‘ ai{
THE BURROUGHS ALGEBRAIC COMPILER
FOR THE 205
PROGRAMMER'S MANUAL
- -

Automatic Programming
Burroughs Corporation
Pasadena, California

PR

Preliminary Edition
Bulletin 3041
February, 1961

Minor Revision of
December 1960 Edition

I. INTRODUCTION

In order to solve a complicated problem on a high-speed
digital computer, a large amount of time is usually required
for a programmer to translate the specifications of the
problem into the rather restricted machine code. Later, if
the same problem is to be solved on a different computer, it
is necessary to spend an appreciable amount of time re-
programming for the new machine.

A lot of the work involved in coding these problems 1is
actually quite mechanical; and since computers thrive on such
tasks, it is quite natural that automatic programming systems,
"compilers" in particular, would be developed. A compiler
program takes in the description of a problem, written in a
language which closely resembles ordinary English and mathe-
matical terminology, and translates it into the machine
language of a computer.

After many compilers for many computers had been written, it
became evident that a single compiler language which would
be standard for use with every computer was desirable, so
people would not have to learn a new language with each new
machine. As a result of a subsequent international confer-
ence, "Algol 58" was born. The problem language of the
Burroughs Algebraic Compiler for the 205 has been patterned
after this international language.

The language of Algol 58 was full of so much generality,
however, that compilation on a medium-size computer was found
to be quite impossible. (In fact, it was quite difficult to
accomplish the translation even on the largest computers
available at that time!) Therefore, the full repertoire of
Algol 58 could not be put onto the 205. The language of the
compiler has, accordingly, been chosen to include as much of
Algol 58 as possible, including all of the essential features,
and the result is the language to be described here, a lan-
guage which, although less than Algol 58, is still more power -
ful than any other language now used on machines of comparable
size, and a language which has been found quite easy to learn
and to use.,

In addition, the language of this programming system has been
chosen so that it is completely contained in the language of
the Burroughs Algebraic Compiler for the 220 Electronic Data

Processing System; in other words, any program correctly
written in this language will work properly if compiled and
run on the larger and faster 220.

As an example of Algol language, consider the formula for
computing one of the roots of the equation AXZ2+BX+C = 0:

; VB2
x = ~B +B 4AC

2A

The chief difference when formulas are translated into Algol
form is that everything must be written on one line:

X = (- B + SQRT(B*2-4A-C))/2A.

Here "SQRT" replaces the radical sign, * means taking of a
power, and * is a symbol for multiplication.

IT. BASIC SYMBOLS

The Alphabet

The first step in formulating a language is to choose the
list of symbols that will be used to construct it. This
list of symbols is known as the "alphabet" of the language.
This Compiler's alphabet consists of the twenty-six capital
letters

ABCDEFGHIJKLMNOTP QRS TUVWIXY 2z

the ten digits

0123456789

and ten special symbols
+‘“/*);()=

which are used to indicate arithmetic operations and punctu-
ation marks. All of these symbols appear on the standard
"Fortran" keypunch, except the semicolon ";" for which the
dollar sign "$" is substituted. No other characters except
those listed above and blank spaces have any meaning in this
language.

Identifiers and Numbers

The preceding symbols are strung together to form two types
of basic entities: identifiers and numbers.

An identifier is any string which begins with a letter and is
possibly followed by letters and/or digits. For example, "X"
and "ALPHA4" and ALGOL205" and

"THISISALONGIDENTIFIERWITHJUST4ICHARACTERS"

are identifiers. But "GROSS-PAY" and "4ALPHA" are not iden-
tifiers unless they are written "GROSSPAY" and "FOURALPHA".

Several words have a special meaning to the compiler, however,
and they may not be used as identifiers. These words (for
example, BEGIN, SQRT, END, IF, FOR, AND, UNTIL, ARRAY,
SUBROUTINE) are all listed in Appendix A, and they will also
appear in the text below as their function is described.

1. On non-Fortran keypunches, the special characters ¥ lz
are substituted for () =, respectively,

|
|
|

Although identifiers may extend up to 43 characters in
length and the Compiler will still understand, the speed of
punching the input and the speed of compilation are reduced
when long identifiers are used, so there is no point in

making up very long ones unless some ease in programming
results.

A number is even simpler to describe: It is just a string

consisting of digits only. For example, "0" and "1234567890"
and "004" are numbers.

The reader is probably thinking at this point, "Does this guy
think he's telling me what a number is?" Well, of course
everyone knows what a number is, in the ordinary sense, but
the definitions given here are to explain what the words
"number" and "identifier" will mean when used later in this
manual. Any other words, say even "ngogn" and "fmurg," might
have been defined instead of number and identifier and used
later on.

III. VARIABLES AND CONSTANTS

Types of Arithmetic

This compiler language features two distinct types of arith-
metic operations. The first type deals only with the
integers, and no fractional or decimal values are allowed.
Such arithmetic is limited to integers of ten digits or less,
so the allowable values are

-9999999999,—9999999998,.,,,—1,0,1,c0,,9999999998,9999999999(

The result of adding, subtracting, multiplying, dividing, or
taking powers of integers is an integer. Notice, however,
that division (e.g., -5 divided by 3) and taking powers (e.g.,
5 to the -1 power) lead to fractions under ordinary rules; in
such cases the fractional part is disregarded, so -5 divided
by 3 equals -1; and 5 to the -1 power equals 0. For this
reason, integer arithmetic 1is rarely used for division and
taking negative powers; it is most used for calculating sub-
scrips or for keeping track of how many times something is to
be done.

The other type of arithmetic has a much broader range; it is
known as "floating point" or "real-valued" arithmetic. A
floating point quantity r has eight significant figures,
and its magnitude can be zero or anywhere in the range

10-31 & Jr| € 1049

Examples of floating point values are -3.1415927 and
2.8400000x10-%, 0f course, floating point values include
integers like 1.0000000 and 365.00000 also,

The name floating point comes from the fact that decimal

points seem to hop around during floating point calculations,
The reason for having two types of arithmetic is that integer
arithmetic is faster for computing subscripts and for counting.,

Any variable used in a program may be either integer or
floating point, but not both. Those variables which are to
be integer-valued are declared as such on an "INTEGER" de-
claration (see Chapter V). 1Integer variables take on only
integer values, and floating point variables take on only
floating point values. It is possible, however, to use both
integer variables and floating point variables in the same
formula.

Precise rules about the integer and floating point arithmetic
and allowable conversion between the two are listed in
Appendix B.

Constants

Integer constants are represented in the language by numbers
(e.g., 0 1728 100000).

A floating point constant can be represented in several ways:

a. As two numbers with an imbedded decimal point (e.g.,
3.1415927 1.0 0.000004% 0.0).

b. As a number followed by a power of ten by which it is
to be multiplied. The power of ten is indicated after
a double asterisk. For example, 1x106 can be written
either 1%%6 or 1%%46, 12x10-29 can be written as
12%%_20.

¢. As two numbers with imbedded decimal point together
with a power-of-ten specification (e.g., 1.0%%6
2.84%%_6) .

Notice that 300000.0 3#%%5 3%%+5 30%%4 3 0%%5 0. 3%%6
and so on are all equivalent forms for representing three-
hundred-thousand, in floating point form.

