthors of the Acon B0 Report present at the
Lonse Cotderenee, being anwe of the Tornation ol a
Wenking Group on Avcon by TP decepted g any
colleetive responsibility which they might Tave with
rospect to the developoent, specification and relinement
ol the Avcon Tmguage will from now on be transtvrred to
that hody.

This report has heen veviewed hy TR TC 2 on Pro
aramming Lingnoges in Angust T2 and s Veens up-
proved By the Couneil of the International Federation
for Tnfortiation Provessing.

Axowith the preliminary Ancon report. three differen
levels of language are recogmized. vamely a Relerenee
Langnage. o Pobdication Language and seversd Tardware
epresentitions,

Rerrweaes Lasovaonk

. Tt i= the working language of the committer.

20t 1= the defining language.

4. The charneters are determined by ense of mutual
understanding and nol by any computer limitations,
coders notation, ar pire mathematioal notation.

1. 1 1= the basie referenee and guide for compiler
huilders,

S0 11 i the guide Tor all hardware represeutations,

6. It i the guide for rransliterating from publication
Inguage fo any loeallv appropriade hurdware ropresenta-

(NI

DESCRIPTION OF FHE

1. Structure of the Bangoage

Ax stated in the introdhoetion. the algorithinie Tanguage
his three different kinds of representations referenee,
hardware, and publicstion and the development de-
seribed T the segquel B= D terns of the referenee repre-
<entarion, Thic means that wil ohjeets detined within the
languige ave represented by given set of vmibols aned
it i only in the choive of symbals that the other two
representations may differ. Straetiee ad content i
be the sume for all representations,

The puepose of the algoritunde lmguage 3= 1o desernbe
comptation! prosesse< The hasie coneept nsed Tor the
deseription af calonling rales is the well-known arith
metie expression containing i constituents mimbers, viri
ables, and funetions, From saeh expressions are com-
ponnded, by applying rules of arithimetic composition,

AL.7a.3

REVISED ALGOL 60

7. The maiu publications of the Ancon language itself
will nse the reference representation.
PosLicarion Laxarade
Lo The publication langiage admits viriations of the
relerence kinguage necording 1o usage of printing and [IRNGS
wriling (e, sibseripts, spaees, exponents, Greek lettersi,
200 s sed Tor stating and communieating processes.
S The elurmeters to be used may be dillerent i
differont countricos, bt univeeal correspondence with
pelerenee representation st be seeured.
Hanowans REPRESINTATIONS
1. Faeh one of these i< a condensation of the referenee
Letgage enforeed by the limited namber of charaeters on

standdard nput equipment.

2 Baeh one of these uses The charaeter <t of i pariien-
o compuier and is the loguage necepted by a translitor
for that compuler.

3. Faeh one of these nimst he aecompanicd by g =peeiad
wet of rulex for ransliterating from Publication or Refer-

enee lagge.

For trunsliteration hetween the relerence language and
a lunguage suitable for pubilications, ameng others, the
following rules are reconumended.

Referenee Lunguig Frablivation Langann
Subiseript hraekes |1 Lowering of the line bwtween the

Drackets amd el of o the
biekers

Fxponentintion Riising of the exponernt
Parentheses o« Any form o of parentheses, hirekets,

Driees
Hasis of 1en e Yui=ing of the ten aud of the Foblow
ing integral nmber, in=erting of

1he intended multiplieation =ien

REFERENCE LANGUAGE

Wos =ich birhags wupeen gissn, st
sl klar
rerdeni kann, daseber oo nmon schagren,

e swono e et

Lupwrn Wirres ssreis.

solf-eontained nnits of the language explicit fTormulae
called] asslgment statements,

Teo <how the fow of computational processes, certain
noterithmetie statements and statenment clan=es are
added which mav deseribie, e, alternatives, or iterative
repetitions of computing =tatenents=. Siuee 11 1= neces=sary
for the funetion of these statements that one =tavemem
peter to another, statements may be provided with labels,
A sequence o statements may be enclosed between the
statetnen! bracket= begin and end to forne ac componnd
statement,

ntements are supported by declarations whiclare not
thetm=elves computing imstraetions but inform the trans
Lutor of the existenee and cortain properties of objeets

appedring i statements sieh ws the el of nnmbers

faken on ous values by oo variable, the dimension of

AL.7a.4

REVISED ALGOL 60

array of nunthbers, or even the =et of rules delining o fune
tion. A sequence of deelarations followed by a sequence of
statennems and eneloxed between begin and end con-
stitites a block.
thix way and = validd only Yor that bloek,

Fvery deelaration appears in o block in

A progroan = o block or componnd statement which is
not contained within another statement and which makes
1o use of other statements not contained within it

Fi the <eqnel the svntax and semanties of the Tguage
will be given.:

L. Foiarns=ar pone Syxreaerise Desenrerios

The svutax will be deseribed with the ald of metalin
gui=tie {ormmlie” Thelr noerpretation is hest explained
bvoan example

b= o T a0 ah il

Seqguences of characters enclosed inthe brackets © s repre
el metalinguistie varinbles whose values are sequences
ol =viibols, The warks o and tthe Jatrer with the
menning of or) are metalinguistic conpectives, Ay ek
in o fornula, which 1= not 2 variable or a conneetive,
denotes el tor the cliss of marks which ave <ionlar to1i
Juxtaposition of marks and o variables inoa fonnula
<lenifies juxtaposition ol the sequences denoted, Thus the
fornmmda ahove glves 2 recursive mde for the formation of
vales of the variable b, Te indieates that (b may
have the value # or [or thar given some legitimate value
ol b, another may be formed by following it with the
character © or by following it with some value of the vari-
able A= Tf the values of od - are the deeimal digits, =ome
values of Jab are:

L

I order 1o factlitate the study, the svimbols used for
distinguishing the meralinguistie variables (e, the se-
quences of cluracters appearing within the brackets
as ab in the ahove exaunpled have been chosen to be words
deseribing approvimately the wdure of the corresponding
variable. Where words which have appeared m this manner
are n=ed elzew bere in the text they will refer 1o the corre-
<potuding synraetie delinition. In addition some fornmlae
zeve beeir glven In miore than one phaee.
Drefininon:
ey =
e the nadl =tring ol svinhels
SWhenever the precision of arithimerie iz stared as heing in
senernd not speeiiod, or the outeonie af woeertain proeess s [efl
wmdetined or sabd to be npdefined, this s to be interpreted inthe

cense that oo program anly Solbe defines o eamputational proeess

iEhe aecompanyving infurieaiicn speeifies the preelsion as<nmel
thee Kised of arithimetie assanwst, ol the eourse of aetion Lo be
token i all sieh enses as nuey ocenr during the exeeatinn of the
curmpitation.

SOE W, Bauekis, The svntay and semanties of the proposed
pvermgitional algebraie lunguage of the Zarich ACM AN
Cont. Inf Proe UNESCO,) Paris,

conferenee. Proe. Internnt

June TG

2. Basic Symbols, Identifiers, Numbers, and

Strings, Basic Concepts.
The veferenee language = built up from the following
basie svmbols:

Damie svinbel = cletter gt s - logien] valne ddelimiter

2.0, Lirreps

i1 ter e ahede fagbh ik b e papestarare
ANBCODEFGHISKNLNNNOPORSTUUVIWN Y X
This alphabet may arbitrarily be restricted, or extended
with wny other distinetive choaracter (Le. charaeter not
cotnciding with wry digit, logieal value or delimiter,
Fetters do not have individoa! meaning, They are
nsed Tor forming blentifiers and string=" (el sections 204

Identifiors, 2.6, Stringsl.

220, Dhgrres
=l 23LARTND

it

[Digits are u=ed Tor forming numbers, identifiers, and

stringrs,

2,220 Looosn VanlUes
Fogeiead volue = teoe fulse

The ogical valnes have w fived obvious meaning,

2.3, Deinnrers

Aleliditer - o bracket cdeelarator !

sspectiivator

soperatat eppraior

cerithraetie arelational eperator

dogieal aperator Sseqpentind operator

apprstor . = peribor

arrithipnetie operator = 4 = 0+

relationsd operatar = = » ox

Joieal operater oo '\

sequientinl operstar = o lo il then el=e fordo’
separntor e L s i= ustep until while comment

Sraeked e sl T hegin end

decliraior s own Boolean inneger real array switeh
procedure

specificantar - string label value

Delimiters have o fixed menning which for the nuost par
s obvious or clse will be given at the appropriate place
m the =equel.

T pographieal Yewtwes such us blank space or change
tote new lne hinve oo stgnifiennee o the reference linguage.
They may, however, e used freely for fueilitating reading.

