
Revised Report
on the Algorithmic Language
Algol 68
Edited by

A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck,
C. H. A. Koster, M. Sintzoff, C. H. Lindsey,
L. G. L.T. Meertens and R. G. Fisker

T h i s E d i t i o n , w h i c h i s i s s u e d a s a S u p p l e m e n t

t o ALGOL B u l l e t i n n u m b e r 4 7 , i n c l u d e s a l l e r r a t a

a u t h o r i s e d b y t h e ALGOL 6 8 S u p p o r t s u b c o m m i t t e e

o £ I F I P WG2.1 u p t o t h e e n d o f 1 9 7 8 .

This Repo r t has been a c c e p t e d by Work ing G r o u p 2.1, r e v i e w e d b y
Techn ica l C o m m i t t e e 2 on P r o g r a m m i n g and a p p r o v e d for pub l i ca t i on b y
the G e n e r a l A s s e m b l y of the I n t e r n a t i o n a l F e d e r a t i o n for I n f o r m a t i o n
P roces s ing . R e p r o d u c t i o n of the Repor t , for a n y pu rpose , but only of the
whole tex t , is exp l i c i t l y p e r m i t t e d wi thou t f o r m a l i t y .

CONTENTS

A c k n o w l e d g e m e n t s . 6
0. In t roduc t ion . 8

0.1. Aims and p r inc ip l e s of des ign . 8
0.1.1. C o m p l e t e n e s s and c l a r i t y of d e s c r i p t i o n . 9
0.1.2. Or thogona l des ign . 9
0.1.3. S e c u r i t y . 9
0.1.4. E f f i c i ency . : . 9

0.2. C o m p a r i s o n with ALGOL 60 . 10
0.3. C o m p a r i s o n with the l a n g u a g e de f ined in 1968 . 13
0.4. Changes in the m e t h o d of d e s c r i p t i o n . 15

P A R T I

P r e l i m i n a r y def in i t ions

1. L a n g u a g e and m e t a l a n g u a g e . 17
1.1. The m e t h o d of d e s c r i p t i o n . 17

1.1.1. In t roduc t ion . 17
1.1.2. P r a g m a t i c s . 18
1.1.3. The s y n t a x of the s t r i c t l a n g u a g e . 19

1.1.3.1. P ro tono t ions . 19
1.1.3.2. P roduc t i on ru les and p roduc t ion t r e e s . 21
1.1.3.3. M e t a p r o d u c t i o n ru les and s i m p l e subs t i t u t ion 23
1.1.3.4. H y p e r - r u l e s and cons i s t en t subs t i tu t ion . 25

1.1.4. The s e m a n t i c s . 26
1.1.4.1. Hyperno t ions , d e s i g n a t i o n and e n v e l o p m e n t 27

van Wi jngaa rden , et al.

1.1.4.2. P a r a n o t i o n s . 27
1.1.4.3. U n d e f i n e d . 30

1.1.5. T r a n s l a t i o n s a n d v a r i a n t s . 30
1.2. G e n e r a l m e t a p r o d u e t i o n r u l e s . 31
1.3. G e n e r a l h y p e r - r u l e s . 33

2. T h e c o m p u t e r a n d t h e p r o g r a m . 35
2.1. T e r m i n o l o g y . 36

2.1.1. O b j e c t s . 36
2.1.1.1. V a l u e s , l o c a l e s , e n v i r o n s a n d s c e n e s . 36
2.1.1.2. M o d e s . 37
2.1.1.3. S c o p e s . 38

2.1.2. R e l a t i o n s h i p s . 39
2.1.3. V a l u e s . 39

2.1.3.1. P l a i n v a l u e s . 39
2.1.3.2. N a m e s . 41
2.1.3.3. S t r u c t u r e d v a l u e s . 42
2.1.3.4. M u l t i p l e v a l u e s . 42
2.1.3.5. R o u t i n e s . 45
2.I .3 .6. A c c e p t a b i l i t y of v a l u e s . 45

2.1.4. A c t i o n s . 46
2.1.4.1. E l a b o r a t i o n . 46
2.1.4.2. S e r i a l a n d c o l l a t e r a l a c t i o n s . 47
2.I .4 .3 . I n i t i a t i o n , c o m p l e t i o n a n d t e r m i n a t i o n . 48

2.1.5. A b b r e v i a t i o n s . 49
2.2. T h e p r o g r a m . 51

PART II

F u n d a m e n t a l c o n s t r u c t i o n s

3. C l a u s e s . 53
3.1. C l o s e d c l a u s e s . 53
3.2. S e r i a l c l a u s e s . 54
3.3. C o l l a t e r a l a n d p a r a l l e l c l a u s e s . 57
3.4. C h o i c e c l a u s e s . 59
3.5. L o o p c l a u s e s . 63

4. D e c l a r a t i o n s , d e c l a r e r s a n d i n d i c a t o r s . 66
4.1. D e c l a r a t i o n s . 66
4.2. M o d e d e c l a r a t i o n s . 67
4.3. P r i o r i t y d e c l a r a t i o n s . 68
4.4. I d e n t i f i e r d e c l a r a t i o n s . 68
4.5. O p e r a t i o n d e c l a r a t i o n s . 70
4.6. D e c l a r e r s . 71
4.7. R e l a t i o n s h i p s b e t w e e n m o d e s . / 74
4.8. I n d i c a t o r s a n d f i e ld s e l e c t o r s . 76

ALGOL 68 Revised Repor t

5. U n i t s . 77
5.1. S y n t a x . 77
5.2. U n i t s a s s o c i a t e d w i t h n a m e s . 78

5.2.1. A s s i g n a t i o n s . 78
5.2.2. I d e n t i t y r e l a t i o n s . 79
5.2.3. G e n e r a t o r s . 80
5.2.4. N i h i l s . 82

5.3. U n i t s a s s o c i a t e d w i t h s t o w e d v a l u e s . 82
5.3.1. S e l e c t i o n s . 82
5.3.2. S l i c e s . 83

5.4. U n i t s a s s o c i a t e d w i t h r o u t i n e s . 86
5.4.1. R o u t i n e t e x t s . 86
5.4.2. F o r m u l a s . 87
5.4.3. C a l l s . 88
5.4.4. J u m p s . 89

5.5. U n i t s a s s o c i a t e d w i t h v a l u e s of a n y m o d e . 90
5.5.1. C a s t s . 90
5.5.2. S k i p s . 90

P A R T I I I

C o n t e x t d e p e n d e n c e

6. C o e r c i o n . 91
6.1. C o e r c e e s . 91
6.2. D e r e f e r e n c i n g . 93
6.3. D e p r o c e d u r i n g . 94
6.4. U n i t i n g . 94
6.5. W i d e n i n g . 95
6.6. R o w i n g . 96
6.7. V o i d i n g . 97

7. M o d e s a n d n e s t s . 98
7.1. I n d e p e n d e n c e of p r o p e r t i e s . 98
7.2. I d e n t i f i c a t i o n in n e s t s . 101
7.3. E q u i v a l e n c e of m o d e s . I03
7.4. W e l l - f o r m e d n e s s . 107

P A R T IV

E l a b o r a t i o n - i n d e p e n d e n t c o n s t r u c t i o n s

8. D e n o t a t i o n s . 108
8.1. P l a i n d e n o t a t i o n s . 108

8.1.1. I n t e g r a l d e n o t a t i o n s . 108

van Wijngaarden, et al.

8.1.2. R e a l d e n o t a t i o n s . 109
8.1.3. B o o l e a n d e n o t a t i o n s . 110
8.1.4. C h a r a c t e r d e n o t a t i o n s . 110
8.1.5. Void d e n o t a t i o n . 111

8.2. B i t s d e n o t a t i o n s . 111
8.3. S t r i n g d e n o t a t i o n s . 112

9. T o k e n s a n d s y m b o l s . 113
9.1. T o k e n s . 113
9.2. C o m m e n t s a n d p r a g m a t s . 114
9.3. R e p r e s e n t a t i o n s . 115
9.4. T h e r e f e r e n c e l a n g u a g e . 116

9.4.1. R e p r e s e n t a t i o n s of s y m b o l s . 118
9.4.2. O t h e r T A X s y m b o l s . 122

P A R T V

E n v i r o n m e n t a n d e x a m p l e s

10. S t a n d a r d e n v i r o n m e n t . 124
10.1. P r o g r a m t e x t s . 124

10.1.2. T h e e n v i r o n m e n t c o n d i t i o n . 125
10.1.3. The m e t h o d of d e s c r i p t i o n of t h e s t a n d a r d e n v i r o n m e n t 126

I0.2. T h e s t a n d a r d p r e l u d e . 128
10.2.1. E n v i r o n m e n t e n q u i r i e s . 128
10.2.2. S t a n d a r d m o d e s . 129
10.2.3. S t a n d a r d o p e r a t o r s a n d f u n c t i o n s . 130

10.2.3.0. S t a n d a r d p r i o r i t i e s . 130
10.2.3.1. R o w s a n d a s s o c i a t e d o p e r a t i o n s . 130
10.2.3.2. O p e r a t i o n s on b o o l e a n o p e r a n d s . 131
10.2.3.3. O p e r a t i o n s on i n t e g r a l o p e r a n d s . 131
10.2.3.4. O p e r a t i o n s on r e a l o p e r a n d s . 132
10.2.3.5. O p e r a t i o n s on a r i t h m e t i c o p e r a n d s . 133
10.2.3.6. O p e r a t i o n s on c h a r a c t e r o p e r a n d s . 133
10.2.3.7. O p e r a t i o n s on c o m p l e x o p e r a n d s . 133
10.2.3.8. B i t s a n d a s s o c i a t e d o P e r a t i o n s . 135
10.2.3.9. B y t e s a n d a s s o c i a t e d o p e r a t i o n s . 136
10.2.3.10. S t r i n g s a n d a s s o c i a t e d o p e r a t i o n s . 137
I0.2.3.11. O p e r a t i o n s c o m b i n e d w i t h a s s i g n a t i o n s . 137
10.2.3.I2. S t a n d a r d m a t h e m a t i c a l c o n s t a n t s a n d f u n c t i o n s 138

I0.2.4. S y n c h r o n i z a t i o n o p e r a t i o n s . 139
10.3. T r a n s p u t d e c l a r a t i o n s . 140

10.3.1. Books , c h a n n e l s a n d f i l es . 140
10.3.1.1. B o o k s a n d b a c k f i l e s . 140
i0 .3.I .2 . C h a n n e l s . 141
10.3.1.3. F i l e s . 143

ALGOL 68 Revised Report

I I .

12.

10.3.1.4. O p e n i n g a n d c l o s i n g f i l e s . 147
10.3.1.5. P o s i t i o n e n q u i r i e s . 152
10.3.1.6. L a y o u t r o u t i n e s . 154

10.3.2. T r a n s p u t v a l u e s . 158
10.3.2.1. C o n v e r s i o n r o u t i n e s . 158
10.3.2.2. T r a n s p u t m o d e s . 163
10.3.2.3. S t r a i g h t e n i n g . : 163

10.3.3. F o r m a t l e s s t r a n s p u t . 164
10.3.4. F o r m a t t e x t s . 172
10.3.5. F o r m a t t e d t r a n s p u t . 191
10.3.6. B i n a r y t r a n s p u t . 205

10.4. T h e s y s t e m p r e l u d e a n d t a s k l i s t . 208
10.4.1. T h e s y s t e m p r e l u d e . 208
10.4.2. T h e s y s t e m t a s k l i s t . 208

10.5. T h e p a r t i c u l a r p r e l u d e s a n d p o s t l u d e s . 208
10.5.1. T h e p a r t i c u l a r p r e l u d e s . 208
10.5.2. T h e p a r t i c u l a r p o s t l u d e s . 209

E x a m p l e s . 209
11.1. C o m p l e x s q u a r e roo t . 209
11.2. I n n e r p r o d u c t 1 . 210
11.3. I n n e r p r o d u c t 2 . 210
l l . 4 . L a r g e s t e l e m e n t . : . 210
11.5. E u l e r s u m m a t i o n . 211
11.6. T h e n o r m of a v e c t o r . 211
11.7. D e t e r m i n a n t of a m a t r i x . 212
11.8. G r e a t e s t c o m m o n d i v i s o r . 212
11.9. C o n t i n u e d f r a c t i o n . 213
11.10. F o r m u l a m a n i p u l a t i o n . 213
l l . l l . I n f o r m a t i o n r e t r i e v a l . : 214
11.12. C o o p e r a t i n g s e q u e n t i a l p r o c e s s e s . 217
11.13. T o w e r s of H a n o i . 217
G l o s s a r i e s . 218
12.1. T e c h n i c a l t e r m s . 218
12.2. P a r a n o t i o n s . 224
12.3. P r e d i c a t e s . 227
12.4. I n d e x to t h e s t a n d a r d p r e l u d e . 227
12.5. A l p h a b e t i c l i s t i n g of m e t a p r o d u c t i o n r u l e s . 231

:i; i ̧

Acknowledgements

{Habent sua fata libelli.
De litteris, Terentianus Maurus.}

Working Group 2.1 on ALGOL of the Internat ional Federa t ion for
Information Processing has discussed the development of "ALGOL X", a
successor to ALGOL 60 [3J, since 1963. At its meet ing in Princeton in May
1965, WG 2.1 invited written descriptions of the language based on the
previous discussions. At the meet ing in St P ie r re de Char t reuse nea r
Grenoble in October 1965, three reports describing more or less complete
languages were amongst the contributions, by Niklaus Wirth 18], Gerhard
Seegmueller [6], and Aad van Wijngaarden [9]. In [6J and [81, the
descriptional technique of [3J was used, whereas [90 featured a new
technique for language design and definition. Other significant
contributions avai lable were papers by Tony Hoare 121 and Pe te r Naur
[4, 51.

At subsequent meet ings between April 1966 and December 1968, held in
Kootwijk near Amste rdam, Warsaw, Zandvoort near Ams te rdam, Tirrenia
near Pisa and North Berwick near Edinburgh, a number of successive
approximat ions to a final report, commencing with [10] and followed by a
series numbered MR 88, MR 92, MR 93, MR 95, MR 99 and MR 100, were
submit ted by a t eam working in Ams te rdam, consisting first of A. van
Wijngaarden and Bar ry Mailloux, la ter reinforced by John Peck, and
finally by Kees Koster. Versions were used during courses on the language
held at various centres, and the exper ience gained in explaining the
language to skilled audiences and the react ions of the students influenced
the succeeding versions. The final version, MR 101 [11[, was adopted by
the Working Group on December 20th 1968 in Munich, and was
subsequently approved for publication by the General Assembly of I .F . I .P .
Since that t ime, it has been published in Numerische Mathemat ik [12],
and translat ions have been made into Russian [13], into G e r m a n [14J, into
French [15], and into Bulgarian [16]. An "Informal Introduction", for the
benefit of the uninitiated reader , was also p repared at the request of the
Working Group [18].

The original authors acknowledged with pleasure and thanks the
wholehearted cooperation, support, interest, cr i t ic ism and violent
objections f rom m e m b e r s of WG 2.1 and m a n y other people interested in
ALGOL. At the risk of emba r r a s s ing omissions, special mention should be
made of Jan Garwick, J a c k Merner, Pe te r Inge rman and Manfred Paul
for [1], the Brussels group consisting of M. Sintzoff, P. Branquar t , J. Lewi
and P. Wodon for numerous bra ins torms, A.J.M. van Gils of Apeldoorn,
G. Goos and his group at Munich, also for [71, G.S. Tseytin of Leningrad,
and L.G.L.T. Meertens and J.W. de Bakker of Amste rdam. An occasional
choice of a, not inherently meaningl'ul, identifier in the sequel m a y
compensate for not mentioning more names in this section.

Since the publication of the Original Report , much discussion has taken
place in the Working Group concerning the fur ther development of the
language. This has been influenced by the exper ience of m a n y people who
saw disadvantages in the original proposals and suggested revised or
extended features. Amongst these mus t be ment ioned especially:
I.R. Currie, Susan G. Bond, J.D. Morison and D. Jenkins of Malvern (see
in [17]), in whose dialect of ALGOL 68 m a n y features of this Revision
m a y a l ready be found: P. Branquar t , J .P . Cardinael and J. Lewi of
Brussels, who exposed m a n y weaknesses (see in [17]): Ursula Hill,
H. Woessner and H. Scheidig of Munich, who discovered some unpleasant
consequences: the contributors to the Rappor t d 'Evaluat ion [19[: and the
many people who served on the Working Group subcommi t tees on
Maintenance and I m p r o v e m e n t s (convened by M. Sintzoff) and on
Transput (convened by C.H. Lindsey). During the la ter s tages of the
revision, much helpful advice was given by H. Boom of Edmonton,
W. F r e e m a n of York, W.J. Hansen of Vancouver, Mary Zosel of
Livermore, N. Yoneda of Tokyo, M. Rain of Trondheim, L. Ammeraa l ,
D. Grune, H. van Vliet and R. van Vliet of Ams te rdam, G. van der Mey of
Delft, and A.A. Baehrs and A.F. Ra r of Novosibirsk. The editors of this
revision also wish to acknowledge that the wholehearted cooperation,
support, interest, cr i t ic ism and violent objections on the par t of the
m e m b e r s of WG 2.1 have continued unabated during this t ime.

11] J.V. Garwick, J.M. Merner, P.Z. Inge rman and M. Paul, Repor t of the
ALGOL-X - I-O Subcommittee, WG 2.1 Working Paper , July 1966.
[2J C.A.R. Hoare, Record Handling, WG 2.1 Working Paper , October 1965:
also AB.21.3.6, November 1965.
[3J P. Naur (Editor), Revised Report on the Algori thmic Language
ALGOL 60, Regnecentralen, Copenhagen, 1962, and elsewhere.
[4] P. Naur, Proposals for a new language, AB.18.3.9, October 1964.
[5] P. Naur, Proposals for introduction on aims, WG 2.1 Working Paper ,
October 1965.
[6[G. Seegmueller , A proposal for a basis for a Report on a Successor to
ALGOL 60, Bavar ian Acad. Sci., Munich, October 1965.
[7J G. Goos, H. Scheidig, G. Seegmuel ler and H. Walther, Another
proposal for ALGOL 67, Bavar ian Acad. Sci., Munich, May 1967.
[8] N. Wirth, A Proposal for a Report on a Successor of ALGOL 60,
Mathemat isch Centrum, Amste rdam, MR 75, October 1965.
[9J A. van Wijngaarden, Orthogonal Design and Description of a Fo rma l
Language, Mathemat isch Centrum, Ams te rdam, MR 76, October 1965.
[10] A. van Wijngaarden and B.J. Mailloux, A Draft Proposal for the
Algorithmic Language ALGOL X, WG 2.1 Working Paper , October 1966.
[l l J A. van Wijngaarden (Editor), B.J. Mailloux, J .E .L. Peck and
C.H.A. Koster, Report on the Algorithmic Language ALGOL 68,
Mathemat isch Centrum, Amste rdam, MR 101, Feb ru a ry 1969.
[12] idem, Numerische Mathemat ik , Vol. 14, pp. 79-218, 1969.

8 van Wijngaarden, e t al .

[13] Soobshchenie ob a lgor i tmicheskom yazyke ALGOL 68, t ranslat ion into
Russian by A.A. Baehrs, A.P. Ershov, L.L. Zmievskaya and A.F. Rar,
Kybernetica, Kiev, Pa r t 6 of 1969 and Par t 1 of 1970.
[141 Bericht ueber die Algorithmische Sprache ALGOL 68, t ranslat ion into
German by I.O. Kerner , Akademie-Verlag, Berlin, 1972.
[15] D~finition du Langage Algorithmique ALGOL 68, t ranslat ion into
French by J. Buffet, P. Arnal, A. Qu~r~ (Eds.), Hermann , Par is , 1972.
[16] Algoritmichniyat yezik ALGOL68, t ranslat ion into Bulgar ian by
D. Toshkov and St. Buchvarov, Nauka i Yzkustvo, Sofia, 1971.
[17] J .E.L. Peck (Ed.), ALGOL68 Implementa t ion (proceedings of the
I .F.I .P. working conference held in Munich in 1970), North Holland
Publishing Company, 1971.
[18] C.H. Lindsey and S.G. van d e r Meulen, Informal introduction to
ALGOL 68, North Holland Publishing Company, 1971.
[19] J.C. Boussard and J .J . Duby (Eds.), Rappor t d 'Evalua t ion ALGOL 68,
Revue d ' Informat ique et de Recherche Op~rationelle, B2, Paris , 1970.

0. Introduction

0.1. Aims and principles of design

a) In designing the Algorithmic Language ALGOL 68, Working Group
2.1 on ALGOL of the Internat ional Federat ion for Informat ion Process ing
expresses its belief in the value of a common p r o g r a m m i n g language
serving many people in m a n y countries.

b) ALGOL 68 is designed to colhmunicate a lgori thms, to execute them
efficiently on a var ie ty of different computers , and to aid in teaching them
to students.

c) This present Revision of the language is made in response to the
directive of the parent commit tee , I .F . I .P . TC 2, to the Working Group to
"keep continually under review exper ience obtained as a consequence of
this [original} publication, so that it m a y institute such correct ions and
revisions to the Report as become desirable". In deciding to bring forward
this Revision at the present t ime, the Working Group has tr ied to keep in
balance the need to accumula te the m a x i m u m amount of exper ience of the
problems which arose in the language originally defined, as opposed to the
needs of the m a n y t eams at present engaged in implementa t ion , for whom
an early and simple resolution of those problems is impera t ive .

d) Although the language as now revised differs in m a n y ways f rom
that defined originally, no a t t empt has been m a d e to introduce extensive
new features and, it is believed, the revised language is still c lear ly
recognizable as "ALGOL 68". The Working Group has decided that this
present revision should be "the final definition of the language ALGOL 68",
and the hope is expressed that it will be possible for implementa t ions at
present in prepara t ion to be brought into line with this s tandard.

i ALGOL 68 Revised Report 9

I e) The Working Group may , f rom t ime to t ime, define sublanguages
and extended capabili t ies, by means of Addenda to this Report , but these
will a lways be built on the language here defined as a f i rm foundation.
Moreover, var iants more in conformity with natural languages other than
English m a y be developed. To coordinate these activities, and to main ta in
contact with implemente rs and users, a Subcommit tee on ALGOL 68
Support has been established by the Working Group.

f) The m e m b e r s of the Group, influenced by severa l yea r s of
experience with ALGOL 60 and other p r o g r a m m i n g languages, have
always accepted the following as their aims:

0.1.1. Completeness and clar i ty of description

The Group wishes to contribute to the solution of the problems of
describing a language clear ly and completely. The method adopted in this
Report is based upon a formalized two-level g r a m m a r , with the semant ics
expressed in natural language, but making use of some careful ly and
precisely defined t e rms and concepts. It is recognized, however, that this
method m a y be difficult for the uninitiated reader .

0.1.2. Orthogonal design

The number of independent pr imit ive concepts has been minimized in
order that the language be easy to describe, to learn, and to implement .
On the other hand, these concepts have been applied "orthogonally" in
order to maximize the express ive power of the language while t rying to
avoid deleterious superfluities.

0.1.3. Security

ALGOL 68 has been designed in such a way that most syntact ical and
many other e r rors can be detected easily before they lead to ca lami tous
results. Fur thermore , the opportunities for making such e r rors are grea t ly
restricted.

0.1.4. Efficiency

ALGOL 68 allows the p r o g r a m m e r to specify p ro g rams which can be
run efficiently on present-day computers and yet do not require
sophisticated and t ime-consuming optimization features of a compiler: see,
e.g., 11.7.

0.1.4.1. Static mode checking ,

The syntax of ALGOL 68 is such that no mode checking during run
t ime is necessary, except when the p r o g r a m m e r declares a [:NI'I'EI)-
var iable and then, in a conformity-clause, explicitly demands a check on
its mode.

10 van Wijngaarden, et aL

0.1.4.2. Mode-independent pars ing

The syntax of ALGOL 68 is such that the parsing of a p r o g r a m can be
per formed independently of the modes of its constituents. Moreover, it can
be determined in a finite number of steps whether an a rb i t r a ry given
sequence of symbols is a p rogram.

0.1.4.3. Independent compilation

The syntax of ALGOL 68 is such that the main-line p rog rams and
procedures can be compiled independently of one another without loss of
objec t -program efficiency provided that, during each independent
compilation, specification of the mode of all nonlocal quantit ies is
provided: see the r e m a r k s af ter 2.2.2.c.

0.1.4.4. Loop optimization

I tera t ive processes a re formulated in ALGOL 68 in such a way that
s t ra ightforward application of well-known optimization techniques yields
large gains during run t ime without excessive increase of compilat ion
time.

0.1.4.5. Representat ions

Representat ions of ALGOL 68 symbols have been chosen so that the
language m a y be implemented on computers with a minimal c h a r a c t e r
set. At the s a m e t ime implementers m a y take advan tage of a l a rger
cha rac te r set, if it is available.

0.2. Comparison with ALGOL 60

a) ALGOL 68 is a language of wider applicabil i ty and power than
ALGOL 60. Although influenced by the lessons learned f rom ALGOL 60,
ALGOL 68 has not been designed as an expansion of ALGOL 60 but ra ther
as a completely new language based on new insight into the essential ,
fundamental concepts of computing and a new description technique.

b) The result is that the successful features of ALGOL 60 r eappea r in
ALGOL 68 but as special cases of more general constructions, along with
completely new features. It is, therefore, difficult to isolate differences
between the two languages: however, the following sections are intended
to give insight into some of the more striking differences.

0.2.1. Values in ALGOL 68

a) Whereas ALGOL 60 has values of the types integer, real and
Boo/can, ALGOL 68 features an infinity of "modes", i.e., general izat ions of
the concept "type".

ALGOL 68 Revised Report 11

b) Each plain value is ei ther ar i thmet ic , i.e., of ' in tegral ' o r 'n'eal'
mode and then it is of one of severa l sizes, or it is of 'booh,an ' or
' cha rac t e r ' or 'void' mode. Machine words, considered as sequences of bits
or of bytes, m a y also be handled.

c) In ALGOL 60, values can be composed into a r rays , whereas in
ALGOL 68, in addition to such "multiple" values, also "structured" values,
composed of values of possibly different modes, are defined and
manipulated. An example of a multiple value is the cha rac t e r ~rray,
which corresponds approx imate ly to the ALGOL 60 string: examples of
s t ructured values a re complex numbers and symbolic formulae.

d) In ALGOL 68 the concept of a "name" is introduced, i.e., a value
which is said to "refer to" another value: such a name-va lue pair
corresponds to the ALGOL 60 variable. However, a name m a y take the
value position in a name-va lue pair, and thus chains of indirect addresses
can be built up.

e) The ALGOL 60 concept of procedure body is general ized in ALGOL
68 to the concept of "routine", which includes also the formal pa rame te r s ,
and which is itself a value and therefore can be manipula ted like any
other value.

f) In contrast with plain values, the significance of a name or r o u t i n e
is, in general , dependent upon the existence of the s torage cells re fer red to
or accessed. Therefore, the use of names and routines is subject to some
restrictions related to their "scope". However, the syntax of ALGOL 68 is
such that in m a n y cases the check on scope can be made at compile t ime,
including all cases where no use is made of features whose express ive
power t ranscends that of ALGOL 60.

0.2.2. Declarat ions in ALGOL 68

a) whe reas ALGOL 60 has type declarat ions, a r r a y declarations.
switch declarat ions and procedure declarat ions, ALGOL 68 features the
ident i ty -dec larat ion whose express ive power includes all of these, zlnd
more. The identity-declaration, although theoret ical ly sufficient in itsell, is
augmented by the var iable-declara t ion for the convenience of the user.

b) Moreover, in ALGOL 68, a mode-declara t ion permi t s the
construction of a new mode f rom a l ready existing ones. In part icular , ~he
modes of multiple values and of s t ructured values m a y be defined in this
way; in addition, a union of modes m a y be defined, allowing each value
refer red to by a given name to be of any one of the uniting modes.

c) Finally, in ALGOL 68, a pr ior i ty-declarat ion and an operation.
declarat ion permi t the introduction of new operators , the definition of their
operation and the extension of the class of operands of, and the revision of
the meaning of, a l ready established operators .

12 van Wijngaarden, et al.

0.2.3. Dynamic storage allocation in ALGOL 68

Whereas ALGOL 60 (apart from " o w n dynamic arrays") implies a
"stack"-oriented storage-allocation regime, sufficient to cope with objects
having nested lifetimes (an object created before another object being
guaranteed not to become inaccessible before that second one), ALGOL 68
provides, in addition, the ability to create and manipulate objects whose
lifetimes are not so restricted. This ability implies the use of an additional
area of storage, the "heap", in which garbage-collection techniques must
be used.

0.2.4. Collateral elaboration in ALGOL 68

Whereas, in ALGOL 60, statements are "executed consecutively", in
ALGOL 68, phrases are "elaborated serially" or "collaterally". This latter
facility is conducive to more efficient object programs under many
circumstances, since it allows discretion to the implementer to choose, in
many cases, the order of elaboration of certain constructs or even, in
some cases, whether they are to be elaborated at all. Thus the user who
expects his "side effects" to take place in any well determined manner will
receive no support from this Report. Facilities for parallel programming,
though restricted to the essentials in view of the none-too-advanced state
of the art, have been introduced.

0.2.5. Standard declarations in ALGOL 68

The ALGOL 60 standard functions are all included in ALGOL 68 along
with many other s tandard declarations. Amongst these are "environment
enquiries", which make it possible to determine certain properties of an
implementation, and "transput" declarations, which make it possible, at
run time, to obtain data from and to deliver results to external media.

0.2.6. Some particular constructions in ALGOL 68

a) The ALGOL 60 concepts of block, compound statement and
parenthesized expression are unified in ALGOL 68 into the serial-clause. A
serial-clause may be an expression and yield a value. Similarly, the
ALGOL 68 assignation, which is a generalization of the ALGOL 60
assignment statement, may be an expression and, as such, also yield a
value.

b) The ALGOL 60 concept of subscripting is generalized to ..le ALGOL
68 concept of "indexing", which allows the selection not only ,ff '~ single
element of an a r ray but also of subarrays with the same or any smaller
dimensionality and with possibly altered bounds.

c) ALGOL 68 provides row.displays and structure-displays, which
serve to compose the multiple and structured values mentioned in 0.2.1.c
from other, simpler, values.

t ' i l .ALtULd M l X ~ V l ~ e t l l X ~ l J O l - t

d) The ALGOL 60 for s ta tement is modified into a more concise and
efficient loop-clause.

e) The ALGOL 60 conditional expression and conditional statement,
unified into a conditional-clause, are improved by requiring them to end
with a closing symbol whereby the two alternative clauses admit the same
syntactic possibilities. Moreover, the conditional-clause is generalized into
a case-clause, which allows the efficient selection from an arbi t rary
number of clauses depending on the value of an integral-expression, and a
conformity-clause, which allows a selection depending upon the actual
mode of a value.

f) Some less successful ALGOL 60 concepts, such as own quantities
and integer labels, have not been included in ALGOL 68, and some
concepts, like designational expressions and switches, do not appear as
such in ALGOL 68 but their expressive power is included in other, more
general, constructions.

0.3. Comparison with the language defined in 1968

The more significant changes to the language are indicated in the
sections which follow. The revised language will be described in a new
edition of the "Informal Introduction to ALGOL 68" by C.H. Lindsey and
S.G. van der Meulen, which accompanied the original Report.

0.3.1. Casts and routine texts

Routines without parameters used to be constructed out of a cast in
which the cast-of-symbol C) appeared. This construct is now one of the
forms of the new routine-text, which provides for procedures both with and
without parameters . A new form of the cast has been provided which may
be used in contexts previously not possible. Moreover, both void-casts and
procedure-PARAMETY-yieiding-void-routine-texts must now contain an
explicit void-symbol.

0.3.2. Extended ranges

The new range which is established by the enquiry-clause of a choice-
clause (which encompasses the old conditional- and case-clauses) or of a
while.part now extends into the controlled serial-clause or do-part.

0.3.3. Conformity clauses

The conformity-relation and the case-conformity which was obtained by
extension from it are now replaced by a new conformity-clause, which is a
further example of the choice-clause mentioned above.

14 van Wijngaarden, et al.

0.3.4. Modes of multiple values

A new class of modes is introduced, for multiple values whose elements
are themselves multiple values. Thus one may now write the declarer []
siring.

Moreover, multiple values no longer have "states" to distinguish their
flexibility. Instead, flexibility is now a property of those names which
refer to multiple values whose size may change, such names having
distinctive modes of the form 'reference to flexible ROWS of MODE'.

0.3.5. Identification of operators

Not only may two operators, related to each other by the modes of
their operands, not be declared in the same range, as before, but now, if
two such operators be declared in different reaches, any a t tempt to
identify from the inner reach the one in the outer reach will fail. This
gives some benefit to the implementer and removes a source of possible
confusion to the user.

0.3.6. Representations

The manner in which symbols for newly defined mode-indications and
operators are to be represented is now more closely defined. Thus it is
clear that the implementer is to provide a special alphabet of bold-faced,
or "stropped", marks from which symbols such as p e r s o n m a y be made,
and it is also clear that operators such as >> are to be allowed.

0.3.7. Standard prelude

In order to ease the problems of implementers who might wish to
provide variants of the language suitable for environments where English
is not spoken, there are no longer any field-selectors known to the user in
the standard-prelude, with the exception of re and i m of the mode ¢ompl.
The identifiers and other indicators declared in the standard-prelude
could, of course, easily be defined again in some library-prelude, but this
would not have been possible in the case of field-selectors.

0.3.8. Line length in transput

The lines (and the pages also) of the "book" used during transput may
now, at the discretion of the implementer, be of varying lengths. This
models more closely the actual behaviour of most operating systems and
of devices such as teleprinters and paper-tape readers.

0.3.9. Internal transput

The transput routines, in addition to sending data to or from external
media, may now be associated with row-of-character-variables declared by
the user.

ALGOL 68 Revised Report 15

0.3.10. Elaboration of formats

The dynamic replicators contained in format-texts are now elaborated
as and when they are encountered during the formatted transput process.
This should give an effect more natural to the user, and is easier to
implement.

0.3.11. Features removed

Certain features, such as proceduring, gommas and formal bounds,
have not been included in the revision.

0.4. Changes in the method of description

In response to the directive from the Working Group "to make its study
easier for the uninitiated reader", the Editors of this revision have
rewritten the original Report almost entirely, using the same basic
descriptional technique, but applying it in new ways. It is their hope that
less "initiation" will now be necessary.

The more significant changes in the descriptional technique are
indicated below.

0.4.1. Two-level g r a m m a r

a) While the syntax is still described by a two-level g r a m m a r of the
type now widely known by the name "Van Wijngaarden", new techniques
for using such g r a m m a r s have been applied. In particular, the entire
identification process is now described in the syntax using the metanotion
"NEXT", whose terminal metaproductions are capable of describing, and of
passing on to the descendent constructs, all the declared information
which is available at any part icular node of the production tree.

b) In addition, extensive use is made of "predicates". These are
notions which are deliberately made to yield blind alleys when certain
conditions are not met, and which yield empty terminal productions
otherwise. They have enabled the number of syntax rules to be reduced in
many cases, while at the same time making the g r a m m a r easier to follow
by reducing the number of places where a continuation of a given rule
might be found.

c) It has thus been possible to remove all the "context conditions"
contained in the original Report.

0.4.2. Modes

a) In the original Report, modes were protonotions of possibly infinite
length. It was assumed that, knowing how an infinite mode had been
obtained, it was decidable whether or not it was the same as ~ome other
infinite m o d e . However, counterexamples have come to light ,vhere this

v a n w l j n g a a r a e n , et a l .

was not so. Therefore, it has been decided to r emove all infinities f rom the
process of producing a finite p r o g r a m and, indeed, this can now be done in
a finite number of moves .

b) A mode, essentially, has to represent a potentially infinite tree. To
describe it as a protonotion of finite length requires the use of m a r k e r s
{'MU definition's} and pointers back to those m a r k e r s {'MU application's}
within the protonotion. However, a given infinite t ree can be "spelled" in
m a n y ways by this method, and therefore a mode becomes an equivalence
class comprised of all those equivalent spellings of that tree. The
equivalence is defined in the syntax using the predicates mentioned
earlier.

0.4.3. Extensions

The need for m a n y of the extensions given in the original Report had
been removed by language changes. Some of the r ema inde r had been a
considerable source of confusion and surprises. The opportunity has
therefore been taken to remove the extension as a descriptional
mechanism, all the fo rmer extensions now being specified direct ly in the
syntax.

0.4.4. Semantics

a) In order to r emove some ra ther repetit ious phrases f rom the
semantics , certain technical t e rms have been revised and others
introduced. The g r a m m a r , instead of producing a te rmina l production
directly, now does so by way of a production tree. The semant ics is
explained in t e rms of production trees. Paran'otions, which designate
constructs, m a y now contain metanot ions and "hypernotions" have been
introduced in order to designate protonotions.

b) A model of the hypothetical compute r much more closely related to
a real one has been introduced. The elaborat ion of each construct is now
presumed to take place in an "environ" and, when a new range is entered
(and, in part icular , when a routine is called), a new "locale" is added to
the environ. The locale corresponds to the new range and, if recurs ive
procedure calls arise, then there exist m a n y locales corresponding to one
s ame routine. This supersedes the method of "textual substitution" used
before, and one consequence of this is that the concept of "protection" is
no longer required.

c) The concept of an "instance" of a value is no longer used. This
simplifies cer ta in portions of the semant ics where, formerly, a "new
instance" had to be taken, the effects of which were not a lways c lear to
see.

ALGOL 68 Revised Report 17

0.4.5. Translat ions

The original Report has been t rans la ted into various natural languages.
The t ransla tors were not a lways able to adhere str ict ly to the descriptional
method, and so the opportunity has been taken to define more clear ly and
more liberally certain descriptional features which caused difficulties (see
1.1.5).

{True wisdom knows it must compr ise
some nonsense as a compromise,
lest fools should fail to f ind it wise.
Grooks, Piet Hein.}

P A R T I

Pre l imina ry definitions

1. Language and metalanguage

1.1. The method of description

1.1.1. Introduction

a) ALGOL 68 is a language in which a lgor i thms m a y be formula ted
for computers , i.e., for au toma ta or for human beings. It is defined by this
Report in four stages, the "syntax" {b}, the "semant ics" {c}, the
"representat ions" {d} and the "s tandard environment" {e}.

b) The syntax is a mechan i sm whereby all the constructs of the
language m a y be produced. This mechan i sm proceeds as follows:

(i) A set of "hyper-rules" and a set of "metaproduct ion rules'" are given
{1.1.3.4, 1.1.3.3}, f rom which "production rules" m a y be derived:

(ii) A "construct in the str ict language" is a "production tree" {1.1.3.2.f}
which m a y be produced by the application of a subset of those
production rules; this production tree contains stat ic information {i.e..
information known, at "compile time"} concerning that construct: it is
composed of a h ie rarchy of descendent production trees, te rminat ing at
the lowest level in the "symbols"; with each production tree is
associated a "nest" of propert ies, declared in the levels above, which is
passed on to the nests of its descendents;

Off) A "program in the str ict language" is a production tree for the notion
'program' {2.2.1.a}. It mus t also sat isfy the "environment condition"
{10.1.2}.

. 4 " ' 0 '

e) The semant ics ascr ibes a "meaning" {2.1.4.1.a} to each construct
{i.e., to each production tree} by defining the effect (which may , however,
be "undefined") of its "elaboration" {2.1.4.1}. This proceeds as follows:

(i) A dynamic {i.e., run-time} tree of act ive "actions" is set up {2.1.4};
typically, an action is the elaborat ion of .sgme production tree T in an
"environ" consistent with the nest of T, and it m a y bring about the
elaboration of descendents of T in suitable newly crea ted descendent
environs;

(ii) The meaning of a p r o g r a m in the str ict language is the effect of its
elaboration in the e m p t y "pr imal environ".

d) A p rog ram in the str ict language mus t be represented in some
"representat ion language" {9.3.a} chosen by the implementer . In most
cases this will be the official " referenee language".

(i) A p r og ram in a representa t ion language is obtained by replacing the
symbols of a p r o g r a m in the str ict language by cer ta in typographical
m a r k s {9.3}.

(ii) Even the reference language allows considerable discretion to the
implemente r {9.4.a,b,c}. A rest r ic ted form of the reference language in
which such f reedom has not been exercised m a y be t e rmed the
"canonical form" of the language, and it is expected that this fo rm will
be used in a lgor i thms intended for publication.

(iii) The meaning of a p r o g r a m in a representa t ion language is the s a m e
as that of the p r o g r a m {in the str ict language} f rom which it was
obtained.

e) An algor i thm is expressed by means of a particular-program,
which is considered to be embedded, together with the s tandard
environment, in a p rogram- tex t {10.1.l.a}. The mean ing of a particular-
program {in the str ict or a representa t ion language} is the meaning of the
program "akin" to that p rogram- tex t {10.1.2.a}.

1.1.2. P r a g m a t i e s

{Merely corroborative detail, intended to
give artistic verisimilitude to an otherwise
bald and unconvincing narrative.
Mikado, W.S. Gilbert.}

Scat tered throughout this Report a re "p ragmat ic" r e m a r k s included
between the braces "{" and "}". These a re not par t of the definition of the
language but serve to help the reader to unders tand the intentions and
implications of the definitions and to find corresponding sections or rules.

{Some of the p r a g m a t i c r e m a r k s contain examples writ ten in the
reference language. In these examples , applied-indicators oeeur out of
context from their defining-indicators. Unless otherwise speeified, these
occurrenees identify those in the standard- or particular-preludes and the

particular.postlude (10.2, 10.3, 10.5) (e.g., see 10.2.3.12.a for pi, 10.5.l.b for
random and 10.5.2.a for stop) , or those in:

int i, j, k, m, n; real a, b, x, y; bool p, q, overflow; char c; format f;
bytes r; string s; bits t; c o m p l w, z; re f real xx , y y : un i on (int, real) u i r ;
proc void task1, task2;

[1 : n] r o a l x l , y l ; f lex [1 : n] r e a l a l ; I1 : m, 1 : n I rea lx2 ;
[1: n , l : n] r e a l y 2 ; [l : n J i n t i l ; I1: m, 1: n J i n t i 2 ;
[1 : n] c o m p l z l ;

proc x or y = ref real : i f r a n d o m < .5 then x else y f i;
proc ncos = (int i) real : cos (2 × p i x i / n);
proc ns in = (int i) real : s in (2 x p i x i / n);
proc f i n i s h = vo id : go to stop;
mode book = struct (string text, ref book next); book d r a f t ;
princeton: grenoble: st pierre de chartreuse: kootwijk: warsaw:

zandvoort: ams terdam: tirrenia: north berwick: munich:
finish.}

1.1.3. The syntax of the str ict language

1.1.3.1. Protonotions

a) In the definition of the syntax of the strict language, a formal
g r a m m a r is used in which cer tain syntact ic m a r k s appear . These m a y be
classified as follows:
(i) "small syntact ic marks" , written, in this Report , as
"a", "b", "c", "fl", "e", "f", "g", "h", 'T', "j", "k", 'T', "m", "n", "o", "p",
"q", "r", "s", "t", "u", "v", "w", "x", "y", "z", "C, ")":
(ii) " large syntact ic marks" , written, in this Report , as
"A", "B", "C", "D", "E", "F", "G", "H", 'T ' , "J", "K", "I.", "M", "N", "()",
"P", "Q", "R", "S", "T", "U", "V", "~'", "X", "~", "Z", "0", "1", "2", "3",
"4", "5", "6", "7", "8", "9":
(iii) "other syntact ic marks" , written, in this Report, as
.... ("point"), "," ("comma") , ":" Ceolon"), ";" ("semicolon"),
..... ("apostrophe"), "-" ("hyphen") and ("aster isk") .

{Note that these m a r k s a re in another type font than that of the m a r k s in
this sentence.}

b) A "protonotion" is a possibly emp ty sequence of smal l syntact ic
marks .

c) A "notion" is a {nonempty} protonotion for which a production rule
can be derived {1.1.3.2.a, 1.1.3.4.d}.

d) A "metanotion" is a {nonempty} sequenee of large syntact ic m a r k s
for which a metaproduct ion rule is given or c rea ted {1.1.3.3.a}.

e) A "hypernotion" is a possibly emp ty sequence each of whose
e lements ei ther is a small syntact ic m a r k or is a metanotion.

20 van Wijngaarden, et al.

{Thus the class of protonotions (b) is a subclass of the class of
hypernotions. Hypernotions are used in metaproduct ion rules (1.1.3.3), in
hyper-rules (1.1.3.4), as paranotions (1.1.4.2) and, in their own right, to
"designate" cer tain classes of protonotions (1.1.4.1) .}

{A "paranotion" is a hypernotion to which cer ta in special conventions
and interpretat ions apply, as detailed in 1.1.4.2.}

f) A "symbol" is a protonotion ending with ' symbol ' . {Note that the
paranotion symbol (9.1.1.h) designates a par t icu lar occurrence of such a
protonotion.}

{Examples:

b) 'variable point"
c) 'var iable point n u m e r a l ' (8.1.2.1.b)
d) "INTREAL" (1.2.1.C)
e) ' re ference to INTREAI.'
f) ' le t ter a symbol ' .

Note that the protonotion "twas brillig and the slithy roves' is nei ther a
symbol nor a notion, in that it does not end with "symbol ' and no
production rule can be derived for it. Likewise, "I .E~IS" and "CARR()I.I."
are not metanotions in that no metaproduct ion rules a re given for them.}

g) In order to distinguish the various usages in the text of this Repor t
of the t e rms defined above, the following conventions a re adopted:

(i) No distinguishing m a r k s {quotes, apost rophes or hyphens} are used in
production rules, metaproduct ion rules or hyper-rules;

(ii) Metanotions, and hypernotions which stand for themse lves {i.e., which
do not designate protonotions}, a re enclosed in quotes;

(iii) Paranot ions are not enclosed in anything {but, as an aid to the
reader , are provided with hyphens where, otherwise, they would have
been provided with blanks};

(iv) All other hypernotions {including protonotions} not covered above are
enclosed in apostrophes {in order to indicate that they designate some
protonotion, as defined in 1.1.4.1.a};

(v) Typographical display features, such as blank space, hyphen, and
change to a new line or new page, a re of no significance (but see al to
9.4.d).

{Examples:
(i) LEAP :: local ; heap ; pr imal , is a metaproduct ion rule:

(ii) "INTREAL" is a metanot ion and designates nothing but itself:
(iii) reference.to-INTREAL-identifier, which is not enclosed in apost rophes

but is provided with hyphens, is a paranotion designating a construct
(1.1.4.2.a) ;

(iv) 'var iable point ' is both a hypernotion and a protonotion; regarded as
a hypernotion, it designates itself r egarded as a protonotion;

(v) ' re ference to rea l ' means the s ame as ' referencetoreal ' .}

ALGOL 68 Revised Report 21

1.1.3.2. Production rules and production t rees

a) The {derived} "production rules" {b} of the language are those
production rules which can be derived f rom the "hyper-rules" {1.1.3.4},
together with those specified informal ly in 8.1.4.1.d and 9.2.1.d.

b) A "production rule" consists of the following i tems, in order:
an optional as ter i sk ;
a nonempty protonotion N ;
a colon ;
a nonempty sequence of "al ternat ives" separa ted by semicolons ;
a point.

It is said to be a production rule "for" {the notion (1.1.3.1.c)} N.
{The optional asterisk, if present , signifies that the notion is not used in

other production rules, but is provided to facil i tate discussion in the
semantics . It also signifies that that notion m a y be used as an
"abstraction" (1.1.4.2.b) of one of its alternatives.}

c) An "al ternative" is a nonempty sequence of " m e m b e r s " sepa ra ted
by commas .

d) A "member" is e i ther
(i) a notion {and m a y then be said to be productive, or nonterminal},

(ii) a symbol {which is terminal},
(iii) empty, or
(iv) some other protonotion {for which no production rule can be derived},

which is then said to be a "blind alley".
{For example , the m e m b e r "reference to real denotation" (derived

f rom the hyper-rule 8.0.l.a) is a blind alley.}

{Examples:

b) exponent part : t imes ten to the p o w e r choice,
power of ten. (8.1.2.1.g) •

t imes ten to the power cho ice :
t imes ten to the p o w e r symbol ;
letter e symbol. (8.1.2.1.h)

c) t imes ten to the power cho ice , p o w e r of ten •
t imes ten to the power symbol •
let ter e symbol

d) t imes ten to the power cho ice •
power of ten •
t imes ten to the p o w e r symbol *
le t ter e s y m b o l }

e) A "construct in the str ict language" is any "production tree" {f} that
m a y be "produced" f rom a production rule of the language.

f) A "production tree" T for a notion N, which is t e rmed the "original"
of T, is "produced" as follows:

22 v a n Wijngaarden, et al.

• let P be some {derived} production rule for N;
• a copy is taken of N;
• a sequence of production trees, the "direct descendents" of T, one
produced for each nonempty m e m b e r of some a l te rnat ive A of P, is
a t tached to the copy; the order of the sequence is the order of those
m e m b e r s within A;
• the copy of the original, together with the a t tached direct
descendents, comprise the production t ree T.
A "production tree" for a symbol consists of a copy of that symbol {i.e.,

it consists of a symbol}.

The " terminal production" of a production t ree T is a sequence
consisting of the te rminal productions of the direct descendents of T, taken
in order .

The " terminal production" of a production t ree consisting only of a
symbol is that symbol.

{Example:

'exponeNt part"
I I

'times ten to the 'power of ten'
power choice' [I

'plusminus
option'

I
'plusminus'

I
'digit

cypher '
I

"digit
zero '

'fixed ! point
numeral'

I
'digit cypher

s e q u e n c e "
I I

'digit cypher
s e q u e n c e "

I
'digit
cypher '

I
"digit

tWO'

I
' le t ter e 'plus 'digit zero 'digit two
symbol ' symbol ' symbol ' symbol ' }

{The terminal production of this t ree is the sequence of symbols at
• the bottom of the tree. In the reference language, its representa t ion would

be e+02.}
A "terminal production" of a notion is the te rmina l production of some

production tree for that notion {thus there a re m a n y other te rminal
productions of 'exponent part' besides the one shown}.

ALGOL 6a Revised Report 23

{The syntax of the str ict language has been chosen in such a way that a
given sequence of symbols which is a te rminal production of some notion
is so by virtue of a unique production tree, or by a set of production t rees
which differ only in such a way that the result of their e laborat ion is the
s ame (e.g., production t rees derived f rom rules 3.2.1.e (balancing),
1.3.l.d,e (predicates) and 6.7.1.a,b (choice of spelling of the mode of a
coercend to be voided); see also 2.2.2.a).

Therefore, in pract ice, te rminal productions (or representa t ions
thereof) are used, in this Report and elsewhere, in place of production
trees. Nevertheless, it is real ly the production t rees in t e r m s of which the
elaboration of p rog rams is defined by the semant ics of this Report , which
is concerned with explaining the meaning of those constructs whose
originals are the notion 'program'.}

g) A production tree P is a "descendent" of a production tree Q if it is
a direct descendent {f} ei ther of O or of a descendent of O. O is said to
"contain" its descendents and those descendents a re said to be "smaller"
than O. {For example , the production t ree

'plusminus option'
I

'plusminus'
I

'plus symbol '

occurs as a descendent in (and is contained within and is sma l l e r than)
the production tree for 'exponent part' given above.}

h) A "visible" ("invisible") production tree is one whose te rminal
production is not (is) empty .

i) A descendent {g} t9 of a production tree T is "before" ("after") a
descendent Y of T if the terminal production {f} of U is before (after) that
of V in the te rminal production of T. The {partial} ordering of the
descendents of T thus defined is t e rmed the "textual order". {In the
example production tree for "exponent part' (f), the production tree whose
original is "plusminus' is before that whose original is 'digit two'.}

j) A descendent A of a production tree "follows" ("precedes") another
descendent B in some textual order if A is a f te r (before) B in that textual
order, and there exists no visible {h} descendent C which comes between A
and B. {Thus " immediate ly" following (preceding) is implied.}

k) A production tree A is "akin" to a production tree B if the terminal
production {f} of A is identical to the te rminal production of B.

1.1.3.3. Metaproduction rules and simple substitution

{The metaproduct ion rules of the language form a set of context-free
g r a m m a r s defining a "metalanguage".}

24 van Wijngaarden, et al.

a) The "metaproduct ion rules" {b} of the language are those given in
the sections of this Report whose heading begins with "Syntax",
"Metasyntax" or "Metaproduction rules", together with those obtained as
follows:

• for each given metaproduct ion rule, whose metanot ion is M say,
additional rules a re c rea ted each of which consists of a c o p y of M
followed by one of the large syntact ic m a r k s "0", " l" , "2", "3", "4",
"5", "6", "7", "8" or "9", followed by two colons, another copy of that M
and a point.

{Thus, the metaproduct ion rule "MODEl :: MODE." is to be added.}

b) A "metaproduct ion rule" consists of the following i tems, in order:
an optional as ter isk ;
a nonempty sequence M of large syntact ic m a r k s ;
two colons ;
a nonempty sequence of hypernotions {l.l.3.1.e} sepa ra ted by

semicolons ;
a point.

It is said to be a metaproduct ion rule "for" {the metanot ion (1.1.3.l.d)} M.
{The asterisk, if present, signifies that the metanot ion is not used in

other metaproduct ion rules or in hyper-rules, but is provided to facil i tate
discussion in the semantics.}

{Examples:

INTREAL :: SIZETY integral ; SIZETY real. (1.2.1.C) •
SIZETY :: long LONGSETY ; short SHORTSETY ; EMPTY. (1.2.1.D)}

c) A "terminal metaproduct ion" of a metanot ion M is any protonotion
which is a "simple substitute" {d} for one of the hypernot ions {on the right
hand side} of the metaproduct ion rule for M.

d) A protonotion P is a "simple substitute" for a hypernotion H if a
copy of H can be t r ans formed into a copy of P by replacing each
metanotion M in the copy by some terminal metaproduct ion of M.

{Thus two possible te rminal metaproduct ions (c) of "INTREAL" are
' in tegral ' and 'long long rea l ' . This is because the hypernotions 'SIZETY
integral' and 'SIZETY rea l ' (the hypernotions of the metaproduct ion rule
for "INTREAL") may , upon s imple substitution (d), give rise to ' in tegra l '
and 'long long rea l ' , which, in turn, is because " ' (the e m p t y protonotion)
and "long long' a re te rminal metaproduct ions of "SIZETY".}

{The metanot ions used in this Report have been so chosen that no
concatenation of one or more of them gives the s a m e sequence of large
syntact ic m a r k s as any other such concatenation. Thus a source of
possible ambigui ty has been avoided.

Although the recurs ive nature of some of the me taproduc t ion rules
makes it possible to produce te rmina l metaproduet ions of a r b i t r a r y length,

ALGOL 68 Revised Report 25

the length of the te rminal metaproduct ions necessar i ly involved in the
production of any given p r o g r a m is finite.}

1.1.3.4. Hyper-rules and consistent substitution

a) The hyper-rules {b} of the language are those given in the sections "
of this Report whose heading begins with "Syntax".

b) A "hyper-rule" consists of the following i tems, in order:
an optional as ter isk ;
a nonempty hypernotion H ;
a colon ;
a nonempty sequence of "hypera l te rna t ives" s epa ra t ed by

semicolons ;
a point.

It is said to be a hyper-rule "for" {the hypernotion (l.l.3.1.e)} H.

c) A "hyperal ternat ive" is a nonempty sequence of hypernotions
separa ted by commas .

{Examples:

b) NOTION sequence :
NOTION ; NOTION, NOTION sequence. (1.3.3.b)

c) NOTION, NOTION sequence }

d) A production rule PR {i.I.3.2.b} is derived f rom a hyper-rule HR if a
copy of HR can be t r ans fo rmed into a copy of PR by replacing the set of
all the hypernotions in the copy by a "consistent substi tute" {e} for that
set.

e) A set of {one or more} protonotions PP is a "consistent substitute"
for a corresponding set of hypernotions HH if a copy of HH can be
t rans formed into a copy of PP by means of the following step:
Step: If the copy contains one or more metanot ions then, for some

terminal metaproduct ion T of one such metanot ion M, each occurrence
of M in the copy is replaced by a copy of T and the Step is taken again.

{See l . IA. I . a for another application of consistent substitution.}

{Applying this derivat ion process to the hyper-rule given above (c) m a y
give rise to

digit cypher sequence :
digit cypher ; digit cypher, digit cypher sequence.

which is therefore a production rule of the language. Note that
digit cypher sequence :

digit cypher ; digit cypher, letter b sequence.
is not a production rule of the language, since the r ep lacemen t of the
metanotion "NOTION" by one of its te rminal metaproduct ions mus t be
consistent throughout.}

26 van Wijngaarden, et al.

{Since some metanot ions have an infinite number of te rminal
metaproduct ions , the number of production rules which m a y be der ived is
infinite. The language is, however, so designed that, for the production of
any p rog ram of finite length, oply a finite number of those production
rules is needed.}

{f) The rules under Syntax are provided with "cross-references" to be
interpreted as follows.

Each hypernotion H of a hypera l te rna t ive of a hyper-rule A is followed
by a reference to those hyper-rules B whose der ived production rules are
for notions which could be subst i tuted for that H. Likewise, the
hypernotions of each hyper-rule B are followed by a reference back to A.
Alternatively, if H is to be replaced by a symbol, then it is followed by a
reference to its representa t ion in section 9.4.1. Moreover, in some cases, it
is more convenient to give a cross-reference to one metaproduct ion rule
ra ther than to m a n y hyper-rules, and in these cases the miss ing cross-
references will be found in the metaproduct ion rule.

Such a reference is, in principle, the section n u m b e r followed by a
let ter indicating the line where the rule or representa t ion appears , with
the following conventions:

(i) the references whose section n u m b e r is that of the section in which
they appea r are given first and their section n u m b e r is omitted; e.g.,
"8.2.1.a" appea r s as "a" in section "8.2.1";

(if) all points and a final 1 a re omitted, and 10 appea r s as A; e.g.,
"8.2.1.a" appea r s as "82a" elsewhere and "10.3.4.1.1.i" appea r s as
"A34 If";

(iii) a section number which is the s ame as that of the preceding
reference is omitted; e.g., "82a,82b,82c" appea r s as "82a,b,c";

(iv) the presence of a blind alley der ived f rom that hypernotion is
indicated by "-"; e.g., in 8.0.1.a af ter "MOLD denotation", since "MOLD"
m a y be replaced by, for example , 'reference to real ' , but "reference to
real denotation' is not a notion.}

1.1.4. The semant ics

The "meaning" of p rog ram s {2.2.1.a} in the str ict language is defined in
the semant ics by means of sentences {in somewhat formalized natura l
language} which specify the "actions" to be car r ied out during the
"elaboration" {2.1.4.1} of those p rograms . The "meaning" of a p r o g r a m in a
representat ion language is the s ame as the meaning of the p r o g r a m in the
str ict language which it represents {9.3}.

{The semant ics makes extensive use of hypernotions and paranot ions in
order to "designate", respect ively, protonotions and constructs . The word
"designate" should be understood in the sense that the word "flamingo"
m a y "designate" any an imal of the family Phoenicopteridae.}

ALGOL 68 Revised Report 27

1.1.4.1. Hypernotions, designation and envelopment

{Hypernotions, when enclosed between apostrophes, are used to
"designate" protonotions belonging to cer tain classes; e.g., 'I,EAP"
designates any of the protonotions "local', ' p r ima l ' and 'heap'.}

a) Hypernotions standing in the text of this Report , except those in
hyper-rules {1.1.3.4.b} or metaproduct ion rules {1.1.3.3.b}, "designate" any
protonotions which m a y be consistently substi tuted {1.1.3.4.e} for them, the
consistent substitution being applied over all the hypernot ions contained in
each complete sub-section of the text (a sub-section being one of the
let tered sub-divisions, if any, or else the whole, of a numbered section).

{Thus "QUALITY TAX' is a hypernotion designating protonotions such
as 'integral letter i', 'real letter x' , etc. If, in some par t icu la r discussion, it
in fact designates 'integral letter i ', then all occur rences of "QUALITY" in
that subsection must , over the span of that discussion, designate 'integral'
and all occurrences of "TAX" mus t designate ' le t ter i'. I t m a y then be
deduced f rom subsection 4.8.2.a that in order, for example , to "ascr ibe to
an integral-defining-indicator-with-letter-i", it is ' in tegral let ter i' that mus t
be "made to access V inside the locale".}

Occasionally, where the context c lear ly so demands , consistent
substitution m a y be applied over less than a section. {For example , in the
introduction to section 2.1.1.2, there are severa l occurrences of "'MOLD'",
of which two are stated to designate specific (and different) protonotions
spelled out in full, and of which others occur in the plural form " 'MOlD's",
which is clearly intended to designate a set of different m e m b e r s of the
class of te rminal metaproduct ions of "MOLD".}

b) If a protonotion (a hypernotion) P consists of the concatenation of
the protonotions (hypernotions) A, B and C, where A and G are possibly
empty , then P "contains" B at the position {in P} de te rmined by the length
of A. {Thus, ' abcdefcdgh ' contains 'cd ' at its third and seventh positions.}

c) A protonotion P1 "envelops" a protonotion P2 as specifically
designated by a hypernotion H2 if P2, or some equivalent {2.1.1.2.a} of it, is
contained {b} at some position within P1 but not, at that position, within
any different {intermediate} protonotion P3 also contained in P1 such that
H2 could also designate P3.

{Thus the "MODE' enveloped by 'reference to real closed clause" is
'reference to real' r a the r than "real'; moreover , the mode (2.1.1.2.b)
specified by struct (real a, struct (bool b, char c) d) envelops 'FIELD' just
twice.}

1.1.4.2. Paranot ions

{In order to facil i tate discussion, in this Report , of constructs with
specified originals, the concept .of a "paranotion" is introduced. A
paranotion is a noun that designates constructs (1.1.3.2.e): its meaning is

28 van Wijngaarden, et aL

not necessarily that found in a dictionary but can be construed from the
rules which follow.}

a) A "paranotion" P is a hypernotion {not between apostrophes} which
is used, in the text of this Report, to "designate" any construct whose
original O satisfies the following:

• P, regarded as a hypernotion {i.e., as if it had been enclosed in
apostrophes}, designates {l.l.4.1.a} an "abstraction" {b} of O.

{For example, the paranotion "fixed-point-numeral" could designate the
construct represented by 02, since, had it been in apostrophes, it would
have designated an abstraction of the notion 'fixed point numeral ' , which
is the original of that construct. However, that same representation could
also be described as a digit-cypher.sequence, and as such it would be a
direct descendent of that fixed-point-numeral.}

{As an aid to the reader in distinguishing them from other
hypernotions, paranotions are not enclosed between apostrophes and are
provided with hyphens where, otherwise, they would have been provided
with blanks.}

The meaning of a paranotion to which the small syntactic mark "s" has
been appended is the same as if the letter "s" {which is in the same type
font as the marks in this sentence} had been appended instead. {Thus the
fixed-point-numeral 02 may be said to contain two digit-cyphers, rather
than two digit-cyphers.} Moreover, the "s" may be inserted elsewhere than
at the end if no ambiguity arises {e.g., "sources-for-MOI)lNE" means the
same as "source-for.MOI)lNEs"}.

An initial small syntactic mark of a paranotion is often replaced by the
corresponding large syntactic mark {in order to improve readability, as at
the start of a sentence} without change of meaning {: e.g., "Identifier"
means the same as "identifier"}.

b) A protonotion P2 is an "abstraction" of a protonotion P1 if
(i) P2 is an abstraction of a notion whose production rule begins with an

asterisk and of which Pl is an alternative
{e.g., "trimscript ' (5.3.2.1.h) is an abstraction of any of the
notions designated by 'NEST t r immer ' , 'NEST subscript ' and
'NEST revised lower bound option'}, or

(if) P1 envelops a protonotion ?3 which is designated by one of the
"elidible hypernotions" listed in section c below, and ?2 is an
abstraction of the protonotion consisting of ?1 without that enveloped
P3

{e.g., 'choice using boolean start' is an abstraction of the notions
'choice using boolean brief start" and 'choice using boolean bold
start' (by elision of a 'STYLE' from 9.1.1.a)}, or

ALGOL 68 Revised Report

(iii) P2 is equivalent to {2.1.1.2.a} Pl
{e.g., 'bold begin symbol"
symbol'}.

is an abstraction of 'bold begin

29

{For an example invoking all three rules, it may be observed that
'union of real integral mode defining indicator ' is an abstraction of some
'union of integral real mode NEST defining identifier with letter a'
(4.8.1.a). Note, however, that "choice using union of integral real mode
brief start' is not an abstraction of the notion 'choice using union of
integral real boolean mode brief start ' , because the 'boolean' that has
apparently been elided is not an enveloped 'MOLD" of that notion.}

c) The "elidible hypernotions" mentioned in section b above are the
following:

"STYLE" • "TALLY" • "LEAP" • "DEFIED" • "VICTAI." •
"SORT" • "MOLD" • "NEST" • "REFETY routine" • "label" •
"with TAX" • "with DECSETY LABSETY" • "of DECSET'~ I,ABSETY" •
"defining LAYER".

{Which one of several possible notions or symbols is the original of a
construct designated by a given paranotion will be apparent from the
context in which that paranotion appears. For example, when speaking of
the formal-declarer of an identity-declaration, if the identity-declaration is
one whose terminal production (1.1.3.2.f) happens to be rot realx = Ioc real,
then the original of that formal-declarer is some notion designated by
' formal reference to real NEST declarer' .}

{Since a paranotion designates a construct, all technical terms which
are defined for constructs can be used with paranotions without formality.}

d) If two paranotions P and Q designate, respectively, two constructs
S and T, and if S is a descendent of T, then P is termed a "constituent" of
Q unless there exists some {intermediate construct} U such that

(i) S is a descendent of U,
(if) U is a descendent of T, and

(iii) either P or Q could {equally well} designate U.

