
Computer Simulation :
A Simulation Language and Example

By

Ralph Edwin Love , Jr .
"

B.s . (Stanford University) 1957

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical Engineering

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

Committee in Charge

Deposited in the University
. L201962 . ~ {J. -- n.l

L~brary ~.
Date Librarian

1.

TABLE OF COUTEN?S

Ch <..;.pter
1. I ntroduction

2. BC NELI AC
2.1 Introduction
2. 2 Metalanguage
2. 3 Flowchart
2 . L~ Declaration Lists
2. 5 Variab les
2. 6 Expressions
2. 7 Program Logic

2. 7.1 Assignment Statements
2 .7. 2

2.7. 3
2. 7.4

GO TO Statements and SWITCH Statements
FOR Statements
DO Statements

2. 7. 5 Conditional Statements

3. Intercom 500
3.1 Intercom 500 Computer

3.1.1 Computer Organization
3.1. 2 Command Structure
3.1. 3 Operation Codes

3. 2 Al gor ithm for Simulation
3. 3 Oonclus1Gns

4. Symbolic Intercom 500
4.1 Source Language
4.2 ·Algorithm

308t
196?
303

Page
1

4
4
5
6

7
10

10
12
13
13
14
14
16

17
17
17
20

20
22
23

36
36
38

TABLE OF CONTENTS {cont.)

Appendix

A. Transliteration Rules
B. Operation Code Limitations
C. Intercom Card Format
D. Use of Machine Language Subroutines in

Symbolic Intercom
E. Symbolic Intercom 500 Assembler
F. BC NELIAC S~ulation o~ Intercom 500
G. A Syntactical Flowchart for BC NELIAC

Bibliography

Page
40
42
44

45
47
48
49

50

Chapter 1

INTRODUCTION

The term "simulation 11 can be defined as the replace

ment of a given system by a substitute system, or "simul ator " ,

which responds to the external environ!"'lent in a similar Hay

as the origina l system. With the dev~ lu pment of l arge scale

data processors "simulation" of systems has become a field

of important i nterest and study. Simulation studies have been

made on such subjects as the nation's economy, mental activi

ties of the brain and new digital computer systems. As digi

tal computers become larger and fast er , simulations \vi ll become

more accurate and complex in their representation of the origi

nal system. In all simulation problems run on a computer it

is necessary to write a progrrun, which consists of a set of

instructions to the computer, to direct the machine's operation

and perform the desired simulation.

1.

A program may be written in the following forms: machine

language coding, assembly language , or problem oriented l anguages .

In machine language coding each individual instruction is written

1n the numerical language of the specific computer for which

the program was intended. The assemb ly l anguage a llows the pro

grammer to refer to computer functions or to memory storage

addresses symbolically, with letters instead of numbers. Prob

lem oriented languages allow the computer user to express a

program in terms of the problem, instead of t he computer.

To \tlrit e proe;r8..t.'11S in J:J.achine or assenbly l nn2;uaGes

requires the programmer lmow most of the machine or symbolic

inst r uct ions and t heir various \~ays of beine modified . Since

the pro ram has to be written on an instruction-by-instruc t i on

basis , the process of developing a proGram can be complex,

tedious , and s l m·1.

Problem oriented l anguages a llm1 the computer user free

dom to think in t erms of t he prob l em and l ess in terns of t he

detai ls of t he computer. I f the l anguage used is machine

independent , t hen the progro.ms written in the problem or iented

I') ,_.

l anguage VIill not become outdated as ne\'l computers are deve loped

and market ed .

The purpose of this paper is to describe a machine indepen

dent , problem oriented l e.nguage , BC NELIAC , Vlhich deve l oped int o

being a useful l anguage for \'lrit ine programs for simul ation

problems. The most significant feature of BC NELIAC is that

programs coded in the source l anguage are self-documenting. Four

other important fe ature s which make BC NELIAC useful for simul a -

tion problems are part\1ord operntions , chain expressions ,

ALGOL type sour ce l anguage , and fast compiling speed . Part word

operations and chain expressions are explained in the sect ion on

BC NELIAC. Samples or t he BC NELIAC source l anguae;e ·are s hm'ln

throughout this paper and in t he appendix .

As a simulation exrunple, the programming l anguage , I nter-

com 500 1 used on the Bendix G- 15 digit a l computer will be des

cribed. This simulation prob l em was chosen for t Ho pur poses:

first , to consider the economy of operating a small sc a l e I nter

com Computer versus a l arge scale dat a processor simul ating

3.

Intercom 500 , and second , to provide I nt ercom on a m2chine

wi t h a l ar ger memory and f aster operat ing s ed . As an int ro

duction to t he paper a de script i on of BC NELI AC \'Ti ll be given

after which an explanation of I nt ercom 500 vri ll be deve l oped .

Finally, the algorithm used i n the s imulat ion will be shm·m

and a modification to the Intercom 500 l anguage will be pre

sented.

, .·

Chapt eJ~ · 2

l3C NEI..I J\C

2 . 1 Int r oduction

BC NELLII.C is a pr oblem or i e nted l nncuace ,.,:yi_ ~h j_s

used on the IDI1 704 l~rc;e-sc :t le ge nera 1 purpos e dic;i t <- 1 c om-

pute r . I t vms deve l oped b y students a t t he Unive r sity of

Californ i a an 1 is a modified version of t he or ie;ina l Ne l i ac

creat ed a t t e Nav a l El e ctronic s LLili orat ory in S2n Dieco ,

California . The mos t sie;nificnnt f e<>.ture of Ne l i c:•.c is that

t he t ranslat or is vlritten i n its m-n1 l a nguace . This f e :1ture

h a s a llov1ed modific ations to b e ma de to Ne l i 2.c quickly -'lnd

e asily . One o f the main distinc tions of BC NELI AC is t ;1e

1 inclusion of some ALGOL-6 0 de l i mite rs to the sour ce l cmcuaoe.

The de l imit ers not on l y make the pPogr am mor e readab l e

but a llm-; the proe;ranuner gr e a t e r e a s e in v i sua l i z i ng and \1rit-

ing the simul a tion program. Another importa nt fe a tur·e is

chain expressions which h a s b een added to BC NELI AC to simpl i-

fy operations involving ch ar acte r manipul ations and na ke the

l anguage l es s machine oriented . 2 Thi s i s an account of the

more import ant features of BC NELIAC. The a im i s to expla in

rather than to define t he l anguage .

1. The ALGOL 60 delimit ers vrere added to t he Ne l i 2.c Load
Source flm--T chart in the summer , 196 1 , by Ra lph Love .

2 . Cha in expressions vTere added to t he Neliac syst em in
January 1962 , by Nik l aus Hirt h .

4.

•

The syntax of DC NELi i\C is described using the ALGOL

metalanguage . It \·ri ll be he l pful to usc this meta l anguage

in t he fo l loHing explanation of BC n:::::LI AC . The ba sic sym-

bols of this l anguage are :

._ -·

::= Heta l inguistic connective meaning "is defined to be "

!·1etnl int;uistic connective mcnning "or"

<) Delimiting brackets \vhich enclose meto.linguistic

VG.riab les.

~1etalinguistic vnrio..b l cs are n sequence of characters

enc l osed in the delimitinG br~ckcts <) . The symbols used

for distinguishing the met alingu~stic variables have been

chosen to be \·lords describing a pproximntely the nature of

the corresponding variuble . This is done only for · underst and-

ing and has no technical significnnce. In a formula a mark ,

\vhich is not a variab l e , connective , or n de l imiter denotes

itself . Juxtaposition of marks o.nd/or vari a.bles in a formula

signifies ju.xt2.position of the marks <lnd/or v 2.rio.bles in the

l anguage being defined . Hetalinguistic formul ae are composed

of met a linguistic connectives , vo.rio.bles enclosed within de-

limiting brackets , and an indica tion of juxtaposition .

Metalinguistic Formula ex~mple .

<identifier) : : = <letter >I< identifier>< l etter >I

<identifier>< digit)

<letter) : : = A I B I C 1 ... I Y I Z

< digit > : : = 0 11121 ... IBI9

The formula for identifier is recursive since (identifier)

n"ppears on both sides of the "defining connective." The

netn.linguistic vnriable (letter) 1ndicates (identifier) can

have the value A, orB, or C, etc. The marks (identifier)

(digit) mean given some va lue of (identifier) nnother can be

formed by juxtapositioning a value of the vnriab l e (digit) •

6.

If the va lues of digit are the arab ic numerials then the follow

ing are illustrations of legitimate va lues of (identifier) :

A

AB

AlB

Y55A

XYZ799

The BC NELIAC reference l anguage will be used in the

program exnmples of this paper . In some cases the symbols

used in the reference l anguage nre not available in the charac

ter set used with the TI3H 704 digital computer . Rules for

transliteration from the reference l anguage to the hardt1are

representation are included in the appendix.

2.3 Flowchart

The logica l segment of the BC NELIAC program is the flow

chart. It consists of two parts; the first part is a declara

tion or dimension list and the second part is t he program logic .

In the dec l aration portion variables are declared and in some

cases set equal to initial va lues. The program logic portion

is the actua l program which specifies the operations to be

performed on the variables defined in the declaration list.

The program logic consists of a sequence of statements, which

are separated by punctuation marks (usually commas.) By

labelling single statements, with an identifier and a colon,

they may be referred to from other points of the program.

7-

Normally statements will be executed consecutively. This

rule may be broken by introduaing .GO TO statements which

explicitly specify the next statement to be executed, or DO

statements which cause a subroutine to be executed and then con-

trol returned to the statement after the DO statement. The

processing sequence of the program may be shortened by condi

tional statements, which may cause certain statements to be

skipped.

If the program logic portion of a flowchart is ca lled a

compound tail then a flowchart has the form:

<flowchart) : : == <declaration list) ; (compound t ail) .. .

A BC NELIAC program consists of a sequenc~ of flowcharts.

The flowcharts are not independent logical segments. Variables

declared or labels occuring in any flowchart may be referred

to from within any arbitary flowchart; however, normally vari

ables should be declared bel'ore they are called.

Flowchart example

A, B, C;

SUM: A + B + C ~ A ••

2.4 Declaration Lists

All variables used in the program except l abels and indices

must be declared. Declaration lists serve to define certain

properties of the variables in the program. Declaration of

a variable may consist of a declaration identifier, alternate

name, structure declaration, and value list. Each declaration

is separated by a comma in the declaration list.

A declaration identifier is the name by which the de

clared variable will be referred. If more than one name is

given to the identical variable, alternate names may be listed

with a colon in between.

8 .

A variable is normally a computer word (36 bits for the

IBM 704 Computer); however, the structure declaration contains

information about the sub-structure of the variable, which may

consist of several part words or a chain of characters. Names

referring to partwords are included within a left brace and

right brace in the declaration. Each partword name is followed

by a definition of the part or subfield of the computer word

it represents and is enolosed in parentheses. The partword

limits specify the right moat (lowest) and the left most

(highest) bit belonging to the named partword.

A variable may consist of a chain of characters, symbols,

or groups of bits Which in the program will be treated as sepa

rate entities in the program logic. The structure declaration

for a chain variable consists of the number of bits forming a

character or symbol preceded by an asterisk and enclosed in

parenthesis.

The value list may pre-assign a numerical value to a

variable and/or define the dimension of a variable in the case

. '

of un array.

The va l ue l ist consists of t wo part s , both of which may

be empty . The first part defines the dimens i ons of the vari

able in the case of an array (if i t is empty, t he dimension

is as sumed to be 1~ The second part i s the number list in t he

case of an array , which degenerates t o a number in the case

of a single variable . If the number l ist is empty , the vari

ab l e is pre-assigned the val ue 0 .

Also , a variab l e may be assigned a predetermined l oc a- '

tion in the IBM 704 computer (abso l ute addressing), by fol l ow-

ing t he variub le vri th * OCT and an oc t a l i nt eger .

The declaration of a variab l e can have t he fo llm'ling

form:

declaration :: = (dec l aration identifier ~

9·

<structure dec larat ion ~< a l ternute nrunes >I
(val ue l ist)

Declaration Exampl es

Simple Variab l es

A, B , C

Alternate Nrunes

A: Al: A2;
A: B: C4 ,

PartNord

A: t B(7 -+ 10), C(9 ~ 12)} ,

Chain Variab l e

A (*6), B(*9),

V~lue List Assigned to Variable

A ~ 5 , B(3) ~ 2 ,1, 5 ,

10.

Arro..y

A(lO), B(5),

Declaration List

A, B , C,

BLOCK OF \·lORDS (100) I

VJORD : ALTERNATE NAr·lE 1: ALTERNATE NAME 2,

INSTRUCTION: t PREFIX (33 ? 35) , DECREI.flillT (18 ~ 32) ,

2.5 Vari D.bles

TAG (15 ~ 17), ADDRESS (0 ~ 14),

RIGHT \'lORD (0 ~ 17)} I

Variables are combined vTith numbers , punctuation, and

operationa l symbols to form expressions and statements. Vari

ables can be declared as fixed point or floating point quanti

ties. A subscripted variable designates values which are

components of linear or single dimensional arrays . The array

components of linear or single dimensional arrays . The array

component referred to by a subscripted variable is specified

by the actua l numerical value of the subscript expression and

will be an integer.

The letters I through N are reserved for variables of

a part icular type known as indices, and they must not be de

clared.

2.6 Expressions

Expressions are the major constituents of statements.

There are five important type.a of expressions used in

BC NELIAC. They are: arithmetic expressions, Boolean expres~

sions, designational expressions, chain expressions, and logi

ca l expressions.

Arithmetic expressions are used to compute a numeri9al

value by executing the indicated arithmetic operations on .

11.

the actual numerical values of the variables of the expressions.

The arithmetic expression is followed by a left to right arrow

to denote replacement and a variable which is set equal to

that which preceded the arrow.

Boolean expressions consist of a comparison of an arith

metic expression and a variable. Boolean expressions produce

an output of true or false, depending on whether the condition

stated is satisfied, or not.

Designational expressions may be either a labe l or a

switch designator which consists of a label and subscript.

They are normally used in GO TO statements.

Chain expressions are intended to simplify operations

involving character manipulations. A variable will consist

of a chain of characters when a chain declaration is applied

to it. Two operations may be performed on chain variables -

"catenate 11 and "obtain first character". The "catenating opera

tion" will left shift a chain variable one character and add

at the right another character. Its form is:
.

Variable l ++ Variable 2

The "obtain first character operation" will obtain the left

most character of a · chain variable, and has the form :

*Variable binary operator

The logical AND or OR functions of two variables is per

formed using the logical expression.

2.7 Program Logic

The program l ogic or compound tai l portion of a flow-

chart consists of statements which are the unit of instruc-

tiona , or sentences , of this a l gebraic language . As in

written Engl ish their order of appearance is import~nt.

Statements may be chained together with commas in between

thus forming unconditional statements , or t hey may be pre

fixed by conditions , thus forming conditional statements .

A compound stat ement may be formed by grouping a s e t

of statements together with BEGIN preceding t he first state

ment and END fo l lowing the last stat ement . Any statement

\'lithin a compound statement may itself be a compound state

ment.

is:

A portion of the syntax for the program logi~ section

<compound tai l) : : = <statement >I< statement)

<compound tail)

(statement) :: = (label) : (statement >k unconditiona l

statement), I <conditional statement) '

<compound statement) : : = BEGIN< compound t ail) END

There are six important types of statements which will

be discussed . They are assignment statements , GO TO state

ments , SVIITCH statements , FOR statements , DO statements and

conditional statements . The first five of these are consid-

ered unconditional statements.

12 .

2 . 7 .1 J'.nnit;nr:10nt Stclt~r:Pntn

The o. n::: icnr.lc t stnt er:1cn t specifie s an expression to be

evel l 'l.t ed and o. v ;.riab l e vrhicll is t o have t he r e sult ing va lue

a ssigned to it . If the v<.~Piab l · t o th·2 right of an a rro\'1

is designntil18 a rx-trtin l \·rord , then the part (s) of the word

not des ie;n~t ccl rer.nin un<lffectcd by the a ssignment statement.

An a ssignment statenent is executed in the fol l O\ving

steps:

1) the expression to the l eft of the arrow -is

c v~' l u .:tted

2) · the subscript expression of the variable to the

right of the l eft most arrovr is e v c>. l unted

3) the varinb l e is a ssie;ned the val ue of the

expression

4) for each fo llmrinc v2..riab l e steps 2 and 3 . are

perfor med sequentio. lly .

I f E is an expression , V is a vario.ble , and 1 is t he

name of the sto.tement , o. l abe lled assignment st o.tement has

the form :

L : E 7 V

Assignme nt ~t ~tement cxo.mple

A[I] + B ~ C[I)(lO ~ 15).

2 . 7 . 2 GO TO St o.tements .:md SHI TCH Sta tements

Unconditional transfer of control statements are formed

fo llowing the vlords GO TO with a designational expression .

Thus , the next st atement to be executed \'til l be one having

13.

the value of the designational expression as its label.

A ShTITCH statement consists of 2. sep2.rate l abe l by which it

m::ty be referenced ; and names a group of alternative points in .

n progro.m to \'lhich control may be transferred as the result

of u single GJ TO stat ement. The switch statement has the

f ollowing form:

. . . . GO '.i.'O L3. GO TO L2 . Si·liTCH name : GO TO Ll.

'i'l1e selection of the actual point to which control is trans-

ferred de pends on the va l ue of the subscript expression of

t he svri tch designator in the GO TO statement.' Hith increas- ·

ing vnl ue of the subscript expression an earl ier l abe l in

the SHI TCH statement is · chosen for the transfer.

GO TO Statement example

GO TO A.

GO TO B(J) .

3~HTCH Statement ex.:unpl e

GO TO F . GO TO E. GO TO D. B: GO TO C.

2.7. 3 FOR Statements

The FOR statement facilit ates writing an iterative

operation one or more times. The variab le vThich det ermines

the number of executions is an index . TI1e index takes on

va l ues beginning wi th a first limit and is modified by an in-

crement for e ach success ive execution of t he iter ative opera-

tion. The execution of t he FOR statement ends when a succes-

sive applic ~tion of the increment would cause the index to

pass beyond the second limit .

14.

