
Data General's Extended ALGOL is a powerful language
which allows systems programmers to develop programs
on mini computers that would otherwise require the use of
much larger, more expensive computers. No other mini
computer offers a language with the programming features
and general applicability of Data General's Extended
ALGOL.

ALGOL 60 is the most widely used language for describ­
ing programming algorithms. It has a flexible, generalized,
arithmetic organization and a modular, "building block"
structure that provides clear, easily readable documentation.
The language is powerful and concise, allowing the systems
programmer to state algorithms without resorting to "tricks"
to bypass the language.

These characteristics of ALGOL are especially important
in the development of working prototype systems. The
clear documentation makes it easy for the programmer to
recognize and correct program deficiencies and, because of
ALGOL's modular structure, the programmer may work
independently on separate parts of the prototype program.

Data General's Extended ALGOL is a full implemen­
tation of ALGOL 60: recursive procedures are allowed,
array declarations may be any arithmetic expression includ­
ing function calls, and integer labels and conditional ex­
pressions may be used. Programs written in standard
ALGOL 60 are completely compatible with Data General's
Extended ALGO L.

Data General's Extended ALGOL includes facilities for
character manipulation, list processing, arithmetic with
up to 60 decimal digits of precision, and random or sequen-

Copyright © DATA GENERAL CORPORATION 1971

DATA
GENERAL
EXTENDED
ALGOL 60
COMPILER ,

tial I/O with optional formatting. These extensions comple­
ment the basic structure of ALGOL and significantly in­
crease the convenience of ALGOL programming without
making the language unwieldy.

FEATURES OF DATA GENERAL'S EXTENDED ALGOL
Character strings are implemented as an extended data

type to allow easy manipulation of character data. The
program may, for example, read in character strings, search
for substrings, replace characters, and maintain character
string tables efficiently.

Multi-precision arithmetic allows up to 60 decimal digits
of precision in integer or floating point calculations.

Device-independent I/O provides for reading and writ­
ing in line mode, sequential mode, or random mode.' Free
form reading and writing is permitted for all data types, or
output can be formatted according to a "picture" of the
output line or lines.

Dynamic conversion of parameter types allows one pro­
gram to process data of several types. Expressions of mixed
type or precision are allowed.

Recursive and reentrant object code is generated by the
Extended ALGOL compiler. This is particularly important
in real-time applications for fast context-switching among
programs., ,d,

Dynamic storage allocation frees the programmer ,from
many details of data layout and storage assignment, ',:'

N-dimensional arrays may be allocated dynamically' at
run time. Subscripts and array bounds in the array declara­
tion may be any expression, including function references,
negative numbers, and subscripted variables.

Direct addressing capabilities are provided by drawing
upon some of the powerful addressing features of PUI, in­
cluding based and pointer variables_ This extended address­
ing capability provides more efficient code and more easily
understood source language notation.

Subscripted labels provide for direct branching to a given
label upon evaluation of the subscript expression.

Bit manipulation is provided, using logical operators,
octal and binary literals, and built-in functions.

Named constants may be explicitly declared to aid pro­
gram readability and to simplify program modification.

Condition signalling allows the programmer to set condi­
tions for interrupting normal execution and switching to
an interrupt procedure.

Object code optimization is performed for efficient regis­
ter usage, in-line generation of literals, sub-expression elimi­
nation, optimal use of machine instructions, and efficient
storage allocation. A commented assembly listing is pro­
vided.

Straightforward subprogram linkage conventions, which
are well documented, simplify interfacing to assembly lan­
guage subprograms.

Explicit diagnostics aid debugging at the source level.
Compatibility with the Data General symbolic debugger
aids run-time debugging.

ELEMENTS OF EXTENDED ALGOL

Declarations
A wide range of characteristics is possible for ALGOL

program variables, making them easily adaptable to specific
usages. Each program variable has the characteristics of
shape, size, data type, and storage class.

For each program variable a declaration of desired char­
acteristics is given. Data type is always declared. Other char­
acteristics have default values if not declared.

The data types are integer, real, complex, boolean,
pointer, string, and label. Data types can be converted to
other data types, provided that the shape, size, and storage
class are compatible. I nteger, real, boolean and pointer data
can be converted to and from strings.