Variables

Variables come in three flavors: simple variables, vector
variables, and matrix variables. The different kinds are
distinguished by the number of subscripts: simple variables
are unsubscripted, vector variables have one subscript, and

matrix variables have two. Subscripted variables are also
called "arrays."

An indentifier is associated with each variable, and it 1is
called the "name" of the variable. The same identifier
cannot be used for two different variables, not even if one
is an array and the other is not.
Examples of simple variables are:

OMEGA I W13 Wi4,

There is no connection between the variables W13 and Wl4.

Vector variables have their subscripts set off by parentheses;
for example:

X(3) PSI(I) W({l3j) W({ld).
In this case W(13) and W(l4) are part of the same vector, W.

Matrix variables have their subscripts set off by parentheses
and a comma; for example:

A(1,1) M(I,J).

Subucripits cun be of any wegree of complexity; they muy even
contain subscripted variables themselves., We might have

X(I+4J) or M(X(X(1)) ,M(A(5,1),W(12))).
All subscripts start at 1 and g0 up to some maximum which is

specified on an ARRAY declaration. We will discuss this
declaration in Chapter VI.

It is almost always best to use integer arithmetic in sub-
scripts, and floating point belongs there only in peculiar

cases., If the subscript is floating point, however, the
digits to the right of the decimal point are dropped, there

is no rounding. You must be careful in this case, for
3.9999999 is a floating point number very close to 4, but if
it is the value of a subscript it is chopped to 3. (This
number isn't very hard to achieve, either: 4.0 divided by 3.0

is 1.3333333; the latter times 3.0 is 3.9999999.)

IV. EXPRESSIONS AND PROPOSITIONS

Arithmetic Expressions

Variables and constants are combined with parentheses and
operators to form arithmetic expressions. Let us attempt to
give a fairly precise definition of the term "expression."

a.

b.

A variable or a constant standing alone is an expression.

If E 1is an expression whose first character is not
"+'" or "-", then +E and -E are expressions,

If E 1is an expression, then (E) is an expression
meaning the quantity E taken as a unit. Thus, the
negative of X+Y can be written - (X+Y).

If E 1is an expression whose first character is not
"+" or "-", and if F is any expression, then F + E
and F - E are expressions, meaning the sum and
difference of F and E.

If E and F are any expressions which are not both
constants, then

E-F E/F and E*F

are expressions which mean "E times F", "E divided
by F", and "E to the F power", respectively.

If E 1is an expression, so is ABS(E), meaning the
absolute value or magnitude of E.

An expression in which all variables and constants
(exclusive of those appearing in subscripts) are
integer is called an integer expression; otherwise,
it is a floating point expression.

If E and F are integer expressions, MOD(E.F) 1is
an integer expression whose value is the remainder of
E divided by F.!

If E 1is a floating point expression, then

SIN(E), COS(E), ARCTAN(E), LOG(E), EXP(E), SQRT(E).

1.

Eere F must have a positive value at running time,

or the sign of the answer will not agree on the 205 and the
220 computers.

are expressions. The SIN, COS functions take E 1in
radians; if E 1is in degrees, write SIN(0.017453281(E))
or COS(0.017453281(E)). The ARCTAN function produces
answers in radians between -1.5707963 and +1.5707963;
to get answers in degrees, write 57.295779 ARCTAN(E) .
LOG(E) is the natural logaritbm; to get base ten
logarithms, write 0.43429448L0G(E); to get base ten
antilogarithms, write EXP(2.3025851(E)). You may have
noticed that the multiply symbol is missing in these
examples; that is all right, as we will see below.
Other functions besides these may be part of the
library at your installation.

j. Additional functions may be defined at compilation
time through the medium of procedures {(see Appendix C).

Interpretation of Expressions

If you were to insist upon a strict literal interpretation of
rules d) and e) above, you would find there is some ambiguity.
In the expression X + Y * Z there is some question as to
whether X should first be added to Y and the result multiplied
by Z, or Y multiplied by Z first and then X added to the
result. 1In other words, does it mean (X +Y) - Z or

X + (Y © Z2)? Parentheses should be used to express the exact
meaning; but if they are not given, the compiler interprets
expressions according to the usual mathematical conventions.

To be explicit, whenever there is a choice between two opera-
tions as to which is to be done first, taking to a power and
negation are done first, then multiplication, then division,
and lastly addition or subtraction. 1In case of ties, the
operation proceeds from right to left.

These rules need not be learned if parentheses are filled in
explicitly. The insertion of redundant parentheses in no way
hurts the compiled output. However, the following examples
serve to explain the rules given above:

X +y Z is interpreted X+ (Y - 2)
W-.-X/Y - 2 is interpreted (W-X) / (Y-2)
B * 2 - 4-A-C is interpreted (B*¥2)-(4-(A-C))
X - Y - Z is interpreted X + (-Y -2)
X/ Y/ z is interpreted X/ (Y / 2)
- X * 3 is interpreted - (X * 3)

The "-" symbol for multiplication may be omitted when no
ambiguity is introduced. These cases are the feollowing:

Let 1 stand for the name of any function or any
variable, N for any constant, and W for any simple
variable; the cases are

*)1)N) (W(N (NT

which may be used instead of

)1)N) W-(N-(NI
For example, we can write

3N (A+B) (A-2B) 4(X*2-¥*%2)ALPHA.

Notice that theexpression A(J) means A.J if A is a
simple variable, and Aj if A is a vector.,

Mixed Arithmetic

Suppose I and J are integer variables and X 1is a float-
ing point variable. Then let us consider the evaluation of
X-(I/J3) and of (X-1)/J: These two formulas are not equivalent
exXpressions! In the first expression we are first to divide

I by J. So far there is no mixed arithmetic, for 1 and J
are both integral; thus, the division is done integer-wise,
disregarding the remainder. Then, we are to multiply the
result by X, so we convert the result to floating point and
multiply by X. 1In the second example, however, we are to do
the multiplication first, so first the value of I is con-
verted into floating point and multiplied by X. Then the
value of J is converted into floating point and the division
is finally carried out.

Now in general, conversion inside an expression from integer
to floating occurs only when we are dealing with one of the
operations + - * / or * where one of the quantities is
integer and the other is floating. In this case, if the
integer part is simply a constant (like 123), the compiler
automatically re-reads the constant as if it had been written
in floating point form (like 123.0).

As a final example of an arithmetic expression, here is a re-
presentation of the famous "Wolontis Function":

sin x
V1 _e-x3
In Algol form, this is written:
SIN(X) / SQRT(L-EXP(-X*3))

Propositions

A proposition is a declarative statement which is either true
or false. If E and F are any aritbmetic expressions, the
following are propositions:

E GIR F meaning ENSF

E GEQ F meaning E>F

- 10 -

E LSS F meaning ELF
E LEQ F meaning ESTF
E EQL F meaning E=F
E NEQ F meaning E ;éF

We also have the proposition "PCS(1)." This proposition
means "the Skip Switch is on" on the 205 and "Program Control
Switch Zero is on" on the 220.

If

And if

is any proposition, NOT (P) is also a proposition.
P and Q are both propositions, we may write "(P)

AND (Q)," which is another proposition meaning both P and
Q are true, and "(P) OR (Q)" which is a proposition mean-
ing either P or Q or both are true.