The FOR statement has the following form:

FOR index = first limit STEP increment UNTIL Second l :i.mit DO

BEGIN statement S END

FOR stat~ment example

FOR I = 0 STEP 1 UNTIL B DO

BEGIN C[I] * D[I] ~ E[I] END

2.7.4 DO Statements

A procedure or subroutine is a part of a program t hat

is written only once but is to be executed at several points

throughout the same program. A procedure is called for by a

DO statement or procedure statement which effectively inserts

the procedure body into the program taking the place of the

DO statement. After the procedure has been executed the pro

gram continues with the next statement after t he DO stat ement .

The format of the DO statement is:

DO Procedure Name,

The format of the PROCEDURE or subroutine is;

PROCEDURE Procedure Name:

BEGIN Statement sl ' s2 , s3 , END

DO Statement example

DO INCREMENT,

PROCEDURE or Subroutine example

PROCEDURE INCREMENT:

BEGIN J+l ~ J, !+2 ~ I END

15.

2.7 . 5 Conditional Statements

Conditional statements cause statements to be execut ed

or skipped depending on the results of a Boolean expression

or comparison. The conditional statement consists of a

Boolean expression preceded by the i'l'ord IF and followed

by t he VlOrd THEN, a "true part 11
, and a 11 f a lse part. 11 Doth

"true" and "fa lse parts" are unconditiona l statements. They

are normally terminat~d by a semicolon, or by a period if

the l ast statement was a GO TO statement. If the comparison

is satisfied, the statement following THEN is executed afte r

which control is transferred to the beginning of the next

statement following the false part, unless the THEN state

ment terminates with a GO TO statement. If the comparison

is not satisfied the ELSE statement is executed after which

control is transferred to the beginning of the next statement

unless a GO TO statement terminates the "false part. "

Either "true" or "false parts" may be l eft vacuous by inunedi

ately terminating it with a semicolon.

The format of a conditiona l statement is:

IF Boolean Expression

16.

THEN unconditional statement, period or semicolon

ELSE unconditiona l statement, period or semicolon

Conditional Statement example

IF A)B

THEN A+ B ~ C;

ELSE GO TO D.

Chapter 3

IN'rEHCOM 500

3.1 I nt ercom j OO comput er

Intercon 5001 is a procramming system which is used on

the Bend~- G- 15 digit a l computer . When I ntercom 500 is stored

in t he G- 15 memor-y , vle essentially have an I nt ercom 500 digi

tal cor.1putc1· . It is this comput er t hat wi ll be used as a

simul~ti on cx:.nple . I r c l utlecl in t!:l.e a ppendix i s a BC NELI AC

proe;r·am simul J.tir..c th~= I n t ercom 500 digit a l computer . The

prog~.,~:;., h:w been t ested and run Duccr.:-ssfully on t he IBM 704

d.:tt ?. proc:ess i nr:; sys t em.

3 .1.1 Computer o·~·gani zat ion

T' e interra l org2nization of t he I n t ercom machine can be

dividt;d into five dictlnc t functions : input, output, memory ,

arit hmetic , and contl:'·o l. A d i agram of t he computer organi

Z:ltion is s hov-m in ftcure 1.

Three f orms of input devtces arc ava ilable: paper t a pe ,

punched cards , and M2.gnetic t .::. pc . The input informat ion may

consict of dat a or co:nmands . InforiTlD.tion may be put out in

form of pa pe r t nDe or on t he typewriter.

The memory consist s of GOO loca tions in which cormnands

or dat a r:1.ay b e stor e d . Locations in t he memory are specified

by a four di~i t number called an "address . rr A command c an

be stored a t , and executed fron , any avai l ab l e address .

1. I ntercom 500 card system

17.

I NPUT

Pun ched Card
Typewriter
Paper Tape

ARI1 i ~METIC U:IIT

Accumul a t or 600 Words

AUXILIARY MEMORY

Magne.ti c Ta pe

OUTPUT
Paper Tape
Typewriter

CONTROL U 'iiT

18

Curr . I nst . Reg . ·
~--~Locat io n Count er

I ndex Regis t ers

Iotcr co1~ Conputer Orga nization. Arrows represent d i rec tion of

inf or nti n fl ow .

Figure l

Data a lso may be stored at any address.

The arithmetic section performs four operations - addi

tion, subtraction , multiplication, and division. These opera

tions are performed in a special register called the accumu

l ator and this .register can be addressed like any other

location in memory.

19.

The control section directs the operation of the computer • .
It consists of the current instruction register, location

counter, anq index registers . The Intercom machine has two

important modes of operation: manual and automatic. During

manual operation an instruction is read in directly from the

input device to the current instruction register, where it is

interpreted and executed . These instructions never appear in

memory. TPe location counter has no meaning in the manual

mode and the index registers operate as they do in the auto

matic mode.

In the automatic mode each instruction from memory has

to be placed in the control section before it can be inter

preted and executed. The current instruction register is t he

temporary storage in which each instruction is he ld \'Thi le it

is being interpreted after being brought from memory . Normally

commands are obeyed in numerical sequence of their memory loca

tion. The location counter is given the address of the first

command to be obeyed after which it keeps a running record of

the location in memory of the instruction being executed . The

index registers are available when automatic address modifi-

cation is desired . Each conunand vlhich is used with o.n index

register has its addre ss modified by adding the contents of

the index regis t er to the address part of the inst r uct ion be

fore t he command is executed.

3.1. 2 Command St r ucture

The machine instructions are in the form of numerical l y

expressed commands which can be held in t he interna l memory .

Each command is expressed by seven digits and sometimes an

execution mark . The first di git of a command represents one

of the ten index registers and may be l eft b l ank if no index

is used . The next two digits specify the operation code

which tells the machine what to do . The l as t four digits are

termed the address part, and us~lly refer to a l ocation in

memory. I f an instruction has an execution mark it will be

interpreted and executed when ·i t is read into the computer .

The instruction will never appear in t he internal memory and ,

therefore , not interfer in any way with the program.

3.1. 3 Operation Codes

20.

There are five major groups of operat ion codes avai l ab l e .:

arithmetic commands , transfer of contro l commands , input-output

commands , index register commands , and special commands . The

detai l operat ion of these commands will be shown in the section

on the simulation algorithm.

For a better understanding of the various modes in which

the intercom machine will operate Figure 2 is given . Figure 2

is a block diagram shm'ling the function of the input operation

READ
DATA

MA:I0ALLY

READ
ONE

DATUM

50 x

LOAD
SU:'ROUTI' JES

07x OOx

MA~JAL
OPERATI:IG

MODE
6lx initiate::;

SELECTIVE
PRrJT

69 x 67

AUTOMATIC
OPERATING

MODE

SELECTIVE
PRI'JT

SOx

67 x

READ
COMMA ~DS
MANUALLY

READ
ONE

COMMAND

2 l ock d iagrnn Gho;Jing t hn fu c tio n of the input oper ation codes

J. nd o t he r in~)CH' t o.nt C Ol ilJ-:1: nJs for t ran s ferring the machine b e t·v.,reen

it s v :..n·l ou .:; Gt a ge s o f o p c ro.tio n. The "x " a ft er an opera tion code

in l ee:. t u..; a n e xecut l o n m·u·k .

Figure 2

21

22.

codes and other important commands for transferring the

machine between its various stages of operation. The 50 and

52 instructions will read commands and data, respectively,

into memory. If these commands are executed while the machine

is in the manual mode, information (commands or data) will be

stored in memory beginning with thG address specified in the

read instruction. · Information will be stored .sequentia lly in

memory until another command with an execution mark is inter

preted. This command may be a 67 or 69 operation code which

would transfer the machine to the manual or automatic mode,

respectively. If the read commands (50 or 52) are executed

while in the automatic mode, computation will halt and one

word of information will be read into the computer and stored

in the address specified in the read command; then computation

will continue in the automatic mode. An 07 command will put

the computer in a mode of operation for loading subroutines

and a 61 command causes the machine to transfer to the selec

tive print mode.

3.2 Al gorithra for Simulation

Essent i a lly, all intercom commands can be executed in

any one of three modes: manual, automatic, or selective print

mode . vlhen the computer is in the manual mode, commands will

be executed as they are read into the ~chine. In the auto

matic mode it is expected that the program is stored in the

internal memory . The location counter is given the location

of the first command in the program after which commands of

the program are automatically executed. The selective print

mode is the same a.s the automatic mode except information con

cerning selected commands can be automatically typed out during

computation. The computer is notified which command to type

out· by .selectors provided in the program. The inrormation

typed will be the location of the command, the command itself,

and the .contents of the accumulator , if the contents of the

accumulator is different than during the listing of a preceed

ing command.

23.

Figure 3 is a block diagram showing the basic operation

of the BC NELIAC program which simulates the intercom 500

machine. The heart of the program is a large switch (EXECUTE)

which is called as a procedure or subroutine (EXECUTE COMMAND)

by any one of the three machine operating modes. This switch

in turn calls the correct operation code, executes the command,

and returns control to the original machine operating mode

(except in the case of a command which changes operating modes).

The following simplified program written in BC NELIAC

illustrates the operation of the algorithm for the manual and

automatic modes and describes the function of each operation

code. Read card is a procedure which inputs one word of infor

mation to the machine. Execute Command is a subroutine which

transfers the program to the proper operation code subroutine.

3.3 Conclusions

Since the IBM 704 digital computer has a larger memory

than the Bendix G-15, provisions have been made for a total

memory size of 23,500 words in the BC NELIAC simulation on the

MANUAL
OPERATING

MODE

PROCEDURE
EXECUTE COMMAND

SWITCH EXECUTE

AUTOMATI C
OPERATING

MODE

SELECTIVE
PRINT

MODE

ARITHMETIC
COMMA:ms

TRA~~SFER
COMMA·ms

I NPUT
OUTPUT

COMMA! IDS

I NDEX
COMMA~DS

SPECIAL
COMMANDS

Blo ck diagram showing the basic operation of the nC NELIAC

program which simulat E;s the Intercom 500 machine . The lines

with arrows show the flow of the program while executing an

operation code .

Figure 3

IBM 704 computer. A sample problem executed on the Intercom

Simulation required 38 seconds running time as compared to

30 minutes on the Bendix G- 15. To determine the advisability

of deve l oping a compi l er for I nt ercom, a hand simulated com

pi l ed progrQm of the sample problem was run on the IBM 704

and required 1. 2 seconds . vlith speeds of 30 minutes for the

G-15 and 1. 2 seconds for the D3M 704 the figures would indi

cate the G-15 is not economical for operating Inter com prob

l ems . This fact is confirmed \"lhen considering the speed of

operation of Intercom on an IBM 7090 computer . If an IBM 7090

is six times as fast as the IBM 704 , a 5 hour Intercom problem

on the G-15 v1ou ld require 2 seconds on the IBM 7090 .

The o.dvuntage of BC NELIAC as a source l anguage is shown

by the amount of time required to write and "debug" t he Inter

com 500 simulation program. It took five weeks for writing

and 11 debum:;ing'' the program. The machine independent charac

t eristics of BC NELIAC are indicated by the fact this simula

tion vli ll be converted to the IBM 7090 in about three days.

Most of the changes for the IBM 7090 will be in the input-out

put operations.

25 .

Simplified Program of Intercom 500 Nanual and P.utomo.tic Modes

(COMMENT DECLARATION LIST)

A: ACCU!.fULATOR 1

CR: COI>n-tAND REGI STER :

EA : EFFECTIVE ADDRESS I

INDEX(7 + 10), OP CODE(O .+ 6) 1

AD.DRESS (l1 + 18) I

IR: INDEX REGI STERS: H DIFFERENCE(lO), VJ LIMIT(l O) 1

W BASE (lO), C BASE(l0) 1

c DIFFERENCE (1 0) I c LI:t-1IT (1 0) I •

IRA: ~EX REGISTER ACCUMULATOR ,

LC: LOCATION COUNTER ,

M: MEr,!ORY (2·3500) ,

MQ: HQ REGISTER ,

MARK l, MARK 2 ;

(CO~wrnNT PROGRAM LOGIC)

MANUAL !-10DE: DO READ CARD , DO EXECUTE CO!>Uv'IAND ,

GO TO MANUAL r·10DE .

(COMriffiNT READ CARD INPUTS ONE vlORD OF

llWOIU1ATION TO THE MACHINE .

EXECUTE COHNAND TRANSFERS PROGRAM

TO PROPER OP CODE SUBROUTINE)

AUTOMATIC MODE: STATE 1: H[LC] ~ CR 1

IF INDEX I 0

STATE 2:

STATE 3:

THEN ADDRESS + H BASE [DID EX]

+ C BASE (niDEX] ~ EA;

ELSE ADDRESS ~ EA ;

DO EXECUTE COMrifAND ,

LC + 1 ~ LC , GO TO STATE l.

26 .

27·

FUNCTION OF INTERCOM 500 OPERATION CODES

Operation

ARITHJ.!ETIC COMMANDS

Clear and Add

Intercom 500
Operation ·

Code

Clear and Subtract

Clear and Add Absolute

42

40

45

49 Store

Add

Subtract

Multiply

Divide

Inverse Divide

•
43

41

44

48

47

Symbolic Definition and/or
Intercom Description
Operation

Code

CLA:

CLS:

CAB:

STO:

FAD:

FSB:

FMP;

FDP:

{M[EA] ~ A} ,

{- M[EA] ~A} ,

~ M[EA] I + A} ,
{A ~ M[EA] J I
{A + . M(EA] + A} ,

~ - M(EA] ~ A} ;

{A X M[EA] _.. Al ,
{A I M[EA] ... AJ ,

tM[EA] I A ;. AJ ,

28.

FUUCTION OF INTERCO!J! 500 O?ERATIOIT COD:L::S (cont.)

Operation Intercom 500 Symbolic Definition Qnd/or
Operrrtion Intercom Description

Code Operat ion
Code

TRANSFER OF CONTROL CO!>ll·IANDS 2

Transfer 29 TRA: {Ei'. -:; LC I GO .. TO
STATE 1.} ,

Transfer on Non- 20 TNN : {IF A > 0 THEN
negative E.!\. .-:; LC I GO TO

STATE 1.;} ,

Transfer on Negative 22 TRN: {IF A< 0 Tl-illN
EA 7 LC , GO TO

STATE 1.;} ,

Transfer on Zero 23 TZE : {IF A = 0 THEN
EA ~ LC , GO TO
STATE 1. ;} ,

Transfer r~rk Place 1 26 TMI : {LC ~ HARK l,

EA ~ LC , GO TO
STATE 1. ;} ,

Return to Marked 16 RTl: -fr·IARK 1 + 1 ~ LC ,
Place 1 GO TO ST.ATE 1.;} ,

Transfer Mark Place 2 28 Tr-t2 : {Lc -7 HARK 2 ,
EJ\ ~ LC , GO TO

STATE 1.; J ,
Return to f.fu.rked 18 RT2 : {I1ARK 2 + l .-:; LC ,
Place 2 GO TO STATE 1. ;J ,

Transfer to Machine 3 08 TSR: {Po HACHINE SUB-
Subroutine - ROUTINE,} I

29.

FUNCTION OF INTERC0rl 500 OPERATION CODES (cont.)

Operation

INDEX COHHANDS

Assign \ ord BQBe

Intercom 500
OperQtion

Code

70

Assign Word Difference 71

Assign \:lord Limit 72

Assign Channel Base 73

Assign Channel Difference 74

Assign Channel Limit

Increment and Test 2

\'lord Base

75

Symbolic
Intercom
Operation

Code

A\'JB :

AHD:

1\HL:

ACB:

ACD:

ACL :

IT\v:

Definition and/or
Description

{ADDR ~ \·l BASE
(DIDEX] } 1

{ADDR ~ H DIFFERENCE
[INDEX] } I

{ADDR ~ \'l Ln.ITT

[INDEX] J I

{ ADDR ~ C BASE

[INDEX]} I

{ADDR ~ C DIFFERE}lCE

[INDEX] 1 I
{ 1\DDR -7 C LIMIT

[INDEX] } I

{H BASE [INDEX]
+ N DIFFERENCE
[DIDEX] ~ 1'1 BASE
[INDEX],

IF VI BASE -[INDEX]

s_ H LII'<1IT
[INDEX] THEN

ADDR ~ LC 1 GO TO

STATE 1. j J I

30.

FUNCTI ON OF INTERCOI1 500 OPERATION CODES (cont.)

Opertltion Intercom 500
Operation

Code

I NDEX CON?WIDS (cont.)

I ncr ement nnd Test 2

Cha.nne 1 Bo.se
77

Set Index Accumulator 09

Cleo.r and Add Index to4 78
I RA

Store Index from IRA4 79

Symbolic
Intercom
Operation

Code

ITC:

SIA :

CLI:

STI:

Definition o.nd/or
Description

{c BASE [INDEX]

+ C DIFFERENCE
[INDEX] ~ C BASE
[INDEX],

IF C BASE (INDEX]

< C LDITT

[INDEX] THm

ADDR -;> LC , GO TO
STATE 1.;} ,

{EA -:? IRA } ,

{ADDR X 11 + DIDEX

~I, ffi(I] ~ IRA1,

{fillDR X 11 + INDEX

~ I, IRl\ -7 IR[I]] ,

3 •

FUNCTION OF INTERCOM 500 OPERATION CODES (cont.)

Operation Intercom 500
Operation

Code

Symbolic
Intercom
Operation

Code

Definition and/or
Description

INPUT OUTPUT COr~S - Following descriptions not in NELIAC form.

Originate Loading1

Commands

Read Co:mmand2

Automatic

Load Exponential Data1

Read Exponential Data2

Automatic

Punch Binary Cards

Read Binary Cards

50

50

52

52

39

55

Position Typewriter, 3Q
Tabs and carriage return

Write Literal and Tab 31

Write Location Counter 06
and Tab

Write Command and Tab 35

Write Memory and Tab 37

ORG:

RCM:

LDD:

RED:

PBC:

RBC:

Pl'C:

WLT:

WLC:

WCT:

vlMT:

See sect. 3.1. 3
!'or expl.

See sect. 3.1. 3
for expl.

See sect. 3.1. 3
for expl.

See sect. 3.1.3
for expl.

Binary cards
punched !'rom
ADDR/100 * 100
to ADDR-1.

Absolute binary
cards read into
memory.

ADDR/100 ~ No. of
carriage returns
ADDR-ADDR/100*100
~No. of tabs.

EA prin'ted, and
typewriter tabbed.

LC-1 printed, and
typewriter tabbed.

M[EA] printed as
command and type
writer tabbed.

