
r
PROGRAMMING LANGUAGES AND c. J. SHAW

PROGRAMMING LANGUAGES AND JOVIAL/From the very beginning, the effective utiliza­

tion of the automatic digital computer has been hampered by the problems of man-machine
communication. To the uninitiated, communicating with computers is quite as esoteric as com­
municating with spirits, and many authorities (notably Dr. Norbert Wiener) believe fundamental

similarities exist between the two occupations . After all, what is an algorithm but a practical
incantation?

Communication problems are always twofold: problems of information transmission ; and

problems of information coding. Unlike the spirit medium, the computer engineer has, accord-,
ing to the ads , finally solved the information transmission problem, and somewhere in the

catalogue is an input-output device suitable for the most exacting user. Also unlike the medium,
however, the computer programmer has yet to find as convenient a solution to the information
coding problem as English, the language of the spirit world.

Basically, the automatic computer needs two kinds of information in order to function. It
needs data for processing, and instructions to control the processing- and it needs these two
kinds of information in its own machine language and in a physical representation accessible

to its own circuitry. Since machine languages are the exotic creations of mystic engineers, full
of 'Abra Clear and Add-abra,' it is not surprising that computer programmers have developed
less intimidating and more abstract and symbolic programming languages for communicating
with computers. Programs and data coded in such symbolic languages require translation into

machine language before they can be utilized by the computer. This translation is done auto­
matically, by the computer itself, under the direction of translation programs referred to, for
lower level languages, as 'assemblers' and, for higher level languages, as 'compilers.' Just where

the line between lower and higher level programming languages is drawn depends mainly on
personal preference - and on the particular language being extolled.

Symbolic programming languages fall into three broad categories:

1. Machine-oriented languages, by which programs are described in terms of the individual
machine instructions composing them. Machine language instructions are designed for ease of
mechanization, and as a result, they produce such tiny portions of the total computation that they

seldom correspond to operational units that are conceptually very meaningful to human beings.
Consequently, machine-oriented programming languages are difficult both to learn and to use.

2. Procedure-oriented languages, by which programs are described in terms of the algorithms
or computing rules they employ. Being liberated from the close correspondence with machine

language that characterizes the machine-oriented language, such languages can utilize familiar
notations in describing procedures, notations designed for the convenience of the human pro­
grammer, notations that do not require a deep knowledge of the computer being used.

3. Problem-oriented languages, by which programs are described in terms of available inputs
and required outputs. Such languages are necessarily limited in scope to those classes of prob­
lems for which generalized computational procedures can be predetermined that bridge the gap

between the inputs that can be specified and the results that can be requested. A wider appli­
cability for the problem-oriented programming language concept must await the successful
completion of research in the area of suitable formal languages for describing the behavior of

data processing systems.
It is becoming quite apparent, as both problems and machines grow in complexity, that if

humans are to cope with the computer's voracious appetite for information, then languages
built for people, and not machines, must come into use. And at the present stage of develop­
ment, it is the procedure-oriented programming language that offers the greatest promise.

Procedure-oriented languages vary in scope from the universal applicability afforded by
machine-oriented languages to the limited applicability of problem-oriented languages, and a

particular procedure-oriented programming language usually represents a compromise in favor
of some specific area of application. Procedure-oriented languages are a fairly late development.

Aside from some earlier experiments, it was not until 1956 that the first versions of such
languages as FORTRAN and MATH-MATIC for numerical problems and FLOW-MATIC for
business problems began to appear. The most significant recent developments in the field are

the efforts toward language standardization. In 1958, committees from both the ACM (Association
for Computing Machinery) and GAMM (German-Swiss Applied Mathematics Society) met in

Zurich to propose a standard algorithmic language (ALGOL) for scientific numerical work. As
a result of this, further meetings were held during 1959 between interested groups from other

countries and in early 1960 an international conference was held in Paris which issued a
revised version of the language. Concurrently, under the auspices of the Department of Defense,
the Conference on Data Systems Languages prepared specifications for COBOL, a COmmon

L

Business Oriented Language for business data processing problems.