{Hence a (S1) is a constituent operand of the formula a x (b + 2 r (i+j))
(T), but b ($2) is not, since it is a descendent of an intermediate formula
b + 2 I (i+j) (U), which is itself descended from T. Likewise, (b + 2 T (i+j))
is a constituent closed-clause of the formula T, but the closed-clause (i+j)
is not, because it is descended from an intermediate closed-clause.
However, (i + j) is a constituent integral-closed.clause of T, because the
intermediate closed-clause is, in fact, a real-closed-clause.

30 van Wijngaarden, et aL

l
operand

formula
a x (b + 2 I (i + j))

I
I

operand
(b + 2 T (i + j))

I
(real-) c losed-c lause

(b + 2 t (i + j))
I

formula
b + 2 ! (i + j)

]
!

operand
b

I
operand
2 I (i + j)

I
formula

I I I
operand operand

2 (i + j)
I

1.1.4.3. Undefined

(integral-) c losed-c lause
(i+j)

a) If something is left "undefined" or is said to be "undefined", then
this means that it is not defined by this Repor t alone and that, for its
definition, information f rom outside this Report has to be taken into
account.

CA distinction mus t be drawn between the yielding of an undefined
value (whereupon elaborat ion continues with possibly unpredictable
results) and the complete undefinedness of the fur ther elaboration. The
action to be taken in this la t ter case is at the discretion of the
implementer , and m a y be some form of continuation (but not necessar i ly
the same as any other implemente r ' s continuation), or some form of
interruption (2.1.4.3.h) brought about by some run-t ime check.}
b) If some condition is "required" to be satisfied during some

elaboration then, if it is not so satisfied, the fur ther e laborat ion is
undefined.

c) A "meaningful" p rog ram is a p r o g r a m {2.2.1.a} whose elaborat ion is
defined by this Report.

{Whether all p rograms , only par t i cu la r -p rograms , only meaningful
programs, or even only meaningful pa r t i cu l a r -p rog rams are "ALGOL 66"
programs is a m a t t e r for individual taste.}

1.1.5. Translat ions and var ian ts
a) The definitive version D of this Repor t is writ ten in English. A

translation T of this Repor t into some other language is an acceptab le
translation if:

ALGOL 68 Revised Report 31

• T defines the s a m e set of production t rees as D, except that
(i) the originals contained in each production t ree of T m a y be different

protonotions obtained by some uniform translat ion of the corresponding
originals contained in the corresponding production t ree of D, and

(if) descendents of those production t rees need not be the s a m e if their
originals are predicates [1.3.2};

• T defines the meaning {2.1.4.1.a} of each of its p r o g r a m s to be the s ame
as that of the corresponding p r o g r a m defined by D:

• T defines the s a m e reference language [9.4} and the s a m e s tandard
environment {10} as D;
• T p r e s e r v e s , under another mode of expression, the meaning of each
section of D except that:

(i) different syntact ic m a r k s {1.1.3.1.a} m a y be used [with a
correspondingly different metaproduct ion rule for "AI,PHA" (1.3.I.B)};

(if) the method of derivation of the production rules [1.1.3.4} and their
interpretat ion [1.1.3.2} m a y be changed to suit the peculiari t ies of the
par t icular n a t u r a l language {; e.g., in a highly inflected natura l
language, it m a y be necessa ry to introduce some inflections into the
hypernotions, for which changes such as the following might be
required:

1) additional means for the creation of ext ra metaproduct ion rules
(1.1.3.3.a) ;

2) a more e laborate definition of "consistent substitute" (1.1.3.4.e);
3) a more e laborate definition of "equivalence" between

protonotions (2.1.1.2.a) ;
4) different inflections for paranotions (1.1.4.2.a)};

Off) some p ragmat i c r e m a r k s [1.1.2} m a y be changed.

b) A version of this Report may , additionally, define a "var iant of
ALGOL 68" by providing:

(i) additional or a l ternat ive representa t ions in the reference language
{9.4],

(if) additional or a l ternat ive rules for the notion "cllaracter glyph"
{8.1.4.1.c} and for the metanot ions "ABC" {9.4.2.1.L} and "STOP"
{10.1.I.B},

(iii) additional or alternative declarations in the standard environment
which must , however, have the s ame meaning as the ones provided in
D:

provided a lways that such additional or a l ternat ive i tems are delineated in
the text in such a way that the original language, as defined in D, is still
defined therein.

1.2. General metaproduct ion rules
{The reader m a y find it helpful to note that a metanot ion ending in

"ETY" always has "EMPTY" as one of the hypernotions on its r ight-hand
side.}

32 van Wijngaarden, et al.

1.2.1. Me tap roduc t ion rules of modes

A) MODE :: PLAIN ; STOWED ; REF to MODE ; PRO{:EI)URE ;
UNITED ; MU defini t ion of MODE ; MU appl ica t ion .

B) PLAIN :: INTREAI, ; boolean ; c h a r a c t e r .
C) INTREAL :: SIZETY integral ; SIZET~ real .
D) SIZETY :: long I,()NGSEI"~ ; shor t SII()IITSE'I 'Y ; EMPTY.
E) LONGSETY :: long IA)NGSETY ; EMP'I'~.
F) SHORTSETY :: shor t SHORTSETY ; EMPTY.
G) EMPTY :: .
H) STOWEI) :: s t r u c t u r e d with FIEIJ)S m o d e ;

FLEXETY ROWS of MODE.
I) FIELI)S :: FIEIA) ; FIELI)S FIELD.

J) FIELD :: MOI)E field TAG{942A}.
K) FLEXETY :: f lexible ; EMPTY.
L) R O W S : : r o w ; ROWS r o w .

M) R E F :: r e f e r e n c e ; t r a n s i e n t r e f e r e n c e .

N) PROCEI)URE :: procedure I 'ARAMET~ yielding MOLD.
O) PARAMETY :: with PARAMETERS ; EMPTY.
P) PARAMETERS :: PARAMETER ; I 'ARAMETERS PARAMETER.
Q) PARAMETER :: MODE parameter.
R) MOlD :: MODE ; void.
S) UNITED :: union of MOODS mode .
T) MOODS :: MOOD ; MOOI)S MOOI).
U) MOOD : :

PLAIN ; STOWEI) ; r e f e r e n c e to MODE ; PR()CEI)URE ; void.
V) MU :: muTALI,Y.
W) TALLY :: i ; TAIA.Y i.

{The m e t a p r o d u c t i o n rule for "TAG" is g iven in sec t ion 9.4.2.1. It
suff ices for the p re sen t tha t it p roduces an a r b i t r a r i l y l a rge n u m b e r of
t e r m i n a l metaproduc t ions .}

1.2.2. Me tap roduc t ion rules a s soc i a t ed with p h r a s e s and coe rc ion

A) EN(:I,OSEI) : :
c losed ; co l l a t e r a l ; pa ra l l e l ; CHOICE{34A} ; loop.

B) SOME :: SORT MOll) NEST.
C) S O R T :: s t r o n g ; f i r m ; m e e k ; w e a k ; sof t .

1.2.3. Me tap roduc t ion rules a s soc i a t ed with nests

A)
B)
C)
D)
E)

F)
G)

NEST :: LAYER ; NEST I,AYER.
LAYER :: new I)ECSETY I,ABSETY.
DECSETY :: I)ECS ; EMPTY.
DECS :: DEC ; DECS DEC.
DEC :: MODE TAG{942A} ; p r io r i ty PRIO TAD{942F} ;

MOlD TALLY TAB{942D} ; DUO TAD{942F} ; MONO TAM{942K}.
PRIO :: i ; ii ; iii ; iii i ; iii ii ; iii iii ; iii iii i ; iii iii ii ; iii iii iii.
MONO :: procedure with PARAMETER y ie ld ing MOLD.

ALGOL 68 Revised Report 33

H) DUO :: p r o c e d u r e wi th I 'ARAMETERI PARAMETER2
yie ld ing MOID.

I) LABSETY :: LABS ; EMPTY.
J) LABS :: LAB ; LABS LAB.
K) LAB :: label TAG{942A}.

{The m e t a p r o d u c t i o n ru les for "TAB", "TAI)" and "2"AM" a re g iven in
sect ion 9.4.2.1. It suff ices for the p r e s en t tha t e a c h of t h e m p roduces an
a r b i t r a r i l y l a rge n u m b e r of t e r m i n a l m e t a p r o d u c t i o n s , none of which is a
t e r m i n a l m e t a p r o d u c t i o n of "TAG".}

{"Well, 's l i thy' means ' l i the and s l i m y '
You see it's l ike a portmanteau - there are
two meanings packed up into one word. "
Th rough the Looking-glass, Lewis Carrol l .}

1.3. Gene ra l hype r - ru le s

{Predica tes a r e used in the syn t ax to en fo rce ce r t a i n r e s t r i c t ions on the
product ion t rees , such as tha t e a c h app l i ed - ind ica to r should ident i fy a
un ique ly d e t e r m i n e d def in ing- ind ica tor . A m o r e m o d e s t use is to r educe
the n u m b e r of hype r - ru le s by g roup ing s e v e r a l s i m i l a r c a se s as
a l t e r n a t i v e s in one rule. In these cases p r e d i c a t e s a r e used to tes t which
a l t e r n a t i v e applies.}

1.3.1. Syn tax of g e n e r a l p r e d i c a t e s

A) NOTION :: ALPHA ; NOTION ALPHA.
B) A L P H A : : a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; i ; m ; n ; o ; p ;

q ; r ; s ; t ; u ; v ; w ; x ; y ; z .
C) NOTETY :: NOTION ; EMPTY.
D) THIN{; :: NOTION ; (NOTETYI) NOTETY2 ;

THIN{; (NOTETY 1) NOTETY2.
E) WHETHER :: w h e r e ; u n l e s s .

a) w h e r e t rue : EMPTY.
b) u n l e s s f a l s e : EMPTY.
c) whe re THINGI and THING2 : w h e r e THINGI , w h e r e THING2.
d) w h e r e THINGI or THING2 : w h e r e T | i l N G I ; w h e r e THING2.
e) unless THINGI and THING2 : unless THINGI ; u n l e s s THING2.
f) unless THINGI or THING2 : unless THINGI , unless THING2.

g) WHETHER (NOTETYI) is (NOTETY2) :
WHETHER (NOTETY I) b e g i n s w i t h (NOTETY2){h,i,j}

and (N O T E T Y 2) b e g i n s w i t h (NOTETYI) {h , i , j } ,
h) W H E T H E R (EMPTY) b e g i n s w i t h (NOTION){g , j } :

WHETHER false{b,-} .
i) WHETHER (NOTETY) begins with (EMPTY){g,j} :

WHETHER true{a,-} .

34 van Wijngaarden, et al.

j) WHETHER (ALPHAI NOTETYI) begins with
(ALPHA2 NOTETY2){g,j,m} :

WHETHER (ALPHAI) coincides with (ALPHA2) in
(abcdefghijklmnopqrstuvwxyz){k,l,-}

and (NOTETY I) begins with (NOTETY2){h,i,j}.
k) where (ALPHA) coincides with (AI.PHA) in (NOTION){j} :

where true{a}.
I) unless (ALPHAI) coincides with (ALPHA2) in (NOTION){j} :

where CNOTION) contains (ALPIIAI NOTETY ALPHA2){m}
or (NOTION) contains CALPHA2 NOTETY ALPHAI){m}.

m) WHETHER (ALPHA NOTETY) contains (NOTION){I,m} :
WHETHER (ALPHA NOTETY) begins with (NOTION){j}

or (NOTETY) contains (NOTION){m,n}.
n) WHETHER (EMPTY) contains (NOTION){m} : WHETHER false{b,-}.

{The small syntact ic m a r k s "(" and ")" are used to ensure, in a s imple
way, the unambiguous application of these predicates.}

1.3.2. The holding of predicates

A "predicate" is a protonotion which begins with "where" or 'unless"
{unified into 'WHETHER'}. For a predicate P, ei ther one or more
production t rees m a y be produced {1.1.3.2.f} {all of which are then
invisible}, in which case P "holds", or no production t ree m a y be produced
{since each a t t empt to produce one runs into blind alleys}, and then P
"does not hold".

{For example , the predicate 'where (ab) is (ab)" holds. I ts production
tree m a y be depicted thus:

'where (ab) is (ab)"
I

'where (ab) beg ins with (ab) and Cab) beg ins with Cab)"
I I I

'where (ab) begins with (ab) ' "where (ab) begins with (ab)"
(same as left branch)

'where (a) coincides with (a) in (abc...z) and (b) begins with (b)'
I

I
'where Ca) coincides with (a) in (abc...z)'

I
'where true'

[
'where (b) coincides with (b) in (abc...z)'

I
'where true"

I
'where (b) beg ins with (b)"

1

I
'where () begins with ()'

l
'where true'

ALGOL 68 Revised Report 35

If a predicate holds, then its production tree a lways t e rmina tes via
'where true ' or 'unless false ' . If it does not hold, then, in general , the blind
alleys are 'where false ' and 'unless t rue ' . Although a lmost all the hyper-
rules concerned are for hypernotions beginning with "WHETHER" and so
provide, each t ime, production rules for pairs of predicates such as "where
THINGI ' and "unless THINGI ' , this does not mean that in each such case
one of the pair mus t hold. For example , 'where digit four counts iii"
(4.3.1.c) does not hold, but no ca re has been taken to make "unless digit
four counts iii' hold either, since there is no applicat ion for it in this
Report.

In the semantics , no meaning is ascr ibed to constructs whose originals
are predicates. They serve purely syntact ical purposes.}

1.3.3. Syntax of general constructions

A) STYLE :: brief ; bold ; style TALLY..

a) NOTION option : NOTION ; EMPTY.
b) NOTION sequence{b} : NOTION ; NOTION, NOTION sequence{b}.
c) NOTION list{c} :

NOTION ; NOTION, and also{94f} token, NOTION list{c}.
d) NOTETY STYLE pack :

STYLE begin{94f,-} token, NOTETY, STYLE end{94f,-} token.
e) NOTION STYLE bracke t :

STYLE sub{94f,-} token, NOTION, STYI.E bus{94f,-} token.
f) THINGI or a l ternat ively THING2 : THINGI ; THING2.

{It follows f rom this syntax that production rules such as
digit cypher sequence :

digit cypher ; digit cypher , digit cypher sequence.
(which was used in the production of the example in I.I.3.2.f, but for
which no more explicit hyper-rule is given) a re immedia te ly available.
Thus the number of hyper-rules actual ly writ ten in this Report has been
reduced and those that r emain have, hopefully, been made more readable ,
since these general constructions a re so worded as to suggest what their
productions should be.

For this reason, cross-references (I.I.3.4.f) to these rules have been
replaced by more helpful references; e.g., in 8.1.1.I.b, instead of "digit
c y p h e r sequence{133b}", the more helpful "digit cypher{c} sequence" is
given. Likewise, references within the general construct ions themse lves
have been restr ic ted to a bare minimum.}

2. The compute r and the p r o g r a m

The meaning of a p r o g r a m in the str ict language is explained in t e rms
of a hypothetical compute r which pe r fo rms the set of actions {2.1.4} which
constitute the elaborat ion {2.1.4.1} of that p rogram. The compute r deals
with a set of "objects" {2.1.1}.

36

2.1. Terminology

van Wijngaarden, et al.

{"When I use a word," Humpty Dumpty said, in rather a
scornfu l tone, " i t means just what I choose it to mean -
nei ther more nor less."
Through the Looking-glass, Lewis Carrol l . }

2.1.1. Objects

An "object" is a construct {1.1.3.2.e}, a "value" {2.1.1.l.a}, a "locale"
{2.1.1.l.b}, an "environ" {2.1.1.1.c} or a "scene" {2.1.1.1.d}.

{Constructs may be classified as "external objects", since they
correspond to the text of the program, which, in a more realistic
computer, would be compiled into some internal form in which it could
operate upon the "internal objects", namely the values, the locales, the
environs and the scenes. However, the hypothetical computer has no need
of a compilation phase, it being presumed able to examine the program
and all of its descendent constructs at the same time as it is manipulating
the internal objects.}

2.1.1.1. Values, locales, environs and scenes

a) A "value" is a "plain value" {2.1.3.1}, a "name" {2.1.3.2}, a "stowed
value" (i.e., a "structured value" {2.1.3.3} or a "multiple value" {2.1.3.4}) or
a "routine" {2.1.3.5}.

{For example, a real number is a plain value. A special font is used for
values appearing in the text of this Report, thus: 3.14, true. This is not to
be confused with the italic and bold fonts used for constructs. This same
special font is also used for letters designating such things as constructs
and protonotions.}

b) A "locale" {is an internal object which} corresponds to some
'DECSETY LABSETY" {1.2.3.C,I}. A "vacant locale" is one for which that
'DECSETY LABSETY" is 'EMPTY'.

{Each 'QUALITY TAX' (4.8A.F,G) enveloped by that "I)ECSET~
LABSETY" corresponds to a QllALIT'¥-defining-indicator-with-TAX (i.e., to
an identifier, operator or mode-indication) declared in the construct whose
elaboration caused that locale to be created. Such a 'QIiAIA'I'~ TAX' may
be made to "access" a value or a scene "inside" that locale (2.1.2.c).

A locale may be thought of as a number of storage cells, into which
such accessed objects are placed.}

{The terminal metaproductions of the metanotions "I)EC", "l.AIt" and
"FIELD" (or of the more frequently used "PtlOP", which includes them all)
are all of the form "QUALITY' TAX'. These "properties" are used in the
syntax and semantics concerned with nests and locales in order to
associate, in a part icular situation, some quality with that 'TAX'.}

ALGOL 68 Revised Report 37

c) An "environ" is either empty, or is composed of an environ and a
locale.

{Hence, each environ is derived from a series of other environs,
s temming ultimately from the empty "primal environ" in which the
program is elaborated (2.2.2.a).}

d) A "scene" S is an object which is composed of a construct C
{1.1.3.2.e} and an environ E. C is said to be the construct, and E the
environ, "of" S.

{Scenes may be accessed inside locales (2.1.2.c) by "LAB's or "DEC's
arising from label.identifiers or from mode-indications, and they may also
be values (2.1.3.5).}

2.1.1.2. Modes

{Each value has an attribute, termed its "mode", which defines how
that value relates to other values and which actions may be applied to it.
This attribute is described, or "spelled", by means of some "MOll}'
(I.2.1.R) (thus there is a mode spelled "real', and there is a mode spelled
'structured with real field letter r letter e real field letter i letter m
mode') . Since it is intended that the modes specified by the mode-
indicat ions a and b in

mode a = struct (rata b),
mode b = struct (ref struct (rat b b) b)

should in fact be the same mode, it is necessary that both the "MOLD'
'mui definition of structured with reference to mui application

field letter b mode'
and the ' M O l l) '

'muii definition of structured with reference to s tructured with
reference to muii application field letter b mode
field letter b mode'

(and indeed many others) should be alternative spellings of that same
mode. Similarly, the mode specified by the declarer union (int, real) may
be spelled as either *union of integral real mode" or "union of real integral
mode' . All those 'MOlD's which are spellings of one same mode are said to
be "equivalent to" one another (a).

Certain 'MOII)'s, such as ' reference to muiii application', "reference to
muiiii definition of reference to muiiii application', 'union of real reference
to real mode' , and 's t ructured with integral field letter a real field letter a
mode' , are ill formed (7A, 4.7.1.f, 4.8.1.c) and do not spell any mode.

Although for most practical purposes a "mode" can be regarded as
simply a 'MOll)', its rigorous definition therefore involves the whole class
of 'MOlD's, equivalent to each other, any of which could describe it.}

a) 'MOII)l ' {I.2.1.R} is "equivalent to" 'MOIl)2" if the predicate "where
MOII)I equivalent MOIl)2" {7.3.1.a} holds {1.3.2}.

{A well formed "MOll)" is always equivalent to itself: "union of inWgral
real mode" is equivalent to 'union of real integral mode'.}

38 van Wijngaarden, et al.

A protonotion P is "equivalent to" a protonotion Q if it is possible to
t ransform a copy Pc of P into a copy Qc of Q in the following step:
Step: If Pc is not identical to Qc, then some 'M()II)I ' contained in Pc, but

not within any {larger} "MOll)2' contained in. Pc, is replaced by some
equivalent 'MOll)', and the Step is taken again.

{Thus 'union of integral real mode identifier' is equivalent to "union or real
integral mode identifier'.}

b) A "mode" is a class C of 'MOlD's such that each member of C is
equivalent {a} to each other member of C and also to itself {in order to
ensure well formedness}, but not to any 'MOII)I ' which is not a member, of
C.

{However, it is possible (except when equivalence of rnodes is
specifically under discussion) to discuss a mode as if it were simply a
terminal metaproduction of "MOLD", by virtue of the abbreviation to be
given in 2.1.5.f.}

c) Each value is of one specific mode.
{For example, the mode of the value 3.14 is "real'. However, there are

no values whose mode begins with 'union or , ' t ransient reference to' or
'flexible R()~'S o r (see 2.1.3.6).}

2.1.1.3. Scopes
{A value Y may "refer to" (2.1.2.e), or be composed from (2.1.l.Ld~*

another internal object O (e.g., a name may refer to a value: a routm¢.
which is a scene, is composed, in part, from an environ). Now the lifetime
of the storage cells containing (2.1.3.2.a) or implied by (2.1.1.1.b) O may
be limited (in order that they may be recovered after a certain time), and
therefore it must not be possible to preserve Y beyond that lifetime, for
otherwise an at tempt to reach some no-longer-existent storage cell via Y
might still be made. This restriction is expressed by saying that, if Y is to
be "assigned" (5.2.1.2.b) to some name W, then the "scope" of W must not
be "older" than the scope of Y. Thus, the scope of Y is a measure of the
age of those storage cells, and hence of their lifetime.}

a) Each value has one specific "scope" {which depends upon its mode
or upon the manner of its creation: the scope of a value is defined to be
the same as that of some environ}.

b) Each environ has one specific "scope". {The scope of each environ
is "newer" (2.1.2.f) than that of the environ from which it is composed
(2.1.1.1.c) .}

{The scope of an environ is not to be confused with the scopes of the
values accessed inside its locale. Rather, the scope of an environ is used
when defining the scope of scenes for which it is necessary (7.2.2.c) or of
the yields of generators for which it is "local" (5.2.3.2.b). The scope of tin
environ is defined relative (2.1.2.f) to the scope of some other environ, so
that hierarchies of scopes are created depending ultimately upon the scope
of the primal environ (2.2.2.a).}

ALGOL 68 Revised Report 39

2.1.2. Relationships

a) Relationships either are "permanent", i.e., independent of the
program and of its elaboration, or actions may cause them to "hold" or to
cease to hold. Relationships may also be "transitive"; i.e., if "*" is such a
relationship and A*B and B*C hold, then A*C holds also.

b) "To be the yield of" is a relationship between a value and an
action, viz., the elaboration of a scene. This relationship is made to hold
upon the completion of that elaboration {2.1.4.1.b}.

c) "To access" is a relationship between a "PROP" {4.8.1.E} and a
value or a scene V which may hold "inside" some specified locale L {whose
'DECSETY LABSETY' envelops 'PROP'}. This relationship is made to hold
when "PROP' is "made to access" V inside L {3.5.2.Step 4, 4.8.2.a} and it
then holds also between any 'PROPI ' equivalent to {2.1.1.2.a} 'PROP" and V
inside L.

d) The permanent relationships between values are: "to be of the
same mode as" {2.1.1.2.c}, "to be smaller than", "to be widenable to", "to
be lengthenable to" {2.1.3.1.e} and "to be equivalent to" {2.1.3.1.g}. If one of
these relationships is defined at all for a given pair of values, then it
either holds or does not hold permanently. These relationships are all
transitive.

e) "To refer to" is a relationship between a "name" [2.t.3.2.a} N and
some other value. This relationship is made to hold when N is "made to
refer to" that value and ceases to hold when N is made to refer to some
other value.

f) There are three transitive relationships between scopes, viz., a
scope A {2.1.1.3} may be either "newer than", or "the same as" or "older
than" a scope B. If A is newer than B, then B is older than A and vice-
versa. If A is the same as B, then A is neither newer nor older than B {but
the converse is not necessarily t rue , since the relationship is not defined at
all for some pairs of scopes}.

g) "To be a subname of" is a relationship between a name and a
"stowed name" {2.1.3.2.b}. This relationship is made to hold when that
stowed name is "endowed with subnames" {2.1.3.3.e, 2.1.3.4.g} or when it is
"generated" {2.1.3.4.j,1}, and it continues to hold until that stowed name is
endowed with a different set of subnames.

2.1.3. Values

2.1.3.1. Plain values

a) A plain value is either an "arithmetic value", i.e., tin "integer" or a
"real number", or is a "truth value" {f}, a "character" {g} or a "void value"
{hi.

4 0 v a n Wijngaarden, et aL

b) An ar i thmet ic value has a "size", i.e., an in teger charac ter iz ing the
degree of discr iminat ion with which it is kept in the computer .

c) The mode of an in teger or of a real n u m b e r of size n is,
respectively, some 'SIZET¥ integral ' or 'SIZETY rea l ' where, if n is
positive (zero, negat ive) , that 'SIZET¥' is n t imes ' long' (is empty , is -n
t imes "short ') .

d) The number of integers or of real numbers of a given size that can
be distinguished increases (decreases) with that size until a cer ta in size is
reached, viz., the "number of ex t ra lengths" (minus the "number of ext ra
shorths") of integers or of real numbers , respect ively, {10.2.l.a,b,d,e} a f te r
which it is constant.

{Taking Three as the subject to reason
about-
A convenient number to state- }

e) For the purpose of explaining the meaning of the widening coercion
and of the opera tors declared in the s tandard-prelude, the following
propert ies of a r i thmet ic values a re assumed:

• for each pair of integers or of real numbers of the s a m e size, the
relationship "to be sma l l e r than" is defined with its usual m a t h e m a t i c a l
meaning {10.2.3.3.a, 10.2.3.4.a};
• for each pa i r of integers of the s a m e size, a third dist inguishable
integer of that size m a y exist, the first in teger "minus" the other
{10.2.3.3.g};

{We add Seven, and Ten, and then multiply
out
By One Thousand diminished by Eight. }

• for each pair of real numbers of the same size, three distinguishable
real numbers of that size may exist, the f irst real number "minus"
("times", "divided by") the other one {10.2.3.4.g,l,m};
• in the foregoing, the t e rms "minus", "t imes" and "divided by" have
their usual m a t h e m a t i c a l meaning but, in the case of real numbers ,
their results are obtained "in the sense of numer ica l analysis", i.e., by
per forming those operat ions on numbers which m a y deviate slightly
f rom the given ones {; this deviation is left undefined in this Report}:

{The result we proceed to divide, as you
see,
By Ni'ne Hundred and Ninety and Two }

• each integer of a given size is "widenable to" a real number close to
it and of that same size {6.5};
• each integer (real number) of a given size can be "lengthened to" an
integer (real number) close to it whose size is g r e a t e r by one
{10.2.3.3.q, 10.2.3.4.n}.

f)

ALGOL 68 Revised Report

A "truth value" is e i ther "true" or "false". I ts mode is "boolean'.

41

{Then subtract Seventeen, and the answer
must be
Exactly and perfectly true.
The Hunting of the Snark, Lewis Carroll.}

g) Each "character" is "equivalent" to a nonnegative integer of size
zero, its "integral equivalent" {10.2.1.n}: this relationship is defined only to
the extent that different characters have different integral equivalents,
and that there exists a "largest integral equivalent" {10.2.1.p}. The mode of
a character is "character'.

h) The only "void value" is "empty". Its mode is 'void'.
{The elaboration of a construct yields a void value when no more useful

result is needed. Since the syntax does not provide for void-variables, void-
identi ty-declarations or vo id-parameters , the p r o g r a m m e r cannot make
use of void values, except those ar is ing f rom uniting (6.4).}

i) The scope of a plain value is the scope of the pr imal environ
{2.2.2.a}.

2.1.3.2. Names

{What's in a name? that which we call a
rose
By any other name would smell as sweet .
Romeo and Juliet, William Shakespeare.}

a) A "name" is a value which can be "made to re fe r to" {d, 5.2.3.2.a,
5.2.1.2.b} some other value, or which can be "nil" {and then refers to no
value}; moreover , for each mode beginning with ' r e fe rence to', there is
exact ly one nil name of that mode.

A name m a y be "newly created" {by the e laborat ion of a genera tor
(5.2.3.2) or a rowed-to-FORM (6.6.2), when a stowed name is endowed with
subnames (2.1.3.3.e, 2.1.3.4.g) and, possibly, when a name is "generated"
(2.1.3.4.j, l)}. The name so crea ted is different f rom all names a l ready in
existence.

{A name m a y be thought of as the address of the s torage cell or cells,
in the computer , used to contain the value re fe r red to. The creat ion of a
name implies the reservat ion of s torage space to hold that value.}

b) The mode of a name N is some ' re fe rence to MODE" and any value
which is refer red to by N mus t be "acceptable to" {2.1.3.6.d} that "MOI)E'.
If 'MODE' is some 'STOWED', then N is said to be a "stowed name".

c) The scope of a name is the scope of some specific environ {usually
the "local environ" (5.2.3.2.b) of some generator}. The scope of a name
which is nil is the scope of the pr imal environ {2.2.2.a}.

42 van Wijngaarden, et al.

d) If N is a stowed name referring to a s tructured (multiple) value Y
[2.1.3.3, 2.1.3.4}, and if a subname {2.1.2.g] of N selected {2.1.3.3.e, 2.1.3.4.g}
by a 'TAG' (an index) I is made to refer to a {new} value X, then N is
made to refer to a structured (multiple) value which is the same as Y
except for its field (element) selected by I, which is {now made to be} ×.

{For the mode of a subname, see 2.1.3.3.d and 2.1.3.4.f.}

2.1.3.3. Structured values

a) A "structured value" is composed of a sequence of other values, its
"fields", each of which is "selected" [b} by a specific "TAG" {9.4.2.1.A}. {For
the selection of a field by a field-selector, see 2.1.5.g.}

{The ordering of the fields of a structured value is utilized in the
semantics of structure.displays (3.3.2.b) and format-texts (10.3.4), and in
straightening (10.3.2.3.c).}

b) The mode of a structured value V is some 'structured with FIEIJ)S
mode' . If the n-th "FIELD' enveloped by that 'FIELDS' is some 'MODE field
TAG', then the n-th field of Y is "selected" by "TAG" and is acceptable to
{2.1.3.6.d} "MODE'.

c) The scope of a structured value is the newest of the scopes of its
fields.

d) If the mode of a name N {referring to a s tructured value} is some
'reference to structured with FIELDS mode' , and if the predicate "where
MODE field TAG resides in FIELDS' holds {7.2.1.b,c}, then the mode of the
subname of N selected {e} by "TAG' is ' reference to MODE'.

e) When a name N which refers to a structured value V is "endowed
with subnames" {e, 2.1.3.4.g, 4.4.2.b, 5.2.3.2.a}, then,
For each 'TAG' selecting a field F in V,

• a new subname M is created of the same scope as N:
• M is made to refer to F;
• M is said to be the name "selected" by "TAG" in N:
• if M is a stowed name {2.1.3.2.b}, then it is itself endowed with
subnames {e, 2.1.3.4.g}.

2.1.3.4. Multiple values

a) A "multiple value" {of n dimensions} is composed of a "descriptor"
and a sequence of other values, its "elements", each of which may be
"selected" by a specific n-tuple of integers, its "index".

b) The "descriptor" is of the form
((I 1, U l) , (I 2, u 2) (I n , Un))

whe re each (li, ui) , i = 1 n, is a "bound p a i r " of i n tege rs in w h i c h I. is
I

the i-th " l o w e r bound" and u. is the i - th " uppe r bound" .
I

ALGOL 68 Revised Report 43

C) If for any i, i = 1 n, u i < li, then the descriptor is said to be

"flat" and there is one element, termed a "ghost element" {, and not
selected by any index; see also 5.2.1.2.b}; otherwise, the number of
e lemen ts is (u 1 - I 1 + 1) x (u 2 - 1 2 + 1) x ... x (u n - I + 1) and each is

n
se lec ted by a spec i f i c i ndex (r 1 r n) whe re I.i <- r.i <± ui ' i = 1 , n.

d) The mode of a multiple value Y is some "R()~S of MOI)E', where
that 'ROWS' is composed of as many times "row" as there are bound pairs
in the descriptor of Y and where each element of V is acceptable to
[2.1.3.6.d] that 'MODE'.

{For example, given [] un ion (int, real) ruir = (1, 2.0), the mode of the
yield of ruir is 'row of union of integral real mode' , the mode of its first
element is ' integral ' and that of its second element is "real'.}

e) The scope of a multiple value is the newest of the scopes of its
elements, if its descriptor is not flat, and, otherwise, is the scope of the
primal environ {2.2.2.a}.

f) A multiple value, of mode 'ROWS of MODE', may be referred to
either by a "flexible" name of mode ' reference to flexible R()~S o|'
MODEl', or by a "fixed" name of mode ' reference to RO~S of MODEl"
where [in either case} 'MODEl' "deflexes" {2.1.3.6.b} to 'MODE'.

[The difference implies a possible difference in the method whereby the
value is stored in the computer. The flexible case must allow a multiple
value with different bounds to be assigned (5.2.1.2.b) to that name,
whereas the fixed case can rely on the fact that those bounds will remain
fixed during the lifetime of that name. Note that the "flexibility" is a
property of the name: the underlying multiple value is the same value in
both cases.}

If the mode of a name N {referring to a multiple value} is some
'reference to FLEXETY ROWS of MODE', then the mode of each subname
of N is "reference to MODE'.

g) When a name N which refers to a multiple value Y is "endowed
with subnames" {g, 2.1.3.3.e, 4.4.2.b, 5.2.1.2.b, 5.2.3.2.a], then,
For each index selecting an element E of V,

• a new subname M is created of the same scope as N:
• M is made to refer to E;
• M is said to be the name "selected" by that index in N:
• if M is a stowed name [2.1.3.2.b}, then it is itself endowed with
subnames {g, 2.1.3.3.e}.

{In addition to the selection of an element (a) or a name (g) by means
of an index, it is also possible to select a value, or to generate a new name
referring to such a value, by means of a tr im (h,i,j) or a 'TA(;' (k,ll. Both
indexes and trims are used in the elaboration of slices (5.3.2.2).}

44 van Wijngaarden, et al.

h) A "tr im" is an n-tuple, each e l emen t of which is e i ther an in teger
{corresponding to a subscript} or a t r iplet (I, u, d) {corresponding to a
t r i m m e r or a revised. lower-bound-option}, such tha t at least one of those
e lements is a t r iplet {if all the e l ement s a re integers , then the n-tuple is an
index (a)}. E a c h e l emen t of such a tr iplet is e i ther an in teger or is
"absent".

{A t r im (or an index) is yielded by the e labora t ion of an indexer
(5.3.2.2.b) .}

i) The mult iple value W {of m dimensions} "selected" by a t r im T in a
mult iple value V {of n dimensions, 1 <_ m <_ n} is d e t e r m i n e d as follows:

• Let T be composed of in tegers and tr iplets T., i = 1 n, of which ;
m are ac tua l ly tr iplets; let the j-th t r iplet be (I.,j u.,] dj), j = 1 m:

• W is composed of
(i) a desc r ip to r (01 - d 1, u 1 - d l) , (I 2 - d 2, u 2 - d 2) (Ira - dm,

Um - din))"
(ii) e lements of V, where the e lement , if any, se lected in W by an index
(w 1 w m) {I i - d . j <_w.j <_u.j-dj} is tha t se lected in V by the index

(v 1 v n) de t e rmined as follows:

For i = 1 n,
Case A: T. is an integer:

!

• v. = T . :
I I

Case B: T.i is the j-th t r iplet (Ij, uj, dj) of T:

• v. = w. + d..

j) The name M "generated" by a t r im T f rom a name N which refers
to a mult iple value V is a {fixed} name, of the same scope as N, {riot
necessarily newly created} which refers to the mult ip le value W selected
{i} by T in V. E a c h s u b n a m e of M, as se lected by an index Iw, is one of the
{already existing} s u b n a m e s of N, as se lected by an index Iv, where each Iv
is de te rmined f rom T and the co r respond ing Iw us ing the m e t h o d given in
the previous sub-section.

k) The mult iple value W "selected" by a 'TAG' in a mul t iple va lue V
{each of whose e lements is a s t ruc tu red value} is composed of

(i) the desc r ip to r of V, and
(ii) the fields se lected by 'TAG' in the e lements of V, whe re the e lement ,

if any, se lected in W by an index I is the field se lec ted by 'TAG" in the
e lement of V selected by I.

l) The n a m e M "genera ted" by a 'TAG' f r o m a n a m e N which re fe rs
to a mult iple value V {each of whose e l ement s is a s t r uc tu r ed value} is a
{fixed} name , of the s a m e scope as N, {not neces sa r i l y newly created}

ALGOL 68 Revised Report 45

which refers to the mult iple value selected {k} by "TAG' in V. E a c h
s u b n a m e of M selected by an index I is the {already existing} n a m e
selected {2.1.3.3.e} by 'TAG' in the s u b n a m e of N se lec ted {g} by I.

2.1.3.5. Rout ines

a) A "routine" is a scene {2.1.1.1.d} composed of a rout ine- text
{5.4.1.1.a,b} toge ther with an envi ron {2.1.1.1.c}.

{A routine m a y be "called" (5.4.3.2.b), whereupon the unit of its routine-
text is elaborated.}

b) The mode of a routine composed of a PROCEDURE-rout ine-text is
'PROCEDURE'.

c) The scope of a routine is the scope of its environ.

2.1.3.6. Acceptabi l i ty of values

a) {There a re no values whose mode begins with "union o r . There
exist n a m e s whose modes begin with ' r e f e r ence to union of ' , e.g., u in
u n i o n tint, real) u ; . Here, however , u, whose mode is "reference to union of
in tegral real mode ' , refers e i ther to a value whose mode is "integral ' or to
a value whose mode is ' r ea l ' . I t is possible to d i scover which of these
si tuat ions obtains, at a given mo me n t , by m e a n s of a conformi ty -c lause
(3.4.1.q) .}

The mode "MOLD' is "united f rom" the mode 'MOt)I)" if "MOLD' is some
'union of MOOI)SETYI MOOD MOODSETY2 mode ' .

b) {There a re no values whose mode begins with "flexible'. There exist
flexible n a m e s whose modes begin with "reference to flexible ' , e.g., a / in
f lex [1: n] real a l ; . Here a l , whose mode is ' r e f e r ence to flexible row of
rea l ' , re fers to a mult iple value whose mode is ' row of rea l ' (see also
2.1.3.4.f). In genera l , there exist va lues only for those modes obta inable by
"de flexing".}

The mode 'MOIDl" "deflexes" to the mode "MOll)2" if the p red ica te
'where MOIDI def lexes to MOID2" holds {4.7.l.a,b,c}.

{The def lexing process obtains "MOID2' by r e m o v i n g all ' f lexible 's
conta ined at positions in 'MOIDI" where they a re not also conta ined in any
'REF to MOID3". Thus

' s tructured wi th flexible row of c h a r a c t e r field le t ter a m o d e ' ,
which is not the mode of any value, def lexes to

' s tructured wi th row of c h a r a c t e r field let ter a mode"
which is therefore the mode of a value re fe rab le to by a flexible n a m e of
mode

' r e fe rence to s tructured wi th flexible row of c h a r a c t e r
field let ter a m o d e ' .

This mode is a l r eady the mode of a n a m e and therefore it cannot be
deflexed any further.}

46 van Wijngaarden, et al.

c) {There a r e no names whose mode begins with 'transient
reference to'.

The yield of a transient-reference-to-MODE-FORM is a " t ransient name"
of mode 'reference to MODE', but, there being no t ransient-reference-to-
MODE-declarators in the language (4.6.1), the syntax ensures that
t ransient names can never be assigned, ascr ibed or yielded by the calling
of a routine.

E.g., x x := a l [i] is not an assignation because x x is not a reference-to-
transient-reference. to-real- identif ier . Transient names originate f rom the
slicing, multiple selection or rowing of a flexible name.}

d) A value of mode M1 is "acceptable to" a mode M2 if
(i) M1 is the s a m e as M2, or

(ii) M2 is united {a} f rom M1 {thus the mode specified by union (r~l , Int)
accepts values whose mode is that specified by e i ther reel or lot}, or

(iii) M2 deflexes {b} to M1 {thus the mode "flexible row of rea l ' (a mode of
which there a re no values) accepts values such as the yield of the
actual-declarer fax [1 : n} foal which is a value of mode "row of real'},
o r

(iv) M1 is some 'reference to MODE' and M2 is "transient reference to
MODE' {thus the mode 'transient reference to real' accepts values
(such as the yield of a l [i]) whose mode is 'reference to real'}.

{See 2.1.4.1.b for the acceptabi l i ty of the yield of a scene.}

2.1.4. Actions

{Suit the action to the word, the word to
the action.
Hamlet, William Shakespeare.}

2.1.4.1. Elaborat ion

a) The "elaboration" of cer ta in scenes {those whose constructs a re
designated by cer ta in paranotions} is specified in the sections of this
Report headed "Semantics", which describe the sequence of "actions"
which are to be carr ied out during the elaborat ion of each such scene.

{Examples of actions which m a y be specified are:
• the causing to hold of relationships,
• the creation of new names , and
• the elaboration of other scenes.]

The "meaning" of a scene is the effect of the actions car r ied out during
its elaboration. Any of these actions or any combinat ion thereof m a y be.
replaced by any action or combination which causes the s a m e effect.

b) The elaborat ion of a scene S m a y "yield" a value. If the construct
of S is a MOID-NOTION, then that value is, unless otherwise specified, [of
such a mode that it is} acceptable to {2.1.3.6.d) 'MOID'.

{This rule m a k e s it possible, in the semant ics , to discuss yields without
explicitly prescr ibing their modes.}

ALGOL 68 Revised Repor t 47

c) If the elaborat ion of some Construct A in some environ E is not
otherwise specified in the semant ics of this Report , and if B is the only
direct descendent of A which needs elaborat ion {see below}, then the
elaboration of A in E consists of the elaborat ion of B in E and the yield, if
any, of A is the yield, if any, of B {; this au tomat ic elaborat ion is t e rmed
the "pre-elaboration" of A in E}.

A construct needs no elaborat ion if it is invisible {1.1.3.2.h}, if it is a
symbol {9.1.1.h}, or if its e laborat ion is not otherwise specified in the
semant ics of this Report and none of its direct descendents needs
elaboration.

[Thus the elaboration of the reference. to . real .c losed-clause (3.l.l.a)
(x := 3.14) is (and yields the s a m e value as) the e laborat ion of its
consti tuent reference. to-real-ser ial-clause (3.2.1.a) x := 3.14.]

2.1.4.2. Serial and collateral actions

a) An action m a y be "inseparable", "serial" or "collateral". A serial or
collateral action consists of one or more other actions, t e rmed its "direct
actions". An inseparable action does not consist of other actions {; what
actions are inseparable is left undefined by this Report}.

b) A "descendent action" of another action B is a direct action ei ther
of B, or of a descendent action of B.

c) An action A is the "direct parent" of an action B if B is a direct
action {a} of A.

d) The direct actions of a serial action S take place one a f te r the
other; i.e., the completion 12.1.4.3.c,d} of a direct action of S is followed by
the initiation {2.1.4.3.b,c} of the next direct action, if any, of S. {The
elaboration of a scene, being in general composed of a sequence of
actions, is a serial action.}

e) The direct actions of a collateral action are merged in t ime; i.e.,
one of its descendent inseparable actions which, at that moment , is
"active" {2.1.4.3.a} is chosen and carr ied out, upon the complet ion {2.1.4.3.c}
of which another such action is chosen, and so on {until all a re completed}.

If two actions {collateral with each other} have been said to be
"incompatible with" {10.2.4} each other, then [they shall not be merged;
i.e.,} no descendent inseparable action of the one shall (then the one {if it
is a l ready inseparable} shall not) be chosen if, at that moment , the other
is act ive and one or more, but not all, of its descendent inseparable
actions have a l ready been completed; otherwise, the method of choice is
left undefined in this Report .

f) If one or more scenes are to be "elaborated collateral ly", then this
elaboration is the collateral action consisting of the {merged} elaborat ion
of those scenes.

48 van Wijngaarden, et al.

2.1.4.3. Initiation, completion and termination

a) An action is either "active" or "inactive".
An action becomes active when it is "initiated" {b,c} or "resumed" {g}

and it becomes inactive when it is "completed" {c,d}, "terminated" {e},
"halted" {f} or "interrupted" {h}.

b) When a serial action is "initiated", then the first of its direct
actions is initiated. When a collateral action is "initiated", then all of its
direct actions are initiated.

c) When an inseparable action is "initiated", it may then be carried
out {see 2.1.4.2.e}, whereupon it is "completed".

d) A serial action is "completed" when its last direct action has been
completed. A collateral action is "completed" when all of its direct act i .us
have been completed.

e) When an action A {whether serial or collateral] is " t e rmina t ed .
then all of its direct actions {and hence all of its descendent actions} are
terminated {whereupon another action may be initiated in its place}.
{Termination of an action is brought about by the elaboration of a jump
(5.4.4.2) .}

f) When an action is "halted", then all of its active direct actions land
hence all of its active descendent actions} are halted. {An action may be
halted during a "calling" of the routine yielded by the operator down
(10.2.4.d), whereupon it may subsequently be resumed during a calling of
the routine yielded by the operator up (10.2.4.e).}

If, at any time, some action is halted and it is not descended from a
"process" of a "parallel action" {10.2.4} of whose other process(es) there
still exist descendent active inseparable actions, then the further
elaboration is undefined. {Thus it is not defined that the elaboration of the
collateral-clause in

begin sema s e r g e i = level O;
(par begin (down sergei; print (pokrovsky)), skip end,

(read (pokrovsky); up sergei))
a n d

will ever be completed.}

g) When an action A is "resumed", then those of its direct actions
which had been halted, consequent upon the halting of A are resumed.

h) An action may be "interrupted" by an event [e.g., "overflow"] not
specified by the semantics of this Report but caused by the computer if ils

ALGOL 68 Revised Report 49

limitations {2.2.2.b} do not permit satisfactory elaboration. When an acli(m
is interrupted, then all of its direct actions, and possibly its direct i)arem
also, are interrupted. {Whether, after an interruption, that action is
resumed, some other action is initiated or the elaboration of the program
ends, is left undefined by this Report.]

{The effect of the definitions given above is as follows:
During the elaboration of a program (2.2.2.a) the elaboration of its

closed-clause in the empty primal environ is active. At any given moment.
the elaboration of one scene may have called for the elaboration of some
other scene or of several other scenes collaterally. If and when the
elaboration of that other scene or scenes has been eoml)leted, the next
step of the elaboration of the original scene is taken, and so on until it. in
turn, is completed.

It will be seen that all this is analogous to the calling (21' one subroutine
by another; upon the completion of the execution of the called subroutim,,
the execution of the calling subroutine is continued: the semantic rules
given in this Report for the elaboration of the various paranotions
correspond to the texts of the subroutines; the semantic rules may even.
in suitable circumstances, invoke themselves recursively (but with a
different construct or in a different environ on each occasion).

Thus there exists, at each moment, a tree of active actions descended
(2.1.4.2.b) from the elaboration of the program.}

2.1.5. Abbreviations

{In order to avoid some long and turgid I)hrases which would otherwise
have been necessary in the Semantics, certain abbreviations are used
freely throughout the text of this Report.]

a) The phrase "the A of B", where A and B arc paranotions, stands for
"the A which is a direct descendent {1.1.3.2.f} of B".

{This permits the abbreviation of "direct descendent of" to "of" or "ils",
e.g., in the assignation (5.2.l.l.a) i := 1, i is "its" destination (or i is Ill(',
or a, destination "of" the assignation i := 1), whereas i ix nol a (le.~tination
of the serial-clause i := 1; j := 2 (although it is a constituent dcstinalion
(1.1.4.2.d) of it).}

b) The phrase "C in E", where C is a construct and E is an environ.
stands for "the scene composed {2.l.l.l.d} of C and E". It is sometinms
even further shortened to just "C" when it is clear which environ is meam.

{Since the process of elaboration (2.1.4.l.a) may be al)plied only I[)
scenes, this abbreviation appears most frequently in t'ornls such as "A hmp-
clause C, in an environ El, is elaborated ... " (3.5.2) and "An assignation A
is elaborated ... " (5.2.1.2.a, where it is tile elaboration of A in any
appropriate environ that is being discussed).}

50 van Wijngaarden, et al.

c) The phrase "the yield of S", where S is a scene whose elaborat ion
is not explicitly prescribed, stands for "the yield obtained by initiating the
elaboration of S and await ing its completion".

{Thus the sentence (3.2.2.c):
"W is the yield of that unit:"

(which also makes use of the abbreviat ion defined in b above) is to be
interpreted as meaning:

"W is the yield obtained upon the completion of the elaboration.
hereby initiated, of the scene composed of that unit and the
environ under discussion:" .}

d) The phrase "the yields of S 1 Sn" where S 1 Sn are scenes

whose elaboration is not explicitly prescribed, s tands for "the yields
obtained by initiating the collateral elaborat ion {2.1.4.2.f} of S 1 Sn and

await ing its completion {which implies the complet ion of the elaborat ion of
them all}".

If some or all of S 1 S a re described as being, in some environ, n
certain constituents of some construct, then their yields are to be
considered as being taken in the textual order {1.1.3.2.i} of those
constituents within that construct.

{Thus the sentence (3.3.2.b):
"let V 1 V be the {collateral} yields of the consti tuent units of m

C;"
is to be interpreted as meaning:

"let V 1 V be the respect ive yields obtained upon the m
completion of the collateral elaboration, hereby initiated, of the
scenes composed of the consti tuent units of C, considered in their
textual order, together with the environ in which C was being
e labora ted;" .}

e) The phrase "if A is B", where A and B are hypernotions, s tands for
"if A is equivalent {2.1.1.2.a} to B".

{Thus, in "Case C: 'CHOICE' is some 'choice using L;NITEI)'" (3.4.2.b).
it ma t t e r s not whether 'CtlOICE' happens to begin with 'choice using union
of' or with some "choice using Mti definition of union of'.}

f) The phrase "the mode is A", where A is a hypernotion, stands for
"the mode {is a class of 'MOlD's which} includes A".

{This permits such shortened forms as "the mode is some 'structured
with FIELI)S mode '" , "the mode begins with 'union of'", and "the mode
envelops a 'FIEl.I) '": in general , a mode m a y be specified by quoting just
one of the 'MOll) 's included in it.}

g) The phrase "the value selected (generated) by the field-selector F"
stands for "if F is a fieid-selector-with-TA(; {4.8.1.f}, then the value selected
{2.1.3.3.a,e, 2.1.3.4.k} (generated {2.1.3.4.1}) by that 'TA(; '"

2.2. The p rog ram

ALGOL 68 Revised Report

2.2.1. Syntax

a) p rog ram : s trong void new closed clause{31a}.
{See also 10.13

2.2.2. Semantics

51

{"1 can explain all the poems that ever were invented -
and a good many that haven't been invented just yet."
Through the Looking-glass, Lewis Carroll.}

a) The elaborat ion of a program is the e laborat ion of its strong-void-
new-closed-clause in an empty environ {2.I.l.t.c} t e rmed the "pr imal
environ".

{Although the purpose of this Report is to define the mean ing of a
particular-program {10.t.t.g}, that meaning is establ ished only by first
defining the meaning of a program in which that pa r t i cu la r -p rogram is
embedded (10.1.2).}

{In this Report, the syntax says which sequences of symbols are
terminal productions of ' p r o g r a m ' , and the semant ics which actions a re
per formed by the compute r when elaborat ing a p rogram. Both syntax and
semant ics a re recursive. Though certain sequences of symbols m a y be
terminal productions of "program' in more than one way (see also
l.l.3.2.f), this syntact ic ambigui ty does not lead to a semant ic ambiguity.}

b) In ALGOL 68, a specific syntax for constructs is provided which,
together with its recurs ive definition, makes it possible to descr ibe and to
distinguish between a rb i t ra r i ly large production trees, to distinguish
between arbi t rar i ly m a n y different" values of a given mode (except cer ta in
modes like "boolean' and 'void') and to distinguish between a rb i t ra r i ly
many modes, which allows a rb i t ra r i ly m a n y objects to exist within the
computer and which allows the elaborat ion of a p r o g r a m to involve an
arb i t rar i ly large, not necessar i ly finite, n u mb e r of actions. This is not
mean t to imply that the notation of the objects in the compute r is that
used in this Report nor that it has the s ame possibilities. It is not a ssumed
that these two notations are the s a m e nor even that a one-to-one
correspondence exists between them: in fact, the set of different notations
of objects of a given ca tegory m a y be finite. I t is not a ssumed that the
computer can handle a rb i t r a ry amounts of presented information. It is not
assumed that the speed of the compute r is sufficient to e labora te a given
program within a prescr ibed lapse of t ime, nor that the n u mb er of objects
and relationships that can be established is sufficient to e labora te it at all.

c) A model of the hypothetical computer , using a physical machine, is
said to be an " implementat ion" of ALGOL 68 if it does not restr ic t the use
of the language in other respects than those mentioned above.
Fur thermore , if a language A is defined whose pa r t i cu l a r -p rog rams are

52 van Wijngaarden, et al.

also part icular-programs of a language B, and if each such part icular-
p r o g r a m for which a meaning is defined in A has the same defined
meaning in B, then A is said to be a "sublanguage" of B, and B a
"superlanguage" of A.

{Thus a sublanguage of ALGOL 68 might be defined by omitting some
part of the syntax, by omitting some part of the standard-prelude, and/or
by leaving undefined something which is defined in this Report, so as to
enable more efficient solutions to certain classes of problem or to permit
implementation on smaller machines.

Likewise, a superlanguage of ALGOL 68 might be defined by additions
to the syntax, semantics or standard-prelude, so as to improve efficiency
(by allowing the user to provide additional information) or to permit the
solution of problems not readily amenable to ALGOL 68.}

A model is said to be an implementation of a sublanguage if it does not
restrict the use of the sublanguage in other respects than those mentioned
above.

{See 9.3.c for the term "implementation of the reference language".}

{A sequence of symbols which is not a par t icular-program but can be
turned into one by deleting or inserting a certain number of symbols and
not a smaller number could be regarded as a par t icular-program with that
number of syntactical errors. Any par t icular-program that can be obtained
by deleting or inserting that number of symbols may be termed a
"possibly intended" part icular-program. Whether a par t icular-program or
one of the possibly intended par t icular-programs has the effect its author
in fact intended it to have is a mat te r which falls outside this Report.}

{In an implementation, the par t icular-program may be "compiled", i.e.,
translated into an "object program" in the code of the physical machine.
Under certain circumstances, it may be advantageous to compile par t s of
the part icular-program independently, e.g., parts which are common to
several part icular-programs. If such a part contains applied-indicators
which identify defining-indicators not contained in that part, then
compilation into an efficient object program may be assured by preceding
the part by a sequence of declarations containing those defining-
indicators.}

{The definition of specific sublanguages and also the specification of
actions not definable by any p rogram (e.g., compilation or initiation of the
elaboration) is not given in this Report. See, however, 9.2 for the
suggested use of pragmats to control such actions.}

PART II

Fundamental Constructions

{This part presents the essential s tructure of programs:
• the general rules for constructing them:

ALGOL 68 Revised Report 53

• the ways of defining indicators and their properties, at each new level
of construction;
• t h e constructs available for p rogramming primitive actions.}

3~. Clauses

{Clauses provide
• a hierarchical structure for p r o g r a m s ,
• the introduction of new ranges of definitions,
• serial or collateral composition, parallelism, choices and loops.}

3.0.1. Syntax

a) *phrase : SOME unit{32d} ; NEST dec lara t ion of I)ECS{41a}.
b) * SORT MODE expres s ion : SORT MODE NEST UNIT{SA}.
c) *statement : s trong void NEST UNIT{5A}.
d) *MOID constant : MOID NEST DEFIED ident i f ier with TAG{48a,b} ;

MOID NEST denoter{80a}.
e) * MODE var iab le :

r e f erence to MODE NEST DEFIED ident i f ier with TAG{48a,b}.
f) * NEST range : SOID NEST ser ia l c l a u s e def ining LAYER{32a} ;

SOID NEST c h o o s e r CHOICE STYLE clause{34b} ;
SOlD NEST c a s e part of cho i ce us ing UNITED{34i} ;
NEST STYLE repeat ing part with DEC{35e} ;
NEST STYLE while do part{35f} ;
PROCEDURE NEST routine text{541a,b}.

{NEST-ranges arise in the definition of "identification" (7.2.2.b).}

3.0.2. Semantics

A "nest" is a 'NEST'. The nest "of" a construct is the 'NEST" enveloped
by the original of that construct, but not by any 'def ining LAYER'
contained in that original.

{The nest of a construct carr ies a record of all the declarations forming
the environment in which that construct is to be interpreted.

Those constructs which are contained in a range R, but not in any
smaller range contained within R, may be said to comprise a "reach". All
constructs in a given reach have the same nest, which is that of the
immediately surrounding reach with the addition of one extra "LAYER'.
The syntax ensures (3.2.1.b, 3.4.1.i,j,k, 3.5.1.e, 5.4.1.1.b) that each 'PROP'
(4.8.1.E) or "property" in the extra 'LAYER' is matched by a defining.
indicator (4.8.1.a) contained in a definition in that reach.}

3.1. Closed clauses
{Closed.c lauses are usually used to construct units f rom s e r i a l - c l a u s e s

as, e.g.,
(real x; read (x); x) in
(real x; read (x); x) + 3.14.}

54 van Wijngaarden, et al.

3.1.1. Syntax

A) SOlD :: SORT MOLD.
B) PACK :: STYLE pack.

a) SOlD NEST closed clause{22a,5D,551a,A341h,A349a} :
SOlD NEST serial clause defining LAYER{32a} I'ACK.

{LAYER :: new DECSET~ ' I.ABSETY.}

{Example:

a) beginx:=l; y:=2end }

{The yield of a closed-clause is that of its constituent serial-clause, by
way of pre-elaboration (2.1.4.1.c).}

3.2. Serial clauses

{The purposes of serial-clauses are
• the construction of new ranges of definitions, and
• the serial composition of actions.

A serial.clause consists of a possibly empty sequence of unlabelled
phrases, the last of which, if any, is a declaration, followed by a sequence
of possibly labelled units. The phrases and the units are separated by go-
on.tokens, viz., semicolons. Some of the units m ay instead be separated by
eompleters, viz., exits; after a completer, the next unit must be labelled so
that it can be reached. The value of the final unit, or of a unit preceding
an exit, determines the value of the serial-clause.

For example, the following serial-clause yields true if and only if the
vector a contains the integer 8:

int n; read (n);
[I : n] int a; read (a);
for i to n do if a [i] = 8 then go to success fl od;
f a lse e x i t
success: true .}

3.2.1.

a)

b)

Syntax

SOlD NEST serial clause defining new PROPSETY{31a,34f,I,35h} :
SOlD NEST new PROPSETY series with PROPSETY{b}.

{Here PROPSETY :: DECSETY LABSETY.}
SOlD NEST series with PROPSETY{a,b,34c} :

strong void NEST unit{d}, go on{94f} token,
SOlD NEST series with PROPSETY{b} ;

where (PROPSETY) is (DECS DECSETY LABSETY),
NEST declaration of DECS{41a}, go on{94f} token,
SOlD NEST series with DECSETY LABSETY{b} ;

where (PROPSETY) is (LAB LABSETY),
NEST label definition of LAB{c},
SOlD NEST series with LABSETY{b} ;

c)

d)

e)

f)

g)

h)
i)

ALGOL 68 Revised Report 55

where (PROPSETY) is (LAB LABSETY)
and SOlD balances SOIDl and SOID2{e}, SOIDI NEST unit{d},

completion{94f} token, NEST label definition of LAB{c},
SOLD2 NEST series with LABSETY{b} ;

where (PROPSETY) is (EMPTY),
SOlD NEST unit{d}.

NEST label definition of label TAG{b} :
label NEST defining identifier with TAG{48a}, label{94f} token.

SOME unit{b,33b,g,34i,35d,46m,n,52 lc,532e,541a,b,543c,
A34Ab,c,d} : SOME UNIT{5A,-}.

WHETHER SORT MOlD balances
SORTI MOLD1 and SORT2 MOlD2{b,33b,34d,h} :

WHETHER SORT balances SORTI and SORT2{f}
and MOlD balances MOIDI and MOID2{g}.

WHETHER SORT balances SORTI and SORT2{e,522a} :
where (SORTI) is (strong), WHETHER (SORT2) is (SORT) ;
where (SORT2) is (strong), WHETHER (SORTI) is (SORT).

WHETHER MOlD balances MOIDI and MOID2{e} :
where (MOIDI) is (MOLD2), WHETHER (MOLD) is (MOIDI) ;
where (MOIDI) is (transient MOLD2),

WHETHER (MOLD) is (MOIDI) ;
where (MOLD2) is (transient MOIDI),

WHETHER (MOLD) is (MOLD2).

* SOlD unitary clause : SOlD NEST unit{d}.
* establishing clause :

SOlD NEST serial clause defining LAYER{32a} ;
MODE NEST enquiry clause defining LAYER{34c}.

{Examples:

b) read (xl); real s : = O;
s u m : f o r i t o n d o (x 1 [i] >0[s + : = x l [i]1 n o n p o s) o d e x l t
nonpos: p r i n t (s) •

r e a l s : = O;
sum: for i to n do (x l [i] > 01 s +: = x l [i] t nonpos) od exi t
nonpos: p r i n t (s) •

sum: for i t o n d o (x 1 [i] >0i s + : = x l [i] l n o n p o s) o d exi t
nonpos: p r i n t (s) •

for i t o n d o (x 1 [i] >0 i s + : = x l [i] l n o n p o s) od ex i t
nonpos: p r i n t (s) •

p r i n t (s)
c) sum: d) p r i n t (s) }

{Often, a series must be "balanced" (3.2.1.e). For remarks concerning
balancing, see 3.4.1.}

56 van Wijngaarden, et al.

3.2.2. Semantics

a) The yield of a serial-clause, in an environ E, is the yield of the
elaboration of its series, or of any series elaborated "in its place" {5.4.4.2},
in the environ "established" {b} around E according to that serial-clause; it
is required that the yield be not newer in scope than E.

b) The environ E "established"
• upon an environ El, possibly not specified, {which determines its
scope,}
• around an environ E2 {which determines its composition},
• according to a NOTlON-defining-new-PROPSETY C, possibly absent,
{which prescribes its locale,}
• with values Y 1 Y n, possibly absent, {which are possibly to be

ascribed,}
is determined as follows:
• if E1 is not specified, then let E1 be E2:
• E is newer in scope than E1 and is composed of E2 and a new locale
corresponding to 'PROPSETY', if C is present, and to 'EMPTY' otherwise;
Case A: C is an establishing-clause:

For each constituent mode-definition hi, if any, of C,
• the scene composed of
(i) the actual-declarer of M, and
(ii) the environ necessary for {7.2.2.c} that actual-declarer in E,
is ascribed in E to the mode-indication of M:

For each constituent label.definition L, if any, of C,
• the scene composed of
(i) the series of which L is a direct descendent, and
(ii) the environ E,
is ascribed in E to the label-identifier of L:

If each 'PROP' enveloped by 'PROPSETY' is some "DYADIC TAD" or
'label TAG',

then E is said to be "nonlocal" {see 5.2.3.2.b};
Case B: G is a dec lara t ive , a for-part or a specification:

For i= 1 n, where n is the number of 'DEC's enveloped by
'PROPSETY',
• Y. is ascribed {4.8.2.a} in E to the i-th constituent defining-

I

identifier, if any, of G and, otherwise {in the case of an invisible for-
part}, to an integral-defining-indicator.with-letter-aleph;

If C is a for-part or a specification,
then E is nonlocal.

{Other cases, i.e., when C is absent:
• E is local (see 5.2.3.2.b), but not further defined.}

c) The yield W of a series C is determined as follows:
If C contains a direct descendent unit which is not followed by a go-on-

token,

ALGOL 68 Revised Report

then
• W is the yield of that unit;

otherwise,
• the declaration or the unit, if any, of C is elaborated;
• W is the yield of the series of C.

{See also 5.4.4.2.Case A.}

3.3. Collateral and parallel clauses

{Collateral-clauses allow an arb i t rary merging of s t reams of actions.
Parallel.clauses provide, moreover, levels of coordination for the
synchronization (10.2.4) of that merging.

A collateral- or parallel-clause consists of a sequence of units separated
by and-also-symbols (viz., ","), and is enclosed by parentheses or by a
begin-end pair; a parallel-clause begins moreover with par.

Collateral-clauses, but not parallel-clauses, m a y yield stowed values
composed from the yields of the constituent units.
Examples of collateral.clauses yielding stowed values:

[] int q = (1, 4, 9, 16, 25);
struct (int price, string category) bike := (150, "sport").

Example of a parallel-clause which synchronizes eating and speaking:
pro¢ void eat, speak; soma mouth = level 1;
par begin

do
down mouth;
eat;
up mou th

od,
do

down mouth;
speak;
up mou th

od
end .}

3.3.1. Syntax
a) strong void NEST collateral clause{5D,551a} :

strong void NEST joined portrait{b} PACK.
b) SOlD NEST joined portrait{a,b,c,d,34g} :

where SOlD balances SOIDI and SOlD2{32e},
SOIDI NEST unit{32d}, and also{94f} token,
SOLD2 NEST unit{32d}

or alternatively SOLD2 NEST joined portrait{b}.
c) strong void NEST parallel clause{5D,551a} :

parallel{94f} token, strong void NEST joined portrait{b} PACK.
d) strong ROWS of MODE NEST collateral clause{5D,551a} :

where (ROWS) is (row),
s trong MODE NEST joined portrait{b} PACK ;

57

58 van Wijngaarden, et al.

where (ROWS) is (row ROWSI),
strong ROWSI of MODE NEST joined portrait{b} PACK ;

EMPTY PACK.
e) strong structured with

FIELDS FIELD mode NEST collateral clause{5D,551a} :
NEST FIELDS FIELD portrait{f} PACK.

f) NEST FIELDS FIELD portrait{e,f} :
NEST FIELDS portrait{f ,g}, and also{94f} token,

NEST FIELD portrait{g}.
{FIELD :: MODE field TAG.}

g) NEST MODE field TAG portrait{f} : s trong MODE NEST unit{32d}.

h) *structure display : strong structured with
FIELDS FIELD mode NEST col lateral clause{e}.

i) * row display : strong ROWS of MODE NEST col lateral clause{d}.
j) * display : s trong STOWED NEST collateral clause{d,e}.
k) *vacuum : EMPTY PACK.

