
Revised Report 
on the Algorithmic Language 
Algol 68 
Edited by 

A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, 
C. H. A. Koster, M. Sintzoff, C. H. Lindsey, 
L. G. L.T. Meertens and R. G. Fisker 

T h i s  E d i t i o n ,  w h i c h  i s  i s s u e d  a s  a S u p p l e m e n t  

t o  ALGOL B u l l e t i n  n u m b e r  4 7 ,  i n c l u d e s  a l l  e r r a t a  

a u t h o r i s e d  b y  t h e  ALGOL 6 8  S u p p o r t  s u b c o m m i t t e e  

o £  I F I P  WG2.1 u p  t o  t h e  e n d  o f  1 9 7 8 .  

This  Repo r t  has  been  a c c e p t e d  by  Work ing  G r o u p  2.1, r e v i e w e d  b y  
Techn ica l  C o m m i t t e e  2 on P r o g r a m m i n g  and  a p p r o v e d  for  pub l i ca t i on  b y  
the G e n e r a l  A s s e m b l y  of the  I n t e r n a t i o n a l  F e d e r a t i o n  for  I n f o r m a t i o n  
P roces s ing .  R e p r o d u c t i o n  of the  Repor t ,  for a n y  pu rpose ,  but  only  of the  
whole  tex t ,  is exp l i c i t l y  p e r m i t t e d  wi thou t  f o r m a l i t y .  

CONTENTS 

A c k n o w l e d g e m e n t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 
0. In t roduc t ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

0.1. Aims  and  p r inc ip l e s  of des ign  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 
0.1.1. C o m p l e t e n e s s  and  c l a r i t y  of d e s c r i p t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 
0.1.2. Or thogona l  des ign  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 
0.1.3. S e c u r i t y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 
0.1.4. E f f i c i ency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

0.2. C o m p a r i s o n  with  ALGOL 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
0.3. C o m p a r i s o n  with the  l a n g u a g e  de f ined  in 1968 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13 
0.4. Changes  in the  m e t h o d  of d e s c r i p t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

P A R T I  

P r e l i m i n a r y  def in i t ions  

1. L a n g u a g e  and  m e t a l a n g u a g e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
1.1. The m e t h o d  of d e s c r i p t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 

1.1.1. In t roduc t ion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
1.1.2. P r a g m a t i c s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18 
1.1.3. The s y n t a x  of the  s t r i c t  l a n g u a g e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 

1.1.3.1. P ro tono t ions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19 
1.1.3.2. P roduc t i on  ru les  and  p roduc t ion  t r e e s  . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 
1.1.3.3. M e t a p r o d u c t i o n  ru les  and  s i m p l e  subs t i t u t ion  . . . . . . . . . . . . . . . .  23 
1.1.3.4. H y p e r - r u l e s  and  cons i s t en t  subs t i tu t ion  . . . . . . . . . . . . . . . . . . . . . . . . . .  25 

1.1.4. The s e m a n t i c s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26 
1.1.4.1. Hyperno t ions ,  d e s i g n a t i o n  and  e n v e l o p m e n t  . . . . . . . . . . . . . . . . . . .  27 



van Wi jngaa rden ,  et al. 

1.1.4.2. P a r a n o t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 
1.1.4.3. U n d e f i n e d  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

1.1.5. T r a n s l a t i o n s  a n d  v a r i a n t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 
1.2. G e n e r a l  m e t a p r o d u e t i o n  r u l e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
1.3. G e n e r a l  h y p e r - r u l e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

2. T h e  c o m p u t e r  a n d  t h e  p r o g r a m  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35 
2.1. T e r m i n o l o g y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

2.1.1. O b j e c t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 
2.1.1.1. V a l u e s ,  l o c a l e s ,  e n v i r o n s  a n d  s c e n e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 
2.1.1.2. M o d e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 
2.1.1.3. S c o p e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38 

2.1.2. R e l a t i o n s h i p s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 
2.1.3. V a l u e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

2.1.3.1. P l a i n  v a l u e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 
2.1.3.2. N a m e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41 
2.1.3.3. S t r u c t u r e d  v a l u e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 
2.1.3.4. M u l t i p l e  v a l u e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 
2.1.3.5. R o u t i n e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 
2.I .3 .6.  A c c e p t a b i l i t y  of  v a l u e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 

2.1.4. A c t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 
2.1.4.1. E l a b o r a t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 
2.1.4.2. S e r i a l  a n d  c o l l a t e r a l  a c t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 
2.I .4 .3 .  I n i t i a t i o n ,  c o m p l e t i o n  a n d  t e r m i n a t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . .  48 

2.1.5. A b b r e v i a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 
2.2. T h e  p r o g r a m  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 

PART II 

F u n d a m e n t a l  c o n s t r u c t i o n s  

3. C l a u s e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 
3.1. C l o s e d  c l a u s e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  53 
3.2. S e r i a l  c l a u s e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 
3.3. C o l l a t e r a l  a n d  p a r a l l e l  c l a u s e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 
3.4. C h o i c e  c l a u s e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 
3.5. L o o p  c l a u s e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

4. D e c l a r a t i o n s ,  d e c l a r e r s  a n d  i n d i c a t o r s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 
4.1. D e c l a r a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 
4.2. M o d e  d e c l a r a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 
4.3. P r i o r i t y  d e c l a r a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 
4.4. I d e n t i f i e r  d e c l a r a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 
4.5. O p e r a t i o n  d e c l a r a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  70 
4.6. D e c l a r e r s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 
4.7. R e l a t i o n s h i p s  b e t w e e n  m o d e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / 74 
4.8. I n d i c a t o r s  a n d  f i e ld  s e l e c t o r s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

ALGOL 68 Revised  Repor t  

5. U n i t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 
5.1. S y n t a x  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 
5.2. U n i t s  a s s o c i a t e d  w i t h  n a m e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 

5.2.1. A s s i g n a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78 
5.2.2. I d e n t i t y  r e l a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 
5.2.3. G e n e r a t o r s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 
5.2.4. N i h i l s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 

5.3. U n i t s  a s s o c i a t e d  w i t h  s t o w e d  v a l u e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 
5.3.1. S e l e c t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82 
5.3.2. S l i c e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 

5.4. U n i t s  a s s o c i a t e d  w i t h  r o u t i n e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 
5.4.1. R o u t i n e  t e x t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86 
5.4.2. F o r m u l a s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 
5.4.3. C a l l s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 
5.4.4. J u m p s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  89 

5.5. U n i t s  a s s o c i a t e d  w i t h  v a l u e s  of  a n y  m o d e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 
5.5.1. C a s t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 
5.5.2. S k i p s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90 

P A R T  I I I  

C o n t e x t  d e p e n d e n c e  

6. C o e r c i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 
6.1. C o e r c e e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 
6.2. D e r e f e r e n c i n g  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 
6.3. D e p r o c e d u r i n g  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94 
6.4. U n i t i n g  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94 
6.5. W i d e n i n g  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  95 
6.6. R o w i n g  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  96 
6.7. V o i d i n g  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97 

7. M o d e s  a n d  n e s t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 
7.1. I n d e p e n d e n c e  of  p r o p e r t i e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98 
7.2. I d e n t i f i c a t i o n  in  n e s t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 
7.3. E q u i v a l e n c e  of m o d e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I03 
7.4. W e l l - f o r m e d n e s s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  107 

P A R T  IV 

E l a b o r a t i o n - i n d e p e n d e n t  c o n s t r u c t i o n s  

8. D e n o t a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108 
8.1. P l a i n  d e n o t a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108 

8.1.1. I n t e g r a l  d e n o t a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  108 



van Wijngaarden,  et al. 

8.1.2. R e a l  d e n o t a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  109 
8.1.3. B o o l e a n  d e n o t a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 
8.1.4. C h a r a c t e r  d e n o t a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  110 
8.1.5. Void  d e n o t a t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 

8.2. B i t s  d e n o t a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  111 
8.3. S t r i n g  d e n o t a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  112 

9. T o k e n s  a n d  s y m b o l s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 
9.1. T o k e n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 
9.2. C o m m e n t s  a n d  p r a g m a t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114 
9.3. R e p r e s e n t a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  115 
9.4. T h e  r e f e r e n c e  l a n g u a g e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  116 

9.4.1. R e p r e s e n t a t i o n s  of s y m b o l s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 
9.4.2. O t h e r  T A X  s y m b o l s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  122 

P A R T  V 

E n v i r o n m e n t  a n d  e x a m p l e s  

10. S t a n d a r d  e n v i r o n m e n t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 
10.1. P r o g r a m  t e x t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124 

10.1.2. T h e  e n v i r o n m e n t  c o n d i t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125 
10.1.3. The  m e t h o d  of  d e s c r i p t i o n  of t h e  s t a n d a r d  e n v i r o n m e n t  .... 126 

I0.2. T h e  s t a n d a r d  p r e l u d e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128 
10.2.1. E n v i r o n m e n t  e n q u i r i e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128 
10.2.2. S t a n d a r d  m o d e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  129 
10.2.3. S t a n d a r d  o p e r a t o r s  a n d  f u n c t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130 

10.2.3.0. S t a n d a r d  p r i o r i t i e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130 
10.2.3.1. R o w s  a n d  a s s o c i a t e d  o p e r a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130 
10.2.3.2. O p e r a t i o n s  on  b o o l e a n  o p e r a n d s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 
10.2.3.3. O p e r a t i o n s  on i n t e g r a l  o p e r a n d s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  131 
10.2.3.4. O p e r a t i o n s  on r e a l  o p e r a n d s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132 
10.2.3.5. O p e r a t i o n s  on a r i t h m e t i c  o p e r a n d s  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133 
10.2.3.6. O p e r a t i o n s  on c h a r a c t e r  o p e r a n d s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133 
10.2.3.7. O p e r a t i o n s  on  c o m p l e x  o p e r a n d s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  133 
10.2.3.8. B i t s  a n d  a s s o c i a t e d  o P e r a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  135 
10.2.3.9. B y t e s  a n d  a s s o c i a t e d  o p e r a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  136 
10.2.3.10. S t r i n g s  a n d  a s s o c i a t e d  o p e r a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137 
I0.2.3.11. O p e r a t i o n s  c o m b i n e d  w i t h  a s s i g n a t i o n s  . . . . . . . . . . . . . . . . . . . .  137 
10.2.3.I2. S t a n d a r d  m a t h e m a t i c a l  c o n s t a n t s  a n d  f u n c t i o n s  . . . . . . .  138 

I0.2.4. S y n c h r o n i z a t i o n  o p e r a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  139 
10.3. T r a n s p u t  d e c l a r a t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 

10.3.1. Books ,  c h a n n e l s  a n d  f i l es  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 
10.3.1.1. B o o k s  a n d  b a c k f i l e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140 
i0 .3.I .2 .  C h a n n e l s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  141 
10.3.1.3. F i l e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143 

ALGOL 68 Revised Report  

I I .  

12. 

10.3.1.4. O p e n i n g  a n d  c l o s i n g  f i l e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147 
10.3.1.5. P o s i t i o n  e n q u i r i e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152 
10.3.1.6. L a y o u t  r o u t i n e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  154 

10.3.2. T r a n s p u t  v a l u e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158 
10.3.2.1. C o n v e r s i o n  r o u t i n e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  158 
10.3.2.2. T r a n s p u t  m o d e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 
10.3.2.3. S t r a i g h t e n i n g  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . .  163 

10.3.3. F o r m a t l e s s  t r a n s p u t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164 
10.3.4. F o r m a t  t e x t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  172 
10.3.5. F o r m a t t e d  t r a n s p u t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  191 
10.3.6. B i n a r y  t r a n s p u t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  205 

10.4. T h e  s y s t e m  p r e l u d e  a n d  t a s k  l i s t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208 
10.4.1. T h e  s y s t e m  p r e l u d e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208 
10.4.2. T h e  s y s t e m  t a s k  l i s t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208 

10.5. T h e  p a r t i c u l a r  p r e l u d e s  a n d  p o s t l u d e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208 
10.5.1. T h e  p a r t i c u l a r  p r e l u d e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208 
10.5.2. T h e  p a r t i c u l a r  p o s t l u d e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209 

E x a m p l e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209 
11.1. C o m p l e x  s q u a r e  roo t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209 
11.2. I n n e r p r o d u c t  1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210 
11.3. I n n e r p r o d u c t  2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210 
l l . 4 .  L a r g e s t  e l e m e n t  . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  210 
11.5. E u l e r  s u m m a t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211 
11.6. T h e  n o r m  of a v e c t o r  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  211 
11.7. D e t e r m i n a n t  of  a m a t r i x  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212 
11.8. G r e a t e s t  c o m m o n  d i v i s o r  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  212 
11.9. C o n t i n u e d  f r a c t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213 
11.10. F o r m u l a  m a n i p u l a t i o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213 
l l . l l .  I n f o r m a t i o n  r e t r i e v a l  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . .  214 
11.12. C o o p e r a t i n g  s e q u e n t i a l  p r o c e s s e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 
11.13. T o w e r s  of H a n o i  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217 
G l o s s a r i e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218 
12.1. T e c h n i c a l  t e r m s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218 
12.2. P a r a n o t i o n s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224 
12.3. P r e d i c a t e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227 
12.4. I n d e x  to t h e  s t a n d a r d  p r e l u d e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227 
12.5. A l p h a b e t i c  l i s t i n g  of  m e t a p r o d u c t i o n  r u l e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  231 

:i; i ̧ 



Acknowledgements 

{Habent sua fata libelli. 
De litteris, Terentianus Maurus.} 

Working Group 2.1 on ALGOL of the Internat ional  Federa t ion for 
Information Processing has discussed the development  of "ALGOL X", a 
successor  to ALGOL 60 [3J, since 1963. At its meet ing in Princeton in May 
1965, WG 2.1 invited written descriptions of the language based on the 
previous discussions. At the meet ing in St P ie r re  de Char t reuse  nea r  
Grenoble in October 1965, three reports  describing more  or less complete  
languages were amongst  the contributions, by Niklaus Wirth 18], Gerhard  
Seegmueller  [6], and Aad van Wijngaarden [9]. In [6J and [81, the 
descriptional technique of [3J was used, whereas  [90 featured a new 
technique for language design and definition. Other significant 
contributions avai lable were papers  by Tony Hoare  121 and Pe te r  Naur  
[4, 51. 

At subsequent meet ings between April 1966 and December  1968, held in 
Kootwijk near  Amste rdam,  Warsaw, Zandvoort  near  Ams te rdam,  Tirrenia  
near  Pisa and North Berwick near  Edinburgh,  a number  of successive 
approximat ions  to a final report,  commencing  with [10] and followed by a 
series numbered  MR 88, MR 92, MR 93, MR 95, MR 99 and MR 100, were 
submit ted by a t eam working in Ams te rdam,  consisting first of A. van 
Wijngaarden and Bar ry  Mailloux, la ter  reinforced by John Peck, and 
finally by Kees Koster. Versions were used during courses on the language 
held at various centres,  and the exper ience gained in explaining the 
language to skilled audiences and the react ions of the students influenced 
the succeeding versions. The final version, MR 101 [11[, was adopted by 
the Working Group on December  20th 1968 in Munich, and was 
subsequently approved for publication by the General  Assembly of I .F . I .P .  
Since that  t ime, it has been published in Numerische  Mathemat ik  [12], 
and translat ions have been made  into Russian [13], into G e r m a n  [14J, into 
French [15], and into Bulgarian [16]. An "Informal  Introduction",  for the 
benefit of the uninitiated reader ,  was also p repared  at  the request  of the 
Working Group [ 18 ]. 

The original authors acknowledged with pleasure  and thanks the 
wholehearted cooperation, support,  interest,  cr i t ic ism and violent 
objections f rom m e m b e r s  of WG 2.1 and m a n y  other people interested in 
ALGOL. At the risk of emba r r a s s ing  omissions, special mention should be 
made  of Jan  Garwick, J a c k  Merner,  Pe te r  Inge rman  and Manfred Paul  
for [1 ], the Brussels group consisting of M. Sintzoff, P. Branquar t ,  J. Lewi 
and P. Wodon for numerous  bra ins torms,  A.J.M. van Gils of Apeldoorn, 
G. Goos and his group at Munich, also for [71, G.S. Tseytin of Leningrad,  
and L.G.L.T. Meertens and J.W. de Bakker  of Amste rdam.  An occasional 
choice of a, not inherently meaningl'ul, identifier in the sequel m a y  
compensate  for not mentioning more  names  in this section. 

Since the publication of the Original Report ,  much  discussion has taken 
place in the Working Group concerning the fur ther  development  of the 
language. This has been influenced by the exper ience of m a n y  people who 
saw disadvantages  in the original proposals  and suggested revised or 
extended features.  Amongst  these mus t  be ment ioned especially: 
I.R. Currie, Susan G. Bond, J.D. Morison and D. Jenkins  of Malvern (see 
in [17]), in whose dialect of ALGOL 68 m a n y  features  of this Revision 
m a y  a l ready be found: P. Branquar t ,  J .P .  Cardinael  and J. Lewi of 
Brussels, who exposed m a n y  weaknesses  (see in [17]): Ursula Hill, 
H. Woessner and H. Scheidig of Munich, who discovered some unpleasant  
consequences: the contributors to the Rappor t  d 'Evaluat ion  [19[: and the 
many  people who served on the Working Group subcommi t tees  on 
Maintenance and I m p r o v e m e n t s  (convened by M. Sintzoff) and on 
Transput  (convened by C.H. Lindsey).  During the la ter  s tages  of the 
revision, much helpful advice was given by H. Boom of Edmonton,  
W. F r e e m a n  of York, W.J. Hansen of Vancouver,  Mary  Zosel of 
Livermore,  N. Yoneda of Tokyo, M. Rain of Trondheim, L. Ammeraa l ,  
D. Grune, H. van Vliet and R. van Vliet of Ams te rdam,  G. van der  Mey of 
Delft, and A.A. Baehrs  and A.F. Ra r  of Novosibirsk. The editors of this 
revision also wish to acknowledge that  the wholehearted cooperation, 
support,  interest,  cr i t ic ism and violent objections on the par t  of the 
m e m b e r s  of WG 2.1 have continued unabated  during this t ime. 

11] J.V. Garwick,  J.M. Merner,  P.Z. Inge rman  and M. Paul,  Repor t  of the 
ALGOL-X - I-O Subcommittee,  WG 2.1 Working Paper ,  July  1966. 
[2J C.A.R. Hoare,  Record Handling, WG 2.1 Working Paper ,  October 1965: 
also AB.21.3.6, November  1965. 
[3J P. Naur  (Editor),  Revised Report  on the Algori thmic Language  
ALGOL 60, Regnecentralen,  Copenhagen, 1962, and elsewhere.  
[4] P. Naur, Proposals  for a new language,  AB.18.3.9, October 1964. 
[5] P. Naur, Proposals  for introduction on aims,  WG 2.1 Working Paper ,  
October 1965. 
[6[ G. Seegmueller ,  A proposal for a basis for a Report  on a Successor  to 
ALGOL 60, Bavar ian  Acad. Sci., Munich, October 1965. 
[7J G. Goos, H. Scheidig, G. Seegmuel ler  and H. Walther,  Another 
proposal for ALGOL 67, Bavar ian  Acad. Sci., Munich, May 1967. 
[8] N. Wirth, A Proposal  for a Report  on a Successor  of ALGOL 60, 
Mathemat isch Centrum, Amste rdam,  MR 75, October 1965. 
[9J A. van Wijngaarden, Orthogonal Design and Description of a Fo rma l  
Language,  Mathemat isch  Centrum, Ams te rdam,  MR 76, October 1965. 
[10] A. van Wijngaarden and B.J. Mailloux, A Draft  Proposal  for the 
Algorithmic Language ALGOL X, WG 2.1 Working Paper ,  October 1966. 
[ l l J  A. van Wijngaarden (Editor),  B.J. Mailloux, J .E .L.  Peck and 
C.H.A. Koster, Report  on the Algorithmic Language  ALGOL 68, 
Mathemat isch Centrum, Amste rdam,  MR 101, Feb ru a ry  1969. 
[12] idem, Numerische Mathemat ik ,  Vol. 14, pp. 79-218, 1969. 



8 van Wijngaarden, e t  al .  

[13] Soobshchenie ob a lgor i tmicheskom yazyke ALGOL 68, t ranslat ion into 
Russian by A.A. Baehrs,  A.P. Ershov,  L.L. Zmievskaya  and A.F. Rar,  
Kybernetica,  Kiev, Pa r t  6 of 1969 and Par t  1 of 1970. 
[141 Bericht ueber  die Algorithmische Sprache ALGOL 68, t ranslat ion into 
German  by I.O. Kerner ,  Akademie-Verlag,  Berlin, 1972. 
[15] D~finition du Langage Algorithmique ALGOL 68, t ranslat ion into 
French by J. Buffet, P. Arnal, A. Qu~r~ (Eds.),  Hermann ,  Par is ,  1972. 
[16] Algoritmichniyat  yezik ALGOL68,  t ranslat ion into Bulgar ian by 
D. Toshkov and St. Buchvarov,  Nauka i Yzkustvo, Sofia, 1971. 
[17] J .E.L.  Peck (Ed.), ALGOL68 Implementa t ion  (proceedings of the 
I .F.I .P.  working conference held in Munich in 1970), North Holland 
Publishing Company,  1971. 
[18] C.H. Lindsey and S.G. van d e r  Meulen, Informal  introduction to 
ALGOL 68, North Holland Publishing Company,  1971. 
[19] J.C. Boussard and J .J .  Duby (Eds.),  Rappor t  d 'Evalua t ion  ALGOL 68, 
Revue d ' Informat ique  et de Recherche Op~rationelle, B2, Paris ,  1970. 

0. Introduction 

0.1. Aims and principles of design 

a) In designing the Algorithmic Language  ALGOL 68, Working Group 
2.1 on ALGOL of the Internat ional  Federat ion for Informat ion  Process ing 
expresses  its belief in the value of a common p r o g r a m m i n g  language 
serving many  people in m a n y  countries.  

b) ALGOL 68 is designed to colhmunicate  a lgori thms,  to execute  them 
efficiently on a var ie ty  of different computers ,  and to aid in teaching them 
to students. 

c) This present  Revision of the language is made  in response to the 
directive of the parent  commit tee ,  I .F . I .P .  TC 2, to the Working Group to 
"keep continually under review exper ience obtained as a consequence of 
this [original} publication, so that  it m a y  institute such correct ions and 
revisions to the Report  as become desirable".  In deciding to bring forward 
this Revision at the present  t ime, the Working Group has tr ied to keep in 
balance the need to accumula te  the m a x i m u m  amount  of exper ience  of the 
problems which arose in the language originally defined, as opposed to the 
needs of the m a n y  t eams  at present  engaged in implementa t ion ,  for whom 
an early and simple resolution of those problems is impera t ive .  

d) Although the language as now revised differs in m a n y  ways  f rom 
that  defined originally, no a t t empt  has been m a d e  to introduce extensive 
new features and, it is believed, the revised language is still c lear ly  
recognizable as "ALGOL 68". The Working Group has  decided that  this 
present  revision should be "the final definition of the language ALGOL 68", 
and the hope is expressed  that  it will be possible for implementa t ions  at 
present  in prepara t ion  to be brought  into line with this s tandard.  
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I e) The Working Group may ,  f rom t ime to t ime, define sublanguages  
and extended capabili t ies,  by means  of Addenda to this Report ,  but these 
will a lways be built on the language here  defined as a f i rm foundation. 
Moreover,  var iants  more  in conformity  with natural  languages  other than 
English m a y  be developed. To coordinate these activities,  and to main ta in  
contact  with implemente rs  and users,  a Subcommit tee  on ALGOL 68 
Support has been established by the Working Group. 

f) The m e m b e r s  of the Group, influenced by severa l  yea r s  of 
experience with ALGOL 60 and other p r o g r a m m i n g  languages,  have 
always accepted the following as their  aims: 

0.1.1. Completeness and clar i ty of description 

The Group wishes to contribute to the solution of the problems of 
describing a language clear ly and completely.  The method adopted in this 
Report  is based upon a formalized two-level g r a m m a r ,  with the semant ics  
expressed in natural  language, but making  use of some careful ly  and 
precisely defined t e rms  and concepts. It is recognized, however,  that  this 
method m a y  be difficult for the uninitiated reader .  

0.1.2. Orthogonal design 

The number  of independent pr imit ive  concepts has been minimized in 
order that  the language be easy  to describe,  to learn, and to implement .  
On the other hand, these concepts have been applied "orthogonally" in 
order  to maximize  the express ive  power of the language while t rying to 
avoid deleterious superfluities. 

0.1.3. Security 

ALGOL 68 has been designed in such a way that  most  syntact ical  and 
many  other e r rors  can be detected easily before they lead to ca lami tous  
results. Fur thermore ,  the opportunities for making  such e r rors  are  grea t ly  
restricted.  

0.1.4. Efficiency 

ALGOL 68 allows the p r o g r a m m e r  to specify p ro g rams  which can be 
run efficiently on present-day computers  and yet do not require 
sophisticated and t ime-consuming optimization features  of a compiler:  see, 
e.g., 11.7. 

0.1.4.1. Static mode checking , 

The syntax of ALGOL 68 is such that  no mode checking during run 
t ime is necessary,  except  when the p r o g r a m m e r  declares  a [:NI'I'EI)- 
var iable  and then, in a conformity-clause,  explicitly demands  a check on 
its mode. 
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0.1.4.2. Mode-independent pars ing 

The syntax of ALGOL 68 is such that  the parsing of a p r o g r a m  can be 
per formed independently of the modes of its constituents. Moreover,  it can 
be determined in a finite number  of steps whether  an a rb i t r a ry  given 
sequence of symbols  is a p rogram.  

0.1.4.3. Independent compilation 

The syntax of ALGOL 68 is such that  the main-line p rog rams  and 
procedures can be compiled independently of one another  without loss of 
objec t -program efficiency provided that,  during each independent 
compilation, specification of the mode of all nonlocal quantit ies is 
provided: see the r e m a r k s  af ter  2.2.2.c. 

0.1.4.4. Loop optimization 

I tera t ive  processes a re  formulated in ALGOL 68 in such a way that  
s t ra ightforward application of well-known optimization techniques yields 
large gains during run t ime without excessive increase of compilat ion 
time. 

0.1.4.5. Representat ions 

Representat ions of ALGOL 68 symbols  have been chosen so that  the 
language m a y  be implemented  on computers  with a minimal  c h a r a c t e r  
set. At the s a m e  t ime implementers  m a y  take advan tage  of a l a rger  
cha rac te r  set, if it is available.  

0.2. Comparison with ALGOL 60 

a) ALGOL 68 is a language of wider applicabil i ty and power than 
ALGOL 60. Although influenced by the lessons learned f rom ALGOL 60, 
ALGOL 68 has not been designed as an expansion of ALGOL 60 but ra ther  
as a completely new language based on new insight into the essential ,  
fundamental  concepts of computing and a new description technique. 

b) The result  is that  the successful features  of ALGOL 60 r eappea r  in 
ALGOL 68 but as special  cases  of more  general  constructions,  along with 
completely new features.  It  is, therefore,  difficult to isolate differences 
between the two languages: however,  the following sections are  intended 
to give insight into some of the more  striking differences. 

0.2.1. Values in ALGOL 68 

a) Whereas ALGOL 60 has values of the types integer, real and 
Boo/can,  ALGOL 68 features  an infinity of "modes",  i.e., general izat ions of 
the concept "type". 
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b) Each plain value is ei ther  ar i thmet ic ,  i.e., of ' in tegral '  o r  'n'eal' 
mode and then it is of one of severa l  sizes, or it is of 'booh,an '  or 
' cha rac t e r '  or 'void'  mode. Machine words, considered as sequences of bits 
or of bytes, m a y  also be handled. 

c) In ALGOL 60, values can be composed into a r rays ,  whereas  in 
ALGOL 68, in addition to such "multiple" values, also "structured" values, 
composed of values of possibly different modes,  are  defined and 
manipulated.  An example  of a multiple value is the cha rac t e r  ~rray,  
which corresponds approx imate ly  to the ALGOL 60 string: examples  of 
s t ructured values a re  complex numbers  and symbolic  formulae.  

d) In ALGOL 68 the concept of a "name" is introduced, i.e., a value 
which is said to "refer  to" another  value: such a name-va lue  pair  
corresponds to the ALGOL 60 variable.  However,  a name  m a y  take the 
value position in a name-va lue  pair,  and thus chains of indirect addresses  
can be built up. 

e) The ALGOL 60 concept of procedure  body is general ized in ALGOL 
68 to the concept of "routine", which includes also the formal  pa rame te r s ,  
and which is itself a value and therefore  can be manipula ted  like any 
other value. 

f) In contrast  with plain values, the significance of a name  or r o u t i n e  
is, in general ,  dependent upon the existence of the s torage cells re fer red  to 
or accessed.  Therefore,  the use of names  and routines is subject  to some 
restrictions related to their  "scope". However,  the syntax of ALGOL 68 is 
such that  in m a n y  cases the check on scope can be made  at compile t ime, 
including all cases  where no use is made  of features  whose express ive  
power t ranscends that  of ALGOL 60. 

0.2.2. Declarat ions in ALGOL 68 

a) whe reas  ALGOL 60 has type declarat ions,  a r r a y  declarations.  
switch declarat ions and procedure  declarat ions,  ALGOL 68 features  the 
ident i ty -dec larat ion  whose express ive  power  includes all of these, zlnd 
more.  The identity-declaration, although theoret ical ly sufficient in itsell, is 
augmented  by the var iable-declara t ion for the convenience of the user. 

b) Moreover,  in ALGOL 68, a mode-declara t ion permi t s  the 
construction of a new mode f rom a l ready existing ones. In part icular ,  ~he 
modes of multiple values and of s t ructured values m a y  be defined in this 
way; in addition, a union of modes  m a y  be defined, allowing each value 
refer red  to by a given name  to be of any one of the uniting modes.  

c) Finally, in ALGOL 68, a pr ior i ty-declarat ion and an operation.  
declarat ion permi t  the introduction of new operators ,  the definition of their  
operation and the extension of the class of operands of, and the revision of 
the meaning of, a l ready established operators .  
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0.2.3. Dynamic storage allocation in ALGOL 68 

Whereas ALGOL 60 (apart from " o w n  dynamic arrays")  implies a 
"stack"-oriented storage-allocation regime, sufficient to cope with objects 
having nested lifetimes (an object created before another object being 
guaranteed not to become inaccessible before that second one), ALGOL 68 
provides, in addition, the ability to create and manipulate objects whose 
lifetimes are not so restricted. This ability implies the use of an additional 
area of storage, the "heap", in which garbage-collection techniques must 
be used. 

0.2.4. Collateral elaboration in ALGOL 68 

Whereas, in ALGOL 60, statements are "executed consecutively", in 
ALGOL 68, phrases are "elaborated serially" or "collaterally". This latter 
facility is conducive to more efficient object programs under many  
circumstances,  since it allows discretion to the implementer  to choose, in 
many cases, the order of elaboration of certain constructs or even, in 
some cases, whether they are to be elaborated at all. Thus the user who 
expects his "side effects" to take place in any well determined manner  will 
receive no support from this Report. Facilities for parallel programming,  
though restricted to the essentials in view of the none-too-advanced state 
of the art, have been introduced. 

0.2.5. Standard declarations in ALGOL 68 

The ALGOL 60 standard functions are all included in ALGOL 68 along 
with many other s tandard declarations. Amongst these are "environment 
enquiries", which make it possible to determine certain properties of an 
implementation, and "transput" declarations, which make it possible, at 
run time, to obtain data from and to deliver results to external media. 

0.2.6. Some particular constructions in ALGOL 68 

a) The ALGOL 60 concepts of block, compound statement  and 
parenthesized expression are unified in ALGOL 68 into the serial-clause. A 
serial-clause may be an expression and yield a value. Similarly, the 
ALGOL 68 assignation, which is a generalization of the ALGOL 60 
assignment statement,  may  be an expression and, as such, also yield a 
value. 

b) The ALGOL 60 concept of subscripting is generalized to ..le ALGOL 
68 concept of "indexing", which allows the selection not only ,ff '~ single 
element of an a r ray  but also of subarrays  with the same or any smaller  
dimensionality and with possibly altered bounds. 

c) ALGOL 68 provides row.displays and structure-displays, which 
serve to compose the multiple and structured values mentioned in 0.2.1.c 
from other, simpler, values. 

t ' i l .ALtULd M l X ~ V l ~ e t l  l X ~ l J O l - t  

d) The ALGOL 60 for s ta tement  is modified into a more concise and 
efficient loop-clause.  

e) The ALGOL 60 conditional expression and conditional statement,  
unified into a conditional-clause, are improved by requiring them to end 
with a closing symbol whereby the two alternative clauses admit  the same 
syntactic possibilities. Moreover, the conditional-clause is generalized into 
a case-clause,  which allows the efficient selection from an arbi t rary  
number of clauses depending on the value of an integral-expression, and a 
conformity-clause,  which allows a selection depending upon the actual 
mode of a value. 

f) Some less successful ALGOL 60 concepts, such as own quantities 
and integer labels, have not been included in ALGOL 68, and some 
concepts, like designational expressions and switches, do not appear  as 
such in ALGOL 68 but their expressive power is included in other, more 
general, constructions. 

0.3. Comparison with the language defined in 1968 

The more significant changes to the language are indicated in the 
sections which follow. The revised language will be described in a new 
edition of the "Informal Introduction to ALGOL 68" by C.H. Lindsey and 
S.G. van der Meulen, which accompanied the original Report. 

0.3.1. Casts and routine texts 

Routines without parameters  used to be constructed out of a cast in 
which the cast-of-symbol C) appeared. This construct  is now one of the 
forms of the new routine-text, which provides for procedures both with and 
without parameters .  A new form of the cast  has been provided which may  
be used in contexts previously not possible. Moreover, both void-casts and 
procedure-PARAMETY-yieiding-void-routine-texts must  now contain an 
explicit void-symbol. 

0.3.2. Extended ranges 

The new range which is established by the enquiry-clause of a choice- 
clause (which encompasses the old conditional- and case-clauses) or of a 
while.part now extends into the controlled serial-clause or do-part. 

0.3.3. Conformity clauses 

The conformity-relation and the case-conformity which was obtained by 
extension from it are now replaced by a new conformity-clause, which is a 
further example of the choice-clause mentioned above. 
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0.3.4. Modes of multiple values 

A new class of modes is introduced, for multiple values whose elements 
are themselves multiple values. Thus one may  now write the declarer  [ ] 
siring. 

Moreover, multiple values no longer have "states" to distinguish their 
flexibility. Instead, flexibility is now a property of those names which 
refer to multiple values whose size may  change, such names having 
distinctive modes of the form 'reference to flexible ROWS of MODE'. 

0.3.5. Identification of operators 

Not only may two operators,  related to each other by the modes of 
their operands, not be declared in the same range, as before, but now, if 
two such operators be declared in different reaches, any a t tempt  to 
identify from the inner reach the one in the outer reach will fail. This 
gives some benefit to the implementer  and removes a source of possible 
confusion to the user. 

0.3.6. Representations 

The manner  in which symbols for newly defined mode-indications and 
operators are to be represented is now more closely defined. Thus it is 
clear that the implementer  is to provide a special alphabet of bold-faced, 
or "stropped", marks  from which symbols  such as p e r s o n  m a y  be made, 
and it is also clear that operators such as >> are to be allowed. 

0.3.7. Standard prelude 

In order to ease the problems of implementers  who might wish to 
provide variants of the language suitable for environments where English 
is not spoken, there are no longer any field-selectors known to the user in 
the standard-prelude, with the exception of re and i m  of the mode ¢ompl. 
The identifiers and other indicators declared in the standard-prelude 
could, of course, easily be defined again in some library-prelude, but this 
would not have been possible in the case of field-selectors. 

0.3.8. Line length in transput 

The lines (and the pages also) of the "book" used during transput may  
now, at the discretion of the implementer,  be of varying lengths. This 
models more closely the actual behaviour of most operating systems and 
of devices such as teleprinters and paper-tape readers. 

0.3.9. Internal transput 

The transput routines, in addition to sending data to or from external 
media, may  now be associated with row-of-character-variables declared by 
the user. 
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0.3.10. Elaboration of formats 

The dynamic replicators contained in format-texts are now elaborated 
as and when they are encountered during the formatted transput  process. 
This should give an effect more natural to the user, and is easier to 
implement. 

0.3.11. Features removed 

Certain features, such as proceduring, gommas  and formal bounds, 
have not been included in the revision. 

0.4. Changes in the method of description 

In response to the directive from the Working Group "to make its study 
easier for the uninitiated reader", the Editors of this revision have 
rewritten the original Report almost entirely, using the same basic 
descriptional technique, but applying it in new ways. It is their hope that 
less "initiation" will now be necessary.  

The more significant changes in the descriptional technique are 
indicated below. 

0.4.1. Two-level g r a m m a r  

a) While the syntax is still described by a two-level g r a m m a r  of the 
type now widely known by the name "Van Wijngaarden", new techniques 
for using such g r a m m a r s  have been applied. In particular,  the entire 
identification process is now described in the syntax using the metanotion 
"NEXT", whose terminal metaproductions are capable of describing, and of 
passing on to the descendent constructs, all the declared information 
which is available at any part icular  node of the production tree. 

b) In addition, extensive use is made of "predicates". These are 
notions which are deliberately made to yield blind alleys when certain 
conditions are not met, and which yield empty terminal  productions 
otherwise. They have enabled the number  of syntax rules to be reduced in 
many cases, while at the same time making the g r a m m a r  easier to follow 
by reducing the number  of places where a continuation of a given rule 
might be found. 

c) It has thus been possible to remove all the "context conditions" 
contained in the original Report. 

0.4.2. Modes 

a) In the original Report, modes were protonotions of possibly infinite 
length. It was assumed that, knowing how an infinite mode had been 
obtained, it was decidable whether or not it was the same as ~ome other 
infinite m o d e .  However, counterexamples have come to light ,vhere this 
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was not so. Therefore,  it has been decided to r emove  all infinities f rom the 
process of producing a finite p r o g r a m  and, indeed, this can now be done in 
a finite number  of moves .  

b) A mode, essentially,  has to represent  a potentially infinite tree. To 
describe it as a protonotion of finite length requires the use of m a r k e r s  
{'MU definition's} and pointers back to those m a r k e r s  {'MU application's} 
within the protonotion. However,  a given infinite t ree can be "spelled" in 
m a n y  ways by this method,  and therefore  a mode becomes  an equivalence 
class comprised of all those equivalent  spellings of that  tree. The 
equivalence is defined in the syntax using the predicates  mentioned 
earlier.  

0.4.3. Extensions 

The need for m a n y  of the extensions given in the original Report  had 
been removed by language changes.  Some of the r ema inde r  had been a 
considerable source of confusion and surprises.  The opportunity has 
therefore been taken to remove  the extension as a descriptional 
mechanism,  all the fo rmer  extensions now being specified direct ly in the 
syntax. 

0.4.4. Semantics  

a) In order  to r emove  some ra ther  repetit ious phrases  f rom the 
semantics ,  certain technical t e rms  have  been revised and others 
introduced. The g r a m m a r ,  instead of producing a te rmina l  production 
directly, now does so by way of a production tree. The semant ics  is 
explained in t e rms  of production trees.  Paran'otions, which designate 
constructs,  m a y  now contain metanot ions  and "hypernotions" have been 
introduced in order  to designate protonotions. 

b) A model of the hypothetical  compute r  much more  closely related to 
a real one has been introduced. The elaborat ion of each construct  is now 
presumed to take place in an "environ" and, when a new range  is entered 
(and, in part icular ,  when a routine is called), a new "locale" is added to 
the environ. The locale corresponds to the new range  and, if recurs ive  
procedure calls arise, then there exist m a n y  locales corresponding to one 
s ame  routine. This supersedes  the method of "textual substitution" used 
before, and one consequence of this is that  the concept  of "protection" is 
no longer required. 

c) The concept of an "instance" of a value is no longer used. This 
simplifies cer ta in portions of the semant ics  where,  formerly,  a "new 
instance" had to be taken, the effects of which were  not a lways  c lear  to 
see. 
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0.4.5. Translat ions 

The original Report  has been t rans la ted  into various natural  languages.  
The t ransla tors  were not a lways able to adhere  str ict ly to the descriptional  
method, and so the opportunity has been taken to define more  clear ly and 
more  liberally certain descriptional features  which caused difficulties (see 
1.1.5). 

{True wisdom knows it must compr ise 
some nonsense as a compromise,  
lest fools should fail to f ind it wise. 
Grooks, Piet Hein.} 

P A R T I  

Pre l imina ry  definitions 

1. Language and metalanguage 

1.1. The method of description 

1.1.1. Introduction 

a) ALGOL 68 is a language in which a lgor i thms m a y  be formula ted  
for computers ,  i.e., for au toma ta  or for human  beings. It  is defined by this 
Report  in four stages,  the "syntax" {b}, the "semant ics"  {c}, the 
"representat ions" {d} and the "s tandard environment"  {e}. 

b) The syntax is a mechan i sm whereby all the constructs  of the 
language m a y  be produced. This mechan i sm proceeds as follows: 

(i) A set  of "hyper-rules" and a set of "metaproduct ion rules'" are  given 
{1.1.3.4, 1.1.3.3}, f rom which "production rules" m a y  be derived: 

(ii) A "construct  in the str ict  language" is a "production tree" {1.1.3.2.f} 
which m a y  be produced by the application of a subset  of those 
production rules; this production tree contains stat ic  information {i.e.. 
information known, at  "compile time"} concerning that  construct:  it is 
composed of a h ie rarchy  of descendent  production trees,  te rminat ing  at 
the lowest level in the "symbols";  with each production tree is 
associated a "nest" of propert ies,  declared in the levels above, which is 
passed on to the nests of its descendents; 

Off) A "program in the str ict  language" is a production tree for the notion 
'program' {2.2.1.a}. It  mus t  also sat isfy the "environment  condition" 
{10.1.2}. 
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e) The semant ics  ascr ibes  a "meaning" {2.1.4.1.a} to each construct  
{i.e., to each production tree} by defining the effect  (which may ,  however,  
be "undefined") of its "elaboration" {2.1.4.1}. This proceeds  as follows: 

(i) A dynamic  {i.e., run-time} tree of act ive "actions" is set  up {2.1.4}; 
typically, an action is the elaborat ion of .sgme production tree T in an 
"environ" consistent with the nest of T, and it m a y  bring about the 
elaboration of descendents  of T in suitable newly crea ted  descendent  
environs; 

(ii) The meaning  of a p r o g r a m  in the str ict  language is the effect  of its 
elaboration in the e m p t y  "pr imal  environ". 

d) A p rog ram in the str ict  language mus t  be represented  in some 
"representat ion language" {9.3.a} chosen by the implementer .  In most  
cases this will be the official " referenee language".  

(i) A p r og ram in a representa t ion language is obtained by replacing the 
symbols of a p r o g r a m  in the str ict  language by cer ta in  typographical  
m a r k s  {9.3}. 

(ii) Even the reference language allows considerable discretion to the 
implemente r  {9.4.a,b,c}. A rest r ic ted form of the reference  language in 
which such f reedom has not been exercised m a y  be t e rmed  the 
"canonical form" of the language,  and it is expected  that  this fo rm will 
be used in a lgor i thms intended for publication. 

(iii) The meaning  of a p r o g r a m  in a representa t ion  language  is the s a m e  
as that  of the p r o g r a m  {in the str ict  language} f rom which it was 
obtained. 

e) An algor i thm is expressed  by means  of a particular-program, 
which is considered to be embedded,  together  with the s tandard  
environment,  in a p rogram- tex t  {10.1.l.a}. The mean ing  of a particular- 
program {in the str ict  or a representa t ion language} is the meaning  of the 
program "akin" to that  p rogram- tex t  {10.1.2.a}. 

1.1.2. P r a g m a t i e s  

{Merely corroborative detail, intended to 
give artistic verisimilitude to an otherwise 
bald and unconvincing narrative. 
Mikado, W.S. Gilbert.} 

Scat tered throughout this Report  a re  "p ragmat ic"  r e m a r k s  included 
between the braces  "{" and "}". These a re  not par t  of the definition of the 
language but serve to help the reader  to unders tand the intentions and 
implications of the definitions and to find corresponding sections or rules. 

{Some of the p r a g m a t i c  r e m a r k s  contain examples  writ ten in the 
reference language.  In these examples ,  applied-indicators oeeur out of 
context from their  defining-indicators. Unless otherwise speeified, these 
occurrenees  identify those in the standard- or particular-preludes and the 

particular.postlude (10.2, 10.3, 10.5) (e.g., see 10.2.3.12.a for pi, 10.5.l.b for 
random and 10.5.2.a for stop) ,  or those in: 

int i, j, k, m, n; real a, b, x, y; bool p, q, overflow; char c; format f; 
bytes r; string s; bits t; c o m p l  w, z; re f  real  xx ,  y y :  un i on  (int, real) u i r ;  
proc void task1,  task2;  

[1 : n ]  r o a l x l ,  y l ;  f lex [1 : n ]  r e a l a l ;  I1 : m, 1 : n I rea lx2 ;  
[1: n , l  : n ]  r e a l y 2 ;  [ l : n J  i n t i l ;  I1: m, 1:  n J i n t i 2 ;  
[1 : n ]  c o m p l z l ;  

proc x or y = ref  real  : i f  r a n d o m  < .5 then x else y f i; 
proc ncos = ( int  i) real : cos (2 × p i  x i / n); 
proc ns in  = ( int  i) real : s in  (2 x p i  x i / n); 
proc f i n i s h  = vo id  : go to stop;  
mode  book = struct (string text, ref book next);  book d r a f t ;  
princeton: grenoble: st pierre de chartreuse: kootwijk:  warsaw:  

zandvoort:  ams terdam:  tirrenia: north berwick: munich:  
finish.} 

1.1.3. The syntax of the str ict  language 

1.1.3.1. Protonotions 

a) In the definition of the syntax of the strict  language,  a formal  
g r a m m a r  is used in which cer tain syntact ic  m a r k s  appear .  These m a y  be 
classified as follows: 
(i) "small  syntact ic  marks" ,  written, in this Report ,  as 
"a", "b", "c", "fl", "e", "f", "g", "h", 'T', "j", "k", 'T', "m", "n", "o", "p", 
"q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "C, ")": 
(ii) " large syntact ic  marks" ,  written, in this Report ,  as 
"A", "B", "C", "D", "E", "F", "G", "H", 'T ' ,  "J", "K", "I.", "M", "N", "()", 
"P", "Q", "R", "S", "T", "U", "V", "~'", "X", "~", "Z", "0", "1", "2", "3", 
"4", "5", "6", "7", "8", "9": 
(iii) "other syntact ic  marks" ,  written, in this Report,  as 
.... ("point"), "," ( "comma") ,  ":" Ceolon"), ";" ("semicolon"),  
..... ("apostrophe"),  "-" ("hyphen") and ..... ("aster isk") .  

{Note that  these m a r k s  a re  in another  type font than that  of the m a r k s  in 
this sentence.} 

b) A "protonotion" is a possibly emp ty  sequence of smal l  syntact ic  
marks .  

c) A "notion" is a {nonempty} protonotion for which a production rule 
can be derived {1.1.3.2.a, 1.1.3.4.d}. 

d) A "metanotion" is a {nonempty} sequenee of large syntact ic  m a r k s  
for which a metaproduct ion rule is given or c rea ted  {1.1.3.3.a}. 

e) A "hypernotion" is a possibly emp ty  sequence each of whose 
e lements  ei ther  is a small  syntact ic  m a r k  or is a metanotion.  
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{Thus the class of protonotions (b) is a subclass  of the class of 
hypernotions. Hypernotions are  used in metaproduct ion  rules (1.1.3.3), in 
hyper-rules (1.1.3.4), as paranotions (1.1.4.2) and, in their  own right, to 
"designate" cer tain classes of protonotions (1.1.4.1) .} 

{A "paranotion" is a hypernotion to which cer ta in  special  conventions 
and interpretat ions apply, as detailed in 1.1.4.2.} 

f) A "symbol" is a protonotion ending with ' symbol ' .  {Note that  the 
paranotion symbol  (9.1.1.h) designates  a par t icu lar  occurrence  of such a 
protonotion.} 

{Examples: 

b) 'variable  point" 
c) 'var iable  point n u m e r a l '  (8.1.2.1.b) 
d) "INTREAL" (1.2.1.C) 
e) ' re ference  to INTREAI.' 
f) ' le t ter  a symbol '  . 

Note that  the protonotion "twas brillig and the slithy roves'  is nei ther  a 
symbol  nor a notion, in that  it does not end with "symbol '  and no 
production rule can be derived for it. Likewise, "I .E~IS" and "CARR()I.I." 
are  not metanotions in that  no metaproduct ion rules a re  given for them.} 

g) In order  to distinguish the various usages  in the text  of this Repor t  
of the t e rms  defined above, the following conventions a re  adopted: 

(i) No distinguishing m a r k s  {quotes, apost rophes  or hyphens} are  used in 
production rules, metaproduct ion rules or hyper-rules;  

(ii) Metanotions, and hypernotions which stand for themse lves  {i.e., which 
do not designate protonotions}, a re  enclosed in quotes; 

(iii) Paranot ions  are  not enclosed in anything {but, as an aid to the 
reader ,  are  provided with hyphens where,  otherwise,  they would have 
been provided with blanks}; 

(iv) All other hypernotions {including protonotions} not covered above are  
enclosed in apostrophes  {in order  to indicate that  they designate some 
protonotion, as defined in 1.1.4.1.a}; 

(v) Typographical  display features,  such as blank space,  hyphen, and 
change to a new line or new page, a re  of no significance (but see al to 
9.4.d). 

{Examples: 
(i) LEAP :: local  ; heap ; pr imal ,  is a metaproduct ion rule: 

(ii) "INTREAL" is a metanot ion and designates  nothing but itself: 
(iii) reference.to-INTREAL-identifier,  which is not enclosed in apost rophes  

but is provided with hyphens, is a paranotion designating a construct  
(1.1.4.2.a) ; 

(iv) 'var iable  point '  is both a hypernotion and a protonotion; regarded  as 
a hypernotion, it designates  itself r egarded  as a protonotion; 

(v) ' re ference  to rea l '  means  the s ame  as ' referencetoreal ' .}  
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1.1.3.2. Production rules and production t rees  

a) The {derived} "production rules" {b} of the language are  those 
production rules which can be derived f rom the "hyper-rules" {1.1.3.4}, 
together with those specified informal ly  in 8.1.4.1.d and 9.2.1.d. 

b) A "production rule" consists of the following i tems, in order: 
an optional as ter i sk  ; 
a nonempty  protonotion N ; 
a colon ; 
a nonempty sequence of "al ternat ives"  separa ted  by semicolons ; 
a point. 

It is said to be a production rule "for" {the notion (1.1.3.1.c)} N. 
{The optional asterisk,  if present ,  signifies that  the notion is not used in 

other production rules, but is provided to facil i tate discussion in the 
semantics .  It also signifies that  that  notion m a y  be used as an 
"abstraction" (1.1.4.2.b) of one of its alternatives.} 

c) An "al ternative" is a nonempty  sequence of " m e m b e r s "  sepa ra ted  
by commas .  

d) A "member"  is e i ther  
(i) a notion {and m a y  then be said to be productive,  or nonterminal}, 

(ii) a symbol  {which is terminal}, 
(iii) empty,  or 
(iv) some other protonotion {for which no production rule can be derived}, 

which is then said to be a "blind alley". 
{For example ,  the m e m b e r  "reference to real  denotation" (derived 

f rom the hyper-rule 8.0.l.a) is a blind alley.} 

{Examples: 

b) exponent  part  : t imes ten to the p o w e r  choice, 
power  of ten. (8.1.2.1.g) • 

t imes ten to the power  cho ice  : 
t imes ten to the p o w e r  symbol  ; 
letter e symbol.  (8.1.2.1.h) 

c) t imes ten to the power  cho ice ,  p o w e r  of ten • 
t imes ten to the power  symbol  • 
let ter  e symbol  

d) t imes ten to the power  cho ice  • 
power  of ten • 
t imes ten to the p o w e r  symbol  * 
le t ter  e s y m b o l  } 

e) A "construct in the str ict  language" is any "production tree" {f} that  
m a y  be "produced" f rom a production rule of the language.  

f) A "production tree" T for a notion N, which is t e rmed  the "original" 
of T, is "produced" as follows: 



22 v a n  Wijngaarden,  et  al. 

• let P be some {derived} production rule for N; 
• a copy is taken of N; 
• a sequence of production trees,  the "direct descendents" of T, one 
produced for each nonempty  m e m b e r  of some a l te rnat ive  A of P, is 
a t tached to the copy; the order  of the sequence is the order  of those 
m e m b e r s  within A; 
• the copy of the original, together  with the a t tached direct  
descendents,  comprise  the production t ree  T. 
A "production tree" for a symbol  consists of a copy of that  symbol  {i.e., 

it consists of a symbol}. 

The " terminal  production" of a production t ree  T is a sequence 
consisting of the te rminal  productions of the direct  descendents  of T, taken 
in order .  

The " terminal  production" of a production t ree  consisting only of a 
symbol  is that  symbol.  

{Example: 

'exponeNt part" 
I I 

'times ten to the 'power of ten' 
power choice' [ I 

'plusminus 
option' 

I 
'plusminus' 

I 
'digit 

cypher '  
I 

"digit 
zero '  

'fixed ! point 
numeral' 

I 
'digit  cypher  

s e q u e n c e "  
I I 

'digit cypher  
s e q u e n c e "  

I 
'digit 
cypher '  

I 
"digit 

tWO' 

I 
' le t ter  e 'plus 'digit zero 'digit two 
symbol '  symbol '  symbol '  symbol '  } 

{The terminal  production of this t ree is the sequence of symbols  at 
• the bottom of the tree. In the reference language,  its representa t ion would 

be e+02.} 
A "terminal  production" of a notion is the te rmina l  production of some 

production tree for that  notion {thus there a re  m a n y  other te rminal  
productions of 'exponent part' besides the one shown}. 
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{The syntax of the str ict  language has been chosen in such a way that  a 
given sequence of symbols  which is a te rminal  production of some notion 
is so by virtue of a unique production tree,  or by a set  of production t rees  
which differ only in such a way that  the result  of their  e laborat ion is the 
s ame  (e.g., production t rees  derived f rom rules 3.2.1.e (balancing),  
1.3.l.d,e (predicates) and 6.7.1.a,b (choice of spelling of the mode of a 
coercend to be voided); see also 2.2.2.a). 

Therefore,  in pract ice,  te rminal  productions (or representa t ions  
thereof) are  used, in this Report  and elsewhere,  in place of production 
trees. Nevertheless,  it is real ly  the production t rees  in t e r m s  of which the 
elaboration of p rog rams  is defined by the semant ics  of this Report ,  which 
is concerned with explaining the meaning  of those constructs  whose 
originals are  the notion 'program'.} 

g) A production tree P is a "descendent" of a production tree Q if it is 
a direct  descendent  {f} ei ther  of O or of a descendent  of O. O is said to 
"contain" its descendents  and those descendents  a re  said to be "smaller"  
than O. {For example ,  the production t ree  

'plusminus option' 
I 

'plusminus' 
I 

'plus symbol '  

occurs as a descendent  in (and is contained within and is sma l l e r  than) 
the production tree for 'exponent part' given above.} 

h) A "visible" ("invisible") production tree is one whose te rminal  
production is not (is) empty .  

i) A descendent {g} t9 of a production tree T is "before" ("after") a 
descendent Y of T if the terminal  production {f} of U is before (after) that  
of V in the te rminal  production of T. The {partial} ordering of the 
descendents of T thus defined is t e rmed  the "textual order".  {In the 
example  production tree for "exponent part' (f), the production tree whose 
original is "plusminus' is before that  whose original is 'digit  two'.} 

j) A descendent  A of a production tree "follows" ("precedes") another  
descendent  B in some textual  order  if A is a f te r  (before) B in that  textual  
order,  and there exists no visible {h} descendent  C which comes  between A 
and B. {Thus " immediate ly"  following (preceding) is implied.} 

k) A production tree A is "akin" to a production tree B if the terminal  
production {f} of A is identical to the te rminal  production of B. 

1.1.3.3. Metaproduction rules and simple substitution 

{The metaproduct ion rules of the language form a set  of context-free 
g r a m m a r s  defining a "metalanguage".} 
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a) The "metaproduct ion rules" {b} of the language are  those given in 
the sections of this Report  whose heading begins with "Syntax", 
"Metasyntax" or "Metaproduction rules", together  with those obtained as 
follows: 

• for each given metaproduct ion  rule, whose metanot ion is M say, 
additional rules a re  c rea ted  each of which consists of a c o p y  of M 
followed by one of the large syntact ic  m a r k s  "0", " l" ,  "2", "3", "4", 
"5", "6", "7", "8" or "9", followed by two colons, another  copy of that  M 
and a point. 

{Thus, the metaproduct ion rule "MODEl :: MODE." is to be added.} 

b) A "metaproduct ion rule" consists of the following i tems,  in order:  
an optional as ter isk  ; 
a nonempty  sequence M of large syntact ic  m a r k s  ; 
two colons ; 
a nonempty  sequence of hypernotions {l.l.3.1.e} sepa ra ted  by 

semicolons ; 
a point. 

It is said to be a metaproduct ion rule "for" {the metanot ion (1.1.3.l.d)} M. 
{The asterisk,  if present,  signifies that  the metanot ion is not used in 

other metaproduct ion rules or in hyper-rules,  but is provided to facil i tate 
discussion in the semantics.} 

{Examples: 

INTREAL :: SIZETY integral  ; SIZETY real.  (1.2.1.C) • 
SIZETY :: long LONGSETY ; short  SHORTSETY ; EMPTY. (1.2.1.D)} 

c) A "terminal  metaproduct ion"  of a metanot ion M is any  protonotion 
which is a "simple substitute" {d} for one of the hypernot ions {on the right 
hand side} of the metaproduct ion rule for M. 

d) A protonotion P is a "simple substitute" for a hypernotion H if a 
copy of H can be t r ans formed  into a copy of P by replacing each 
metanotion M in the copy by some terminal  metaproduct ion  of M. 

{Thus two possible te rminal  metaproduct ions  (c) of "INTREAL" are  
' in tegral '  and 'long long rea l ' .  This is because  the hypernotions 'SIZETY 
integral' and 'SIZETY rea l '  (the hypernotions of the metaproduct ion  rule 
for "INTREAL") may ,  upon s imple substitution (d), give rise to ' in tegra l '  
and 'long long rea l ' ,  which, in turn, is because  " ' (the e m p t y  protonotion) 
and "long long' a re  te rminal  metaproduct ions  of "SIZETY".} 

{The metanot ions used in this Report  have been so chosen that  no 
concatenation of one or more  of them gives the s a m e  sequence of large 
syntact ic  m a r k s  as any other such concatenation.  Thus a source of 
possible ambigui ty  has been avoided. 

Although the recurs ive  nature  of some of the me taproduc t ion  rules 
makes  it possible to produce te rmina l  metaproduet ions  of a r b i t r a r y  length, 
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the length of the te rminal  metaproduct ions  necessar i ly  involved in the 
production of any given p r o g r a m  is finite.} 

1.1.3.4. Hyper-rules and consistent substitution 

a) The hyper-rules {b} of the language are  those given in the sections " 
of this Report  whose heading begins with "Syntax". 

b) A "hyper-rule" consists of the following i tems,  in order:  
an optional as ter isk  ; 
a nonempty hypernotion H ; 
a colon ; 
a nonempty  sequence of "hypera l te rna t ives"  s epa ra t ed  by 

semicolons ; 
a point. 

It  is said to be a hyper-rule  "for" {the hypernotion (l.l.3.1.e)} H. 

c) A "hyperal ternat ive"  is a nonempty  sequence of hypernotions 
separa ted  by commas .  

{Examples: 

b) NOTION sequence : 
NOTION ; NOTION, NOTION sequence.  (1.3.3.b) 

c) NOTION, NOTION sequence } 

d) A production rule PR {i.I.3.2.b} is derived f rom a hyper-rule  HR if a 
copy of HR can be t r ans fo rmed  into a copy of PR by replacing the set  of 
all the hypernotions in the copy by a "consistent substi tute" {e} for that  
set. 

e) A set of {one or more} protonotions PP is a "consistent substitute" 
for a corresponding set of hypernotions HH if a copy of HH can be 
t rans formed into a copy of PP by means  of the following step: 
Step: If the copy contains one or more  metanot ions  then, for some 

terminal  metaproduct ion T of one such metanot ion M, each occurrence  
of M in the copy is replaced by a copy of T and the Step is taken again. 

{See l . IA. I . a  for another  application of consistent  substitution.} 

{Applying this derivat ion process  to the hyper-rule  given above (c) m a y  
give rise to 

digit cypher sequence : 
digit cypher ; digit cypher, digit cypher sequence.  

which is therefore  a production rule of the language.  Note that  
digit cypher sequence : 

digit cypher ; digit cypher, letter b sequence.  
is not a production rule of the language,  since the r ep lacemen t  of the 
metanotion "NOTION" by one of its te rminal  metaproduct ions  mus t  be 
consistent throughout.} 
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{Since some metanot ions have an infinite number  of te rminal  
metaproduct ions ,  the number  of production rules which m a y  be der ived is 
infinite. The language is, however,  so designed that,  for the production of 
any p rog ram of finite length, oply a finite number  of those production 
rules is needed.} 

{f) The rules under  Syntax are  provided with "cross-references" to be 
interpreted as follows. 

Each hypernotion H of a hypera l te rna t ive  of a hyper-rule  A is followed 
by a reference to those hyper-rules  B whose der ived production rules are  
for notions which could be subst i tuted for that  H. Likewise, the 
hypernotions of each hyper-rule  B are  followed by a reference  back  to A. 
Alternatively, if H is to be replaced by a symbol,  then it is followed by a 
reference to its representa t ion in section 9.4.1. Moreover,  in some cases,  it 
is more  convenient to give a cross-reference to one metaproduct ion  rule 
ra ther  than to m a n y  hyper-rules,  and in these cases  the miss ing cross- 
references  will be found in the metaproduct ion  rule. 

Such a reference is, in principle, the section n u m b e r  followed by a 
let ter  indicating the line where the rule or representa t ion  appears ,  with 
the following conventions: 

(i) the references  whose section n u m b e r  is that  of the section in which 
they appea r  are  given first and their  section n u m b e r  is omitted; e.g., 
"8.2.1.a" appea r s  as "a" in section "8.2.1"; 

(if) all points and a final 1 a re  omitted, and 10 appea r s  as A; e.g., 
"8.2.1.a" appea r s  as "82a" elsewhere and "10.3.4.1.1.i" appea r s  as 
"A34 If"; 

(iii) a section number  which is the s ame  as that  of the preceding 
reference is omitted; e.g., "82a,82b,82c" appea r s  as "82a,b,c"; 

(iv) the presence of a blind alley der ived f rom that  hypernotion is 
indicated by "-"; e.g., in 8.0.1.a af ter  "MOLD denotation", since "MOLD" 
m a y  be replaced by, for example ,  'reference to real ' ,  but "reference to 
real denotation' is not a notion.} 

1.1.4. The semant ics  

The "meaning" of p rog ram s  {2.2.1.a} in the str ict  language is defined in 
the semant ics  by means  of sentences {in somewhat  formalized natura l  
language} which specify the "actions" to be car r ied  out during the 
"elaboration" {2.1.4.1} of those p rograms .  The "meaning" of a p r o g r a m  in a 
representat ion language is the s ame  as the meaning  of the p r o g r a m  in the 
str ict  language which it represents  {9.3}. 

{The semant ics  makes  extensive use of hypernotions and paranot ions  in 
order  to "designate",  respect ively,  protonotions and constructs .  The word 
"designate" should be understood in the sense that  the word "flamingo" 
m a y  "designate" any an imal  of the family  Phoenicopteridae.}  
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1.1.4.1. Hypernotions,  designation and envelopment  

{Hypernotions, when enclosed between apostrophes,  are  used to 
"designate" protonotions belonging to cer tain classes;  e.g., 'I,EAP" 
designates any of the protonotions "local', ' p r ima l '  and 'heap'.} 

a) Hypernotions standing in the text  of this Report ,  except  those in 
hyper-rules {1.1.3.4.b} or metaproduct ion rules {1.1.3.3.b}, "designate" any 
protonotions which m a y  be consistently substi tuted {1.1.3.4.e} for them,  the 
consistent substitution being applied over  all the hypernot ions contained in 
each complete  sub-section of the text  (a sub-section being one of the 
let tered sub-divisions, if any, or else the whole, of a numbered  section). 

{Thus "QUALITY TAX' is a hypernotion designating protonotions such 
as 'integral letter i', 'real letter x' ,  etc. If, in some par t icu la r  discussion, it 
in fact designates 'integral letter i ', then all occur rences  of "QUALITY" in 
that  subsection must ,  over  the span of that  discussion, designate  'integral' 
and all occurrences  of "TAX" mus t  designate ' le t ter  i'. I t  m a y  then be 
deduced f rom subsection 4.8.2.a that  in order,  for example ,  to "ascr ibe to 
an integral-defining-indicator-with-letter-i",  it is ' in tegral  let ter  i' that  mus t  
be "made  to access  V inside the locale".} 

Occasionally, where the context  c lear ly  so demands ,  consistent  
substitution m a y  be applied over  less than a section. {For example ,  in the 
introduction to section 2.1.1.2, there are  severa l  occurrences  of "'MOLD'", 
of which two are  stated to designate  specific (and different) protonotions 
spelled out in full, and of which others  occur  in the plural form " 'MOlD's",  
which is clearly intended to designate a set of different m e m b e r s  of the 
class of te rminal  metaproduct ions  of "MOLD".} 

b) If a protonotion (a hypernotion) P consists of the concatenation of 
the protonotions (hypernotions) A, B and C, where  A and G are  possibly 
empty ,  then P "contains" B at the position {in P} de te rmined  by the length 
of A. {Thus, ' abcdefcdgh '  contains 'cd '  at  its third and seventh positions.} 

c) A protonotion P1 "envelops" a protonotion P2 as specifically 
designated by a hypernotion H2 if P2, or some equivalent  {2.1.1.2.a} of it, is 
contained {b} at  some position within P1 but not, at  that  position, within 
any different {intermediate} protonotion P3 also contained in P1 such that  
H2 could also designate P3. 

{Thus the "MODE' enveloped by 'reference to real closed clause" is 
'reference to real' r a the r  than "real'; moreover ,  the mode (2.1.1.2.b) 
specified by struct (real a, struct (bool b, char c) d) envelops 'FIELD' just  
twice.} 

1.1.4.2. Paranot ions  

{In order to facil i tate discussion, in this Report ,  of constructs  with 
specified originals, the concept  .of a "paranotion" is introduced. A 
paranotion is a noun that  designates  constructs  (1.1.3.2.e): its meaning  is 
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not necessarily that found in a dictionary but can be construed from the 
rules which follow.} 

a) A "paranotion" P is a hypernotion {not between apostrophes} which 
is used, in the text of this Report, to "designate" any construct  whose 
original O satisfies the following: 

• P, regarded as a hypernotion {i.e., as if it had been enclosed in 
apostrophes}, designates {l.l.4.1.a} an "abstraction" {b} of O. 

{For example, the paranotion "fixed-point-numeral" could designate the 
construct represented by 02, since, had it been in apostrophes, it would 
have designated an abstraction of the notion 'fixed point numeral ' ,  which 
is the original of that construct. However, that same representation could 
also be described as a digit-cypher.sequence, and as such it would be a 
direct descendent of that fixed-point-numeral.} 

{As an aid to the reader  in distinguishing them from other 
hypernotions, paranotions are not enclosed between apostrophes and are 
provided with hyphens where, otherwise, they would have been provided 
with blanks.} 

The meaning of a paranotion to which the small syntactic mark  "s" has 
been appended is the same as if the letter "s" {which is in the same type 
font as the marks  in this sentence} had been appended instead. {Thus the 
fixed-point-numeral 02 may be said to contain two digit-cyphers, rather  
than two digit-cyphers.} Moreover, the "s" may  be inserted elsewhere than 
at the end if no ambiguity arises {e.g., "sources-for-MOI)lNE" means the 
same as "source-for.MOI)lNEs"}. 

An initial small syntactic mark  of a paranotion is often replaced by the 
corresponding large syntactic mark  {in order to improve readability, as at 
the start  of a sentence} without change of meaning {: e.g., "Identifier" 
means the same as "identifier"}. 

b) A protonotion P2 is an "abstraction" of a protonotion P1 if 
(i) P2 is an abstraction of a notion whose production rule begins with an 

asterisk and of which Pl is an alternative 
{e.g., "trimscript '  (5.3.2.1.h) is an abstraction of any of the 
notions designated by 'NEST t r immer ' ,  'NEST subscript '  and 
'NEST revised lower bound option'}, or 

(if) P1 envelops a protonotion ?3 which is designated by one of the 
"elidible hypernotions" listed in section c below, and ?2 is an 
abstraction of the protonotion consisting of ?1 without that enveloped 
P3 

{e.g., 'choice using boolean start' is an abstraction of the notions 
'choice using boolean brief start" and 'choice using boolean bold 
start' (by elision of a 'STYLE' from 9.1.1.a)}, or 
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(iii) P2 is equivalent to {2.1.1.2.a} Pl 
{e.g., 'bold begin symbol" 
symbol'}. 

is an abstraction of 'bold begin 

29 

{For an example invoking all three rules, it may  be observed that 
'union of real integral mode defining indicator '  is an abstraction of some 
'union of integral real mode  NEST defining identifier with letter a' 
(4.8.1.a). Note, however, that "choice using union of integral real mode 
brief start' is not an abstraction of the notion 'choice using union of 
integral real boolean mode brief start ' ,  because the 'boolean' that has 
apparently been elided is not an enveloped 'MOLD" of that notion.} 

c) The "elidible hypernotions" mentioned in section b above are the 
following: 

"STYLE" • "TALLY" • "LEAP" • "DEFIED" • "VICTAI." • 
"SORT" • "MOLD" • "NEST" • "REFETY routine" • "label" • 
"with TAX" • "with DECSETY LABSETY" • "of DECSET'~ I,ABSETY" • 
"defining LAYER". 

{Which one of several possible notions or symbols is the original of a 
construct designated by a given paranotion will be apparent  from the 
context in which that paranotion appears.  For  example, when speaking of 
the formal-declarer of an identity-declaration, if the identity-declaration is 
one whose terminal production (1.1.3.2.f) happens to be rot realx  = Ioc real, 
then the original of that formal-declarer  is some notion designated by 
' formal reference to real NEST declarer' .} 

{Since a paranotion designates a construct, all technical terms which 
are defined for constructs can be used with paranotions without formality.} 

d) If two paranotions P and Q designate, respectively, two constructs 
S and T, and if S is a descendent of T, then P is termed a "constituent" of 
Q unless there exists some {intermediate construct} U such that 

(i) S is a descendent of U, 
(if) U is a descendent of T, and 

(iii) either P or Q could {equally well} designate U. 

{Hence a (S1) is a constituent operand of the formula a x ( b + 2  r ( i+j) )  
(T), but b ($2) is not, since it is a descendent of an intermediate formula 
b + 2  I ( i+j)  (U), which is itself descended from T. Likewise, ( b + 2  T ( i+j) )  
is a constituent closed-clause of the formula T, but the closed-clause ( i+j )  
is not, because it is descended from an intermediate closed-clause. 
However, (i + j)  is a constituent integral-closed.clause of T, because the 
intermediate closed-clause is, in fact, a real-closed-clause. 
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l 
operand 

formula  
a x (b + 2 I (i + j))  

I 
I 

operand 
(b + 2 T (i + j))  

I 
(real-) c losed-c lause  

(b + 2 t (i + j))  
I 

formula  
b + 2  ! ( i + j )  

] 
! 

operand 
b 

I 
operand 
2 I ( i + j )  

I 
formula  

I I I 
operand operand 

2 ( i + j )  
I 

1.1.4.3. Undefined 

(integral-) c losed-c lause  
(i+j) 

a) If something is left "undefined" or is said to be "undefined", then 
this means  that  it is not defined by this Repor t  alone and that,  for its 
definition, information f rom outside this Report  has  to be taken into 
account. 

CA distinction mus t  be drawn between the yielding of an undefined 
value (whereupon elaborat ion continues with possibly unpredictable  
results) and the complete  undefinedness of the fur ther  elaboration.  The 
action to be taken in this la t ter  case  is at the discretion of the 
implementer ,  and m a y  be some form of continuation (but not necessar i ly  
the same  as any other implemente r ' s  continuation),  or some form of 
interruption (2.1.4.3.h) brought  about  by some run-t ime check.} 
b) If some condition is "required" to be satisfied during some 

elaboration then, if it is not so satisfied, the fur ther  e laborat ion is 
undefined. 

c) A "meaningful" p rog ram  is a p r o g r a m  {2.2.1.a} whose elaborat ion is 
defined by this Report.  