JOVIAL / In mid-1958, shortly before the publication of the ALGOL-58 specifications, the
System Development Corporation initiated a research project to investigate the problems of
automatic coding. This project resulted in the development of CLIP, a Compiler Language for
Information Processing.

As soon as preliminary work on the CLIP project had assured the practicality of the scheme,
it was decided to develop a similar, procedure-oriented programming for the SACCS (Strategic
Air Command Control System) computer programs. This language, named JOVIAL, was like
CLIP patterned after ALGOL, and was adapted to the programming of large-scale, computer­

based, command control systems by the incorporation of certain features found desirable from
experience gained in the development of the SAGE air defense system of computer programs.
Subsequently, however, because of the success of the first primitive working versions of the

language and due to a growing realization of its wide potential scope, a decision to standardize
on JOVIAL as a corporate procedure-oriented programming language was made, and further
development has proceded on this basis .

Prime motivation for the development of JOVIAL is the wish to have a common, powerful ,
easily understandable, and mechanically translatable programming language suitable for a very
wide range of applications. Since the Corporation's activities center on the design, develop­

ment , and implementation of large-scale information processing systems utilizing a variety of
computers, such a language must be machine-independent , with a power of expression in log­

ical operations and symbol manipulation, as well as in numerical computation. One of the
further requisites of any programming language, intended for large-scale data processing systems ,
is that it include the capability of designating and manipulating system data, as described in

a Communication Pool (COMPOOL) of system configuration information. Though highly de­
sirable for any data processing system, a COMPOOL is a vital necessity for large-scale systems
where otherwise problems of coordination between programmers are apt to be unsolvable.

None of the existing problem-oriented languages were entirely adequate for the purpose of
programming command control systems. (COBOL is intended primarily only for business ap­
plications; ALGOL, only for scientific-numeric applications.)

JOVIAL was developed to incorporate the necessary features mentioned above. It thus
belongs to the ALGOL family of procedure-oriented programming languages . Because of its
strong family resemblance, the extensive literature of ALGOL procedures that is arising, with

the most simple of transliteration, also can be applied to JOVIAL.

A JOVIAL program describes a particular solution to a data processing problem, intended
to be incorporated by translation into a machine language program. As in ALGOL, the two
main elements of this description are:

1. A set of declarations, describing the data to be processed.
2. A set of statements, describing the algorithms or processing rules.

These two sets of descriptions are, to a great extent, mutually independent, so that changes
in one do not necessarily entail changes in the other.

JOVIAL'S ADVANTAGES JOVIAL is a general purpose programming language. Because of

the wide range of problems encountered, any programming language intended for large-scale
command control data processing systems must be truly universal in scope. As such a language,

JOVIAL is well suited for a variety of different applications since it provides consistent nota­
tions for the designation and manipulation of: numeric values (in both fixed-point and floating­
point representation); dual or complex numeric values; alphanumeric values; status values;

Boolian values; table of values; and multi-dimensional array of values.

Scientific and engineering applications involving problems of numerical analysis, business

applications involving much input-output movement of data, and logically complex applications

involving non-numeric data are all conveniently expressible in JOVIAL.

JOVIAL is a readable programming language, utilizing the familiar notations of algebra and

symbolic logic. Where no standard conventional notation corresponds to the symbols of the
language, English words are used, making JOVIAL largely self-explanatory. In addition, JOVIAL

has no format restrictions, and with the ability to intermix comments among the symbols of
a progr.am and to define notational additions to the language, the only limit to expressiveness

is the ingenuity of the programmer. A JOVIAL program may thus serve as its own documenta­
tion, allowing program maintenance and revision to be performed with relative ease by pro­

grammers other than the original author.

The convenient subordination of detail without its loss in JOVIAL also contributes to read­
ability, and greatly expedites the task of writing programs. One simple JOVIAL statement can

result in the generation of scores of machine instructions which might normally take hours to
code in a machine oriented language. This reduction in program size proportionally reduces
the opportunity for purely typographic errors which, due to JOVIAL's readability, are much

more obvious when they do occur. Once the logical or structural type of error has been elim­
inated, confidence in the resulting machine language program can be high, because all the minor

details of code are machine generated and presumably error free.