{Examples:

a) (x : = l , y : = 2) b) x : = l , y : = 2
c) p a r (task1, task2) d) (1, 2) (in [] real (1, 2))
e) (1, 2) (in compl (1, 2)) f) 1, 2
g) 1}

{Structure-displays mus t contain at least two FIELD-portraits, for,
otherwise, in the reach of

m o d e m = struct (ref m m); m nobuo, yoneda;,
the assignation nobuo := (yoneda) would be syntact ical ly ambiguous and
could produce different effects; however, m of nobuo := yoneda is
unambiguous.

Row-displays contain zero, two or more consti tuent units. I t is also
possible to present a single value as a multiple value, e.g., [1: 1] int v :=
123, but this uses a coercion known as rowing (6.6).}

3.3.2. Semantics

a) The elaboration of a void-collateral-clause or void-paral lel-clause
consists of the collateral e laborat ion of its consti tuent units and yields
e m p t y .

b) The yield W of a STOWED.collateral-clause C is de te rmined as
follows:
If the direct descendent of C is a vacuum,
then {'STOWED' is some "ROWS of MODE' and} each bound pa i r in the

descr iptor of W is (1, 0) {and it has one ghost e lement whose value is
irrelevant};

otherwise,
• let V 1 V be the {collateral} yields of the consti tuent units of C;

' m

ALGOL 68 Revised Report

Case A: 'STOWED' is some "structured with FIELDS mode':
• the fields of W, taken in order, a re V 1 Vm;

Case B: 'STOWED' is some 'row of MODEl' :
• W is composed of
(i) a descr iptor ((1,m)),
(ii) V 1 Vm;

F o r i = 1, ... , m,

• the e lement selected by the index (i) in W is Vi;
Case C: 'STOWED' is some 'row ROWS of MODE2":

• it is required that the descr iptors of V 1 V be identical;
rn

• let the descr iptor of {say} V 1 be (01, Ul) (In, Un)) ;

• W is composed of
(i) a descr iptor ((1, m), (11, Ul) (in, Un)) ;

(ii) the e lements of V 1 Vm;

For i = 1 m,
• the e lement selected by an index (i, i I i n) in W is that

selected by 01 i n) in V..
I

[Note that in [, ,] char block = Cabc", "def"), the descr ip tor of the three-
dimensional yield W will be ((1, 2), (1, 1), (1, 3)), since the units "abc"
and "def" are first rowed (6.6), so that V 1 and V 2 have descr iptors ((1, 1),
(1, 3)) . }

59

3.4. Choice clauses

{Choice-clauses enable a dynamic choice to be made among different
paths in a computat ion. The choice among the a l te rnat ives (the in.CHOICE.
and the out-CHOICE-clause) is de termined by the success or failure of a
test on a truth value, on an integer or on a mode. The value under test is
computed by an enquiry-clause before the choice is made .

A choice-using-boolean-clause (or conditional.clause) is of the form
(x> 0J xJ 0) in the "brief" style, or
if x > 0 then x e l s e 0 fl in the "bold" style;

x > 0 is the enquiry-clause, then x is the in-CHOICE-clause and e l s e 0 is the
out-CHOICE-clause; all three m a y have the syntact ical s t ruc ture of a
series, because all choice-clauses a re well closed. A choice-using-boolean.
clause m a y also be reduced to

(x< O [x : = - x) or
if x < 0 then x := - x fl;

the omit ted out-CHOICE-clause is then understood to be an elsesk ip . On the
other hand, the choice can be re i tera ted by writing

(x>O[l + x [: x< O[1 - x l 1) or
i f x > 0 t h e n i + x e l i f x < 0 t h e n i - x e l s e 1 f l,

60 van Wijngaarden, et al.

and so on; this is to be understood as
(x >O[l + x[(x < OI 1 - x I i)).

CASE-clauses, which define choices depending on an integer or on a
mode, are different in that the in-CASE-clause is further decomposed into
units. The general pattern is

(- - - { - - - , - - - I - - -) o r
case - - - i n - - - , . . . , - - - o u t - - - esac.

The choice may also be reiterated by use of ouse.
In a choice-using-integral-clause (or ease-clause), the parts are simply

units and there must be at least two of them; the choice among the units
follows their textual ordering.
Example:

proc void work, relax, enjoy;
c a s e int day; read (day); day
in work, work, work, work, work, relax, enjoy
out print ((day, "is not in the week"))
esac.

In a choice-using-UNITED-clause (or conformity-clause), which tests
modes, each case-part-of-CHOICE is of the form (declarer identifier): unit
or (declarer): unit. The mode specified by the declarer is compared with
the mode of the value under test; the identifier, if present, is available
inside the unit to access that value, with the full security of syntactical
mode checking. The 'UNITED' mode provides the required freedom for the
mode of the value under test; moreover, that 'UNITED' mode must contain
the mode of each specification for, otherwise, the corresponding case-part-
of-CHOICE could never be chosen.
Example:

'mode boy = struct (in t age, rea l w e i g h t) ,
• m o d e g i r l = s t r u c t (i n t age, rea l b e a u t y) ;

p r o c u n i o n (boy , g i r l) n e w b o r n ;
case newborn i n

(boy john): print (weight of john),
(girl mary): print (beauty of mary)

esac. }
{The flowers that bloom in the spring,
Tra la,
Have nothing to do with the case.
Mikado, W.S. Gilbert.}

{The hierarchy of ranges in conditional-clauses is illustrated by

i f
then else J

I I . I I

ALGOL 68 Revised Report 61

and similarly for the other kinds of choice. Thus the nest and the environ
of the enquiry-clause remain valid over the in-CHOICE-clause and the out-
CHOICE-clause. However, no t ransfer back from the in- or out-CHOICE-
clause into the enquiry-clause is possible, since the latter can contain no
label-definitions (except within a closed-clause contained within it).}

3.4.1. Syntax
A) CHOICE :: choice using boolean ; CASE.
B) CASE :: choice using integral ; choice using UNITED.

a) SOlD NESTI CHOICE elause{5D,551a,A341h,A349a} :
CHOICE STYLE start{91a,-},

SOlD NESTI chooser CHOICE STYLE clause{b},
CHOICE STYLE finish{91e,-}.

b) SOlD NESTI chooser choice using MODE STYLE clause{a,l} :
MODE NESTI enquiry clause defining LAYER2{c,-},

SOlD NESTI LAYER2 alternate choice using MODE
STYLE clause{d}.

c) MODE NESTI enquiry clause defining new DECSETY2{b,35g} :
meek MODE NESTI new DECSETY2 series with DECSETY2{32b}.

d) SOlD NEST2 alternate CHOICE STYLE clause{b} :
SOlD NEST2 in CHOICE STYLE clause{e} ;
where SOlD balances SOIDI and SOID2{32e},

SOIDI NEST2 in CHOICE STYLE clause{e},
SOLD2 NEST2 out CHOICE STYLE clause{l}.

e) SOlD NEST2 in CHOICE STYLE clause{d} :
CHOICE STYLE in[91b,-}, SOlD NEST2 in part of CHOICE{f,g,h}.

f) SOlD NEST2 in part of choice using boolean{e} :
SOlD NEST2 serial clause defining LAYER3{32a}.

g) SOlD NEST2 in part of choice using integral{e} :
SOlD NEST2 joined portrait{33b}.

h) SOlD NEST2 in part of choice using UNITED{e,h} :
SOlD NEST2 case part of choice using UNITED{i} ;
where SOlD balances SOIDI and SOlD2{32e},

SOIDI NEST2 case par t of choice using UNITED{i},
and also{94f} token,
SOLD2 NEST2 in part of choice using UNITED{h}.

i) SOlD NEST2 case part of choice using UNITED{h} :
MOlD NEST2 LAYER3 specification defining LAYER3[j,k,-},

where MOlD unites to UNITED{64b},
SOlD NEST2 LAYER3 unit{32d}.

{Here LAYER3 :: new MODE TAG ; new EMPTY.}
j) MODE NEST3 specification defining new MODE TAG3{i} :

NEST3 declarative defining new MODE TAG3{541e} brie[pack,
colon{94f} token.

k) MOlD NEST3 specification defining new EMPTY{i} :
formal MOll) NEST3 declarer{46b} brief pack, colon{94f} token.

62 van Wijngaarden, et al.

1) SOlD NEST2 out CHOICE STYLE clause{d} :
CHOICE STYLE out{91d,-},

SOlD NEST2 serial clause defining LAYER3{32a} ;
CHOICE STYLE again{gtc,-},

SOlD NEST2 chooser CHOICE2 STYLE clause{b},
where CHOICE2 m a y follow CHOICE{m).

m) WHETHER choice using MODE2 m ay follow
• choice using MODEl{I} :

where (MODEl) is (MOOD), WHETHER (MODE2) is (MODEl) ;
where (MODEl) begins with (union of),

WHETHER (MODE2) begins with (union of).

n) * SOME choice clause : SOME CHOICE clause{a}.
o) * SOME conditional clause : SOME choice using boolean clause{a}.
p) * SOME case clause : SOME choice using integral clause{a}.
q) * SOME conformity clause : SOME choice using UNITED clause{a].

{Examples:

a) (x>OlxlO).
e a s e i in princeton, grenoble out f in i sh • s e e •
e a s e uir in anti): pr in t (i), (real): pr in t ("no") • s e e

b) x > O l x l O c) x > O • i • uir
d) Ix*lxlO
e) I x *

in princeton, grenoble •
in (int i): pr in t (i), (reel): p r in t ("no")

f) x g) princeton, grenoble
h) anti): pr in t (i), (real): pr in t ("no")
i) (intO: pr in t (i) j) anti):
k) (real):
1) out f in i sh • l: x < OI - x l O }

{I would to God they would either conform, or be more
wise, and not be catched!
Diary, 7 Aug. 1664, Samuel Pepys.}

{Rule d illustrates why "SORT MOlD's should be "balanced".If an
alternate-CHOICE-clause is, say, firm, then at least its in-CHOICE-clause
or its out-CHOICE-clause must be firm, while the other may be strong. For
example, in (p i x I sklp) + (p I sklp l y), the conditional-clause (p i x I sklp)
is balanced by making I x firm and J sklp strong whereas (p [sklp I Y) i s
balanced by making i sklp strong and [y firm. The counterexample
(p l s k l p r s k l p) + y illustrates that not both may be strong, for otherwise the
operator + could not be identified.}

3.4.2. Semantics

a) The yield W of a chooser-CHOICE-clause C, in an environ El, is
determined as follows:

ALGOL 68 Revised Report 63

• let E2 be the environ established {3.2.2.b} around E1 according to the
enquiry-clause of C;
• let V be the yield, in E2, of that enquiry.clause;
• W is the yield of the scene "chosen" {b} by V from C in E2; it is required
that W be not newer in scope than El.

b) The scene S "chosen" by a value V from a MOlD-chooser-CHOICE-
clause C, in an environ E2, is determined as follows:
Case A: "CHOICE' is "choice using boolean' and V is true:

• S is the constituent in-CHOICE-clause of C, in E2;
Case B: "CHOICE' is 'choice using integral ' and 1 <_ V <_ n, where n is the

number of constituent units of the constituent in-part-of-CHOICE of C:
- • S is the V-th such unit, in E2;
Case C: "CHOICE' is some 'choice using UNITED' and V is acceptable to

{2.1.3.6.d} the 'MOLD2' of some constituent MOID2-speeification D of C
{; if there exists more than one such constituent specification, it is not
defined which one is chosen as D}:
• S is the unit following that D, in an environ established {nonlocally
(3.2.2.b)} around E2, according to D, with V;

Other Cases {when the enquiry.clause has been unsuccessful}:
If C contains a constituent out-CHOICE.clause O,
then S is O in E2;
otherwise, S is a MOlD.skip in E2.

3.5. Loop clauses

{Loop-clauses are used for repeating dynamical ly one same sequence of
instructions. The number of repetitions is controlled by a finite sequence
of equidistant integers, by a condition to be tested each time, or by both.
Example 1:

in t fac := 1;
f o r i from n by -1 to 1
do fac x: = i od.

Example 2:
int a, b; read ((a, b)) p r assert a >_ 0 ^ b > 0 pr;
i n t q : = O , r : = a ;
while r >_ b pr assert a = b x q + r ^ 0 <_ r pr
do (q+:= 1, r -:= b)od
p r a s s e r t a = b x q + r ^ O < _ r A r< b p r

(see 9.2 for an explanation of the pragmats).

The controlled identifier, e.g., i in Example 1, is defined over the
repeating.part . Definitions introduced in the while.part are also valid over
the do-part.

If the controlled identifier is not applied in the repeating.part , then the
for-part may be omitted. A from-part from 1 m a y be omitted; similarly,
b y 1 may be omitted. The to-part may be omitted if no test on the final

64 van Wijngaarden, et al.

value of the control-integer is required. A while-part while true m a y be
omitted. For example ,

for i from 1 by 1 to n while true do p r i n t ("a") od
m a y be writ ten

to n do p r i n t ("a") od.

The h ierarchy of ranges is i l lustrated by:

3.5.1. Syntax

A)

a)

_ fo r J - - 7 from
2 while

I 3 do

by to

FROBYT :: f rom ; by ; to.

strong void NESTI loop clause{5D,551a} :
NESTI STYLE for par t defining new integral TAG2{b},

NESTI STYLE intervals{c},
NESTI STYLE repeat ing par t with integral TAG2{e}.

b) NESTI STYLE for par t defining new integral TAG2{a} :
STYLE for{94g,-} token,

integral NESTI new integral TAG2 defining identifier
with TAG2{48a} ;

where (TAG2) is (letter aleph), EMPTY.
e) NESTI STYLE intervals{a} : NESTI STYLE f rom part{d} option,

NESTI STYLE by part{d} option,
NESTI STYLE to part{d} option.

d) NESTI STYLE FROBYT part{c} :
STYLE FROBYT{94g,-} token, meek integral NESTI unit{32d}.

e) NESTI STYLE repeat ing par t with DEC2{a} :
NESTI new DEC2 STYLE while do part{f} ;
NESTI new DEC2 STYLE do part{h}.

f) NEST2 STYLE while do part{e} :
NEST2 STYLE while par t defining LAYER3{g},

NEST2 LAYER3 STYLE do part{h}.
g) NEST2 STYLE while par t defining LAYER3{f} :

STYLE while{94g,-} token,
boolean NEST2 enquiry clause defining LAYER3{34c,-}.

h) NEST3 STYLE do part{e,f} :
STYLE do{94g,-} token,

s trong void NEST3 serial clause defining LAYER4{32a},
STYLE od{94g,-} token.

{Examples:

a) f o r i wh i l e i < n d o t a s k l od • t o n d o t a s k l ; t a s k 2 o d
h) for i c) f r o m - 5 to +5

ALGOL 68 Revised Report

d) f r o m - 5
e) while i < n do task1 od • do task1; t a s k 2 od
f) while i < n do task1; t a sk2 od
g) while i < n h) do task1; t a s k 2 od }

65

3.5.2. Semantics

A loop-clause C, in an environ El, is e laborated in the following Steps:
Step 1: All the consti tuent FROBYT-parts, if any, of C are e labora ted

collateral ly in El;
• let f be the yield of the constituent f rom-par t , if any, of C, and be 1
otherwise;
• let b be the yield of the consti tuent by-part , if any, of C, and be 1
otherwise;
• let t be the yield of the consti tuent to-part, if any, of C, and b e
absent otherwise;
• let E2 be the environ establ ished {nonlocally (3.2.2.b)} around El,
according to the for-part-defining-new-integral-TAG2 of C, and with the
integer f;

Step 2: Let i be the integer accessed [2.1.2.c} by ' in tegral TAG2" inside the
locale of E2;

If t is not absent,
then

If b > 0 a n d i > t o r i f b < 0 a n d i < t,
then C in E1 {is completed and} yields empty;

{otherwise, Step 3 is taken; }
Step 3: Let an environ E3 and a truth value w be de te rmined as follows:

Case A: C does not contain a consti tuent while-part:
• E3 is E2;
• w is true;

Case B: C contains a constituent while-part P:
• E3 is established {perhaps nonloeally (3.2.2.b)} around E2
according to the enquiry-clause of P;
• w is the yield in E3 of that enquiry-clause;

Step 4: If w is true,
then

• the constituent do-part of C is e labora ted in E3;
• ' in tegral TAG2" is made to access i + b inside the locale of E2;
• Step 2 is taken again;

otherwise,
• C in E1 {is completed and} yields empty.

{The loop-clause
for i from u l b y u2 to u3 while cond i t ion do ac t ion od

is thus equivalent to the following void-closed.clause:

66 van Wijngaarden, et al.

begin int f : = ul , int b = u2, t = u3;
step2:

i f (b>O^ f <_t) v (b< O^ f_> Ov b=O
then int i = f ;

if condition
t h e n action; f+: = b; go to step2
fi

fl
end.

This equivalence might not hold, of course, if the loop-clause contains local-
generators, or if some of the operators above do not identify those in the
standard environment (10).}

4. Declarations, declarers and indicators

{Declarations serve
• to announce new indicators, e.g., identifiers,
• to define their modes or priorities, and
• to ascribe values to those indicators and to initialize variables.}

4.1. Declarations

4.1.1. Syntax

A) COMMON :: mode ; priority ; MODINE identity ;
reference to MODINE variable ; MODINE operation ;
PARAMETER ; MODE FIELDS.

{MODINE :: MODE ; routine.}

a) NEST declaration of DECS{a,32b} :
NEST COMMON declaration of DECS{42a,43a,44a,e,45a,-} ;
where (DECS) is (DECSI DECS2),

NEST COMMON declaration of DECSl{42a,43a,44a,e,45a,-},
and aiso{94f} token, NEST declaration of DECS2{a}.

b) NEST COMMON joined definition of PROPS PROP
{b,42a,43a,44a,e,45a,46e,541e} :

NEST COMMON joined definition of PROPS{b,c},
and also{94f} token,
NEST COMMON joined definition of PROP{c}.

c) NEST COMMON joined definition of PROP
{b,42a,43a,44a,e,45a,46e,54 le} :

NEST COMMON definition of PROP{42b,43b,44c,f,45c,46f,541f,-}.

d) * definition of PROP : NEST COMMON definition of PROP
{42b,43b,44c, f,45c,46f,541 f} ;

NEST label definition of PROP{32c}.

ALGOL 68 Revised Report

{Examples:

a) mode r = ref real, s = c h a r •p r i o v =2, ^ =3 • i n t m = 4096 •
rea l x, y •
op v = (boo l a, b) b o o l : (a [t rue I b)

b) r = r e f r a a l , s = c h a r •v =2, ^ =3 • m = 4 0 9 6 •x , y •
v = (boo l a, b) b o o l : (a I t rue I b)

c) r = r a f r e a l •v =2 • m = 4 0 9 6 • x •
v = (bool a, b) b o o l : (a [t rue I b) }

4.1.2. Semantics

67

4.2. Mode declarations

{Mode-declarations provide the defining-mode-indications, which act as
abbreviations for declarers constructed from the more primitive ones, or
from other declarers, or even from themselves.

For example,
mode array = [m, n] real, and
mode book = s t ruc t (str ing text, raf b o o k next)
In the latter example, the applied-mode-indication book is not only a

convenient abbreviation, but is essential to the declaration.}

4.2.1. Syntax

a) NEST mode declaration of DECS{41a} :
mode{94d} token, NEST mode joined definition of DECS{41b,c}.

b) NEST mode definition of MOlD TALLY TAB{41e} :
where (TAB) is (bold TAG) or (NEST) is (new LAYER),

MOlD TALLY NEST defining mode indication with TAB{48a},
is defined as{94d} token,
actual MOlD TALLY NEST declarer{e}.

c) actual MOlD TALLYI NEST declarer{b} :
where (TALLYI) is (i),

actual MOlD NEST declarator{46c,d,g,h,o,s,-} ;
where (TALLYI) is (TALLY2 i),

MOlD TALLY2 NEST applied mode indication with TAB2
{48b}.

{Examples:

a) m o d e r = ref real, s = c h a r
h) r = raf real e) ref real • char }

{The use of "TALLY" excludes circular chains of mode-definitions such
as m o d e a = b, b = a.

The elaboration of a declaration consists of the collateral
elaboration of its COMMON-declaration and of its declaration, if any.
{Thus, all the COMMON-declarations separated by and-also-tokens are
elaborated collaterally.}

68 van Wijngaarden, et al.

Defining-mode-indications-with-SIZETY-STANDARD may be declared
only in the standard-prelude, where the nest is of the form 'new LAYER'
(10.1.l.b) .}

4.2.2. Semantics

The elaboration of a mode-declaration {involves no action, yields no
value and} is completed.

4.3. Priority declarations

{Priority-declarations are used to specify the priority of operators.
Priorities from 1 to 9 are available.

Since monadic-operators have effectively only one priority-level, which
is higher than that of all dyadic-operators, monadic-operators do not
require priority-declarations.}

4.3.1. Syntax

a) NEST priority declaration of DECS{41a} :
priority{94d} token, NEST priority joined definition of DECS{41b,c}.

b) NEST priority definition of priority PRIO TAD{41c} :
priority PRIO NEST defining operator with TAD{48a},

is defined as{94d} token, DIGIT{94b} token,
where DIGIT counts PRIO{c,d}.

{DIGIT :: digit zero ; digit one ; digit two ; digit three ; digit four ;
digit five ; digit six ; digit seven ; digit eight ; digit nine.}

c) WHETHER DIGITI counts PRIO i{b,c} :
WHETHER DIGIT2 counts PRIO{c,d},

where (digit one digit two digit three digit four
digit five digit six digit seven digit eight digit nine)

~eontains (DIGIT2 DIGITI).
WHETHER digit one counts i{b,c} : WHETHER true. d)

{Examples:

a) p r i o r = 2 , ^ = 3 b) v = 2 }

4.3.2. Semantics

The elaboration of a priority-declaration {involves no action, yields no
value and} is completed.

4.4. Identifier declarations

{Identifier-declarations provide MODE-defining-identifiers, by means of
either identity-definitions or variable-definitions.
Examples:

r e a l p i = 3 . 1 4 1 6 •
r ea l s c a n := 0 .05 .

ALGOL 68 Revised Report 69
f

The latter example, which is a variable-declaration, may be considered as
an equivalent form of the identity-declaration

ro t r e a l s c a n = Ioc r e a l := 0 .05 .
The elaboration of identifier-declarations causes values to be ascribed

to their identifiers; in the examples given above, 3.1416 is ascribed to p i
and a new local name which refers to 0.05 is ascribed to s c a n . }

4.4.1. Syntax

A) MODINE :: MODE ; routine.
B) LEAP :: local ; heap ; primal.

a) NEST MODINE identity declaration of DECS{41a} :
formal MODINE NEST declarer{b,46b},

NEST MODINE identity joined definition of DECS{41b,c}.
b) VICTAL routine NEST declarer{a,523b} : procedure{94d} token.
c) NEST MODINE identity definition of MODE TAG{41c} :

MODE NEST defining identifier with TAG{48a},
is defined as{94d} token, MODE NEST source for MODINE{d}.

d) MODE NEST source for MODINE{c,f,45c} :
where (MODINE) is (MODE), MODE NEST source{521c} ;
where (MODINE) is (routine), MODE NEST routine text{541a,b,-}.

e) NEST reference to MODINE variable declaration of DECS{41a} :
reference to MODINE NEST LEAP sample generator{523b},

NEST reference to MODINE variable joined
definition of DECS{41b,c}.

f) NEST reference to MODINE variable definition
of reference to MODE TAG{41c} :

reference to MODE NEST defining identifier with TAG[48a},
becomes{94c} token, MODE NEST source for MODINE{d} ;

where (MODINE) is (MODE),
reference to MODE NEST defining identifier with TAG{48a}.

g) *identifier declaration :
NEST MODINE identity declaration of DECS{a} ;
NEST reference to MODINE variable declaration of DECS{e}.

{Examples:

a) i n t m = 4 0 9 6 • p r o c r l O = r e a l : r a n d o m x 10
b) p r o c c) m = 4 0 9 6
d) 4 0 9 6 • r e a l : r a n d o m x 10
e) r e a l x , y • p r o c p p := r e a l : r a n d o m x 10
f) p p := r e a l : r a n d o m x I 0 • x }

4.4.2. Semantics

a) An identity-declaration D is elaborated as follows:
• the constituent sourees-for-MODINE of D are elaborated collaterally;

70 van Wijngaarden, et el.

For each constituent identity-definition D1 of D,
• the yield V of the source-for-MODINE of Ol is ascribed {4.8.2.a} to the
defining-identifier of D1.

b) A variable-declaration D is elaborated as follows:
• the sample-generator {5.2.3.1.b} G of D and all the sources.for-MODINE,
if any, of the constituent variable-definitions of D are elaborated
collaterally;
For each constituent variable-definition-of-referenee-to-MODE-TAG D1 of

D,
• let Wl be a "variant" {c}, for 'MODE', of the value referred to by the
yield N of G;
• let N1 be a newly created name equal in scope to N and referring to
W1;
• if N1 is a stowed name {2.1.3.2.b}, then N1 is endowed with subnames
{2.1.3.3.e, 2.1.3.4.g};
• N1 is ascribed {4.8.2.a} to the defining-identifier of D1;
• the yield of the source-for-MODINE, if any, of D1 is assigned
{5.2.1.2.b} to N1.

{An actual-declarer which is common to a number of variable-
definitions is elaborated only once. For example, the elaboration of

i n t m := 10; [1 : m+:= 1} i n t p , q; p r i n t (m)
causes 11 to be printed, and not 12; moreover, two new local names
referring to multiple values with descriptor ((1, 11)), and undefined
elements, are ascribed to p and to q.}

c) A "variant" of a value V, for a mode M, is a value W acceptable to
{2.1.3.6.d} M, and determined as follows:
Case A: M is some 's t ructured with FIELDS mode' :

For each "MODE field TAG' enveloped by 'FIELDS',
• the field selected by 'TAG" in W is a variant, for 'MODE', of the
field selected by "TAG' in V;

Case B: M is some 'FLEXETY ROWS of MODEl':
• the descriptor of W is that of V;
• each element of W is a variant, for 'MODEl' , of some element of V;

Other Cases:
• W is any value acceptable to M.

d) The yield of an actual-routine-declarer is some routine {whose mode
is of no relevance}.

4.5. Operation declarations

{Operation-declarations provide defining-operators.
Example:

op m c = (reat a, b) real : (3 × a < b l a l b).
Unlike the case with, e.g., identifier-declarations, more than one

operation-declaration involving the same TAO-token may occur in the

ALGOL 68 Revised Report 71

same reach; e.g., the previous example may very well be in the same
reach as

op m c = (comp l c a r t h y , j o h n) t e m p i : (r a n d o m < .51 c a r t h y I john) ;
the operator m c is then said to be "overloaded".}

4.5.1. Syntax

A) PRAM :: DUO ; MONO.
B) TAO :: TAD ; TAM.

a) NEST MODINE operation declaration of DECS{41a} :
operator{94d} token, formal MODINE NEST plan{b,46p,-},

NEST MODINE operation joined definition of DECS{41b,c}.
b) formal routine NEST plan{a} : EMPTY.
c) NEST MODINE operation definition of PRAM TAO{41c} :

PRAM NEST defining operator with TAO{48a},
is defined as{94d} token, PRAM NEST source for MODINE{44d}.

{Examples:
a) op v = (b o o l a , b) b o o l : (al true[b)
c) v = (boot a, b) bool : (a I true [b) }

4.5.2. Semantics

a) The elaboration of an operation-declaration consists of the
collateral elaboration of its constituent operation-definitions.

b) An operation-definition is elaborated by ascribing {4.8.2.a} the
routine yielded by its source-for-MODINE to its defining-operator.

4.6. Declarers

{Declarers specify modes. A declarer is either a declarator, which
explicitly constructs a mode, or an applied-mode-indication, which stands
for some declarator by way of a mode-declaration. Declarators are built
from void, inl, real, boo t and char (10.2.2), with the assistance of other
symbols such as ref, s t ruct , [], proc , and union. For example,
proc (rea l)bool specifies the mode 'procedure with real pa ramete r yielding
boolean'.

Actual-declarers, used typically in generators, require the presence of
bounds. Formal.declarers, used typically in formal-parameters and casts,
are without bounds. The declarer following a re f is always 'virtual ' ; it may
then specify a "flexible ROWS of MODE', because flexibility is a property
of names. Since actual-declarers follow an implicit ' reference to' in
generators, they may also specify 'flexible ROWS of MODE'.}

4.6.1. Syntax

A) VICTAL :: VIRACT ; formal.
B) VIRACT :: virtual ; actual.
C) MOLDS :: MOlD ; MOLDS MOLD.

72

a)

b)

c)

d)

e)

g)

h)

J)

k)
1)

m)
n)

o)

p)

van Wijngaarden, et al.

VIRACT MOlD NEST declarer{c,e,g,h,523a,b} :
VIRACT MOlD NEST declarator{c,d,g,h,o,s,-} ;
MOlD TALLY NEST applied mode indication with TAB{48b,-}.

formal MOlD NEST declarer{e,h,p,r,u,34k,44a,541a,b,e,551a} :
where MOlD deflexes to MOlD{47a,b,c,-},

formal MOlD NEST declarator{c,d,h,o,s,-} ;
MOIDI TALLY NEST applied mode indication with TAB{48b,-},

where MOIDI deflexes to MOID{47a,b,c,-}.

VICTAL reference to MODE NEST declarator{a,b,42c} :
reference to{94d} token, virtual MODE NEST declarer{a}.

VICTAL structured with FIELDS mode NEST declarator{a,b,42c} :
structure{94d} token,

VICTAL FIELDS NEST por t rayer of FIELDS{e} brief pack.
VICTAL FIELDS rNEST por t rayer of FIELDSI{d,e} :

VICTAL MODE NEST declarer{a,b},
NEST MODE FIELDS joined definition of FIELDSI{41b,c} ;

where (FIELDSI) is (FIELDS2 FIELDS3),
VICTAL MODE NEST declarer{a,b},
NEST MODE FIELDS joined definition of FIELDS2{41b,c},
and also{94f} token,
VICTAL FIELDS NEST por t rayer of FIELDS3{e}.

NEST MODE FIELDS definition of MODE field TAG{41c} :
MODE field FIELDS defining field selector with TAG{48c}.

VIRACT flexible ROWS of MODE NEST declarator{a,42c} :
flexible{94d} token, VIRACT ROWS of MODE NEST declarer{a}.

VICTAL ROWS of MODE NEST declarator{a,b,42c} :
VICTAL ROWS NEST rower{i,j,k,l} STYLE bracket,

VICTAL MODE NEST declarer{a,b}.
VICTAL row ROWS NEST rower{h,i} :

VICTAL row NEST rower{j,k,l}, and also{94f} token,
VICTAL ROWS NEST rower{i,j,k,l}.

actual row NEST rower{h,i} : NEST lower bound{m}, up to{94f} token,
NEST upper bound{n} ; NEST upper bound{n}.

virtual row NEST rower{h,i} : up to{94f} token option.
formal row NEST rower{hA} : up to{94f} token option.
NEST lower bound{j,532f,g} : meek integral NEST unit{32d}.
NEST upper bound{j,532f} : meek integral NEST unit{32d}.

VICTAL PROCEDURE NEST declarator{a,b,42c} :
procedure{94d} token, formal PROCEDURE NEST plan{p}.

formal procedure PARAMETY yielding MOlD NEST plan{o,45a} :
where (PARAMETY) is (EMPTY), formal MOlD NEST declarer{b} ;
where (PARAMETY) is (with PARAMETERS),

PARAMETERS NEST joined declarer{q,r} brief pack,
formal MOlD NEST declarer{b}.

q)

r)

s)

t)

u)

ALGOL 68 Revised Report

PARAMETERS PARAMETER NEST joined declarer{p,q} :
PARAMETERS NEST joined deelarer{q,r}, and also{94f} token,

PARAMETER NEST joined declarer{r}.
MODE parameter NEST joined declarer{p,q} :

formal MODE NEST declarer{b}.

VICTAL union of MOODSI MOOI)I mode
NEST declarator{a,b,42c} :

unless EMPTY with MOODSI MOODI incestuous{47f},
union of{94d} token,
MOII)S NEST joined declarer{t,u} brief pack,
where MOLDS ravels to MOOI)S2{47g}
and safe MOODSI MOOI)I subset of safe MOOI)$2{731}
and safe MOODS2 subset of safe MOOI)SI MOODI{731,m}.

MOLDS MOlD NEST joined declarer{s,t} :
MOLDS NEST joined declarer{t,u}, and also{94f} token,

MOlD NEST joined declarer{u}.
MOlD NEST joined declarer{s,t} : formal MOll) NEST declarer{b}.

{Examples:

a) [1 : n] real • person b) [] real • string
c) ref real
d) struct (int age, ref person father, son)
e) ref person father, son • int age, ref person father, son
f) age g) flex [1 : n] real
h) [1: m , l : nJrea l i) 1: m, 1: n
j) l : n k) :
1): m) 1
n) n o) proc (bool, 0ool) boo/
p) (bool, bool) bool q) boo/, bool
r) bool s) union (inI, char)
t) int, char u) inl }

{For actuaI-MOII)-TALLY.declarers, see 4.2.1.c:
declarers, see 4.4.1.b.

There are no declarers specifying modes such as

for actual-routine-

'union of integral

73

union of integral real mode mode" or 'union of integral real integral
mode' . The declarers union (int, union (int, real)) and union (int, real, int)
may indeed be written, but in both cases the mode specified is 'union of
integral real mode' (which can as well be spelled "union of real integral
mode') .}

4.6.2. Semantics

a) The yield W of an actual-MODE-declarer D, in an environ E,
determined as follows:

is

74 van Wijngaarden, et al.

If 'MODE" is s o m e 'STOWED' ,
then

• let D1 in E1 be "deve loped" {c} f rom D in E;
• W is the y ie ld of {the dec l a r a to r} D1 in an env i ron e s t a b l i s h e d
{locally, see 3.2.2.b} upon E and a r o u n d El;

o the rwise ,
• W is any v a l u e {accep tab le to "MODE'}.

b) The y ie ld W of an a e t u a l - S T O W E D - d e e l a r a t o r D is d e t e r m i n e d as
follows:
Case A: 'STOWED" is s o m e 'structured with FIELDS mode':

• the cons t i t uen t d e c l a r e r s of D a r e e l a b o r a t e d c o l l a t e r a l l y :
• e ach f ie ld of W is a v a r i a n t {4.4.2.c}
(i) of the y ie ld of the l a s t cons t i t uen t M O D E - d e c l a r e r of D o c c u r r i n g
be fore the cons t i t uen t de f in ing - f i e ld - se l ec to r of D se l ec t i ng {2.1.5.g} t ha t
field,
(ii) for t ha t 'MODE':

Case B: 'STOWED' is s o m e 'ROWS of MODE':
• a l l the cons t i t uen t l ower -bounds and u p p e r - b o u n d s of D and the
d e c l a r e r D1 of D a r e e l a b o r a t e d co l l a t e r a l l y ;
F o r i = 1 n, w h e r e n is the n u m b e r of ' r o w ' s c o n t a i n e d in "ROWS',

• let I. be the y ie ld of the lower -bound , if any , of the i-th cons t i t uen t

r o w - r o w e r of D, and be 1 o the rwise ;
• let u. be the y ie ld of the upper-bound of t ha t row- rower ;

• W is c o m p o s e d of
(i) a d e s c r i p t o r ((I 1, u 1) (I n, Un)),

(ii) v a r i a n t s of the y ie ld of D1, for 'MODE';
Case C: 'STOWED' is s o m e "flexible ROWS of MODE':

• W is the y ie ld of the d e c l a r e r of D.

c) The scene S "deve loped f rom" an a c t u a l - S T O W E I) - d e e l a r e r D in an
env i ron E is d e t e r m i n e d as follows:
If the v is ib le d i r e c t d e s c e n d e n t D1 of D is a mode-indication,
then

• S is the scene d e v e l o p e d f rom tha t y i e l d e d by D1 in E;
o the rwi se {D1 is a dec la ra to r} ,

• S is c o m p o s e d of D1 and E.

d) A g iven M O l D - d e c l a r e r "spec i f ies" the m o d e 'MOLD'.

4.7. Re l a t i onsh ip s b e t w e e n m o d e s

{Some m o d e s m u s t be de f l exed b e c a u s e the m o d e of a v a l u e m a y not
be f lex ib le (2.1.3.6.b). I nces tuous unions m u s t be p r e v e n t e d in o r d e r to
avo id a m b i g u i t i e s . A se t of "UNITED's and 'MOODS' s m a y be r a v e l l e d by
r e p l a c i n g al l those 'UNITED's by t h e i r c o m p o n e n t 'MOODS's.}

ALGOL 68 Revised Report 75

4.7.1. Syn t ax

A)

B)
C)

NONSTOWED :: PLAIN ; REF to MODE ; PROCEDURE ; UNITED ;
void.

MOODSETY :: MOODS ; EMPTY.
MOIDSETY :.. MOLDS ; EMPTY.

a)

b)

c)

d)

e)

WHETHER NONSTOWED def lexes to NONSTOWED
{b,e,46b,521c,62a,71n} : WHETHER true.

WHETHER FLEXETY ROWS of MODEl def lexes to
ROWS of MODE2{b,e,46b,521c,62a,71n} :

WHETHER MODEl def lexes to MODE2{a,b,c,-}.
WHETHER structured with FIELDSI mode def lexes to

structured with FIELDS2 mode{b,e,46b,521c,62a,71n} :
WHETHER FIELDSI def lexes to FIELDS2[d,e,-}.

WHETHER FIELDSI FIELDI def lexes to FIELDS2 FIELD2{c,d} :
WHETHER FIELDSI def lexes to FIELDS2{d,e,-}

and FIELDI def lexes to FIELD2{e,-}.
WHETHER MODEl f ie ld TAG def lexes to MODE2 field TAG{c,d} :

WHETHER MODEl def lexes to MODE2{a,b,c,-}.

f) WHETHER MOODSETYI with MOODSETY2 incestuous{f,46s} :
where (MOODSETY2) is (MOOD MOODSETY3),

WHETHER MOODSETYI MOOD with MOODSETY3 incestuous{f}
or MOOD is f irm union of MOODSETYI MOODSETY3 mode

{71m} ;
where (MOODSETY2) is (EMPTY), WHETHER false.

g) WHETHER MOLDS r a v e l s to MOODS{g,46s} :
where (MOLDS) is (MOODS), WHETHER t rue ;
where (MOLDS) is

(MOODSETY union of MOODSI mode MOIDSETY),
WHETHER MOODSETY MOODSI MOIDSETY r a v e l s to MOODS{g}.

{A c o m p o n e n t m o d e of a union m a y not be f i r m l y c o e r c e d to one of the
o the r c o m p o n e n t m o d e s or to the union of those o t h e r s (rule f) for,
o the rwise , a m b i g u i t i e s could a r i s e . F o r e x a m p l e ,

union (ref int, int) (Ioc int),
is a m b i g u o u s in t ha t d e r e f e r e n c i n g m a y or m a y not o c c u r be fore the
uni t ing. S i m i l a r l y ,

mode szp = union (szeredi, peter);
union (ref szp, szp) (Ioc szp)

is a mb iguous . Note tha t , b e c a u s e of r a v e l l i n g (rule g) , the m o d e spec i f i ed
by the d e c l a r e r of the e a s t is m o r e c lose ly s u g g e s t e d by union (ref szp,
szeredi, peter).}

76 van Wijngaarden, et al.

4.8. I n d i c a t o r s and f ield s e l ec to r s

4.8.1. Syn t ax

A) INDICATOR :: i den t i f i e r ; m o d e ind i ca t i on ; o p e r a t o r .
B) DEFIED :: de f in ing ; app l i ed .
C) P R O P S E T Y :: PROPS ; EMPTY.
D) P R O P S :: P R O P ; PROPS PROP.
E) P R O P :: DEC ; LAB ; FIELD.
F) QUALITY : :

MODE ; MOlD TALLY ; DYADIC ; l abe l ; MODE field.
G) TAX :: TAG ; TAB ; TAD ; TAM.

a)

b)

c)

d)

QUALITY NEST new PROPSETYI QUALITY TAX PROPSETY2
def in ing INDICATOR with TAX{32c,35b,42b,43b,44e, f ,45c, 541f} :

w h e r e QUALITY TAX i n d e p e n d e n t PROPSETYI PROPSETY2
{71a,b,c}, TAX{942A,D,F ,K} token.

QUALITY NEST a p p l i e d INDICATOR wi th TAX
{42c,46a,b,5D,542a,b,544a} :

w h e r e QUALITY TAX iden t i f i ed in NEST{72a},
TAX{942A,D,F,K} token.

MODE field PROPSETYI MODE field TAG PROPSETY2 def in ing
f ield s e l e c t o r wi th TAG{46f} :

w h e r e MODE field TAG i n d e p e n d e n t PROPSETYI PROPSETY2
{71a,b,e}, TAG {942A} token.

MODE field FIELDS a p p l i e d f ie ld s e l e c t o r wi th TAG{531a} :
w h e r e MODE field TAG r e s i d e s in FlELDS{72b,c,-},

TAG{942A} token.

e)

f)

* QUALITY NEST DEFIED i n d i c a t o r wi th TAX :
QUALITY NEST DEFIED INDICATOR with TAX{a,b}.

* MODE DEFIED field s e l e c t o r wi th TAG :
MODE field FIELDS DEFIED field s e l e c t o r wi th TAG{c,d}.

[E x a m p l e s :

a) x (in ree lx , y)
c) n e x t (see 1.1.2)

b) x (i n x + y)
d) n e x t (in n e x t o l d r a f t) }

4.8.2. S e m a n t i c s

a) When a va lue or a s cene Y is " a s c r i b e d " to a QUALITY-def in ing-
ind ica tor -wi th -TAX, in an env i ron E, then 'QUALITY TAX' is m a d e to
a c c e s s V ins ide the loca le of E {2.1.2.c}.

b) The y ie ld W of a QUALITY-app l i ed - ind ica to r -wi th -TAX I in an
env i ron E c o m p o s e d of an env i ron E1 and a loca le I_ is d e t e r m i n e d as
follows:

ALGOL 68 Revised Report 77

If L c o r r e s p o n d s to a 'DECSETY LABSETY' which enve lops {1.1.4.1.c} t ha t
'QUALITY TAX' ,

then W is the va lue o r scene , if any , a c c e s s e d ins ide L by 'QUALITY TAX'
and, o the rwise , is undef ined;

o the rwise , W is the y ie ld of I in El .

{Consider the fol lowing c lo sed -c l ause , which con ta in s a n o t h e r one:
b e g i n c o range I c o

i n t i = 421, int a : = 5, proc p = void : p r i n t (a);
b e g i n c o range 2 c o

r e e l a; a : = i; p
e n d

e n d .
By the t i m e a := i is e n c o u n t e r e d d u r i n g the e l a b o r a t i o n , two new

env i rons have been c r e a t e d , one for e a c h r ange . The de f in ing - iden t i f i e r i is
f i rs t sought in the n e w e r one, E2, is not found the re , and then is sough t
and found in the o lde r one, El . The loca le of E1 c o r r e s p o n d s to ' i n t e g r a l
l e t t e r i r e f e r e n c e to i n t e g r a l l e t t e r a p r o c e d u r e y i e l d i n g void l e t t e r p ' . The
y ie ld of the a p p l i e d - i d e n t i f i e r i is t h e r e f o r e the v a l u e 421 which has been
a s c r i b e d (a) to ' i n t e g r a l l e t t e r i ' ins ide the loca le of El . The y ie ld of a, in
a := i, however , is found f rom the loca le of E2.

When p is c a l l e d (5.4.3.2.b), i t s uni t is e l a b o r a t e d in an env i ron E3
e s t a b l i s h e d a r o u n d E1 but upon E2 (3.2.2.b). This m e a n s tha t , for s cope
purposes , E3 is n e w e r than E2, but the c o m p o n e n t env i ron of E3 is El .
When a c o m e s to be p r in ted , i t is the y ie ld 5 of the r e f e r e n c e - t o : i n t e g r a l -
i den t i f i e r a d e c l a r e d in the o u t e r r a n g e t h a t is ob t a ined .

Thus, the m e a n i n g of an i n d i c a t o r a p p l i e d bu t not de f ined wi th in a
rou t ine is d e t e r m i n e d by the con tex t in which the rou t ine was c r e a t e d ,
r a t h e r than t ha t in which it is cal led.}

5. Un i t s

{Units a r e used to p r o g r a m the m o r e p r i m i t i v e ac t i ons o r to put into
one s ingle p iece the l a r g e r c o n s t r u c t s of C h a p t e r 3.

NOTION-coercees a r e the r e su l t s of coe rc ion (C h a p t e r 6), bu t h ips a r e
not; in the e a s e of ENCLOSED-clauses , a n y coe rc ions n e e d e d a r e
p e r f o r m e d ins ide t hem.

The s y n t a x be low impl ies , for e x a m p l e , t ha t t ex t o l d r a f t + " the_end" is
p a r s e d as (t e x t o l d r a f O + " t h e . e n d " s ince a se l ec t ion is a 'SECONDARY'
w h e r e a s a f o r m u l a is a 'TERTIARY' .)

5.1. S y n t a x

A) UNIT{32d} :: assignation{521a} c o e r c e e ;
i d e n t i t y re lat ion{522a} c o e r c e e ; r o u t i n e text{541a,b} c o e r c e e ;
jump{544a} ; skip{552a} ; TERTIARY{B).

B) TERTIARY{A,521b,522a} : : ADIC formula{542a,b} c o e r c e e ;
nihil{524a) ; SECONDARY{C).

78 J van Wijngaarden, et al.

C) SECONDARY{B,531a,542c} :: LEAP generator{523a} coercee ;
selection{531a} coercee ; PRIMARY{D}.

D) PRIMARY{C,532a,543a} :: slice{532a} coercee ; call{543a} coercee ;
cast{551a} coercee ; denoter[80a} coercee ;
format text{A341a} coercee ;
applied identifier with TAG{48b} coercee ;
ENCLOSED clause{31a,33a,c,d,e,34a,35a}.

{The hyper-rules for "SORT MOlD FORM coercee" are given in 6.1.l.a,
b, c, d and e, the entry rules of the coercion syntax. When the coercion
syntax is invoked for some 'SORT MOlD FORM coercee' , it will eventually
return to a rule in this chapter for some 'MOLD1 FORM' (blind alleys
apart) . It is the cross-reference to that rule that is given in the
metaproduction rules above. No other visible descendent has been
produced in the meantime; the coercion syntax merely t ransforms 'MOLD'
into 'MOIDI' for semantical purposes.}

a) * SOME hip :
SOME jump{544a] ; SOME skip{552a} ; SOME nihil{524a}.

{The mode of a hip is always that required, a posteriori, by its context,
and its yield is acceptable to that mode. Since any mode is so easily
accommodated, no coercion is permitted.}

5.2. Units associated with names

{Names may be assigned to (5.2.1), compared with other names (5.2.2)
and created {5.2.3) .}

5.2.1. Assignations

{In assignations, a value is "assigned" to a name. E.g., in x := 3.14, the
real number yielded by the source 3.14 is assigned to the name yielded by
the destination x.}

5.2.1.1. Syntax

a) REF to MODE NEST assignation{5A} :
REF to MODE NEST destination{b}, becomes{94c} token,

MODE NEST source{c}.
b) REF to MODE NEST destination{a} :

soft REF to MODE NEST TERTIARY{5B}.
c) MODEl NEST source{a,44d} : strong MODE2 NEST unit{32d},

where MODEl deflexes to MODE2[47a,b,c,-}.

{Examples:

a) x := 3.14
c) 3.14 }

b) x

ALGOL 68 Revised Report 79

5.2.1.2. Semantics

a) An assignation A is elaborated as follows:
• let hi and W be the {collateral} yields {a name and another value} of the
destination and source of A;
• W is assigned to {b} N;
• the yield of A is N.

b) A value W is "assigned to" a name N, whose mode is some 'REF to
MODE', as follows:
It is required that

• N be not nil, and that
• W be not newer in scope than N;

Case A: 'MODE' is some "structured with FIELDS mode':
For each 'TAG' selecting a field in W,

• that field is assigned to the subname selected by "TAG' in 1'4;
Case B: 'MODE" is some 'ROWS of MODEl':

• let Y be the Cold} value referred to by N;
• it is required that the descriptors of W and Y be identical;
For each index I selecting an element in W,

• that element is assigned to the subname selected by I in N;
Case C: 'MODE" is some 'flexible ROWS of MODEl':

• let Y be the Cold} value referred to by N;
• N is made to refer to a multiple value composed of
(i) the descriptor of W,
(ii) variants {4.4.2.c} of some element {possibly a ghost element} of V;
• N is endowed with subnames {2.1.3.4.g};
For each index I selecting an element in W,

• that element is assigned to the subname selected by I in N;
Other Cases {e.g., where 'MODE' is some 'PLAIN' or some "UNITED'}:

• N is made to refer {2.1.3.2.a} to W.

{Observe how, given
flex [1 : O} [1 : 3] int f lexf ix,

the presence of the ghost element (2.1.3.4.c) ensures that the meaning of
f lexf ix := Ioc [1 : 1] [1 : 3] int is well defined, but that of f lexf ix := Ioc [1 :
1] [1: 4] int is not, since the bound pairs of the second dimension are
different.}

5.2.2. Identity relations

{Identity-relations may. be used to ask whether two names of the same
mode are the same.

E.g., after the assignation draf t := Cabc", nil), the identity-relation nex t
of draft :=: ref b o o k (nil) yields true. However, nex t of draf t :=: nil yields
false because it is equivalent to nex t of draf t :=: ref ref b o o k (nil): the yield
of nex t o f draft, without any coercion, is the name referring to the second
field of the structured value referred to by the value of draft and, hence,
is not nil.}

!
i
!

80) van Wijngaarden, et al.

5.2.2.1. Syntax

a)

b)

boolean NEST identity relation{5A} :
where soft balances SORTI and SORT2{32f},

SORTI reference to MODE NEST TERTIARYI{5B},
identity relator{b},
SORT2 reference to MODE NEST TERTIARY2{5B}.

identity relator{a} : is{94f} token ; is not{94f} token.

{Examples:

a) n e x t o f d r a f t :=: re fbook (nil)
b) :=: • : ~ : }

{Observe that a l [i] :=: a l [j] is not produced by this syntax. The
comparison, by an identity-relation, of transient names (2.1.3.6.c) is thus
prevented.}

5.2.2.2. Semantics

The yield W of an identity-relation I is determined as follows:
• let N1 and N2 be the {collateral} yields of the TERTIARYs of I;
Case A: The token of the identity-relator of I is an is-token:

• W is true if {the name} N1 is the same as N2, and is false otherwise;
Case B: The token of the identity-relator of I is an is-not-token:

• W is true if N1 is not the same as N2, and is false, otherwise.

5.2.3. Generators

{And as imagination bodies forth
The forms of things unknown, the poet's
pen
Turns them to shapes, and gives to airy
nothing
A local habitation and a name.
A Midsummer-night's Dream,

William Shakespeare.}

{The elaboration of a generator, e.g., Ioc real in x x := loc real := 3.14,
or of a sample-generator, e.g., [i : n} c h a r in [I : n} c h a r u, v;, involves
the creation of a name, i.e., the reservation of storage.

The use of a local-generator implies (with most implementations) the
reservation of storage on a run-time stack, whereas heap-generators imply
the reservation of storage in another region, termed the "heap", in which
garbage-collection techniques may be used for s torage retrieval. Since this
is less efficient, local.generators are preferable; this is why only Ioc may
be omitted from sample-generators of variable-declarations.}

ALGOL 68 Revised Report

5.2.3.1. Syntax

{LEAP :: local ; heap ; primal.}

a) reference to MODE NEST LEAP generator{5C} : LEAP{94d,-} token,
actual MODE NEST declarer{46a}.

b) reference to MODINE NEST LEAP sample generator{44e} :
LEAP{94d,-} token, actual MODINE NEST declarer{44b,46a} ;
where (LEAP) is (local), actual MODINE NEST declarer{44b,46a}.

{Examples:

a) Ioc real b) Ioc real • real }

{There is no representation for the primal-symbol (see 9.4.a).}

81

5.2.3.2. Semantics

a) The yield W of a LEAP-generator or LEAP-sample-generator G, in
an environ E, is determined as follows:
• W is a newly created name which is made to refer {2.1.3.2.a} to the yield
in E of the actual-declarer {4.4.2.d, 4.6.2.a} of G:
• W is equal in scope to the environ E1 determined as follows:

Case A: "LEAP' is ' local ' :
• El is the "local environ" {b} accessible from E:

Case B: 'LEAP' is 'heap' :
• El is {the first environ created during the elaboration of the
part icular-program, which is} such that
(i) the primal environ {2.2.2.a} is the environ of the environ of the
environ of E1 {sic}, and
(ii) El is, or is older than, E;

Case C: 'LEAP' is "primal':
• El is the primal environ;

• if W is a stowed name {2.1.3.2.b}, then W is endowed with subnames
{2.1.3.3.e, 2.1.3.4.g}.

{The only examples of primal-generators occur in the standard- and
system-preludes (10.3.1.l.h, 10.3.1.4.b,n,o, 10.4.l.a).

When G is a reference-to-routine-sample.generator, the mode of W is of
no relevance.}

b) The "local environ" accessible from an environ E is an environ El
determined as follows:

If E is "nonlocal" {3.2.2.b},
then El is the local environ accessible from the environ of E:
otherwise, E1 is E.

{An environ is nonlocal if it has been established according to a serial-
clause or enquiry-clause which contains no constituent mode-, identifier-,
or operation.declaration, or according to a for-part (3.5.1.b) or a
specification (3.4.l.j,k) .}

82 van Wijngaarden, et al.

5.2.4. Nihils

5.2.4.1. Syntax

a) strong reference to MODE NEST nihil{5B} : nil{94f} token.

{Example:

a) nil }

5.2.4.2. Semant ics

The yield of a nihil is a nil name .

5.3. Units associa ted with s towed values

{In Flanders fields the poppies blow
Between the crosses, row on row
In Flanders Fields, John McCrae.}

{The fields of s t ruc tu red values m a y be obta ined by select ions (5.3.1)
and the e lements of mult iple values by slices (5.3.2); the co r re spond ing
effects on s towed n a m e s a re defined also.}

5.3.1. Selections

{A selection selects a field f rom a s t ruc tu red value or (if it is a
"mult iple selection") it selects a mult iple value f rom a mult iple value
whose e lements a re s t ruc tu red values. F o r example , re o f z selects the
first real field (usually t e r m e d the rea l part) of the yield of z. If z yields a
name, then re of z also yields a name , but if g yields a complex value,
then re o f g yields a real value, not a n a m e re fe r r ing to one.]

5.3.1.I. Syntax

A) REFETY :: REF to ; EMPTY.
B) REFLEXETY :: REF to ; REF to flexible ; EMPTY.

{REF :: reference ; transient reference.}

a) REFETY MODEl NEST selection{5C} :
MODEl field FIELDS applied field se lector with TAG{48d},

of {94f} token, weak REFETY structured with FIELDS mode
NEST SECONDARY{5C} ;

where (MODEl) is (ROWS of MODE2),
MODE2 field FIELDS applied field se lector with TAG{48d},
of{94f} token, weak REFLEXETY ROWS of structured with
FIELDS mode NEST SECONDARY{5C},

where (REFETY) is derived from (REFLEXETY){b,c,-}.
b) WHETHER (transient reference to) is derived from

(REF to flexible){a,532a,66a} : WHETHER true.
c) WHETHER (REFETY) is derived from (REFETY){a,532a,66a} :

WHETHER true.

ALGOL 68 Revised Report

{Examples:

a) r e o t z • r e o f z l }

83

{The mode of re of z begins with ' r e f e r ence to' b e c a u s e tha t of z does.
Example :

int age := 7; struct (bool sex, tnt age) jill;
age of j i l l := age;

Note that the dest inat ion age o f j i l l yields a n a m e because j i l l yields one.
After the identity-declaration

struct (bool sex, int age) j a c k = (true, 9),
age of j a c k cannot be ass igned to since j a c k is not a variable.}

5.3.1.2. Semant ics

The yield W of a select ion S is de t e rmined as follows:
• let V be the yield of the SECONDARY of S;
• it is requi red that Y {if it is a name} be not nil;
• W is the value selected in {2.1.3.3.a,e, 2.1.3.4.k} or the n a m e g e n e r a t e d
f rom {2.1.3.4.1} Y by the f ield-selector of S.

{A selection in a n a m e re fe r r ing to a s t ruc tu red value yields an exis t ing
s u b n a m e (2.1.3.3.e) of tha t name . The n a m e g e n e r a t e d f rom a n a m e
re fe r r ing to a mult iple value, by w a y of a select ion with a ROWS-of-MODE-
SECONDARY (as in re o f z l) , is a n a m e which m a y or m a y not be newly
c rea ted for the purpose.}

5.3.2. Slices

{Slices a re obtained by subscr ipt ing, e.g., x l [i], by t r imming , e.g.,
x 1 1 2 : n] or by both, e.g., x 2 [j : n , j] or x 2 [, k] . Subscr ip t ing and
t r i m m i n g m a y be done only to PRIMARYs, e.g., x l or (p [x l [y l) but not
re o t z l . The value of a slice m a y be e i ther one e l emen t of the yield of its
PRIMARY or a subset of the e lements ; e.g., x l [i] is a rea l n u m b e r f rom
the row of real n u m b e r s x l , x2 [i,] is the i-th row of the ma t r i x x2 and
x2 [, k] is its k-th column.}

5.3.2.1. Syntax

A) ROWSETY :: ROWS ; EMPTY.

a) REFETY MODEl NEST slice{5D} :
weak REFLEXETY ROWSI of MODEl NEST PRIMARY{5D},

ROWSI leaving EMPTY NEST indexer{b,c,-} STYLE bracke t ,
where (REFETY) is derived from (REFLEXETY){531b,c,-} ;

where (MODEl) is (ROWS2 of MODE2),
weak REFLEXETY ROWSI of MODE2 NEST PRIMARY{5D},
ROWSI leaving ROWS2 NEST indexer{b,d,-} STYLE bracket,
where (REFETY) is derived from (REFLEXETY){531b,c,-}.

{ROWS :: row ; ROWS row.}

84 van Wijngaarden, et al.

b) row ROWS leaving ROWSETYI ROWSETY2 NEST indexer{a,b} :
row leaving ROWSETYI NEST indexer{c,d,-}, and also{94f] token,

ROWS leaving ROWSETY2 NEST indexer{b,c,d,-}.
c) row leaving EMPTY NEST indexer{a,b} : NEST subscript{e}.
d) row leaving row NEST indexer{a,b} : NEST trimmer{f} ;

NEST revised lower bound{g} option.
e) NEST subscript[e} : m e e k in tegra l NEST unit{32d}.
f) NEST t r i m m e r { d } : NEST lower bound{46m} option, up to{94f} token,

NEST upper bound{46n} option,
NEST revised lower bound{g} option.

g) NEST revised lower bound{d,f} :
at{94f} token, NEST lower bound{46m}.

h) * t r i m s c r i p t : NEST subscript{e} ; NEST trimmer{f} ;
NEST revised lower bound{g} option.

i) * indexer : ROWS leaving ROWSETY NEST indexer{b,c,d}.
j) *boundscr ip t : NEST subscript{e} ; NEST lower bound{46m} ;

NEST upper bound{46n} ; NEST revised lower bound{g}.

{Examples:

a) x2 [i , j] • x2 [, j]
b) 1: 2, j (in x2 [1 : 2 , j]) • i, j (in x2 [i , j])
c) j (in x2 [1 : 2 , j]) d) 1 : 2 • @0 (in x l [@0])
e) j f) 1 : 2 @0
g) @0 }

{A subscr ip t dec rea se s the n u m b e r of d imens ions by one, but a
t r i m m e r leaves it unchanged . In rule a, 'ROWSI" ref lects the n u m b e r of
t r imsr ip ts in the slice, and "ROWS2' the n u m b e r of these which a re
t r i m m e r s or revised- lower-bound-opt ions.

If the value to be sl iced is a name , then the yield of the slice is also a
name. Moreover , if the mode of the f o r m e r n a m e is ' r e f e r ence to flexible
ROWSI of MODE', then tha t yield is a t rans ien t n a m e (see 2.1.3.6.c).}

5.3.2.2. Semant ics

a) The yield W of a slice S is de t e rmined as follows:
• let Y and 01 I n) be the [collateral} yields of the PRIMARY of S

and of the indexer {b} of S;
• it is required tha t V {if it is a name} be not nil;
• let ((r 1, s 1) fin' Sn)) be the desc r ip to r of V or of the value r e fe r red

to by V;
For i = 1 n,

Case A: I. is an integer:
!

• it is requi red that r. <_ I. <_ s.;
I I I

ALGOL 68 Revised Report 85

Case B: I. is some tr iplet (I, u, I')"
I

• let L be r i, if I is absent, and be I o therwise;

• let U be s i, if u is absent, and be u otherwise;

• it is requi red tha t r.~ <_ L and U ~_ si;

• let D be 0 if r is absent, and be L - I' o therwise ; {D is the a m o u n t
to be sub t rac ted f rom L in o rde r to ge t the rev ised lower bound; }
• I . i s r ep laced by (L, U, D); i

• W is the value selected in {2.1.3.4.a,g,i} or the n a m e g e n e r a t e d f rom
{2.1.3.4.j} V by (I 1 In).

b) The yield of an indexer I of a slice S is a t r im {2.1.3.4.h} or an
index {2.1.3.4.a} (I 1 I n) de t e rmined as follows:

* the const i tuent boundscr ip ts of S a re e l abo ra t ed col la tera l ly ;
Fo r i = 1 n, where n is the n u m b e r of cons t i tuent t r imsc r ip t s of S,

Case A: the i-th t r imsc r ip t is a subscr ip t :
• I. is {the in teger which is} the yield of tha t subscr ipt ;

I

Case B: the i-th t r imsc r ip t is a t r i m m e r T:
• I . i s the tr iplet (I, u, I'), where

* I is the yield of the const i tuent lower .bound, if any, of T,
and is absent, o therwise ,
• u is the yield of the const i tuent upper .bound, if any, of T, and
is absent, o therwise,
• I' is the yield of the cons t i tuent revised- lower .bound, if any, of
T, and is 1, o therwise;

Case C: the i-th t r imsc r ip t is a rev ised- lower .bound.opt ion N:
• I. is the tr iplet (absent, absent, r) , where

• I' is the yield of the revised- lower-bound, if any, of N, and is
absent otherwise.

{Observe that, if (I 1 In)cOntains no triplets, it is an index, and

selects one e lement ; otherwise, it is a t r im, and selects a subset of the
elements.}

{A slice f rom a n a m e re fe r r ing to a mult iple value yields an exis t ing
subname (2.1.3.4.j) of tha t n a m e if all the const i tuent t r imsc r ip t s of tha t
slice a re subscr ipts . Otherwise, it yields a gene ra t ed n a m e which m a y or
m a y not be newly c rea ted for the purpose. Hence, the yield of x l [1 : 2]
:=: x l [1 : 2] is not defined, a l though x l [1] :=: x l [1] m u s t a lways yield
true.}

{The var ious possible bounds in the yield of a slice a re i l lus t ra ted by
the following examples , for each of which the desc r ip to r of the value

86 van Wijngaarden. et al.

referred to by the yield is shown:
[0: 9 , 2 : 11] m t i 3 ;
i3 [1, 3 : 1 0 @3] ¢((3, 10))¢;
i3 [1, 3: 10] ¢((1, 8))¢;
i3 [1 ,3 :] ¢((1 ,9))¢;
i3 [1,:] ¢((1 ,10))¢;
i3 [1,] ¢((2 ,11))¢;
i 3 [, 2] ¢((0,9))¢.}

5.4. Units associated with routines

{Routines are created from routine-texts (5.4.1) or from jumps (5.4.4),
and they may be "called" by calls (5.4.3), formulas (5.4.2) or by
deproceduring {6.3).}

5.4.1. Routine texts

{A routine-text always has a formal-declarer, specifying the mode of
the result, and a routine-token, viz., a colon. To the right of this colon
stands a unit, which prescribes the computations to be performed when
the routine is called. If there are parameters , then to the left of the formal-
declarer stands a declarative containing the various formal-parameters
required.
Examples:

void : pr in t (x);
(ref real a, real b) bool : (a < b [a := b; true] false).}

5.4.1.1. Syntax

a) procedure yielding MOlD NESTI routine text{44d,5A} :
formal MOlD NESTI declarer{46b}, routine{94f} token,

strong MOlD NESTI unit{32d}.
b) procedure with PARAMETERS yielding

MOlD NESTI routine text{44d,SA} :
NESTI new DECS2 declarative defining

new DECS2{e} brief pack,
where DECS2 like PARAMETERS{c,d,-},
formal MOlD NESTI declarer{46b}, routine{94f} token,
strong MOlD NESTI new DECS2 unit{32d}.

c) WHETHER DECS DEC like PARAMETERS PARAMETER{b,c} :
WHETHER DECS like PARAMETERS{c,d,-}

and DEC like PARAMETER{d,-}.
{PARAMETER :: MODE parameter.}

d) WHETHER MODE TAG like MODE parameter{b,c} :
WHETHER true.

e) NEST2 declarative defining new DECS2{b,e,34j} :
formal MODE NEST2 deelarer{46b},

NEST2 MODE paramete r joined definition of DECS2{41b,c} ;

ALGOL 68 Revised Report

f)

g)

{Examples:

a) real : random × 10
e) bool a, b • bool a, bool b

87

where (DECS2) is (DECS3 DECS4),
formal MODE NEST2 declarer{46b},
NEST2 MODE paramete r joined definition of DECS3{41h,c},
and also{94f} token, NEST2 declarat ive defining new DECS4{e}.