{Whether all p rograms ,  only par t i cu la r -p rograms ,  only meaningful  
programs,  or even only meaningful  pa r t i cu l a r -p rog rams  are  "ALGOL 66" 
programs  is a m a t t e r  for individual taste.} 

1.1.5. Translat ions and var ian ts  
a) The definitive version D of this Repor t  is writ ten in English. A 

translation T of this Repor t  into some other language is an acceptab le  
translation if: 
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• T defines the s a m e  set of production t rees  as D, except  that  
(i) the originals contained in each production t ree  of T m a y  be different 

protonotions obtained by some uniform translat ion of the corresponding 
originals contained in the corresponding production t ree  of D, and 

(if) descendents  of those production t rees  need not be the s a m e  if their  
originals are  predicates  [1.3.2}; 

• T defines the meaning  {2.1.4.1.a} of each of its p r o g r a m s  to be the s ame  
as that  of the corresponding p r o g r a m  defined by D: 

• T defines the s a m e  reference language [9.4} and the s a m e  s tandard  
environment  {10} as D; 
• T p r e s e r v e s ,  under  another  mode of expression,  the meaning  of each 
section of D except  that: 

(i) different syntact ic  m a r k s  {1.1.3.1.a} m a y  be used [with a 
correspondingly different metaproduct ion  rule for "AI,PHA" (1.3.I.B)}; 

(if) the method of derivation of the production rules [1.1.3.4} and their  
interpretat ion [1.1.3.2} m a y  be changed to suit the peculiari t ies of the 
par t icular  n a t u r a l  language {; e.g., in a highly inflected natura l  
language, it m a y  be necessa ry  to introduce some inflections into the 
hypernotions, for which changes  such as the following might  be 
required: 

1) additional means  for the creation of ext ra  metaproduct ion rules 
(1.1.3.3.a) ; 

2) a more  e laborate  definition of "consistent substitute" (1.1.3.4.e); 
3) a more  e laborate  definition of "equivalence" between 

protonotions (2.1.1.2.a) ; 
4) different inflections for paranotions (1.1.4.2.a)}; 

Off) some p ragmat i c  r e m a r k s  [1.1.2} m a y  be changed.  

b) A version of this Report  may ,  additionally, define a "var iant  of 
ALGOL 68" by providing: 

(i) additional or a l ternat ive  representa t ions  in the reference  language 
{9.4], 

(if) additional or a l ternat ive  rules for the notion "cllaracter glyph" 
{8.1.4.1.c} and for the metanot ions  "ABC" {9.4.2.1.L} and "STOP" 
{10.1.I.B}, 

(iii) additional or alternative declarations in the standard environment 
which must ,  however,  have  the s ame  meaning  as the ones provided in 
D: 

provided a lways that  such additional or a l ternat ive  i tems are  delineated in 
the text in such a way that  the original language,  as defined in D, is still 
defined therein. 

1.2. General  metaproduct ion rules 
{The reader  m a y  find it helpful to note that  a metanot ion ending in 

"ETY" always has "EMPTY" as one of the hypernotions on its r ight-hand 
side.} 
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1.2.1. Me tap roduc t ion  rules  of modes  

A) MODE :: PLAIN ; STOWED ; REF to MODE ; PRO{:EI)URE ; 
UNITED ; MU defini t ion of MODE ; MU appl ica t ion .  

B) PLAIN :: INTREAI, ; boolean ; c h a r a c t e r .  
C) INTREAL :: SIZETY integral ; SIZET~ real .  
D) SIZETY :: long I,()NGSEI"~ ; shor t  SII()IITSE'I 'Y ; EMPTY. 
E) LONGSETY :: long IA)NGSETY ; EMP'I'~. 
F) SHORTSETY :: shor t  SHORTSETY ; EMPTY. 
G) EMPTY :: . 
H) STOWEI) :: s t r u c t u r e d  with FIEIJ)S m o d e  ; 

FLEXETY ROWS of MODE. 
I) FIELI)S :: FIEIA) ; FIELI)S FIELD. 

J) FIELD :: MOI)E field TAG{942A}. 
K) FLEXETY :: f lexible  ; EMPTY. 
L) R O W S  : :  r o w  ; ROWS r o w .  

M) R E F  :: r e f e r e n c e  ; t r a n s i e n t  r e f e r e n c e .  

N) PROCEI)URE :: procedure I 'ARAMET~ yielding MOLD. 
O) PARAMETY :: with PARAMETERS ; EMPTY. 
P) PARAMETERS :: PARAMETER ; I 'ARAMETERS PARAMETER. 
Q) PARAMETER :: MODE parameter. 
R) MOlD :: MODE ; void. 
S) UNITED :: union of MOODS mode .  
T) MOODS :: MOOD ; MOOI)S MOOI). 
U) MOOD : : 

PLAIN ; STOWEI) ; r e f e r e n c e  to MODE ; PR()CEI)URE ; void. 
V) MU :: muTALI,Y.  
W) TALLY :: i ; TAIA.Y i. 

{The m e t a p r o d u c t i o n  rule  for "TAG" is g iven  in sec t ion  9.4.2.1. It 
suff ices  for the p re sen t  tha t  it p roduces  an a r b i t r a r i l y  l a rge  n u m b e r  of 
t e r m i n a l  metaproduc t ions .}  

1.2.2. Me tap roduc t ion  rules  a s soc i a t ed  with p h r a s e s  and coe rc ion  

A) EN(:I,OSEI) : : 
c losed ; co l l a t e r a l  ; pa ra l l e l  ; CHOICE{34A} ; loop. 

B) SOME :: SORT MOll) NEST. 
C) S O R T  :: s t r o n g  ; f i r m  ; m e e k  ; w e a k  ; sof t .  

1.2.3. Me tap roduc t ion  rules  a s soc i a t ed  with nests  

A) 
B) 
C) 
D) 
E) 

F) 
G) 

NEST :: LAYER ; NEST I,AYER. 
LAYER :: new I)ECSETY I,ABSETY. 
DECSETY :: I)ECS ; EMPTY. 
DECS :: DEC ; DECS DEC. 
DEC :: MODE TAG{942A} ; p r io r i ty  PRIO TAD{942F} ; 

MOlD TALLY TAB{942D} ; DUO TAD{942F} ; MONO TAM{942K}. 
PRIO :: i ; ii ; iii  ; iii  i ; iii ii ; iii iii ; iii iii i ; iii iii ii ; iii iii iii. 
MONO :: procedure with PARAMETER y ie ld ing  MOLD. 
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H) DUO :: p r o c e d u r e  wi th  I 'ARAMETERI PARAMETER2 
yie ld ing  MOID. 

I) LABSETY :: LABS ; EMPTY. 
J) LABS :: LAB ; LABS LAB. 
K) LAB :: label  TAG{942A}. 

{The m e t a p r o d u c t i o n  ru les  for "TAB", "TAI)" and "2"AM" a re  g iven  in 
sect ion 9.4.2.1. It suff ices  for the p r e s en t  tha t  e a c h  of t h e m  p roduces  an 
a r b i t r a r i l y  l a rge  n u m b e r  of t e r m i n a l  m e t a p r o d u c t i o n s ,  none of which  is a 
t e r m i n a l  m e t a p r o d u c t i o n  of "TAG".} 

{"Well, 's l i thy'  means ' l i the and s l i m y ' . . . .  
You see it's l ike a portmanteau - there are 
two meanings packed up into one word. "  
Th rough  the Looking-glass, Lewis Carrol l .}  

1.3. Gene ra l  hype r - ru le s  

{Predica tes  a r e  used in the syn t ax  to en fo rce  ce r t a i n  r e s t r i c t ions  on the 
product ion  t rees ,  such as tha t  e a c h  app l i ed - ind ica to r  should ident i fy  a 
un ique ly  d e t e r m i n e d  def in ing- ind ica tor .  A m o r e  m o d e s t  use is to r educe  
the n u m b e r  of hype r - ru le s  by g roup ing  s e v e r a l  s i m i l a r  c a se s  as 
a l t e r n a t i v e s  in one rule.  In these  cases  p r e d i c a t e s  a r e  used to tes t  which  
a l t e r n a t i v e  applies.} 

1.3.1. Syn tax  of g e n e r a l  p r e d i c a t e s  

A) NOTION :: ALPHA ; NOTION ALPHA. 
B) A L P H A : : a  ; b ; c  ; d ; e  ; f ; g ; h ; i ; j  ; k ; i ; m ; n  ; o ;  p ;  

q ; r ; s ; t ; u ; v ; w ; x ; y ; z .  
C) NOTETY :: NOTION ; EMPTY. 
D) THIN{; :: NOTION ; (NOTETYI)  NOTETY2 ; 

THIN{; (NOTETY 1) NOTETY2. 
E) WHETHER :: w h e r e  ; u n l e s s .  

a) w h e r e  t rue  : EMPTY. 
b) u n l e s s  f a l s e  : EMPTY. 
c) whe re  THINGI and THING2 : w h e r e  THINGI ,  w h e r e  THING2. 
d) w h e r e  THINGI or THING2 : w h e r e  T | i l N G I  ; w h e r e  THING2. 
e) unless  THINGI and THING2 : unless  THINGI  ; u n l e s s  THING2. 
f) unless  THINGI  or THING2 : unless  THINGI ,  unless  THING2. 

g) WHETHER (NOTETYI)  is (NOTETY2) : 
WHETHER (NOTETY I)  b e g i n s  w i t h  (NOTETY2){h,i,j} 

and  ( N O T E T Y 2 )  b e g i n s  w i t h  (NOTETYI) {h , i , j } ,  
h) W H E T H E R  (EMPTY) b e g i n s  w i t h  (NOTION){g , j }  : 

WHETHER false{b,-} .  
i) WHETHER (NOTETY) begins  with (EMPTY){g,j} : 

WHETHER true{a,-} .  
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j) WHETHER (ALPHAI NOTETYI) begins with 
(ALPHA2 NOTETY2){g,j,m} : 

WHETHER (ALPHAI) coincides with (ALPHA2) in 
(abcdefghijklmnopqrstuvwxyz){k,l,-} 

and (NOTETY I) begins with (NOTETY2){h,i,j}. 
k) where (ALPHA) coincides with (AI.PHA) in (NOTION){j} : 

where  true{a}. 
I) unless (ALPHAI) coincides with (ALPHA2) in (NOTION){j} : 

where CNOTION) contains (ALPIIAI NOTETY ALPHA2){m} 
or (NOTION) contains CALPHA2 NOTETY ALPHAI){m}. 

m) WHETHER (ALPHA NOTETY) contains (NOTION){I,m} : 
WHETHER (ALPHA NOTETY) begins with (NOTION){j} 

or (NOTETY) contains (NOTION){m,n}. 
n) WHETHER (EMPTY) contains (NOTION){m} : WHETHER false{b,-}. 

{The small  syntact ic  m a r k s  "(" and ")" are  used to ensure,  in a s imple 
way, the unambiguous application of these predicates.} 

1.3.2. The holding of predicates  

A "predicate" is a protonotion which begins with "where" or 'unless" 
{unified into 'WHETHER'}. For  a predicate  P, ei ther  one or more  
production t rees  m a y  be produced {1.1.3.2.f} {all of which are  then 
invisible}, in which case P "holds", or no production t ree  m a y  be produced 
{since each a t t empt  to produce one runs into blind alleys}, and then P 
"does not hold". 

{For example ,  the predicate  'where  (ab) is (ab)" holds. I ts  production 
tree m a y  be depicted thus: 

'where  (ab) is (ab)" 
I 

'where  (ab) beg ins  with (ab) and Cab) beg ins  with Cab)" 
I I I 

'where (ab) begins with (ab) '  "where (ab) begins with (ab)" 
(same as left branch)  

'where (a) coincides with (a) in (abc...z) and (b) begins with (b)' 
I 

I 
'where Ca) coincides with (a) in (abc...z)' 

I 
'where  true' 

[ 
'where (b) coincides with (b) in (abc...z)' 

I 
'where  true" 

I 
'where  (b) beg ins  with (b)" 

1 

I 
'where  () begins with ()' 

l 
'where  true' 
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If a predicate  holds, then its production tree a lways  t e rmina tes  via 
'where true '  or 'unless false ' .  If it does not hold, then, in general ,  the blind 
alleys are  'where false '  and 'unless t rue ' .  Although a lmost  all the hyper- 
rules concerned are  for hypernotions beginning with "WHETHER" and so 
provide, each t ime, production rules for pairs  of predicates  such as "where 
THINGI '  and "unless THINGI ' ,  this does not mean  that  in each such case 
one of the pair  mus t  hold. For  example ,  'where  digit four counts iii" 
(4.3.1.c) does not hold, but no ca re  has been taken to make  "unless digit 
four counts  iii' hold either, since there is no applicat ion for it in this 
Report.  

In the semantics ,  no meaning  is ascr ibed to constructs  whose originals 
are  predicates.  They serve purely syntact ical  purposes.} 

1.3.3. Syntax of general  constructions 

A) STYLE :: brief ; bold ; style TALLY.. 

a) NOTION option : NOTION ; EMPTY. 
b) NOTION sequence{b} : NOTION ; NOTION, NOTION sequence{b}. 
c) NOTION list{c} : 

NOTION ; NOTION, and also{94f} token, NOTION list{c}. 
d) NOTETY STYLE pack : 

STYLE begin{94f,-} token, NOTETY, STYLE end{94f,-} token. 
e) NOTION STYLE bracke t  : 

STYLE sub{94f,-} token, NOTION, STYI.E bus{94f,-} token. 
f) THINGI or a l ternat ively  THING2 : THINGI ; THING2. 

{It follows f rom this syntax that  production rules such as 
digit cypher  sequence : 

digit cypher  ; digit cypher ,  digit cypher  sequence. 
(which was used in the production of the example  in I.I.3.2.f, but for 
which no more  explicit hyper-rule  is given) a re  immedia te ly  available.  
Thus the number  of hyper-rules  actual ly  writ ten in this Report  has been 
reduced and those that  r emain  have, hopefully, been made  more  readable ,  
since these general  constructions a re  so worded as to suggest  what  their  
productions should be. 

For  this reason, cross-references  (I.I.3.4.f) to these rules have been 
replaced by more  helpful references;  e.g., in 8.1.1.I.b, instead of "digit 
c y p h e r  sequence{133b}", the more  helpful "digit cypher{c} sequence" is 
given. Likewise, references  within the general  construct ions themse lves  
have been restr ic ted to a bare  minimum.} 

2. The compute r  and the p r o g r a m  

The meaning  of a p r o g r a m  in the str ict  language is explained in t e rms  
of a hypothetical  compute r  which pe r fo rms  the set  of actions {2.1.4} which 
constitute the elaborat ion {2.1.4.1} of that  p rogram.  The compute r  deals 
with a set of "objects" {2.1.1}. 
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2.1. Terminology 

van Wijngaarden, et al. 

{"When I use a word,"  Humpty  Dumpty  said, in rather a 
scornfu l  tone, " i t  means just what  I choose it to mean - 
nei ther more nor less." 
Through  the Looking-glass, Lewis Carrol l . }  

2.1.1. Objects 

An "object" is a construct {1.1.3.2.e}, a "value" {2.1.1.l.a}, a "locale" 
{2.1.1.l.b}, an "environ" {2.1.1.1.c} or a "scene" {2.1.1.1.d}. 

{Constructs may  be classified as "external objects", since they 
correspond to the text of the program,  which, in a more realistic 
computer, would be compiled into some internal form in which it could 
operate upon the "internal objects", namely the values, the locales, the 
environs and the scenes. However, the hypothetical computer  has no need 
of a compilation phase, it being presumed able to examine the program 
and all of its descendent constructs at the same time as it is manipulating 
the internal objects.} 

2.1.1.1. Values, locales, environs and scenes 

a) A "value" is a "plain value" {2.1.3.1}, a "name" {2.1.3.2}, a "stowed 
value" (i.e., a "structured value" {2.1.3.3} or a "multiple value" {2.1.3.4}) or 
a "routine" {2.1.3.5}. 

{For example, a real number  is a plain value. A special font is used for 
values appearing in the text of this Report, thus: 3.14, true. This is not to 
be confused with the italic and bold fonts used for constructs. This same 
special font is also used for letters designating such things as constructs 
and protonotions.} 

b) A "locale" {is an internal object which} corresponds to some 
'DECSETY LABSETY" {1.2.3.C,I}. A "vacant  locale" is one for which that 
'DECSETY LABSETY" is 'EMPTY'. 

{Each 'QUALITY TAX' (4.8A.F,G) enveloped by that "I)ECSET~ 
LABSETY" corresponds to a QllALIT'¥-defining-indicator-with-TAX (i.e., to 
an identifier, operator or mode-indication) declared in the construct whose 
elaboration caused that locale to be created. Such a 'QIiAIA'I'~ TAX' may  
be made to "access" a value or a scene "inside" that locale (2.1.2.c). 

A locale may  be thought of as a number  of storage cells, into which 
such accessed objects are placed.} 

{The terminal metaproductions of the metanotions "I)EC", "l.AIt" and 
"FIELD" (or of the more frequently used "PtlOP", which includes them all) 
are all of the form "QUALITY' TAX'. These "properties" are used in the 
syntax and semantics concerned with nests and locales in order to 
associate, in a part icular  situation, some quality with that 'TAX'.} 
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c) An "environ" is either empty,  or is composed of an environ and a 
locale. 

{Hence, each environ is derived from a series of other environs, 
s temming ultimately from the empty "primal environ" in which the 
program is elaborated (2.2.2.a).} 

d) A "scene" S is an object which is composed of a construct C 
{1.1.3.2.e} and an environ E. C is said to be the construct,  and E the 
environ, "of" S. 

{Scenes may be accessed inside locales (2.1.2.c) by "LAB's or "DEC's 
arising from label.identifiers or from mode-indications, and they may  also 
be values (2.1.3.5).} 

2.1.1.2. Modes 

{Each value has an attribute, termed its "mode", which defines how 
that value relates to other values and which actions may  be applied to it. 
This attribute is described, or "spelled", by means of some "MOll}' 
(I.2.1.R) (thus there is a mode spelled "real', and there is a mode spelled 
'structured with real field letter r letter e real field letter i letter m 
mode') .  Since it is intended that the modes specified by the mode-  
indicat ions  a and b in 

mode a = struct ( rata b), 
mode b = struct (ref struct (rat b b) b) 

should in fact be the same mode, it is necessary that both the "MOLD' 
'mui definition of structured with reference to mui application 

field letter b mode'  
and the ' M O l l ) '  

'muii definition of structured with reference to s tructured with 
reference to muii application field letter b mode 
field letter b mode'  

(and indeed many others) should be alternative spellings of that same 
mode. Similarly, the mode specified by the declarer  union  (int, real) may 
be spelled as either *union of integral real mode" or "union of real integral 
mode' .  All those 'MOlD's which are spellings of one same mode are said to 
be "equivalent to" one another (a). 

Certain 'MOII)'s, such as ' reference to muiii application',  "reference to 
muiiii definition of reference to muiiii application',  'union of real reference 
to real mode' ,  and 's t ructured with integral field letter a real field letter a 
mode' ,  are ill formed (7A, 4.7.1.f, 4.8.1.c) and do not spell any mode. 

Although for most practical purposes a "mode" can be regarded as 
simply a 'MOll)', its rigorous definition therefore involves the whole class 
of 'MOlD's, equivalent to each other, any of which could describe it.} 

a) 'MOII)l '  {I.2.1.R} is "equivalent to" 'MOIl)2" if the predicate "where 
MOII)I equivalent MOIl)2" {7.3.1.a} holds {1.3.2}. 

{A well formed "MOll)" is always equivalent to itself: "union of inWgral 
real mode" is equivalent to 'union of real integral mode'.} 
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A protonotion P is "equivalent to" a protonotion Q if it is possible to 
t ransform a copy Pc of P into a copy Qc of Q in the following step: 
Step: If Pc is not identical to Qc, then some 'M()II)I '  contained in Pc, but 

not within any {larger} "MOll)2' contained in. Pc, is replaced by some 
equivalent 'MOll)', and the Step is taken again. 

{Thus 'union of integral real mode identifier' is equivalent to "union or real 
integral mode identifier'.} 

b) A "mode" is a class C of 'MOlD's such that each member  of C is 
equivalent {a} to each other member  of C and also to itself {in order to 
ensure well formedness}, but not to any 'MOII)I '  which is not a member,  of 
C. 

{However, it is possible (except when equivalence of rnodes is 
specifically under discussion) to discuss a mode as if it were simply a 
terminal metaproduction of "MOLD", by virtue of the abbreviation to be 
given in 2.1.5.f.} 

c) Each value is of one specific mode. 
{For example, the mode of the value 3.14 is "real'. However, there are 

no values whose mode begins with 'union or ,  ' t ransient  reference to' or 
'flexible R()~'S o r  (see 2.1.3.6).} 

2.1.1.3. Scopes 
{A value Y may  "refer to" (2.1.2.e), or be composed from (2.1.l.Ld~* 

another internal object O (e.g., a name may  refer to a value: a routm¢. 
which is a scene, is composed, in part, from an environ). Now the lifetime 
of the storage cells containing (2.1.3.2.a) or implied by (2.1.1.1.b) O may 
be limited (in order that they may  be recovered after  a certain time), and 
therefore it must  not be possible to preserve Y beyond that lifetime, for 
otherwise an at tempt to reach some no-longer-existent storage cell via Y 
might still be made. This restriction is expressed by saying that, if Y is to 
be "assigned" (5.2.1.2.b) to some name W, then the "scope" of W must  not 
be "older" than the scope of Y. Thus, the scope of Y is a measure  of the 
age of those storage cells, and hence of their lifetime.} 

a) Each value has one specific "scope" {which depends upon its mode 
or upon the manner  of its creation: the scope of a value is defined to be 
the same as that of some environ}. 

b) Each environ has one specific "scope". {The scope of each environ 
is "newer" (2.1.2.f) than that of the environ from which it is composed 
(2.1.1.1.c) .} 

{The scope of an environ is not to be confused with the scopes of the 
values accessed inside its locale. Rather,  the scope of an environ is used 
when defining the scope of scenes for which it is necessary (7.2.2.c) or of 
the yields of generators for which it is "local" (5.2.3.2.b). The scope of tin 
environ is defined relative (2.1.2.f) to the scope of some other environ, so 
that hierarchies of scopes are created depending ultimately upon the scope 
of the primal environ (2.2.2.a).} 
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2.1.2. Relationships 

a) Relationships either are "permanent",  i.e., independent of the 
program and of its elaboration, or actions may  cause them to "hold" or to 
cease to hold. Relationships may  also be "transitive"; i.e., if "*" is such a 
relationship and A*B and B*C hold, then A*C holds also. 

b) "To be the yield of" is a relationship between a value and an 
action, viz., the elaboration of a scene. This relationship is made to hold 
upon the completion of that elaboration {2.1.4.1.b}. 

c) "To access" is a relationship between a "PROP" {4.8.1.E} and a 
value or a scene V which may  hold "inside" some specified locale L {whose 
'DECSETY LABSETY' envelops 'PROP'}. This relationship is made to hold 
when "PROP' is "made to access" V inside L {3.5.2.Step 4, 4.8.2.a} and it 
then holds also between any 'PROPI '  equivalent to {2.1.1.2.a} 'PROP" and V 
inside L. 

d) The permanent  relationships between values are: "to be of the 
same mode as" {2.1.1.2.c}, "to be smaller  than", "to be widenable to", "to 
be lengthenable to" {2.1.3.1.e} and "to be equivalent to" {2.1.3.1.g}. If one of 
these relationships is defined at all for a given pair of values, then it 
either holds or does not hold permanently.  These relationships are all 
transitive. 

e) "To refer to" is a relationship between a "name" [2.t.3.2.a} N and 
some other value. This relationship is made to hold when N is "made to 
refer to" that value and ceases to hold when N is made to refer to some 
other value. 

f) There are three transitive relationships between scopes, viz., a 
scope A {2.1.1.3} may  be either "newer than", or "the same as" or "older 
than" a scope B. If A is newer than B, then B is older than A and vice- 
versa. If A is the same as B, then A is neither newer nor older than B {but 
the converse is not necessarily t rue ,  since the relationship is not defined at 
all for some pairs of scopes}. 

g) "To be a subname of" is a relationship between a name and a 
"stowed name" {2.1.3.2.b}. This relationship is made to hold when that 
stowed name is "endowed with subnames" {2.1.3.3.e, 2.1.3.4.g} or when it is 
"generated" {2.1.3.4.j,1}, and it continues to hold until that stowed name is 
endowed with a different set of subnames. 

2.1.3. Values 

2.1.3.1. Plain values 

a) A plain value is either an "arithmetic value", i.e., tin "integer" or a 
"real number", or is a "truth value" {f}, a "character"  {g} or a "void value" 
{hi. 
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b) An ar i thmet ic  value has a "size", i.e., an in teger  charac ter iz ing  the 
degree  of discr iminat ion with which it is kept in the computer .  

c) The mode of an in teger  or of a real  n u m b e r  of size n is, 
respectively,  some 'SIZET¥ integral '  or 'SIZETY rea l '  where, if n is 
positive (zero, negat ive) ,  that  'SIZET¥'  is n t imes ' long'  (is empty ,  is -n 
t imes "short ') .  

d) The number  of integers or of real  numbers  of a given size that  can 
be distinguished increases  (decreases) with that  size until a cer ta in  size is 
reached,  viz., the "number  of ex t ra  lengths" (minus the "number  of ext ra  
shorths") of integers  or of real  numbers ,  respect ively,  {10.2.l.a,b,d,e} a f te r  
which it is constant.  

{Taking Three as the subject to reason 
about- 
A convenient number to state- } 

e) For  the purpose of explaining the meaning  of the widening coercion 
and of the opera tors  declared in the s tandard-prelude,  the following 
propert ies  of a r i thmet ic  values a re  assumed:  

• for each pair  of integers  or of real  numbers  of the s a m e  size, the 
relationship "to be sma l l e r  than" is defined with its usual m a t h e m a t i c a l  
meaning  {10.2.3.3.a, 10.2.3.4.a}; 
• for each pa i r  of integers  of the s a m e  size, a third dist inguishable 
integer  of that  size m a y  exist, the first in teger  "minus" the other  
{10.2.3.3.g}; 

{We add Seven, and Ten, and then multiply 
out 
By One Thousand diminished by Eight. } 

• for each pair of real numbers of the same size, three distinguishable 
real numbers of that size may exist, the f irst real number "minus" 
("times", "divided by") the other one {10.2.3.4.g,l,m}; 
• in the foregoing, the t e rms  "minus",  "t imes" and "divided by" have  
their  usual m a t h e m a t i c a l  meaning  but, in the case  of real  numbers ,  
their  results are  obtained "in the sense of numer ica l  analysis",  i.e., by 
per forming  those operat ions on numbers  which m a y  deviate  slightly 
f rom the given ones {; this deviation is left undefined in this Report}: 

{The result we proceed to divide, as you 
see, 
By Ni'ne Hundred and Ninety and Two } 

• each integer of a given size is "widenable to" a real number close to 
it and of that same size {6.5}; 
• each integer (real number) of a given size can be "lengthened to" an 
integer (real number)  close to it whose size is g r e a t e r  by one 
{10.2.3.3.q, 10.2.3.4.n}. 

f) 
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A "truth value" is e i ther  "true" or "false". I ts  mode is "boolean'. 
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{Then subtract Seventeen, and the answer 
must be 
Exactly and perfectly true. 
The Hunting of the Snark, Lewis Carroll.} 

g) Each "character" is "equivalent" to a nonnegative integer of size 
zero, its "integral equivalent" {10.2.1.n}: this relationship is defined only to 
the extent that different characters have different integral equivalents, 
and that there exists a "largest integral equivalent" {10.2.1.p}. The mode of 
a character is "character'. 

h) The only "void value" is "empty". Its mode is 'void'. 
{The elaboration of a construct yields a void value when no more useful 

result is needed. Since the syntax does not provide for void-variables, void- 
identi ty-declarations or vo id-parameters ,  the p r o g r a m m e r  cannot make  
use of void values, except  those ar is ing f rom uniting (6.4).} 

i) The scope of a plain value is the scope of the pr imal  environ 
{2.2.2.a}. 

2.1.3.2. Names  

{What's in a name? that which we call a 
rose 
By any other name would smell as sweet .  
Romeo and Juliet, William Shakespeare.} 

a) A "name" is a value which can be "made  to re fe r  to" {d, 5.2.3.2.a, 
5.2.1.2.b} some other value, or which can be "nil" {and then refers  to no 
value}; moreover ,  for each mode beginning with ' r e fe rence  to', there  is 
exact ly  one nil name  of that  mode. 

A name  m a y  be "newly created"  {by the e laborat ion of a genera tor  
(5.2.3.2) or a rowed-to-FORM (6.6.2), when a stowed name  is endowed with 
subnames  (2.1.3.3.e, 2.1.3.4.g) and, possibly, when a name  is "generated" 
(2.1.3.4.j, l)}. The name  so crea ted  is different f rom all names  a l ready  in 
existence. 

{A name  m a y  be thought of as the address  of the s torage  cell or  cells, 
in the computer ,  used to contain the value re fe r red  to. The creat ion of a 
name implies the reservat ion of s torage  space  to hold that  value.} 

b) The mode of a name  N is some ' re fe rence  to MODE" and any value 
which is refer red  to by N mus t  be "acceptable  to" {2.1.3.6.d} that  "MOI)E'. 
If 'MODE' is some 'STOWED', then N is said to be a "stowed name".  

c) The scope of a name  is the scope of some specific environ {usually 
the "local environ" (5.2.3.2.b) of some generator}. The scope of a name  
which is nil is the scope of the pr imal  environ {2.2.2.a}. 
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d) If N is a stowed name referring to a s tructured (multiple) value Y 
[2.1.3.3, 2.1.3.4}, and if a subname {2.1.2.g] of N selected {2.1.3.3.e, 2.1.3.4.g} 
by a 'TAG' (an index) I is made  to refer to a {new} value X, then N is 
made to refer to a structured (multiple) value which is the same as Y 
except for its field (element) selected by I, which is {now made to be} ×. 

{For the mode of a subname, see 2.1.3.3.d and 2.1.3.4.f.} 

2.1.3.3. Structured values 

a) A "structured value" is composed of a sequence of other values, its 
"fields", each of which is "selected" [b} by a specific "TAG" {9.4.2.1.A}. {For 
the selection of a field by a field-selector, see 2.1.5.g.} 

{The ordering of the fields of a structured value is utilized in the 
semantics of structure.displays (3.3.2.b) and format-texts (10.3.4), and in 
straightening (10.3.2.3.c).} 

b) The mode of a structured value V is some 'structured with FIEIJ)S 
mode' .  If the n-th "FIELD' enveloped by that 'FIELDS' is some 'MODE field 
TAG', then the n-th field of Y is "selected" by "TAG" and is acceptable to 
{2.1.3.6.d} "MODE'. 

c) The scope of a structured value is the newest of the scopes of its 
fields. 

d) If the mode of a name N {referring to a s tructured value} is some 
'reference to structured with FIELDS mode' ,  and if the predicate "where 
MODE field TAG resides in FIELDS' holds {7.2.1.b,c}, then the mode of the 
subname of N selected {e} by "TAG' is ' reference to MODE'. 

e) When a name N which refers to a structured value V is "endowed 
with subnames" {e, 2.1.3.4.g, 4.4.2.b, 5.2.3.2.a}, then, 
For  each 'TAG' selecting a field F in V, 

• a new subname M is created of the same scope as N: 
• M is made to refer to F; 
• M is said to be the name "selected" by "TAG" in N: 
• if M is a stowed name {2.1.3.2.b}, then it is itself endowed with 
subnames {e, 2.1.3.4.g}. 

2.1.3.4. Multiple values 

a) A "multiple value" {of n dimensions} is composed of a "descriptor" 
and a sequence of other values, its "elements", each of which may  be 
"selected" by a specific n-tuple of integers, its "index". 

b) The "descriptor" is of the form 
((I  1, U l ) , ( I  2, u 2) . . . . .  (I n , Un)) 

whe re  each (li, ui) , i = 1 . . . . .  n, is a "bound p a i r "  of  i n tege rs  in  w h i c h  I. is 
I 

the i-th " l o w e r  bound"  and u. is the i - th " uppe r  bound" .  
I 
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C) If for any i, i = 1  . . . . .  n, u i < li, then the descriptor is said to be 

"flat" and there is one element, termed a "ghost element" {, and not 
selected by any index; see also 5.2.1.2.b}; otherwise, the number  of 
e lemen ts  is (u 1 - I  1 +  1) x (u 2 - 1 2 +  1) x ... x (u n - I  + 1) and each is 

n 
se lec ted by  a spec i f i c  i ndex  (r 1 . . . . .  r n) whe re  I.i <- r.i <± ui '  i = 1 . . . .  , n. 

d) The mode of a multiple value Y is some "R()~S of MOI)E', where 
that 'ROWS' is composed of as many  times "row" as there are bound pairs 
in the descriptor of Y and where each element of V is acceptable to 
[2.1.3.6.d] that 'MODE'. 

{For example, given [ ] un ion  (int, real) ruir  = (1, 2.0), the mode of the 
yield of ruir is 'row of union of integral real mode' ,  the mode of its first 
element is ' integral '  and that of its second element is "real'.} 

e) The scope of a multiple value is the newest of the scopes of its 
elements, if its descriptor is not flat, and, otherwise, is the scope of the 
primal environ {2.2.2.a}. 

f) A multiple value, of mode 'ROWS of MODE', may  be referred to 
either by a "flexible" name of mode ' reference to flexible R()~S o|' 
MODEl', or by a "fixed" name of mode ' reference to RO~S of MODEl" 
where [in either case} 'MODEl'  "deflexes" {2.1.3.6.b} to 'MODE'. 

[The difference implies a possible difference in the method whereby the 
value is stored in the computer.  The flexible case must allow a multiple 
value with different bounds to be assigned (5.2.1.2.b) to that name, 
whereas the fixed case can rely on the fact that those bounds will remain 
fixed during the lifetime of that name. Note that the "flexibility" is a 
property of the name: the underlying multiple value is the same value in 
both cases.} 

If the mode of a name N {referring to a multiple value} is some 
'reference to FLEXETY ROWS of MODE', then the mode of each subname 
of N is "reference to MODE'. 

g) When a name N which refers to a multiple value Y is "endowed 
with subnames" {g, 2.1.3.3.e, 4.4.2.b, 5.2.1.2.b, 5.2.3.2.a], then, 
For  each index selecting an element E of V, 

• a new subname M is created of the same scope as N: 
• M is made to refer to E; 
• M is said to be the name "selected" by that index in N: 
• if M is a stowed name [2.1.3.2.b}, then it is itself endowed with 
subnames {g, 2.1.3.3.e}. 

{In addition to the selection of an element (a) or a name (g) by means 
of an index, it is also possible to select a value, or to generate a new name 
referring to such a value, by means of a tr im (h,i,j) or a 'TA(;'  (k,ll. Both 
indexes and trims are used in the elaboration of slices (5.3.2.2).} 
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h) A "tr im" is an n-tuple, each  e l emen t  of which is e i ther  an in teger  
{corresponding to a subscript} or  a t r iplet  (I, u, d) {corresponding to a 
t r i m m e r  or  a revised. lower-bound-option},  such tha t  at  least  one of those 
e lements  is a t r iplet  {if all the e l ement s  a re  integers ,  then the n-tuple is an 
index (a)}. E a c h  e l emen t  of such a tr iplet  is e i ther  an in teger  or  is 
"absent". 

{A t r im (or an index) is yielded by the e labora t ion  of an indexer  
(5.3.2.2.b) .} 

i) The mult iple  value W {of m dimensions} "selected" by a t r im T in a 
mult iple  value V {of n dimensions,  1 <_ m <_ n} is d e t e r m i n e d  as follows: 

• Let  T be composed  of in tegers  and tr iplets  T., i = 1 . . . . .  n, of which ; 
m are  ac tua l ly  tr iplets;  let the j-th t r iplet  be (I.,j u.,] dj), j = 1 . . . . .  m: 

• W is composed  of 
(i) a desc r ip to r  (01 - d 1, u 1 - d l ) ,  (I 2 -  d 2, u 2 -  d 2) . . . . .  (Ira - dm, 

Um - din) )" 
(ii) e lements  of V, where  the e lement ,  if any,  se lected in W by an index 
(w 1 . . . . .  w m) {I i - d . j  <_w.j <_u.j-dj} is tha t  se lected in V by the index 

(v 1 . . . . .  v n) de t e rmined  as follows: 

For  i = 1 . . . . .  n, 
Case A: T. is an integer:  

! 

• v.  = T . :  
I I 

Case B: T.i is the j-th t r iplet  (Ij, uj, dj) of T: 

• v. = w. + d.. 

j) The name M "generated" by a t r im T f rom a name N which refers 
to a mult iple value V is a {fixed} name, of the same scope as N, {riot 
necessarily newly created} which refers to the mult ip le value W selected 
{i} by T in V. E a c h  s u b n a m e  of M, as  se lected by  an index Iw, is one of the 
{already existing} s u b n a m e s  of N, as  se lected by  an  index Iv, where  each  Iv 
is de te rmined  f rom T and the co r respond ing  Iw us ing the m e t h o d  given in 
the previous  sub-section.  

k) The mult iple  value  W "selected" by  a 'TAG'  in a mul t iple  va lue  V 
{each of whose e lements  is a s t ruc tu red  value} is composed  of 

(i) the desc r ip to r  of V, and 
(ii) the fields se lected by 'TAG'  in the e lements  of V, whe re  the e lement ,  

if any,  se lected in W by an index I is the field se lec ted  by  'TAG" in the 
e lement  of V selected by I. 

l) The n a m e  M "genera ted"  by  a 'TAG'  f r o m  a n a m e  N which re fe rs  
to a mult iple  value V {each of whose e l ement s  is a s t r uc tu r ed  value} is a 
{fixed} name ,  of the s a m e  scope as  N, {not neces sa r i l y  newly  created} 
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which refers  to the mult iple  value selected {k} by "TAG' in V. E a c h  
s u b n a m e  of M selected by an index I is the {already existing} n a m e  
selected {2.1.3.3.e} by 'TAG'  in the s u b n a m e  of N se lec ted  {g} by I. 

2.1.3.5. Rout ines  

a) A "routine" is a scene {2.1.1.1.d} composed  of a rout ine- text  
{5.4.1.1.a,b} toge ther  with an  envi ron  {2.1.1.1.c}. 

{A routine m a y  be "called" (5.4.3.2.b), whereupon  the unit of its routine- 
text is elaborated.} 

b) The mode  of a routine composed  of a PROCEDURE-rout ine-text  is 
'PROCEDURE'.  

c) The scope of a routine is the scope of its environ.  

2.1.3.6. Acceptabi l i ty  of values  

a) {There a re  no values  whose mode  begins with "union o r .  There  
exist  n a m e s  whose modes  begin with ' r e f e r ence  to union of ' ,  e.g., u in 
u n i o n  tint,  real) u ; .  Here,  however ,  u, whose mode  is "reference to union of 
in tegral  real  mode ' ,  refers  e i ther  to a value whose mode  is "integral '  or  to 
a value whose mode  is ' r ea l ' .  I t  is possible to d i scover  which of these 
si tuat ions obtains,  at  a given mo me n t ,  by  m e a n s  of a conformi ty -c lause  
(3.4.1.q) .} 

The mode  "MOLD' is "united f rom" the mode  'MOt)I)" if "MOLD' is some  
'union of MOOI)SETYI MOOD MOODSETY2 mode ' .  

b) {There a re  no values  whose mode  begins with "flexible'. There  exist  
flexible n a m e s  whose modes  begin with "reference to flexible ' ,  e.g., a /  in 
f lex  [1:  n ]  real a l ;  . Here  a l ,  whose mode  is ' r e f e r ence  to flexible row of 
rea l ' ,  re fers  to a mult iple  value whose mode  is ' row of rea l '  (see also 
2.1.3.4.f). In genera l ,  there  exist  va lues  only for those modes  obta inable  by 
"de flexing".} 

The mode  'MOIDl" "deflexes" to the mode  "MOll)2" if the p red ica te  
'where  MOIDI def lexes to MOID2" holds {4.7.l.a,b,c}. 

{The def lexing process  obtains  "MOID2' by r e m o v i n g  all ' f lexible 's  
conta ined at  positions in 'MOIDI" where  they  a re  not also conta ined  in any  
'REF to MOID3". Thus 

' s tructured wi th  flexible row of c h a r a c t e r  field le t ter  a m o d e ' ,  
which is not the mode  of any  value,  def lexes to 

' s tructured wi th  row of c h a r a c t e r  field let ter  a mode" 
which is therefore  the mode  of a value re fe rab le  to by a flexible n a m e  of 
mode  

' r e fe rence  to s tructured  wi th  flexible row of c h a r a c t e r  
field let ter  a m o d e ' .  

This mode  is a l r eady  the mode  of a n a m e  and  therefore  it cannot  be 
deflexed any  further.} 
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c) {There a r e  no names  whose mode begins with 'transient 
reference to'. 

The yield of a transient-reference-to-MODE-FORM is a " t ransient  name"  
of mode 'reference to MODE', but, there being no t ransient-reference-to-  
MODE-declarators in the language (4.6.1), the syntax  ensures  that  
t ransient  names  can never  be assigned, ascr ibed or yielded by the calling 
of a routine. 

E.g., x x  := a l  [i] is not an assignation because  x x  is not a reference-to- 
transient-reference. to-real- identif ier .  Transient  names  originate f rom the 
slicing, multiple selection or rowing of a flexible name.} 

d) A value of mode M1 is "acceptable  to" a mode  M2 if 
(i) M1 is the s a m e  as M2, or 

(ii) M2 is united {a} f rom M1 {thus the mode specified by union  (r~l ,  Int) 
accepts  values whose mode is that  specified by e i ther  reel or lot}, or 

(iii) M2 deflexes {b} to M1 {thus the mode  "flexible row of rea l '  (a mode  of 
which there a re  no values) accepts  values such as the yield of the 
actual-declarer fax  [1 : n} foal which is a value of mode  "row of real'}, 
o r  

(iv) M1 is some 'reference to MODE' and M2 is "transient reference  to 
MODE' {thus the mode 'transient reference  to real' accepts  values 
(such as the yield of a l  [i]) whose mode  is 'reference to real'}. 

{See 2.1.4.1.b for the acceptabi l i ty  of the yield of a scene.} 

2.1.4. Actions 

{Suit the action to the word, the word to 
the action. 
Hamlet, William Shakespeare.} 

2.1.4.1. Elaborat ion 

a) The "elaboration" of cer ta in scenes {those whose constructs  a re  
designated by cer ta in  paranotions} is specified in the sections of this 
Report  headed "Semantics",  which describe the sequence of "actions" 
which are  to be carr ied  out during the elaborat ion of each such scene. 

{Examples of actions which m a y  be specified are: 
• the causing to hold of relationships,  
• the creation of new names ,  and 
• the elaboration of other scenes.] 

The "meaning" of a scene is the effect  of the actions car r ied  out during 
its elaboration. Any of these actions or any  combinat ion thereof  m a y  be. 
replaced by any action or combination which causes  the s a m e  effect. 

b) The elaborat ion of a scene S m a y  "yield" a value. If the construct  
of S is a MOID-NOTION, then that  value is, unless otherwise specified, [of 
such a mode that  it is} acceptable  to {2.1.3.6.d) 'MOID'. 

{This rule m a k e s  it possible, in the semant ics ,  to discuss yields without 
explicitly prescr ibing their  modes.} 
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c) If the elaborat ion of some Construct A in some environ E is not 
otherwise specified in the semant ics  of this Report ,  and if B is the only 
direct  descendent  of A which needs elaborat ion {see below}, then the 
elaboration of A in E consists of the elaborat ion of B in E and the yield, if 
any, of A is the yield, if any, of B {; this au tomat ic  elaborat ion is t e rmed  
the "pre-elaboration" of A in E}. 

A construct  needs no elaborat ion if it is invisible {1.1.3.2.h}, if it is a 
symbol  {9.1.1.h}, or if its e laborat ion is not otherwise specified in the 
semant ics  of this Report  and none of its direct  descendents  needs 
elaboration.  

[Thus the elaboration of the reference. to . real .c losed-clause (3.l.l.a) 
(x := 3.14) is (and yields the s a m e  value as) the e laborat ion of its 
consti tuent reference. to-real-ser ial-clause (3.2.1.a) x := 3.14.] 

2.1.4.2. Serial and collateral  actions 

a) An action m a y  be "inseparable",  "serial" or "collateral".  A serial  or  
collateral  action consists of one or more  other actions, t e rmed  its "direct 
actions". An inseparable  action does not consist of other actions {; what  
actions are  inseparable  is left undefined by this Report}. 

b) A "descendent action" of another  action B is a direct  action ei ther  
of B, or of a descendent  action of B. 

c) An action A is the "direct parent"  of an action B if B is a direct  
action {a} of A. 

d) The direct  actions of a serial  action S take place one a f te r  the 
other; i.e., the completion 12.1.4.3.c,d} of a direct  action of S is followed by 
the initiation {2.1.4.3.b,c} of the next direct  action, if any, of S. {The 
elaboration of a scene, being in general  composed of a sequence of 
actions, is a serial  action.} 

e) The direct  actions of a collateral  action are  merged  in t ime; i.e., 
one of its descendent  inseparable  actions which, at  that  moment ,  is 
"active" {2.1.4.3.a} is chosen and carr ied  out, upon the complet ion {2.1.4.3.c} 
of which another  such action is chosen, and so on {until all a re  completed}. 

If two actions {collateral with each other} have been said to be 
"incompatible with" {10.2.4} each other, then [they shall not be merged;  
i.e.,} no descendent  inseparable  action of the one shall (then the one {if it 
is a l ready inseparable} shall not) be chosen if, at  that  moment ,  the other 
is act ive and one or more,  but not all, of its descendent  inseparable  
actions have a l ready been completed;  otherwise, the method of choice is 
left undefined in this Report .  

f) If one or more  scenes are  to be "elaborated collateral ly",  then this 
elaboration is the collateral  action consisting of the {merged} elaborat ion 
of those scenes. 
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2.1.4.3. Initiation, completion and termination 

a) An action is either "active" or "inactive". 
An action becomes active when it is "initiated" {b,c} or "resumed" {g} 

and it becomes inactive when it is "completed" {c,d}, "terminated" {e}, 
"halted" {f} or "interrupted" {h}. 

b) When a serial action is "initiated", then the first of its direct 
actions is initiated. When a collateral action is "initiated", then all of its 
direct actions are initiated. 

c) When an inseparable action is "initiated", it may  then be carried 
out {see 2.1.4.2.e}, whereupon it is "completed". 

d) A serial action is "completed" when its last direct action has been 
completed. A collateral action is "completed" when all of its direct act i .us 
have been completed. 

e) When an action A {whether serial or collateral] is " t e rmina t ed .  
then all of its direct actions {and hence all of its descendent actions} are 
terminated {whereupon another action may  be initiated in its place}. 
{Termination of an action is brought about by the elaboration of a jump 
(5.4.4.2) .} 

f) When an action is "halted", then all of its active direct actions land 
hence all of its active descendent actions} are halted. {An action may be 
halted during a "calling" of the routine yielded by the operator  down 
(10.2.4.d), whereupon it may  subsequently be resumed during a calling of 
the routine yielded by the operator up (10.2.4.e).} 

If, at any time, some action is halted and it is not descended from a 
"process" of a "parallel action" {10.2.4} of whose other process(es) there 
still exist descendent active inseparable actions, then the further 
elaboration is undefined. {Thus it is not defined that the elaboration of the 
collateral-clause in 

begin sema s e r g e i  = level O; 
(par begin (down sergei; print (pokrovsky)), skip end, 

(read (pokrovsky); up sergei)) 
a n d  

will ever be completed.} 

g) When an action A is "resumed", then those of its direct actions 
which had been halted, consequent upon the halting of A are resumed. 

h) An action may  be "interrupted" by an event [e.g., "overflow"] not 
specified by the semantics of this Report but caused by the computer  if ils 
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limitations {2.2.2.b} do not permit satisfactory elaboration. When an acli(m 
is interrupted, then all of its direct actions, and possibly its direct i)arem 
also, are interrupted. {Whether, after an interruption, that action is 
resumed, some other action is initiated or the elaboration of the program 
ends, is left undefined by this Report.] 

{The effect of the definitions given above is as follows: 
During the elaboration of a program (2.2.2.a) the elaboration of its 

closed-clause in the empty primal environ is active. At any given moment.  
the elaboration of one scene may  have called for the elaboration of some 
other scene or of several other scenes collaterally. If and when the 
elaboration of that other scene or scenes has been eoml)leted, the next 
step of the elaboration of the original scene is taken, and so on until it. in 
turn, is completed. 

It will be seen that all this is analogous to the calling (21' one subroutine 
by another; upon the completion of the execution of the called subroutim,, 
the execution of the calling subroutine is continued: the semantic  rules 
given in this Report for the elaboration of the various paranotions 
correspond to the texts of the subroutines; the semantic  rules may  even. 
in suitable circumstances,  invoke themselves recursively (but with a 
different construct or in a different environ on each occasion). 

Thus there exists, at each moment,  a tree of active actions descended 
(2.1.4.2.b) from the elaboration of the program.} 

2.1.5. Abbreviations 

{In order to avoid some long and turgid I)hrases which would otherwise 
have been necessary in the Semantics, certain abbreviations are used 
freely throughout the text of this Report.] 

a) The phrase "the A of B", where A and B arc paranotions, stands for 
"the A which is a direct descendent {1.1.3.2.f} of B". 

{This permits the abbreviation of "direct descendent of" to "of" or "ils", 
e.g., in the assignation (5.2.l.l.a) i := 1, i is "its" destination (or i is Ill(', 
or a, destination "of" the assignation i := 1), whereas i ix nol a (le.~tination 
of the serial-clause i := 1; j := 2 (although it is a constituent dcstinalion 
(1.1.4.2.d) of it).} 

b) The phrase "C in E", where C is a construct and E is an environ. 
stands for "the scene composed {2.l.l.l.d} of C and E". It is sometinms 
even further shortened to just "C" when it is clear which environ is meam. 

{Since the process of elaboration (2.1.4.l.a) may be al)plied only I[) 
scenes, this abbreviation appears most frequently in t'ornls such as "A hmp- 
clause C, in an environ El, is elaborated ... " (3.5.2) and "An assignation A 
is elaborated ... " (5.2.1.2.a, where it is tile elaboration of A in any 
appropriate environ that is being discussed).} 
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c) The phrase  "the yield of S", where S is a scene whose elaborat ion 
is not explicitly prescribed,  stands for "the yield obtained by initiating the 
elaboration of S and await ing its completion". 

{Thus the sentence (3.2.2.c): 
"W is the yield of that  unit:" 

(which also makes  use of the abbreviat ion defined in b above) is to be 
interpreted as meaning:  

"W is the yield obtained upon the completion of the elaboration.  
hereby initiated, of the scene composed of that  unit and the 
environ under  discussion:" .} 

d) The phrase  "the yields of S 1 . . . . .  Sn" where S 1 . . . . .  Sn are  scenes 

whose elaboration is not explicitly prescribed,  s tands for "the yields 
obtained by initiating the collateral  elaborat ion {2.1.4.2.f} of S 1 . . . . .  Sn and 

await ing its completion {which implies the complet ion of the elaborat ion of 
them all}". 

If some or all of S 1 . . . . .  S a re  described as being, in some environ, n 
certain constituents of some construct,  then their  yields are  to be 
considered as being taken in the textual  order  {1.1.3.2.i} of those 
constituents within that  construct.  

{Thus the sentence (3.3.2.b): 
"let V 1 . . . . .  V be the {collateral} yields of the consti tuent units of m 

C;" 
is to be interpreted as meaning:  

"let V 1 . . . . .  V be the respect ive yields obtained upon the m 
completion of the collateral  elaboration,  hereby  initiated, of the 
scenes composed of the consti tuent units of C, considered in their  
textual order,  together  with the environ in which C was being 
e labora ted;"  .} 

e) The phrase  "if A is B", where A and B are  hypernotions, s tands for 
"if A is equivalent {2.1.1.2.a} to B". 

{Thus, in "Case C: 'CHOICE' is some 'choice using L;NITEI)'" (3.4.2.b). 
it ma t t e r s  not whether  'CtlOICE' happens to begin with 'choice using union 
of' or with some "choice using Mti definition of union of'.} 

f) The phrase  "the mode is A", where A is a hypernotion, stands for 
"the mode {is a class of 'MOlD's which} includes A". 

{This permits  such shortened forms as "the mode is some 'structured 
with FIELI)S mode '" ,  "the mode begins with 'union of'", and "the mode 
envelops a 'FIEl.I) '": in general ,  a mode m a y  be specified by quoting just  
one of the 'MOll) 's  included in it.} 

g) The phrase  "the value selected (generated) by the field-selector F" 
stands for "if F is a fieid-selector-with-TA(; {4.8.1.f}, then the value selected 
{2.1.3.3.a,e, 2.1.3.4.k} (generated {2.1.3.4.1}) by that  'TA(; '" 

2.2. The p rog ram 
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2.2.1. Syntax 

a) p rog ram : s trong void new closed clause{31a}. 
{See also 10.13 

2.2.2. Semantics  
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{"1 can explain all the poems that ever were invented - 
and a good many that haven't been invented just yet." 
Through the Looking-glass, Lewis Carroll.} 

a) The elaborat ion of a program is the e laborat ion of its strong-void- 
new-closed-clause in an empty  environ {2.I.l.t.c} t e rmed  the "pr imal  
environ". 

{Although the purpose of this Report  is to define the mean ing  of a 
particular-program {10.t.t.g}, that  meaning  is establ ished only by first 
defining the meaning  of a program in which that  pa r t i cu la r -p rogram is 
embedded (10.1.2).} 

{In this Report,  the syntax says  which sequences of symbols  are  
terminal  productions of ' p r o g r a m ' ,  and the semant ics  which actions a re  
per formed by the compute r  when elaborat ing a p rogram.  Both syntax and 
semant ics  a re  recursive.  Though certain sequences of symbols  m a y  be 
terminal  productions of "program'  in more  than one way (see also 
l.l.3.2.f), this syntact ic  ambigui ty  does not lead to a semant ic  ambiguity.} 

b) In ALGOL 68, a specific syntax for constructs  is provided which, 
together  with its recurs ive  definition, makes  it possible to descr ibe and to 
distinguish between a rb i t ra r i ly  large production trees,  to distinguish 
between arbi t rar i ly  m a n y  different" values of a given mode (except cer ta in 
modes like "boolean' and 'void')  and to distinguish between a rb i t ra r i ly  
many  modes,  which allows a rb i t ra r i ly  m a n y  objects  to exist within the 
computer  and which allows the elaborat ion of a p r o g r a m  to involve an 
arb i t rar i ly  large, not necessar i ly  finite, n u mb e r  of actions. This is not 
mean t  to imply that  the notation of the objects in the compute r  is that  
used in this Report  nor that  it has the s ame  possibilities. It  is not a ssumed  
that  these two notations are  the s a m e  nor even that  a one-to-one 
correspondence exists between them: in fact, the set of different notations 
of objects of a given ca tegory  m a y  be finite. I t  is not a ssumed  that  the 
computer  can handle a rb i t r a ry  amounts  of presented information.  It  is not 
assumed that  the speed of the compute r  is sufficient to e labora te  a given 
program within a prescr ibed lapse of t ime, nor that  the n u mb er  of objects 
and relationships that  can be established is sufficient to e labora te  it at  all. 

c) A model of the hypothetical  computer ,  using a physical  machine,  is 
said to be an " implementat ion" of ALGOL 68 if it does not restr ic t  the use 
of the language in other respects  than those mentioned above. 
Fur thermore ,  if a language A is defined whose pa r t i cu l a r -p rog rams  are  
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also part icular-programs of a language B, and if each such part icular-  
p r o g r a m  for which a meaning is defined in A has the same defined 
meaning in B, then A is said to be a "sublanguage" of B, and B a 
"superlanguage" of A. 

{Thus a sublanguage of ALGOL 68 might be defined by omitting some 
part of the syntax, by omitting some part  of the standard-prelude, and/or  
by leaving undefined something which is defined in this Report, so as to 
enable more efficient solutions to certain classes of problem or to permit 
implementation on smaller  machines. 

Likewise, a superlanguage of ALGOL 68 might be defined by additions 
to the syntax, semantics or standard-prelude, so as to improve efficiency 
(by allowing the user to provide additional information) or to permit  the 
solution of problems not readily amenable to ALGOL 68.} 

A model is said to be an implementation of a sublanguage if it does not 
restrict the use of the sublanguage in other respects than those mentioned 
above. 

{See 9.3.c for the term "implementation of the reference language".} 

{A sequence of symbols which is not a par t icular-program but can be 
turned into one by deleting or inserting a certain number  of symbols and 
not a smaller number  could be regarded as a par t icular-program with that 
number of syntactical errors. Any par t icular-program that can be obtained 
by deleting or inserting that number  of symbols may  be termed a 
"possibly intended" part icular-program. Whether a par t icular-program or 
one of the possibly intended par t icular-programs has the effect its author 
in fact intended it to have is a mat te r  which falls outside this Report.} 

{In an implementation, the par t icular-program may  be "compiled", i.e., 
translated into an "object program" in the code of the physical machine. 
Under certain circumstances,  it may  be advantageous to compile par t s  of 
the part icular-program independently, e.g., parts  which are common to 
several part icular-programs.  If such a part  contains applied-indicators 
which identify defining-indicators not contained in that part, then 
compilation into an efficient object program may  be assured by preceding 
the part by a sequence of declarations containing those defining- 
indicators.} 

{The definition of specific sublanguages and also the specification of 
actions not definable by any p rogram (e.g., compilation or initiation of the 
elaboration) is not given in this Report. See, however, 9.2 for the 
suggested use of pragmats  to control such actions.} 

PART II 

Fundamental  Constructions 

{This part  presents the essential s tructure of programs:  
• the general rules for constructing them: 
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• the ways of defining indicators and their properties, at each new level 
of construction; 
• t h e  constructs available for p rogramming  primitive actions.} 

3~. Clauses  

{Clauses provide 
• a hierarchical structure for p r o g r a m s ,  
• the introduction of new ranges of definitions, 
• serial or collateral composition, parallelism, choices and loops.} 

3.0.1. Syntax 

a) *phrase  : SOME unit{32d} ; NEST dec lara t ion  of I)ECS{41a}. 
b) * SORT MODE expres s ion  : SORT MODE NEST UNIT{SA}. 
c) *statement : s trong void NEST UNIT{5A}. 
d) *MOID constant  : MOID NEST DEFIED ident i f ier  with  TAG{48a,b} ; 

MOID NEST denoter{80a}. 
e) * MODE var iab le  : 

r e f erence  to MODE NEST DEFIED ident i f ier  with  TAG{48a,b}. 
f) * NEST range  : SOID NEST ser ia l  c l a u s e  def ining LAYER{32a} ; 

SOID NEST c h o o s e r  CHOICE STYLE clause{34b} ; 
SOlD NEST c a s e  part  of cho i ce  us ing  UNITED{34i} ; 
NEST STYLE repeat ing  part with  DEC{35e} ; 
NEST STYLE while do part{35f} ; 
PROCEDURE NEST routine text{541a,b}. 

{NEST-ranges arise in the definition of "identification" (7.2.2.b).} 

3.0.2. Semantics 

A "nest" is a 'NEST'. The nest "of" a construct  is the 'NEST" enveloped 
by the original of that construct, but not by any 'def ining LAYER' 
contained in that original. 

{The nest of a construct carr ies  a record of all the declarations forming 
the environment in which that construct is to be interpreted. 

Those constructs which are contained in a range R, but not in any 
smaller  range contained within R, may  be said to comprise a "reach". All 
constructs in a given reach have the same nest, which is that of the 
immediately surrounding reach with the addition of one extra "LAYER'. 
The syntax ensures (3.2.1.b, 3.4.1.i,j,k, 3.5.1.e, 5.4.1.1.b) that each 'PROP' 
(4.8.1.E) or "property" in the extra 'LAYER' is matched by a defining. 
indicator  (4.8.1.a) contained in a definition in that reach.} 

3.1. Closed clauses 
{Closed.c lauses  are usually used to construct  units  f rom s e r i a l - c l a u s e s  

as, e.g., 
(real x; read (x); x) in 
(real x; read (x); x) + 3.14.} 
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3.1.1. Syntax 

A) SOlD :: SORT MOLD. 
B) PACK :: STYLE pack. 

a) SOlD NEST closed clause{22a,5D,551a,A341h,A349a} : 
SOlD NEST serial clause defining LAYER{32a} I'ACK. 

{LAYER :: new DECSET~ ' I.ABSETY.} 

{Example: 

a) beginx:=l; y:=2end } 

{The yield of a closed-clause is that of its constituent serial-clause, by 
way of pre-elaboration (2.1.4.1.c).} 

3.2. Serial clauses 

{The purposes of serial-clauses are 
• the construction of new ranges of definitions, and 
• the serial composition of actions. 

A serial.clause consists of a possibly empty sequence of unlabelled 
phrases, the last of which, if any, is a declaration, followed by a sequence 
of possibly labelled units. The phrases and the units are separated by go- 
on.tokens, viz., semicolons. Some of the units m ay  instead be separated by 
eompleters, viz., exits; after a completer,  the next unit must  be labelled so 
that it can be reached. The value of the final unit, or of a unit preceding 
an exit,  determines the value of the serial-clause. 

For  example, the following serial-clause yields true if and only if the 
vector a contains the integer 8: 

int n; read (n); 
[I : n] int a; read (a); 
for i to n do if a [i] = 8 then  go to  success  fl od; 
f a lse  e x i t  
success:  true .} 

3.2.1. 

a) 

b) 

Syntax 

SOlD NEST serial clause defining new PROPSETY{31a,34f,I,35h} : 
SOlD NEST new PROPSETY series with PROPSETY{b}. 

{Here PROPSETY :: DECSETY LABSETY.} 
SOlD NEST series with PROPSETY{a,b,34c} : 

strong void NEST unit{d}, go on{94f} token, 
SOlD NEST series with PROPSETY{b} ; 

where (PROPSETY) is (DECS DECSETY LABSETY), 
NEST declaration of DECS{41a}, go on{94f} token, 
SOlD NEST series with DECSETY LABSETY{b} ; 

where (PROPSETY) is (LAB LABSETY), 
NEST label definition of LAB{c}, 
SOlD NEST series with LABSETY{b} ; 

c) 

d) 

e) 

f) 

g) 

h) 
i) 
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where (PROPSETY) is (LAB LABSETY) 
and SOlD balances SOIDl and SOID2{e}, SOIDI NEST unit{d}, 

completion{94f} token, NEST label definition of LAB{c}, 
SOLD2 NEST series with LABSETY{b} ; 

where (PROPSETY) is (EMPTY), 
SOlD NEST unit{d}. 

NEST label definition of label TAG{b} : 
label NEST defining identifier with TAG{48a}, label{94f} token. 

SOME unit{b,33b,g,34i,35d,46m,n,52 lc,532e,541a,b,543c, 
A34Ab,c,d} : SOME UNIT{5A,-}. 

WHETHER SORT MOlD balances 
SORTI MOLD1 and SORT2 MOlD2{b,33b,34d,h} : 

WHETHER SORT balances SORTI and SORT2{f} 
and MOlD balances MOIDI and MOID2{g}. 

WHETHER SORT balances SORTI and SORT2{e,522a} : 
where (SORTI) is (strong), WHETHER (SORT2) is (SORT) ; 
where (SORT2) is (strong), WHETHER (SORTI) is (SORT). 

WHETHER MOlD balances MOIDI and MOID2{e} : 
where (MOIDI) is (MOLD2), WHETHER (MOLD) is (MOIDI) ; 
where (MOIDI) is (transient MOLD2), 

WHETHER (MOLD) is (MOIDI) ; 
where (MOLD2) is (transient MOIDI), 

WHETHER (MOLD) is (MOLD2). 

* SOlD unitary clause : SOlD NEST unit{d}. 
* establishing clause : 

SOlD NEST serial clause defining LAYER{32a} ; 
MODE NEST enquiry clause defining LAYER{34c}. 

{Examples: 

b) read (xl);  real s : = O; 
s u m : f o r i  t o n  d o ( x 1  [i] >0[ s + : = x l  [i]1 n o n p o s ) o d e x l t  
nonpos:  p r i n t  (s) • 

r e a l  s : = O; 
sum:  for i to n do  (x l  [i] > 01 s +: = x l  [i] t nonpos )  od  exi t  
nonpos:  p r i n t  (s) • 

sum:  for i t o n  d o ( x 1  [i] >0i s + : = x l [ i ] l n o n p o s )  o d  exi t  
nonpos:  p r i n t  (s) • 

for i t o n  d o ( x 1  [i] >0 i s + : = x l  [ i ] l n o n p o s )  od  ex i t  
nonpos:  p r i n t  (s) • 

p r i n t  (s) 
c) sum:  d) p r i n t  (s) } 

{Often, a series must  be "balanced" (3.2.1.e). For  remarks  concerning 
balancing, see 3.4.1.} 
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3.2.2. Semantics 

a) The yield of a serial-clause, in an environ E, is the yield of the 
elaboration of its series, or of any series elaborated "in its place" {5.4.4.2}, 
in the environ "established" {b} around E according to that serial-clause; it 
is required that the yield be not newer in scope than E. 

b) The environ E "established" 
• upon an environ El, possibly not specified, {which determines its 
scope,} 
• around an environ E2 {which determines its composition}, 
• according to a NOTlON-defining-new-PROPSETY C, possibly absent, 
{which prescribes its locale,} 
• with values Y 1 . . . . .  Y n, possibly absent, {which are possibly to be 

ascribed,} 
is determined as follows: 
• if E1 is not specified, then let E1 be E2: 
• E is newer in scope than E1 and is composed of E2 and a new locale 
corresponding to 'PROPSETY', if C is present, and to 'EMPTY' otherwise; 
Case A: C is an establishing-clause: 

For each constituent mode-definition hi, if any, of C, 
• the scene composed of 
(i) the actual-declarer of M, and 
(ii) the environ necessary for {7.2.2.c} that actual-declarer  in E, 
is ascribed in E to the mode-indication of M: 

For  each constituent label.definition L, if any, of C, 
• the scene composed of 
(i) the series of which L is a direct descendent, and 
(ii) the environ E, 
is ascribed in E to the label-identifier of L: 

If each 'PROP' enveloped by 'PROPSETY' is some "DYADIC TAD" or 
'label TAG', 

then E is said to be "nonlocal" {see 5.2.3.2.b}; 
Case B: G is a dec lara t ive ,  a for-part or a specification: 

For  i= 1 . . . . .  n, where n is the number  of 'DEC's enveloped by 
'PROPSETY', 
• Y. is ascribed {4.8.2.a} in E to the i-th constituent defining- 

I 

identifier, if any, of G and, otherwise {in the case of an invisible for- 
part}, to an integral-defining-indicator.with-letter-aleph; 

If C is a for-part or a specification, 
then E is nonlocal. 

{Other cases, i.e., when C is absent: 
• E is local (see 5.2.3.2.b), but not further defined.} 

c) The yield W of a series C is determined as follows: 
If C contains a direct descendent unit which is not followed by a go-on- 

token,  
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then 
• W is the yield of that unit; 

otherwise, 
• the declaration or the unit, if any, of C is elaborated; 
• W is the yield of the series of C. 

{See also 5.4.4.2.Case A.} 

3.3. Collateral and parallel clauses 

{Collateral-clauses allow an arb i t rary  merging of s t reams of actions. 
Parallel.clauses provide, moreover,  levels of coordination for the 
synchronization (10.2.4) of that merging. 

A collateral- or parallel-clause consists of a sequence of units separated 
by and-also-symbols (viz., ","), and is enclosed by parentheses or by a 
begin-end pair; a parallel-clause begins moreover  with par. 

Collateral-clauses, but not parallel-clauses, m a y  yield stowed values 
composed from the yields of the constituent units. 
Examples of collateral.clauses yielding stowed values: 

[ ] int q = (1, 4, 9, 16, 25); 
struct (int price, string category) bike := (150, "sport"). 

Example of a parallel-clause which synchronizes eating and speaking: 
pro¢ void eat, speak; soma mouth  = level 1; 
par begin 

do 
down mouth;  
eat; 
up mou th  

od, 
do 

down mouth;  
speak; 
up mou th  

od 
end .} 

3.3.1. Syntax 
a) strong void NEST collateral clause{5D,551a} : 

strong void NEST joined portrait{b} PACK. 
b) SOlD NEST joined portrait{a,b,c,d,34g} : 

where SOlD balances SOIDI and SOlD2{32e}, 
SOIDI NEST unit{32d}, and also{94f} token,  
SOLD2 NEST unit{32d} 

or alternatively SOLD2 NEST joined portrait{b}. 
c) strong void NEST parallel clause{5D,551a} : 

parallel{94f} token, strong void NEST joined portrait{b} PACK. 
d) strong ROWS of MODE NEST collateral clause{5D,551a} : 

where (ROWS) is (row), 
s trong MODE NEST joined portrait{b} PACK ; 
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where (ROWS) is (row ROWSI), 
strong ROWSI of MODE NEST joined portrait{b} PACK ; 

EMPTY PACK. 
e) strong structured with 

FIELDS FIELD mode  NEST collateral  clause{5D,551a} : 
NEST FIELDS FIELD portrait{f} PACK. 

f) NEST FIELDS FIELD portrait{e,f} : 
NEST FIELDS portrait{f ,g}, and also{94f} token, 

NEST FIELD portrait{g}. 
{FIELD :: MODE field TAG.} 

g) NEST MODE field TAG portrait{f} : s trong MODE NEST unit{32d}. 

h) *structure display : strong structured with 
FIELDS FIELD mode  NEST col lateral  clause{e}. 

i) * row display : strong ROWS of MODE NEST col lateral  clause{d}. 
j) * display : s trong STOWED NEST collateral  clause{d,e}. 
k) *vacuum : EMPTY PACK. 

{Examples: 

a) ( x : = l , y : = 2 )  b) x : = l , y : = 2  
c) p a r  (task1, task2) d) (1, 2) (in [ ] real (1, 2)) 
e) (1, 2) (in compl  (1, 2)) f) 1, 2 
g) 1} 

{Structure-displays mus t  contain at least  two FIELD-portraits,  for, 
otherwise, in the reach of 

m o d e  m = struct (ref m m); m nobuo, yoneda;,  
the assignation nobuo := (yoneda) would be syntact ical ly  ambiguous  and 
could produce different effects; however,  m of  nobuo := yoneda  is 
unambiguous.  

Row-displays contain zero, two or more  consti tuent units. I t  is also 
possible to present  a single value as a multiple value, e.g., [1: 1] int v := 
123, but this uses a coercion known as rowing (6.6).} 

3.3.2. Semantics  

a) The elaboration of a void-collateral-clause or void-paral lel-clause 
consists of the collateral  e laborat ion of its consti tuent units and yields 
e m p t y .  

b) The yield W of a STOWED.collateral-clause C is de te rmined  as 
follows: 
If the direct  descendent  of C is a vacuum,  
then {'STOWED' is some "ROWS of MODE' and} each  bound pa i r  in the 

descr iptor  of W is (1, 0) {and it has one ghost e lement  whose value is 
irrelevant}; 

otherwise, 
• let V 1 . . . .  V be the {collateral} yields of the consti tuent units of C; 

' m 
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Case A: 'STOWED' is some "structured with FIELDS mode': 
• the fields of W, taken in order,  a re  V 1 . . . . .  Vm; 

Case B: 'STOWED' is some 'row of MODEl' :  
• W is composed of 
(i) a descr iptor  ((1,m)),  
(ii) V 1 . . . . .  Vm; 

F o r  i = 1, ... , m,  

• the e lement  selected by the index (i) in W is Vi; 
Case C: 'STOWED' is some 'row ROWS of MODE2": 

• it is required that  the descr iptors  of V 1 . . . . .  V be identical; 
rn 

• let the descr iptor  of {say} V 1 be (01, Ul) . . . . .  (In, Un)) ; 

• W is composed of 
(i) a descr iptor  ((1, m), (11, Ul) . . . . .  (in, Un)) ; 

(ii) the e lements  of V 1 . . . . .  Vm; 

For  i = 1 . . . . .  m, 
• the e lement  selected by an index (i, i I . . . . .  i n) in W is that  

selected by 01 . . . . .  i n) in V.. 
I 

[Note that  in [ , ,  ] char block = Cabc", "def"), the descr ip tor  of the three- 
dimensional yield W will be ((1, 2), (1, 1), (1, 3)), since the units "abc" 
and "def" are  first  rowed (6.6), so that  V 1 and V 2 have  descr iptors  ((1, 1), 
(1, 3 ) ) . }  
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3.4. Choice clauses 

{Choice-clauses enable a dynamic  choice to be made  among  different 
paths in a computat ion.  The choice among  the a l te rnat ives  (the in.CHOICE. 
and the out-CHOICE-clause) is de termined by the success or  failure of a 
test  on a truth value, on an integer  or on a mode. The value under  test  is 
computed by an enquiry-clause before the choice is made .  