Ior the purpose of ineluding text among the svmbols of

S stoulil be partienlnly aored then throtglon vhe referenee
Linaziaree nndertinigr n tvpewrirten eopy s boldbaee tvpe in
pristed enp Ed i nsed Sor defingg bolependent Basie svenbals
These sre utderstood tobive no rein

[CCEN ST
tiam to the indivi el levrers of which they are composod, Within
the present vepart Jual inedhrding lieadings o boldbree wilt be
sed For no other pairpase

Pl ix nsed in for statements, Tt hos o relation whadsoever
to b oo of the preliminary repert, which is not ineluded in

ALGOT: 60,

4 progrun the Tollowing “cominent™ eanventions hold:

Phie sergennee of Juesiv snhofs: Cegniradont o

Ceonnnent Ny sequenee Dot containing ;

Bregin comment -ty sednuenee ol ennlainigg begin

tee nat eantsining el or o1 else il

cend oy s

B equividenee s here nronnt that any of the three strue
Pires hown i the lelt haed colunn oy be replced, in
any oeetivrenee outside of string<, by the synbol shows on
the =aiae Jhe dn the eight bud colunan withont aoy
offees on the aetion af the progrns. Tt s faether understood
that the cotnpent stenetnre encotndered fiest e the texi
when reading frony et to vight hus precedence in heing
peplieed over later struetnes contuined n the sequenee,

2.1 ToexNtEgs
2.0 0. Byntax

Dlevcitior - o= cletter colentifier letter adentifler diet

2.1.20 Lxnples

Nev
Ve
PEEI PN
AIRYITAIAY

2.0.3, =emanties
Tdentitiers have no inhorent meaning. hut serve for the
avs, Inbels, switehes,

and procedures They may be chasen freely {ef,) however,

identification of simple variables, ar

section 3.2, 1 Standard Punetions;,
The same ddeutifier cannot be used 1o denote twe

different quantities exeept when these quantities have
disjoint =eopes ax defined by the deelarations of the pro-
gram of section 2.7, (Quantities, Kinds and Seopes, and
seetion 5. Declarations:,

2.5, Nraneks

2.5. 1. myntas

dlighe - cnnsigned dnteger digite

Anteger o= funsigned integer —nnsigued integer

inhEignisl integer

— nneigned integer
abeeind froetion o= nnsipned integer
texponent puat = IR
ddveinl number = cunsigned integer s fdecimal fraetion

pnsigned toteger deeinal Traction
arbstgnel numbers = odeeimsl nwnber o exponent part
atecimead namber dexponent et
— unsigned nurher

nmber o= sunsigned namber

dnsigied e

2.53.2. Fxnmples

3 = 2ALLON) AW =02
[U7 RN —

s N3t =11 [ERE

=T 2l RS

2.5.3. Semanties

Decimal numbers have their conventiona! meaning.
The exponent part is aseale Gretor expresse:l s an integral
power of 10

AL.7a.5

REVISED ALGGL 60
2.5.4 Types
Integers are of (vpe integer. Al other numbers are of
tvpe real ef, seetion 5., Type Declarationst.
2,60 SrRINGR
2,600 Byntax

proper stEng = cany sequence of hisie svminls not collnining
Par T empty
Sapenl string = cproper String Ciopen string

apen =tring copen string
<ivig s s Soopen =iring

2.6.2. Ixamples

siring’

o Thiz uisuau

2.6.3, Semanties

In order to enable the langnage to handle arbitrary
sequenves of hasie symbols the string quotes ad T
introduecd. The svmbol u denotes a space. Tt has no
significance outside strings.

Steings are used s actusl parameters of procedures
{ef. xections 5.2, Funetion Designators and 4.7 Procedure
Satenients),

2.7, QuanTtiries, Kixns axp seores

The following kinds of quantities are distinguizhed:
siimple variables, arrays, labels, switches, and procedures,

The scope of @ gquantity is the set of statements and
exprossions i which the declaration of the identifier aseu
eisted with that quantity ix valid, For labels sce seetion
4.1,

2.8, Varves axn Typees

A value ix an ordered set of numbers (special case:
single number), an ordered et of logical values (=pecial
case s w0 single logleal valued, or a label,

Certain of the syntaetic units are said to possess vidies,
These values will in general change during the exeeetion
of the program. The values of expressions and their eon-
stituents are defined in seetion 33 The value of an array
identifier is the ordered set of values of the corresponding
array of subseripted variables (ef. seetion 5.1 LT

The varions “types” (integer, real, Boolean) basiealiv
denote properties of values. The types associated with
svntactie units refer to the values of these quits,

3. Expressions

In the lunguage the primary coustituents of the pro-
grams deseribing algovithmie provesses are arithimetice,
Boolean, and designationsd expressions. Constituents of
these expressions, exeept Tor certain delimjters, are logical
values, numbers, variables, Tunetion designators, and
elementary arithnwetie, relational, logieal, wnd sequentiul
aperators. Sinee the syntacetie definition of both varinbles
and tanetion designators contains expressions, the defin-
tion ol expressions. atnd their constituents, 1= neces=arily
recursive,

expression = cacithmetie eapression cBoolesn EXPTesE AN

Sdestgnational expres<aon

AL.7a.6

REVISED ALGOL 40
3.1, VartasLes
3.1.1. Syntax

ivariable dentifier - o= ddentifier

dimple variable - o= trinble identiter

Snbmeript expression = arithmetie expres<ion

catbseript list - o= anbweript expresston Ssubeeripr list
sUbseript expTesson

careay identifier = Jddennfier

suberipted viriable o= rtay ddentiher subseript i<

oo ble cimple variable subseripted variable s

30,2, Fxamples

t,ln‘:"!'ll’-‘
ik
aly
(172

Lotnen ot 2 Q0

313 Senvnd ez

A variable ison designation given to a single vadue, This
vialue may be nsed in expressions for Torming other valnes
wnd may he ehanged at will by means of asagninent stale
nients tsectiont 20 The tvpe of the value of o partieular
variable = defined in the declaration for the variable
t=elf fef. =ection 5.1, Type Deckirations) or for the corre
=ponding array dentilier fef, seetion 320 Arrayv Declara-
tions].

314l =nhseripes

3.0 Sabseripted variables designate valies which
are components of multidimensional arravs {ef. seetion

o Array Declarationst, Fach arithmetie expression of

the subweript list oceupies one subseript position of
the subseripted variable, and iz ealled a subseript. The
commplete list of subseripts 5 enclosed in the subszeript
brackets 11 The areay component referred 10 by a sub-
seripted variable 1= specified by the actual nomerieal value
of it subseripts {el. section 3.3, Arithmetic Pxpressions),

300020 Fach subseript position acts like a vaviable of
tvpe integer and the evaluation of the subseript s under
stood (o he equivalent to an assignment to this fietitions
variahle (ef seetion 1200 The valee of the subseripted

variable 1= defined only af the value of the subseript ex-
pression is withine the <ubseript bounds of the array fef.
seetion 5,2, Array Deckirations,

3.2, Frsertion Desiesarons

3.2.1. syntax

fprocedare identifier: o= dentifier:

fetuad parmmeter: o= cstring - expression o Sareay identifiers
{swireh identifier « fprocedure idenatier

lelter <iring s c= Jetter s Jetter string s etter

rparamcter delimiter s =, tletter strings

faetial purameter lists = suetual purameler

factnal prrameter list s Iparnmeter deliniter
metunl parntueter -

o= empty ciietual parameter list

{agtual parameter part
unetion designator: si= fprocedure identitier
dwetnal parmmeter part

3.2.2, Examples
sinie
Jorssont
it
Sta- A Temperature 07 Pressure: (%)
Crnpiler’ e istackaih
3,23, Semanties
Funetion designators define <ingle numerieal or logieal
values, which result through the application of given sets
of rules defined by g procedure deelaration (el =eetion 5.4,
Procedure Declarations: to fixed sets o aetual param-
etevs, The rules governiug specification of actual parnn
eters wre given in secetton 1.7, Procedure Ststements, Not
every procedore declaration defines the value of & funetion
designator,
3200 srandard funetions
Certain identitiers shonld be reserved for the standard
funetions of analyvsi=, which will be expressed axs procedires.
It i~ reconmended that this reserved Hst <hould contain:

ahsi 1l for the madotus cabsolnte values of the value of the
expression {0

weger b Fer the sign of the value of Fo=1 for Ws000 for 15=0,
— 1 For =i

agrl)l T the soumre root of the value of T

sinili Tor the =ine of the value of I

rosilo for the cosine of the value of 12

fur the prineipsl valie of the aretangent of the value
of I

frii ke for the natuenl tognrithom of the value of B

for the exponentiad funetton of the vadue of 15 (et

nreleni 1

crp b
These funetions are all nnderstond to operate Indifferently
on arguinents both of tvpe real and integer, They will
all vield values of tvpe real, exeept for sigeil7r which will
have values of type integer. [noa particular representa-
lion these funetions may he available without explicit
declarations (ef, section 3. Declarations].

3.

It s understood that transfer functions between any
pair of quantities and expressions may be defined. Amaong
the standard functions it s reconunended that there be

Y. ransfer funelions

oue, mmely,

endien b
which “transtors” an expression of real type to one of
integer tyvpe, and assigns to it the value whieh = the
lavgest integer not geeater than the value of 1.