Computer users are often faced with the necessity of producing large numbers of computer

programs in short periods of time. Such a language as JOVIAL will alleviate the heavy burden
this places on the existing programming staff and thus tend to lessen the requirement for quick

augmentation with relatively inexperienced programmers.

JOVIAL will also simplify and speed up the related problem of training personnel in the

design of data processing systems and the development of computer programs for such systems
because, although JOVIAL was designed primarily as a tool for professional programmers, its
readability makes it easy for non-programmers to learn and use, and should also help to broaden

the base of JOVIAL users beyond those engaged in actual programming.

JOVIAL is a machine-independent programming language, answering the pressing need for a
common standard of communication between the users of many different computers. As a com­
mon programming language, JOVIAL serves both as a means of communicating information
processing methods between people and as a means of realizing a stated process on a number of

different computers. Consequently, JOVIAL will significantly reduce the retraining problem en­
countered in shifting programming personnel to projects based on new or unfamiliar computers.

Translation programs, referred to as compilers, are currently being written for the 709 & 7090,

the AN/FSQ-7 & Q-8, the AN/FSQ-31, and the 2000 co:inputers. Translating between JOVIAL
and machine or machine-oriented language, these compilers will allow the efficient translation
of JOVIAL programs from one computer to another. Thus, through JOVIAL, it becomes possible
to develop data processing systems for existing computers that can operate on future, more
powerful computers with minimal conversion costs.

THE JOVIAL COMPILERS/ The compilers translating between JOVIAL and the various mach­
ine languages all consist of a pair of sub-programs performing two separate and distinct phases
of translation. The first phase is concerned largely with codifying the data description declara­

tions and with determining appropriate sequences of elementary operations conforming to the
algorithms described in the JOVIAL statements. This first phase of translation, performed by a
program known as the " Generator," is entirely machine independent, producing as its output
an "Intermediate Language" (IL), also machine-independent, this functions as a limited sort of
Universal Computer Oriented Language (UNCOL). The program translated from JOVIAL to IL

in the first phase, is translated from IL to a machine language during the second phase by a
program known, simply, as the "Translator." Figure 1 illust rates the structure of a JOVIAL com­

piler. Notice that the Generator accepts COMPOOL declaration describing system data , and
that a JOVIAL program may contain portions coded in a machine-oriented language.

Each JOVIAL compiler has its own unique Translator. The Gen erator and Intermediate Lan­
guage, being machine-independent, however, are common to all, as shown in Figure 2.

NEW TRANSLATOR 709
GENERATOR

COMPOOL LANGUAGE
TRANSlATOR Q-7

DECLARATIONS

DECLARATIONS IL TRANSLATOR

JOVIAL STATEMENTS TRANSLATOR

JOVIAL
NEW

TRANSLATOR

A JOVIAL COMPILER

THE. FAMILY OF JOVIAL COMPILERS

Figure 1 Figure 2.

I

'

' I

-

This arrangement has several convenient features:

A single Generator means that control over the form of the JOVIAL language is centralized,
eliminating otherwise irresistible tendencies toward the growth of diverging dialects.

One Generator eliminates the duplication of effort involved in writing a unique Generator

for each compiler.

A common IL allows a family of compilers to be produced for some new problem-oriented

language merely by writing a new Generator to translate to the IL.

A brief example, of a matrix multiplication
routine, will serve to illustrate the general
appearance and some of the properties of
the JOVIAL language.

n-1

l: (tik f:lkj

k==,0

For i ==,Q, 1,.

Forj:=0,1, .. . ,y-1

Computational Scheme for Matrix Multiplication.

MATRIX' MULTIPLICATION. "THIS ROUTINE MULTIPLIES ALPHA, AN X-ROW,
N-COLUMN, FLOATING POINT NUMERIC MATRIX BY BETA, AN N-ROW,
Y-COLUMN, SIMILAR MATRIX TO OBTAIN GAMMA, AN X-ROW, Y-COLUMN,
PRODUCT MATRIX."
BEGIN
"THE FOLLOWING DEFINITIONS IMPROVE READABILITY."