A choice-using-boolean-clause (or conditional.clause) is of the form 
(x> 0J xJ 0) in the "brief" style, or 
if x > 0 then  x e l s e  0 fl in the "bold" style; 

x > 0 is the enquiry-clause,  then  x is the in-CHOICE-clause and e l s e  0 is the 
out-CHOICE-clause; all three m a y  have  the syntact ical  s t ruc ture  of a 
series, because all choice-clauses a re  well closed. A choice-using-boolean. 
clause m a y  also be reduced to 

( x<  O [ x : = - x )  or 
if x < 0 then  x := - x  fl; 

the omit ted out-CHOICE-clause is then understood to be an elsesk ip .  On the 
other hand, the choice can be re i tera ted by writing 

(x>O[ l + x [ :  x< O[ 1 - x l  1)  or 
i f  x > 0 t h e n  i + x e l i f  x < 0 t h e n  i - x e l s e  1 f l, 
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and so on; this is to be understood as 
(x >O[ l + x[ (x < OI 1 - x  I i)). 

CASE-clauses, which define choices depending on an integer or on a 
mode, are different in that the in-CASE-clause is further decomposed into 
units. The general pattern is 

( - - - { - - - ,  .... - - - I - - - )  o r  
case - - -  i n  - - - ,  . . . ,  - - -  o u t  - - -  esac. 

The choice may  also be reiterated by use of ouse. 
In a choice-using-integral-clause (or ease-clause), the parts are simply 

units and there must  be at least two of them; the choice among the units 
follows their textual ordering. 
Example:  

proc void work, relax, enjoy; 
c a s e  int day; read (day); day 
in work, work, work, work, work, relax, enjoy 
out print ((day, "is not in the week")) 
esac. 

In a choice-using-UNITED-clause (or conformity-clause),  which tests 
modes, each case-part-of-CHOICE is of the form (declarer identifier): unit 
or (declarer): unit. The mode specified by the declarer  is compared with 
the mode of the value under test; the identifier, if present, is available 
inside the unit to access that value, with the full security of syntactical  
mode checking. The 'UNITED' mode provides the required freedom for the 
mode of the value under test; moreover,  that 'UNITED' mode must  contain 
the mode of each specification for, otherwise, the corresponding case-part- 
of-CHOICE could never be chosen. 
Example: 

'mode boy = struct ( in t  age,  rea l  w e i g h t ) ,  
• m o d e  g i r l  = s t r u c t  ( i n t  age,  rea l  b e a u t y ) ;  

p r o c  u n i o n  (boy ,  g i r l )  n e w b o r n ;  
case newborn i n  

(boy john): print (weight of john), 
(girl mary): print (beauty of mary) 

esac. } 
{The flowers that bloom in the spring, 
Tra la, 
Have nothing to do with the case. 
Mikado, W.S. Gilbert.} 

{The hierarchy of ranges in conditional-clauses is illustrated by 

i f  
then else J 

I I . I I 
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and similarly for the other kinds of choice. Thus the nest and the environ 
of the enquiry-clause remain valid over the in-CHOICE-clause and the out- 
CHOICE-clause. However, no t ransfer  back from the in- or out-CHOICE- 
clause into the enquiry-clause is possible, since the latter can contain no 
label-definitions (except within a closed-clause contained within it).} 

3.4.1. Syntax 
A) CHOICE :: choice using boolean ; CASE. 
B) CASE :: choice using integral ; choice using UNITED. 

a) SOlD NESTI CHOICE elause{5D,551a,A341h,A349a} : 
CHOICE STYLE start{91a,-}, 

SOlD NESTI chooser CHOICE STYLE clause{b}, 
CHOICE STYLE finish{91e,-}. 

b) SOlD NESTI chooser choice using MODE STYLE clause{a,l} : 
MODE NESTI enquiry clause defining LAYER2{c,-}, 

SOlD NESTI LAYER2 alternate choice using MODE 
STYLE clause{d}. 

c) MODE NESTI enquiry clause defining new DECSETY2{b,35g} : 
meek MODE NESTI new DECSETY2 series with DECSETY2{32b}. 

d) SOlD NEST2 alternate CHOICE STYLE clause{b} : 
SOlD NEST2 in CHOICE STYLE clause{e} ; 
where SOlD balances SOIDI and SOID2{32e}, 

SOIDI NEST2 in CHOICE STYLE clause{e}, 
SOLD2 NEST2 out  CHOICE STYLE clause{l}. 

e) SOlD NEST2 in CHOICE STYLE clause{d} : 
CHOICE STYLE in[91b,-}, SOlD NEST2 in part  of CHOICE{f,g,h}. 

f) SOlD NEST2 in part  of choice using boolean{e} : 
SOlD NEST2 serial clause defining LAYER3{32a}. 

g) SOlD NEST2 in part  of choice using integral{e} : 
SOlD NEST2 joined portrait{33b}. 

h) SOlD NEST2 in part  of choice using UNITED{e,h} : 
SOlD NEST2 case part  of choice using UNITED{i} ; 
where SOlD balances SOIDI and SOlD2{32e}, 

SOIDI NEST2 case par t  of choice using UNITED{i}, 
and also{94f} token, 
SOLD2 NEST2 in part  of choice using UNITED{h}. 

i) SOlD NEST2 case part  of choice using UNITED{h} : 
MOlD NEST2 LAYER3 specification defining LAYER3[j,k,-}, 

where MOlD unites to UNITED{64b}, 
SOlD NEST2 LAYER3 unit{32d}. 

{Here LAYER3 :: new MODE TAG ; new EMPTY.} 
j) MODE NEST3 specification defining new MODE TAG3{i} : 

NEST3 declarative defining new MODE TAG3{541e} brie[ pack, 
colon{94f} token. 

k) MOlD NEST3 specification defining new EMPTY{i} : 
formal MOll) NEST3 declarer{46b} brief pack, colon{94f} token. 
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1) SOlD NEST2 out CHOICE STYLE clause{d} : 
CHOICE STYLE out{91d,-}, 

SOlD NEST2 serial clause defining LAYER3{32a} ; 
CHOICE STYLE again{gtc,-}, 

SOlD NEST2 chooser CHOICE2 STYLE clause{b}, 
where CHOICE2 m a y  follow CHOICE{m). 

m) WHETHER choice using MODE2 m ay  follow 
• choice using MODEl{I} : 

where (MODEl) is (MOOD), WHETHER (MODE2) is (MODEl) ; 
where (MODEl) begins with (union of), 

WHETHER (MODE2) begins with (union of). 

n) * SOME choice clause : SOME CHOICE clause{a}. 
o) * SOME conditional clause : SOME choice using boolean clause{a}. 
p) * SOME case clause : SOME choice using integral clause{a}. 
q) * SOME conformity clause : SOME choice using UNITED clause{a]. 

{Examples: 

a) (x>OlxlO). 
e a s e  i in princeton,  grenoble out  f in i sh  • s e e  • 
e a s e  uir in anti): pr in t  (i), (real): pr in t  ("no") • s e e  

b) x > O l x l O  c) x > O •  i •  uir 
d) Ix*lxlO 
e) I x *  

in princeton,  grenoble  • 
in (int i): pr in t  (i), (reel): p r in t  ("no") 

f) x g) princeton,  grenoble  
h) anti): pr in t  (i), (real): pr in t  ("no") 
i) (intO: pr in t ( i )  j) anti): 
k) (real): 
1) out  f in i sh  • l: x < OI - x l  O } 

{I would to God they would either conform, or be more 
wise, and not be catched! 
Diary, 7 Aug. 1664, Samuel Pepys.} 

{Rule d illustrates why "SORT MOlD's should be "balanced".If an 
alternate-CHOICE-clause is, say, firm, then at least its in-CHOICE-clause 
or its out-CHOICE-clause must  be firm, while the other may  be strong. For  
example, in (p i x I sklp) + (p I sklp l y), the conditional-clause (p i x I sklp) 
is balanced by making I x firm and J sklp strong whereas (p [ sklp I Y ) i s  
balanced by making i sklp strong and [ y firm. The counterexample 
( p l s k l p r s k l p ) + y  illustrates that not both may  be strong, for otherwise the 
operator + could not be identified.} 

3.4.2. Semantics 

a) The yield W of a chooser-CHOICE-clause C, in an environ El, is 
determined as follows: 
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• let E2 be the environ established {3.2.2.b} around E1 according to the 
enquiry-clause of C; 
• let V be the yield, in E2, of that enquiry.clause; 
• W is the yield of the scene "chosen" {b} by V from C in E2; it is required 
that W be not newer in scope than El. 

b) The scene S "chosen" by a value V from a MOlD-chooser-CHOICE- 
clause C, in an environ E2, is determined as follows: 
Case A: "CHOICE' is "choice using boolean' and V is true: 

• S is the constituent in-CHOICE-clause of C, in E2; 
Case B: "CHOICE' is 'choice using integral '  and 1 <_ V <_ n, where n is the 

number  of constituent units of the constituent in-part-of-CHOICE of C: 
- • S is the V-th such unit, in E2; 
Case C: "CHOICE' is some 'choice using UNITED' and V is acceptable to 

{2.1.3.6.d} the 'MOLD2' of some constituent MOID2-speeification D of C 
{; if there exists more than one such constituent specification, it is not 
defined which one is chosen as D}: 
• S is the unit following that D, in an environ established {nonlocally 
(3.2.2.b)} around E2, according to D, with V; 

Other Cases {when the enquiry.clause has been unsuccessful}: 
If C contains a constituent out-CHOICE.clause O, 
then S is O in E2; 
otherwise, S is a MOlD.skip in E2. 

3.5. Loop clauses 

{Loop-clauses are used for repeating dynamical ly  one same sequence of 
instructions. The number  of repetitions is controlled by a finite sequence 
of equidistant integers, by a condition to be tested each time, or by both. 
Example 1: 

in t fac  := 1; 
f o r i  from n by -1 to 1 
do fac x: = i od. 

Example 2: 
int  a, b; read ((a, b)) p r  assert a >_ 0 ^ b > 0 pr;  
i n t q : = O , r : = a ;  
while r >_ b pr assert  a = b x q + r ^ 0 <_ r pr  
do (q+:= 1, r -:= b )od  
p r a s s e r t a = b x q + r ^ O < _ r A  r<  b p r  

(see 9.2 for an explanation of the pragmats). 

The controlled identifier, e.g., i in Example  1, is defined over the 
repeating.part .  Definitions introduced in the while.part are also valid over 
the do-part. 

If the controlled identifier is not applied in the repeating.part ,  then the 
for-part may  be omitted. A from-part  from 1 m a y  be omitted; similarly, 
b y  1 may be omitted. The to-part may  be omitted if no test on the final 
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value of the control-integer is required. A while-part  while true m a y  be 
omitted. For  example ,  

for i from 1 by 1 to n while true do p r i n t  ("a") od 
m a y  be writ ten 

to n do p r i n t  ("a") od.  

The h ierarchy of ranges  is i l lustrated by: 

3.5.1. Syntax 

A) 

a) 

_ fo r  J - -  7 from 
2 while 

I 3 do 

by to 

FROBYT :: f rom ; by ; to. 

strong void NESTI loop clause{5D,551a} : 
NESTI STYLE for par t  defining new integral  TAG2{b}, 

NESTI STYLE intervals{c}, 
NESTI STYLE repeat ing  par t  with integral  TAG2{e}. 

b) NESTI STYLE for par t  defining new integral  TAG2{a} : 
STYLE for{94g,-} token, 

integral  NESTI new integral  TAG2 defining identifier 
with TAG2{48a} ; 

where (TAG2) is ( letter aleph), EMPTY. 
e) NESTI STYLE intervals{a} : NESTI STYLE f rom part{d} option, 

NESTI STYLE by part{d} option, 
NESTI STYLE to part{d} option. 

d) NESTI STYLE FROBYT part{c} : 
STYLE FROBYT{94g,-} token, meek  integral  NESTI unit{32d}. 

e) NESTI STYLE repeat ing par t  with DEC2{a} : 
NESTI new DEC2 STYLE while do part{f} ; 
NESTI new DEC2 STYLE do part{h}. 

f) NEST2 STYLE while do part{e} : 
NEST2 STYLE while par t  defining LAYER3{g}, 

NEST2 LAYER3 STYLE do part{h}. 
g) NEST2 STYLE while par t  defining LAYER3{f} : 

STYLE while{94g,-} token, 
boolean NEST2 enquiry clause defining LAYER3{34c,-}. 

h) NEST3 STYLE do part{e,f} : 
STYLE do{94g,-} token, 

s trong void NEST3 serial  clause defining LAYER4{32a}, 
STYLE od{94g,-} token. 

{Examples: 

a) f o r i  wh i l e i  < n d o t a s k l  od  • t o n  d o t a s k l ;  t a s k 2 o d  
h) for i c) f r o m - 5  to +5 
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d) f r o m - 5  
e) while i < n do task1  od  • do task1;  t a s k 2  od  
f) while i < n do task1;  t a sk2  od  
g) while i < n h) do task1;  t a s k 2  od } 
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3.5.2. Semantics  

A loop-clause C, in an environ El, is e laborated in the following Steps: 
Step 1: All the consti tuent FROBYT-parts, if any, of C are  e labora ted  

collateral ly in El; 
• let f be the yield of the constituent f rom-par t ,  if any, of C, and be 1 
otherwise; 
• let b be the yield of the consti tuent by-part ,  if any, of C, and be 1 
otherwise; 
• let t be the yield of the consti tuent to-part,  if any, of C, and b e  
absent otherwise; 
• let E2 be the environ establ ished {nonlocally (3.2.2.b)} around El, 
according to the for-part-defining-new-integral-TAG2 of C, and with the 
integer  f; 

Step 2: Let i be the integer  accessed  [2.1.2.c} by ' in tegral  TAG2" inside the 
locale of E2; 

If t is not absent, 
then 

If b >  0 a n d i  > t o r i f b  < 0 a n d i  < t, 
then C in E1 {is completed and} yields empty; 

{otherwise, Step 3 is taken; } 
Step 3: Let an environ E3 and a truth value w be de te rmined  as follows: 

Case A: C does not contain a consti tuent while-part:  
• E3 is E2; 
• w is true; 

Case B: C contains a constituent while-part  P: 
• E3 is established {perhaps nonloeally (3.2.2.b)} around E2 
according to the enquiry-clause of P; 
• w is the yield in E3 of that  enquiry-clause;  

Step 4: If w is true, 
then 

• the constituent do-part  of C is e labora ted  in E3; 
• ' in tegral  TAG2" is made  to access  i + b inside the locale of E2; 
• Step 2 is taken again; 

otherwise, 
• C in E1 {is completed and} yields empty. 

{The loop-clause 
for i from u l  b y  u2 to u3 while cond i t ion  do ac t ion  od  

is thus equivalent to the following void-closed.clause: 
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begin int  f : = ul ,  int b = u2, t = u3; 
step2: 

i f (b>O^  f <_t) v (b< O^ f_> Ov b=O 
then  int  i = f ;  

if condition 
t h e n  action; f+: = b; go to step2 
fi 

fl 
end.  

This equivalence might not hold, of course, if the loop-clause contains local- 
generators,  or if some of the operators above do not identify those in the 
standard environment (10).} 

4. Declarations, declarers and indicators 

{Declarations serve 
• to announce new indicators, e.g., identifiers, 
• to define their modes or priorities, and 
• to ascribe values to those indicators and to initialize variables.} 

4.1. Declarations 

4.1.1. Syntax 

A) COMMON :: mode ; priority ; MODINE identity ; 
reference to MODINE variable ; MODINE operation ; 
PARAMETER ; MODE FIELDS. 

{MODINE :: MODE ; routine.} 

a) NEST declaration of DECS{a,32b} : 
NEST COMMON declaration of DECS{42a,43a,44a,e,45a,-} ; 
where (DECS) is (DECSI DECS2), 

NEST COMMON declaration of DECSl{42a,43a,44a,e,45a,-}, 
and aiso{94f} token, NEST declaration of DECS2{a}. 

b) NEST COMMON joined definition of PROPS PROP 
{b,42a,43a,44a,e,45a,46e,541e} : 

NEST COMMON joined definition of PROPS{b,c}, 
and also{94f} token, 
NEST COMMON joined definition of PROP{c}. 

c) NEST COMMON joined definition of PROP 
{b,42a,43a,44a,e,45a,46e,54 le} : 

NEST COMMON definition of PROP{42b,43b,44c,f,45c,46f,541f,-}. 

d) * definition of PROP : NEST COMMON definition of PROP 
{42b,43b,44c, f,45c,46f,541 f} ; 

NEST label definition of PROP{32c}. 
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{Examples: 

a) mode r =  ref  real, s = c h a r  •p r i o  v =2,  ^ =3  • i n t  m = 4096 • 
rea l  x, y • 
op  v = (boo l  a, b) b o o l  : (a [ t rue  I b) 

b) r = r e f r a a l ,  s = c h a r  •v  =2, ^ =3 • m = 4 0 9 6  •x ,  y • 
v = (boo l  a, b) b o o l  : (a I t rue I b) 

c) r = r a f r e a l  •v  =2 • m = 4 0 9 6  • x  • 
v = (bool  a, b) b o o l  : (a [ t rue I b) } 

4.1.2. Semantics 
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4.2. Mode declarations 

{Mode-declarations provide the defining-mode-indications, which act as 
abbreviations for declarers constructed from the more primitive ones, or 
from other declarers,  or even from themselves. 

For  example, 
mode array = [m,  n ]  real, and 
mode book  = s t ruc t  (str ing text,  raf  b o o k  next )  
In the latter example, the applied-mode-indication book  is not only a 

convenient abbreviation, but is essential to the declaration.} 

4.2.1. Syntax 

a) NEST mode declaration of DECS{41a} : 
mode{94d} token, NEST mode joined definition of DECS{41b,c}. 

b) NEST mode definition of MOlD TALLY TAB{41e} : 
where (TAB) is (bold TAG) or (NEST) is (new LAYER), 

MOlD TALLY NEST defining mode indication with TAB{48a}, 
is defined as{94d} token, 
actual MOlD TALLY NEST declarer{e}. 

c) actual MOlD TALLYI NEST declarer{b} : 
where (TALLYI) is (i), 

actual MOlD NEST declarator{46c,d,g,h,o,s,-} ; 
where (TALLYI) is (TALLY2 i), 

MOlD TALLY2 NEST applied mode indication with TAB2 
{48b}. 

{Examples: 

a) m o d e  r = ref  real,  s = c h a r  
h) r = raf real e) ref  real • char  } 

{The use of "TALLY" excludes circular  chains of mode-definitions such 
as m o d e  a = b, b = a. 

The elaboration of a declaration consists of the collateral 
elaboration of its COMMON-declaration and of its declaration, if any. 
{Thus, all the COMMON-declarations separated by and-also-tokens are 
elaborated collaterally.} 
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Defining-mode-indications-with-SIZETY-STANDARD may  be declared 
only in the standard-prelude, where the nest is of the form 'new LAYER' 
(10.1.l.b) .} 

4.2.2. Semantics 

The elaboration of a mode-declaration {involves no action, yields no 
value and} is completed. 

4.3. Priority declarations 

{Priority-declarations are used to specify the priority of operators.  
Priorities from 1 to 9 are available. 

Since monadic-operators have effectively only one priority-level, which 
is higher than that of all dyadic-operators,  monadic-operators  do not 
require priority-declarations.} 

4.3.1. Syntax 

a) NEST priority declaration of DECS{41a} : 
priority{94d} token, NEST priority joined definition of DECS{41b,c}. 

b) NEST priority definition of priority PRIO TAD{41c} : 
priority PRIO NEST defining operator with TAD{48a}, 

is defined as{94d} token, DIGIT{94b} token, 
where DIGIT counts PRIO{c,d}. 

{DIGIT :: digit zero ; digit one ; digit two ; digit three ; digit four ; 
digit five ; digit six ; digit seven ; digit eight ; digit nine.} 

c) WHETHER DIGITI counts PRIO i{b,c} : 
WHETHER DIGIT2 counts PRIO{c,d}, 

where (digit one digit two digit three digit four 
digit five digit six digit seven digit eight digit nine) 

~eontains (DIGIT2 DIGITI). 
WHETHER digit one counts i{b,c} : WHETHER true. d) 

{Examples: 

a) p r i o r = 2 ,  ^ = 3  b) v = 2 }  

4.3.2. Semantics 

The elaboration of a priority-declaration {involves no action, yields no 
value and} is completed. 

4.4. Identifier declarations 

{Identifier-declarations provide MODE-defining-identifiers, by means  of 
either identity-definitions or variable-definitions. 
Examples:  

r e a l  p i  = 3 . 1 4 1 6  • 
r ea l  s c a n  := 0 .05 .  
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The latter example, which is a variable-declaration, may  be considered as 
an equivalent form of the identity-declaration 

ro t  r e a l  s c a n  = Ioc r e a l  := 0 .05 .  
The elaboration of identifier-declarations causes values to be ascribed 

to their identifiers; in the examples given above, 3.1416 is ascribed to p i  
and a new local name which refers to 0.05 is ascribed to s c a n . }  

4.4.1. Syntax 

A) MODINE :: MODE ; routine. 
B) LEAP :: local ; heap ; primal. 

a) NEST MODINE identity declaration of DECS{41a} : 
formal MODINE NEST declarer{b,46b}, 

NEST MODINE identity joined definition of DECS{41b,c}. 
b) VICTAL routine NEST declarer{a,523b} : procedure{94d} token. 
c) NEST MODINE identity definition of MODE TAG{41c} : 

MODE NEST defining identifier with TAG{48a}, 
is defined as{94d} token, MODE NEST source for MODINE{d}. 

d) MODE NEST source for MODINE{c,f,45c} : 
where (MODINE) is (MODE), MODE NEST source{521c} ; 
where (MODINE) is (routine), MODE NEST routine text{541a,b,-}. 

e) NEST reference to MODINE variable declaration of DECS{41a} : 
reference to MODINE NEST LEAP sample generator{523b}, 

NEST reference to MODINE variable joined 
definition of DECS{41b,c}. 

f) NEST reference to MODINE variable definition 
of reference to MODE TAG{41c} : 

reference to MODE NEST defining identifier with TAG[48a}, 
becomes{94c} token, MODE NEST source for MODINE{d} ; 

where (MODINE) is (MODE), 
reference to MODE NEST defining identifier with TAG{48a}. 

g) *identifier declaration : 
NEST MODINE identity declaration of DECS{a} ; 
NEST reference to MODINE variable declaration of DECS{e}. 

{Examples: 

a) i n t  m = 4 0 9 6  • p r o c  r l O =  r e a l  : r a n d o m  x 10 
b) p r o c  c) m = 4 0 9 6  
d) 4 0 9 6  • r e a l  : r a n d o m  x 10 
e)  r e a l  x ,  y • p r o c  p p  := r e a l  : r a n d o m  x 10 
f) p p  := r e a l :  r a n d o m  x I 0  • x } 

4.4.2. Semantics 

a) An identity-declaration D is elaborated as follows: 
• the constituent sourees-for-MODINE of D are elaborated collaterally; 
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For each constituent identity-definition D1 of D, 
• the yield V of the source-for-MODINE of Ol is ascribed {4.8.2.a} to the 
defining-identifier of D1. 

b) A variable-declaration D is elaborated as follows: 
• the sample-generator  {5.2.3.1.b} G of D and all the sources.for-MODINE, 
if any, of the constituent variable-definitions of D are elaborated 
collaterally; 
For  each constituent variable-definition-of-referenee-to-MODE-TAG D1 of 

D, 
• let Wl be a "variant" {c}, for 'MODE', of the value referred to by the 
yield N of G; 
• let N1 be a newly created name equal in scope to N and referring to 
W1; 
• if N1 is a stowed name {2.1.3.2.b}, then N1 is endowed with subnames 
{2.1.3.3.e, 2.1.3.4.g}; 
• N1 is ascribed {4.8.2.a} to the defining-identifier of D1; 
• the yield of the source-for-MODINE, if any, of D1 is assigned 
{5.2.1.2.b} to N1. 

{An actual-declarer which is common to a number  of variable- 
definitions is elaborated only once. For  example, the elaboration of 

i n t m  := 10; [1 : m+:=  1} i n t p ,  q; p r i n t ( m )  
causes 11 to be printed, and not 12; moreover,  two new local names 
referring to multiple values with descriptor ((1, 11)), and undefined 
elements, are ascribed to p and to q.} 

c) A "variant" of a value V, for a mode M, is a value W acceptable to 
{2.1.3.6.d} M, and determined as follows: 
Case A: M is some 's t ructured with FIELDS mode' :  

For each "MODE field TAG' enveloped by 'FIELDS', 
• the field selected by 'TAG" in W is a variant,  for 'MODE', of the 
field selected by "TAG' in V; 

Case B: M is some 'FLEXETY ROWS of MODEl': 
• the descriptor of W is that of V; 
• each element of W is a variant,  for 'MODEl' ,  of some element of V; 

Other Cases: 
• W is any value acceptable to M. 

d) The yield of an actual-routine-declarer is some routine {whose mode 
is of no relevance}. 

4.5. Operation declarations 

{Operation-declarations provide defining-operators. 
Example: 

op m c  = (reat a, b) real : (3 × a < b l a l b). 
Unlike the case with, e.g., identifier-declarations, more than one 

operation-declaration involving the same TAO-token may  occur in the 
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same reach; e.g., the previous example may  very well be in the same 
reach as 

op m c  = ( comp l  c a r t h y ,  j o h n )  t e m p i  : ( r a n d o m  < .51 c a r t h y  I john) ;  
the operator m c  is then said to be "overloaded".} 

4.5.1. Syntax 

A) PRAM :: DUO ; MONO. 
B) TAO :: TAD ; TAM. 

a) NEST MODINE operation declaration of DECS{41a} : 
operator{94d} token, formal MODINE NEST plan{b,46p,-}, 

NEST MODINE operation joined definition of DECS{41b,c}. 
b) formal routine NEST plan{a} : EMPTY. 
c) NEST MODINE operation definition of PRAM TAO{41c} : 

PRAM NEST defining operator  with TAO{48a}, 
is defined as{94d} token, PRAM NEST source for MODINE{44d}. 

{Examples: 
a) op v = ( b o o l a ,  b ) b o o l :  (al  true[ b) 
c )  v = (boot a, b) bool  : (a I true [ b) } 

4.5.2. Semantics 

a) The elaboration of an operation-declaration consists of the 
collateral elaboration of its constituent operation-definitions. 

b) An operation-definition is elaborated by ascribing {4.8.2.a} the 
routine yielded by its source-for-MODINE to its defining-operator. 

4.6. Declarers 

{Declarers specify modes. A declarer  is either a declarator,  which 
explicitly constructs a mode, or an applied-mode-indication, which stands 
for some declarator  by way of a mode-declaration. Declarators are built 
from void, inl, real, boo t  and char  (10.2.2), with the assistance of other 
symbols such as ref, s t ruct ,  [ ], proc ,  and union.  For  example, 
proc  ( rea l )bool  specifies the mode 'procedure with real pa ramete r  yielding 
boolean'. 

Actual-declarers, used typically in generators,  require the presence of 
bounds. Formal.declarers,  used typically in formal-parameters  and casts, 
are without bounds. The declarer  following a re f  is always 'virtual ' ;  it may  
then specify a "flexible ROWS of MODE', because flexibility is a property 
of names. Since actual-declarers follow an implicit ' reference to' in 
generators,  they may  also specify 'flexible ROWS of MODE'.} 

4.6.1. Syntax 

A) VICTAL :: VIRACT ; formal. 
B) VIRACT :: virtual ; actual. 
C) MOLDS :: MOlD ; MOLDS MOLD. 
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a) 

b) 

c) 

d) 

e) 

g) 

h) 

J) 

k) 
1) 

m) 
n) 

o) 

p) 
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VIRACT MOlD NEST declarer{c,e,g,h,523a,b} : 
VIRACT MOlD NEST declarator{c,d,g,h,o,s,-} ; 
MOlD TALLY NEST applied mode indication with TAB{48b,-}. 

formal MOlD NEST declarer{e,h,p,r,u,34k,44a,541a,b,e,551a} : 
where MOlD deflexes to MOlD{47a,b,c,-}, 

formal MOlD NEST declarator{c,d,h,o,s,-} ; 
MOIDI TALLY NEST applied mode indication with TAB{48b,-}, 

where MOIDI deflexes to MOID{47a,b,c,-}. 

VICTAL reference to MODE NEST declarator{a,b,42c} : 
reference to{94d} token, virtual MODE NEST declarer{a}. 

VICTAL structured with FIELDS mode NEST declarator{a,b,42c} : 
structure{94d} token, 

VICTAL FIELDS NEST por t rayer  of FIELDS{e} brief pack. 
VICTAL FIELDS rNEST por t rayer  of FIELDSI{d,e} : 

VICTAL MODE NEST declarer{a,b}, 
NEST MODE FIELDS joined definition of FIELDSI{41b,c} ; 

where (FIELDSI) is (FIELDS2 FIELDS3), 
VICTAL MODE NEST declarer{a,b}, 
NEST MODE FIELDS joined definition of FIELDS2{41b,c}, 
and also{94f} token, 
VICTAL FIELDS NEST por t rayer  of FIELDS3{e}. 

NEST MODE FIELDS definition of MODE field TAG{41c} : 
MODE field FIELDS defining field selector with TAG{48c}. 

VIRACT flexible ROWS of MODE NEST declarator{a,42c} : 
flexible{94d} token, VIRACT ROWS of MODE NEST declarer{a}. 

VICTAL ROWS of MODE NEST declarator{a,b,42c} : 
VICTAL ROWS NEST rower{i,j,k,l} STYLE bracket,  

VICTAL MODE NEST declarer{a,b}. 
VICTAL row ROWS NEST rower{h,i} : 

VICTAL row NEST rower{j,k,l}, and also{94f} token, 
VICTAL ROWS NEST rower{i,j,k,l}. 

actual row NEST rower{h,i} : NEST lower bound{m}, up to{94f} token, 
NEST upper bound{n} ; NEST upper bound{n}. 

virtual row NEST rower{h,i} : up to{94f} token option. 
formal row NEST rower{hA} : up to{94f} token option. 
NEST lower bound{j,532f,g} : meek integral NEST unit{32d}. 
NEST upper bound{j,532f} : meek integral NEST unit{32d}. 

VICTAL PROCEDURE NEST declarator{a,b,42c} : 
procedure{94d} token, formal PROCEDURE NEST plan{p}. 

formal procedure PARAMETY yielding MOlD NEST plan{o,45a} : 
where (PARAMETY) is (EMPTY), formal MOlD NEST declarer{b} ; 
where (PARAMETY) is (with PARAMETERS), 

PARAMETERS NEST joined declarer{q,r} brief pack, 
formal MOlD NEST declarer{b}. 

q) 

r) 

s) 

t) 

u) 
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PARAMETERS PARAMETER NEST joined declarer{p,q} : 
PARAMETERS NEST joined deelarer{q,r}, and also{94f} token, 

PARAMETER NEST joined declarer{r}. 
MODE parameter  NEST joined declarer{p,q} : 

formal MODE NEST declarer{b}. 

VICTAL union of MOODSI MOOI)I mode 
NEST declarator{a,b,42c} : 

unless EMPTY with MOODSI MOODI incestuous{47f}, 
union of{94d} token, 
MOII)S NEST joined declarer{t,u} brief pack, 
where MOLDS ravels to MOOI)S2{47g} 
and safe MOODSI MOOI)I subset of safe MOOI)$2{731} 
and safe MOODS2 subset of safe MOOI)SI MOODI{731,m}. 

MOLDS MOlD NEST joined declarer{s,t} : 
MOLDS NEST joined declarer{t,u}, and also{94f} token, 

MOlD NEST joined declarer{u}. 
MOlD NEST joined declarer{s,t} : formal MOll) NEST declarer{b}. 

{Examples: 

a) [1 : n]  real • person b) [ ] real • string 
c) ref real 
d) struct (int age, ref person father,  son) 
e) ref person father, son • int age, ref person father,  son 
f) age g) flex [1 : n] real 
h) [1: m , l :  nJrea l  i) 1: m, 1: n 
j) l : n  k) : 
1): m) 1 
n) n o) proc (bool, 0ool) boo/ 
p) (bool, bool) bool q) boo/, bool 
r) bool s) union (inI, char) 
t) int, char u) inl } 

{For actuaI-MOII)-TALLY.declarers, see 4.2.1.c: 
declarers, see 4.4.1.b. 

There are no declarers specifying modes such as 

for actual-routine- 

'union of integral 
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union of integral real mode mode" or 'union of integral real integral 
mode' .  The declarers union (int, union (int, real)) and union (int, real, int) 
may indeed be written, but in both cases the mode specified is 'union of 
integral real mode'  (which can as well be spelled "union of real integral 
mode') .} 

4.6.2. Semantics 

a) The yield W of an actual-MODE-declarer D, in an environ E, 
determined as follows: 

is 
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If 'MODE" is s o m e  'STOWED' ,  
then 

• let  D1 in E1 be "deve loped"  {c} f rom D in E; 
• W is the  y ie ld  of {the dec l a r a to r}  D1 in an  env i ron  e s t a b l i s h e d  
{locally, see  3.2.2.b} upon E and  a r o u n d  El;  

o the rwise ,  
• W is any  v a l u e  {accep tab le  to "MODE'}. 

b) The y ie ld  W of an  a e t u a l - S T O W E D - d e e l a r a t o r  D is d e t e r m i n e d  as  
follows: 
Case  A: 'STOWED" is s o m e  'structured with FIELDS mode':  

• the  cons t i t uen t  d e c l a r e r s  of D a r e  e l a b o r a t e d  c o l l a t e r a l l y :  
• e ach  f ie ld of W is a v a r i a n t  {4.4.2.c} 
(i) of the  y ie ld  of the  l a s t  cons t i t uen t  M O D E - d e c l a r e r  of D o c c u r r i n g  
be fore  the  cons t i t uen t  de f in ing - f i e ld - se l ec to r  of D se l ec t i ng  {2.1.5.g} t ha t  
field,  
(ii) for  t ha t  'MODE':  

Case  B: 'STOWED'  is s o m e  'ROWS of MODE': 
• a l l  the  cons t i t uen t  l ower -bounds  and  u p p e r - b o u n d s  of D and  the 
d e c l a r e r  D1 of D a r e  e l a b o r a t e d  co l l a t e r a l l y ;  
F o r  i = 1 . . . . .  n, w h e r e  n is the  n u m b e r  of ' r o w ' s  c o n t a i n e d  in "ROWS',  

• let  I. be the  y ie ld  of the  lower -bound ,  if any ,  of the  i-th cons t i t uen t  

r o w - r o w e r  of D, and  be 1 o the rwise ;  
• let  u. be the  y ie ld  of the  upper-bound of t ha t  row- rower ;  

• W is c o m p o s e d  of 
(i) a d e s c r i p t o r  ((I 1, u 1) . . . . .  (I n, Un)), 

(ii) v a r i a n t s  of the  y ie ld  of D1, for  'MODE';  
Case  C: 'STOWED'  is s o m e  "flexible ROWS of MODE': 

• W is the  y ie ld  of the  d e c l a r e r  of D. 

c) The scene  S "deve loped  f rom" an  a c t u a l - S T O W E I ) - d e e l a r e r  D in an 
env i ron  E is d e t e r m i n e d  as  follows: 
If the  v is ib le  d i r e c t  d e s c e n d e n t  D1 of D is a mode-indication,  
then 

• S is the  scene  d e v e l o p e d  f rom tha t  y i e l d e d  by  D1 in E; 
o the rwi se  {D1 is a dec la ra to r} ,  

• S is c o m p o s e d  of D1 and  E. 

d) A g iven  M O l D - d e c l a r e r  "spec i f ies"  the  m o d e  'MOLD'. 

4.7. Re l a t i onsh ip s  b e t w e e n  m o d e s  

{Some m o d e s  m u s t  be de f l exed  b e c a u s e  the  m o d e  of a v a l u e  m a y  not  
be f lex ib le  (2.1.3.6.b). I nces tuous  unions  m u s t  be  p r e v e n t e d  in o r d e r  to 
avo id  a m b i g u i t i e s .  A se t  of "UNITED's and  'MOODS' s  m a y  be  r a v e l l e d  by  
r e p l a c i n g  al l  those  'UNITED's  by  t h e i r  c o m p o n e n t  'MOODS's.} 
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4.7.1. Syn t ax  

A) 

B) 
C) 

NONSTOWED :: PLAIN ; REF to MODE ; PROCEDURE ; UNITED ; 
void. 

MOODSETY :: MOODS ; EMPTY. 
MOIDSETY :.. MOLDS ; EMPTY. 

a) 

b) 

c) 

d) 

e) 

WHETHER NONSTOWED def lexes  to NONSTOWED 
{b,e,46b,521c,62a,71n} : WHETHER true. 

WHETHER FLEXETY ROWS of MODEl  def lexes  to 
ROWS of MODE2{b,e,46b,521c,62a,71n} : 

WHETHER MODEl  def lexes  to MODE2{a,b,c,-}. 
WHETHER structured with FIELDSI mode  def lexes  to 

structured with FIELDS2 mode{b,e,46b,521c,62a,71n} : 
WHETHER FIELDSI  def lexes  to FIELDS2[d,e,-}. 

WHETHER FIELDSI FIELDI def lexes  to FIELDS2 FIELD2{c,d} : 
WHETHER FIELDSI def lexes  to FIELDS2{d,e,-} 

and FIELDI def lexes  to FIELD2{e,-}. 
WHETHER MODEl  f ie ld TAG def lexes  to MODE2 field TAG{c,d} : 

WHETHER MODEl  def lexes  to MODE2{a,b,c,-}. 

f) WHETHER MOODSETYI with  MOODSETY2 incestuous{f,46s} : 
where (MOODSETY2) is (MOOD MOODSETY3),  

WHETHER MOODSETYI MOOD with  MOODSETY3 incestuous{f} 
or MOOD is f irm union of MOODSETYI MOODSETY3 mode  

{71m} ; 
where (MOODSETY2) is (EMPTY), WHETHER false. 

g) WHETHER MOLDS r a v e l s  to MOODS{g,46s} : 
where (MOLDS) is (MOODS), WHETHER t rue  ; 
where (MOLDS) is 

(MOODSETY union of MOODSI mode  MOIDSETY), 
WHETHER MOODSETY MOODSI  MOIDSETY r a v e l s  to MOODS{g}. 

{A c o m p o n e n t  m o d e  of a union m a y  not  be  f i r m l y  c o e r c e d  to one of the  
o the r  c o m p o n e n t  m o d e s  or  to the  union of those  o t h e r s  ( rule  f) for, 
o the rwise ,  a m b i g u i t i e s  could  a r i s e .  F o r  e x a m p l e ,  

union (ref int, int) (Ioc int), 
is a m b i g u o u s  in t ha t  d e r e f e r e n c i n g  m a y  or  m a y  not  o c c u r  be fore  the  
uni t ing.  S i m i l a r l y ,  

mode szp = union (szeredi, peter); 
union (ref szp, szp) (Ioc szp) 

is a mb iguous .  Note  tha t ,  b e c a u s e  of r a v e l l i n g  ( rule  g) ,  the  m o d e  spec i f i ed  
by the  d e c l a r e r  of the  e a s t  is m o r e  c lose ly  s u g g e s t e d  by  union (ref szp,  
szeredi, peter).} 
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4.8. I n d i c a t o r s  and  f ield s e l ec to r s  

4.8.1. Syn t ax  

A) INDICATOR :: i den t i f i e r  ; m o d e  ind i ca t i on  ; o p e r a t o r .  
B) DEFIED :: de f in ing  ; app l i ed .  
C) P R O P S E T Y  :: PROPS ; EMPTY. 
D) P R O P S  :: P R O P  ; PROPS PROP.  
E) P R O P  :: DEC ; LAB ; FIELD. 
F) QUALITY : : 

MODE ; MOlD TALLY ; DYADIC ; l abe l  ; MODE field.  
G) TAX :: TAG ; TAB ; TAD ; TAM. 

a) 

b) 

c) 

d) 

QUALITY NEST new PROPSETYI  QUALITY TAX PROPSETY2 
def in ing  INDICATOR with  TAX{32c,35b,42b,43b,44e, f ,45c,  541f} : 

w h e r e  QUALITY TAX i n d e p e n d e n t  PROPSETYI  PROPSETY2 
{71a,b,c}, TAX{942A,D,F ,K}  token.  

QUALITY NEST a p p l i e d  INDICATOR wi th  TAX 
{42c,46a,b,5D,542a,b,544a} : 

w h e r e  QUALITY TAX iden t i f i ed  in NEST{72a}, 
TAX{942A,D,F,K} token.  

MODE field PROPSETYI  MODE field TAG PROPSETY2 def in ing  
f ield s e l e c t o r  wi th  TAG{46f} : 

w h e r e  MODE field TAG i n d e p e n d e n t  PROPSETYI  PROPSETY2 
{71a,b,e}, TAG {942A} token.  

MODE field FIELDS a p p l i e d  f ie ld s e l e c t o r  wi th  TAG{531a} : 
w h e r e  MODE field TAG r e s i d e s  in FlELDS{72b,c,-}, 

TAG{942A} token.  

e) 

f) 

* QUALITY NEST DEFIED i n d i c a t o r  wi th  TAX : 
QUALITY NEST DEFIED INDICATOR with  TAX{a,b}. 

* MODE DEFIED field s e l e c t o r  wi th  TAG : 
MODE field FIELDS DEFIED field s e l e c t o r  wi th  TAG{c,d}. 

[ E x a m p l e s :  

a) x (in ree lx ,  y) 
c) n e x t  (see 1.1.2) 

b) x ( i n x + y )  
d) n e x t  (in n e x t o l d r a f t )  } 

4.8.2. S e m a n t i c s  

a) When a va lue  or  a s cene  Y is " a s c r i b e d "  to a QUALITY-def in ing-  
ind ica tor -wi th -TAX,  in an env i ron  E, then  'QUALITY TAX'  is m a d e  to 
a c c e s s  V ins ide  the  loca le  of E {2.1.2.c}. 

b) The y ie ld  W of a QUALITY-app l i ed - ind ica to r -wi th -TAX I in an  
env i ron  E c o m p o s e d  of an  env i ron  E1 and  a loca le  I_ is d e t e r m i n e d  as  
follows: 
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If L c o r r e s p o n d s  to a 'DECSETY LABSETY' which  enve lops  {1.1.4.1.c} t ha t  
'QUALITY TAX' ,  

then  W is the  va lue  o r  scene ,  if any ,  a c c e s s e d  ins ide  L by  'QUALITY TAX'  
and,  o the rwise ,  is undef ined;  

o the rwise ,  W is the  y ie ld  of I in El .  

{Consider the  fol lowing c lo sed -c l ause ,  which  con ta in s  a n o t h e r  one: 
b e g i n  c o  range  I c o  

i n t  i = 421, int  a : = 5, proc  p = void : p r i n t  (a); 
b e g i n  c o  range  2 c o  

r e e l  a; a : = i; p 
e n d  

e n d .  
By the  t i m e  a := i is e n c o u n t e r e d  d u r i n g  the  e l a b o r a t i o n ,  two new 

env i rons  have  been  c r e a t e d ,  one for  e a c h  r ange .  The  de f in ing - iden t i f i e r  i is 
f i rs t  sought  in the  n e w e r  one,  E2, is not  found the re ,  and  then  is sough t  
and  found in the  o lde r  one, El .  The  loca le  of E1 c o r r e s p o n d s  to ' i n t e g r a l  
l e t t e r  i r e f e r e n c e  to i n t e g r a l  l e t t e r  a p r o c e d u r e  y i e l d i n g  void  l e t t e r  p ' .  The  
y ie ld  of the  a p p l i e d - i d e n t i f i e r  i is t h e r e f o r e  the  v a l u e  421 which  has  been  
a s c r i b e d  (a) to ' i n t e g r a l  l e t t e r  i '  ins ide  the  loca le  of El .  The  y ie ld  of a, in 
a := i, however ,  is found f rom the  loca le  of E2. 

When p is c a l l e d  (5.4.3.2.b), i t s  uni t  is e l a b o r a t e d  in an  env i ron  E3 
e s t a b l i s h e d  a r o u n d  E1 but  upon E2 (3.2.2.b). This  m e a n s  tha t ,  for  s cope  
purposes ,  E3 is n e w e r  than  E2, but  the  c o m p o n e n t  env i ron  of E3 is El .  
When a c o m e s  to be  p r in ted ,  i t  is the  y ie ld  5 of the  r e f e r e n c e - t o : i n t e g r a l -  
i den t i f i e r  a d e c l a r e d  in the  o u t e r  r a n g e  t h a t  is ob t a ined .  

Thus,  the  m e a n i n g  of an  i n d i c a t o r  a p p l i e d  bu t  not  de f ined  wi th in  a 
rou t ine  is d e t e r m i n e d  by  the con tex t  in which  the  rou t ine  was  c r e a t e d ,  
r a t h e r  than  t ha t  in which  it is cal led.} 

5. Un i t s  

{Units a r e  used  to p r o g r a m  the  m o r e  p r i m i t i v e  ac t i ons  o r  to put  into 
one s ingle  p iece  the  l a r g e r  c o n s t r u c t s  of C h a p t e r  3. 

NOTION-coercees  a r e  the  r e su l t s  of coe rc ion  ( C h a p t e r  6), bu t  h ips  a r e  
not; in the  e a s e  of ENCLOSED-clauses ,  a n y  coe rc ions  n e e d e d  a r e  
p e r f o r m e d  ins ide  t hem.  

The s y n t a x  be low impl ies ,  for  e x a m p l e ,  t ha t  t ex t  o l d r a f t +  " the_end"  is 
p a r s e d  as  ( t e x t o l d r a f O +  " t h e . e n d "  s ince  a se l ec t ion  is a 'SECONDARY' 
w h e r e a s  a f o r m u l a  is a 'TERTIARY' . )  

5.1. S y n t a x  

A) UNIT{32d} :: assignation{521a} c o e r c e e  ; 
i d e n t i t y  re lat ion{522a}  c o e r c e e  ; r o u t i n e  text{541a,b}  c o e r c e e  ; 
jump{544a}  ; skip{552a} ; TERTIARY{B). 

B) TERTIARY{A,521b,522a} : :  ADIC formula{542a,b} c o e r c e e  ; 
nihil{524a) ; SECONDARY{C). 
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C) SECONDARY{B,531a,542c} :: LEAP generator{523a} coercee ; 
selection{531a} coercee ; PRIMARY{D}. 

D) PRIMARY{C,532a,543a} :: slice{532a} coercee ; call{543a} coercee ; 
cast{551a} coercee ; denoter[80a} coercee ; 
format text{A341a} coercee ; 
applied identifier with TAG{48b} coercee ; 
ENCLOSED clause{31a,33a,c,d,e,34a,35a}. 

{The hyper-rules for "SORT MOlD FORM coercee" are given in 6.1.l.a, 
b, c, d and e, the entry rules of the coercion syntax. When the coercion 
syntax is invoked for some 'SORT MOlD FORM coercee' ,  it will eventually 
return to a rule in this chapter  for some 'MOLD1 FORM' (blind alleys 
apart) .  It is the cross-reference to that rule that is given in the 
metaproduction rules above. No other visible descendent has been 
produced in the meantime; the coercion syntax merely  t ransforms 'MOLD' 
into 'MOIDI'  for semantical  purposes.} 

a) * SOME hip : 
SOME jump{544a] ; SOME skip{552a} ; SOME nihil{524a}. 

{The mode of a hip is always that required, a posteriori, by its context, 
and its yield is acceptable to that mode. Since any mode is so easily 
accommodated,  no coercion is permitted.} 

5.2. Units associated with names 

{Names may be assigned to (5.2.1), compared with other names (5.2.2) 
and created {5.2.3) .} 

5.2.1. Assignations 

{In assignations, a value is "assigned" to a name. E.g., in x := 3.14, the 
real number  yielded by the source 3.14 is assigned to the name yielded by 
the destination x.} 

5.2.1.1. Syntax 

a) REF to MODE NEST assignation{5A} : 
REF to MODE NEST destination{b}, becomes{94c} token, 

MODE NEST source{c}. 
b) REF to MODE NEST destination{a} : 

soft REF to MODE NEST TERTIARY{5B}. 
c) MODEl NEST source{a,44d} : strong MODE2 NEST unit{32d}, 

where MODEl deflexes to MODE2[47a,b,c,-}. 

{Examples: 

a) x := 3.14 
c) 3.14 } 

b) x 
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5.2.1.2. Semantics 

a) An assignation A is elaborated as follows: 
• let hi and W be the {collateral} yields {a name and another value} of the 
destination and source of A; 
• W is assigned to {b} N; 
• the yield of A is N. 

b) A value W is "assigned to" a name N, whose mode is some 'REF to 
MODE', as follows: 
It is required that 

• N be not nil, and that 
• W be not newer in scope than N; 

Case A: 'MODE' is some "structured with FIELDS mode': 
For  each 'TAG' selecting a field in W, 

• that field is assigned to the subname selected by "TAG' in 1'4; 
Case B: 'MODE" is some 'ROWS of MODEl': 

• let Y be the Cold} value referred to by N; 
• it is required that the descriptors of W and Y be identical; 
For  each index I selecting an element in W, 

• that element is assigned to the subname selected by I in N; 
Case C: 'MODE" is some 'flexible ROWS of MODEl': 

• let Y be the Cold} value referred to by N; 
• N is made to refer to a multiple value composed of 
(i) the descriptor of W, 
(ii) variants {4.4.2.c} of some element {possibly a ghost element} of V; 
• N is endowed with subnames {2.1.3.4.g}; 
For each index I selecting an element in W, 

• that element is assigned to the subname selected by I in N; 
Other Cases {e.g., where 'MODE' is some 'PLAIN' or some "UNITED'}: 

• N is made to refer {2.1.3.2.a} to W. 

{Observe how, given 
flex [1 : O} [1 : 3] int f lexf ix,  

the presence of the ghost element (2.1.3.4.c) ensures that the meaning of 
f lexf ix  := Ioc [1 : 1] [1 : 3] int is well defined, but that of f lexf ix  := Ioc [1 : 
1] [1: 4] int is not, since the bound pairs of the second dimension are 
different.} 

5.2.2. Identity relations 

{Identity-relations may. be used to ask whether two names of the same 
mode are the same. 

E.g., after the assignation draf t  := Cabc", nil), the identity-relation nex t  
of  draft  :=: ref b o o k  (nil) yields true. However, nex t  of  draf t  :=: nil yields 
false because it is equivalent to nex t  of  draf t  :=: ref ref b o o k  (nil): the yield 
of nex t  o f  draft, without any coercion, is the name referring to the second 
field of the structured value referred to by the value of draft  and, hence, 
is not nil.} 

! 
i 
! 
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5.2.2.1. Syntax 

a) 

b) 

boolean NEST identity relation{5A} : 
where  soft balances  SORTI and SORT2{32f}, 

SORTI reference to MODE NEST TERTIARYI{5B}, 
identity relator{b}, 
SORT2 reference to MODE NEST TERTIARY2{5B}. 

identity relator{a} : is{94f} token ; is not{94f} token. 

{Examples: 

a) n e x t  o f  d r a f t  :=: re fbook (nil) 
b) :=: • : ~ :  } 

{Observe that a l  [i] :=: a l  [j] is not produced by this syntax. The 
comparison, by an identity-relation, of transient names (2.1.3.6.c) is thus 
prevented.} 

5.2.2.2. Semantics 

The yield W of an identity-relation I is determined as follows: 
• let N1 and N2 be the {collateral} yields of the TERTIARYs of I; 
Case A: The token of the identity-relator of I is an is-token: 

• W is true if {the name} N1 is the same as N2, and is false otherwise; 
Case B: The token of the identity-relator of I is an is-not-token: 

• W is true if N1 is not the same as N2, and is false, otherwise. 

5.2.3. Generators 

{And as imagination bodies forth 
The forms of things unknown, the poet's 
pen 
Turns them to shapes, and gives to airy 
nothing 
A local habitation and a name. 
A Midsummer-night's Dream, 

William Shakespeare.} 

{The elaboration of a generator,  e.g., Ioc  real  in x x  := loc  real  := 3.14,  
or of a sample-generator,  e.g., [i : n} c h a r  in [I : n} c h a r  u, v;, involves 
the creation of a name, i.e., the reservation of storage. 

The use of a local-generator implies (with most  implementations) the 
reservation of storage on a run-time stack, whereas heap-generators  imply 
the reservation of storage in another region, termed the "heap", in which 
garbage-collection techniques may  be used for s torage retrieval. Since this 
is less efficient, local.generators are preferable; this is why only Ioc  may  
be omitted from sample-generators  of variable-declarations.} 
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5.2.3.1. Syntax 

{LEAP :: local ; heap ; primal.} 

a) reference to MODE NEST LEAP generator{5C} : LEAP{94d,-} token, 
actual MODE NEST declarer{46a}. 

b) reference to MODINE NEST LEAP sample generator{44e} : 
LEAP{94d,-} token, actual MODINE NEST declarer{44b,46a} ; 
where (LEAP) is (local), actual MODINE NEST declarer{44b,46a}. 

{Examples: 

a) Ioc real b) Ioc real • real } 

{There is no representation for the primal-symbol (see 9.4.a).} 
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5.2.3.2. Semantics 

a) The yield W of a LEAP-generator or LEAP-sample-generator G, in 
an environ E, is determined as follows: 
• W is a newly created name which is made to refer {2.1.3.2.a} to the yield 
in E of the actual-declarer {4.4.2.d, 4.6.2.a} of G: 
• W is equal in scope to the environ E1 determined as follows: 

Case A: "LEAP' is ' local ' :  
• El is the "local environ" {b} accessible from E: 

Case B: 'LEAP' is 'heap' :  
• El is {the first environ created during the elaboration of the 
part icular-program, which is} such that 
(i) the primal environ {2.2.2.a} is the environ of the environ of the 
environ of E1 {sic}, and 
(ii) El is, or is older than, E; 

Case C: 'LEAP' is "primal': 
• El is the primal environ; 

• if W is a stowed name {2.1.3.2.b}, then W is endowed with subnames 
{2.1.3.3.e, 2.1.3.4.g}. 

{The only examples of primal-generators  occur in the standard- and 
system-preludes (10.3.1.l.h, 10.3.1.4.b,n,o, 10.4.l.a). 

When G is a reference-to-routine-sample.generator,  the mode of W is of 
no relevance.} 

b) The "local environ" accessible from an environ E is an environ El 
determined as follows: 

If E is "nonlocal" {3.2.2.b}, 
then El is the local environ accessible from the environ of E: 
otherwise, E1 is E. 

{An environ is nonlocal if it has been established according to a serial- 
clause or enquiry-clause which contains no constituent mode-, identifier-, 
or operation.declaration, or according to a for-part (3.5.1.b) or a 
specification (3.4.l.j,k) .} 
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5.2.4. Nihils 

5.2.4.1. Syntax  

a) strong reference to MODE NEST nihil{5B} : nil{94f} token. 

{Example:  

a) nil } 

5.2.4.2. Semant ics  

The yield of a nihil is a nil name .  

5.3. Units associa ted  with s towed values  

{In Flanders fields the poppies blow 
Between the crosses, row on row . . . .  
In Flanders Fields, John McCrae.} 

{The fields of s t ruc tu red  values  m a y  be obta ined  by select ions (5.3.1) 
and the e lements  of mult iple  values  by slices (5.3.2); the co r re spond ing  
effects on s towed n a m e s  a re  defined also.} 

5.3.1. Selections 

{A selection selects  a field f rom a s t ruc tu red  value  or  (if it is a 
"mult iple selection") it selects  a mult iple  value  f rom a mult iple  value  
whose e lements  a re  s t ruc tu red  values.  F o r  example ,  re o f  z selects  the 
first real  field (usually t e r m e d  the rea l  part)  of the yield of z. If  z yields a 
name,  then re of  z also yields a name ,  but if g yields a complex  value,  
then re o f  g yields a real  value,  not  a n a m e  re fe r r ing  to one.] 

5.3.1.I. Syntax  

A) REFETY :: REF to ; EMPTY. 
B) REFLEXETY :: REF to ; REF to flexible ; EMPTY. 

{REF :: reference  ; transient reference.} 

a) REFETY MODEl NEST selection{5C} : 
MODEl field FIELDS applied field se lector with TAG{48d}, 

of {94f} token, weak  REFETY structured with FIELDS mode  
NEST SECONDARY{5C} ; 

where (MODEl) is (ROWS of MODE2), 
MODE2 field FIELDS applied field se lector with TAG{48d}, 
of{94f} token, weak  REFLEXETY ROWS of structured with 
FIELDS mode  NEST SECONDARY{5C}, 

where (REFETY) is derived from (REFLEXETY){b,c,-}. 
b) WHETHER (transient reference  to) is derived from 

(REF to flexible){a,532a,66a} : WHETHER true. 
c) WHETHER (REFETY) is derived from (REFETY){a,532a,66a} : 

WHETHER true. 
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{Examples:  

a) r e o t z  • r e o f z l  } 
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{The mode  of re of  z begins with ' r e f e r ence  to'  b e c a u s e  tha t  of z does. 
Example :  

int age := 7; struct (bool sex,  tnt age) jill; 
age  of j i l l  := age; 

Note that  the dest inat ion age  o f  j i l l  yields a n a m e  because  j i l l  yields one. 
After  the identity-declaration 

struct (bool sex,  int age) j a c k  = (true, 9), 
age of  j a c k  cannot  be ass igned to since j a c k  is not a variable.} 

5.3.1.2. Semant ics  

The yield W of a select ion S is de t e rmined  as follows: 
• let V be the yield of the SECONDARY of S; 
• it is requi red  that  Y {if it is a name} be not nil; 
• W is the value selected in {2.1.3.3.a,e, 2.1.3.4.k} or  the n a m e  g e n e r a t e d  
f rom {2.1.3.4.1} Y by the f ield-selector of S. 

{A selection in a n a m e  re fe r r ing  to a s t ruc tu red  value  yields an exis t ing 
s u b n a m e  (2.1.3.3.e) of tha t  name .  The n a m e  g e n e r a t e d  f rom a n a m e  
re fe r r ing  to a mult iple  value,  by  w a y  of a select ion with a ROWS-of-MODE- 
SECONDARY (as in re o f  z l ) ,  is a n a m e  which m a y  or  m a y  not be newly  
c rea ted  for the purpose.} 

5.3.2. Slices 

{Slices a re  obtained by subscr ipt ing,  e.g., x l  [i],  by  t r imming ,  e.g., 
x 1 1 2 :  n]  or  by both, e.g., x 2 [ j :  n , j ]  or x 2 [ , k ] .  Subscr ip t ing  and 
t r i m m i n g  m a y  be done only to PRIMARYs, e.g., x l  or  ( p [ x l [ y l )  but  not 
re o t z l .  The value of a slice m a y  be e i ther  one e l emen t  of the yield of its 
PRIMARY or a subset  of the e lements ;  e.g., x l  [i] is a rea l  n u m b e r  f rom 
the row of real  n u m b e r s  x l ,  x2  [i, ] is the i-th row of the ma t r i x  x2  and 
x2  [ ,  k] is its k-th column.} 

5.3.2.1. Syntax  

A) ROWSETY :: ROWS ; EMPTY. 

a) REFETY MODEl NEST slice{5D} : 
weak  REFLEXETY ROWSI  of MODEl NEST PRIMARY{5D}, 

ROWSI  leaving EMPTY NEST indexer{b,c,-} STYLE bracke t ,  
where (REFETY) is derived from (REFLEXETY){531b,c,-} ; 

where (MODEl) is (ROWS2 of MODE2), 
weak  REFLEXETY ROWSI  of MODE2 NEST PRIMARY{5D}, 
ROWSI leaving ROWS2 NEST indexer{b,d,-} STYLE bracket,  
where  (REFETY) is derived from (REFLEXETY){531b,c,-}. 

{ROWS ::  row ; ROWS row.} 
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b) row ROWS leaving ROWSETYI ROWSETY2 NEST indexer{a,b} : 
row leaving ROWSETYI NEST indexer{c,d,-}, and also{94f] token, 

ROWS leaving ROWSETY2 NEST indexer{b,c,d,-}. 
c) row leaving EMPTY NEST indexer{a,b} : NEST subscript{e}. 
d) row leaving row NEST indexer{a,b} : NEST trimmer{f} ; 

NEST revised lower  bound{g} option. 
e) NEST subscript[e} : m e e k  in tegra l  NEST unit{32d}. 
f) NEST t r i m m e r { d }  : NEST lower  bound{46m} option, up to{94f} token, 

NEST upper  bound{46n} option, 
NEST revised lower  bound{g} option. 

g) NEST revised lower  bound{d,f} : 
at{94f} token, NEST lower  bound{46m}. 

h) * t r i m s c r i p t  : NEST subscript{e} ; NEST trimmer{f} ; 
NEST revised  lower  bound{g} option. 

i) * indexer  : ROWS leaving ROWSETY NEST indexer{b,c,d}. 
j) *boundscr ip t  : NEST subscript{e} ; NEST lower  bound{46m} ; 

NEST upper  bound{46n} ; NEST revised  lower  bound{g}. 

{Examples:  

a) x2  [ i , j ]  • x2  [ , j ]  
b) 1: 2, j (in x2  [1 : 2 , j ] )  • i, j (in x2  [ i , j ] )  
c) j (in x2  [1 : 2 , j ] )  d) 1 : 2 • @0 (in x l  [@0]) 
e) j f) 1 : 2  @0 
g) @0 } 

{A subscr ip t  dec rea se s  the n u m b e r  of d imens ions  by one, but  a 
t r i m m e r  leaves  it unchanged .  In rule a, 'ROWSI"  ref lects  the n u m b e r  of 
t r imsr ip ts  in the slice, and "ROWS2' the n u m b e r  of these which a re  
t r i m m e r s  or  revised- lower-bound-opt ions.  

If the value to be sl iced is a name ,  then the yield of the slice is also a 
name.  Moreover ,  if the mode  of the f o r m e r  n a m e  is ' r e f e r ence  to flexible 
ROWSI of MODE', then tha t  yield is a t rans ien t  n a m e  (see 2.1.3.6.c).} 

5.3.2.2. Semant ics  

a) The yield W of a slice S is de t e rmined  as follows: 
• let Y and 01 . . . . .  I n) be the [collateral} yields of the PRIMARY of S 

and of the indexer  {b} of S; 
• it is required  tha t  V {if it is a name} be not nil; 
• let ((r 1, s 1) . . . . .  fin' Sn)) be the desc r ip to r  of V or  of the value  r e fe r red  

to by V; 
For  i = 1 . . . . .  n, 

Case A: I. is an integer:  
! 

• it is requi red  that  r. <_ I. <_ s.; 
I I I 
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Case B: I. is some  tr iplet  (I, u, I')" 
I 

• let L be r i, if I is absent,  and be I o therwise;  

• let U be s i, if u is absent,  and be u otherwise;  

• it is requi red  tha t  r.~ <_ L and U ~_ si; 

• let D be 0 if r is absent,  and be L - I' o therwise ;  {D is the a m o u n t  
to be sub t rac ted  f rom L in o rde r  to ge t  the rev ised  lower  bound; } 
• I . i s  r ep laced  by (L, U, D); i 

• W is the value selected in {2.1.3.4.a,g,i} or  the n a m e  g e n e r a t e d  f rom 
{2.1.3.4.j} V by (I 1 . . . . .  In). 

b) The yield of an indexer  I of a slice S is a t r im  {2.1.3.4.h} or  an  
index {2.1.3.4.a} (I 1 . . . . .  I n) de t e rmined  as follows: 

* the const i tuent  boundscr ip ts  of S a re  e l abo ra t ed  col la tera l ly ;  
Fo r  i = 1 . . . . .  n, where  n is the n u m b e r  of cons t i tuent  t r imsc r ip t s  of S, 

Case A: the i-th t r imsc r ip t  is a subscr ip t :  
• I. is {the in teger  which is} the yield of tha t  subscr ipt ;  

I 

Case B: the i-th t r imsc r ip t  is a t r i m m e r  T: 
• I . i s  the tr iplet  (I, u, I'), where  

* I is the yield of the const i tuent  lower .bound,  if any,  of T, 
and is absent,  o therwise ,  
• u is the yield of the const i tuent  upper .bound,  if any,  of T, and 
is absent,  o therwise,  
• I' is the yield of the cons t i tuent  revised- lower .bound,  if any,  of 
T, and is 1, o therwise;  

Case C: the i-th t r imsc r ip t  is a rev ised- lower .bound.opt ion  N: 
• I. is the tr iplet  (absent, absent,  r) ,  where  

• I' is the yield of the revised- lower-bound,  if any,  of N, and is 
absent otherwise.  

{Observe that,  if (I 1 . . . . .  In)cOntains no triplets,  it is an index, and 

selects  one e lement ;  otherwise,  it is a t r im,  and selects  a subset  of the 
elements.} 

{A slice f rom a n a m e  re fe r r ing  to a mult iple  value  yields an exis t ing 
subname  (2.1.3.4.j) of tha t  n a m e  if all the const i tuent  t r imsc r ip t s  of tha t  
slice a re  subscr ipts .  Otherwise,  it yields a gene ra t ed  n a m e  which m a y  or  
m a y  not be newly c rea ted  for the purpose.  Hence,  the yield of x l  [1 : 2] 
:=: x l  [1 : 2] is not defined, a l though x l  [1] :=: x l  [1] m u s t  a lways  yield 
true.} 

{The var ious  possible bounds  in the yield of a slice a re  i l lus t ra ted by 
the following examples ,  for each  of which the desc r ip to r  of the value 
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referred to by the yield is shown: 
[0: 9 , 2 :  11] m t i 3 ;  
i3 [1, 3 : 1 0  @3] ¢((3, 10))¢; 
i3 [1, 3: 10] ¢((1, 8))¢; 
i3 [1 ,3 :  ] ¢( (1 ,9) )¢;  
i3 [1,: ] ¢((1 ,10))¢;  
i3 [1, ] ¢((2 ,11))¢;  
i 3 [ , 2 ]  ¢((0,9))¢.}  

5.4. Units associated with routines 

{Routines are created from routine-texts (5.4.1) or from jumps (5.4.4), 
and they may  be "called" by calls (5.4.3), formulas (5.4.2) or by 
deproceduring {6.3).} 

5.4.1. Routine texts 

{A routine-text always has a formal-declarer,  specifying the mode of 
the result, and a routine-token, viz., a colon. To the right of this colon 
stands a unit, which prescribes the computations to be performed when 
the routine is called. If there are parameters ,  then to the left of the formal- 
declarer stands a declarative containing the various formal-parameters  
required. 
Examples:  

void : pr in t  (x); 
(ref real a, real b) bool : (a < b [ a := b; true ] false).} 

5.4.1.1. Syntax 

a) procedure yielding MOlD NESTI routine text{44d,5A} : 
formal MOlD NESTI declarer{46b}, routine{94f} token, 

strong MOlD NESTI unit{32d}. 
b) procedure with PARAMETERS yielding 

MOlD NESTI routine text{44d,SA} : 
NESTI new DECS2 declarative defining 

new DECS2{e} brief pack, 
where DECS2 like PARAMETERS{c,d,-}, 
formal MOlD NESTI declarer{46b}, routine{94f} token, 
strong MOlD NESTI new DECS2 unit{32d}. 

c) WHETHER DECS DEC like PARAMETERS PARAMETER{b,c} : 
WHETHER DECS like PARAMETERS{c,d,-} 

and DEC like PARAMETER{d,-}. 
{PARAMETER :: MODE parameter.} 

d) WHETHER MODE TAG like MODE parameter{b,c} : 
WHETHER true. 

e) NEST2 declarative defining new DECS2{b,e,34j} : 
formal MODE NEST2 deelarer{46b}, 

NEST2 MODE paramete r  joined definition of DECS2{41b,c} ; 

ALGOL 68 Revised Report 

f) 

g) 

{Examples: 

a) real : random × 10 
e) bool a, b • bool a, bool b 

87 

where (DECS2) is (DECS3 DECS4), 
formal MODE NEST2 declarer{46b}, 
NEST2 MODE paramete r  joined definition of DECS3{41h,c}, 
and also{94f} token, NEST2 declarat ive defining new DECS4{e}. 

NEST2 MODE paramete r  definition of MODE TAG2{41c} : 
MODE NEST2 defining identifier with TAG2{48a}. 

* formal MODE parameter  : 
NEST MODE parameter  definition of MODE TAG{f}. 

b)  (hee l  a, b) boo l  : (a [ b I false) 
f) a}  

5.4.1.2. Semantics 

The yield of a routine-text T, in an environ E, is the routine composed 
of 
(i) T, and 

(ii) the environ necessary for {7.2.2.c} T in E. 

5.4.2. Formulas  

{Formulas are either dyadic or monadic: e.g., x + i or abs x. The order 
of elaboration of a formula is determined by the priority of its operators; 
monadic formulas are elaborated first and then the dyadic ones from the 
highest to the lowest priority.} 

5.4.2.1. Syntax 

A) DYADIC :: priority PRIO. 
B) MONADIC :: priority iii iii iii i. 
C) ADIC :: DYADIC ; MONADIC. 
D) TALLETY :: TALLY ; EMPTY. 

a) MOlD NEST DYADIC formula{c,SB} : 
MODEl NEST DYADIC TALLETY operand{c,-}, 

procedure with MODEl pa ramete r  MODE2 paramete r  
yielding MOlD NEST applied operator  with TAD{48b}, 

where DYADIC TAD identified in NEST{72a}, 
MODE2 NEST DYADIC TALLY operand{c,-}. 

b) MOlD NEST MONADIC formula{c,5B} : 
procedure with MODE paramete r  yielding MOlD 

NEST applied operator with TAM {48b}, 
MODE NEST MONADIC operand{c}. 

c) MODE NEST ADIC operand{a,b} : 
firm MODE NEST ADIC formula{a,b} eoercee{61b} ; 
where (ADIC) is (MONADIC), f irm MODE NEST SECONDARY{5C}. 
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d) 
e) 

f) 

g) 

{Examples: 

a) -x + 1 
c) -x • 1 } 
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* MOlD formula : MOlD NEST ADIC formula{a,b}. 
"DUO dyadic operator with TAD : 

DUO NEST DEFIED operator with TAD{48a,b}. 
"MONO monadic operator  with TAM : 

MONO NEST DEFIED operator  with TAM[48a,b}. 
* MODE operand : MODE NEST ADIC operand{c}. 

b) -x 

5.4.2.2. Semantics 

The yield W of a formula F, in an environ E, is determined as follows: 
• let R be the routine yielded in E by the operator  of F; 
• let Y 1 . . . . .  V n in is 1 or 2} be the [collateral] yields of the operands of F, 

in an environ E1 established {locally, see 3.2.2.b} around E; 
• W is the yield of the calling {5.4.3.2.b} of R in El, with Y 1 . . . . .  Yn; 

• it is required that W be not newer in scope than E. 

{Observe that a ; b  is not precisely the same as a b in the usual 
notation; indeed, the value of ( - 1  ; 2  +4 =5) and that of ( 4 -  1 1 2 = 3 )  both 
are true, since the first minus-symbol is a monadic-operator,  whereas the 
second is a dyadic-operator.} 

5.4.3. Calls 

{Calls are used to command the elaboration of routines parametr ized 
with actual-parameters .  
Examples:  

s in  (x) • (P l s i n  l cos) (x).} 

5.4.3.1. Syntax 

a) MOlD NEST cail{5D} : meek procedure with PARAMETERS yielding 
MOlD NEST PRIMARY{5D}, 

actual NEST PARAMETERS{b,c} brief pack. 
b) actual NEST PARAMETERS PARAMETER{a,b} : 

actual NEST PARAMETERS{b,c}, and also{94f} token, 
actual NEST PARAMETER{c}. 

c)  actual NEST MODE parameter{a,b} : strong MODE NEST unit{32d}. 

{Examples: 

a) p u t ( s t a n d o u t ,  x )  (see 10.3.3.1.a) 
b) s t a n d o u t ,  x c) x } 

5.4.3.2. Semantics 
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a) The yield W of a call C, in an environ E, is determined as follows: 
• let R Ca routine} and Y 1 . . . . .  V n be the {collateral} yields of the 

PRIMARY of C, in E, and of the constituent ac tual -parameters  of C, in an 
environ E1 established {locally, see 3.2.2.b} around E; 
• W is the yield of the calling {b} of R in E1 with Y 1 . . . . .  Vn; 

• it is required that W be not newer in scope than E. 

b) The yield W of the "calling" of a routine R in an environ El, 
possibly with {parameter} values V 1 . . . . .  Vn' is determined as follows: 

• let E2 be the environ established {3.2.2.b} upon El, around the environ of 
R, according to the declarative of the declarative.pack,  if any, of the 
routine-text of R, with the values V 1 . . . . .  V n, if any; 

• W is the yield in E2 of the unit of the routine-text of R. 