3.3 Arrnverie EXpRESSTONS
3.3 Syntax
fndding operator - o= 4
nulliphving aperator s o= X -+
fprimary o= cunsigned momber variable

dunetion designator orfvhinetie expression =

ffeetor fprinueey - ifactor T oprimary

tterin = dnetor s ters o mndoplving operator sifactar
ssitnple arithimetie expression = oterm
widding operatar terocs Sshmple arithmetie expression
Gulding operstor ctern:
OF clavse s o= 0f (Bonlean expressinn Lhen

farithmetie expression - 2= Shmple arithmetie expression

AF elanse Asimple arithimetie expression else
farithmetie exprossion -

35,2, Fxamples
Primries:
70 —N

B
R

cusiy+a)
IR TR T

[rtors:

I

A IO STE

AR S A A T

S
Terms:
5

oo s cos g - 2E AT S e — ST ld =2 80

TR TR BT
Sunple arithmetie expression:

[Yor | omega X sant ensip 22 3007 300 =8 w[i42,8]]
TR SN T DI

Arithinetie expressions:

(S a2

if >0 then N FAXO else 2XK85+H3X g

i a0 then 71 else if aXb>17 then {771 else if
iy then AL else O

[sinlomege X

DATHIEXa| N X TN — 1572 0]

VA R vt i AT

if g 1then n—1 else n

it then 28 else if b=0then B/ else 2

3.3.3, Semanties

Anarithinetie expression 1= a rule for computing a
numerien] value, Inocaxe of simple arithmetie expressions
thix value s obtained by exceuting the indieated arith-
metie operations on the actual nomerical values of the
primries of the expression, as explained in detadl in
section 350 below, The actual numerieal value of a
primary is obvious I the case of numbers, For variables
it ix the orerent value fassigned st i the dynamie sensed,
and Tor Tuneiion designators it i= the value arising {rom
the eomputing rules defining the procedure fof. sevtion
S0 Valies of Funetion Designators1 when applicd to
the envrent vabies of the procedure paramieters given in
the expression, Flally, Tor arithmetic oxpressions en-
elosed in parentheses the valine mnst through o reenrsive
analyvsis he expressed in terms ol the values of primaries
ol the other three kinds,

Iir the more general aritlinetio expressions, which in-
cliede it clunses, one sut ol several simple arithmetic ex-
pressions is selected on the basis of the netual values of the
Boolenn expressions (ef, <ection 310 Boolean Fxpressions,
Thix =cleetion is nde ns follows: The Boolean exprssions
of the if elanses e evaluaded one by one in segaenee from
left to right until one having the value true i fonnd. The
value of the arithmetiec expression i< then the value of
the first arithmetic expression following this Boeolean
(the Targest arithmetie expression found in this position

AL.7a.7

REVISED ALGOL 60
= understood). The coustruciion:
else simple arithmetic expression}
= cquivalent to the construetion:
else if true then Ssiple arithmetie expression s

3301 Operators and types

Apart from the Boslean expresstons of if clauses, the
conxtituents of simple arithmetic expressions must be of
types real or integer (of, seetion 5.0, Type Declarations),
The meaning of the hasie operators and the tvpes of the
expressinns to which they lead are given by the following
riles:

3.3, The operators |, —, and X have the conven-
tional meaning faddition, subtreaction, and multiplieation.
The type of the expression will be integer it both of the
aperateds are of integer 1vpe. otherwise real

3.3.40.2. The operations ¢term: (factors and {terms
faetors hoth denote division. 1o be understood ax aomulri-
plication of the term by the reeiproeal of the factor with
due regard to the mdes of precedence (el seetion 3.3.5).
Thu= for example

wi T g

means
Pl th e T o Cop— g (7

The operator s defined for all Tour combinations of
types real and integer and will yield vesult= of real type

defined only for two

in uny case. The operntor =+ 1s ;
operanidx both of type integer and will vield a result of

type integer, mathematically defined as follows:

a+h= sign afhixeaticelabsiashn

(ef. seetlon= 3.2 Fand 3.2.0).

33,03, The operation {factoryT{primary denotes ex-
ponentiation, where the factor is the base and the primary
i+ the exponent. Thus, for exaniple,

RASTRYS s [

while

25T menns 2

Writing ¢ for o number of integer tvpe, r lor a number of
real type, und a for a number of either integer or real
tvpe. the result i given by the following rudes:

w1 00 a0 X [timesy, of the same type as .
[f 7=0, 1T a0, 1, of the same type as o,
Woae=0, undefined.
[F 5, i =0, LiinXux ... xai (the denominator hoas
—i factorsi, of fype real.
i a=0, umlefined.
air I a0, crplexdnion, of type resl
I == 10 p > 00000 of type real
20, undefined,
I o, always andefined,

3.5.5. Precedence of operators

The seqience of operations within one expression is

Al..7a.8

REVISED ALGOL 60

generally from left to right, with the following additional
rules:

3.3.5.1. According to the synrax given in seetion 3.3.1
the following rules of precedence hold :

first: -
seeond: W+
third: + -

3.3.5.2. The expression between a Jeft parenthesis and
the matehing right parenthesiz is evalusted by itsell s
this valiic ix nsed in subsequent caleulations:. Consequently
the desired order of exccution of operations within an
expre=sion can alwaxvs be arranged by appropriate posi-
tioning of parentheses.

3.3.6. Arithweties of real quantities

Numbers and variables of 1vpe real nyist be interpreted
in the setse of numerical analysis. e ax entities defined
inherently with only o finte secnraey. Similarly, the
possibility of the occurrence of a finite deviation from the
mathematically defined result in any arithmetie expression
i+ expliecltly understood. No exaet arithmetie will be
specified, however, and it s indeed understood that
different bardware representations nmay evaluate arith-
metie expressions differently. The control of the possible
consequences of sneh differenees must be carried out by
the methods of numerieal analyvsiz. This control must be
conzidered a part of the process to be deseribed, and will
therefore be expressed in terms of the language itself.

3.4. Boonrax Exprpssioxs

3.4.1. Ssntax

relational operator - 1= < 2 = 2> e

relation s o= simple arithmetic expression

aelational operator dsimple arithmetie sxpression
Boolean primary o= slogiesd value - dvariable
unetion desdguator s drelation = Boolean expreasion)

Boolean seceondary - o= «Booleun primaryy = Boolean primary
Boolean facror - o= Boolean seconds .
sBoolean factor A tBoolean seeondary
(Beolenn tern - = i Baoiean faetor s (Baolenwn term -
SiBoolean fuetor s
dmphication = :Boolean tern Jimplication =D Boulean tern
(ximple Boolean - = dmplication
simple Boolewn := rimplication
iBoolean expression - o= sumple Boolear

Af clinse simple Bonlean s else (Boolean expression
3.2, Lxamples

£~ =2

Yl oz

wlh > -5 N r—d > g2
pig N rFEu

g= —aihs — N eD S F
if £<1 then s> else &
if il il o then b elze ¢ then d else [then g else <8

3.4.3. Semanties

A Boolean expression is a rule for computing a logical
valie, The prineiples of evaluation are entirely analogous
to those given for arithmetic expressions in section 5.5,

3.t.1 Types

Variables and funetion designators entered as Boolean

primaries must be declared Boolean (ef. section 5.1,
Type Declarations and section 444 Values of 1funetion
Designators),

3.4.5. The operators

Telations take on the value true whenever the eorre-
sponding relation is satlstied for the expressiong involved,
otherwise false.

The meaning of the Ingical operators — Oiot), A fand),
v o(ory, D (Dmplies!, and = fequivalenty) is given by the
following funetion table.

bl false lalse true true
b false Lrue true
bt true true false false

blAab2 fulse lalse false true
biv/h2? false Lrue Ltrue true
b1 2b2 true true false true
Lbi=12 rrue false false Ltrue

3.4.6. Precedence of operators

The sequence of operations within one expression s
generally from et to right, with the following additional
rules:

3.4.6.1. Acrording to the syntax given in section 341
the following rules of precedence hold:

first arithmetio expressions necording to section 3.3.5.
secomd: CE=2

third: -
fourlth: A~
fifth: kY
sixth: =
seventh: =

3.4.6.2. The use of parentheses will be interpreted i
the sense given in seetion 3.3.5.2.

3.5. Desiovarionan EXVRESSTONS

3.5.1. mvntax

dabel: = dddentifier ¥ fonsigned integer

awiteh identifier - o= Cidentifier

sawiteh designator - = sawiteh identifier §subseript expressgion o]
ssimple designational expression o= dubel - switeh designator

Cidesignational expression
{lesignational expression s o= Gimple designational expression
Af elnuse dample destgnitionnd expression - else
Sdesipnational expression”
3.5.2. Examples
17
m
Chooseln—1]
Fown if ¢ <0 then N else N +1]
if thae then 17 else glit =l then 2 else o]

3.5.3. Semanties

A designational expression is o rule for obtaining a label
of a statement (of, section 1. Statements). Again the
prineiple of the evaltion ix cutirely analogous 1o that of
arithmetic expressions (secetion 3.3.5). In the general cnse
the Boolean expressions of the if clanses will select a
simiple designational expression. If thix = a label the
desired result 1+ already found., A switeh designator refers
to the corresponding switeh deelaration (e, section 5.3,

Switell Declarations) and by the actuad numerieal value
ol its =ubseript expression =eleet= one of the desiguational
expressions H=ted In the =witeh declaration by couuting
these from left to right . Sinee the designactional expression
This seleeted iy again he o =witeh destgiador thi= evalua
tion 1= ahviously o reeursive process,

3.3.4 The subseript exprossion

The cvaluation of the snbseript expression s analogons
to thut of subseripted variables (el section 3.001.2)0 The
valie of a switeh designator = defined only 1t the <ubseript
exprission assunwes one of the positive values 123,00, 000 iy
where n i< the nanher of entries in the switeh list,

3.5.5. Unsjgned infegers us lnhels

Unstgned integers used ax lnbels have the property that
leading zeros do not affeet thelr nweaning, c.g. 00217
denotes the e Inhel as 217,

1. Statenents

The unit= of operation within the Tanguage are called
sttoinents, They will normadly be executed consecutively
we written, However, this sequence of operations nmy be
which define their sureessor
statemernts,

broken by go 1o statements,
explicitlv, il
which iy ennze cortain statements to be skipped.
In order o make it pos=ihle to define o specifie dynamie
sticcessiotn, statements may be provided with labels
Sinee seuences of staterents may be grouped together
inte cotponnd statement and blocks the definition of

shovtened by eonditional

stiatement minst neeessarily be recursive. Also stnee decla-
rtions, deseribed inosection 30 enter fundamentadly inte
the syitaetie struetaree, the svntactie defindtion of state-

et st supposcodeclarations o he already defined.