NEST2 MODE paramete r definition of MODE TAG2{41c} :
MODE NEST2 defining identifier with TAG2{48a}.

* formal MODE parameter :
NEST MODE parameter definition of MODE TAG{f}.

b) (hee l a, b) boo l : (a [b I false)
f) a}

5.4.1.2. Semantics

The yield of a routine-text T, in an environ E, is the routine composed
of
(i) T, and

(ii) the environ necessary for {7.2.2.c} T in E.

5.4.2. Formulas

{Formulas are either dyadic or monadic: e.g., x + i or abs x. The order
of elaboration of a formula is determined by the priority of its operators;
monadic formulas are elaborated first and then the dyadic ones from the
highest to the lowest priority.}

5.4.2.1. Syntax

A) DYADIC :: priority PRIO.
B) MONADIC :: priority iii iii iii i.
C) ADIC :: DYADIC ; MONADIC.
D) TALLETY :: TALLY ; EMPTY.

a) MOlD NEST DYADIC formula{c,SB} :
MODEl NEST DYADIC TALLETY operand{c,-},

procedure with MODEl pa ramete r MODE2 paramete r
yielding MOlD NEST applied operator with TAD{48b},

where DYADIC TAD identified in NEST{72a},
MODE2 NEST DYADIC TALLY operand{c,-}.

b) MOlD NEST MONADIC formula{c,5B} :
procedure with MODE paramete r yielding MOlD

NEST applied operator with TAM {48b},
MODE NEST MONADIC operand{c}.

c) MODE NEST ADIC operand{a,b} :
firm MODE NEST ADIC formula{a,b} eoercee{61b} ;
where (ADIC) is (MONADIC), f irm MODE NEST SECONDARY{5C}.

88

d)
e)

f)

g)

{Examples:

a) -x + 1
c) -x • 1 }

van Wijngaarden, et al.

* MOlD formula : MOlD NEST ADIC formula{a,b}.
"DUO dyadic operator with TAD :

DUO NEST DEFIED operator with TAD{48a,b}.
"MONO monadic operator with TAM :

MONO NEST DEFIED operator with TAM[48a,b}.
* MODE operand : MODE NEST ADIC operand{c}.

b) -x

5.4.2.2. Semantics

The yield W of a formula F, in an environ E, is determined as follows:
• let R be the routine yielded in E by the operator of F;
• let Y 1 V n in is 1 or 2} be the [collateral] yields of the operands of F,

in an environ E1 established {locally, see 3.2.2.b} around E;
• W is the yield of the calling {5.4.3.2.b} of R in El, with Y 1 Yn;

• it is required that W be not newer in scope than E.

{Observe that a ; b is not precisely the same as a b in the usual
notation; indeed, the value of (- 1 ; 2 +4 =5) and that of (4 - 1 1 2 = 3) both
are true, since the first minus-symbol is a monadic-operator, whereas the
second is a dyadic-operator.}

5.4.3. Calls

{Calls are used to command the elaboration of routines parametr ized
with actual-parameters .
Examples:

s in (x) • (P l s i n l cos) (x).}

5.4.3.1. Syntax

a) MOlD NEST cail{5D} : meek procedure with PARAMETERS yielding
MOlD NEST PRIMARY{5D},

actual NEST PARAMETERS{b,c} brief pack.
b) actual NEST PARAMETERS PARAMETER{a,b} :

actual NEST PARAMETERS{b,c}, and also{94f} token,
actual NEST PARAMETER{c}.

c) actual NEST MODE parameter{a,b} : strong MODE NEST unit{32d}.

{Examples:

a) p u t (s t a n d o u t , x) (see 10.3.3.1.a)
b) s t a n d o u t , x c) x }

5.4.3.2. Semantics

ALGOL 68 Revised Report 89

a) The yield W of a call C, in an environ E, is determined as follows:
• let R Ca routine} and Y 1 V n be the {collateral} yields of the

PRIMARY of C, in E, and of the constituent ac tual -parameters of C, in an
environ E1 established {locally, see 3.2.2.b} around E;
• W is the yield of the calling {b} of R in E1 with Y 1 Vn;

• it is required that W be not newer in scope than E.

b) The yield W of the "calling" of a routine R in an environ El,
possibly with {parameter} values V 1 Vn' is determined as follows:

• let E2 be the environ established {3.2.2.b} upon El, around the environ of
R, according to the declarative of the declarative.pack, if any, of the
routine-text of R, with the values V 1 V n, if any;

• W is the yield in E2 of the unit of the routine-text of R.

{Consider the following serial-clause:
proc s a m e l s o n = (int n, p roc (inO real f) real :

begin long real s : = long O;
for i t o n do s + : = leng f (i) t 2 od ;
shorten l ong s q r t (s)

end;
same~son (m, (in t j) real : x l [j]).

In that context, the last call has the same effect as the following cast:
real (

int n = m, p roc (int) real f = (int j) real : x l [j];
beg in long real s : = long O;

f o r i t o n do s + : = leng f (i) T 2 od;
shorten l ong s q r t (s)

end).
The transmission of ac tual -parameters is thus similar to the

elaboration of identity-declarations (4.4.2.a); see also establishment
(3.2.2.b) and ascription (4.8.2.a).}

5.4.4. Jumps

{A jump may terminate the elaboration of a series and cause some
other labelled series to be elaborated in its place.
Examples:

y : = if x >_ 0 then s q r t (x) else goto p r i n c e t o n fl •
goto s t p ierre de c h a r t r e u s e .

Alternatively, if the context expects the mode 'procedure yielding
MOLD', then a routine whose unit is that jump is yielded instead, as in
proc vok l m := goto n o r t h b e r w i c k . }

90 van Wijngaarden, et al.

5.4.4.1. Syntax
a) strong MOlD NEST jump{5A} : go to{b} option,

label NEST applied identifier with TAG{48b}.
b) go to{a} : STYLE go to{94f,-} token ;

STYLE go{94f,-} token, STYLE to symbol{94g,-}.

{Examples:

a) goto koo tw i j k • g o to w a r s a w • zandvoor t
b) goto • go to }

5.4.4.2. Semantics

A MOlD-NEST-jump J, in an environ E, is e labora ted as follows:
• let the scene yielded in E by the label-identifier of d be composed of a
series $2 and an environ El;
Case A: 'MOLD' is not any 'p rocedure yielding MOIDI ' :

• let $1 be the series of the smal les t {1.1.3.2.g} ser ial-clause containing
$2;
• the elaborat ion of $1 in El, or of any ser ies in E1 e labora ted in its
place, is t e rmina ted {2.1.4.3.e}:
• $2 in E1 is e labora ted "in place of" $1 in El;

Case B: 'MOLD' is some "procedure yielding MOIDI' :
• J in E {is completed and} yields the routine composed of
(i) a new MOlD-NEST-routine-text whose unit is akin {1.1.3.2.k} to J,
(ii) El.

5.5. Units associated with values of any mode

5.5.1. Casts

{Casts m a y be used to provide a strong position. For example , t e l real
(xx) in te l real (xx) := 1, t e l book (nil) in n e x t of draf t :=: rof b o o k (nil) and
string (p I c l r) in s +:= string (p [c l r).}

5.5.1.1. Syntax

a) MOlD NEST cast{5D} : fo rmal MOlD NEST declarer{46b},
strong MOlD NEST ENCLOSED clause{31a,33a,c,d,e,34a,35a,-}.

{Example:

a) r e f b o o k (nil) }
{The yield of a cas t is that of its ENCLOSED-clause, by way of pre-

elaboration (2.1.4.1.c).}

5.5.2. Skips

5.5.2.1. Syntax

a) strong MOlD NEST skip{5A} : skip{94f} token.

ALGOL 68 Revised Report 91

5.5.2.2. Semantics

The yield of a skip is some {undefined} value equal in scope to the
pr imal environ.

{The mode of the yield of a MOlD-skip is 'MOLD'. A void-skip serves as
a d u m m y s ta tement and m a y be used, for example , a f te r a label which
m a r k s the end of a serial-clause.}

PART III

Context Dependence

{This Pa r t deals with those rules which do not a l te r the underlying
syntact ical structure:
• the t ransformat ions of modes implicit ly defined by the context, with
their accompanying actions;
• the syntax needed for the equivalence of modes and for the safe
application of the proper t ies kept in the nests.}

6. Coercion

{The coercions produce a coereend f rom a eoereee according to three
criteria: the a priori mode of the eoercend before the applicat ion of any
coercion, the a posteriori mode of the coercee required a f te r those
coercions, and the syntact ic position or "sort" of the coercee. Coercions
m a y be cascaded.

There are six possible coercions, t e rmed "deproceduring",
"dereferencing", "uniting", "widening", "rowing" and "voiding". Each
coercion, except "uniting", prescr ibes a corresponding dynamic effect on
the associated values. Hence, a n u mb er of pr imi t ive actions can be
p r o g r a m m e d implicitly by coercions.}

6.1. Coercees

CA eoercee is a construct whose production t ree m a y begin a sequence
of coercions ending in a coercend. The order of (completion of) the
elaboration of the coercions is therefore f rom the coercend to the eoercee
(hence the choice of these paranot ions) . For example , / in real(i) is a
eoercee whose production tree involves 'widened to" and 'dereferenced to',
in that order, in passing f rom the coercee to the coercend. Note that the
dereferencing mus t be completed before the widening takes place.

92 van Wijngaarden, et al.

The relevant production tree (with elision of "NEST',
"with TAG', and with invisible subtrees omitted) is:

'applied' and

's trong real identifier coercee '
I 6.1.1.a

* 'widened to real identifier' I
widening coercion I 6.5.1.a

'dereferenced to integral identifier'
dereferencing coercion I 6.2.1.a

['unchanged from reference to integral identifier'
[6.1.l.f

' reference to integral identifier' (coercend)
[4.S.l.b, 9.1.f I

' letter i symbol ' .}

6.1.1. Syntax

A)

B)
C)

D)
E)
F)

G)

STRONG{a,66a} :: FIRM{B} ; widened to{65a,b,c,d} ; rowed to{66a} ;
voided to{67a,b}.

FIRM{A,b} :: MEEK{C} ; united to{64a}.
MEEK{B,c,d,62a,63a,64a,65a,b,c,d} :: unchanged from{f} ;

dereferenced to{62a} ; deprocedured to{63a}.
SOFT{e,63b} :: unchanged from{f} ; softly deprocedured to{63b}.
FORM :: MORF ; COMORF.
MORF :: NEST selection ; NEST slice ; NEST routine text ;

NEST ADIC formula ; NEST call ;
NEST applied identifier with TAG.

COMORF :: NEST assignation ; NEST identity relation ;
NEST LEAP generator ; NEST cast ; NEST denoter ;
NEST format text.

a)

b)
c)
d)

e)
f)

strong MOlD FORM coercee{5A,B,C,D,A341i} :
where (FORM) is (MORF), STRONG{A} MOlD MORF ;
where (FORM) is (COMORF), STRONG{A} MOlD COMORF,

unless (STRONG MOLD) is (deprocedured to void).
firm MODE FORM coercee{5A,B,C,D,542c} : FIRM{B} MODE FORM.
meek MOlD FORM coercee{5A,B,C,D} : MEEK[C} MOlD FORM.
weak REFETY STOWED FORM coercee{5A,B,C,D} :

MEEK{C} REFETY STOWED FORM,
unless (MEEK) is (d e r e f e r e n c e d to)
and (REFETY) is (EMPTY).

soft MODE FORM coercee{5A,B,C,D} : SOFT{D} MODE FORM.
unchanged from MOlD FORM{C,D,67a,b} : MOlD FORM.

g)
h)

* SORT MOID coercee : SORT MOID FORM coercee{a,b,c,d,e}.
* MOID coercend : MOID FORM.

ALGOL 68 Revised Report

{Examples:

a) 3.14 (in x := 3.14)
b) 3.14 (in x + 3.14)
c) s in (in s in (x))
d) x l (in x l [2] := 3.14)
e) x (in x := 3.14) }

{For 'MOLD FORM" (rule f), see the cross-references inserted in
sections 5.I.A,B,C,D before "coercee". Note, however, that a 'MOLD FORM'
may be a blind alley. Blind alleys within this chapter are not indicated.}

{There are five sorts of syntactic position. They are:
• "strong" positions, i.e., actual-parameters , e.g., x in s i n (x) , sources;
e.g., x in y : = x , the ENCLOSED-clause of a cast, e.g., (nil) in
ref book (nil), and statements, e.g., y := x in (y : = x; x : = 0);
• "firm" positions, i.e., operands, e.g., x in x + y ;
• "meek" positions, i.e., enquiry-clauses, e.g., x > O in (x ~ O l x [O) ,
boundscripts, e.g., i in x l [i], and the PRIMARY of a call, e.g., s in in
s in (x);
• "weak" positions, i.e., the SECONDARY of a selection and the
PRIMARY of a slice, e.g., x l in x l [i];
• "soft" positions, i.e., destinations, e.g., x in x := y and one of the
TERTIARYs of an identity-relation, e.g., x in x x :=: x.

Strong positions also arise in balancing (3.2.1.e).

In strong positions, all six coercions may occur; in firm positions,
rowing, widening and voiding are forbidden; in meek and weak positions,
uniting is forbidden also, and in soft positions only deproceduring is
allowed. However, a dereferenccd-to-STOWED-FORM may not be directly
descended from a weak-STOWED-FORM-coercee (rule d) for, otherwise,
x : = x l [i] would be syntactically ambiguous (although, in this case, not
semantically). Also, a deprocedured-to-void-COMORF may not be directly
descended from a strong-void-COMORF-coercee (rule a) for, otherwise,

(proc void engel fr ie t ; proc void r i jpens = skip; enge l f r i e t : = r i jpens; skip)
would be ambiguous.}

93

6.2. Dereferencing

{Dereferencing serves to obtain the value referred to by a name, as in
x : = y , where y yields a name referring to a real number and it is this
number which is assigned to the name yielded by x. The a priori mode of
y, regarded as a coercend, is ' reference to real ' and its a posteriori mode,
when y is regarded as a coercee, is 'real'.}

6.2.1. Syntax

a) dereferenced to{61C} MODEl FORM :
MEEK{61C} REF to MODE2 FORM,

where MODE2 deflexes to MODEl{47a,b,c,-}.

94

{Example:

van Wijngaarden, e t al.

a) x (in real (x)) }

6.2.2. Semantics

The yield W of a dereferenced-to-MODE-FORM F
follows:
• let {the name} N be the yield of the MEEK-FORM of F;
• it is required that N be not nil;
• W is the value referred to by N.

is determined as

6.3. Deproceduring

{Deproceduring is used when a routine without parameters is to be
called. E.g., in x := random, the routine yielded by random is called and
the real number yielded is assigned: the a posteriori mode of random is
"real'. Syntactically, an initial "procedure yielding' is removed from the a
priori mode.}

6.3.1. Syntax

a) deprocedured to{61C,67a} MOID FORM :
MEEK{61C} procedure y ie ld ing MOID FORM.

b) soft ly deprocedured to{61D} MODE FORM :
SOFT{61D} procedure y ie ld ing MODE FORM.

{Examples:

a) random (in real (random))
b) x o r y (in x o r y : = 3 . 1 4 , see 1.1.2) }

6.3.2. Semantics

The yield W of a deproeedured.to-MOID-FORM or so f t ly -deprocedured- to -
MOlD-FORM F, in an environ E, is determined as follows:
• let {the routine} R be the yield in E of the direct descendent of F;
• W is the yield of the calling {5.4.3.2.b} of R in E;
• it is required that W be not newer in scope than E.

6.4. Uniting

{Uniting does not change the mode of the run-time value yielded by a
construct, but simply gives more freedom to it. That value must be
acceptable to not just that one mode, but rather to the whole of a given set
of modes. However, after uniting, that value may be subject to a primitive
action only after being dynamical ly tested in a conformity-clause (3.4.1.q);
indeed, no primitive action can be p rogrammed with a construct of a
"UNITED' mode (except to assign it to a UNITED-variable, of course).

ALGOL 68 Revised Report 95

Example:
union (booL char) t, v;
t := "a"; t := true; v := t. }

6.4.1. Syntax

a) united to{6tB} UNITED FORM .. MEEK{61C} MOlD FORM,
where MOlD unites to UNITED{b}.

b) WHETHER MOLD1 unites to MOID2{a,34i,71m} :
where MOIDI equivalent MOlD2{73a}, WHETHER false ;
unless MOIDI equ iva lent MOID2{73a},

WHETHER safe MOODSI subset of safe MOODS2{731,m,n},
where (MOODSI) is (MOIDI)
or (union of MOODSI mode) is (MOIDI),

where (MOODS2) is (MOLD2)
or (union of MOODS2 mode) is (MOLD2).

{Examples:

a) x (in uir := x) •
u (in union (char, int, void)(u), in a reach containing
u n i o n (int, vo id) u : = e m p t y) }

6.5. Widening

{Widening transforms integers to real numbers, real numbers to
complex numbers (in both cases, with the same size), a value of mode
'BITS' to an unpacked vector of truth values, or a value of mode 'BYTES'
to an unpacked vector of characters .

For example, in z := 1, the yield of 1 is widened to the real number 1.0
and then to the complex number (1.0, 0.0); syntactically, the a priori
mode specified by int is changed to that specified by real and then to that
specified by compl.}

6.5.1. Syntax

A) BITS :: s tructured with
row of boolean field SITHETY letter aleph mode.

B) BYTES :: s tructured with
row of c h a r a c t e r field SITHETY letter aleph mode.

C) SITHETY :: LENGTH LENGTHETY ; SHORTH SHORTHETY ;
EMPTY.

D) LENGTH :: letter ! letter o letter n letter g.
E) SHORTH :: le t ter s le t ter h le t ter o le t ter r l e t ter t.
F) LENGTHETY :: LENGTH LENGTHETY ; EMPTY.
G) SHORTHETY :: SHORTH SHORTHETY ; EMPTY.

a) widened to{b,61A} SIZETY real FORM :
MEEK{6IC} SIZETY integral FORM.

{SIZETY :: long LONGSETY ; short SHORTSETY ; EMPTY.}

96 van Wijngaarden, et al.

b) widened to{61A} s t ruc tu red with SIZETY rea l field le t ter r le t ter e
SIZETY real field le t ter i le t ter m m o d e FORM :

MEEK[61C} SIZETY real FORM ;
widened to{a} SIZETY rea l FORM.

c) widened to{61A} row of boolean FORM : MEEK{61C} BITS FORM.
d) widened to{6IA} row of c h a r a c t e r FORM : MEEK{61C} BYTES FORM.

{Examples:

a) I (i n x : = l)
b) 1.0 (in z : = 1.0) • 1 (in z : = 1)
c) 2r101 (in [] bool(2rl01))
d) r (in [}char(r) , see 1.1.2)}

6.5.2. Semant ics

The yield W of a widened-to-MODE-FORM F is d e t e r m i n e d as follows:
• let V be the yield of the d i rec t descenden t of F;
Case A: 'MODE' is some "SIZETY rea l ' :

• W is the real n u m b e r widenable f rom {2.1.3.1.e} V;
Case B: 'MODE' is some ' s t ruc tu red with SIZETY rea l le t ter r le t ter e

SiZETY real le t ter i le t ter m mode ' :
• W is {the complex n u m b e r which is} a s t r uc tu r ed value whose fields
a re respec t ive ly V and the real n u m b e r 0 of the s a m e size {2.1.3.1.b} as
V;

Case C: 'MODE' is "row of boolean ' or ' row of c h a r a c t e r ' :
• W is the {only} field of V.

6.6. Rowing

{Rowing pe rmi t s the building of a mult iple value f rom a single e lement .
If the la t ter is a n a m e then the resul t of rowing m a y also be a n a m e
re fe r r ing to tha t mult iple value.
Example :

[1 : 1] real bl := 4.13 }

6.6.1. Syntax

a) rowed to[61A} REFETY ROWSI of MODE FORM :
where (ROWSI) is (row),

STRONG{61A} REFLEXETY MODE FORM,
where (REFETY) is der ived f r o m (REFLEXETY){531b,c,-} ;

where (ROWS1) is (row ROWS2),
STRONG{61A} REFLEXETY ROWS2 of MODE FORM,
where (REFETY) is derived from (REFLEXETY){531b,c,-}.

{Examples:

a) 4.13 (in [1 : I] r e a l b l :=4.13) •
x l (in [1 : I~1: n] r e a l b 2 : = x l) }

ALGOL 68 Revised Report 97

6.6.2. Semant ics

a) The yield W of a rowed-to-REFETY-ROWSI-of .MODE.FORM
de te rmined as follows:
• let V be the yield of the STRONG-FORM of F;
Case A: 'REFETY' is "EMPTY':

• W is the mult iple value "built" {b} f rom V for ' R O W S I ' ;
Case B: 'REFETY' is 'REF to':

If V is nil,
then W is a nil name;
otherwise, W is the n a m e "built" {c} f rom V for ' R O W S I ' .

F is

b) The mult iple value W "built" f rom a value V, for some ' R O W S I ' ; is
de t e rmined as follows:
Case A: ' R O W S I ' is "row':

• W is composed of
(i) a desc r ip to r ((1, 1)),
(ii) {one element} V;

Case B: "ROWSI" is some ' row ROWS2":
• let the descr ip tor of V be ((I 1, Ul) (In, Un));

• W is composed of
(i) a descr ip tor ((1, 1), (I 1, Ul) (In, Un)),

(ii) the e lements of V;
• the e lement selected by an index 01 i n) in V is tha t selected by

(1, i 1 i n) in W.

c) The n a m e N1 "built" f rom a n a m e N, for some ' R O W S I ' , is
de t e rmined as follows:
• N1 is a n a m e [not necessa r i ly newly created}, equal in scope to N and
re fe r r ing to the mult iple value built {b}, for ' R O W S I ' , f r o m the value
r e fe r red to by N;
Case A: "ROWSI ' is "row':

• the {only} s u b n a m e of N1 is N;
Case B: "ROWSI ' is some ' row ROWS2":

• the s u b n a m e of N1 selected by (1, i I i n) is the s u b n a m e of N

selected by (i 1 in).

6.7. Voiding

[Voiding is used to d i scard the yield of some unit whose P r i m a r y
purpose is to cause its side-effects; the a poster ior i mode is then s imply
"void'. F o r example , in x := 1; y := 1;, the ass igna t ion y := 1 is voided, and
in p r o c t = int: on t lar (randomxlO0); t;, the appl ied- ident i f ier t is voided
af ter a deprocedur ing , which p resc r ibes the cal l ing of a routine.

98 van Wijngaarden, et al.

Assignations and other COMORFs are voided without any deproeeduring
so that, in proc void p ; . p := f i n i sh , the assignation p := f i n i sh does not
prescribe an unexpected calling of the routine f in ish .}

6.7.1. Syntax

A) NONPROC :: PLAIN ; STOWED ; REF to NONPROC ;
procedure with PARAMETERS yielding MOlD ; UNITED.

a) voided to{flA} void MORF : deprocedured to{63a} NONPROC MORF ;
unchanged from{61f} NONPROC MORF.

b) voided to{61A} void COMORF :
unchanged from{61f} MODE COMORF.

{Examples:

a) random (in skip; random;) •
n e x t random (last random)
(in skip; n e x t random (last random);)

b) proc void (pp) (in proc proc void pp = proc void : (print (1);
v o i d : p r i n t (2)); proc void (pp);) }

6.7.2. Semantics

The elaboration of a voided-to-void-FORM consists of that of its direct
descendent, and yields empty.

7. Modes and nests

{The identification of a property in a nest is the static counterpart of
the dynamic determination (4.8.2.b) of a value in an environ: the search is
conducted from the newest (youngest) level towards the previous (older)
ones.

Modes are composed from the primitive modes, such as 'boolean', with
the aid of "HEAD's, such as "structured with', and they may be reeursive.
Recursive modes spelled in different ways may nevertheless be
equivalent. The syntax tests the equivalence of such modes by proving
that it is impossible to find any discrepancy between their respective
structures or component modes.

A number of unsafe uses of properties are prevented. An identifier or
mode-indication is not declared more than once in each reach. The modes
of the operands of a formula do not determine more than one operation.
Reeursions in modes do not cause the creation of dynamic objects of
unlimited size and do not allow ambiguous coercions.}

7.1. Independence of properties

{The following syntax determines whether two properties (i.e., two
"PROP's), such as those corresponding to teal x and int x, may or may not
be enveloped by the same 'LAYER'.}

7.1.1. Syntax

A)
B)

C)

a)

b)
e)

d)

e)
f)
g)
h)
i)

J)

k)

ALGOL 68 Revised Report

PREF :: procedure yielding ; REF to.
NONPREF :: PLAIN ; STOWED ;

procedure with PARAMETERS yielding MOID ; UNITED ; void.
"PREFSETY :: PREF PREFSETY ; EMPTY.

{PROP :: DEC ; LAB ; FIELD.
QUALITY :: MODE ; MOlD TALLY ; DYADIC ; label ; MODE field.
TAX :: TAG ; TAB ; TAD ; TAM.
TAO :: TAD ; TAM.}

WHETHER PROPI independent PROPS2 PROP2{a,48a,c,72a} :
WHETHER PROPI independent PROPS2{a,c}

and PROPI independent PROP2{c}.
WHETHER PROP independent EMPTY{48a,e,72a} : WHETHER true.
WHETHER QUALITYI TAXi

independent QUALITY2 TAX2{a,48a,c,72a} :
unless (TAXI) is (TAX2), WHETHER true ;
where (TAXI) is (TAX2) and (TAXI) is (TAO),

WHETHER QUALITYI independent QUALITY2{d}.
WHETHER QUALITYI independent QUALITY2{e} :

where QUALITYI related QUALITY2{e,f,g,h,i,j,-},
WHETHER false ;

unless QUALITY 1 related QUALITY2{e,f,g,h,i,j,-},
WHETHER true,

WHETHER MONO related DUO{d} : WHETHER false.
WHETHER DUO related MONO{d} : WHETHER false.
WHETHER PRAM related DYADIC{d} : WHETHER false.
WHETHER DYADIC related PRAM{d} : WHETItER false.
WHETHER procedure with MODEl pa ramete r MODE2 pa ramete r

yielding MOIDI related
procedure with MODE3 paramete r MODE4 paramete r
yielding MOID2{d} :

WHETHER MODEl firmly related MODE3{k}
and MODE2 firmly related MODE4{k}.

WHETHER procedure with MODEl pa ramete r yielding MOIDI
related procedure with MODE2 pa ramete r yielding
MOID2{d} : WHETHER MODEl firmly related MODE2{k}.

WHETHER MOIDI firmly related MOID2{i,j} :
WHETHER MOODSI is firm MOID2{I,m}

or MOODS2 is firm MOIDI{I,m},
where (MOODSI) is (MOIDI)
or (union of MOODSI mode) is (MOIDI),

where (MOODS2) is (MOLD2)
or (union of MOODS2 mode) is (MOLD2).

99

lO0 van Wijngaarden, et al.

1) WHETHER MOODS MOOD is firm MOID{k,I} :
WHETHER MOODS is firm MOID{I,m}

or MOOD is firm MOlD{m}.
m) WHETHER MOIDI is firm MOID2{k,l,n,47f} :

WHETHER MOIDI equivalent MOlD2{73a}
or MOIDI unites to MOID2{64b}
or MOIDI deprefs to firm MOID2{n}.

n) WHETHER MOIDI deprefs to firm MOID2{m} :
where (MOIDI) is (PREF MOLD3),

WHETHER MOLD5 is firm MOID2{m},
where MOLD3 deflexes to MOID5{47a,b,c} ;

where (MOIDI) is (NONPREF), WHETHER false.
{To prevent the ambiguous application of indicators, as in real x, i n t x ;

x := 0, certain restrictions are imposed on defining-indicators contained in
a given reach. These are enforced by the syntactic test for "independence"
of properties enveloped by a given 'LAYER' (rules a, b, c). A sufficient
condition, not satisfied in the example above, for the independence of a
pair of properties, each being some 'QUALITY TAX', is that the 'TAX's
differ (rule c). For "TAX's which are not some "TAO', this condition is also
necessary, so that even real x, int x; sk ip is not a serial-clause.

For two properties 'QUALITY1 TAO" and "Q[IALITY2 TAO' the test for
independence is more complicated, as is exemplified by the serial-clause

o p + = (i n t i) b o o l : true, o p + = (i n t i , j) i n t : 1, o p + = (i n t i , b o o l j) i n t : 2,
p r i o + = 6;
0 + + 0 ¢ = 2 ¢ .

Ambiguities would be present in
p r i o + = 6 , += 7; 1 + 2 x 3 ¢ 7 or 97 ¢ ,

in
o p z = (i n t i) i n t : i , m o d e z = i n t ;

z i ¢ f o r m u l a or dec lara t ion? ¢ ; sk ip ,
and in

op ? = (union (tel real, char) a) int : I, op ? = (real a) int : 2;
? loc real ¢ l o r 2 7 ¢ .

In such cases a test is made that the two 'QUALITY's are independent
(rules c, d). A "MOLD TALLY' is never independent of any "QUALITY'
(rule d). A 'MONO' is always independent of a 'DUO' (rules d, e, f) and
both are independent of a "DYADIC' (i.e., of a 'priori ty PRIO') (rules d, g,
h). In the case of two 'PRAM's which are both 'MONO' or both "DUO',
ambiguities could arise if the corresponding pa ramete r modes were
"firmly related", i.e., if some (pair of) operand mode(s) could be firmly
coerced to the (pair of) pa ramete r mode(s) of either 'PRAM' (rules i, j).
In the example with the two definitions of 7, the two 'PRAM's are related
since the modes specified by union (ref real, char) and by real are firmly
related, the mode specified by ref real being firmly coercible to either one.

It may be shown that two modes are firmly related if one of them, or
some component "MOOD' of one of them, may be firmly coerced to the

ALGOL 68 Revised Report 101

other (rules k, 1), which requires a sequence of zero or more meek
coercions followed by at most one uniting (6.4.1.a). The possibility or
otherwise of such a sequence of coercions between two modes is
determined by the predicate 'is f i rm' (rules m, n).

A "PROPI" also renders inaccessible a 'PROP2" in an outer 'LAYER' if
that 'PROP2' is not independent of 'PROPI ' ; e.g.,

begin int x;
begin real x; ¢ here the ' PROPI ' is ' reference to real letter x ' ¢

skip
e n d

e n d
and likewise

beg in op ? = (int i) int : 1, int k : = 2;
beg in op ? = (ref int i) int " 3;

? k ¢ de l ivers 3, bu t ? 4 could no t occur here because i ts
operator is i nacces s ib l e ¢

end
end .}

7.2. Identification in nests

{This section ensures that for each applied-indicator
corresponding property in some suitable "I,AYER' of the nest.}

7.2.1. Syntax

a)

b)

c)

there is a

{PROPSETY :: PROPS ; EMPTY.
PROPS :: PROP ; PROPS PROP.
PROP :: DEC ; LAB ; FIELD.
QUALITY :: MODE ; MOlD TALLY ; DYADIC ; label ; MODE field.
TAX :: TAG ; TAB ; TAD ; TAM.]

WHETHER PROP identified in NEST new PROPSETY{a,48b,542a} :
where PROP resides in PROPSETY{b,c,-}, WHETHER true ;
where PROP independent PROPSETY{71a,b,e},

WHETHER PROP identified in NEST[a,-}.

WHETHER PROPI resides in PROPS2 PROP2{a,b,48d} :
WHETHER PROPI resides in PROP2{c,-}

or PROPI resides in PROPS2{b,e,-}.
WHETHER QUALITYI TAX resides in QUALITY2 TAX{a,b,48d} :

where (QUALITYI) is (label) or (QUALITYI) is (DYADIC)
or (QUALITYI) is (MODE field),

WHETHER (QUALITYI) is (QUALITY2) ;
where (QUALITYI) is (MOIDI TALLETY)

and (QUALITY2) is (MOLD2 TALLETY),
WHETHER MOIDI equivalent MOID2{73a].

102 van Wijngaarden, et at.

{A nest, except the pr imal one (which is jus t 'new') , is some 'NEST
LAYER' (i.e., some 'NEST new PROPSETY'). A 'PROP' is identified by
first looking for it in that 'LAYER' (rule a). If the 'PROP' is some "label
TAX' or 'DYADIC TAX', then a s imple ma tch of the 'PROP's is a sufficient
test (rule e). If the "PROP" is some 'MOLD TALLETY TAX', then the mode
equivaleneing mechan i sm mus t be invoked (rule c). If it is not found in
the 'LAYER', then the search continues with the "NEST' (without that
'LAYER'), provided that it is independent of all 'PROP's in that 'LAYER';
otherwise the search is abandoned (rule a). Note that rules b and c do
double duty in that they are also used to check the validity of applied-field-
selectors (4.8.1.d) .}

7.2.2. Semant ics
a) If some NEST-range R {3.0.I.f} contains an applied-indicator I

{4.8.1.b} of which there is a descendent where-PROP-identified-in-NEST-
LAYER, but no descendent where-PROP-identified-in-NEST, then R is the
"defining range" of that I. {Note that "NEST' is a lways the nest in force
just outside the range.}

b) A QUALITY-applied-indicator-with-TAX I whose defining NEST-
range {a} is R "identifies" the QUALITY-NEST-LAYER-defining-indicator-
with-TAX contained in R.

{For example , in
(¢1¢ real i = 2.0; (¢2¢ int i = 1; (¢3¢ real x; p r i n t (i) ¢3¢) ¢2¢) ¢1¢)

there are three ranges. The applied-identifier i in p r i n t (i) is forced, by the
syntax, to be an integral-NEST-new-real-letter-i-new-integral-letter-i-new-
referenee-to-real-letter-x-applied-identifier-with-letter-i (4.8.1.b). Its
defining range is the NEST-new-real-letter-i-serial-clause-defining-new-
integral-letter-i (3.2.1.a) numbered ¢2¢, it identifies the defining-identifier i
contained in int i (not the one in real i), and its mode is ' integral ' .}

{By a s imi lar mechan ism, a DYADiC-formula (5.4.2.1.a) m a y be said to
"identify" that DYADiC-defining-operator (4.8.1.a) which de te rmines its
priority.}

c) The environ E "necessary for" a construct C in an environ E1 is
determined as follows:
If E1 is the pr imal environ {2.2.2.a},
then E is El;
otherwise, letting E1 be composed of a locale L corresponding to some

'PROPSETY" and another environ E2,
If C contains any QUALiTY-applied-indicator-with-TAX

• which does not identify {b} a defining.indicator contained in C,
• which is not a mode-indication direct ly descended f rom a formal-
or vir tual-declarer , and
• which is such that the predicate 'where QUALITY TAX resides in
PROPSETY' {7.2.1.b} holds,

then E is El:

ALGOL 68 Revised Report 103

otherwise, {L is not necessary for C and} E is the environ necessary for
C in E2.

{The environ necessary for a construct is used in the semant ics of
r o u t i n e - t e x t s (5.4.1.2) and in "establishing" (3.2.2.b). For example , in

¢2¢ proc void pp; int n; (¢I¢ proc p = void : p r i n t (n); pp := p)
if E1 and E2 are the environs establ ished by the elaborat ion of the serial-
clauses ma rked by the c o m m e n t s ¢I¢ and ¢2¢, then E2 is the environ
necessary in E1 for the routine. text void: p r i n t (n), and so the routine
yielded by p in E1 is composed of that routine-text together with E2
(5.4.1.2). Therefore, the scope of that routine is the scope of E2 (2.1.3.5.c)
and hence the ass ignment (5.2.1.2.b) invoked by pp := p is well defined.}

I ' s t r u c t u r e d with"

I I J
' integral" 'field" ' l e t t er i'

7.3. Equivalence of modes

{The equivalence or nonequivalence of 'MOlD's is de te rmined in this
section. For a discussion of equivalent 'MOlD's see 2.1.1.2.}

{One way of viewing recurs ive modes is to consider them as infinite
trees. Such a "mode tree" is obtained by repeatedly substituting in some
spelling, for each 'MU applicat ion ' , the 'MODE' of the corresponding 'MU
def in i t i on of MODE'. Thus, the spelling 'mui de f in i t i on of s t r u c t u r e d with
integral field letter i re ference to m u i a p p l i c a t i o n field let ter n m o d e '
would give rise to the following mode tree: I I ' 'mode '

I "structured with"

I [I
"integral ' 'field" "letter i'

I I
"field" "letter n'

I ' r e fe rence to"

I ' 'mode '

'field" "letter n'

I
' r e fe rence to" I

(et cetera).

Two spellings are equivalent if and only if they give rise to identical mode
trees. The equivalence syntax tests the equivalence of two spellings by, as
it were, s imultaneously developing the two t rees until a difference is found
(resulting in a blind alley) or until it becomes appa ren t that no difference
can be found. The growing production tree reflects to some extent the
s t ructure of the mode trees.}

7.3.1. Syntax

A) SAFE :: safe ; MU has MODE SAFE ; yin SAFE ; yang SAFE ;
r e m e m b e r MOIDI MOLD2 SAFE.

104

B)

C)

D)
E)
a)

b)

c)

d)

e)

f)

van Wijngaarden, et al.

HEAD :: PLAIN ; PREF{71A} ; s t r u c t u r e d with ;
FLEXETY ROWS of ; p r o c e d u r e wi th ; union of ; void.

TAILETY :: MOlD ; FIELDS m o d e ; PARAMETERS y i e l d i n g MOlD ;
MOODS m o d e ; EMPTY.

PARTS :: PART ; PARTS PART.
PART :: FIELD ; PARAMETER.

WHETHER MOIDI equivalent MOID2{64b,71m,72c} :
WHETHER safe MOIDI equivalent sa fe MOII)2{b}.

WHETHER SAFEI MOIDI e q u i v a l e n t SAFE2 MOID2{a,b,e, i , j ,n} :
where (SAFEI) contains (remember MOIDI MOLD2)

or (SAFE2) con ta in s (remember MOLD2 MOIDI) ,
WHETHER true ;

unless (SAFEI) contains (remember MOIDI MOLD2)
or (SAFE2) con ta in s (remember MOLD2 MOiDI) ,

WHETHER (HEAD3) is (HEAD4)
and r e m e m b e r MOIDI MOLD2 SAFE3 TAILETY3
equivalent SAFE4 TAILETY4{b,d,e,k,q,-},

w h e r e SAFE3 HEAD3 TAILETY3 develops from
SAFEI MOIDI{c}
and SAFE4 HEAD4 TAILETY4 develops from
SAFE2 MOID2{c}.

WHETHER SAFE2 HEAD TAILETY develops f rom
SAFEI MOID{b,e} :

w h e r e (MOLD) is (HEAD TAILETY),
WHETHER (HEAD) sh ie lds SAFEI to S A F E 2 { 7 4 a , b , e , d , - } ;

w h e r e (MOLD) is (MU def in i t ion of MODE),
unless (SAFEI) contains (MU has),
WHETHER SAFE2 HEAD TAILETY d e v e l o p s f rom
MU h a s MODE SAFEI MODE{c} ;

w h e r e (MOLD) is (MU application)
and (SAFEI) is (NOTION MU has MODE SAFE3)
and (NOTION) contains (yin) and (NOTION) contains (yang),

WHETHER SAFE2 HEAD TAILETY develops f rom
SAFEI MODE{e}.

WHETHER SAFEI FIELDSI m o d e
equivalent SAFE2 FIELDS2 mode{b} :

WHETHER SAFEI FIELDSI equivalent SAFE2 FIELDS2{f,g,h,i}.
WHETHER SAFEI PARAMETERSI y i e l d i n g MOLD!

e q u i v a l e n t SAFE2 PARAMETERS2 y i e l d i n g MOID2{b} :
WHETHER SAFEI PARAMETERSI

equivalent SAFE2 PARAMETERS2{f,g,h,j}
and SAFEI MOIDI e q u i v a l e n t SAFE2 MOII)2{b}.

WHETHER SAFE1 PARTSI PARTI
e q u i v a l e n t SAFE2 PARTS2 PART2{d,e,f} :

WHETHER SAFEI PARTSI e q u i v a l e n t SAFE2 PARTS2{f,g,h, i , j]
and SAFE1 PARTI e q u i v a l e n t SAFE2 PART2{i,j}.

g)

b)

i)

J)

k)

m)

n)

o)

p)

ALGOL 68 Revised Report

WHETHER SAFEI PARTSI PARTI e q u i v a l e n t
SAFE2 PART2{d,e,f} : WHETHER fa lse .

WHETHER SAFEI PARTI equivalent
SAFE2 PARTS2 PART2{d,e,f} : WHETHER fa lse .

WHETHER SAFEI MODEl f ie ld TAGI
e q u i v a l e n t SAFE2 MODE2 f ield TAG2{d,f} :

WHETHER (TAGI) is (TAG2)
and SAFEI MODEl equivalent SAFE2 MOI)E2{b}.

WHETHER SAFEI MODEl parameter
equivalent SAFE2 MODE2 parameter{e,f} :

WHETHER SAFEI MODEl equivalent SAFE2 MODE2{b}.

WHETHER SAFEI MOODS1 m o d e equivalent
SAFE2 MOODS2 mode{b} :

WHETHER SAFEI MOODSI s u b s e t of SAFE2 MOOI)S2{I,m,n}
and SAFE2 MOODS2 s u b s e t of SAFEI MOOI)SI{l ,m,n}
and MOODSI number equals MOOI)S2 number{o,p}.

WHETHER SAFEI MOODSI MOODI
subse t of SAFE2 MOODS2{k,l,46s,64b} :

WHETHER SAFEI MOODSI s u b s e t of SAFE2 MOODS2{1,m,n}
and SAFEI MOODI s u b s e t of SAFE2 MOODS2{m,n}.

WHETHER SAFEI MOODI
s u b s e t of SAFE2 MOODS2 MOOD2{k,l,m,46s,64b} :

WHETHER SAFEI MOODI subse t of SAFE2 MOODS2{m,n}
or SAFEI MOODI s u b s e t of SAFE2 MOOD2{n}.

WHETHER SAFEI MOODI s u b s e t of SAFE2 MOOD2{k,l,m,64b} :
WHETHER SAFEI MOODI equivalent SAFE2 MOOD2{b}.

WHETHER MOODSI MOODI n u m b e r equals
MOODS2 MOOD2 number{k,o} :

WHETHER MOODSI number equals MOODS2 number{o,p,-}.
WHETHER MOODI number equals MOOD2 number{k,o} :

WHETHER true .

q) WHETHER SAFEI EMPTY e q u i v a l e n t SAFE2 EMPTY{b} :
WHETHER true .

{Rule a i n t roduc es the "SAFE's which a r e used as a s s o c i a t i v e m e m o r i e s
du r ing the d e t e r m i n a t i o n of equ iva l ence . T h e r e a r e two of t hem, one
be long ing to each mode . Rule b d r a w s an i m m e d i a t e conc lus ion if the
'MOlD ' s u n d e r c o n s i d e r a t i o n a r e a l r e a d y r e m e m b e r e d (see below) in an
a p p r o p r i a t e 'SAFE' in the fo rm ' r e m e m b e r MOIDI MOLD2". I f th is is not
the case , then the two 'MOlD ' s a r e f i r s t r e m e m b e r e d in a 'SAFE" (the one
on the left) and then each "MOLD" is d e v e l o p e d (rule c) and sp l i t into i ts
"HEAD' and its 'TAILETY' , e .g. , ' r e f e r e n c e to r e a l ' is sp l i t into r e f e r e n c e
to" and ' r e a l ' .

if the 'HEAD's dif fer , then the m a t t e r is s e t t l ed (rule b): o t h e r w i s e the
'TAILETY's a r e a n a l y z e d a c c o r d i n g to t he i r s t r u c t u r e (which m u s t be the
s a m e if the "HEAD's a r e i den t i ca l) . In e a c h case , e x c e p t w h e r e the

105

106 van Wijngaarden, et al.

'HEAD's were 'union of', the equivalence is determined by examining the
corresponding components, according to the following scheme:

rule 'TAll,ETY' components

d 'FIELDS mode" 'FIEI,I)S'
e "PARAMETERS yielding MOll)" 'PARAME'I'I.:I{~" and "MOll)"
f 'FIELDS FIEI,I)' 'FIEI,I)S" and "I,'IEI,I)'
f 'PARAMETERS PARAMETER" 'PARAMETERS" and "PARAMETER'
i 'MODE field TAG' 'MOI)E" and "TA(;"
j 'MODE parameter' 'MODE"

In the case of unions, the "TAILETY's are of the form 'MOOI)SI mode ' and
'MOODS2 mode' . Since 'MOOD's within equivalent unions may commute.
as in the modes specified by union (real, int) and union (int, real), the
equivalence is determined by checking that "MOOI)SI' is a subset of
"MOOI)S2' and that 'MOODS2' is a subset of 'MOOI)SI', where the subset
test, of course, invokes the equivalence test recursively (rules k,l,m,n,o,p).

A 'MOLD' is developed (rule c) into the form "HEAD TAII,EI"~' by
determining that
(i) it is already of that form: in which case markers ('yin' and 'yang ')
may be placed in its 'SAFE' for the later determination of well-formedness
(see 7.4) :
(if) it is some 'MU definition of MODE': in which case "MU has MOI)E' is
stored in its 'SAFE' (provided that this part icular "MU" is not there
already) and the "MOI)E' is developed:
(iii) it is some 'MU application': in which case there must be some 'MII
has MODE' in its 'SAFE' already. That 'MODE" is then developed after a
well-formedness check (see 7.4) consisting of the determination that there
is at least one 'yin" and at least one "yang' in the 'SAFE" which is more
recent than the "MU has MODE'.}

{Before a pair of 'TAILETY's is tested for equivalence, it is
remembered in the 'SAFE" that the original pair of "MOII)'s is being tested.
This is used to force a shortcut to "WHETHER true" if these 'MOlD's
should ever be tested again for equivalence lower down the production
tree. Since the number of pairs of component 'MOlD's that can be derived
from any two given 'MOlD's is finite, it follows that the testing process
terminates.

It remains to be shown that the process is correct. Consider the
unrestricted (possibly infinite) production tree that would be obtained if
there were no shortcut in the syntax (by omitting the first al ternative
together with the first member of the other alternative of rule b). If two
'MOlD's are not equivalent, then there exists in their mode trees a
shortest path from the top node to some node exhibiting a difference.
Obviously, the reflection of this shortest path in the unrestricted
production tree cannot contain a repeated test for the equivalence of any
pair of 'MOlD's, and therefore none of the shortcuts to "WHETHER true" in

ALGOL 68 Revised Report 107

the restricted production tree can occur on this shortest path.
Consequently, the path to the difference must be present also in the
(restricted) production tree produced by the syntax. If the testing process
does not exhibit a difference in the restricted tree, then no difference can
be found in any number of steps; i.e., the "MOll)'s are equivalent.}

7.4. Well-formedness
{A mode is well formed if

(i) the elaboration of an actual-declarer specifying that mode is a finite
action (i.e., any value of that mode can be stored in a finite memory)
and

(if) it is not strongly coercible from itself (since this would lead to
ambiguities in coercion).}

7.4.1. Syntax
a) WHETHER (NOTION) shields SAFE to SAFE{73c} :

where (NOTION) is (PLAIN)
or (NOTION) is (FLEXETY ROWS of)
or (NOTION) is (union of) or (NOTION) is (void),

WHETHER true.
b) WHETHER (PREF) shields SAFE to yin SAFE{73e} : WHETHER true.
e) WHETHER (structured with) shields SAFE to yang SAFE{73c} :

WHETHER true.
d) WHETHER (procedure with) shields SAFE to yin yang SAFE{73c} :

WHETHER true.
[As a by-product of mode equivalencing, modes are tested for. well-

formedness (7.3.1.c). All nonrecursive modes are well formed. For
recursive modes, it is necessary that each cycle in each spelling of that
mode (from 'MU definition of MODE" to "MU application') passes through
at least one "HEAD' which is yin, ensuring condition (i) and one (possibly
the same) 'HEAD" which is yang, ensuring condition (if). Yin 'HEAD's are
"PREF' and 'procedure with'. Yang "HEAD's are ' s t ructured with' and
'procedure with'. The other 'HEAD's, including "FLEXETY ROWS of" and
'union of', are neither yin nor yang. This means that the modes specified
by a, b and c in

m o d e a = s t r u c t (int n, r o l e nex t) , b = s t r u c t (p roc b nex t) , c = p r o c (c) c
are all well formed. However, m o d e d = [1 : 10] d, e = union (int, e) is not
a mode-declaration.} {TaD produced the one.

The one produced the two.
The two produced the three.
And the three produced the ten thousand
things.
The ten thousand things carry the yin and
embrace the yang, and through the
blending of the material force they achieve
harmony.
Tao-te Ching, 42, Lao Tzu.}

108 van Wijngaarden, et al.

PART IV

Elaborat ion-independent constructions

8. Denotations
{Denotations, e.g., 3.14 or "abc", are constructs whose Yields are

independent of any action. In other languages, they are somet imes t e rmed
"literals" or "constants".}

8.0.1. Syntax
a) MOlD NEST denoter{SD,A341i} : pragment{92a} sequence option,

MOlD denotation{810a,811a,g12a,813a,814a,815a,82a,b,c,83a,-}.

{The meaning of a denotation is independent of any nest.}

8.1. Plain denotations

{Plain-denotations a re those of a r i thmet ic values, truth
charac te r s and the void value, e.g., 1, 3.14, true, "a" and empty.}

8.1.0.1. Syntax
A) SIZE :: long ; short.
B) *NUMERAL :: fixed point numera l ; var iab le point numera l

floating point numera l .

a) SIZE INTHEAL denotation{a,80a} ..
SIZE symbol{94d}, INTREAL denotation{a,811a,812a}.

b) *plain denotation : PLAIN denotation{a,811a,812a,813a,814a}
void denotation{815a}.

{Example:
a) long 0 }

values,

8.1.0.2. Semant ics
The yield W of an INTREAL-denotation is the "intrinsic value" {8.1.1.2,

8.1.2.2.a,b} of its consti tuent NUMERAL;
• it is required that W be not g rea t e r than the la rges t value of mode
'INTREAL' that can be distinguished {2.1.3.1.d}.

{An INTREAL-denotation y ie lds an a r i thmet ic value {2.1.3A.a}, but
ar i thmet ic values yielded by different INTREAL-denotations a re not
necessar i ly different (e.g., 123.4 and 1.234~o+2). }

8.1.1. Integral denotations

8.1.1.1. Syntax

a) integral denotation{80a,810a} : fixed point numeral{b}.
b) fixed point numeral{a,812c,d,f,i,A341h} : digit cypher{e} sequence.
c) digit cypher{b} : DIGIT symbol{94b},

{Examples:

a) 4096
c) 4}

ALGOL 68 Revised Report

b) 4096

109

8.1.1.2. Semant ics

The intrinsic value of a f ixed.point-numeral N is the integer of which
the reference- language form of N {9.3.b} is a dec imal representat ion.

8.1.2. Real denotations

8.1.2.1.

a)

b)

c)
d)
e)
f)

g)
h)

i)
J)

{Examples:

a) 0.00123 • 1.23e-3
c) 0
e) 1.23e-3
g) e -3
i) -3

Syntax

real denotation{80a,810a} :
var iable point numeral{b} ; floating point numeral{e}.

var iable point numeral{a,f} :
integral part{c} option, fract ional part{d}.

integral part[b} : fixed point numeral{811b}.
fractional part{b} : point symbol{94b}, fixed point numerai{811b}.
floating point numeral{a} : s tagnant part{f}, exponent part{g}.
s tagnant part{e} :

fixed point numeral{811b} ; var iable point numeral{b}.
exponent part{e} : t imes ten to the power choice{h}, power of ten{i}.
t imes ten to the power choice{g} :

t imes ten to the power symbol{94b} ; let ter c symbol{94a}.
power of ten{g} : plusminus{j} option, fixed point numeral{811b}.
plusminus{i} : plus symbol{94c} ; minus symbol{94c}.

b) 0.00123
d) .00123
f) 123 • 1.23
h) x o • e
j) + • - }

8.1.2.2. Semant ics

a) The intrinsic value V of a var iable-point -numeral N is de te rmined
as follows:
• let I be the intrinsic value of the f ixed-point-numeral of its consti tuent
integral-part , if any, and be 0 otherwise:
• let F be the intrinsic value of the f ixed-point-numeral of its fractional-
par t P divided by 10 as m a n y t imes as there are digi t-cyphers contained in
P;
• V is the sum in the sense of numer ica l analysis of I and F.

b) The intrinsic value Y of a f loat ing-point-numeral N is de termined as
follows:

110 van Wijngaarden, et al.

• let S be the intrinsic value of the NUMERAL of its s tagnant-part :
• let E be the intrinsic value of the constituent fixed-point-numeral of its
exponent-part;
Case A: The constituent plusminus-option of N contains a minus-symbol:

• V is the product in the sense of numerical analysis of S and 1/10
raised to the power E;

Case B: The direct descendent of that plusminus-option contains a plus-
symbol or is empty:
• Y is the product in the sense of numerical analysis of S and 10
raised to the power E.

8.1.3. Boolean denotations

8.1.3.1. Syntax
a) boolean denotation{8Oa} : true{94b} symbol ; false{94b} symbol.

{Examples:
a) true • false }

8.1.3.2. Semantics

The yield of a boolean-denotation is true (false) if its direct descendent
is a true-symbol (false-symbol).

8.1.4. Character denotations

{Character-denotations consist of a string-item between two quote-
symbols, e.g., "a". To indicate a quote, a quote-image-symbol (represented
by) is used, e.g., ' Since the syntax nowhere allows character- or
string-denotations to follow one another, this causes no ambiguity.}

8.1.4.1. Syntax

a) charac ter denotation{80a} ..
quote{94b} symbol, string item{b}, quote symbol{94b}.

b) string item{a,83b} : charac te r glyph{e} ; quote image symbol{94b} ;
other string item{d}.

c) character glyph{b,92c} : LETTER symbol{94a} ;
DIGIT symbol{94b} ; point symbol{94b} ; open symbol{94f} ;
close symbol{94f} ; c o m m a symbol{94b} ; space symbol{94b} ;
plus symbol{94c} ; minus symbol{94c}.

d) A production rule may be added for the notion 'other string i tem'
{b, for which no tiyper-rule is given in this Report} each of whose
alternatives is a symbol {l.l.3.1.f} which is different from any
terminal production of ' charac te r glyph" {c} and which is not
'quote symbol ' .

{Examples:

a) "a" b) a • • ?
C) a o l O . o (o) o , o o + o - }

ALGOL 68 Revised Report I l l

8.1.4.2. Semantics
a) The yield of a character-denotat ion is the intrinsic value of the

symbol descended from its string-item.

b) The intrinsic value of each distinct symbol descended from a string-
item is a unique character . {Characters have no inherent meaning, except ,
insofar as some of them are interpreted in part icular ways by the transput
declarations (10.3). The character-glyphs, which include all the charac ters
needed for transput, form a minimum set which all implementations
(2.2.2.c) are expected to provide.}

8.1.5. Void denotation

{A void-denotation may be used to assign a void value to a UNITED-
variable, e.g., union ([}real, void) u := empty.}

8.1.5.1. Syntax
a) void denotation{80a} : empty{94b} symbol.

[Example:
a) empty }

8.1.5.2. Semantics

The yield of a void-denotation is empty.

8.2. Bits denotations

8.2.1. Syntax

A) RADIX :: radix two ; radix four ; radix eight ; radix sixteen.

a) structured with row of boolean field
I,ENGTH LENGTHETY letter aleph mode denotation{a,80a} :

long{94d} symbol, s tructured with row of boolean field
I,ENGTHETY letter aleph mode denotation {a,c}.

b) structured with row of boolean field
SHORTH Stl()RTHETY letter aleph mode denotation{b,80a} :
short{94d} symbol, s tructured with row of boolean field
SHORTllE'I'~ letter aleph mode denotation{b,c}.

c) structured with row of boolean field
letter aleph mode denotation{a,b,80a} :

RAI)lX{d,e,f,g}, letter r symbol{94a}, RAI)IX digit{h,i,j,k} sequence.
d) radix two{c,A347b} : digit two{94b} symbol.
e) radix four{c,A347b} : digit four{94b} symbol.
f) radix eight{c,A347b} : digit eight{94b} symbol.
g) radix sixteen{c,A347b} : digit one symbol{94b}, digit six symbol{94b}.
h) radix two digit{e,i} : digit zero symbol{94b} ; digit one symbol{94b}.
i) radix four digit{c,j} : radix two digit{h} ; digit two symbol{94b} ;

digit three symbol{94b}.

112 van Wijngaarden, et al.

m)

{Examples:
a) long 2r101
c) 8r231 }

j) radix eight digit{c,k} : radix four digit{i} ; digit four symbol{94b} ;
digit five symbol{94b} ; digit six symbol{94b} ;
digit seven symbol{94b}.

k) radix sixteen digit{c} : radix eight digit{j} ; digit e ight symbol{94b} ;
digit nine symbol{94b} ; le t ter a symbol{94a} ;
letter b symbol{94a} ; le t ter c symbol{94a} ; le t ter d symbol{94a} ;
le t ter e symboi{94a} ; le t ter f symbol{94a}.

l) * bits denota t ion : BITS denotation{a,b,c}.
{BITS :: s t ruc tu red with

row of boolean field SITHET~ let ter a leph mode.}
• radix digit : RADIX digit{h,i,j,k}.

b) short 16rffff

8.2.2. Semant ics

a) The yield V of a bi ts-denotat ion D is d e t e r m i n e d as follows:
• let W be the intrinsic boolean value {b} of its const i tuent RADIX-digit-
sequence:
• let m be the length of W;
• let n be the value of L bits width {10.2.1.j}, where L s tands for as m a n y
t imes long (short) as there a re long-symbols (shor t -symbols) conta ined in
D;
• it is required that m be not g r e a t e r than n:
• Y is a s t ruc tu red value {whose mode is some "BITS'} whose only field is
a mult iple value hav ing
(i) a descr ip tor ((1, n)) and
(ii) n e lements , tha t selected by (i) being false if 1 s_ i s_ n - m, and being
the (i + m - n)-th t ru th value of {the sequence} W otherwise .

b) The intrinsic boolean value of a RAI)lX-digi t -sequence $ is the
shor tes t sequence of t ru th values which, r e g a r d e d as a b ina ry n u m b e r
(true cor respond ing to 1 and false to 0), is the s a m e as the intr insic
in tegral value (c} of S.

c) The intrinsic in tegra l value of a radix-two- (radix-four-.
radix-eight-, radix-sixteen-) -digi t -sequence S is the in teger of which the
r e fe rence - l anguage form of S {9.3.b} is a b inary , (qua te rna ry , octal.
hexadec imal) representa t ion , where the r ep resen ta t ions a. b, c, d, e and f,
considered as digits, have values 10, 11, 12, 13, 14 and 15 respect ively .

8.3. Str ing denotat ions

{String-denotations a re a convenient wa y of speci fy ing "str ings", i.e.,
mult iple values of mode "row of character'.
Example :

string message := "all is well" }

8.3.1. Syntax

a)

b)
c)

{Examples:

a) "abc"

ALGOL 68 Revised Report

row of character denotation{80a} :
quote{94b} symbol, string{b} option, quote symboi{94b}.

string{a} : string item{814b}, string item{814b} sequence.

string denotation : row of character denotation{a}.

b) abc }

113

6.3.2. Semant ics

The yield of a s t r ing-denota t ion D is a mul t iple value V de t e rmined as
follows:
• let n be the n u m b e r of s t r ing- i tems conta ined in D;
• the desc r ip to r of V is ((1, n));
• for i = 1 n, the e l emen t of V with index (i) is the intr insic value
{8.1.4.2.b} of the i-th const i tuent symbo l of the s t r ing of D.

{"a" is a character-denotation, not a s t r ing-denota t ion. However , in all
s t rong positions, e.g., string s := "a", it can be rowed to a mult iple value
(6.6). E lsewhere , where a mul t iple value is requi red , a ca s t (5.5.1.1.a)
m a y be used, e.g., union (char, string) cs := string ("a").}

9. Tokens and symbols

9.1. Tokens

{Tokens (9.1.l.f) a re symbols (9.1.1.h) possibly p receded by pragments
(9.2.1.a). Therefore , p r a g m e n t s m a y a p p e a r be tween s y mb o l s w h e r e v e r
the syn tax p roduces a success ion of tokens. However , in a few places, the
syn tax specif ical ly p roduces symbo l s r a t h e r than tokens, no tab ly within
denotations (8), format.texts (10.3.4.1.1.a) and, of course, within
pragments. Therefore, pragments m a y not occur in these places.}

9.1.1. Syntax

a) CHOICE STYLE start{34a} :
where (CHOICE) is (choice using boolean),

STYLE if{94f,-} token ;
where (CHOICE) is (CASE), STYLE case{94f,-} token.

b) CHOICE STYLE in{34e} :
where (CHOICE) is (choice using boolean),

STYLE then{94f,-} token ;
where (CHOICE) is (CASE), STYLE in{94f,-} token.

c) CHOICE STYLE again{341} :
where (CHOICE) is (choice using boolean), "

STYLE else if{94f,-} token ;
where (CHOICE) is (CASE), STYLE ouse{94f,-} token.

114

d)

e)

f)

g)
h)

van Wijngaarden, et al.

CHOICE STYLE out{341} :
where (CHOICE) is (choice using boolean) ,

STYLE else{94f,-} token ;
where (CHOICE) is (CASE), STYLE out{94f,-} token.

CHOICE STYLE finish{34a} :
where (CHOICE) is (choice using boolean),

STYLE fi{94f,-} token ;
where (CHOICE) is (CASE), STYLE esac{94f,-} token.

NOTION token : pragment{92a} sequence option,
NOTION symbol{94a,b,c,d,e, f,g,h}.

* token : NOTION token{f}.
* symbol : NOTION symbol{94a,b,c,d,e,f,g,h}.

9.2. Comments and pragmats

{A source of innocent merriment.
Mikado, W.S.Gilbert.}

{A pragment is a comment or a pragmat . No semantics of pragments
is given and therefore the meaning (2.1.4.1.a) of any program is quite
unaffected by their presence. It is indeed the intention that comments
should be entirely ignored by the implementation, their sole purpose being
the enlightenment of the human interpreter of the program.

Pragmats may, on the other hand, convey to the implementation some
piece of information affecting some aspect of the meaning of the program
which is not defined by this Report, for example:

• the action to be taken upon overflow (2.1.4.3.h) or if the scope
rule is violated (as in 5.2.1.2.b), e.g., p r o v e r f l o w check onpr ,
pr over f low check o f f pr. pr scope check on pr or pr scope check o f f pr:
• the action to be taken upon completion of the compilation
process, e.g., pr compi le on ly pr, pr d u m p pr or pr run pr:
• that the language to be implemented is some sublanguage or
superlanguage of ALGOL 68, e.g., p r n o n r e c p r (for a routine-text
which may be presumed to be non-recursive):
• that the compilation may check for the truth, or a t tempt to prove
the correctness, of some assertion, e.g.:
int a, b; read((a, b)) pr asser t a >_0 ^ b > O pr;
i n t q : = O , r : = a ;
w h i l e r >_ b p r a s s e r t a = b x q + r a 0 <_ r pr
d o (q + : = 1, r - : = b) od
p r a s s e r t a = b x q + r ^ 0 <_r ^ r < b p r .

They may also be used to convey to the implementation that the source
text is to be augmented with some other text, or edited in some way, for
example:

ALGOL 68 Revised Report 115

• some previously compiled portion of the par t icular-program is to
be invoked, e.g., pr with s e g m e n t from a l b u m pr:
• the source text is continued on some other document, e.g., p r r e a d
f r o m ano ther f i le pr;
• the end of the source text has been reached, e.g., pr f in i shpr .

The interpretation of pragmats is not defined in this Report, but is left to
the discretion of the implementer, who ought, at least, to provide some
means whereby all further pragmats may be ignored, for example:

pr p r a g m a t s o f f pr.}

{pr algol 68 pr
begin
p r o c p r nonrec p r p r =,void: pr;
p r

end
p r r u n p r p r ? p r
Revised Report on the Algorithmic

Language ALGOL 68.}

9.2.1. Syntax

A)

a)
b)

c)

d)

PRAGMENT :: p ragmat ; c o m m e n t .

pragment{80a,91f,A341b,h,A348a,b,c,A349a,A34Ab} : PRAGMENT{b}.
PRAGMENT{a} : STYLE PRAGMENT symbol{94h,-},

STYLE PRAGMENT i tem{c} s e q u e n c e option,
STYLE PRAGMENT symbol{94h,-}.

{STYLE :: brief ; bold ; style TALLY.}
STYLE PRAGMENT item{b} : charac ter glyph{814c} ;

STYLE other PRAGMENT item{d}.

A production rule may be added for each notion designated by
'STYLE other PRAGMENT item' {c, for which no hyper-rule is
given in this Report} each of whose alternatives is a symbol
{1.1.3.1.f}. different from any terminal production of ' charac te r
glyph" {8.1.4.1.c}, and such that no terminal production of any
"STYLE other PRAGMENT item" is the corresponding "STYI,E
PRAGMENT symbol ' . {Thus c o m m e n t ¢ c o m m e n t might be a
c o m m e n t , but ¢ ¢ ¢ could not.}

{Examples:

a) pr l ist pr • ¢ source p r o g r a m to be l is ted ¢
c) l • ?)

9.3. Representations

a) A construct in the strict language must be represented i ~ some
"representation language" such as the "reference language", which is used
in this Report. Other representation languages specially suited to the

116 van Wijngaarden, et al.

supposed preference of some human or mechanica l in te rpre te r of I the
language m a y be t e rmed "publication" or "hardware" languages. {The
reference language is intended to be used for the representa t ion of
particular-programs and of their descendents. It is, however, also used in
Chapter 10 for the definition of the s tandard environment.}

b) A "construct in a representa t ion language" is obtained f rom the
terminal production T {1.1.3.2.f} of the corresponding construct in the str ict
language {1.1.3.2.e} by replacing the symbols in T by their representat ions ,
as specified in 9.4 below in the case of the reference language.