{Consider the following serial-clause: 
proc  s a m e l s o n  = (int n,  p roc  (inO real f) real  : 

begin long real s : = long O; 
for i t o n  do s + : = leng  f (i) t 2 od ;  
shorten l ong  s q r t  (s) 

end; 
same~son  (m, ( in t j )  real  : x l  [j]). 

In that context, the last call has the same effect as the following cast: 
real ( 

int n = m,  p roc  (int) real  f =  (int j )  real  : x l  [j]; 
beg in  long real s : = long O; 

f o r  i t o n  do s + : = leng  f (i) T 2 od;  
shorten l ong  s q r t  (s) 

end). 
The transmission of ac tual -parameters  is thus similar to the 

elaboration of identity-declarations (4.4.2.a); see also establishment 
(3.2.2.b) and ascription (4.8.2.a).} 

5.4.4. Jumps  

{A jump may terminate the elaboration of a series and cause some 
other labelled series to be elaborated in its place. 
Examples:  

y : = if x >_ 0 then  s q r t  (x) else goto p r i n c e t o n  fl • 
goto s t  p ierre  de c h a r t r e u s e .  

Alternatively, if the context expects the mode 'procedure yielding 
MOLD', then a routine whose unit is that jump is yielded instead, as in 
proc  vok l  m := goto n o r t h  b e r w i c k . }  
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5.4.4.1. Syntax 
a) strong MOlD NEST jump{5A} : go to{b} option,  

label NEST applied identifier with TAG{48b}. 
b) go to{a} : STYLE go to{94f,-} token ; 

STYLE go{94f,-} token, STYLE to symbol{94g,-}. 

{Examples: 

a) goto koo tw i j k  • g o  to w a r s a w  • zandvoor t  
b) goto • go to } 

5.4.4.2. Semantics  

A MOlD-NEST-jump J, in an environ E, is e labora ted  as follows: 
• let the scene yielded in E by the label-identifier of d be composed of a 
series $2 and an environ El; 
Case A: 'MOLD' is not any 'p rocedure  yielding MOIDI ' :  

• let $1 be the series of the smal les t  {1.1.3.2.g} ser ial-clause containing 
$2; 
• the elaborat ion of $1 in El, or of any ser ies  in E1 e labora ted  in its 
place, is t e rmina ted  {2.1.4.3.e}: 
• $2 in E1 is e labora ted  "in place of" $1 in El; 

Case B: 'MOLD' is some "procedure yielding MOIDI' :  
• J in E {is completed and} yields the routine composed of 
(i) a new MOlD-NEST-routine-text whose unit is akin {1.1.3.2.k} to J, 
(ii) El. 

5.5. Units associated with values of any mode 

5.5.1. Casts 

{Casts m a y  be used to provide a strong position. For  example ,  t e l  real 
(xx) in te l  real (xx) := 1, t e l  book  (nil) in n e x t  of draf t  :=: rof b o o k  (nil) and 
string (p I c l r) in s +:= string (p [ c l r).} 

5.5.1.1. Syntax 

a) MOlD NEST cast{5D} : fo rmal  MOlD NEST declarer{46b}, 
strong MOlD NEST ENCLOSED clause{31a,33a,c,d,e,34a,35a,-}. 

{Example: 

a) r e f b o o k  (nil) } 
{The yield of a cas t  is that  of its ENCLOSED-clause, by way of pre- 

elaboration (2.1.4.1.c).} 

5.5.2. Skips 

5.5.2.1. Syntax 

a) strong MOlD NEST skip{5A} : skip{94f} token.  
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5.5.2.2. Semantics  

The yield of a skip is some {undefined} value equal  in scope to the 
pr imal  environ. 

{The mode of the yield of a MOlD-skip is 'MOLD'. A void-skip serves  as 
a d u m m y  s ta tement  and m a y  be used, for example ,  a f te r  a label which 
m a r k s  the end of a serial-clause.} 

PART III  

Context Dependence 

{This Pa r t  deals with those rules which do not a l te r  the underlying 
syntact ical  structure:  
• the t ransformat ions  of modes  implicit ly defined by the context,  with 
their accompanying  actions; 
• the syntax needed for the equivalence of modes  and for the safe 
application of the proper t ies  kept in the nests.} 

6. Coercion 

{The coercions produce a coereend f rom a eoereee  according to three 
criteria:  the a priori mode of the eoercend before the applicat ion of any 
coercion, the a posteriori  mode  of the coercee  required a f te r  those 
coercions, and the syntact ic  position or "sort" of the coercee.  Coercions 
m a y  be cascaded.  

There are  six possible coercions, t e rmed  "deproceduring",  
"dereferencing",  "uniting", "widening", "rowing" and "voiding". Each  
coercion, except  "uniting", prescr ibes  a corresponding dynamic  effect  on 
the associated values. Hence, a n u mb er  of pr imi t ive  actions can be 
p r o g r a m m e d  implicitly by coercions.} 

6.1. Coercees 

CA eoercee is a construct  whose production t ree  m a y  begin a sequence 
of coercions ending in a coercend. The order  of (completion of) the 
elaboration of the coercions is therefore  f rom the coercend to the eoercee  
(hence the choice of these paranot ions) .  For  example ,  / in real(i) is a 
eoercee whose production tree involves 'widened to" and 'dereferenced  to', 
in that  order,  in passing f rom the coercee to the coercend. Note that  the 
dereferencing mus t  be completed before the widening takes  place. 
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The relevant production tree (with elision of "NEST', 
"with TAG', and with invisible subtrees omitted) is: 

'applied'  and 

's trong real identifier coercee '  
I 6.1.1.a 

* 'widened to real identifier' I 
widening coercion I 6.5.1.a 

'dereferenced to integral identifier'  
dereferencing coercion I 6.2.1.a 

[ 'unchanged from reference to integral identifier' 
[ 6.1.l.f 

' reference to integral identifier' (coercend) 
[ 4.S.l.b, 9.1.f I 

' letter i symbol '  .} 

6.1.1. Syntax 

A) 

B) 
C) 

D) 
E) 
F) 

G) 

STRONG{a,66a} :: FIRM{B} ; widened to{65a,b,c,d} ; rowed to{66a} ; 
voided to{67a,b}. 

FIRM{A,b} :: MEEK{C} ; united to{64a}. 
MEEK{B,c,d,62a,63a,64a,65a,b,c,d} :: unchanged from{f} ; 

dereferenced to{62a} ; deprocedured to{63a}. 
SOFT{e,63b} :: unchanged from{f} ; softly deprocedured to{63b}. 
FORM :: MORF ; COMORF. 
MORF :: NEST selection ; NEST slice ; NEST routine text ; 

NEST ADIC formula ; NEST call ; 
NEST applied identifier with TAG. 

COMORF :: NEST assignation ; NEST identity relation ; 
NEST LEAP generator ; NEST cast  ; NEST denoter ; 
NEST format  text. 

a) 

b) 
c) 
d) 

e) 
f) 

strong MOlD FORM coercee{5A,B,C,D,A341i} : 
where (FORM) is (MORF), STRONG{A} MOlD MORF ; 
where (FORM) is (COMORF), STRONG{A} MOlD COMORF, 

unless (STRONG MOLD) is (deprocedured to void). 
firm MODE FORM coercee{5A,B,C,D,542c} : FIRM{B} MODE FORM. 
meek MOlD FORM coercee{5A,B,C,D} : MEEK[C} MOlD FORM. 
weak REFETY STOWED FORM coercee{5A,B,C,D} : 

MEEK{C} REFETY STOWED FORM, 
unless  (MEEK) is ( d e r e f e r e n c e d  to) 
and (REFETY) is (EMPTY). 

soft MODE FORM coercee{5A,B,C,D} : SOFT{D} MODE FORM. 
unchanged from MOlD FORM{C,D,67a,b} : MOlD FORM. 

g) 
h) 

* SORT MOID coercee : SORT MOID FORM coercee{a,b,c,d,e}. 
* MOID coercend : MOID FORM. 
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{Examples: 

a) 3.14 (in x := 3.14) 
b) 3.14 (in x + 3.14) 
c) s in  (in s in  (x)) 
d) x l  (in x l  [2] := 3.14) 
e) x (in x := 3.14) } 

{For 'MOLD FORM" (rule f), see the cross-references inserted in 
sections 5.I.A,B,C,D before "coercee". Note, however, that a 'MOLD FORM' 
may  be a blind alley. Blind alleys within this chapter  are not indicated.} 

{There are five sorts of syntactic position. They are: 
• "strong" positions, i.e., actual-parameters ,  e.g., x in s i n ( x ) ,  sources; 
e.g., x in y : = x ,  the ENCLOSED-clause of a cast, e.g., (nil) in 
ref book (nil), and statements,  e.g., y := x in (y : = x; x : = 0); 
• "firm" positions, i.e., operands, e.g., x in x + y ;  
• "meek" positions, i.e., enquiry-clauses, e.g., x > O  in ( x ~ O l x [ O ) ,  
boundscripts, e.g., i in x l  [i], and the PRIMARY of a call, e.g., s in  in 
s in  (x); 
• "weak" positions, i.e., the SECONDARY of a selection and the 
PRIMARY of a slice, e.g., x l  in x l  [i]; 
• "soft" positions, i.e., destinations, e.g., x in x := y and one of the 
TERTIARYs of an identity-relation, e.g., x in x x  :=: x. 

Strong positions also arise in balancing (3.2.1.e). 

In strong positions, all six coercions may  occur; in firm positions, 
rowing, widening and voiding are forbidden; in meek and weak positions, 
uniting is forbidden also, and in soft positions only deproceduring is 
allowed. However, a dereferenccd-to-STOWED-FORM may  not be directly 
descended from a weak-STOWED-FORM-coercee (rule d) for, otherwise, 
x : = x l  [i] would be syntactically ambiguous (although, in this case, not 
semantically).  Also, a deprocedured-to-void-COMORF may  not be directly 
descended from a strong-void-COMORF-coercee (rule a) for, otherwise, 

(proc void engel fr ie t ;  proc  void r i jpens  = skip; enge l f r i e t  : = r i jpens;  skip)  
would be ambiguous.} 
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6.2. Dereferencing 

{Dereferencing serves to obtain the value referred to by a name, as in 
x : = y ,  where y yields a name referring to a real number  and it is this 
number  which is assigned to the name yielded by x. The a priori mode of 
y, regarded as a coercend, is ' reference to real '  and its a posteriori mode, 
when y is regarded as a coercee, is 'real'.} 

6.2.1. Syntax 

a) dereferenced to{61C} MODEl FORM : 
MEEK{61C} REF to MODE2 FORM, 

where MODE2 deflexes to MODEl{47a,b,c,-}. 
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{Example: 

van Wijngaarden, e t  al. 

a) x (in real (x)) } 

6.2.2. Semantics 

The yield W of a dereferenced-to-MODE-FORM F 
follows: 
• let {the name} N be the yield of the MEEK-FORM of F; 
• it is required that N be not nil; 
• W is the value referred to by N. 

is determined as 

6.3. Deproceduring 

{Deproceduring is used when a routine without parameters  is to be 
called. E.g., in x := random,  the routine yielded by random is called and 
the real number  yielded is assigned: the a posteriori mode of random is 
"real'. Syntactically, an initial "procedure yielding' is removed from the a 
priori mode.} 

6.3.1. Syntax 

a) deprocedured to{61C,67a} MOID FORM : 
MEEK{61C} procedure  y ie ld ing  MOID FORM. 

b) soft ly  deprocedured  to{61D} MODE FORM : 
SOFT{61D} procedure  y ie ld ing  MODE FORM. 

{Examples: 

a) random (in real (random)) 
b) x o r y  (in x o r y : = 3 . 1 4 ,  see 1.1.2) } 

6.3.2. Semantics 

The yield W of a deproeedured.to-MOID-FORM or so f t ly -deprocedured- to -  
MOlD-FORM F, in an environ E, is determined as follows: 
• let {the routine} R be the yield in E of the direct descendent of F; 
• W is the yield of the calling {5.4.3.2.b} of R in E; 
• it is required that W be not newer in scope than E. 

6.4. Uniting 

{Uniting does not change the mode of the run-time value yielded by a 
construct, but simply gives more freedom to it. That value must  be 
acceptable to not just that one mode, but rather  to the whole of a given set 
of modes. However, after uniting, that value may  be subject to a primitive 
action only after being dynamical ly tested in a conformity-clause (3.4.1.q); 
indeed, no primitive action can be p rogrammed  with a construct  of a 
"UNITED' mode (except to assign it to a UNITED-variable, of course). 
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Example:  
union (booL char) t, v; 
t := "a"; t := true; v := t. } 

6.4.1. Syntax 

a) united to{6tB} UNITED FORM .. MEEK{61C} MOlD FORM, 
where MOlD unites  to UNITED{b}. 

b) WHETHER MOLD1 unites  to MOID2{a,34i,71m} : 
where MOIDI equivalent MOlD2{73a}, WHETHER false ; 
unless  MOIDI equ iva lent  MOID2{73a}, 

WHETHER safe MOODSI subset of safe MOODS2{731,m,n}, 
where (MOODSI) is (MOIDI) 
or (union of MOODSI mode) is (MOIDI), 

where (MOODS2) is (MOLD2) 
or (union of MOODS2 mode) is (MOLD2). 

{Examples: 

a) x (in uir := x) • 
u (in union (char, int, void)(u), in a reach containing 
u n i o n  ( int,  vo id )  u : = e m p t y )  } 

6.5. Widening 

{Widening transforms integers to real numbers,  real numbers  to 
complex numbers (in both cases, with the same size), a value of mode 
'BITS' to an unpacked vector of truth values, or a value of mode 'BYTES' 
to an unpacked vector of characters .  

For  example, in z := 1, the yield of 1 is widened to the real number  1.0 
and then to the complex number  (1.0, 0.0); syntactically,  the a priori 
mode specified by int is changed to that specified by real and then to that 
specified by compl.} 

6.5.1. Syntax 

A) BITS :: s tructured with 
row of boolean field SITHETY letter aleph mode. 

B) BYTES :: s tructured  with 
row of c h a r a c t e r  field SITHETY letter aleph mode. 

C) SITHETY :: LENGTH LENGTHETY ; SHORTH SHORTHETY ; 
EMPTY. 

D) LENGTH :: letter ! letter o letter n letter g. 
E) SHORTH :: le t ter  s le t ter  h le t ter  o le t ter  r l e t ter  t. 
F) LENGTHETY :: LENGTH LENGTHETY ; EMPTY. 
G) SHORTHETY :: SHORTH SHORTHETY ; EMPTY. 

a) widened to{b,61A} SIZETY real FORM : 
MEEK{6IC} SIZETY integral FORM. 

{SIZETY :: long LONGSETY ; short SHORTSETY ; EMPTY.} 
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b) widened to{61A} s t ruc tu red  with SIZETY rea l  field le t ter  r le t ter  e 
SIZETY real  field le t ter  i le t ter  m m o d e  FORM : 

MEEK[61C} SIZETY real  FORM ; 
widened to{a} SIZETY rea l  FORM. 

c) widened to{61A} row of boolean FORM : MEEK{61C} BITS FORM. 
d) widened to{6IA} row of c h a r a c t e r  FORM : MEEK{61C} BYTES FORM. 

{Examples:  

a) I ( i n x : = l )  
b) 1.0 (in z : =  1.0) • 1 (in z : =  1) 
c) 2r101 (in [ ] bool(2rl01))  
d) r (in [ }char(r) ,  see 1.1.2)} 

6.5.2. Semant ics  

The yield W of a widened-to-MODE-FORM F is d e t e r m i n e d  as follows: 
• let V be the yield of the d i rec t  descenden t  of F; 
Case A: 'MODE' is some  "SIZETY rea l ' :  

• W is the real  n u m b e r  widenable  f rom {2.1.3.1.e} V; 
Case B: 'MODE' is some  ' s t ruc tu red  with SIZETY rea l  le t ter  r le t ter  e 

SiZETY real  le t ter  i le t ter  m mode ' :  
• W is {the complex  n u m b e r  which is} a s t r uc tu r ed  value  whose fields 
a re  respec t ive ly  V and the real  n u m b e r  0 of the s a m e  size {2.1.3.1.b} as  
V; 

Case C: 'MODE' is "row of boolean '  or  ' row of c h a r a c t e r ' :  
• W is the {only} field of V. 

6.6. Rowing 

{Rowing pe rmi t s  the building of a mult iple  value  f rom a single e lement .  
If  the la t ter  is a n a m e  then the resul t  of rowing m a y  also be a n a m e  
re fe r r ing  to tha t  mult iple  value.  
Example :  

[1 : 1] real bl  := 4.13 } 

6.6.1. Syntax  

a) rowed to[61A} REFETY ROWSI  of MODE FORM : 
where (ROWSI) is (row), 

STRONG{61A} REFLEXETY MODE FORM, 
where  (REFETY) is der ived  f r o m  (REFLEXETY){531b,c,-} ; 

where  (ROWS1) is (row ROWS2), 
STRONG{61A} REFLEXETY ROWS2 of MODE FORM, 
where  (REFETY) is derived from (REFLEXETY){531b,c,-}. 

{Examples:  

a) 4.13 (in [1 : I ]  r e a l b l  :=4.13) • 
x l  (in [1 :  I~1: n ] r e a l b 2 : = x l ) }  
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6.6.2. Semant ics  

a) The yield W of a rowed-to-REFETY-ROWSI-of .MODE.FORM 
de te rmined  as follows: 
• let V be the yield of the STRONG-FORM of F; 
Case A: 'REFETY' is "EMPTY': 

• W is the mult iple  value  "built" {b} f rom V for ' R O W S I ' ;  
Case B: 'REFETY' is 'REF to': 

If V is nil, 
then W is a nil name;  
otherwise,  W is the n a m e  "built" {c} f rom V for ' R O W S I ' .  

F is 

b) The mult iple  value  W "built" f rom a value  V, for some  ' R O W S I ' ;  is 
de t e rmined  as follows: 
Case A: ' R O W S I '  is "row': 

• W is composed  of 
(i) a desc r ip to r  ((1, 1)), 
(ii) {one element} V; 

Case B: "ROWSI" is some  ' row ROWS2": 
• let the descr ip tor  of V be ((I 1, Ul) . . . . .  (In, Un)); 

• W is composed  of 
(i) a descr ip tor  ((1, 1), (I 1, Ul) . . . . .  (In, Un)), 

(ii) the e lements  of V; 
• the e lement  selected by an index 01 . . . . .  i n) in V is tha t  selected by 

(1, i 1 . . . . .  i n) in W. 

c) The n a m e  N1 "built" f rom a n a m e  N, for  some  ' R O W S I ' ,  is 
de t e rmined  as follows: 
• N1 is a n a m e  [not necessa r i ly  newly  created}, equal  in scope to N and 
re fe r r ing  to the mult iple  value built {b}, for ' R O W S I ' ,  f r o m  the value 
r e fe r red  to by N; 
Case A: "ROWSI '  is "row': 

• the {only} s u b n a m e  of N1 is N; 
Case B: "ROWSI '  is some  ' row ROWS2": 

• the s u b n a m e  of N1 selected by (1, i I . . . . .  i n ) is the s u b n a m e  of N 

selected by (i 1 . . . . .  in). 

6.7. Voiding 

[Voiding is used to d i scard  the yield of some  unit  whose P r i m a r y  
purpose  is to cause  its side-effects;  the a poster ior i  mode  is then s imply  
"void'. F o r  example ,  in x := 1; y := 1;, the ass igna t ion  y := 1 is voided, and 
in p r o c t =  int: on t lar (randomxlO0);  t;, the appl ied- ident i f ier  t is voided 
af ter  a deprocedur ing ,  which p resc r ibes  the cal l ing of a routine.  
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Assignations and other COMORFs are voided without any deproeeduring 
so that, in proc void p ; . p  := f i n i sh ,  the assignation p := f i n i sh  does not 
prescribe an unexpected calling of the routine f in ish .}  

6.7.1. Syntax 

A) NONPROC :: PLAIN ; STOWED ; REF to NONPROC ; 
procedure with PARAMETERS yielding MOlD ; UNITED. 

a) voided to{flA} void MORF : deprocedured to{63a} NONPROC MORF ; 
unchanged from{61f} NONPROC MORF. 

b) voided to{61A} void COMORF : 
unchanged from{61f} MODE COMORF. 

{Examples: 

a) random (in skip; random;) • 
n e x t  random (last random)  
(in skip; n e x t  random (last random);) 

b) proc void (pp) (in proc proc void pp = proc void : (print  (1); 
v o i d  : p r i n t  (2)); proc void (pp);) } 

6.7.2. Semantics 

The elaboration of a voided-to-void-FORM consists of that of its direct 
descendent, and yields empty. 

7. Modes and nests 

{The identification of a property in a nest is the static counterpart  of 
the dynamic determination (4.8.2.b) of a value in an environ: the search is 
conducted from the newest (youngest) level towards the previous (older) 
ones. 

Modes are composed from the primitive modes, such as 'boolean',  with 
the aid of "HEAD's, such as "structured with', and they may  be reeursive. 
Recursive modes spelled in different ways may  nevertheless be 
equivalent. The syntax tests the equivalence of such modes by proving 
that it is impossible to find any discrepancy between their respective 
structures or component modes. 

A number  of unsafe uses  of properties are prevented. An identifier or 
mode-indication is not declared more than once in each reach. The modes 
of the operands of a formula do not determine more  than one operation. 
Reeursions in modes do not cause the creation of dynamic  objects of 
unlimited size and do not allow ambiguous coercions.} 

7.1. Independence of properties 

{The following syntax determines whether two properties (i.e., two 
"PROP's), such as those corresponding to teal  x and int x,  may  or may  not 
be enveloped by the same 'LAYER'.} 

7.1.1. Syntax 

A) 
B) 

C) 

a) 

b) 
e) 

d) 

e) 
f) 
g) 
h) 
i) 

J) 

k) 
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PREF :: procedure yielding ; REF to. 
NONPREF :: PLAIN ; STOWED ; 

procedure with PARAMETERS yielding MOID ; UNITED ; void. 
"PREFSETY :: PREF PREFSETY ; EMPTY. 

{PROP :: DEC ; LAB ; FIELD. 
QUALITY :: MODE ; MOlD TALLY ; DYADIC ; label ; MODE field. 
TAX :: TAG ; TAB ; TAD ; TAM. 
TAO :: TAD ; TAM.} 

WHETHER PROPI independent PROPS2 PROP2{a,48a,c,72a} : 
WHETHER PROPI independent PROPS2{a,c} 

and PROPI independent PROP2{c}. 
WHETHER PROP independent EMPTY{48a,e,72a} : WHETHER true. 
WHETHER QUALITYI TAXi 

independent QUALITY2 TAX2{a,48a,c,72a} : 
unless (TAXI) is (TAX2), WHETHER true ; 
where (TAXI) is (TAX2) and (TAXI) is (TAO), 

WHETHER QUALITYI independent QUALITY2{d}. 
WHETHER QUALITYI independent QUALITY2{e} : 

where QUALITYI related QUALITY2{e,f,g,h,i,j,-}, 
WHETHER false ; 

unless QUALITY 1 related QUALITY2{e,f,g,h,i,j,-}, 
WHETHER true, 

WHETHER MONO related DUO{d} : WHETHER false. 
WHETHER DUO related MONO{d} : WHETHER false. 
WHETHER PRAM related DYADIC{d} : WHETHER false. 
WHETHER DYADIC related PRAM{d} : WHETItER false. 
WHETHER procedure with MODEl pa ramete r  MODE2 pa ramete r  

yielding MOIDI related 
procedure with MODE3 paramete r  MODE4 paramete r  
yielding MOID2{d} : 

WHETHER MODEl firmly related MODE3{k} 
and MODE2 firmly related MODE4{k}. 

WHETHER procedure with MODEl pa ramete r  yielding MOIDI 
related procedure with MODE2 pa ramete r  yielding 
MOID2{d} : WHETHER MODEl firmly related MODE2{k}. 

WHETHER MOIDI firmly related MOID2{i,j} : 
WHETHER MOODSI is firm MOID2{I,m} 

or MOODS2 is firm MOIDI{I,m}, 
where (MOODSI) is (MOIDI) 
or (union of MOODSI mode) is (MOIDI), 

where (MOODS2) is (MOLD2) 
or (union of MOODS2 mode) is (MOLD2). 
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1) WHETHER MOODS MOOD is firm MOID{k,I} : 
WHETHER MOODS is firm MOID{I,m} 

or MOOD is firm MOlD{m}. 
m) WHETHER MOIDI is firm MOID2{k,l,n,47f} : 

WHETHER MOIDI equivalent MOlD2{73a} 
or MOIDI unites to MOID2{64b} 
or MOIDI deprefs to firm MOID2{n}. 

n) WHETHER MOIDI deprefs to firm MOID2{m} : 
where (MOIDI) is (PREF MOLD3), 

WHETHER MOLD5 is firm MOID2{m}, 
where MOLD3 deflexes to MOID5{47a,b,c} ; 

where (MOIDI) is (NONPREF), WHETHER false. 
{To prevent the ambiguous application of indicators, as in real x,  i n t x ;  

x := 0, certain restrictions are imposed on defining-indicators contained in 
a given reach. These are enforced by the syntactic test for "independence" 
of properties enveloped by a given 'LAYER' (rules a, b, c). A sufficient 
condition, not satisfied in the example above, for the independence of a 
pair of properties, each being some 'QUALITY TAX', is that the 'TAX's 
differ (rule c). For  "TAX's which are not some "TAO', this condition is also 
necessary, so that even real x, int x; sk ip  is not a serial-clause. 

For  two properties 'QUALITY1 TAO" and "Q[IALITY2 TAO' the test for 
independence is more complicated, as is exemplified by the serial-clause 

o p  + = ( i n t  i )  b o o l  : true, o p  + = ( i n t  i ,  j )  i n t  : 1, o p  + = ( i n t  i ,  b o o l  j )  i n t  : 2, 
p r i o  + = 6; 
0 + + 0 ¢ = 2 ¢ .  

Ambiguities would be present in 
p r i o + = 6 ,  += 7; 1 + 2 x 3  ¢ 7 or 97 ¢ , 

in 
o p  z = ( i n t  i )  i n t  : i ,  m o d e  z = i n t ;  

z i ¢ f o r m u l a  or dec lara t ion?  ¢ ; sk ip  , 
and in 

op ? = (union ( tel  real, char) a) int : I, op  ? = (real a) int : 2; 
? loc real ¢ l o r 2 7 ¢ .  

In such cases a test is made that the two 'QUALITY's are independent 
(rules c, d). A "MOLD TALLY' is never independent of any "QUALITY' 
(rule d). A 'MONO' is always independent of a 'DUO' (rules d, e, f) and 
both are independent of a "DYADIC' (i.e., of a 'priori ty PRIO') (rules d, g, 
h). In the case of two 'PRAM's which are both 'MONO' or both "DUO', 
ambiguities could arise if the corresponding pa ramete r  modes were 
"firmly related", i.e., if some (pair of) operand mode(s) could be firmly 
coerced to the (pair of) pa ramete r  mode(s) of either 'PRAM' (rules i, j). 
In the example with the two definitions of 7, the two 'PRAM's are related 
since the modes specified by union  (ref real, char)  and by real are firmly 
related, the mode specified by ref  real being firmly coercible to either one. 

It may  be shown that two modes are firmly related if one of them, or 
some component "MOOD' of one of them, may  be firmly coerced to the 
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other (rules k, 1), which requires a sequence of zero or more meek 
coercions followed by at most one uniting (6.4.1.a). The possibility or 
otherwise of such a sequence of coercions between two modes is 
determined by the predicate 'is f i rm'  (rules m, n). 

A "PROPI" also renders inaccessible a 'PROP2" in an outer 'LAYER' if 
that 'PROP2' is not independent of 'PROPI ' ;  e.g., 

begin int x; 
begin real x; ¢ here  the  ' PROPI '  is ' reference to real letter x ' ¢  

skip  
e n d  

e n d  
and likewise 

beg in  op  ? = ( int i) int  : 1, int  k : = 2; 
beg in  op  ? = (ref  int  i) int  " 3; 

? k ¢ de l ivers  3, bu t  ? 4 could  no t  occur  here  because  i ts  
operator is i nacces s ib l e  ¢ 

end 
end .} 

7.2. Identification in nests 

{This section ensures that for each applied-indicator 
corresponding property in some suitable "I,AYER' of the nest.} 

7.2.1. Syntax 

a) 

b) 

c) 

there is a 

{PROPSETY :: PROPS ; EMPTY. 
PROPS :: PROP ; PROPS PROP. 
PROP :: DEC ; LAB ; FIELD. 
QUALITY :: MODE ; MOlD TALLY ; DYADIC ; label ; MODE field. 
TAX :: TAG ; TAB ; TAD ; TAM.] 

WHETHER PROP identified in NEST new PROPSETY{a,48b,542a} : 
where PROP resides in PROPSETY{b,c,-}, WHETHER true ; 
where PROP independent PROPSETY{71a,b,e}, 

WHETHER PROP identified in NEST[a,-}. 

WHETHER PROPI resides in PROPS2 PROP2{a,b,48d} : 
WHETHER PROPI resides in PROP2{c,-} 

or PROPI resides in PROPS2{b,e,-}. 
WHETHER QUALITYI TAX resides in QUALITY2 TAX{a,b,48d} : 

where (QUALITYI) is (label) or (QUALITYI) is (DYADIC) 
or (QUALITYI) is (MODE field), 

WHETHER (QUALITYI) is (QUALITY2) ; 
where (QUALITYI) is (MOIDI TALLETY) 

and (QUALITY2) is (MOLD2 TALLETY), 
WHETHER MOIDI equivalent MOID2{73a]. 
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{A nest, except  the pr imal  one (which is jus t  'new' ) ,  is some 'NEST 
LAYER' (i.e., some 'NEST new PROPSETY'). A 'PROP'  is identified by 
first looking for it in that  'LAYER' (rule a).  If  the 'PROP'  is some "label 
TAX' or 'DYADIC TAX', then a s imple ma tch  of the 'PROP's  is a sufficient 
test  (rule e). If the "PROP" is some 'MOLD TALLETY TAX', then the mode 
equivaleneing mechan i sm mus t  be invoked (rule c). If  it is not found in 
the 'LAYER', then the search continues with the "NEST' (without that  
'LAYER'), provided that  it is independent of all 'PROP's  in that  'LAYER'; 
otherwise the search is abandoned (rule a).  Note that  rules b and c do 
double duty in that  they are  also used to check the validity of applied-field- 
selectors (4.8.1.d) .} 

7.2.2. Semant ics  
a) If some NEST-range R {3.0.I.f} contains an applied-indicator I 

{4.8.1.b} of which there is a descendent  where-PROP-identified-in-NEST- 
LAYER, but no descendent  where-PROP-identified-in-NEST, then R is the 
"defining range" of that  I. {Note that  "NEST' is a lways  the nest  in force 
just  outside the range.} 

b) A QUALITY-applied-indicator-with-TAX I whose defining NEST- 
range  {a} is R "identifies" the QUALITY-NEST-LAYER-defining-indicator- 
with-TAX contained in R. 

{For example ,  in 
(¢1¢ real i = 2.0; (¢2¢ int i = 1; (¢3¢ real x; p r i n t  (i) ¢3¢) ¢2¢) ¢1¢) 

there are three ranges.  The applied-identifier  i in p r i n t  (i) is forced, by the 
syntax,  to be an integral-NEST-new-real-letter-i-new-integral-letter-i-new- 
referenee-to-real-letter-x-applied-identifier-with-letter-i  (4.8.1.b). Its 
defining range  is the NEST-new-real-letter-i-serial-clause-defining-new- 
integral-letter-i  (3.2.1.a) numbered  ¢2¢, it identifies the defining-identifier i 
contained in int i (not the one in real i),  and its mode is ' integral ' .} 

{By a s imi lar  mechan ism,  a DYADiC-formula (5.4.2.1.a) m a y  be said to 
"identify" that  DYADiC-defining-operator (4.8.1.a) which de te rmines  its 
priority.} 

c) The environ E "necessary  for" a construct  C in an environ E1 is 
determined as follows: 
If E1 is the pr imal  environ {2.2.2.a}, 
then E is El; 
otherwise, letting E1 be composed of a locale L corresponding to some 

'PROPSETY" and another  environ E2, 
If C contains any QUALiTY-applied-indicator-with-TAX 

• which does not identify {b} a defining.indicator contained in C, 
• which is not a mode-indication direct ly descended f rom a formal-  
or vir tual-declarer ,  and 
• which is such that  the predicate  'where  QUALITY TAX resides in 
PROPSETY' {7.2.1.b} holds, 

then E is El: 
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otherwise, {L is not necessary  for C and} E is the environ necessary  for 
C in E2. 

{The environ necessary  for a construct  is used in the semant ics  of 
r o u t i n e - t e x t s  (5.4.1.2) and in "establishing" (3.2.2.b). For  example ,  in 

¢2¢ proc void pp; int n; (¢I¢ proc p = void : p r i n t  (n); pp  := p) 
if E1 and E2 are  the environs establ ished by the elaborat ion of the serial- 
clauses ma rked  by the c o m m e n t s  ¢I¢ and ¢2¢, then E2 is the environ 
necessary  in E1 for the routine. text  void: p r i n t  (n), and so the routine 
yielded by p in E1 is composed of that  routine-text together  with E2 
(5.4.1.2). Therefore,  the scope of that  routine is the scope of E2 (2.1.3.5.c) 
and hence the ass ignment  (5.2.1.2.b) invoked by pp  := p is well defined.} 

I ' s t r u c t u r e d  with" 

I I J 
' integral" 'field" ' l e t t er  i' 

7.3. Equivalence of modes  

{The equivalence or nonequivalence of 'MOlD's is de te rmined  in this 
section. For  a discussion of equivalent  'MOlD's see 2.1.1.2.} 

{One way of viewing recurs ive  modes is to consider them as infinite 
trees. Such a "mode tree" is obtained by repeatedly  substituting in some 
spelling, for each 'MU applicat ion ' ,  the 'MODE' of the corresponding 'MU 
def in i t i on  of MODE'. Thus, the spelling 'mui  de f in i t i on  of  s t r u c t u r e d  with 
integral  field letter i re ference  to m u i  a p p l i c a t i o n  field let ter  n m o d e '  
would give rise to the following mode tree: I I ' 'mode '  

I "structured with" 

I [ I 
"integral '  'field" "letter i' 

I I 
"field" "letter n' 

I ' r e fe rence  to" 

I ' 'mode '  

'field" "letter n' 

I 
' r e fe rence  to" I 

(et cetera).  

Two spellings are  equivalent  if and only if they give rise to identical mode 
trees. The equivalence syntax tests  the equivalence of two spellings by, as 
it were,  s imultaneously developing the two t rees  until a difference is found 
(resulting in a blind alley) or until it becomes  appa ren t  that  no difference 
can be found. The growing production tree reflects  to some extent  the 
s t ructure  of the mode trees.} 

7.3.1. Syntax 

A) SAFE :: safe ; MU has MODE SAFE ; yin SAFE ; yang SAFE ; 
r e m e m b e r  MOIDI MOLD2 SAFE. 
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B) 

C) 

D) 
E) 
a) 

b) 

c) 

d) 

e) 

f) 
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HEAD :: PLAIN ; PREF{71A} ; s t r u c t u r e d  with  ; 
FLEXETY ROWS of ; p r o c e d u r e  wi th  ; union of ; void.  

TAILETY :: MOlD ; FIELDS m o d e  ; PARAMETERS y i e l d i n g  MOlD ; 
MOODS m o d e  ; EMPTY. 

PARTS :: PART ; PARTS PART. 
PART :: FIELD ; PARAMETER. 

WHETHER MOIDI equivalent MOID2{64b,71m,72c} : 
WHETHER safe  MOIDI equivalent sa fe  MOII)2{b}. 

WHETHER SAFEI MOIDI e q u i v a l e n t  SAFE2 MOID2{a,b,e, i , j ,n} : 
where (SAFEI)  contains (remember MOIDI MOLD2) 

or  (SAFE2) con ta in s  (remember MOLD2 MOIDI) ,  
WHETHER true ; 

unless (SAFEI)  contains (remember MOIDI MOLD2) 
or  (SAFE2) con ta in s  (remember MOLD2 MOiDI) ,  

WHETHER (HEAD3) is (HEAD4) 
and  r e m e m b e r  MOIDI MOLD2 SAFE3 TAILETY3 
equivalent SAFE4 TAILETY4{b,d,e,k,q,-},  

w h e r e  SAFE3 HEAD3 TAILETY3 develops from 
SAFEI MOIDI{c} 
and  SAFE4 HEAD4 TAILETY4 develops from 
SAFE2 MOID2{c}. 

WHETHER SAFE2 HEAD TAILETY develops f rom 
SAFEI MOID{b,e} : 

w h e r e  (MOLD) is (HEAD TAILETY), 
WHETHER (HEAD) sh ie lds  SAFEI to S A F E 2 { 7 4 a , b , e , d , - }  ; 

w h e r e  (MOLD) is (MU def in i t ion  of MODE), 
unless (SAFEI)  contains (MU has), 
WHETHER SAFE2 HEAD TAILETY d e v e l o p s  f rom 
MU h a s  MODE SAFEI MODE{c} ; 

w h e r e  (MOLD) is (MU application) 
and  (SAFEI)  is (NOTION MU has  MODE SAFE3) 
and (NOTION) contains (yin) and (NOTION) contains (yang), 

WHETHER SAFE2 HEAD TAILETY develops f rom 
SAFEI MODE{e}. 

WHETHER SAFEI FIELDSI m o d e  
equivalent SAFE2 FIELDS2 mode{b} : 

WHETHER SAFEI FIELDSI  equivalent SAFE2 FIELDS2{f,g,h,i}. 
WHETHER SAFEI PARAMETERSI y i e l d i n g  MOLD! 

e q u i v a l e n t  SAFE2 PARAMETERS2 y i e l d i n g  MOID2{b} : 
WHETHER SAFEI PARAMETERSI 

equivalent SAFE2 PARAMETERS2{f,g,h,j} 
and  SAFEI MOIDI e q u i v a l e n t  SAFE2 MOII)2{b}. 

WHETHER SAFE1 PARTSI  PARTI  
e q u i v a l e n t  SAFE2 PARTS2 PART2{d,e,f} : 

WHETHER SAFEI PARTSI  e q u i v a l e n t  SAFE2 PARTS2{f,g,h, i , j ]  
and  SAFE1 PARTI  e q u i v a l e n t  SAFE2 PART2{i,j}. 

g) 

b) 

i) 

J) 

k) 

m) 

n) 

o) 

p) 
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WHETHER SAFEI PARTSI  PARTI  e q u i v a l e n t  
SAFE2 PART2{d,e,f} : WHETHER fa lse .  

WHETHER SAFEI PARTI  equivalent 
SAFE2 PARTS2 PART2{d,e,f} : WHETHER fa lse .  

WHETHER SAFEI MODEl  f ie ld TAGI  
e q u i v a l e n t  SAFE2 MODE2 f ield TAG2{d,f} : 

WHETHER (TAGI)  is  (TAG2) 
and  SAFEI MODEl  equivalent SAFE2 MOI)E2{b}. 

WHETHER SAFEI MODEl parameter 
equivalent SAFE2 MODE2 parameter{e,f} : 

WHETHER SAFEI MODEl  equivalent SAFE2 MODE2{b}. 

WHETHER SAFEI MOODS1 m o d e  equivalent 
SAFE2 MOODS2 mode{b} : 

WHETHER SAFEI MOODSI  s u b s e t  of SAFE2 MOOI)S2{I,m,n} 
and  SAFE2 MOODS2 s u b s e t  of SAFEI MOOI)SI{l ,m,n} 
and  MOODSI number equals MOOI)S2 number{o,p}. 

WHETHER SAFEI MOODSI MOODI 
subse t  of SAFE2 MOODS2{k,l,46s,64b} : 

WHETHER SAFEI MOODSI  s u b s e t  of SAFE2 MOODS2{1,m,n} 
and  SAFEI MOODI s u b s e t  of SAFE2 MOODS2{m,n}. 

WHETHER SAFEI MOODI 
s u b s e t  of SAFE2 MOODS2 MOOD2{k,l,m,46s,64b} : 

WHETHER SAFEI MOODI subse t  of SAFE2 MOODS2{m,n} 
or  SAFEI MOODI s u b s e t  of SAFE2 MOOD2{n}. 

WHETHER SAFEI MOODI s u b s e t  of SAFE2 MOOD2{k,l,m,64b} : 
WHETHER SAFEI MOODI equivalent SAFE2 MOOD2{b}. 

WHETHER MOODSI MOODI n u m b e r  equals 
MOODS2 MOOD2 number{k,o} : 

WHETHER MOODSI number equals MOODS2 number{o,p,-}. 
WHETHER MOODI number equals MOOD2 number{k,o} : 

WHETHER true .  

q) WHETHER SAFEI EMPTY e q u i v a l e n t  SAFE2 EMPTY{b} : 
WHETHER true .  

{Rule a i n t roduc es  the  "SAFE's which  a r e  used  as  a s s o c i a t i v e  m e m o r i e s  
du r ing  the d e t e r m i n a t i o n  of equ iva l ence .  T h e r e  a r e  two of t hem,  one 
be long ing  to each  mode .  Rule  b d r a w s  an  i m m e d i a t e  conc lus ion  if the  
'MOlD ' s  u n d e r  c o n s i d e r a t i o n  a r e  a l r e a d y  r e m e m b e r e d  (see below) in an  
a p p r o p r i a t e  'SAFE'  in the  fo rm ' r e m e m b e r  MOIDI MOLD2". I f  th is  is not  
the  case ,  then the  two 'MOlD ' s  a r e  f i r s t  r e m e m b e r e d  in a 'SAFE" (the one 
on the left) and  then each  "MOLD" is d e v e l o p e d  ( rule  c) and  sp l i t  into i ts  
"HEAD' and  its 'TAILETY' ,  e .g. ,  ' r e f e r e n c e  to r e a l '  is sp l i t  into r e f e r e n c e  
to" and ' r e a l ' .  

if the  'HEAD's  dif fer ,  then the  m a t t e r  is s e t t l ed  ( rule  b):  o t h e r w i s e  the  
'TAILETY's  a r e  a n a l y z e d  a c c o r d i n g  to t he i r  s t r u c t u r e  (which m u s t  be  the  
s a m e  if the  "HEAD's a r e  i den t i ca l ) .  In e a c h  case ,  e x c e p t  w h e r e  the  
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'HEAD's were 'union of', the equivalence is determined by examining the 
corresponding components, according to the following scheme: 

rule 'TAll,ETY' components 

d 'FIELDS mode" 'FIEI,I)S' 
e "PARAMETERS yielding MOll)" 'PARAME'I'I.:I{~" and "MOll)" 
f 'FIELDS FIEI,I)' 'FIEI,I)S" and "I,'IEI,I)' 
f 'PARAMETERS PARAMETER" 'PARAMETERS" and "PARAMETER' 
i 'MODE field TAG' 'MOI)E" and "TA(;" 
j 'MODE parameter'  'MODE" 

In the case of unions, the "TAILETY's are of the form 'MOOI)SI mode '  and 
'MOODS2 mode' .  Since 'MOOD's within equivalent unions may  commute.  
as in the modes specified by union  (real, int) and union  (int, real), the 
equivalence is determined by checking that "MOOI)SI' is a subset of 
"MOOI)S2' and that 'MOODS2' is a subset of 'MOOI)SI',  where the subset 
test, of course, invokes the equivalence test recursively (rules k,l,m,n,o,p). 

A 'MOLD' is developed (rule c) into the form "HEAD TAII,EI"~' by 
determining that 
(i) it is already of that form: in which case markers  ( 'yin'  and 'yang ' )  
may  be placed in its 'SAFE' for the later determination of well-formedness 
(see 7.4) : 
(if) it is some 'MU definition of MODE': in which case "MU has MOI)E' is 
stored in its 'SAFE' (provided that this part icular  "MU" is not there 
already) and the "MOI)E' is developed: 
(iii) it is some 'MU application': in which case there must  be some 'MII 
has MODE' in its 'SAFE' already. That 'MODE" is then developed after a 
well-formedness check (see 7.4) consisting of the determination that there 
is at least one 'yin" and at least one "yang' in the 'SAFE" which is more 
recent than the "MU has MODE'.} 

{Before a pair  of 'TAILETY's is tested for equivalence, it is 
remembered  in the 'SAFE" that the original pair of "MOII)'s is being tested. 
This is used to force a shortcut to "WHETHER true" if these 'MOlD's 
should ever be tested again for equivalence lower down the production 
tree. Since the number  of pairs of component 'MOlD's that can be derived 
from any two given 'MOlD's is finite, it follows that the testing process 
terminates. 

It remains to be shown that the process is correct.  Consider the 
unrestricted (possibly infinite) production tree that would be obtained if 
there were no shortcut in the syntax (by omitting the first al ternative 
together with the first member  of the other alternative of rule b). If two 
'MOlD's are not equivalent, then there exists in their mode trees a 
shortest path from the top node to some node exhibiting a difference. 
Obviously, the reflection of this shortest path in the unrestricted 
production tree cannot contain a repeated test for the equivalence of any 
pair of 'MOlD's, and therefore none of the shortcuts to "WHETHER true" in 
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the restricted production tree can occur on this shortest path. 
Consequently, the path to the difference must  be present also in the 
(restricted) production tree produced by the syntax. If the testing process 
does not exhibit a difference in the restricted tree, then no difference can 
be found in any number  of steps; i.e., the "MOll)'s are equivalent.} 

7.4. Well-formedness 
{A mode is well formed if 

(i) the elaboration of an actual-declarer specifying that mode is a finite 
action (i.e., any value of that mode can be stored in a finite memory)  
and 

(if) it is not strongly coercible from itself (since this would lead to 
ambiguities in coercion).} 

7.4.1. Syntax 
a) WHETHER (NOTION) shields SAFE to SAFE{73c} : 

where (NOTION) is (PLAIN) 
or (NOTION) is (FLEXETY ROWS of) 
or (NOTION) is (union of) or (NOTION) is (void), 

WHETHER true. 
b) WHETHER (PREF) shields SAFE to yin SAFE{73e} : WHETHER true. 
e) WHETHER (structured with) shields SAFE to yang SAFE{73c} : 

WHETHER true. 
d) WHETHER (procedure with) shields SAFE to yin yang SAFE{73c} : 

WHETHER true. 
[As a by-product of mode equivalencing, modes are tested for. well- 

formedness (7.3.1.c). All nonrecursive modes are well formed. For  
recursive modes, it is necessary that each cycle in each spelling of that 
mode (from 'MU definition of MODE" to "MU application') passes through 
at least one "HEAD' which is yin, ensuring condition (i) and one (possibly 
the same) 'HEAD" which is yang, ensuring condition (if). Yin 'HEAD's are 
"PREF' and 'procedure with'. Yang "HEAD's are ' s t ructured with' and 
'procedure with'. The other 'HEAD's, including "FLEXETY ROWS of" and 
'union of', are neither yin nor yang. This means that the modes specified 
by a, b and c in 

m o d e  a = s t r u c t  ( int  n,  r o l e  nex t ) ,  b = s t r u c t  (p roc  b nex t ) ,  c = p r o c  (c) c 
are all well formed. However, m o d e  d = [1 : 10] d, e = union  (int, e) is not 
a mode-declaration.} {TaD produced the one. 

The one produced the two. 
The two produced the three. 
And the three produced the ten thousand 
things. 
The ten thousand things carry the yin and 
embrace the yang, and through the 
blending of the material force they achieve 
harmony. 
Tao-te Ching, 42, Lao Tzu.} 
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PART IV 

Elaborat ion-independent  constructions 

8. Denotations 
{Denotations, e.g., 3.14 or "abc", are  constructs  whose Yields are  

independent of any action. In other languages,  they are  somet imes  t e rmed  
"literals" or "constants".} 

8.0.1. Syntax 
a) MOlD NEST denoter{SD,A341i} : pragment{92a} sequence option, 

MOlD denotation{810a,811a,g12a,813a,814a,815a,82a,b,c,83a,-}. 

{The meaning  of a denotation is independent of any nest.} 

8.1. Plain denotations 

{Plain-denotations a re  those of a r i thmet ic  values,  truth 
charac te r s  and the void value, e.g., 1, 3.14, true, "a" and empty.}  

8.1.0.1. Syntax 
A) SIZE :: long ; short. 
B) *NUMERAL :: fixed point numera l  ; var iab le  point numera l  

floating point numera l .  

a) SIZE INTHEAL denotation{a,80a} .. 
SIZE symbol{94d}, INTREAL denotation{a,811a,812a}. 

b) *plain denotation : PLAIN denotation{a,811a,812a,813a,814a} 
void denotation{815a}. 

{Example: 
a) long 0 } 

values,  

8.1.0.2. Semant ics  
The yield W of an INTREAL-denotation is the "intrinsic value" {8.1.1.2, 

8.1.2.2.a,b} of its consti tuent NUMERAL; 
• it is required that  W be not g rea t e r  than the la rges t  value of mode 
'INTREAL' that  can be distinguished {2.1.3.1.d}. 

{An INTREAL-denotation y ie lds  an a r i thmet ic  value {2.1.3A.a}, but 
ar i thmet ic  values  yielded by different INTREAL-denotations a re  not 
necessar i ly  different (e.g., 123.4 and 1.234~o+2). } 

8.1.1. Integral  denotations 

8.1.1.1. Syntax 

a) integral  denotation{80a,810a} : fixed point numeral{b}. 
b) fixed point numeral{a,812c,d,f,i,A341h} : digit cypher{e} sequence. 
c) digit cypher{b} : DIGIT symbol{94b}, 

{Examples: 

a) 4096 
c) 4} 
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b) 4096 
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8.1.1.2. Semant ics  

The intrinsic value of a f ixed.point-numeral  N is the integer  of which 
the reference- language form of N {9.3.b} is a dec imal  representat ion.  

8.1.2. Real denotations 

8.1.2.1. 

a) 

b) 

c) 
d) 
e) 
f) 

g) 
h) 

i) 
J) 

{Examples: 

a) 0.00123 • 1.23e-3 
c) 0 
e) 1.23e-3 
g) e -3  
i) -3 

Syntax 

real  denotation{80a,810a} : 
var iable  point numeral{b} ; floating point numeral{e}. 

var iable  point numeral{a,f} : 
integral  part{c} option, fract ional  part{d}. 

integral  part[b} : fixed point numeral{811b}. 
fractional part{b} : point symbol{94b}, fixed point numerai{811b}. 
floating point numeral{a} : s tagnant  part{f}, exponent  part{g}. 
s tagnant  part{e} : 

fixed point numeral{811b} ; var iable  point numeral{b}. 
exponent part{e} : t imes ten to the power choice{h}, power of ten{i}. 
t imes ten to the power choice{g} : 

t imes ten to the power symbol{94b} ; let ter  c symbol{94a}. 
power of ten{g} : plusminus{j} option, fixed point numeral{811b}. 
plusminus{i} : plus symbol{94c} ; minus  symbol{94c}. 

b) 0.00123 
d) .00123 
f) 123 • 1.23 
h) x o • e  
j) + • - }  

8.1.2.2. Semant ics  

a) The intrinsic value V of a var iable-point -numeral  N is de te rmined  
as follows: 
• let I be the intrinsic value of the f ixed-point-numeral  of its consti tuent 
integral-part ,  if any, and be 0 otherwise: 
• let F be the intrinsic value of the f ixed-point-numeral  of its fractional- 
par t  P divided by 10 as m a n y  t imes as there are  digi t-cyphers contained in 
P; 
• V is the sum in the sense of numer ica l  analysis  of I and F. 

b) The intrinsic value Y of a f loat ing-point-numeral  N is de termined as 
follows: 
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• let S be the intrinsic value of the NUMERAL of its s tagnant-part :  
• let E be the intrinsic value of the constituent fixed-point-numeral of its 
exponent-part; 
Case A: The constituent plusminus-option of N contains a minus-symbol: 

• V is the product in the sense of numerical  analysis of S and 1/10 
raised to the power E; 

Case B: The direct descendent of that plusminus-option contains a plus- 
symbol or is empty: 
• Y is the product in the sense of numerical  analysis of S and 10 
raised to the power E. 

8.1.3. Boolean denotations 

8.1.3.1. Syntax 
a) boolean denotation{8Oa} : true{94b} symbol ; false{94b} symbol. 

{Examples: 
a) true • false } 

8.1.3.2. Semantics 

The yield of a boolean-denotation is true (false) if its direct descendent 
is a true-symbol (false-symbol). 

8.1.4. Character  denotations 

{Character-denotations consist of a string-item between two quote- 
symbols, e.g., "a". To indicate a quote, a quote-image-symbol (represented 
by .... ) is used, e.g., ' ....... . Since the syntax nowhere allows character-  or 
string-denotations to follow one another, this causes no ambiguity.} 

8.1.4.1. Syntax 

a) charac ter  denotation{80a} .. 
quote{94b} symbol, string item{b}, quote symbol{94b}. 

b) string item{a,83b} : charac te r  glyph{e} ; quote image symbol{94b} ; 
other string item{d}. 

c) character  glyph{b,92c} : LETTER symbol{94a} ; 
DIGIT symbol{94b} ; point symbol{94b} ; open symbol{94f} ; 
close symbol{94f} ; c o m m a  symbol{94b} ; space symbol{94b} ; 
plus symbol{94c} ; minus symbol{94c}. 

d) A production rule may  be added for the notion 'other string i tem'  
{b, for which no tiyper-rule is given in this Report} each of whose 
alternatives is a symbol {l.l.3.1.f} which is different from any 
terminal production of ' charac te r  glyph" {c} and which is not 
'quote symbol ' .  

{Examples: 

a) "a" b) a • .... • ? 
C) a o l O . o ( o ) o , o  o + o - }  
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8.1.4.2. Semantics 
a) The yield of a character-denotat ion is the intrinsic value of the 

symbol descended from its string-item. 

b) The intrinsic value of each distinct symbol descended from a string- 
item is a unique character .  {Characters have no inherent meaning, except , 
insofar as some of them are interpreted in part icular  ways by the transput 
declarations (10.3). The character-glyphs,  which include all the charac ters  
needed for transput, form a minimum set which all implementations 
(2.2.2.c) are expected to provide.} 

8.1.5. Void denotation 

{A void-denotation may  be used to assign a void value to a UNITED- 
variable, e.g., union ([ }real, void) u := empty.} 

8.1.5.1. Syntax 
a) void denotation{80a} : empty{94b} symbol. 

[Example: 
a) empty } 

8.1.5.2. Semantics 

The yield of a void-denotation is empty. 

8.2. Bits denotations 

8.2.1. Syntax 

A) RADIX :: radix two ; radix four ; radix eight ; radix sixteen. 

a) structured with row of boolean field 
I,ENGTH LENGTHETY letter aleph mode denotation{a,80a} : 

long{94d} symbol, s tructured with row of boolean field 
I,ENGTHETY letter aleph mode denotation {a,c}. 

b) structured with row of boolean field 
SHORTH Stl()RTHETY letter aleph mode denotation{b,80a} : 
short{94d} symbol, s tructured with row of boolean field 
SHORTllE'I'~ letter aleph mode denotation{b,c}. 

c) structured with row of boolean field 
letter aleph mode denotation{a,b,80a} : 

RAI)lX{d,e,f,g}, letter r symbol{94a}, RAI)IX digit{h,i,j,k} sequence. 
d) radix two{c,A347b} : digit two{94b} symbol. 
e) radix four{c,A347b} : digit four{94b} symbol. 
f) radix eight{c,A347b} : digit eight{94b} symbol. 
g) radix sixteen{c,A347b} : digit one symbol{94b}, digit six symbol{94b}. 
h) radix  two digit{e,i} : digit zero symbol{94b} ; digit one symbol{94b}. 
i) radix four digit{c,j} : radix two digit{h} ; digit two symbol{94b} ; 

digit three symbol{94b}. 
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m) 

{Examples:  
a) long 2r101 
c) 8r231 } 

j) radix eight  digit{c,k} : radix  four digit{i} ; digit four symbol{94b} ; 
digit five symbol{94b} ; digit six symbol{94b} ; 
digit seven symbol{94b}. 

k) radix sixteen digit{c} : radix eight  digit{j} ; digit  e ight  symbol{94b} ; 
digit nine symbol{94b} ; le t ter  a symbol{94a} ; 
letter b symbol{94a} ; le t ter  c symbol{94a} ; le t ter  d symbol{94a} ; 
le t ter  e symboi{94a} ; le t ter  f symbol{94a}. 

l) * bits denota t ion : BITS denotation{a,b,c}. 
{BITS :: s t ruc tu red  with 

row of boolean field SITHET~ let ter  a leph mode.} 
• radix digit : RADIX digit{h,i,j,k}. 

b) short 16rffff 

8.2.2. Semant ics  

a) The yield V of a bi ts-denotat ion D is d e t e r m i n e d  as follows: 
• let W be the intrinsic boolean value {b} of its const i tuent  RADIX-digit- 
sequence:  
• let m be the length of W; 
• let n be the value of L bits width  {10.2.1.j}, where  L s tands  for as m a n y  
t imes  long (short) as there  a re  long-symbols  (shor t -symbols)  conta ined  in 
D; 
• it is required that  m be not g r e a t e r  than n: 
• Y is a s t ruc tu red  value  {whose mode  is some  "BITS'} whose only field is 
a mult iple value hav ing  
(i) a descr ip tor  ((1, n)) and 
(ii) n e lements ,  tha t  selected by (i) being false if 1 s_ i s_ n - m, and being 
the (i + m - n)-th t ru th  value of {the sequence} W otherwise .  

b) The intrinsic boolean value  of a RAI)lX-digi t -sequence $ is the 
shor tes t  sequence  of t ru th  values  which, r e g a r d e d  as a b ina ry  n u m b e r  
(true cor respond ing  to 1 and false to 0), is the s a m e  as the intr insic 
in tegral  value (c} of S. 

c) The intrinsic in tegra l  value of a radix-two- (radix-four-.  
radix-eight-,  radix-sixteen-)  -digi t -sequence S is the in teger  of which the 
r e fe rence - l anguage  form of S {9.3.b} is a b inary ,  (qua te rna ry ,  octal.  
hexadec imal )  representa t ion ,  where  the r ep resen ta t ions  a. b, c, d, e and f, 
considered as digits, have  values  10, 11, 12, 13, 14 and 15 respect ively .  

8.3. Str ing denotat ions  

{String-denotations a re  a convenient  wa y  of speci fy ing  "str ings",  i.e., 
mult iple  values  of mode  "row of character'. 
Example :  

string message  := "all is well" } 

8.3.1. Syntax  

a) 

b) 
c) 

{Examples:  

a) "abc" 

ALGOL 68 Revised Report 

row of character denotation{80a} : 
quote{94b} symbol, string{b} option, quote symboi{94b}. 

string{a} : string item{814b}, string item{814b} sequence. 

string denotation : row of character denotation{a}. 

b) abc } 
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6.3.2. Semant ics  

The yield of a s t r ing-denota t ion  D is a mul t iple  value  V de t e rmined  as 
follows: 
• let n be the n u m b e r  of s t r ing- i tems conta ined  in D; 
• the desc r ip to r  of V is ((1, n));  
• for i = 1 . . . . .  n, the e l emen t  of V with index (i) is the intr insic value 
{8.1.4.2.b} of the i-th const i tuent  symbo l  of the s t r ing  of D. 

{"a" is a character-denotation, not a s t r ing-denota t ion.  However ,  in all 
s t rong positions, e.g., string s := "a", it can  be rowed  to a mult iple  value 
(6.6). E lsewhere ,  where  a mul t iple  value  is requi red ,  a ca s t  (5.5.1.1.a) 
m a y  be used, e.g., union (char, string) cs := string ("a").} 

9. Tokens and symbols 

9.1. Tokens 

{Tokens (9.1.l.f) a re  symbols  (9.1.1.h) possibly p receded  by pragments 
(9.2.1.a). Therefore ,  p r a g m e n t s  m a y  a p p e a r  be tween s y mb o l s  w h e r e v e r  
the syn tax  p roduces  a success ion  of tokens.  However ,  in a few places,  the 
syn tax  specif ical ly  p roduces  symbo l s  r a t h e r  than  tokens,  no tab ly  within 
denotations (8), format.texts (10.3.4.1.1.a) and,  of course,  within 
pragments. Therefore, pragments m a y  not occur  in these places.} 

9.1.1. Syntax  

a) CHOICE STYLE start{34a} : 
where (CHOICE) is (choice using boolean), 

STYLE if{94f,-} token ; 
where (CHOICE) is (CASE), STYLE case{94f,-} token. 

b) CHOICE STYLE in{34e} : 
where (CHOICE) is (choice using boolean), 

STYLE then{94f,-} token ; 
where (CHOICE) is (CASE), STYLE in{94f,-} token. 

c) CHOICE STYLE again{341} : 
where (CHOICE) is (choice using boolean), " 

STYLE else if{94f,-} token ; 
where (CHOICE) is (CASE), STYLE ouse{94f,-} token. 
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d) 

e) 

f) 

g) 
h) 
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CHOICE STYLE out{341} : 
where  (CHOICE) is (choice using boolean) ,  

STYLE else{94f,-} token ; 
where  (CHOICE) is (CASE), STYLE out{94f,-} token.  

CHOICE STYLE finish{34a} : 
where  (CHOICE) is (choice using boolean), 

STYLE fi{94f,-} token ; 
where  (CHOICE) is (CASE), STYLE esac{94f,-} token. 

NOTION token : pragment{92a} sequence option, 
NOTION symbol{94a,b,c,d,e, f,g,h}. 

* token : NOTION token{f}. 
* symbol : NOTION symbol{94a,b,c,d,e,f,g,h}. 

9.2. Comments and pragmats  

{A source of innocent merriment. 
Mikado, W.S.Gilbert.} 

{A pragment  is a comment  or a pragmat .  No semantics of pragments  
is given and therefore the meaning (2.1.4.1.a) of any program is quite 
unaffected by their presence. It is indeed the intention that comments  
should be entirely ignored by the implementation, their sole purpose being 
the enlightenment of the human interpreter  of the program.  

Pragmats  may,  on the other hand, convey to the implementation some 
piece of information affecting some aspect of the meaning of the program 
which is not defined by this Report, for example: 

• the action to be taken upon overflow (2.1.4.3.h) or if the scope 
rule is violated (as in 5.2.1.2.b), e.g., p r o v e r f l o w  check  onpr ,  
pr  over f low check  o f f  pr. pr  scope check  on pr  or pr scope check  o f f  pr: 
• the action to be taken upon completion of the compilation 
process, e.g., pr compi le  on ly  pr, pr  d u m p  pr or pr run pr: 
• that the language to be implemented is some sublanguage or 
superlanguage of ALGOL 68, e.g., p r n o n r e c p r  (for a routine-text 
which may  be presumed to be non-recursive): 
• that the compilation may  check for the truth, or a t tempt  to prove 
the correctness,  of some assertion, e.g.: 
int a, b; read((a, b)) pr  asser t  a >_0 ^ b > O pr; 
i n t q : = O ,  r : = a ;  
w h i l e  r >_ b p r  a s s e r t  a = b x q + r a 0 <_ r pr 
d o ( q + : =  1, r - : = b) od  
p r a s s e r t a  = b x q  + r ^ 0 <_r ^ r < b p r  . 

They may also be used to convey to the implementation that the source 
text is to be augmented with some other text, or edited in some way, for 
example: 

ALGOL 68 Revised Report 115 

• some previously compiled portion of the par t icular-program is to 
be invoked, e.g., pr  with s e g m e n t  from a l b u m  pr: 
• the source text is continued on some other document,  e.g., p r r e a d  
f r o m  ano ther  f i le  pr; 
• the end of the source text has been reached, e.g., pr f in i shpr .  

The interpretation of pragmats  is not defined in this Report, but is left to 
the discretion of the implementer,  who ought, at least, to provide some 
means whereby all further pragmats  may  be ignored, for example: 

pr p r a g m a t s  o f f  pr.} 

{pr algol  68 pr  
begin 
p r o c  p r  nonrec  p r  p r  =,void: pr; 
p r  

end 
p r  r u n  p r  p r  ? p r  
Revised Report on the Algorithmic 

Language ALGOL 68.} 

9.2.1. Syntax 

A) 

a) 
b) 

c) 

d) 

PRAGMENT :: p ragmat  ; c o m m e n t .  

pragment{80a,91f,A341b,h,A348a,b,c,A349a,A34Ab} : PRAGMENT{b}. 
PRAGMENT{a} : STYLE PRAGMENT symbol{94h,-}, 

STYLE PRAGMENT i tem{c} s e q u e n c e  option,  
STYLE PRAGMENT symbol{94h,-}. 

{STYLE :: brief ; bold ; style TALLY.} 
STYLE PRAGMENT item{b} : charac ter  glyph{814c} ; 

STYLE other PRAGMENT item{d}. 

A production rule may  be added for each notion designated by 
'STYLE other PRAGMENT item' {c, for which no hyper-rule is 
given in this Report} each of whose alternatives is a symbol 
{1.1.3.1.f}. different from any terminal production of ' charac te r  
glyph" {8.1.4.1.c}, and such that no terminal  production of any 
"STYLE other PRAGMENT item" is the corresponding "STYI,E 
PRAGMENT symbol ' .  {Thus c o m m e n t  ¢ c o m m e n t  might be a 
c o m m e n t ,  but ¢ ¢ ¢ could not.} 

{Examples: 

a) pr  l ist  pr  • ¢ source p r o g r a m  to be l is ted ¢ 
c) l • ? )  

9.3. Representations 

a) A construct in the strict language must  be represented i ~  some 
"representation language" such as the "reference language", which is used 
in this Report. Other representation languages specially suited to the 
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supposed preference  of some human  or mechanica l  in te rpre te r  of I the 
language m a y  be t e rmed  "publication" or "hardware"  languages.  {The 
reference language is intended to be used for the representa t ion  of 
particular-programs and of their  descendents.  It  is, however,  also used in 
Chapter  10 for the definition of the s tandard  environment.} 

b) A "construct  in a representa t ion language" is obtained f rom the 
terminal  production T {1.1.3.2.f} of the corresponding construct  in the str ict  
language {1.1.3.2.e} by replacing the symbols  in T by their  representat ions ,  
as specified in 9.4 below in the case  of the reference  language.  

{Thus, the s t r ic t - language pa r t i cu l a r -p rog ram whose te rmina l  
production is 

"bold begin symbol" 'skip symbol '  'bold end symbol" 
gives rise to the reference  language particular-program 

begin skip end .} 

c) An implementa t ion  {2.2.2.c} of ALGOL 68 which uses 
representat ions which are  sufficiently close to those of the reference  
language to be recognized without fur ther  elucidation, and which does not 
augment  or res t r ic t  the avai lable  representa t ions  other  than as provided 
for below {9.4.a,b,c}, is an " implementa t ion  of the reference  language".  

{E.g., begin, begin, BEGIN, I'begin and 'begin' could all be 
representat ions of the bold-begin.symbol in an implementa t ion  of the 
reference language; some combinat ion of holes in a punched card  might  
be a representat ion of it in some ha rdware  language.} 

9.4. The reference  language 

a) The reference  language provides representa t ions  for various 
symbols ,  including an a rb i t ra r i ly  large num ber  of TAX-symbols {where 
TAX :: TAG ; TAB ; TAD ; TAM.}. The representa t ions  of some of them 
are  specified below {9.4.1}, and to these m a y  be added suitable 
representa t ions  for style-TALLY.letter-ABC.symbols and style-TALLY- 
monad-symbols  and any te rminal  productions of 'STYLE other  PRAGMENT 
i tem'  {9.2.1.d} and of 'other string i t em '  {8.1.4.1.d}. Representa t ions  are  not 
provided for any of these {but they enable  individual implementa t ions  to 
make  avai lable  their  full cha rac t e r  sets for use as charac te rs ,  to provide 
additional or extended a lphabets  for the construction of TAG- and TAB- 
symbols ,  and to provide additional symbols  for use as operators}. There  is 
not, however,  {and there mus t  not be,} except  in representa t ions  of the 
standard., and other, preludes {10.1.3.Step 6}, any representa t ion  of the 
le t ter .a leph-symbol  or the pr imal . symbol .  {For the remain ing  TAX- 
symbols ,  see 9.4.2. There  are,  however,  some symbols  produced by the 
syntax,  e.g., the br ie f -pragmat -symbol ,  for which no representa t ion  is 
provided at all. This does not preclude the representa t ion  of such symbols  
in other representa t ion languages.} 
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b) Where more  than one representa t ion  of a symbol  is given, any of 
them m a y  be chosen. Moreover,  it is sufficient for an implementa t ion  of 
the reference language to provide only one. Also, it is not necessa ry  to 
provide a representat ion of any  par t icu lar  MONAD-symbol or NOMAD- 
symbol  so long as those that  a re  provided are  sufficient to represent  at . 
least  one version {10.1.3.Step 3} of each opera tor  declared  in the standard- 
prelude. 

{For certain different symbols ,  one s a m e  or near ly  the s a m e  
representat ion is given; e.g., the representa t ion ":" is given for the routine- 
symbol, the colon-symbol and the up-to-symbol and ":" for the label- 
symbol.  It  follows uniquely f rom the syntax which of these four symbols  is 
represented by an occurrence,  outside comments ,  p r a g m a t s  and string- 
denotations, of any m a r k  s imi lar  to ei ther  of those representat ions.  I t  is 
also the case that  ".." could be used, without ambigui ty ,  for any of them, 
and such might  indeed be necessary  in implementa t ions  with limited 
cha rac te r  sets. It  m a y  be noted that, for such implementat ions ,  no 
ambigui ty  would be introduced were "(/" and "/)" to be used as 
representat ions of the style-ii-sub-symbol and the style-i i .bus.symbol,  
respectively.  