1.1 Conrorsn Srveenteyes aNn Brocks

1.1, =vntax

fassighoent statement
procedire statement

Sunlabhedled buaste statements o=

gotasigienienl dunimy stateinent -

st stanenwnt s canlabelled bosie statement sdlabel
Chusie =tatenient

Auneonditional statenent = Sesde statement
feompoutud statement hiock

Sstatensent o= Juncomnditional statemen

o stutement
statement

ceomditional statement
compentied tatl sr= cstatement - end
compontud tail -
‘bloek hewt

Sbioek hemt o= begin deelararion

Alechirution

Andabelled compotind = begin compound tail
canlubelledd Block o= Chloek hewd contpotned tail
seoruponnd statement - o= cnnlabelled eonpenmi

Tnbed - evanposined =tatenmensd
Adoek = anbniedled Bloek - label s Wlaek
rproram o= Jhlock eomponnd statement

This syadax may be ilbstrated as follows: Denoting arbi-
trary stateients, declations, and lubels, by the letters
S Dand Loovespeetively, the basie syntaetie units {ake

the Jorms:
Compound statement:

Lo Lo begin s 0 & LS S enad

AL.7a.9

REVISED ALGOL 60

Block:
l: L .o hegin DD Ty 5 D 5 8 ;08 5 L8
= oendd

[1 =hould be kept innind that cach of the statements S
e again be a complete compound statement or block.
L1.2, Examples

Basie stademoents:

o by
o to Noples

START CONTINIE W = 703
Compound statement

begin o =0 ; fory .= 1step | until » do
roi= ot ! ;
if =g then go to STOP else if >0 =2 then
o to S

s N B o= e ob end

Block:

Q) begin integer i, 4 5 real @
for ¢ = 1 step | until o de
for £ = ¢l =tep 1 until o do
hegin o o= A0 k|
i k= ATk
R
el block ¢

c= e end for foand &

1.1.3. Renanties

Ivery block antonatically introduees o uew level of
notenclanire, This is realized as follows: Any identifier
oeenrring within the block may threugh o suitable declara-
tion {ef, seetion 5. Declarationsi be specified 1o be loeal
to the block in guestion. This means (u) that the entigy
represented by this adentilier inside the block has no
existence outside it and (b that any entity represented
by this identifier cutside the hlock ix completely inacees-
sible inside the block.

Identificrs {except those representing labels) oceurring
within a bleck and not being declared 1o this block will be
nonlocal to it, te. will represent the same entity inside
the bloek and in the level immediately ontside it. A label
separated hy a colon from a statement, Le. labelling that
statement, behaves as though declared in the head of the
stallest embracing block. Le. the smallest block whose
brackets begin and end enelose that statement. In this
coniext a procedure body must he constdered as if 1t were
enclosed by begin aud end and treated as & block.

Sinee a statenent of & bleck may again itself be a hlock
the coneepts loeal and nonleeal to a block must be under-
stood recursively. Thus an identifier, which i= nenloeal
to a block .\, may or may not be nonlocal to the block B
in which .\ s one statement.

1.2, ASSIGNMENT SNTATEMENTS
)

4.2 1. Syvufax
deft part» o= varlable s = Sprocedonre identifier » 1=
teft part list - oi= dleft part s Jleit part List -deft parct -
fassigmment stadement © o= leftpart list Jarithmetic expression

Aleft part li=t -{Boolean expression -

AL,7a,10

REVISED ALGOL 60

£.2.2, Fxaaples

st e P
W= e

= i NN

R N T S
VYo X

1.2.3. =emanties

an exprossion 1o ane or several variables or procedure
dentifiers. Axslgnment 1o u procedure identifier mny only
ocene within the body of a procedure defining the valie of

d funetion desigmator fel, seetion Seb b The proeess will
in the generid case e welerstood 1o take place in three
steps as follows:
L2500 Any snhiseript expressions ocenrring in the lei
puirt variables are cvadnared esequenee from ettt to vighr,
1.2.3.2, The exprossion of the statenment i< evnlited,
42233, The valie ol the expression 1= assigued 1o adl
the Jelt part vielibles with any subseript expressions
havng vadues -
1204, Ty

The tyvpe assartated with ol viodables oeel procedures

ceelnated in =tep 12000,

ientificrs of a 1ot paet D= o=t b shee saied T0 this type
= Boolean, the cxprossion must hkewize e Boolean.
I the tyvpe iz real or integer, the expression st he
arttbimetic, Hothe tene of the arithmetie exprossion diflers
from that a-=oewted with the variables wsd proceduare
identitiers, approprinte transier munetions are understood
v be gatonstleally Dwoked, o transter from real 1o
integer tvpe, the ceonsfer Tunetion s nnderstood fo
vield ooresult o anvaient to
el b

where 10 e v o apressionn, The e e

viabed with s peoessdnee whennis o s wbeen T e e

which appears o~ the e =vshol of the eorrespomding

procedure dechuntion ool =cotion 5081

130 Go To srvrimaesis
1310 Svidax

Ao to sbaleent 0 = wo Lo cdesigiotiong espression -
1.3.2. Lxamples

g lo s
s Lo ol
go to Fownlit v<0vhen N oelze NV {1

co toaf 1h<e then 17 clse g0 w70 then 2 else n]

433, Setunties

A go Ao statenient interrupts the normad sequetee of
operations, defied by the write np of statements, hy
defining itx succeessor explicitly by the value of o designa-
tional expression, Thus the next =tatement o be exceuted
will be the one having this value as Its Taubel.

1.3.1,

Rinee labels are inherently Toeal, no go to stadement e
lead from outside into o block, A go to statement may,
however, lead from ontside into o compound statement .

lestriction

slgnment staterents serve for wsslgning the value of

4.5, Gato an undefined switch designator

A goto statement i equivalent 1o a dunny statenent
i the designational expression is 2 switeh designator whose
vitlue Ix wndefined,

Lebe Drssy SeavesesTs
oL Syntax

fdvmmy statement = wemply
L2, Exienples

L

begin .. ok end

B8, Semanties
A dumy stenent exeeuies noooperidlon, 10 may
serve to pluee w label,

1.5, Conmrlovan SrariaesTs
Lo 1 =yntas

toeliuse - oo 0F Boolean expression - then
viesndisionnd statement o= ilasie stalemeni

Aduck
Af elnise

e <batensend

dH st lernent Ancomditional statement

condition! =atement - o= 00 statement 00 statenent o else

tlemoent 0 eluose Tor staiement

Tabel 0 conditionad srntenent

-

1.3.2, Faoaples

itozththen o= a1

if e then 10 g ng o else go lo B

if - ot then U begin 0if -2 then o - — v s
elee v 0 2x0 end
cfae i rethen o= v else ib a1

Phaea wo ta N

B33, Sennties

Cunedinie o statenaents anse certaln statements te be
cxecated or skippe Ddepending on the rioming values of
I

Had Booleon SRR,

L3300 I s ei ot The weoiditional starement of
anif statement will he cxecnted i the Boolean expression
ol the I el i true, Otherwise i will be skipped nd
the aperation will be continued with the next statement.

4.5.3.20 Conditional statement, Aecording to the syn-
tax two different forms of vonditional statements are
possible, These tay he ustented as rollows:

il B then =0 else if B2 0hen =2 else =3 =4
and

if B then 51 else if B2 then =52 else il B3 then 3305 =

Here 131 1o 183 are Boolean expressions, while 51 1o =3
are uncondinonad statement= 51 3= the statement Tollowing
the complete condbrional =tatement.

The execittion of a conditional statenient may be de-
serihed ax follows: The Boolesn expression of the i clanses
are evaluated one after the other in sequence from left 1o
rightt until one vielding the value true is found. Then the
uneonditional =tatement following this Boolean 15 exe-
eited., Unless this statement delines s sueeesszor explicitly
the next statenent to he exeeuted will be 84, Le. the <tate

ment following 1the complete conditional statement. Thus
the effeet of the delimiter else may be deseribed by saving
thet it defines the suceessor of the statement 1t follows to
be the statement following the complete conditional
statement.

The construction

clse uneonditional ~talement
= couivalent to
elae if Lrire then Junconditional =Llenent s

If mone of the Boolean cxpressions of the 1f elanses is
true. the effect of the whole conditional statenent will be
cquivalent to that of a dummy statement.

For further explanation the following pleture may be
u=eful:

. e

if 31 then 8] else if B2 then =2 ebse 350 5 =t

. o I

Bl false B2 fulse

.51 G tointo a conditional statement

The effeet of 2 go to statement leading into a conditional
stutement follows direetly from the above explanation of
the effeet of else.