The shape of a program variable is scalar, array, literal,
switCh, procedure or operator. Scalar is the default shape of
a variable. If another shape is to be used, the shape must be
defined in a declaration.

The precision of a program variable represents size in
words for numeric data (from one to 15 words) and maxi­
mum number of characters for string data (maximum of
16,283 characters). Precision is only declared for numeric
and string data. Other data types have a fixed length for all
cases.

Most ALGOL program variables are allocated and freed
dynamically on entry and exit from a portion of the pro­
gram, called a block. Such variables do not need a storage

2

class declaration. The storage classes that are declared are
own, external, and based.

A based variable is merely a template of a program vari­
able, used as described in the section on "Extended Address­
ing." own and external variables are held in storage through­
out an ALGOL program, instead of being dynamically
stored.

Some examples of declarations are:
Character-

istic

Data Type

Shape

Example

integer I, J;

real K;

complex C;

boolean done;

pointer P;

string measure;

real array
MAT[0:4,1 :5];

string procedure
X(a,b);

Storage Class based integer I ,J;

Precision

Statements

own real K;

external
procedure x;

real (9) array
RAY [7];

string (2000) s;

Description
and J have integer nu­

meric values.

K has a real numeric
value.

C has a complex numer­
ic value.

done has a value true

or false.

P has an address as a
value.

measure can contain up
to 32 characters.

MAT is a 5x5 floating­
point array whose first
element is MAT [0,1]
and last element is MAT
[4,5].

X is a function that re­
turns a string value. Its
formal parameters are a
and b.

I and J are template
variables.

K has a value which is
preserved between calls.

x is a separately com­
piled procedure.

each of the 8 elements
of RAY has 9 word
precision.

s can have up to 2000
characters.

Statements define program action. I n ALGa L, there are
relatively few different types of statements, but each type
is extremely flexible. For example, the basic assignment
statement resembles that of most compiler languages:

V := expression;

The expression on the righthand side of the assignment
symbol is evaluated, converted if necessary to the data type
of variable V, and assigned to variable V.

However, the programmer could have written:

CHAR := A := V := expression;

I n this case, the expression is evaluated and assigned to each
of the variables V, A, and CHAR, and, in each case, the ex­
pression is converted to the data type of the location, each
of which might have a different data type. If the expression
evaluates to a real number, it might simply be assigned to
real V, then truncated and assigned to integer A, and con­
verted to string format and assigned to string CHAR.

The general forms of ALGOL statements are shown be­
low with some examples. In the statement formats follow­
ing, X is an expression, V is a variable, and S is a statement,
compound statement, or block.

Statement Format Description

for V: = X" ... , Xn do S; Statements providing loops
for V: = X, step X2

until X3 do S;
for V: = X, while X2 do S;

V: = X;

if X then S;

Assignment of expression to
variable(s) .

if X then S, else S2;

Conditional statements.
X is boolean expression.

go to X; Unconditional transfer, X is a
label expression or label.

NAME; Call to a procedure NAME.
NAME (X" X2, ... , Xn); Each X is a parameter.

Represents the null statement.

Statements and Blocks

In ALGOL, whenever a single statement may be used,
the programmer may choose to use a compound statement
or a block. A compound statement is a series of statements
surrounded by begin and end. A block is simply a compound
statement which contains declarations for its internal vari­
ables, procedures or arrays. Entering a block triggers the
dynamic allocation of storage used by the block;

Statement Type

Basic

Compound

Block

Examples

a := p + q;

go to Naples;
START: CONTINUE: W := 7.993;

begin x:= 0; for y:= , step' until n do
x: = x + A [y] ; if x > q then go to
STOP else if x >w - 2 then go to S ;

Aw: St: W := x + bob end;

0: begin integer i, k ; real w ;
for i := , step' until m do
for k := i + 1 step 1 until m do
begin w := A[i, k] ;

A[i, k] := A[k, il
A[k, i] :=w

end for i and k
end block 0

Expressions
An expression is a rule for computing a value. In Ex­

tended ALGOL, this rule may result in a value which is

numeric, a character string, the address of a computer word,
a label, or a truth value. Expressions may contain variables
of various precisions and data types; code will be generated
to convert variables to a common type and precision when­
ever necessary. For example, a real number could be multi­
plied by a character string which contained the ASCII repre­
sentation of a number. The number in the string would be
converted to type real at execution time. Similarly, a sub­
script or for statement variable could be a real, string or
integer variable. Expressions can also be used as values
passed on procedure calls, and as the dynamic dimensions
of an array.