Also, some of the given representa t ions  a p p e a r  to be composite:  
e.g., the representat ion ":=" of the becomes-symbol  ap p ea r s  to consist  of 
":", the representat ion of the routine-symbol,  etc., and "=", the 
representat ion of the equals .symbol  and of the is-defined-as-symbol.  It  
follows from the syntax that  ":=" can occur, outside comments ,  p r a g m a t s  
and string.denotations, as a representa t ion of the becomes-symbol  only 
(since "=" cannot occur  as the representat ion of a monadic-operator). 
Similarly, the other given composi te  representa t ions  do not cause  
ambiguity.} 

c) The fact that  the representa t ions  of the letter-ABC-symbols given 
{9.4.1.a} are  usually spoken of as small  letters is not mean t  to imply that  
the corresponding capital  letters could not serve  equally well. {On the 
other hand, if both a smal l  let ter  and the corresponding capital  let ter  
occur, then one of them is p re sumab ly  the representa t ion  of some style- 
TALLY-letter-ABC-symbol or of a bold-lettcr-ABC-symbol. See also l . l .5.b 
for the possibility of addi t ional  "ABC's in a va r ian t  of the language.} 

d) A "typographical  display feature" is a blank, or a change to a new 
line or a new page. Such features,  when they a p p e a r  between the symbols  
of a construct  in the reference language,  are  of no significance and do not 
affect  the meaning of that  construct.  However,  a blank contained within a 
string- or character-denotation is one of the representa t ions  of the space- 
symbol  {9.4.1.b} ra the r  than a typographical  display feature.  Where the 
representat ion of a symbol  in the reference  language is c o m p ~ e d  of 
several  m a r k s  {e.g., to, :=}, those m a r k s  form one {indivisible} symbol  and, 
unless the cont ra ry  is explicitly s tated {9.4.2.2.a,c}, typographical  display 
features  m a y  not separa te  them. 
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9.4.1. Representat ions of symbols  

a) Let ter  symbols  

symbol  representa! ion 

letter a symbol{814c,82k,942B,A346b} a 
letter b symbol[814c,82k,942B,A344b} b 
letter e symbol{814e,82k,942B,A348a} c 
letter d symbol{814c,82k,942B,A342f} d 
letter e symbol{812h,814e,82k,942B,A343e} e 
letter f symbol{814c,82k,942B.A349a} f 
letter g symbol{814e,942B.A34~a} g 

[ 

letter h symbol{814c,942B} h 
letter i symbol{814c,942B,A345b} i 
letter j symbol{814e,942B} j 
letter k symbol{814c,942B,A341f} k 
letter I symbol{814e,942B,A341f} l 
letter m symbol{814e,942B} m 
letter n symbol{814e,942B,A341h} n 
letter o symbol{814c,942B} o 
letter p symbol{814e,942B,A341f} p 
letter q symbol{814c,942B,A341f} q 
letter r symbol{814c,82c,942B,A347c} r 
letter s symbol{814c,942B,A3411} s 
letter t symbol{814c,942B} t 
letter u symbol{814c,942B} u 
letter v symbol{814e,942B} v 
letter w symbol{814c,942B} w 
letter x symboi{814c,942B,A341f} x 
letter y symbol{814c,942B,A341f} y 
letter z symbol{814e,942B,A342d} z 

b) Denotation symbols  

symbol  rel)resenlation 

zero symbol[81 le,814c,82h,942C} 0 
one symbol{43b,81 le,814c,82g,h,942C} I 
two symbol[43b,81 lc,814e,82d,i,942C} 2 
three symbol(43b,81 lc,814c,82i,942C} 3 
four symbol{43b,81 lc,814c,82e,j,942C} 4 
five symbol{43b,81 lc,814e,82j,942C] 5 
six symboi{43b,81 le,814e,82g,j,942C} 6 
seven symbol{43b,81 lc,814e,82j,942C} 7 
eight symbol{43b,81 le,814e,82f,k,942C} 8 

9 

i -xl 

digit 
digit 
digit 
digit 
digit 
digit 
digit 
digit 
digit 
digit nine symbol{43b,811e,S14c,82k,942C} 
point symbol{812d,814c,A343d} 
t imes ten to the power symbol{812h} 
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true symbol{8t3a} 
false symbol{813a} 
quote symbol{814a,83a} 
quote image  symbol{814b} 
space symbol{814c} 
c o m m a  symbol{814c] 
empty  symbol{815a} 

true 
false 
rt 

empty 

c) Opera tor  symbols  

symbol  

or symbol{942H} 
and symbol{942H} 
a m p e r s a n d  symbol{942H} 
differs f rom symbol{942H} 
is less than symbol{942I} 
is at  most  symbol{942H} 
is at  least  symbol{942H} 
is g rea te r  than symbol{942I} 
divided by symbol{942I} 
over  symbol{942H} 
percent  symbol{942H} 
window symbol{942H} 
floor symbol{942H} 
ceiling symbol{942H} 
plus i t imes symbol{942H} 
not symbol{942H} 
tilde symbol{942H} 
down symboi{942H} 
up symbol{942H} 
plus symbol{812j,814c,942H,A342e} 
minus symbol{812j,814c,942H,A342e} 
equals symbol{942I} 
t imes symbol{942I} 
aster isk symbol{942I} 
assigns to symbol{942J} 
becomes symbol{44f,521a,942J} 

d) Declarat ion symbols  

symbol 

is defined as symbol{42b,43b,44c,45c} 
long symbol{810a,82a} 
short  symbol[810a,82b} 
reference to symbol{46c} 
local symbol{523a,b} 
heap symbol{523a,b} 

represent:l!  ion 

v 

^ 

& 

< 

<_ 
>_ 
> 

/ 
÷ 

D 
t 

f 

_t 

l 
l 

+ 

X 

$ 

=: 

: =  

representa t ion 

long 
short 
tel  
Ioc 
heap 
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structure symbol{46d} 
flexible symbol{46g} 
procedure symbol{44b,46o} 
union of symbol{46s} 
operator symbol{45a} 
priority symbol{43a} 
mode symbol{42a} 

e) Mode standards 

symbol 

integral symbol{942E} 
real symbol{942E} 
boolean symboi[942E} 
character symbol{942E} 
format symbol{942E} 
void symbol{942E} 
complex symbol{942E} 
bits symbol[942E} 
bytes symbol{942E} 
string symbol{942E} 
sema symbol{942E} 
file symbol{942E} 
channel symbol{942E} 
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struct 
flex 
proc 
union 
op 
prio 
mode 

representation 

int 
real 
bool 
char 
format 
void 
compl 
bits 
bytes 
string 
sema 
file 
channel 

f) Syntactic symbols 

symbol representation 

bold begin symbol{133d} begin 
bold end symbol{133d} end 
brief begin symbol{133d,A348b,A34Ab} ( 
brief end symbol{133d,A348b,A34Ab} ) 
and also symbol{133c,33b,f,34h,41a,b,46e,i, 

q,t,532b,541e,543b,A348b,A34Ac,d} 
go on symbol{32b} 
completion symbol{32b} exit 
label symbol{32c} 
parallel symbol{33c} par 
open symbol{814c} ( 
close symbol{814c} ) 
bold if symbol{91a} i f  
bold then symbol{91b} then 
bold else if symbol{91c} el i f  
bold else symbol{91d} else 
bold fi symbol{91e} fi 
bold case symbol{91a} c a s e  
bold in symbol{91b} in 

bold ouse symbol{91c} 
bold out symbol{91d} 
bold esac symbol{91e} 
brief if symbol{91a} 
brief then symbol{91b} 
brief else if symbol{91c} 
brief else symbol{91d} 
brief fi symbol{91e} 
brief case symbol{91a} 
brief in symbol{91b} 
brief ouse symbol{91c} 
brief out symbol{gld} 
brief esac symbol{91e} 
colon symbol{34j,k} 
brief sub symbol{133e} 
brief bus symbol{133e} 
style i sub symbol{133e} 
style i bus symbol{133e} 
up to symbol{46j,k,l,532f} 
at symbol{532g} 
is symbol{522b} 
is not symbol{522b} 
nil symbol{524a} 
of symbol{531a} 
routine symbol{541a,b} 
bold go to symbol{544b} 
bold go symbol{544b} 
skip symbol{552a} 
formatter symbol{A341a} 

g) Loop symbols 

symbol 

bold for symbol{35b} 
bold from symbol{35d} 
bold by symbol{35d} 
bold to symbol{35d,544b} 
bold while symbol{35g} 
bold do symbol{35h} 
bold od symbol{35h} 

h) Pragment symbols 

symbol 

brief comment symbol{92b} 
bold comment symboi{92b} 
style i comment symbol{92b} 
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style ii commen t  symbol{92b} 
bold p r a g m a t  symbol192b} 
style i p r a g m a t  symbol{92b} 

pragmat 
pr 

9.4.2. Other TAX symbols  

9.4.2.1. Metasyntax 

A) TA(; {D,F,K,48a,b,c,d} :: 
I,EI"TER{B} ;TAG I,ETTER{B} ; TAG DIGIT{C}. 

B) LETI"ER{A} : : 
letter ABC{94a} ; letter aleph{-} ; style "l'Al.l.~ let ter  ABC{-}. 

C) DIGIT{A} ..: digit zero{94b} ; digit one{94b} ; digit two{94b} ; 
digit three{94b} ; digit four{94b} ; digit five{94b} ; digit six{94b} ; 
digit seven{94b} ; digit eight{94b} ; digit nine{94b}. 

D) TAB{48a,b} :: bold TAG{A,-} ; SIZETY STANDARD{E}. 
E) STANDARD{D} .... integral{94e} ; reai{94e} ; boolean{94e} ; 

charaeter{94e} ; format{94e} ; void{94e} ; eomplex{94e} ; bits{94e} ; 
bytes{94e} ; string{94e} ; sema{94e} ; file{94e} ; ehannel{94e}. 

F) TAD{48a,b} ..: bold TAG{A,-} ; DYAD{G} BECOMESETY{J} ; 
DYAD{G} cum NOMAD{I} BEEOMESETY{J}. 

G) DYAD{F} :: MONAD{H} ; NOMAD{I}. 
H) MONAD{G,K} :: or{94c} ; and{94e} ; ampersand{94c} ; 

differs from{94c} ; is at most{94c} ; is at  least{94c} ; over{94c} ; 
percent{94c} ; window{94c} ; floor{94c} ; ceiling{94c} ; 
plus i times{94c} ; not{94c} ; tilde{94c} ; down{94c} ; up{94c} ; 
plus{94e} ; minus{94c} ; style TALLY monad{-}. 

I) NOMAD{F,G,K} :: is less than{94c} ; is g r ea t e r  than{94c} ; 
divided by{94e} ; equals{94c} ; times{94c} ; asterisk{94e}. 

J) BECOMESETY{F,K} :: cum beeomes{94c} ; cum assigns to{94c} ; 
EMPTY. 

K) TAM{48a,b} :: bold TAG{A,-} ; MONAD{H} BECOMESETY{J} ; 
MONAD{H} cum{9422e} NOMAD{I} BECOMESETY{J}. 

L) ABC{B}:: a ; b ; e  ; d ; e ; f ; g ; h  ; i ; j  ; k ; !  ; m  ; n ; o ; p ;  
q ; r ; s ; t ; u ; v ; w ; x ; y ; z .  

M) * DOP :: DYAD{G} ; DYAD{G} cum NOMAD{I}. 

{The metanotion "ABC" is provided, in addition to the metanot ion 
"ALPHA", in order  to facil i tate the definition of va r ian t s  of ALGOL 68 
(l.l.5.b) .} 

9.4.2.2. Representat ion 

a) The representat ion Of each TAG-symbol not given above {9.4.1} is 
composed of m a r k s  corresponding, in order,  to the "LETTER's or 'DIGIT's  
contained in that  'TAG'. These m a r k s  m a y  be sepa ra ted  by typographical  
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display features  {9.4.d}. The m a r k  corresponding to each 'LETTER" 
( 'DIGIT') is the representa t ion of that  LETTER-symbol (DIGIT-symbol).  
{For example ,  the representa t ion of a let ter-x-digit-one-symbol is xl,  which 
m a y  be written x l. TAG-symbols a re  used for identifiers and field- 
selectors.} 

b) The representat ion,  if any, of each bold-TAG-symbol is composed of 
m a r k s  corresponding, in order, to the 'LETTER's  or 'DIGIT's  contained in 
that  'TAG" {but with no typqgraphical  display fea tures  in between}. The 
m a r k  corresponding to each 'LETTER' ( 'DIGIT')  is s imi la r  to the m a r k  
represent ing the corresponding LETTER-symbol (DIGIT-symbol), being, in 
this Report,  the corresponding bold faced let ter  (digit). {Other methods of 
indicating the s imilar i ty  which are  recognizable without fur ther  
elucidation are  also acceptable ,  e.g., person, person, PERSON, 'person and 
'person' could all be representa t ions  of the bold-letter-p-letter.e-letter-r-  
ietter-s-letter.o.letter.n.symbol.} 

However,  the representat ion of a bold-TAG-symbol m a y  not be the 
s a m e  as any representa t ion of any  other symbol  {; thus there m a y  be a 
finite number  of bold-TAG.symbols which have  no representat ion;  e.g., 
there is no representa t ion for the bold-let ter-r-let ter .e-let ter-a-let ter . l .  
symbol  because real is a representa t ion of the rea l . symbol ;  note that  the 
number  of bold-TAG-symbols avai lable  is still a rb i t r a r i ly  large}. If, 
according to the convention used, a given sequence of m a r k s  could be 
ei ther  the representat ion of one bold-TAG-symbol or the concatenat ion of 
the representat ions of two or more  other symbols ,  then it is a lways  to be 
construed as that  one symbol  {; the inclusion of a blank can a lways  force 
the other interpretation; e.g., refreal is one symbol ,  whereas  refreel must  
a lways be two}. {Bold-TAG-symbols are  used for mode. indicat ions and for 
operators.} 

e) The representat ion of each SIZE-SIZET~(-STANDARD.symbol is 
composed of the representa t ion of the corresponding SIZE-symbol, possibly 
followed by typographical  display features,  followed by the represent ion of 
the corresponding SIZETY-STANDARD-symbol. {For example ,  the 
representat ion of a long-real-symbol is Iong real, or perhaps  'long"real' 
(but not, according to section b above, Iongreal or 'longreal', for those 
would be representat ions  of the bold-letter.l.letter.o.letter.n.letter.g.letter.r. 
let ter-e-let ter-a-let ter-l-symbol) .  SIZETY-STANDARD.symbols a re  used for 
mode-indications.} 

d) The representat ion of each DOP-cum-becomes-symbol  (DOP-cum- 
assigns-to-symbol) is composed of the m a r k  or m a r k s  represent ing the 
corresponding DOP-symbol followed {without intervening typographical  
display features} by the m a r k s  represent ing the becomes-symbol  (the 
assigns-to-symbol).  {For example ,  the representa t ion  of a plus-cum- 
becomes-symbol  is +:=. DOP-cum-beeomes-symbols  a re  used for 
operators.} 
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e) The representat ion of each I)YAD-cum-NOMAI)-symbol is composed 
of the m a r k  represent ing the corresponding I)~AI)-symbol followed 
{without intervening typographical  display features} by the m a r k  
represent ing the corresponding NOMAD-symbol. {For example ,  the 
representat ion of an over-cum-t imes-symbol  is +x. I)YAI)-cum-NOMAI)- 
symbols  are used for operators ,  but note that  NOMAI)I-cum-NOMAI)2- 
symbols  m a y  be only dyadic-operators.} 

PART V 

Envi ronment  and Exam pl e s  

10. Standard envi ronment  

{The "s tandard environment"  encompasses  the consti tuent  EXTERNAL- 
preludes, sys tem-tasks  and par t icular-post ludes  of a program-text .} 

10.1. P r o g r a m  texts  

{The p r o g r a m m e r  is concerned with pa r t i cu l a r -p rog rams  (lO.l.l.g). 
These are  a lways included in a p rogram- tex t  (lO.l.l.a) which also contains 
the s tandard-prelude,  a l ibrary-prelude,  which depends upon the 
implementat ion,  a sys tem-pre lude  and sys tem-tasks ,  which correspond to 
the operat ing environment ,  possibly some other par t i cu la r -programs ,  one 
or more  par t icular-preludes  (one for each pa r t i cu la r -p rogram)  and one or 
more  particular-postludes.} 

10.1.1. Syntax 

A) EXTERNAL :: s tandard  ; l ibrary  ; sys t em ; par t icular .  
B) STOP :: label let ter  s let ter  t let ter  o let ter  p. 

a) p r o g r a m  text : STYLE begin{94f} token, new LAYERI preludes{b}, [ 
parallel{94f} token, new LAYERI tasks{d} PACK, 
STYLE end{94f} token. 

b) NESTI preludes{a} : NESTI s tandard  prelude with DECSI{c}, 
NESTI l ibrary  prelude with DECSETY2{c}, 
NESTI sys t em prelude with DECSETY3{c}, where  (NESTI) is 
(new EMPTY new DECSI DECSETY2 DECSETY3). 

c) NESTI EXTERNAL prelude with DECSETYI{b,f} : 
s trong void NESTI ser ies  with DECSETYI{32b}, go on{94f} token ; 
where (DECSETYI) is (EMPTY), EMPTY. 

d) NESTI tasks{a} : NESTI sys t em task{e} list, and also{94f} token, 
NESTI user task{f} PACK list. 

e) NESTI sys t em task{d} : s trong void NESTI unit{32d}. 
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f) NESTI user task{d} : NEST2 par t icu lar  prelude with I)ECS{c), 
NEST2 par t icular  program{g} PACK, go on{94f} token, 
NEST2 par t icular  postlude{i}, 
where (NEST2) is (NESTI new DECS STOP). 

g) NEST2 par t icular  program{f} : 
NEST2 new LABSETY3 joined label definition of I.ABSETY3{h}, 

strong void NEST2 new LABSETY3 
ENCLOSED clause{31a,33a,c,34a,35a}. 

h) NEST joined label definition of LABSETY{g,h} : 
where (LABSETY) is (EMPTY), EMPTY ; 
where (LABSETY) is (LABI LABSETYI), 

NEST label definition of LABI{32c}, 
NEST joined label definition of LABSETY! {h}. 

i) NEST2 par t icular  postlude{f} : 
strong void NEST2 ser ies  with STOP{32b}. 

{Examples: 

a) ( v s tandard-pre lude  v; v l ibrary-prelude v; v s y s t em-pre lude  ¢; 
par begin v s y s t e m - t a s k - 1  v ,  ¢ s y s t e m - t a s k - 2  v ,  

(¢  part icular-prelude v; 
(start: commence:  begin skip end); 
c part icular-post lude c ) ,  

( c another  user - task  c )  
end) 

b) c s tandard-pre lude  (10.2, 10.3)c; c l ibrary-prelude c; 
c s y s t em-pre lude  (10.4.1) c; 

d) c s y s t e m - t a s k - 1  (10.4.2.a) c ,  c s y s t e m - t a s k - 2  c ,  
( c part icular-prelude c; 

(start: commence:  begin skip end); 
c part icular-post lude c ) ,  

(c  another  user- task  c )  
f) cpar t icu lar-pre lude  (10.5.1)c; 

(start: commence:  begin skip end); 
cpar t icu lar -pos t lude  {10.5.2) c 

g) start: commence:  begin skip end  
h) start: commence:  
i) stop: lock (s tand in); lock (s tand out); lock (s tand back) } 
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10.1.2. The environment  condition 

a) A p rog ram in the str ict  language mus t  be akin {1.1.3.2.k} to some 
program- tex t  whose consti tuent EXTERNAL-preludes and par t icular-  
postludes are  as specified in the r ema inde r  of this section. 

{It is convenient to speak of the s tandard-prelude,  the library' .prelude, 
the par t icu la r -programs,  etc. of a p r o g r a m  when discussing those par t s  of 
that  p r o g r a m  which correspond to the consti tuent s tandard-prelude,  etc. of 
the corresponding program-text .} 
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b) The constituent standard-prelude of all program-texts  is that 
standard-prelude whose representation is obtained {10.1.3} from the forms 
given in sections 10.2 and 10.3. 

c) The constituent library-prelude of a program-text  is not specified in 
this Report {but must be specified for each implementation: the syntax of 
"program text'  ensures that a declaration contained in a library-prelude 
may  not contradict any declaration contained in the standard-prelude}. 

d) The constituent system-prelude (system-task-list) of all program- 
texts is that system-prelude (system-task-list) whose representation is 
obtained from the forms given in section 10.4, with the possible addition of 
other forms not specified in this Report {but to be specified to suit the 
operating environTmnt of each implementation}. 

J L  

e) Each constituent particular-prelude (particular-postlude) of all 
program-texts is that particular-prelude (particular-postlude) whose 
representation is obtained from the forms given in section 10.5, with the 
possible addition of other forms not specified in this Report {but to be 
specified for each implementation}. 

10.1.3. The method of description of the s tandard environment 

A representation of an EXTERNAI,-prelude, system-task or particular- 
postlude is obtained by altering each form in the relevant sections of this 
chapter  in the following steps: 

Step 1: If a given form F begins with op {the operator-symbol} followed by 
one of the marks  P, Q, R or E, then F is replaced by a number  of new 
forms each of which is a copy of F in which that mark  {following the 
op} is (all other occurrences in F of that mark  are) replaced, in each 
respective new form, by: 

Case A: The mark  is P: 
• -, +, '~x,,:~ or I 
(-, +, x or/); 

Case B: The mark is Q: 
• ~minusab, -:=~, 1tplusab, +:=~, ~timesab, x : = , , :  =~" or 

divab, / : = 
(-:=, +:=, x:= o r / : = ) :  

Case C: The mark  is R: 
• ~<, ItS, ~ <=, /e:~, ~=, eq~, ~ ~, / : ,  he:t, T>_, >=, ge~, or 
~>, gt~ 
(<, <_, =, ~, >_ or >); 

Case D: The mark  is E: 
• ~L=,eq~ or ~ , / = , n e ~  
(= or ~): 

Step 2: If, in some form, as possibly made in the step above, .~ occurs 
followed by an INDICATOR (a field-selector) I, then that occurrence of 
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.~ is deleted and each INDICATOR (field-selector) akin {1.1.3.2.k} to I 
contained in any form is replaced by a copy of one same INDICATOR 
(field-selector) which does not occur elsewhere in the program and 
Step 2 is taken again; 

Step 3: If a given form F, as possibly modified or made in the steps above, 
beg!ns with op {the operator-symbol} followed by a chain of TAO- 
symbols separated by and-also-symbols, the chain being enclosed 
between ~ and ~., then F is replaced by a number  of different 
"versions" of that form each of which is a copy of F in which that 
chain, together with its enclosing ¢ and t", has been replaced by one of 
those TAO-symbois {; however, an implementation is not, obliged to 
provide more than one such version (9.4.b)}; 

Step 4: If, in a given form, as possibly modified or made in the steps 
above, there occurs a sequence S of symbols enclosed between ~ and 
and if, in that S, L int,~L real, L compl, /L bits or L bytes occurs, then S 
is replaced by a chain of a sufficient number  of sequences separated by 
and-also-symbols, the n-th of which is a copy of S in which copy each 
occurrence of L (L, K, 8) is replaced by (n - 1) times long (long, leng, 
shorten), followed by an and.also-symbol and a further chain of a 
sufficient number of sequences separated by and-also-symbols, the m-th 
of which is a copy of S in which copy each occurrence of L (L, K, S) 
has been replaced by m times short (short shorten, leng): the ~ and 
enclosing that S are then deleted; 

Step 5: If, in a given form F, as possibly modified or made  in the steps 
above, Lin t  (L real, L compl, L bits, L bytes) occurs, then F is 
replaced by a sequence of a sufficient number  of new forms, the n-th of 
which is a copy of F in which copy each occurrence of L (L, K, S) is 
replaced by ( n -  1) times long (long, leng, shorten), and each 
occurrence of Iong L (long L) by n times long (long), followed by a 
further sequence of a sufficient number  of new forms, the m-th of 
which is a copy of F in which copy each occurrence of L (L, K, S) is 
replaced by m times short (short, shorten, leng), and each occurrence 
of IongL (longL) by (m - 1) times short (short); ] 

Step 6: Each occurrence of F (PRIM) in any form, as possibly modified 
or made in the steps above, is replaced by a representation of a letter. 
aleph-symbol (primal-symbol) {9.4.a}; 

Step 7: If a sequence of representations beginning with and ending with ¢ 
occurs in any form, as possibly modified or made in the steps above, 
then this sequence, which is termed a "pseudo-comment", is replaced 
by a representation of a declarer  or closed-clause suggested by the 
sequence; 
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Step 8: If, in any form, as possibly modified or made  in the steps above, a 
rout ine-text  occurs whose calling involves the manipulat ion of real  
numbers ,  then this routine-text m a y  be replaced by any other  routine-  
text  whose calling has approx imate ly  the s ame  effect  {: the degree  of 
approximat ion is left undefined in this Report  (see also 2.1.3.1.e)}: 

Step 9: In the case of an EXTERNAL-prelude, a form consisting of a skip- 
symbol  followed by a g o - o n . s y m b o l  {skip;} is added at  the end. 

{The t e rm "sufficient number" ,  as used in Steps 4 and 5 above,  implies 
that  no intended pa r t i cu la r -p rogram should have  a different meaning  or 
fail to be produced by the syntax solely on account  of an insufficiency of 
that  number.} 

Wherever  {in the t ransput  declarations} the representa t ion  lo (\, _1_) 
occurs within a character-denota t ion or string-denotation, it is to be 
interpreted as the representat ion of the s t r ing-i tem {8.1.4.1.b} used to 
indicate "t imes ten to the power" (an a l ternat ive  form {, if any,} of "t imes 
ten to the power", "plus i t imes") on external  media .  {Clearly, these 
representat ions have been chosen because  of their  s imilar i ty  to those of 
the t imes-ten-to-the-power-symboi (9.4.1.b) and the plus-i- t imes-symbol 
(9.4.1.c), but, on media  on which these cha rac te r s  are  not avai lable ,  other 
s tr ing-i tems must  be chosen (and the let ter-e-symbol and the letter-i- 
symbol  are obvious candidates).} 

{The declarat ions in this chapte r  a re  intended to descr ibe their  effect 
clearly. The effect m a y  very  well be obtained by a more  efficient method.} 

10.2. The s tandard  prelude 

{The declarat ions of the s tandard-prelude compr ise  "environment  
enquiries", which supply information concerning a specific proper ty  of the 
implementat ion (2.2.2.c), "s tandard  modes",  "s tandard  opera tors  and 
functions", "synchronization operations" and " t ransput  declarat ions" 
(which are  given in section 10.3).} 

10.2.1. Envi ronment  enquiries 

a) int int  l eng ths  = c 1 p lus  the  n u m b e r  o f  ex t ra  l eng ths  o f  in tegers  
{2.1.3.1.d} c ; 

b) int int  shor ths  = c 1 p lus  the  n u m b e r  o f  ex t ra  shor ths  o f  in tegers  
{2.1.3.1.d} c ; 

c) L int L m a x  int  = c the  larges t  L in tegral  value  {2.2.2.b} c ;  

d) int real l eng ths  = c I p lus  the  n u m b e r  o f  ex tra  l eng ths  o f  real 
numbers  {2.1.3.1.d} c ; 

e) int r e a l s h o r t h s  = c I p lus  the  n u m b e r  o f  ex tra  shor th s  o f  real 
numbers  {2.1.3.1.d} c ; 
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f) 

g) 

h) 

i) 

J) 

k) 

l) 

m) 

n) 

o) 

P) 

q) 

r) 

s) 

t) 

L m a i L  m a x  real= c the  larges t  L real value {2.2.2.b} c ;  

L real L s m a l l  real = c the  s m a l l e s t  L real value  such  tha t  both L 1 + 
L s m a l l  real > L 1 and  L 1 - L s m a l l  real < L 1 {2.2.2.b} c ; 

int bits l eng ths  = c I p lus  the  n u m b e r  o f  ex tra  w id th s  {j} o f  bits  c ; 

int bits shor ths  = c I p lus  the  n u m b e r  o f  ex t ra  shor th s  {j} o f  bi ts  c ; 

int L bits w id th  = c the  n u m b e r  o f  e l emen t s  in L bits; see L bits  
{10.2.2.g}; th is  n u m b e r  increases  (decreases) w i th  the  "size", i.e., 
the n u m b e r  o f  ' long's (minus  the  n u m b e r  o f  'short 's)  o f  w h i c h  'L' 
is composed,  unt i l  a cer ta in  s ize is reached,  viz.,  "the n u m b e r  o f  
ex tra  w id ths"  (minus  "the n u m b e r  o f  ex t ra  shor ths" )  o f  bits, a f ter  
wh ich  it is cons tan t  c ; 

int bytes  l eng ths  = c I p lus  the  n u m b e r  o f  ex t ra  w id th s  {m} o f  by tes  c ; 

int bytes  shor ths  = c I p lus  the  n u m b e r  o f  ex t ra  shor ths  {m} o f  
by tes  c ;  

int L bytes  wid th  = c the  n u m b e r  o f  e l emen t s  in L bytes;  see L b y t e s  
{10.2.2.h}; th is  n u m b e r  increases  (decreases) w i th  the  "size", i.e., 
the  n u m b e r  o f  ' long's (minus  the  n u m b e r  o f  'short 's)  o f  w h i c h  'L' 
is composed,  unt i l  a cer ta in  s ize  is reached, viz.,  " the n u m b e r  o f  
ex tra  w id ths"  (minus  "the n u m b e r  o f  ex t ra  shor ths" )  o f  bytes ,  a f ter  
wh ich  it is cons tan t  c ;  

op  abs  = (char a) int : c the in tegra l  equ iva len t  {2.1.3.1.g} o f  the  
character  'a' c ; 

op rapt= (int a) char : c t ha t  charac ter  'x', i f  it ex i s t s ,  for  w h i c h  abs  
x = a c ;  

i n t m a x  abs char= c the  larges t  in tegral  equ iva len t  {2.1.3.1.g} o f  a 
character  c ; 

char null  charac ter  = c some  charac ter  c ; 

char f l ip = c the  charac ter  used to represent  ' true' dur ing  t ranspu t  
{10.3.3.1.a, 10.3.3.2.a} c ; 

char f lop = c the  charac ter  used to represent  ' false'  dur ing  t ranspu t  c ; 

char errorchar= c the  charac ter  used to represent  unconver t ib l e  
ar i thmet ic  values  {10.3.2.l.b,c,d,e,f} dur ing  t r a n s p u t  c ; 

u) char b lank  = "._"; 

10.2.2. Standard modes 
a) 

b) 

m o d e  void = c an ac tua l -dec larer  spec i f y i ng  the  mode  'void'  c k 
\ 

m o d e  b o o / =  c an ac tua l -dec larer  spec i f y ing  the  mode 'boolean'  c ;  

c) m o d e  L I n t  = c an  ac tua l -dec larer  spec i f y i ng  the  mode  'L in tegral '  c ; 
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d) 

e) 

f) 

g) 

van Wijngaarden, et al. 

mode  L r e e l  = c an actual-declarer speci fy ing the mode  'L real' c ; 

mode  char= c an actual-declarer  speci fy ing the mode  'character'  c ; 

mode L compl = struct ( L  real re, im) ; 

mode  L b i t s  = s t r u c t  ([1: L bits width  ] bool L F);  {See 10.2. l.j} 
[The field-selector is hidden f rom the user  in order  that  he m a y  not 
b reak  open the structure;  in par t icular ,  he m a y  not subscr ipt  the field.} 

h) mode  L bytes  = struct ([ 1 : L bytes  wid th  ] char L ~ ; {See 10.2. l.m} 

i) mode string = flex [1 : O] char;  

10.2.3. Standard opera tors  and functions 

10.2.3.0. Standard priorities 

a) prio minusab = 1, plusab = 1, timesab = 1, divab = 1, overab = 1, 
modab = 1, plusto = 1, 
-:== l, +:== l, x:== l, *:== l, / :==I,  ÷ :==1,%:==1,  ÷ x:== l, 
+,:==I, %x:== l, %,:== I, +=: =i,  

v =2, or=2, 

^=3,  &=3, and=3, 

==4, oq=4,  ~=4, /==4, ne=4, 

< =5, lt=5, <_=5, <==5, le=5, >_=5, >==5, ge=5, >=5, gt=5, 

- = 6 , + = 6 ,  

x=7 , ,=7 ,  /=7, +=7, %=7, over=7, 
+x = 7, ÷,= 7, %x = 7, %,= 7, mod = 7, 

= 7, elem = 7, 

I =8,**=8, ! =8, up=8, down=8, shl=8, shr=8, 
Iwb=8, upb=8, L =8, r =8, 

1 =9, +x=9, +.=9, i=9;  

10.2.3.1. Rows and associated operat ions 

a) mode 9 rows = c an actual-declarer  speci fy ing a mode  uni ted f rom 
{2.1.3.6.a} a suff icient  set o f  modes  each o f  which  begins with 
'row' c ; 

b) op ~ lwb, L # = (int n, rows a) int : c the lower bound in the n - t h  bound 
pair o f  the descriptor o f  the value o f  'a', i f  tha t  bound pair  
exists c ; 
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c) op$upb ,  r #=(intn ,  rowsa ) in t :  c t h e  upper bound in the n - t h  
bound pair o f  the descriptor o f  the value o f  'a', i f  that  bound pair  
exists c ; 

d) op~lwb, L~=(rowsa)int: 1 L a;  

e) op~upb,  r # = ( r o w s a ) i n t :  1 r a ;  

{The t e rm "sufficient set", as used in a above and also in 10.3.2.2.b and 
d, implies that  no intended pa r t i cu la r -p rogram should fail to be produced 
(nor any unintended pa r t i cu la r -p rogram be produced) by the syntax solely 
on account of an insufficiency of modes  in that  set.} 

10.2.3.2. Operations on boolean operands  
a) op ~ v, or~ = (bool a,  b)  bool : (a  I true I b) ; 

b) op t^ ,  &, and~=(boola, b)bool: (al bl false); 

c) o p t - ,  ~, n o t # = ( b o o l a ) b o o l :  (al  falsel true); 

d) op~=,eq#=(boola, b)bool: (ahb) v ( - a ^ - b ) ;  

e) op ~ ~, /=, ne ~ = (bool a, b) bool : - (a = b) ; 

f) op abs = (bool a) int : (a I 1 I O) ; 

10.2.3.3. Operations on integral  operands  
a) op ~ <, It# = (L int a, b)bool :  c true if  the value o f  'a' is smal ler  than  

{2.1.3.1.e} that  o f  'b' and  false o therwise  c ; 

b) op$<~ < = , l e # = ( L i n t a ,  b)bool :  - ( b < a ) ;  

c) o p ¢ = , e q # = ( L i n t a ,  b)bool :  a<_b^b<_a; 

d) o p $ ~ , / = , n e # = ( L i n t a ,  b)bool :  - ( a = b ) ;  

e) o p $ z ,  >=, g e # = ( L  inta, b)bool :  b<_a; 

f) o p ~ > , g t # = ( L i n t a ,  b)bool:  b < a ;  

g) op - = ( L  
'b' c ; 

h) o p  - = ( L  i n t  a )  L int: L O - a ;  

i) o p  + = ( L  in t  a ,  b) L i n t  : a -  - b  ; 

j) op + = (L int a) L int : a;  

k) o p a b s = ( L i n t a )  L i n t :  ( a < L O  I - a l a ) ;  

1) o p C x , , # = ( L  inta,  b ) L  int: 
begin L i n t  s : = L O, i : = abs b; 

while i >_ L 1 
d o s : = s + a ; i : = i - L  l o d ;  
(b< L O I - s i s )  

end;  

inta, b) L int" c the value o f  'a' m inus  {2.1.3.1.e} that  o f  

\,\ 
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m) 

n) 

o) 

p) 

q) 

r) 

s) 

t) 

u) 

van Wijngaarden, et el. 

o p t + ,  %, o v e r ~ = ( L  inta ,  b ) L  int: 
i f b ~ L  0 
then L int q : = L O, r : = abs a; 

whi le (r := r - abs b) z L 0 do q := q + L 1 od; 
(a< L O^b>_L Ov a>_L O^ b< L O[ - q l q )  

li; 

op ~+x, +,, %x, %,, m o d ~ = ( L  ln ta ,  b ) L  inl: 
( i n t r = a - a  : b x b ;  r< O] r +absb]  r) ; 

op / = (L int a, b) L real: L real (a) / L real(b);  

o p t  t , * * ,  u p ~ = ( L  inta ,  in tb)  L int:  
(b >_O I L i n t p : =  L l;  t o b d o p  : = p x a o d ;  p ) ;  

op leng = ( L i n t  a) long L i n t  : c the  long L in tegra l  value  lengt tzened 
f rom {2.1.3.1.e} the  value o f  'a' c ; 

op shorten = (long L l n t  a) L i n t  : c the  L in tegral  value,  i f  it ex is t s ,  
wh ich  can be l eng thened  to {2.1.3.1.e} the  value  o f  'a' c ; 

op odd = (L int  a) boo l  : abs a +x I ,  2 = L 1; 

op sign = ( L i n t  a) int  : 
(a> L OI l l :  a < L OI - 1 1 0 ) ;  

op¢1 ,  +x, +,, i * = ( L  inta,  b ) L  compl :  (a ,b) ;  

10.2.3.4. Operations on real operands 

a)  I op ~ <, l i t  = (L real a, b) bool  : c true i f  the  value o f  'a' is sma l l e r  
than  {2.1.3.1.e} tha t  o f  'b' and  fa l se  o therwise  c ; 

b) o p ~  < = , l e ~ = ( L r e a l a ,  b )boo l :  - ( b < a ) ;  

c) o p ~ = , e q ~ = ( L r e a l a ,  b )boo l :  a<_b^b<_a;  

d) op ~ ~ , /=, ne ~ = (L real a, b) bool  : - (a = b) ; 

e) opt>_, >=, g e ~ = ( L  reala,  b )boo l :  b<_a; 

f) o p ~ > , g t ~ = ( L r e a l a ,  b )boo l :  b < a ;  

g) op -=  (L real a, b ) L  real: c the  value  o f  'a' m i n u s  {2.1.3.1.e} t ha t  o f  
'b' c ; 

h) op - = (L real a) L real: L O - a ;  

i) op + = (L real a, b) L real: a - - b ;  

j) op + = (L real a) L real : a ; 

k) op abs = (I, real a) L real : (a < L 01 - a ] a) ; 

l) op ~ x, . ~  = (L real a, b ) L  real" c the  value o f  'a' t imes  {2.1.3.1.e} t ha t  
o f  'b' c ; 

m) 

n) 

o) 

P) 

q) 

r) 

s) 
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Op / = (L real a, b) L real : c the  value  o f  'a' d iv ided by  {2.1.3. l.e} t ha t  
of 'b' c ; 

op lang = (L real a) long L real : c the  long L real value  l eng thened  
f rom {2.1.3.1.e} the value  o f  'a' c ; 

op shorten = (long L real a) L real : c if abs a <_ leng L m a x  real, then  
a L real value 'v'  such  that ,  for  a n y  L real va lue  'w', 
abs ( leng v - a) <_ abs ( leng w - a) c ; 

op round = (L real a) L i n t  : c a L in tegral  value,  i f  one ex is t s ,  w h i c h  
is widenable  to {2.1.3.1.e} a L real value  d i f f er ing  by  not  more  
than  o n e - h a f t  f rom  the  value  o f  'a' c ; 

o p s i g n = ( L  rea la ) in t :  ( a > L  O[ 1[: a<  L O [ - 1 [  0); 

op ~ enl ler ,  L ~ = (L  real  a) L i n t  : 
beg in  L int  j : = L O; 

while j < a do j : = j + L 1 od; 
while j > a do j : = j - L 1 od; 
J 

end ;  

op ~:.L, +x, +,, i~ = (IL real a, b) II, comp l  : (a, b) ; 

10.2.3.5. Operations on ar i thmetic  operands 

a) 

b) 

c) 

d) 

e) 

f) 

g) 

op P = (L real a, L int  b) L real :  a P L rea l (b ) ;  

op P = (L  int  a, L real b) L real :  L real (a) P b ; 

op R = (L real a, L i n t  b) bool  : a R L real (b) ; 

op R = ( L i n t  a, L real b) bool  : L real (a) R b ; 

o p t . L ,  +x, +., i~ = (L real a, L int b) L compl  : (a, b) ; 

op~  J_, +x, +,, i ~ = ( L  inta ,  L r e a l b ) L  compl :  (a ,b) ;  

op ~ T,**, u p ~ = ( L  reala,  in tb)  L real: 
(L real p : = L 1; to abs  b do p : = p x a od; (b >- O ] p t L 1 / p ) ) ;  

10.2.3.6. Operations on charac te r  operands 

a) o p R = ( c h a r a ,  b )boo l :  a b s a R a b s b ;  ll0.2.l.n} 

h) op + = (char a, b) string : (a, b) ; 

10.2.3.7. Operations on complex operands 

a) o p r e = ( L  c o m p l a )  L real :  r e o f a ;  

b) op im = (L compl  a) L real: im  o f  a ; 

\ 
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c) 

d) 

e) 

f) 

g) 

h) 

i) 

J) 

k) 

l) 

m) 

n) 

o) 

P) 
q) 

r) 

s) 

t) 

u) 

v) 

w) 

x) 

van Wijngaarden, et al. 

op abs = (L compl  a) L real : L sqrt  (re a T 2 + im a ! 2)  ; 

op arg = (L compl  a) L real : 
it L real re = re a, im =im a; 

r e e L  Ov i m ~  L 0 
then i f  abs re > abs im 

then L arc tan (ira / re) + L p i  / L 2 x 
(im < L O I sign re - 11 1 - sign re) 

else - L  arctan (re / ira) + L pi  / L 2 × sign im 
fi 

fi; 

op conj  = (L compl  a) L compl  : re a .L - i m  a ; 

op ~ =, eq ~ = (L compl  a, b) boo l  : re a = re b ^ i m  a = im b ; 

op ~ ~, /=, ne ~ = (L compl  a, b) boo l  : ~ (a = b) ; 

op - = (L compl  a, b) L compl  : (re a - re b) .L (ira a - i m  b) ; 

op -= (L compl  a) L compl  : - re a .L - ira a ; 

op + = (L compl  a, b) L compl  : (re a + re b) L (ira a + im b) ; 

op + = (L  compl  a) L compl  : a ; 

op ~ x, • ~ = (L compl  a, b) L compl  : 
( r e a× r e b - i m a x i m b )  J_ ( r e a x i m b + i m a× r e b ) ;  

op / = (L compl  a, b) L compl  : 
(L real d = re (b × conj  b); L compl  n = a × conj  b; 
(re n / d) L (im n / d)) ; 

op leng = (L compl  a) long L compl  : leng re a ± leng im a ; 

op shorten = (long L compl  a) L compl  : 
shorten re a J_ shorten im a ; 

op P = (L  compl  a, L int b) L compl  : a P L compl  (b) ; 

op P = (L  compl  a, L real b) L compl  : a P L compl  (b) ; 

op P = (L  int a, L compl  b) L compl  : L compl  (a) P h ; 

op P = (L real a, L compl  b) L compl  : L compl  (a) P b ; 

op ~ I, **, up ~ = (L  compl  a, int b). L compl  : 
(L c o m p l p : = L  1; t o a b s b  d o p : = p x a o d ;  (b>_OIp I L 1 / p ) ) ;  

op E = (L  compl  a, L i n t  b) boo l  : a E L compl  (b) ; 

op E = (L  compl  a, L real b) boo l  : a E L c o m p l  (b) ; 

op E = (L  int a, L compl  b) boo l  : b E a ; 

op E = (L  real a, L compl  b) boo l  : b E a ; 
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10.2.3.8. Bits and a s soc ia t ed  opera t ions  

a) op ~ =, eq ~ = (L  bits a, b) boo l  : 
begin bool  c; 

for i to L bits w id th  
while c : :  (L F of  a) [i]_ffi(L P@f b) [ !]__ I 
do skip od; 
C 

end ;  

b) 

c) 

op ~ ~ , /=, ne ~ = (L  bits a, b) boo l  : ~ (a = b) ; 

op ~ v, or~ = (L bits a, b) L bits : 
begin L bits c; 

for i to L bits width  
d o ( L  F o f c )  [i]1:= (L F o f a )  [ i ] l  v (L F o f b ) [ i ] l o d ;  
C 

end;  

d) o p  ~ ^, &, a n d  ~ = (L  b i t s  a,  b) L b i t s  : 
begin L bits c; 

for i to L bits width 
do (L F o f c )  [i]1: = (C F o f a )  [i]1^ (C F o f b )  [/]lod; 
C 

end ;  

e) op~<~ <=, l e ~ = ( L  bi tsa,  b ) b o o l :  (a v b ) = b ;  

f) op ~ >_, >=, ge ~ = (L bits a, b) boo l "  b <_ a ; 

g) op ~ l ,  up ,  s h l ~  = (L  b i t s  a,  in t  b) L b i t s  : 
if.abs b <_L bits width 
then L bits c : = a; 

to abs b 
do i f  h > 0 then 

for i f rom 3 to L bits w id th  
dolL Fore) [ i - i ] l : :  (L  'ofc)t  od: 
(L F of  c) [ L  bit# u~b~--h~ : = false 

else 
f o r i  from L bits width  b y - 1  to2  
do (L F of  c) [~J]: = (L F of  c) [i-: i]lod: 
(L F o f  c) [ j ] ~  = false 

fi od; 
C 

f l ;  

h) op ~ 1, down,  shr~ = (L  bits x,  int  n) L bits" x T - n ; 

\ \ 
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i) opabs=(L bitsa) L int: 
begin L i n t  c : = L O; 

for i to L bits w id th  
doc := L 2 x c  + K a b s ( L  F o f  a) [i] od; 
C 

end; 
j) opbin=(L inta) L bits: 

i fa>_L 0 
then L i n t  b := a; L bits c; 

for i from L bits width by - 1 to 1 
do(L Fofc)  [ i ]  := oddb; b := b+ L 2od; 
C 

fl; 
k) optelem, D~=(inta, L bitsb)bool: (L Fofb)  [aJ; 
1) proc L bits pack = ([ ] bool a) L bits : 

i f in tn= r a [@ 1]; 
n <_ L bits w i d t h  

then L bits c; 
for i to L bits w i d t h  
do (L F o f c )  [i] := I 

nl  falsel a [@ I ] [ ~ -  L bi ts  w id th  + n l )  " / (i <_L bits w i d t h  
od; 
C 

f l; 
m) op ~ -, ~, not~ = (L  bits a)  L bits : 

begin L bits c; 
for i  t e L  bits w i d t h  do (L Fo fc ) [ i ]1 :=  - (L F o f a )  [i]lod; 
C 

end; 
n) op leng = (L bits a) long L bits : long L bits pack (a) ; 
o) op shorten = (long L bits a) L bits : L bits pack (~ ]lbool (a) 

[ l o n g L  b i t s w i d t h - L  b i t s w i d t h + l "  ]); ] 

10.2.3.9. Bytes and associated operations 

a) op R = ( L  bytes  a, b) b o o l  : s t r ing (a)  R str ing (b) ; 
b) optelem, ~ = ( i n t a ,  L bytesb)char: (L F o f b ) [ a ] ;  
c) proc L bytes pack = (string a) L bytes : 

i f i n t n =  r a [@ l ]; 
n <_ L by tes  w i d t h  

then L bytes c; 
for i to L by tes  w i d t h  
do (L F of  c) [ i ] : = (i <_ n I a [ @ 1 ] [ i] J nul l  character)  od; 
C 

fi; 

d) 

e) 
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op leng = (L by tes  a) long L by t e s  : long  L by tes  p a c k  (a) ; 

op shorten = (long L bytes a)  L bytes  : 
L by tes  p a c k  (string (a) [ : L by tes  w i d t h  ]) ; 

10.2.3.10. Strings and associated operat ions 

a) op t <, It~ = (string a, b) b o o l  : 
begin int m = r a [@1], n =  r b [ @ 1 ] ;  int c : = O; 

for i  to(m < nl ml n) 
while(c:=absa [@ 1] [i] -abs b [@ lJ [i])=O 
do skip od; 
(c=OIm<n^n>Olc<O) 

end; 

b) op t ~-, < =, le ~ = (str ing a, b) b o o l  : - (b < a)  ; 

c) opt=, eq~=(stringa, b)bool: a<_b^ b<_a; 
d) op t ~, /=, no ~ = (str ing a, b) b o o l  : -- (a = b ) ;  

e) opt>-, >=, ge~=(stringa, b)bool: b<_a; 
f) op t  >, gt~=(stringa, b)bool: b< a ;  

g) op R = (str ing a, c h a r  b) b o o l  : a R str ing (b) ; 

h) op R = (char  a, s t r ing b) b o o l  : s t r ing (a) R b ; 
i) op + = (str ing a, b) s t r ing : 

(int m = (int la = r a [@1];  la < O I O I la), 
n = (int lb = r b [@1];  lb < O[ O[ lb); 

[ 1 : m + n ] char  c; 
c [ l  : m]  : = a [ @  l ] ; c [ m +  l : r e + n ]  :=b [@ l ]; c);  

j) op + = (str ing a, c h a r  b) s t r ing : a + s t r ing (b) ; 

k) op + = (char  a, str ing b) s t r ing : s t r ing (a) + b ; 

l) optx,*~=(st r inga,  intb)string: ( s t r i ngc ; t obdoc :=c+aod ;  c); 
m) op t x, ,~  = ( int a, s t r ing b) s t r ing : b x a ; 

n) optx ,  ,~=(chara, intb)string: str ing(a)×b; 
o) op t x, ,~ = tint a, char b) string : b x a ; 

{The operations defined in a, g and h imply that  if abs  "a" < a b s  "b", 
then .... < "a" ; "a" < "b" ; "aa"  < "ab"  ; "aa"  < "ba"  ; "ab"  < "b" and 
"ab"  < "ba"  .} 

10.2.3.11. Operations combined with assignations 

a) optminuseb, - :=~=( re fL  inta, L in tb) re fL  int: a : = a - b ;  
b) optminusab, - :=~=( re fL  reala, L reelb)refL real: a :=a  - b ~  
c) op t m i n u s a b ,  - :  = ~ = (ref  L c o m p l  a, L c o m p l  b) re f  L c o m p l  : 

a : = a - b ;  

137 



138 

d) 

e) 

f) 
g) 

h) 

i) 
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op ~ plusab, + : = ~ = (ref L int a, L int b) ref L int : a : = a + b ; 

op ~ plusab, +: = ~ = (ref L real a, L real b) ref L real : a : = a + b ; 

op ~ plusab, +: = ~ = ( ref  L c o m p l  a, L c o m p l  b) re f  L c o m p l  : a := a + b ; 

op ~ timesab, x:=,  , :  = ~ = ( re f  L in t  a, L in t  b) re f  L in t  : a : = a x b ; 

op ~ timesab, x: = ,  , :  = ~ = (ref L real a, L real b) ref L real : a : = a x b ; 

op ~ timesab, x: = ,  , :  = ~ = (ref L compl  a, JL compl  b) ref L compl  : 
a : = a x b ;  

op ~overab, ÷:=, %: =~ = ( re f  L in t  a, L in t  b) re f  L in t  : a : = a ÷ b ; 

op ~modab,  +x: = ,  ÷ , :  = ,  % x :  = ,  % , :  = ~ = 
( ref  L in t  a, L in t  b) re f  L in t  : a : = a +x b ; 

op ~ divab, /: = ~ = (ref L real a, L real b) ref L real : a : = a / b ; 

op ~ divab, /: = ~ = (ref L compl  a, L compl  b) ref L compl  : a : = a / b ; 

op Q = (ref L real a, L int b) ref L real : a Q L real (b) ; 

op Q = (ref L compl  a, JL int b) ref L compl  : a @ L compl  (b) ; 

op Q = (ref L compl  a, JL real b) ref L compl  : a Q L compl  (b) ; 

op ~ plusab,  +: = ~ = (ref string a, string b) ref string : a : = a + b ; 

op ~ plusto, + = :  ~ = (string a, ref string b) ref string : b : = a + b ; 

op ~ plusab, +: = ~ = (ref string a, char  b) ref string : a +: = string ( b) ; 

op ~ plusto, +=: ~ = (char a, ref string b) ref string : string (a) +=: b ; 

op ~ timesab, x: = ,  , :  = :~ = (ref string a, int b) ref string : a : = a x b ; 

10.2.3.12. S tandard  m a t h e m a t i c a l  cons tants  and functions 

a) L realL pi= c a  L real value close t on ;  see Math.  o f  Comp. v. 16, 
1962, pp. 80-99 c ; 

b) proc L sqrt = (L real x ) L  real: c i f  x >_ L O, a L real value close to 
the square root of  'x' c ; 

c) proc L exp = (L real x) L real : c a L real value, i f  one exists,  close to 
the exponent ia l  funct ion o f  'x' c ; 

d) proc L In = (L real x ) L  real: c a L real value, i f  one exists,  close to 
the natural  logari thm o f  'x' c ; 

e) proc L cos = (L real x ) L  real: c a L real value close to the cosine of  
~x ~ C ; 

f) proc L arccos = (L real x) L real: c i f  abs x <_L 1, a L real value close 
to the inverse cosine of  'x', L 0 <_L arccos (x) <_L pi  c ; 

g) proc L sin = (L real x ) L  real: c a L real value close to the sine o f  
'X r C ; 
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h) proc L arcsin = (L real x) L real: c i f  abs  x <_L I, a L real value close 
to the inverse sine of  'x', abs  L arcsin (x) <_L pi  / L 2 c ;  

i) proc L tan = (L real x ) L  real: ¢ a L real value, i f  one exists,  close to 
the tangent  of  'x' c ; 

j) proc L arctan = (L real x) L real :  c a  L real value close to the 
inverse tangent  of  'x', abs  L arctan (x) <_L pi  / L 2 c ; 

k) proc L nex t  random = (ref L int a) L real: 
(a := c the next  p seudo- random L integral  value after 'a' f rom a 

uni formly  distributed sequence on the interval  
[L O, L m a x i n t ] c  ; 

c the real value corresponding to ' a '  according to some m a p p i n g  
o f  integral values [L O, L m a x i n t J  into real values [L O, L 1) 
{i.e., such that  0 <_ x < 1} such that  the sequence of  real values 
so produced preserves the properties o f  p seudo - randomness  
and uni form distribution o f  the sequence of  integral  values c) ; 

10.2.4. Synchroniza t ion  opera t ions  

The e labora t ion of a para l le l -c lause  P {3.3.1.c} in an envi ron  E is t e r m e d  
a "paral lel  action".  The e labora t ion  of a cons t i tuent  unit  of P in E is 
t e r m e d  a "process" of tha t  paral le l  action.  

Any elaborat ion A {in some  environ} of e i ther  of the ENELOSED-clauses 
del ineated by the p r a g m a t s  {9.2.1.b} prs tar t  o f  incompat ible  p a r t p r  and 
pr f in i sh  o f  incompatible  p a r t p r  in the fo rms  10.2.4.d and 10.2.4.e is 
incompat ib le  with {2.1.4.2.e} any  e labora t ion  B of e i ther  of those 
ENCLOSED-clauses if A and B a re  descenden t  ac t ions  {2.1.4.2.b} of d i f ferent  
processes  of some s a m e  paral le l  action.  
a) m o d e  sema = s t ruc t  ( ref  in t  F )  ; 

b )  op level = (int a) sema : (sema s; F of  s : = heap int : = a; s) ; 

c) o p l e v e l = ( s e m a a ) i n t :  F o f a ;  
d )  op down = (sema edsger) void : 

begin ref int d i j k s t r a  -- F of edsger ;  
while 

p r  s t a r t  o f  i n c o m p a t i b l e  p a r t  p r  
i f  d i j k s t r a  >_ 1 then d i j k s t r a  - :  = 1; false 
else 

c let P be the process such that  the elaboration o f  
this p s e u d o - c o m m e n t  {10.1.3.Step 7} is a descendent  
action of  P, but not o f  any  other process descended 
from P; the process P is halted {2.1.4.3.f} c; 
true \~ 

fl 
p r  f in i sh  o f  incompat ible  par t  p r  

do skip od 
e n d ;  
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e) 

Processes,  contained in P r o g r a m m i n g  Languages ,  
London etc., Academic Press,  1968: see also 11.12.} 

op up = (sama edsger) v o i d  : 
pr s tart o f  incompatible  par t  pr 

if r e f  in t  dijkstra = F of  edsger; (dijkstra +: = 1) _> I 
then 

ca l l  processes are resumed {2.1.4.3.g} which  are hal ted 
because the integer referred to by the n a m e  yielded by 
'dijkstra'  was  smal ler  than  one c 

fl 
pr f in ish  o f  incompatible  par t  pr ; 

{For the use of down and up, see E.W. Dijkstra,  Cooperating Sequential 
Genuys,  F. (ed.), 

10.3. Transput  declarat ions 

{"So it does!" said Pooh. "It goes in!" 
"So it does!" said Piglet. "And it comes out!" 
"Doesn't it?" said Eeyore. "It goes in and out like 
anything." 
Winnie-the-Pooh, A.A. Milne.} 

{Three ways of "transput" (i.e., input and output) are  provided by the 
standard-prelude, viz., format less  t ransput  {10.3.3), fo rmat ted  t ransput  
(10.3.5} and binary t ransput  (10.3.6).} 

10.3.1. Books, channels and files 

{"Books", "channels" and "files" model the t ransput  devices of the 
physical machine used in the implementation.} 

10.3.1.1. Books and backfiles 

{aa) All information within the sys tem is to be found in a n u m b e r  of 
"books". A book (a) is a s t ructured value including a field text  of the mode 
specified by f l e x t e x t  (b) which refers  to information in the fo rm of 
charac ters .  The text  has a var iab le  number  of pages,  each of which m a y  
have a var iable  number  of lines, each of which m a y  have  a var iable  
number  of charac ters .  Positions within the text  are  indicated by a page  
number,  a line number  and a cha rac t e r  number .  The book includes a field 
lpos which indicates the "logical end" of the book, i.e., the position up to 
which it has been filled with information,  a str ing idf, which identifies the 
book and which m a y  possibly include other information,  e.g., ownership,  
and fields pu t t ing  and users which permi t  the book to be opened 
(10.3.1.4.d) on more  than one file s imultaneously only if putting is not 
possible on any of them. 
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bb) The books in the sys tem are  accessed via a chain of backfiles.  
The chain of books avai lable  for opening (10.3.1.4.dd) is referenced by 
chainbfile.  A given book m a y  be referenced by more  than one backfile on 
this chain, thus allowing s imultaneous access  to a single book by more  
than one process {10.2.4}. However  such access  can only be for reading a 
book, since only one process  m a y  access  a book such that  it m a y  be " 
written to (aa).  The chain of books which have been locked {10.3.1.4.o) is 
referenced by lockedbfile. 

cc) Simultaneous access  by more  than one process to the chain of 
backfiles is prevented by use of the semaphore  bfileprotect, which provides 
mutual  exclusion between such processes.  

dd) Books m a y  be crea ted  (e.g., by input) or dest royed (e.g., a f te r  
output) by tasks (e.g., the operat ing system) in the system-task.list 
(10.4.2), such books being then added to or removed  f rom the chain of 
backfiles.} 

a) m o d e  .~ b o o k  = 
s t r u c t  ( f l e x t e x t  text, 

pos  lpos ¢ logical end  o f  book ¢, 
s t r i n g  idf  ¢ identi f ication ¢, 
boo lpu t t i ng  ¢ true i f  the book m a y  be wri t ten to ¢, 
in t  users ¢ the n u m b e r  o f  t imes the  book is opened  ¢) ; 

b) m o d e  .~ text  = r e f [  ] [ ] [ ] char ,  
mode  .~ ffaxtext = ref  flex [ ] f lex [ ] f lex [ ] c h a r ;  

c) m o d e  .~ pos = struct  (int p, l, c) ; 

d} prio .~ beyond  = 5, 
op beyond  = (pos a, b) bool  : 

if  p of  a < p of  b then false 
el i f  p of  a > p of  b then true 
el i f  l o f  a < / o f  b then false 
elif  l o f  a > l o f  b then true 
else c o f  a > c o f  b 
f l ;  

e) 

f) 

g) 

h) 

m o d e  .~ bf l le = struct (ref book  book,  ref  bfl le next )  ; 

ref  bfl le .~ cha inb f i l e  := n i l ;  

ref  bflle .~ lockedbf i le  := n i l ;  

s e m a  .~ bfileprotect = ( s e m a  s;  F of  s := P R I M  i n t  : = 1; s ) ;  

10.3.1.2. Channels 

{aa) A "channel" corresponds to one or more  physical  devices {e.g., a 
card reader,  a card  punch or a line printer,  or even to a set up in nuclear  
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physics the results of which are collected by the computer) ,  or to a 
filestore maintained by the operating system. A channel is a s tructured 
value whose fields are routines returning truth values which determine the 
available methods of access to a book linked via that channel. Since the 
methods of access to a book may  well depend on the book as well as on 
the channel (e.g., a certain book may  have been trapped so that it may  be 
read, but not written to), most of these properties depend on both the 
channel and the book. These properties may  be examined by use of the 
environment enquiries provided for files (10.3.1.3.ff). Two environment 
enquiries are provided for channels. These are: 

• es tabpossible ,  which returns true if another file may  be "established" 
(10.3.1.4.cc) on the channel; 
• s tandconv,  which may  be used to obtain the default "conversion key" 
(bb) for the channel. 

bb) A "conversion key" is a value of the mode specified by c o n y  which 
is used to convert  characters  to and from the values as stored in 
"internal" form and as stored in "external" form in a book. It is a 
structured value comprising a row of structures, each of which contains a 
value in internal form and its corresponding external value. The 
implementation may  provide additional conversion keys in its library- 
prelude. 

cc) Three standard channels are provided, with properties as defined 
below (e,f,g). The implementation may provide additional channels in its 
library-prelude. The channel  number  field is provided in order  that 

with otherwise identical possibilities may  be different channels 
distinguished.} 

a) 

b) 

c) 

d) 

e) 

f) 

mode channel = 
s l ruc t  (proc  (ref book )  b o o l  .~ reset, .~ set, .a get, .~ put,  ~ bin, 

.~ compress, .~ reidf, 
p r o c  b o o l  .~ estab, p r o c  p o s  .~ m a x  pos, 
p r o c  (rel  book )  c o n v  .~ s tandconv,  int .~ channe l  number)  ; 

m o d e  .~ c o n y  = s l ruc t  ([1 : inl  (skip)]  s t ruc l  (char internal,  external) F) ; 

p r o c  estab possible = (channe l  c h a n )  b o o l  : estab of  c han ;  

p r o c  s t a n d c o n v  = (channe l  c h a n )  p r o c  ( te l  b o o k )  c o n y  : 
s tandconv  of  chan;  

c h a n n e l  s tand  in channel  = c a channel  value whose  field selected by 
'get' is a routine which  a lways  returns true, and whose other 
fields are some suitable values c;  

channe l  s t a n d  out channel  = c a channel  value whose  field selected by 
'put' is a routine which  a lways  returns true, and whose  other 
fields are some suitable values c ; 

g) 
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channe l  s t a n d  back channel  = c a channel  value whose  fields selected 
by 'set', 'reset', 'get', 'put' and 'bin' are routines which ahvays  
return true, and whose other fields are some sui table values c ; 

10.3.1.3. Files 

{aa) A "file" is the means of communicat ion between a particular- 
program and a book which has been opened on that file via some channel. 
It is a structured value which includes a reference to the book to which it 
has been linked (10.3.1.4.bb) and a separate reference to the text  of the 
book. The file also contains information necessary for the t ransput  
routines to work with the book, including its current  position cpos in the 
text, its current "state" (bb), its current  "format" (10.3.4) and the channel 
on which it has been opened. 

bb) The "state" of a file is determined by five fields: 
• read mood, which is t rue if the file is being used for input; 
• write mood, which is true if the file is being used for output; 
• char mood, which is true if the file is being used for charac te r  
transput; 
• bin mood, which is true if the file is being used for binary 
transput; 
• opened, which is true if the file has been linked to a book. 

cc) A file includes some "event routines", which are called when 
certain conditions arise during transput. After opening a file, the event 
routines provided by default return false when called, but the p r o g r a m m e r  
may provide other event routines. Since the fields of a file are not directly 
accessible to the user, the event routines may  be changed by use of the 
"on routines" (1,m,n,o,p,q,r). The event routines are always given a 
reference to the file as a parameter .  If the elaboration of an event routine 
is terminated, then the transput routine which called it can take no further 
action; otherwise, if it returns true, then it is assumed that the condition 
has been mended in some way, and, if possible, t ransput continues, but if 
it returns false, then the system continues with its default action. The on 
routines are: 

• on logical f i leend.  The corresponding event routine is called when, 
during input from a book or as a result of calling set, the logical end of 
the book is reached (see 10.3.1.6.dd). 
Example: 

The p rogrammer  wishes to count the number  of integers on his 
input tape. The file intape was opened in a surrounding range. If he 
writes: 

begin int n : = O; on logical file end (intape, (ref file file) bool : gore f); 
do get  (intape, Ioc int); n +:= 1 od; 
f: pr in t  (n) 

e n d ,  
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then the assignment to the field of i n t a p e  violates the scope 
restriction, since the scope of the routine (ref  file f i le)  boo / :  goto f is 
smaller than the scope of i n ta p e ,  so he has to write: 

begin int n : = O; file a u x i n  : = in tape;  
on  logical  f i le  e n d  (aux in ,  (ref  file f i le)  boo l  : goto f); 
do ge t  (aux in ,  Ioc int); n +: = 1 od; 
f: p r i n t  (n) 

e n d .  
• on  p h y s i c a l  f i le  end .  The corresponding event routine is called when 
the current  page number of the file exceeds the number  of pages in the 
book and further transput is a t tempted (see 10.3.1.6.dd). 

• o n p a g e e n d .  The corresponding event routine is called when 
the current line number  exceeds the number  of lines in the current  page 
and further transput is a t tempted (see 10.3.1.6.dd). 

• on  l ine  end.  The corresponding event routine is called when 
the current charac ter  number  of the file exceeds the number  of 
characters  in the current  line and further transput is a t tempted (see 
10.3.1.6.dd). 
Example: 

The p rog rammer  wishes automatical ly to give a heading at the start  
of each page on his file f: 

on p a g e  e n d  (f, p roc  (ref file f i le)  boo l  : 
(put  (file, ( n e w p a g e ,  "page  n u m b e r  ", w h o l e  (i +: = 1, 0), 

newl ine) ) ;  frue) 
¢ it  is  a s s u m e d  t h a t  i h a s  been  dec lared  e l s e w h e r e  ¢) . 

• on c h a r e r r o r .  The corresponding event routine is called when a 
character  conversion was unsuccessful or when, during input, a 
character  is read which was not "expected" (10.3.4.1.11). The event 
routine is called with a reference to a charac te r  suggested as a 
replacement.  The event routine provided by the p r o g r a m m e r  may  
assign some charac ter  other than the suggested one. If the event 
routine returns true, then that suggested charac te r  as possibly modified 
is used. 
Example: 

The p rogrammer  wishes to read sums of money punched as 
"$123.45", " .$23.45",  " . . $3 .45" ,  etc.: 

on c h a r  error  ( s t a n d  in,  (ref  file f,  re f  char  sugg)  boo l  : 
if  s u g g  = "0" 
then char c; b a c k s p a c e  (f); g e t  (f, c); 

(c = "$"1 g e t  (f, sugg);  gruel false) 
else false 
f l  ); 

int cents ;  r e a d f  (($ 3z  " , "r idS ,  cen ts ) )  
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• on  va lue  error.  The corresponding event routine is called when: 
(i) during formatted transput an at tempt is made to transput a value 

under the control of a "picture" with which it is incompatible, or when 
the number  of "frames" is insufficient. If the routine returns true, then 
the current value and picture are skipped and transput continues; if 
the routine returns false, then first, on output, the value is output by • 
pu t ,  and next u n d e f i n e d  is called; 

(ii) during input it is impossible to convert a string to a value of some 
given mode (this would occur if, for example, an a t tempt  were made to 
read an integer larger  than m a x  in t  (10.2.1.c)). 

• on f o r m a t  end .  The corresponding event routine is called when, 
during formatted transput, the format  is exhausted while some value 
still remains to be transput. If the routine returns true, then u n d e f i n e d  
is called if a new format  has not been provided for the file by the 
routine; otherwise, the current  format  is repeated. 

dd) The c o n y  field of a file is its current  conversion key (10.3.1.2.bb). 
After opening a file, a default conversion key is provided. Some other 
conversion key may be provided by the p rog rammer  by means  of a call of 
m a k e  c o n v  (j). Note that such a key must  have been provided in the 
library-prelude. 

ee) The routine m a k e t e r m  is used to associate a string with a file. 
This string is used when inputting a variable number  of characters ,  any of 
its characters  serving as a terminator.  

ff) The available methods of access to a book which has been opened 
on a file may  be discovered by calla of the following routines (note that the 
yield of such a call may  be a function of both the book and the channel, 
and of other environmental  factors not defined by this Report):  

• g e t  poss ib l e ,  which returns true if the file may  be used for input: 
• p u t  poss ib l e ,  which returns true if the file may  be used for output: 
• b in  poss ib l e ,  which returns true if the file may  be used for binary 
transput: 
• compres s ib l e ,  which returns true if lines and pages will be 
compressed (lO.3.l.6.aa) during output, in which case the book is said 
to be "compressible"; 
• rese t  poss ib le ,  which returns true if the file may  be reset, i.e., its 
current position set to (1, 1, 1); 
• se t  pos s ib l e ,  which returns true if the file may  be set, i.e., the current  
position changed to some specified value: the book is then said to be a 
"random access" book and, otherwise, a "sequential access" book: 
• r e i d f p o s s i b l e ,  which returns true if the i d f  field of the book may  be 
changed; y 
• chan ,  which returns the channel on which the file has been opened 
(this may be used, for example, by a routine assigned by 
on p h y s i c a l  f i le  end ,  in.order to open another file on the same channel}. 
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gg) On sequential access books, undef ined  (10.3.1.4.a) is called if 
binary and charac te r  t ransput  is al ternated,  i.e., a f ter  opening or resett ing 
(10.3.1.6.j), ei ther is possible but, once one has taken place, the other  ma~ 
not until af ter  another  reset.  

hh) On sequential aecess books, output immediate ly  causes the logical 
end of the book to be moved to the current  position (unless both a r e  in the 
same line); thus input may  not follow output without first resett ing 
(10.3.1.6.j). 

Example:  

b e g i n  file f l ,  f2; [ 1 : 1 0 0 0 0  ] in t  x;  in t  n : = O; 
open (fl,  "", channe l  2); 
f2:=fl; 

¢ now f l  and  f2 can be used in terchangeably  ¢ 
m a k e  cony (fl,  flexocode); m a k e  cony (f2, telexcode); 

¢ now f l  and  f2 use di f ferent  codes; f lexocode and  telexcode are 
def ined in the l ibrary-prelude for this imp lemen ta t ion  ¢ 

reset (fl); 
¢ consequently,  f2 is reset too ¢ 

on logical file end (fl ,  (ref file f) bool : goto done); 
fori  d o g e t  (fl ,  x [i]); n := i od; 

¢ too bad if  there are more than  i0000 integers in the input  ¢ 
done: 

reset (fl); fori  to n do pu t  (f2, x [i]) od; 
close (f2) ¢ f l  is now closed too ¢ 

end } 

a) mode file = 
struct (ref book 9 book, union (flextext, text) 9 text, channel 9 chan, 

ref format 9 format, ref int 9 forp, 
ref bool 9 read mood, 9 write mood, 9 char mood, 9 bin mood, 

9 opened, 
ref pos  9 cpos ¢ current posi t ion ¢, 
s t r i n g  9 term ¢ s tr ing terminator  ¢, 
cony 9 cony ¢ character conversion key  ¢, 
proc (ref file) bool 9 logical file mended,  9 phys ica l  file mended ,  

.*page mended,  9 line mended,  9 f o rmat  mended ,  
9 value error mended,  

proc (ref file, te l  char) bool 9 char error mended)  ; 

b) proc ge t  possible = (ref flle f) bool : 
(opened of  f l  (get of  chan  o f f )  (book of  f) l undef ined;  skip) ; 

c) proc pu t  possible = (ref file f) bool : 
(opened of  f l  (put of  chan  of  f) (book of  f) l undef ined;  skip) ; 

d) proc bin possible = (ref file f) boos: 
(opened of  f l (bin o f  c h a n  o! f )  (book o f f )  I undef ined;  s k i p )  ; 

e) 

g) 

h) 

J) 

k) 

1) 

m) 

n) 

o) 

p) 

q) 

r) 

s) 

ALGOL 68 Revised Report 

proc compressible = (tel file f) bool : 
(opened o f f  (compress of  chan  of f )  (book of  f) l undef ined;  skip) ; 

proc reset possible = (tel file f) bool : 
(opened o f f  (reset of  chan  o f f )  (book of f) l undef ined;  skip) ; 

proc set possible = (ref file f) bool : 
(opened of  fl (set of  chan  of f )  (book o f f )  [ undef ined;  skip) ; 

proc reidf  possible = (ref file f) bool : 
(opened o f f  (reidf of chan  of f )  (book of f )  I undef ined;  skip) ; 

proc chan = (ref file f) c h a n n e l :  
(opened o f f l  chan of  f l  undef ined;  skip); 

proc m a k e  cony = (ref file f, proc (ref book) conv c) void : 
(opened of  f i  cony o f f :=  c (book o i l )  I undef ined)  ; 

proc m a k e  term = (ref file f, string t) void : term o f f :  = t ; 

proc on logical file end = (ref file f, proc (ref file) bool p) void : 
logical file m e n d e d  o f f :  = p ; 

proc on phys ica l  file end = (ref file f, proc (ref file) bool p) void : 
phys ical  file m e n d e d  o f f :  = p ; 

proc on page  end  = (tel file f, proc (ref file) bool p) void : 
page  mended  o f f :  = p ; 

proc on line end = (ref file f, proc (ref file) bool p) void : 
line mended  o f f :  = p ; 

proc on format  end = (ref file f, proc (ref file) bool p )vo id  : 
format  mended  o f f :  = p ; 

proc on value error = (ref file f, proc (ref file) bool p) void : 
value error m e n d e d  o f f  : = p ; 

proc on char error = (ref file f, proc (ref file, ref char) bool p) void : 
char error mended  o f f :  = p ; 

proc reidf = (ref file f, s t r i n g  idf) void : 
if opened o f f  ^ reidf  possible (f) a idf  ok (idf) 
then idf  of  book o f f :  = id f  
fl; 
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10.3.1.4. Opening and closing files 

{aa) When, during t ransput ;  something happens which is left undefined, 
for example by explicitly calling undef ined  (a), this does not imply that 
the elaboration is catastrophically and immediate ly  interrupted (2.1.4.3.h), 
but only that some sensible action is taken which is not or cannot be 
described by this Report  alone and is general ly implementat ion-dependent .  



/ 
148 van Wijngaarden, etal. 

bb) A book is "linked" with a file by means of establ ish  (b), create (c) 
or open (d). The linkage may  be terminated by means of close (n), lock 
(o) or scratch (p). 

cc) When a file is "established" on a channel, then a book is generated 
(5.2.3) with a text  of the given size, the given identification string, with 

put t ing  set to true, and the logical end of the book at (1, 1, 1). An 
implementation may  require (g) that the characters  forming the 
identification string should be taken from a limited set and that the string 
should be limited in length. It may  also prevent two books from having the 
same string. If the establishing is completed successfully, then the value 0 
is returned: otherwise, some nonzero integer is returned (the value of this 
integer might indicate why the file was not established successfully). 