M[EA] printed in
octa, and type
writer tabbed.

32.

FUNCTION OF INTERCOI~ 500 OPERATION CODES (cont.)

Operation Intercom 500 Symbol ic Definition and/or
Operation Intercom Description

Code Operation
Code

INPUT OUT PUT COMMANDS (cont.)

Write Floating Decimal 33 vlFT: M[EA] pr:tnted in
and Tab floating decimal

form, and type-
writer tabbed.

Write Floating Decimal 38 \iFC: H[EJ\] printed in
and Return Carriage floating decimal

form, and type-
writer carriage
returned.

Write Exponential Data 32 \vET: M[EA] printed in
and Tab exponential form,

and typewriter
tabbed.

Write Exponential Data 34 WEC: M[EA] printed in
and Return Carriage exponential form,

and typewriter
carriage returned.

33 .

FUNCTION OF UTTERCOH 500 0 PERATION CODES (cont.)

Operation

SPECIAL COf.1!1ANDS

Intercom 500
Operation

Code

Exit to Manua l Hode 67

Exit to Automatic Mode 69

No Operation 00

Ring Bell 63

Breakpoint Hal t 68

Load Subroutinesl, 3 07

Exit Loading Subroutines 00

Block Copy 81

Initiate Selective Print1 61

End Selective Print 62

Symbolic
Intercom
Operation

Code

~IAN:

AUT:

NOP:

BEL:

BPH:

LSR:

ELS:

BLC:

I SP:

ESP:

Definition and/or
Description

[Go TO IvffiNUAL MODE.)

{EA ...;. LC, GO TO
STATE l.] I

[GO TO STATE 3. } ,

t DO RING BELL, J ,

{GO TO MONITOR .
ENDJOB.] I

{DO LOAD StiDROUTINES,J

{DO EXIT LOAD SUB
ROUTINES ,} ,

See Bendix Inter
com Reference
Manual.

Initiate Selective
Print •
.

End Se lective Print

34.

FU1JCTION OF I NTERCOM 500 O?ERATIOl CODES (cont.)

Operation Intercom 500
Operation

Code

Symbolic
Intercom
Operation

Code

SPECIAL COMHANDS FOR mr.t 704 rnTERCOM

Exit to rttonitor Endjob 80 EJB :

Read Clock 64 CLK:

Load r.tQ 65 LDQ:

Store MQ 66 STQ:

SPECIAL COMMANDS FOR SYMBOLIC INTERCOM

Exponential Data EXD:

Mask-Selector MSK:

Equals EQU:

Block Star ted by Symbol BSS:

End Symbol i c Program END:

Bl unk

Definition and/or
Description

t GO TO HONI TOR
ENDJOB. j ,

{DO READ CLOCK, 1 ,
t r'I [EA] ~ MQ ~ ,

tM Q ~ f•1[EA] J ,

Used with exponen
tia l data

Used with selectors
for selective
print.

Assigns constant
to symbol.

Aasigne block of
storage to symbol.

Last card in sym
bolic program deck

Same as NOP

~JCTION OF INTERCOM 500 OPERATION CODES (Footnotes)

L Operation Code uaed only in the manual mode .

2. Operation Code(s) used only in the automatic mode.

3. See appendU

4. Component parts or an index register are symbolized by the
contents of ADDR, aa follows:

IF ADDR = COMPONENT =
0 W DIFFE.tl.ENCE
1 \11 LIMIT
2 W BASE

3 C BASE

4 C DIFFERENCE

5 c LIMIT

•

35 .

· Chapter 4

SYMBOLIC INTERCOM 500

4.1 Source Language

An Intercom 500 program is a sequence of seven digit

commands which instructs the Intercom computer to perform a

particular task. Symbolic Intercom has been developed as a

source l~nguage more convenient for the programmer to use.

There are approximately seventy different operation codes in

Intercom 500. liriting programs using the numerical form f or

operation codes creates a complexity which is overcome by

Symbolic Intercom. In Symbolic Intercom a symbolic code can

be used for each of the operation codes, e.g. ADD for opera

tion code 43. Since the numerical-type code does not have

any of the nmemonic qualities of an alphabetic code nor does

it provide a format that one may easily scan in order to see

the meaning of a group pf instructions, the symbolic form will

necessari ly result in faster and more accurate coding .

An additional function of Symbolic Intercom is overcom

ing the necessity of doing abs·olute coding. In abso lute cod

ing every \to:>d (command or data) in storage is assigned a

location number used as a means of making references. This

reference is made through the use of the address portion of the

command. With absolute coding the programmer must determine

the storage allocation in advance of coding. Since the storage

requirements cannot be accurately anticipated, a re-design of

the program may be necessary after its completion. I f memory

3'T .

space in limited , this r e-desicn could cause rel'rriting of

the procr C>..m . .l\nother problem occurs in absolute coding when

an attempt i s made to modify a program. Modifications usually

entail insertions , de l etions and re-arranc;ements of instruc

tions. Every nw:1ericnl reference made in the program to a

location o.I'fec t ed by the modifications must be changed so the

proGru.m is st ill operativ . Thi s is. a seri<;>Us problem when

t here are nevera l insertion .:md deletion areas. Every refer

ence made mus t be tested to see how many of the different in

ser tion and deletion ~reas af f ect it .

3ymboli c-cocting solves these problems of absolute coding

bec ause t he ba sic method of referencing is changed. Instead

of using an nctual location number to indicate every reference

made in the program, .']. loc tion is given a name, or n symbol.

Thi s s ymbo l h2. s no nwneric 2. l sit:;nificance and no direct re

lat i onship t o any particulnr storage-assignment scheme. The

symbol i s s tr i ctly a reference ·for the benefit of the pro

gr ammer Nhile writing his proGr am.

A pl'ogram wht ch is given t he name assembly program, de

fines where '-' symbolic proc;ram will sit in storage and what

numeri ca l location is assigned to e ach symbol. The a ssembly

program a lso mG.kes the tro.nsli.> tion between the symbolic opera

tion code .:md t he numeric ope r .'ltion code. Hence , if the input

t o t he Interc o~ assemb l y program is Symbol ic Intercom, the

output \·:ill be Intercom 500 .

In 'vriting a symbolic program the following rules

should be adhered to:

1. Every symbol is unique and independent of all other

symbols.

2. If a symbol has been assigned to a particular location,

a ll further references to this location may use the

same symbol.

3. The locations of all instructions or data in a program

-having no reference n~de to them need no symbol

assigned to them.

38.

Included in the appendix is a BC NELIAC listing of the Symbolic

Intercom assemb ly program. All Intercom 500 operation codes

have a symbolic representation which are given in section 3.2

In addition , two psuedo operation codes have been added to the

symbolic l anguage - EQU and BSS . EQU allows the programmer

to assign a constant to any symbol , and BSS provides for a

block of storage to be assigned to a symbol . The accumulator

can be addressed by the symbol ACC.

4.2 Algorithm

The Symbolic Intercom assembler is divided into two parts:

first pass and second pass. In the first pass a storage cell ,

called the location counter , keeps track of the storage assign

ment of the current word in the program being assembled. The

Intercom operation codes for read command or read data initial

ize the loc ation counter. The location counter is increased

by one for each word used by the program. The entire program

is examined sequentially during the first pass and any loca

tion with a symbolic ~ame has this name put in a symbol t ab l e

along with the current value of the locution counter. Also ,

each symbolic operation code is converted to the appropriate

Intercom 500 nwnerical "op code 11
•

The second pass again examines the input sequentially

and for each symbol used as an address in an instruction,

replaces it with the appropriate location counter va lue from .

39 -

the symbol table. At the completion of the second pass, all

symbolic commands have been converted to Intercom 500 instruc

tions, and .a copy of the symbol t ab le, multiply defined and/or

undefined symbols· are printed out.

40

Appendix A

Transliteration rules

This appendix presents a summary of equi va l ence s beh 1een
the character set used with the hardware r e pre sent at ion
BC NE;LIAC on the mM 704 digit a l comput er c:.nd t he BC N!o::SI P.C
Reference Language. All '\tTOrd delimiters mus t be separat ed by
blanks in the hardware representation.

Char acter Hardware Heference
Operator Repre sen- L::l.ngu<lge

t c.:.. tion Symbols

Miscellaneous Blank
Operators Replacement Operator = ~

Left Arrow = ~

Decimal Point

Punctuation Comma I I

Operators Period
Semicolon $

Arithmetic Add + +

Operators Subtract
Multiply * X

Divide I I

Relationa l Less LSS <
Operators Less or Equa l LEQ ~

Equal EQU =
Greater or Equa l GEQ >
Greater GTR >
Not Equal NEQ I

Logical And AND 1\

Operators OR OR v

Sequentia l GO TO GO TO GO TO

Operators IF IF IF
FOR FOR FOH

Sequentia l
Operators

(cont .)

Separator
Operator s

Bracket
Operators

Pseudo
Operators

Trans l iterat ion rul es (c ont.)

Ch<:.rnc t er
Operator

DO

THEN
ELSE

STEP
UNTIL
COLON
PERI OD
cor1MA
SEI·1ICOLON

Left P2.rentheses
Right P2.rent heses
Left Braclcet
Right Br a.cket
BLGI N, or Left Brace

END , or
Right Br2ce

Shift
Crutch Code
Oct a l
Al phabetic

Characters
Numeric ChPr'lcters

Hardware
Re presen
t a t ion

DO

THEN
ELSE

STEP

UN'l'IL

CLN

,
.
J

(

)

LBK

RBK

BEGI N
or LBR
END , or

RBR

EXP

HCH
OCT

o . .. 9

41

Re ferenc e
Language
Symbols

DO
THEN
ELSE

STEP
UNTIL

,
J

(

)
[

]

BEGIN or {

END or J

EXP

i'ICI

OCT
A ••••• Z

o 9

AppendiX B

OPERATION CODE LIMITATIONS

Due to hardware differences between the IBM 704 and

Bendix G-15 the following operation code s will perform

differently on the t wo machines :

Op Code 68: Breakpoint Halt: BPH

G- 15: Computation is halted .

.IDM 704 : Transferred to Monitor EndJob .

Op Code 30: Position Typewriter, Tabs and Carriage Return: PTC

G-15: Paper in the typewriter carriage is auto~ti-

ca lly positioned by the execution of CR

carriage returns , followed by 'ill t abs .

CR is a two digit number ranging from 00 to 28.

TB is a two digit number ranging from 00 t o 28 .

42.

IBH 704: Same as G- 15 except tab settings are pre-set and

a llow a maximum of six columns of printout .

Op Code 37: vlri te Memory and Tab: WMI'

G-15: The contents of location ADDR are typed out in

hexadecimal form.

IBM 704: The contents of location ADDR are typed out in

octal form .

Op Code 39: Punch Binary Cards: PBC

G- 15 : The contents of \'lords 00 through ADDR-1 of the

channe l determined by the first two digits of

ADDR are punched on paper t ape .

IBH 704: Same a s G- 15 except cards are punched and no

index registers will be punched on the cards.

. .

'
"·

Op Code 55: Read Binary Cards: RBC

G-15: Punched tape, previously punched· by the

com~uter, is photo-electrically read and entered

into the channel in the memory speci.fied by the

first two digits of ADDR. Information is entered

in the channel beginning at word position 00

and ending with location ADDR-1.

IBM 704: Punch cards, previously punched by the computer ,

are stored in memory according to the absolute

address on the column binary cards. ADDR ha s

no signi.fioance.

AppendiX C

INTERCOM CARD FORHA':'

Intercom 500

Eighwcolumn {numbered 1 - 80 from left to right)

IBI-1 cards are used with one word of da.t o. or one comr:r nd cor;-

tained · on a card . The card format for Intercom 500 v·ri ll hr1 ve

the following form:

COLUMN: 1 - 63

COMMAND
CARDS: C0r4MENT

DATA
CARDS: COMMENT

64 66 68 69 70

K 0 p A D

E E D D

K = Index Register

OP = Operation Code

ADDRS = Address

72 74

D R

D D

EE = EXCESS Fifty Exponent

DDDDD = Dc.tum

781)

76 so·-

s

D

The card format for Symbolic Intercom is t ~e fo llowing f orm:

COLUMN: 1 - 6

WORD
(DATA OR
COMMAND): SYMBOL3

8 - 10

OP CODE

12 - 20 25 - 72

VARIABLE F I .2LD
4 COHHJNT

1. A "minus 11 punched in column 78 on a dat a co.rd ind icates
the data is negative.

44.

2. A 11minus" punched in column 80 on a command c2.rd indic :1t e s
an execution mark.

3. An asterisk in column 1 of a command c ~rd indicQt e s an
execution mark.

4. Datum is indicated by an 11 op code n of EXD . The seven digit
datum number is placed in the var i able fi e l d (with a minus
following the datum, if required.

l' ppendix D

USE OF r·1ACHINE LANGUAGE SUBROUTINES
1 IN SYMBOLIC INTERCO~l

Loading Subroutines

After executing the command LOAD SUBROUTINES , the follow-

ing commnnds may be executed to store in memory the desired

subroutines.

SUBROUTINE

Fraction Selector

Square Root and Cube Root

Log

Pmrer

Sin and Cosine

Arctangent

Hyperbolics

Index Register Utilization

Selective Print

Clears Index Registers

Clears Index Registers and
Memory

OP CODE

FRS

SQT

LOG

P.·JR

TRG

ART

HYB

IRU

LSP

CIR

CLM

Transfer to ~mchine Lnnguage Subroutines .

SUBROUTINE OP CODE

Selects Floating Decimal TSR
Fraction Length

Square Root of x TSR

Cube Root of x TSR

Loge x ':'SR

VARIABLE FIELD

FRACTN

SQTCUB

LOG

PO viER

TRIG

ARCTAN

HYPBOL

IRU

SELPRT

XREGS

MEMORY

VARIABLE FIELD

DECPI'O TO
DECPT7

SQRT

CUBERT

LOGE

Transfer to Machine Language Subroutines {cont.)

SUBROUTINE

2x

l OX

nm (fixed point base
fixed point exponent)

am (floating point base
fixed point exponent)

ab (floating point base-
floating point exponent)

Sin x (radians)

Sin x (degrees)

Cos x (radians)

Cos x {degrees)

Arctan x (radians)

Arctan x (degrees)

Sinh x and Cosh x

Tanh X

Fix Floating Point Number

Float Fixed Point Number

OP CODE

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

TSR

VARIABLE FIELD

LOG2

LOGlO

EXP

PWR2

P'vlRlO

EXPl

EXP2

EXP3

SIN

SIND

cos

COSD

ATAN

AT AND

SINH

TANH

FIX

FLOAT

46.

47.

~ ..

AppendiX E

SYMBOLIC IHTERCOM 500 ASSEM3Lm

...

,

DIMENSIONING 47a

ROWCHART NUMBER 00001

•sTART SIN CLN SYMBOLIC INTERCOM 500 CLN
MCH 0772000 OCT 205, IOH PRINT (50,0,), FORTY ONE= N,
ZERO = I, GO TO FIRST PASS ••

FLOWCHART NUMBER 00002

CCOMMENT SIMPLE VARIABLE DIMENSION LIST)
BCD DIGIT (4),
CALL PUNCH,
CHARACTER,
CMt,CM2,CM3,CM4,CM5,CM6,CM7,CM8,
DIGIT,
LOCATION COUNTER,
NUMB,
PROGRAM LENGTH,
SYMB,
SYMBOL TABLE LENGTH,

IR CLN LBR INDEX REGISTER(30•35) RBR ,
0 CLN LBR OP TENC30•35) RBR ,
P CLN LBR OP UNITC30=35) RBR ,
ADDR 1 CLN LBR CH TENC30=35) RBR ,
ADDR 2 CLN LBR CH UNIT(30=35t RBR ,
ADDR 3 CLN LBR WD TENC30a35) RBR ,
ADDR 4 CLN LBR WD UNITI30=35) RBR ,
SIGN VALUE CLN LBR DATA SIGNC30=35) RBR = OCT -206060606060,
X CLN LBR X MARKC30=35) RBR ,

(COMMENT ARRAY DIMENSION LIST)
COMMENT A (900),
COMMENT 8 (900),
COMMENT C (900),
COMMENT D (900),
COMMENT E (900),
COMMENT F (900),
COMMENT G (900),
COMMENT H (900),
EX MARK (900),
OPERATION (900),
SYMBOL FIELD (900),
MULTIPLY DEFINED SYMBOLS (26),
UNDEFINED SYMBOLS (26),

(COMMENT LOGICAL VARIABLE DIMENSION LIST
BCD NUMB C•6),
COMMAND OP CODE C•6) (900),
DATA (•6),
NAME (•6),
SYMBOL (•6),
VARIABLE FIELD A C•6) (900),
VARIABLE FIELD B (•6) (900),

CCOMMENT CONSTANT DIMENSION LIST
ALL BLANK = OCT -206060606060,
ASTERISK = OCT -146060606060,
BCD 9 ,. OCT 11,

)

)

COMMA = OCT 73, 47b
EEND = OCT 254524606060,
LAST OP CODE = 69t
LOD OP = OCT 050200000000t
MAXIMUM COMMAND CODE = OCT 080300000000t
MINUS SIGN = OCT -006060606060t
ORG OP = OCT 050000000000t
PART BLANK = OCT 6060t
PUNCH CALL = OCT -076445233060t
SHORT BLANK = OCT 60t

ZERO = o,
ONE = lt
FOUR z 4t
FIVE = 5,
TEN ,. lOt
FORTY ONE a 4lt
ONE THOUSAND (3) = 1000, lOOt lOt

OPERATION TABLE C74) • OCT 234321606060t CCOMMENT CLA = 42)

OCT -226346606060t (COMMENT STO = 49)

OCT 262124606060, (COMMENT FAD = 43)

OCT 266222606060t I COMMENT FSB = 41)

OCT 264447606060t I COMMENT FMP = ")

OCT 262447606060, CCOMMENT FOP = 48)

OCT -235121606060t CCOMMENT TRA = 29)

OCT -237125606060t (COMMENT TZE = 23)

OCT 234362606060, CCOMMENT ClS = 40)

OCT 312624606060t (COMMENT IFO = 41)

OCT -234545606060, (COMMENT TNN = 20)

OCT -235145606060t CCOMMENT TRN = 22)

OCT -054641606060, (COMMENT NOP = 00)

OCT -234401606060, I COMMENT TM1 = 26)