Examples

cos (y + Z X 3)
(a - 3/y + vu t 8)

Description

Simple expressions. Variables
y, Z, a and vu may be integers,
reals, or strings.

x[sin(n X pi/21. 0[3, n, 4]] Subscript expressions. The
subscripts of the 2-dimension­
al array x are the result of
the function sine and an ele­
ment of the 3-dimensional
array O.

s := prO] := n := n + , + S

own integer array
A[if c <0 then 2 else
, : 20]

Procedures

The value n + , + s is stored in
the order n, p[O], s. The type
of the value will be converted
on each step if required.

Array dimensions. The array
A will have a lower dimension
of , or 2 depending on the
value of c.

Subroutines and functions in ALGOL are declared in the
same manner as variables. An ALGOL procedure may be
local to a particular block or may be used by the entire pro­
gram. The declaration of an ALGOL procedure consists of
three parts: a procedure header which tells the name of the
procedure and the order of its dummy arguments, a list of
declarations for the arguments, and a statement (which may
be a compound statement or block) defining the action to
be performed. The following example shows some declara­
tions. from a block. The declarations include a procedure
which determines whether or not a character is alphabetic.

begin integer i, j; real array a ['00] ;

boolean procedure alphabetic (c);
string (1) c;
alphabetic := (c ~"a")

and (C";;;"Z");

string (511) str;

3

Extended ALGO L provides an additional external decla­

ration to allow a procedure to be compiled separately.

A procedure which is used as a function may return a

value and may be of any data type (including string and

pointer). If the procedure does not return a value, then it is
a subroutine and is called by means of a procedure state­

ment. The I/O -procedures are examples of this kind. If the

procedure returns a value, then it is called as part of an

expression.

Some procedures are defined by the ALGOL compiler

and do not need to be declared by the programmer. These

include the I/O procedures, arithmetic procedures such as

sin and cos, and various procedures of general utility to the

programmer, such as hbound which returns the upper bound

of an array dimension.

CHARACTER STRINGS
Data General's Extended ALGOL provides the program­

mer with facilities for directly accessing character string

data to simplify the development of business applications,

information retrieval programs, text processing programs,

and other applications which depend heavily on the manipu­

lation of sequences of characters.

I n ALGOL, a character string is considered to be a se­
quence of characters, each of which is referenced by its

position in the sequence. The sequence may vary in length
from zero characters to the maximum declared for the

string. ALGOL allows strings up to 16,283 characters long.

A program may reference an entire string for purposes of

comparison or assignment, for example, or may reference

any contiguous sub-sequence of the string.

string is a data type like real or integer and may be used

in the same manner. For example, there may be arrays of
strings, functions returning string values, strings passed as
parameters, own strings which maintain their value between

calls, and based strings which allow any locations in memory
to be accessed as character data. Strings may be used in

mixed type expressions and may be converted to or from

type real, boolean, integer or pointer as required.

All strings have an associated current length and maxi­

mum length. The maximum length is declared as the pre­

cision of the string.

For example:

string (300) a, b;

declares the strings ~ and ~ to have a maximum length of
300 characters. The current length of these strings will be

zero until data is moved into the strings by a string assign­

ment such as:

a := "abcdefg";

The programmer may reference a part of the string by

means of the substr built in function. The assignment:

b := substr(a, 2, 5);

would move the second through fifth characters of ~ into

4

the first four characters of Q. If we then used substr to store

into the fifth character of !2: .
substr (b, 5) := ;

The current length of 12 would be updated to five. If, for
this assignment, the current length of ~ had not been known,
the length built in function could have been used:

substr(b, length(b) + 1) := ;

The following procedure put appends its parameter, the

string~, to string out (which is external to this procedure),

separating strings packed into out by blanks.

procedure put (s); string s;

begin integer n;
n := length (out) ;

if n > 0 then begin
substr (out,n+1) :=" "

n := n+1;

end;
substr (out, n+1, n+length (s)) := s;

end;

The procedure put might be called in the following man­

ner. (hundredsstring is another ALGOL procedure and re­

turns a character string value.)

if thousands> 0 then begin
put (hu ndredsstring (thousands));
put ("thousand");

end;

Arrays of strings are allowed in which all the elements

have the same maximum length but not necessarily the same
current length. A string array is declared in the same manner

as an array of any other data type. For example:

string (10) array [-2: 12];

declares a fifteen-element array in which each element has a

maximum length of ten characters.