When a file is "created" on a channel, then a file is established with a 
book whose text  has the default size for the channel and whose 
identification string is undefined. 

dd) When a file is "opened", then the chain of backfiles is searched for 
the first book which is such that match  (h) returns true. (The precise 
method of matching is not defined by this Report and will, in general, be 
implementation dependent. For  example, the string supplied as pa ramete r  
to open may include a password of some form.) If the end of the chain of 
backfiles is reached or if a book has been selected, but pu t t i ng  of the book 
yields true, or if putting to the book via the channel is possible and the 
book is already open, then the further  elaboration is undefined. If the file 
is already open, an up greml ins  provides an opportunity for an appropriate 
system action on the book previously linked (in case no other copy of the 
file remains to preserve that linkage). 

ee) The routine associate may  be used to associate a file with a value 
of the mode specified by either ref [ ] char, ref [ ] [ ] char or ref [ ] [ ] [ ] 
char, thus enabling such variables to be used as the book of a file. 

ff) When a file is "closed", its book is at tached to the chain of 
backfiles referenced by chainbfile.  Some system-task is then activated by 
means of an up gremlins .  (This may  reorganize the chain of backfiles, 
removing this book, or adding further copies of it. It may  also cause the 
book to be output on some external device.) 

gg) When a file is "locked", its book is at tached to the chain of 
backfiles referenced by lockedbfile. Some system-task is then activated by 
means of an up gremlins .  A book which has been locked cannot be re- 
opened until some subsequent system-task has re-attached the book to the 
chain of backfiles available for opening. 

hh) When a file is "scratched", some system-task is activated by 
means of an up gremlins .  (This may  cause the book linked to the file to be 
disposed of in some manner.)} 

a) 

b) 

c) 

d) 
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proc .~ undef ined  = int : c some  sensible s y s t e m  action y ie ld ing  an 
integer to indicate w h a t  has been done; it is p r e s u m e d  that  the 
sy s t em action m a y  depend  on a knowledge  o f  a n y  values 
accessible 12.1.2.c} inside the locale o f  a n y  environ  which  is older 
than that  in which  this p s e u d o - c o m m e n t  is being elaborated 
{notwithstanding that no ALGOL 68 construct written here could 
access those values} c ; 

proc e s t a b l i s h  = 
( ref  f i le f i le ,  string idf, channel c h a n ,  i n t  p ,  l, c) int : 
begin 

down bfileprotect; 
P R I M  book  book : = 

( P R I M f l e x [ l  : p ] f l e x [ l  : l ] f l e x [ l  : c]char,  (1,1,1), idf, 
true, 1); 

if file available (chan)^  (put of  chan)  (book) 
^ estab of  c h a n ^  - (pos (p, l, c) beyond m a x  pos of  chan)  
^ - (pos (1, 1, 1) beyondpos  (p, l, c)) ^ i d f o k  (idf) 

then 
(opened of file] u p  greml ins  I u p  bfileprotect); 
file := 

(book, text  of  book, chan, skip, skip, 
¢ state: ¢ heap bool : = false, heap bool : = true, 

heap bool : = false, heap bool : = false, heap bool : = true, 
heap pos : = (1, 1, 1), "", ( s tandconv of  chan)  (book), 
¢ event  routines: ¢ false, false, false, false, false, false, 

(ref file f, ref char a) bool : false); 
(" bin possible(f i le)  I set  char mood (file)); 
0 

else up bfileprotect; unde f ined  
fi 

end;  

proc create = (ref file file, channel chan) int : 
begin pos m a x  pos = m a x  pos o f  chan; 

establish (file, skip, chan,  p of  m a x  pos, l of  m a x  pos,  
c of  m a x  pos) 

end;  

proc o p e n  = ( re f  f i le f i le ,  string idf, channel chan)  int : 
begin 

down bfileprotect; 
if file available (chan) 
then ref ref bf l le  b f  : = c h a i n b f i l e ;  bool f o u n d  : = fa lse;  

while ( ref  b f l l e  (bf)  : ~: n i l )  ^ - f o u n d  
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if  m a t c h  (idf, chan,  book o f  bf) 
then f ound  : = true 
e lse  b f  : = n e x t  o f  b f  
fi 

od; 
if - f ound  
then up bfileprotect; unde f ined  
else ref  book  book := book of  bf; 

if p u t t i n g  of  book v (put o f  chan)  (book) ^ users  of  book > 0 
then 

up bfileprotect; unde f ined  ¢ in th is  case  open ing  is 
inh ib i ted  by  o ther  users  - the  s y s t e m  m a y  e i ther  
wait ,  or y ie ld  nonzero ( indicat ing  unsuccess fu l  
opening)  i m m e d i a t e l y  ¢ 

else 
users o f  book +: = 1; 
((put o f  chan)  (book) t p u t t i n g  o f  book : = true); 
ref ref  bflle (bf) := n e x t  o f  bf; ¢ remove  bfi le f rom chain  ¢ 
(opened o f  f i le  I up g r e m l i n s  I up bfileprotect); 
f i le  := 

(book, t ex t  o f  book, chan,  skip, skip, 
¢ state:  ¢ heap  bool  : = false, heap  bool  : = false, 

heap bool  : = false, heap  bool  : = false, 
heap bool  : = true, 

heap pos :=  (1, 1, 1), "", ( s tandconv  o f  chan)  (book), 
¢ even t  routines: ¢ false,  false,  false,  false,  false,  

fa lse, (ref file f, ref  char  a) bool  : false); 
(- bin poss ib le  (file) I se t  char  mood (file)); 
(~ ge t  poss ib le  (file) I se t  wri te  mood (file)); 
(- pu t  poss ib le  (file) I se t  read mood (file)); 
0 

fi 
fi 

else  up bfileprotect; unde f ined  
fi 

e n d ;  

proc  associate  = 
(ref fi le f i le,  re f  [ ] [ ] [ J char  sss) void : 
i f  in t  p = lwb sss; in t  l = lwb  sss [p J; in t  c = lwb  sss I P I  [ l ]; 

p = 1 ^ 1 = 1 ^ c = 1  
then 

proc t = (ref book  a) bool  : true; 
proc  f = (ref book  a) bool  : false; 
channe l  c h a n  = (t, t, t, t, f, f, f, boo l :  false, 

p o s  : (max  int, m a x  int,  m a x  int), skip, skip); 
(opened o f  f i le  I down bfileprotect;  up greml ins) ;  

f) 

g) 

h) 

i) 

J) 

k) 
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f i le  : = 
(heap book  :=  (skip, (upb sss + I ,  1, 1), skip, true, 1), sss, t h a n ,  
skip, skip, 
¢ state:  ¢ heap bool  : = false, heap boo l  : = false, 

heap bool  : = true, heap bool  : = false, heap  bool  : = true, 
heap pos :=  (1, 1, i ) ,  " ' ,  skip, 
¢ even t  routines: ¢ false,  false,  false,  false,  false,, false,  

(ref file f, ref  char  a) bool  : false) 
else undef ined  J 
fi; 

proc  .~ f i le  avai lable  = (channel  chan)  boo l  : 
c true i f  ano ther  file, a t  th is  i n s tan t  o f  t ime,  m a y  be opened on 

'chan'  and  fa lse  o therwise  c ; 

proc  .~ idf  ok = (string idf) boo l  : 
c true i f  'idf' is acceptable  to the  i m p l e m e n t a t i o n  as the  

ident i f icat ion o f  a n e w  book and  fa l se  o therwise  c ; 

proc .~ m a t c h  = 
(string idf, channel  chan,  r e f  book  book n a m e ) b o o / :  
c true i f  the  book referred to by  'book n a m e '  m a y  be ident i f ied  by  

'idf', and  i f  the  book m a y  l eg i t imate ly  be accessed  through 
'chan',  and  fa lse  o therwise  c ; 

proc  .~ fa lse  = (ref file file) boo l  : false 
¢ this  is included for  brev i t y  in 'establish' ,  'open'  and  'associate '  ¢ ; 

proc .~ set  wri te  mood = (ref file f) void : 
if - pu t  poss ible  (f) v 

- s e tpos s ib l e  (f) ^ bin mood o f f  ^ read mood o f f  
then undef ined  
else ref  bool  (read mood o f f )  := false; ref  boo l  (wr i te  mood  o f f :  := true 
f i ;  

proc .~ set  read mood = (ref file f) void : 
if - ge t  poss ib le  (f) v 

- s e tpos s ib l e  (f) ^ bin mood o f f  ^ wr i te  mood o f f  
then undef ined  
else ref boo l  (read mood o f f )  : = true; ref bool (wri te  mood o f f )  : = false 
fi; 

proc .~ set  char  mood = (ref file f) void : S 
if - se t  poss ible  (f) ^ bin mood o f f  
then undef ined  
else ref boo l  (char mood o f f )  := true; ref bool  (bin mood  o f f )  : = false 
fi; 
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proc .~ set b in mood = (rot file f) void : 
i f"  bin poss ib le  (f) v . se t  poss ib l e  (f) ^ char  m o o d  o f f  
than u n d e f i n e d  
else ref  bool  (char mood o f f ) : =  false; ref  boo l  (b in mood o f f / : =  true 
f i ;  

proc close = (ref file f i le) void : 
i f  o p e n e d  of  f i le 
then 

down bfi leprotect;  
ref  bool  (opened  of  file) := false; 
ref  b o o k  book = book of  file; 
p u t t i n g  of  book := false; users  o f  book -: = 1; 
( text  of  f i le I (flextext): cka inb f i l e  := 

P R I M  bflle := (book, chainbfi le));  
up  g r e m l i n s  

fl; 

proc lock = (ref file f i le) void : 
i f  o p e n e d  of  f i le 
then 

down bfi leprotect;  
ref  bool  (opened  of  file) := false; 
ref  b o o k  book = book of  file; 
p u t t i n g  of  book := false; users  o f  book - := 1; 
( text  of  f i le I (flexlext): lockedbf i le  := 

P R I M  bflle : = (book, lockedbfile));  
up  g r e m l i n s  

fi; 

proc  scra tch  = (ref file file) void : 
if o p e n e d  of  f i le 
then 

down bf i leprotect ;  
ref  boo l  (opened of  f i le) := false; 
p u t t i n g  of  book of  f i le : = false; 
users  o f  book of  f i le  -: = 1; 

up g r e m l i n s  
fl; 

10.3.1.5. Position enquiries 

{aa) The "current position" of a book opened on a given file is the 
value referred to by the cpos field of that file. It is advanced by each 
transput operation in accordance with the number  of charac ters  written or 
read. 

If c is the current  charac te r  number  and Ib is the length of the 
current  line, then at all t imes 1 <_c ~ lb  + 1. c = 1 implies that the next 
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transput operation will be to the first charac ter  of the line and c = Ib + 1 
implies that the line has overflowed and that the next t ransput  operation 
will call an event routine. If Ib = 0, then the line is empty and is therefore 
always in the overflowed state. Corresponding restrictions apply to the 
current line and page numbers.  Note that, if the page has overflowed, the 
current line is empty and, if the book has overflowed, the current  page 
and line are both empty (e). 

bb) The user may  determine the current  position by means of the 
routines char  n u m b e r ,  l ine n u m b e r  and p a g e  n u m b e r  (a, b, c). 

cc) If the current position has overflowed the line, page or book, then 
it is said to be outside the "physical file" (f, g, h). 

dd) If, on reading, the current  position is at the logical end, then it is 
said to be outside the "logical file" (i).} 

{Each routine in this section calls u n d e f i n e d  if the file is not open on 
entry.} 

a) proc  char  n u m b e r  = (ref file f) int : 
(opened  of  f l c o f  cpos o f  f l u n d e f i n e d )  ; 

b) proc  l ine n u m b e r  = (ref file f) int : 
(opened  of  f l l o f  cpos o f  f l unde f i ned )  ; 

c) proc  p a g e  n u m b e r  = (ref file f) int : 
(opened  of  f l p o f  cpos o f  f l unde f i ned )  ; 

d) proc  .~ curren t  pos  = (ref file f) pos  : 
(opened  o f f l  cpos o f  f l  u n d e f i n e d ;  skip);  

e) proc  .~ book bounds  = (ref file f) pos  : 
begin pos  cpos = curren t  pos  (f); 

int p = p o f  cpos, l= l o f  cpos; 
case t ex t  o f  f i n  

(text t l ) : 
(int pb  = upb t l ;  
int lb = (p <_ 0 v p > pb  I 01 upb t l  [p ]); 
i n t c b = ( l  <_O v l> lbl  OI u p b t l  [p] [l]); 
(pb, lb, cb)) , 

(flextext t2): 
(int p b  = upb  t2; 
int lb = (p <_0 v p > p b  I 01 upb  t2 [p ]); 
i n t c b = ( l  <_O v l> lbl OI u p b t 2  [p] [l]); 
(pb, lb, cb)) 

esac 
end; 

f) proc .~ l ine ended = (ref file f)  boo l  : 
(int c = c o f  curren t  pos  (f); c > c o f  book  b o u n d s  (f)) ; 



154 

g) 

h) 

i) 

/ 
van Wijngaarden, et al. 

proc .~ page  ended  = (ref file f) bool : 
(int l = l of  current pos (f); l > l of  book bounds (f)) ; 

proc  .~ phys ica l  file ended  = (ref file f) boo l  : 
(int p = p of  current pos (f); p > p of  book bounds (f)) ; 

proc  .~ logical file ended  = (ref file f) boo l  : 
(lpos of  book of  f b e y o n d  current pos (f)) ; 

10.3.1.6. Layout routines 

{aa) A book input from an external medium by some system-task may  
contain lines and pages not all of the same length. Contrariwise, the lines 
and pages of a book which has been established (10:3.1.4.cc) are all 
initially of the size specified by the user. However if, during output to a 
compressible book (10.3.1.3.ff), newl ine  (newpage)  is called with the 
current position in the same line (page) as the logical end of the book, 
then that line (the page containing that line) is shortened to the charac te r  
number (line number) of the logical end. Thus pr in t  (("abcde", newline))  
could cause the current  line to be reduced to 5 charac ters  in length. Note 
that it is perfectly meaningful for a line to contain no charac ters  and for a 
page to contain no lines. 

Although the effect of a channel whose books are both compressible 
and of random access (10.3.1.3.ff) is well defined, it is.not anticipated that 
such a combination is likely to occur in actual implementations. 

bb) The routines space (a), newl ine  (c) and ne wpage  (d) serve to advance 
the current position to the next character ,  line or page, respectively. They 
do not, however, (except as provided in cc below) alter the contents of the 
positions skipped over. Thus pr in t  (Ca", backspace,  space)) has a different 
effect from pr in t  (Ca", backspace, blank)). 

The current position may  be altered also by calls of backspace (b), set 
char number  (k) and, on appropriate channels, of set (i) and reset (j). 

cc) The contents of a newly established book are undefined and both its 
current position and its logical end are at (1, 1, 1). As output proceeds, it 
is filled with characters  and the logical end is moved forward accordingly. 
If, during charac ter  output with the current  position at the logical end of 
the book, space is called, then a space charac ter  is written (similar action 
being taken in the case of newl ine  and ne wpage  if the book is not 
compressible). 

A call of set which at tempts to leave the current  position beyond the 
logical end results in a call of undef ined  (a sensible system action might 
then be to advance the logical end to the current position, or even to the 
physical end of the book). There is thus no defined way in which the 
current position can be made to be beyond the logical end, nor in which 
any character  within the logical file can remain in its initial undefined 
state. 
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dd) A reading or writing operation, or a eaU of space, newline,  newpage ,  
set or set char number ,  may bring the current position outside the physical 
or logical file (10.3.1.5.cc, dd), but this does not have any immediate  
consequence. However, before any further transput is attempted, or a 
further call of space, newl ine  or newpage  (but not of set or set  char 
number)  is made, the current  position must be brought to a "good" 
position. The file is "good" if, on writing (reading), the current  position is 
not outside the physical (logical) file (10.3.1.5.cc, dd). The page (line) is 
"good" if the line number  (character  number) has not overflowed. The 
event routine (10.3.1.3.cc) corresponding to on logical file end, on phys ica l  
file end, on page  end or on line end  is therefore called as appropriate.  
Except in the case of formatted transput (which uses check pos, 
10.3.3.2.c), the default action, if the event routine returns false, is to call, 
respectively, undefined,  undef ined,  n e wp a g e  or newline.  After this (or if 
true is returned), if the position is still not good, an event routine (not 
necessarily the same one) is called again. 

ee) The state of the file (10.3.1.3.bb) controls some effects of the 
layout routines. If the read/write mood is reading, the effect of space, 
newl ine  and newpage,  upon at tempting to pass the logical end, is to call 
the event routine corresponding to on logical file end  with default action 
undefined; if it is writing, the effect is to output spaces (or, in bin mood, 
to write some undefined character)  or to compress  the current  line or 
page (see co). If the read/write mood is not determined on entry to a 
layout routine, undef ined  is called. On exit, the read/write mood present 
on entry is restored.] 

a) p r o c  space = ( r e f  f i l e  f) void : 
if - opened o f f  then undef ined  
else 

bool  reading = 
(read mood of  fl true I: write mood of  f l  false 
l undefined; skip); 

(- ge t  good line (f, reading) I undefined); 
ref p o s  cpos = cpos of f;  
if reading then c of cpos +: = 1 
else 

if logical file ended  (f) then 
if bin mood o f f  then 

(text of  f l (flextext t2): 
t2 [p of cpos ] [ l of  cpos ] [ c of  cpos ] :=skip); 

c of  cpos +: = i; lpos of book o f f :  = cpos 
else put  char (f, ". ") 
fl 

else c of  cpos +: = 1 
fl 

fi 
fl; 
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proc  backspace  = (ref file f) void : 
if - o p e n e d  o f f  then u n d e f i n e d  
else ref int c = c of  cpos o f f ;  

(c > 1 I c -: = 1 I unde f i ned )  
fi; 

proc n e w l i n e  = (rot fi le f) void : 
if - o p e n e d  o f f  then u n d e f i n e d  
else 

boo l  r ead ing  = 
(read m o o d  of  f l true I: wr i te  m o o d  of  f l false 
l unde f ined;  skip); 

(- ge t  g o o d  p a g e  (f, reading)  l unde f ined) ;  
ref  pos  cpos = cpos o f f ,  lpos = lpos of  book  o f f ;  
if p of  cpos = p o f  lpos ^ l o f  cpos = l o f  lpos 
then c o f  cpos : = c o f  lpos; 

if r ead ing  then n e w l i n e  (f) 
else 

if compress ib l e  (f) 
then ref int pl  = p of lpos, ll = l o f  lpos; 

flextext t ex t  = ( tex t  o f  f l  ( f lextext  t2): t2); 
t ex t  [pl] [ll] := t ex t  [pl] Ill] [" c o f  lpos - 1] 

else  while ~ l ine e n d e d  (f) do  space  (f) od  
fi; 
cpos : = lpos : = (p o f  cpos, l of  cpos  + 1, 1) 

fi 
else cpos : = (p of cpos, l o f  cpos + 1, 1) 
fi 

fi; 

proc  n e w p a g e  = (rof file f) void : 
if - o p e n e d  o f f  then u n d e f i n e d  
else 

bool  read ing  = 
(read m o o d  of  f l true I" wr i te  m o o d  of  f l false I unde f ined;  
skip); 

(- ge t  good  f i le  (f, reading)  I unde f ined) ;  
ref pos  epos = cpos o f f ,  lpos = lpos o f  book o f f ;  
if p of  cpos = p of  lpos 
then cpos : = lpos; 

if r ead ing  then n e w p a g e  (f) 
else 

if compress ib l e  (f) ^ I o f  lpos <_ l of  book b o u n d s  (f) 
then rot int pl  = p o f  lpos, II = I o f  lpos; 

f lextext  t ex t  = ( text  o f f  l ( f lextext  t2): t2); 
t ex t  [pl] [ll] := tex t  [pl] Ill] [ : c o f  lpos - 1]; 
t ex t  [pl ] := tex t  [pl ] [ : (c o f  lpos > i i  1ll 1 l -  1) J 
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else while - p a g e  e n d e d  (f) do n e w l i n e  (f) od 
fi; 
cpos : = lpos : = (p o f  cpos + 1, 1, 1) 

fl 
else  cpos : = (p o f  cpos + 1, 1, 1) 
fl 

fl; 

{Each of the following 3 routines either returns true, in which case the 
line, page or file is good (dd), or it returns false, in which case the current  
position may  be outside the logical file or the page number  m a y  have 
overflowed, or it loops until the mat te r  is resolved, or it is terminated by a 
jump. On exit, the read/write mood is as determined by its r e a d i n g  
parameter.} 

e) proc  9 g e t  g o o d  l ine = (rof file f, boo l  reading)  boo l  : 
begin bool  no t  ended;  

while no t  e n d e d  : = ge t  g o o d  p a g e  (f, reading);  
l ine e n d e d  (f) ^ no t  e n d e d  

do (- (line m e n d e d  o f f )  (f) l se t  m o o d  (f, reading);  n e w l i n e  (f)) od; 
no t  e n d e d  

end; 

f) proc  9 ge t  good  p a g e  = (ref file f, bool  reading)  bool  : 
begin bool  no t  ended;  

while no t  e n d e d  := ge t  g o o d  f i le  (f, reading);  
p a g e  e n d e d  (f) ^ no t  e n d e d  

do (- (page m e n d e d  o f f )  (f) I se t  m o o d  (f, reading);  n e w p a g e  (f)) od; 
h o t  e n d e d  

end; 

g) proc  9 g e t  g o o d  fi le = (rof file f, boo l  reading)  bool  : 
begin bool  no t  e n d e d  : = true; 

while se t  m o o d  (f, reading);  
not  e n d e d  a 
( reading  l logical  f i le  e n d e d  l p h y s i c a l  f i le  ended)  (f) 

do no t  e n d e d  : = ( read ing  l logical  f i le  m e n d e d  o f f  
I p h y s i c a l  f i le m e n d e d  o f f )  (f) 

od; 
not  e n d e d  

end; 

h) proc 9 set  m o o d  = (ref file f, boo l  reading)  void : 
( reading  l se t  read m o o d  (f) I se t  wr i te  m o o d  (f)) ; 

i) proc  set  = (rot file f, int p, l, c) void : 
if - o p e n e d  o f f  v ~ se t  poss ib l e  (f) then u n d e f i n e d  
else bool  r ead ing  = 

(read m o o d  of  f l  true I: wr i te  m o o d  o f  f l  false I unde f ined ;  skip); 
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ref pos  cpos = ClJOS o f f ,  lpos = lpos o f  book o f f ;  
p o s  ccpos = cpos; 
if (cpos : = (p, l, c)) b e y o n d  lpos 
then cpos : = lpos; 

(- ( logical f i le  m e n d e d  o f f )  (f) I undef ined);  
se t  m o o d  (f, reading)  

elif p o s  bounds  = book bounds  (f); 
p < 1 v p > p o f  b o u n d s  + 1 
v l< 1 v l> l o f b o u n d s  + 1 
v c < 1 v c> c o f b o u n d s + l  

then cpos := ccpos; u n d e f i n e d  
fi 

fi; 

j) proc  reset  = (ref file f) void : 
if - opened  o f f  v , reset  pos s ib l e  (f) then u n d e f i n e d  
else 

ref boo l  (read m o o d  o f f )  : = - p u t  pos s ib l e  (f); 
ref boo l  (wri te  m o o d  o f f )  : = - g e t  p o s s i b l e  (f); 
ref boo l  (char  m o o d  o f f )  : = - b in  p o s s i b l e  (f); 
ref boo l  (bin m o o d  o f f )  : = false; 
ref p o s  (cpos o f f )  := (I, 1, 1) 

fl; 

k) proc se t  char  n u m b e r  = (ref file f, int c) void : 
if - opened  o f f  then u n d e f i n e d  
else ref ref pos cpos = cpos of f; 

while c of  cpos ~ c 
do 

if  c < 1 v c > c o f  book b o u n d s  (f) + 1 
then u n d e f i n e d  
elif  c > c o f  cpos 
then space  (f) 
else  back s p a ce  (f) 
fi 

od  
fi; 

10.3.2. Transput values 
10.3.2.1. Conversion routines 

{The routines whole ,  f i x ed  and f l oa t  are intended to be used with the 
formatless output routines pu t ,  p r i n t  and wri te  when it is required to have 
a little extra control over the layout produced. Each of these routines has 
a w i d t h  parameter  whose absolute value specifies the length of the string 
to be produced by conversion of the ari thmetic value Y provided. Each of 
f i xed  and f loa t  has an af ter  narameter  to specify the number  o f  digits 
required after the decimal point, and an exp  paramete r  in f loa t  specifies 
the width allowed for the exponent. If V cannot be expressed as a string 
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within the given wid th ,  even when the value of after ,  if provided, has been 
reduced, then a string filled with errorchar  (10.2.l.t) is returned instead. 

Leading zeroes are replaced by spaces and a sign is normally included. 
The user can, however, specify that a sign is to be included only for 
negative values by specifying a negative width. If the width specified is 
zero, then the shortest possible string into which Y can be converted, 
consistently with the other parameters ,  is returned. The following 
examples illustrate some of the possibilities: 

p r i n t  (whole  (i, -4)) 
which might print " . . .0" ,  " . .99" ,  ".-99", "9999" or, if i were 
greater  than 9999, ' ....... , where ..... is the yield of errorchar: 

p r i n t  (whole  (i, 4)) 
which would print ".+99" ra ther  than "..99": 

p r i n t  (whole  (i, 0)) 
which might print "0", "99", "-99",  "9999" or "99999": 

p r i n t  ( f ixed (x, -6, 3)) 
which might print ".2.718",  "27.183" or "271.83" (in which one 
place after the decimal point has been sacrificed in order to fit 
the number  in); 

p r i n t  ( f ixed (x, O, 3)) 
which might print "2.718", "27.183" or "271.828"; 

p r i n t  ( f loat (x, 9, 3, 2)) 
which might print "-2.7181o+0", "+2.7181o-1", or "+2.72~o+11" (in 
which one place after the decimal point has been sacrificed in 
order to make room for the unexpectedly large exponent).} 

a) mode g number  = union (~ L real~, ~ L int~) ; 
b) proc  whole  = (number  v, int w id th )  string : 

case v in 
{ (L int x): 

(int l e n g t h  : = abs  w i d t h  - (x < L 0 v w i d t h  > 0 } ] I 0), 
L i n t  n : = abs x; 
i f  w id th  = 0 then 

L i n t  m : = n; l e n g t h  : = O; 
w h i l e m  +:= L lO; l eng th+:= I; m ~  L O  
do skip od 

f i ;  
string s : = s u b w h o l e  (n; length);  
if l e n g t h  = 0 v char  in s t r i n g  (errorchar,  Ioc int, s) 
then abs  w i d t h  x errorchar  
else 

(x < L 01 ..... I: w i d t h  > 01 "+"1 "") plus to  s; 
(wid th  ~ O I (abs w i d t h  - upb  s) x ,£,~lplusto s); 
S 

f i )~ ,  
~ (L real x): f i x e d ( x ,  w id th ,  0) 7 

esac ; 
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c) 

d) 

/ 

van  W i j n g a a r d e n ,  et al. 

proc f i x e d  = ( n u m b e r  v, int w i d t h ,  a f ter )  s t r ing  : 
case v in 

(L  real x): 
if  int  l e n g t h  : = abs  w i d t h  - (x < L 0 v w i d t h  > 01 11 0); 

a f t e r  >_ 0 ^ ( l en g th  > a f t e r  v w i d t h  = O) 
then L real y = abs x; 

i f  w i d t h  = 0 
then l e n g t h  : = (a f ter  = 0 [ i I 0);  

whi le  y + L . 5  x L . l  I a f t e r  >_L lO I l e n g t h  
do l e n g t h  +:=  1 od; 
l e n g t h  +: = (a f ter  = 0 [ 0 [ a f t e r  + 1) 

fl; 
string s := s u b f i x e d  (y, l e n g th ,  af ter);  
if  - c h a r  in  s t r i n g  (errorchar ,  Ioc int, s) 
then ( l eng th  > u p b  s a y < IL 1.0[ "O" p lu s to  s); 

(x < L 01 . . . . .  l: w i d t h  > 01 "+"[ "") p l u s t o  s; 
( w i d t h  ~ O I (abs w i d t h  - u p b  s) x '£':lplusto s); 
8 

elif a f t e r  > 0 
then f i x e d  (v, w id th ,  a f t e r  - 1) 
e l se  abs  w i d t h  x e r rorchar  
fl 

e l se  unde f ined ;  abs  w i d t h  x e r rorchar  
tit", 

It ( L i n t  x): f i x e d  (L  real (x), w id th ,  a f ter )  ~" 
esac ; 

proc f l oa t  = (number v, int  w id th ,  after, exp) string : 
case v in 

(L  real x): 
i f  int  before = abs w id th  - abs exp - (af ter  ~ 01 a f ter  + 1 I O) - 2; 

sign before + sign af ter  > 0 
then string s, L real y : = abs x, int p : = O; 

L s t a n d a r d i z e  (y, before,  a f ter ,  p); 
s : =  

f i x e d  (sign x x y ,  s ign  w i d t h  x (abs w i d t h  - abs  e x p  - 1), 
a f ter )  + "1o" + w h o l e  (p, exp);  

i f  e x p  = 0 V c h a r  in  s t r i n g  (errorchar ,  I o c  int, s) 
then 

f l oa t  (x, w i d t h ,  (a f ter  ~ 01 a f t e r  - 1 [ 0), 
( exp  > 0 [ e x p  + 1 [ e x p  - 1)) 

else s 
f i  

e l se  unde f ined ;  abs  w i d t h  x e r rorchar  
t i t ,  

( L i n t  x): f l oa t  (L  real (x), w id th ,  a f ter ,  exp )  # 
esac ; 

e) 

f) 

g) 

h) 
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proc 9 s u b w h o l e  = ( n u m b e r  v, in t  w i d t h )  s t r ing  : 
¢ r e tu rns  a s t r i n g  o f  m a x i m u m  l e n g t h  ' w i d t h '  c o n t a i n i n g  a 

d e c i m a l  r e p r e s e n t a t i o n  o f  the  p o s i t i v e  i n t e g e r  'v '  ¢ 
case v In 

~ (L int  x): 
begin string s, L int n : = x; 

while d ig  char  (8 (n mod JL 10)) p lusto s; 
n s:= L lO; n ~  L O  

do skip od; 
(upb s > w i d t h  I w i d t h  x e r rorchar  l s)  

end 
esac ; 

proc .~ s u b f i x e d  = ( n u m b e r  v, int wid th ,  a f ter )  string : 
¢ r e tu rns  a s t r i n g  o f  m a x i m u m  l e n g t h  ' w i d t h '  c o n t a i n i n g  a 

rounded  d e c i m a l  r e p r e s e n t a t i o n  o f  t h e  p o s i t i v e  real  n u m b e r  
'v'; i f  'a f ter '  is  g r e a t e r  t h a n  zero,  t h i s  s t r i n g  c o n t a i n s  a 
d e c i m a l  p o i n t  f o l l o w e d  b y  'a f ter '  d ig i t s  ¢ 

case v in 
(L real x): 

begin sir ing s, in t  before : = O; 
L real y : = x + L .5 x L .1 I af ter;  
proc c h o o s e d i g  = (ref  L real y) char : 

d ig  c h a r  (tint c : = S en t i e r  (y  x: = L 10.0); (c > 91 c : = 9); 
y -: = K c ;  c)); 

while y _> IL 10.0 I be fore  do before  +: = 1 od; 
y / :  = L 10.0 I before;  
to before do s p lu sab  c h o o s e d i g  (y) od; 
(a f ter  > 0 [ s p lu sab  "."); 
to after do s p lu sab  c h o o s e d i g  (y) od; 
(upb s > w i d t h  [ w i d t h  x e r rorchar  J s) 

end 
esac ; 

proc 9 L s t a n d a r d i z e  = (ref  L real y,  int  before ,  a f ter ,  ref int p) void : 
¢ a d j u s t s  t he  v a l u e  o f  'y '  so t h a t  i t  m a y  be t r a n s p u t  a c c o r d i n g  

to t he  f o r m a t  $ n (be fore )d  . n (a f t e r )d  $; 'p' is s e t  so t/zat 
y x 10 t p is  e q u a l  to t he  o r ig ina l  v a l u e  o f  ' y ' ¢  

begin 
JL rea lg  = L 10.0 I before;  L real h = g × L .1; 
whi ley  >_g d o y x : =  L .1; p + : =  1 od; 
( y ~  JLO.O I while  y < h do  y x : =  L 10.0; p - : =  1 od); 
( y + L . 5 x L . 1  l a f t e r > _ g l y : = h ;  p+:= l )  

end;  

proc 9 d ig  char  = tint x)  char : "0123456789abcde f"  I x + i I : 
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i) 

J) 

van Wijngaarden, et al. 

proc  9 s t r i n g  to L i n t  = (string s, int  radix ,  ref L i n t  iJ bool  : 
¢ re turns  true i f  t he  abso lu t e  va lue  o f  the  resul t  is <_ L m a x  in t  ¢ 

begin 
L i n t  l r  = K r a d i x ;  b o o l  sa fe  : = true; 
L i n t  n : = L O, L int m = L m a x  in t  + lr; 
L i n t  m l  = L m a x  in t  - m x lr; 
for i from 2 to upb s 
while  L i n t  d ig  = K c h a r  d ig  (s l i j); 

sa f e  := n < m v n = m ^ d ig  <_ml 
do  n : = n x lr + d ig  od; 
i f  sa fe  then i : = (s [ 1 ] = " + "  I n J - n); true else false fl 

end;  
proc .~ s t r i n g  to L r ea l  = ( s t r i ng  s, re f  L real r) b o o l  : 

¢ re turns  true i f  t he  abso lu t e  va lue  o f  t he  result  is <_ 
L m a x  real ¢ 

begin 
i n t e : =  u p b s +  1; 
c h a r  in s t r i n g  ("1o", e, s); 
int p := e; c h a r  in s t r i n g  (".", p, s); 
i n t j  : = 1, l e n g t h  : = O, L real x : = L 0.0; 
C s k i p  l ead ing  zeroes: ¢ 
for i f r o m 2  to e - 1 
w h i l e s  [iJ = "0" v s [iJ = ',.,, v s liJ = "._" 
do j : = i od; 
for i f r o m j  + 1 to e - I w h i l e  l e n g t h  < L r e a l  w i d t h  
do 

i f s  [i] ~ "." 
then x : = x x L 10.0 + K c h a r  d ig  (s [j : = i ]); h , n g t h  +: = 1 
fi ¢ all  s i g n i f i c a n t  d ig i t s  c o n v e r t e d  ¢ 

od; 
¢ set  p r e l i m i n a r y  e x p o n e n t :  ¢ 
int exp  := (p >Jl P - J  - 1 I P -J),  e x p a r t  := O; 
¢ c o n v e r t  e x p o n e n t  part :  ¢ 
bool  sa fe  : = 

i f  e < upb s 
then s t r i n g  to L i n t  (s [e + 1 : J, I0, expar t )  
else true 
f i ;  

C prepare  a r e p r e s e n t a t i o n  o f  L m a x  real  to c o m p a r e  w i t h  t he  
L real va lue  to be delivered: ¢ 

L real m a x  s t a g  : = L m a x  real, int m a x  e x p  : = O; 
L s t a n d a r d i z e  ( m a x  s tag ,  l eng th ,  O, m a x  exp); exp  +:= expar t ;  
if - s a f e  v (exp > m a x  exp  v e x p  = m a x  exp  ^ x > m a x  s tag )  
then false 
else  r : = (s [ l J  ="+"1 x [ - x) x L l O.O I exp;  true 
fi 

end;  
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k) proc  9 c h a r  d ig  = (char x) int : 
(x = ". "] 0 J int i; c h a r  in s t r i n g  (x, i, "O123456789abcdef"); i - 1) ; 

l) p r o c c h a r i n s t r i n g = ( c h a r c ,  r e f i n t i ,  s t r i n g s ) b o o l :  
(bool  f o u n d  := false; 
for h from lwb s to upb s while ~ f o u n d  
do (c = s [k] I i := k; f o u n d  := true) od; 
found) ; 

m) int L i n t  w i d t h  = 
¢ the  s m a l l e s t  i n t egra l  va lue  s u c h  t h a t  'L m a x  in t '  m a y  be 
c o n v e r t e d  w i t h o u t  error u s i n g  the  p a t t e r n  n ( L  in t  w i d t h ) d  ¢ 

( in t  c := 1; 
w h i l e L l O  T ( c -  1) < L . 1  x L m a x i n t d o c + : =  1 od; 
c); 

n) int L real w i d t h  = 
¢ the  s m a l l e s t  i n t egra l  va lue  s u c h  t h a t  d i f f e ren t  s t r i ngs  are 
p r o d u c e d  by  c o n v e r s i o n  o f  ' I .0 '  a n d  o f  '1.0 + L s m a l l  real '  u s i n g  
the  p a t t e r n  d .  n (L  real  w i d t h  - 1)d ¢ 

1 - 8 e n t i e r ( L  In (L s m a l l  real) / L In (L  10)) ; 

o) int L exp  w i d t h  = 
¢ the  s m a l l e s t  i n t egra l  va lue  s u c h  t h a t  'L m a x  real'  m a y  be 
conver t ed  w i t h o u t  error u s i n g  the  p a t t e r n  
d . n ( L  real  w i d t h  - 1)d e n ( L  exp  w i d t h ) d  ¢ 

1 + 8 e n t i e r ( L  In (L  In (L m a x  real) / L In (L  I0)) / L In (L  10)) ; 

10.3.2.2. T r a n s p u t  m o d e s  

a) mode g simplout = u n i o n ( e L  int~, ~ L real~, ~ L comply,  bool. 
L bits 7, char, [ J char) ; 

b) mode 9 outtype = c an  a c t u a l - d e c l a r e r  s p e c i f y i n g  a m o d e  un i t ed  f r o m  
{2.1.3.6.a} a s u f f i c i e n t  se t  o f  m o d e s  n o n e  o f  w h i c h  is 'void" or 
c o n t a i n s  ' f l ex ib le ' ,  ' r e f e r e n c e  to' ,  ' p rocedu re"  or "union o f ' c  ; 

c) m o d e g s i m p l i n =  u n i o n ( ~ r e f L  int~, ~ r e f L  real~, ~ r e f L c o m p l ~ ,  
ref bool, ~ ref L bits ~., ref char, ref [ J char, ref string) ; 

d) m o d e  9 in type  = c an  a c t u a l - d e c l a r e r  s p e c i f y i n g  a m o d e  u n i t e d  f r o m  
{2.1.3.6.a} ' r e f e r e n c e  to f l ex ib le  row of c h a r a c t e r '  t oge ther  w i t h  a 
s u f f i c i e n t  se t  o f  m o d e s  e a c h  o f  w h i c h  is " re fe rence  to" f o l l o w e d  by  
a m o d e  w h i c h  does no t  c o n t a i n  ' f l ex ib le ' ,  " r e fe rence  to' ,  
' p r o c e d u r e '  or "union o f ' c ;  

{See the  r e m a r k s  a f t e r  10.2.3A c o n c e r n i n g  the  t e r m  "suf f ic ien t  set".} 

10.3.2.3. S t r a i g h t e n i n g  

a) op 9 straightout = (outtype x) [ ] simplout : 
c the  resul t  o f  " s t r a i g h t e n i n g "  ' x ' c  ; 
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b) op .a straightin = t intype x) [ ] s implin : 
c the  resul t  o f  s t ra igh t en ing  'x'  c ; 

e) The result of "straightening" a given value Y is a multiple value W 
{of one dimension} obtained as follows: 
• it is required that V {if it is a name} be not nil: 
• a counter i is set to O: 
• Y is "traversed" {d} using i; 
• W is composed of a descriptor ((1, i)) and the elements obtained by 
traversing V; 
• if Y is not (is) a name, then the mode of the result is the mode specified 
by [ ] simplout ([ ] simplin). 

d) A value Y is "traversed", using a counter i, as follows: 
If Y is (refers to) a value from whose mode that specified by s implout  is 

united, 
then 

• i is increased by one; 
• the element of W selected by (i) is V: 

otherwise, 
Case A: V is {refers to) a multiple value {of one dimension} having a 

descriptor ((I, u)) : 
• for j = I . . . . .  u, the element (the subname) of V selected by (j) is 
traversed using i: 

Case B: Y is (refers to) a multiple value {of n dimensions, n >_ 2} whose 
descriptor is ((I 1, Ul), 02 , u2) . . . . .  (I n , u )) where n >_ 2: n 
• for j=  11 . . . . .  u 1, the multiple value selected {2.1.3.4.i} by (the 

name generated {2.1.3.4.j} by) the tr im (j, 0 2, u 2, 0) . . . . .  

(I n, u n, 0))is t raversed using i; 

Case C: Y is (refers to) a structured value VI: 
• the fields (the subnames of V referring to the fields) of Yl, taken 
in order, are t raversed using i. 

10.3.3. Formatless  transput 

{In formatless transput, the elements of a "data list" are  transput, one 
after the other, via a specified file. Each element of the data list is either 
a layout routine of the mode specified by proc (raf file) void (10.3.1.6) or a 
value of the mode specified by ou t t y pe  (on output) or in type  (on input). On 
encountering a layout routine in the data list, that routine is called with 
the specified file as parameter .  Other values in the data list are first 
straightened {10.3.2.3) and the resulting values are then transput  via the 
given file one after  the other. 

Transput normally takes place at the current  position but, if there is no 
room on the current  line (on output) or if a readable value is not present 
there (on input), then first, the event routine corresponding to on l ine end 
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(or, where appropriate, to on page  end,  on p h y s i c a l  f i le  end  or 
on logical f i le  end) is called, and next, if this returns false, the next "good" 
charac ter  position of the book is found, viz., the first charac te r  position of 
the next nonempty line.} 

10.3.3.1. Formatless  output 

{For formatless output, p u t  (a) and p r i n t  (or write)  (10.5.l.d) may  be 
used. Each straightened value Y from the data list is output as follows: 

aa) If the mode of V is specified by L int, then first, if there is not 
enough room for L i n t  wid th  + 2 characters  on the remainder  of the 
current line, a good position is found on a subsequent line (see 10.3.3): 
next, when not at the beginning of a line, a space is given and then V is 
output as if under the control of the picture n(L int  w id th  - 1)z + d. 

bb) If the mode of V is specified by L real, then first, if there is not 
enough room for L ~eal w id th  + L exp  wid th  + 5 charac ters  on the current  
line, then a good position is found on a subsequent line; next, when not at 
the beginning of a line, a space is given and then V is output as if under 
control of the picture 

+d. n(L real wid th  - 1)den(L exp  wid th  - 1)z +d. 

ce) If the mode of V is specified by L c o m p l ,  then first, if there is not 
enough room for 2 x (L real w id th  + L exp  width)  + 11 characters  on the 
current line, then a good position is found on a subsequent line; next, 
when not at the beginning of a line, a space is given and then Y is output 
as if under eontrol of the picture 

+d. n(L real wid th  - 1)den(L exp  wid th  - 1)z +d". "i 
+d. n(L real wid th  - 1)den(L exp  w id th  - 1)z +d. 

dd) If the mode of Y is specified by b o o l ,  then first, if the current  line 
is full, a good position is found on a subsequent line; next, if Y is true 
(false), the charac ter  yielded by f l ip  (flop) is output (with no intervening 
space). 

ee) If the mode of V is specified by L bits, then the elements of the 
only field of V are output (as in dd) one after  the other (with no 
intervening spaces, and with new lines being taken as required). 

ff) If the mode of V is specified by char, then first, if the current  line 
is full, a good position is found on a subsequent line; next V is output (with 
no intervening space). 

gg) If the mode of V is specified by [ J char, then the elements of Y 
are output (as in ff) one after the other (with no intervening spaces, and 
with new lines being taken as required).} 
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proc put  = (ref file f, [ ] union (outtype, proc (ref file) void) x) void : 
i f  opened of  f then 

for i to upb x 
do case set write mood (f); set char mood (f); x [i] in 

(proc (ref file) void pf): p f  (f) , 
(outtype ot): 
begin 

[ ] simplout y = straightout ot; 
~proc L real  cony = (L  real r) string : 

f loat  (r, L real wid th  + L exp wid th  + 4, 
L real wid th  - 1, L exp wid th  + 1) ~; 

for j to upb y 
do case y [j ] in 

(union (number, ~ L comply)  nc): 
begin string s : = 

case nc in 
(L in t  k): whole  (k, L i n t  wid th  + 1) ~ , 

{ (L  real r): L r e a l  conv ( r )~ ,  
( L  compl z): L real cony (re z) + "._1" 

+ L real cony (ira z) 
esac; 
ref ref pos cpos = cpos o f f ,  int n = upb s; 
while 

nex t  pos (f); 
(n > c of  book bounds (f) I undefined); 
c o f  cpos + (c of  cpos = 1 I n I n + 1) > 
c of  book bounds  (f) + 1 

do (- (line m e n d e d  o f f )  (f) l pu t  (f, newline)); 
set write mood  (f) 

od; 
(c of cpos ~ 1 I "._" plusto s); 
for k to upb s do pu t  char (f, s [ k ]) od  

end ¢ numeric  ¢,  
(bool b): (next  pos (f); pu t  char (f, (b I flip[ flop))), 

(L bits lb): 
for k to L bits wid th  
d o p u t  (f, (L F o f l b )  [k]) od~ ,  

(char k): (next  pos  (f); pu t  char (f, k)) ,  
([ ] char ss): 

for  k from Iwb ss to upb ss 
do nex t  pos (f); pu t  char (f, ss [ k ]) od 

esac od 
end 

esac od 
else undef ined  
fl; 

b) 

c) 
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proc 9 pu t  char = (ref file f, char char) void : 
if opened o f f  ^ - line ended  (f) 
then ref pos cpos = cpos of f ,  lpos = lpos of  book of f ;  

set char mood (f); set  write mood (f); 
ref int p = p of  cpos, l = I of  cpos, c = c of  cpos; 
char k; bool  f ound  : = false; 
case text o f  f i n  

(text): (k := char; found  := true), 
(flextext): 

for i to upb F o f  conv o f f  whi le - f ound  
do struct (char internal,  external)  key  = (F of  cony of  f) [ i l; 

( internal  of  key  = char I k : = external  of  key; 
f ound  := true) 

od 
esac; 
if found  then 

case text  of  f i n  
(texttl): t l  [p]  i l l  [c] :=k ,  
(flextext t2): t2 [p]  [l] [c] := k 

esac; 
c+:= 1; 
if cpos beyond lpos then lpos : = cpos 
elif - set possible (f) ^ pos  (p o f  lpos, I of  lpos, 1) beyond cpos 
then lpos := cpos; 

(compressible (f) l 
c the size o f  the line and  page  con ta in ing  the logical 

end  o f  the book and  of  all subsequen t  lines and  
pages  m a y  be increased {e.g., to the sizes with 
which the  book was  or ig ina l ly  e s t ab l i shed  
(10.3.1.4.cc) or  to the sizes impl i ed  by  m a x p o s  of  
chan  off} c) 
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fl 
else k : = ". "; 

if - (char error m e n d e d  o f f )  (f, k) 
then undefined; k : = " ."  
fi; 
check pos (f); pu t  char (f, k) 

fi 
else undef ined  
fi ¢ write mood is still set ¢ ; 

proc 9 nex t  pos = (ref file f) void : 
(- ge t  good line (f, read mood o f f )  I undef ined)  

¢ the line is n o w  good {lO.3.1.6.dd} and  the read/wri te  mood is 
as on entry  ¢ ; 
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10.3.3.2. Format l e s s  input 

[For format less  input, get  (a) and read (10.5.l.e) m a y  be used. Values 
f rom the book are  assigned to each s t ra ightened n a m e  N f rom the data  list 
as follows: 

aa) If the mode of N is specified by re fL  int, then first, the book is 
searched for the first c h a r a c t e r  that  is not a space  (finding good positions 
on subsequent lines as necessary) ;  next, the la rges t  s tr ing is read  f rom 
the book that  could be "indited" (10.3.4.1.l.kk) under  the control of some 
picture of the form + n (k l ) " . "n (k2 )dd  or n (k2 )dd  (where k l  and k2 yield 
a rb i t r a ry  nonnegative integers);  this str ing is conver ted  to an integer  and 
assigned to N; if the conversion is unsuccessful,  the event  routine 
corresponding to on value error is called. 

bb) If the mode of N is specified by r e f L  real, then first, the book is 
searched for the first cha rac t e r  that  is not a space  (finding good positions 
on subsequent lines as necessary) ;  next, the larges t  s tr ing is read  f rom 
the book that  could be indited under  the control of some picture  of the 
form + n(kl)"._" n(k2)d or n(k2)d followed by . n(k3)d d or by ds., possibly 
followed again by e n(k4)" ."  + n(k5)" ."  n(k6)d d or by e n(k5)" ."  n(k6)d d; 
this string is conver ted to a real  num ber  and assigned to N; if the 
conversion is unsuccessful,  the event  routine corresponding to on value 
error is called. 

cc) If the mode of N is specified by re fL  compl, then first, a real 
number  is input (as in bb) and assigned to the first  subname  of N; next, 
the book is searched for the first  cha rac t e r  that  is not a space;  next, a 
cha rac te r  is input and, if it is not ".L" or "i", then the event  routine 
corresponding to on char  error (10.3.1.3.cc) is called, the suggestion being 
"J_"; finally, a real  num ber  is input and assigned to the second subname  
of N. 

dd) If the mode of N is specified by refbool ,  then first, the book is 
searched for the first  cha rac t e r  that  is not a space  (finding good positions 
on subsequent lines as necessary) ;  next, a c h a r a c t e r  is read; if th i s  
cha rac te r  is the s ame  as that  yielded by f l ip (flop), then true (false) is 
assigned to N; otherwise,  the event  routine corresponding to on char  error 
is called, the suggestion being flop. 

ee) If the mode of N is specified by r e f L  bits, then input takes  place 
(as in dd) to the subnames  of N one af ter  the other (with new lines being 
taken as required).  

ff) If the mode of N is specified by ref char, then first, if the current  
line is exhausted,  a good position is found on a subsequent  line; next, a 
cha rac te r  is read and assigned to N. 

gg) If the mode of N is specified by ref[  ] char, then input takes place 
(as in if) to the subnames  of N one af ter  the other  (with new lines being 
taken as required).  
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hh) If the mode of N is specified by refstring,  then cha rac t e r s  a re  read  
until ei ther 

(i) a cha rac t e r  is encountered which is contained in the str ing 
associated with the file by a call of the routine m a k e  term, or 
(ii) the current  line is exhausted,  whereupon the event  routine 
corresponding to on line end  (or, where appropr ia te ,  to on page  end,  on 
phys i ca l  file end  or on logical file end) is called; if the event  routine 
moves  the cur rent  position to a good position (see 10.3.3), then input of 
charac te r s  is resumed.  

The string consisting of the cha rac te r s  read  is assigned to N (note that,  if 
the current  line has a l ready been exhausted,  or if the cur rent  position is at  
the s ta r t  of an emp ty  line or outside the logical file, then an emp ty  str ing 
is assigned to N).} 

a) proc get = (ref file f, [ ] union tintype, proc (ref file) void) x) void : 
if opened o f f  then 
for i to upb x 
do case  set  read mood (f); se t  char  mood  (f); x [i] in 

(proc (ref file) void pf): p f  (f) , 
(intype it): 
begin 

[ ] simplin y = straightin it; char k; bool k emPtY; 
op ? = (string s) bool  : 

¢ true i f  the nex t  character,  i f  any ,  in the current  line 
is conta ined  in 's' ( the character  is ass igned  to 'k') 
and  false  o therwise  ¢ 

i l k  e m p t y  ^ (line ended  (f) v logical file ended  (f)) 
then false 
else (k e m p t y  l ge t  char  (f, k)); 

k e m p t y  := char  in s t r ing  (k, Ioc int, s) 
fi; 

op ? = (char c) bool  : ? string (c); 
prio ! -- 8; 
op ! = (string s, char c) char :  

¢ expects  a character  conta ined  in 's'; i f  the character  
read is not  in 's', the even t  routine corresponding to 
'on char  error' is called wi th  the sugges t ion  'c '¢ 

if (k e m p t y  I. check  pos  (f); get  char  (f, k)); 
k e m p t y  : = true; 
char in s t r ing  (k, Ioc int, s) 

then k 
else char sugg : = c; 

i f  (char error m e n d e d  of f) (f, sugg) then 
(char in s t r ing  (sugg, Ioc int, s) 
I sugg  
I undef ined;  c) 
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else u n d e f i n ed ;  c 
fi; 
se t  read m o o d  (f) 

fi; 
op  ! = (char s, c) char:  string (s) ! c; 
p roc  s k i p  i n i t i a l  s p a c e s  = void : 

whi le  (k e m p t y  I n e x t  p o s  (f)); .9 , . , ,  do  sk ip  od; 
p roc  s k i p  s p a c e s  = void : 

while ? " . "  do skip od; 
proc  read d ig  = str ing : 

(string t := "0123456789"!  "0"; 
whi le ? "0123456?89" do t p lusab k od; t); 

p roc  read s ign = char  : 
(char t = (skip spaces; ? "+-"1 k I "+"); 
s k i p  spaces ;  t); 

proc  read n u m  = str ing : 
(char t = read s ign;  t + read dig);  

p roc  read real  = str ing : 
(string t : = read s ign;  
(" ? "."t t p lu sab  read  d ig  I k e m p t y  : = false); 
(.9 "."1 t p lu sab  "." + read  dig); 
(? "lo\e" l t p lu sab  "1o" + read n u m ) ;  t); 

f o r )  to upb  y 
do  boo l  i n c o m p  : = false; k e m p t y  : = true; 

case y [ j  ] in 
~ (ref  L int ii): 

( sk ip  i n i t i a l  spaces ;  
i n c o m p  := - s t r i n g  to L i n t  (read n u m ,  10, ii))~ , 

(ret L real rr): 
( sk ip  i n i t i a l  spaces ;  

i n c o m p  : = - s t r i n g  to L real  (read real,  rr)) 2 , 
(ref L compl zz): 

( sk ip  i n i t i a l  spaces ;  
i n c o m p  := - s t r i n g  to L real  (read real,  re o f  zz); 
s k i p  spaces ;  "i_L " ! ".L "; 
i n c o m p  : = i n c o m p  v 

s t r i n g  to L real  (read real,  i m  o f  zz))  ~ , 
(ref bool bb): 

( sk ip  i n i t i a l  spaces ;  
bb := (f l ip + f lop)  ! f lop  = f l i p ) ,  

~ (ref  L bits lb): 
for i to L b i t s  w i d t h  
do  g e t  (f, (L F o f  lb) [ i]) od~  , 

(ref  char  cc): ( n e x t  p o s  (f); g e t  c h a r  (f, cc)) , 
(ref [ ] char  ss): 

b) 
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od  
end 

esac od 

for  i f rom Iwb s s  to upb s s  
do n e x t  p o s  (f); g e t  c h a r  (f, s s  [ i ]) od , 

(ref string ss): 
begin string t; 
while c h e c k  p o s  (f); 

if  l ine  e n d e d  (f) v log ica l  f i le  e n d e d  (f) 
then false 
e l se  g e t  c h a r  (f, k); 

k e m p t y  := - c h a r  in  s t r i n g  (k, Ioc  int, t e r m  o f f )  
fl 

do t plusab k od; 
SS : = t  
end  

esac; 
(-  k e m p t y  l b a c k s p a c e  (f)); 
i f  i n c o m p  
then (-  ( va lue  error  m e n d e d  o f f )  (f) I unde f ined ) ;  

s e t  read  m o o d  (f) 
fi 

else u n d e f i n e d  
fl;  

p roc  .~ g e t  c h a r  = (ref  file f ,  re f  char  char)  void : 
i f  o p e n e d  o f f  ^ - l ine  e n d e d  (f) ^ - log ica l  f i le  e n d e d  (f) 
then ref  pos cpos = cpos o f f ;  

se t  c h a r  m o o d  (f); s e t  read m o o d  (f); 
int p = p o f  cpos ,  l = l o f  cpos ,  c = c of  cpos; 
c o f  cpos  + : = 1; 
c h a r  : = case  t e x t  o f  f i n  

( l e x t t l ) :  t l  [p]  [lJ [ c J ,  
(f lextext t2): 

( c h a r k  := t2 lP]  I l l  l c l ;  
boo l  f o u n d  : = false; 
for  i to upb F of  conv o f f  whi le - f ound  
do struct  (char i n t e rna l ,  e x t e r n a l )  k e y  = (F of  c o n y  of  f)  [ i ]; 

( e x t e r n a l  o f  k e y  = k I k : = i n t e r n a l  o f  k ey ;  f o u n d  : = true) 
od; 
if  f o u n d  then k 
else  k := ". "; 

i f ( c h a r  error  m e n d e d  o f f )  (f, k)  
then k 
else unde f i ned ;  " . "  
fi; 
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set read mood (f) 
fi) 

esac 
else undefined 
fi ¢ read mood is still set ¢ ; 

c) proc ~ check pos = (ref file D void : 
begin bool read ing  = read mood o f f ;  

bool not  ended : = true; 
while not ended : = not ended ^ get  good page (f, reading); 

line ended (f) ^ not  ended 
do not ended : = (line mended  o f f )  (f) od 

end;  

{The routine check pos is used in formatted transput  before each call of 
put  char or get  char. If the position is not good (10.3.1.6.dd), it calls the 
appropriate event routine, and may  call further event routines if true is 
returned. If the event routine corresponding to on page end returns false, 
newpage is called but, if any other event routine returns false, no default 
action is taken and no more event routines are called. On exit, the 
read/write mood is as on entry, but the current  position may  not be good, 
in which case undefined will be called in the following pu t  char or get 
char. However, check pos is also called when getting strings (hh), in which 
case the string is then terminated if the current  position is not good.} 

10.3.4. Format  texts 

{ In  formatted transput, each straightened value from a data list 
(cf. 10.3.3) is matched against a constituent picture of a format-text 
provided by the user. A picture specifies how a value is to be converted to 
or from a sequence of characters  and prescribes the layout of those 
characters  in the book. Features  which may  be specified include the 
number of digits, the position of the decimal point and of the sign, if any, 
suppression of zeroes and the insertion of arbi t rary  strings. For  example, 
using the picture -d.3d "." 3d "." e z+d, the value 1234.567 would be 
transput as the string ".1.234.567.1o.+3". 

A "format" is a structured value (i.e., an internal object) of mode 
'FORMAT', which mirrors  the hierarchical s t ructure of a format-text 
(which is an external object). In this section are given the syntax of 
format-texts and the semantics for obtaining the i r  corresponding formats. 
The actual formatted transput is performed by the routines given in 
section 10.3.5 but, for convenience, a description of their operation is given 
here, in association with the corresponding syntax.} 

10.3.4.1. Collections and pictures 
10.3.4.1.1. Syntax 

{The following mode-declarations (taken from 10.3.5.a) are reflected in 
the metaproduction rules A to K below. 
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A) mode format = struct (flex [1 : O ] piece F) ; 
B) mode piece = struct (int cp, count, bp, flex [ 1 : 0 ] collection c) ; 
C) mode collection =union (picture, coll item) ; 
D) mode collitem = 

struct (insertion i l ,  proc int rep, int p, insertion i2) ;  
E) mode insertion = 

flex [1 : O] struct (proc int rep, union (string, char) sa) ; 
F) mode picture = struct 

(union (pattern, cpattern, fpattern, gpattern, void) p, insertion i ) ;  
G) mode pattern = struct (int type, flex [1 : O] frame frames); 
H) mode frame = 

struct (Insertion i, proc int  rep, boo l  supp, char  marker)  ; 
I) mode cpattern = 

struct (insertion i, int type, flex [1 : O] insertion c); 
J) mode fpattern = struct (insertion i, proc format pf)  ; 
K) mode gpattern = struct (inserUon i, flex [1 : O] proc int spec) ; } 

A) FORMAT :: s tructured with row of PIECE field letter aleph mode. 
B) PIECE :: s tructured with integral field letter c letter p 

integral field letter c letter o letter u letter n letter t 
integral field letter b letter p 
row of COLLECTION field letter c mode. 

C) COLLECTION :: union of PICTURE COLLITEM mode. 
D) COLLITEM :: s tructured with INSERTION field letter i digit one 

procedure yielding integral field letter r letter e letter p 
integral field letter p 
INSERTION field letter i digit two mode. 

E) INSERTION :: row of structured with procedure yielding integral 
field letter r letter e letter p 
union of row of character character mode field 
letter s letter a mode. 

F) PICTURE :: structured with union of 
PATTERN CPATTERN FPATTERN GPATTERN void mode 
field letter p INSERTION field letter i mode. 

G) PATTERN :: structured with 
integral field letter t letter y letter p letter e 
row of FRAME field 
letter f letter r letter a letter m letter e letter s mode. 

H) FRAME :: structured with INSERTION field letter i 
procedure yielding integral field letter r letter e letter p 
boolean field letter s letter u letter p letter p charac ter  field 
letter m letter a letter r letter k letter e letter r mode. 

I) CPATTERN :: structured with INSERTION field letter i 
integral field letter t letter y letter p letter e 
row of INSERTION field letter c mode. 
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J) 

K) 

L) 

M) 
N) 
O) 
P) 

a) 

b) 

c) 

d) 

e) 
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FPATTERN :: s tructured with INSERTION field letter i 
procedure yielding FIVMAT field letter p letter f mode. 

GPATTERN :: s tructured with INSERTION field letter i 
row of procedure yielding integral field 
letter s letter p letter e letter c mode. 

FIVMAT :: 
mui definition of structured with 

row of s tructured with integra l  f ield letter  c let ter  p 
integral  f ield letter  c letter o letter  u letter  n letter  t 
integral  f ield letter b letter p 
row of union of 

structured with 
union of PATTERN CPATTERN 

structured with INSERTION field letter i 
procedure  y i e ld ing  mu i  appl icat ion  field 
letter p letter f 

mode 
GPATTERN void 

mode field letter p 
INSERTION field letter i 

mode 
COLLITEM 

mode field letter c 
m o d e  field letter a leph 

mode. 
{'FIVMAT' is equivalent (2.1.1.2.a) to 'FORMAl".} 

MARK :: sign ; point ; exponent ; complex ; boolean. 
COMARK :: zero ; digit ; character .  
UNSUPPRESSETY :: unsuppressible ; EMPTY. 
TYPE :: integral ; real ; boolean ; complex ; string ; bits ; 

integral choice ; boolean choice ; format  ; general. 

FORMAT NEST format  text{5D} : formatter{94f} token, 
NEST collection{b} list, formatter{94f} token. 

NEST collection{a,b} : 
pragment{92a} sequence option, NEST picture{c} ; 
pragment{92a} sequence option, NEST insertion{d}, 

NEST replicator{g}, NEST collection{b} list brief pack, 
pragment{92a} sequence option, NEST insertion{d}. 

NEST picture{b} : NEST TYPE pattern{A342a,A343a,A344a, 
A345a,A346a,A347a,A348a,b,A349a,A34Aa} option, 

NEST insertion{d}. 
NEST insertion{b,c,j,k,A347b,A348a,b,A349a,A34Aa} : 

NEST literal{i} option, NEST alignment{e} sequence option. 
NEST alignment{d} : 

NEST replicator{g}, al ignment code{f}, NEST literal{i} option. 

g) 
h) 

J) 

k) 

m) 

n) 

o) 
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alignment code{e} : letter k{94a} symbol ; letter x{94a} symbol ; 
letter y{94a} symbol ; letter 1{94a} symbol ; letter p{94a} symbol ; 
letter q{94a} symbol. 

NEST replieator{b,e,i,k} : NEST unsuppressible replicator{h} option. 
NEST unsuppressible replicator{g,i} : fixed point numcral{811b} ; 

letter n{94a} symbol, 
meek integral NEST ENCLOSED clause{31a,34a,-}, 
pragment{92a} sequence option. 

NEST UNSUPPRESSETY literal{d,e,i,A348c} : 
NEST UNSUPPRESSETY replicator{g,h}, 

strong row of charac te r  NEST denoter{a0a} coercee{61a}, 
NEST unsuppressible literal{i} option. 

NEST UNSUPPRESSETY MARK frame{A342c,A343b,c,A344a,A345a} : 
NEST insertion{d}, UNSUPPRESSETY suppression{l}, 

MARK marker{A342e,A343d,e,A344b,A345b}.  
NEST UNSUPPRESSETY COMARK frame{A342b,c,A346a} : 

NEST insertion{d}, NEST replicator{g}, 
UNSUPPRESSETY suppression{l}, 
COMARK marker{A342d,f,A346b}. 

UNSUPPRESSETY suppression{j,k,A347b} : 
where {UNSUPPRESSETY) is {unsuppressible), EMPTY ; 
where (UNSUPPRESSETY) is {EMPTY), 

letter s{94a} symbol option. 
" f rame : NEST UNSUPPRESSETY MARK frame{j} ; 

NEST UNSUPPRESSETY COMARK frame{k} ; 
NEST RADIX frame{A347b}. 

* m a r k e r  : MARK marker{A342e,A343d,e,A344b,A345b} ; 
COMARK marker{A342d,f,A346b} ; radix marker{A347c}. 

pattern : NEST TYPE pattern{A342a,A343a,A344a,A345a, 
A346a,A347a,A348a,b,A349a,A34Aa}. 

{Examples: 

a) $ p "table o f"x  iOa,l n ( l im - 1) ("x=" 12z+d 2x,  
+.12de+2d 3q" +j×"3"._" si  +.l Ode+2d l) p $ 

b) p "table o f"x  lOa • l n ( l im - 1) ("x=" 12z+d 2x, 
+. 12de+2d 3q"+jx"3"."  si  +. lOde+2d l) p 

c) 120k c ("mon",  "tues", "wednes",  "thurs",  "fri", " satur",  "sun") 
"day" 

d) p "table o f"x  
e) p "table of" 
h) 10 • n ( l i m - 1 )  
i) "+j×"3"." 
j) si  
k) "x=" 12z 
1) s} 
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[The positions where p ragmen t s  (9.2.1.a) m a y  occur  in format - tex ts  are  
restr icted.  In general  (as e lsewhere in the language}, a p r a g m e n t  m a y  not 
occur between two DIGIT- or LETTER-symbols.} 

[aa) For  format ted  output, put f  (10.3.5.1.a) and print f  (or writer) 
(10.5.l.f) m a y  be used and, for format ted  input, get f  (10.3.5.2.a) and readf 
(10.5.1.g). Each e lement  in the data  list (cf. 10.3.3) is e i ther  a fo rma t  to be 
associated with the file or a value to be t ransput  {thus a fo rmat  m a y  be 
included in the data  list immedia te ly  before the values  to be t ransput  
using that  format) .  

bb) During a call of put f  or getf, t ransput  proceeds  as follows: 
For  each e lement  of the data list, considered in turn, 

If it is a format ,  
then it is made  to be the cur rent  fo rma t  of the file by associate format 

(10.3.5.k) ; 
otherwise, the e lement  is s t ra ightened (10.3.2.3.c) and each e lement  of 

the result ing multiple value is output (hh) or input (if) using the 
next "picture" (cc, gg) f rom the current  format .  

cc) A "picture" is the yield of a picture.  It  is composed of a "pat tern" 
of some specific 'TYPE' (according to the syntax of the TYPE-pattern of 
that  picture),  followed by an "insertion" (ee). Pa t te rns ,  apa r t  f rom 
'choice' ,  ' f o rma t '  and "general" pat terns,  a re  composed of " f rames" ,  
possibly "suppressed",  each of which has an insertion, a "replicator" (dd), 
and a "marker"  to indicate whether  it is a "d", "z",  "i" etc. f rame.  The 
f r ames  of each pat tern  m a y  be grouped into "sign moulds",  "integral  
moulds", etc., according to the syntax of the corresponding pattern. 

dd) A "replicator" is a routine, returning an integer,  constructed f rom 
a repl icator  (10.3.4.1.2.c). For  example ,  the repl ica tor  10 gives rise to a 
routine composed f rom int: 10; moreover ,  n ( l i m - 1 )  is a "dynamic" 
replicator and gives rise to int: ( l im-1) .  Note that  the scope of a 
repl icator  restr icts  the scope of any fo rmat  containing it, and thus it m a y  
be necessary  to take a local copy of a file before associat ing a fo rma t  with 
it (see, e.g., 11.13}. A repl icator  which returns a negat ive value is t rea ted  
as if it had returned zero Ck" a l ignments  apar t ) .  

When a picture is "staticized", all of its repl icators  and other  routines 
(including those contained in its insertions) a re  called collaterally.  A 
staticized pat tern  m a y  be said to "control" a string, and there is then a 
correspondence between the f r am es  of that  pat tern,  taken in order,  and 
the charac te r s  of the string. Each  f r a m e  controls n consecutive cha rac te r s  
of the string, where n is 0 for an "r" f r ame  and, otherwise,  is the integer  
returned by the repl icator  of the f r ame  (which is a lways  1 for a "+", ..... , 
".", "e", "i" or "b" f rame) .  Each  controlled c h a r a c t e r  mus t  be one of a 
limited set appropr ia te  to that  f rame.  
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ee) An "insertion", which is the yield of an insertion (10.3.4.1.2.d), is a 
sequence of repl icated "al ignments" and strings; an insertion containing 
no al ignments  is t e rmed  a "literal". An insertion is "performed"  by 
performing its a l ignments  (ff) and on output (input) writ ing ("expecting" 
(11)) each cha rac te r  of its repl icated str ings (a s tr ing is repl icated by 
repeat ing it the numb er  of t imes re turned by its repl icator) .  

ff) An "al ignment" is the cha rac t e r  yielded by an al ignment-code 
(10.3.4.1.2.d). An a l ignment  which has been repl icated n t imes is 
per formed as follows: 

• "k" causes set char number to be called, with n as its second 
pa ramete r ;  
• "x" causes space to be called n times; 
• "y" causes  backspace to be called n times; 
• "l" causes newline to be called n times; 
• "p" causes  newpage to be called n t imes;  
• "q" on output (input) causes  the cha rac t e r  blank to be writ ten 
(expected) n t imes.  

gg) A format  m a y  consist of a sequence of pictures,  each  of which is 
selected in turn by get next picture (10.3.5.b). In addition, a set of pictures 
m a y  be grouped together  to form a repl icated "collection" (which m a y  
contain fur ther  such collections). When the last  picture in a collection has 
been selected, its first picture is selected again, and so on until the whole 
collection has been repeated  n t imes,  where n is the in teger  returned by 
its replicator.  A collection m a y  be provided with two insertions, the first to 
be per formed before the collection, the second a f te rwards .  

A fo rmat  m a y  also invoke other fo rmats  by means  of ' format"  pa t te rns  
(10.3.4.9.1). 