{Thus, the s t r ic t - language pa r t i cu l a r -p rog ram whose te rmina l
production is

"bold begin symbol" 'skip symbol ' 'bold end symbol"
gives rise to the reference language particular-program

begin skip end .}

c) An implementa t ion {2.2.2.c} of ALGOL 68 which uses
representat ions which are sufficiently close to those of the reference
language to be recognized without fur ther elucidation, and which does not
augment or res t r ic t the avai lable representa t ions other than as provided
for below {9.4.a,b,c}, is an " implementa t ion of the reference language".

{E.g., begin, begin, BEGIN, I'begin and 'begin' could all be
representat ions of the bold-begin.symbol in an implementa t ion of the
reference language; some combinat ion of holes in a punched card might
be a representat ion of it in some ha rdware language.}

9.4. The reference language

a) The reference language provides representa t ions for various
symbols , including an a rb i t ra r i ly large num ber of TAX-symbols {where
TAX :: TAG ; TAB ; TAD ; TAM.}. The representa t ions of some of them
are specified below {9.4.1}, and to these m a y be added suitable
representa t ions for style-TALLY.letter-ABC.symbols and style-TALLY-
monad-symbols and any te rminal productions of 'STYLE other PRAGMENT
i tem' {9.2.1.d} and of 'other string i t em ' {8.1.4.1.d}. Representa t ions are not
provided for any of these {but they enable individual implementa t ions to
make avai lable their full cha rac t e r sets for use as charac te rs , to provide
additional or extended a lphabets for the construction of TAG- and TAB-
symbols , and to provide additional symbols for use as operators}. There is
not, however, {and there mus t not be,} except in representa t ions of the
standard., and other, preludes {10.1.3.Step 6}, any representa t ion of the
le t ter .a leph-symbol or the pr imal . symbol . {For the remain ing TAX-
symbols , see 9.4.2. There are, however, some symbols produced by the
syntax, e.g., the br ie f -pragmat -symbol , for which no representa t ion is
provided at all. This does not preclude the representa t ion of such symbols
in other representa t ion languages.}

ALGOL 68 Revised Report l l7

b) Where more than one representa t ion of a symbol is given, any of
them m a y be chosen. Moreover, it is sufficient for an implementa t ion of
the reference language to provide only one. Also, it is not necessa ry to
provide a representat ion of any par t icu lar MONAD-symbol or NOMAD-
symbol so long as those that a re provided are sufficient to represent at .
least one version {10.1.3.Step 3} of each opera tor declared in the standard-
prelude.

{For certain different symbols , one s a m e or near ly the s a m e
representat ion is given; e.g., the representa t ion ":" is given for the routine-
symbol, the colon-symbol and the up-to-symbol and ":" for the label-
symbol. It follows uniquely f rom the syntax which of these four symbols is
represented by an occurrence, outside comments , p r a g m a t s and string-
denotations, of any m a r k s imi lar to ei ther of those representat ions. I t is
also the case that ".." could be used, without ambigui ty , for any of them,
and such might indeed be necessary in implementa t ions with limited
cha rac te r sets. It m a y be noted that, for such implementat ions , no
ambigui ty would be introduced were "(/" and "/)" to be used as
representat ions of the style-ii-sub-symbol and the style-i i .bus.symbol,
respectively.

Also, some of the given representa t ions a p p e a r to be composite:
e.g., the representat ion ":=" of the becomes-symbol ap p ea r s to consist of
":", the representat ion of the routine-symbol, etc., and "=", the
representat ion of the equals .symbol and of the is-defined-as-symbol. It
follows from the syntax that ":=" can occur, outside comments , p r a g m a t s
and string.denotations, as a representa t ion of the becomes-symbol only
(since "=" cannot occur as the representat ion of a monadic-operator).
Similarly, the other given composi te representa t ions do not cause
ambiguity.}

c) The fact that the representa t ions of the letter-ABC-symbols given
{9.4.1.a} are usually spoken of as small letters is not mean t to imply that
the corresponding capital letters could not serve equally well. {On the
other hand, if both a smal l let ter and the corresponding capital let ter
occur, then one of them is p re sumab ly the representa t ion of some style-
TALLY-letter-ABC-symbol or of a bold-lettcr-ABC-symbol. See also l . l .5.b
for the possibility of addi t ional "ABC's in a va r ian t of the language.}

d) A "typographical display feature" is a blank, or a change to a new
line or a new page. Such features, when they a p p e a r between the symbols
of a construct in the reference language, are of no significance and do not
affect the meaning of that construct. However, a blank contained within a
string- or character-denotation is one of the representa t ions of the space-
symbol {9.4.1.b} ra the r than a typographical display feature. Where the
representat ion of a symbol in the reference language is c o m p ~ e d of
several m a r k s {e.g., to, :=}, those m a r k s form one {indivisible} symbol and,
unless the cont ra ry is explicitly s tated {9.4.2.2.a,c}, typographical display
features m a y not separa te them.

118 van Wijngaarden, et al.

9.4.1. Representat ions of symbols

a) Let ter symbols

symbol representa! ion

letter a symbol{814c,82k,942B,A346b} a
letter b symbol[814c,82k,942B,A344b} b
letter e symbol{814e,82k,942B,A348a} c
letter d symbol{814c,82k,942B,A342f} d
letter e symbol{812h,814e,82k,942B,A343e} e
letter f symbol{814c,82k,942B.A349a} f
letter g symbol{814e,942B.A34~a} g

[

letter h symbol{814c,942B} h
letter i symbol{814c,942B,A345b} i
letter j symbol{814e,942B} j
letter k symbol{814c,942B,A341f} k
letter I symbol{814e,942B,A341f} l
letter m symbol{814e,942B} m
letter n symbol{814e,942B,A341h} n
letter o symbol{814c,942B} o
letter p symbol{814e,942B,A341f} p
letter q symbol{814c,942B,A341f} q
letter r symbol{814c,82c,942B,A347c} r
letter s symbol{814c,942B,A3411} s
letter t symbol{814c,942B} t
letter u symbol{814c,942B} u
letter v symbol{814e,942B} v
letter w symbol{814c,942B} w
letter x symboi{814c,942B,A341f} x
letter y symbol{814c,942B,A341f} y
letter z symbol{814e,942B,A342d} z

b) Denotation symbols

symbol rel)resenlation

zero symbol[81 le,814c,82h,942C} 0
one symbol{43b,81 le,814c,82g,h,942C} I
two symbol[43b,81 lc,814e,82d,i,942C} 2
three symbol(43b,81 lc,814c,82i,942C} 3
four symbol{43b,81 lc,814c,82e,j,942C} 4
five symbol{43b,81 lc,814e,82j,942C] 5
six symboi{43b,81 le,814e,82g,j,942C} 6
seven symbol{43b,81 lc,814e,82j,942C} 7
eight symbol{43b,81 le,814e,82f,k,942C} 8

9

i -xl

digit
digit
digit
digit
digit
digit
digit
digit
digit
digit nine symbol{43b,811e,S14c,82k,942C}
point symbol{812d,814c,A343d}
t imes ten to the power symbol{812h}

ALGOL 68 Revised Report

true symbol{8t3a}
false symbol{813a}
quote symbol{814a,83a}
quote image symbol{814b}
space symbol{814c}
c o m m a symbol{814c]
empty symbol{815a}

true
false
rt

empty

c) Opera tor symbols

symbol

or symbol{942H}
and symbol{942H}
a m p e r s a n d symbol{942H}
differs f rom symbol{942H}
is less than symbol{942I}
is at most symbol{942H}
is at least symbol{942H}
is g rea te r than symbol{942I}
divided by symbol{942I}
over symbol{942H}
percent symbol{942H}
window symbol{942H}
floor symbol{942H}
ceiling symbol{942H}
plus i t imes symbol{942H}
not symbol{942H}
tilde symbol{942H}
down symboi{942H}
up symbol{942H}
plus symbol{812j,814c,942H,A342e}
minus symbol{812j,814c,942H,A342e}
equals symbol{942I}
t imes symbol{942I}
aster isk symbol{942I}
assigns to symbol{942J}
becomes symbol{44f,521a,942J}

d) Declarat ion symbols

symbol

is defined as symbol{42b,43b,44c,45c}
long symbol{810a,82a}
short symbol[810a,82b}
reference to symbol{46c}
local symbol{523a,b}
heap symbol{523a,b}

represent:l! ion

v

^

&

<

<_
>_
>

/
÷

D
t

f

_t

l
l

+

X

$

=:

: =

representa t ion

long
short
tel
Ioc
heap

119

120

structure symbol{46d}
flexible symbol{46g}
procedure symbol{44b,46o}
union of symbol{46s}
operator symbol{45a}
priority symbol{43a}
mode symbol{42a}

e) Mode standards

symbol

integral symbol{942E}
real symbol{942E}
boolean symboi[942E}
character symbol{942E}
format symbol{942E}
void symbol{942E}
complex symbol{942E}
bits symbol[942E}
bytes symbol{942E}
string symbol{942E}
sema symbol{942E}
file symbol{942E}
channel symbol{942E}

van Wijngaarden, et al.

struct
flex
proc
union
op
prio
mode

representation

int
real
bool
char
format
void
compl
bits
bytes
string
sema
file
channel

f) Syntactic symbols

symbol representation

bold begin symbol{133d} begin
bold end symbol{133d} end
brief begin symbol{133d,A348b,A34Ab} (
brief end symbol{133d,A348b,A34Ab})
and also symbol{133c,33b,f,34h,41a,b,46e,i,

q,t,532b,541e,543b,A348b,A34Ac,d}
go on symbol{32b}
completion symbol{32b} exit
label symbol{32c}
parallel symbol{33c} par
open symbol{814c} (
close symbol{814c})
bold if symbol{91a} i f
bold then symbol{91b} then
bold else if symbol{91c} el i f
bold else symbol{91d} else
bold fi symbol{91e} fi
bold case symbol{91a} c a s e
bold in symbol{91b} in

bold ouse symbol{91c}
bold out symbol{91d}
bold esac symbol{91e}
brief if symbol{91a}
brief then symbol{91b}
brief else if symbol{91c}
brief else symbol{91d}
brief fi symbol{91e}
brief case symbol{91a}
brief in symbol{91b}
brief ouse symbol{91c}
brief out symbol{gld}
brief esac symbol{91e}
colon symbol{34j,k}
brief sub symbol{133e}
brief bus symbol{133e}
style i sub symbol{133e}
style i bus symbol{133e}
up to symbol{46j,k,l,532f}
at symbol{532g}
is symbol{522b}
is not symbol{522b}
nil symbol{524a}
of symbol{531a}
routine symbol{541a,b}
bold go to symbol{544b}
bold go symbol{544b}
skip symbol{552a}
formatter symbol{A341a}

g) Loop symbols

symbol

bold for symbol{35b}
bold from symbol{35d}
bold by symbol{35d}
bold to symbol{35d,544b}
bold while symbol{35g}
bold do symbol{35h}
bold od symbol{35h}

h) Pragment symbols

symbol

brief comment symbol{92b}
bold comment symboi{92b}
style i comment symbol{92b}

ALGOL 68 Revised Report

ouse
out
esac
(
J
I:
I
)
(
J
I:
r
)

[
]
(
)

@
: = :

o

of

goto
go

$

at
is
:/=:
nil

skip

representation

for
f r o m
by
to
while
do
od

representation
¢
comment
co

isnt

\ \
\

121

122 van Wijngaarden, et al.

style ii commen t symbol{92b}
bold p r a g m a t symbol192b}
style i p r a g m a t symbol{92b}

pragmat
pr

9.4.2. Other TAX symbols

9.4.2.1. Metasyntax

A) TA(; {D,F,K,48a,b,c,d} ::
I,EI"TER{B} ;TAG I,ETTER{B} ; TAG DIGIT{C}.

B) LETI"ER{A} : :
letter ABC{94a} ; letter aleph{-} ; style "l'Al.l.~ let ter ABC{-}.

C) DIGIT{A} ..: digit zero{94b} ; digit one{94b} ; digit two{94b} ;
digit three{94b} ; digit four{94b} ; digit five{94b} ; digit six{94b} ;
digit seven{94b} ; digit eight{94b} ; digit nine{94b}.

D) TAB{48a,b} :: bold TAG{A,-} ; SIZETY STANDARD{E}.
E) STANDARD{D} integral{94e} ; reai{94e} ; boolean{94e} ;

charaeter{94e} ; format{94e} ; void{94e} ; eomplex{94e} ; bits{94e} ;
bytes{94e} ; string{94e} ; sema{94e} ; file{94e} ; ehannel{94e}.

F) TAD{48a,b} ..: bold TAG{A,-} ; DYAD{G} BECOMESETY{J} ;
DYAD{G} cum NOMAD{I} BEEOMESETY{J}.

G) DYAD{F} :: MONAD{H} ; NOMAD{I}.
H) MONAD{G,K} :: or{94c} ; and{94e} ; ampersand{94c} ;

differs from{94c} ; is at most{94c} ; is at least{94c} ; over{94c} ;
percent{94c} ; window{94c} ; floor{94c} ; ceiling{94c} ;
plus i times{94c} ; not{94c} ; tilde{94c} ; down{94c} ; up{94c} ;
plus{94e} ; minus{94c} ; style TALLY monad{-}.

I) NOMAD{F,G,K} :: is less than{94c} ; is g r ea t e r than{94c} ;
divided by{94e} ; equals{94c} ; times{94c} ; asterisk{94e}.

J) BECOMESETY{F,K} :: cum beeomes{94c} ; cum assigns to{94c} ;
EMPTY.

K) TAM{48a,b} :: bold TAG{A,-} ; MONAD{H} BECOMESETY{J} ;
MONAD{H} cum{9422e} NOMAD{I} BECOMESETY{J}.

L) ABC{B}:: a ; b ; e ; d ; e ; f ; g ; h ; i ; j ; k ; ! ; m ; n ; o ; p ;
q ; r ; s ; t ; u ; v ; w ; x ; y ; z .

M) * DOP :: DYAD{G} ; DYAD{G} cum NOMAD{I}.

{The metanotion "ABC" is provided, in addition to the metanot ion
"ALPHA", in order to facil i tate the definition of va r ian t s of ALGOL 68
(l.l.5.b) .}

9.4.2.2. Representat ion

a) The representat ion Of each TAG-symbol not given above {9.4.1} is
composed of m a r k s corresponding, in order, to the "LETTER's or 'DIGIT's
contained in that 'TAG'. These m a r k s m a y be sepa ra ted by typographical

ALGOL 68 Revised Report 123

display features {9.4.d}. The m a r k corresponding to each 'LETTER"
('DIGIT') is the representa t ion of that LETTER-symbol (DIGIT-symbol).
{For example , the representa t ion of a let ter-x-digit-one-symbol is xl, which
m a y be written x l. TAG-symbols a re used for identifiers and field-
selectors.}

b) The representat ion, if any, of each bold-TAG-symbol is composed of
m a r k s corresponding, in order, to the 'LETTER's or 'DIGIT's contained in
that 'TAG" {but with no typqgraphical display fea tures in between}. The
m a r k corresponding to each 'LETTER' ('DIGIT') is s imi la r to the m a r k
represent ing the corresponding LETTER-symbol (DIGIT-symbol), being, in
this Report, the corresponding bold faced let ter (digit). {Other methods of
indicating the s imilar i ty which are recognizable without fur ther
elucidation are also acceptable , e.g., person, person, PERSON, 'person and
'person' could all be representa t ions of the bold-letter-p-letter.e-letter-r-
ietter-s-letter.o.letter.n.symbol.}

However, the representat ion of a bold-TAG-symbol m a y not be the
s a m e as any representa t ion of any other symbol {; thus there m a y be a
finite number of bold-TAG.symbols which have no representat ion; e.g.,
there is no representa t ion for the bold-let ter-r-let ter .e-let ter-a-let ter . l .
symbol because real is a representa t ion of the rea l . symbol ; note that the
number of bold-TAG-symbols avai lable is still a rb i t r a r i ly large}. If,
according to the convention used, a given sequence of m a r k s could be
ei ther the representat ion of one bold-TAG-symbol or the concatenat ion of
the representat ions of two or more other symbols , then it is a lways to be
construed as that one symbol {; the inclusion of a blank can a lways force
the other interpretation; e.g., refreal is one symbol , whereas refreel must
a lways be two}. {Bold-TAG-symbols are used for mode. indicat ions and for
operators.}

e) The representat ion of each SIZE-SIZET~(-STANDARD.symbol is
composed of the representa t ion of the corresponding SIZE-symbol, possibly
followed by typographical display features, followed by the represent ion of
the corresponding SIZETY-STANDARD-symbol. {For example , the
representat ion of a long-real-symbol is Iong real, or perhaps 'long"real'
(but not, according to section b above, Iongreal or 'longreal', for those
would be representat ions of the bold-letter.l.letter.o.letter.n.letter.g.letter.r.
let ter-e-let ter-a-let ter-l-symbol) . SIZETY-STANDARD.symbols a re used for
mode-indications.}

d) The representat ion of each DOP-cum-becomes-symbol (DOP-cum-
assigns-to-symbol) is composed of the m a r k or m a r k s represent ing the
corresponding DOP-symbol followed {without intervening typographical
display features} by the m a r k s represent ing the becomes-symbol (the
assigns-to-symbol). {For example , the representa t ion of a plus-cum-
becomes-symbol is +:=. DOP-cum-beeomes-symbols a re used for
operators.}

124 van Wijngaarden, etal.

e) The representat ion of each I)YAD-cum-NOMAI)-symbol is composed
of the m a r k represent ing the corresponding I)~AI)-symbol followed
{without intervening typographical display features} by the m a r k
represent ing the corresponding NOMAD-symbol. {For example , the
representat ion of an over-cum-t imes-symbol is +x. I)YAI)-cum-NOMAI)-
symbols are used for operators , but note that NOMAI)I-cum-NOMAI)2-
symbols m a y be only dyadic-operators.}

PART V

Envi ronment and Exam pl e s

10. Standard envi ronment

{The "s tandard environment" encompasses the consti tuent EXTERNAL-
preludes, sys tem-tasks and par t icular-post ludes of a program-text .}

10.1. P r o g r a m texts

{The p r o g r a m m e r is concerned with pa r t i cu l a r -p rog rams (lO.l.l.g).
These are a lways included in a p rogram- tex t (lO.l.l.a) which also contains
the s tandard-prelude, a l ibrary-prelude, which depends upon the
implementat ion, a sys tem-pre lude and sys tem-tasks , which correspond to
the operat ing environment , possibly some other par t i cu la r -programs , one
or more par t icular-preludes (one for each pa r t i cu la r -p rogram) and one or
more particular-postludes.}

10.1.1. Syntax

A) EXTERNAL :: s tandard ; l ibrary ; sys t em ; par t icular .
B) STOP :: label let ter s let ter t let ter o let ter p.

a) p r o g r a m text : STYLE begin{94f} token, new LAYERI preludes{b}, [
parallel{94f} token, new LAYERI tasks{d} PACK,
STYLE end{94f} token.

b) NESTI preludes{a} : NESTI s tandard prelude with DECSI{c},
NESTI l ibrary prelude with DECSETY2{c},
NESTI sys t em prelude with DECSETY3{c}, where (NESTI) is
(new EMPTY new DECSI DECSETY2 DECSETY3).

c) NESTI EXTERNAL prelude with DECSETYI{b,f} :
s trong void NESTI ser ies with DECSETYI{32b}, go on{94f} token ;
where (DECSETYI) is (EMPTY), EMPTY.

d) NESTI tasks{a} : NESTI sys t em task{e} list, and also{94f} token,
NESTI user task{f} PACK list.

e) NESTI sys t em task{d} : s trong void NESTI unit{32d}.

ALGOL 68 Revised Report

f) NESTI user task{d} : NEST2 par t icu lar prelude with I)ECS{c),
NEST2 par t icular program{g} PACK, go on{94f} token,
NEST2 par t icular postlude{i},
where (NEST2) is (NESTI new DECS STOP).

g) NEST2 par t icular program{f} :
NEST2 new LABSETY3 joined label definition of I.ABSETY3{h},

strong void NEST2 new LABSETY3
ENCLOSED clause{31a,33a,c,34a,35a}.

h) NEST joined label definition of LABSETY{g,h} :
where (LABSETY) is (EMPTY), EMPTY ;
where (LABSETY) is (LABI LABSETYI),

NEST label definition of LABI{32c},
NEST joined label definition of LABSETY! {h}.

i) NEST2 par t icular postlude{f} :
strong void NEST2 ser ies with STOP{32b}.

{Examples:

a) (v s tandard-pre lude v; v l ibrary-prelude v; v s y s t em-pre lude ¢;
par begin v s y s t e m - t a s k - 1 v , ¢ s y s t e m - t a s k - 2 v ,

(¢ part icular-prelude v;
(start: commence: begin skip end);
c part icular-post lude c) ,

(c another user - task c)
end)

b) c s tandard-pre lude (10.2, 10.3)c; c l ibrary-prelude c;
c s y s t em-pre lude (10.4.1) c;

d) c s y s t e m - t a s k - 1 (10.4.2.a) c , c s y s t e m - t a s k - 2 c ,
(c part icular-prelude c;

(start: commence: begin skip end);
c part icular-post lude c) ,

(c another user- task c)
f) cpar t icu lar-pre lude (10.5.1)c;

(start: commence: begin skip end);
cpar t icu lar -pos t lude {10.5.2) c

g) start: commence: begin skip end
h) start: commence:
i) stop: lock (s tand in); lock (s tand out); lock (s tand back) }

125

10.1.2. The environment condition

a) A p rog ram in the str ict language mus t be akin {1.1.3.2.k} to some
program- tex t whose consti tuent EXTERNAL-preludes and par t icular-
postludes are as specified in the r ema inde r of this section.

{It is convenient to speak of the s tandard-prelude, the library' .prelude,
the par t icu la r -programs, etc. of a p r o g r a m when discussing those par t s of
that p r o g r a m which correspond to the consti tuent s tandard-prelude, etc. of
the corresponding program-text .}

126 van Wijngaarden, et al.

b) The constituent standard-prelude of all program-texts is that
standard-prelude whose representation is obtained {10.1.3} from the forms
given in sections 10.2 and 10.3.

c) The constituent library-prelude of a program-text is not specified in
this Report {but must be specified for each implementation: the syntax of
"program text' ensures that a declaration contained in a library-prelude
may not contradict any declaration contained in the standard-prelude}.

d) The constituent system-prelude (system-task-list) of all program-
texts is that system-prelude (system-task-list) whose representation is
obtained from the forms given in section 10.4, with the possible addition of
other forms not specified in this Report {but to be specified to suit the
operating environTmnt of each implementation}.

J L

e) Each constituent particular-prelude (particular-postlude) of all
program-texts is that particular-prelude (particular-postlude) whose
representation is obtained from the forms given in section 10.5, with the
possible addition of other forms not specified in this Report {but to be
specified for each implementation}.

10.1.3. The method of description of the s tandard environment

A representation of an EXTERNAI,-prelude, system-task or particular-
postlude is obtained by altering each form in the relevant sections of this
chapter in the following steps:

Step 1: If a given form F begins with op {the operator-symbol} followed by
one of the marks P, Q, R or E, then F is replaced by a number of new
forms each of which is a copy of F in which that mark {following the
op} is (all other occurrences in F of that mark are) replaced, in each
respective new form, by:

Case A: The mark is P:
• -, +, '~x,,:~ or I
(-, +, x or/);

Case B: The mark is Q:
• ~minusab, -:=~, 1tplusab, +:=~, ~timesab, x : = , , : =~" or

divab, / : =
(-:=, +:=, x:= o r / : =) :

Case C: The mark is R:
• ~<, ItS, ~ <=, /e:~, ~=, eq~, ~ ~, / : , he:t, T>_, >=, ge~, or
~>, gt~
(<, <_, =, ~, >_ or >);

Case D: The mark is E:
• ~L=,eq~ or ~ , / = , n e ~
(= or ~):

Step 2: If, in some form, as possibly made in the step above, .~ occurs
followed by an INDICATOR (a field-selector) I, then that occurrence of

ALGOL 68 Revised Report 127

.~ is deleted and each INDICATOR (field-selector) akin {1.1.3.2.k} to I
contained in any form is replaced by a copy of one same INDICATOR
(field-selector) which does not occur elsewhere in the program and
Step 2 is taken again;

Step 3: If a given form F, as possibly modified or made in the steps above,
beg!ns with op {the operator-symbol} followed by a chain of TAO-
symbols separated by and-also-symbols, the chain being enclosed
between ~ and ~., then F is replaced by a number of different
"versions" of that form each of which is a copy of F in which that
chain, together with its enclosing ¢ and t", has been replaced by one of
those TAO-symbois {; however, an implementation is not, obliged to
provide more than one such version (9.4.b)};

Step 4: If, in a given form, as possibly modified or made in the steps
above, there occurs a sequence S of symbols enclosed between ~ and
and if, in that S, L int,~L real, L compl, /L bits or L bytes occurs, then S
is replaced by a chain of a sufficient number of sequences separated by
and-also-symbols, the n-th of which is a copy of S in which copy each
occurrence of L (L, K, 8) is replaced by (n - 1) times long (long, leng,
shorten), followed by an and.also-symbol and a further chain of a
sufficient number of sequences separated by and-also-symbols, the m-th
of which is a copy of S in which copy each occurrence of L (L, K, S)
has been replaced by m times short (short shorten, leng): the ~ and
enclosing that S are then deleted;

Step 5: If, in a given form F, as possibly modified or made in the steps
above, Lin t (L real, L compl, L bits, L bytes) occurs, then F is
replaced by a sequence of a sufficient number of new forms, the n-th of
which is a copy of F in which copy each occurrence of L (L, K, S) is
replaced by (n - 1) times long (long, leng, shorten), and each
occurrence of Iong L (long L) by n times long (long), followed by a
further sequence of a sufficient number of new forms, the m-th of
which is a copy of F in which copy each occurrence of L (L, K, S) is
replaced by m times short (short, shorten, leng), and each occurrence
of IongL (longL) by (m - 1) times short (short);]

Step 6: Each occurrence of F (PRIM) in any form, as possibly modified
or made in the steps above, is replaced by a representation of a letter.
aleph-symbol (primal-symbol) {9.4.a};

Step 7: If a sequence of representations beginning with and ending with ¢
occurs in any form, as possibly modified or made in the steps above,
then this sequence, which is termed a "pseudo-comment", is replaced
by a representation of a declarer or closed-clause suggested by the
sequence;

128 van Wijngaarden, et al.

Step 8: If, in any form, as possibly modified or made in the steps above, a
rout ine-text occurs whose calling involves the manipulat ion of real
numbers , then this routine-text m a y be replaced by any other routine-
text whose calling has approx imate ly the s ame effect {: the degree of
approximat ion is left undefined in this Report (see also 2.1.3.1.e)}:

Step 9: In the case of an EXTERNAL-prelude, a form consisting of a skip-
symbol followed by a g o - o n . s y m b o l {skip;} is added at the end.

{The t e rm "sufficient number" , as used in Steps 4 and 5 above, implies
that no intended pa r t i cu la r -p rogram should have a different meaning or
fail to be produced by the syntax solely on account of an insufficiency of
that number.}

Wherever {in the t ransput declarations} the representa t ion lo (\, _1_)
occurs within a character-denota t ion or string-denotation, it is to be
interpreted as the representat ion of the s t r ing-i tem {8.1.4.1.b} used to
indicate "t imes ten to the power" (an a l ternat ive form {, if any,} of "t imes
ten to the power", "plus i t imes") on external media . {Clearly, these
representat ions have been chosen because of their s imilar i ty to those of
the t imes-ten-to-the-power-symboi (9.4.1.b) and the plus-i- t imes-symbol
(9.4.1.c), but, on media on which these cha rac te r s are not avai lable , other
s tr ing-i tems must be chosen (and the let ter-e-symbol and the letter-i-
symbol are obvious candidates).}

{The declarat ions in this chapte r a re intended to descr ibe their effect
clearly. The effect m a y very well be obtained by a more efficient method.}

10.2. The s tandard prelude

{The declarat ions of the s tandard-prelude compr ise "environment
enquiries", which supply information concerning a specific proper ty of the
implementat ion (2.2.2.c), "s tandard modes", "s tandard opera tors and
functions", "synchronization operations" and " t ransput declarat ions"
(which are given in section 10.3).}

10.2.1. Envi ronment enquiries

a) int int l eng ths = c 1 p lus the n u m b e r o f ex t ra l eng ths o f in tegers
{2.1.3.1.d} c ;

b) int int shor ths = c 1 p lus the n u m b e r o f ex t ra shor ths o f in tegers
{2.1.3.1.d} c ;

c) L int L m a x int = c the larges t L in tegral value {2.2.2.b} c ;

d) int real l eng ths = c I p lus the n u m b e r o f ex tra l eng ths o f real
numbers {2.1.3.1.d} c ;

e) int r e a l s h o r t h s = c I p lus the n u m b e r o f ex tra shor th s o f real
numbers {2.1.3.1.d} c ;

ALGOL 68 Revised Report 129

f)

g)

h)

i)

J)

k)

l)

m)

n)

o)

P)

q)

r)

s)

t)

L m a i L m a x real= c the larges t L real value {2.2.2.b} c ;

L real L s m a l l real = c the s m a l l e s t L real value such tha t both L 1 +
L s m a l l real > L 1 and L 1 - L s m a l l real < L 1 {2.2.2.b} c ;

int bits l eng ths = c I p lus the n u m b e r o f ex tra w id th s {j} o f bits c ;

int bits shor ths = c I p lus the n u m b e r o f ex t ra shor th s {j} o f bi ts c ;

int L bits w id th = c the n u m b e r o f e l emen t s in L bits; see L bits
{10.2.2.g}; th is n u m b e r increases (decreases) w i th the "size", i.e.,
the n u m b e r o f ' long's (minus the n u m b e r o f 'short 's) o f w h i c h 'L'
is composed, unt i l a cer ta in s ize is reached, viz., "the n u m b e r o f
ex tra w id ths" (minus "the n u m b e r o f ex t ra shor ths") o f bits, a f ter
wh ich it is cons tan t c ;

int bytes l eng ths = c I p lus the n u m b e r o f ex t ra w id th s {m} o f by tes c ;

int bytes shor ths = c I p lus the n u m b e r o f ex t ra shor ths {m} o f
by tes c ;

int L bytes wid th = c the n u m b e r o f e l emen t s in L bytes; see L b y t e s
{10.2.2.h}; th is n u m b e r increases (decreases) w i th the "size", i.e.,
the n u m b e r o f ' long's (minus the n u m b e r o f 'short 's) o f w h i c h 'L'
is composed, unt i l a cer ta in s ize is reached, viz., " the n u m b e r o f
ex tra w id ths" (minus "the n u m b e r o f ex t ra shor ths") o f bytes , a f ter
wh ich it is cons tan t c ;

op abs = (char a) int : c the in tegra l equ iva len t {2.1.3.1.g} o f the
character 'a' c ;

op rapt= (int a) char : c t ha t charac ter 'x', i f it ex i s t s , for w h i c h abs
x = a c ;

i n t m a x abs char= c the larges t in tegral equ iva len t {2.1.3.1.g} o f a
character c ;

char null charac ter = c some charac ter c ;

char f l ip = c the charac ter used to represent ' true' dur ing t ranspu t
{10.3.3.1.a, 10.3.3.2.a} c ;

char f lop = c the charac ter used to represent ' false' dur ing t ranspu t c ;

char errorchar= c the charac ter used to represent unconver t ib l e
ar i thmet ic values {10.3.2.l.b,c,d,e,f} dur ing t r a n s p u t c ;

u) char b lank = "._";

10.2.2. Standard modes
a)

b)

m o d e void = c an ac tua l -dec larer spec i f y i ng the mode 'void' c k
\

m o d e b o o / = c an ac tua l -dec larer spec i f y ing the mode 'boolean' c ;

c) m o d e L I n t = c an ac tua l -dec larer spec i f y i ng the mode 'L in tegral ' c ;

130

d)

e)

f)

g)

van Wijngaarden, et al.

mode L r e e l = c an actual-declarer speci fy ing the mode 'L real' c ;

mode char= c an actual-declarer speci fy ing the mode 'character' c ;

mode L compl = struct (L real re, im) ;

mode L b i t s = s t r u c t ([1: L bits width] bool L F); {See 10.2. l.j}
[The field-selector is hidden f rom the user in order that he m a y not
b reak open the structure; in par t icular , he m a y not subscr ipt the field.}

h) mode L bytes = struct ([1 : L bytes wid th] char L ~ ; {See 10.2. l.m}

i) mode string = flex [1 : O] char;

10.2.3. Standard opera tors and functions

10.2.3.0. Standard priorities

a) prio minusab = 1, plusab = 1, timesab = 1, divab = 1, overab = 1,
modab = 1, plusto = 1,
-:== l, +:== l, x:== l, *:== l, / :==I, ÷ :==1,%:==1, ÷ x:== l,
+,:==I, %x:== l, %,:== I, +=: =i,

v =2, or=2,

^=3, &=3, and=3,

==4, oq=4, ~=4, /==4, ne=4,

< =5, lt=5, <_=5, <==5, le=5, >_=5, >==5, ge=5, >=5, gt=5,

- = 6 , + = 6 ,

x=7 , ,=7 , /=7, +=7, %=7, over=7,
+x = 7, ÷,= 7, %x = 7, %,= 7, mod = 7,

= 7, elem = 7,

I =8,**=8, ! =8, up=8, down=8, shl=8, shr=8,
Iwb=8, upb=8, L =8, r =8,

1 =9, +x=9, +.=9, i=9;

10.2.3.1. Rows and associated operat ions

a) mode 9 rows = c an actual-declarer speci fy ing a mode uni ted f rom
{2.1.3.6.a} a suff icient set o f modes each o f which begins with
'row' c ;

b) op ~ lwb, L # = (int n, rows a) int : c the lower bound in the n - t h bound
pair o f the descriptor o f the value o f 'a', i f tha t bound pair
exists c ;

ALGOL 68 Revised Report 131

c) op$upb , r #=(intn , rowsa) in t : c t h e upper bound in the n - t h
bound pair o f the descriptor o f the value o f 'a', i f that bound pair
exists c ;

d) op~lwb, L~=(rowsa)int: 1 L a;

e) op~upb, r # = (r o w s a) i n t : 1 r a ;

{The t e rm "sufficient set", as used in a above and also in 10.3.2.2.b and
d, implies that no intended pa r t i cu la r -p rogram should fail to be produced
(nor any unintended pa r t i cu la r -p rogram be produced) by the syntax solely
on account of an insufficiency of modes in that set.}

10.2.3.2. Operations on boolean operands
a) op ~ v, or~ = (bool a, b) bool : (a I true I b) ;

b) op t^ , &, and~=(boola, b)bool: (al bl false);

c) o p t - , ~, n o t # = (b o o l a) b o o l : (al falsel true);

d) op~=,eq#=(boola, b)bool: (ahb) v (- a ^ - b) ;

e) op ~ ~, /=, ne ~ = (bool a, b) bool : - (a = b) ;

f) op abs = (bool a) int : (a I 1 I O) ;

10.2.3.3. Operations on integral operands
a) op ~ <, It# = (L int a, b)bool : c true if the value o f 'a' is smal ler than

{2.1.3.1.e} that o f 'b' and false o therwise c ;

b) op$<~ < = , l e # = (L i n t a , b)bool : - (b < a) ;

c) o p ¢ = , e q # = (L i n t a , b)bool : a<_b^b<_a;

d) o p $ ~ , / = , n e # = (L i n t a , b)bool : - (a = b) ;

e) o p $ z , >=, g e # = (L inta, b)bool : b<_a;

f) o p ~ > , g t # = (L i n t a , b)bool: b < a ;

g) op - = (L
'b' c ;

h) o p - = (L i n t a) L int: L O - a ;

i) o p + = (L in t a , b) L i n t : a - - b ;

j) op + = (L int a) L int : a;

k) o p a b s = (L i n t a) L i n t : (a < L O I - a l a) ;

1) o p C x , , # = (L inta, b) L int:
begin L i n t s : = L O, i : = abs b;

while i >_ L 1
d o s : = s + a ; i : = i - L l o d ;
(b< L O I - s i s)

end;

inta, b) L int" c the value o f 'a' m inus {2.1.3.1.e} that o f

\,\

132

m)

n)

o)

p)

q)

r)

s)

t)

u)

van Wijngaarden, et el.

o p t + , %, o v e r ~ = (L inta , b) L int:
i f b ~ L 0
then L int q : = L O, r : = abs a;

whi le (r := r - abs b) z L 0 do q := q + L 1 od;
(a< L O^b>_L Ov a>_L O^ b< L O[- q l q)

li;

op ~+x, +,, %x, %,, m o d ~ = (L ln ta , b) L inl:
(i n t r = a - a : b x b ; r< O] r +absb] r) ;

op / = (L int a, b) L real: L real (a) / L real(b);

o p t t , * * , u p ~ = (L inta , in tb) L int:
(b >_O I L i n t p : = L l; t o b d o p : = p x a o d ; p) ;

op leng = (L i n t a) long L i n t : c the long L in tegra l value lengt tzened
f rom {2.1.3.1.e} the value o f 'a' c ;

op shorten = (long L l n t a) L i n t : c the L in tegral value, i f it ex is t s ,
wh ich can be l eng thened to {2.1.3.1.e} the value o f 'a' c ;

op odd = (L int a) boo l : abs a +x I , 2 = L 1;

op sign = (L i n t a) int :
(a> L OI l l : a < L OI - 1 1 0) ;

op¢1 , +x, +,, i * = (L inta, b) L compl : (a ,b) ;

10.2.3.4. Operations on real operands

a) I op ~ <, l i t = (L real a, b) bool : c true i f the value o f 'a' is sma l l e r
than {2.1.3.1.e} tha t o f 'b' and fa l se o therwise c ;

b) o p ~ < = , l e ~ = (L r e a l a , b)boo l : - (b < a) ;

c) o p ~ = , e q ~ = (L r e a l a , b)boo l : a<_b^b<_a;

d) op ~ ~ , /=, ne ~ = (L real a, b) bool : - (a = b) ;

e) opt>_, >=, g e ~ = (L reala, b)boo l : b<_a;

f) o p ~ > , g t ~ = (L r e a l a , b)boo l : b < a ;

g) op -= (L real a, b) L real: c the value o f 'a' m i n u s {2.1.3.1.e} t ha t o f
'b' c ;

h) op - = (L real a) L real: L O - a ;

i) op + = (L real a, b) L real: a - - b ;

j) op + = (L real a) L real : a ;

k) op abs = (I, real a) L real : (a < L 01 - a] a) ;

l) op ~ x, . ~ = (L real a, b) L real" c the value o f 'a' t imes {2.1.3.1.e} t ha t
o f 'b' c ;

m)

n)

o)

P)

q)

r)

s)

ALGOL 68 Revised Report 133

Op / = (L real a, b) L real : c the value o f 'a' d iv ided by {2.1.3. l.e} t ha t
of 'b' c ;

op lang = (L real a) long L real : c the long L real value l eng thened
f rom {2.1.3.1.e} the value o f 'a' c ;

op shorten = (long L real a) L real : c if abs a <_ leng L m a x real, then
a L real value 'v' such that , for a n y L real va lue 'w',
abs (leng v - a) <_ abs (leng w - a) c ;

op round = (L real a) L i n t : c a L in tegral value, i f one ex is t s , w h i c h
is widenable to {2.1.3.1.e} a L real value d i f f er ing by not more
than o n e - h a f t f rom the value o f 'a' c ;

o p s i g n = (L rea la) in t : (a > L O[1[: a< L O [- 1 [0);

op ~ enl ler , L ~ = (L real a) L i n t :
beg in L int j : = L O;

while j < a do j : = j + L 1 od;
while j > a do j : = j - L 1 od;
J

end ;

op ~:.L, +x, +,, i~ = (IL real a, b) II, comp l : (a, b) ;

10.2.3.5. Operations on ar i thmetic operands

a)

b)

c)

d)

e)

f)

g)

op P = (L real a, L int b) L real : a P L rea l (b) ;

op P = (L int a, L real b) L real : L real (a) P b ;

op R = (L real a, L i n t b) bool : a R L real (b) ;

op R = (L i n t a, L real b) bool : L real (a) R b ;

o p t . L , +x, +., i~ = (L real a, L int b) L compl : (a, b) ;

op~ J_, +x, +,, i ~ = (L inta , L r e a l b) L compl : (a ,b) ;

op ~ T,**, u p ~ = (L reala, in tb) L real:
(L real p : = L 1; to abs b do p : = p x a od; (b >- O] p t L 1 / p)) ;

10.2.3.6. Operations on charac te r operands

a) o p R = (c h a r a , b)boo l : a b s a R a b s b ; ll0.2.l.n}

h) op + = (char a, b) string : (a, b) ;

10.2.3.7. Operations on complex operands

a) o p r e = (L c o m p l a) L real : r e o f a ;

b) op im = (L compl a) L real: im o f a ;

\

134

c)

d)

e)

f)

g)

h)

i)

J)

k)

l)

m)

n)

o)

P)
q)

r)

s)

t)

u)

v)

w)

x)

van Wijngaarden, et al.

op abs = (L compl a) L real : L sqrt (re a T 2 + im a ! 2) ;

op arg = (L compl a) L real :
it L real re = re a, im =im a;

r e e L Ov i m ~ L 0
then i f abs re > abs im

then L arc tan (ira / re) + L p i / L 2 x
(im < L O I sign re - 11 1 - sign re)

else - L arctan (re / ira) + L pi / L 2 × sign im
fi

fi;

op conj = (L compl a) L compl : re a .L - i m a ;

op ~ =, eq ~ = (L compl a, b) boo l : re a = re b ^ i m a = im b ;

op ~ ~, /=, ne ~ = (L compl a, b) boo l : ~ (a = b) ;

op - = (L compl a, b) L compl : (re a - re b) .L (ira a - i m b) ;

op -= (L compl a) L compl : - re a .L - ira a ;

op + = (L compl a, b) L compl : (re a + re b) L (ira a + im b) ;

op + = (L compl a) L compl : a ;

op ~ x, • ~ = (L compl a, b) L compl :
(r e a× r e b - i m a x i m b) J_ (r e a x i m b + i m a× r e b) ;

op / = (L compl a, b) L compl :
(L real d = re (b × conj b); L compl n = a × conj b;
(re n / d) L (im n / d)) ;

op leng = (L compl a) long L compl : leng re a ± leng im a ;

op shorten = (long L compl a) L compl :
shorten re a J_ shorten im a ;

op P = (L compl a, L int b) L compl : a P L compl (b) ;

op P = (L compl a, L real b) L compl : a P L compl (b) ;

op P = (L int a, L compl b) L compl : L compl (a) P h ;

op P = (L real a, L compl b) L compl : L compl (a) P b ;

op ~ I, **, up ~ = (L compl a, int b). L compl :
(L c o m p l p : = L 1; t o a b s b d o p : = p x a o d ; (b>_OIp I L 1 / p)) ;

op E = (L compl a, L i n t b) boo l : a E L compl (b) ;

op E = (L compl a, L real b) boo l : a E L c o m p l (b) ;

op E = (L int a, L compl b) boo l : b E a ;

op E = (L real a, L compl b) boo l : b E a ;

ALGOL 68 Revised" Report

10.2.3.8. Bits and a s soc ia t ed opera t ions

a) op ~ =, eq ~ = (L bits a, b) boo l :
begin bool c;

for i to L bits w id th
while c : : (L F of a) [i]_ffi(L P@f b) [!]__ I
do skip od;
C

end ;

b)

c)

op ~ ~ , /=, ne ~ = (L bits a, b) boo l : ~ (a = b) ;

op ~ v, or~ = (L bits a, b) L bits :
begin L bits c;

for i to L bits width
d o (L F o f c) [i]1:= (L F o f a) [i] l v (L F o f b) [i] l o d ;
C

end;

d) o p ~ ^, &, a n d ~ = (L b i t s a, b) L b i t s :
begin L bits c;

for i to L bits width
do (L F o f c) [i]1: = (C F o f a) [i]1^ (C F o f b) [/]lod;
C

end ;

e) op~<~ <=, l e ~ = (L bi tsa, b) b o o l : (a v b) = b ;

f) op ~ >_, >=, ge ~ = (L bits a, b) boo l " b <_ a ;

g) op ~ l , up , s h l ~ = (L b i t s a, in t b) L b i t s :
if.abs b <_L bits width
then L bits c : = a;

to abs b
do i f h > 0 then

for i f rom 3 to L bits w id th
dolL Fore) [i - i] l : : (L 'ofc)t od:
(L F of c) [L bit# u~b~--h~ : = false

else
f o r i from L bits width b y - 1 to2
do (L F of c) [~J]: = (L F of c) [i-: i]lod:
(L F o f c) [j] ~ = false

fi od;
C

f l ;

h) op ~ 1, down, shr~ = (L bits x, int n) L bits" x T - n ;

\ \

135

136 van Wijngaarden, et al.

i) opabs=(L bitsa) L int:
begin L i n t c : = L O;

for i to L bits w id th
doc := L 2 x c + K a b s (L F o f a) [i] od;
C

end;
j) opbin=(L inta) L bits:

i fa>_L 0
then L i n t b := a; L bits c;

for i from L bits width by - 1 to 1
do(L Fofc) [i] := oddb; b := b+ L 2od;
C

fl;
k) optelem, D~=(inta, L bitsb)bool: (L Fofb) [aJ;
1) proc L bits pack = ([] bool a) L bits :

i f in tn= r a [@ 1];
n <_ L bits w i d t h

then L bits c;
for i to L bits w i d t h
do (L F o f c) [i] := I

nl falsel a [@ I] [~ - L bi ts w id th + n l) " / (i <_L bits w i d t h
od;
C

f l;
m) op ~ -, ~, not~ = (L bits a) L bits :

begin L bits c;
for i t e L bits w i d t h do (L Fo fc) [i]1 := - (L F o f a) [i]lod;
C

end;
n) op leng = (L bits a) long L bits : long L bits pack (a) ;
o) op shorten = (long L bits a) L bits : L bits pack (~]lbool (a)

[l o n g L b i t s w i d t h - L b i t s w i d t h + l "]);]

10.2.3.9. Bytes and associated operations

a) op R = (L bytes a, b) b o o l : s t r ing (a) R str ing (b) ;
b) optelem, ~ = (i n t a , L bytesb)char: (L F o f b) [a] ;
c) proc L bytes pack = (string a) L bytes :

i f i n t n = r a [@ l];
n <_ L by tes w i d t h

then L bytes c;
for i to L by tes w i d t h
do (L F of c) [i] : = (i <_ n I a [@ 1] [i] J nul l character) od;
C

fi;

d)

e)

ALGOL 68 Revised Report

op leng = (L by tes a) long L by t e s : long L by tes p a c k (a) ;

op shorten = (long L bytes a) L bytes :
L by tes p a c k (string (a) [: L by tes w i d t h]) ;

10.2.3.10. Strings and associated operat ions

a) op t <, It~ = (string a, b) b o o l :
begin int m = r a [@1], n = r b [@ 1] ; int c : = O;

for i to(m < nl ml n)
while(c:=absa [@ 1] [i] -abs b [@ lJ [i])=O
do skip od;
(c=OIm<n^n>Olc<O)

end;

b) op t ~-, < =, le ~ = (str ing a, b) b o o l : - (b < a) ;

c) opt=, eq~=(stringa, b)bool: a<_b^ b<_a;
d) op t ~, /=, no ~ = (str ing a, b) b o o l : -- (a = b) ;

e) opt>-, >=, ge~=(stringa, b)bool: b<_a;
f) op t >, gt~=(stringa, b)bool: b< a ;

g) op R = (str ing a, c h a r b) b o o l : a R str ing (b) ;

h) op R = (char a, s t r ing b) b o o l : s t r ing (a) R b ;
i) op + = (str ing a, b) s t r ing :

(int m = (int la = r a [@1]; la < O I O I la),
n = (int lb = r b [@1]; lb < O[O[lb);

[1 : m + n] char c;
c [l : m] : = a [@ l] ; c [m + l : r e + n] :=b [@ l]; c);

j) op + = (str ing a, c h a r b) s t r ing : a + s t r ing (b) ;

k) op + = (char a, str ing b) s t r ing : s t r ing (a) + b ;

l) optx,*~=(st r inga, intb)string: (s t r i ngc ; t obdoc :=c+aod ; c);
m) op t x, ,~ = (int a, s t r ing b) s t r ing : b x a ;

n) optx , ,~=(chara, intb)string: str ing(a)×b;
o) op t x, ,~ = tint a, char b) string : b x a ;

{The operations defined in a, g and h imply that if abs "a" < a b s "b",
then < "a" ; "a" < "b" ; "aa" < "ab" ; "aa" < "ba" ; "ab" < "b" and
"ab" < "ba" .}

10.2.3.11. Operations combined with assignations

a) optminuseb, - :=~=(re fL inta, L in tb) re fL int: a : = a - b ;
b) optminusab, - :=~=(re fL reala, L reelb)refL real: a :=a - b ~
c) op t m i n u s a b , - : = ~ = (ref L c o m p l a, L c o m p l b) re f L c o m p l :

a : = a - b ;

137

138

d)

e)

f)
g)

h)

i)

J)
k)

1)

m)
n)

o)

P)
q)

r)

s)

t)
u)

van Wijngaarden, et al.

op ~ plusab, + : = ~ = (ref L int a, L int b) ref L int : a : = a + b ;

op ~ plusab, +: = ~ = (ref L real a, L real b) ref L real : a : = a + b ;

op ~ plusab, +: = ~ = (ref L c o m p l a, L c o m p l b) re f L c o m p l : a := a + b ;

op ~ timesab, x:=, , : = ~ = (re f L in t a, L in t b) re f L in t : a : = a x b ;

op ~ timesab, x: = , , : = ~ = (ref L real a, L real b) ref L real : a : = a x b ;

op ~ timesab, x: = , , : = ~ = (ref L compl a, JL compl b) ref L compl :
a : = a x b ;

op ~overab, ÷:=, %: =~ = (re f L in t a, L in t b) re f L in t : a : = a ÷ b ;

op ~modab, +x: = , ÷ , : = , % x : = , % , : = ~ =
(ref L in t a, L in t b) re f L in t : a : = a +x b ;

op ~ divab, /: = ~ = (ref L real a, L real b) ref L real : a : = a / b ;

op ~ divab, /: = ~ = (ref L compl a, L compl b) ref L compl : a : = a / b ;

op Q = (ref L real a, L int b) ref L real : a Q L real (b) ;

op Q = (ref L compl a, JL int b) ref L compl : a @ L compl (b) ;

op Q = (ref L compl a, JL real b) ref L compl : a Q L compl (b) ;

op ~ plusab, +: = ~ = (ref string a, string b) ref string : a : = a + b ;

op ~ plusto, + = : ~ = (string a, ref string b) ref string : b : = a + b ;

op ~ plusab, +: = ~ = (ref string a, char b) ref string : a +: = string (b) ;

op ~ plusto, +=: ~ = (char a, ref string b) ref string : string (a) +=: b ;

op ~ timesab, x: = , , : = :~ = (ref string a, int b) ref string : a : = a x b ;

10.2.3.12. S tandard m a t h e m a t i c a l cons tants and functions

a) L realL pi= c a L real value close t on ; see Math. o f Comp. v. 16,
1962, pp. 80-99 c ;

b) proc L sqrt = (L real x) L real: c i f x >_ L O, a L real value close to
the square root of 'x' c ;

c) proc L exp = (L real x) L real : c a L real value, i f one exists, close to
the exponent ia l funct ion o f 'x' c ;

d) proc L In = (L real x) L real: c a L real value, i f one exists, close to
the natural logari thm o f 'x' c ;

e) proc L cos = (L real x) L real: c a L real value close to the cosine of
~x ~ C ;

f) proc L arccos = (L real x) L real: c i f abs x <_L 1, a L real value close
to the inverse cosine of 'x', L 0 <_L arccos (x) <_L pi c ;

g) proc L sin = (L real x) L real: c a L real value close to the sine o f
'X r C ;

ALGOL 68 Revised Report 139

h) proc L arcsin = (L real x) L real: c i f abs x <_L I, a L real value close
to the inverse sine of 'x', abs L arcsin (x) <_L pi / L 2 c ;

i) proc L tan = (L real x) L real: ¢ a L real value, i f one exists, close to
the tangent of 'x' c ;

j) proc L arctan = (L real x) L real : c a L real value close to the
inverse tangent of 'x', abs L arctan (x) <_L pi / L 2 c ;

k) proc L nex t random = (ref L int a) L real:
(a := c the next p seudo- random L integral value after 'a' f rom a

uni formly distributed sequence on the interval
[L O, L m a x i n t] c ;

c the real value corresponding to ' a ' according to some m a p p i n g
o f integral values [L O, L m a x i n t J into real values [L O, L 1)
{i.e., such that 0 <_ x < 1} such that the sequence of real values
so produced preserves the properties o f p seudo - randomness
and uni form distribution o f the sequence of integral values c) ;

10.2.4. Synchroniza t ion opera t ions

The e labora t ion of a para l le l -c lause P {3.3.1.c} in an envi ron E is t e r m e d
a "paral lel action". The e labora t ion of a cons t i tuent unit of P in E is
t e r m e d a "process" of tha t paral le l action.

Any elaborat ion A {in some environ} of e i ther of the ENELOSED-clauses
del ineated by the p r a g m a t s {9.2.1.b} prs tar t o f incompat ible p a r t p r and
pr f in i sh o f incompatible p a r t p r in the fo rms 10.2.4.d and 10.2.4.e is
incompat ib le with {2.1.4.2.e} any e labora t ion B of e i ther of those
ENCLOSED-clauses if A and B a re descenden t ac t ions {2.1.4.2.b} of d i f ferent
processes of some s a m e paral le l action.
a) m o d e sema = s t ruc t (ref in t F) ;

b) op level = (int a) sema : (sema s; F of s : = heap int : = a; s) ;

c) o p l e v e l = (s e m a a) i n t : F o f a ;
d) op down = (sema edsger) void :

begin ref int d i j k s t r a -- F of edsger ;
while

p r s t a r t o f i n c o m p a t i b l e p a r t p r
i f d i j k s t r a >_ 1 then d i j k s t r a - : = 1; false
else

c let P be the process such that the elaboration o f
this p s e u d o - c o m m e n t {10.1.3.Step 7} is a descendent
action of P, but not o f any other process descended
from P; the process P is halted {2.1.4.3.f} c;
true \~

fl
p r f in i sh o f incompat ible par t p r

do skip od
e n d ;

140 van Wijngaarden, et al.

e)

Processes, contained in P r o g r a m m i n g Languages ,
London etc., Academic Press, 1968: see also 11.12.}

op up = (sama edsger) v o i d :
pr s tart o f incompatible par t pr

if r e f in t dijkstra = F of edsger; (dijkstra +: = 1) _> I
then

ca l l processes are resumed {2.1.4.3.g} which are hal ted
because the integer referred to by the n a m e yielded by
'dijkstra' was smal ler than one c

fl
pr f in ish o f incompatible par t pr ;

{For the use of down and up, see E.W. Dijkstra, Cooperating Sequential
Genuys, F. (ed.),

10.3. Transput declarat ions

{"So it does!" said Pooh. "It goes in!"
"So it does!" said Piglet. "And it comes out!"
"Doesn't it?" said Eeyore. "It goes in and out like
anything."
Winnie-the-Pooh, A.A. Milne.}

{Three ways of "transput" (i.e., input and output) are provided by the
standard-prelude, viz., format less t ransput {10.3.3), fo rmat ted t ransput
(10.3.5} and binary t ransput (10.3.6).}

10.3.1. Books, channels and files

{"Books", "channels" and "files" model the t ransput devices of the
physical machine used in the implementation.}

10.3.1.1. Books and backfiles

{aa) All information within the sys tem is to be found in a n u m b e r of
"books". A book (a) is a s t ructured value including a field text of the mode
specified by f l e x t e x t (b) which refers to information in the fo rm of
charac ters . The text has a var iab le number of pages, each of which m a y
have a var iable number of lines, each of which m a y have a var iable
number of charac ters . Positions within the text are indicated by a page
number, a line number and a cha rac t e r number . The book includes a field
lpos which indicates the "logical end" of the book, i.e., the position up to
which it has been filled with information, a str ing idf, which identifies the
book and which m a y possibly include other information, e.g., ownership,
and fields pu t t ing and users which permi t the book to be opened
(10.3.1.4.d) on more than one file s imultaneously only if putting is not
possible on any of them.

ALGOL 68 Revised Report 141

bb) The books in the sys tem are accessed via a chain of backfiles.
The chain of books avai lable for opening (10.3.1.4.dd) is referenced by
chainbfile. A given book m a y be referenced by more than one backfile on
this chain, thus allowing s imultaneous access to a single book by more
than one process {10.2.4}. However such access can only be for reading a
book, since only one process m a y access a book such that it m a y be "
written to (aa). The chain of books which have been locked {10.3.1.4.o) is
referenced by lockedbfile.

cc) Simultaneous access by more than one process to the chain of
backfiles is prevented by use of the semaphore bfileprotect, which provides
mutual exclusion between such processes.

dd) Books m a y be crea ted (e.g., by input) or dest royed (e.g., a f te r
output) by tasks (e.g., the operat ing system) in the system-task.list
(10.4.2), such books being then added to or removed f rom the chain of
backfiles.}

a) m o d e .~ b o o k =
s t r u c t (f l e x t e x t text,

pos lpos ¢ logical end o f book ¢,
s t r i n g idf ¢ identi f ication ¢,
boo lpu t t i ng ¢ true i f the book m a y be wri t ten to ¢,
in t users ¢ the n u m b e r o f t imes the book is opened ¢) ;

b) m o d e .~ text = r e f [] [] [] char ,
mode .~ ffaxtext = ref flex [] f lex [] f lex [] c h a r ;

c) m o d e .~ pos = struct (int p, l, c) ;

d} prio .~ beyond = 5,
op beyond = (pos a, b) bool :

if p of a < p of b then false
el i f p of a > p of b then true
el i f l o f a < / o f b then false
elif l o f a > l o f b then true
else c o f a > c o f b
f l ;

e)

f)

g)

h)

m o d e .~ bf l le = struct (ref book book, ref bfl le next) ;

ref bfl le .~ cha inb f i l e := n i l ;

ref bflle .~ lockedbf i le := n i l ;

s e m a .~ bfileprotect = (s e m a s; F of s := P R I M i n t : = 1; s) ;

10.3.1.2. Channels

{aa) A "channel" corresponds to one or more physical devices {e.g., a
card reader, a card punch or a line printer, or even to a set up in nuclear

142 van Wijngaarden, et al.

physics the results of which are collected by the computer) , or to a
filestore maintained by the operating system. A channel is a s tructured
value whose fields are routines returning truth values which determine the
available methods of access to a book linked via that channel. Since the
methods of access to a book may well depend on the book as well as on
the channel (e.g., a certain book may have been trapped so that it may be
read, but not written to), most of these properties depend on both the
channel and the book. These properties may be examined by use of the
environment enquiries provided for files (10.3.1.3.ff). Two environment
enquiries are provided for channels. These are:

• es tabpossible , which returns true if another file may be "established"
(10.3.1.4.cc) on the channel;
• s tandconv, which may be used to obtain the default "conversion key"
(bb) for the channel.

bb) A "conversion key" is a value of the mode specified by c o n y which
is used to convert characters to and from the values as stored in
"internal" form and as stored in "external" form in a book. It is a
structured value comprising a row of structures, each of which contains a
value in internal form and its corresponding external value. The
implementation may provide additional conversion keys in its library-
prelude.

cc) Three standard channels are provided, with properties as defined
below (e,f,g). The implementation may provide additional channels in its
library-prelude. The channel number field is provided in order that

with otherwise identical possibilities may be different channels
distinguished.}

a)

b)

c)

d)

e)

f)

mode channel =
s l ruc t (proc (ref book) b o o l .~ reset, .~ set, .a get, .~ put, ~ bin,

.~ compress, .~ reidf,
p r o c b o o l .~ estab, p r o c p o s .~ m a x pos,
p r o c (rel book) c o n v .~ s tandconv, int .~ channe l number) ;

m o d e .~ c o n y = s l ruc t ([1 : inl (skip)] s t ruc l (char internal, external) F) ;

p r o c estab possible = (channe l c h a n) b o o l : estab of c han ;

p r o c s t a n d c o n v = (channe l c h a n) p r o c (te l b o o k) c o n y :
s tandconv of chan;

c h a n n e l s tand in channel = c a channel value whose field selected by
'get' is a routine which a lways returns true, and whose other
fields are some suitable values c;

channe l s t a n d out channel = c a channel value whose field selected by
'put' is a routine which a lways returns true, and whose other
fields are some suitable values c ;

g)

ALGOL 68 Revised Report 143

channe l s t a n d back channel = c a channel value whose fields selected
by 'set', 'reset', 'get', 'put' and 'bin' are routines which ahvays
return true, and whose other fields are some sui table values c ;

10.3.1.3. Files

{aa) A "file" is the means of communicat ion between a particular-
program and a book which has been opened on that file via some channel.
It is a structured value which includes a reference to the book to which it
has been linked (10.3.1.4.bb) and a separate reference to the text of the
book. The file also contains information necessary for the t ransput
routines to work with the book, including its current position cpos in the
text, its current "state" (bb), its current "format" (10.3.4) and the channel
on which it has been opened.

bb) The "state" of a file is determined by five fields:
• read mood, which is t rue if the file is being used for input;
• write mood, which is true if the file is being used for output;
• char mood, which is true if the file is being used for charac te r
transput;
• bin mood, which is true if the file is being used for binary
transput;
• opened, which is true if the file has been linked to a book.

cc) A file includes some "event routines", which are called when
certain conditions arise during transput. After opening a file, the event
routines provided by default return false when called, but the p r o g r a m m e r
may provide other event routines. Since the fields of a file are not directly
accessible to the user, the event routines may be changed by use of the
"on routines" (1,m,n,o,p,q,r). The event routines are always given a
reference to the file as a parameter . If the elaboration of an event routine
is terminated, then the transput routine which called it can take no further
action; otherwise, if it returns true, then it is assumed that the condition
has been mended in some way, and, if possible, t ransput continues, but if
it returns false, then the system continues with its default action. The on
routines are:

• on logical f i leend. The corresponding event routine is called when,
during input from a book or as a result of calling set, the logical end of
the book is reached (see 10.3.1.6.dd).
Example:

The p rogrammer wishes to count the number of integers on his
input tape. The file intape was opened in a surrounding range. If he
writes:

begin int n : = O; on logical file end (intape, (ref file file) bool : gore f);
do get (intape, Ioc int); n +:= 1 od;
f: pr in t (n)

e n d ,

144
/

van Wijngaarden, et al.

then the assignment to the field of i n t a p e violates the scope
restriction, since the scope of the routine (ref file f i le) boo / : goto f is
smaller than the scope of i n ta p e , so he has to write:

begin int n : = O; file a u x i n : = in tape;
on logical f i le e n d (aux in , (ref file f i le) boo l : goto f);
do ge t (aux in , Ioc int); n +: = 1 od;
f: p r i n t (n)

e n d .
• on p h y s i c a l f i le end . The corresponding event routine is called when
the current page number of the file exceeds the number of pages in the
book and further transput is a t tempted (see 10.3.1.6.dd).

• o n p a g e e n d . The corresponding event routine is called when
the current line number exceeds the number of lines in the current page
and further transput is a t tempted (see 10.3.1.6.dd).

• on l ine end. The corresponding event routine is called when
the current charac ter number of the file exceeds the number of
characters in the current line and further transput is a t tempted (see
10.3.1.6.dd).
Example:

The p rog rammer wishes automatical ly to give a heading at the start
of each page on his file f:

on p a g e e n d (f, p roc (ref file f i le) boo l :
(put (file, (n e w p a g e , "page n u m b e r ", w h o l e (i +: = 1, 0),

newl ine)) ; frue)
¢ it is a s s u m e d t h a t i h a s been dec lared e l s e w h e r e ¢) .

• on c h a r e r r o r . The corresponding event routine is called when a
character conversion was unsuccessful or when, during input, a
character is read which was not "expected" (10.3.4.1.11). The event
routine is called with a reference to a charac te r suggested as a
replacement. The event routine provided by the p r o g r a m m e r may
assign some charac ter other than the suggested one. If the event
routine returns true, then that suggested charac te r as possibly modified
is used.
Example:

The p rogrammer wishes to read sums of money punched as
"$123.45", " .$23.45", " . . $3 .45" , etc.:

on c h a r error (s t a n d in, (ref file f, re f char sugg) boo l :
if s u g g = "0"
then char c; b a c k s p a c e (f); g e t (f, c);

(c = "$"1 g e t (f, sugg); gruel false)
else false
f l);

int cents ; r e a d f (($ 3z " , "r idS , cen ts))

ALGOL 68 Revised Report 145

• on va lue error. The corresponding event routine is called when:
(i) during formatted transput an at tempt is made to transput a value

under the control of a "picture" with which it is incompatible, or when
the number of "frames" is insufficient. If the routine returns true, then
the current value and picture are skipped and transput continues; if
the routine returns false, then first, on output, the value is output by •
pu t , and next u n d e f i n e d is called;

(ii) during input it is impossible to convert a string to a value of some
given mode (this would occur if, for example, an a t tempt were made to
read an integer larger than m a x in t (10.2.1.c)).