String arrays are particularly convenient for maintaining

name or symbol tables. The following procedure looks up

symbol in its internal symbol table. If symbol is found its

index is returned. I f not found, symbol is appended to the

table and the new index returned.

integer procedure lookup (symbol);

string symbol;

begin own string (8) array symboltable [1: 1000] ;

own integer symbolcount;

integer i;

for i := 1 step 1 until symbolcount do

if symboltable [i] = symbol then go tofound;

i := symbolcount := symbolcount+1;

symboltable [i] := symbol;

found: lookup:= i;

end

The syntax of character strings has been designed to
parallel other data types as closely as possible to provide a
logical and useable addition to ALGOL 60. String varia~les,
string arrays and string valued procedures allow all the
language constructs of variables, arrays and procedures of
other data types. The following sort procedure may be
modified to sort arrays of any other data type by simply
redeclaring the type of array ~ and temporary ~.

procedure Shellsort (a);

string array a;

begin integer i, j, k, m;
string w;

for i := 1 step i until size (a) do m := 2 X i-1;
for m := m/2 while m =1= a do

begin k := size (a)-m;

for j := 1 step 1 until k do

begin for i := j step -m until 1 do

1 : end j

end m

end Shell sort;

INPUT/OUTPUT

begin if a[i+m] ~ a [i] then go to 1;
w := a [il ; a [i] := a [i+m] ;
a [i+m] := w;

end i;

Input/Output facilities in Data General's Extended
ALGOL have been designed to provide flexibility in the
formatting of data while retaining a simplicity which allows
an efficient, easy-to-use implementation.

The I/O procedures manipulate named data files which
may be accessed sequentially or randomly. In order to read
or write from a file, a channel number must be associated
with the file name and the file positioned to its beginning.
This is done by means of the open call. For example, the
disk file "newdata" may be associated with channel number
2 by means of the call:

open (2, "newdata");

The file name may be passed in any legitimate string
such as a string variable, substring or the result of a string
procedure call. File names corresponding to physical de­
vices will, by convention, have a "$" as the first character.
The channel number may be released and I/O terminated by
means of the close procedure. For example:

close (2);

will terminate I/O to channel 2.

The procedures for reading and writing data determine
the properties of the data from the call. This allows a small
number of simple procedures to be used for all types of

data. In the following examples the variables shown will be
assumed to be declared as follows:

real x;
real (4) y;
integer i;
integer (3) j;
boolean flag;
pointer p;
literal cr ("< 15>")

Angle brackets may be used to include any ASCII
character in a string. The literal £r is defined to contain an
ASCII carriage return. All the procedures for writing re­
quire that a carriage return be output explicitly. This allows
the programmer to use multiple writes to build an output
line.

Data may be input in free format by means of the read
procedure. A typical call to read:

read (0, j, flag, p);

could accept the following data from file 0:

7777600r8, true, 10400

I n this case the default radix for integers (base 10) was over­
ridden by specifying the radix for 1 (base 8). Sincep)s a
pointer it is expected in octal. The items may be separated
by commas, carriage returns or spaces. The entire list must
be terminated with a carriage return.

String data may be read in either of two forms. If the
first character of the string is a quote, then all chara·cters
will be included in the string until another quote is
reached (the quotes will not be included in the string).
Otherwise, all characters will be included until a carriage
return is reached (the carriage return will not be included).

The programmer may include a label as the last parameter
of read. If a'\abel is passed, a transfer will be made to this
label if an end-of-file is encountered. For example:

loop: read (1, i, eof);
go to loop;

eof:

will read integers from the file until an end-of-file is
encountered.