OCT -116301606060, CCOMMENT RT1 = 16)

OCT -234402606060, CCOMMENT TM2 = 28)

OCT -116302606060, (COMMENT RT2 = 18)

OCT -236251606060, CCOMMENT TSR = 08)

OCT 256724606060, CCOMMENT EXO = 91)

OCT 316366606060, (COMMENT ITW = 16)

OCT -262563606060, I COMMENT WET = 32)

OCT -262523606060, CCOMMENT WEC = .34)

OCT -262663606060, (COMMENT WFT = 33)

OCT -262623606060, I COMMENT WFC = 38 ,
OCT 216622606060, I COMMENT AWB = 70)

OCT -112524606060t CCOMMENT REO = 52)

OCT -1123"606060t CCOMMENT RCM = 50)

OCT 216463606060, (COMMENT AUT = 69)

OCT -042145606060, CCOMME T MAN = 61)

OCT 216624606060t (COMMENT AWO = 71)

OCT 216643606060, I COMMENT AWL = 72)

OCT -016323606060, CCOMMENT PTC = 30)

OCT 232122606060, I COMMENT CAB = lt5)

OCT 212322606060, (COMMENT ACB = 13)

OCT 212324606060, (COMMENT ACO = 74)

OCT 21231t3606060, (COMMENT ACL = 75)

OCT 316323606060, CCOMME T lTC = 11)

OCT 254122606060, (COMMENT EJB = 80)

OCT -261t323606060, (COMMENT WLC = 06)

OCT -262363606060, (COMMENT WCT = 35)

OCT 316247606060t CCOMME 1 ISP = 61)

OCT -04621t2606060, CCOMMENT MSK = 90)

OCT 256247606060, I COMMENT ESP = 62)

47c
OCT -264363606060, (COMMENT WLT = 31)

OCT -072223606060, (COMMENT PBC = 39 • OCT -112223606060 , CCOMMENT RBC = 55)

OCT 234331606060, (COMMENT Cll = 18)

OCT -226331606060, CCOMME T STI = 79)

OCT -223121606060 , (COMMENT SIA = 09)

OCT 224323606060 , (COMMENT BLC = 81)

OCT 234342606060 , I COMMENT CLK = 64)

OCT 222543606060 , (COMMENT BEL = 63)

OCT 224730606060 , (COMMENT BPH = 68)

OCT -032450606060, CCOMMENT LOQ = 65)

OCT -226350606060, (COMMENT STQ = 66)

OCT -264463606060 , (COMMENT WMT = 37)

OCT -036251606060 , (COMMENT LSR = 07)

OCT -036247606060 , (COMMENT LSP = 00)

OCT 233151606060, (COMMENT CIR = 00)

OCT 2343ltlt606060, (COMMENT CLM = 00)

OCT 265162606060, (COMMENT FRS = 01)

OCT -225063606060 , (COMMENT SQT = 02)

OCT -034627606060 , (COMMENT LOG = 03)

OCT -076651606060, (COMMENT PWR = 04)

OCT -235127606060, (COMMENT TRG = 05)

OCT 215163606060 , (COMMENT ART = 06)

OCT 307022606060 , (COMMENT HYB = 01)

OCT 315164606060, I COMMENT IRU = 12)

OCT 254362606060, CCOMMENT ELS = 00 ,
OCT -206060606060 , CCOMMENT BLANK)

OCT 226262606060 , (COMMENT BSS = 82)

OCT 255064606060, CCOMME T EQU = 83)

OCT -065127606060 , (COMMENT ORG = 50 ,
OCT -032424606060, (COMMENT LOO = 52)

OPERATION CODE C•6) (74) =
OCT 040200000000, (COMMENT CLA = 42)

OCT 040900000000, (COMMENT STO = 49)

OCT 040300000000, (COMMENT FAD = 43)

OCT 040100000000, (COMMENT FSB = 41)

OCT 040400000000. (COMMENT FMP = 44)

OCT 040800000000, (COMMENT FDP = 48)

OCT 020900000000, (COMMENT TRA = 29)

OCT 020300000000, (COMMENT TZE = 23)

OCT 040000000000, (COMMENT CLS = 40)

OCT 040700000000, (COMMENT IFO = 47)

OCT 020000000000, (COMMENT TNN = 20)

OCT 020200000000, (COMMENT TRN = 22)

OCT 000000000000, CCOMMENT NOP = 00)

OCT 020600000000, (COMMENT TM1 = 26)

OCT 010600000000 , (COMMENT RT1 = 16)

OCT 020800000000, (COMMENT TM2 = 28)

OCT 010800000000, (COMMENT RT2 = 18)

OCT 000800000000 , (COMMENT TSR = 08)

OCT 090100000000, (COMMENT EXO = 91)

OCT 070600000000, (COMMENT ITW = 76)

OCT 030200000000, (COMMENT WET = 32)

OCT 030400000000, (COMMENT WEC = 34)

OCT 030300000000, (COMMENT WFT = 33)

OCT 030800000000, CCOMME T WFC = 38)

OCT 010000000000, (COMMENT AWB = 70)

OCT 050200000000, (COMMENT REO = 52)

OCT 050000000000, (COMME T RCM = 50)

OCT 060900000000, (COMMENT AUT = 69)

OCT 060700000000, (COMMENT MAN = 67)

47d
OCT 070100000000, (COMMENT AWO = 71 ,
OCT 070200000000, (COMMENT AWL = 72)

OCT 030000000000, (COMMENT PTC = 30)

OCT 040500000000, (COMMENT CAB = 45 ,
OCT 070300000000, (COMMENT ACB = 73)

OCT 070400000000, (COMMENT ACO = 74)

OCT 070500000000, (COMMENT ACL = 75)

OCT 010100000000, CCOMME T ITC = 11)

OCT 080000000000, (COMMENT EJB = 80)

OCT 000600000000, (COMMENT WLC = 06)

OCT 030500000000, CCOMMENT WCT = 35 ,
OCT 060100000000, (COMMENT ISP = 61)

OCT 090000000000, CCOMMENT MSK = 90)

OCT 060200000000, (COMMENT ESP = 62)

OCT 030100000000, (COMMENT WLT = 31)

OCT 030900000000, CCOMMENT PBC = 39)

OCT 050500000000, (COMMENT RBC = 55)

OCT 070800000000, (COMMENT CLI = 78)

OCT 070900000000, CCOMMENT STI = 79)

OCT 000900000000, (COMMENT SIA = 09)

OCT 080100000000, CCOMMENT BLC = 81)

OCT 060400000000, (COMMENT CLK = 64)

OCT 060300000000, CCOMMENT BEL = 63)

OCT 060800000000, (COMMENT BPH = 68 ,
OCT 060500000000, (COMMENT LOQ = 65)

OCT 060600000000, (COMMENT STQ = 66)

OCT 030700000000, (COMMENT WMT = 37)

OCT 000700000000, CCOMME T LSR = 07 ,
OCT 000000000000, CCOMMENT LSP = 00)

OCT 000000000000, (COMMENT CIR = 00)

OCT 000000000000, (COMMENT CLM = 00)

OCT 000100000000, (COMMENT FRS = 01)

OCT 000200000000, CCOMME T SQT = 02)

OCT 000300000000, (COMMENT LOG = 03 ,
OCT 000400000000, I COMMENT PWR = 04)

OCT 000500000000, I COMMENT TRG :z 05 ,
OCT 000600000000, (COMMENT ART = 06)

OCT 000100000000, I COMMENT HYB = 07)

OCT 010200000000, CCOMMENT IRU = 12)

OCT 000000000000, CCOMMENT ELS = 00 ,
OCT 000000000000, CCOMME T BLANK)

OCT 080200000000, CCOMMENT BSS = 82 ,
OCT 080300000000, CCOMMENT EQU = 83)

OCT 050000000000, (COMMENT ORG = 50)

OCT 050200000000, CCOMMENT LOO = 52 ,
SYMBOL TABLE (41) :z OCT 265121236345, OCT 242523476300,
(COMMENT FRACTN OECPTO)

OCT 242523476301, OCT 242523476302, OCT 242523476303,
(COMMENT DECPT1 OECPT2 OECPT3,)

OCT 242523476304, OCT 242523476305, OCT 242523476306,
(COMMENT OECPT4 DECPT5 DECPT6)

OCT 242523476307, OCT 315164606060, OCT 263167606060,
(COMMENT OECPT7 IRU FIX)

OCT 264346216360, OCT -225063236422, OCT -225051636060,
(COMMENT FLOAT SQTCUB SQRT)

OCT 236422255163, OCT -034627606060, OCT -034627256060,
CCOMMENT CUBERT LOG LOGE)

OCT -034627026060, OCT -034627010060, OCT -074666255160,
(COMMENT LOG2 LOG10 POWER

OCT 256747606060, OCT -076651026060, OCT . -076651010060,
(COMMENT EXP PWR2 PWR10

47e
OCT 256747016060, OCT 256747026060, OCT 256747036060,

I COMMENT EXP1 EXP2 EXP3)

OCT -235131276060, OCT -223145606060, OCT -223145246060,
(COMMENT TRIG SIN SIND)

OCT 234662606060, OCT 234662246060, OCT 215123632145,
(COMMENT cos coso ARCTAN)

OCT 216321456060, OCT 216321452460, OCT 307047224643,
(COMMENT AlAN AT AND HYPBOL)

OCT -223145306060, OCT -232145306060, OCT 212323606060,
(COMMENT SINH TANH ACC)

OCT -222543475163, OCT -275125276260, OCT -042544465170,
(COMMENT SELPRT XREGS MEMORY)

WORD SPACE A C250t,

SYMBOL TABLE VALUE C41)= OCT 000000000000, OCT 000000100000 ,
(COMMENT FRACTN DECPTO

OCT 000000010000, OCT 000000020000, OCT 000000030000,
(COMMENT OECPTl DECPT2 OECPT3,)

OCT 000000040000, OCT 000000050000, OCT 000000060000,
(COMMENT OECPT4 DECPT5 DECPT6

OCT 000000070000, OCT 000100000000, OCT 000100000000 ,
I COMMENT DECPT7 IRU FIX

OCT 000100010000, OCT 000200000000, OCT 000211070000,
(COMMENT FLOAT SQTCUB SQRT)

OCT 000201040000, OCT 000300000000, OCT 000301070000,
(COMMENT CUBERT LOG LOGE)

OCT 000300100000, OCT 000307010000, OCT 000400000000,
(COMMENT LOG2 LOG10 POWER)

OCT 000402020000, OCT 000400100000, OCT 000407020000,
(COMMENT EXP PWR2 PWR10)

OCT 000401010000, OCT 000401020000, OCT 000401030000,
(COMMENT EXPl EXP2 EXP3

OCT 000500000000, OCT 000504020000, OCT 000503110000,
(COMMENT TRIG SIN SINO)

OCT 000502060000, OCT 000502030000, OCT 000600000000,
(COMMENT cos coso ARCTAN)

OCT 000602040000, OCT 000602050000, OCT 000700000000,
(COMMENT · AlAN AT AND HYPBOL)

OCT 000700110000, OCT 000701000000, OCT 020100010000,
CCOMMENT SINH TANH ACC

OCT 000000010000, OCT 000000020000, OCT 000000030000,
(COMMENT SELPRT XREGS MEMORY)

WORD SPACE 8 C250),

$DIMENSIONING CLN ••

ASSEMBLER

FLOWCHART NUMBER 00003

$FIRST PASS CLN
READ PROGRAM CLN

I + ONE = I, IOH READ (51,0, SYMBOL FIELD, OPERATION, VARIABLE
FIELD A, VARIABLE FIELD B, CM1,CM2,CM3,CM4,CM5,CM6,CM7,CM8),
If OPERATION EQU EENO

THEN I • PROGRAM LENGTH, VARIABLE FIELD A= CALL PUNCHC•1),
N - ONE • SYMBOL TABLE LENGTH,
GO TO CONVERT SYMBOL TABLE TO BCD.$

FOR J EQU 0 STEP 1 UNTIL 73 DO
BEGIN IF OPERATION EQU OPERATION TABLE LBK J RBK

THEN GO TO CHECK PSEUDO OP.$ END ,
IOH PRINT (52,0, OPERATION), GO TO ENOJB.

CHECK PSEUDO OP CLN
IF J GTR LAST OP CODE

THEN GO TO PSEUDO OPERATION LBK J-70 RBK .$
OPERATION CODE LBK J RBK = COMMAND OP CODE LBK I RBK •

STORE CARD CLN
SYMBOL FIELD • SYMBOL FIELD lBK I RBK • OPERATION
• OPERATION LBK I RBK , VARIABLE FIELD A
= VARIABLE FIELD A LBK 1 RBK , VARIABLE FIELD B

47f

= VARIABLE FIELD 8 LBK I RBK , CM1 = COMMENT A LBK I RBK ,
CM2 = COMMENT B LBK I RBK , CM3 • COMMENT C LBK I RBK ,
CM4 = COMMENT D LBK I RBK , CM5 = COMMENT E LBK I RBK ,
CM6 • COMMENT F lBK I RBK , CM7 • COMMENT G LBK I RBK ,
CM8 • COMMENT H LBK I RBK , IF SYMBOL FIELD EQU ASTERISK

THEN MINUS SIGN • EX MARK LBK I RBK , GO TO READ PROGRAM.
ELSE All BLANK • EX MARK LBK I RBK $.

IF SYMBOL FIELD NEQ All BLANK
THEN DO ENTER SYMBOL IN TABLE, $$

LOCATION COUNTER + ONE • LOCATION COUNTER, GO TO READ PROGRAM.

GO TO LDD. GO TO ORG. GO TO EQUAL.
PSEUDO OPERATION CLN GO TO BSS.

BSS CLN
LDD OP • COMMAND OP CODE LBK I RBK , IF SYMBOL FI ELD
= SYMBOL FIELD LBK I RBK NEQ ALL BLANK

THEN DO ENTER SYMBOL IN TABLE, $$
DO CONVERT ADDRESS, LOCATION COUNTER + NUMB - ONE
= LOCATION COUNTER = NUMB, VARIABLE FIELD A
= VARIABLE FIELD B LBK I RBK ,
CONVERT LOCATION COUNTER TO BCD CLN

FOR J EQU 0 STEP 1 UNTIL 2 DO
BEGIN NUMB /ONE THOUSAND LBK J RBK = BCD DIGIT LBK J RBK

• ONE THOUSAND LBK J RBK = DIGIT, NUMB - DIGIT
• NUMB, END ,

NUMB = BCD DIGIT LBK 3 RBK , FOR J EQU 1 STEP 1 UNTIL 3 00
BEGIN BCD DIGITC•6) ++ BCD DIGIT LBK J RBK C•6)

• BCD DIGITC•6), END ,
BCD DIGIT •2 EXP 12 +PART BLANK = VARIABLE FIELD A LBK I RBK ,
OPERATION • OPERATION LBK I RBK , CMl = COMMENT A LBK I RBK ,
CM2 = COMMENT B LBK I RBK , CM3 • COMMENT C LBK 1 RBK ,
CM4 • COMMENT D LBK I RBK , CM5 • COMMENT E LBK I RBK ,
CM6 = COMMENT F LBK I RBK , CM7 = COMMENT G LBK I RBK ,
CM8 • COMMENT H LBK I RBK , MINUS SIGN = EX MARK LBK I RBK ,
GO TO READ PROGRAM.

EQUAL CLN
lOH PRINT C60,0, SYMBOL FIELD, OPERATION, VARIABLE FIELD A,
CM1, CM2, CM3, CM4, CM5, CM6, CM7. CM8),
DO ENTER SYMBOL IN TABLE, DO CONVERT ADDR ESS,
NUMB = SYMBOL TABLE VALUE LBK N-1 RBK , I - ONE = I,
GO TO READ PROGRAM.

LDD CLN
DO CONVERT ADDRESS, NUMB = LOCATION COUNTER, LDD OP
= COMMAND OP CODE LBK I RBK , GO TO STORE CARD.

ORG CLN
DO CONVERT ADDRESS, NUMB = LOCATION COUNTER, ORG OP
= COMMAND OP CODE LBK I RBK , GO TO STORE CARD.

CONVERT SYMBOL TABLE VALUE TO BCD CLN
FOR I EQU ~1 STEP 1 UNTIL SYMBOL TABLE LENGTH DO

BEGIN FOR J EQU ZERO STEP 1 UNTIL 2 00
BEGIN SYMBOL TABLE VALUE LBK I RBK I ONE THOUSAND LBK J RBK

• BCD DIGIT LBK J RBK • ONE THOUSAND LBK J RBK = DIGIT,

SYMBOL TABLE VALUE LBK I
= SYMBOL TABLE VALUE LBK

SYMBOL TABLE VALUE LBK I RBK =
FOR J EQU 1 STEP 1 UNTIL 3 DO

RBK - DIGIT
1 RBK , END ,
BCD DIGIT LBK 3 RBK t

BEGIN BCD DIGITI•6) ++ BCD DIGIT LBK J RBK C•6)
a BCD DIGIT C•6), END ,

47g

BCD DIGIT • 2 EXP 12 a SYMBOL TABLE VALUE LBK I RBK , END ,
ZERO = I,

SECOND PASS CLN
I + ONE • J, If I EQU PROGRAM LENGTH

THEN IOH PRINT (55,0,), GO TO WRITE TABLES ON TAPE 9.~
If COMMAND OP CODE LBK I RBK GTR MAXIMUM COMMAND CODE

THEN VARIABlE FIELD A lBK I RBK = DATA,
FOR J EQU 0 STEP 1 UNTIL 5 DO

BEGIN •DATA • INDEX REGISTER LBK J RBK , DATA += OATA ENO ,
VARIABLE FIELD B LBK I RBK = DATA, FOR J EQU 0 STEP 1 UNTIL 2

DO BEGIN •DATA • WD UNIT LBK J RBK , DATA += DATA, END ,
GO TO WRITE OUTPUT TAPES.$

OUTPUT COMMAND ClN
•COMMAND OP CODE LBK I
+= COMMAND OP CODE LBK

RBK •
I RBK
I RBK = OP UNIT, EX MARK LBK

VARIABLE FIELD A LBK I RBK •
IF SYMB EQU All BLANK

THEN ZERO • NAME $$
IF •NAME GTR BCD 9

OP TEN, COMMAND OP CODE
, • COMMAND OP CODE LBK
= x,
NAME = SYMBC•l),

THEN BEGIN DO BUILD SYMBOL,

LBK I RBK
I RBK

FOR K EQU SYMBOL TABLE LENGTH STEP -1 UNTIL 0 DO
BEGIN IF SYMB EQU SYMBOL TABLE LBK K RBK

THEN SYMBOL TABLE VALUE LBK K RBK (•1) = BCD NUMB,
GO TO OUTPUT BCD VARIABLE FIELD.$ END ,

SYMB • UNDEFINED SYMBOLS LBK M RBK , M + 0 E = H,
ZERO • BCD NUMB, END $

ELSE BEGIN RIGHT ADJUST CLN
IF NAMEI0•5) EQU SHORT BLANK

THEN NAME I 2 EXP 6 = NAME, GO TO RIGHT ADJUST.$
IF NAMEI6=11) NEQ COMMA

THEN NAME • 2 EXP 12 = NAME $$
FOR J EQU ZERO STEP 1 UNTIL 3 DO
BEGIN •NAME = CH TEN LBK J RBK , NAME += NAME, END ,
If •NAME • CHARACTER EQU COMMA

THEN NAME += NAME, •NAME = INDEX REGISTER,
GO TO WRITE OUTPUT TAPES.