DEFINE FLOATING "F" $
DEFINE THRU ",l," $

"THE FOLLOWING DEFINITIONS SPEC.IFY DIMENSIONS AND REQUIRE THAT
X, Y, AND N BE REPLACED WITH INTEGERS BY THE ROUTINE'S USER."

DEFINE ROW "X" $
DEFINE COLUMN "Y" $
DEFINE NORM '"N" $

ARRAY ALPHA
ARRAY BETA
ARRAY GAMMA

ROW NORM FLOATING $
NORM COLUMN FLOATING $
ROW COLUMN FLOATING $

FOR I=¢ THRU ROW-1 $
BEGIN
FOR J = 0 THRU COLUMN-1 $

BEGIN
GAMMA ($1,J$) = r/J $
FOR K = 0 THRU NORM-1 $

GAMMA ($1,J$) = GAMMA ($1,J$) + ALPHA ($1,K$) ''BETA (K,J) $
END

END
END

THE CLIP CONTRIBUTION/ CLIP (Compiler Language for Information Processing), began in
1958 as a research activity in automatic coding. Bob Bosak, then in charge of the Programming

Research and Development Group , encouraged this exploratory effort, which was undertaken
by Jules Schwartz and Erwin Book. While they were still in the early stages of their work, the

ALGOL-58 specifications were published. They discovered that there were many similarities to
their own effort and since ALGOL was being so widely circulated and accepted, they adopted
the ALGOL-58 notation.

While studying the problem of how to build a compiler, Jules and Erwin found they were

developing a language that could be used to express the compiling process. At about this time

(January, 1959}. Jules was transferred to SDC's SACCS Division in New Jersey to work on the
utility programs for this system and took with him the first results of the automatic coding

research activity. At SACCS, concentration was on defining the procedure-oriented language ,
which became JOVIAL, while at SDC Santa Monica, the effort continued on developing the
techniques of the compiling process, or CLIP, with a continual exchange of information going

on between both groups.
CLIP was designed to be a tool for experimentation with advanced coding techniques . A

CLIP compiler was written a;,.d checked out. At about the same time CLIP was being used to
compile itself, the JOVIAL common generator project was set up, under the auspices of the
SDC Programming Languages Committee, headed by Bob Bosak,

At first, this generator was being written in its own language, JOVIAL, but as the task pro­
gressed, it became apparent that it wasn't necessary to use all the facilities offered by the

JOVIAL language just for the purpose of writing the generator. In fact, project members dis­
covered that what they were using of JOVIAL pretty well corresponded to CLIP. Some minor
modifications to the CLIP compiler were made by Harvey Bratman and Erwin Book. They real­

ized they could write the JOVIAL generator in CLIP and use the CLIP compiler to produce
a 709 version of the JOVIAL generator - so bypassing the tedious task of hand-translation. As
a result of this decision, the JOVIAL generator is already being checked out, months ahead

of schedule.
In addition to those already mentioned, members of the CLIP Project include Ellen Clark,

Don Englund, Harold Isbitz, Howard Manelowitz and Ellis Myer.

Present plans are to use CLIP to produce 709 versions of the Q-7 and 2000 translators as a

first step in producing translators for these computers. Thereafter, while JOVIAL will be the

standard corporate programming language, CLIP will continue to be used as a research and
experimental tool.

NAMES AND JOVIAL/Ever since its in­

ception as a problem-oriented language for

SACCS early in 1959, JOVIAL has been

closely associated with the name of Jules

Schwartz. Indeed, "JOVIAL" itself is an acro­

nym standing for"Jules' Own Version of the

International Algebraic Language" (IAL,

later renamed ALGOL), and was coined in

happy preference to "OOVIAL" - "Our

Own Version of the IAL." Jules was then

in charge of the original compiler project

located with SDC's SACCS Division in

Lodi , New Jersey (later, in Paramus), and the

language was named during his absence

on a business trip.

In May of 1960 when the decision was

made to standardize on JOVIAL as a com­

mon programming language for SDC, a

Generator project was set up, headed by

Erwin Book. Currently, four Translator proj­

ects exist: the Q-7, Q-8 Translator project,

headed by Cal Jackson; the 2000 Translator

project, headed by Ellen Clark; and the 709,

7090 and Q-31 Translator projects, headed

by Jules Schwartz in Paramus. Working

compilers for all four computers are sched­

uled for operation at about the same time

-in the spring of 1961.