• on f o r m a t end . The corresponding event routine is called when,
during formatted transput, the format is exhausted while some value
still remains to be transput. If the routine returns true, then u n d e f i n e d
is called if a new format has not been provided for the file by the
routine; otherwise, the current format is repeated.

dd) The c o n y field of a file is its current conversion key (10.3.1.2.bb).
After opening a file, a default conversion key is provided. Some other
conversion key may be provided by the p rog rammer by means of a call of
m a k e c o n v (j). Note that such a key must have been provided in the
library-prelude.

ee) The routine m a k e t e r m is used to associate a string with a file.
This string is used when inputting a variable number of characters , any of
its characters serving as a terminator.

ff) The available methods of access to a book which has been opened
on a file may be discovered by calla of the following routines (note that the
yield of such a call may be a function of both the book and the channel,
and of other environmental factors not defined by this Report):

• g e t poss ib l e , which returns true if the file may be used for input:
• p u t poss ib l e , which returns true if the file may be used for output:
• b in poss ib l e , which returns true if the file may be used for binary
transput:
• compres s ib l e , which returns true if lines and pages will be
compressed (lO.3.l.6.aa) during output, in which case the book is said
to be "compressible";
• rese t poss ib le , which returns true if the file may be reset, i.e., its
current position set to (1, 1, 1);
• se t pos s ib l e , which returns true if the file may be set, i.e., the current
position changed to some specified value: the book is then said to be a
"random access" book and, otherwise, a "sequential access" book:
• r e i d f p o s s i b l e , which returns true if the i d f field of the book may be
changed; y
• chan , which returns the channel on which the file has been opened
(this may be used, for example, by a routine assigned by
on p h y s i c a l f i le end , in.order to open another file on the same channel}.

146 van Wijngaarden, et al.

gg) On sequential access books, undef ined (10.3.1.4.a) is called if
binary and charac te r t ransput is al ternated, i.e., a f ter opening or resett ing
(10.3.1.6.j), ei ther is possible but, once one has taken place, the other ma~
not until af ter another reset.

hh) On sequential aecess books, output immediate ly causes the logical
end of the book to be moved to the current position (unless both a r e in the
same line); thus input may not follow output without first resett ing
(10.3.1.6.j).

Example:

b e g i n file f l , f2; [1 : 1 0 0 0 0] in t x; in t n : = O;
open (fl, "", channe l 2);
f2:=fl;

¢ now f l and f2 can be used in terchangeably ¢
m a k e cony (fl, flexocode); m a k e cony (f2, telexcode);

¢ now f l and f2 use di f ferent codes; f lexocode and telexcode are
def ined in the l ibrary-prelude for this imp lemen ta t ion ¢

reset (fl);
¢ consequently, f2 is reset too ¢

on logical file end (fl , (ref file f) bool : goto done);
fori d o g e t (fl , x [i]); n := i od;

¢ too bad if there are more than i0000 integers in the input ¢
done:

reset (fl); fori to n do pu t (f2, x [i]) od;
close (f2) ¢ f l is now closed too ¢

end }

a) mode file =
struct (ref book 9 book, union (flextext, text) 9 text, channel 9 chan,

ref format 9 format, ref int 9 forp,
ref bool 9 read mood, 9 write mood, 9 char mood, 9 bin mood,

9 opened,
ref pos 9 cpos ¢ current posi t ion ¢,
s t r i n g 9 term ¢ s tr ing terminator ¢,
cony 9 cony ¢ character conversion key ¢,
proc (ref file) bool 9 logical file mended, 9 phys ica l file mended ,

.*page mended, 9 line mended, 9 f o rmat mended ,
9 value error mended,

proc (ref file, te l char) bool 9 char error mended) ;

b) proc ge t possible = (ref flle f) bool :
(opened of f l (get of chan o f f) (book of f) l undef ined; skip) ;

c) proc pu t possible = (ref file f) bool :
(opened of f l (put of chan of f) (book of f) l undef ined; skip) ;

d) proc bin possible = (ref file f) boos:
(opened of f l (bin o f c h a n o! f) (book o f f) I undef ined; s k i p) ;

e)

g)

h)

J)

k)

1)

m)

n)

o)

p)

q)

r)

s)

ALGOL 68 Revised Report

proc compressible = (tel file f) bool :
(opened o f f (compress of chan of f) (book of f) l undef ined; skip) ;

proc reset possible = (tel file f) bool :
(opened o f f (reset of chan o f f) (book of f) l undef ined; skip) ;

proc set possible = (ref file f) bool :
(opened of fl (set of chan of f) (book o f f) [undef ined; skip) ;

proc reidf possible = (ref file f) bool :
(opened o f f (reidf of chan of f) (book of f) I undef ined; skip) ;

proc chan = (ref file f) c h a n n e l :
(opened o f f l chan of f l undef ined; skip);

proc m a k e cony = (ref file f, proc (ref book) conv c) void :
(opened of f i cony o f f := c (book o i l) I undef ined) ;

proc m a k e term = (ref file f, string t) void : term o f f : = t ;

proc on logical file end = (ref file f, proc (ref file) bool p) void :
logical file m e n d e d o f f : = p ;

proc on phys ica l file end = (ref file f, proc (ref file) bool p) void :
phys ical file m e n d e d o f f : = p ;

proc on page end = (tel file f, proc (ref file) bool p) void :
page mended o f f : = p ;

proc on line end = (ref file f, proc (ref file) bool p) void :
line mended o f f : = p ;

proc on format end = (ref file f, proc (ref file) bool p)vo id :
format mended o f f : = p ;

proc on value error = (ref file f, proc (ref file) bool p) void :
value error m e n d e d o f f : = p ;

proc on char error = (ref file f, proc (ref file, ref char) bool p) void :
char error mended o f f : = p ;

proc reidf = (ref file f, s t r i n g idf) void :
if opened o f f ^ reidf possible (f) a idf ok (idf)
then idf of book o f f : = id f
fl;

147

10.3.1.4. Opening and closing files

{aa) When, during t ransput ; something happens which is left undefined,
for example by explicitly calling undef ined (a), this does not imply that
the elaboration is catastrophically and immediate ly interrupted (2.1.4.3.h),
but only that some sensible action is taken which is not or cannot be
described by this Report alone and is general ly implementat ion-dependent .

/
148 van Wijngaarden, etal.

bb) A book is "linked" with a file by means of establ ish (b), create (c)
or open (d). The linkage may be terminated by means of close (n), lock
(o) or scratch (p).

cc) When a file is "established" on a channel, then a book is generated
(5.2.3) with a text of the given size, the given identification string, with

put t ing set to true, and the logical end of the book at (1, 1, 1). An
implementation may require (g) that the characters forming the
identification string should be taken from a limited set and that the string
should be limited in length. It may also prevent two books from having the
same string. If the establishing is completed successfully, then the value 0
is returned: otherwise, some nonzero integer is returned (the value of this
integer might indicate why the file was not established successfully).

When a file is "created" on a channel, then a file is established with a
book whose text has the default size for the channel and whose
identification string is undefined.

dd) When a file is "opened", then the chain of backfiles is searched for
the first book which is such that match (h) returns true. (The precise
method of matching is not defined by this Report and will, in general, be
implementation dependent. For example, the string supplied as pa ramete r
to open may include a password of some form.) If the end of the chain of
backfiles is reached or if a book has been selected, but pu t t i ng of the book
yields true, or if putting to the book via the channel is possible and the
book is already open, then the further elaboration is undefined. If the file
is already open, an up greml ins provides an opportunity for an appropriate
system action on the book previously linked (in case no other copy of the
file remains to preserve that linkage).

ee) The routine associate may be used to associate a file with a value
of the mode specified by either ref [] char, ref [] [] char or ref [] [] []
char, thus enabling such variables to be used as the book of a file.

ff) When a file is "closed", its book is at tached to the chain of
backfiles referenced by chainbfile. Some system-task is then activated by
means of an up gremlins . (This may reorganize the chain of backfiles,
removing this book, or adding further copies of it. It may also cause the
book to be output on some external device.)

gg) When a file is "locked", its book is at tached to the chain of
backfiles referenced by lockedbfile. Some system-task is then activated by
means of an up gremlins . A book which has been locked cannot be re-
opened until some subsequent system-task has re-attached the book to the
chain of backfiles available for opening.

hh) When a file is "scratched", some system-task is activated by
means of an up gremlins . (This may cause the book linked to the file to be
disposed of in some manner.)}

a)

b)

c)

d)

ALGOL 68 Revised Report 149

proc .~ undef ined = int : c some sensible s y s t e m action y ie ld ing an
integer to indicate w h a t has been done; it is p r e s u m e d that the
sy s t em action m a y depend on a knowledge o f a n y values
accessible 12.1.2.c} inside the locale o f a n y environ which is older
than that in which this p s e u d o - c o m m e n t is being elaborated
{notwithstanding that no ALGOL 68 construct written here could
access those values} c ;

proc e s t a b l i s h =
(ref f i le f i le , string idf, channel c h a n , i n t p , l, c) int :
begin

down bfileprotect;
P R I M book book : =

(P R I M f l e x [l : p] f l e x [l : l] f l e x [l : c]char, (1,1,1), idf,
true, 1);

if file available (chan)^ (put of chan) (book)
^ estab of c h a n ^ - (pos (p, l, c) beyond m a x pos of chan)
^ - (pos (1, 1, 1) beyondpos (p, l, c)) ^ i d f o k (idf)

then
(opened of file] u p greml ins I u p bfileprotect);
file :=

(book, text of book, chan, skip, skip,
¢ state: ¢ heap bool : = false, heap bool : = true,

heap bool : = false, heap bool : = false, heap bool : = true,
heap pos : = (1, 1, 1), "", (s tandconv of chan) (book),
¢ event routines: ¢ false, false, false, false, false, false,

(ref file f, ref char a) bool : false);
(" bin possible(f i le) I set char mood (file));
0

else up bfileprotect; unde f ined
fi

end;

proc create = (ref file file, channel chan) int :
begin pos m a x pos = m a x pos o f chan;

establish (file, skip, chan, p of m a x pos, l of m a x pos,
c of m a x pos)

end;

proc o p e n = (re f f i le f i le , string idf, channel chan) int :
begin

down bfileprotect;
if file available (chan)
then ref ref bf l le b f : = c h a i n b f i l e ; bool f o u n d : = fa lse;

while (ref b f l l e (bf) : ~: n i l) ^ - f o u n d

150

e)

d o

van Wi jngaarden , et al.

if m a t c h (idf, chan, book o f bf)
then f ound : = true
e lse b f : = n e x t o f b f
fi

od;
if - f ound
then up bfileprotect; unde f ined
else ref book book := book of bf;

if p u t t i n g of book v (put o f chan) (book) ^ users of book > 0
then

up bfileprotect; unde f ined ¢ in th is case open ing is
inh ib i ted by o ther users - the s y s t e m m a y e i ther
wait , or y ie ld nonzero (indicat ing unsuccess fu l
opening) i m m e d i a t e l y ¢

else
users o f book +: = 1;
((put o f chan) (book) t p u t t i n g o f book : = true);
ref ref bflle (bf) := n e x t o f bf; ¢ remove bfi le f rom chain ¢
(opened o f f i le I up g r e m l i n s I up bfileprotect);
f i le :=

(book, t ex t o f book, chan, skip, skip,
¢ state: ¢ heap bool : = false, heap bool : = false,

heap bool : = false, heap bool : = false,
heap bool : = true,

heap pos := (1, 1, 1), "", (s tandconv o f chan) (book),
¢ even t routines: ¢ false, false, false, false, false,

fa lse, (ref file f, ref char a) bool : false);
(- bin poss ib le (file) I se t char mood (file));
(~ ge t poss ib le (file) I se t wri te mood (file));
(- pu t poss ib le (file) I se t read mood (file));
0

fi
fi

else up bfileprotect; unde f ined
fi

e n d ;

proc associate =
(ref fi le f i le, re f [] [] [J char sss) void :
i f in t p = lwb sss; in t l = lwb sss [p J; in t c = lwb sss I P I [l];

p = 1 ^ 1 = 1 ^ c = 1
then

proc t = (ref book a) bool : true;
proc f = (ref book a) bool : false;
channe l c h a n = (t, t, t, t, f, f, f, boo l : false,

p o s : (max int, m a x int, m a x int), skip, skip);
(opened o f f i le I down bfileprotect; up greml ins) ;

f)

g)

h)

i)

J)

k)

ALGOL 68 Revised Repor t 151

f i le : =
(heap book := (skip, (upb sss + I , 1, 1), skip, true, 1), sss, t h a n ,
skip, skip,
¢ state: ¢ heap bool : = false, heap boo l : = false,

heap bool : = true, heap bool : = false, heap bool : = true,
heap pos := (1, 1, i) , " ' , skip,
¢ even t routines: ¢ false, false, false, false, false,, false,

(ref file f, ref char a) bool : false)
else undef ined J
fi;

proc .~ f i le avai lable = (channel chan) boo l :
c true i f ano ther file, a t th is i n s tan t o f t ime, m a y be opened on

'chan' and fa lse o therwise c ;

proc .~ idf ok = (string idf) boo l :
c true i f 'idf' is acceptable to the i m p l e m e n t a t i o n as the

ident i f icat ion o f a n e w book and fa l se o therwise c ;

proc .~ m a t c h =
(string idf, channel chan, r e f book book n a m e) b o o / :
c true i f the book referred to by 'book n a m e ' m a y be ident i f ied by

'idf', and i f the book m a y l eg i t imate ly be accessed through
'chan', and fa lse o therwise c ;

proc .~ fa lse = (ref file file) boo l : false
¢ this is included for brev i t y in 'establish' , 'open' and 'associate ' ¢ ;

proc .~ set wri te mood = (ref file f) void :
if - pu t poss ible (f) v

- s e tpos s ib l e (f) ^ bin mood o f f ^ read mood o f f
then undef ined
else ref bool (read mood o f f) := false; ref boo l (wr i te mood o f f : := true
f i ;

proc .~ set read mood = (ref file f) void :
if - ge t poss ib le (f) v

- s e tpos s ib l e (f) ^ bin mood o f f ^ wr i te mood o f f
then undef ined
else ref boo l (read mood o f f) : = true; ref bool (wri te mood o f f) : = false
fi;

proc .~ set char mood = (ref file f) void : S
if - se t poss ible (f) ^ bin mood o f f
then undef ined
else ref boo l (char mood o f f) := true; ref bool (bin mood o f f) : = false
fi;

152

m)

n)

o)

P)

van Wijngaarden, et al.

proc .~ set b in mood = (rot file f) void :
i f" bin poss ib le (f) v . se t poss ib l e (f) ^ char m o o d o f f
than u n d e f i n e d
else ref bool (char mood o f f) : = false; ref boo l (b in mood o f f / : = true
f i ;

proc close = (ref file f i le) void :
i f o p e n e d of f i le
then

down bfi leprotect;
ref bool (opened of file) := false;
ref b o o k book = book of file;
p u t t i n g of book := false; users o f book -: = 1;
(text of f i le I (flextext): cka inb f i l e :=

P R I M bflle := (book, chainbfi le));
up g r e m l i n s

fl;

proc lock = (ref file f i le) void :
i f o p e n e d of f i le
then

down bfi leprotect;
ref bool (opened of file) := false;
ref b o o k book = book of file;
p u t t i n g of book := false; users o f book - := 1;
(text of f i le I (flexlext): lockedbf i le :=

P R I M bflle : = (book, lockedbfile));
up g r e m l i n s

fi;

proc scra tch = (ref file file) void :
if o p e n e d of f i le
then

down bf i leprotect ;
ref boo l (opened of f i le) := false;
p u t t i n g of book of f i le : = false;
users o f book of f i le -: = 1;

up g r e m l i n s
fl;

10.3.1.5. Position enquiries

{aa) The "current position" of a book opened on a given file is the
value referred to by the cpos field of that file. It is advanced by each
transput operation in accordance with the number of charac ters written or
read.

If c is the current charac te r number and Ib is the length of the
current line, then at all t imes 1 <_c ~ lb + 1. c = 1 implies that the next

ALGOL 68 Revised Report 153

transput operation will be to the first charac ter of the line and c = Ib + 1
implies that the line has overflowed and that the next t ransput operation
will call an event routine. If Ib = 0, then the line is empty and is therefore
always in the overflowed state. Corresponding restrictions apply to the
current line and page numbers. Note that, if the page has overflowed, the
current line is empty and, if the book has overflowed, the current page
and line are both empty (e).

bb) The user may determine the current position by means of the
routines char n u m b e r , l ine n u m b e r and p a g e n u m b e r (a, b, c).

cc) If the current position has overflowed the line, page or book, then
it is said to be outside the "physical file" (f, g, h).

dd) If, on reading, the current position is at the logical end, then it is
said to be outside the "logical file" (i).}

{Each routine in this section calls u n d e f i n e d if the file is not open on
entry.}

a) proc char n u m b e r = (ref file f) int :
(opened of f l c o f cpos o f f l u n d e f i n e d) ;

b) proc l ine n u m b e r = (ref file f) int :
(opened of f l l o f cpos o f f l unde f i ned) ;

c) proc p a g e n u m b e r = (ref file f) int :
(opened of f l p o f cpos o f f l unde f i ned) ;

d) proc .~ curren t pos = (ref file f) pos :
(opened o f f l cpos o f f l u n d e f i n e d ; skip);

e) proc .~ book bounds = (ref file f) pos :
begin pos cpos = curren t pos (f);

int p = p o f cpos, l= l o f cpos;
case t ex t o f f i n

(text t l) :
(int pb = upb t l ;
int lb = (p <_ 0 v p > pb I 01 upb t l [p]);
i n t c b = (l <_O v l> lbl OI u p b t l [p] [l]);
(pb, lb, cb)) ,

(flextext t2):
(int p b = upb t2;
int lb = (p <_0 v p > p b I 01 upb t2 [p]);
i n t c b = (l <_O v l> lbl OI u p b t 2 [p] [l]);
(pb, lb, cb))

esac
end;

f) proc .~ l ine ended = (ref file f) boo l :
(int c = c o f curren t pos (f); c > c o f book b o u n d s (f)) ;

154

g)

h)

i)

/
van Wijngaarden, et al.

proc .~ page ended = (ref file f) bool :
(int l = l of current pos (f); l > l of book bounds (f)) ;

proc .~ phys ica l file ended = (ref file f) boo l :
(int p = p of current pos (f); p > p of book bounds (f)) ;

proc .~ logical file ended = (ref file f) boo l :
(lpos of book of f b e y o n d current pos (f)) ;

10.3.1.6. Layout routines

{aa) A book input from an external medium by some system-task may
contain lines and pages not all of the same length. Contrariwise, the lines
and pages of a book which has been established (10:3.1.4.cc) are all
initially of the size specified by the user. However if, during output to a
compressible book (10.3.1.3.ff), newl ine (newpage) is called with the
current position in the same line (page) as the logical end of the book,
then that line (the page containing that line) is shortened to the charac te r
number (line number) of the logical end. Thus pr in t (("abcde", newline))
could cause the current line to be reduced to 5 charac ters in length. Note
that it is perfectly meaningful for a line to contain no charac ters and for a
page to contain no lines.

Although the effect of a channel whose books are both compressible
and of random access (10.3.1.3.ff) is well defined, it is.not anticipated that
such a combination is likely to occur in actual implementations.

bb) The routines space (a), newl ine (c) and ne wpage (d) serve to advance
the current position to the next character , line or page, respectively. They
do not, however, (except as provided in cc below) alter the contents of the
positions skipped over. Thus pr in t (Ca", backspace, space)) has a different
effect from pr in t (Ca", backspace, blank)).

The current position may be altered also by calls of backspace (b), set
char number (k) and, on appropriate channels, of set (i) and reset (j).

cc) The contents of a newly established book are undefined and both its
current position and its logical end are at (1, 1, 1). As output proceeds, it
is filled with characters and the logical end is moved forward accordingly.
If, during charac ter output with the current position at the logical end of
the book, space is called, then a space charac ter is written (similar action
being taken in the case of newl ine and ne wpage if the book is not
compressible).

A call of set which at tempts to leave the current position beyond the
logical end results in a call of undef ined (a sensible system action might
then be to advance the logical end to the current position, or even to the
physical end of the book). There is thus no defined way in which the
current position can be made to be beyond the logical end, nor in which
any character within the logical file can remain in its initial undefined
state.

ALGOL 68 Revised Report 155

dd) A reading or writing operation, or a eaU of space, newline, newpage ,
set or set char number , may bring the current position outside the physical
or logical file (10.3.1.5.cc, dd), but this does not have any immediate
consequence. However, before any further transput is attempted, or a
further call of space, newl ine or newpage (but not of set or set char
number) is made, the current position must be brought to a "good"
position. The file is "good" if, on writing (reading), the current position is
not outside the physical (logical) file (10.3.1.5.cc, dd). The page (line) is
"good" if the line number (character number) has not overflowed. The
event routine (10.3.1.3.cc) corresponding to on logical file end, on phys ica l
file end, on page end or on line end is therefore called as appropriate.
Except in the case of formatted transput (which uses check pos,
10.3.3.2.c), the default action, if the event routine returns false, is to call,
respectively, undefined, undef ined, n e wp a g e or newline. After this (or if
true is returned), if the position is still not good, an event routine (not
necessarily the same one) is called again.

ee) The state of the file (10.3.1.3.bb) controls some effects of the
layout routines. If the read/write mood is reading, the effect of space,
newl ine and newpage, upon at tempting to pass the logical end, is to call
the event routine corresponding to on logical file end with default action
undefined; if it is writing, the effect is to output spaces (or, in bin mood,
to write some undefined character) or to compress the current line or
page (see co). If the read/write mood is not determined on entry to a
layout routine, undef ined is called. On exit, the read/write mood present
on entry is restored.]

a) p r o c space = (r e f f i l e f) void :
if - opened o f f then undef ined
else

bool reading =
(read mood of fl true I: write mood of f l false
l undefined; skip);

(- ge t good line (f, reading) I undefined);
ref p o s cpos = cpos of f;
if reading then c of cpos +: = 1
else

if logical file ended (f) then
if bin mood o f f then

(text of f l (flextext t2):
t2 [p of cpos] [l of cpos] [c of cpos] :=skip);

c of cpos +: = i; lpos of book o f f : = cpos
else put char (f, ". ")
fl

else c of cpos +: = 1
fl

fi
fl;

156

b)

c)

d)

van Wijngaarden, et al.

proc backspace = (ref file f) void :
if - o p e n e d o f f then u n d e f i n e d
else ref int c = c of cpos o f f ;

(c > 1 I c -: = 1 I unde f i ned)
fi;

proc n e w l i n e = (rot fi le f) void :
if - o p e n e d o f f then u n d e f i n e d
else

boo l r ead ing =
(read m o o d of f l true I: wr i te m o o d of f l false
l unde f ined; skip);

(- ge t g o o d p a g e (f, reading) l unde f ined) ;
ref pos cpos = cpos o f f , lpos = lpos of book o f f ;
if p of cpos = p o f lpos ^ l o f cpos = l o f lpos
then c o f cpos : = c o f lpos;

if r ead ing then n e w l i n e (f)
else

if compress ib l e (f)
then ref int pl = p of lpos, ll = l o f lpos;

flextext t ex t = (tex t o f f l (f lextext t2): t2);
t ex t [pl] [ll] := t ex t [pl] Ill] [" c o f lpos - 1]

else while ~ l ine e n d e d (f) do space (f) od
fi;
cpos : = lpos : = (p o f cpos, l of cpos + 1, 1)

fi
else cpos : = (p of cpos, l o f cpos + 1, 1)
fi

fi;

proc n e w p a g e = (rof file f) void :
if - o p e n e d o f f then u n d e f i n e d
else

bool read ing =
(read m o o d of f l true I" wr i te m o o d of f l false I unde f ined;
skip);

(- ge t good f i le (f, reading) I unde f ined) ;
ref pos epos = cpos o f f , lpos = lpos o f book o f f ;
if p of cpos = p of lpos
then cpos : = lpos;

if r ead ing then n e w p a g e (f)
else

if compress ib l e (f) ^ I o f lpos <_ l of book b o u n d s (f)
then rot int pl = p o f lpos, II = I o f lpos;

f lextext t ex t = (text o f f l (f lextext t2): t2);
t ex t [pl] [ll] := tex t [pl] Ill] [: c o f lpos - 1];
t ex t [pl] := tex t [pl] [: (c o f lpos > i i 1ll 1 l - 1) J

ALGOL 68 Revised Report

else while - p a g e e n d e d (f) do n e w l i n e (f) od
fi;
cpos : = lpos : = (p o f cpos + 1, 1, 1)

fl
else cpos : = (p o f cpos + 1, 1, 1)
fl

fl;

{Each of the following 3 routines either returns true, in which case the
line, page or file is good (dd), or it returns false, in which case the current
position may be outside the logical file or the page number m a y have
overflowed, or it loops until the mat te r is resolved, or it is terminated by a
jump. On exit, the read/write mood is as determined by its r e a d i n g
parameter.}

e) proc 9 g e t g o o d l ine = (rof file f, boo l reading) boo l :
begin bool no t ended;

while no t e n d e d : = ge t g o o d p a g e (f, reading);
l ine e n d e d (f) ^ no t e n d e d

do (- (line m e n d e d o f f) (f) l se t m o o d (f, reading); n e w l i n e (f)) od;
no t e n d e d

end;

f) proc 9 ge t good p a g e = (ref file f, bool reading) bool :
begin bool no t ended;

while no t e n d e d := ge t g o o d f i le (f, reading);
p a g e e n d e d (f) ^ no t e n d e d

do (- (page m e n d e d o f f) (f) I se t m o o d (f, reading); n e w p a g e (f)) od;
h o t e n d e d

end;

g) proc 9 g e t g o o d fi le = (rof file f, boo l reading) bool :
begin bool no t e n d e d : = true;

while se t m o o d (f, reading);
not e n d e d a
(reading l logical f i le e n d e d l p h y s i c a l f i le ended) (f)

do no t e n d e d : = (read ing l logical f i le m e n d e d o f f
I p h y s i c a l f i le m e n d e d o f f) (f)

od;
not e n d e d

end;

h) proc 9 set m o o d = (ref file f, boo l reading) void :
(reading l se t read m o o d (f) I se t wr i te m o o d (f)) ;

i) proc set = (rot file f, int p, l, c) void :
if - o p e n e d o f f v ~ se t poss ib l e (f) then u n d e f i n e d
else bool r ead ing =

(read m o o d of f l true I: wr i te m o o d o f f l false I unde f ined ; skip);

157

/

158 van Wijngaarden, et el.

ref pos cpos = ClJOS o f f , lpos = lpos o f book o f f ;
p o s ccpos = cpos;
if (cpos : = (p, l, c)) b e y o n d lpos
then cpos : = lpos;

(- (logical f i le m e n d e d o f f) (f) I undef ined);
se t m o o d (f, reading)

elif p o s bounds = book bounds (f);
p < 1 v p > p o f b o u n d s + 1
v l< 1 v l> l o f b o u n d s + 1
v c < 1 v c> c o f b o u n d s + l

then cpos := ccpos; u n d e f i n e d
fi

fi;

j) proc reset = (ref file f) void :
if - opened o f f v , reset pos s ib l e (f) then u n d e f i n e d
else

ref boo l (read m o o d o f f) : = - p u t pos s ib l e (f);
ref boo l (wri te m o o d o f f) : = - g e t p o s s i b l e (f);
ref boo l (char m o o d o f f) : = - b in p o s s i b l e (f);
ref boo l (bin m o o d o f f) : = false;
ref p o s (cpos o f f) := (I, 1, 1)

fl;

k) proc se t char n u m b e r = (ref file f, int c) void :
if - opened o f f then u n d e f i n e d
else ref ref pos cpos = cpos of f;

while c of cpos ~ c
do

if c < 1 v c > c o f book b o u n d s (f) + 1
then u n d e f i n e d
elif c > c o f cpos
then space (f)
else back s p a ce (f)
fi

od
fi;

10.3.2. Transput values
10.3.2.1. Conversion routines

{The routines whole , f i x ed and f l oa t are intended to be used with the
formatless output routines pu t , p r i n t and wri te when it is required to have
a little extra control over the layout produced. Each of these routines has
a w i d t h parameter whose absolute value specifies the length of the string
to be produced by conversion of the ari thmetic value Y provided. Each of
f i xed and f loa t has an af ter narameter to specify the number o f digits
required after the decimal point, and an exp paramete r in f loa t specifies
the width allowed for the exponent. If V cannot be expressed as a string

ALGOL 68 Revised Report 159

within the given wid th , even when the value of after , if provided, has been
reduced, then a string filled with errorchar (10.2.l.t) is returned instead.

Leading zeroes are replaced by spaces and a sign is normally included.
The user can, however, specify that a sign is to be included only for
negative values by specifying a negative width. If the width specified is
zero, then the shortest possible string into which Y can be converted,
consistently with the other parameters , is returned. The following
examples illustrate some of the possibilities:

p r i n t (whole (i, -4))
which might print " . . .0" , " . .99" , ".-99", "9999" or, if i were
greater than 9999, ' , where is the yield of errorchar:

p r i n t (whole (i, 4))
which would print ".+99" ra ther than "..99":

p r i n t (whole (i, 0))
which might print "0", "99", "-99", "9999" or "99999":

p r i n t (f ixed (x, -6, 3))
which might print ".2.718", "27.183" or "271.83" (in which one
place after the decimal point has been sacrificed in order to fit
the number in);

p r i n t (f ixed (x, O, 3))
which might print "2.718", "27.183" or "271.828";

p r i n t (f loat (x, 9, 3, 2))
which might print "-2.7181o+0", "+2.7181o-1", or "+2.72~o+11" (in
which one place after the decimal point has been sacrificed in
order to make room for the unexpectedly large exponent).}

a) mode g number = union (~ L real~, ~ L int~) ;
b) proc whole = (number v, int w id th) string :

case v in
{ (L int x):

(int l e n g t h : = abs w i d t h - (x < L 0 v w i d t h > 0 }] I 0),
L i n t n : = abs x;
i f w id th = 0 then

L i n t m : = n; l e n g t h : = O;
w h i l e m +:= L lO; l eng th+:= I; m ~ L O
do skip od

f i ;
string s : = s u b w h o l e (n; length);
if l e n g t h = 0 v char in s t r i n g (errorchar, Ioc int, s)
then abs w i d t h x errorchar
else

(x < L 01 I: w i d t h > 01 "+"1 "") plus to s;
(wid th ~ O I (abs w i d t h - upb s) x ,£,~lplusto s);
S

f i)~ ,
~ (L real x): f i x e d (x , w id th , 0) 7

esac ;

160

c)

d)

/

van W i j n g a a r d e n , et al.

proc f i x e d = (n u m b e r v, int w i d t h , a f ter) s t r ing :
case v in

(L real x):
if int l e n g t h : = abs w i d t h - (x < L 0 v w i d t h > 01 11 0);

a f t e r >_ 0 ^ (l en g th > a f t e r v w i d t h = O)
then L real y = abs x;

i f w i d t h = 0
then l e n g t h : = (a f ter = 0 [i I 0);

whi le y + L . 5 x L . l I a f t e r >_L lO I l e n g t h
do l e n g t h +:= 1 od;
l e n g t h +: = (a f ter = 0 [0 [a f t e r + 1)

fl;
string s := s u b f i x e d (y, l e n g th , af ter);
if - c h a r in s t r i n g (errorchar , Ioc int, s)
then (l eng th > u p b s a y < IL 1.0["O" p lu s to s);

(x < L 01 l: w i d t h > 01 "+"["") p l u s t o s;
(w i d t h ~ O I (abs w i d t h - u p b s) x '£':lplusto s);
8

elif a f t e r > 0
then f i x e d (v, w id th , a f t e r - 1)
e l se abs w i d t h x e r rorchar
fl

e l se unde f ined ; abs w i d t h x e r rorchar
tit",

It (L i n t x): f i x e d (L real (x), w id th , a f ter) ~"
esac ;

proc f l oa t = (number v, int w id th , after, exp) string :
case v in

(L real x):
i f int before = abs w id th - abs exp - (af ter ~ 01 a f ter + 1 I O) - 2;

sign before + sign af ter > 0
then string s, L real y : = abs x, int p : = O;

L s t a n d a r d i z e (y, before, a f ter , p);
s : =

f i x e d (sign x x y , s ign w i d t h x (abs w i d t h - abs e x p - 1),
a f ter) + "1o" + w h o l e (p, exp);

i f e x p = 0 V c h a r in s t r i n g (errorchar , I o c int, s)
then

f l oa t (x, w i d t h , (a f ter ~ 01 a f t e r - 1 [0),
(exp > 0 [e x p + 1 [e x p - 1))

else s
f i

e l se unde f ined ; abs w i d t h x e r rorchar
t i t ,

(L i n t x): f l oa t (L real (x), w id th , a f ter , exp) #
esac ;

e)

f)

g)

h)

ALGOL 68 Revised Rep o r t

proc 9 s u b w h o l e = (n u m b e r v, in t w i d t h) s t r ing :
¢ r e tu rns a s t r i n g o f m a x i m u m l e n g t h ' w i d t h ' c o n t a i n i n g a

d e c i m a l r e p r e s e n t a t i o n o f the p o s i t i v e i n t e g e r 'v ' ¢
case v In

~ (L int x):
begin string s, L int n : = x;

while d ig char (8 (n mod JL 10)) p lusto s;
n s:= L lO; n ~ L O

do skip od;
(upb s > w i d t h I w i d t h x e r rorchar l s)

end
esac ;

proc .~ s u b f i x e d = (n u m b e r v, int wid th , a f ter) string :
¢ r e tu rns a s t r i n g o f m a x i m u m l e n g t h ' w i d t h ' c o n t a i n i n g a

rounded d e c i m a l r e p r e s e n t a t i o n o f t h e p o s i t i v e real n u m b e r
'v'; i f 'a f ter ' is g r e a t e r t h a n zero, t h i s s t r i n g c o n t a i n s a
d e c i m a l p o i n t f o l l o w e d b y 'a f ter ' d ig i t s ¢

case v in
(L real x):

begin sir ing s, in t before : = O;
L real y : = x + L .5 x L .1 I af ter;
proc c h o o s e d i g = (ref L real y) char :

d ig c h a r (tint c : = S en t i e r (y x: = L 10.0); (c > 91 c : = 9);
y -: = K c ; c));

while y _> IL 10.0 I be fore do before +: = 1 od;
y / : = L 10.0 I before;
to before do s p lu sab c h o o s e d i g (y) od;
(a f ter > 0 [s p lu sab ".");
to after do s p lu sab c h o o s e d i g (y) od;
(upb s > w i d t h [w i d t h x e r rorchar J s)

end
esac ;

proc 9 L s t a n d a r d i z e = (ref L real y, int before , a f ter , ref int p) void :
¢ a d j u s t s t he v a l u e o f 'y ' so t h a t i t m a y be t r a n s p u t a c c o r d i n g

to t he f o r m a t $ n (be fore)d . n (a f t e r)d $; 'p' is s e t so t/zat
y x 10 t p is e q u a l to t he o r ig ina l v a l u e o f ' y ' ¢

begin
JL rea lg = L 10.0 I before; L real h = g × L .1;
whi ley >_g d o y x : = L .1; p + : = 1 od;
(y ~ JLO.O I while y < h do y x : = L 10.0; p - : = 1 od);
(y + L . 5 x L . 1 l a f t e r > _ g l y : = h ; p+:= l)

end;

proc 9 d ig char = tint x) char : "0123456789abcde f" I x + i I :

161

162

i)

J)

van Wijngaarden, et al.

proc 9 s t r i n g to L i n t = (string s, int radix , ref L i n t iJ bool :
¢ re turns true i f t he abso lu t e va lue o f the resul t is <_ L m a x in t ¢

begin
L i n t l r = K r a d i x ; b o o l sa fe : = true;
L i n t n : = L O, L int m = L m a x in t + lr;
L i n t m l = L m a x in t - m x lr;
for i from 2 to upb s
while L i n t d ig = K c h a r d ig (s l i j);

sa f e := n < m v n = m ^ d ig <_ml
do n : = n x lr + d ig od;
i f sa fe then i : = (s [1] = " + " I n J - n); true else false fl

end;
proc .~ s t r i n g to L r ea l = (s t r i ng s, re f L real r) b o o l :

¢ re turns true i f t he abso lu t e va lue o f t he result is <_
L m a x real ¢

begin
i n t e : = u p b s + 1;
c h a r in s t r i n g ("1o", e, s);
int p := e; c h a r in s t r i n g (".", p, s);
i n t j : = 1, l e n g t h : = O, L real x : = L 0.0;
C s k i p l ead ing zeroes: ¢
for i f r o m 2 to e - 1
w h i l e s [iJ = "0" v s [iJ = ',.,, v s liJ = "._"
do j : = i od;
for i f r o m j + 1 to e - I w h i l e l e n g t h < L r e a l w i d t h
do

i f s [i] ~ "."
then x : = x x L 10.0 + K c h a r d ig (s [j : = i]); h , n g t h +: = 1
fi ¢ all s i g n i f i c a n t d ig i t s c o n v e r t e d ¢

od;
¢ set p r e l i m i n a r y e x p o n e n t : ¢
int exp := (p >Jl P - J - 1 I P -J), e x p a r t := O;
¢ c o n v e r t e x p o n e n t part : ¢
bool sa fe : =

i f e < upb s
then s t r i n g to L i n t (s [e + 1 : J, I0, expar t)
else true
f i ;

C prepare a r e p r e s e n t a t i o n o f L m a x real to c o m p a r e w i t h t he
L real va lue to be delivered: ¢

L real m a x s t a g : = L m a x real, int m a x e x p : = O;
L s t a n d a r d i z e (m a x s tag , l eng th , O, m a x exp); exp +:= expar t ;
if - s a f e v (exp > m a x exp v e x p = m a x exp ^ x > m a x s tag)
then false
else r : = (s [l J ="+"1 x [- x) x L l O.O I exp; true
fi

end;

ALGOL 68 Revised Report

k) proc 9 c h a r d ig = (char x) int :
(x = ". "] 0 J int i; c h a r in s t r i n g (x, i, "O123456789abcdef"); i - 1) ;

l) p r o c c h a r i n s t r i n g = (c h a r c , r e f i n t i , s t r i n g s) b o o l :
(bool f o u n d := false;
for h from lwb s to upb s while ~ f o u n d
do (c = s [k] I i := k; f o u n d := true) od;
found) ;

m) int L i n t w i d t h =
¢ the s m a l l e s t i n t egra l va lue s u c h t h a t 'L m a x in t ' m a y be
c o n v e r t e d w i t h o u t error u s i n g the p a t t e r n n (L in t w i d t h) d ¢

(in t c := 1;
w h i l e L l O T (c - 1) < L . 1 x L m a x i n t d o c + : = 1 od;
c);

n) int L real w i d t h =
¢ the s m a l l e s t i n t egra l va lue s u c h t h a t d i f f e ren t s t r i ngs are
p r o d u c e d by c o n v e r s i o n o f ' I .0 ' a n d o f '1.0 + L s m a l l real ' u s i n g
the p a t t e r n d . n (L real w i d t h - 1)d ¢

1 - 8 e n t i e r (L In (L s m a l l real) / L In (L 10)) ;

o) int L exp w i d t h =
¢ the s m a l l e s t i n t egra l va lue s u c h t h a t 'L m a x real' m a y be
conver t ed w i t h o u t error u s i n g the p a t t e r n
d . n (L real w i d t h - 1)d e n (L exp w i d t h) d ¢

1 + 8 e n t i e r (L In (L In (L m a x real) / L In (L I0)) / L In (L 10)) ;

10.3.2.2. T r a n s p u t m o d e s

a) mode g simplout = u n i o n (e L int~, ~ L real~, ~ L comply, bool.
L bits 7, char, [J char) ;

b) mode 9 outtype = c an a c t u a l - d e c l a r e r s p e c i f y i n g a m o d e un i t ed f r o m
{2.1.3.6.a} a s u f f i c i e n t se t o f m o d e s n o n e o f w h i c h is 'void" or
c o n t a i n s ' f l ex ib le ' , ' r e f e r e n c e to' , ' p rocedu re" or "union o f ' c ;

c) m o d e g s i m p l i n = u n i o n (~ r e f L int~, ~ r e f L real~, ~ r e f L c o m p l ~ ,
ref bool, ~ ref L bits ~., ref char, ref [J char, ref string) ;

d) m o d e 9 in type = c an a c t u a l - d e c l a r e r s p e c i f y i n g a m o d e u n i t e d f r o m
{2.1.3.6.a} ' r e f e r e n c e to f l ex ib le row of c h a r a c t e r ' t oge ther w i t h a
s u f f i c i e n t se t o f m o d e s e a c h o f w h i c h is " re fe rence to" f o l l o w e d by
a m o d e w h i c h does no t c o n t a i n ' f l ex ib le ' , " r e fe rence to' ,
' p r o c e d u r e ' or "union o f ' c ;

{See the r e m a r k s a f t e r 10.2.3A c o n c e r n i n g the t e r m "suf f ic ien t set".}

10.3.2.3. S t r a i g h t e n i n g

a) op 9 straightout = (outtype x) [] simplout :
c the resul t o f " s t r a i g h t e n i n g " ' x ' c ;

163

164 van Wijngaarden, et al.

b) op .a straightin = t intype x) [] s implin :
c the resul t o f s t ra igh t en ing 'x' c ;

e) The result of "straightening" a given value Y is a multiple value W
{of one dimension} obtained as follows:
• it is required that V {if it is a name} be not nil:
• a counter i is set to O:
• Y is "traversed" {d} using i;
• W is composed of a descriptor ((1, i)) and the elements obtained by
traversing V;
• if Y is not (is) a name, then the mode of the result is the mode specified
by [] simplout ([] simplin).

d) A value Y is "traversed", using a counter i, as follows:
If Y is (refers to) a value from whose mode that specified by s implout is

united,
then

• i is increased by one;
• the element of W selected by (i) is V:

otherwise,
Case A: V is {refers to) a multiple value {of one dimension} having a

descriptor ((I, u)) :
• for j = I u, the element (the subname) of V selected by (j) is
traversed using i:

Case B: Y is (refers to) a multiple value {of n dimensions, n >_ 2} whose
descriptor is ((I 1, Ul), 02 , u2) (I n , u)) where n >_ 2: n
• for j= 11 u 1, the multiple value selected {2.1.3.4.i} by (the

name generated {2.1.3.4.j} by) the tr im (j, 0 2, u 2, 0)

(I n, u n, 0))is t raversed using i;

Case C: Y is (refers to) a structured value VI:
• the fields (the subnames of V referring to the fields) of Yl, taken
in order, are t raversed using i.

10.3.3. Formatless transput

{In formatless transput, the elements of a "data list" are transput, one
after the other, via a specified file. Each element of the data list is either
a layout routine of the mode specified by proc (raf file) void (10.3.1.6) or a
value of the mode specified by ou t t y pe (on output) or in type (on input). On
encountering a layout routine in the data list, that routine is called with
the specified file as parameter . Other values in the data list are first
straightened {10.3.2.3) and the resulting values are then transput via the
given file one after the other.

Transput normally takes place at the current position but, if there is no
room on the current line (on output) or if a readable value is not present
there (on input), then first, the event routine corresponding to on l ine end

ALGOL 68 Revised Report 165

(or, where appropriate, to on page end, on p h y s i c a l f i le end or
on logical f i le end) is called, and next, if this returns false, the next "good"
charac ter position of the book is found, viz., the first charac te r position of
the next nonempty line.}

10.3.3.1. Formatless output

{For formatless output, p u t (a) and p r i n t (or write) (10.5.l.d) may be
used. Each straightened value Y from the data list is output as follows:

aa) If the mode of V is specified by L int, then first, if there is not
enough room for L i n t wid th + 2 characters on the remainder of the
current line, a good position is found on a subsequent line (see 10.3.3):
next, when not at the beginning of a line, a space is given and then V is
output as if under the control of the picture n(L int w id th - 1)z + d.

bb) If the mode of V is specified by L real, then first, if there is not
enough room for L ~eal w id th + L exp wid th + 5 charac ters on the current
line, then a good position is found on a subsequent line; next, when not at
the beginning of a line, a space is given and then V is output as if under
control of the picture

+d. n(L real wid th - 1)den(L exp wid th - 1)z +d.

ce) If the mode of V is specified by L c o m p l , then first, if there is not
enough room for 2 x (L real w id th + L exp width) + 11 characters on the
current line, then a good position is found on a subsequent line; next,
when not at the beginning of a line, a space is given and then Y is output
as if under eontrol of the picture

+d. n(L real wid th - 1)den(L exp wid th - 1)z +d". "i
+d. n(L real wid th - 1)den(L exp w id th - 1)z +d.

dd) If the mode of Y is specified by b o o l , then first, if the current line
is full, a good position is found on a subsequent line; next, if Y is true
(false), the charac ter yielded by f l ip (flop) is output (with no intervening
space).

ee) If the mode of V is specified by L bits, then the elements of the
only field of V are output (as in dd) one after the other (with no
intervening spaces, and with new lines being taken as required).

ff) If the mode of V is specified by char, then first, if the current line
is full, a good position is found on a subsequent line; next V is output (with
no intervening space).

gg) If the mode of V is specified by [J char, then the elements of Y
are output (as in ff) one after the other (with no intervening spaces, and
with new lines being taken as required).}

166

a)

van Wijngaarden, et al.

proc put = (ref file f, [] union (outtype, proc (ref file) void) x) void :
i f opened of f then

for i to upb x
do case set write mood (f); set char mood (f); x [i] in

(proc (ref file) void pf): p f (f) ,
(outtype ot):
begin

[] simplout y = straightout ot;
~proc L real cony = (L real r) string :

f loat (r, L real wid th + L exp wid th + 4,
L real wid th - 1, L exp wid th + 1) ~;

for j to upb y
do case y [j] in

(union (number, ~ L comply) nc):
begin string s : =

case nc in
(L in t k): whole (k, L i n t wid th + 1) ~ ,

{ (L real r): L r e a l conv (r)~ ,
(L compl z): L real cony (re z) + "._1"

+ L real cony (ira z)
esac;
ref ref pos cpos = cpos o f f , int n = upb s;
while

nex t pos (f);
(n > c of book bounds (f) I undefined);
c o f cpos + (c of cpos = 1 I n I n + 1) >
c of book bounds (f) + 1

do (- (line m e n d e d o f f) (f) l pu t (f, newline));
set write mood (f)

od;
(c of cpos ~ 1 I "._" plusto s);
for k to upb s do pu t char (f, s [k]) od

end ¢ numeric ¢,
(bool b): (next pos (f); pu t char (f, (b I flip[flop))),

(L bits lb):
for k to L bits wid th
d o p u t (f, (L F o f l b) [k]) od~ ,

(char k): (next pos (f); pu t char (f, k)) ,
([] char ss):

for k from Iwb ss to upb ss
do nex t pos (f); pu t char (f, ss [k]) od

esac od
end

esac od
else undef ined
fl;

b)

c)

ALGOL 68 Revised Report

proc 9 pu t char = (ref file f, char char) void :
if opened o f f ^ - line ended (f)
then ref pos cpos = cpos of f , lpos = lpos of book of f ;

set char mood (f); set write mood (f);
ref int p = p of cpos, l = I of cpos, c = c of cpos;
char k; bool f ound : = false;
case text o f f i n

(text): (k := char; found := true),
(flextext):

for i to upb F o f conv o f f whi le - f ound
do struct (char internal, external) key = (F of cony of f) [i l;

(internal of key = char I k : = external of key;
f ound := true)

od
esac;
if found then

case text of f i n
(texttl): t l [p] i l l [c] :=k ,
(flextext t2): t2 [p] [l] [c] := k

esac;
c+:= 1;
if cpos beyond lpos then lpos : = cpos
elif - set possible (f) ^ pos (p o f lpos, I of lpos, 1) beyond cpos
then lpos := cpos;

(compressible (f) l
c the size o f the line and page con ta in ing the logical

end o f the book and of all subsequen t lines and
pages m a y be increased {e.g., to the sizes with
which the book was or ig ina l ly e s t ab l i shed
(10.3.1.4.cc) or to the sizes impl i ed by m a x p o s of
chan off} c)

167

fl
else k : = ". ";

if - (char error m e n d e d o f f) (f, k)
then undefined; k : = " ."
fi;
check pos (f); pu t char (f, k)

fi
else undef ined
fi ¢ write mood is still set ¢ ;

proc 9 nex t pos = (ref file f) void :
(- ge t good line (f, read mood o f f) I undef ined)

¢ the line is n o w good {lO.3.1.6.dd} and the read/wri te mood is
as on entry ¢ ;

168
/

van Wijngaarden, et al.

10.3.3.2. Format l e s s input

[For format less input, get (a) and read (10.5.l.e) m a y be used. Values
f rom the book are assigned to each s t ra ightened n a m e N f rom the data list
as follows:

aa) If the mode of N is specified by re fL int, then first, the book is
searched for the first c h a r a c t e r that is not a space (finding good positions
on subsequent lines as necessary) ; next, the la rges t s tr ing is read f rom
the book that could be "indited" (10.3.4.1.l.kk) under the control of some
picture of the form + n (k l) " . "n (k2)dd or n (k2)dd (where k l and k2 yield
a rb i t r a ry nonnegative integers); this str ing is conver ted to an integer and
assigned to N; if the conversion is unsuccessful, the event routine
corresponding to on value error is called.

bb) If the mode of N is specified by r e f L real, then first, the book is
searched for the first cha rac t e r that is not a space (finding good positions
on subsequent lines as necessary) ; next, the larges t s tr ing is read f rom
the book that could be indited under the control of some picture of the
form + n(kl)"._" n(k2)d or n(k2)d followed by . n(k3)d d or by ds., possibly
followed again by e n(k4)" ." + n(k5)" ." n(k6)d d or by e n(k5)" ." n(k6)d d;
this string is conver ted to a real num ber and assigned to N; if the
conversion is unsuccessful, the event routine corresponding to on value
error is called.

cc) If the mode of N is specified by re fL compl, then first, a real
number is input (as in bb) and assigned to the first subname of N; next,
the book is searched for the first cha rac t e r that is not a space; next, a
cha rac te r is input and, if it is not ".L" or "i", then the event routine
corresponding to on char error (10.3.1.3.cc) is called, the suggestion being
"J_"; finally, a real num ber is input and assigned to the second subname
of N.

dd) If the mode of N is specified by refbool , then first, the book is
searched for the first cha rac t e r that is not a space (finding good positions
on subsequent lines as necessary) ; next, a c h a r a c t e r is read; if th i s
cha rac te r is the s ame as that yielded by f l ip (flop), then true (false) is
assigned to N; otherwise, the event routine corresponding to on char error
is called, the suggestion being flop.

ee) If the mode of N is specified by r e f L bits, then input takes place
(as in dd) to the subnames of N one af ter the other (with new lines being
taken as required).

ff) If the mode of N is specified by ref char, then first, if the current
line is exhausted, a good position is found on a subsequent line; next, a
cha rac te r is read and assigned to N.

gg) If the mode of N is specified by ref[] char, then input takes place
(as in if) to the subnames of N one af ter the other (with new lines being
taken as required).

ALGOL 68 Revised Report 169

hh) If the mode of N is specified by refstring, then cha rac t e r s a re read
until ei ther

(i) a cha rac t e r is encountered which is contained in the str ing
associated with the file by a call of the routine m a k e term, or
(ii) the current line is exhausted, whereupon the event routine
corresponding to on line end (or, where appropr ia te , to on page end, on
phys i ca l file end or on logical file end) is called; if the event routine
moves the cur rent position to a good position (see 10.3.3), then input of
charac te r s is resumed.

The string consisting of the cha rac te r s read is assigned to N (note that, if
the current line has a l ready been exhausted, or if the cur rent position is at
the s ta r t of an emp ty line or outside the logical file, then an emp ty str ing
is assigned to N).}

a) proc get = (ref file f, [] union tintype, proc (ref file) void) x) void :
if opened o f f then
for i to upb x
do case set read mood (f); se t char mood (f); x [i] in

(proc (ref file) void pf): p f (f) ,
(intype it):
begin

[] simplin y = straightin it; char k; bool k emPtY;
op ? = (string s) bool :

¢ true i f the nex t character, i f any , in the current line
is conta ined in 's' (the character is ass igned to 'k')
and false o therwise ¢

i l k e m p t y ^ (line ended (f) v logical file ended (f))
then false
else (k e m p t y l ge t char (f, k));

k e m p t y := char in s t r ing (k, Ioc int, s)
fi;

op ? = (char c) bool : ? string (c);
prio ! -- 8;
op ! = (string s, char c) char :

¢ expects a character conta ined in 's'; i f the character
read is not in 's', the even t routine corresponding to
'on char error' is called wi th the sugges t ion 'c '¢

if (k e m p t y I. check pos (f); get char (f, k));
k e m p t y : = true;
char in s t r ing (k, Ioc int, s)

then k
else char sugg : = c;

i f (char error m e n d e d of f) (f, sugg) then
(char in s t r ing (sugg, Ioc int, s)
I sugg
I undef ined; c)

170
/

van Wijngaarden, etal.

else u n d e f i n ed ; c
fi;
se t read m o o d (f)

fi;
op ! = (char s, c) char: string (s) ! c;
p roc s k i p i n i t i a l s p a c e s = void :

whi le (k e m p t y I n e x t p o s (f)); .9 , . , , do sk ip od;
p roc s k i p s p a c e s = void :

while ? " . " do skip od;
proc read d ig = str ing :

(string t := "0123456789"! "0";
whi le ? "0123456?89" do t p lusab k od; t);

p roc read s ign = char :
(char t = (skip spaces; ? "+-"1 k I "+");
s k i p spaces ; t);

proc read n u m = str ing :
(char t = read s ign; t + read dig);

p roc read real = str ing :
(string t : = read s ign;
(" ? "."t t p lu sab read d ig I k e m p t y : = false);
(.9 "."1 t p lu sab "." + read dig);
(? "lo\e" l t p lu sab "1o" + read n u m) ; t);

f o r) to upb y
do boo l i n c o m p : = false; k e m p t y : = true;

case y [j] in
~ (ref L int ii):

(sk ip i n i t i a l spaces ;
i n c o m p := - s t r i n g to L i n t (read n u m , 10, ii))~ ,

(ret L real rr):
(sk ip i n i t i a l spaces ;

i n c o m p : = - s t r i n g to L real (read real, rr)) 2 ,
(ref L compl zz):

(sk ip i n i t i a l spaces ;
i n c o m p := - s t r i n g to L real (read real, re o f zz);
s k i p spaces ; "i_L " ! ".L ";
i n c o m p : = i n c o m p v

s t r i n g to L real (read real, i m o f zz)) ~ ,
(ref bool bb):

(sk ip i n i t i a l spaces ;
bb := (f l ip + f lop) ! f lop = f l i p) ,

~ (ref L bits lb):
for i to L b i t s w i d t h
do g e t (f, (L F o f lb) [i]) od~ ,

(ref char cc): (n e x t p o s (f); g e t c h a r (f, cc)) ,
(ref [] char ss):

b)

ALGOL 68 Revised Report 171

od
end

esac od

for i f rom Iwb s s to upb s s
do n e x t p o s (f); g e t c h a r (f, s s [i]) od ,

(ref string ss):
begin string t;
while c h e c k p o s (f);

if l ine e n d e d (f) v log ica l f i le e n d e d (f)
then false
e l se g e t c h a r (f, k);

k e m p t y := - c h a r in s t r i n g (k, Ioc int, t e r m o f f)
fl

do t plusab k od;
SS : = t
end

esac;
(- k e m p t y l b a c k s p a c e (f));
i f i n c o m p
then (- (va lue error m e n d e d o f f) (f) I unde f ined) ;

s e t read m o o d (f)
fi

else u n d e f i n e d
fl;

p roc .~ g e t c h a r = (ref file f , re f char char) void :
i f o p e n e d o f f ^ - l ine e n d e d (f) ^ - log ica l f i le e n d e d (f)
then ref pos cpos = cpos o f f ;

se t c h a r m o o d (f); s e t read m o o d (f);
int p = p o f cpos , l = l o f cpos , c = c of cpos;
c o f cpos + : = 1;
c h a r : = case t e x t o f f i n

(l e x t t l) : t l [p] [lJ [c J ,
(f lextext t2):

(c h a r k := t2 lP] I l l l c l ;
boo l f o u n d : = false;
for i to upb F of conv o f f whi le - f ound
do struct (char i n t e rna l , e x t e r n a l) k e y = (F of c o n y of f) [i];

(e x t e r n a l o f k e y = k I k : = i n t e r n a l o f k ey ; f o u n d : = true)
od;
if f o u n d then k
else k := ". ";

i f (c h a r error m e n d e d o f f) (f, k)
then k
else unde f i ned ; " . "
fi;

172 van Wijngaarden, etal.

set read mood (f)
fi)

esac
else undefined
fi ¢ read mood is still set ¢ ;

c) proc ~ check pos = (ref file D void :
begin bool read ing = read mood o f f ;

bool not ended : = true;
while not ended : = not ended ^ get good page (f, reading);

line ended (f) ^ not ended
do not ended : = (line mended o f f) (f) od

end;

{The routine check pos is used in formatted transput before each call of
put char or get char. If the position is not good (10.3.1.6.dd), it calls the
appropriate event routine, and may call further event routines if true is
returned. If the event routine corresponding to on page end returns false,
newpage is called but, if any other event routine returns false, no default
action is taken and no more event routines are called. On exit, the
read/write mood is as on entry, but the current position may not be good,
in which case undefined will be called in the following pu t char or get
char. However, check pos is also called when getting strings (hh), in which
case the string is then terminated if the current position is not good.}

10.3.4. Format texts

{ In formatted transput, each straightened value from a data list
(cf. 10.3.3) is matched against a constituent picture of a format-text
provided by the user. A picture specifies how a value is to be converted to
or from a sequence of characters and prescribes the layout of those
characters in the book. Features which may be specified include the
number of digits, the position of the decimal point and of the sign, if any,
suppression of zeroes and the insertion of arbi t rary strings. For example,
using the picture -d.3d "." 3d "." e z+d, the value 1234.567 would be
transput as the string ".1.234.567.1o.+3".

A "format" is a structured value (i.e., an internal object) of mode
'FORMAT', which mirrors the hierarchical s t ructure of a format-text
(which is an external object). In this section are given the syntax of
format-texts and the semantics for obtaining the i r corresponding formats.
The actual formatted transput is performed by the routines given in
section 10.3.5 but, for convenience, a description of their operation is given
here, in association with the corresponding syntax.}

10.3.4.1. Collections and pictures
10.3.4.1.1. Syntax

{The following mode-declarations (taken from 10.3.5.a) are reflected in
the metaproduction rules A to K below.

ALGOL 68 Revised Report

A) mode format = struct (flex [1 : O] piece F) ;
B) mode piece = struct (int cp, count, bp, flex [1 : 0] collection c) ;
C) mode collection =union (picture, coll item) ;
D) mode collitem =

struct (insertion i l , proc int rep, int p, insertion i2) ;
E) mode insertion =

flex [1 : O] struct (proc int rep, union (string, char) sa) ;
F) mode picture = struct

(union (pattern, cpattern, fpattern, gpattern, void) p, insertion i) ;
G) mode pattern = struct (int type, flex [1 : O] frame frames);
H) mode frame =

struct (Insertion i, proc int rep, boo l supp, char marker) ;
I) mode cpattern =

struct (insertion i, int type, flex [1 : O] insertion c);
J) mode fpattern = struct (insertion i, proc format pf) ;
K) mode gpattern = struct (inserUon i, flex [1 : O] proc int spec) ; }

A) FORMAT :: s tructured with row of PIECE field letter aleph mode.
B) PIECE :: s tructured with integral field letter c letter p

integral field letter c letter o letter u letter n letter t
integral field letter b letter p
row of COLLECTION field letter c mode.

C) COLLECTION :: union of PICTURE COLLITEM mode.
D) COLLITEM :: s tructured with INSERTION field letter i digit one

procedure yielding integral field letter r letter e letter p
integral field letter p
INSERTION field letter i digit two mode.

E) INSERTION :: row of structured with procedure yielding integral
field letter r letter e letter p
union of row of character character mode field
letter s letter a mode.

F) PICTURE :: structured with union of
PATTERN CPATTERN FPATTERN GPATTERN void mode
field letter p INSERTION field letter i mode.

G) PATTERN :: structured with
integral field letter t letter y letter p letter e
row of FRAME field
letter f letter r letter a letter m letter e letter s mode.

H) FRAME :: structured with INSERTION field letter i
procedure yielding integral field letter r letter e letter p
boolean field letter s letter u letter p letter p charac ter field
letter m letter a letter r letter k letter e letter r mode.

I) CPATTERN :: structured with INSERTION field letter i
integral field letter t letter y letter p letter e
row of INSERTION field letter c mode.

173

174

J)

K)

L)

M)
N)
O)
P)

a)

b)

c)

d)

e)

van Wijngaarden, et al.

FPATTERN :: s tructured with INSERTION field letter i
procedure yielding FIVMAT field letter p letter f mode.

GPATTERN :: s tructured with INSERTION field letter i
row of procedure yielding integral field
letter s letter p letter e letter c mode.

FIVMAT ::
mui definition of structured with

row of s tructured with integra l f ield letter c let ter p
integral f ield letter c letter o letter u letter n letter t
integral f ield letter b letter p
row of union of

structured with
union of PATTERN CPATTERN

structured with INSERTION field letter i
procedure y i e ld ing mu i appl icat ion field
letter p letter f

mode
GPATTERN void

mode field letter p
INSERTION field letter i

mode
COLLITEM

mode field letter c
m o d e field letter a leph

mode.
{'FIVMAT' is equivalent (2.1.1.2.a) to 'FORMAl".}

MARK :: sign ; point ; exponent ; complex ; boolean.
COMARK :: zero ; digit ; character .
UNSUPPRESSETY :: unsuppressible ; EMPTY.
TYPE :: integral ; real ; boolean ; complex ; string ; bits ;

integral choice ; boolean choice ; format ; general.

FORMAT NEST format text{5D} : formatter{94f} token,
NEST collection{b} list, formatter{94f} token.

NEST collection{a,b} :
pragment{92a} sequence option, NEST picture{c} ;
pragment{92a} sequence option, NEST insertion{d},

NEST replicator{g}, NEST collection{b} list brief pack,
pragment{92a} sequence option, NEST insertion{d}.

NEST picture{b} : NEST TYPE pattern{A342a,A343a,A344a,
A345a,A346a,A347a,A348a,b,A349a,A34Aa} option,

NEST insertion{d}.
NEST insertion{b,c,j,k,A347b,A348a,b,A349a,A34Aa} :

NEST literal{i} option, NEST alignment{e} sequence option.
NEST alignment{d} :

NEST replicator{g}, al ignment code{f}, NEST literal{i} option.

g)
h)

J)

k)

m)

n)

o)

ALGOL 68 Revised Report 175

alignment code{e} : letter k{94a} symbol ; letter x{94a} symbol ;
letter y{94a} symbol ; letter 1{94a} symbol ; letter p{94a} symbol ;
letter q{94a} symbol.

NEST replieator{b,e,i,k} : NEST unsuppressible replicator{h} option.
NEST unsuppressible replicator{g,i} : fixed point numcral{811b} ;

letter n{94a} symbol,
meek integral NEST ENCLOSED clause{31a,34a,-},
pragment{92a} sequence option.

NEST UNSUPPRESSETY literal{d,e,i,A348c} :
NEST UNSUPPRESSETY replicator{g,h},

strong row of charac te r NEST denoter{a0a} coercee{61a},
NEST unsuppressible literal{i} option.

NEST UNSUPPRESSETY MARK frame{A342c,A343b,c,A344a,A345a} :
NEST insertion{d}, UNSUPPRESSETY suppression{l},

MARK marker{A342e,A343d,e,A344b,A345b}.
NEST UNSUPPRESSETY COMARK frame{A342b,c,A346a} :

NEST insertion{d}, NEST replicator{g},
UNSUPPRESSETY suppression{l},
COMARK marker{A342d,f,A346b}.

UNSUPPRESSETY suppression{j,k,A347b} :
where {UNSUPPRESSETY) is {unsuppressible), EMPTY ;
where (UNSUPPRESSETY) is {EMPTY),

letter s{94a} symbol option.
" f rame : NEST UNSUPPRESSETY MARK frame{j} ;

NEST UNSUPPRESSETY COMARK frame{k} ;
NEST RADIX frame{A347b}.

* m a r k e r : MARK marker{A342e,A343d,e,A344b,A345b} ;
COMARK marker{A342d,f,A346b} ; radix marker{A347c}.

pattern : NEST TYPE pattern{A342a,A343a,A344a,A345a,
A346a,A347a,A348a,b,A349a,A34Aa}.

{Examples:

a) $ p "table o f"x iOa,l n (l im - 1) ("x=" 12z+d 2x,
+.12de+2d 3q" +j×"3"._" si +.l Ode+2d l) p $

b) p "table o f"x lOa • l n (l im - 1) ("x=" 12z+d 2x,
+. 12de+2d 3q"+jx"3"." si +. lOde+2d l) p

c) 120k c ("mon", "tues", "wednes", "thurs", "fri", " satur", "sun")
"day"

d) p "table o f"x
e) p "table of"
h) 10 • n (l i m - 1)
i) "+j×"3"."
j) si
k) "x=" 12z
1) s}

176 van Wijngaarden, etal.

[The positions where p ragmen t s (9.2.1.a) m a y occur in format - tex ts are
restr icted. In general (as e lsewhere in the language}, a p r a g m e n t m a y not
occur between two DIGIT- or LETTER-symbols.}

[aa) For format ted output, put f (10.3.5.1.a) and print f (or writer)
(10.5.l.f) m a y be used and, for format ted input, get f (10.3.5.2.a) and readf
(10.5.1.g). Each e lement in the data list (cf. 10.3.3) is e i ther a fo rma t to be
associated with the file or a value to be t ransput {thus a fo rmat m a y be
included in the data list immedia te ly before the values to be t ransput
using that format) .

bb) During a call of put f or getf, t ransput proceeds as follows:
For each e lement of the data list, considered in turn,

If it is a format ,
then it is made to be the cur rent fo rma t of the file by associate format

(10.3.5.k) ;
otherwise, the e lement is s t ra ightened (10.3.2.3.c) and each e lement of

the result ing multiple value is output (hh) or input (if) using the
next "picture" (cc, gg) f rom the current format .

cc) A "picture" is the yield of a picture. It is composed of a "pat tern"
of some specific 'TYPE' (according to the syntax of the TYPE-pattern of
that picture), followed by an "insertion" (ee). Pa t te rns , apa r t f rom
'choice' , ' f o rma t ' and "general" pat terns, a re composed of " f rames" ,
possibly "suppressed", each of which has an insertion, a "replicator" (dd),
and a "marker" to indicate whether it is a "d", "z", "i" etc. f rame. The
f r ames of each pat tern m a y be grouped into "sign moulds", "integral
moulds", etc., according to the syntax of the corresponding pattern.

dd) A "replicator" is a routine, returning an integer, constructed f rom
a repl icator (10.3.4.1.2.c). For example , the repl ica tor 10 gives rise to a
routine composed f rom int: 10; moreover , n (l i m - 1) is a "dynamic"
replicator and gives rise to int: (l im-1) . Note that the scope of a
repl icator restr icts the scope of any fo rmat containing it, and thus it m a y
be necessary to take a local copy of a file before associat ing a fo rma t with
it (see, e.g., 11.13}. A repl icator which returns a negat ive value is t rea ted
as if it had returned zero Ck" a l ignments apar t) .