ELSE ZERO•INDEX REGISTER, GOTO WRIT E OUTPUT TAPES. END $
OUTPUT BCD VARIABLE FIELD CLN

FOR K EQU 0 STEP 1 UNTIL 3 DO
BEGIN •BCD NUMB = CH TEN LBK K RBK ,

BCD NUMB +• BCD NUMB, END ,
OUTPUT INDEX CLN

IF J NEQ FIVE
THEN GO TO CHECK INDEX.$

IF CHARACTER EQU COMMA
THEN •VARIABLE FIELD 8 LBK I RBK • INDEX REGISTER,

GO TO WRITE OUTPUT TAPES.$
IF •VARIABLE FIELD B LBK I RBK EQU COMMA

THEN VARIABlE FIELD B LBK I RBK = NAME, NAME += NAME,
•NAME • INDEX REGISTER, GO TO WRITE OUTPUT TAPES.

ELSE ZERO = IRt GO TO WRITE OUTPUT TAPES.
CHECK INDEX CLN

IF CHARACTER NEQ COMMA
THEN ZERO • IRt GO TO WRITE OUTPUT TAPES.$

NAME += NAME, •NAME = I NDEX REGISTER,

WRITE OUTPUT TAPES CLN 47h
SYMBOL FIELD LBK I RBK = SYMBOL FIELD, OPERATION LBK I RBK
= OPERATION, VARIABLE FIELD A LBK I RBK = VARIABLE FIELD A,
VARIABLE FIELD B LBK I RBK = VARIABLE FIELD 8,
COMMENT A LBK 1 RBK = CMl, COMMENT 8 LBK 1 RBK = CM2,
COMMENT C lBK I RBK = CM3, COMMENT D LBK I RBK = CM4,
COMMENT E LBK I RBK = CM5, COMMENT F LBK I RBK = CM6,
COMMENT G LBK I RBK = CM7, COMMENT H LBK I RBK = CM8,
WRITE TAPE 5 CLN

IOH PRINT (53,5, CM1,CM2,CM3,CM4,CM5,CM6,CM7,CM8, IR, O, P,
ADDR lt AOOR 2, AOOR 3, AODR 4, SIGN VAlUE, XI,

WRITE TAPE 9 CLN
IOH PRINT (54,0 1 IR, O, P, AODR 1, ADDR 2, ADDR 3, ADDR 4,
SIGN VALUE, X, SYMBOL FIELD, OPERATION, VARIABLE FIELD A,
VARIABlE FIELD B1 CM1,CM2,CM3,CM4,CM5,CM6,CM7,CM8),
ALL BLANK = SIGN VALUE, GO TO SECOND PASS.

WRITE TABLES ON TAPE 9 CLN
FOR J EQU 41 STEP 1 UNTIL SYMBOL TABLE LENGTH 00

BEGIN SYMBOL TABLE LBK J RBK = SYMB,
SYMBOL TABLE VALUE LBK J RBK = NUMB, IOH PRINT (56,0,
SYMB, NUMB), END ,

If l NEQ ZERO
THEN IOH PRINT (57,0,), FOR J EQU 0 STEP 1 UNTIL L-1 DO

BEGIN MULTIPlY DEFINED SYMBOL LBK J RBK = SYMB,
IOH PRINT (58,0, SYMB), END $$

IF M NEQ ZERO
THEN IOH PRINT (59,0,), FOR J EQU 0 STEP 1 UNTil M-1 DO

BEGIN UNDEFINED SYMBOLS LBK J RBK = SYMB,
IOH PRINT (58,0, SYMB), END$$

EXIT ASSEMBLER CLN
MCH 0770000 OCT 205, MCH 0772000 OCT 205,
IF CALL PUNCH EQU PUNCH CALL

THEN GO TO RETRN. (COMMENT WRITE T-5 ON T-9 BCD CARD IMAGES)
ELSE GO TO RETRN •• (COMMENT START INTERCOM 500 INTERPRETER)

ASSEMBLER SUBROUTINES

FLOWCHART NUMBER 00004

$PROCEDURE ENTER SYMBOL IN TABLE CLN
BEGIN SYMBOL FIELO(•l) = NAME, FOR J EQU 0 STEP 1 UNTil 5 DO

BEGIN •NAME = CHARACTER,
IF CHARACTER EQU SHORT BLANK

THEN GO TO EXIT.
ELSE SYMBOL ++ CHARACTER = SYMBOL $

EXIT CLN
NAME += NAME, END ,

ADJUST CHARACTERS LEFT CLN
IF •SY~BOL EQU ZERO

THEN SYMBOL ++ SHORT BLANK = SYMBOL,
GO TO ADJUST CHARACTERS LEFT.$

SYMBOL= SYMBOL TABLE LBK N RBK C•l), LOCATION COUNTER
= SYMBOL TABLE VALUE LBK N RBK t FOR J EQU 0 STEP 1 UNTIL N-1 DO

BEGIN IF SYMBOL TABLE LBK J RBK EQU SYMBOL TABLE LBK N RBK
THEN SYMBOL TABLE LBK N RBK

= MULTIPLY DEFINED SYMBOLS LBK L RBK , L + ONE = L,
GO TO EXIT SYMBOL TABLE ENTRY.$ END ,

EXIT SYMBOL TABLE ENTRY ClN
N + ONE = N, ZERO = SYMBOL, END ,

PROCEDURE CONVERT ADDRESS CLN
BEGIN VARIABLE FIELD A = NAME, IF •NAME = NUMB GTR BCD 9

' ,.

47 i
THEN BEGIN 00 BUILD SYMBOL, FOR K EQU N-1 STEP -1 UNTIL 0 DO

BEGIN IF SYMB EQU SYMBOL TABLE LBK K RBK
THEN SYMBOL TABLE VALUE LBK K RBK = NUMB,

GO TO EXIT CONVERT ADDRESS.$ END ,
ZERO = NUMB, END $

ELSE BEGIN CONVERT BCD NUMBER TO BINARY CLN
NAME += NAME, IF •NAME = BCD NUMB EQU COMMA

THEN GO TO EXIT CONVERT ADDRESS.$
IF BCD NUMB NEQ SHORT BLANK

THEN BCD NUMB + NUMB • TEN = NUMB,
GO TO CONVERT BCD NUMBER TO BINARY.$ END $ t'

EXIT CONVERT ADDRESS CLN
END ,

PROCEDURE BUILD SYMBOL ClN
BEGIN FOR J EQU ZERO STEP 1 UNTIL 5 DO

BEGIN •NAME = CHARACTER,
IF CHARACTER EQU SHORT BLANK

THEN GO TO EXIT BUILD SYMBOL.$
IF CHARACTER EQU COMMA

THEN GO TO EXIT BUILD SYMBOL.$
SYMBOL ++ CHARACTER = SYMBOL, NAME += NAME, END ,

EXIT BUILD SYMBOL CLN
If •SYMBOL EQU ZERO

THEN SYMBOL ++ SHORT BLANK = SYMBOL,
GO TO EXIT BUILD SYMBOL.

SYMBOL a SYMBC•l), ZERO = SYMBOL, END •••

ASSEMBLER FORMATS 4 7 j

FLOWCHART NUMBER 00005

CONTROL
50(14HlSYMBOLIC MODE///)
51CC6,1XC3,1XC6,C3,4X8C6)
52(27H ILLEGAL OPERATION CODE = C3)
53C8C6,14X9(1XC1))
54(3X9Cl,3XC6,1XC3,1XC6,C6,5X8C6)
55(///13H SYMBOL TABLE/X)
56(3XC6,5XC4)
57(///25H MULTIPLY DEFINED SYMBOLS/X)
58(3XC6)
59(///18H UNDEFINED SYMBOLS/X)
60(15XC6,1XC3,1XC6,11X8C6)

I
I

I i

48 .

AppendiX F

BC NELIAC SIMULATION OF mTERC0~1 500

I :

DIMENSIONI NG 48a

FLOWCHART NUMBER 00001

$START INTERCOM 500 INTERPRETER CLN
FORMAT ADDRESS a PRINTOUT LBK 32766 RBK , FIRST PRI NT VARIABLE = L,
FIRST FORMAT a M, GO TO PERMIT MANUAL OPERATION ••

FLOWCHART NUMBER 00002

I
CCOMMENT VARIABLE DIMENSION LIST

ACCUMULATOR a 0.0•0 1

ADDR,
ADDRESS C 1),
ADDRESS SEPARATION,
BCD NUMBER Cit),
CHL C 7),
COL 61t CLN LBR
COL 66 CLN LBR
COL 68 CLN LBR
COL 69 CLN LBR
COL 70 CLN LBR
COL 72 CLN LBR
COL 71t CLN LBR
COL 76 CLN LBR
COMMAND A,
COMMAND 8,

COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN

64(30•33),
66(30=33),
68(30•33),
69(30=33),
70(30•33),
72(30=33),
71t(30:a33),
76(30:a33),

COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN
COLUMN

K(30•35)
0(30•35)
PC30•35)
CC30:a35)
Hl30=35)
LC30•35)
WC30=35)
D(30•35)

RBR ,
RBR ,
RBR t

RBR ,
RBR t

RBR ,
RBR ,
RBR ,

COMMENTl CLN Cl, COMMENT2 CLN C2, COMMENT3
COMMENTit CLN C4, COMMENTS CLN C5, COMMENT6
COMMENT7 CLN C7, COMMENTS CLN C8, COMMENT9
COMMENTlO CLN ClO, COMMENTll CLN Cllt
DATUM Cl) • O.O•O,,,,,,,

CLN C3,
CLN C6,
CLN C9,

EMPTY WORD CLN EW,
EXCUTE,
EXPONENT,
FIRST SELECTOR A,
FIRST SELECTOR a,
FRACTION SELECTOR CHANNEL CLN FRAC SEL CHANNEL,
INDEX (7),
INDEX REGISTER ACCUMULATOR CLN IRA,
INDEX REGISTER COMPONENT ADDRESS CLN IR COMP ADDRESS,
INDEX REGISTER UTILIZATION CHANNEL CLN IRU CHANNEL,
J TEMPORARY STORAGE CLN JTS,
LAST WORD,
LOCATION,
LOG CHANNEL,
MARK PLACE 1,
MARK PLACE 2,
MEMORY C•l28) * OCT 65000,
MODE,
MQ,
NUMBER,
OP CODE (7),
PAST ACCUMULATOR,
POWER CHANNEL,
PROGRAM STORAGE,
SECOND SELECTOR,
SECOND SELECTOR A,
SECOND SELECTOR B,

CELL • OCT 65000,

)

SELECTOR = 1t
SIGN,
STORAGE,
SUBROUTINE,
TAB = lt
TABl C7),
WD c 1)'
W DIFFERENCE Ill),
W liMIT Ill),
W BASE lll),
C BASE (11),
C DIFFERENCE C11),
C LIMIT (11),

(COMMENT CONSTANT DIMENSION LIST

ADDR INCREMENT = OCT 13000,
AUTOMATIC a lt
BLANK a OCT -206060606060,
BCD 100 • OCT 010000,
CARRIAGE RETURN FORMAT CLN LBR CR (24=35) RBR

• OCT 000060746134,

48b

COMMAND FORMAT (4) = OCT 103060606023, OCT -064444130274,
OCT -050273016734, OCT 024503736060,

FIRST FORMAT • 32767,
FIRST PRINT VARIABLE = 32765,
FIXED POINT FORMAT (9) = OCT 260200330773, OCT 260200330173,

OCT 260200330273, OCT 260200330373, OCT 260200330473,
OCT 260200330573, OCT 260200330673, OCT 260200330773,
OCT 260200330073,

FLOAT CONSTANT = OCT 233000000000,
FLOATING POINT FORMAT = OCT 250200330773,
FLOATING POINT TWO = 2.0•0,
FLOATING POINT TEN = 10.0•0,
lAST FORMAT WORD = OCT 341111111111,
LAST PRINT CAll WORD = OCT 002100070011,
LIST All COMMANDS = lt
LOCATION FORMAT (4) = OCT 010530606060, OCT 234644442145,

OCT 246043462313, OCT -050573606060,
LOG E 2 = 0.69314718•0,
MANUAL • O,
MAXIMUM FIXED POINT NUMBER = 1.0•10,
MINUS = OCT -006060606060,
OCTAL FORMAT 12) = OCT 036704304623, OCT -231342010373,
ONETAG = OCT 100000,
OP CODE MASK = OCT 177,
OUTPUT CONSTANT = OCT 65000,
PERFORMED = 1,
TAB FORMAT CLN LBR TB (6=23) RBR = OCT -206000000067,
TABL FORMAT = OCT 010567450573,

ZERO = O,
ONE • 1,
TWO = 2,
THREE = 3,
EIGHT • 8,
TEN • 10,
ELEVEN • 11,
TWENTY a 20,
TWENTY ONE = 21,
TWENTY SIX = 26,
THIRTY NINE = 39,

~ I

! .,

j

l
I

48c t

I

FORTY TWO = 42,
FIFTY FIVE = 55,
SIXTY FIVE = 65,
SEVENTY ONE = 71,
SEVENTY TWO = 72,
SEVENTY SIX = 76,
SEVENTY SEVEN • 11,
NINTY SEVEN a 97,
ONE HUNDRED • 100,

' I

ONE HUNDRED TWO • 102,
EIGHT HUNDRED • 800,
TEN THOUSAND I~) = 10000, 1000, 100, 10,

I

CCOMMENT SUBROUTINE DIMENSION LIST) .

ARCTAN • OCT 65504,
AlAND • OCT 65~76,
COS • OCT 65266,
COSO • OCT 65251,
CUBE ROOT • OCT 65171,
EXPT • OCT 66050,
EXPl • OCT 66165,
EXP2 • OCT 66227,
EXP3 * OCT 66301,
FIX * OCT 65100,
FLOAT • OCT 65105,
LOG 2 • OCT 66356,
LOG 10 • OCT 663~5,
LOG E • OCT 66356,
POWER 2 • .OCT 66301,
POWER 10 • OCT 66301,
READ CARDS • OCT 70030,
READ CLOCK • OCT 70312,
SIN • OCT 65270,
SIND • OCT 65253,
SINH COSH • OCT 65607,
SQRT • OCT 65112,
TANH * OCT 65716,

$DIMENSIONING CLN
ACCUMULATOR ADDRESS CLN
DATUM ADDRESS CLN
ENTER SELECTIVE PRINT CLN
FORMAT ADDRESS CLN
LOCATION ADDRESS CLN
TABL ADDRESS CLN
TRANSFER TO EXIT RC CLN
W DIFFERENCE ADDRESS CLN

WO ADDRESS CLN
CHL ADDRESS CLN
OP CODE ADDRESS CLN
INDEX ADDRESS CLN

MCH 0000000 ACCUMULATOR,
MCH 1000000 DATUM,
MCH 0020000 START SELECTIVE PRINT,
MCH 0000000 FORMAT,
MCH 1000000 ADDRESS,
MCH 1000000 TABL,
MCH 0020000 EXIT RETURN CARRIAGE,
MCH 0000000 W DIFFERENCE,

MCH 1000000 WD,
MCH 1000000 CHL,
MCH 1000000 OP CODE,
MCH 1000000 INDEX,

FORMAT CLN MCH 7460606 OCT 06060, MCH 0000000 00, MCH 0000000 00,
MCH 0000000 o, MCH 0000000 o, MCH 0000000 O, MCH 0000000 o,
MCH 0000000 o, MCH 0000000 o, MCH 0000000 o, MCH 0000000 O,
MCH 0000000 o, MCH 0000000 o, MCH 0000000 o, MCH 0000000 o,
MCH 0000000 o, MCH 0000000 o, MCH 0000000 O, MCH 0000000 o, .
MCH 0000000 o, MCH 0000000 o, MCH 0000000 o, MCH 0000000 o,
MCH 0000000 o, MCH 0000000 o, MCH oooooooo, MCH oooooooo, •• ·

OPERATING MODES AND EXECUTE COMMAND SWITCH 48d

FLOWCHART NUMBER 00003

$PERMIT MANUAL OPERATION CLN (COMMENT OP CODE = 67)
IF TAB NEQ ONE

THEN DO RETURN CARRIAGE, $$
MANUAL = MODE, IOH PRINT (8,0,),
READ INSTRUCTION CLN

DO READ CARD, DO COMMAND CARD CONVERSION, IOH PRINT (4,0, INDEX,
OP CODE, ADDR, Cl,C2,C3,C4,C5,C6,C7,C8,C9,ClO,Cll), PERFORMED
= ADDRESS SEPARATION, DO EXECUTE COMMAND, GO TO READ INSTRUCTION.

PROCEDURE READ CARD CLN
BEGIN IOH READ (1,0, Cl,C2,C3,C4,C5,C6,C7,C8,C9,ClO,Cll, COL 64,
COL 66, COL 68, COL 69, COL 70, COL 72, COL 74, COL 76,SIGN,EXCUTE),
FOR J EQU 0 STEP 1 U TIL 1 DO

BEGIN If COL 64 LBK J RBK EQU BLANK
THEN ZERO = COL 64 LBK J RBK $$ END t END ,

COMPUTE AUTOMATICALLY CLN (COMMENT OP CODE = 69)
If TAB NEQ ONE

THEN DO RETURN CARRIAGE, $$
AUTOMATIC= MODE, IOH PRINT (9,0,), DO GET ADDR SS, I = LOCATION,
COMMAND EXECUTION CLN

MEMORY LBK LOCATION RBK AND OP CODE MASK = OP CODE,
DO EXECUTE COMMAND, LOCATION + ONE = LOCATION,
GO TO COMMAND EXECUTION.