Data may be written in free format by means of the
write procedure . .A write call:

write (1, "address is", p, cr);

would produce the output:

address is 10400

The data format will be determined according to type
and precision. The format will be identical to that used for
a conversion to string from the data type in a string assign-
ment such as: s := x;

5

Frequently it will be desirable to output data in a more
controlled fashion, such as columns in a table. For this the
output procedure is used; output uses a "picture" of the
output line to specify format. Pound signs, .. #", are used
to indicate positions to be filled in by a variable.

output (1, .. #### #######rB<15>", i,j);

This example would produce the following output:

11 7777600

In this case a specified radix (rB) was again used to
override the default radix for integer. The picture for a
number may include a period (.....) to indicate the position
of a decimal point, "E" to indicate the start of an ex­
ponent field, and a plus or minus sign to indicate that the
sign is to be output for all values or only for negative values.
The statement:

output (1,
"+####.#####E##
x, y);

Can be used repetitively to produce the following table:

+/ihl1947E 5 +0.30576E 5 +0.28890E
-0.18810E 5 -0.23770E 4 -0.16468E
+0.21621E 5 -0.31646E 5 -0.92130E
-0.26072E 5 +0.30945E 5 -0.25986E
+0.10895E 5 -0.32028E 5 -0.70270E
+0.53380E 4 +0.28251E 5 +0.13792E
+0.17273E 5 +0.20342E 5 +0.29543E
-0.20708E 5 -0 .• 32347E 5 -0.65740E
+0.17843E 5 +0. 10904E 5 -0.13551E
-0.19090E 5 +0.12607E 5 +0.93000E

4
5
4
5
4
5
5
4
5
4

If the data to be output is too long for the field specifi­
cation, the field will be extended as necessary. If the field
is longer than required, the data will be right justified in a
field of blanks if it is numeric or left justified in a field of
blanks if non-numeric.

output (1, "result is #<15>", flag);

for a true value of the boolean variable, flag, would output:

resu It is true

Free format conversion may be combined with formatted
output by means of string assignments. Numeric data as­
signed to a string will be converted in free format. The
string may then be output by a picture. For instance, the
declarations and statements following:

real (7) array x[O:10];
string sx; integer i;

for i := 0 step 1 until 10 do
output (1, "x[#] = #<15>", i, (sx := xU]));

could be used to generate:

6

XC0] 0.28520493777418823300177665235398176944
XCI] -0.99713870375559424119597552792558286226
XC2] -0.79670283831695594412018481055358148066
XC3] -0.5163936671356174346048497770695744816
XC4] -0.6465995984055786099942544499114943005
XC5] 0.98198455568969611473310622816799746713
XC6] 0.18640399443552892189139315380972999035
XC7] -0.61138634269347266747555737286322124189
XCB] -0.97671678225B79973722637929288768514877
XC9] 0.80174413030837630989026722293576181753
XCI0] = -0.99998624434888724876739375734334185606

In addition to the previously described procedures, calls
are provided to read and write a binary stream of bytes,
delete or change the name of a file from program control,
and to determine the length of a disk file in bytes.

An ALGOL program operating under the Disk Operating
System may use any of the facilities for reading or writing
to randomly access a disk file. A DOS disk file may be as
long as 33,423,360 bytes. The program may position to
any byte of the file before performing an input or output
operation by calling the position procedure with the chan­
nel number and byte number as arguments. A location
counter kept for each channel is updated after each read or
write to indicate the next byte to be accessed. This location
counter may be read at any time by calling the fileposition
procedure.

ARITHMETIC
Data General's Extended ALGOL gives the programmer

wide latitude in his choice of arithmetic capabilities. Single
precision arithmetic (16 bits) is performed by optimized
sequences of machine instructions. Two-word floating point
and two-word integer arithmetic may be performed by a
software package which combines small size and very fast
arithmetic. Generalized multiple precision arithmetic allow­
ing computations with up to 60 decimal digits of precision
is provided by another software package.

Constants in the program may specify any radix, and up
to 15 words of precision. If a long constant is frequently
used, it may be given a name to simplify program modifica­
tions and aid documentation.

All the standard ALGOL arithmetic functions are pro­
vided and will return results precise to at least 23 digits.