1.0, For STATEMENTS

14.6.1. Syntax

fFor list element s ;= {arithmetic expression ;.
(arithmetic expreasion’® step {writhmetie cxpression: until
{nrithmetie expression s farithmetic expression - while

{Boolean expressiuvn:
for lists = for li-n chnem
= for cvarinble o= or listh do

for fi=is, ffor Tt element »
Sor elause
Jor =

coe Ctor eliuse s {statement 5

fur <iatenont .
k6.2, l':\;lfd})‘!i"‘

for ¢ = 1 step < until u do g = gl
for & = 1, T1x2 while V1N do
for ;= I+G L, | step Luntil &, C4-1) do
Akl = Bl

1.6.3. Remantics

A for elause causes the statement 5 which it precedes to
he repeatedly exeeuted zero or more times. Inaddition it
performs o sequence of assignments to its coutrolled
variable, The process may be visualized by means of the
following pileture:

Tnitialize test 5 statement 5 advanee SUCCHEEOL

. T

for List exhausted

In thiz picture the word iniriatize means: perform the first
assignment of the for clause. Advance means: perform the
next assignient of the for elause. Test determines il the
last assigrment has beens done. 11 <o, the exeeution con-

AL.7a.11

REVISED ALGOL 60

tinnes with the sieeessor of the for statement. If not, the
statement following the for eliuse is executed.
t+.6.1. The for list clements
The for list gives a rule for obtaining the values which
are conseeulively assigned to the controlled varable. This
soruence of values is obtained from the for 1=t elements
by tiking these one by one in the order in which they are
written, The sequenee of values generated by each of the
three species of for list elements and the corresponding
exeettion of the statement X are given by the following
rules:
1.6.1.1. Arithmetic expression. This clement gives rise
o one value, nawely the value of the given arithneric
expres<ion as ealeulated nunediately hefore the corre:
sponding execution of rhe statement N,
1.6.1.2. Step-until-clement. An element of the form
A step Bountil O, where A, B, and O are arithmetic ex-
prossions, gives rise to an exeeution which may be de-
serihedd most concisely in term= of additional Avcon
statenents as follows:
V= A
LL: il (V=0 aign: 1320 then go to dement erhustied;
statement B
Vo= V4D
goto {1
where Vois the controlled variable of the for elause and
element cxhawsted points fo the evalation according to
the next clement in the for list, or if the step-uotil-element
ix the Inst of 1he list, to the next statement in the progran.
4.6.1.3. While-element. The execution governed by a
for list elenent of the fornn T while I, where B i< an
arithoetic and I a Boolean expression, is most coteizely
dezeribed I terns of additional Ancon statements as
follows:
Las\ o=k
it b then go to element cohausted
Statement 2
o to L3

)

'

where the notation is the zame as in 4.6.4£.2 above,

14.6.5. The value of the controlled variable upon exit

Upone exit out of the statement 8 {supposed to be com-
pound) threigh a go Lo statement the value of the eon-
trolled variabde will be the same as it was immediately
f)r(e:-vtling the exerntion of the go to statement.

If the exit = due 1o exhaustion of the for list, on the
other hand. the value of the controlied variable s unde-
fined afrer the exit.

1.6.6. (o to leading into a for statement

The effeet of a go 1o statement, outside a for stutement,
which refers to a label within the for statement, is wnede-
fined,

4.7, PROCEDURE STATEMENTS

4.7.1. Svntax
fetunl parsineter = dstringd {expression’{array 1dentifier

fawiteh dentifier s {proeedure dentifier:
dedrer slring” o= dletter; {etter stving ~{letter

Al.7a,12

REVISED ALGOL 60

{parumeter defimiter s @

{actual parameter list
fetiund pariomerer it pomneter deliicers
tuetual parameter

S letter =teing o
= aetnal parnmeter

(aetual parameter part - o= lemply -
Coetuad parmmeter list)

hrocednre stylenont ;
aretund pariueter part

iproeeJure identifier?

1.7.2. Fxunples

Sprer CLrOrders Vilesaln tas)
Prospreese W00

Vhosiners TN MOV EUR
Toreepeeadacts Vg 2w B I

These exaniples correspond 1o exionples given in =cetion
242

L7.3. Semanties

A procedure ~tatement serves 1o livoke {eall fory the
exeention of 4 procedave body (of. secetion 500 Procedure
Declaranionsy, Where the proeedure botdy is 0 statement
written i Avcor the effect of this exeeution will he
equivalent to the effeer of performing the following opera
tions on the programn at the e of excention of the pro-
coddure =tafement:

4,730 Vadue assignment teal by valiued

Al Tormal parmneters quoted in the value part of the
procedure declaration heading are assigned the valoes
{ef. ~ection 2.8, Values aueld Types: of the corresponding
actual parateters, these assignnients being considered @z
being performed explieitly betore entering the procedure
Body, The ¢ffeet 12 as though wn additional bloek embrae-
ing the procedure hody were ereated inowhieln these assign-
nents were made to variables loeal to this fitinious bloek
with tvpes as ghven o the corresponding speciticaiions
(e section 51300 s a vonsequence, variables called by
vadue are to be considered ws nonlocal to the bhody of the
provedure, bit Joeal 1o the Hetitions block fef. section
RN

1.7.3.2. Name replacement {eall by name]

Ay formal parmneter not quoted in the value list s
replaced, throughout the procedure hody, by the corre-
sponding actnu] paruneter, after enclosing this latter in
parentheses wherever syntactically possible. Possible
conflicts between identifiers inserted through this process
ad other identifiers already present within the procedure
body will he avoided by saitable svstematie changes of the
fornwal or locul identiliers involved,

4.7.4.3, Body replacernment wnd exeeution

Finally the procedure body, nmwodilied as above, is
inseried in place of the procedure statement and executed.
It the procedure 15 called from a place ontside the scope
of any nonlocal quantity of the procedure body the con-
flicts hetween the identifiers inserted throngh this process
of body replacement wnd the identifiers whose declarations
are vahid at the place of the procedure statement or fune-
tion designator will be avoided through suifable svatematice
changes of the latter wentifiers.

4.7.4. Actual-formal correspondenee

The correspondenee between the actual parameters of

the procedures <tatement and the formal parameters of the
procedure heading i+ established as follows: The actoal
parameter st of the procedure statement must have the
saane wunher of entries as the formnal parameter list of the
procedire devlarnion heading, The coreespondenee s
ohtained by taking the entres of these two lists in the
sae order,

£.7.0. Restrietions

For a proecdure sttivcment to be defined a0 1= evidently
neeessary that the sperations on the procedure hody de-

fined Dy seetions 175500 and £7.3.2 lead to o corveet ALGor,
statentent.

Thi= inposes the restriction aany procedure statement.
that the koud dnd tavpe of each aetnal prowmeter be eome-
padibde with the Kind wend tvpe of the corresponding formal
paranwter. Some uportat particular cuses ol this gen
cral rabe are the Tollownw:

1750, I a =tring is =upplicd as an actaal paranmctoer n
a proeedure statenweni or funetion designator, whose

defining procedure body 1= an Araon 60 staternent (s
opposcd 1o o Avcorn code, of . section 1785, then this
string e only be used within the procedure body as an
actual paratneter i fuether procedure calls, Ultimately it
can only be used by o procedure body expressed in non -
Avcorn eode,

T520 A ol parameter which oceurs as a felr part
varinble Tn an assignrient statement within the procedure
Baods and which = not ealled by valie ean only coreespond
to an actuad parameter which i o variable fspecial vise of
CXPressing

1.7.5.30 A Tornad puroieter which s used within the
procodure body a: wnoarray dentilier can ondy corre.
=pond 1o actiad parometer which s an array identifier
of unourray ol the =ine dunensions. I addition it the
formal puraneter s called by value the Joeal array created
durit the enll will huve the same =nbseript bonnds as
the aetual arrmy.

LA L A farmad prumeter swhich 3=ocalled by value
cannol in general eore

pond 1o aoswiteh identifier or g
pracedure identifier or a string, beeause these larter do not
posetsx values ithe exeeption is the procedure wdeniifier of
a provedure declarition which has an empty formal
parameter part (e, scetion So0T5 aed which defines the
vahue of a Tunetion designator fef. section 500005 This pro-
coedure Dentifier = dtzelf 4 complete expression’.

L7.5.5. Any formal parameter nay have rvestrictions
on the tvpe of the corresponding aetual prurmeter wsso-
rigted with it {these restrictions may, or nay not. be
given through =pecifications in the procedure heading?,
In the procedure statenent =ueh restrictions must evi-
dently he obscerved.

4.7.6. Delered.

4.7.7. Parameter delimiters

All parameter delinnters are understood 1o be eguiva-
lent. No correspoudence bhetween the purneter delimiters
used ina procedure statement and those used e the pro-

cedure heading ix expected bevond their nuber being the

same. Thus the information conveyed hy using the elabo-
rate ones Is entirely optional.

1.7.8. Procedure body expressed in code

The restrictions imposed on a procedure statement
eulling a procedure having it body expressed in non-
Avrcon vode evidently can only be derived from the eharae-
teristios of the code used and the intent of the user amd
thus fill vutside the scope of the referenee language.

3. Declarations

Declarations serve to define cortain properties of the
quantities used in the program, and to associate then with
identiliers. A deelaration of an identifier i= valid for one
block. Ourside this block the particular identifier may be
nsed for other purposes (ef. seetion 130

Dvnamieally this implies the following: at the time of an
entry into a block (through the begin, since the labels
inside are loeal and therefore lnaceessible from ontside)
all identifiers deelared for the block assume the signifi-
pance implied by the nature of the deelarntions given.
If these identifiers had already been defined by other
declarations outside they are for the time being given a
aew significanee, Identifiers which are not declared for the
block, on the sther hand, retain their old meaning.

At the tine of an exit from a bloek {through end, or by
a po to statenent) all identifiers which are declarved for
the block lose their loeal significanee.

A declaration may be marked with the additional
declirator own. This has the following effect: upon a re-
entry inte the block, the values of own quantities will be
unchanged from their values at the last exit, while the
values of deckared varinbles which are not marked as own
are undefined. Apart from labels and formal parameters
of procedure declarations and with the possible exception
of those Tor =tundard funetions {ef. sections 3.2.4 and
3.2.57, all identifiers of o program must be declared. No
ientifier may be deelared more than once in any one
hloek head.

Svotax,
ftvpe deelaration | farray deelaration
{procedure declaration?

ideclaration: =
fswiteh deelaration?

5.1. Tyrr DECLARATIONS
.11 Syndax
Avpe list - o= simple variable ||
fmimple variable , {type list:
{type: 2= real | integer | Boolean
dueal or own type: = {ypetown {dtyped
Hyvpe declaration” = {loeal or vwn typeiitype fist)
5.1.2. Exnnples
integer p,g.8
own Boolean eyl n

5.1.3. Semanties

Type declarations serve to declare certain identifiers to
represent simple variables of a given tvpe, Real declared
variables may only assume positive or negative values

AL.7a.13

REVISED ALGOL 40
including zero, Integer declared variables may only assume
positive and negative integral values including zero,
Boolean declared variables nmay only assume the values
true and false.