PROCEDURE EXECUTE COMMAND CLN
BEGIN GO TO EXECUTE LBK OP CODE RBK •
GO TO BLOCK COPY. GO TO ENDJOB. GO TO COPY IRA INTO IRD.
GO TO CLEAR IRA AN ADO IRO. GO TO INCREMENT C BASE.
GO TO INCREMENT W BASE. GO TO ASSIGN C LIMIT.
GO TO ASSIGN C DIFFERENCE. GO TO ASSIG C BASE.
GO TO ASSIGN W LIMIT. GOTO ASSIGN W DIFFERE CE. GOTO ASSIGN W BASE.
GO TO COMPUTE AUTOMATICALLY. GO TO BREAKPOINT HALT.
GO TO PERMIT MANUAL OPERATION. GO TO STORE MQ. GO TO LOAD MQ.
GO TO CLOCK. GO TO RING BELL. GO TO STOP SELECTIVE PRINT.
GO TO INITIATE SELECTIVE PRINT. GO TO ERROR. GO TO ERROR.
GO TO ERROR. GO TO ERROR. GO TO ERROR. GO TO READ PAPER CARDS.
GO TO ERROR. GOTO ERROR. GOTO PERMIT TYPE IN Of FLOATING POINT DATA.
GO TO ERROR. GOTO PERMIT COMMAND TYPE IN. GOTO STORE. GOTO DIVIDE.
GO TO INVERSE DIVIDE. GOTO ERROR. GOTO CLEAR AN ADO ABSOLUTE VALUE.
GO TO MULTIPLY. GO TO ADD. GO TO CLEAR AN ADD.
GO TO SUBTRACT. GO TO CLEAR AN SUBTRACT. GO TO PUNCH PAPER CARDS.
GO TO TYPE fiX POINT NUMBER AN RC. GOTO TYPE MEMORY IN OCTAL AN TAB.
GO TO ERROR. GO TO TYPE COMMAND FROM MEMORY AN TAB.
GO TO TYPE FLOAT POINT NUMBER AN RC.
GO TO TYPE FIXED POINT NUMBER AN TAB.
GO TO TYPE flOATING POINT NUMBER AN TAB.
GO TO TYPE TABULATING NUMBER AN TAB. GOTO POSITION TYPEWRITER PAP ER.
GO TO TRANSFER. GO TO MARK PLACE 2 AN TRANSFER.
GO TO ERROR. GO TO MARK PLACE 1 AN TRANSFER. GO TO ERROR.
GO TO ERROR. GO TO TRANSFER ON ZERO. GO TO TRANSFER ON MINUS.
GO TO ERROR. GO TO TRANSFER ON PLUS AN ZERO.
GO TO ERROR. GO TO RETURN TO MARK PLACE 2.
GO TO ERROR. GO TO RETURN TO MARKED PLACE 1. GO TO ERROR.
GO TO ERROR. GO TO ERROR. GO TO ERROR. GO TO ERROR. GO TO ERROR.
GO TO SET IRA. GO TO PERFORM SUBROUTINE. GO TO LOAD SUBROUTINES.
GO TO TYPE LOCATION OF LAST COMMAND EXECUTED. GO TO ERROR.
GO TO ERROR. GO TO ERROR. GO TO ERROR. GO TO ERROR.

EXECUTE CLN GO TO NO OPERATION.
EXIT COMMAND CLN END , ••

INPUT COMMANDS - READ COMMANDS 48e

FLOWCHART NUMBER 00004

$PERMIT COMMAND TYPE IN CLN (COMMENT OP CODE = 50) 1
IF TAB NEQ ONE

THEN DO RETURN CARRIAGE, $$
IOH PRINT (6,0,),
READ COMMAND CLN

DO READ CARD, DO GET ADDRESS, I = ADDRESS,
DO COMMAND CARD CONVERSION, IF EXCUTE EQU BLANK

THEN IOH PRINT (3,0, ADDRESS, INDEX, OP CODE, ADDR, Cl,C2,
C3,C4,C5,C6,Cl,C8,C9,ClO,C11l, CHL • 2 EXP 18 + WD
• 2 EXP 11 + INDEX • 2 EXP 1 + OP CODE = MEMORY LBK I RBK $

ELSE IOH PRINT (4,0, INDEX, OP CODE, AODR, Cl,C2,C3,C4,C5,
C6,C7,C8,C9,C10 1 Cll), PERFORMED= ADDRESS SEPARATION,
DO EXECUTE COMMAND, ADDRESS - ONE = ADDRESS $

CHECK MODE CLN
IF MODE EQU MANUAL

THEN ADDRESS + ONE = ADDRESS, GO TO READ COMMANDS.
ELSE GO TO EXIT COMMAND.

READ COMMANDS CLN
DO READ CARD, DO COMMAND CARD CONVERSION, IF EXCUTE EQU BLANK

THEN IOH PRINT (3,0 1 ADDRESS, INDEX, OP CODE, ADDR, Cl,C2,
C3,C4,C5,C6,Cl,C8,C9,C10,C11), CHL • 2 EXP 18 + WD
• 2 EXP 11 + INDEX • 2 EXP 1 + OP CODE
= MEMORY LBK ADDRESS RBK , ADDRESS + ONE = ADDRESS,
GO TO READ COMMANDS.

ElSE IOH PRINT (4,0, INDEX, OP CODE, ADDR, C1,C2,C3,C4,C5,
C6,C7,C8,C9,Cl0 1 Cll), PERFORMED= ADDRESS SEPARATION,
DO EXECUTE COMMAND, GO TO READ COMMANDS.

PERMIT TYPE IN OF FLOATING POINT DATA CLN
IF TAB NEQ ONE

THEN DO RETURN CARRIAGE, $$
IOH PRINT (7,0,),
READ DATUM ClN

I COMMENT OP CODE

DO READ CARD, DO GET ADDRESS, I = ADDRESS, IF EXCUTE EQU BLANK
THEN DO DATUM CARD CONVERSION, IOH PRINT (5,0, ADDRESS,

DATUM, Cl,C2,C3,C4,C5,C6,C7,C8,C9,ClO,Cll), DATUM
= MEMORY LBK I RBK $

ELSE DO COMMAND CARD CONVERSION, IOH PRINT (4,0, INDEX,
OP CODE, ADDR, Cl,C2,C3,C4,C5,C6,C7,C8,C9,ClO,Cll),
PERFORMED = ADDRESS SEPARATION, DO EXECUTE COMMAND,
ADDRESS - ONE = ADDRESS $

CHK MODE CLN
IF MODE EQU MANUAL

THEN ADDRESS + ONE = ADDRESS, GO TO READ DATA.
ELSE GO TO EXIT COMMAND.

READ DATA CLN
DO READ CARD, IF EXCUTE EQU BLANK

THEN DO DATUM CARD CONVERSION, IOH PRINT (5,0, ADDRESS,
DATUM, Cl,C2,C3,C4,C5,C6,C7,C8,C9,ClO,Cll), DATUM
= MEMORY LBK ADDRESS RBK , ADDRESS + ONE = ADDRESS,
GO TO READ DATA.

ELSE DO COMMAND CARD CONVERSION, IOH PRINT (4,0, INDEX,
OP CODE, ADDR, Cl,C2,C3,C4,C5,C6,C7,C8,C9,ClO,Cll),
PERFORMED = ADDRESS SEPARATION, DO EXECUTE COMMAND,
GO TO READ DATA ••

ARITHMETIC COMMANDS 48f

FLOWCHART NUMBER 00005

$CLEAR AN SUBTRACT CLN C COMMENT OP CODE = 40) ;
DO GET ADDRESS, ZERO - MEMORY LBK I RBK = ACCUMULATOR,
GO TO EXIT COMMAND.

SUBTRACT CLN (COMMENT OP CODE = 41)
00 GET ADDRESS, ACCUMULATOR - MEMORY LBK I RBK = ACCUMULATOR,
GO TO EXIT COMMAND.

CLEAR AN ADD CLN C COMMENT EOXPITCCOODME .. A=ND42•) • :
1
·

00 GET ADDRESS, MEMORY LBK I RBK = ACCUMULATOR, GO TO n

ADO CLN CCO MENT OP CODE = 43)
DO GET ADDRESS, ACCUMULATOR + MEMORY LBK I RBK = ACCUMULATOR,
GO TO EXIT COMMAND.

MULTIPLY CLN (COMMENT OP CODE = 44) I

DO GET ADDRESS, ACCUMULATOR • MEMORY LBK I RBK = ACCUMULATOR,
GO TO EXIT COMMAND.

CLEAR AN ADO ABSOLUTE VALUE CLN (COMMENT
DO GET ADDRESS, MEMORY LBK I RBK C•l) = ACCUMULATOR,
GO TO EXIT COMMAND.

OP CODE = 45)

INVERSE DIVIDE CLN (COMMENT OP CODE = 47) .
DO GET ADDRESS, MEMORY LBK I RBK I ACCUMULATOR = ACCUMULATOR,
GO TO EXIT COMMAND.

DIVIDE CLN (COMMENT OP CODE= 48) ·
DO GET ADDRESS, ACCUMULATOR I MEMORY LBK I RBK = ACCUMULATOR,
GO TO EXIT COMMAND.

STORE CLN C COMMENT OP CODE = 49) '
DO GET ADDRESS, ACCUMULATOR = MEMORY LBK I RBK , GOTO EXIT COMMAND ••

---~

48g I TRANSFER OF CONTROL COMMANDS

FLOWCHART NUMBER 00006

$TRANSFER ON PLUS AN ZERO CLN
IF ACCUMULATOR GEQ ZERO

(COMMENT OP CODE = 20) l
THEN DO GET ADDRESS, I-ONE =
ELSE GO TO EXIT COMMAND.

LOCATION, GO TO EXIT COMMAND.

TRANSFER ON MINUS CLN CCOMMENT OP CODE
IF ACCUMULATOR LSS ZERO

THEN DO GET ADDRESS, l-ONE • LOCATION, GO TO EXIT COMMAND.
ELSE GO TO EXIT COMMAND.

TRANSFER ON ZERO CLN CCOMMENT OP CODE
IF ACCUMULATOR EQU ZERO

THEN 00 GET ADDRESS, l-ONE • LOCATION, GO TO EXIT COMMAND.
ELSE GO TO EXIT COMMAND.

TRANSFER CLN (COMMENT OP CODE
DO GET ADDRESS, I-ONE • LOCATION, GO TO EXIT COMMAND.

MARK PLACE 1 AN TRANSFER CLN (COMMENT OP CODE
LOCATION • MARK PLACE lt DO GET ADDRESS, I-ONE = LOCATION,
GO TO EXIT COMMAND.

I
= 22) 1

I
= 23) I

I
= 29) l
= 26) I

I
MARK PLACE 2 AN TRANSFER CLN (COMMENT OP CODE = 28)

LOCATION • MARK PLACE 2, DO GET ADDRESS, I-ONE = LOCATION,
GO TO EXIT COMMAND.

RETURN TO MARKED PLACE 1 CLN (COMMENT
MARK PLACE 1 • LOCATION, GO TO EXIT COMMAND.

OP CODE = 16) I
l

RETURN TO MARK PLACE 2 CLN (COMMENT OP CODE = 18 >I
MARK PLACE 2 • LOCATION, GO TO EXIT COMMAND •• I

I
I
I

INDEX REGISTER COMMANDS

FlOWCHART NUMBER 00007

$ASSIGN W BASE CLN (COMMENT
00 COMMAND SEPARATION, AODR = W BASE LBK INDEX RBK ,
GO TO EXIT COMMAND.

48h

OP CODE = 70)

ASSIGN W DIFFERENCE CLN (COMMENT OP CODE = 71)
DO COMMAND SEPARATION, ADDR = W DIFFERENCE LBK INDEX RBK ,
GO TO EXIT COMMAND.

ASSIGN W LIMIT CLN (COMMENT OP CODE = 72)
DO COMMAND SEPARATION, ADDR : W liMIT LBK INDEX RBK ,
GO TO EXIT COMMAND.

ASSIGN C BASE CLN (COMMENT OP CODE = 73)
DO COMMAND SEPARATION, ADDR z C BASE LBK INDEX RBK ,
GO TO EXIT COMMAND.

ASSIGN C DIFFERENCE CLN (COMMENT OP CODE = 74)
DO COMMAND SEPARATION, AODR = C DIFFERENCE lBK INDEX RBK ,
GO TO EXIT COMMAND.

ASSIGN C LIMIT -CLN (COMMENT OP COOE = 75)
DO COMMAND SEPARATION, AODR a C LIMIT lBK INDEX RBK ,
GO TO EXIT COMMAND.

INCREMENT W BASE CLN (COMMENT OP CODE = 76)
00 COMMAND SEPARATION, INDEX = J, IF W BASE LBK I RBK
+ W DIFFERENCE lBK I RBK = W BASE lBK I RBK lEQ W LIMIT LBK I RBK

THEN ADOR - ONE • LOCATION, GO TO EXIT COMMAND.
ELSE GO TO EXIT COMMAND.

I ,

I,
1

INCREMENT C BASE CLN CCOMMENT OP CODE = 11, '
DO COMMAND SEPARATION, INDEX = I, If C BASE LBK I RBK I

+ C DIFFERENCE LBK I RBK = C BASE LBK I RBK lEQ C LIMIT LBK I RBK
THEN AODR - ONE a LOCATION, GO TO EXIT COMMAND. '.
ELSE GO TO EXIT COMMAND.

CLEAR IRA AN ADO IR 0 CLN (COMMENT OP CODE = 78)
DO COMMAND SEPARATE, WO • .ELEVEN +INDEX= I,
W DIFFERENCE LBK I RBK = IRA, GO TO EXIT COMMAND.

COPY IRA INTO IR 0 CLN (COMMENT OP CODE = 79)
DO COMMAND SEPARATE, WO • ELEVEN + INDEX = It
IRA = W DIFFERENCE LBK I RBK , GO TO EXIT COMMAND.

SET IRA CLN (COMMENT OP CODE = 09)
DO GET ADDRESS, I • IRA, GO TO EXIT COMMAND ••

OUTPUT COMMANDS 4Si

FLOWCHART NUMBER 00010

$TYPE LOCATION OF LAST COMMAND EXECUTED CLN (COMMENT OP CODE =
LOCATION - ONE : ADDRESS LBK TAB RBK ,
LOAD LOCATION VARIABLE ADDRESS IN PRINTOUT CALL CLN

LOCATION ADDRESS - TAB • PRINTOUT LBK l RBK , l - ONE = L,
LOAD LOCATION FORMAT CLN

FOR J EQU 0 STEP 1 UNTIL 3 DO
BEGIN LOCATION FORMAT LBK J RBK • FORMAT LBK M RBK ,

M - ONE = M, END ,
TAB + ONE • TAB, GO TO EXIT COMMAND.

POSITION TYPEWRITER PAPER CLN (COMMENT OP CODE = 30}
DO GET ADDRESS, I = STORAGE I ONE HUNDRED = CHL • ONE HUNDRED
= NUMBER, STORAGE - NUMBER = WD, IF WD NEQ ZERO

THEN BEGIN IF WD GEQ TEN
THEN WO I TEN = BCD NUMBER • TEN = NUMBER, BCD NUMBER

• 2 EXP 6 + WD - NUMBER = WD $$
WO • CRt CARRIAGE RETURN FORMAT • FORMAT LBK M RBK ,
M - ONE • M, DO RETURN CARRIAGE, END '

ELSE TAB + CHL • TAB, GO TO EXIT OP CODE 30.
IF CHL NEQ ZERO

THEN CHL + ONE • TAB $
ELSE GO TO EXIT COMMAND.

EXIT OP CODE 30 CLN
CHL • TWENTY • NUMBER, IF NUMBER EQU ONE HUNDRED

THEN BCD 100 • TB $
ELSE NUMBER I TEN • 2 EXP 6 = TB ~

TAB FORMAT = FORMAT LBK M RBK , M-ONE=M, GO TO EXIT COMMAND.

TYPE TABULATING NUMBER AN TAB CLN (COMMENT OP CODE = 31)
DO GET ADDRESS, I • TABL LBK TAB RBK ,
LOAD TABL ADDRESS IN PRINTOUT CALL CLN

TABL ADDRESS - TAB • PRINTOUT LBK l
LOAD TABL FORMAT CLN

RBK , l - ONE = L,

TABL FORMAT = FORMAT LBK M RBK , M -
TAB + ONE = TAB, GO TO EXIT COMMAND.

ONE = M,

TYPE FLOATING POINT NUMBER AN TAB CLN CCOMMENT OP CODE = 32)
DO GET ADDRESS, MEMORY LBK I RBK = DATUM LBK TAB RBK ,
LOAD Fl PT NUM ADDRESS IN PRINTOUT CALL CLN

DATUM ADDRESS - TAB = PRINTOUT LBK l RBK , L - ONE = L,
LOAD Fl PT NUM FORMAT CLN

FLOATING POINT FORMAT = FORMAT LBK M RBK , M - ONE = M,
TAB + ONE = TAB, GO TO EXIT COMMAND.