When a picture is "staticized", all of its repl icators and other routines
(including those contained in its insertions) a re called collaterally. A
staticized pat tern m a y be said to "control" a string, and there is then a
correspondence between the f r am es of that pat tern, taken in order, and
the charac te r s of the string. Each f r a m e controls n consecutive cha rac te r s
of the string, where n is 0 for an "r" f r ame and, otherwise, is the integer
returned by the repl icator of the f r ame (which is a lways 1 for a "+", ,
".", "e", "i" or "b" f rame) . Each controlled c h a r a c t e r mus t be one of a
limited set appropr ia te to that f rame.

ALGOL 68 Revised Report 177

ee) An "insertion", which is the yield of an insertion (10.3.4.1.2.d), is a
sequence of repl icated "al ignments" and strings; an insertion containing
no al ignments is t e rmed a "literal". An insertion is "performed" by
performing its a l ignments (ff) and on output (input) writ ing ("expecting"
(11)) each cha rac te r of its repl icated str ings (a s tr ing is repl icated by
repeat ing it the numb er of t imes re turned by its repl icator) .

ff) An "al ignment" is the cha rac t e r yielded by an al ignment-code
(10.3.4.1.2.d). An a l ignment which has been repl icated n t imes is
per formed as follows:

• "k" causes set char number to be called, with n as its second
pa ramete r ;
• "x" causes space to be called n times;
• "y" causes backspace to be called n times;
• "l" causes newline to be called n times;
• "p" causes newpage to be called n t imes;
• "q" on output (input) causes the cha rac t e r blank to be writ ten
(expected) n t imes.

gg) A format m a y consist of a sequence of pictures, each of which is
selected in turn by get next picture (10.3.5.b). In addition, a set of pictures
m a y be grouped together to form a repl icated "collection" (which m a y
contain fur ther such collections). When the last picture in a collection has
been selected, its first picture is selected again, and so on until the whole
collection has been repeated n t imes, where n is the in teger returned by
its replicator. A collection m a y be provided with two insertions, the first to
be per formed before the collection, the second a f te rwards .

A fo rmat m a y also invoke other fo rmats by means of ' format" pa t te rns
(10.3.4.9.1).

When a format has been exhausted, the event routine corresponding to
on format end is called; if this re turns false, the fo rma t is repeated;
otherwise, if the event routine has failed to provide a new format ,
undefined is called.

hh) A value V is output, using a picture P, as follows:
If the pat tern Q of P is a "choice" or "general ' pat tern ,
then Y is output using P (see 10.3.4.8.1.aa,dd, 10.3.4.10.1.aa);
otherwise, Y is output as follows:

• P is staticized;
If the mode of V is "output compat ible" with Q (see the sepa ra t e

section dealing with each type of pat tern) ,
then

• Y is converted into a str ing controlled (dd) by 0 (see the
appropr ia te section) ;

If the mode is not output compatible , or if the conversion is
unsuccessful,

178
/

van Wijngaarden, et al.

then
• the event routine corresponding to on value error is called;
• if this returns false, Y is output using p u t and unde f ined is called;

otherwise, the string is "edited" (jj) using Q;
• the insertion of P is performed.

ii) A value is input to a name N, using a picture P, as follows:
If the pattern Q of P is a "choice" or "general' pattern,
then a value is input to N using P (see 10.3.4.8.1.bb,ee, 10.3.4.10.1.bb);
otherwise,

• P is staticized;
• a string controlled by Q is "indited" (kk);
If the mode of N is "input compatible" with Q (see the appropriate

section),
then

• the string is converted to an appropriate value suitable for N
using Q (see the appropriate section);
• if the conversion is successful, the value is assigned to N;

If the mode is not input-compatible, or if the conversion is
unsuccessful,

then
• the event routine corresponding to on value error is called;
• if this returns false, unde f ined is called;

• the insertion of P is performed.

jj) A string is "edited", using a pattern P, as follows:
In each part of the string controlled by a sign mould,

• if the first charac ter of the string {which indicates the sign) is %"
and the sign mould contains a frame, then that charac te r is
replaced by ".";
• the first charac te r (i.e., the sign) is shifted to the right across all
leading zeroes in this part of the string and these zeroes are replaced
by spaces (for example, using the sign mould 4z+, the string "+0003"
becomes " . . .+3") ;

In each part of the string controlled by an integral mould,
• zeroes controlled by "z" f rames are replaced by spaces as follows:

• between the start of the string and the first nonzero digit;
• between each "d", "e" or "i" f rame and the next nonzero digit;

(for example, using the pattern zdzd2d, the string "180168" becomes
"18.fl68";)

For each f rame F of P,
• the insertion of F is performed;
• if F is not suppressed, the charac ters controlled by F are written;

(for example, the string "+0003.5", when edited using the pattern 4z+ s. ","
d, causes the string "._._._+3,5" to be written and the string "180168", using
the pattern zd ' zd"-19"2d, gives rise to "18- .1 -1968") .

ALGOL 68 Revised Report 179

kk) A string is "indited", using a pattern P, as follows:
For each frame F of e,

• the insertion of F is performed:
For each element of the string controlled by F, a charac te r is obtained

as follows:
If F is contained in a sign mould,
then

• if a sign has been found, a digit is expected, with "0" as
suggestion:
• otherwise, either a "+" or a is expected, with "+" as
suggestion, and, in addition, if the sign mould contains a
frame, then a space preceding the first digit will be accepted as
the sign (and replaced by "+"):

otherwise, if F is contained in an integral mould,
then

If F is suppressed,
then "0" is supplied;
otherwise,

Case A: F is a "d" frame:
• a digit is expected, with "0" as suggestion:

Case B: F is a "z" frame:
• a digit or space is expected, with "0" as suggestion, but
a space is only acceptable as follows:

• between the start of the string and the first nonzero
digit;
• between each "d", "e" or "i" f rame and the next
nonzero digit;

• such spaces are replaced by zeroes:
otherwise, if F is an "a" frame,
then if F is not suppressed, a charac te r is read and supplied:

otherwise "." is supplied:
otherwise, if F is not suppressed,
then if F is a "." Ce", "i", "b") frame, a "." ("1o" or "\" or "e", "1"

or "i", f l ip or flop) is expected, with "." ("1o", "1", f lop) as
suggestion:

otherwise, if F is a suppressed "." Ce", "i") frame, the charac te r "."
("1o", "1") is supplied.

ll) A member of a set of characters S is "expected", with the
character C as suggestion, as follows:
• a character is read:
If that character is one of the expected characters (i.e., a member of S),
then that character is supplied:
otherwise, the event routine corresponding to on char err~r is called, with

C as suggestion; if this returns true and G, as possibly replaced, is one
of the expected characters , then that charac te r is supplied: otherwise.
undef ined is called.}

/
180 van Wijngaarden, et al.

10.3.4.1.2. Semant ics

{A fo rma t is b rough t into being by m e a n s of a format - tex t . A fo rma t is
best r e g a r d e d as a tree, with a collection at each node and a p ic ture at
each tip. In o rde r to avoid violation of the scope res t r ic t ions , each node of
this t ree is, in this Report , packed into a value of mode "PIECE'. A f o r m a t
is composed of a row of such pieces and the pieces conta in pointers to
each other in the fo rm of indices select ing f rom tha t row. An i m p l e m e n t e r
will doubtless s tore the t ree in a m o r e eff icient manne r . This is possible
because the f ield.selector of a f o r m a t is hidden f rom the use r in o rde r tha t
he m a y not b reak it open.

Although a fo rmat - t ex t m a y conta in ENCLOSED-clauses (in repl icators
and fo rmat -pa t t e rns) or units (in genera l -pa t t e rns) , these a re not
e labora ted at this s tage but are, ra ther , tu rned into rout ines for
subsequent cal l ing as and when they a re encoun te red dur ing f o r m a t t e d
t ransput . Indeed, the e labora t ion of a fo rma t - t ex t does not resul t in any
act ions of any s ignif icance to the user.}

a) The yield of a fo rma t - t ex t F, in an envi ron E, is a s t ruc tu red value
whose only field is a mult iple value W, whose mode is "row of PIECE',
composed of a descr ip tor ((1, n)) and n e l ement s d e t e r m i n e d as follows:
• a counter i is set to 1;
• F is " t rans formed" {b} in E into W, using i.

b) A format-text or a collection-l ist-pack C is " t r ans fo rmed" in an
environ E into a mult iple value W whose mode is "row of PIECE', using a
counter i, as follows:
• the e lement of W selected by (i) is a s t ruc tu red value, whose mode is
'PIECE' and whose fields, taken in order , a re

• {cp} undefined;
• {count} undefined;
• {bp} undefined;
• {c} a mult iple value V, whose mode is "row of COLLECTION', hav ing
a descr ip tor ((1, m)), where m is the n u m b e r of const i tuent col lect ions
of C, and e lements de t e rmined as follows:
For j = 1 m, letting C. be the j-th const i tuent collection of C,

I
Case A: The d i rec t descenden ts of C. include a p ic ture P:

J
• the const i tuent pa t t e rn T, if any, and the insert ion I of P a re
e l abora ted col la teral ly;
• the j-th e lement of V is a s t ruc tu red value, whose mode is
'PICTURE' and whose fields, t aken in order , a re

• [p} the yield of T, if any, {e, 10.3.4.8.2, 10.3.4.9.2, 10.3.4.10.2}
and, otherwise, empty;
• (i} the yield of ! {d};

ALGOL 68 Revised Report 181

Case B: The d i rec t descenden ts of C. include a f irst insert ion I1, a
J

replicator REP, a col lect ion-l is t-pack P and a second insert ion 12:
• i is inc reased by 1;
• I1, REP and 12 a re e l abora ted col la teral ly;
• the j-th e l emen t of Y is a s t ruc tu red value whose mode is
'COLLITEM' and whose fields, t aken in order , a re

• {il} the yield of I1 {d};
• {rep} the yield of R E P {c};
• (P l i ;
• (i2] the yield of 12;

• P is t r a n s f o r m e d in E into W, using i.

c) The yield, in an envi ron E, of a NEST-UNSUPPRESSETY-repl icator
R {10.3.4.1.l.g,h} is a routine whose mode is ' p r o c e d u r e yielding in tegra l ' ,
composed of a proeedure-yie ld ing- in tegra i -NEST-rout ine- text whose unit is
U, toge ther with the envi ron n e c e s s a r y {7.2.2.c} for U in E, where U is
de te rmined as follows:
Case A: R contains a meek- integral -ENCLOSED-clause G:

• O is a new unit akin {1.1.3.2.k} to C;
Case B: R contains a f ixed-point -numeral D, but no ENCLOSED-clause:

• U is a new unit akin to D;
Case C: R is invisible:

• U is a new unit akin to a f ixed.point-numeral which has an intr insic
value {8.1.1.2} of 1.

d) The yield of an insert ion I {10.3.4.1.1.d} is a mult iple value W
whose mode is ' INSERTION', de t e rmined as follows:
* let U 1 U n be the const i tuent UNSUPPRESSETY-repl ieators of I,

and let A i, i = 1 n, be the deno te r -coercee or al ignment-code

{immediately} following U.;

• let R 1, R and O 1 ... D be the {collateral} yields of U 1, O
n ' ' n n

and A 1 A n, where the yield of an a l ignment -code is the {charac te r

which is the} intrinsic value {8.1.4.2.b} of its LETTER-symbol ;
• the descr ip tor of W is ((1, n)):
• the e lement of W selected by (i), i = 1 n, is a s t ruc tu red value {of
the mode specified by s t ruc t .(proc lnt rep, un ion (string, char) sa)} whose
fields, taken in order , a re

• {rep} R . ;
I

• {sa} D..
I

e) The yield of an integral- , real-, boolean-, complex- , s t r ing: or bits-
pattern P {10.3.4.2.1.a, 10.3.4.3.1.a t0.3.4.7.l.a} is a s t ruc tu red value W
whose mode is 'PATTERN', de t e rmined as follows:

/
182 van Wi jngaa rden , et al.

• let V 1 , Vn be the {collateral} yields of the cons t i tuen t . f rames of P {f};

• the fields of W, taken in order, a re
• {type} 1 (2, 3, 4, 5) if P is an integral- (real-, boolean-, complex-,
string-) -pat tern and 6 (6, 12, 20) if P is a bi ts-pat tern whose
constituent RADIX is a radix-two (-four, -eight, -sixteen);
• Iframes} a multiple value, whose mode is ' row of FRAME', having a
descriptor ((1, n)) and n elements , that selected by (i) being V..

f) The yield of a f r ame F {10.3.4.1.1.m} is a s t ruc tured value W whose
mode is 'FRAME', de termined as follows:
• the insertion and the replicator, if any, of F a re e labora ted collaterally;
• the fields of W, taken in order, are

• {i} the yield of its insertion;
• {rep} the yield of its repl ica tor {c}, if any, and, otherwise, the yield of
an invisible replieator;
• {supp} t rue if its UNSUPPRESSETY-suppression contains a letter-s-
symbol and, otherwise, false:
• {marker} {the cha rac t e r which is} the intrinsic value {8.1.4.2.b} of a
symbol S de termined as follows:
Case A: F is a constituent unsuppress ib le-zero-f rame of a sign-mould

{such as 3z+} whose consti tuent s ign-marker contains a plus-symbol:
• S is a letter-u-symbol;

Case B: F is a consti tuent unsuppress ib le-zero-f rame of a sign-mould
{such as 3z-} whose consti tuent s ign -marke r contains a minus-
symbol:
• S is a let ter-v-symbol;

Other cases:
• S is the consti tuent symbol of the m a r k e r of F.

{Thus the ze ro -marker z m a y be passed on as the c h a r a c t e r "u", "v" or "z"
according to whether it forms par t of a sign-mould (with descendent plus-
symbol or minus-symbol) or of an integral-mould.}

10.3.4.2. Integral pa t terns

10.3.4.2.1. Syntax

a)

b)

c)

d)
e)
f)

NEST integral pattern{A341c,A343c} :
NEST sign mould{c} option, NEST integral mould{b}.

NEST integral mouid{a,A343b,c,A347a} :
NEST digit frame{A341k} sequence.

NEST sign mould{a,A343a} :
NEST unsuppressible zero frame{A341k} sequence option,

NEST unsuppressible sign frame{A341j}.
zero marker{f,A341k} : let ter z{94a} symbol.
sign marker{A341j} : plus{94c} symbol ; minus{94e} symbol.
digit marker{A341k} : let ter d{94a} symbol ; zero marker{d}.

ALGOL 68 Revised Repor t 183

{Examples:

a) "x=" 12z+d b) d
c) "x=" 12z+ }

{For the semant ics of in tegral -pat terns see 10.3.4.1.2.e.}

{aa) The modes which are output (input) compat ib le with an ' in tegra l ' •
pat tern are those specified by L i n t (by ra iL int).

bb) A value Y is conver ted to a str ing S using an "integral ' pa t te rn P
as follows:
• if P contains a sign mould, then the first cha rac t e r of S is the sign of V;
otherwise, if V < 0, the conversion is unsuccessful;
• the r emainder of S contains a decimal representa t ion of V de termined
as follows:

• the e lements of S controlled by "d" and "z" f r ames are the
appropr ia te digits (thus the pat tern specifies the n u m b e r of digits to be
used);
• if Y cannot be represented by such a string, the conversion is
unsuccessful.

(For example , the value 99 could be conver ted to a str ing using the
pat tern zzd, but 9999 and -99 could not.)

cc) A string S is converted to an integer suitable for a name N, using
an "integral' pat tern, as follows:
• the integer I for which S contains a decimal representa t ion (8.1.1.2) is
considered;
• if I is g rea te r than the larges t value to which N can refer, the
conversion is unsuccessful; otherwise, I is the required integer (e.g., if
the mode of N is specified by rafshort int , and the value of short m a x int is
65535, then no string containing a decimal representa t ion of a value
g rea te r than 65535 m a y be converted).}

10.3.4.3. Real pa t terns

10.3.4.3.1. Syntax

a) NEST real pattern{A341c,A345a} : NEST sign mould{A342c} option,
NEST var iab le point mould{b}
or a l ternat ively NEST floating point mould{c}.

b) NEST var iable point mould{a,c} : NEST integral mould{A342b},
NEST point frame{A341j}, NEST integral mould{A342b} option ;

NEST point frame{A341j}, NEST integral mould{A342b}.
c) NEST floating point mould{a} :

NEST var iable point mould{b}
or a l ternat ively NEST integral mould{A342b},

NEST exponent frame{A341j}, NEST integral pattern{A342a}.
d) point marker{A341j} : point{94b} symbol .
e) exponent marker{A341j} : let ter e{94a} symbol .

184 van Wijngaarden, et al.

{Examples:

a) +zd . l ld • +.12de+2d b) z d . l l d • .12d
c) .12de+2d }

{For the semant ics of rea l -pa t te rns see 10.3.4.1.2.e.}

{aa) The modes which are output (input) compat ib le with a ' r ea l '
pat tern are those specified by L real and L i n t (by r e f L real).

bb) A value V is converted to a str ing S using a ' r ea l ' pa t te rn P as
follows:
• if P contains a sign mould, then the first cha rac t e r of S is the sign of V;
otherwise, if Y < 0, the conversion is unsuccessful;
• the r emainder of S contains a decimal representa t ion of V de termined
as follows:

• if necessary, V is widened to a real number;
• the e lement of S controlled by the "." Ce") f rame, if any, of P is "."
("lo")"
If P contains an "e" f rame,
then

• let W be the sequence of f r am es preceding, and IP be the
' in tegral ' pa t tern following, that "e" f rame:
• an exponent E is calculated by s tandardizing V to the larges t
value convertible using W (see below):
• the par t of S controlled by IP is obtained by convert ing E using
IP (see 10.3.4.2.1.bb):

otherwise,
• let W be the whole of P:

• the e lements of S controlled by the "d" and "z" f r ames of W are the
appropr ia te digits (thus the pat tern specifies the n u m b e r of digits to be
used, and the number of digits to be placed a f te r the decimal point, if
any);
• if V cannot be represented by such a string, the conversion is
unsuccessful.

cc) A str ing S is conver ted to a real num ber suitable for a n a m e N,
using a "real" pat tern, as follows:
• the real number R for which S contains a decimal representa t ion is
considered:
• if R is g r ea t e r than the larges t value to which N can refer, the
conversion is unsuccessful: otherwise, R is the required real number.}

10.3.4.4. Boolean pat terns

10.3.4.4.1. Syntax

a) NEST boolean pattern{A341c} :
NEST unsuppressible boolean frame{A341j}.

b) boolean marker{A341j,A348b} : let ter b{94a} symbol .

ALGOL 68 Revised Report 185

{Example:

a) 14x b }

{For the semant ics of boolean-pat terns see 10.3.4.1.2.e.}

{aa) The mode which is output (input) compat ib le with a "boolean'
pat tern is that specified by bool (refbool) .

bb) A value Y is conver ted to a s tr ing using a 'boolean" pa t te rn as
follows:
• if Y is true (false), then the str ing is that yielded by f l ip (flop).

co) A string S is conver ted to a boolean value, using a "boolean'
pat tern, as follows:
• if S is the s ame as the str ing yielded by f l ip (flop), then the required
value is true (false).}

10.3.4.5. Complex pa t te rns

10.3.4.5.1. Syntax

a)

b)

NEST complex pattern{A341c} : NEST real pattern{A343a},
NEST complex frame{A341j}, NEST real pattern{A343a}.

complex marker{A341j} : letter i{94a} symbol.

{Example:
f

a) +.12de+2d 3q"+jx"3"." si +.lOde+2d }

{For the semant ics of complex-pat terns see 10.3.4.1.2.e.}

{aa) The modes which are output (input) compat ib le with a ' complex '
pat tern are those specified by L compl, L real and L i n t (by ref L compl).

bb) A value V is converted to a str ing S us ing a "eomplex' pa t te rn P
as follows: I
• if necessary, V is widened to a complex number ;
• the e lement of S controlled by the "i" f r a m e of P is ".1_":
• the par t of S controlled by the first (seeond) "real" pa t te rn of P is that
obtained by convert ing the first (second) field of V to a s tr ing using the
first (second) ' r ea l ' pa t tern of P (10.3.4.3.!1.bb); /
• if ei ther conversion is unsuccessful, the conversion of V is unsuccessful.

cc) A str ing is converted to a complex value C suitable for a n a m e N,
using a ' complex ' pa t tern P, as follows:
• the par t of the str ing controlled by the first (second) 'real" pa t tern of P
is converted to a suitable real n u m b e r ii0.3.,~.3./1.ec)~,)which then forms the
first (second) field of C; - i - .
• if ei ther conversion is unsuccessful, the conversion to C is unsuccessful.}

186

/

van Wijngaarden, et al.

10.3.4.6. String pat terns

10.3.4.6.1. Syntax

a) NEST str ing pattern{A341c} :
NEST cha rac t e r frame{A341k} sequence.

b) cha rac t e r marker{A341k} : let ter a{94a} symbol .

{Example:

a) p "table of"x lOa }

{For the semant ics of s t r ing-pat terns see 10.3.4.1.2.e.}

{aa) The modes which are output (input) compat ib le with a "string"
pat tern are those specified by char and [] char (by ref char, raf [] char
a n d ref string).

bb) A value V is converted to a s tr ing using a "string' pa t te rn P as
follows:
• if necessary, Y is rowed to a string;
• if the length of the str ing Y is equal to the length of the str ing controlled
by P, then V is supplied; otherwise, the conversion is unsuccessful.

cc) A str ing S is conver ted to a cha rac t e r or a str ing suitable for a
name N, using a ' s t r ing ' pat tern, as follows:
Case A: The mode of N is specified by ref char:

• if S does not consist of one charac te r , the conversion is
unsuccessful; otherwise, that c h a r a c t e r is supplied;

Case B: The mode of N is specified by rof [] char:
• if the length of S is not equal to the n u m b e r of cha rac t e r s re fe r red
to by N, the conversion is unsuccessful; otherwise, S is supplied;

Case C: The mode of N is specified by rat string:
• S is supplied.}

10.3.4.7. Bits pa t terns

10.3.4.7.1. Syntax

a)

b)

c)

NEST bits pattern{A341c} :
NEST RADIX frame{b}, NEST integral mouid{A342b}.

NEST RADIX frame{a} : NEST insertion{A341d}, RADIX{82d,e,f,g},
unsuppressible suppression{A3411}, radix marker{c}.

radix marker{b} : let ter r{94a} symbol.

{Examples:

a) 2r6d26sd b) 2r }

{For the semant ics of bi ts-pat terns see 10.3.4.1.2.e.}

{aa) The modes which are output (input) compat ib le
pat tern are those specified by L bits (refL bits).

with a ' b i t s '

ALGOL 68 Revised Report 187

bb) A value V is conver ted to a str ing using a 'bi ts ' pa t te rn P as
follows:
• the integer I corresponding to V is determined, using the opera tor abs
(10.2.3.8.i) ;
If the "r" f r ame of P was yielded by a radix-two- (-four-, -eight-, -sixteen-)

- f rame,
then ! is converted to a string, controlled by the integral mould of P,

containing a binary (quaternary, octal, hexadecimal) representa t ion of
I (cf. 10.3.4.2.1.bb):
• if I cannot be represented by such a string, the conversion is
unsuccessful.

cc) A string S is conver ted to a bits value suitable for a name N,
using a 'bi ts ' pa t tern P, as follows:
• if the "r" f r ame of P was yielded by a radix-two- (-four-, -eight-,
-sixteen-) - f rame, then the integer I for which S contains a b inary
(quaternary, octal, hexadecimal) representa t ion is determined;
• the bits value B corresponding to I is de termined, using the opera tor
bin (10.2.3.8.j) ;
• if the width of B is g rea te r than that of the value to which N refers, the
conversion is unsuccessful.}

10.3.4.8. Choice pa t te rns

10.3.4.8.1. Syntax

a) NEST integral choice pattern{A341c} : NEST insertion{A341d},
let ter c{94a} symbol , NEST praglit{c} list brief pack,
pragment{92a} sequence option.

b) NEST boolean choice pattern{A341c} :
NEST insertion{A341d}, boolean marker{A344b},

brief begin{94f} token, NEST praglit{c}, and also{94f} token,
NEST praglit{c}, brief end{94f} token,
pragment{92a} sequence option.

c) NEST praglit{a,b} : pragment{92a} sequence option,
NEST literal{A341i}.

{Examples:

a) 120k c ("mon", "tues", "wednes", "thurs", "fri", "satur", "sun")
b) b ("", "error")
c) "mon" }

{aa) A value Y is output using a picture P whose pat tern Q was yielded
by an integral-choice-pat tern C as follows:
• the insertion of O is staticized (10.3.4.1.l.dd) and per fo rmed
(10.3.4.1.l.ee) ;
If the mode of V is specified by int, if Y > 0, and if the n u mb er of

constituent l i terals in the pragli t- l is t-pack of C is at least V,

188 van Wijngaar~en, et al.

then
• the literal yielded by the V-th literal is staticized and performed:

otherwise,
• the event routine corresponding to on value error is called:
• if this returns false, V is output using put and undef ined is called:

• the insertion of P is staticized and performed.

bb) A value is input to a name N using a picture P whose pattern Q
was yielded by an integral-choice-pattern C as follows:
• the insertion of Q is staticized and performed:
• each of the literals yielded by the constituent literals of the praglit-list-
pack of C is staticized and "searched for" (cc) in turn:
If the mode of N is specified by te l int and the i-th literal is the first one

present,
then i is assigned to N:
otherwise,

• the event routine corresponding to on value error is called:
• if this returns false, undef ined is called:

• the insertion of P is staticized and performed.

cc) A literal is "searched for" by reading charac ters and matching
them against successive characters of the literal. If the end of the current
line or the logical end of the file is reached, or if a charac te r fails to
match, the search is unsuccessful and the current position is returned to
where it started from.

dd) A value V is output using a picture P whose pattern Q was yielded
by a boolean-choice-pattern C as follows:
• the insertion of Q is staticized and performed:
If the mode of V is specified by bool.
then

• if V is true (false), the literal yielded by the first (second) constituent
literal of C is staticized and performed:

otherwise,
• the event routine corresponding to on value error is called:
• if this returns false, V is output using pu t and unde f ined is called:

• the insertion of P is staticized and performed.

ee) A value is input to a name N using a picture P whose pattern Q
was yielded by a boolean-choice-pattern C as follows:
• the insertion of O is staticized and performed:
• each of the literals yielded by the constituent literals of C is staticized
and searched for in turn:
If the mode of hi is specified by ret bool, and the first (second) insertion is

present,
then true (false) is assigned to N:

ALGOL 68 Revised Report

otherwise,
• the event routine corresponding to on value error is called:
• if this returns false, undef ined is called:

• the insertion of P is staticized and performed.}

189

10.3.4.8.2. Semantics

The yield of a choice-pattern P is a structured value W whose mode is
"CPATTERN', determined as follows:
• let n be the number of constituent NEST-literals of the praglit-list-pack
of P;
• let S i, i = 1 n, be a NEST-insertion akin {1.1.3.2.k} to the i-th of those

constituent NEST-literals;
• the insertion I of P and all of S 1, S 2 S n are elaborated

collaterally;
• the fields of W, taken in order, are

• {i} the yield of I;
• {type} 1 ~2) if P is a boolean- (integral-) -choice-pattern;
• {c} a multiple value whose mode is "row of INSERTION', having a
descriptor ((1, n)) and n elements, that selected by (i), i= 1 n,
being the yield of S..

I

10.3.4.9. Format patterns

10.3.4.9.1. Syntax

a) NEST format pattern{A341c} :
NEST insertion{A341d}, letter f{94a} symbol,

meek FORMAT NEST ENCLOSED clause{31a,34a},
pragment{92a} sequence option.

{Example:

a) f (uir[(int): $ 5 d $, (real): $ d.3d $) }

{A format-pattern may be used to provide formats dynamical ly for use
in transput. When a ' format ' pattern is encountered during a call of
get nex t picture, it is staticized and its insertion is performed. The first
picture of the format returned by the routine of the pattern is supplied as
the next picture, and subsequent pictures are taken from that format until
it has been exhausted.}

10.3.4.9.2. Semantics

The yield, in an environ E, of a NEST-format-pattern P is a structured
value whose mode is "FPATTERN' and whose fields, taken in order, are

• {i} the yield of its insertion;
• {p[} a routine whose mode is "procedure yielding FORMAT',

190 van Wijngaarden, etal.

composed of a procedure-yielding-FORMAT-NEST-routine.text whose
unit U is a new unit akin {1.1.3.2.k} to the meek-FORMAT-ENCLOSED-
clause of P, together with the environ necessary for U in E.

10.3.4.10. General patterns

10.3.4.10.1. Syntax

a) NEST general pattern{A341c} : NEST insertion{A341d},
letter g{94a} symbol, NEST width specification{b} option.

b) NEST width specification{a} : brief begin{94f} token,
meek integral NEST unit{32d},
NEST after specification{e} option, brief end{94f} token,
pragment{92a} sequence option.

c) NEST after specification{b} :
and also{94f} token, meek integral NEST unit{32d},

NEST exponent specification{d} option.
d) NEST exponent specification{c} ..

and also{94f} token, meek integral NEST unit{32d}.

{Examples:

a) g • g (-18, 12, -3) b) -18, 12, -3
c) , 1 2 , - 3 d) , - 3 }

{aa) A value Y is output using a picture P whose pattern Q was yielded
by a general-pattern G as follows:
• P is staticized;
• the insertion of Q is performed;
If Q is not parametr ized (i.e., G contains no width-specification),
then Y is output using put;
otherwise, if the mode of V is specified by Lin t or L real,
then

• if Q contains one (two, three) parameter (s) , Y is converted to a
string using whole (fixed, float);
• the string is written using put;

otherwise,
• the event routine corresponding to on value error is called;
• if this returns false, V is output using put, and undefined is called;

• the insertion of P is performed.

bb) A value is input to a name N using a picture P whose pattern is a
'general ' pattern as follows:
• P is staticized;
• (any parameters are ignored and) the value is input to N using get.}

10.3.4.10.2. Semantics

The yield, in an environ E, of a NEST-general-pattern P is a structured
value whose mode is 'GPATTERN' and whose fields, taken in order, are

• {i} the yield of the insertion of P;

ALGOL 68 Revised Report 191

• {spec} a multiple value W whose mode is ' row of procedure yielding
integral ' , having a descriptor ((1, n)), where n is the number of
constituent meek-integral-units of the width-specification-option of P,
and n elements determined as follows:
For i = 1 n,

• the i-th element of W is a routine, whose mode is 'procedure "
yielding integral ' , composed of a procedure.yieiding.integral-NEST-
routine-text whose unit U is a new unit akin {1.1.3.2.k} to the i-th of
those meek-integral-units, together with the environ necessary for U
in E.

10.3.5.
a)

b)

Format ted transput
m o d e format = struct (f lex [1 : O} piece F) ;

m o d e ~ p iece = struct (int cp ¢ pointer to current col lect ion ¢,
count ¢ number of times piece is to be repeated ¢,
bp ¢ back pointer ¢,
f lex [1 : 0] col lect ion c) ;

m o d e .~ col lect ion = union (picture, col l i tem) ;
m o d e .~ col l i tem = struct (insert ion i l ,

proc int rep ¢ repl icator ¢,
int p ¢ pointer to another piece ¢, insertion i2) ;

m o d e .~ insert ion = flex [1 : O] struct (proc int rep ¢ repl icator ¢,
union (string, char) sa) ;

m o d e .~ p ic ture =
struct (union (pattern, cpattern, fpattern, gpat tern , vo id)p , insert ion i) ;

m o d e .~ pat tern = struct (int type ¢ of pat tern ¢,
flex [1 : O} frame frames);

m o d e .~ f rame = struct (insert ion i,
proc int rep ¢ repl icator ¢,
b o o l supp ¢ true i f suppressed ¢,
c h a r marker) ;

m o d e .~ cpat tern = struct (insert ion i,
int type ¢ boolean or integral ¢,
f lex [1 : 0] insert ion c) ;

m o d e .~ fpattern = struct (insert ion i, p roc fo rmat p f) ;
m o d e ~ gpat tern = struct (insert ion i, f lex [1 : O] p roc int spec) ;

proc .~ get next picture = (ref file f, bool read, ref p ic ture picture) void :
begin
bool picture found := false, format ended:= false;
whi le - picture found
do i f fo rp o f f = 0 then

if format ended
then undefined
elif - (format mended of f) (f)
then ref int (forp of f) := 1;

c p o f (F o f f o r m a t o f f) [1] := 1;

192
/

van Wijngaarden, et al.

count of (F of f o rma t of f) [1] : = 1
else f o rmat ended : = true
tl

else
ref int forp = forp of f ;
ref flex [] p iece aleph = F of f o rma t o f f ;
case (c of aleph [forp]) [cp of a leph [forp]] in

(collitem cl):
([1 : upb (il of c/)] sinsert si;
bp of aleph [p of cl] := forp; forp := skip;
(staticize insert ion (il of cl, si),

count of aleph [p of cl] : = rep of cl);
(aleph : ~ : F o r f o rma t of f l undefined);
(read l ge t insert ion (f, si) I pu t inser t ion (f, si));
cp of aleph [p of cl] := O;
forp : = p of cl) ,

(picture pict): (picture found : = true; pic ture : = pict)
esac;
while

(forp ~ O Icp of aleph [forp] = upb c of aleph [forp] l faIse)
do it (count of a leph [forp] -: = 1) <_ 0
then

if (forp := bp of aleph [forp]) ~ 0
then

insertion extra =
case (c of aleph [forp]) [cp of aleph [forp]] in
(coll item cl):

(bpo fa leph [p o f c l] : = O; i 2 o f c l) ,
(picture pict):

case p of p ic t in
(fpattern fpatt):

tint k := forp;
while bp of aleph [k] ~ forp do.k+:= 1 od;
aleph := aleph [: k - 1];
i o fp ic t)

esac
esac;

int m = upb i of picture, n = upb extra;
[i : m + n] struct (proc int rep, union (string, char) sa) c;
c [1 : m] := io fp ic ture; c [m+ 1 : m + n] := extra;
i of picture : = c

fi
e lse cp of aleph [forp] : = 0
fl od;
(forp ~ O I cp of aleph [forp] +: = 1)

fl od
end;

e)

d)

e)

f)

g)

ALGOL 68 Revised Report

mode .~ sinsert = struct (int rep, union (string, char) sa) ;

proc 9 stat icize insert ion = (insertion ins, ref l J sinsert sins) void :
¢ calls collaterally all the replicators in ' ins '¢

i f upb ins = 1
then

rep of s ins [1] := rep of ins [I J;
sa of s ins [1] := sa of ins l l J

eIif upb ins > 1
then (staticize insert ion (ins [1 |, s ins |I]),

s tat icize insert ion (ins [2 : J, s ins [2 : J))
fi;

mode .~ s h a m e = s truct (flex [1 : 0] sinsert si, int rep, bool supp,
char marker) ;

proc ~ stat icize f rames =
([] frame f rames , ref [] s h a m e s f rames) void :

¢ calls collaterally all the replicators in ' f r a m e s ' ¢
if upb f rames = 1
then

[1 : upb (i of f rames [1])] s inser t si;
(staticize insert ion (i of f rames [1], si),

rep of s f rames [1] := rep of f rames [1]);
si of s f rames [1] := si;
supp of s f rames [1] := supp of f rames [1],¢
marker of s f rames [1] := m a r k e r of f rames [i]

eIif upb f rames > 1
then (staticize f rames (frames [1], s f rames [1]),

s tat icize f rames (f rames [2 :], s f rames [2 :]))
fl;

proc 9 p u t insert ion = (ref file f, [] sinsert si) void :
begin set wri te mood (f);

for k to upb si
do

case sa of si [k] in
(char a): a l ignmen t (f, rep of si [k] , a, false),
(string s):

to rep of si [k]
do

for i to upb s
do check pos (f); pu t char (f, s [i]) od

od
esac

od
end;

193

194

h)

i)

J)

van Wijngaa(rden, et al.

proc .~ ge t insert ion = (ref file f, [] sinsert si) void :
beg in set read mood (f);

for k to upb si
do

case sa o f s i [k] in
(char a): a l i gnmen t (f, rep of si [k], a, true),
(string s):

(char c;
to rep of si [k]
do

for i to upb s
do check pos (f); ge t char (f, c);

(c~s[i]
I (" (char error m e n d e d o f f) (f , c:= s [i])

l undefined);
set read mood (f))

esac
od

end;

od
otV

proc .~ a l i g n m e n t = (ref f i le f, in t r, char a, boo l read) void :
if a = " x " then to r do space (f) od
elif a = "y" then to r do backspace (f) od
elif a = "l" then to r do newl ine (f) od
elif a = "p" then to r do ne wpage (f) od
cilia = "k" then set char n u m b e r (f, r)
elif a = "q"
then to r

do
if read
then char c; check pos (f); ge t char (f, c);

(c ~ b lank
I (" (char error m e n d e d o f f) (f, c : = blank)

I undefined); set read mood (f))
e l se check pos (f); pu t char (f, blank)
fi

od
fl;

proc .~ do fpat tern = (rat f i le f, fpattern fpat tern, boo l read) void :
begin format pf ;

[1 : upb (i o f fpat tern)] sinserl si;
(staticize insertion (i of fpat tern, si),

p f : = p f of fpattern);
(read l ge t insertion (f, si) I pu t insert ion (f, si));

k)

ALGOL 68 Revised Report 195

ref int forp = forp of f;
ref flex [] piece aleph = F of f o rma t o f f ;
int m = upb aleph, n = upb (F of pf) ;
[1 : m + n] plece c; c [1 : m] :=aleph;
c [m + l : m + n] : = F o f p f ;
aleph := c; bp of aleph [m + 1] := forp;
forp : = m + l ; cp o f aleph [forp] :=0;
count o f aleph [forp] := 1;
for i from m + l to m + n
d o

for j to upb c of aleph [i]
d o

case (c of a l e p h [i]) [j] in
(col l i tem cl):

(c of a leph [i]) [j] :=
collitom (i l of cl, rep of cl, p of cl + m , i2 of cl)

esac
od

od
end;

proc .~ associate f o rmat = (rat file f, formal format) void :
begin

format o f f :=
c a n e w l y created n a m e which is m a d e to refer to the y ie ld
o f an ac tual - format -dec larer and whose scope is equal to
the scope of the value yielded by ' format ' c

:= format;
forp o f f := heap int : = 1;
c p o f (F o f f o r m a t o f f) [1] := 1;
count of (F of format of f) [1] : = 1;
b p o f (F of format o f f) [1] := 0

end;

10.3.5.1. F o r m a t t e d output

a) proc p u t t = (rot f i le f, [] un ion (outtype, format) x) void :
i f opened o f f then
for k to upb x
do case set write mood (f); set char mood (f); x [k] in

(format format): associate f o rmat (f, format) ,
(o u , y p e at):
begin in t j : = O;

plc ture p ic ture, [] s imp lou t y = s t ra ightout at;
whi le (j +: = I) <_ upb y
do boo l i ncomp : = false;

get nex t picture (f, false, picture);

196 van Wijngaarden, et al.

s e t wr i t e m o o d (f);
[1 : u p b (i o f p i c tu re)] s i n s e r t s inser t ;
case p o f p i c t u r e in

(pattern pa t t e rn) :
begin int rep, s f p : = 1;

[1 : u p b (f r a m e s o f p a t t e r n)] s h a m e s f r a m e s ;
(s ta t i c i ze f r a m e s (f r a m e s o f p a t t e r n , s f r a m e s) ,

s t a t i c i z e i n s e r t i o n (i o f p i c ture , s inser t)) ;
string s;

op ? = (string s) bool :
¢ t rue i f the n e x t m a r k e r is o n e o f t he e l e m e n t s o f

's' a n d f a l s e o t h e r w i s e ¢
i f s f p > u p b s f r a m e s
then false
else s h a m e s f = s f r a m e s [s f p];

rep : = rep o f sf;
if c h a r in s t r i n g (m a r k e r o f s f , Ioc int, s)
then sfp +: = 1; true
else false
fl

fl;
op ? = (char c) bool : ? string (c);
proc in t p a t t e r n = (ref boo l s i g n mou ld) int :

t int I : = O;
whi le ? " z u v " do (rep >_ 01 l +: = rep) od;
s i g n m o u l d := ? "+-";
while ? "zd" do (rep >_0] l +:= rep) od; l);

~ p roc edi t L i n t = (L I n t i) void :
(bool s i g n mou ld ; lnt l : = i n t p a t t e r n (s ign mould) ;
string t = s u b w h o l e (abs i, l);
if char in s t r i n g (errorchar , Ioc int, t) v l = 0

v . s i g n m o u l d ^ i < L 0
then i n c o m p : = true
else t plusto s;

(l - upb t) x "O" plusto s;
(s ign m o u l d I (i < i , p I I "+") p l u s t o s)

n)#;

Tproc ed i t L real = (L real r) void :
(i n tb := O, a := O, e := O, e x p := O, L r e a l y := abs r,
boo l s ign1 , s t r ing p o i n t : = "";
b : = i n t p a t t e r n (s ign1);
(.9 "."1 a : = i n t p a t t e r n (Ioc bool); p o i n t : = ".'9;
if .9 "e"
then L s t a n d a r d i z e (y, b, a, exp);

ALGOL 68 Revised Report

edi t i n t (exp);
"10' plusto s

fl;
s tr ing t = sub f i x e d (y, b + a + (a ~ 01 1 1 0), a); I
i f c h a r in s t r i n g (errorchar , Ioc int, t) v a + b = 0

v . s i g n l ^ r < L O .
then incomp : = true
else t [: b] + point + t [b + 2:] plusto s;

(b + a + (a ~ 0] 11 0) - upb t) x "0" plusto s;
(sign11 (r < L 01 1 % ") plusto s)

fl)~;

proc ed i t L c o m p l = (L c o m p l z) void"
(while - ? "i" do s fp +: = 1 od; ed i t L real (ira z);
".L " p lus to s; s fp := 1; ed i t L real (ra z))~;

~proc edi t L b i t s = (L bi ts lb, in t rad ix) void"
(L i n t n : = abs lb; ? "r"; in t I : = i n t p a t t e r n (Ioc bool);
whi le d ig c h a r (S (n rood K radix)) p lu s to s;

n +: = K r a d i x ; n ~ L 0
dO skip od;
If upb s <_ l
then (l - upb s) x "0" plusto s
else i n c o m p : = true
fi) ; /

proc c h a r c o u n t = int : (int I : = O; "
whi le ? " a" do (rep >_ 01 l +: = rep) od; l);

case t y p e o f p a t t e r n in
¢ i n t e g r a l ¢

(Y L/] I
(L int i): ed i t L i n t (i)

] i n c o m p : = true),
¢ real ¢

(Y L/] I
(L real r): e d i t L real (r) ~ ,
(L int i): ed i t L real (i)

I i n c o m p : = true),
¢ boo lean ¢

(y [.J] I
(bool b): s := (b l f l ip] f lop)
I i n c o m p := true),

¢ c o m p l e x ¢
(Y [J] I

(L c o m p l z): ed i t L e o m p l (z) ~ ,
(L real r): ed i t L c o m p l (r) ~ ,
(L i n t i): ed i t L c o m p l (i)~

] i n e o m p := true),

197

198 van Wijngaarden, et al.

¢ s tr ing ¢
(y LI'] I
(char c): (charcount = 1] s := c] incomp := true),
([] chart):

(charcount = upb t - Iwb t + 1
] s : = t [@ l]
I incomp := true)

I incomp := true)
out

¢ bits ¢
(Y [J] I

(L bits lb): edit L bits (lb, type of pat tern - 4)
] incomp : = true)

esac;
i f - incomp
then edit s tr ing (f, s, s frames)
fl

e n d , "

(cpattern choice):
begin

[1 : upb (i of choice) [sinsert si;
staticize insertion (i of choice, si);
pu t insertion (f, si);
in t l =

case type of Choice in
¢ boolean ¢

(y[Jl l
(bool b): (b I 1] 2)
] incomp := true; sk ip) ,

¢ integral ¢
(y [J] l
Ont i): i
I incomp := true; skip)

esac;
i f - incomp
then

i f I > upb (c o1 choice) v l <_ 0
then i ncomp : = true
else

[1 : upb ((c of choice) I l l)] s insert ci;
staticize insertion ((c of choice) Ill , ci);
pu t insertion (f, ci)

fl
li;
staticize insertion (i of picture, sinsert)

end,

ALGOL 68 Revised Report

(fpaRern fpattern):
begin

do fpat tern (f, fpattern, false);
for i to upb sinsert do sinsert [i] := (0, "") od;
j - : = 1

end,

(gpattern gpattern):
begin

[1 : upb (i o fgpat tern)] s insett si;
[] proc int spec = spec o fgpat tern; int n = upb spec;
[1 : n] ints;
(staticize insertion (i of gpattern, si),

staticize insertion (i of picture, sinsert),
s := (nl spec [1 J, (spec [1], spec [21),

(spec [1], spec [2] , spec [3]) I 0));
pu t insertion (f, si);
if n = O then pu t (f, y [j])
else

number y j =
(Y [J] I ~(L Int]i): i~, ~(L m l / r) : r~
I incomp := true; skip);

i f - incomp
then case n in

pu t (f, whole (yj, s [1])),
pu t (f, f ixed (yj, s [1], s [2])),
pu t (f, f loat (yj, s [1], s [2], s [3]))
esac

fi
fi

end,

(voW:
(j -: = 1; staticize insertion (i of picture, sinsert))

od
end

esac od

•sac;
i f incomp
then set write mood (f);

(- (value error mended of f) (f) I pu t (f, y [j]);
undefined)

fi;
put insertion (f, sinsert)

else undef ined
fl;

199

2OO

b)

/
v a n W i j n g a a r d e n , et al.

proc 9 edit s t r i ng = (ref file f, string s, [] shame sf) void :
begin bool supp, zs : = true, s ignpu t : = false, again, i n t j : = O, s ign;

p roc copy = (char c) void :
(- supp [check pos (f); pu t char (f, c));

for k to upb s f
do s h a m e s f k = s f [k]; s u p p : = s u p p of s fk;

p u t inser t ion (f, si o f sfk);
to rep of s f k
do a g a i n : = true;

while a g a i n
d o j + : = 1; a g a i n := false;

char s j = s LJ], m a r k e r = m a r k e r o f s fk;
if m a r k e r = "d"
then copy (s j) ; zs : = true
el i f m a r k e r = " z " then

(sj = "0"1 copy ((zs I ".-"1 sj))
]: s j = "+"[a g a i n : = true
] zs : = false; copy (s j))

elif m a r k e r = "u" v m a r k e r = "v" then
(sj = " + " l s ign : = 1; a g a i n : = true
l: s j= ' [s i g n : = 2; a g a i n : = true
]: s j= "O" l copy ((zs l "._" l sj))
t (" s i g n p u t l

copy ((s ign] (m a r k e r = "u" l " + " l "._'9, "-'9);
s i g n p u t : = true);
copy (s j) ; zs : = false)

eli f ma rke r = " + " then
(s j = "+" v s j = ' I copy (s j)
] (" s ignput] copy ((sign] "+", 9));

j -: = 1)
elif m a r k e r = ' then

(sj = '%"1 copy ("._'9
I: s j= ' I copy (s j)
I (" s i g n p u t l copy ((sign I ".-", 9));

j - : = 1)
el i f m a r k e r = "." then

copy (".")
elif m a r k e r = "e" v m a r k e r = "i"

v m a r k e r = "a" v m a r k e r = "b"
then copy (s j); zs : = true; s i g n p u t : = f a l s e
elif m a r k e r = "r"
then j - : = 1
fl

od
od

od
end;

A L G O L 68 R e v i s e d R e p o r t

10 .3 .5 .2 . F o r m a t t e d i n p u t

a) proc get f = (ref file f, [] union (intype, format) x) void :
if o p e n e d o f f then
f o r k to upb x
do case set read m o o d (f); se t char m o o d (f); x [k] ~ n

(format format) : assoc ia te f o r m a t (f, f o r m a t) ,
t intype it):
begin int j : = O;

picture picture, [] simplln y = straightin it;
while (j +: = 1) <_ upb y
do boo l i ncomp : = false;

ge t n e x t p i c ture (f, true, picture); se t read m o o d (f);
[1 : upb (i o f p ic ture)] s inser t s insert ;
case p o f p i c ture in

(pattern pat tern):
begin

[I : upb (f rames of pa t t e rn)] s f rame s f rames ;
(s tat icize f r a m e s (f rames of pa t t e rn , s f rames) ,

s ta t ic i ze inser t ion (i o f p ic ture , s insert));
string s;
int rad ix =

(type o f p a t t e r n >_ 6] t y p e o f p a t t e r n - 41 10);
ind i t s t r i ng (f, s, s f rames , radix);
case t ype o f p a t t e r n in / 4

¢ in tegra l ¢
(y[J]l
¢ (ret I, int ii):

i n c o m p : = - s t r i ng to L i n t (s, 10, ii)~
] i n c o m p : = true) ,

¢ real ¢
(y[J]l

(ref L real rr):
i n c o m p : = - s t r i ng to L real (s, rr) ~

] i n c o m p : = true) ,
¢ boolean ¢

(Y [J] I
(ref bool bb): bb : = s = f l ip
] i n c o m p : = true) ,

¢ c o m p l e x ¢
(y [J] I

(ref L compl zz):
(int i, boo l b l , b2; char in s t r i ng ("± ", i, s);
b l : = s t r i ng to L real (s [: i - 1], re o f zz);
b2 : = s t r i ng to L real (s [i + 1 :], im of zz);
i n c o m p : = - (bl ^ b2))~

[i n c o m p : = t rue) ,

201

202
t

van Wi jngaa rden , et al.

¢ s t r i ng ¢
(y [J]]
(rat char cc):

(upb s = 1 I cc := s [1] I i n c o m p := true) ,
(ref [] char ss):

(upb ss - Iwb ss + 1 = u p b s] ss [@ I] := s
I i n c o m p := true) ,

(ref str ing ss): ss := s
I i n c o m p := true)

out
¢ bi ts ¢

(yD]l
¢ (te lL bits lb):

if L int i; s t r i ng to L i n t (s, radix, i)
then lb := bin i
else i ncomp : = true

] i n c o m p := true)
esac

end,

(cpattern choice):
beg in

[1 : upb (i o f choice)] s inser t si;
s ta t ic i ze inser t ion (i o f choice, si);
ge t inser t ion (f, si);
inl c = c o f cpos o f f, char kk;
int k := O, bool f o u n d := false;
while k < u p b (c o f choice) ^ - f o u n d
d o k + : = l;

[1 : upb ((c o f choice) [k])] s inser t si;
bool bool : = true;
s ta t ic i ze inser t ion ((c o f choice) [k], si);
string s;
for i to upb si
do s plusab

(sa o f si [i]] (string ss): ss) x rep of si [i]
od;
for j j to upb s
while bool : = bool ^ - l ine e n d e d (f)

a - logical f i le e n d e d (f)
do ge t char (f, kk); bool := k k = s [j~] od;
(~ (found := bool) l se t char n u m b e r (f, c))

od;
it - f o u n d then i n c o m p : = true
else

c a s e t ype o f choice in

b)

ALGOL 68 Revised Repor t

¢ boolean ¢
(y [J] l
(re fboo l b): b := k = 1
I i n c o m p := true) ,

¢ in tegra l ¢
(y [J] I
(ref int i): i : = k
] i n c o m p := true)

esac
f i ;
s ta t ic i ze inser t ion (i o f p ic ture , s inser t)

end,

(fpatlern fpat tern):
b e g i n do f p a t t e r n (f, f pa t t e rn , true);

for i to u p b s in ser t do s in se r t [i] := (0, "") od;
j - : = l

end,

(gpat tern gpat tern) :
([1 : upb (i o f g p a t t e r n)] s inser t si;
(s tat icize inser t ion (i o f g p a t t e r n , si),

s ta t ic i ze inser t ion (i o f p ic ture , s insert));
ge t inser t ion (f, si);
ge t (f, y [j])) ,

(void):
(j -: = 1; s ta t ic i ze inser t ion (i o f p ic ture , s inser t))

o d
end

esac od

esac ;
i f i n c o m p
then se t read m o o d (f);

(- (va lue error m e n d e d o f f) (f) I u n d e f i n e d)
fI;
ge t inser t ion (f, s inser t)

else u n d e f i n e d
f l ;

proc 9 ind i t s t r i ng = (ref file f, ref s tr ing s, [] s h a m e s f, int radix) void :
begin

bool supp, zs : = true, s i g n f o u n d : = false, space f o u n d : = false,
no s ign : = false, int sp : = 1, rep;

pr lo ! = 8;

203

204 van Wijngaarden. et al.

op ! = (string s, char c) char :
¢ e x p e c t s a c h a r a c t e r c o n t a i n e d in 's'; i f t h e c h a r a c t e r
read is no t in 's', the e v e n t ro u t i ne c o r r e s p o n d i n g to 'on
char error ' is ca l led w i t h the s u g g e s t i o n ' c '¢

if char k; c h e c k p o s (f); g e t c h a r (f, k);
char in s t r i n g (k, Ioc inl, s)

then k
else char sugg : = c;

i f (char error m e n d e d o f f) (f, s u g g) then
(char in s t r i n g (sugg, Ioc int, s) [s u g g [unde f i ned ; c)

else undef ined; c
fi;
s e t read m o o d (f)

n;
op ! = (char s, c) char : string (s) ! c;
[] c h a r g o o d d ig i t s = "0123456789abcde f " [: rad ix] ;
S := " + ' ;
f o r k to upb s f
do s h a m e s f k = s/[k]; s u p p : = s u p p o f s f k ;

g e t i n s e r t i o n (f, s i o f s fk) ;
to rep o f s f k
do char m a r k e r = m a r k e r o f s f k ;

if m a r k e r = "d" then
s p lu sab (supp ["0"[g o o d d ig i t s ! "0"); z s : = true

elif m a r k e r = "z" then
s p lusab (supp I "0"

i char c = ((zs i ".- "l "") + g o o d d ig i t s) ! "0";
(c ~ " . "[z s := false); c)

elif m a r k e r = "u" v m a r k e r = "+" then
i f s i g n f o u n d
then z s : = false; s p lu sab ("0123456789" ! "0")
else char c = ("+-" + (marker = "u" l "._ "["")) ! "+";

(c = % " v c = ' I s i g n f o u n d : = true; s [sp] : = c)
fi

el i f m a r k e r = "v" v m a r k e r = ' then
if s i g n f o u n d
then z s := false; s p lu sab ("0123456789"! "0~9
elif char c; s p a c e f o u n d
then c := "+-_.0123456789"! "+";

(c= "+" v c = ' I s i g n f o u n d := true; s [sp] := c
J: c ¢ "_."l z s : ~ false; s i g n f o u n d : = true; s p l u s a b c)

else c := " + - . " ! "+";
(c= "+" v c= [s i g n f o u n d := true; s [sp] := c
[s p a c e f o u n d := true)

fi
el i f m a r k e r = "." then

s plusab (supp ["."1 ". " ! ". ")

ALGOL 68 Revised Report 205

elif m a r k e r = "e" then
s p lu sab (supp I "1o"1 "1o\ e' ' ! "1o"; "lo");sig n f o u n d : = false;
z s : = true; s p lu sab "+"; sp : = u p b s

el i f m a r k e r = "i" then
s p lu sab (supp I "1 "1 "i± "! "]_ "; "J_ ");
s i g n f o u n d : = false; z s := true; s p lu sab '%"; sp := u p b s

el i f m a r k e r = "b" then
s p lu sab (f l ip + f lop) ! f lop; no s i g n : = true

eli f m a r k e r = " a" then
s p lusab (supp I "._"[char c; c h e c k p o s (f); g e t c h a r (f, c);
c);
no s i g n : = true

eli f ma rke r = " r "
then skip
fl

od
od;
i f no s i g n then s : = s [2 :] fl

e n d ;

10.3.6. Binary transput

{In binary transput, the values obtained by straightening the elements
of a data list (cf. 10.3.3) are transput, via the specified file, one after the
other. The manner in which such a value is stored in the book is defined
only to the extent that a value of mode M (being some mode from which
that specified by s i m p l o u t is united) output at a given position may
subsequently be re-input from that same position to a name of mode
' reference to M'. Note that, during input to the name referring to a
multiple value, the number of elements read will be the existing number
of elements referred to by that name.

The current position is advanced after each value by a suitable amount
and, at the end of each line or page, the appropriate event routine is
called, and next, if this returns false, the next good charac te r position of
the book is found (cf. 10.3.3).

For binary output, p u t b in (10.3.6.1.a) and w r i t e b in (10.5.l.h) may be
used and, for binary input, g e t b in (10.3.6.2.a) and read b in (10.5.15).}

a) proc 9 to b in = (ref file f, s imp lout x) [] char :
c a va lue o f m o d e ' row o f c h a r a c t e r ' w h o s e l o w e r b o u n d is o n e

a n d w h o s e u p p e r b o u n d d e p e n d s on the v a l u e o f 'book o f f '
a n d on the m o d e a n d the va lue o f 'x'; f u r t h e r m o r e ,
x = f r o m b in (f, x , to b in (f, x)) c ;

b) proc .~ f r om b in = (ref file f, s implout y, [] char c) s imp lout :
c a value , i f one ex i s t s , o f t he m o d e o f t he v a l u e y i e l d e d by 'y',

s u c h t h a t c = to b in (f, f r o m bin (f, y , c)) c ;

206 van Wijngaa~den. et al.

10.3.6.1. B i n a r y ou tpu t

a) procpu tb in=(re f f l l e f , [] ou t t ypeo t)vo id :
if opened o f f then

set bin mood (f); set write mood (f);
for k to upb ot
do [] s implout y = straightoul ot [k];

for j to upb y
do [] char bin = to bin (f, y [j]);

for i to upb bin
do nex t pos (f);

set bin mood (f);
r e f p o s cpos = cpos of f , lpos = lpos of book off;
case text of f i n
(flextext t2):

t2 [p of cpos] [l of cpos] [c of cpos] := bin [i]
esac;
c of cpos+:= 1;
if cpos beyond lpos then lpos : = cpos
slit - set possible (f)

^ p o s (p of lpos, I of lpos, 1) beyond cpos
then lpos := cpos;

(compressible (f) l
c the size of the line and page con ta in ing the

logical end of the book and of all
subsequent lines and pages m a y be
increased c)

fl
od

od
od

else undef ined
f l ;

10.3.6.2. B i n a r y input

a) proc get bin = (ref file f, [] intype it) void :
if opened of f then

set bin mood (f); set read mood (f);
for k to upb it
do [] simplin y=stre ight in it [k];

for j to upb y
do

slmplout y j = case y [j] in
~(refL intO: i~ , ~(re fL realr): r~ ,
~ (ref L compl z): z~ , (ref bool b): b ,
~(ref L bits lb): lb~ , (ref char c): c, (ref [] chars): s ,
(ref slr ing ss): ss esac;

ALGOL 68 Revised Report

esac
od

od
else undef ined
f l ;

[1 : upb (to bin (f, yj))] char bin;
for i to upb bin
do nex t pos (f); set bin mood (f);

r e t p o s cpos = cpos of f;
bin [i] :=

case text of f ln
(flextext t2):

t2 [p of cpos] [l of cpos] [c of cpos]
esac;

c ofcpos +: = 1
od;
case y [j] In

+ (ref L int ii): (~ m ~in (f, ii, bin) l (L IntO: ,~. = i) ~ ,
(ref L real rr):

(from bin (f, rr, bin)] (L real r): r r : = r) ~ ,
(ref L compl zz):

(from bin (f, zz, bin) l (L compl z): zz : = z) ~ ,
(refbool bb): (from bin (f, bb, bin) l (bool b): bb := b) ,
~ (ref L bits lb):

(from bin (f, lb, bin) l (L bits b): lb := b)~,
(ref cher cc): (from/bin (f, cc, bin)[(char c): cc := c) ,
(ref [] char ss)i= "

(from bin (f, ss, bin) l ([] chars): ss := s) ,
(ref string ssss):

(from bin (f, ssss, bin) l ([] chars): ssss := s)
I "

[But Eeyore wasn't listening. He was taking
the balloon out, and putting it back again,
as happy as could be
Winnie-the-Pooh, A.A.Milne.}

}

208 van Wijngaar~en. et al.

10.4. The sys tem prelude and task list

10.4.1. The sys tem prelude

The representat ion of the sys tem.pre lude is obtained f rom the following
form, to which m a y be added fur ther forms not defined in this Report.
{The syntax of p rogram- tex ts ensures that a declarat ion contained in the
sys tem-prelude m a y not contradict any declara t ion contained in the
standard-prelude. It is intended that the fur ther forms should contain
declarat ions that are needed for the correc t operat ion of any sys tem- tasks
that m a y be added (by the implementer , as provided in 10.1.2.d).}

a) sema .~greml ins=(semas; F o f s : = P R I M i n t : = O ; s);

10.4.2. The sys tem task list

The representat ion of the {first} constituent sys tem- task of the sys tem-
task-list is obtained f rom the following form. The other sys tem-tasks , if
any, are not defined by this Report {but m a y be defined by the
implemente r in order to account for the par t i cu la r fea tures of his
operat ing environment , especial ly in so far as they in terac t with the
running of pa r t i cu la r -p rograms {see, e.g., 10.3.1.1.dd)}.

a) do down gremlins; undefined; up bfileprotect od

{The intention is that this call of undef ined, which is re leased by an up
greml ins whenever a book is closed, m a y reorganize the chain of backfi les
and the chain of locked backfiles, such as by removing the book if it is not
to be avai lable for fur ther opening, or by insert ing it into the chain of
backfiles severa l t imes over if it is to be permi t ted for severa l par t icular-
p rograms to read it s imultaneously. Note that, when an up greml ins is
given, bfileprotect is a lways down and remains so until such reorganizat ion
has taken place.}

{From ghoulies and ghosties and Iong-
leggety beasties and things that go bump
in the night,
Good Lord, deliver us!

Ancient Cornish litany}

10.5. The par t icular preludes and postludes

10.5.1. The par t icu lar preludes

The representat ion of the par t icular -pre lude of each user- task is
obtained f rom the following forms, to which m a y be added such other
forms as m a y be needed for the proper functioning of the facilities defined
in the constituent l ibrary-prelude of the p rog ram- tex t {, e.g., declara t ions
and calls of open for additional s tandard files}. However, for each
QUALITY-new-new-PROPS l-LAYER2-defining-indicator-with-TAX contained

ALGOL 68 Revised Report 209

in such an additional form, the predicate 'where QUALITY TAX
independent PROPSI ' {7.1.l.a,c} mus t hold {i.e., no declarat ion contained in
the s tandard-prelude m a y be contradicted}.

a) L i n t L last random : = round (L m a x int / L 2) ;

b) proc L random = L real : L nex t random (L last random) ;

c) file s tand in, s tand out, s tand back ;
open (s tand in, "", s tand in channel) ;
open (s tand out, "", s tand out channel) ;
open (s tand back, "", s tand back channel) ;

d) proc p r i n t = ([] union (outtype, proc (ref file) void) x) void :
put (s tand out, x),

proc write = ([] union (outtype, proc (ref file) void) x) void :
put (s tand out, x) ;

e) proc read = ([] un ion (intype, proc (ref f i le) void) x) void :
get (s tand in, x) ;

f) proc pr in t f = ([] union (outtype, format) x) void : p u t f (s tand out, x),
proc wri te f = ([] union (outtype, format) x) void : p u t f (s tand out, x) ;

g) proc readf = ([] union (intype, format) x) void : ge t f (s tand in, x) ;

h) proc write bin = ([J out type x) void : pu t bin (s tand back, x) ;

i) proc read bin = ({] intype x) void : ge t bin (s tand back, x) ;

/

10.5.2. The par t icular postludes

The representat ion of the par t icular-post lude of each user- task is
obtained f rom the following form, to which m a y be added such other
forms as m a y be needed for the proper functioning of the facilities defined
in the constituent l ibrary-prelude of the p rogram- tex t {, e.g., calls of lock
for additional s tandard files}.

a) stop: lock (s tand in); lock (s tand out); lock (s tand back)

II. Examples

11.1. Complex square root

proc compsqrt = (compl z) compl :
¢ the square root whose real par t is nonnega t i ve o f the complex
number 'z' ¢

begin real x = re z, y = im z; real rp = sqrt ((abs x + sqrt (x r 2 + y ! 2)) / 2);
real ip=(rp=OI OI y / (2x rp));

!
210 van Wi jngaarden , e t al.

if x >_ O then rp .L ip else abs ip .L (y >-01 rp l - rp) fi
e n d

Calls {5.4.3} us ing compsqrt:
compsqrt (w)
compsqrt (-3.14)
compsqrt (-1)

11.2. I n n e r p r o d u c t 1

proc innerproduct I = (int n, proc (int) real x, y) real :
¢ the innerproduct o f two vectors, each wi th 'n' comppnents , x (i),
y (i), i = 1 n, where 'x' and 'y' are arbi trary m a p p i n g s f rom
integer to real n u m b e r ¢

begin long real s : = long O;
for i t o n do s + : = leng x (i) x leng y (i) od;
shorten s

end

Rea l -ca l l s us ing innerproduct 1:
innerproduct I (m, (i n t j) real : x l [j], (intj) rea l : y l [j])
innerproduct I (n, nsin, ncos)

11.3. I n n e r p r o d u c t 2

proc innerproduct 2 = (ref [] real a, b) real :
i f upb a - Iwb a = upb b - Iwb b
then ¢ the innerproduct o f two vectors 'a' and 'b' wi th equal numbers

o f e lements ¢
long real s : = long O;
ref[] rea la l =a [@ I] , bl =b [@•];

¢ note that the bounds o f 'a [@ 1] ' are [1 : upb a - Iwb a + 1] ¢
for i to u p b a l d o s +: = leng al [i] x leng b l [i] od;
shorten s

fl

Rea l -ca l l s us ing innerproduct2:
innerproduct 2 (xl , y l)
innerproduct 2 (y2 [2,], y2 [,3])

11.4. L a r g e s t e l e m e n t

proc a b s m a x = (ref [,] real a, ¢ result ¢ ref real y,
¢ subscripts ¢ ref int i, k) void :

¢ the absolute value o f the e lement o f greates t absolute value o f
the matr ix 'a' is ass igned to 'y', and the subscripts o f this e l emen t
to 'i' and ' k '¢

ALGOL 68 Revised Repor t

begin y := - 1;
for p from I Iwb a to I upb a
do

for q from 2 Iwb a to 2 upb a
do

i f a b s a [p, q] > y then y := abs a [i := p, k := q] fl
od

od
end

Calls us ing absmax:
a b s m a x (x2, x, i, j)
a b s m a x (x2, x, Ioc int , Ioc int)

211

11.5. E u l e r s u m m a t i o n

proc euler = (proc (int) real f, real eps, int tim) real :
¢ the s u m for 'i' f rom 1 to in f ini ty o f 'f(i)', computed by m e a n s o f
a sui tably refined Euler transformation. The s u m m a t i o n is
terminated w h e n the absolute values o f the terms o f the
t rans formed series are f ound to be less t han 'eps' ' t im' t imes in
succession. This t rans format ion is part icularly ef f icient in the
case o f a s lowly convergent or d ivergent a l ternat ing series ¢

beg in in t n : = l , t; real mn, ds : = eps; [1 : 1 6] r e a l m ;
rea l sum := (m [1] :=f(1)) /2;
for i from 2 while (t := (abs ds < eps] t + 111)) ~ t im
do m n : = f (/ k

f o r k to n do m n := ((ds := mn) + m [k]) / 2; m [k] := ds od;
s u m +: = (ds := (abs m n < abs m In] ^ n < 16 f n +: = 1; m In] := mn;

m n / 21 mn))
od;
sum

end

A ca l l us ing euler:
euler ((int i) real : (odd i j - 1 / i] 1 / i), 11o-5, 2)

11.6. The n o r m of a v e c t o r

proc norm = (ref [] real a) real :
¢ the euclidean norm o f the vector 'a' ¢

(long real s : = long O;
fo rk from lwb a to upb a do s + : = leng a [k] ! 2 od;
shorten long sqrt (s))

F o r a use of norm in a ca l l , see 11.7.