Lin arithmetic expressions any position which can be
avcupicd by a real declured variable may be oceupied by
an integer declared variable,

I“or the semanties of own, sce the fourth pauragraph of
seclion 5 above,

3.2, Arkay DEcLARATION=
53.2.1. Byntax

Hower Bouml arithretie expre

farithunetic exp

ssion)

fupper bowmd oo
o paire = dower bound 5 fupper bound

Mvonnd pairlist + o= fhonnd pairs onnd puir list s, Chound pair®
farray segoent o= Jarvay ddentifiers[thonnd paic Tzt
carray identitier s fatray segment

farranv list = darrny segment oooarray sty farrey segmoent s

Gurry deelarationt o= array faeray list doeul or own tape

array Jarrav H=t
5.2.2, Dxanmiples
array @, b, |72, sj=20101
own integer array Al ¢<0 then 2 elee 1220
veul array ¢[—7:—1]
3.2.3. Semnties
An array decelaration declares one or several identifiers
1o represent multidimensional arrays of subseripted
variables amd gives the dimensions of the areays, the
Bomids of the subseripts and the types of the variables.
5.2.3.1. Bubseript bounds. The subseript bounds for
any array are given in the first subseript bracket following
the identifier of this array in the form of a bound pair list.
Iach item of this list gives the lower and upper bound of a
subseript in the form of two arithmetic expressions sepa-
rated by the delimiter The bhowl pair list gives the
bounds of all subseripts {aken in order from left to right.
5.2.3.2. Dimenstons. The dimensions are given as the
nuniber of entries in the bound pair lists,
5.2.3.3. Types. All arrays declared in one declaration
are of the same quoted type. H no type declarator is
given the type real is understood.
5.2.4. Lower upper bound expressions
5.2.4.1 The expressions will be evaluated in the same

way as subseript expressions {(ef. section 5.0.4.2),

5.2.4.2. The expressions can only depend on variables
and procedures which are nonlocal to the block for which
the array declaration is valid. Consequently in the outer-
most hlock of a program ounly array declarations with
constant bounds may be declared.

5.2.4.3. An array is defined only when the values of all
upper subseript hounds are not smaller than those of the
corresponding lTower Douds.

5.2.4.4. The expressions will be evaluated onee at cuch
entrunce into the hloek,

5.2.5. The identity of subseripted variables

The identity of a subscripted variable is not related to
the subseript bounds given in the array declaration. HHow-

AL,7a.lé

REVISED ALGOL 60
ever, even if an array 1= declared own the values of the
corresponding subzeripted varinbles will, at any time, be
deitned only for those of these variables whieh have sub-
seripts within the most reeently caleulured subseript
Lounid-.

333 Swrrenn DEcnaarions

5.3, Syntax
smwiteh Jist s o= idesirnational expression

switeh list | adestenational expression

fawitetoleeloratiog

= switeh Sswitehidentifier s = swevel st
3.h.20 Famples

switehe N o= SES2ZO L G0 2> A then N3 elwe S

switeh (4 = plar

333, Senmuties

A switeh declaviation defines the set of values of the
correspanding switeh designators, These vahies e given
one by one ws the values of the designationud expressions
enfercd in the switeh Bat. With each of these designational
expresons there ix assoelated a positive integer, 1.2, .,
obtained by connting the ilews in the list from el 1o
right. The value of the switeh designator corresponding to

a given value of the subseript expression {ef. section 3.5

Dresignational Expressions? ix the value of the designa-
tional expresslon in the switeh 1=t having rhiz given value
A= its assocuted integer.

2301 Evaluation of expressions in the <witeh st

An expression in the switeh list wilf be evalnated every
tine the item of the list in which the expression oecurs is
referred 1o, using the courrent values of all variables
involved.

3.3.5. Influenee of seopes

If o switeh designator oceurs outside the scope of a
quantity ewtering into a designaiinga] expression in the
swireh list, and an evaluation ol this switeh desighator
seleets this designational expression, then the conflicts
between the identifiers for the gquantities In this expres-
sion and the identifiers whose declarntions are valid at the
place of the switeh designator will bhe avoided through
suitable systematic changes of the latter dentifiers.

5.4, PROCEDURE IDECLARATIONS
5.4.1. Byutax
{formal parameter - := ddentifier:
{formul prrameter Hety o= formal parameter |
Aormal parameter list - Opraornneter delimiter?
(formal parameter:

urmul parameter part: o= Jempty o Ciformal parameter Hes by
fidentitier list s = odentifier s ddentifier Het o, (olentifier?
fvalue part: = valueidentifier Jist Liempty

{specifier; = string’tlvpe” array;type array label switch!

procedure (Lype procedure
ey speeifier sddentifier Tisd s
specifier - identifier list

{speeification part - =
ixpecifieation part ¢
{procedure heading s
{formal purameter part:
{procedure bodyy o= {statenwent
{procedure declaratinn; =
procedure {procedure heading vprocedure body !
tvpe

= (procedure ientifier
{value part dspeeification paret
Cele

procedure (procedure hewding - ‘procedure body)

3.4.20 Fxamples (see also the examples at the end of
the report)

procedure SpurygdChederson) Result ey 3 value no g

array i integer #; real &

hegin intleger b

ga=10

for b -= 1 step 1 until » do = 1= s+alk k]
emd

procedurve TrsposeinOrdersons) value n

u

s integer n

begin real v ¢ integer i, £

3
for i = 1 step 1 until v do
for o = 147 atep L until » do
bewin i c— a7

i b=l dl

ond

end Trgnisiens

integer provedure Xep 0
Step oos it s o

ioreal g
1 thin 1 else 0

procedure haatiar osize o mo Result i ubseript=0 /8,

comment e abhaobute weatest eloment of the mntnx g,
af sizesw by s i transferred 10w, and the subseripts of this
clesent to Cand &

real y

wrray o 5 integer q,om Lk

Begin integer p, 4

o=

for p :— 1 step Luntil v do for g o= 1 step 1 until wodo

if wbsic|paii> e then begin o= absivlpyl 5 4 = p ;
=y

end end g

procedurve Didcrproductin InO0rder b v Resulb:yd 5 value
integer bop veal we

begin real 5

g =0 ;
for p = i =tep | until £ do s = =+aXh
§oo=

end Tunerprodduct

S.h30 Semanties

A procedure declaration serves 1o define the procedure
aasociated with a procedure identifier. The principal con-
stituent of g procedure declaration s a statelwent or 4
piece of code, the procedure body, which throngh the use
of procedure statement= and or function designators may
be activated fron: other parts of the bloek in the head of
which the procedure declaration appears. Associated with
the hody 15 a heading, which specifies certain identifiers
oceurring within the body 1o vepresent formal parameters,
Fornu! parameters in the provedure hiody will, whenever

3.2 Fanetion

the procedure 1= activated (ef, seetion 3.2,

Designetors and section 170 Procedure Statements)
be wseigned the valies of or replaeed Dy aetial parneters,
Tdentiiters in the procedure hody which are not fornul
will he cither locul or nonloeal to the body depending on
whether they are declared within the body or not, Those
of them which are nenlocal to the body may well be loeal
to the bloek 1u the head of which the proeedure declara-

tion appears. The procedure body alwayvs wets like a

block, whether it hax the form of one or not. Consequently
the scope of any lubel labelling a =fatement within the
body or the body itsell can never extend beyvond the pro-
cedure hodv, o addition, if the identiticr of a formal
parameter s declued anew within the procedure body
finclnding the case of 1= use us o lubel as wn geetion .13,
it is thereby givien a local significance and actual paranm-
eters which correspond 1o it are inaeeessible thronghout
the seope of This inner loeal quantity.

Sobob Values of funetion designators

Tor a procedure declaration to define the value of a
tetion desighator there must, within the procedure
body, ocewr one or more expliclt assignment statenments
with the procedure identifier In g left part; at least one of
these nust he executed, and the ype assoclated with the
procedare idontler must be declared through the appear-
ance of o tyvpe deckomtor o= the very firsd symbol of the
procedure declaration. The ket vilue so aesigned s sed
to continne the evalution of the expression i which the
Tunetion designator vcous, Any oceurrence of the pro-
cedure identilier within the body of the procedure other
than i w left part in s assignment stateent denotes
avtivation of the procedore.

A3, Specifications

In the heading u =pecilication part, giving information
about the kinds el types of the formn?

wariineiers by
ol hnothas
PHEATL CHLEe,

mesatis of an o cheie e naee e i

RN S TR TN A R I

AT LR RS R

Rpecibeatse o born s conme fere cadled Byovalue {ef.
seetion L7307 must be supplicd and speeiflications of
Yool paraneters called by name (el section $.7.3.2)
may be omidtted.