When a format has been exhausted, the event routine corresponding to 
on format end is called; if this re turns false, the fo rma t  is repeated;  
otherwise, if the event  routine has failed to provide a new format ,  
undefined is called. 

hh) A value V is output, using a picture P, as follows: 
If the pat tern  Q of P is a "choice" or "general '  pat tern ,  
then Y is output using P (see 10.3.4.8.1.aa,dd, 10.3.4.10.1.aa); 
otherwise, Y is output as follows: 

• P is staticized; 
If the mode of V is "output compat ible"  with Q (see the sepa ra t e  

section dealing with each type of pat tern) ,  
then 

• Y is converted into a str ing controlled (dd) by 0 (see the 
appropr ia te  section) ; 

If  the mode is not output compatible ,  or  if the conversion is 
unsuccessful, 
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then 
• the event routine corresponding to on value  error is called; 
• if this returns false, Y is output using p u t  and unde f ined  is called; 

otherwise, the string is "edited" (jj) using Q; 
• the insertion of P is performed. 

ii) A value is input to a name N, using a picture P, as follows: 
If the pattern Q of P is a "choice" or "general' pattern, 
then a value is input to N using P (see 10.3.4.8.1.bb,ee, 10.3.4.10.1.bb); 
otherwise, 

• P is staticized; 
• a string controlled by Q is "indited" (kk); 
If the mode of N is "input compatible" with Q (see the appropriate 

section), 
then 

• the string is converted to an appropriate  value suitable for N 
using Q (see the appropriate section); 
• if the conversion is successful, the value is assigned to N; 

If the mode is not input-compatible, or if the conversion is 
unsuccessful, 

then 
• the event routine corresponding to on value  error is called; 
• if this returns false, unde f ined  is called; 

• the insertion of P is performed. 

jj) A string is "edited", using a pattern P, as follows: 
In each part  of the string controlled by a sign mould, 

• if the first charac ter  of the string {which indicates the sign) is %" 
and the sign mould contains a ..... frame, then that charac te r  is 
replaced by "."; 
• the first charac te r  (i.e., the sign) is shifted to the right across all 
leading zeroes in this part  of the string and these zeroes are replaced 
by spaces (for example, using the sign mould 4z+, the string "+0003" 
becomes " . . .+3")  ; 

In each part  of the string controlled by an integral mould, 
• zeroes controlled by "z" f rames are replaced by spaces as follows: 

• between the start  of the string and the first nonzero digit; 
• between each "d", "e" or "i" f rame and the next nonzero digit; 

(for example, using the pattern zdzd2d,  the string "180168" becomes 
"18.fl68"; ) 

For each f rame F of P, 
• the insertion of F is performed; 
• if F is not suppressed, the charac ters  controlled by F are written; 

(for example, the string "+0003.5", when edited using the pattern 4z+ s. "," 
d, causes the string "._._._+3,5" to be written and the string "180168", using 
the pattern zd . . . .  ' zd"-19"2d,  gives rise to "18- .1 -1968" ) .  
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kk) A string is "indited", using a pattern P, as follows: 
For  each frame F of e, 

• the insertion of F is performed: 
For  each element of the string controlled by F, a charac te r  is obtained 

as follows: 
If F is contained in a sign mould, 
then 

• if a sign has been found, a digit is expected, with "0" as 
suggestion: 
• otherwise, either a "+" or a ..... is expected, with "+" as 
suggestion, and, in addition, if the sign mould contains a ..... 
frame, then a space preceding the first digit will be accepted as 
the sign (and replaced by "+"): 

otherwise, if F is contained in an integral mould, 
then 

If F is suppressed, 
then "0" is supplied; 
otherwise, 

Case A: F is a "d" frame: 
• a digit is expected, with "0" as suggestion: 

Case B: F is a "z" frame: 
• a digit or space is expected, with "0" as suggestion, but 
a space is only acceptable as follows: 

• between the start  of the string and the first nonzero 
digit; 
• between each "d", "e" or "i" f rame and the next 
nonzero digit; 

• such spaces are replaced by zeroes: 
otherwise, if F is an "a" frame, 
then if F is not suppressed, a charac te r  is read and supplied: 

otherwise "." is supplied: 
otherwise, if F is not suppressed, 
then if F is a "." Ce", "i", "b") frame, a "." ("1o" or "\" or "e", "1" 

or "i", f l ip  or flop) is expected, with "." ("1o", "1", f lop) as 
suggestion: 

otherwise, if F is a suppressed "." Ce", "i") frame, the charac te r  "." 
("1o", "1") is supplied. 

ll) A member  of a set of characters  S is "expected", with the 
character  C as suggestion, as follows: 
• a character  is read: 
If that character  is one of the expected characters  (i.e., a member  of S), 
then that character  is supplied: 
otherwise, the event routine corresponding to on char  err~r is called, with 

C as suggestion; if this returns true and G, as possibly replaced, is one 
of the expected characters ,  then that charac te r  is supplied: otherwise. 
undef ined  is called.} 
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10.3.4.1.2. Semant ics  

{A fo rma t  is b rough t  into being by m e a n s  of a format - tex t .  A fo rma t  is 
best  r e g a r d e d  as a tree,  with a collection at  each  node and a p ic ture  at  
each  tip. In o rde r  to avoid violation of the scope res t r ic t ions ,  each  node of 
this t ree  is, in this Report ,  packed  into a value  of mode  "PIECE'. A f o r m a t  
is composed  of a row of such pieces and the pieces conta in  pointers  to 
each  other  in the fo rm of indices select ing f rom tha t  row. An i m p l e m e n t e r  
will doubtless  s tore  the t ree  in a m o r e  eff icient  manne r .  This is possible 
because  the f ield.selector  of a f o r m a t  is hidden f rom the use r  in o rde r  tha t  
he m a y  not b reak  it open. 

Although a fo rmat - t ex t  m a y  conta in  ENCLOSED-clauses (in repl icators  
and fo rmat -pa t t e rns )  or  units  (in genera l -pa t t e rns ) ,  these  a re  not 
e labora ted  at this s tage  but  are,  ra ther ,  tu rned  into rout ines  for 
subsequent  cal l ing as  and when they a re  encoun te red  dur ing  f o r m a t t e d  
t ransput .  Indeed,  the e labora t ion  of a fo rma t - t ex t  does not resul t  in any  
act ions of any  s ignif icance to the user.} 

a) The yield of a fo rma t - t ex t  F, in an envi ron  E, is a s t ruc tu red  value  
whose only field is a mult iple  value  W, whose  mode  is "row of PIECE', 
composed  of a descr ip tor  ((1, n)) and n e l ement s  d e t e r m i n e d  as follows: 
• a counter  i is set  to 1; 
• F is " t rans formed"  {b} in E into W, using i. 

b) A format-text  or a collection-l ist-pack C is " t r ans fo rmed"  in an 
environ E into a mult iple  value  W whose  mode  is "row of PIECE', using a 
counter  i, as follows: 
• the e lement  of W selected by (i) is a s t ruc tu red  value,  whose  mode  is 
'PIECE' and whose fields, taken in order ,  a re  

• {cp} undefined; 
• {count} undefined;  
• {bp} undefined; 
• {c} a mult iple  value V, whose mode  is "row of COLLECTION',  hav ing  
a descr ip tor  ((1, m)),  where  m is the n u m b e r  of const i tuent  col lect ions 
of C, and e lements  de t e rmined  as follows: 
For  j = 1 . . . . .  m, letting C. be the j-th const i tuent  collection of C, 

I 
Case A: The d i rec t  descenden ts  of C. include a p ic ture  P: 

J 
• the const i tuent  pa t t e rn  T, if any,  and the insert ion I of P a re  
e l abora ted  col la teral ly;  
• the j-th e lement  of V is a s t ruc tu red  value,  whose  mode  is 
'PICTURE'  and whose fields, t aken  in order ,  a re  

• [p} the yield of T, if any,  {e, 10.3.4.8.2, 10.3.4.9.2, 10.3.4.10.2} 
and, otherwise,  empty; 
• (i} the yield of ! {d}; 
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Case B: The d i rec t  descenden ts  of C. include a f irst  insert ion I1, a 
J 

replicator REP, a col lect ion-l is t-pack P and a second insert ion 12: 
• i is inc reased  by 1; 
• I1, REP and 12 a re  e l abora ted  col la teral ly;  
• the j-th e l emen t  of Y is a s t ruc tu red  value  whose mode  is 
'COLLITEM' and whose fields, t aken  in order ,  a re  

• {il} the yield of I1 {d}; 
• {rep} the yield of R E P  {c}; 
• ( P l i ;  
• (i2] the yield of 12; 

• P is t r a n s f o r m e d  in E into W, using i. 

c) The yield, in an envi ron  E, of a NEST-UNSUPPRESSETY-repl icator  
R {10.3.4.1.l.g,h} is a routine whose  mode  is ' p r o c e d u r e  yielding in tegra l ' ,  
composed  of a proeedure-yie ld ing- in tegra i -NEST-rout ine- text  whose unit  is 
U, toge ther  with the envi ron  n e c e s s a r y  {7.2.2.c} for U in E, where  U is 
de te rmined  as follows: 
Case A: R contains  a meek- integral -ENCLOSED-clause  G: 

• O is a new unit akin {1.1.3.2.k} to C; 
Case B: R contains  a f ixed-point -numeral  D, but no ENCLOSED-clause:  

• U is a new unit akin to D; 
Case C: R is invisible: 

• U is a new unit akin to a f ixed.point-numeral  which has  an intr insic  
value {8.1.1.2} of 1. 

d) The yield of an insert ion I {10.3.4.1.1.d} is a mult iple  value  W 
whose mode  is ' INSERTION',  de t e rmined  as follows: 
* let U 1 . . . . .  U n be the const i tuent  UNSUPPRESSETY-repl ieators  of I, 

and let A i, i = 1 . . . . .  n, be the deno te r -coercee  or  al ignment-code 

{immediately} following U.; 

• let R 1, . . . .  R and O 1 ... D be the {collateral} yields of U 1, O 
n ' ' n . . . .  n 

and A 1 . . . . .  A n, where  the yield of an a l ignment -code  is the {charac te r  

which is the} intrinsic value {8.1.4.2.b} of its LETTER-symbol ;  
• the descr ip tor  of W is ((1, n)):  
• the e lement  of W selected by (i), i = 1 . . . . .  n, is a s t ruc tu red  value {of 
the mode  specified by s t ruc t  .(proc lnt  rep, un ion  (string, char)  sa)} whose 
fields, taken in order ,  a re  

• {rep} R . ;  
I 

• {sa} D.. 
I 

e) The yield of an integral- ,  real-,  boolean-, complex- ,  s t r ing:  or  bits- 
pattern P {10.3.4.2.1.a, 10.3.4.3.1.a . . . . .  t0.3.4.7.l.a} is a s t ruc tu red  value  W 
whose mode  is 'PATTERN',  de t e rmined  as follows: 
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• let V 1 . . . .  , Vn be the {collateral} yields of the cons t i tuen t . f rames  of P {f}; 

• the fields of W, taken in order,  a re  
• {type} 1 (2, 3, 4, 5) if P is an integral- (real-, boolean-, complex-,  
string-) -pat tern and 6 (6, 12, 20) if P is a bi ts-pat tern whose 
constituent RADIX is a radix-two (-four, -eight, -sixteen); 
• Iframes} a multiple value, whose mode is ' row of FRAME', having a 
descriptor  ((1, n)) and n elements ,  that  selected by (i) being V.. 

f) The yield of a f r ame  F {10.3.4.1.1.m} is a s t ruc tured  value W whose 
mode is 'FRAME', de termined as follows: 
• the insertion and the replicator,  if any, of F a re  e labora ted  collaterally;  
• the fields of W, taken in order,  are  

• {i} the yield of its insertion; 
• {rep} the yield of its repl ica tor  {c}, if any, and, otherwise,  the yield of 
an invisible replieator;  
• {supp} t rue if its UNSUPPRESSETY-suppression contains a letter-s- 
symbol  and, otherwise, false: 
• {marker} {the cha rac t e r  which is} the intrinsic value {8.1.4.2.b} of a 
symbol S de termined as follows: 
Case A: F is a constituent unsuppress ib le-zero-f rame of a sign-mould 

{such as 3z+} whose consti tuent s ign-marker  contains a plus-symbol: 
• S is a letter-u-symbol;  

Case B: F is a consti tuent unsuppress ib le-zero-f rame of a sign-mould 
{such as 3z-} whose consti tuent s ign -marke r  contains a minus- 
symbol: 
• S is a let ter-v-symbol;  

Other cases: 
• S is the consti tuent symbol  of the m a r k e r  of F. 

{Thus the ze ro -marker  z m a y  be passed on as the c h a r a c t e r  "u", "v" or "z" 
according to whether  it forms par t  of a sign-mould (with descendent  plus- 
symbol  or minus-symbol)  or of an integral-mould.} 

10.3.4.2. Integral  pa t terns  

10.3.4.2.1. Syntax 

a) 

b) 

c) 

d) 
e) 
f) 

NEST integral  pattern{A341c,A343c} : 
NEST sign mould{c} option, NEST integral  mould{b}. 

NEST integral  mouid{a,A343b,c,A347a} : 
NEST digit frame{A341k} sequence. 

NEST sign mould{a,A343a} : 
NEST unsuppressible zero frame{A341k} sequence option, 

NEST unsuppressible  sign frame{A341j}. 
zero marker{f,A341k} : let ter  z{94a} symbol.  
sign marker{A341j} : plus{94c} symbol  ; minus{94e} symbol.  
digit marker{A341k} : let ter  d{94a} symbol  ; zero marker{d}. 
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{Examples: 

a) "x=" 12z+d b) d 
c) "x=" 12z+ } 

{For the semant ics  of in tegral -pat terns  see 10.3.4.1.2.e.} 

{aa) The modes which are  output (input) compat ib le  with an ' in tegra l '  • 
pat tern  are  those specified by L i n t  (by ra iL  int). 

bb) A value Y is conver ted to a str ing S using an "integral '  pa t te rn  P 
as follows: 
• if P contains a sign mould, then the first cha rac t e r  of S is the sign of V; 
otherwise, if V < 0, the conversion is unsuccessful;  
• the r emainder  of S contains a decimal  representa t ion  of V de termined  
as follows: 

• the e lements  of S controlled by "d" and "z" f r ames  are  the 
appropr ia te  digits (thus the pat tern  specifies the n u m b e r  of digits to be 
used); 
• if Y cannot be represented  by such a string, the conversion is 
unsuccessful.  

(For example ,  the value 99 could be conver ted  to a str ing using the 
pat tern  zzd, but 9999 and -99 could not.) 

cc) A string S is converted to an integer  suitable for a name  N, using 
an "integral'  pat tern,  as follows: 
• the integer I for which S contains a decimal  representa t ion  (8.1.1.2) is 
considered; 
• if I is g rea te r  than the larges t  value to which N can refer,  the 
conversion is unsuccessful; otherwise,  I is the required integer  (e.g., if 
the mode of N is specified by rafshort int ,  and the value of short  m a x  int is 
65535, then no string containing a decimal  representa t ion  of a value 
g rea te r  than 65535 m a y  be converted).} 

10.3.4.3. Real pa t terns  

10.3.4.3.1. Syntax 

a) NEST real  pattern{A341c,A345a} : NEST sign mould{A342c} option, 
NEST var iab le  point mould{b} 
or a l ternat ively  NEST floating point mould{c}. 

b) NEST var iable  point mould{a,c} : NEST integral  mould{A342b}, 
NEST point frame{A341j}, NEST integral  mould{A342b} option ; 

NEST point frame{A341j}, NEST integral  mould{A342b}. 
c) NEST floating point mould{a}  : 

NEST var iable  point mould{b} 
or a l ternat ively  NEST integral  mould{A342b}, 

NEST exponent frame{A341j}, NEST integral  pattern{A342a}. 
d) point  marker{A341j}  : point{94b} symbol .  
e) exponent marker{A341j} : let ter  e{94a} symbol .  
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{Examples: 

a) +zd . l ld  • +.12de+2d b) z d . l l d  • .12d 
c) .12de+2d } 

{For the semant ics  of rea l -pa t te rns  see 10.3.4.1.2.e.} 

{aa) The modes which are  output (input) compat ib le  with a ' r ea l '  
pat tern  are  those specified by L real and L i n t  (by r e f L  real). 

bb) A value V is converted to a str ing S using a ' r ea l '  pa t te rn  P as 
follows: 
• if P contains a sign mould, then the first cha rac t e r  of S is the sign of V; 
otherwise, if Y < 0, the conversion is unsuccessful; 
• the r emainder  of S contains a decimal  representa t ion  of V de termined  
as follows: 

• if necessary,  V is widened to a real  number;  
• the e lement  of S controlled by the "." Ce") f rame,  if any, of P is "." 
("lo")" 
If P contains an "e" f rame,  
then 

• let W be the sequence of f r am es  preceding,  and IP be the 
' in tegral '  pa t tern  following, that  "e" f rame:  
• an exponent E is calculated by s tandardizing V to the larges t  
value convertible using W (see below): 
• the par t  of S controlled by IP is obtained by convert ing E using 
IP (see 10.3.4.2.1.bb): 

otherwise, 
• let W be the whole of P: 

• the e lements  of S controlled by the "d" and "z" f r ames  of W are  the 
appropr ia te  digits (thus the pat tern  specifies the n u m b e r  of digits to be 
used, and the number  of digits to be placed a f te r  the decimal  point, if 
any); 
• if V cannot be represented  by such a string, the conversion is 
unsuccessful. 

cc) A str ing S is conver ted to a real  num ber  suitable for a n a m e  N, 
using a "real" pat tern,  as follows: 
• the real number  R for which S contains a decimal  representa t ion  is 
considered: 
• if R is g r ea t e r  than the larges t  value to which N can refer,  the 
conversion is unsuccessful: otherwise,  R is the required real  number.} 

10.3.4.4. Boolean pat terns  

10.3.4.4.1. Syntax 

a) NEST boolean pattern{A341c} : 
NEST unsuppressible boolean frame{A341j}. 

b) boolean marker{A341j,A348b} : let ter  b{94a} symbol .  
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{Example: 

a) 14x b } 

{For the semant ics  of boolean-pat terns see 10.3.4.1.2.e.} 

{aa) The mode which is output (input) compat ib le  with a "boolean' 
pat tern  is that  specified by bool (refbool) .  

bb) A value Y is conver ted to a s tr ing using a 'boolean" pa t te rn  as 
follows: 
• if Y is true (false), then the str ing is that  yielded by f l ip (flop). 

co) A string S is conver ted to a boolean value, using a "boolean' 
pat tern,  as follows: 
• if S is the s ame  as the str ing yielded by f l ip (flop), then the required 
value is true (false).} 

10.3.4.5. Complex pa t te rns  

10.3.4.5.1. Syntax 

a) 

b) 

NEST complex pattern{A341c} : NEST real  pattern{A343a}, 
NEST complex frame{A341j}, NEST real  pattern{A343a}. 

complex marker{A341j} : letter i{94a} symbol. 

{Example: 
f 

a) +.12de+2d 3q"+jx"3"."  si  +.lOde+2d } 

{For the semant ics  of complex-pat terns  see 10.3.4.1.2.e.} 

{aa) The modes which are  output (input) compat ib le  with a ' complex '  
pat tern  are  those specified by L compl, L real and L i n t  (by ref L compl). 

bb) A value V is converted to a str ing S us ing  a "eomplex'  pa t te rn  P 
as follows: I 
• if necessary,  V is widened to a complex number ;  
• the e lement  of S controlled by the "i" f r a m e  of P is ".1_": 
• the par t  of S controlled by the first  (seeond) "real" pa t te rn  of P is that  
obtained by convert ing the first  (second) field of V to a s tr ing using the 
first (second) ' r ea l '  pa t tern  of P (10.3.4.3.!1.bb); / 
• if ei ther conversion is unsuccessful,  the conversion of V is unsuccessful.  

cc) A str ing is converted to a complex value C suitable for a n a m e  N, 
using a ' complex '  pa t tern  P, as follows: 
• the par t  of the str ing controlled by the first  (second) 'real" pa t tern  of P 
is converted to a suitable real n u m b e r  ii0.3.,~.3./1.ec)~,)which then forms  the 
first (second) field of C; - i - .  
• if ei ther conversion is unsuccessful,  the conversion to C is unsuccessful.} 
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10.3.4.6. String pat terns  

10.3.4.6.1. Syntax 

a) NEST str ing pattern{A341c} : 
NEST cha rac t e r  frame{A341k} sequence.  

b) cha rac t e r  marker{A341k} : let ter  a{94a} symbol .  

{Example: 

a) p "table of"x lOa } 

{For the semant ics  of s t r ing-pat terns  see 10.3.4.1.2.e.} 

{aa) The modes which are  output (input) compat ib le  with a "string" 
pat tern  are  those specified by char and [ ] char (by ref char, raf [ ] char  
a n d  ref string). 

bb) A value V is converted to a s tr ing using a "string' pa t te rn  P as 
follows: 
• if necessary,  Y is rowed to a string; 
• if the length of the str ing Y is equal to the length of the str ing controlled 
by P, then V is supplied; otherwise, the conversion is unsuccessful.  

cc) A str ing S is conver ted to a cha rac t e r  or a str ing suitable for a 
name  N, using a ' s t r ing '  pat tern,  as follows: 
Case A: The mode of N is specified by ref char: 

• if S does not consist of one charac te r ,  the conversion is 
unsuccessful; otherwise, that  c h a r a c t e r  is supplied; 

Case B: The mode of N is specified by rof [ ] char: 
• if the length of S is not equal to the n u m b e r  of cha rac t e r s  re fe r red  
to by N, the conversion is unsuccessful;  otherwise, S is supplied; 

Case C: The mode of N is specified by rat string: 
• S is supplied.} 

10.3.4.7. Bits pa t terns  

10.3.4.7.1. Syntax 

a) 

b) 

c) 

NEST bits pattern{A341c} : 
NEST RADIX frame{b}, NEST integral  mouid{A342b}. 

NEST RADIX frame{a} : NEST insertion{A341d}, RADIX{82d,e,f,g}, 
unsuppressible suppression{A3411}, radix marker{c}. 

radix marker{b} : let ter  r{94a} symbol.  

{Examples: 

a) 2r6d26sd b) 2r } 

{For the semant ics  of bi ts-pat terns  see 10.3.4.1.2.e.} 

{aa) The modes which are  output (input) compat ib le  
pat tern  are  those specified by L bits (refL bits). 

with a ' b i t s '  
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bb) A value V is conver ted to a str ing using a 'bi ts '  pa t te rn  P as 
follows: 
• the integer  I corresponding to V is determined,  using the opera tor  abs  
(10.2.3.8.i) ; 
If  the "r" f r ame  of P was yielded by a radix-two- (-four-, -eight-, -sixteen-) 

- f rame,  
then ! is converted to a string, controlled by the integral  mould of P, 

containing a binary (quaternary,  octal, hexadecimal)  representa t ion of 
I (cf. 10.3.4.2.1.bb): 
• if I cannot be represented  by such a string, the conversion is 
unsuccessful. 

cc) A string S is conver ted to a bits value suitable for a name  N, 
using a 'bi ts '  pa t tern  P, as follows: 
• if the "r" f r ame  of P was yielded by a radix-two- (-four-, -eight-, 
-sixteen-) - f rame,  then the integer  I for which S contains a b inary  
(quaternary,  octal, hexadecimal)  representa t ion is determined;  
• the bits value B corresponding to I is de termined,  using the opera tor  
bin (10.2.3.8.j) ; 
• if  the width of B is g rea te r  than that  of the value to which N refers,  the 
conversion is unsuccessful.} 

10.3.4.8. Choice pa t te rns  

10.3.4.8.1. Syntax 

a) NEST integral  choice pattern{A341c} : NEST insertion{A341d}, 
let ter  c{94a} symbol ,  NEST praglit{c} list brief  pack, 
pragment{92a} sequence option. 

b) NEST boolean choice pattern{A341c} : 
NEST insertion{A341d}, boolean marker{A344b}, 

brief begin{94f} token, NEST praglit{c}, and also{94f} token, 
NEST praglit{c}, brief  end{94f} token, 
pragment{92a} sequence option. 

c) NEST praglit{a,b} : pragment{92a} sequence option, 
NEST literal{A341i}. 

{Examples: 

a) 120k c ("mon", "tues", "wednes",  "thurs", "fri", "satur", "sun") 
b) b ("", "error") 
c) "mon"  } 

{aa) A value Y is output using a picture P whose pat tern  Q was yielded 
by an integral-choice-pat tern C as follows: 
• the insertion of O is staticized (10.3.4.1.l.dd) and per fo rmed  
(10.3.4.1.l.ee) ; 
If the mode of V is specified by int, if Y > 0, and if the n u mb er  of 

constituent l i terals in the pragli t- l is t-pack of C is at  least  V, 
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then 
• the literal yielded by the V-th literal is staticized and performed: 

otherwise, 
• the event routine corresponding to on value error is called: 
• if this returns false, V is output using put  and undef ined  is called: 

• the insertion of P is staticized and performed. 

bb) A value is input to a name N using a picture P whose pattern Q 
was yielded by an integral-choice-pattern C as follows: 
• the insertion of Q is staticized and performed: 
• each of the literals yielded by the constituent literals of the praglit-list- 
pack of C is staticized and "searched for" (cc) in turn: 
If the mode of N is specified by te l  int and the i-th literal is the first one 

present, 
then i is assigned to N: 
otherwise, 

• the event routine corresponding to on value error is called: 
• if this returns false, undef ined  is called: 

• the insertion of P is staticized and performed. 

cc) A literal is "searched for" by reading charac ters  and matching 
them against successive characters  of the literal. If the end of the current  
line or the logical end of the file is reached, or if a charac te r  fails to 
match, the search is unsuccessful and the current  position is returned to 
where it started from. 

dd) A value V is output using a picture P whose pattern Q was yielded 
by a boolean-choice-pattern C as follows: 
• the insertion of Q is staticized and performed: 
If the mode of V is specified by bool. 
then 

• if V is true (false), the literal yielded by the first (second) constituent 
literal of C is staticized and performed: 

otherwise, 
• the event routine corresponding to on value error is called: 
• if this returns false, V is output using pu t  and unde f ined  is called: 

• the insertion of P is staticized and performed. 

ee) A value is input to a name N using a picture P whose pattern Q 
was yielded by a boolean-choice-pattern C as follows: 
• the insertion of O is staticized and performed: 
• each of the literals yielded by the constituent literals of C is staticized 
and searched for in turn: 
If the mode of hi is specified by ret bool, and the first (second) insertion is 

present, 
then true (false) is assigned to N: 
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otherwise, 
• the event routine corresponding to on value error is called: 
• if this returns false, undef ined  is called: 

• the insertion of P is staticized and performed.} 
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10.3.4.8.2. Semantics 

The yield of a choice-pattern P is a structured value W whose mode is 
"CPATTERN', determined as follows: 
• let n be the number  of constituent NEST-literals of the praglit-list-pack 
of P; 
• let S i, i = 1 . . . . .  n, be a NEST-insertion akin {1.1.3.2.k} to the i-th of those 

constituent NEST-literals; 
• the insertion I of P and all of S 1, S 2 . . . . .  S n are elaborated 

collaterally; 
• the fields of W, taken in order, are 

• {i} the yield of I; 
• {type} 1 ~2) if P is a boolean- (integral-) -choice-pattern; 
• {c} a multiple value whose mode is "row of INSERTION', having a 
descriptor ((1, n)) and n elements, that selected by (i), i=  1 . . . . .  n, 
being the yield of S.. 

I 

10.3.4.9. Format  patterns 

10.3.4.9.1. Syntax 

a) NEST format  pattern{A341c} : 
NEST insertion{A341d}, letter f{94a} symbol, 

meek FORMAT NEST ENCLOSED clause{31a,34a}, 
pragment{92a} sequence option. 

{Example: 

a) f (uir[ (int): $ 5 d $ ,  (real): $ d.3d $) } 

{A format-pattern may  be used to provide formats  dynamical ly  for use 
in transput. When a ' format '  pattern is encountered during a call of 
get  nex t  picture, it is staticized and its insertion is performed. The first 
picture of the format  returned by the routine of the pattern is supplied as 
the next picture, and subsequent pictures are taken from that format  until 
it has been exhausted.} 

10.3.4.9.2. Semantics 

The yield, in an environ E, of a NEST-format-pattern P is a structured 
value whose mode is "FPATTERN' and whose fields, taken in order, are 

• {i} the yield of its insertion; 
• {p[} a routine whose mode is "procedure yielding FORMAT', 
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composed of a procedure-yielding-FORMAT-NEST-routine.text whose 
unit U is a new unit akin {1.1.3.2.k} to the meek-FORMAT-ENCLOSED- 
clause of P, together with the environ necessary for U in E. 

10.3.4.10. General patterns 

10.3.4.10.1. Syntax 

a) NEST general pattern{A341c} : NEST insertion{A341d}, 
letter g{94a} symbol, NEST width specification{b} option. 

b) NEST width specification{a} : brief begin{94f} token, 
meek integral NEST unit{32d}, 
NEST after specification{e} option, brief end{94f} token, 
pragment{92a} sequence option. 

c) NEST after specification{b} : 
and also{94f} token, meek integral NEST unit{32d}, 

NEST exponent specification{d} option. 
d) NEST exponent specification{c} .. 

and also{94f} token, meek integral NEST unit{32d}. 

{Examples: 

a) g • g (-18, 12, -3) b) -18, 12, -3 
c) , 1 2 , - 3  d) , - 3 }  

{aa) A value Y is output using a picture P whose pattern Q was yielded 
by a general-pattern G as follows: 
• P is staticized; 
• the insertion of Q is performed; 
If Q is not parametr ized (i.e., G contains no width-specification), 
then Y is output using put; 
otherwise, if the mode of V is specified by Lin t  or L real, 
then 

• if Q contains one (two, three) parameter (s ) ,  Y is converted to a 
string using whole (fixed, float); 
• the string is written using put; 

otherwise, 
• the event routine corresponding to on value error is called; 
• if this returns false, V is output using put, and undefined is called; 

• the insertion of P is performed. 

bb) A value is input to a name N using a picture P whose pattern is a 
'general '  pattern as follows: 
• P is staticized; 
• (any parameters  are ignored and) the value is input to N using get.} 

10.3.4.10.2. Semantics 

The yield, in an environ E, of a NEST-general-pattern P is a structured 
value whose mode is 'GPATTERN' and whose fields, taken in order, are 

• {i} the yield of the insertion of P; 
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• {spec} a multiple value W whose mode is ' row of procedure yielding 
integral ' ,  having a descriptor ((1, n)), where n is the number  of 
constituent meek-integral-units of the width-specification-option of P, 
and n elements determined as follows: 
For i = 1 . . . . .  n, 

• the i-th element of W is a routine, whose mode is 'procedure " 
yielding integral ' ,  composed of a procedure.yieiding.integral-NEST- 
routine-text whose unit U is a new unit akin {1.1.3.2.k} to the i-th of 
those meek-integral-units, together with the environ necessary for U 
in E. 

10.3.5. 
a) 

b) 

Format ted  transput 
m o d e  format  = struct  (f lex [1 : O} piece  F ) ;  

m o d e  ~ p iece = struct  (int cp ¢ pointer  to current col lect ion ¢, 
count ¢ number of  times piece is to be repeated ¢, 
bp ¢ back pointer ¢, 
f lex [ 1 : 0 ] col lect ion c) ; 

m o d e  .~ col lect ion = union (picture,  col l i tem) ; 
m o d e  .~ col l i tem = struct  ( insert ion i l ,  

proc int rep ¢ repl icator ¢, 
int p ¢ pointer  to another piece ¢, insertion i2) ; 

m o d e  .~ insert ion = flex [1 : O] struct  (proc int rep ¢ repl icator ¢, 
union (string, char)  sa) ; 

m o d e  .~ p ic ture  = 
struct  (union (pattern,  cpattern,  fpattern,  gpat tern ,  vo id)p ,  insert ion i) ; 

m o d e  .~ pat tern  = struct  (int type ¢ of  pat tern ¢, 
flex [1 : O} frame frames);  

m o d e  .~ f rame = struct  ( insert ion i, 
proc int rep ¢ repl icator ¢, 
b o o l  supp ¢ true i f  suppressed ¢, 
c h a r  marker) ; 

m o d e  .~ cpat tern = struct  ( insert ion i, 
int type ¢ boolean or integral ¢, 
f lex [ 1 : 0 ] insert ion c) ; 

m o d e  .~ fpattern = struct  ( insert ion i, p roc  fo rmat  p f )  ; 
m o d e  ~ gpat tern  = struct  ( insert ion i, f lex [1 : O] p roc  int spec) ; 

proc .~ get next picture = (ref file f, bool  read,  ref  p ic ture  picture) void : 
begin 
bool picture found := false, format  ended:= false; 
whi le  - picture found 
do i f fo rp  o f f =  0 then 

if format  ended 
then undefined 
elif - (format mended of f)  (f) 
then ref int (forp of f )  := 1; 

c p o f ( F o f f o r m a t o f f )  [1] := 1; 
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count  of  (F of  f o rma t  of  f) [ 1 ] : = 1 
else  f o rmat  ended  : = true 
tl 

else 
ref int forp = forp of f ;  
ref flex [ ] p iece  aleph = F of  f o rma t  o f f ;  
case  (c of  aleph [forp ]) [ cp of  a leph [forp ] ] in 

(collitem cl): 
([1 : upb (il of  c/)] sinsert  si; 
bp of  aleph [p of  cl] := forp; forp := skip; 
(staticize insert ion (il of  cl, si), 

count  of  aleph [p of  cl ] : = rep of  cl); 
(aleph : ~ : F o r  f o rma t  of  f l  undefined); 
(read l ge t  insert ion (f, si) I pu t  inser t ion (f, si)); 
cp of  aleph [p of  cl ] := O; 
forp : = p of  cl) , 

(picture pict): (picture found  : = true; pic ture  : = pict) 
esac; 
while 

(forp ~ O Icp of  aleph [forp ] = upb c of  aleph [forp ] l faIse) 
do it (count of  a leph [forp ] -: = 1) <_ 0 
then 

if (forp := bp of  aleph [forp ]) ~ 0 
then 

insertion extra = 
case (c of aleph [forp ]) [ cp of aleph [forp ] ] in 
(coll item cl): 

(bpo fa leph  [ p o f c l ]  : =  O; i 2 o f c l ) ,  
(picture pict): 

case p of p ic t  in 
(fpattern fpatt): 

tint k := forp; 
while bp of  aleph [k]  ~ forp do.k+:= 1 od; 
aleph := aleph [ : k - 1 ]; 
i o fp ic t )  

esac 
esac; 

int m = upb i of  picture,  n = upb extra; 
[i  : m + n] struct (proc int rep, union (string, char) sa) c; 
c [1 : m]  := io fp ic ture;  c [m+ 1 : m + n ]  := extra; 
i of  picture : = c 

fi 
e lse  cp of aleph [forp ] : = 0 
fl od; 
(forp ~ O I cp of  aleph [forp] +: = 1) 

fl od 
end; 

e) 

d) 

e) 

f) 

g) 
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mode .~ sinsert = struct (int rep, union (string, char) sa) ; 

proc 9 stat icize insert ion = (insertion ins, ref l J sinsert sins)  void : 
¢ calls collaterally all the replicators in ' ins '¢  

i f  upb ins = 1 
then 

rep of s ins  [1] := rep of  ins [ I J; 
sa of  s ins  [1 ] := sa of  ins l l  J 

eIif upb ins > 1 
then (staticize insert ion (ins [1 |, s ins  |I  ]), 

s tat icize insert ion (ins [2 : J, s ins  [2 : J)) 
fi; 

mode  .~ s h a m e  = s truct  (flex [ 1 : 0 ] sinsert  si, int rep, bool supp, 
char marker)  ; 

proc ~ stat icize f rames  = 
([ ] frame f rames ,  ref  [ ] s h a m e  s f rames)  void : 

¢ calls collaterally all the replicators in ' f r a m e s ' ¢  
if upb f rames  = 1 
then 

[1 : upb (i of  f rames  [1 ])] s inser t  si; 
(staticize insert ion (i of  f rames  [1 ], si), 

rep of  s f rames  [1] := rep of  f rames  [1]); 
si of  s f rames  [1 ] := si; 
supp of s f rames  [1 ] := supp of  f rames  [1 ],¢ 
marker  of  s f rames  [1 ] := m a r k e r  of  f rames  [i ] 

eIif upb f rames  > 1 
then (staticize f rames  ( frames [ 1 ], s f rames  [1 ]), 

s tat icize f rames  ( f rames  [2 : ], s f rames  [2 : ])) 
fl; 

proc 9 p u t  insert ion = (ref file f, [ ] sinsert  si) void : 
begin set  wri te  mood  (f); 

for k to upb si 
do 

case sa of  si  [k] in 
(char a): a l ignmen t  (f, rep of  si  [k] ,  a, false), 
(string s): 

to rep of  si  [k]  
do 

for i to upb s 
do check  pos  (f); pu t  char  (f, s [ i ]) od 

od 
esac 

od 
end; 
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proc .~ ge t  insert ion = (ref file f, [ ] sinsert si) void : 
beg in  set read mood (f); 

for  k to upb si 
do 

case sa o f  s i  [k] in 
(char a): a l i gnmen t  (f, rep of  si [k],  a, true), 
(string s): 

(char c; 
to rep of  si [k]  
do 

for i to upb s 
do check pos  (f); ge t  char (f, c); 

(c~s[i] 
I (" (char error m e n d e d  o f f ) ( f ,  c:= s [i]) 

l undefined); 
set  read mood (f)) 

esac 
od 

end; 

od 
otV 

proc .~ a l i g n m e n t  = (ref f i le f, in t  r, char  a, boo l  read) void : 
if a = " x "  then to r do space (f) od 
elif  a = "y" then to r do backspace (f) od  
elif a = "l" then to r do newl ine  (f) od  
elif a = "p" then to r do ne wpage  (f) od 
cilia = "k" then set char n u m b e r  (f, r) 
elif a = "q" 
then to r 

do 
if read 
then char c; check  pos (f); ge t  char (f, c); 

(c ~ b lank 
I (" (char error m e n d e d  o f f )  (f, c : = blank) 

I undefined); set  read mood (f)) 
e l se  check pos (f); pu t  char (f, blank) 
fi 

od  
fl; 

proc .~ do fpat tern  = (rat f i le f, fpattern fpat tern,  boo l  read) void : 
begin format pf ;  

[1 : upb (i o f  fpat tern)  ] sinserl si; 
(staticize insertion (i of  fpat tern,  si), 

p f  : = p f  of  fpattern); 
(read l ge t  insertion (f, si) I pu t  insert ion (f, si)); 

k) 
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ref int forp = forp of  f; 
ref flex [ ] piece aleph = F of  f o rma t  o f f ;  
int m = upb aleph, n = upb (F of  pf) ;  
[1 : m + n ] plece c; c [ 1 :  m] :=aleph; 
c [ m +  l : m + n ]  : = F o f p f ;  
aleph := c; bp of  aleph [m + 1 ] := forp; 
forp : = m + l ; cp o f  aleph [forp ] :=0; 
count  o f  aleph [forp ] := 1; 
for i from m + l to m + n 
d o  

for j to upb c of  aleph [i] 
d o  

case (c of  a l e p h  [ i ]) [ j  ] in 
(col l i tem cl): 

(c of  a leph [ i ] )  [ j ]  := 
collitom ( i l  of cl, rep of  cl, p of cl  + m ,  i2 of cl) 

esac 
od 

od 
end; 

proc .~ associate f o rmat  = (rat file f, formal  format)  void : 
begin 

format  o f f  := 
c a n e w l y  created n a m e  which  is m a d e  to refer to the  y ie ld  
o f  an  ac tual - format -dec larer  and  whose  scope is equal  to 
the scope of  the value yielded by  ' format '  c 

:= format;  
forp o f f  := heap int  : = 1; 
c p o f ( F o f f o r m a t o f f )  [1] := 1; 
count  of  (F of  format  of  f) [ 1 ] : = 1; 
b p o f  (F of  format  o f f )  [1 ] := 0 

end; 

10.3.5.1. F o r m a t t e d  output  

a) proc p u t t  = (rot f i le f, [ ] un ion (outtype, format) x) void : 
i f  opened o f f  then 
for  k to upb x 
do case set  write mood (f); set char mood (f); x [k]  in 

(format format): associate f o rmat  (f, format ) ,  
( o u , y p e  at): 
begin in t j  : = O; 

plc ture p ic ture,  [ ] s imp lou t  y = s t ra ightout  at; 
whi le (j +: = I )  <_ upb y 
do boo l  i ncomp : = false; 

get  nex t  picture (f, false, picture); 



196 van Wijngaarden,  et al. 

s e t  wr i t e  m o o d  (f); 
[1 : u p b  (i o f  p i c tu re )  ] s i n s e r t  s inser t ;  
case p o f  p i c t u r e  in 

(pattern pa t t e rn ) :  
begin int  rep, s f p  : = 1; 

[1 : u p b  ( f r a m e s  o f  p a t t e r n ) ]  s h a m e  s f r a m e s ;  
( s ta t i c i ze  f r a m e s  ( f r a m e s  o f  p a t t e r n ,  s f r a m e s ) ,  

s t a t i c i z e  i n s e r t i o n  (i o f  p i c ture ,  s inser t ) ) ;  
string s; 

op ? = (string s) bool : 
¢ t rue  i f  the  n e x t  m a r k e r  is o n e  o f  t he  e l e m e n t s  o f  

's' a n d  f a l s e  o t h e r w i s e  ¢ 
i f  s f p  > u p b  s f r a m e s  
then false 
else s h a m e  s f  = s f r a m e s  [ s f p  ]; 

rep : = rep o f  sf;  
if  c h a r  in  s t r i n g  ( m a r k e r  o f  s f ,  Ioc int, s) 
then sfp +: = 1; true 
else false 
fl 

fl; 
op ? = (char c) bool : ? string (c); 
proc  in t  p a t t e r n  = (ref  boo l  s i g n  mou ld )  int  : 

t int I : = O; 
whi le  ? " z u v "  do  (rep >_ 01 l +: = rep) od; 
s i g n  m o u l d  := ? "+-";  
while  ? "zd"  do  (rep >_0] l +:= rep) od; l); 

~ p roc  edi t  L i n t  = ( L I n t  i) void  : 
(bool  s i g n  mou ld ;  lnt  l : =  i n t  p a t t e r n  ( s ign  mould) ;  
string t = s u b w h o l e  (abs i, l); 
if char  in  s t r i n g  (errorchar ,  Ioc  int, t) v l = 0 

v . s i g n  m o u l d  ^ i < L 0 
then  i n c o m p  : = true 
else t plusto s; 

(l - upb t) x "O" plusto s; 
( s ign  m o u l d  I (i < i ,  p I ..... I "+") p l u s t o  s) 

n)#; 

Tproc  ed i t  L real  = (L  real r) void : 
( i n tb  := O, a := O, e := O, e x p  := O, L r e a l y  := abs  r, 
boo l  s ign1 ,  s t r ing  p o i n t  : = ""; 
b : = i n t p a t t e r n  (s ign1);  
(.9 "."1 a : = i n t  p a t t e r n  (Ioc bool); p o i n t  : = ".'9; 
if  .9 "e" 
then  L s t a n d a r d i z e  (y, b, a, exp);  
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edi t  i n t  (exp); 
"10' plusto s 

fl; 
s tr ing  t = sub  f i x e d  (y, b + a + (a ~ 01 1 1 0), a); I 
i f  c h a r  in  s t r i n g  (errorchar ,  Ioc  int, t) v a + b = 0 

v . s i g n l  ^ r < L O . 
then incomp : = true 
else t [ : b ] + point  + t [ b + 2: ] plusto s; 

(b + a + (a ~ 0 ] 11 0 ) - upb t) x "0" plusto s; 
(sign11 (r < L 01 ..... 1 %  ") plusto s) 

fl)~; 

proc  ed i t  L c o m p l  = (L  c o m p l  z)  void" 
(while - ? "i" do  s fp  +: = 1 od; ed i t  L real  (ira z); 
".L " p lus to  s; s fp  := 1; ed i t  L real  (ra z))~; 

~proc  edi t  L b i t s  = (L  bi ts  lb, in t  rad ix )  void" 
( L i n t  n : = abs  lb; ? "r"; in t  I : = i n t  p a t t e r n  (Ioc bool); 
whi le  d ig  c h a r  ( S  (n rood  K radix) )  p lu s to  s; 

n +: = K r a d i x ;  n ~ L 0 
dO skip od; 
If upb s <_ l 
then (l - upb s) x "0" plusto s 
else i n c o m p  : = true 
fi) ; / 

proc  c h a r c o u n t  = int  : (int I : = O; " 
whi le  ? " a"  do  (rep >_ 01 l +: = rep) od; l); 

case  t y p e  o f  p a t t e r n  in 
¢ i n t e g r a l  ¢ 

(Y L/] I 
(L  int  i): ed i t  L i n t  (i) 

] i n c o m p  : = true), 
¢ real  ¢ 

(Y L/] I 
(L  real r): e d i t  L real  (r) ~ , 
(L  int  i): ed i t  L real  (i) 

I i n c o m p  : = true),  
¢ boo lean  ¢ 

(y [.J] I 
(bool b): s := (b l f l ip] f lop)  
I i n c o m p  := true),  

¢ c o m p l e x  ¢ 
(Y [J] I 

(L c o m p l  z): ed i t  L e o m p l  (z) ~ , 
(L  real  r): ed i t  L c o m p l  (r) ~ , 
( L i n t  i): ed i t  L c o m p l  (i)~ 

] i n e o m p  := true), 
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¢ s tr ing ¢ 
(y LI'] I 
(char c): (charcount = 1 ] s := c] incomp := true), 
([ ] chart): 

(charcount = upb t - Iwb t + 1 
] s : = t [ @ l ]  
I incomp := true) 

I incomp := true) 
out 

¢ bits ¢ 
(Y [J] I 

(L bits lb): edit  L bits (lb, type of pat tern  - 4) 
] incomp : = true) 

esac; 
i f -  incomp 
then edit s tr ing (f, s, s frames) 
fl 

e n d ,  " 

(cpattern choice): 
begin 

[ 1 : upb (i of  choice) [ sinsert si; 
staticize insertion (i of choice, si); 
pu t  insertion (f, si); 
in t  l = 

case type of Choice in 
¢ boolean ¢ 

(y[Jl  l 
(bool  b): (b I 1 ] 2) 
] incomp := true; sk ip) ,  

¢ integral ¢ 
(y [J ] l 
Ont i): i 
I incomp := true; skip) 

esac; 
i f -  incomp 
then 

i f  I > upb (c o1 choice) v l <_ 0 
then i ncomp : = true 
else 

[1 : upb ((c of choice) I l l )  ] s insert ci; 
staticize insertion ((c of  choice) Ill ,  ci); 
pu t  insertion (f, ci) 

fl 
li; 
staticize insertion (i of picture, sinsert) 

end,  
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(fpaRern fpattern): 
begin 

do fpat tern (f, fpattern,  false); 
for i to upb sinsert  do sinsert  [ i ]  := (0, "") od; 
j - : =  1 

end, 

(gpattern gpattern): 
begin 

[ 1 : upb (i o fgpat tern)  ] s insett  si; 
[ ] proc int spec = spec o fgpat tern;  int n = upb spec; 
[1 : n] ints; 
(staticize insertion (i of gpattern,  si), 

staticize insertion (i of picture, sinsert), 
s := (nl spec [1 J, (spec [1 ], spec [21), 

(spec [1 ], spec [2] ,  spec [3]) I 0)); 
pu t  insertion (f, si); 
if n = O then pu t  (f, y [j ]) 
else 

number y j  = 
(Y [J] I ~(L Int]i): i~, ~(L m l / r ) :  r~ 
I incomp := true; skip); 

i f -  incomp 
then case n in 

pu t  (f, whole (yj, s [1 ])), 
pu t  (f, f ixed (yj, s [1 ], s [2])), 
pu t  (f, f loat  (yj, s [1], s [ 2 ], s [3])) 
esac 

fi 
fi 

end,  

(voW: 
(j -: = 1; staticize insertion (i of picture, sinsert)) 

od 
end 

esac od 

•sac; 
i f  incomp 
then set write mood (f); 

(- (value error mended  of f) (f) I pu t  (f, y [j]); 
undefined) 

fi; 
put  insertion (f, sinsert) 

else undef ined 
fl; 
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proc 9 edit  s t r i ng  = (ref file f, string s, [ ] shame sf) void : 
begin bool supp, zs : = true, s ignpu t  : = false, again,  i n t j  : = O, s ign;  

p roc  copy = (char c) void : 
(-  supp [ check pos (f); pu t  char  (f, c)); 

for  k to upb s f  
do  s h a m e  s f k  = s f  [ k ]; s u p p  : =  s u p p  of  s fk;  

p u t  inser t ion  (f, si  o f  sfk); 
to rep of  s f k  
do a g a i n  : = true; 

while a g a i n  
d o  j + :  = 1; a g a i n  := false; 

char  s j  = s LJ], m a r k e r  = m a r k e r  o f  s fk;  
if m a r k e r  = "d" 
then copy (s j) ;  zs : = true 
el i f  m a r k e r =  " z "  then 

(sj = "0"1 copy  ((zs I ".-"1 sj)) 
]: s j  = "+"[ a g a i n  : = true 
] zs  : =  false; copy  (s j)) 

elif m a r k e r  = "u" v m a r k e r  = "v"  then  
(sj = " + " l s ign  : =  1; a g a i n  : =  true 
l: s j= ' . . . .  [ s i g n  : =  2; a g a i n  : =  true 
]: s j= "O" l copy  ((zs l "._" l sj)) 
t (" s i g n p u t l  

copy  ((s ign ] ( m a r k e r  = "u" l " + " l "._'9, "-'9); 
s i g n p u t  : = true); 
copy (s j ) ;  zs : = false) 

eli f  ma rke r  = " + "  then 
(s j  = "+" v s j  = '  . . . .  I copy  (s j)  
] (" s ignput]  copy  ((sign] "+", . . . .  9)); 

j -: = 1) 
elif m a r k e r =  ' . . . .  then  

(sj = '%"1 copy  ("._'9 
I: s j= ' . . . .  I copy ( s j )  
I (" s i g n p u t l  copy  ((sign I ".-", . . . .  9)); 

j - : =  1) 
el i f  m a r k e r  = "." then 

copy  (".") 
elif m a r k e r  = "e" v m a r k e r  = "i" 

v m a r k e r  = "a" v m a r k e r  = "b" 
then copy  (s j); zs  : = true; s i g n p u t  : = f a l s e  
elif m a r k e r  = "r" 
then j - :  = 1 
fl 

od 
od 

od 
end;  
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10 .3 .5 .2 .  F o r m a t t e d  i n p u t  

a )  proc get f  = (ref file f, [ ] union (intype, format) x) void : 
if o p e n e d  o f f  then 
f o r k  to upb x 
do case  set  read m o o d  (f); se t  char  m o o d  (f); x [ k ] ~ n  

( format format) :  assoc ia te  f o r m a t  (f, f o r m a t ) ,  
t intype it): 
begin int j : = O; 

picture picture, [ ] simplln y = straightin it; 
while (j +: = 1) <_ upb y 
do boo l  i ncomp : = false; 

ge t  n e x t  p i c ture  (f, true, picture);  se t  read  m o o d  (f); 
[1 : upb (i o f  p ic ture)  ] s inser t  s insert ;  
case p o f  p i c ture  in 

(pattern pat tern):  
begin 

[ I : upb ( f rames  of  pa t t e rn )  ] s f rame  s f rames ;  
(s tat icize f r a m e s  ( f rames  of  pa t t e rn ,  s f rames ) ,  

s ta t ic i ze  inser t ion  (i o f  p ic ture ,  s insert));  
string s; 
int rad ix  = 

( type  o f  p a t t e r n  >_ 6 ] t y p e  o f  p a t t e r n  - 41 10); 
ind i t  s t r i ng  (f, s, s f rames ,  radix); 
case t ype  o f  p a t t e r n  in / 4  

¢ in tegra l  ¢ 
(y[J]l 
¢ (ret I, int ii): 

i n c o m p  : =  - s t r i ng  to L i n t  (s, 10, ii)~ 
] i n c o m p  : =  true) ,  

¢ real ¢ 
(y[J]l 

(ref L real rr): 
i n c o m p  : =  - s t r i ng  to L real  (s, rr) ~ 

] i n c o m p  : =  true) ,  
¢ boolean ¢ 

(Y [ J ]  I 
(ref bool  bb): bb : =  s = f l ip  
] i n c o m p  : = true) ,  

¢ c o m p l e x  ¢ 
(y [J] I 

(ref L compl  zz): 
(int i, boo l  b l ,  b2; char  in s t r i ng  ("±  ", i, s); 
b l  : =  s t r i ng  to L real (s [ : i - 1 ], re o f  zz); 
b2 : =  s t r i ng  to L real  (s [ i + 1 : ], im  of  zz); 
i n c o m p  : =  - (bl  ^ b2))~ 

[ i n c o m p  : =  t rue) ,  
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¢ s t r i ng  ¢ 
(y [J] ] 
(rat char  cc): 

(upb s = 1 I cc :=  s [1 ] I i n c o m p  :=  true) ,  
(ref [ ] char ss): 

(upb ss  - Iwb ss  + 1 = u p b  s ] ss  [@ I ] :=  s 
I i n c o m p  :=  true) ,  

(ref str ing ss): ss := s 
I i n c o m p  := true) 

out  
¢ bi ts  ¢ 

(yD]l  
¢ ( te lL bits lb): 

if L int  i; s t r i ng  to L i n t  (s, radix,  i) 
then lb := bin i 
else i ncomp : = true 

] i n c o m p  :=  true) 
esac 

end,  

(cpattern choice): 
beg in  

[ 1 : upb  (i o f  choice)  ] s inser t  si; 
s ta t ic i ze  inser t ion  (i o f  choice,  si); 
ge t  inser t ion  (f, si); 
inl c = c o f  cpos  o f  f, char  kk;  
int k := O, bool  f o u n d  := false; 
while  k < u p b  (c o f  choice)  ^ - f o u n d  
d o k + : =  l; 

[1 : upb  ((c o f  choice)  [ k ] ) ]  s inser t  si; 
bool  bool : = true; 
s ta t ic i ze  inser t ion  ((c o f  choice)  [ k ], si); 
string s; 
for  i to upb si 
do s plusab 

(sa o f  si  [ i ]  ] (string ss): ss)  x rep of  si  [ i ]  
od; 
for  j j  to upb s 
while  bool : = bool ^ - l ine e n d e d  (f) 

a - logical  f i le  e n d e d  (f) 
do  ge t  char  (f, kk); bool := k k  = s [j~] od; 
(~ ( found  := bool) l se t  char  n u m b e r  (f, c)) 

od; 
it - f o u n d  then i n c o m p  : = true 
else 

c a s e  t ype  o f  choice  in 

b) 
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¢ boolean ¢ 
(y [J] l 
( re fboo l  b): b :=  k = 1 
I i n c o m p  :=  true) ,  

¢ in tegra l  ¢ 
(y [J] I 
(ref int i): i : = k 
] i n c o m p  :=  true) 

esac 
f i ;  
s ta t ic i ze  inser t ion  (i o f  p ic ture ,  s inser t )  

end,  

(fpatlern fpat tern):  
b e g i n  do f p a t t e r n  (f, f pa t t e rn ,  true); 

for i to u p b  s in ser t  do  s in se r t  [ i ]  :=  (0, "") od; 
j - : = l  

end,  

(gpat tern  gpat tern) :  
([ 1 : upb  (i o f  g p a t t e r n )  ] s inser t  si; 
(s tat icize inser t ion  (i o f  g p a t t e r n ,  si), 

s ta t ic i ze  inser t ion  (i o f  p ic ture ,  s insert));  
ge t  inser t ion  (f, si); 
ge t  (f, y [j])) ,  

(void): 
(j -: = 1; s ta t ic i ze  inser t ion  (i o f  p ic ture ,  s inser t ) )  

o d  
end 

esac od 

esac ; 
i f  i n c o m p  
then se t  read  m o o d  (f); 

(- (va lue  error m e n d e d  o f f )  (f) I u n d e f i n e d )  
fI; 
ge t  inser t ion  (f, s inser t )  

else u n d e f i n e d  
f l ;  

proc  9 ind i t  s t r i ng  = (ref  file f, ref s tr ing s, [ ] s h a m e  s f, int  radix)  void : 
begin 

bool  supp,  zs  : = true, s i g n  f o u n d  : = false, space  f o u n d  : = false, 
no  s ign  : = false, int sp  : = 1, rep; 

pr lo ! = 8; 
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op  ! = (string s, char  c) char  : 
¢ e x p e c t s  a c h a r a c t e r  c o n t a i n e d  in  's'; i f  t h e  c h a r a c t e r  
read is no t  in  's', the  e v e n t  ro u t i ne  c o r r e s p o n d i n g  to 'on 
char  error '  is  ca l led  w i t h  the  s u g g e s t i o n  ' c '¢  

if  char  k; c h e c k  p o s  (f); g e t  c h a r  (f, k); 
char  in  s t r i n g  (k, Ioc inl, s) 

then k 
else char  sugg : = c; 

i f  ( char  error  m e n d e d  o f f )  (f, s u g g )  then 
( char  in  s t r i n g  (sugg,  Ioc int, s) [ s u g g  [ unde f i ned ;  c) 

else  undef ined;  c 
fi; 
s e t  read m o o d  (f) 

n; 
op  ! = (char s, c) char  : string (s) ! c; 
[ ] c h a r g o o d  d ig i t s  = "0123456789abcde f " [  : rad ix] ;  
S := " + ' ;  
f o r k  to upb s f  
do  s h a m e  s f k  = s/[ k ]; s u p p  : = s u p p  o f  s f k ;  

g e t  i n s e r t i o n  (f, s i  o f  s fk ) ;  
to rep o f  s f k  
do  char  m a r k e r  = m a r k e r  o f  s f k ;  

if  m a r k e r  = "d" then 
s p lu sab  ( supp  [ "0"[ g o o d  d ig i t s  ! "0"); z s  : = true 

elif  m a r k e r  = "z" then 
s p lusab  ( supp  I "0" 

i char  c = ((zs i ".- "l "") + g o o d  d ig i t s )  ! "0"; 
(c ~ " .  "[ z s  := false); c) 

elif  m a r k e r  = "u" v m a r k e r  = "+" then 
i f  s i g n  f o u n d  
then z s  : = false; s p lu sab  ("0123456789" ! "0") 
else  char  c = ("+-" + (marker  = "u" l "._ "[ "")) ! "+"; 

(c = % "  v c = '  . . . .  I s i g n  f o u n d  : = true; s [ sp  ] : = c) 
fi 

el i f  m a r k e r  = "v"  v m a r k e r =  ' . . . .  then 
if  s i g n  f o u n d  
then z s  := false; s p lu sab  ("0123456789"!  "0~9 
elif char c; s p a c e  f o u n d  
then c := "+-_.0123456789"! "+"; 

(c= "+" v c = '  . . . .  I s i g n  f o u n d  := true; s [sp] := c 
J: c ¢ "_."l z s  : ~ false; s i g n  f o u n d  : = true; s p l u s a b  c) 

else c := " + - . " !  "+"; 
(c= "+" v c= . . . . .  [ s i g n  f o u n d  := true; s [sp]  := c 
[ s p a c e  f o u n d  := true) 

fi 
el i f  m a r k e r  = "." then 

s plusab (supp [ "."1 ". " !  ". ") 
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elif  m a r k e r  = "e" then 
s p lu sab  ( supp  I "1o"1 "1o\ e' '  ! "1o"; "lo");sig n f o u n d  : = false; 
z s  : = true; s p lu sab  "+"; sp  : = u p b  s 

el i f  m a r k e r =  "i" then 
s p lu sab  ( supp  I "1 "1 "i±  "! "]_ "; "J_ "); 
s i g n  f o u n d : =  false; z s  := true; s p lu sab  '%"; sp  := u p b  s 

el i f  m a r k e r =  "b" then 
s p lu sab  (f l ip + f lop)  ! f lop;  no s i g n  : = true 

eli f  m a r k e r  = " a"  then 
s p lusab  ( supp  I "._"[ char  c; c h e c k  p o s  (f); g e t  c h a r  (f, c); 
c); 
no s i g n  : = true 

eli f  ma rke r  = " r "  
then skip 
fl 

od  
od; 
i f  no s i g n  then  s : = s [2 : ] fl 

e n d ;  

10.3.6. Binary transput 

{In binary transput, the values obtained by straightening the elements 
of a data list (cf. 10.3.3) are transput, via the specified file, one after  the 
other. The manner  in which such a value is stored in the book is defined 
only to the extent that a value of mode M (being some mode from which 
that specified by s i m p l o u t  is united) output at a given position may  
subsequently be re-input from that same position to a name of mode 
' reference to M'. Note that, during input to the name referring to a 
multiple value, the number  of elements read will be the existing number  
of elements referred to by that name. 

The current position is advanced after  each value by a suitable amount  
and, at the end of each line or page, the appropriate  event routine is 
called, and next, if this returns false, the next good charac te r  position of 
the book is found (cf. 10.3.3). 

For  binary output, p u t  b in  (10.3.6.1.a) and w r i t e  b in  (10.5.l.h) may  be 
used and, for binary input, g e t  b in  (10.3.6.2.a) and read b in  (10.5.15).} 

a) proc 9 to b in = (ref  file f,  s imp lout  x) [ ] char  : 
c a va lue  o f  m o d e  ' row o f  c h a r a c t e r '  w h o s e  l o w e r  b o u n d  is o n e  

a n d  w h o s e  u p p e r  b o u n d  d e p e n d s  on  the  v a l u e  o f  'book o f  f '  
a n d  on  the  m o d e  a n d  the  va lue  o f  'x'; f u r t h e r m o r e ,  
x = f r o m  b in  (f, x ,  to b in  (f, x))  c ; 

b) proc .~ f r om  b in  = (ref  file f,  s implout  y, [ ] char  c) s imp lout  : 
c a value ,  i f  one  ex i s t s ,  o f  t he  m o d e  o f  t he  v a l u e  y i e l d e d  by  'y', 

s u c h  t h a t  c = to b in  (f, f r o m  bin  (f, y ,  c)) c ; 
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10.3.6.1. B i n a r y  ou tpu t  

a) procpu tb in=(re f f l l e f ,  [ ] ou t t ypeo t )vo id :  
if opened o f f  then 

set bin mood (f); set write mood (f); 
for k to upb ot 
do [ ] s implout  y = straightoul ot [ k ]; 

for j to upb y 
do [ ] char bin = to bin (f, y [j]); 

for i to upb bin 
do nex t  pos (f); 

set bin mood (f); 
r e f p o s  cpos = cpos of f ,  lpos = lpos of  book off;  
case text  of f i n  
(flextext t2): 

t2 [p of cpos ] [ l of cpos ] [ c of  cpos ] := bin [i]  
esac; 
c of cpos+:= 1; 
if cpos beyond lpos then lpos : = cpos 
slit - set possible (f) 

^ p o s  (p of lpos, I of lpos, 1) beyond  cpos 
then lpos := cpos; 

(compressible (f) l 
c the size of  the line and  page  con ta in ing  the 

logical end of  the book and  of  all 
subsequent  lines and  pages  m a y  be 
increased c) 

fl 
od 

od 
od 

else undef ined 
f l ;  

10.3.6.2. B i n a r y  input  

a) proc get  bin = (ref file f, [ ] intype it) void : 
if opened of f  then 

set bin mood (f); set read mood (f); 
for k to upb it 
do [ ] simplin y=stre ight in  it [k ]; 

for j to upb y 
do 

slmplout y j  = case y [ j  ] in 
~(refL intO: i~ ,  ~( re fL  realr): r~ ,  
~ (ref L compl  z): z~ , (ref bool b): b ,  
~(ref L bits lb): lb~ , (ref char c): c,  (ref [ ] chars): s ,  
(ref slr ing ss): ss esac; 
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esac 
od 

od 
else undef ined 
f l ;  

[1 : upb (to bin (f, yj)) ] char bin; 
for i to upb bin 
do nex t  pos (f); set bin mood (f); 

r e t p o s  cpos = cpos of f;  
bin [ i]  := 

case text  of f ln 
(flextext t2): 

t2 [p of cpos ] [ l of  cpos ] [ c of  cpos ] 
esac; 

c ofcpos  +: = 1 
od; 
case y [ j  ] In 

+ (ref L int ii): ( ~ m  ~in  (f, ii, bin) l (L IntO: ,~. = i) ~ , 
(ref L real rr): 

(from bin (f, rr, bin) ] (L real r): r r  : = r) ~ , 
(ref L compl zz): 

( from bin (f, zz, bin) l (L compl  z): zz : = z) ~ , 
(refbool bb): (from bin (f, bb, bin) l (bool b): bb := b) , 
~ (ref L bits lb): 

(from bin (f, lb, bin) l (L bits  b): lb := b)~, 
(ref cher cc): (from/bin (f, cc, bin)[ (char c): cc := c) , 
(ref [ ] char ss)i= " 

(from bin (f, ss, bin) l ([ ] chars): ss := s) , 
(ref string ssss): 

(from bin (f, ssss, bin) l ([ ] chars): ssss := s) 
I "  

[But Eeyore wasn't listening. He was taking 
the balloon out, and putting it back again, 
as happy as could be . . . .  
Winnie-the-Pooh, A.A.Milne.} 

} 
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10.4. The sys tem prelude and task list 

10.4.1. The sys tem prelude 

The representat ion of the sys tem.pre lude  is obtained f rom the following 
form, to which m a y  be added fur ther  forms not defined in this Report.  
{The syntax of p rogram- tex ts  ensures  that  a declarat ion contained in the 
sys tem-prelude m a y  not contradict  any declara t ion contained in the 
standard-prelude. It  is intended that  the fur ther  forms should contain 
declarat ions that  are  needed for the correc t  operat ion of any sys tem- tasks  
that  m a y  be added (by the implementer ,  as provided in 10.1.2.d).} 

a) sema .~greml ins=(semas;  F o f s  : = P R I M i n t : = O ;  s); 

10.4.2. The sys tem task list 

The representat ion of the {first} constituent sys tem- task  of the sys tem-  
task-list is obtained f rom the following form. The other  sys tem-tasks ,  if 
any, are  not defined by this Report  {but m a y  be defined by the 
implemente r  in order  to account  for the par t i cu la r  fea tures  of his 
operat ing environment ,  especial ly in so far  as they in terac t  with the 
running of pa r t i cu la r -p rograms  {see, e.g., 10.3.1.1.dd)}. 

a) do down gremlins;  undefined; up bfileprotect od 

{The intention is that  this call of undef ined,  which is re leased by an up 
greml ins  whenever  a book is closed, m a y  reorganize the chain of backfi les  
and the chain of locked backfiles,  such as by removing  the book if it is not 
to be avai lable for fur ther  opening, or by insert ing it into the chain of 
backfiles severa l  t imes over  if it is to be permi t ted  for severa l  par t icular-  
p rograms  to read it s imultaneously.  Note that, when an up greml ins  is 
given, bfileprotect is a lways down and remains  so until such reorganizat ion 
has taken place.} 

{From ghoulies and ghosties and Iong- 
leggety beasties and things that go bump 
in the night, 
Good Lord, deliver us! 