Examples of propositions:

X EQL 0

(X GTR 0) AND (NOT((PCS(L)) OR (%2 LSS 2)))

The Use of Blank Spaces

a.

Blank spaces can be inserted freely in most places, to make
the input language look more readable. SPACES MUST NOT BE
INSERTED IN THE FOLLOWINGC PLACES, HOWEVER:

Between the identifier of a4 vector or matrix and the
left parenthesis following.

In the midst of a constant or identifier.

Between a prefix character and the three dots follow-
ing (see the INTEGER declaration).

Between the two dots of a "rtolon™ (see Labeled State-
ments) .

Between the label and the lefr parenthesis following
in a FORMAT, INPUT, OUTPUT or Procedure Declaration
(see Chapter VIT).

Of course, spaces must occur between adjacent words; it would
be incorrect to write "XEQL 0" or "X EQLo ."

V. STATEMENTS

So far, we have learned only the building blocks of the lan-
guage. Now we are ready to write whole statements, which are
imperative sentences telling the machine how to go about
solving the problem.

Assignment (Replacement) Statements

The statement V = E where V 1is any variable and E any
expression, means '"substitute the value of E into the value
of v."

Examples: Y = SIN(X)
A(1,J) = A(J,I)
I = 1+ 1

The last example says to set 1 equal to its former value
plus one.

If one side of the equals sign is integer and the other is
floating, the expression is converted to agree with the

variable.

STOP statements

The statement "STOP" commands the computer to halt.

The statement "STOP E" (where E 1is an expression) commands
the computer to halt displaying the value of E 1in Register
A. Depressing "START" or "CONTINUOUS"™ on the 205 console will
re-start the program where it left off,

Compound Statements

Any number of statements may be combined and treated as a
single statement by separating them with semicolons and
enclosing them in "statement parentheses" BEGIN and END. For
example,

BEGIN X = X + 1; T = 1 + 1; W= 0 END

is a compound statement formed from three assignment state-
ments.

Labeled Statements

A name or "label" can be attached to a statement, and that
statement can be referenced by that label anywhere else in
the program. If ¥ is a statement, and L is an identifier,

the label 1L g attached to g by writing "L..Z". The two
dots represent a colon, tipped on its side. An identifier
used as a label cannot be used as g variable name.,

Control Statements

The order in which statements are normally executed is the
sequential order in which they are written. But there are
two statements which can be used to change this normal order.

The statement “Go L" of "GO TO L" (where L is a statement
label) is an instruction to start executing statements
beginning with the Statement labelled L.

The statement

SWITCH E, (Ll,LZ,,,ﬂ,Ln)

(where. E 1is an expression, preferably fixed point, and the

L's are Statement labels) is interpreted as follows: If E
is floating point, it is first changed to an integer by
throwing away the fractional part. (As with subscripts, it

is best to use integer arithmetic here.)

If E =0, nothing happens.
If E action is like GO TO L1.
If E = 2, action is like GO TO L2.

[
—
“

If E = n, action is like GO TO Ln,
If E 1is negative or bigger than n, anything might happen,
and usually does, The number of labels, n, is virtually

unlimited.

Conditional Statements

If = is any statement, and P 1ig any proposition, the
following is a conditional Statement:

IF P: 2

It means "if P is a true Proposition, execute statement ¥;
otherwise, do not eéxecute X." For example,

IF X EQL 0 ; GO TO START

is a conditional statement which transfers control to START
if X equals zero,

The reader may think at first that it is quite restrictive
that ¥ be only a singie statement; but, of course, X could

be a compound Statement, such as

IF X EQL 0; BEGIN I = I +1; GO TO START END.

Another form of conditional statement is the "UNTIL" statement.
If P is any proposition and ¥ is any statement, an UNTIL
statement can be formed by writing

UNTIL P; X
which means "execute statement Y until P Dbecomes true."
For example,
UNTIL PCS(l); BEGIN I = I + 1; STOP I END

causes the computer to stop if the Skip Switch is not on.
The value of a number 1 is displayed in the A Register. 1If
the operator pushes START but fails to turn the Skip Switch
on, the 205 will stop again, displaying a number one higher
than last time. This pProcess keeps on until the operator
uitsmmonkeyiqgwgfound and finally turns the Skip Switch on.
If the SWItc¢h was on at the very beginning, however, no stop
would occur, Thus, if I was initially zero, the value of
I after this UNTIL statement is passed is precisely the
number of times the 205 stopped.

It should now be clear that the statement

UNTIL P; X
is precisely equivalent to the statement

L..IF NOT (P); BEGIN Z; GO TO L END

Example Program

Statements (and Declarations, which we will discuss later)
are separated from each other by semicolons. To illustrate
the statements we have discussed so far, let us write a pro-
gram to solve a simple problem.

The problem? We are given 100 numbers X(1), X(2), ...,
X(100) where X is the name of a vector variable. We would
like to find the sum of

X(1) +%x(2) +%x(3) + ... +%6 X(100) ;

after that sum is calculated, the computer should halt dis-
playing the answer. (The INTEGER and ARRAY declarations
used in the following program should have an obvious meaning
even though we haven't defined them as yet.)

Burroughs Algebraic

Compiler Language Remarks!
INTEGER 1; This designates T as an

integer wvariable.

- 14 -

Burroughs Algebraic
Compiler Language

ARRAY X(100);

I = 1; SUM = 0;
ADD5°SUM$SUM+X(I)/I;
IF {glOO; GO TO HALT;
I = 1 + 1;
GO TO ADD;
HALT..STOP SUM;
FINISH;
Another way is as follows:
INTEGER 1:; ARRAY X

UNTIL I GTR 100 ;
STOP SUM; FINISH;

(100) ;

FOR Statements

BEGIN SUM=SUM+X(I)/I;

Remarksl
X is a vector with 100 elements
Initialize 1 and SUM
Add I-th term to SUM
Are we finished?
Increment 1
Loop back to ADD statement
Display answer
Signifies end of pProgram.

I=1; SUM=0;

I=I+1 END;

Repetitive Ooperations like the above occur so commonly, a

With a FOR Statement,
the following:

INTEGER I; ARRAY
FOR 1=(1,1,100);
STOP SUM; FINISH;

In order words, if g 1
Statement which causes
successive values of I
forms of FOR Statement

a. FOR V = El1,E2,.
2 is a statemen
means to execut
values El1,E2, .,
V = En.

b. FOR V =
2 is a Statemen

(E1,E2,E3); &

special statement has been included to accommodate them.,

the above Program can be shortened to

X(100); SUM=0 ;
SUM=SUM+X (1) /1;

S a statement, "FOR I=(1,1,100);%" is a
L to be executed repeatedly for the

= 1,2,3,...,100 There are several

s:

-+»En; ¥ (where Vv is a simple variable,
t, and the EIl1, E2, to En are expressions)

e 3
., En.

repeatedly,
At the end

giving V the sSuccessive
of the Process,

(where Vv is g simple variable,

t, EI and E3 are any expressions,

E2 is an €Xpression which does not begin with the

character mom,

1. These remarks

a4re not part of the compiler language

and where E2 has a Positive value) means

they are just explanations to the reader.

to execute ¥ repeatedly, giving V the Successive
values El, El+E2, E1+2E2, etec. until El+nE2 is greater
than E3. At the end of the brocess, V will be greater
than E3. If El is greater than E3, % will never be
executed at all.