3.1.6. Code us procedure boady

I 1s undersiomd that the procedure body may be ex-
pressed in non-Avson language, Sinee it s intended that
the uxe of this feature <hould be entirely a question of
hardware represenfarion, no o further rules concerning
thiz code language cun be given within the reference
language

Examples of Procedure Declarations:
Fxasene 1.

procedure coler {fely sz, eps, Fnd) value ¢ tim

integer (in ; real procedure fef 7 real swm eps

comment culer compuies the sumy of fefo) for § o sevo nip oo
infinity by means of wosuitables vefined cufer transformation, The
Snnnation is slapped s soone s foe ties i sneees=ion the .
Prate wahie of the ternas of the tran=Termed zeres are fonmd 1o e
Jess than ¢ e, Henee, ane should pravide o funetion fef with one

intewer armmneil, b upper bosned eps, sl an o tneeger Goues The
cntpnt s the o e St ool cifieient e the eese
of : bl series
boegio dnteger 70 o0 wlp vl e el
foo o omoa =10 o e . Lm0
nestieras . foi—= L 0w e el
for L = it step T until v odo
hegin mp o= twn balli:2 5wkl o e
wee = depoenal means

AL.7a.15

REVISED ALGOL 60

I (abs(mn) <abs(m|n])) A <15} then

begin ds = owmn2 o on = n+l o onde] 1=
mn end aceept
clse dy 1= mn
swumt = somobods
if absids;<eps then £ = Lelse ! := 0

if {<{im then go to nerflorm
cend culer

Fxamrne 20

procedure KA g a SR T epseto s Bl fiv o salue

integer o Boolean 4 ; real ropsitesl o array

vl procedure FRT

comment: A inpegrates the svstenn = T T
(b= 12, ot of differentind equations with the wethod of g
Entin with sutomatie seareh for appropriate fength of integrmion

step. Parwmeters are: The initial vabues e and gl Tor s nwd the -
Loown Tunetions gooei Thie order woof the syvetein, The peocedire

FR T ez which represents the sv=tem to e niepr
the =e1 of fanetions
povern the aeciraes of the mimenieal integrad on, The ot ol e

¢+ The toleranee values eps atud

integraticn antepvs] rED The output paramerer gk owhich e
wonts the sobition oy wssef. The Boolean varinhle fowhiet st
always be given the value teae for s isclited o firet curry inne

RA LI however the femetions zomunst be avadlable o soveral muesh-

preitits oo, e then the prosebire wnst Te called repeat-
R for =00 L a1 and then the

vooeear with

edlv iwith

false which saves computing time.,
Priend ters of PN st be e, the outpuat parameter
opepresents e et o derivatives elkl=flzpll], v[2]. .., wie]
for o oated The aettind =0\ proeednre comp enters as a nenlocal
identifier

Liter enlls 1

The o

H

begin
array 22 y3llim] veal #1,.0203,H 5 Boolean wul
integer ;o own real 20y

procedure RNRIST(ryhreye) 5 real rhre ; array
wye
comment: FRLST integrates one single RUNGE-RUTTA
with initial valnes epif] whieh yields the output
purmineters re=r+h and yelk], the Intter being the
sulwtion at re. Iinportsnt: the parnmelers v, FAT. 2
cnter BRNIST ax nonloeal entities

£,

begin
arcay w[ln, a[liA] ; integer kj
all] = al2] = wlb] = b2 aldl = aldl = A
e N

for
for

1step | antil »# do yelk) := wik] = yiF]
1 step | until 4 dao

begin
FRT rearnzl

o=yl
for & o= 1 step T until 7 do
begin

S The- Riw progrne cvontains some new idens which are relite
Lo il
ditferertind copatiens o0 an wutonatie computing machine,
[Proe. Cands PRAE Sue 53 010500, i and 1L Fribsera, On the
solution o vedinsry disferent o] equations with digital eomputing
L Fapd) Faeked, 20011 D1850 Dig 1520
Chewecir that with respect (o computing time

l
i

Sool G A pracess Tor the step hy-slep integration o

neebiine s, Fusiogeall S

Ty T e

sind rotenloetl v 3oy e b aptimal, nor has 10 actually

breetn testend on o eomiputer,

Al..7a.16

REVISED ALGOL &40

end £
ened
cmd LKLST
Begin of program:

iffi then begin Il c= rE—x ; s :=Oendelse H = Hs
gief = false
Adal 20K H =2 >0 ({{>0) then
begin Hs = . wuf = Llrue H = tFE-r2
end if

RRIST rw 22 Horl gl
BANLET i Voo RRINT 22 Hoedady
for k= 1 step 1 until »n do

i comp L Rl e pe

BE:

then go to 0

ALPHABETIC INREX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC

comment: conpinhe,] iz a funetion designator, the value
of which is the absolute vulue of the difference of the
mantizsne of @ und b, after the exponents of these quun-
tities have been made equal to the largest of the exponens
of the originully given purameters mhe

x =3 ; ifonl then go 1o LD

for k := 1 step 1 until o do ylk] 1= p3le]

if 5=3 then begin « =0 ; H :=2XH end if ;

s o= g+1 ro Lo A4
CC H o= 08X wwt o= false ol 1= 102
for b = 1 step | until v do k] = w2k

go to 85
Dh:for ko= 1 atep o until o do g B = 30
endl WK

LANTES

Al references ame given tirough section munhers. The relerences ave given in three groups:

def Fillowing the abbreviaton def”
svut Following the ahbrevistion “synt

Sorefrrence to the syotactic definition D any s 1= given.
Creforenees to the ocenrronees tn melalingUisd e formnlae are given. Refer-

eniees aleeady guoted o the def-group nre not repeatesd.

1ot

Following the word »rext) the referenees o definitions given in the text are given,

The hasie sviobiols represented by signs other than underlined words (o typewedtten copy; holdiaece in printed copy -1]

have been calleeted at the beginning.
The examples have been ignored In compiling the index,

+, aee: plus

—, SCe NS

®, see: multiply

J, . see divide

t, see: expouentiaiion

<, =, =, 7, >, 5, seen irclational eperator
=, D0, AL o, seer dogleal operator

Ly ECT COMIM

sdeenmal point
sew: ten

, sve: colun
semicolon

RO

v=, wees colon ogiiad

U, SO0 spiee

[, sue: parentheses

{ 1, see: subxeript brackets

¢ mec: string gquotes

factual parameter -, def 320, 471

faetunl pargimeter list -, def 32,1, 4701

(actual purameter parl:, def 32,1, 471

{adding operator s, def 33501

alphabet, text 201

arithmetie, text 3.5.4

{arithmetic expression , def 331 =ynt 3, 3,11, 331, 3,01, 4.2.1,
4.46.1, 5.2 Hext 0.3.3

{arithimetie operator -, def 2.3 text 331

arrav, syot 2.3, 521, 5.4.1

array, text 3141

{array declaration :, def 5.2.0 =yt 5 text 5.2.3

fatray ldeutifiers, def 30,0 svut 321, 171, 5.2.1 text 2.8

{array list 3, def 3.2.1

{urruv segment :, def 5.2.1

{assigmunent statement o del 120 syt 1.7 text 1,123

(basic statement &, def £1.1 synt 451
{basic svmbaoly, def 2

begin, =yvnt 2.3, 4.1.1

(Waock s, def 4.1.1 sy -850 text 1, 113,05
(block head:, del 4,01

Boolean, synt 2.3, 5.1.1 wxt 5.1.3

Mioolean expression s, def 3 E D sent 3,330 121, 4 5.1, 16,0 text
343

{Boolean facrer), def 3.4.1

wodef 304

(Boolean secondury s, def 3041

{Boolean term:, def 3 11

chound puir, def 5.2

hound padr s, del 52201

cheacket -, def 22

Boolean primars

repde) wynt 541 Lext TR, A0

eolon @, xvnl 24, 320, 4.1 451,461, £7.1, 521

culon erupnl == svnt 223, 4300 161 5381

commu, , svnt 2.3, 3.1 3200 L6 LT LA LT, 521,581,540

coemment, vt 2.3

commeni convention, text 2.5

{compound statement;, def £.1.7 svnt 451 text 1
feompound taily, def 4.3.1

fconditional stalement®, del 457 synt LLT text 453

{decimal fraetions, der 2.5.1

{decimal numbers, def 257 text 2.5.3

decimal point L, syat 2.3, 250

(declaration:, def & svot 4.0 text 1, 5 teomplete seetion)
(declarator;, def 2.3

{lelimiter v, def 2.3 synt 2

flesignational expression s, def 3.5, 10 svnt 30131, 331 text 353
digit) def 2200 synt 2,201, 251

dimension, text 5.2.3.2

divide / =, svnl 233, 0310 text 5442

do, svnt 2.3, £.6.1

fdummy statement +, def 441 =vnt 11,1 fext 4,43

else, svnt 2.3, 331, 301, 3.537, 45,1 lext £.5.3.2
fempty s, def V1 svnt 2601, 320, 4001 470000400
end, svnt 2.3, 411

enfier, text 3.2.5
exponentiation |

Tosvoe 23, 330 ext 5343
{fexponent party, def 251 text 254

fexpressiony, def 3 synt 3221, 4.7.1 text 3 {complete scetion)

Tactor s, def 3.

fulse, svnt 2.2,

for, synt 2.3, 4.6

dor cluuse :, del 16001 text 6.3

{for Hst -, del 1600 text bt

{for lixt element &, def 4601 fext LT AB4E2 £6.4.3

formad pargmeter | del S0 text 30038

{formad parameter f=t det 5,100

Jurmal parooeter part | def a0l

for stutement - der 46 synt 411, 4.5.1 text 4.6 (complete
seellon)