TYPE FIXED POINT NUMBER AN TAB CLN (COMMENT OP CODE = 33)
DO GET ADDRESS, MEMORY LBK I RBK = DATUM LBK TAB RBK ,
LOAD FP NUM ADDRESS IN PRINTOUT CAll CLN

DATUM ADDRESS - TAB = PRINTOUT LBK l RBK , l - ONE = L,
LOAD FP NUM FORMAT CLN

IF DATUM LBK TAB RBK LSS MAXIMUM FIXED POINT NUMBER
THEN FIXED POINT FORMAT • FORMAT LBK M RBK $
ELSE FLOATING POINT FORMAT = FORMAT LBK M RBK $
M - ONE = M, TAB + ONE : TAB, GO TO EXIT COMMAND ••

48j

FLOWCHART NUMBER 00011
ll

· I
I

$TYPE FLOAT POINT NUMBER AN RC CLN (COMMENT OP CODE = 34) I

DO GET ADDRESS, MEMORY LBK I RBK = DATUM LBK TAB RBK t 11
:JI

LOAD Fl PT NUMB ADDRESS IN PRINTOUT CALL CLN
DATUM ADDRESS - TAB • PRINTOUT LBK L RBK , l - ONE a L,

LOAD FL PT NUMB FORMAT CLN
FLOATING POINT FORMAT • FORMAT LBK M RBK , M - ONE = M,
DO RETURN CARRIAGE, GO TO EXIT COMMAND. I

TYPE COMMAND FROM MEMORY AN TAB CLN (COMMENT OP CODE = 35)
DO GET ADDRESS, CELL LBK I RBK (7•10) = INDEX LBK TAB RBK ,
CELL LBK J RBK AND OP CODE MASK a OP CODE LBK TAB RBK ,
CELL LBK J RBK (18•26) = CHL LBK TAB RBK , CELL LBK I RBK (11=17)
• WD LBK TAB RBK t
LOAD COMMAND VARIABLE ADDRESSES IN PRINTOUT CALL CLN

FOR J EQU 0 STEP 1 UNTIL 3 DO
BEGIN INDEX ADDRESS LBK J RBK - TAB = PRINTOUT LBK L RBK ,

l - ONE • lt END ,
LOAD COMMAND FORMAT CLN

FOR J EQU 0 STEP 1 UNTIL 3 DO
BEGIN COMMAND FORMAT LBK J RBK • FORMAT LBK M RBK ,

M - ONE • Mt END ,
TAB + ONE a TAB, GO TO EXIT COMMAND.

TYPE MEMORY IN OCTAL AN TAB CLN (COMMENT OP CODE = 37)
DO GET ADDRESS, MEMORY LBK I RBK = DATUM LBK TAB RBK ,
LOAD OCTAL VARIABLE ADDRESS IN PRINTOUT CAll CLN

DATUM ADDRESS - TAB = PRINTOUT LBK L RBK , L - ONE = L,
LOAD OCTAL FORMAT CLN

OCTAL FORMAT a FORMAT LBK M RBK ,
OCTAL FORMAT LBK 1 RBK = FORMAT LBK M-1 RBK , M - TWO = M,
TAB + ONE = TAB, GO TO EXIT COMMAND.

TYPE FIX POINT NUMBER AN RC CLN (COMMENT OP CODE = 38)
DO GET ADDRESS, MEMORY LBK I RBK = DATUM LBK TAB RBK ,
LOAD FP NUMB ADDRESS IN PRINTOUT CALL CLN

DATUK ADDRESS - TAB = PRINTOUT LBK L RBK , L - ONE = L,
LOAD FP NUMB FORMAT CLN

IF DATUM LBK TAB RBK LSS MAXIMUM FIXED POINT NUMBER
THEN FIXED POINT FORMAT a FORMAT LBK M RBK $
ELSE FLOATING POINT FORMAT = FORMAT LBK M RBK $
M - ONE • Mt DO RETURN CARRIAGE, GO TO EXIT COMMAND.

PROCEDURE RETURN CARRIAGE CLN
BEGIN LAST PRINT CALL WORD = PRINTOUT LBK l RBK ,
LAST FORMAT WORD • FORMAT LBK M RBK , TRANSFER TO EXIT RC
= PRINTOUT LBK l-1 RBK ,
PRINTOUT CLN

IOH PRINT tlo,o, Ew,Ew,Ew,Ew,Ew,Ew,Ew,Ew,Ew,Ew,
ew,Ew,Ew,Ew,Ew,Ew,Ew,ew,ew,ew,Ew,Ew,ew,ew,Ew,EW),

EXIT RETURN CARRIAGE CLN
ONE = TAB, FIRST PRINT VARIABLE = L, FIRST FORMAT = M, END , ••

I

~RD INPUT OUTPUT COMMANDS 48k

FLOWCHART NUMBER 00012
I

$PUNCH PAPER CARDS CLN (COMMENT OP CODE= 39) '
DO GET ADDRESS. I = STORAGE. ONETAG -
= ORIGIN. STORAGE I ONE HUNDRED * ONE
= STORAGE• ONETAG - STORAGE ~ STORAGE
DO PUNCH CARDS. GO TO EXIT COMMAND.
PROCEDURE PUNCH CARDS CLN

STORAGE - ADDR INCREMENT
HUNDRED + ADDR INCREMENT
* 2 EXP 18 + ORIGIN = LIMITS,

BEGIN 00 PUNCH.
LIMITS CLN EMPTY WORD.
ORIGIN CLN MCH 0000000 OCT 100• END ,

READ PAPER CARDS CLN
DO READ CARDS. EMPTY
GO TO ERROR RETURN.
ENDOFFILE RETURN CLN

(COMMENT
WORD, GO TO ENDOFFILE RETURN.
GO TO EXIT COMMAND.

IF TAB NEQ ONE
THEN DO RETURN CARRIAGE,
IOH PRINT (14,0,), GO TO

ERROR RETURN CLN
IF TAB NEQ ONE

THEN DO RETURN CARRIAGE,
IOH PRINT (lS.o,J, GO TO

$$
ENOJB.

$$
ENDJB ••

OP CODE = 55)

--------~---

SPECIAL COMMANDS 481

FLOWCHART NUMBER 00013

$BLOCK COPY CLN C COMMENT OP CODE = 81)
DO COMMAND SEPARATION, ADDR - ONE • LAST WORD,
INDEX • ONE HUNDRED + EIGHT HUNDRED • J,
FOR I EQU CHL STEP 1 UNTIL LAST WORD DO

BEGIN MEMORY LBK I RBK a MEMORY LBK J RBK , J + ONE = J, END ,
CHL - EIGHT HUNDRED I ONE HUNDRED • It INDEX • J,
FOR K EQU 0 STEP 1 UNTIL 5 DO

BEGIN W DIFFERENCE LBK I RBK = W DIFFERENCE LBK J RBK ,
I + ELEVEN • It J + ELEVEN = J, END ,

GO TO EXIT COMMAND.

ERROR CLN
If TAB NEQ ONE

THEN DO RETURN CARRIAGE, $$
IOH PRINT 113,0, OP CODE), GO TO ENDJB .

NO OPERATION CLN (COMMENT OP CODE = 00)
GO TO EXIT COMMAND.

RING BELL CLN (COMMENT OP CODE = 63)
IF TAB NEQ ONE

THEN DO RETURN CARRIAGE, $$
IOH PRINT Cll,O,), GO TO EXIT COMMAND.

CLOCK CLN CCOMMENT OP CODE = 64)
00 READ CLOCK, MCH 0601000 ACCUMULATOR, GO TO EXIT COMMAND.

LOAD MQ CLN (COMMENT OP CODE = 65)
DO GET ADDRESS, MEMORY LBK I RBK = MQ, GO TO EXIT CCMMAND.

STORE MQ CLN (COMMENT OP CODE = 66)
DO GET ADDRESS, MQ • MEMORY LBK I RBK • GO TO EXIT COMMAND.

BREAKPOINT HALT CLN (COMMENT OP CODE = 68)
IF TAB NEQ ONE

THEN DO RETURN CARRIAGE, $$
IOH PRINT (12,0,), GO TO ENDJB .

ENDJOB CLN (COMMENT OP CODE = 80)
IF TAB NEQ ONE

THEN DO RETURN CARRIAGE, $$
ZERO = LIMITS, DO PUNCH CARDS, GO TO ENDJB ••

LOADING SUBROUTINES 48m

FLOWCHART NUMBER OOOllt

$LOAD SUBROUTINES CLN
IF TAB NEQ ONE

CCOMMENT OP CODE

~
I

= 07) II'

I
ll
'II'

THEN DO RETURN CARRIAGE, $$
IOH PRINT Cl6t0tlt
READ SUBROUTINE ClN

DO READ CARD, DO COMMAND CARD CONVERSION,
GO TO CALL SUBROUTINE LBK OP CODE RBK •

GO TO CALL INDEX REGISTER UTILIZATION.
GO TO CAll ERROR. GO TO CALL ERROR. GO TO CALL ERROR.
GO TO CALL ERROR. GO TO CALL HYPERBOLICS. GO TO CALL ARCTAN.
GO TO CALL SIN COS. GO TO CALL POWER. GO TO CALL lOG.
GO TO CALL SQUARE ROOT. GO TO CALL FRACTION SELECTOR.

CALL SUBROUTINE ClN GO TO EXIT LOADING SUBROUTINES.

,'l

t

EXIT LOADING SUBROUTINES CLN CCOMMENT N = 0) ' t
IF SIGN EQU MINUS

THEN FIXED POINT FORMAT LBK WD RBK = FIXED POINT FORMAT,
IOH PRINT (17,0, WD), GO TO EXIT COMMAND.$

IF WD EQU ZERO
THEN IOH PRINT (18,0,), GO TO EXIT COMMAND.$

If WD EQU ONE
THEN IOH PRINT (29,0,), GO TO READ SUBROUTINE.$

IF WD EQU TWO
THEN IOH PRINT C31t,O,) FOR J EQU 0 STEP 1 UNTIL 65 DO

BEGIN ZERO a W DIFFERENCE LBK J RBK , END ,
GO TO READ SUBROUTINE.$

IF WO EQU THREE
THEN IOH PRINT (35,0,) FOR J EQU 0 STEP 1 UNTIL 65 DO

BEGIN ZERO • W DIFFERENCE LBK J RBK , END ,
FOR J EQU 0 STEP 1 UNTIL 23500 DO

BEGIN ZERO = MEMORY LBK J RBK , END ,
GO TO READ SUBROUTINE.$

CAll FRACTION SELECTOR CLN
IOH PRINT 128,0, CHL), CHL = FRAC SEL CHANNEL,
GO TO READ SUBROUTINE.

CALL SQUARE ROOT CLN
IOH PRINT Cl9,0, CHllt GO TO READ SUBROUTINE.

(COMMENT

(COMMENT

N = 1 l :

CALL LOG CLN
IOH PRINT (20,0, CHL), CHL = LOG CHANNEL, GO TO

CALL POWER CLN

(COMMENT N = 3)
READ SUBROUTINE. ~
(COMMENT N = 4) .'

IOH PRINT C2lt0tCHL), CHL z POWER CHANNEL, GO
CALL SIN COS ClN

IOH PRINT C22t0t CHl), GO TO READ SUBROUTINE.
CAll ARCTANCLN

IOH PRINT C23t0t CHlJt GO TO READ SUBROUTINE.
CALL HYPERBOLICS CLN

READ SUBROUTINE.

TO READ SUBROUTINE. :
CCOMMENT N = 5) ~

r.l
(COMMENT N = 6) ,

(COMMENT N = 7)
IOH PRINT C27,o, CHllt GO TO

CALL INDEX REGISTER UTILIZATION
IOH PRINT C25,0, CHllt CHL =

CAll ERROR CLN

CLN (COMMENT N =12)
IRU CHANNEL, GO TO READ SUBROUTINE.

IOH PRINT (26,0, OP CODE), GO TO ENDJB ••

,,
I

PERFORMING SUBROUTINES 48n
l

FLOWCHART NUMBER 00015 I

$PERFORM SUBROUTINE CLN (COMMENT OP CODE = 08) I
DO GET ADDRESS, I = STORAGE I ONE HUNDRED = CHL • ONE HUNDRED ~~~
= NUMBER, STORAGE-NUMBER = SUBROUTINE, If SUBROUTINE lEQ TWENTY SIX l

THEN GO TO SUBROUTINE TRANSFER LBK SUBROUTINE RBK .$ •
If SUBROUTINE EQU THIRTY NINE (COMMENT SUBROUTINE= WO = 39) ll

THEN MCH 0500000 ACCUMULATOR, DO SINO, MCH 0601000 ACCUMULATOR,
GO TO EXIT COMMAND.$ I

If SUBROUTINE EQU FORTY TWO (COMMENT SUBROUTINE = WO = 421 i
THEN MCH 0500000 ACCUMULATOR, 00 SIN, MCH 0601000 ACCUMULATOR, l

GO TO EXIT COMMAND.$
If SUBROUTINE EQU SEVENTY ONE (COMMENT SUBROUTINE = WO = 71) '

THEN MCH 0500000 ACCUMULATOR, 00 LOG 10, MCH 0601000 ACCUMULATOR, 1

GO TO EXIT COMMAND.$ 1

If SUBROUTINE EQU SEVENTY .TWO (COMMENT SUBROUTINE = WO = 72)
THEN MCH 0500000 FlOATING POINT TENt MCH 0560000 ACCUMULATOR,

DO POWER lOt MCH 0601000 ACCUMULATOR, GO TO EXIT COMMAND.$
If SUBROUTINE EQU NINTY .SEVEN (COMMENT SUBROUTINE= WO = 97) '

THEN MCH 0500000 ACCUMULATOR, DO SQRT, MCH 0601000 ACCUMULATOR,
GO TO EXIT COMMAND.

ELSE GO TO ERROR TRANSFER.

GOTO COS TRANSFER. GOTO AlAND TRANSFER.
GOTO ARCTAN TRANSFER. GOTO COSO TRANSFER. GOTO EXPT TRANSFER.
GOTO ERROR TRANSFER. GOTO ERROR TRANSFER. GOTO ERROR TRANSFER.
GOTO ERROR TRANSFER. GOTO LOG E TRANSFER. GOTO ERROR TRANSFER.
GOTO ERROR TRANSFER. GOTO CUBERT TRANSFER. GOTO EXP3 TRANSFER.
GOTO EXP2 TRANSFER. GOTO EXP1 TRANSFER. GOTO TANH TRANSFER.
GOTO SINH TRANSFER. GOTO CHECK SUBROUTINE. GOTO SELECT FRACTION.
GOTO SELECT FRACTION. GOTO SELECT FRACTION. GOTO SELECT FRACTION. I

I

GOTO SELECT FRACTION. GOTO SELECT FRACTION. GOTO fLOAT TRANSFER.
SUBROUTINE TRANSFER CLN GOTO FIX TRANSFER.

SELECT FRACTION CLN
FIXED POINT FORMAT LBK SUBROUTINE RBK = FIXED POINT FORMAT,

GO TO EXIT COMMAND.
FIX TRANSFER CLN (COMMENT SUBROUTINE = WO = 00)

IF £Hl EQU IRU CHANNEL
THEN MCH 0500000 ACCUMULATOR, 00 FIX, MCH 0601000 IRA,

GO TO EXIT COMMAND.$
IF CHL EQU FRAC SEL CHANNEL

THEN GO TO SELECT FRACTION.
ELSE GO TO ERROR TRANSFER.

FLOAT TRANSFER CLN (COMMENT SUBROUTINE = WO = 01)
If CHL EQU IRU CHANNEL

THEN MCH 0500000 IRA, 00 FLOAT, MCH 0601000 ACCUMULATOR,
GO TO EXIT COMMAND.$

IF LHL EQU FRAt SEL CHANNEL
THEN GO TO SELECT FRACTION.
ELSE GO TO ERROR TRANSFER.

CHECK SUBROUTINE CLN (COMMENT SUBROUTINE = WO = 08)
IF CHL EQU LOG CHANNEL

THEN MCH 0500000 ACCUMULATOR, DO LOG 2, MCH 0241000 LOG E 2,
MCH 4600000 ACCUMULATOR, GO TO EXIT COMMAND.$

IF £HL EQU POWER CHANNEL
THEN MCH 0500000 FLOATING POINT TWO, MCH 0560000 ACCUMULATOR,

DO POWER 2, MCH 0601000 ACCUMULATOR, GO TO EXIT COMMAND.$
If CHL EQU FRAt SEl CHANNEl

THEN GO TO SELECT FRACTION.

ELSE GO TO ERROR TRANSFER. 48o
(COMMENT SUBROUTINE = WO =

DO SINH COSH, GO TO ERROR TRANSFER.
MCH 4600000 MQ, GO TO EXIT COMMAND.

SINH TRANSFER CLN
MCH 0500000 ACCUMULATOR,
MCH 0601000 ACCUMULATOR,

TANH TRANSFER CLN

09)

10)
MCH 0500000 ACCUMULATOR,
GO TO EXIT COMMAND.

EXPl TRANSFER CLN

(COMMENT SUBROUTINE = WO =
DO TANH, MCH 0601000 ACCUMULATOR, q

= 11) ~
'

CCOMMENT SUBROUTINE = WO
MCH 0560000 MQ, DO EXP1, MCH 0500000 ACCUMULATOR,

MCH 0601000 ACCUMULATOR,
EXP2 TRANSFER CLN

GO TO EXIT COMMAND.
CCOMMENT SUBROUTINE = WD

MCH 056COOO MQ, DO EXP2t

~

= 12) ~
MCH 0500000 ACCUMULATOR,
MCH 0601000 ACCUMULATOR,

EXP3 TRANSFER CLN
GO TO EXIT COMMAND.

CCOMMENT SUBROUTINE = WO
MCH 0560000 MQ, DO EXP3,

= 131 1
MCH 0500000 ACCUMULATOR,
MCH 0601000 ACCUMULATOR,

LOG E TRANSFER CLN
GO TO EXIT COMMAND.

MCH 0500000 ACCUMULATOR, DO
(COMMENT SUBROUTINE = WO =

LOG E, MCH 0601000 ACCUMULATOR,
GO TO EXIT COMMAND.

EXPT TRANSFER CLN (COMMENT SUBROUTINE = WD =
MCH 0500000 ACCUMULATOR, DO EXPT, MCH 0601000 ACCUMULATOR,
GO TO EXIT COMMAND.

17)

COSO TRANSFER CLN (COMMENT SUBROUTINE = WD = 23)
MCH 0500000 ACCUMULATOR, DO COSO, MCH 0601000 ACCUMULATOR,
GO TO EXIT COMMAND.

ARCTAN TRANSFER CLN (COMMENT SUBROUTINE = WD = 24)
HCH 0500000 ACCUMULATOR, DO ARCTAN, MCH 0601000 ACCUMULATOR,
GO TO EXIT COMMAND.

AlAND TRANSFER CLN (COMMENT SUBROUTINE = WO = 25)
MCH 0500000 ACCUMULATOR, DO AlAND, MCH 0601000 ACCUMULATOR, r.·

GO TO EXIT COMMAND. ~
COS TRANSFER CLN CCOMMENT SUBROUTINE = WD = 26)

MCH 0500000 ACCUMULATOR, DO COS, HCH 0601000 ACCUMULATOR,
GO TO EXIT COMMAND.