¢c. FOR V = (E1,-E2,E3); & (where V is a simple variable,
2 is a statement, El and E3 are any expressions, and
E2 is an expression which has positive value) means
to execute ¥ repeatedly, giving V the successive
values EI, E1-E2, E1-2E2, etc. until E1-nE2 is less
than E3. At the end of the process, V will be less
than E3. If E1 is less than E3, ¥ will never be
exXecuted at all.

d. The three forms above can be combined. For example,
consider the statement

FOR I = 2, (3,2,7),(23,-6,11),13,19; z.

It causes ¥ to be executed for I equal to 2,3,5,7,23,
17,11,13,19 in that order.

It is illegal for the Statement £ to contain any labels which
are referred to from outside of Z. If £ has the form IF P;
Z or UNTIL P; & it must be enclosed in a BEGIN - END pair.

For example:

FOR I = 2, (3,4,12); BEGIN IF V(I) EQL 0; GO TO A END.

Other Statements

The ENTER, RETURN, and Procedure Statements are discussed
elsewhere in this manual.

VI. DECLARATIONS

Statements are instructions to the computer when the problem
is being run; declarations, by way of contrast, are instruc-
tions to the compiler program when the program is being
translated into machine language.

The first declarations will be described by examples.

INTEGER Declarations

INTEGER I, J..., W, ZETA

This declaration tells the compiler that the variables I, W,
and ZETA are integer variables, and that all simple variables
beginning with the letter J are to be integer variables.

Integer declarations must occur before the variables are used,
I, W, and ZETA might not be simple variables; they may be
arrays (in which case the entire array is an integer), or any
of them may even be the name of a procedure used as a function
(see Appendix C).

J in the above declaration is called a prefix. There are
several restrictions on the use of prefixes:

a. A prefix must be only one letter in length.

b. When a prefix is used, no array variables beginning
with that letter may be used, unless they are declared
to be integer also.

¢. Although normally the same identifier cannoct be used
for two different things, it is possible to use the
identifier (the single letter) of a prefix as the

identifier of a simple variable. But, it cannot be
used also as a label. Therefore, in the above example,
"J" could not be used as a label elsewhere in the
program.

Array Declarations

ARRAY ZETA(2,7), X(100), Y(40,40)

This declaration tells the compiler that ZETA is a matrix
with two rows and seven columns, that¥is a 100-element vector,
and that Y is a 40x40 matrix.

I1f an arfay is to be an integer array, the INTECER declara-
tion must precede the ARRAY declaration.

- 17 -

Subroutines

A block of statements may be set apart as a subroutine and
given a label. This is a handy way te exXecute a series of
instructions and to return afterwards to various places.

A Subroutine Declaration is written as folleows:
SUBROUTINE L; BEGIN I1; z2; ...3; Zn END

where L is the label of the subroutine and Zl, £2, etc. are
statements (not declarations!').

At least one of the statements must be the statement "RETURN."
Here is what happens: To use the subroutine, you give the
statement "ENTER L" and this signals the program to start
executing the subroutine beginning at $1. As soon as a
"RETURN" statement is encountered, control of the program
returns to the statement following the "ENTER L" statement.

Note that the Subroutine Declaration itself does not cause
zl, ¥2, ..., Zn to be executed; they are all by-passed at the
place where the Subroutine Declaration itself appears. The
declaration merely serves to associate the label L with a
certain block of statements, and the subroutine is executed
only when it is entered through an "ENTER" statement.

It is illegal to GO TO a labeled statement within the Sub-
routine Declaration from outside the Subroutine Declaration.

Comment Declarations

COMMENT THIS IS A COMMENT

tells the ccmpiler to ignore the string of symbols THIS IS A
COMMENT because they are just explanatory remarks for the
reader. The string of comment symbols can be chosen in any
way from among the basic symbols of the Algol alphabet, except
they may not contain a semicolon or begin with two periods.

Finish Declarations

At the end of every program in Algol language, the declara-
tion "FINISH;" must be placed, telling the compiler that there
is nothing more to the program.

Other Declarations

The INPUT, OUTPUT, FORMAT, and PROCEDURE declarations are
discussed elsewhere in this manual.

VII. INPUT-OUTPUT

The preceding language description is sufficient to do most
computer problems, except there is still no way to read data
in and to punch answers out. This section describes the
flexible input-output operations available,

Since there are two versions of the compiler, one for paper
tape input-output and one for Punched card input-output, data
handling for the two versions is somewhat different, But,
actually, both versions have many features in common, and the
main differences are in the actual preparation of input data,
The latter problem is discussed in Appendix D.

Input Declarations

An input declaration serves to give a name to a group of
variables. For example,

INPUT DATAL(X,Y,T,A(Ll),B(I+1))

associates the name DATAl with the list of five variables X,
Y, I, A(l), and B(I+1).

That is all an input declaration does. Like any other declara-
tion, it is not an instruction to the computer to read in the
list of variables; it merely means that the identifier DATAL

is to refer to these five variables.

Read Statements

Actual reading of data is accomplished via READ or PTREAD
statements, These are special cases of Procedure Statements,
the subject of Appendix C, but these input-output procedures
can be used without knowledge of the full generality avail-
able in other Procedures.

The statement "READ(; ;DATAL)" means "read in data into the
variables specified on the INPUT Declaration for DATAL."™ As
an example, suppose DATAl was the list of five variables in
the illustration above. Then, the READ statement means to
put the first item of data into X, the second item into Y,
the third into I, the fourth into A(l), and the fifth into
B(I+l). Notice that the subscript in B(I+1) uses the new
value of I which has just been read in.

READ is used for card input only. To get paper tape input,

the statement "PTREAD(;;L)" where L is the label of an INPUT
declaration, is completely analogous to "READ(;;L)." Notice
the semicolons in the midst of these statements. Formats for

- 19 _

preparing data acceptable to READ and PTREAD are described
in Appendix D.

Output Declarations

An output declaration Serves to give a name to a group of
expressions, It is analocgous to an input declaration, exXcept
arbitrary expressions and not only variables are allowed.

For example,

OUTPUT RESULTS(W,A(I), A(2)+A(1), ABS (4X))

associates the name RESULTS with the list of four expressions
W, A(1l), A(2)+A(1), and ABS (4X) .

Paper-Tape Write Statements

The statement "PTWRITE(;;L)" where L is the label of an OUTPUT
Geclaration, causes the values of that list of exXpressions to
be purnched onto baper tape, in the same format as used for
paper tape input (except for the control word and blank tape
between records) .l PTWRITE is available only on the non-
Cardatron version of the compiler.

Format Declaraticns

Output which is written without PTWRITE is displayed accord-
ing to formats specified by the Programmer. These formats
are given as a string of characters in a FORMAT declaration.
For example, the declaration

FORMAT LINEl(SIlS,P)
states that LINEl is the name of the format string "5115,p. "
The meaning of the latter string is "five integer numbers in

fields 15 characters wide, punched on a card,'

There are four types of field specifications allowed in a
Format declaration:

Type Meaning
Bn A field of n blank columns.
In A field of n columns, with an integer value

right-justified in that field with leading
Zeéroes suppressed.