Funetion desiguator -, abel 3.2.10 synt 331, 301 teat 3,25, 544

go to.svit 2o R0
{go Lo statement 5, def £330 sant 11 text 453

fdentifier -, del 24,0 svnt 401,320, 3.0.0, 3.4.1 text 2,403
ddentitier list s, defl 5.4.1

if, svnt 2.8, 350,458

Gf elause s, def 3.3.1, £5.1 «yut 3.4.1, 3.5.1 text 3.3.3, 4.53.2
if statemend §, def 15,1 text £.5.3.1

dmplication:, def 3.4.1

integer, svnl 23, 5 1.1 fext 513

findeger - def 251 fext 2.5.4

label, =ynt 2.3, 5.1.1

{label:, def 3.5.1 =vot 41,1, 45,7, 461 text 1, 413
(left part:, def 4.2.1

(Ieft part list ., def 3.2.1

fletier:, del 2.1 synt 2, 241, 321, 471
{Jetter stringy, def 3.2, 4.7.1

local, texr 4.1.3

{docul or own trpes, def 5.1.1 syt 5.2.1
{logical vperator?, def 2.3 svnt 3.4.1 text 3.4.5
Jogical value, def 2.2.2 svnt 2, 3.4.1

{Jower bound?, def 5.2.1 text 5.2.4

minus —, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
multiply X, synt 2.3, 33.1 text 3.3.4.1
{multiplyving operator:?, def 3.3.1

nonloeal, text 4.1.3
(number?, def 2.5.1 text 2.5.3, 2.5.4

{open string}, def 2.6.1
{operator?, def 2.3
own, synt 2.3, 5.1.1 text 5, 5.2.5

{parameter delimiter?, def 321, 4.7.1 synt 5.4.1 text 4.7.7

parentheses (), synt 2.3, 3.2.1, 3.3.1, 3.4.1, 3.51, 4.7.1, 541
text 3.3.5.2

plus 4+, syot 2.3, 2.5.1, 3.3.1 text 33,41

{primary ¥, def 3.3.1

procedure, synt 2.3, 5.4.1

{procedure body}, def 5.4.1

{proccdure declaration?y, def 5.4.1 synt 5 text 5.4.3

tproeedure heading ', def 5.4.1 text 513

{procedure identifiery def 3.2.1 synt 3.2.1, 4.7.1, 5.4.1 text 4.7.5.4

(procedure statement s, def 4.7.1 synt 4.1.1 text 4.7.3

(program®, def .01 text 1

{proper string}, def 2.6.1

quantity, text 2.7

AL .7a,17

REVISED ALGOL &0

real, svnt 2.3, 5.1.1 text 5.1.3
{relation s, def 3.4.1 text 345
frelational operalor?, def 2.3, 3.4.1

scope, text 2.7

semicolon 5, syni 23, 110, 5.4.1

{separator?, def 2.3

{sequential operatory, def 2.3

(simple arithmetic expression -, def 3.3.1 text 3.3.3

simple Boolean s, def 5.4.1

(simple designalional expression®, def 3.5.1

(simple variabley, def 3.1.1 synt 5.1.1 text 2.4.3

spaee u, synl 2.3 text 2.3, 2.6.3

{specilieation part’, def 5.4.1 text 5.4.5

{speeifieatory, def 2.3

{speeifiery, def 5.4.1

standard funetlion, text 3.2.4, 3.2.5

{statement s, def L1, synt 451, 461, 5,41 text 4 {complete
gectinn!

stutement hracket, see: begin end

step, syot 2.3, 46,1 text 16,42

string, sant 2.3, 6.4.1

string s, del 2.6.0 syat 3.2.1, 471 text 2068

string quotes © 7, svnt 2.3, 2451, text 2.6.3

subsceript, text 3.1.4.1

subseript hound, text 5.2.3.1

subseript brackets [|, svnt 2.3, 3.1.1, 3.5.1, 5.2.1

{subseripted variable, def 3.1.1 text 3.1.4.1

{subseript expression:, def 3.1.1 synt 3.5.1

{subscript list s, def 3.1.1

suceessor, text 4

switch, synt 2.4, 5.3.1, 5,41

{switch declarution’, def 5.3.1 syni § text 5.3.3

fswileh destignatory, def 3.5.1 text 3.5.3

{switeh identifier}, def 3.5.1 synt 3.2.1, 47.1, 53.1

{switeh list}, def 5.3.1

{term, def 3.3.1

ten w, synl 2.3, 2.5.1

then, synt 2.3, 3.3.1, 4.5.1

transfer function, text 3.2.5

true, synt 2.2.2

(type?, def 5.1.1 synt 5.4.1 text 2.8

{type declaration}, def 5.1.1 synt 5 text 5.1.3
(type list}, def 5.1.1

(ungomlitional statement?, def 4.1 1, 4.5.1
(unlabelled basic statement;, def 4.1.1
{uniabelled block?, def 4.1.1

{unlahelled compound}, def 4.1.1
(unsigned integer), def 2.5.1, 3.5.1
(unsigned number?t, def 2.5.1 synt 3.3.1
until, synt 2.3, 1.6.1 text 4.64.2

{upper bound}, def 5.2.1 text 5.2.4

value, synt 2.3, 5.4.1

value, text 2.8, 3.4.3

{value part}, def 5.4.1 text 4.73.1

{variable}, def 3.1.1 synt 3.3.1, 3.4.1, 42.1, 46.1 text 3.1.3
{variable identifler, def 3.1.1

while, syat 2.3, 4.6.1 text 1643

END OF TIE REPORT

AL,7a,18

AL.7b.1
CHAPTER 7b

Features of ALGOL-60
which are changed in ALGOL-20

This section lists those aspects of the Report which do not hold
for ALGOL-20. The section numbers refer to the Report and page
numbers refer to this manual.
2.1 Only upper case letters are available.
2.2.2,2.3 The basic symbols indicated by underlined identifiers in the
reference language (boldface in the report) are replaced in Algol-20
by identifiers with the same spelling. These identifiers, which may
not be used for any other purpose, are referred to as "reserved identi-
fiers". 1In addition, certain other reserved identifiers have been
added to Algol-20. See Chapter 2, page 3ff.
2.3 A change to a new line of input text has the same significance
as a blank space (except that strings may not continue beyond the end of
a line}). See Chapter 6a.
2.3 The characters = and + are not available. The characters
=, ¥, = and = are available in different forms. See Chapter 2, page 2.
2.4 Identifiers may not contain spaces. However, see Chapter 2,

page 5, for alternative punctuation.

2.5 See Chapter 2, page 6 for the range of values of meaningful
numbers.
2.6.1 Since ALGOL-20 cannot distinguish between a left and right

string quote, strings may not contain strings.

3.1.4.2 Array subscripts are truncated, not rounded, when they are
evaluated.

3.3.4.2 + is not available. See Chapter 2, page 2.

3.3.4.3 t produces a value of type real when it is applied to any com-

bination of real and integer values.

3.4 - is not available. See Chapter 2, page 8.

3.4.6.1 = has the same precedence as =.

3.5 A label may not be an unsigned integer.

L.1 ALGOL-20 defines <program>::=<unlabeled block>|<unlabeled

compound™. Thus the first character of a program must be a begin.

AL.7b.2

4.1.3 If the first occurrence of a label in the block in which it
is defined is as an actual parameter, it is necessary to declare it
as a label in that block head.

4.6 The controlled variable in a for statement may conly be a
simple variable.

4.7.3.1 Arrays cannot be called by value.

5.2 Dynamic own arrays are not allowed.

5.4 Recursive procedures are not available.

5.4.5 All formal paramcters must be specified.

AL.,7c.1
CHAPTER 7c

Restrictions on ALGOL-20

to transform it into a subset of ALGOL-60

The user of ALGOL-20 may use many abilities which are not part of
ALGOL-60, since the translator at Carnegie Tech implements an extension
of the language. Lf a program (or procedure) is to be sent outside of
Carnegie Tech, however, the programmer may wish to restrict himself to
those aspects of our system which are part of the standard language. To

do so, he must obey the rules given in this section.

Anything which gives a note (except for notes 1 and 2) indicates a
deviation of ALGOL-20 from ALGOL-60 and so should not be used.

All left parts in a statement must be of the same type.

Boo0lean variables must not occur as primaries in arithmetic express-
ions.

Arithmetic variables must not occur as primaries in Boolean express-
ions.

Go must be followed by to.

Nothing may be assumed about the initial value of a variable - includ-
ing own variables.

"M is not a legal character in identifiers.

Constants may not end with a decimal point.

Variables may only be of type real, integer or Boolean.

The value of a for variable is undefined after the for statement has
run to completion.
If a unary operator follows another operator, it and its operand must

usually be surrounded by parentheses.

Al .7c.2

None of the following exist in ALGOL-6C and must not be used:

octal constants
alphanumeric string constants

step...while for-list elements

privileged identifiers (with their privileged meanings)
label declarations

nested substitutions

the operators | and «

the reserved words max, min, and mod

library procedures

SY statements

CO statements

WHAT

the operator = used to mean =
input/output

|| comment convention

THIS PUBLICATION IS AVAILABLE AT:

THE BOOK STORE
BAKER HALL

CARNEGIE INSTITUTE OF TECHNOLOGY
PITTSBURGH, PENNSYLVANIA 15213

THE SALE PRICE ($1.25)* REFLECTS THE COST
OF PRINTING AND DISTRIBUTION ONLY,

*(Add $.06 sales tax for purchase in Pa.)
*(Add $.20 postage for mail orders)

	1965 ALGOL-20 A Language Manual, Fierst et al - Chapter 0
	1965 ALGOL-20 A Language Manual, Fierst et al - Chapter 1
	1965 ALGOL-20 A Language Manual, Fierst et al - Chapter 2
	1965 ALGOL-20 A Language Manual, Fierst et al - Chapter 3
	1965 ALGOL-20 A Language Manual, Fierst et al - Chapter 4
	1965 ALGOL-20 A Language Manual, Fierst et al - Chapter 5
	1965 ALGOL-20 A Language Manual, Fierst et al - Chapter 6
	1965 ALGOL-20 A Language Manual, Fierst et al - Chapter 7