Ancient Cornish litany} 

10.5. The par t icular  preludes and postludes 

10.5.1. The par t icu lar  preludes 

The representat ion of the par t icular -pre lude  of each user- task is 
obtained f rom the following forms,  to which m a y  be added such other  
forms as m a y  be needed for the proper  functioning of the facilities defined 
in the constituent l ibrary-prelude of the p rog ram- tex t  {, e.g., declara t ions  
and calls of open for additional s tandard  files}. However,  for each 
QUALITY-new-new-PROPS l-LAYER2-defining-indicator-with-TAX contained 
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in such an additional form, the predicate  'where  QUALITY TAX 
independent PROPSI '  {7.1.l.a,c} mus t  hold {i.e., no declarat ion contained in 
the s tandard-prelude m a y  be contradicted}. 

a) L i n t  L last random : = round (L m a x  int / L 2) ; 

b) proc L random = L real : L nex t  random (L last  random)  ; 

c) file s tand  in, s tand  out, s tand  back ; 
open (s tand in, "", s tand  in channel)  ; 
open (s tand out, "", s tand  out channel)  ; 
open (s tand back, "", s tand  back channel)  ; 

d) proc p r i n t  = ([ ] union (outtype, proc (ref file) void) x) void : 
put  (s tand out, x), 

proc write = ([ ] union (outtype, proc (ref file) void) x) void : 
put  (s tand out, x) ; 

e) proc read = ([ ] un ion (intype, proc  (ref f i le) void) x) void : 
get  (s tand in, x) ; 

f) proc pr in t f  = ([ ] union (outtype, format) x) void : p u t f  ( s tand out, x), 
proc wri te f  = ([ ] union (outtype, format) x) void : p u t f  ( s tand out, x) ; 

g) proc readf  = ([ ] union (intype, format) x) void : ge t f  (s tand in, x) ; 

h) proc write bin = ([ J out type x) void : pu t  bin (s tand back, x) ; 

i) proc read bin = ({ ] intype x) void : ge t  bin (s tand back, x) ; 

/ 

10.5.2. The par t icular  postludes 

The representat ion of the par t icular-post lude of each user- task is 
obtained f rom the following form, to which m a y  be added such other 
forms as m a y  be needed for the proper  functioning of the facilities defined 
in the constituent l ibrary-prelude of the p rogram- tex t  {, e.g., calls of lock 
for  additional s tandard  files}. 

a) stop: lock (s tand in); lock (s tand out); lock (s tand back) 

II. Examples 

11.1. Complex square  root 

proc compsqrt  = (compl z) compl : 
¢ the square root whose  real par t  is nonnega t i ve  o f  the complex  
number  'z' ¢ 

begin real x = re z, y = im z; real rp = sqrt  ((abs x + sqrt  (x r 2 + y ! 2)) / 2); 
real ip=(rp=OI OI y / (2x  rp)); 
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if x >_ O then rp  .L ip else abs  ip  .L (y >-01 rp l - rp) fi 
e n d  

Calls  {5.4.3} us ing  compsqrt: 
compsqrt  (w) 
compsqrt  (-3.14) 
compsqrt  (-1) 

11.2. I n n e r p r o d u c t  1 

proc  innerproduct  I = (int n, proc (int) real x, y) real : 
¢ the innerproduct  o f  two vectors, each wi th  'n' comppnents ,  x (i), 
y (i), i = 1 . . . . .  n, where  'x' and  'y' are arbi trary m a p p i n g s  f rom 
integer to real n u m b e r  ¢ 

begin long real s : = long O; 
for i t o n  do  s + : = leng  x (i) x leng  y (i) od;  
shorten s 

end 

Rea l -ca l l s  us ing  innerproduct  1: 
innerproduct  I (m, ( i n t j )  real  : x l  [j], (intj) rea l  : y l  [j]) 
innerproduct I (n, nsin,  ncos) 

11.3. I n n e r p r o d u c t  2 

proc  innerproduct  2 = (ref [ ] real a, b) real : 
i f  upb a - Iwb a = upb b - Iwb b 
then ¢ the innerproduct  o f  two vectors 'a' and  'b' wi th  equal  numbers  

o f  e lements  ¢ 
long real s : = long O; 
ref[  ] rea la l  =a [ @ I ] ,  bl  =b [@•];  

¢ note that  the bounds o f  'a [@ 1 ] '  are [1 : upb  a - Iwb a + 1 ] ¢ 
for i to u p b  a l  d o  s +: = leng al  [ i]  x leng b l [ i]  od;  
shorten s 

fl 

Rea l -ca l l s  us ing  innerproduct2:  
innerproduct  2 (xl ,  y l )  
innerproduct  2 (y2 [2, ], y2 [ ,3 ]) 

11.4. L a r g e s t  e l e m e n t  

proc  a b s m a x  = (ref [, ] real a, ¢ result ¢ ref real y, 
¢ subscripts ¢ ref int  i, k) void : 

¢ the absolute value o f  the e lement  o f  greates t  absolute  value o f  
the matr ix  'a' is ass igned to 'y', and  the subscripts  o f  this e l emen t  
to 'i' and  ' k '¢  
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begin y := - 1; 
for p from I Iwb  a to I upb  a 
do 

for q from 2 Iwb a to 2 upb a 
do  

i f a b s a  [p, q] > y then y := abs a [i := p, k := q] fl 
od  

od 
end 

Calls  us ing  absmax:  
a b s m a x  (x2, x, i, j) 
a b s m a x  (x2, x, Ioc  int ,  Ioc  int)  
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11.5. E u l e r  s u m m a t i o n  

proc  euler = (proc (int) real f, real eps, int tim) real : 
¢ the s u m  for 'i' f rom 1 to in f ini ty  o f  'f(i)', computed  by m e a n s  o f  
a sui tably  refined Euler transformation.  The s u m m a t i o n  is 
terminated  w h e n  the absolute  values o f  the terms o f  the 
t rans formed series are f ound  to be less t han  'eps' ' t im'  t imes in 
succession. This t rans format ion  is part icularly  ef f icient  in the 
case o f  a s lowly  convergent  or d ivergent  a l ternat ing  series ¢ 

beg in  in t  n : = l ,  t; real mn,  ds : = eps; [1 : 1 6 ] r e a l m ;  
rea l sum := (m [1] :=f(1))  /2;  
for i from 2 while (t := (abs ds < eps ] t + 111)) ~ t im 
do  m n  : = f ( / k  

f o r k  to n do  m n  := ((ds := mn)  + m [ k ]) / 2; m [k]  := ds od; 
s u m  +: = (ds := (abs m n  < abs m In ]  ^ n < 16 f n +: = 1; m In]  := mn; 

m n  / 21 mn))  
od; 
sum  

end 

A ca l l  us ing  euler: 
euler ((int i) real : (odd i j - 1 / i ] 1 / i), 11o-5, 2) 

11.6. The n o r m  of a v e c t o r  

proc  norm = (ref [ ] real a) real : 
¢ the euclidean norm o f  the vector 'a' ¢ 

(long real s : = long O; 
fo rk  from lwb a to upb a do s + : = leng a [ k ]  ! 2 od; 
shorten long sqrt  (s)) 

F o r  a use  of norm in a ca l l ,  see  11.7. 
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11.7. Determinant  of a ma t r ix  

proc det = (ref [ , ]  real x, ref  [ ] in t  p) real : 
i f re f  [,] rea la  = x  [@ I, @ i ]; 

1 u p b a = 2 u p b a  ^ 1 u p b a = u p b p - l w b p + l  
then int n = 1 upb a; 

¢ the  d e t e r m i n a n t  o f  the  square  m a t r i x  'a' o f  order  'n '  by  the  
m e t h o d  o f  Crout  w i t h  row in t e rchanges :  'a' is replaced b y  i ts  
t r i angu lar  decompos i t ion ,  l x u, w i t h  all  u [k, k] = 1. The  
vector  'p' g i v e s  as  o u t p u t  the  p i v o t a l  row indices;  the  k - th  
p i v o t  is chosen  in the  k - th  c o l u m n  o f  'l' s u c h  t h a t  
a b s  l [i, k] / row n o r m  is m a x i m a l  ¢ 

[1 : n] real v; real d : = 1, s, p ivo t ;  
for i to n do v [i] := n o r m  (a [ i, ]) od; 
f o r k  t o n  
d o  int k l  = k - 1; r e f i n t p k  = p  [@ 1 ] [k ] ;  real  r := -1;  

r e f [ , ]  r e a l a l = a  [ ,  I : k l  ], a u = a  [1 : k l ,  ]; 
ref  [ ] real  ak  = a [ k, ], k a  = a [ ,  k ], a lk  = a l  [ k, ], k a u  = au  [ ,  k ]; 
for i f rom k to n 
d o  ref  real a i k  = k a  [ i ]; 

if (s := a b s  (aik -: = i n n e r p r o d u c t  2 (al [ i, ], kau))  / v [ i ]) > r 
then  r := s; p k  := i  
fl 

od;  
v [pk] := v [k]; p i v o t  := ka  [pk];  ref  [ ] real a p k  = a [pk, ]; 
for  j to n 
do ref  real a k j  = a k  [j], a p k j  = a p k  [j]; 

r : = akj; 
a k j  : = if j ~ k then  a p k j  

e l s e  ( a p k j  - i n n e r p r o d u c t  2 (alk, au  [ , j ] ) )  / p i v o t  fl; 
i f  p k  ~ k then apk j  : = - r f i  

od; 
d x: = p i v o t  

od;  
d 

fi 

A call using det: 
de t  (y2, i l )  

11.8. Grea tes t  common divisor 

proc  gcd  = (int a, b) int  : 
¢ the  g rea t e s t  c o m m o n  d iv i sor  o f  two  in t egers  ¢ 

(b = 0 ] abs  a I gcd  (b, a m o d  b)) 

A call using gcd: 
gcd  (n, 124) 
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11.9. Continued fraction 
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op / = ([ ] real a, [ ] real b) real : 
¢ the  va lue  o f  a / b is t h a t  o f  the  c o n t i n u e d  f r a c t i o n  
a l  / ( b l  + a 2 / ( b 2 + . . .  a n  / b n ) . . . )  ¢ 

if Iwb a = I ^ Iwb b = 1 a upb  a = upb  b 
t h e n ( u p b a = O l O I  a [ 1 ] / ( b  [1] + a  [2: ] / b  [2: ])) 
fi 

A formula  u s ing / :  
x l  / y l  

{The use of recursion m a y  often be elegant  r a the r  than efficient as in 
the recursive procedure  11.8 and the recurs ive  operat ion 11.9. See, 
however,  11.10 and 11.13 for examples  in which recursion is of the 
essence.} 

11.10. Formula  manipulat ion 

begin 
mode  form = union ( te l  const,  ref  var, ref  triple, ref  cell); 
mode  const  = struct (reel value);  
mode  var = struct (string name,  real  value); 
m o d e  triple = s truc t  (form lef t  operand ,  int  operator ,  

form r igh t  operand);  
m o d e  funct ion = s t ruc t  (ref car b o u n d  car,  form body); 
m o d e  call = s l ruc t  (ref func t ion  f u n c t i o n  n a m e ,  form parame te r ) ;  
i n t p l u s  = 1, m i n u s  = 2, t imes  = 3, by  = 4, to = 5; 
h e a p  c o n s t  zero, one; va lue  o f  zero := O; va lue  o f  one  : = 1; 
op  = = (form a, ref  c o n s t  b) b o o l  : (a I (ref c o n s t  ec): ec : =: b I false); 
op  + = (form a, b) form : 

(a = zero I b I: b = zero I a I heap  triple : = (a, p lus ,  b)); 
op - = (form a, b) form : (b = zero I a I heap  triple : = (a, m i n u s ,  b)); 
op  x = (form a, b) form : (a = zero v b = zero I zero I: a = one  I b I: b = one  l a I 

h e a p  triple : = (a, t imes ,  b)); 
op  / = (form a, b) form : (a = zero ^ - (b = zero) J zero I: b = one  l a J 

h e a p  triple := (a, by,  b)); 
op  ! = (form a, ref  c o n s t  b) form:  

(a = one  v (b : =: zero) I one  J : b : =: one  I a I h e a p  triple : = (a, to, b)); 
proc  der i va t i ve  o f  = (form e, ¢ w i t h  respect  to ¢ ref  car x)  form : 

case e in 
(ref const): zero ,  
(re fvarev):  (ev :=: x J o n e l z e r o ) ,  
(ref triple et): 

case form u = left  o p e r a n d  o f  et, v = r igh t  o p e r a n d  o f  et; 
form u d a s h  = der i va t i ve  o f (u ,  ¢ w i t h  respect  to ¢ x), 

v d a s h  = der i va t i ve  o f (u ,  ¢ w i t h  respec t  to ¢ x); 
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operator o f  e t  
in 

udash  + vdash ,  
udash  - vdash ,  
u x vdash  + udash  x v, 
(udash - e t  x vdash)  / v, 
(v ] (n~f c o n s t  ec): v x u ! (heap c o n s t  c; 

value arc  := value o f e c -  I; c) x udash)  
asaC , 

(ref call  el): 
begin ref  function f = func t ion  n a m e  o f  el; 

form g = p a r a m e t e r  o f  el; ref  car y = bound  v a t  o f  f; 
heap  function f d a s h  := (y, der i va t i ve  o f ( b o d y  o f f ,  y)); 
(heap call := ( fdash,  g)) x der i va t i ve  o f (g ,  x)  

and  
esac ; 

proc value  o f  = (form e) real : 
case e in 

(rof c o n s t  ec): value o f  ec , 
( tel  vat  ev): value o f  ev  , 
(ref  tr iple et): 

c a s e  real u = value  o f ( l e f t  operand  o f  et), 
v = value o f  (right operand o f  et); 
operator o f  et  

i n u + v ,  u - v ,  u x v ,  u / v ,  e x p ( v x l n ( u ) )  
eSaC , 

( tel  call el): 
berlin ref function f=  func t ion  n a m e  o f  el; 

value  o f  bound car  o f f :  = value  o f  (parameter  o f  el); 
value  o f  (body o f f )  

e n d  
esac; 

heap  form f, g;  
heap  var a : = ("a",  skip), b : = ("b",  skip),  x : = ("x",  skip);  

¢ s tar t  here ¢ 
read ((value o f  a, value o f  b, value  o f  x)); 
f :=a + x / (b+ x); 
g : = (f+ one) / ( f .  one); 
p r in t  ((value o f  a, value o f  b, value  of  x, 

value o f (de r i va t i ve  o f (g ,  ¢ w i th  respect  to ¢ x)))) 
end ¢ examp le  o f  fo rmula  man ipu la t i on  ¢ 

11.11. I n f o r m a t i o n  r e t r i e v a l  

begin  
m o d e  ra = re f  auth,  rb = re f  book;  
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m o d e  auth = struct  (string hame ,  ra nex t ,  rb book), 
book  = s t ruc t  (s t r ing t i t le ,  rb  next ) ;  
ra auth ,  f i r s t  au th  : = nil, las t  auth;  
rb book; string name ,  title; int i; file input ,  output;  
op.en (input, "", remote  in); open (output,  "", remote  out); 
p u t f  (output,  ($p 

"to en ter  a n e w  author,  t ype  .... author"",  a space ,"x  
"and his  name ." l  
"to en ter  a n e w  book, t ype  .... book"", a space,"x 
"the n a m e  o f  the  author,  a n e w  line, a n d  the  t i t le."l  
"for a l i s t ing  o f  the  books  by  an  author,  t ype  .... list';",'~c 
"a space,  and  his  name . " l  
"to f i nd  the  au thor  o f  a book, t ype  ""find"",  a n e w  line,"x 
"and the title."l 
"to end, t ype  ""end ...... al$, ".")); 

proc update  = void : 
if ra (f irst  auth)  :=: nil 
then auth  : = f i r s t  au th  : = las t  au th  : = heap  auth : = (name,  nil, nil) 
e l se  au th  : = f i r s t  auth;  

while ta (auth) :~:  nil 
do 

(name  = n a m e  o f  au th  I go  to k n o w n  au th  : = n e x t  o f  auth)  
od; 
las t  au th  := n e x t  o f  las t  au th  := au th  : = 

heap  auth : = (name,  nil, nil); 
known:  skip  

fi; 

do 
t ry  again: 

g e t f  (input,  ($cCauthor","book","l is t" ," f ind","end"," '9 ,  x3Oal, 
80al$, i)); 

case i in 

¢ author  ¢ 
(get f  (input,  name);  update) ,  

¢ book ¢ 
begin  g e t f  (input,  (name,  title)); update; 

if rb (book o f  auth)  :=: nil 
then book of  auth  : = heap  b o o k  : = (title, ni l )  
else book : = book o f  auth;  

while rb (nex t  o f  book) : ~: nil 
do 

(title = ti t le o f  book 
I go to try  again  I book : = n e x t  of  book) 

od; 
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od 
end 
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fl 
end, 

(title ~ title of  book 
I nex t  of  book : = heap book : = (title, nil)) 

¢ list ¢ 
begin g e t f  (input, name);  update; 

p u t f  (output, ($p" author: "30all$, name)); 
if rb (book := book of  auth)  :=: nil 
then pu t  (output, ("no publ icat ions",  newline))  
else on page  end  (output, 

(ref file f) bool : 
(put f  (f, ($p" author: "30a41k" continued"ll$,  name)); 
true)); 

while rb (book) : ~: nil 
do p u t f  (output, ($180a$, title o f  book)); book:= nex t  of  book 
od; 
on page  end (output, (fertile f) bool  : false) 

fl 
end, 

¢ f ind  ¢ 
begin ge t f  (input, (Ioc string, title)); au th  : = f irs t  auth; 

whlle ra (auth) :~: nil 
do book := book of  auth; 

while rb (book) : ~: nil 
do 

if title = title of  book 
then p u t f  (output, ($l"author: "30a$, n a m e  of  auth)); 

go to t ry  again 
else book : = nex t  of  book 
fi 

od; 
auth  : = nex t  of  au th  

od; 
pu t  (output, (newline,  "unknown" ,  newline))  

end, 

¢ end ¢ 
(put (output, (new page,  "s igned off", close)); close (input); 

goto stop) ,  

¢ error ¢ 
(put (output, (newline,  "mis take,  t ry  again")); newl ine  (input)) 

e s e c  
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11.12. Coopera t ing  sequen t i a l  processes  

begin int n m b  magaz ine  slots, n m b  producers,  n m b  consumers;  
read ((nmb magaz ine  slots, n m b  producers,  n m b  consumers));  
[1 : n m b  producers  ] file infile, [1 : n m b  consumers  ] file outfile; 
for i to n m b  producers  do open (infile [ i ], "", i nchanne l  [ i ]) od; 

¢ ' inchannel '  and  'outchannel '  are def ined in a surrounding  
range ¢ 

for i to n m b  consumers  
do open (outfile [ i ], "", ou tchanne l  [ i ]) od; 
m o d e p a g e =  [1 : 60, 1 : 132] char; 
[1 : n m b  m a g a z i n e  slots] ref  page  magaz ine;  
int ¢ pointers  o f  a cyclic m a g a z i n e  ¢ index  : = 1, exdex  : = 1; 
sema ful l  slots = level  O, free slots  = level n m b  m a g a z i n e  slots, 

in buffer busy  = level  1, out  buf fer  busy  = level  1; 
proc par  call = (proc (int) void p, int n) void : 

¢ call 'n' incarnat ions  o f  'p' in paral lel  ¢ 
(n > 01 par (p (n), par  call (p, n - 1))); 

proc producer = tint i) void : 
do heap page page; 

ge t  (infile [ i ], page); 
down free slots; down in buffer busy; 

magaz ine  [index] : = page; 
index  modab n m b  m a g a z i n e  slots  plusab 1; 

up ful l  slots; up in buf fer  busy  
od; 

proc consumer  = tint i) void : 
do page page; 

down ful l  slots; down out  buf fer  busy; 
page  := magaz ine  [ exdex  ]; 
exdex  modab n m b  magaz ine  slots plusab 1; 

up free slots; up out buffer busy; 
pu t  (outfile [ i ], page)  

od; 
par (par call (producer, n m b  producers),  

par  call (consumer,  n m b  consumers))  
end 

11.13. Towers  of Hanoi  

f o rk  t o8  
do file f :  = s tand  out; 

proc p = tint me, de, ma)  void : 
if ma  > 0 then 

p (me, 6 - me  - de, m a  - 1); 
p u t f  (f, (me, de, ma)); 
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¢ m o v e  f r o m  p e g  'me '  to p e g  'de' p i ece  ' m a '  ¢ 
p (6 - m e  - de, de, m a  - I)  

ti; 
p u t f  (f, ($1"k = "dl, n((2 T k+15)+ l 6)(2(2(4(3(d)x)x)x)l)$, k)); 
p ( 1 , 2 ,  k) 

ad 

12. Glossaries 

12.1. Technical te rms 

Given below are  the locations of the defining occurrences  of a number  
of words which, in this Report, have a specific technical meaning. A word 
appearing in different g rammat ica l  forms is given once, usually as the 
infinitive. Terms which are  used only within pragmat ic  remarks  are 
enclosed within braces.  

abstraction (a protonotion of a protonotion) 1.1.4.2.b 
acceptable to (a value acceptable to a mode) 2.1.3.6.d 
access (inside a locale) 2.1.2.c 
action 2.1.4.1.a 
active (action) 2.1.4.3.a 
af ter  (in the textual order) 1.1.3.2.i 
akin (a production tree to a production tree) 1.1.3.2.k 
[alignment} 10.3.4.1.1.ff 
al ternative 1.1.3.2.c 
apostrophe l.l.3.1.a 
ar i thmetic value 2.1.3.1.a 
ascribe (a value or scene to an indicator) 4.8.2.a 
assign (a value to a name) 5.2.1.2.b 
asterisk l.l.3.1.a 
[balancing} 3.4.1 
before (in the textual order) 1.1.3.2.i 
blind alley 1.1.3.2.d 
[book} 10.3.1.1 
bound 2.1.3.4.b 
bound pair  2.1.3.4.b 
built (the name built from a name) 6.6.2.c 
built (the multiple value built from a value) 6.6.2.b 
calling (of a routine) 5.4.3.2.b 
[channel} 10.3.1.2 
charac ter  2.1.3.1.g 
chosen (scene of a chooser-clause) 3.4.2.b 
[close (a file)} 10.3.1.4.ff 
collateral action 2.1.4.2.a 
collateral elaboration 2.1.4.2.f 
[collection} 10.3.4.1.l.gg 
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colon 1.1.3.1.a 
comma l . l .3. l .a  
complete (an action) 2.1.4.3.c, d 
[compressible} 10.3.1.3.ff 
consistent substitute 1.1.3.4.e 
constituent 1.1.4.2.d 
construct 1.1.3.2.e 
construct in a representat ion language 9.3.b 
contain (by a hypernotion) l.l.4.1.b 
contain (by a production tree) 1.1.3.2.g 
contain (by a protonotion) 1.1.4.1.b 
[control (a string by a pattern)} 10.3.4.1.l.dd 
(conversion key} 10.3.1.2 
[create (a file on a channel)} 10.3.1.4.cc 
{cross-reference (in the syntax)} 1.1.3.4.f 
[data list} 10.3.3 
defining range (of an indicator) 7.2.2.a 
deflex (a mode to a mode) 2.1.3.6.b 
[deproceduring} 6 
[dereferencing} 6 
descendent 1.1.3.2.g 
descendent action 2.1.4.2.b 
descriptor 2.1.3.4.b 
designate (a hypernotion designating a protonotion) I . l .4. l .a  
designate (a paranotion designating a construct)  1.I.4.2.a 
develop (a scene from a declarer)  4.6.2.c 
direct action 2.1.4.2.a 
direct  descendent 1.1.3.2.f 
direct parent  2.1.4.2.c 
divided by (of ar i thmetic  values) 2.1.3.1.e 
[dynamic (replicator)} 10.3.4.1.1.dd 
(edit (a string) } 10.3.4.1.1.jj 
elaborate collaterally 2.1.4.2.f 
elaboration 2.1.4.1.a 
element  (of a multiple value) 2.1.3.4.a 
elidible hypernotion 1.1.4.2.c 
endow with subnames 2.1.3.3.e, 2.1.3.4.g 
envelop (a protonotion enveloping a hypernotion) 1.1.4.1.c 
environ 2.1.1.1.c 
[environment enquiry} 10.2 
equivalence (of a charac te r  and an integer) 2.1.2.d, 2.1.3.1.g 
equivalence (of modes) 2.1.1.2.a 
equivalence (of protonotions) 2.1.1.2.a 
establish (an environ around an environ) 3.2.2.b 
[establish (a file on a channel)} 10.3.1.4.cc 
[event routine} 10.3.1.3 
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{expect} 10.3.4.1.1.11 
{external object} 2.1.1 
field 2.1.3.3.a 
{file} 10.3.1.3 
{firm (position)} 6.1.1 
{firmly related} 7.1.1 
fixed name (referring to a multiple value) 2.1.3.4.f 
flat descriptor 2.1.3.4.c 
flexible name (referring to a multiple value) 2.1.3.4.f 
follow (in the textual order) 1.1.3.2.j 
{format} 10.3.4 
Iframe} 10.3.5.1.bb 
generate (a 'TAG" generat ing a name) 2.1.3.4.1 
generate (a t r im generat ing a name) 2.1.3.4.j 
ghost element  2.1.3.4.c 
halt (an action) 2.1.4.3.f 
hardware language 9.3.a 
Iheap} 5.2.3 
hold (of a predicate) 1.3.2 
hold (of a relationship) 2.1.2.a 
hyper-rule 1.1.3.4.b 
hyperal ternat ive 1.1.3.4.c 
hypernotion l . l .3. l .e  
hyphen l.l.3.1.a 
identify (an indicator identifying an indicator) 7.2.2.b 
implementation (of ALGOL 68) 2.2.2.c 
implementation of the reference language 9.3.c 
in (a construct in an environ) 2.1.5.b 
in place of 3.2.2.a, 5.4.4.2 
inactive (action) 2.1.4.3.a 
incompatible actions 2.1.4.2.e 
{independence (of properties) } 7.1.1 
index (to select an element) 2.1.3.4.a 
{indit (a string)} 10.3.4.1.1.kk 
initiate (an action) 2.1.4.3.b, c 
{input compatible} 10.3.4.1.1.ii 
inseparable action 2.1.4.2.a 
{insertion} 10.3.4.1.l.ee 
integer 2.1.3.1.a 
integral equivalent (of a character)  2.1.3.1.g 
{internal object} 2.1.1 
interrupt (an action) 2.1.4.3.h 
intrinsic value 8.1.1.2, 8.1.2.2.a, b, 8.1.4.2.b, 8.2.2.b, c 
invisible 1.1.3.2.h 
is (of hypernotions) 2.1.5.e 
large syntactic mark  1.1.3.1.a 
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largest integral equivalent (of a character)  2.1.3.1.g 
lengthening (of ar i thmetic  values) 2.1.2.d, 2.1.3.1.e 
{link (a book with a file)} 10.3.1.4.bb 
{literal} 10.3.4.1.l.ee 
local environ 5.2.3.2.b 
locale 2.1.1.1.b 
{lock (a file)} 10.3.1.4.gg 
{logical end} 10.3.1.l.aa 
{logical file} 10.3.1.5.dd 
lower bound 2.1.3.4.b 
make to access (a value inside a locale) 2.1.2.c 
make  to refer  to (of a name) 2.1.3.2.a 
{marker} 10.3.4.1.1.cc 
meaning 1.1.4, 2.1.4.1.a 
meaningful program 1.1.4.3.c 
{meek (position) } 6.1.1 
member  1.1.3.2.d 
metanotion l . l .3. l .d 
metaproduction rule 1.1.3.3.b 
minus (of ar i thmetic values) 2.1.3.1.e 
mode 2.1.1.2.b, 2.1.5.f 
{multiple selection} 5.3.1 
multiple value 2.1.3.4.a 
name 2.1.3.2.a 
necessary for (an environ for a scene) 7.2.2.c 
nest 3.0.2 
newer (of scopes) 2.1.2.f 
newly created (name) 2.1.3.2.a 
nil 2.1.3.2.a 
nonlocal 3.2.2.b 
notion 1.1.3.1.c 
number  of extra  lengths 2.1.3.1.d 
number  of extra  shorths 10.2.1.j, l, 2.1.3.1.d 
number  of extra widths 10.2.1.j, l 
numerical  analysis, in the sense of 2.1.3.1.e 
object 2.1.1 
of (construct of a construct) 2.1.5.a 
of (construct of a scene) 2.1.1.l.d 
of (environ of a scene) 2.1.1.1.d 
of (nest of a construct) 3.0.2 
older (of scopes) 2.1.2.f 
{on routine} 10.3.1.3 
{open (a file)} 10.3.1.4.dd 
original 1.1.3.2.f 
other syntactic mark  1.1.3.1.a 
{output compatible} 10.3.4.1.1.hh 

~J 
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{overflow} 2.1.4.3.h 
{overload} 4.5 
parallel action 10.2.4 
paranotion 1.1.4.2.a 
{perform (an alignment)} 10.3.4.1.1.ff 
{perform (an insertion)} 10.3.4.1.1.ee 
{pattern} 10.3.4.1.1.cc 
permanent  relationship 2.1.2.a 
{physical file} 10.3.1.5.cc 
{picture} 10.3.4.1.1.cc 
plain value 2.1.3.1.a 
point 1.1.3.1.a 
pragmatic  r emark  1.1.2 
{pre-elaboration} 2.1.4.1.c 
precede (in the textual order) 1.1.3.2.j 
predicate 1.3.2 
primal environ 2.2.2.a 
process 10.2.4 
produce 1.1.3.2.f 
production rule 1.1.3.2.b 
production tree 1.1.3.2.f 
program lin the strict language 1.1.1.b, 10.1.2 
{property} 2.1.1.1.b, 3.0.2 
protonotion 1.1.3.l.b 
pseudo-comment 10.1.3.Step 7 
publication language 9.3.a 
{random access} 10.3.1.3.ff 
{reach} 3.0.2 
real  number  2.1.3.1.a 
refer  to 2.1.2.e, 2.1.3.2.a 
reference language 9.3.a 
relationship 2.1.2.a 
{replicator} 10.3.4.1.1.dd 
representat ion language 9.3.a 
required 1.1.4.3.b 
resume (an action) 2.1.4.3.g 
routine 2.1.3.5.a 
{rowing} 6 
same as (of scopes) 2.1.2.f 
scene 2.1.1.l.d 
scope (of a value) 2.1.1.3.a 
scope (of an environ) 2.1.1.3.b 
{scratch (a file)} 10.3.1.4.hh 
select (a 'TAG' selecting a field) 2.1.3.3.a 
select (a "TAG' selecting a multiple value) 2.1.3.4.k 
select (a "TAG' selecting a subname) 2.1.3.3.e 
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select (a field-selector selecting a field) 2.1.5.g 
select (an index selecting a subname) 2.1.3.4.g 
select (an index selecting an element) 2.1.3.4.a 
select (a tr im selecting a multiple value) 2.1.3.4.i 
semantics 1.1.1 
semicolon 1.1.3.1.a 
sense of numerical  analysis 2.1.3.1.e 
{sequential access} 10.3.1.3.ff 
serial action 2.1.4.2.a 
simple substitute 1.1.3.3.d 
size (of an ar i thmetic  value) 2.1.3.1.b 
small syntactic mark  1.1.3.l.a 
smaller  (descendent smal ler  than a production tree) 1.1.3.2.g 
smaller  than (of ar i thmetic  values) 2.1.2.d, 2.1.3.1.e 
{soft (position) } 6.1.1 
{sort} 6 
specify (a declarer  specifying a mode) 4.6.2.d 
{spelling (of a mode)} 2.1.1.2 
s tandard environment  1.1.1, 10 
{standard function} 10.2 
{standard mode} 10.2 
{standard operator} 10.2 
{state} 10.3.1.3 
{staticize (a picture) } 10.3.4.1.1.dd 
stowed name 2.1.3.2.b 
stowed value 2.1.1.1.a 
straightening 10.3.2.3.c 
strict language l . l . l .b ,  1.1.3.2.e, 10.1.2 
{string} 8.3 
{strong (position)} 6.1.1 
structured value 2.1.3.3.a 
sublanguage 2.2.2.c 
subname 2.1.2.g 
substitute consistently 1.1.3.4.e 
substitute simply 1.1.3.3.d 
superlanguage 2.2.2.c 
{suppressed frame} 10.3.4.1.1.cc 
symbol l.l.3.1.f 
{synchronization operation} 10.2 
syntax 1.1.1 
terminal metaproduction (of a metanotion) 1.1.3.3.c 
terminal  production (of a notion) 1.1.3.2.f 
terminal production (of a production tree) 1.1.3.2.f 
terminate  (an action) 2.1.4.3.e 
textual order  1.1.3.2.i 
times (of ar i thmetic values) 2.1.3.1.e 
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t ransform 10.3.4.1.2.b 
{transient name} 2.1.3.6.c 
transitive relationship 2.1.2.a 
{transput declaration} 10.2 
{transput} 10.3 
t raverse  10.3.2.3.d 
tr im 2.1.3.4.h 
truth value 2.1.3.1.f 
typographical display feature 9.4.d 
undefined 1.1.4.3.a 
united from (of modes) 2.1.3.6.a 
{uniting} 6 
upper bound 2.1.3.4.b 
vacant  locale 2.1.1.l.b 
value 2.1.1.1.a 
variant  (of a value) 4.4.2.c 
variant  of ALGOL 68 l.l .5.b 
version (of an operator) 10.1.3.Step3 
visible 1.1.3.2.h 
void value 2.1.3.1.h 
{voiding} 6 
{weak (position)} 6.1.1 
{well formed} 7.4 
widenable to (an integer to a real number) 2.1.2.d, 2.1.3.1.e 
{widening} 6 
yield (of a scene) 2.1.2.b, 2.1.4.1.b, 2.1.5.c, d 

{Denn eben, wo Begriffe fehlen, 
Da stellt ein Wort zur rechten Zeit sich ein. 
Faust, J.W. von Goethe.} 

12.2. Paranotions 

Given below are  short paranotions representing the notions defined in 
this Report, with references to their hyper-rules.  

after-specification 10.3.4.10.1.e 
alignment 10.3.4.1.1.e 
alignment-code 10.3.4.1.1.f 
alternate-CHOICE.clause 3.4.1.d 
assignation 5.2.1.1.a 
bits.denotation 8.2.1.1 
bits-pattern 10.3.4.7.1.a 
boolean-choice-pattern 10.3.4.8.1.b 
boolean.marker  10.3.4.4.1.b 
boolean-pattern 10.3.4.4.1.a 
boundseript 5.3.2.14 

call 5.4.3.1.a 
case-clause 3.4.1.p 
case-part-of-CHOICE 3.4.1.i 
cast  5.5.1.1.a 
character-glyph 8.1.4.1.c 
charac te r -marker  10.3.4.6.1.b 
choice.clause 3.4.1.n 
chooser-CHOICE-clause 3.4.1.b 
closed-clause 3.1.1.a 
coercee 6.1.1.g 
coercend 6.1.1.h 
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collateral-clause 3.3.1.a, d, e 
collection 10.3.4.1.1.b 
complex-marker  10.3.4.5.1.b 
complex-pattern 10.3.4.5.1.a 
conditional-clause 3.4.1.o 
conformity-clause 3.4.1.q 
constant 3.0.1.d 
declaration 4.1.l.a 
declarat ive 5.4.1.1.e 
declarator  4.6.1.c, d, g, h, o, s 
declarer  4.2.1.c, 4.4.1.b, 4.6.1.a, b 
definition 4.1.l.d 
denotation 8.1.0.1.a, 8.1.1.l.a, 

8.1.2.1.a, 8.1.3.1.a, 8.1.4.1.a, 
8.1.5.1.a, 8.2.1.a, b, c, 8.3.1.a 

denoter 8.0.l.a 
deprocedured-to-FORM 6.3.1.a 
dereferenced-to.FORM 6.2.1.a 
destination 5.2.1.1.b 
digit-cypher 8.1.1.1.c 
digit-marker 10.3.4.2.1.f 
display 3.3.1.j 
do-part 3.5.1.h 
dyadic-operator 5.4.2.1.e 
enquiry-clause 3.4.1.c 
establishing-clause 3.2.1.i 
exponent-marker  10.3.4.3.1.e 
exponent-part  8.1.2.1.g 
exponent-specification 10.3.4.10.1.d 
expression 3.0.l.b 
field-selector 4.8.1.f 
fixed-point-numeral 8.1.1.l.b 
floating-point-mould 10.3.4.3.1.c 
floating.point-numeral 8.1.2.1.e 
for-part 3.5.1.b 
format-pattern 10.3.4.9.1.a 
format-text  10.3.4.1.1.a 
formula 5.4.2.1.d 
fractional-part  8.1.2.1.d 
f rame 10.3.4.1.1.m 
general-pattern 10.3.4.10.1.a 
generator  5.2.3.1.a 
go-to 5.4.4.1.b 
hip 5.1.a 
identifier-declaration 4.4.1.g 
identity-declaration 4.4.1.a 

identity-definition 4.4.1.e 
identity-relation 5.2.2.1.a 
identity-relator 5.2.2.1.b 
In-part-of-CHOICE 3.4.1.f, g, h 
in-CHOICE-clause 3.4.1.e 
indexer 5.3.2.1.i 
indicator 4.8.1.e 
insertion 10.3.4.1.1.d 
integral-choice-pattern 10.3.4.8.1.a 
integral-mould 10.3.4.2.1.b 
integral-part 8.1.2.1.c 
integral-pattern 10.3.4.2.1.a 
intervals 3.5.1.e 
joined-label-definition 10.1.1.h 
joined-portrait 3.3.1.b 
jump 5.4.4.1.a 
label-definition 3.2.1.c 
literal 10.3.4.1.1.i 
loop-clause 3.5.1.a 
lower-bound 4.6.1.m 
marker  10.3.4.1.1.n 
mode-declaration 4.2.1.a 
mode-definition 4.2.1.b 
monadic-operator 5.4.2.1.f 
nihil 5.2.4.1.a 
operand 5.4.2.1.'g 
operation-declaration 4.5.1.a 
operation-definition 4.5.1.c 
other-string-item 8.1.4.1.d 
other-PRAGMENT-item 9.2.1.d 
parallel-clause 3.3.1.c 
parameter  5.4.1.1.g, 5.4.3.1.e 
parameter-definition 5.4.1.1.f 
particular-postlude 10.1.l.i 
part icular-program 10.1.1.g 
pattern 10.3.4.1.1.o 
phrase 3.0.1.a 
picture 10.3.4.1.1.c 
plain-denotation 8.1.0. l .b 
plan 4.5.1.b, 4.6.1.p 
plusminus 8.1.2.1.j 
point-marker 10.3.4.3.1.d 
power-of-ten 8.1.2.1.i 
praglit 10.3.4.8.1.c 
pragment  9.2.1.a 
preludes 10.1.l.b 
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priori ty-declaration 4.3.1.a 
priority-definition 4.3.1.b 
p rog ram 2.2.1.a 
p rogram- tex t  10.1.l.a 
radix-digit 8.2.1.m 
rad ix -marker  10.3.4.7.1.c 
range  3.0.l.f 
real-pat tern 10.3.4.3.1.a 
repeat ing .par t  3.5.1.e 
repl icator  10.3.4.1.1.g 
revised-lower-bound 5.3.2.1.g 
routine-declarer  4.4.1.b 
routine-plan 4.5.1.b 
routine-text 5.4.1.1.a, b 
row-display 3.3.1.i 
row-rower 4.6.1.j, k, 1 
row.ROWS-rower 4.6.1.i 
rowed-to-FORM 6.6.1.a 
sample-genera tor  5.2.3.1.b 
selection 5.3.1.1.a 
serial-clause 3.2.1.a 
series 3.2.1.b 
s ign-marker  10.3.4.2.1.e 
sign-mould 10.3.4.2.1.c 
skip 5.5.2.1.a 
slice 5.3.2.1.a 
softly-deprocednred.to-FORM 6.3.1.b 
source 5.2.1.1.c 
source-for-MODINE 4.4.1.d 
specification 3.4.1.j, k 
s tagnant .par t  8A.2.l.f 
s t a tement  3.0.1.c 
str ing 8.3.1.b 
string-denotation 8.3.1.c 
str ing-i tem 8.1.4.1.b 
s tr ing-pat tern 10.3.4.6.1.a 
s t ructure.display 3.3.1.h 
subscript  5.3.2.1.e 
suppression 10.3.4.1.1.1 
symbol 9.1.1.h 
sys tem-task  10.1.l.e 
tasks 10.1.1.d 
times-ten-to-the-power-choice 8.1.2.1.h 
token 9.1.l.g 
t r i m m e r  5.3.2.1.f 
t r imscr ip t  5.3.2.1.h 

unchanged-from-FORM 6.1.l.f 
unit 3.2.1.d 
unitary-clause 3.2.1.h 
united-to-FORM 6.4.1.a 
unsuppressible-l i terai  10.3.4.1.1.i 
unsuppressible-repl icator  10.3.4.1.1.h 
unsuppressible-suppression 10.3.4.1.1.1 
upper-bound 4.6.1.n 
user- task 10.1.1.f 
vacuum 3.3.1.k 
var iable  3.0.l.e 
var iable-declarat ion 4.4.1.e 
variable-definition 4.4.1.f 
variable-point-mould 10.3.4.3.1.b 
var iable-point-numeral  8.1.2.1.b 
voided-to-FORM 6.7.1.a, b 
while-do-part 3.5.1.f 
while-part 3.5.1.g 
widened-to-FORM 6.5.1.a, b, c, d 
width-specification 10.3.4.10.1.b 
zero-marker  10.3.4.2.1.d 
ADIC-operand 5.4.2.1.c 
CHOICE-again 9.1.1.c 
CHOICE-finish 9.1.1.e 
CHOICE-in 9.1.1.b 
CHOICE-out 9.1.1.d 
CHOICE.start 9.1.l.a 
CHOICE-clause 3.4.1.a 
COMMON.joined-definition 4.1.1.b, c 
DYADIC-formula 5.4.2.1.a 
EXTERNAL-prelude 10.1.l.c 
FIELDS-definition-of-FIELD 4.6.1.f 
FIELDS-portrait 3.3.1.f, g 
FIELDS-portrayer-of-FIELDS 1 4.6.1.e 
FORM-coercee 6.1.1.a, b, c, d, e 
FROBYT-part 3.5.1.d 
INDICATOR 4.8.1.a, b 
MOlDS-joined-declarer 4.6.1.t, u 
MONADIC-formula 5.4.2.1.b 
NOTETY-pack 1.3.3.d 
NOTION-bracket 1.3.3.e 
NOTION-list 1.3.3.c 
NOTION-option 1.3.3.a 
NOTION-sequence 1.3.3.b 
NOTION-token 9.1.1.f 
PARAMETERS 5.4.3.1.b 
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PARAMETERS-joined-declarer 
4.6.1.q, r 

PRAGMENT 9.2.1.b 
PRAGMENT-item 9.2.1.c 
QUALITY-FIELDS-field-selector 

4.8.1.c, d 
RADIX 8.2.1.d, e, f, g 
RADIX-digit 8.2.1.h, i, j, k 
RADIX-frame 10.3.4.7.1.b 
ROWS-leaving-ROWSETY-indexer 

5.3.2.1.b, c, d 

TALLY-declarer 4.2.1.c 
THINGl-or-al ternatively-THING2 

1.3.3.f 
UNSUPPRESSETY-literai 

10.3.4.1.1.i 
UNSUPPRESSETY-suppression 

10.3.4.1.1.1 
UNSUPPRESSETY-COMARK-frame 

10.3.4.1.1.k 
UNSUPPRESSETY-MARK-frame 

10.3.4.1.1.j 
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12.3. Predicates  

Given below are  abbrev ia ted  forms of the predicates  defined in this 
Report.  

'and" 1.3.1.c, e 
'ba lances '  3.2.1.f, g 
'begins with'  1.3.1.h, i, j 
'coincides with'  1.3.1.k, 1 
'contains" 1.3.1.m, n 
'counts '  4.3.1.c, d 
'deflexes to' 4.7.1.a, b, c, d, e 
'deprefs  to f i rm '  7.1.1.n 
'develops f rom'  7.3.1.c 
'equivalent '  7.3.1.a, b, d, e, f, g , '  

h, i , j ,  k, q 
' false '  1.3.l.b 
' f i rmly related '  7.1.l.k 
'identified in' 7.2.1.a 
' incestuous'  4.7.1.f 

' independent'  7.1.1.a, b, c, d 
'is" 1.3.l.g 
'is derived from" 5.3.1.1.b, c 
'is f i rm'  7.1.1.1, m 
'like" 5.4.1.1.c, d 
' m a y  follow' 3.4.1.m 
'number  equals '  7.3.1.o, p 
'or '  1.3.1.d, f 
' ravels  to' 4.7.1.g 
'related" 7.1.1.e, f, g, h, i, j 
' resides in" 7.2.1.b, c 
"shields' 7.4.1.a, b, c, d 
' subset  of' 7.3.1.1, m, n 
' t rue '  1.3.1.a 
'unites to' 6.4.1.b 

12.4. Index to the s tandard  prelude 

< 10.2.3.0.a, 10.2.3.3.a, 10.2.3.5.c, 
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a, 
10.2.3.10.a, g, h 

<= 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b, 
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3,8.e, 
10.2.3.9.a, 10.2.3.10.b, g, h 

+ 10.2.3.0.a, 10.2.3.3.i, j, 10.2.3.4.i, j, 
10.2.3.5.a, b, 10.2.3.6.b, 10.2.3.7.j, 
k, p, q, r, s, 10.2.3.10.i, j, k 

+x 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s, 
10.2.3.5.e, f 

4 • 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s, 
10.2.3.5.e, f 

& 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d 
^ 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d 
[] 10.2.3.0.a, 10.2.3.8.k, 10.2.3.9.b 
r 10.2.3.0.a, 10.2.3.1.c, e 
! 10.2.3.0.a, 10.2.3.8.h 

+:= 10.2.3.0.a,10.2.3.11.d, e, f,o, p, q, s L 10.2.3.0.a, 10.2.3.1.b, d, 
+=: 10.2.3.0.a, 10.2.3.11.r, t 10.2.3.4.r 
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>_ 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e, 
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.f, 
10.2.3.9.a, 10.2.3.10.e, g, h 

<_ 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b, 
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e, 
10.2.3.9.a, 10.2.3.10.b, g, h 

10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d, 
10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a, 
10.2.3.7.g, u, v, w, x, 10.2.3.8.b, 
10.2.3.9.a, 10.2.3.10.d, g, h 

v 10.2.3.0.a, 10.2.3.2.a, 10.2.3.8.c 
I 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s, 

10.2.3.5.e, f 
÷ 10.2.3.0.a, 10.2.3.3.m 
÷x 10.2.3.0.a, 10.2.3.3.n 
+x:= 10.2.3.0.a, 10.2.3.11.k 
*. 10.2.3.0.a, 10.2.3.3.n 
÷*:= 10.2.3.0.a, 10.2.3.11.k 
- " -  1 0 2 3 0 . a ,  1 0 2 3  l l j  
x 10.2.3.0.a, 10.2.3.3.1, 10.2.3.4.1, 

10.2.3.5.a, b, 10.2.3.7.1, p, q, r, s, 
10.2.3.10.1, m,  n, o 

x:= 10.2.3.0.a, 10.2.3.11.g, h, i, n, 
o , p , u  

~ I0.2.3.2.c, I0.2.3.8.m 
I I0.2.3.0.a, I0.2.3.3.p, 10.2.3.5.g, 

10.2.3.7.t, 10.2.3.8.g 
.10.2.3.0.a,  I0.2.3.3.1, 10.2.3.4.1, 

10.2.3.5.a, b, I0.2.3.7.1, p, q, r, s, 
10.2.3.10.I, m,  n, o 

**10.2.3.0.a, 10.2.3.3.p, 10.2.3.5.g, 
10.2.3.7.t 

. := 10.2.3.0.a, 10.2.3.11.g, h, i, n, o, p, u 
- 10.2.3.2.c, 10.2.3.8.m 
- 10.2.3.0.a, 10.2.3.3.g, h, 10.2.3.4.g, h, 

10.2.3.5.a, b, 10.2.3.7.h, i , p ,  q, r, s 
- :=  10.2.3.0.a, 10.2.3.11.a, b, c, n, o, p 
/ 10.2.3.0.a, 10.2.3.3.o, 10".2.3.4.m, 

10.2.3.5.a, b, 10.2.3.7.m, p, q, r, s 
/:= 10.2.3.0.a, 10.2.3.11.1, m,  n, o, p 
/= 10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d, 

10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a, 
10.2.3.7.g, u, v, w, x, 10.2.3.8.b, 
10.2.3.9.a, 10.2.3.10.d, g, h 

% 10.2.3.0.a, 10.2.3.3.m 
%x 10.2.3.0.a, 10.2.3.3.n 
%x:= 10.2.3.0.a, 10.2.3.11.k 
%.  10.2.3.0.a, 10.2.3.3.n 
%.:= 10.2.3.0.a, 10.2.3.11.k 
%:= 10.2.3.0.a, 10.2.3.11.j 
> 10.2.3.0.a, 10.2.3.3.f, 10.2.3.4.f, 

10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a, 
10.2.3.10.f, g, h 

>= 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e, 
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.f, 
10.2.3.9.a, 10.2.3.10.e, g, h 

= 10.2.3.0.a, 10.2.3.2.d, 10.2.3.3.c, 
10.2.3.4.c, 10.2.3.5.c, d, 10.2.3.6.a, 
10.2.3.7.f, u, v, w, x, 10.2.3.8.a, 
10.2.3.9.a, 10.2.3.10.c, g, h 

abs 10.2.1.n, 10.2.3.2.f, 10.2.3.3.k, 
10.2.3.4.k, 10.2.3.7.c, 10.2.3.8.i 

and 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d 
arg 10.2.3.7.d 
bin 10.2.3.8.j 
bits 10.2.2.g 
bool 10.2.2.b 
bytes  10.2.2.h 
channel 10.3.1.2.a 
char 10.2.2.e 
compl  10.2.2.f 
conj 10.2.3.7.e 
divab 10.2.3.0.a, 10.2.3.11.1, m,  n, o, p 
down 10.2.3.0.a, 10.2.3.8.h, 10.2.4.d 
elem 10.2.3.0.a, 10.2.3.8.k, 10.2.3.9.b 

entier 10.2.3.4.r 
eq 10.2.3.0.a, 10.2.3.2.d, 10.2.3.3.c, 

10.2.3.4.c, 10.2.3.5.c, d, 10.2.3.6.a, 
10.2.3.7.f, u, v, w, x, 10.2.3.8.a, 
10.2.3.9.a, 10.2.3.10.c, g, h 

file 10.3.1.3.a 
format 10.3.5.a 
ge  10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e, 

10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.f, 
10.2.3.9.a, 10.2.3.10.e, g, h 

gt 10.2.3.0.a, 10.2.3.3.f, 10.2.3.4.f, 
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a, 
10.2.3.10.f, g, h 

i 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s, 
10.2.3.5.e, f 
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im 10.2.3.7.b 
int 10.2.2.c 
Io 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b, 

10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e, 
10.2.3.9.a, 10.2.3.10.b, g, h 

leng 10.2.3.3.q, 10.2.3.4.n, 10.2.3.7.n, 
10.2.3.8.n, 10.2.3.9.d 

level I 0 . 2 . 4 . b ,  c 
It 10.2.3.0.a, I0.2.3.3.a, I0.2.3.4.a, 

I0.2.3.5.c, d, 10.2.3.6.a, I0.2.3.9.a, 
lO.2.3.10.a, g, h 

lwb 10.2.3.0.a, 10.2.3.1.b, d 
minusab I0.2.3.0.a, lO.2.3.11.a, b, 

c, n, o, p 
mad 10.2.3.0.a, 10.2.3.3.n 
modab 10.2.3.0.a, 10.2.3.11.k 
ne 10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d, 

10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a, 
10.2.3.7.g, u, v, w, x, 10.2.3.8.b, 
10.2.3.9.a, 10.2.3.10.d, g, h 

not 10.2.3.2.c, 10.2.3.8.m 
odd 10.2.3.3.s 
or 10.2.3.0.a, 10.2.3.2.a, 10.2.3.8.c 

over 10.2.3.0.a, 10.2.3.3.m 
overab 10.2.3.0.a, 10.2.3.11.j 
plusab 10.2.3.0.a, 10.2.3.11.d, e, f, 

n, o, p, q, s 
plusto 10.2.3.0.a, 10.2.3.11.r, t 
re 10.2.3.7.a 
real 10.2.2.d 
repr 10.2.1.o 
round 10.2.3.4.p 
sema 10.2.4.a 
shl 10.2.3.0.a, 10.2.3.8.g 
shorten 10.2.3.3.r, 10.2.3.4.o, 10.2.3.7.o, 

10.2.3.8.o, 10.2.3.9.e 
shr 10.2.3.0.a, 10.2.3.8.h 
sign 10.2.3.3.t, 10.2.3.4.q 
string 1 0 . 2 . 2 . i  
timesab 10.2.3.0.a, 10.2.3.11.g, h, i, 

n, o, p ,  u 
up 10.2.3.0.a, 10.2.3.3.p, 10.2.3.5.g, 

10.2.3.7.t, 10.2.3.8.g, 10.2.4.e 
upb 10.2.3.0.a, 10.2.3.1.c, e 
void 10.2.2.a 

arccos 10.2.3.12.f 
arcsin 10.2.3.12.h 
arctan 10.2.3.12.j 
associate 10.3.1.4.e 
backspace 10.3.1.6.b 
bin possible 10.3.1.3.d 
bits lengths 10.2.1.h 
bits pack 10.2.3.8.1 
bits shorths 10.2.1.i 
bits width 10.2.1.j 
blank 10.2.1.u 
bytes lengths 10.2.1. k 
bytes pack 10.2.3.9.c 
bytes shorths 10.2.1.1 
bytes width 10.2.1.m 
chan 10.3.1.3.i 
char in string 10.3.2.1.1 
char number 10.3.1.5.a 
close 10.3.1.4.n 
compressible 10.3.1.3.e 
cos 10.2.3.12.e 
create 10.3.1.4.c 

errorchar lO.2.I.t 
estab possible 10.3.1.2.c 
establish 10.3.1.4.b 
exp 10.2.3.12.c 
exp width 10.3.2.1.o 
f ixed 10.3.2.1.c 
flip lO.2.1.r 
float 10.3.2.1.d 
flop lO.2.1.s 
get 10.3.3.2.a 
get bin 10.3.6.2.a 
get possible 10.3.1.3.b 

get f  10.3.5.2.a int lengths 110.2A.fia/I 
int shorths 10.2.1.b 
int width 10.3.2.1.m 
last random 10.5.1.a 
line number 10.3.1.5.b 
In 10.2.3.12.d 
lock 10.3.1.4.o 
make cony 10.3.1.3.j 
make term 10.3.1.3.k 
max abs char 10.2.1.p 
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max int 10.2.1.c 
max real 10.2.l.f 
newline 10.3.1.6.c 
newpage 10.3.1.6.d 
next random 10.2.3.12.k 
null character 10.2.1.q 
on char error 10.3.1.3.r 
on format end 10.3.1.3.p 
on line end 10.3.1.3.o 
on logical file end 10.3.1.3.1 
on page end 10.3.1.3.n 
on physical file end 10.3.1.3.m 
on value error 10.3.1.3.q 
open 10.3.1.4.d 
page number 10.3.1.5.c 
pi 10.2.3.12.a 
print 10.5.1.d • 
printf  10.5.1.f 
put 10.3.3.1.a 
put bin 10.3.6.1.a 
put possible 10.3.1.3.c 
put f  10.3.5.1.a 
random 10.5.1.b 
read 10.5.l.e 
read bin 10.5.1.i 
readf 10.5.l.g 
real lengths 10.2.1.d 
real shorths 10.2.1.e 
real width 10.3.2.1.n 
reidf 10.3.1.3.s 
reidf possible 10.3.1.3.h 
reset 10.3.1.6.j 
reset possible 10.3.1.3.f 
scratch 10.3.1.4.p 
set 10.3.1.6.i 
set char number 10.3.1.6.k 
set possible 10.3.1.3.g 
sin 10.2.3.12.g 
small real 10.2.l.g 
space 10.3.1.6.a 
sqrt 10.2.3.12.b 
stand back 10.5.1.c 
stand back channel 10.3.1.2.g 
stand in 10.5.1.c 
stand in channel 10.3.1.2.e 
stand out 10.5.1.c 
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stand out channel 10.3.1.2.f 
standconv 10.3.1.2.d 
stop 10.5.2.a 
tan 10.2.3.12.i 
whole 10.3.2.1.b 
write 10.5.1.d 
write bin 10.5.1.h 
writef 10.5.l.f 
L bits 10.2.2.g 
L bytes 10.2.2.h 
L compl 10.2.2.f 
Lint  10.2.2.c 
L real 10.2.2.d 
L arccos 10.2.3.12.f 
L arcsin 10.2.3.12.h 
L arctan 10.2.3.12.j 
L bitspack 10.2.3.8.1 
L bits width 10.2.1.j 
L bytespack 10.2.3.9.c 
L bytes width 10.2.1.m 
L cos 10.2.3.12.e 
L exp 10.2.3.12.c 
L exp width 10.3.2.1.o 
Lin t  width 10.3.2.1.m 
L last random 10.5.1.a 
L In 10.2.3.12.d 
L max int '0.2.1.c 
L max real 10.2.l.f 
L next random 10.2.3.12.k 
L pi 10.2.3.12.a 
L random 10.5.l.b 
L real width 10.3.2.1.n 
L sin 10.2.3.12.g 
L small real 10.2.1.g 
L sqrt 10.2.3.12.b 
L tan 10.2.3.12.i 
9 beyond 10.3.1.l .d 
9 bflle 10.3.1.1.e 
9 book 10.3.1.1.a 
9 collection 10.3.5.a 
9 co. i tem 10.3.5.a 
9 cony 10.3.1.2.b 
9 cpattern 10.3.5.a 
9 flextext 10.3.1.1.b 
9 fpattern 10.3.5.a 
9 frame 10.3.5.a 

9 gpattern 10.3.5.a 
9 inserfion 10.3.5.a 
9 intype 10.3.2.2.d 
9 number 10.3.2.1.a 
9 outtype 10.3.2.2.b 
9 pattern 10.3.5.a 
9 picture 10.3.5.a 
9piece 10.3.5.a 
9pos 10.3.1.1.c 
9 rows 10.2.3.1.a 

sframe 10.3.5.e 
9 simplin 10.3.2.2.c 
.~ simplout 10.3.2.2.a 
9 sinsert 10.3.5.c 
9 straightin 10.3.2.3.b 
9 straightout 10.3.2.3.a 
9 text 10.3.1.l .b 
9 alignment 10.3.5.i 
9 associate format 10.3.5.k 
9 bfileprotect 10.3.1.1.h 
9 book bounds 10.3.1.5.e 

chainbfile 10.3.1.1.f 
9 char dig 10.3.2.1.k 
9 checkpos 10.3.3.2.c 
9 currentpos 10.3.1.5.d 
9 dig char 10.3.2.1.h 
9 do fpattern 10.3.5.j 
9 edit string 10.3.5.1.b 
9false 10.3.1.4.i 
9 file available 10.3.1.4.f 
9from bin 10.3.6.b 
9 get char 10.3.3.2.b 
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~' get good file 10.3.1.6.g 
get good line 10.3.1.6.e 
get good page 10.3.1.6. f 

q' get insertion 10.3.5.h 
"~ get next picture 10.3.5.b 
* gremlins 10.4.1.a 
~' idf ok 10.3.1.4.g 

indit string 10.3.5.2.b 
line ended 10.3.1.5.f 

~' lockedbfile 10.3.1.l.g 
9 logical file ended 10.3.1.5.i 
q' match 10.3.1.4.h 

next pos 10.3.3.1.c 
~' page ended 10.3.1.5.g 
q' physical file ended 10.3.1.5.h 
* put char 10.3.3.1.b 
q' put insertion 10.3.5.g 

set bin mood 10.3.1.4.m 
set char mood 10.3.1.4.1 

9 set mood 10.3.1.6.h 
9 set read mood 10.3.1.4.k 
9 set write mood 10.3.1.4.j 
9 standardize 10.3.2.1.g 
9 staticize frames 10.3.5.f 
9 staticize insertion 10.3.5.d 
9 string to L int 10.3.2.1.i 
9 string to L real 10.3.2.1.j 
9 subfixed 10.3.2.1.f 
9 subwhole 10.3.2.1.e 
9 to bin 10.3.6.a 
9 undefined 10.3.1.4.a 
9 L standardize 10.3.2.1.g 
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12.5. Alphabet ic  l is t ing of m e t a p r o d u c t i o n  rules  

ABC{942L} : : a  ; b  ; c  ; d  ; e  ; f  ; g  ; h  ; i  ; j  ; k  ;1  ; m  ; n  ; o  ; p  ; 
q ; r  ; s  ; t  ; u  ; v  ; w  ; x  ; y  ; z .  

ADIC{542C} :: DYADIC ; MONADIC. 
ALPHA{13B} : : a  ; b  ; c  ; d  ; e  ; f  ; g  ; h  ; i  ; j  ; k  ; I  ; m  ; n  ; o  ; p  ; 

q ; r  ; s  ; t  ; u  ; v  ; w  ; x  ; y  ; z .  
BECOMESETY{942J} :: cure b e c o m e s  ; cure  a s s i g n s  to ; EMPTY. 
BITS{65A} :: s tructured with 

row of boolean field SITHETY let ter  a leph m o d e .  
BYTES{65B} :: s tructured with 

row of c h a r a c t e r  f ield SITHETY let ter  aleph m o d e .  
CASE{34B} :: cho ice  us ing integral  ; cho ice  us ing UNITED. 
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CHOICE{34A} ::  c h o i c e  u s i n g  b o o l e a n  ; CASE. 
COLLECTION{A341C} :: un ion  of P I C T U R E  C O L L I T E M  m o d e .  
COLLITEM{A341D} ::  s t r u c t u r e d  w i t h  I N S E R T I O N  f i e ld  l e t t e r  i d i g i t  one  

p r o c e d u r e  y i e l d i n g  i n t e g r a l  f i e ld  l e t t e r  r l e t t e r  e l e t t e r  p 
i n t e g r a l  f i e ld  l e t t e r  p 
INSERTION f ie ld  l e t t e r  i d ig i t  two  m o d e .  

COMARK{A341N} ::  z e r o  ; d ig i t  ; c h a r a c t e r .  
COMMON{41A} ::  m o d e  ; p r i o r i t y  ; MODINE i d e n t i t y  ; 

r e f e r e n c e  to MODINE v a r i a b l e  ; MODINE o p e r a t i o n  ; 
P A R A M E T E R  ; M O D E  FIELDS.  

COMORF{61G} :: NEST a s s i g n a t i o n  ; NEST i d e n t i t y  r e l a t i o n  ; 
NEST LEAP g e n e r a t o r  ; NEST c a s t  ; NEST d e n o t e r  ; 
NEST f o r m a t  t ex t .  

CPATTERN{A341I} :: s t r u c t u r e d  w i t h  I N S E R T I O N  f ie ld  l e t t e r  i 
i n t e g r a l  f i e ld  l e t t e r  t l e t t e r  y l e t t e r  p l e t t e r  e 
r o w  of I N S E R T I O N  f i e ld  l e t t e r  c m o d e .  

DEC{123E} ::  MODE TAG ; p r i o r i t y  P R I O  TAD ; M O l D  TALLY TAB ; 
DUO TAD ; MONO TAM. 

DECS{123D} ::  DEC ; DECS DEC. 
DECSETY{123C} ::  DECS ; EMPTY. 
DEFIED{48B} ::  d e f i n i n g  ; a p p l i e d .  
DIGIT{942C} ::  d ig i t  z e r o  ; d ig i t  one  ; d i g i t  two  ; d ig i t  t h r e e  ; d ig i t  f o u r  ; 

d ig i t  f i ve  ; d ig i t  s ix  ; d ig i t  s e v e n  ; d ig i t  e i g h t  ; d ig i t  n ine .  
DOP{942M*} ::  DYAD ; DYAD c u m  NOMAD. 
DUO{123H} ::  p r o c e d u r e  w i t h  P A R A M E T E R 1  P A R A M E T E R 2  y i e l d i n g  MOLD. 
DYAD{942G} ::  MONAD ; NOMAD. 
DYADIC{542A} ::  p r i o r i t y  PRIO.  

EMPTY{12G} ::  . 
ENCLOSED{122A} ::  c l o s e d  ; c o l l a t e r a l  ; p a r a l l e l  ; C H O I C E  ; loop. 
EXTERNAL{A1A} ::  s t a n d a r d  ; l i b r a r y  ; s y s t e m  ; p a r t i c u l a r .  
FIELD{12J} ::  M O D E  f ie ld  TAG. 
FIELDS{12I} ::  FIELD ; FIELDS FIELD. 
FIRM{61B} ::  MEEK ; u n i t e d  to. 
FIVMAT{A341L} ::  m u i  de f i n i t i on  of s t r u c t u r e d  w i t h  r o w  of 

s t r u c t u r e d  w i t h  i n t e g r a l  f i e ld  l e t t e r  c l e t t e r  p 
i n t e g r a l  f i e ld  l e t t e r  c l e t t e r  o l e t t e r  u l e t t e r  n l e t t e r  t 
i n t e g r a l  f i e ld  l e t t e r  b l e t t e r  p r o w  of un ion  of s t r u c t u r e d  
w i t h  un ion  of P A T T E R N  C P A T T E R N  
s t r u c t u r e d  w i t h  I N S E R T I O N  f ie ld  l e t t e r  i 
p r o c e d u r e  y i e l d i n g  m u i  a p p l i c a t i o n  f i e ld  
l e t t e r  p l e t t e r  f m o d e  G P A T T E R N  v o i d  m o d e  f i e ld  l e t t e r  p 
INSERTION f ie ld  l e t t e r  i m o d e  C O L L I T E M  m o d e  f i e ld  
l e t t e r  c m o d e  f i e ld  l e t t e r  a l e p h  m o d e .  

FLEXETY{12K} ::  f l e x i b l e  ; EMPTY. 
FORM{61E} ::  M O R F  ; COMORF.  
FORMAT{A341A} ::  s t r u c t u r e d  w i t h  r o w  of PIECE f i e ld  l e t t e r  a l e p h  m o d e .  
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FPATTERN{A341J} ::  s t r u c t u r e d  w i t h  I N S E R T I O N  f i e ld  l e t t e r  i 
p r o c e d u r e  y i e l d i n g  FIVMAT f ie ld  l e t t e r  p l e t t e r  f m o d e .  

FRAME{A341H} ::  s t r u c t u r e d  wi th  I N S E R T I O N  f ie ld  l e t t e r  i 
p r o c e d u r e  y i e l d i n g  i n t e g r a l  f i e ld  l e t t e r  r l e t t e r  e l e t t e r  p 
b o o l e a n  f ie ld  l e t t e r  s l e t t e r  u l e t t e r  p l e t t e r  p 
c h a r a c t e r  f i e ld  l e t t e r  m l e t t e r  a l e t t e r  r l e t t e r  k 
l e t t e r  e l e t t e r  r m o d e .  

FROBYT{35A} ::  f r o m  ; by  ; to. 

GPATTERN{A341K} ::  s t r u c t u r e d  w i t h  I N S E R T I O N  f i e ld  l e t t e r  i 
r o w  of p r o c e d u r e  y i e l d i n g  i n t e g r a l  f i e ld  
l e t t e r  s l e t t e r  p l e t t e r  e l e t t e r  c m o d e .  

HEAD{73B} ::  PLAIN ; P R E F  ; s t r u c t u r e d  w i t h  ; F L E X E T Y  R O W S  of ; 
p r o c e d u r e  w i t h  ; un ion  of  ; vo id .  

INDlCATOR{48A} :: i d e n t i f i e r  ; m o d e  i n d i c a t i o n  ; o p e r a t o r .  
lNSERTION{A341E} ::  r o w  of s t r u c t u r e d  w i t h  

p r o c e d u r e  y i e l d i n g  i n t e g r a l  f i e ld  l e t t e r  r l e t t e r  e l e t t e r  p 
un ion  of r o w  of c h a r a c t e r  c h a r a c t e r  m o d e  f i e ld  
l e t t e r  s l e t t e r  a m o d e .  

INTREAL{12C} ::  SIZETY i n t e g r a l  ; SIZETY r e a l .  

LAB{123K} ::  l a b e l  TAG. 
LABS{123J} ::  LAB ; LABS LAB. 
LABSETY{123I} ::  LABS ; EMPTY. 
LAYER{123B} :.. n e w  DECSETY LABSETY.  
LEAP{44B} ::  l oca l  ; h e a p  ; p r i m a l .  
LENGTH{65D} ::  l e t t e r  l l e t t e r  o l e t t e r  n l e t t e r  g. 
LENGTHETY[65F} :: L E N G T H  L E N G T H E T Y  ; EMPTY. 
LETTER{942B} :: l e t t e r  ABC ; l e t t e r  a l e p h  ; s t y l e  TALLY l e t t e r  ABC. 
LONGSETY{12E} ::  l o n g  LONGSETY ; EMPTY. 

MARK{A341M} ::  s ign  ; po in t  ; e x p o n e n t  ; c o m p l e x  ; b o o l e a n .  
MEEK{61C} :: u n c h a n g e d  f r o m  ; d e r e f e r e n c e d  to ; d e p r o c e d u r e d  to. 
MODE{12A} :: PLAIN ; S T O W E D  ; REF  to MODE ; P R O C E D U R E  ; 

UNITED ; MU de f in i t i on  of M O D E  ; MU a p p l i c a t i o n .  
MODINE{44A} ::  MODE ; r ou t i ne .  
MOID{12R} :: MODE ; vo id .  
MOIDS{46C} :: M O l D  ; MOLDS MOLD. 
MOIDSETY{47C} ::  MOLDS ; EMPTY. 
MONADIC{542B} ::  p r i o r i t y  iii iii iii i .  
MONAD{942H} ::  o r  ; a n d  ; a m p e r s a n d  ; d i f f e r s  f r o m  ; is a t  m o s t  ; 

is a t  l e a s t  ; o v e r  ; p e r c e n t  ; w i n d o w  ; f l oo r  ; c e i l i n g  ; 
p lus  i t i m e s  ; no t  ; t i lde  ; d o w n  ; up  ; p lus  ; m i n u s  ; 
s ty l e  TALLY m o n a d .  

MONO{123G} ::  p r o c e d u r e  w i t h  P A R A M E T E R  y i e l d i n g  MOLD. 
MOOD{I2U} : : 

PLAIN ; S T O W E D  ; r e f e r e n c e  to M O D E  ; P R O C E D U R E  ; vo id .  
MOODS{12T} ::  M O O D  ; M O O D S  MOOD.  

233 
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MOODSETY{47B} ::  M O O D S  ; EMPTY.  
MORF{61F} ::  NEST s e l e c t i o n  ; NEST s l i c e  ; NEST r o u t i n e  t e x t  ; 

NEST ADIC f o r m u l a  ; NEST c a l l  ; 
NEST a p p l i e d  i d e n t i f i e r  w i t h  TAG.  

MU{12V} ::  m u T A L L Y .  

NEST{123A} ::  LAYER ; NEST LAYER.  
NOMAD{942I} ::  is  l e s s  t h a n  ; is  g r e a t e r  t h a n  ; d i v i d e d  b y  ; e q u a l s  ; 

t i m e s  ; a s t e r i s k .  
NONPREF{71B} ::  PLAIN ; S T O W E D  ; 

procedure w i t h  P A R A M E T E R S  yielding M O l D  ; U N I T E D  ; vo id .  
NONPROC{67A} ::  PLAIN ; S T O W E D  ; R E F  to N O N P R O C  ; 

p r o c e d u r e  w i t h  P A R A M E T E R S  y i e l d i n g  M O l D  ; UNITED.  
NONSTOWED{47A} ::  PLAIN ; R E F  to M O D E  ; P R O C E D U R E  ; U N I T E D  ; 

vo id .  
NOTETY{13C} :: N O T I O N  ; EMPTY.  
NOTION{13A} ::  A L P H A  ; N O T I O N  ALPHA.  
NUMERAL{810B "} : :  f i x e d  p o i n t  n u m e r a l  ; v a r i a b l e  p o i n t  n u m e r a l  ; 

f l o a t i n g  p o i n t  n u m e r a l .  

PACK{31B} ::  STYLE p a c k .  
PARAMETER{12Q} ::  M O D E  p a r a m e t e r .  
PARAMETERS{12P}  ::  P A R A M E T E R  ; P A R A M E T E R S  P A R A M E T E R .  
PARAMETY{120} ::  w i t h  P A R A M E T E R S  ; EMPTY.  
PART{73E} ::  F IELD ; P A R A M E T E R .  
PARTS{73D} :: P A R T  ; P A R T S  P A R T .  
PATTERN{A341G} ::  s t r u c t u r e d  w i t h  

i n t e g r a l  f i e ld  l e t t e r  t l e t t e r  y l e t t e r  p l e t t e r  e 
r o w  of F R A M E  f i e ld  
l e t t e r  f l e t t e r  r l e t t e r  a l e t t e r  m l e t t e r  e l e t t e r  s m o d e .  

PICTURE{A341F} ::  s t r u c t u r e d  w i t h  u n i o n  of P A T T E R N  C P A T T E R N  
F P A T T E R N  G P A T T E R N  v o i d  m o d e  f i e ld  l e t t e r  p 
I N S E R T I O N  f i e ld  l e t t e r  i m o d e .  

PIECE{A341B} ::  s t r u c t u r e d  w i t h  i n t e g r a l  f i e ld  l e t t e r  c l e t t e r  p 
i n t e g r a l  f i e ld  l e t t e r  c l e t t e r  o l e t t e r  u l e t t e r  n l e t t e r  t 
i n t e g r a l  f i e ld  l e t t e r  b l e t t e r  p 
r o w  of C O L L E C T I O N  f i e ld  l e t t e r  c m o d e .  

PLAIN{12B} ::  I N T R E A L  ; b o o l e a n  ; c h a r a c t e r .  
PRAGMENT{92A} ::  p r a g m a t  ; c o m m e n t .  
PRAM{45A} ::  D U O  ; MONO.  
PREF{71A} ::  p r o c e d u r e  y i e l d i n g  ; R E F  to.  
PREFSETY{71C ~} ::  P R E F  P R E F S E T Y  ; EMPTY.  
PRIMARY{5D} ::  s l i c e  c o e r c e e  ; c a l l  c o e r c e e  ; c a s t  c o e r c e e  ; 

d e n o t e r  c o e r c e e  ; f o r m a t  t e x t  c o e r c e e  ; 
a p p l i e d  i d e n t i f i e r  w i t h  T A G  c o e r c e e  ; E N C L O S E D  c l a u s e .  

PRIO{123F} :: i ; ii ; iii  ; iii i ; iii  ii ; iii  iii  ; iii iii  i ; iii  iii ii ; iii  i i i  iii. 
PROCEDURE{12N} ::  p r o c e d u r e  P A R A M E T Y  y i e l d i n g  MOLD. 
PROP{48E} :: DEC ; LAB ; FIELD.  
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PROPS{48D} :: P R O P  ; P R O P S  P R O P .  
PROPSETY{48C} ::  P R O P S  ; EMPTY.  

QUALITY{48F} ::  M O D E  ; M O l D  TALLY ; DYADIC ; l a b e l  ; M O D E  f ie ld .  

RADIX{82A} ::  r a d i x  two  ; r a d i x  f o u r  ; r a d i x  e i g h t  ; r a d i x  s i x t e e n .  
REF{12M} :: r e f e r e n c e  ; t r a n s i e n t  r e f e r e n c e .  
REFETY{531A} ::  REF  to ; EMPTY.  
REFLEXETY{531B} ::  REF to ; R E F  to f l e x i b l e  ; EMPTY.  
ROWS{12L} ::  r o w  ; R O W S  row.  
ROWSETY{532A} ::  R O W S  ; EMPTY.  

SAFE{73A} ::  s a f e  ; MU h a s  M O D E  SAFE ; y i n  SAFE ; y a n g  SAFE ; 
r e m e m b e r  M O I D I  MOLD2 SAFE. 

SECONDARY{5C} :: 
LEAP g e n e r a t o r  c o e r c e e  ; s e l e c t i o n  c o e r c e e  ; P R I M A R Y .  

SHORTH{65E}  ::  l e t t e r  s l e t t e r  h l e t t e r  o l e t t e r  r l e t t e r  t. 
SHORTHETY{65G}  ::  S H O R T H  S H O R T H E T Y  ; EMPTY.  
SHORTSETY{12F}  ::  s h o r t  S H O R T S E T Y  ; EMPTY.  
SITHETY{65C} : :  L E N G T H  L E N G T H E T Y  ; S H O R T H  S H O R T H E T Y  ; EMPTY.  
SIZE{810A} ::  l o n g  ; s h o r t .  
SIZETY{12D} ::  l o n g  L O N G S E T Y  ; s h o r t  S H O R T S E T Y  ; EMPTY.  
SOFT{61D} ::  u n c h a n g e d  f r o m  ; s o f t l y  d e p r o c e d u r e d  to.  
SOID{31A} :: S O R T  MOLD. 
SOME{122B} ::  S O R T  M O l D  NEST.  
SORT{122C} ::  s t r o n g  ; f i r m  ; m e e k  ; w e a k  ; sof t .  
STANDARD{942E} ::  i n t e g r a l  ; r e a l  ; b o o l e a n  ; c h a r a c t e r  ; f o r m a t  ; v o i d  ; 

c o m p l e x  ; b i t s  ; b y t e s  ; s t r i n g  ; s e m a  ; f i l e  ; c h a n n e l .  
STOP{A1B} ::  l a b e l  l e t t e r  s l e t t e r  t l e t t e r  o l e t t e r  p. 
STOWED{12H} ::  s t r u c t u r e d  w i t h  F IELDS m o d e  ; 

F L E X E T Y  R O W S  of MODE.  
STRONG{61A} ::  FIRM ; w i d e n e d  to ; r o w e d  to ; v o i d e d  to.  
STYLE{133A} ::  b r i e f  ; b o l d  ; s t y l e  TALLY.  

TAB{942D} ::  b o l d  TAG ; SIZETY S T A N D A R D .  
TAD{942F} ::  b o l d  TAG ; DYAD B E C O M E S E T Y  ; 

DYAD c u m  NOMAD B E C O M E S E T Y .  
TAG{942A} ::  L E T T E R  ; TAG L E T T E R  ; TAG DIGIT .  
TAILETY{73C} ::  M O l D  ; F IELDS m o d e  ; P A R A M E T E R S  y i e l d i n g  M O l D  ; 

M O O D S  m o d e  ; EMPTY.  
TALLETY{542D} :: TALLY ; EMPTY.  
TALLY{12W} ::  i ; TALLY i. 
TAM{942K} ::  b o l d  TAG ; M O N A D  B E C O M E S E T Y  ; 

MONAD c u r e  NOMAD B E C O M E S E T Y .  
TAO{45B} :: TAD ; TAM. 
TAX{48G} :: TAG ; T A B  ; TAD ; TAM. 
TERTIARY{5B} ::  ADIC f o r m u l a  c o e r c e e  ; n i h i l  ; SECONDARY.  
THING{13D} ::  N O T I O N  ; ( N O T E T Y I )  N O T E T Y 2  ; 

T H I N G  ( N O T E T Y I )  N O T E T Y 2 .  
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TYPE{A341P} ::  i n t e g r a l  ; r e a l  ; b o o l e a n  ; c o m p l e x  ; s t r i n g  ; b i t s  ; 
i n t e g r a l  c h o i c e  ; b o o l e a n  c h o i c e  ; f o r m a t  ; g e n e r a l .  

UNIT{5A} ::  a s s i g n a t i o n  c o e r c e e  ; i d e n t i t y  r e l a t i o n  c o e r c e e  ; 
r o u t i n e  t e x t  c o e r c e e  ; j u m p  ; s k i p  ; T E R T I A R Y .  

UNITED{12S} ::  un ion  of M O O D S  m o d e .  
UNSUPPRESSETY{A3410}  ::  u n s u p p r e s s i b l e  ; EMPTY. 
VICTAL{46A} ::  VIRACT ; f o r m a l .  
VIRACT{46B} ::  v i r t u a l  ; a c t u a l .  
WHETHER{13E} : :  w h e r e  ; un les s .  