_
1. To punch a control word on paper tape, use the state-

ment ”PTWRITE(;;CONTROL)S” This causes a control word and

18 inches of blank tape to be punched, This statement must

be deleted if the problem statement is to be processed by
the Burroughs Algebraic Compiler for the 220 since paper tape
control words are not used on that machine.

- 20 -

Type Meaning

Fn.m A field of n columns, with a floating
point value truncated to m significant
figures Here m must be between 1 and 8.
The format is as follows (shown for m
equal to 8):

+.kkkkkkkk, +ee

Here 14 columns are used, and the meaning
Is the number +.kkkkkkkk times 10F%€. pe
number n must be at least m+6, in order
to leave space for the signs, decimal
point, comma, and two-digit exponent. If
n is larger than m+6, extra spaces will

be added at the left.

Xn.m A field of n columns, with a floating
point value truncated to m decimal places.

The programmer is responsible for seeing that I is used for
integer expressions only, and that F and X are used for

floating point expressions only.

The letters 1T, F, X may be preceded by an integer, which

means the same thing repeated that many times. Otherwise,
field specifications are separated by commas. For example,
2111 is the same as I11,111

4F20.8 is the same as F20.8,F20.8,F20.8,F20,8

Alphanumeric information for titles and headings is indicated

by "* alphanumeric string *", where the alphanumeric string
may include any character éxXcept an asterisk, including
spaces. If there are n characters between the asterisks, it

represents a field n columns wide.

The kind of output desired is designated by using one of the
letters p, T, or W.

P means punch the preceding fields on a card.

In means execute n carriage returns and type the pre-
ceding fields on the Flexowriter.

Wn means print the Preceding fields on the 407, and
activate the "t-relays" according to digit n.l
(See page 22 for footnote.)

Each format string must end with either a P, T, or W specifi-
cation, and only one occurrence of P, T, or W is allowed per
format. In other words, one of these three specifications is
used to terminate each format string. P, T OR W

CAN NOT BE USED TO PROCESS MORE THAN 100 80 . OR 120
CHARACTERS RESPECTIVELY, PER LINE OF OUTPUT.

- 21 -

As examples of formats, let us consider three particular
format strings:

a. (*THE ANSWERS ARE*, 216 ,F15.6,T2)
Suppose this string is used with the three answers
1230 (integer), 323 (integer), and 3.1415927. What
happens? The Flexowriter will do two carriage returns
and will type out

THE ANSWERS ARE 1230 323 .314159, 01
with the exact spacing as shown.

b. (B10,2X10.6,P)
Suppose this string is used 1in conjunction with the two
floating point values 323.0 and 3.1415927. TWhat
happens here? & card is punched saying

323.000000 3.141592
ot I

1 |
o (=) O (@]
— o 2l ~F

c. (W1)
This simple string would be used without any numerical
answers, and it would simply print a line of nothing
on the 407, then would skip the paper to the beginning
of the next page.

WRITE Statements

The statement
WRITE(;;Ll,LZ)

where L1 is the label of an output list and L2 is the label
of a format string, causes the values of the expressions L1
to be written according to the format L2. The number of
eéxpressions in L1 must be equal to the number called for in
the format string.

1. The actual action of t-relays varies with board wiring.
The conventional action is given in Technical Bulletin #17.
n=0, single space before printing
n=1, single space before, skip to next page after print-
ing
2, single space before and extra space after printing
3, skip to next page before Printing
=4, double space before printing
5, skip to channel 2 punch in carriage tape before
printing
n=6, double space before Printing, extra space after
n=7, skip to channel 3 punch in carriage tape before
printing. '

The statement

WRITE(;;LZ)

where L2 jig the label of a format String, causes the format

string to be Printed only., This is for Printing alphanumeric
title lines.

WRITE may be used in the Paper tape version of the compiler,
but, of course, the operation "T" is the only operation of
the set "P, T and " which can be used in format strings,

g

VIII, OPERATING THE PROGRAM (a Recipe)

The Statements are Punched onto either cards Or paper tape
as described in Appendix p, Then the Program is compiled
as follows:

Cardatron Version Paper-Tape Version
—_— " VEersion ——— Ty * VEersion

1. Press General Clear, In- 1. Put Algol tape into photo-
Put Setup buttons on reader. Set input switech
Cardatron Control Unit, to Optical Reader and hit
Push clear on Input Unit Clear, Continuous., After
control panel. puyt Algol the tape has run in, the
deck, followed by vyour Program will stop. Put
Statements, followed by your input tape into the
the library deck, 1in photoreader, (At this
hopper of input unit and point, if Yyou want merely
Press Start on that unit, a Flexowriter type-out of
Ready the Punch hopper your problem Statements,
with blank cards, If an manually transfer control
on-line 407 ig available with a CuUB 3765; see
besides the Punch unit, Appendix D.) If you want
Set it up with a Standard to get g Flexowriter list-
120-120 board (Technical ing of your compiled pro-
Bulletin #17), If vyou gram rather than a punched
want to get g listing of Paper tape, set the Qutput
the instructions of your switch to Page; otherwise,
Program as they are com. set it to Tape and ready
Piled, turn the Skip the high-speed Punch unit,

Switch off; otherwise, put
it on to skip this extra
Printout.

are several ways for the computer to Stop as it goes
through your program, and only one of them means good
news, The halts are characterized by the display in the
Address lights on the console, which can be read like the

Stop #1: This is the normal Stop in Step #1 above
£ .

Stop #2: 1f i Card mode, you had a bad card read or
a keypunching error. If in Paper—Tape mode,
a tape Preparation error has given an invalid
two-digit alphanumeric code,

Stop #3: A Paper-tape record is more than SiXty words
long. vYou have overlaid Part of the compiler

Stop #4: Oh-oh. Your input Program doesn't make
sense, and the compiler is now mixed up.
Turn the Output Switch to Page and hit
Continuous; the Flexowriter will type out
something which is anp attempt to describe
your error to you. The type-out has the
following form:

+nnnnnnnnnn nnnonnnnnnn., kkkk (alphabetic
information)

Here the n's are of 0 concern to you, but

if any communication is directed to Burroughs
questioning some error stop, they should be
reported.

The alphabetic information is the last 20
characters of your input language which the
compiler has analyzed., This indicates
approximately where the compiler got con-
fused about your statements. These 20
characters are not exactly in the form you
wrote them, If several Spaces in a row were
eéncountered, only a single space will show
here. And since the Flexowriter is incapable
of typing all the special characters, a
"spaceLspace" is substituted for each left
parenthesis, and "spaceRspace" for each
right Parenthesis, and "spaceZspace" for
each equal sign; and a Pércent sign % is
substituted for an asterisk.

The digits kkkk may indicate what kind of
€rror occurred, but this is not guaranteed,
Sometimes the compiler gets so mixed up it
doesn't even know why it is confused. A
table of the meaning of each kkkk error
appears in Appendix E.

Stop #5: Congratulations! vYour Program is compiled,
and no errors have been detected in your
grammar. Go to Step #3,

If the 205 does not stop for one of the above reasons,
your program is most likely so wild that there is no
standard thing to do next. Note the contents of A, R,
B and C and then try transferring control manually to
location 2973 and Proceed as in Stop #4,

Cardatron Version Paper-Tape Version
Depress Continuous once 3. Put the library routines
more and the library deck tape in the photoreader
will run in and will be and hit Continuous; the
added to your program. subroutines will now be

.