The following program demonstrates the use of 15 word
integer arithmetic and a recursive procedure to generate a
table of factorials. Note that the procedure, factorial, con­
sists of a single statement.

begin

integer (15) procedure factorial (n); integer (15) n;
factorial := if n>1 then n X factorial (n-1) else 1;

integer (15) n;

open (1, "$tto");
for n := 1 step 1 until 50 do

output (1, "### #<15>", n, factorial(n));

end

I
2
3
4
5
6
7
8
9

10
I I
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
3~

I
2
6
24
120
720
5040
40320
362880
3628800
3991681'10
479001600
6227020800
87178291201'1
1307674368000
2092278988801'10
3556874281'196000
640237371'1572801'10
12164511'11'1408832001'1
243291'12008176640000
510909421717094401'100
112401'11'172777761'17681'101'11'1
258521'11673888497664001'11'1
621'144841'11733239439361'11'101'1
155112101'143331'198598401'11'11'11'11'1
40329146112661'156355841'11'11'11'11'11'1
10888869451'1418352161'17681'11'11'11'11'11'1
31'148883446117138605015341'11'11'11'11'11'1
884176199373971'119545436161'101'11'100
2652528598121911'158636308481'11'11'10001'1
8222838654177922817725562881'11'11'11'101'11'1
263131'1836933693531'11672181'112161'101'101'11'11'1
868331761881188649551819441'11281'1001'1303
2952327991'13961'1414084761860964352031'1331'11'1
11'133314796638614492966665133752321'11'11'11'11'11'11'11'1
3719933267899A121746799 Q 448 15083521'11'11'11'11'11'11'11'1
137~~7531'191226345~~- ~,~o~91'124030AI'I01'10

EXTENDED ADDRESSING
Use of pointers and based variables is a programming

technique which allows the systems programmer to achieve
a very high level of object code efficiency.

In most programming languages, certain information is
available to the programmer that is not available to the
compiler through the source program. The compiler must
always assume the "worst case" in order to generate safe
code.

For example, any subprogram call can potentially rede­
fine all external variables. An assignment to any element of
an array will force the compiler to assume that all values in
the array have been modified. I n the case of arrays passed as
parameters, the compiler must generate "worst case" code
for computing subscripts, since neither the bounds, preci­
sion, nor number of dimensions may be known until run
time.

Pointers and based variables provide a mechanism for
explicitly manipulating machine addresses. Using the facility,
the programmer can, for example, force a subscript calcula­
tion to be performed only once in a frequently executed
part of his program. As another example, if the program­
mer knows that an external variable will not be modified
by a call, he can use pointers and based variables to convey
this knowledge to the compiler.

The programmer declares an identifier, called a pointer.
The pointer's value is the address of some program variable.
Pointer expressions are allowed, so address offsets can be
given. When the pointer is used, it points to a based variable

with the operator --+; in effect, the pointer and based variable
have been substituted for the precise address of the pro­
gram variable that the programmer wants.

The example following shows two procedures that per­
form the same computation. The first uses subscript values
calculated at run time. The second uses pointers and based
variables. Note that the four subscript calculations are al­
ways required in the first case, since ~ and E may be the
same array or have elements in common. In the procedure
using pointers, the programmer has communicated to the
compiler his additional knowledge about the two arrays.

procedure fnl (a, b, i);

integer array a, b;
integer i;

begin ali] := b[i];
b[i] := a[i+l];
end;

procedure fn2 (a, b, i);

begin

integer array a, b;
integer i;

pointer ap, bp;
based integer bi;

ap := address(a [i]);
bp := address(b'[i]);
ap --+bi :=bp-+bi;
bp-+ bi :=(ap+l) --+ bi;
end;

Following is coding generated by the last two statements
of the procedure containing pointers. To understand the
coding, note that register 3, which appears as the third field
in some instructions, contains the current stack pointer.

AP->AI := AP->AII

IIlAA14'A23616 LOA A.~S+5.3 lAP
III 01 A I 5 '1'143615 STA A.@S+4.3 lAP

I AP->AI := CAP+I)->AIJ

IIlA('H 6' 1'131615 LOA ~"S+LI,3 lAP
AIIllll17 ' 15141'11'1 INC 2.2
AI'I1'I211l'A31A3A LOA 2.1'1.2
00A21'IIl53616 STA 2.!I!S+5.3 lAP

The following example shows a more complicated use of
pointers and based variables to produce a very efficient
statement which will thread a new element into a forward
and backward threaded list. The data structure is organized
as shown below.