CUBERT TRANSFER CLN CCOMMENT SUBROUTINE = WO = 26) ·
MCH 0500000 ACCUMULATOR, DO CUBE ROOT, MCH 0601000 ACCUMULATOR ,
GO TO EXIT COMMAND.

ERROR TRANSFER CLN
IOH PRINT C26t0t SUBROUTINE), GO TO ENDJB ••

SELECTIVE PRINT 4 8p

FLOWCHART NUMBER 00016

$INITIATE SELECTIVE PRINT CLN (COMMENT OP CODE = 61)
COMMAND EXECUTION = PROGRAM STORAGE, ENTER SELECTIVE PRINT
= COMMAND EXECUTION,
READ CARD SELECTORS CLN

DO READ CARD, IOH PRINT (24,0, COL 64, COL 66, COL 68, COL 69,
COL 70,COL 72,COl 74,COl76,Cl,C2,C3,C4,C5,C6,C7,C8,C9,ClO,Cll),

CONVERT SELECTOR CLN
COLUMN K = SECOND SELECTOR A, FOR J EQU 0 STEP 1 UNTil 1 DO

BEGIN COlUMN 0 LBK J RBK + SECOND SElECTOR A • 2 EXP 6
= SECOND SElECTOR A, END ,

COLUMN C = SECOND SELECTOR 8, FOR J EQU 0 STEP 1 UNTIL 3 DO
BEGIN COLUMN H LBK J RBK + SECOND SELECTOR B • 2 EXP 6

= SECOND SELECTOR B, END ,
IF SELECTOR EQU ONE

THEN TWO = SELECTOR, SECOND SELECTOR A = FIRST SELECTOR A,
SECOND SELECTOR 8 = FIRST SELECTOR B,
GO TO READ CARD SELECTORS.$

IF SECOND SELECTOR A NEQ ZERO
THEN GO TO EXIT COMMAND.$

IF SECOND SELECTOR B EQU ZERO
THEN LIST All COMMANDS = SECOND SELECTOR $$
GO TO EXIT COMMAND.

START SELECTIVE PRINT CLN
IOH PRINT (30,0,), IF SECOND SELECTOR EQU LIST All COMMANDS

THEN GO TO LIST PROGRAM.$
LIST SELECTED COMMANDS CLN

IF MEMORY LBK LOCATION R8K AND OP CODE MASK = OP CODE I TEN
= BCD NUMBER EQU TWO

THEN GO TO SELECTIVE PRINT TRANSFER.$
IF BCD NUMBER EQU ONE

THEN GO TO SELECTIVE PRINT TRANSFER.
IF OP CODE EQU SEVENTY SIX

THEN GO TO SElECTIVE PRINT TRANSFER.$
IF OP CODE EQU SEVENTY SEVEN

THEN GO TO SELECTIVE PRINT TRANSFER.$
ACCUMULATOR = PAST ACCUMULATOR, DO EXECUTE COMMAND,
DO GET ADDRESS, 00 CONVERT COMMAND TO BCD,
IF SECOND SELECTOR A AND COMMAND A NEQ FIRST SELECTOR A

THEN GO TO EXIT SELECT COMMANDS.$
IF SECOND SELECTOR 8 AND COMMAND B NEQ FIRST SELECTOR 8

THEN GO TO EXIT SELECT COMMANDS.$
PRINT SELECTED COMMAND CLN

I = ADDR, IF ACCUMULATOR NEQ PAST ACCUMULATOR
THEN IOH PRINT (31 1 0 1 LOCATION, INDEX, OP CODE, ADOR,

ACCUMULATOR)$
ELSE IOH PRINT (32 1 0 1 LOCATION, INDEX, OPCODE, AODR)$

EXIT SELECT COMMANDS CLN
LOCATION + ONE = LOCATION, GO TO LIST SELECTED COMMANDS.

SELECTIVE PRINT TRANSFER CLN
00 GET ADDRESS, 00 CONVERT COMMAND TO BCD,
IF SECOND SELECTOR A AND COMMAND A NEQ FIRST SELECTOR A

THEN GO TO EXECUTE TRANSFER COMMAND.$
IF SECOND SELECTOR B AND COMMAND B NEQ FIRST SELECTOR B

THEN GO TO EXECUTE TRANSFER COMMAND.$
I = ADDR, IOH PRINT (32,0, LOCATION, INDEX, OP CODE, ADDR),
EXECUTE TRANSFER COMMAND CLN

DO EXECUTE COMMAND, LOCATION + ONE = LOCATION,

GO TO LIST SELECTED COMMANDS. 48q
PROCEDURE CONVERT COMMAND TO BCD CLN

BEGIN BCD NUMBER • TEN = NUMBER, INDEX • 2 EXP 12 + BCD NUMBER
* 2 EXP 6 + OPCODE - NUMBER = COMMAND A,
I = STORAGE, FOR J EQU 0 STEP 1 UNTIL 3 DO

BEGIN STORAGE I TEN THOUSAND LBK J RBK = BCD NUMBER LBK J RBK
* TEN THOUSAND LBK J RBK = NUMBER,
STORAGE - NUMBER • STORAGE, END ,

BCD NUMBER • COMMAND 8, FOR J EQU 1 STEP 1 UNTIL 3 DO
BEGIN COMMAND 8 * 2 EXP 6 + BCD NUMBER LBK J RBK

a COMMAND 8, END ,
COMMAND B • 2 EXP 6 + STORAGE • COMMAND B, END ,

LIST PROGRAM CLN
IF MEMORY LBK LOCATION RBK AND OP CODE MASK = OP CODE I TEN
a STORAGE EQU TWO

THEN GO TO PRINT TRANSFER.$
IF STORAGE EQU ONE

THEN GO TO PRINT TRANSFER.$
IF OP CODE EQU SEVENTY SIX

THEN GO TO PRINT TRANSFER.$
IF OP CODE EQU SEVENTY .SEVEN

THEN GO TO PRINT TRANSFER.$
ACCUMULATOR • PAST ACCUMULATOR, DO EXECUTE COMMAND,
DO GET ADDRESS, I • ADDR, IF ACCUMULATOR NEQ PAST ACCUMULATOR

THEN IOH PRINT C31t0t LOCATION, INDEX, OP CODE, AODR,
ACCUMULATOR)$

ELSE IOH PRINT (32,0, LOCATION, INDEX, OP CODE, AODR)$
LOCATION + ONE • LOCATION, GO TO LIST PROGRAM.

PRINT TRANSFER CLN
DO GET ADDRESS, I = ADDR, IOH PRINT (32,0, LOCATION, INDEX,
OP CODE, ADORa, DO EXECUTE COMMAND, LOCATION + ONE
= LOCATION, GO TO LIST PROGRAM.

= 62) ~ STOP SELECTIVE PRINT CLN (COMMENT OP CODE
IOH PRINT (33,0,), PROGRAM STORAGE = COMMAND EXECUTION, ZERO
= FIRST SELECTOR A • FIRST SELECTOR B = SECOND SELECTOR A
= SECOND SELECTOR B • SECOND SELECTOR, ONE = SELECTOR,
GO TO EXIT COMMAND ••

-----~ --~---------

PROGRAM SUBROUTI NES 4 8r

FLOWCHART NUMBER 00017

$ PROCEDURE COMMAND CARD CONVERSION CLN
BEGIN COLUMN 64 a INDEX, COLUMN 66 • TEN + COLUMN 68 = OP CODE,
COlUMN 70 • .TEN +COLUMN 72 = CHL, IF COL 69 NEQ BLANK

THEN COLUMN 69 • ONE HUNDRED + CHL = CHL $$
COLUMN 74•1EN + COLUMN 76 = WD, CHL•ONE HUNDRED+WD = ADDR, END ,

PROCEDURE DATUM CARD CONVERSION CLN
BEGIN COLUMN 64 • TEN + COLUMN 66 - FIFTY FIVE = EXPONENT,
COLUMN 68 • NUMBER, FOR J EQU 0 STEP 1 UNTIL 3 DO

BEGIN COLUMN 70 LBK J RBK + NUMBER • TEN = NUMBER, END ,
FLOAT NUMBER CLN

NUMBER + fLOAT CONSTANT = DATUM, FLOAT CONSTANT + DATUM = DATUM,
IF EXPONENT LSS ZERO

THEN ZERO - EXPONENT = EXPONENT,
FOR J EQU 1 STEP 1 UNTIL EXPON ENT DO

BEGIN DATUM I FLOATING POINT TE N = DATUM, END ,
GO TO EXIT CONVERSION.$

IF EXPONENT GTR ZERO
THEN FOR J EQU 1 STEP 1 UNTIL EXPONENT DO

BEGIN DATUM • FLOATING POINT TEN = DATUM, END ,$$
EXIT CONVERSION CLN

IF SIGN EQU MINUS
THEN ZERO - DATUM = DATUM $$ END ,

PROCEDURE GET ADDRESS CLN
BEGIN IF ADDRESS SEPARATION NEQ PERFORMED

THEN CELL LBK lOCATION RBK Cl=10) = INDEX,
CELL LBK LOCATION RBK Cl8•26) = CHL,
CELL LBK LOCATION RBK (11=17) = WD $$

IFXHL EQU TWENTY ONE
THEN OUTPUT CONSTANT - ACCUMULATOR ADDRESS = I,

GO TO EXIT GET ADDRESS.$
IF WD GEQ ONE HUNDRED TWO

THEN WD - ONE HUNDRED TWO = WD • ELEVEN + CHL - EIGHT
= IR COMP ADDRESS, OUTPUT CONSTANT + IR COMP ADDRESS
- W DIFFERENCE ADDRESS = It GO TO EXIT GET ADDRESS.$

IF INDEX EQU ZERO
THEN ONE HUNDRED * CHL_ + WD = I $
ELSE ONE HUNDRED • CHL + WD + W BASE LBK INDEX RBK

+ C BASE LBK INDEX RBK = I $
EXIT GET ADDRESS CLN

ZERO = ADDRESS SEPARATION, END ,

PROCEDURE COMMAND SEPARATION CLN
BEGIN IF ADDRESS SEPARATION NEQ PERFORMED

THEN CELL LBK LOCATION RBK (7=10) = INDEX,
CELL LBK LOCATION RBK (18=26) • ONE HUNDRED = CHL,
CELL LBK LOCATION RBK (11=17) + CHL = ADDR $

ELSE CHL • ONE HUNDRED = CHL + WD = AODR $ END ,

PROCEDURE COMMAND SEPARATE CLN
BEGIN IF ADDRESS SEPARATION NEQ PERFORMED

THEN CELL LBK LOCATION RBK (1=10) = INDEX,
CELL LBK LOCATION RBK (18=26) = CHL,
CELL LBK LOCATION RBK 111=17) = WO $$ END , ..

FORMATS 48 s

FLOWCHART NUMBER 00020

CONTROL
lllOC6,C3,2CCl,lX)3Cl,5ClXCl))
312XN5,3X2CN2,lX)N5,5XlOC6,C3)
4C8H EXECUTE2X2CN2,1X)N5,5XlOC6,C3)
5(2XNS,2XE15.7,2Xl0C6,C3)
6(/7H STORE4XlOHK OP ADDR)
7(/18H STORE DATA)
8Cl2HlMANUAL MODE///llXlOHK OP ADDR)
9(15HlAUTOMATIC MODE///)

lOC24ClJ
11(/llH DING DONG/X)
12(/53H BREAKPOINT HALT NOT ALLOWED. TRANSFERRED TO ENDJOB.)
13(/l2H OP CODE a N2,36H NOT DEFINED. TRANSFERRED TO ENDJOB.)
14C/57H END OF FILE WHILE READING CARDS. TRANSFERRED TO ENDJOB.)
l5(/51H ERROR WHILE READING CARDS. TRANSFERRED TO ENDJOB.)
16(/18H LOAD SUBROUTINES)
l7(35H FIXED POINT FRACTION LENGTH = Nl,/26H EXIT LOADING SUBRO

1 UTINES/X)
l8(36H FIXED POINT FRACTION LENGTH = 1 /26H EXIT LOADING SUBRO

1 UTINES/X)
l9(42H SQUARE ROOT AND CUBE ROOT IN CHANNEL N3)
20(20H LOG IN CHANNEL N3)
21(22H POWER IN CHANNEL N3)
22(24H SIN COS IN CHANNEL N3)
23123H ARCTAN IN CHANNEL N3)
24(10H SELECTOR 2ClXCl)Cl,lX5Cl,5XlOC6,C3)
25C43H INDEX REGISTER UTILIZATION IN CHANNEL N3)
26C/17H SUBROUTINE N = N2,36H NOT DEFINED. TRANSFERRED TO ENOJOB.)
27(37H HYPERBOLIC FUNCTIONS IN CHANNEL N3)
28(34H FRACTION SELECTOR IN CHANNEL N3)
29(35H SELECTIVE PRINT IN CHANNEL 8)
30(22H BEGIN SELECTIVE PRINT//llH LOCATION7X7HCOMMANDlOXllHACCUMUL

1 ATOR/17XlOHK OP AOOR)
31(4XN5,7X2CN2,1X)N5,5XE15.7)
32(4XN5,7X2lN2,lX)N5)
33C/20H END SELECTIVE PRINT/X)
34ll7H CLEAR MEMORY)
35137H CLEAR MEMORY AND INDEX REGISTERS)

J\ppendiX G

A SYNTACTICAL FLOHCHART

for BC NELIAC

Ac ~n ~id in understanding the syntactica l rules of

DC NELIAC a flowchart similar to the ALGOL 60 Fl owchart has

been developed . The shapes of enclosure on the chart have

the follo\'Ting meanings:

II

0
1

Metal inguistic variables a ppear in e llipses

and indicate the enclosed variable is de

fined at that place on the chart.

rl.letalinguistic variables appearing in rec

tangles means the variable is defined else

where on the chart . Grid co-ordinates

for the definition appear nt the le.f't . of

the rectangle.

Basic symbols are enclosed in circles .

Vertical arrows indicate a definition of a

metalinguistic variable fo llows .

49

Horizontal arrO\'lS connect the basic symbols

metal inguistic variab l es which form a definition.

Every metalinguistic formul a used to describe BC NELIAC

appears on the syntactical f l owchart.

2 3 4 5 6 7

A

8

c Undefined

0

La be 1.

E

F
For Limit

G

H

J

••••••• •••••••

K

L
2 3 4 5 6 7

8 9 10

Statement

La be I

8 9 10 I I

12 13

Variable

12 13

fB1""Cc
~

G

~

lf41

Sign
lnfe1

~
~

b> l
Variable Expression

C Unconditional
12 Statement

Declaration
List

(

12~1

' I I ! (\ 12 (\ 13 (\ 14 (\ 15 (\ 16 " 17 A 18 " 19 A 20 (\ 2 I (\ 22 (\ I 23 (\ 24 (\ 25 " 26 A 27 "
[~ '

23 24 25 26

8

23 24 25 26

_ ...:...._ __________ ---

27

27

28

AI tern ate
Name

28

29 30 31

29 30 31

32

32

33 34 35

NELIAC
SYNTACTICAL CHART

33 34 35

36
4<Ja.

A

B

c

0

E

F

G

H

J

K

36 L

BIDLIOGRA PHY

"BC SAP 70lt Symbolic A~semb l y P:t•oe;ro..m, " Berke l ey, Computer
Center, University of Californi a

50 .

Feigenbaum, &.1\Ulrd , "Recent Experiment s i·rith the EPAM St ir.1U
l ation of Verba l Learning , 11 Simulations of Cognitive Processes,
University of Ca l ifornia , 1962

Feldman , Julian , "An Anul ys is of Predictive BehA.vior In A Two
Choice Situat1on, 11 Carnegie Institute of Technolo~y, Pi ttsbur[;h ,
1959 .

Hogsatt , A. C., und Bal derston , F. E., "Simul ation of IJia:rketine
Processes , 11 Management Science Center , Univer s i ty of Cal ifornia,
1960.

11 Intercom 500 Pror;ra.mming Syster:l. for t he Bendix G-15 Computer , 11

Los AnGe l es , Bendix Computer Division, 1961

"Intercom 500-R-1 Card System, " Berke l ey , Depc.rtment o:f
Electrical Engineering , University of Cal ifornia, 1962 .

11 An Introduction t o ALGOL GO for t he B5000 I nfo:::'mation
Processing System, '' Detroit 1 Burroughs Corporo.tion , 1961

Leeds , Her bert D. , and ~le inberg , Ger a l d JII ., "Computer Progrum
ming Fundamenta ls," NeN York, l\IcGrmT-Hill, 19Gl

McCracl<:en , D. D. , 11Digit a.l Computer Programming" Nev1 York ,
J ohn Wi l ey and Sons , 1957

Naur , Peter , "Report on the Al eorithmic Language ALGOL 60, "
COMMUNICATIONS of the ACN, Vo lune 3, Number 5, page 299 ,
Nay 1960

Newell , A., and Simon, H. A. 1 "Simul ation of Human Thoucht , 11

Current Trends in Psychology, University of Pittsburg Press ,
1959 ·

Rm·re , Al an, 11 Ap_ l i c ation of Computer Simul ::>.tion fo:c Production
System Desie;1 1

11 Sant a Monic a , Ca lifornia , Systems Dev l opment
Corp. , 1959

Sn.tnr.".et 1 Jean, 11 A Defini tion of The Cobo l 61 PJ.:ocedure Division
Usine; ALGOL 60 ~!et alinguist ics , 11 Needham Heiehts, Sylvania
Electronics Systems, 1961

Schwarz , H. R. , "An I nt roduction to ALGOL, 11 COMMUNIC ATI ONS
of t he ACM, Vo l ume 5, Number 2, page 82 February 19G2 .

11 704 NELIAC Reference Manual, " Pre l iminary Edition, Berke l ey,
De part r.1ent o:f El ectrical EnGineerine , University of Ca l ifornia ,
1962

	Table of Contents
	1. Introduction
	2. BC NELIAC
	3. Intercom 500
	4. Symbolic Intercom 500
	Appendixes
	A. Transliteration rules
	B. Operation code limitations
	C. Intercom card format
	D. Use of machine language subroutines in symbolic Intercom
	E. Symbolic Intercom 500 assembler
	F. BC NELIAC simulation of Intercom 500
	G. A syntactical flowchart for BC NELIAC
	Bibliography