Cardatron Version Paper—Iape Version
——— 1 Version ———_-°P" Veérsion

When the deck is all in, added to your program., :
the punch hopper contains After this 1is done, the

a self-loading deck which punched Output tape ig g4

will work your program self-loading Program.

(when followed by the data
cards, if any) .

4. At this Point, you can once more hit Continuous (after
making sure the output selector switch is set to page) and

Stop #6: An error detected by a library subroutine,
Set the Output Selector switch to Page and
hit Continuous; dn error type-out will occur
in the fornm

+OOOOOOttt{ixxxxxxxxxx

and the machine will stop again, Stop #7.

Here ttte g an error type, and

FEXXKXXXX KK is an input argument to the
Tibrary function where the €rror was detected.

tttt Meaning
—= s
0004 : Taking the Square root of g

negative number,

0005: Taking the logarithm of zero or
@ negative number,

0013; Attempting to change 3 floating—
Point valuye which is too large
into an integer value,

2332: EXP TYoutine, with EXXXEKXK KRR
too large or too small.

Stop #7: This Stop occurs immediately after Stop #6.
At this Point the Operator should change the
contents of register A to the value he wishes

1. 08 0137 XXXx 1s produced for sToOP statements,
08 1359 xxxx may occur if the Programmer improperly

omits the RETURN Statement required in the SUBROUTINE or PRO-
CEDURE declarations,

Breakpoint Conventions
————————~O0ventions

During the running Program, there is a breakpoint digit of 1
on all CUB commands; of 2 ¢ the end of each library Foutine;
and of 4 ga¢ the end of each replacement, 30, or ENTER State-
ment. Operators familiar with 205 machine language to a

€Cértain extent will be able to use these breakpoint digits
when debugging.

"IF NOTHING ELSE WORKS, READ THE INSTRUCTIONS"°

APPENDIX A

Reserved Words
——— -~ %Ords

ABS ENTER IF OR SQRT

AND EQL INPUT OUTPUT SToP
ARCTAN EXP INTEGER PCS SUBROUTINE
ARRAY FINIsH LEQ PROCEDURE SWITCH
BEGIN OR LOG PTREAD TO

COMMENT FORMAT LSs PTWRITE UNTIL
CONTROL GEQ MOD READ WRITE

Cos GO NEQ RETURN

END GTR NOT SIN

In addition,
the Program 1{

the following words are also to

S ever to pe

compiled using the

be reserved if
Burroughs

Algebraic Compiler for the 220,
ARCCOS ENTIRE FLOAT MIN ROMXX
ARCSIN EQIv FLOATING MONITOR SEGMENT
BOOLEAN ERROR FUNCTION OTHERWISE STATEMENT
COSH EXTERNAL IMPL OVERLAY SIGN
EITHER FIX MAX REAL SINH
TAN
TANH

APPENDTIX B

Integer arithmetic: Overfloyw Occurs after additionp Or sub.-
tractionp develops an ll—digit Dumber, 4, after g, divisigp by
Z€ro. After division, the Temainder g lost, only the quotient
is Saved; after MOD, the quotient jg lost, only the Femainder
(which is given the sign of the quotient) jg Ssaved, If 4

Floating—point arithmetic: Overfiloy Occurs jif the answer
becomesg greater thap 1049, or occasionally for Numberg Nearly
thisg size, Numberg in the range 10-50 Or less are set to
zero, The Tesult of 4 floating Point OPeration jg always
'truncated’ or 'chopped’ not rounded, ¢4 eight Significant
figures, When taking floating Point Dumbers g Powers, using
the % Symbo1l only Positive Dumbers cap be raised to g4

lerary functions Library functions are designed for Speed
of OPerationp and for ¢ least Seven Significant figures of
dccuracy; they are Usually off by at MOSt three in the eighth

Place, €Xcept when taking g, floating Point power where the

1. This fact cap be used to advantage when generating
random Dumbers at the beginning of your Program, Say INTEGER
RANDOM; RANDOM=6250739481; then whep 4 random Number g
desired, say RANDOM=9677214091 RANDOM; R=RANDOM/1**10 and R

APPENDIX ¢

Procedures
——=-dres

A Procedure declaration is a method of defining arbitrary
functions of any Number of variables witp any number of out-
Puts. For €xample, ye might have a lot of yge for Besse]

Procedure coulg be incorporated in the Program to easily com-
Pute Bessgel functionsa

the Program we are Writing includes 3 lot of references to
the functiop F(X,v) which ig defined ¢o be zero irf X+Y is
negative, the Square root of X+y Otherwise, We would define
this function 45 a procedure as follows:

BEGIN PROCEDURE F(X,7v); BEGIN
IF X+vY 1853 0; BEGIN F()=0; RETURN END;
F()=SQRT(X+Y); RETURN END END

This Procedure declaration is put at the beginning of the
Problemnm Statement . The notation F()=SQRT(X+Y) means the
value of the function is to be SQRT(X+Y)O Then inp the pro.
sram proper which follows, Weé can write X=F(YSZ)+F(2KqZ)o

As another example, ye ¢an define g5 Procedure tgqo multiply an
MxN matrix A by anp NxP matrix B, and 8et the ansyer a4s an Mxp
matric (. Such a Procedure ig defined thus:

BEGIN PROCEDURE MULT(M,N,P»A(,)aB(g);C(9)> s BEGIN

C(1,J)=0;
FOR K=(1,1,N), C(ISJ)=C(I,J)+A(ISK)B(Kéﬂ) END;
RETURN END ENnp

(This Procedure ig tertainly no¢t the fastest nor besy way to
dccomplish matrix multiplication, and the reader jg reminded
that thig is merely ap e€xample of g Procedure declaration,
and it cap be 8reatly improved as far gag Funning speed is
COncerned; Such improvements are just confusing at this Stage
of the expositionS So they haven't been mentioned here.)

Later 1ig the Program Proper, the Statement

MULT(NgNDNgA(,)yA(S);B(g))

- 30 -

for €Xample, geo¢ the NxN matrix B €qual to the Square of the
NN matriy A,

Now that Some €Xampleg have been 8iven, let yg lay down the
8round rules,

Rule #1. A Procedure Declaration has the form

Rule #2: Scope of Dames: A1 Teservedg Words (see Appendix
of i

May be uged as an array i4p dnother gapg @8 a label
Outside of both, Identifiers, thus, are "bound"
Within procedures, and jif Someone else hag

Rule #3. A RETURYN Statemen; MUSt appegr at least Oonce ip

Rule #4. There are tyo distinct classgeg of Procedures:

a Procedures to be yseq as g functlon such
as our F(X,v) defined earlier Such Pro
cedureg have ope OTr more lnputs, apgq only

one outpyt. In thig case, jif the functiop

NAME, The value of the function MuUst thep
be 8iven by NAME()=expression, Just before
a2 RETURN Statement The nanpe °of a pro.

b. Procedures to be used a5 whole Statements,
These Procedures tannot be ysed later on
in the Program ag parts of arithmetic
expressions, as those of type a) are; they
are always called as 4 Separate "procedure
Statement . " Examples of Procedure Statementsg
dre the READ and WRITE statements, and the
MULT Statement given above. Notice that
MULT cannot be used ag a function by its
Very nature, Since it has MxPp values, the
elements of C(,), while a function has
only one value,