Robert Bosak / B.A. , Mathematics, UCLA,

1949; graduate work in Game Theory and

Statistics also at UCLA. Joined RAND in

1948 to work on analysis and programming

of scientific problems. Joined Lockheed

Aircraft Corp ., in 1951 , where, with its

Georgia Division, he organized and directed

the Mathematical Analysis Group. Returned
to RAND in 1956, heading the SAGE Pro­
gram Development Group and later was
appointed to SDC's Advanced Planning

Staff. Became head of Programming Re­
search and Development Group in 1958,
responsible for directing pure and applied
programming research. In various posts

with SDC has been continuously associated
with development of programming tech­
niques.

Erwin Book/ B. S. degree , CCNY, with a
major in statistics. Joined RAND in Novem­
ber, 1955. Worked on writing programs
and testing the initial versicn of the SAGE
system. Later, went into utility program-

ming area and worked on design of the
COMPASS system . Wrote some programs

for COMPASS, including the assembly
program. He then turned his attention to
problem oriented languages and automatic
programming. Headed the CLIP project in
the Research Directorate. Presently in
charge of the common generator project

for JOVIAL.

Harvey Bratman / B. A. , Mathematics ,
UCLA, 1950. Statistician at U.S. Naval Ord­
nance Test Station, China Lake, California,

June 1950 through February 1952. Joined
Mathematics Department of Lockheed Air­
craft Corporation, working on a variety of

aeronautic engineering problems. In 1956
became responsible for systems and sub­
routines used at Lockheed. Member of
the SHARE 709 System (SOS} Committee.
In December, 1958, joined SDC and has

been working in the field of automatic
coding. He is one of the designers of CLIP

and has coded and checked out part of the
709 CLIP generator.

Ellen Clark / B.A., Mathematics and Phys­
ics, University of Kentucky . Mathematics in­

structor, Vanderbilt University and North
Georgia College. Started programming
engineering and managerial problems with

the Mathematical Analysis Group at Lock­
heed Aircraft's Georgia Division, Designed

and implemented general purpose output

system for IBM 704. Joined SDD of RAND
in 1957 for work on SAGE. As member
of SDC's Research Directorate, worked on

CLIP Compiler project and is currently on
loan to SSRL to design JOVIAL translator

for Philco 2000.

Calvin Jackson/B.S., Mathematics, More­
house College; graduate study at Atlantic
University. Formerly with the Mathematical

Analysis Department of Lockheed Aircraft
Corp., Marietta , Georgia. While at Lock­
heed, his work included the integration of

Flutter analysis programs into an auto­
matic system and the installation and
maintenance of Lockheed's Automatic
Operating System. Joined SDC in January,

1960; assigned to the JOVIAL project since

February, 1960. Curremly in charge of the
Q-7 translator project.

Jules Schwartz / B.S. , Mathematics, Rut­
gers University, 1951. Graduate work in
Mathematics and Mathematical Statistics

at the University of Southern California,
UCLA and Columbia University, where he
is presently doing part-time graduate

study. Joined The RAND Corporation
Numerical Analysis Department in 1954.

In January, 1956, transferred to the Sys­
tem Development Division, which later

became SDC. Since early 1959, has been
on loan to the SACCS Division from SDC's
Research Directorate.

; . ,::;,
~ \ ..

~

Christopher Shaw / Studied mathematics
at UCLA. With SDC since June 1957, work­

ing on checkout and maintenance of SAGE
computer programs until assignment to
the Training Section in May, 1958, as Pro­

grammer Instructor. After completion of a
709 Programmer's Manual in July, 1959,
began work on a JOVIAL training manual
which, with interruptions, was continued

until transfer to the JOVIAL pro ject in
March, 1960. Currently working on JOVIAL
documentation with the Generator Project.

--- - -------- JOVIAL

SYSTEM DEVELOPMENT CORPORATION / 2500 COLORADO AV~NUE / SANTA MONICA, CALIFORNIA