P" WORD 0 DATA
WORD 1 BACKWARD POINTER
WORD 2 FORWARD POINTER

NEW ELEMENT, ADDRESS IS
I N POINTER .f

PORTION OF THREADED
LlST. NEW ELEMENT WILL
BE I NSERTED BETWEEN
THESE TWO ELEMENTS

DATA
LAST

NEXT

Q ---;:"DA":'"T;"A:----'

LAST
NEXT

7

The new element pointed to by p will be inserted in the
list before element q.

8

00004'I'I~1611
1'101'11'15'10141'11')
00006'1'125612
01'1007'1254"''''
00"'10'131000
0"''''11'025000
1'10012'1'141613
0"'013'1'141613
01'11'114'03401'10-
00015'1'121601
1'1"''''16'1'''701'1'''

1'10"'17'01340105$
00020'031611
011'1021'1<1300'"
"'0022''''31612
"'0023'0<11613
0002<1'053613
"'0025'151400
00026'021611
00027'0<11"'00
00030'0<15613
00031'0<13613

I POINTER P. QI
I LIT£~AL LASTCI). N~Xr(2)1
I BASED I"OINTEIl RPI

I CCCP+LA~T)->BP := tQ+LAST)->RP)+NE~r)->RP 1=

LOA 0.5+111.3 II"
INC (!I. I!
LOA I.S+H3 19
INC 1>1
MOV 1.'2
LOA ~:~r~.a STA
STA 1.~S+2.3 I TEMPORARY
LOA 3 •• LP
LOA 0 .. L+1,,3 ILITERAL
AOO 0.1

I CCCP+NEXT)->RP := Q)+LA5T)->BP := PI

LOA 3 •• SP
LOA 2.5+",.3 II"
ADD 2.0
LOA 2.5+1.3 IQ
STA 1'1. 5+2. 3
STA 2.15+2.3 ITEMPORARY
INC 2.2
LOA 0.5+0.3 IP
STA 0.0.~
STA I~S+2.3
STA 0.~S+2.3)TEMPORARY

DATA GENERAL CORPORATION SALES AND SERVICE, Southboro, Massachusetts 01772, (617) 485-9100; Hamden, Connecticut 06517,
(203) 624-7010; Rochester, New York 14619, (716) 235-5959; Saddlebrook, New Jersey 07662, (201) 843-0676; Commack, l.I., New York
11725, (516) 864-2700; Bryn Mawr, Pennsylvania 19010, (215) 527-1630; Bowie, Maryland 20715, (301) 296-0380; Atlanta, Georgia 30340,
(404) 457-0286; Orlando, Florida 32802, (305) 425-5505; Cleveland, Ohio 44117, (216) 486-5852; Des Plaines, Illinois 60018, (312) 297-6310;
Houston, Texas 77027, (713) 621-3670; Dallas, Texas 75240, (214) 233-4496; Denver, Colorado 80222, (303) 758-5080; Palo Alto, CaBfornia
94306, (415) 321-9397; Manhattan Beach, California 90266, (213) 379-2431; DATAGEN OF CANADA, LTD., Hull, Quebec, (819) 770-2030;
Montreal 379, Quebec, (514) 341-4571; Toronto 17, Ontario, (416) 447-8000; N. Vancouver, British Columbia, (604) 985-9104; INTERNA­
TIONAL, London, W. 1., England, 01-499-7735; 8 Munich 22, West Germany, 0811-295513; 20156 Milan, Italy, 30!$6 !;!1; 10'0 Vienna,
Austria. 93-01-43; DK-2600Glostrup, Denmark, 01/96 53 66; Snormakarvagen 35, Sweden, 08/BO 25 40; Rijswijk Zh, The Netherlands,
070·98 51 53; 1040 Brussels, Belgium, 02-35 21 35; Helsinki 10, Finland, 45 00 45; Jerusalem, Israel, 02-85260; Croydon, Victet'ia 3136,
Australia, 723-4131.

~ , DATA GENE~L CORPORATION
• Southboro. MassacH,usetts 01772