Rule #5: ' 7The Parameter list of 4 Procedure to pe used as

Rule #6: Three types of Strings can be bart of the para-
meter list:

a, Input Parameters, Input Parameters re._
Present the values which dre inputs to
the Procedure, These can be simple vari.
ables, like x and Y in F(X,Y) or like M N,
‘ P in MULT, or they can bpe &rrays written
with blank subscripts, as V() a vector,
or as the matrices A(,) and B(,) in MULT,

The Very appearance of an array as ap
input Parameter (or a5 an output parag-
meter) defines that identifier to signify
4n array variable within the Procedure de.
claration; an ARRAY declaration must not
be used for input or Output parameter
arrays, Moreover, an array which is an
input (or Sutput) Parameter hgag arbitrary

called, The matrices A, B, and ¢ in MULT
can be 5x5 when called out once, 4x4 when
used later, nNon-square at another use,

and so on, depending upPon the size of the

b. Qutput Parameters., OQutput Parametersg
Teépresent the variables into whichk the
results of the Procedure are tq be stored,
Like input Parameters, thesge can be
simple variables or arrays., TFor example,
C(,) is an Output parameter in MyLT,1
(See Page 33 for footnote,)

- 32 =

Rule #7 -

Rule #sg.

Rule #9:

€. Labe} Parameterg . These dre algg inpursg
to the procedure; they Tepresent labels
of statements, of input, Output, o for-

other Procedureg The labelg representin
Other Procedureg are Written with Paren-.
theses, €-8., F(). Exampleg of the use of

procedures, and the SIMPS Procedyre to be
8iven later,

Parameter listg of Procedureg €an havye only the
following forms.

8. (input parameters) FBEEE%RBtEERE?QQK§S
Must use this form,

b. (input parameters;output parameters)
c. (input parameters; s labe] parameters)

d, (input parameters;output parameters;
labe} parameters)

e, (;output parameters)

f. (;;label parameters)

Each Procedyre declaration Must oceyr before any
Use of that Procedure, (This rule is, of Course,
necessitated by our Conventigpg about implieg

must pe called g4 a function; otherwise, it muse
Comprise g whole Statement The Parameterg
Written when calling a Procedure are to pe

Written in the Sdme order 48 those in the declara.
tion which they are to replace, and they must pe

integer or floating point in correspondence with
their use inside the procedure,

When calling a procedure, the parameters written
are substituted for the corresponding things in
the parameter list of the procedure declaration
as the calculation is done, and the procedure is
terminated when the RETURN is encountered,

8. Simple variables. 1In an input parameter
list, any expression of the same type
(integer or floating) may be substituted
for a simple variable in the procedure
declaration. F(2K,Z) in the above
example, where 2K is substituted for the
simple input variable X.

In an output parameter list, however,
only a simple variable standing alone
may correspond to a simple variable in
this declaration, because quantities are
going to be stored in this location.

b. Array variables. In those positions
corresponding to vector variables in the
procedure declaration, the name of a
vector array followed by () should be
used when calling the pProcedure. 1In
those positions corresponding to matrix
variables in the declaration, use the
name of a matrix variable followed by

(,) when calling the procedure. This
applies to both input and output para-
meters. See the example in MULT.

¢. Labels. Non-procedure labels are desig-

nated by their name alone, as in READ.
Names of procedures in a label parameter
list are designated with the name followed

by ().

As a final example of Procedures, here is a complete program
which includes the definition of two Procedures, the first

one being a useful routine to accomplish numerical integration
using Simpson's Rule.

BEGIN PROCEDURE SIMPS(A,B,EPSILON,BOUND;VALUE;F()); BEGIN
COMMENT A,B ARE LIMITS OF INTEGRATION. EPSILON IS
PERMISSIBLE DIFFERENCE BETWEEN TWO SUCCESSIVE SUMS.,
BOUND IS UPPER BOUND FOR ABS(F(X)) IN THE INTERVAL
(A,B). VALUE 1S THE ANSWER. F() IS THE FUNCTION TO BE
INTEGRATED BY SIMPSONS RULE;

TH=B-A; IBAR=BOUND- TH; N=1; J=O°5(F(A)+F(B))TH;
LOOP. H=0.5TH; S=0; FOR K=(A+H,TH,B) ; S=S+F (K) ;
I=J+4H.8; 1IF ABS(I—IBAR)LEQ EPSILON; BEGIN VALUE=1/3;

- 34

RETURN END; IBAR=T; J=0525(I+J); N=N+N ; TH=H;
GO TO LOOP END END;
BEGIN PROCEDURE DARCTAN(X); BEGIN DARCTAN()=1/(X*2+1);
RETURN END END;
COMMENT NOW THE PROGRAM PROPER FOLLOWS;

SIMPS(OEO,l00,1**—5,2,0;S;DARCTAN());
WRITE(;;A,B); STOP ;

OUTPUT A(S); FORMAT B(X11.8,Tl); FINISH;

and the DARCTAN proced

h evaluates
1/(x2+1). The program Proper then evaluates
1
dx
x2+1

0

The correct answer 1is 7/~/4, and the value obtained was
actually .7853981 after thre

€ iterations of "LOOP," correct
to six places.,

APPENDIX D

INPUT FORMATS

Cardatron Input: Compiler Statements

Algol language is punched onto cards as follows:-
a. Column 1 contains a "2" punch.

b. Columns 2-72 contain the statements of the program.
The rule here is that column 2 on one card always
immediately follows column 72 of the previous card;
however, since spaces may be freely inserted after a
semicolon, common practice is to punch a single state-
ment on each card, and then to leave the remainder of
the card blank.

c. Columns 73-80 are ignored by the compiler, and they
may be used for numbering the deck or something.

Cardatron Input: Data for READ Routine

This free format consists of stringing numbers on the cards
sequentially, separated by one or more spaces, with no parti-
cular fields defined in advance for data. Column 1 must con-
tain the digit 5, columns 77-80 must be blank, and the rest
of the card contains from 1 to 38 data values.

Data which is to be stored into an integer-valued variable
must be written as a number, without decimal point. Data
which is to be stored into a floating-point-valued variable
must be written either:

a. with a decimal point, not necessarily imbedded, e.g.,
3.1415927 .03 500. -200.8
b. with a decimal point, followed by a comma and scale

factor, e.g.,
3.12145,11 -105,-3
Notice that the output of the WRITE routine is in formart
acceptable to the READ routine (except for the S5-punch in
column 1 which is easy to add by prefacing the format string

with #*5%)

The READ routine will read in as many cards as it needs to
get values for the input list. For example, if the input

-~ 36 -

list contains seven variables, and the first data card con-
tains only four values, another card will be read. If this
second card has more than the remaining three values, however,
all the extra values will be lost.

Minus signs on these cards must be the "ll-punch" minus signs,
not the extra minus signs found on Fortran keypunches.

Paper-Tape Input: General

All paper-tape records must be sixty or less words in length
followed by the standard control word

7 0000 30 0000,
Between individual groups of words, at least 15 inches of
blank tape should appear to allow for acceleration and de-

celeration of the optical reader.

Paper-Tape Input: Compiler Statements

Compiler language is translated into a numeric code by con-
verting each character of its alphabet into a two-digit number.
A table for this translation is listed at the end of this
Appendix. Notice that even the digits 0 through 9 must
be converted into a pair of digits according to this code

Groups of ten digits (corresponding to five characters of the
original language) form a word, and this word must be given a
sign of zero. As an example of this tape preparation, here
is the beginning of the first eéxample program of part V, in
the form suitable for paper tape input:

Numeric Code Algol Correspondent
0 4955634547 INTEG
0 4559004913 ER I;
0 4159594168 ARRAY
0 0067248180 X(10
0 8004134933 0);1=
0 8113626454 1;SUM
etc., etc.
0 4649554962 FINIS
0 4813000000 H;
7 0000300000 control word

Paper-Tape Input: Data fecr PTREAD Routine

The sign digit sheculd be 0 for positive values, 1 for neza-

tive values. Dara which is to be stored in an integer vari-
able must be written 45 a ten-digit number (with leading
zerces added if necessary). Data for floating point variables

must be in the 205 flecating point format, which is:

- 37 -

a. Zero is written 0000000000
b. Non-zero values are written in the form

YYKRXXXKKKX
. . -50 (
meaning the number .xxxxxxxx times 10YY . For
example,

1.0 is written 5110000000
14.7 is written 5214700000
2.84x10-% is written 4528400000

Minus zero (namely 1 0000000000) may never be used
as a data value for PTREAD'

On the other hand, a single PTREAD may call for several tape
records, if the input list has a lot of variables in it.
(This operation differs from the Cardatron READ, which always
begins by reading a fresh card, ignoring any possible unused
values from the previous cycle.)

Table of Two-Digit Codes for Paper Tape

A 41 J 51
B 42 K 52 S 62
C 43 L 53 T 63
D 44 M 54 U 64
E 45 N 55 V 65
F 46 0 56 W 66
G 47 P 57 X 67
H 48 Q 58 Y 68
I 49 R 59 Z 69
0 80
1 81
2 82
3 83
4 84
5 85
6 86
7 87
8 88
9 99
= 33 , 23 ; 13 . 03 - 20
(24 * 14) 04 / 21
space 00 + 10

The grouping shown here is so presented to facilitate memoriz-
ing the code.

APPENDIX E

Compiler Error Code Numbers

.7061

.7084

.0987

.0989

.0998

.0999

.1000

.1001

.1002

.1005

2178

.7078

Symbol table full; too many identifiers used,
Name table full; too many long identifiers used.
(If FINISHS was last sensed) Program exceeds 4000
locations. (If FINISH$ was not last sensed) SIN,
SQRT, etc. of an integer quantity.

Unmatched right parenthesis or END.

Name of array, or name of library function or pro-
cedure, not followed by a left parenthesis.

Wrong number of subscripts on an array variable,

(If FINISH$ was last sensed) Unmatched left parenthesis,
or missing right operand, possibly goes back far into
the program where the error actually occurred. (1f
FINISH$ was not last sensed) Improper Proposition.
Improper parameter list in Procedure Declaration.
Improper statement label.

Improper identifier used as a label.

Improper identifier used as a label.

Compiler mixed up trying to define a label.

APPENDIX E

Compiler Error Code Numbers

.7061

7084

.0987

.0989

-0998

.0999

.1000

.1001

.1002

.1005

- 2178

.7078

Symbol table full; too many identifiers used.
Name table full; too many long identifiers used.
(If FINISHS was last sensed) Program exceeds 4000
locations. (If FINISH$ was not last sensed) SIN,
SQRT, etc. of an integer quantity.

Unmatched right parenthesis or END.

Name of array, or name of library function or pro-
cedure, not followed by a left parenthesis.

Wrong number of subscripts on an array variable.

(If FINISHS$ was last sensed) Unmatched left parenthesis
or missing right operand, possibly goes .back far into
the program where the eérror actually occcurred. (1¢f
FINISHS was not last sensed) Improper Proposition.

3

Improper parameter list in Procedure Declaration.
Improper statement label.

Improper identifier used as a label.

Improper identifier used as a label.

Compiler mixed up trying to define a label.

APPENDIX F

Computer Equipment Configuration Requirements

This compiler was written for a 205 with automatic floating
point unit and with a flexowriter modified for Cardatron code
compatability. In addition, the machine must have either a
paper-tape input-output system or a Cardatron system. The
Cardatron system should preferably have two output stations,
but a single output unit is sufficient.

The standard version of the program has the following unit
designations on its Cardatron instructions:

Input unit, #1
Output punch, #2
Output printer, #3

These can be changed if desired, by referring to the follow-
ing table of all locations which refer to the Cardatron units:

3692 unit 1 object program load routine
3693 wunit 1 object program load routine
3698 unit 1 object program load routine
3745 unit 2 load format band 2

3749 unit 2 punch first card

3750 unit 1 1load format band 1

3751 wunit 3 1load format band 4

3752 wunit 3 skip to top of page

3753 unit 3 1load format band 3

3758 unit 2 punch second card

3759 unit 2 load format band 2

3975 wunit 3 write compiler instruction
3985 wunit 1 read compiler statements
3986 unit 3 write card just read

0044 unit 2 punch object program

When modifications are made to unit designations, the library
function decks will have to be modified as well, and a trial-
and-error procedure 1is suggested for accomplishing this.

APPENDIX G

Meaning of Compiler Output

Here are some brief hints for those who would like to examine
the 205 coding which the compiler produces in detail. What
1s not spelled out here can be observed by making trial runs
feeding various weird statements to the compiler program.

Each output program begins in location 0071, Since compila-
tion proceeds in one Pass, the instructions turned out may
not have the final form which they will have at running time,
For example, when compiling the sample program of part V,
when the phrase "Go TO HALT" is encountered Algol has no idea
how far ahead the Statement "HALT" might be, so it can't turn
out the actual address of HALT at that time, Therefore, it
Puts out a coded instruction and the loading routine later
fixes everything up.

Table entries for this fixing-up procedure start in location
3999 and work downwards. These table entries are in the form

XX yyyy zzzz.

Xx is ignored. The actual meaning is something like "change
the address part of the instruction in location zzzz to YYVY.
If the address which was just changed was zero, that's allj;
otherwise, the former value of that address refers back to

Yyyyy. This looking-back process is continued until all
references to YYyy have been fixed up, signified by a zero in

the last address to be changed."

For example, from the coding

0100 0 0001 30 0000
0101 0 0000 02 7101
0102 0 0004 12 6015
0103 0 0000 20 0100
0104 0 0000 72 7106
0105 0 0001 30 0103
0106 0 0001 30 0105
3999 0 0001 07 0106

the loading routine would produce

0100 0 0001 30 0107
0101 0 0000 02 7101
0102 0 0004 12 6015
0103 0 0000 20 0107

0104 0 0000 72 7106

0105 0 0000 30 0107
0106 0 0001 30 0107.
Locations 0000-0070 are reserved for special use. Locations

4980-5019 are used for temporary storage; locations 6000-6019
for simple variable; and locations starting down from 3999
are used for array variables, simple variables which didn't

fit into loop six, and library routines such as WRITE, SQRT,
etc.