/
212 van Wijngaarden, et el.

11.7. Determinant of a ma t r ix

proc det = (ref [,] real x, ref [] in t p) real :
i f re f [,] rea la = x [@ I, @ i];

1 u p b a = 2 u p b a ^ 1 u p b a = u p b p - l w b p + l
then int n = 1 upb a;

¢ the d e t e r m i n a n t o f the square m a t r i x 'a' o f order 'n ' by the
m e t h o d o f Crout w i t h row in t e rchanges : 'a' is replaced b y i ts
t r i angu lar decompos i t ion , l x u, w i t h all u [k, k] = 1. The
vector 'p' g i v e s as o u t p u t the p i v o t a l row indices; the k - th
p i v o t is chosen in the k - th c o l u m n o f 'l' s u c h t h a t
a b s l [i, k] / row n o r m is m a x i m a l ¢

[1 : n] real v; real d : = 1, s, p ivo t ;
for i to n do v [i] := n o r m (a [i,]) od;
f o r k t o n
d o int k l = k - 1; r e f i n t p k = p [@ 1] [k] ; real r := -1;

r e f [,] r e a l a l = a [, I : k l], a u = a [1 : k l ,];
ref [] real ak = a [k,], k a = a [, k], a lk = a l [k,], k a u = au [, k];
for i f rom k to n
d o ref real a i k = k a [i];

if (s := a b s (aik -: = i n n e r p r o d u c t 2 (al [i,], kau)) / v [i]) > r
then r := s; p k := i
fl

od;
v [pk] := v [k]; p i v o t := ka [pk]; ref [] real a p k = a [pk,];
for j to n
do ref real a k j = a k [j], a p k j = a p k [j];

r : = akj;
a k j : = if j ~ k then a p k j

e l s e (a p k j - i n n e r p r o d u c t 2 (alk, au [, j])) / p i v o t fl;
i f p k ~ k then apk j : = - r f i

od;
d x: = p i v o t

od;
d

fi

A call using det:
de t (y2, i l)

11.8. Grea tes t common divisor

proc gcd = (int a, b) int :
¢ the g rea t e s t c o m m o n d iv i sor o f two in t egers ¢

(b = 0] abs a I gcd (b, a m o d b))

A call using gcd:
gcd (n, 124)

ALGOL 68 Revised Report

11.9. Continued fraction

213

op / = ([] real a, [] real b) real :
¢ the va lue o f a / b is t h a t o f the c o n t i n u e d f r a c t i o n
a l / (b l + a 2 / (b 2 + . . . a n / b n) . . .) ¢

if Iwb a = I ^ Iwb b = 1 a upb a = upb b
t h e n (u p b a = O l O I a [1] / (b [1] + a [2:] / b [2:]))
fi

A formula u s ing / :
x l / y l

{The use of recursion m a y often be elegant r a the r than efficient as in
the recursive procedure 11.8 and the recurs ive operat ion 11.9. See,
however, 11.10 and 11.13 for examples in which recursion is of the
essence.}

11.10. Formula manipulat ion

begin
mode form = union (te l const, ref var, ref triple, ref cell);
mode const = struct (reel value);
mode var = struct (string name, real value);
m o d e triple = s truc t (form lef t operand , int operator ,

form r igh t operand);
m o d e funct ion = s t ruc t (ref car b o u n d car, form body);
m o d e call = s l ruc t (ref func t ion f u n c t i o n n a m e , form parame te r) ;
i n t p l u s = 1, m i n u s = 2, t imes = 3, by = 4, to = 5;
h e a p c o n s t zero, one; va lue o f zero := O; va lue o f one : = 1;
op = = (form a, ref c o n s t b) b o o l : (a I (ref c o n s t ec): ec : =: b I false);
op + = (form a, b) form :

(a = zero I b I: b = zero I a I heap triple : = (a, p lus , b));
op - = (form a, b) form : (b = zero I a I heap triple : = (a, m i n u s , b));
op x = (form a, b) form : (a = zero v b = zero I zero I: a = one I b I: b = one l a I

h e a p triple : = (a, t imes , b));
op / = (form a, b) form : (a = zero ^ - (b = zero) J zero I: b = one l a J

h e a p triple := (a, by, b));
op ! = (form a, ref c o n s t b) form:

(a = one v (b : =: zero) I one J : b : =: one I a I h e a p triple : = (a, to, b));
proc der i va t i ve o f = (form e, ¢ w i t h respect to ¢ ref car x) form :

case e in
(ref const): zero ,
(re fvarev): (ev :=: x J o n e l z e r o) ,
(ref triple et):

case form u = left o p e r a n d o f et, v = r igh t o p e r a n d o f et;
form u d a s h = der i va t i ve o f (u , ¢ w i t h respect to ¢ x),

v d a s h = der i va t i ve o f (u , ¢ w i t h respec t to ¢ x);

214 van Wijngaarden, et al.

operator o f e t
in

udash + vdash ,
udash - vdash ,
u x vdash + udash x v,
(udash - e t x vdash) / v,
(v] (n~f c o n s t ec): v x u ! (heap c o n s t c;

value arc := value o f e c - I; c) x udash)
asaC ,

(ref call el):
begin ref function f = func t ion n a m e o f el;

form g = p a r a m e t e r o f el; ref car y = bound v a t o f f;
heap function f d a s h := (y, der i va t i ve o f (b o d y o f f , y));
(heap call := (fdash, g)) x der i va t i ve o f (g , x)

and
esac ;

proc value o f = (form e) real :
case e in

(rof c o n s t ec): value o f ec ,
(tel vat ev): value o f ev ,
(ref tr iple et):

c a s e real u = value o f (l e f t operand o f et),
v = value o f (right operand o f et);
operator o f et

i n u + v , u - v , u x v , u / v , e x p (v x l n (u))
eSaC ,

(tel call el):
berlin ref function f= func t ion n a m e o f el;

value o f bound car o f f : = value o f (parameter o f el);
value o f (body o f f)

e n d
esac;

heap form f, g;
heap var a : = ("a", skip), b : = ("b", skip), x : = ("x", skip);

¢ s tar t here ¢
read ((value o f a, value o f b, value o f x));
f :=a + x / (b+ x);
g : = (f+ one) / (f . one);
p r in t ((value o f a, value o f b, value of x,

value o f (de r i va t i ve o f (g , ¢ w i th respect to ¢ x))))
end ¢ examp le o f fo rmula man ipu la t i on ¢

11.11. I n f o r m a t i o n r e t r i e v a l

begin
m o d e ra = re f auth, rb = re f book;

ALGOL 68 Revised Report

m o d e auth = struct (string hame , ra nex t , rb book),
book = s t ruc t (s t r ing t i t le , rb next) ;
ra auth , f i r s t au th : = nil, las t auth;
rb book; string name , title; int i; file input , output;
op.en (input, "", remote in); open (output, "", remote out);
p u t f (output, ($p

"to en ter a n e w author, t ype author"", a space ,"x
"and his name ." l
"to en ter a n e w book, t ype book"", a space,"x
"the n a m e o f the author, a n e w line, a n d the t i t le."l
"for a l i s t ing o f the books by an author, t ype list';",'~c
"a space, and his name . " l
"to f i nd the au thor o f a book, t ype ""find"", a n e w line,"x
"and the title."l
"to end, t ype ""end al$, "."));

proc update = void :
if ra (f irst auth) :=: nil
then auth : = f i r s t au th : = las t au th : = heap auth : = (name, nil, nil)
e l se au th : = f i r s t auth;

while ta (auth) :~: nil
do

(name = n a m e o f au th I go to k n o w n au th : = n e x t o f auth)
od;
las t au th := n e x t o f las t au th := au th : =

heap auth : = (name, nil, nil);
known: skip

fi;

do
t ry again:

g e t f (input, ($cCauthor","book","l is t" ," f ind","end"," '9 , x3Oal,
80al$, i));

case i in

¢ author ¢
(get f (input, name); update) ,

¢ book ¢
begin g e t f (input, (name, title)); update;

if rb (book o f auth) :=: nil
then book of auth : = heap b o o k : = (title, ni l)
else book : = book o f auth;

while rb (nex t o f book) : ~: nil
do

(title = ti t le o f book
I go to try again I book : = n e x t of book)

od;

215

216

od
end

/

van Wijngaarden, et al.

fl
end,

(title ~ title of book
I nex t of book : = heap book : = (title, nil))

¢ list ¢
begin g e t f (input, name); update;

p u t f (output, ($p" author: "30all$, name));
if rb (book := book of auth) :=: nil
then pu t (output, ("no publ icat ions", newline))
else on page end (output,

(ref file f) bool :
(put f (f, ($p" author: "30a41k" continued"ll$, name));
true));

while rb (book) : ~: nil
do p u t f (output, ($180a$, title o f book)); book:= nex t of book
od;
on page end (output, (fertile f) bool : false)

fl
end,

¢ f ind ¢
begin ge t f (input, (Ioc string, title)); au th : = f irs t auth;

whlle ra (auth) :~: nil
do book := book of auth;

while rb (book) : ~: nil
do

if title = title of book
then p u t f (output, ($l"author: "30a$, n a m e of auth));

go to t ry again
else book : = nex t of book
fi

od;
auth : = nex t of au th

od;
pu t (output, (newline, "unknown" , newline))

end,

¢ end ¢
(put (output, (new page, "s igned off", close)); close (input);

goto stop) ,

¢ error ¢
(put (output, (newline, "mis take, t ry again")); newl ine (input))

e s e c

ALGOL 68 Revised Report

11.12. Coopera t ing sequen t i a l processes

begin int n m b magaz ine slots, n m b producers, n m b consumers;
read ((nmb magaz ine slots, n m b producers, n m b consumers));
[1 : n m b producers] file infile, [1 : n m b consumers] file outfile;
for i to n m b producers do open (infile [i], "", i nchanne l [i]) od;

¢ ' inchannel ' and 'outchannel ' are def ined in a surrounding
range ¢

for i to n m b consumers
do open (outfile [i], "", ou tchanne l [i]) od;
m o d e p a g e = [1 : 60, 1 : 132] char;
[1 : n m b m a g a z i n e slots] ref page magaz ine;
int ¢ pointers o f a cyclic m a g a z i n e ¢ index : = 1, exdex : = 1;
sema ful l slots = level O, free slots = level n m b m a g a z i n e slots,

in buffer busy = level 1, out buf fer busy = level 1;
proc par call = (proc (int) void p, int n) void :

¢ call 'n' incarnat ions o f 'p' in paral lel ¢
(n > 01 par (p (n), par call (p, n - 1)));

proc producer = tint i) void :
do heap page page;

ge t (infile [i], page);
down free slots; down in buffer busy;

magaz ine [index] : = page;
index modab n m b m a g a z i n e slots plusab 1;

up ful l slots; up in buf fer busy
od;

proc consumer = tint i) void :
do page page;

down ful l slots; down out buf fer busy;
page := magaz ine [exdex];
exdex modab n m b magaz ine slots plusab 1;

up free slots; up out buffer busy;
pu t (outfile [i], page)

od;
par (par call (producer, n m b producers),

par call (consumer, n m b consumers))
end

11.13. Towers of Hanoi

f o rk t o8
do file f : = s tand out;

proc p = tint me, de, ma) void :
if ma > 0 then

p (me, 6 - me - de, m a - 1);
p u t f (f, (me, de, ma));

217

218
f

van Wijngaarden, et al.

¢ m o v e f r o m p e g 'me ' to p e g 'de' p i ece ' m a ' ¢
p (6 - m e - de, de, m a - I)

ti;
p u t f (f, ($1"k = "dl, n((2 T k+15)+ l 6)(2(2(4(3(d)x)x)x)l)$, k));
p (1 , 2 , k)

ad

12. Glossaries

12.1. Technical te rms

Given below are the locations of the defining occurrences of a number
of words which, in this Report, have a specific technical meaning. A word
appearing in different g rammat ica l forms is given once, usually as the
infinitive. Terms which are used only within pragmat ic remarks are
enclosed within braces.

abstraction (a protonotion of a protonotion) 1.1.4.2.b
acceptable to (a value acceptable to a mode) 2.1.3.6.d
access (inside a locale) 2.1.2.c
action 2.1.4.1.a
active (action) 2.1.4.3.a
af ter (in the textual order) 1.1.3.2.i
akin (a production tree to a production tree) 1.1.3.2.k
[alignment} 10.3.4.1.1.ff
al ternative 1.1.3.2.c
apostrophe l.l.3.1.a
ar i thmetic value 2.1.3.1.a
ascribe (a value or scene to an indicator) 4.8.2.a
assign (a value to a name) 5.2.1.2.b
asterisk l.l.3.1.a
[balancing} 3.4.1
before (in the textual order) 1.1.3.2.i
blind alley 1.1.3.2.d
[book} 10.3.1.1
bound 2.1.3.4.b
bound pair 2.1.3.4.b
built (the name built from a name) 6.6.2.c
built (the multiple value built from a value) 6.6.2.b
calling (of a routine) 5.4.3.2.b
[channel} 10.3.1.2
charac ter 2.1.3.1.g
chosen (scene of a chooser-clause) 3.4.2.b
[close (a file)} 10.3.1.4.ff
collateral action 2.1.4.2.a
collateral elaboration 2.1.4.2.f
[collection} 10.3.4.1.l.gg

ALGOL 68 Revised Report

colon 1.1.3.1.a
comma l . l .3. l .a
complete (an action) 2.1.4.3.c, d
[compressible} 10.3.1.3.ff
consistent substitute 1.1.3.4.e
constituent 1.1.4.2.d
construct 1.1.3.2.e
construct in a representat ion language 9.3.b
contain (by a hypernotion) l.l.4.1.b
contain (by a production tree) 1.1.3.2.g
contain (by a protonotion) 1.1.4.1.b
[control (a string by a pattern)} 10.3.4.1.l.dd
(conversion key} 10.3.1.2
[create (a file on a channel)} 10.3.1.4.cc
{cross-reference (in the syntax)} 1.1.3.4.f
[data list} 10.3.3
defining range (of an indicator) 7.2.2.a
deflex (a mode to a mode) 2.1.3.6.b
[deproceduring} 6
[dereferencing} 6
descendent 1.1.3.2.g
descendent action 2.1.4.2.b
descriptor 2.1.3.4.b
designate (a hypernotion designating a protonotion) I . l .4. l .a
designate (a paranotion designating a construct) 1.I.4.2.a
develop (a scene from a declarer) 4.6.2.c
direct action 2.1.4.2.a
direct descendent 1.1.3.2.f
direct parent 2.1.4.2.c
divided by (of ar i thmetic values) 2.1.3.1.e
[dynamic (replicator)} 10.3.4.1.1.dd
(edit (a string) } 10.3.4.1.1.jj
elaborate collaterally 2.1.4.2.f
elaboration 2.1.4.1.a
element (of a multiple value) 2.1.3.4.a
elidible hypernotion 1.1.4.2.c
endow with subnames 2.1.3.3.e, 2.1.3.4.g
envelop (a protonotion enveloping a hypernotion) 1.1.4.1.c
environ 2.1.1.1.c
[environment enquiry} 10.2
equivalence (of a charac te r and an integer) 2.1.2.d, 2.1.3.1.g
equivalence (of modes) 2.1.1.2.a
equivalence (of protonotions) 2.1.1.2.a
establish (an environ around an environ) 3.2.2.b
[establish (a file on a channel)} 10.3.1.4.cc
[event routine} 10.3.1.3

219

220 van Wijngaarden, et al.

{expect} 10.3.4.1.1.11
{external object} 2.1.1
field 2.1.3.3.a
{file} 10.3.1.3
{firm (position)} 6.1.1
{firmly related} 7.1.1
fixed name (referring to a multiple value) 2.1.3.4.f
flat descriptor 2.1.3.4.c
flexible name (referring to a multiple value) 2.1.3.4.f
follow (in the textual order) 1.1.3.2.j
{format} 10.3.4
Iframe} 10.3.5.1.bb
generate (a 'TAG" generat ing a name) 2.1.3.4.1
generate (a t r im generat ing a name) 2.1.3.4.j
ghost element 2.1.3.4.c
halt (an action) 2.1.4.3.f
hardware language 9.3.a
Iheap} 5.2.3
hold (of a predicate) 1.3.2
hold (of a relationship) 2.1.2.a
hyper-rule 1.1.3.4.b
hyperal ternat ive 1.1.3.4.c
hypernotion l . l .3. l .e
hyphen l.l.3.1.a
identify (an indicator identifying an indicator) 7.2.2.b
implementation (of ALGOL 68) 2.2.2.c
implementation of the reference language 9.3.c
in (a construct in an environ) 2.1.5.b
in place of 3.2.2.a, 5.4.4.2
inactive (action) 2.1.4.3.a
incompatible actions 2.1.4.2.e
{independence (of properties) } 7.1.1
index (to select an element) 2.1.3.4.a
{indit (a string)} 10.3.4.1.1.kk
initiate (an action) 2.1.4.3.b, c
{input compatible} 10.3.4.1.1.ii
inseparable action 2.1.4.2.a
{insertion} 10.3.4.1.l.ee
integer 2.1.3.1.a
integral equivalent (of a character) 2.1.3.1.g
{internal object} 2.1.1
interrupt (an action) 2.1.4.3.h
intrinsic value 8.1.1.2, 8.1.2.2.a, b, 8.1.4.2.b, 8.2.2.b, c
invisible 1.1.3.2.h
is (of hypernotions) 2.1.5.e
large syntactic mark 1.1.3.1.a

ALGOL 68 Revised Report

largest integral equivalent (of a character) 2.1.3.1.g
lengthening (of ar i thmetic values) 2.1.2.d, 2.1.3.1.e
{link (a book with a file)} 10.3.1.4.bb
{literal} 10.3.4.1.l.ee
local environ 5.2.3.2.b
locale 2.1.1.1.b
{lock (a file)} 10.3.1.4.gg
{logical end} 10.3.1.l.aa
{logical file} 10.3.1.5.dd
lower bound 2.1.3.4.b
make to access (a value inside a locale) 2.1.2.c
make to refer to (of a name) 2.1.3.2.a
{marker} 10.3.4.1.1.cc
meaning 1.1.4, 2.1.4.1.a
meaningful program 1.1.4.3.c
{meek (position) } 6.1.1
member 1.1.3.2.d
metanotion l . l .3. l .d
metaproduction rule 1.1.3.3.b
minus (of ar i thmetic values) 2.1.3.1.e
mode 2.1.1.2.b, 2.1.5.f
{multiple selection} 5.3.1
multiple value 2.1.3.4.a
name 2.1.3.2.a
necessary for (an environ for a scene) 7.2.2.c
nest 3.0.2
newer (of scopes) 2.1.2.f
newly created (name) 2.1.3.2.a
nil 2.1.3.2.a
nonlocal 3.2.2.b
notion 1.1.3.1.c
number of extra lengths 2.1.3.1.d
number of extra shorths 10.2.1.j, l, 2.1.3.1.d
number of extra widths 10.2.1.j, l
numerical analysis, in the sense of 2.1.3.1.e
object 2.1.1
of (construct of a construct) 2.1.5.a
of (construct of a scene) 2.1.1.l.d
of (environ of a scene) 2.1.1.1.d
of (nest of a construct) 3.0.2
older (of scopes) 2.1.2.f
{on routine} 10.3.1.3
{open (a file)} 10.3.1.4.dd
original 1.1.3.2.f
other syntactic mark 1.1.3.1.a
{output compatible} 10.3.4.1.1.hh

~J

221

222 van Wijngaarden, etaL

{overflow} 2.1.4.3.h
{overload} 4.5
parallel action 10.2.4
paranotion 1.1.4.2.a
{perform (an alignment)} 10.3.4.1.1.ff
{perform (an insertion)} 10.3.4.1.1.ee
{pattern} 10.3.4.1.1.cc
permanent relationship 2.1.2.a
{physical file} 10.3.1.5.cc
{picture} 10.3.4.1.1.cc
plain value 2.1.3.1.a
point 1.1.3.1.a
pragmatic r emark 1.1.2
{pre-elaboration} 2.1.4.1.c
precede (in the textual order) 1.1.3.2.j
predicate 1.3.2
primal environ 2.2.2.a
process 10.2.4
produce 1.1.3.2.f
production rule 1.1.3.2.b
production tree 1.1.3.2.f
program lin the strict language 1.1.1.b, 10.1.2
{property} 2.1.1.1.b, 3.0.2
protonotion 1.1.3.l.b
pseudo-comment 10.1.3.Step 7
publication language 9.3.a
{random access} 10.3.1.3.ff
{reach} 3.0.2
real number 2.1.3.1.a
refer to 2.1.2.e, 2.1.3.2.a
reference language 9.3.a
relationship 2.1.2.a
{replicator} 10.3.4.1.1.dd
representat ion language 9.3.a
required 1.1.4.3.b
resume (an action) 2.1.4.3.g
routine 2.1.3.5.a
{rowing} 6
same as (of scopes) 2.1.2.f
scene 2.1.1.l.d
scope (of a value) 2.1.1.3.a
scope (of an environ) 2.1.1.3.b
{scratch (a file)} 10.3.1.4.hh
select (a 'TAG' selecting a field) 2.1.3.3.a
select (a "TAG' selecting a multiple value) 2.1.3.4.k
select (a "TAG' selecting a subname) 2.1.3.3.e

ALGOL 68 Revised Report

select (a field-selector selecting a field) 2.1.5.g
select (an index selecting a subname) 2.1.3.4.g
select (an index selecting an element) 2.1.3.4.a
select (a tr im selecting a multiple value) 2.1.3.4.i
semantics 1.1.1
semicolon 1.1.3.1.a
sense of numerical analysis 2.1.3.1.e
{sequential access} 10.3.1.3.ff
serial action 2.1.4.2.a
simple substitute 1.1.3.3.d
size (of an ar i thmetic value) 2.1.3.1.b
small syntactic mark 1.1.3.l.a
smaller (descendent smal ler than a production tree) 1.1.3.2.g
smaller than (of ar i thmetic values) 2.1.2.d, 2.1.3.1.e
{soft (position) } 6.1.1
{sort} 6
specify (a declarer specifying a mode) 4.6.2.d
{spelling (of a mode)} 2.1.1.2
s tandard environment 1.1.1, 10
{standard function} 10.2
{standard mode} 10.2
{standard operator} 10.2
{state} 10.3.1.3
{staticize (a picture) } 10.3.4.1.1.dd
stowed name 2.1.3.2.b
stowed value 2.1.1.1.a
straightening 10.3.2.3.c
strict language l . l . l .b , 1.1.3.2.e, 10.1.2
{string} 8.3
{strong (position)} 6.1.1
structured value 2.1.3.3.a
sublanguage 2.2.2.c
subname 2.1.2.g
substitute consistently 1.1.3.4.e
substitute simply 1.1.3.3.d
superlanguage 2.2.2.c
{suppressed frame} 10.3.4.1.1.cc
symbol l.l.3.1.f
{synchronization operation} 10.2
syntax 1.1.1
terminal metaproduction (of a metanotion) 1.1.3.3.c
terminal production (of a notion) 1.1.3.2.f
terminal production (of a production tree) 1.1.3.2.f
terminate (an action) 2.1.4.3.e
textual order 1.1.3.2.i
times (of ar i thmetic values) 2.1.3.1.e

223

/
224 van Wijngaarden, etal .

t ransform 10.3.4.1.2.b
{transient name} 2.1.3.6.c
transitive relationship 2.1.2.a
{transput declaration} 10.2
{transput} 10.3
t raverse 10.3.2.3.d
tr im 2.1.3.4.h
truth value 2.1.3.1.f
typographical display feature 9.4.d
undefined 1.1.4.3.a
united from (of modes) 2.1.3.6.a
{uniting} 6
upper bound 2.1.3.4.b
vacant locale 2.1.1.l.b
value 2.1.1.1.a
variant (of a value) 4.4.2.c
variant of ALGOL 68 l.l .5.b
version (of an operator) 10.1.3.Step3
visible 1.1.3.2.h
void value 2.1.3.1.h
{voiding} 6
{weak (position)} 6.1.1
{well formed} 7.4
widenable to (an integer to a real number) 2.1.2.d, 2.1.3.1.e
{widening} 6
yield (of a scene) 2.1.2.b, 2.1.4.1.b, 2.1.5.c, d

{Denn eben, wo Begriffe fehlen,
Da stellt ein Wort zur rechten Zeit sich ein.
Faust, J.W. von Goethe.}

12.2. Paranotions

Given below are short paranotions representing the notions defined in
this Report, with references to their hyper-rules.

after-specification 10.3.4.10.1.e
alignment 10.3.4.1.1.e
alignment-code 10.3.4.1.1.f
alternate-CHOICE.clause 3.4.1.d
assignation 5.2.1.1.a
bits.denotation 8.2.1.1
bits-pattern 10.3.4.7.1.a
boolean-choice-pattern 10.3.4.8.1.b
boolean.marker 10.3.4.4.1.b
boolean-pattern 10.3.4.4.1.a
boundseript 5.3.2.14

call 5.4.3.1.a
case-clause 3.4.1.p
case-part-of-CHOICE 3.4.1.i
cast 5.5.1.1.a
character-glyph 8.1.4.1.c
charac te r -marker 10.3.4.6.1.b
choice.clause 3.4.1.n
chooser-CHOICE-clause 3.4.1.b
closed-clause 3.1.1.a
coercee 6.1.1.g
coercend 6.1.1.h

ALGOL 68 Revised Report

collateral-clause 3.3.1.a, d, e
collection 10.3.4.1.1.b
complex-marker 10.3.4.5.1.b
complex-pattern 10.3.4.5.1.a
conditional-clause 3.4.1.o
conformity-clause 3.4.1.q
constant 3.0.1.d
declaration 4.1.l.a
declarat ive 5.4.1.1.e
declarator 4.6.1.c, d, g, h, o, s
declarer 4.2.1.c, 4.4.1.b, 4.6.1.a, b
definition 4.1.l.d
denotation 8.1.0.1.a, 8.1.1.l.a,

8.1.2.1.a, 8.1.3.1.a, 8.1.4.1.a,
8.1.5.1.a, 8.2.1.a, b, c, 8.3.1.a

denoter 8.0.l.a
deprocedured-to-FORM 6.3.1.a
dereferenced-to.FORM 6.2.1.a
destination 5.2.1.1.b
digit-cypher 8.1.1.1.c
digit-marker 10.3.4.2.1.f
display 3.3.1.j
do-part 3.5.1.h
dyadic-operator 5.4.2.1.e
enquiry-clause 3.4.1.c
establishing-clause 3.2.1.i
exponent-marker 10.3.4.3.1.e
exponent-part 8.1.2.1.g
exponent-specification 10.3.4.10.1.d
expression 3.0.l.b
field-selector 4.8.1.f
fixed-point-numeral 8.1.1.l.b
floating-point-mould 10.3.4.3.1.c
floating.point-numeral 8.1.2.1.e
for-part 3.5.1.b
format-pattern 10.3.4.9.1.a
format-text 10.3.4.1.1.a
formula 5.4.2.1.d
fractional-part 8.1.2.1.d
f rame 10.3.4.1.1.m
general-pattern 10.3.4.10.1.a
generator 5.2.3.1.a
go-to 5.4.4.1.b
hip 5.1.a
identifier-declaration 4.4.1.g
identity-declaration 4.4.1.a

identity-definition 4.4.1.e
identity-relation 5.2.2.1.a
identity-relator 5.2.2.1.b
In-part-of-CHOICE 3.4.1.f, g, h
in-CHOICE-clause 3.4.1.e
indexer 5.3.2.1.i
indicator 4.8.1.e
insertion 10.3.4.1.1.d
integral-choice-pattern 10.3.4.8.1.a
integral-mould 10.3.4.2.1.b
integral-part 8.1.2.1.c
integral-pattern 10.3.4.2.1.a
intervals 3.5.1.e
joined-label-definition 10.1.1.h
joined-portrait 3.3.1.b
jump 5.4.4.1.a
label-definition 3.2.1.c
literal 10.3.4.1.1.i
loop-clause 3.5.1.a
lower-bound 4.6.1.m
marker 10.3.4.1.1.n
mode-declaration 4.2.1.a
mode-definition 4.2.1.b
monadic-operator 5.4.2.1.f
nihil 5.2.4.1.a
operand 5.4.2.1.'g
operation-declaration 4.5.1.a
operation-definition 4.5.1.c
other-string-item 8.1.4.1.d
other-PRAGMENT-item 9.2.1.d
parallel-clause 3.3.1.c
parameter 5.4.1.1.g, 5.4.3.1.e
parameter-definition 5.4.1.1.f
particular-postlude 10.1.l.i
part icular-program 10.1.1.g
pattern 10.3.4.1.1.o
phrase 3.0.1.a
picture 10.3.4.1.1.c
plain-denotation 8.1.0. l .b
plan 4.5.1.b, 4.6.1.p
plusminus 8.1.2.1.j
point-marker 10.3.4.3.1.d
power-of-ten 8.1.2.1.i
praglit 10.3.4.8.1.c
pragment 9.2.1.a
preludes 10.1.l.b

225

226 van Wijngaarden, et al.

priori ty-declaration 4.3.1.a
priority-definition 4.3.1.b
p rog ram 2.2.1.a
p rogram- tex t 10.1.l.a
radix-digit 8.2.1.m
rad ix -marker 10.3.4.7.1.c
range 3.0.l.f
real-pat tern 10.3.4.3.1.a
repeat ing .par t 3.5.1.e
repl icator 10.3.4.1.1.g
revised-lower-bound 5.3.2.1.g
routine-declarer 4.4.1.b
routine-plan 4.5.1.b
routine-text 5.4.1.1.a, b
row-display 3.3.1.i
row-rower 4.6.1.j, k, 1
row.ROWS-rower 4.6.1.i
rowed-to-FORM 6.6.1.a
sample-genera tor 5.2.3.1.b
selection 5.3.1.1.a
serial-clause 3.2.1.a
series 3.2.1.b
s ign-marker 10.3.4.2.1.e
sign-mould 10.3.4.2.1.c
skip 5.5.2.1.a
slice 5.3.2.1.a
softly-deprocednred.to-FORM 6.3.1.b
source 5.2.1.1.c
source-for-MODINE 4.4.1.d
specification 3.4.1.j, k
s tagnant .par t 8A.2.l.f
s t a tement 3.0.1.c
str ing 8.3.1.b
string-denotation 8.3.1.c
str ing-i tem 8.1.4.1.b
s tr ing-pat tern 10.3.4.6.1.a
s t ructure.display 3.3.1.h
subscript 5.3.2.1.e
suppression 10.3.4.1.1.1
symbol 9.1.1.h
sys tem-task 10.1.l.e
tasks 10.1.1.d
times-ten-to-the-power-choice 8.1.2.1.h
token 9.1.l.g
t r i m m e r 5.3.2.1.f
t r imscr ip t 5.3.2.1.h

unchanged-from-FORM 6.1.l.f
unit 3.2.1.d
unitary-clause 3.2.1.h
united-to-FORM 6.4.1.a
unsuppressible-l i terai 10.3.4.1.1.i
unsuppressible-repl icator 10.3.4.1.1.h
unsuppressible-suppression 10.3.4.1.1.1
upper-bound 4.6.1.n
user- task 10.1.1.f
vacuum 3.3.1.k
var iable 3.0.l.e
var iable-declarat ion 4.4.1.e
variable-definition 4.4.1.f
variable-point-mould 10.3.4.3.1.b
var iable-point-numeral 8.1.2.1.b
voided-to-FORM 6.7.1.a, b
while-do-part 3.5.1.f
while-part 3.5.1.g
widened-to-FORM 6.5.1.a, b, c, d
width-specification 10.3.4.10.1.b
zero-marker 10.3.4.2.1.d
ADIC-operand 5.4.2.1.c
CHOICE-again 9.1.1.c
CHOICE-finish 9.1.1.e
CHOICE-in 9.1.1.b
CHOICE-out 9.1.1.d
CHOICE.start 9.1.l.a
CHOICE-clause 3.4.1.a
COMMON.joined-definition 4.1.1.b, c
DYADIC-formula 5.4.2.1.a
EXTERNAL-prelude 10.1.l.c
FIELDS-definition-of-FIELD 4.6.1.f
FIELDS-portrait 3.3.1.f, g
FIELDS-portrayer-of-FIELDS 1 4.6.1.e
FORM-coercee 6.1.1.a, b, c, d, e
FROBYT-part 3.5.1.d
INDICATOR 4.8.1.a, b
MOlDS-joined-declarer 4.6.1.t, u
MONADIC-formula 5.4.2.1.b
NOTETY-pack 1.3.3.d
NOTION-bracket 1.3.3.e
NOTION-list 1.3.3.c
NOTION-option 1.3.3.a
NOTION-sequence 1.3.3.b
NOTION-token 9.1.1.f
PARAMETERS 5.4.3.1.b

ALGOL 68 Revised Report

PARAMETERS-joined-declarer
4.6.1.q, r

PRAGMENT 9.2.1.b
PRAGMENT-item 9.2.1.c
QUALITY-FIELDS-field-selector

4.8.1.c, d
RADIX 8.2.1.d, e, f, g
RADIX-digit 8.2.1.h, i, j, k
RADIX-frame 10.3.4.7.1.b
ROWS-leaving-ROWSETY-indexer

5.3.2.1.b, c, d

TALLY-declarer 4.2.1.c
THINGl-or-al ternatively-THING2

1.3.3.f
UNSUPPRESSETY-literai

10.3.4.1.1.i
UNSUPPRESSETY-suppression

10.3.4.1.1.1
UNSUPPRESSETY-COMARK-frame

10.3.4.1.1.k
UNSUPPRESSETY-MARK-frame

10.3.4.1.1.j

227

12.3. Predicates

Given below are abbrev ia ted forms of the predicates defined in this
Report.

'and" 1.3.1.c, e
'ba lances ' 3.2.1.f, g
'begins with' 1.3.1.h, i, j
'coincides with' 1.3.1.k, 1
'contains" 1.3.1.m, n
'counts ' 4.3.1.c, d
'deflexes to' 4.7.1.a, b, c, d, e
'deprefs to f i rm ' 7.1.1.n
'develops f rom' 7.3.1.c
'equivalent ' 7.3.1.a, b, d, e, f, g , '

h, i , j , k, q
' false ' 1.3.l.b
' f i rmly related ' 7.1.l.k
'identified in' 7.2.1.a
' incestuous' 4.7.1.f

' independent' 7.1.1.a, b, c, d
'is" 1.3.l.g
'is derived from" 5.3.1.1.b, c
'is f i rm' 7.1.1.1, m
'like" 5.4.1.1.c, d
' m a y follow' 3.4.1.m
'number equals ' 7.3.1.o, p
'or ' 1.3.1.d, f
' ravels to' 4.7.1.g
'related" 7.1.1.e, f, g, h, i, j
' resides in" 7.2.1.b, c
"shields' 7.4.1.a, b, c, d
' subset of' 7.3.1.1, m, n
' t rue ' 1.3.1.a
'unites to' 6.4.1.b

12.4. Index to the s tandard prelude

< 10.2.3.0.a, 10.2.3.3.a, 10.2.3.5.c,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,
10.2.3.10.a, g, h

<= 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3,8.e,
10.2.3.9.a, 10.2.3.10.b, g, h

+ 10.2.3.0.a, 10.2.3.3.i, j, 10.2.3.4.i, j,
10.2.3.5.a, b, 10.2.3.6.b, 10.2.3.7.j,
k, p, q, r, s, 10.2.3.10.i, j, k

+x 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,
10.2.3.5.e, f

4 • 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,
10.2.3.5.e, f

& 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
^ 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
[] 10.2.3.0.a, 10.2.3.8.k, 10.2.3.9.b
r 10.2.3.0.a, 10.2.3.1.c, e
! 10.2.3.0.a, 10.2.3.8.h

+:= 10.2.3.0.a,10.2.3.11.d, e, f,o, p, q, s L 10.2.3.0.a, 10.2.3.1.b, d,
+=: 10.2.3.0.a, 10.2.3.11.r, t 10.2.3.4.r

228
/

van Wijngaarden, et al.

>_ 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.f,
10.2.3.9.a, 10.2.3.10.e, g, h

<_ 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e,
10.2.3.9.a, 10.2.3.10.b, g, h

10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d,
10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.g, u, v, w, x, 10.2.3.8.b,
10.2.3.9.a, 10.2.3.10.d, g, h

v 10.2.3.0.a, 10.2.3.2.a, 10.2.3.8.c
I 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,

10.2.3.5.e, f
÷ 10.2.3.0.a, 10.2.3.3.m
÷x 10.2.3.0.a, 10.2.3.3.n
+x:= 10.2.3.0.a, 10.2.3.11.k
*. 10.2.3.0.a, 10.2.3.3.n
÷*:= 10.2.3.0.a, 10.2.3.11.k
- " - 1 0 2 3 0 . a , 1 0 2 3 l l j
x 10.2.3.0.a, 10.2.3.3.1, 10.2.3.4.1,

10.2.3.5.a, b, 10.2.3.7.1, p, q, r, s,
10.2.3.10.1, m, n, o

x:= 10.2.3.0.a, 10.2.3.11.g, h, i, n,
o , p , u

~ I0.2.3.2.c, I0.2.3.8.m
I I0.2.3.0.a, I0.2.3.3.p, 10.2.3.5.g,

10.2.3.7.t, 10.2.3.8.g
.10.2.3.0.a, I0.2.3.3.1, 10.2.3.4.1,

10.2.3.5.a, b, I0.2.3.7.1, p, q, r, s,
10.2.3.10.I, m, n, o

**10.2.3.0.a, 10.2.3.3.p, 10.2.3.5.g,
10.2.3.7.t

. := 10.2.3.0.a, 10.2.3.11.g, h, i, n, o, p, u
- 10.2.3.2.c, 10.2.3.8.m
- 10.2.3.0.a, 10.2.3.3.g, h, 10.2.3.4.g, h,

10.2.3.5.a, b, 10.2.3.7.h, i , p , q, r, s
- := 10.2.3.0.a, 10.2.3.11.a, b, c, n, o, p
/ 10.2.3.0.a, 10.2.3.3.o, 10".2.3.4.m,

10.2.3.5.a, b, 10.2.3.7.m, p, q, r, s
/:= 10.2.3.0.a, 10.2.3.11.1, m, n, o, p
/= 10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d,

10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.g, u, v, w, x, 10.2.3.8.b,
10.2.3.9.a, 10.2.3.10.d, g, h

% 10.2.3.0.a, 10.2.3.3.m
%x 10.2.3.0.a, 10.2.3.3.n
%x:= 10.2.3.0.a, 10.2.3.11.k
%. 10.2.3.0.a, 10.2.3.3.n
%.:= 10.2.3.0.a, 10.2.3.11.k
%:= 10.2.3.0.a, 10.2.3.11.j
> 10.2.3.0.a, 10.2.3.3.f, 10.2.3.4.f,

10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,
10.2.3.10.f, g, h

>= 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.f,
10.2.3.9.a, 10.2.3.10.e, g, h

= 10.2.3.0.a, 10.2.3.2.d, 10.2.3.3.c,
10.2.3.4.c, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.f, u, v, w, x, 10.2.3.8.a,
10.2.3.9.a, 10.2.3.10.c, g, h

abs 10.2.1.n, 10.2.3.2.f, 10.2.3.3.k,
10.2.3.4.k, 10.2.3.7.c, 10.2.3.8.i

and 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
arg 10.2.3.7.d
bin 10.2.3.8.j
bits 10.2.2.g
bool 10.2.2.b
bytes 10.2.2.h
channel 10.3.1.2.a
char 10.2.2.e
compl 10.2.2.f
conj 10.2.3.7.e
divab 10.2.3.0.a, 10.2.3.11.1, m, n, o, p
down 10.2.3.0.a, 10.2.3.8.h, 10.2.4.d
elem 10.2.3.0.a, 10.2.3.8.k, 10.2.3.9.b

entier 10.2.3.4.r
eq 10.2.3.0.a, 10.2.3.2.d, 10.2.3.3.c,

10.2.3.4.c, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.f, u, v, w, x, 10.2.3.8.a,
10.2.3.9.a, 10.2.3.10.c, g, h

file 10.3.1.3.a
format 10.3.5.a
ge 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e,

10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.f,
10.2.3.9.a, 10.2.3.10.e, g, h

gt 10.2.3.0.a, 10.2.3.3.f, 10.2.3.4.f,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,
10.2.3.10.f, g, h

i 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,
10.2.3.5.e, f

ALGOL 68 Revised Report 229

im 10.2.3.7.b
int 10.2.2.c
Io 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b,

10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e,
10.2.3.9.a, 10.2.3.10.b, g, h

leng 10.2.3.3.q, 10.2.3.4.n, 10.2.3.7.n,
10.2.3.8.n, 10.2.3.9.d

level I 0 . 2 . 4 . b , c
It 10.2.3.0.a, I0.2.3.3.a, I0.2.3.4.a,

I0.2.3.5.c, d, 10.2.3.6.a, I0.2.3.9.a,
lO.2.3.10.a, g, h

lwb 10.2.3.0.a, 10.2.3.1.b, d
minusab I0.2.3.0.a, lO.2.3.11.a, b,

c, n, o, p
mad 10.2.3.0.a, 10.2.3.3.n
modab 10.2.3.0.a, 10.2.3.11.k
ne 10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d,

10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.g, u, v, w, x, 10.2.3.8.b,
10.2.3.9.a, 10.2.3.10.d, g, h

not 10.2.3.2.c, 10.2.3.8.m
odd 10.2.3.3.s
or 10.2.3.0.a, 10.2.3.2.a, 10.2.3.8.c

over 10.2.3.0.a, 10.2.3.3.m
overab 10.2.3.0.a, 10.2.3.11.j
plusab 10.2.3.0.a, 10.2.3.11.d, e, f,

n, o, p, q, s
plusto 10.2.3.0.a, 10.2.3.11.r, t
re 10.2.3.7.a
real 10.2.2.d
repr 10.2.1.o
round 10.2.3.4.p
sema 10.2.4.a
shl 10.2.3.0.a, 10.2.3.8.g
shorten 10.2.3.3.r, 10.2.3.4.o, 10.2.3.7.o,

10.2.3.8.o, 10.2.3.9.e
shr 10.2.3.0.a, 10.2.3.8.h
sign 10.2.3.3.t, 10.2.3.4.q
string 1 0 . 2 . 2 . i
timesab 10.2.3.0.a, 10.2.3.11.g, h, i,

n, o, p , u
up 10.2.3.0.a, 10.2.3.3.p, 10.2.3.5.g,

10.2.3.7.t, 10.2.3.8.g, 10.2.4.e
upb 10.2.3.0.a, 10.2.3.1.c, e
void 10.2.2.a

arccos 10.2.3.12.f
arcsin 10.2.3.12.h
arctan 10.2.3.12.j
associate 10.3.1.4.e
backspace 10.3.1.6.b
bin possible 10.3.1.3.d
bits lengths 10.2.1.h
bits pack 10.2.3.8.1
bits shorths 10.2.1.i
bits width 10.2.1.j
blank 10.2.1.u
bytes lengths 10.2.1. k
bytes pack 10.2.3.9.c
bytes shorths 10.2.1.1
bytes width 10.2.1.m
chan 10.3.1.3.i
char in string 10.3.2.1.1
char number 10.3.1.5.a
close 10.3.1.4.n
compressible 10.3.1.3.e
cos 10.2.3.12.e
create 10.3.1.4.c

errorchar lO.2.I.t
estab possible 10.3.1.2.c
establish 10.3.1.4.b
exp 10.2.3.12.c
exp width 10.3.2.1.o
f ixed 10.3.2.1.c
flip lO.2.1.r
float 10.3.2.1.d
flop lO.2.1.s
get 10.3.3.2.a
get bin 10.3.6.2.a
get possible 10.3.1.3.b

get f 10.3.5.2.a int lengths 110.2A.fia/I
int shorths 10.2.1.b
int width 10.3.2.1.m
last random 10.5.1.a
line number 10.3.1.5.b
In 10.2.3.12.d
lock 10.3.1.4.o
make cony 10.3.1.3.j
make term 10.3.1.3.k
max abs char 10.2.1.p

230

max int 10.2.1.c
max real 10.2.l.f
newline 10.3.1.6.c
newpage 10.3.1.6.d
next random 10.2.3.12.k
null character 10.2.1.q
on char error 10.3.1.3.r
on format end 10.3.1.3.p
on line end 10.3.1.3.o
on logical file end 10.3.1.3.1
on page end 10.3.1.3.n
on physical file end 10.3.1.3.m
on value error 10.3.1.3.q
open 10.3.1.4.d
page number 10.3.1.5.c
pi 10.2.3.12.a
print 10.5.1.d •
printf 10.5.1.f
put 10.3.3.1.a
put bin 10.3.6.1.a
put possible 10.3.1.3.c
put f 10.3.5.1.a
random 10.5.1.b
read 10.5.l.e
read bin 10.5.1.i
readf 10.5.l.g
real lengths 10.2.1.d
real shorths 10.2.1.e
real width 10.3.2.1.n
reidf 10.3.1.3.s
reidf possible 10.3.1.3.h
reset 10.3.1.6.j
reset possible 10.3.1.3.f
scratch 10.3.1.4.p
set 10.3.1.6.i
set char number 10.3.1.6.k
set possible 10.3.1.3.g
sin 10.2.3.12.g
small real 10.2.l.g
space 10.3.1.6.a
sqrt 10.2.3.12.b
stand back 10.5.1.c
stand back channel 10.3.1.2.g
stand in 10.5.1.c
stand in channel 10.3.1.2.e
stand out 10.5.1.c

/
van Wijngaarden, et al.

stand out channel 10.3.1.2.f
standconv 10.3.1.2.d
stop 10.5.2.a
tan 10.2.3.12.i
whole 10.3.2.1.b
write 10.5.1.d
write bin 10.5.1.h
writef 10.5.l.f
L bits 10.2.2.g
L bytes 10.2.2.h
L compl 10.2.2.f
Lint 10.2.2.c
L real 10.2.2.d
L arccos 10.2.3.12.f
L arcsin 10.2.3.12.h
L arctan 10.2.3.12.j
L bitspack 10.2.3.8.1
L bits width 10.2.1.j
L bytespack 10.2.3.9.c
L bytes width 10.2.1.m
L cos 10.2.3.12.e
L exp 10.2.3.12.c
L exp width 10.3.2.1.o
Lin t width 10.3.2.1.m
L last random 10.5.1.a
L In 10.2.3.12.d
L max int '0.2.1.c
L max real 10.2.l.f
L next random 10.2.3.12.k
L pi 10.2.3.12.a
L random 10.5.l.b
L real width 10.3.2.1.n
L sin 10.2.3.12.g
L small real 10.2.1.g
L sqrt 10.2.3.12.b
L tan 10.2.3.12.i
9 beyond 10.3.1.l .d
9 bflle 10.3.1.1.e
9 book 10.3.1.1.a
9 collection 10.3.5.a
9 co. i tem 10.3.5.a
9 cony 10.3.1.2.b
9 cpattern 10.3.5.a
9 flextext 10.3.1.1.b
9 fpattern 10.3.5.a
9 frame 10.3.5.a

9 gpattern 10.3.5.a
9 inserfion 10.3.5.a
9 intype 10.3.2.2.d
9 number 10.3.2.1.a
9 outtype 10.3.2.2.b
9 pattern 10.3.5.a
9 picture 10.3.5.a
9piece 10.3.5.a
9pos 10.3.1.1.c
9 rows 10.2.3.1.a

sframe 10.3.5.e
9 simplin 10.3.2.2.c
.~ simplout 10.3.2.2.a
9 sinsert 10.3.5.c
9 straightin 10.3.2.3.b
9 straightout 10.3.2.3.a
9 text 10.3.1.l .b
9 alignment 10.3.5.i
9 associate format 10.3.5.k
9 bfileprotect 10.3.1.1.h
9 book bounds 10.3.1.5.e

chainbfile 10.3.1.1.f
9 char dig 10.3.2.1.k
9 checkpos 10.3.3.2.c
9 currentpos 10.3.1.5.d
9 dig char 10.3.2.1.h
9 do fpattern 10.3.5.j
9 edit string 10.3.5.1.b
9false 10.3.1.4.i
9 file available 10.3.1.4.f
9from bin 10.3.6.b
9 get char 10.3.3.2.b

ALGOL 68 Revised Report

~' get good file 10.3.1.6.g
get good line 10.3.1.6.e
get good page 10.3.1.6. f

q' get insertion 10.3.5.h
"~ get next picture 10.3.5.b
* gremlins 10.4.1.a
~' idf ok 10.3.1.4.g

indit string 10.3.5.2.b
line ended 10.3.1.5.f

~' lockedbfile 10.3.1.l.g
9 logical file ended 10.3.1.5.i
q' match 10.3.1.4.h

next pos 10.3.3.1.c
~' page ended 10.3.1.5.g
q' physical file ended 10.3.1.5.h
* put char 10.3.3.1.b
q' put insertion 10.3.5.g

set bin mood 10.3.1.4.m
set char mood 10.3.1.4.1

9 set mood 10.3.1.6.h
9 set read mood 10.3.1.4.k
9 set write mood 10.3.1.4.j
9 standardize 10.3.2.1.g
9 staticize frames 10.3.5.f
9 staticize insertion 10.3.5.d
9 string to L int 10.3.2.1.i
9 string to L real 10.3.2.1.j
9 subfixed 10.3.2.1.f
9 subwhole 10.3.2.1.e
9 to bin 10.3.6.a
9 undefined 10.3.1.4.a
9 L standardize 10.3.2.1.g

231

12.5. Alphabet ic l is t ing of m e t a p r o d u c t i o n rules

ABC{942L} : : a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ;1 ; m ; n ; o ; p ;
q ; r ; s ; t ; u ; v ; w ; x ; y ; z .

ADIC{542C} :: DYADIC ; MONADIC.
ALPHA{13B} : : a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; I ; m ; n ; o ; p ;

q ; r ; s ; t ; u ; v ; w ; x ; y ; z .
BECOMESETY{942J} :: cure b e c o m e s ; cure a s s i g n s to ; EMPTY.
BITS{65A} :: s tructured with

row of boolean field SITHETY let ter a leph m o d e .
BYTES{65B} :: s tructured with

row of c h a r a c t e r f ield SITHETY let ter aleph m o d e .
CASE{34B} :: cho ice us ing integral ; cho ice us ing UNITED.

/

232 van Wijngaarden, et al.

CHOICE{34A} :: c h o i c e u s i n g b o o l e a n ; CASE.
COLLECTION{A341C} :: un ion of P I C T U R E C O L L I T E M m o d e .
COLLITEM{A341D} :: s t r u c t u r e d w i t h I N S E R T I O N f i e ld l e t t e r i d i g i t one

p r o c e d u r e y i e l d i n g i n t e g r a l f i e ld l e t t e r r l e t t e r e l e t t e r p
i n t e g r a l f i e ld l e t t e r p
INSERTION f ie ld l e t t e r i d ig i t two m o d e .

COMARK{A341N} :: z e r o ; d ig i t ; c h a r a c t e r .
COMMON{41A} :: m o d e ; p r i o r i t y ; MODINE i d e n t i t y ;

r e f e r e n c e to MODINE v a r i a b l e ; MODINE o p e r a t i o n ;
P A R A M E T E R ; M O D E FIELDS.

COMORF{61G} :: NEST a s s i g n a t i o n ; NEST i d e n t i t y r e l a t i o n ;
NEST LEAP g e n e r a t o r ; NEST c a s t ; NEST d e n o t e r ;
NEST f o r m a t t ex t .

CPATTERN{A341I} :: s t r u c t u r e d w i t h I N S E R T I O N f ie ld l e t t e r i
i n t e g r a l f i e ld l e t t e r t l e t t e r y l e t t e r p l e t t e r e
r o w of I N S E R T I O N f i e ld l e t t e r c m o d e .

DEC{123E} :: MODE TAG ; p r i o r i t y P R I O TAD ; M O l D TALLY TAB ;
DUO TAD ; MONO TAM.

DECS{123D} :: DEC ; DECS DEC.
DECSETY{123C} :: DECS ; EMPTY.
DEFIED{48B} :: d e f i n i n g ; a p p l i e d .
DIGIT{942C} :: d ig i t z e r o ; d ig i t one ; d i g i t two ; d ig i t t h r e e ; d ig i t f o u r ;

d ig i t f i ve ; d ig i t s ix ; d ig i t s e v e n ; d ig i t e i g h t ; d ig i t n ine .
DOP{942M*} :: DYAD ; DYAD c u m NOMAD.
DUO{123H} :: p r o c e d u r e w i t h P A R A M E T E R 1 P A R A M E T E R 2 y i e l d i n g MOLD.
DYAD{942G} :: MONAD ; NOMAD.
DYADIC{542A} :: p r i o r i t y PRIO.

EMPTY{12G} :: .
ENCLOSED{122A} :: c l o s e d ; c o l l a t e r a l ; p a r a l l e l ; C H O I C E ; loop.
EXTERNAL{A1A} :: s t a n d a r d ; l i b r a r y ; s y s t e m ; p a r t i c u l a r .
FIELD{12J} :: M O D E f ie ld TAG.
FIELDS{12I} :: FIELD ; FIELDS FIELD.
FIRM{61B} :: MEEK ; u n i t e d to.
FIVMAT{A341L} :: m u i de f i n i t i on of s t r u c t u r e d w i t h r o w of

s t r u c t u r e d w i t h i n t e g r a l f i e ld l e t t e r c l e t t e r p
i n t e g r a l f i e ld l e t t e r c l e t t e r o l e t t e r u l e t t e r n l e t t e r t
i n t e g r a l f i e ld l e t t e r b l e t t e r p r o w of un ion of s t r u c t u r e d
w i t h un ion of P A T T E R N C P A T T E R N
s t r u c t u r e d w i t h I N S E R T I O N f ie ld l e t t e r i
p r o c e d u r e y i e l d i n g m u i a p p l i c a t i o n f i e ld
l e t t e r p l e t t e r f m o d e G P A T T E R N v o i d m o d e f i e ld l e t t e r p
INSERTION f ie ld l e t t e r i m o d e C O L L I T E M m o d e f i e ld
l e t t e r c m o d e f i e ld l e t t e r a l e p h m o d e .

FLEXETY{12K} :: f l e x i b l e ; EMPTY.
FORM{61E} :: M O R F ; COMORF.
FORMAT{A341A} :: s t r u c t u r e d w i t h r o w of PIECE f i e ld l e t t e r a l e p h m o d e .

ALGOL 68 Revised Report

FPATTERN{A341J} :: s t r u c t u r e d w i t h I N S E R T I O N f i e ld l e t t e r i
p r o c e d u r e y i e l d i n g FIVMAT f ie ld l e t t e r p l e t t e r f m o d e .

FRAME{A341H} :: s t r u c t u r e d wi th I N S E R T I O N f ie ld l e t t e r i
p r o c e d u r e y i e l d i n g i n t e g r a l f i e ld l e t t e r r l e t t e r e l e t t e r p
b o o l e a n f ie ld l e t t e r s l e t t e r u l e t t e r p l e t t e r p
c h a r a c t e r f i e ld l e t t e r m l e t t e r a l e t t e r r l e t t e r k
l e t t e r e l e t t e r r m o d e .

FROBYT{35A} :: f r o m ; by ; to.

GPATTERN{A341K} :: s t r u c t u r e d w i t h I N S E R T I O N f i e ld l e t t e r i
r o w of p r o c e d u r e y i e l d i n g i n t e g r a l f i e ld
l e t t e r s l e t t e r p l e t t e r e l e t t e r c m o d e .

HEAD{73B} :: PLAIN ; P R E F ; s t r u c t u r e d w i t h ; F L E X E T Y R O W S of ;
p r o c e d u r e w i t h ; un ion of ; vo id .

INDlCATOR{48A} :: i d e n t i f i e r ; m o d e i n d i c a t i o n ; o p e r a t o r .
lNSERTION{A341E} :: r o w of s t r u c t u r e d w i t h

p r o c e d u r e y i e l d i n g i n t e g r a l f i e ld l e t t e r r l e t t e r e l e t t e r p
un ion of r o w of c h a r a c t e r c h a r a c t e r m o d e f i e ld
l e t t e r s l e t t e r a m o d e .

INTREAL{12C} :: SIZETY i n t e g r a l ; SIZETY r e a l .

LAB{123K} :: l a b e l TAG.
LABS{123J} :: LAB ; LABS LAB.
LABSETY{123I} :: LABS ; EMPTY.
LAYER{123B} :.. n e w DECSETY LABSETY.
LEAP{44B} :: l oca l ; h e a p ; p r i m a l .
LENGTH{65D} :: l e t t e r l l e t t e r o l e t t e r n l e t t e r g.
LENGTHETY[65F} :: L E N G T H L E N G T H E T Y ; EMPTY.
LETTER{942B} :: l e t t e r ABC ; l e t t e r a l e p h ; s t y l e TALLY l e t t e r ABC.
LONGSETY{12E} :: l o n g LONGSETY ; EMPTY.

MARK{A341M} :: s ign ; po in t ; e x p o n e n t ; c o m p l e x ; b o o l e a n .
MEEK{61C} :: u n c h a n g e d f r o m ; d e r e f e r e n c e d to ; d e p r o c e d u r e d to.
MODE{12A} :: PLAIN ; S T O W E D ; REF to MODE ; P R O C E D U R E ;

UNITED ; MU de f in i t i on of M O D E ; MU a p p l i c a t i o n .
MODINE{44A} :: MODE ; r ou t i ne .
MOID{12R} :: MODE ; vo id .
MOIDS{46C} :: M O l D ; MOLDS MOLD.
MOIDSETY{47C} :: MOLDS ; EMPTY.
MONADIC{542B} :: p r i o r i t y iii iii iii i .
MONAD{942H} :: o r ; a n d ; a m p e r s a n d ; d i f f e r s f r o m ; is a t m o s t ;

is a t l e a s t ; o v e r ; p e r c e n t ; w i n d o w ; f l oo r ; c e i l i n g ;
p lus i t i m e s ; no t ; t i lde ; d o w n ; up ; p lus ; m i n u s ;
s ty l e TALLY m o n a d .

MONO{123G} :: p r o c e d u r e w i t h P A R A M E T E R y i e l d i n g MOLD.
MOOD{I2U} : :

PLAIN ; S T O W E D ; r e f e r e n c e to M O D E ; P R O C E D U R E ; vo id .
MOODS{12T} :: M O O D ; M O O D S MOOD.

233

234 van Wi jngaarden , et al.

MOODSETY{47B} :: M O O D S ; EMPTY.
MORF{61F} :: NEST s e l e c t i o n ; NEST s l i c e ; NEST r o u t i n e t e x t ;

NEST ADIC f o r m u l a ; NEST c a l l ;
NEST a p p l i e d i d e n t i f i e r w i t h TAG.

MU{12V} :: m u T A L L Y .

NEST{123A} :: LAYER ; NEST LAYER.
NOMAD{942I} :: is l e s s t h a n ; is g r e a t e r t h a n ; d i v i d e d b y ; e q u a l s ;

t i m e s ; a s t e r i s k .
NONPREF{71B} :: PLAIN ; S T O W E D ;

procedure w i t h P A R A M E T E R S yielding M O l D ; U N I T E D ; vo id .
NONPROC{67A} :: PLAIN ; S T O W E D ; R E F to N O N P R O C ;

p r o c e d u r e w i t h P A R A M E T E R S y i e l d i n g M O l D ; UNITED.
NONSTOWED{47A} :: PLAIN ; R E F to M O D E ; P R O C E D U R E ; U N I T E D ;

vo id .
NOTETY{13C} :: N O T I O N ; EMPTY.
NOTION{13A} :: A L P H A ; N O T I O N ALPHA.
NUMERAL{810B "} : : f i x e d p o i n t n u m e r a l ; v a r i a b l e p o i n t n u m e r a l ;

f l o a t i n g p o i n t n u m e r a l .

PACK{31B} :: STYLE p a c k .
PARAMETER{12Q} :: M O D E p a r a m e t e r .
PARAMETERS{12P} :: P A R A M E T E R ; P A R A M E T E R S P A R A M E T E R .
PARAMETY{120} :: w i t h P A R A M E T E R S ; EMPTY.
PART{73E} :: F IELD ; P A R A M E T E R .
PARTS{73D} :: P A R T ; P A R T S P A R T .
PATTERN{A341G} :: s t r u c t u r e d w i t h

i n t e g r a l f i e ld l e t t e r t l e t t e r y l e t t e r p l e t t e r e
r o w of F R A M E f i e ld
l e t t e r f l e t t e r r l e t t e r a l e t t e r m l e t t e r e l e t t e r s m o d e .

PICTURE{A341F} :: s t r u c t u r e d w i t h u n i o n of P A T T E R N C P A T T E R N
F P A T T E R N G P A T T E R N v o i d m o d e f i e ld l e t t e r p
I N S E R T I O N f i e ld l e t t e r i m o d e .

PIECE{A341B} :: s t r u c t u r e d w i t h i n t e g r a l f i e ld l e t t e r c l e t t e r p
i n t e g r a l f i e ld l e t t e r c l e t t e r o l e t t e r u l e t t e r n l e t t e r t
i n t e g r a l f i e ld l e t t e r b l e t t e r p
r o w of C O L L E C T I O N f i e ld l e t t e r c m o d e .

PLAIN{12B} :: I N T R E A L ; b o o l e a n ; c h a r a c t e r .
PRAGMENT{92A} :: p r a g m a t ; c o m m e n t .
PRAM{45A} :: D U O ; MONO.
PREF{71A} :: p r o c e d u r e y i e l d i n g ; R E F to.
PREFSETY{71C ~} :: P R E F P R E F S E T Y ; EMPTY.
PRIMARY{5D} :: s l i c e c o e r c e e ; c a l l c o e r c e e ; c a s t c o e r c e e ;

d e n o t e r c o e r c e e ; f o r m a t t e x t c o e r c e e ;
a p p l i e d i d e n t i f i e r w i t h T A G c o e r c e e ; E N C L O S E D c l a u s e .

PRIO{123F} :: i ; ii ; iii ; iii i ; iii ii ; iii iii ; iii iii i ; iii iii ii ; iii i i i iii.
PROCEDURE{12N} :: p r o c e d u r e P A R A M E T Y y i e l d i n g MOLD.
PROP{48E} :: DEC ; LAB ; FIELD.

ALGOL 68 Revised Repor t

PROPS{48D} :: P R O P ; P R O P S P R O P .
PROPSETY{48C} :: P R O P S ; EMPTY.

QUALITY{48F} :: M O D E ; M O l D TALLY ; DYADIC ; l a b e l ; M O D E f ie ld .

RADIX{82A} :: r a d i x two ; r a d i x f o u r ; r a d i x e i g h t ; r a d i x s i x t e e n .
REF{12M} :: r e f e r e n c e ; t r a n s i e n t r e f e r e n c e .
REFETY{531A} :: REF to ; EMPTY.
REFLEXETY{531B} :: REF to ; R E F to f l e x i b l e ; EMPTY.
ROWS{12L} :: r o w ; R O W S row.
ROWSETY{532A} :: R O W S ; EMPTY.

SAFE{73A} :: s a f e ; MU h a s M O D E SAFE ; y i n SAFE ; y a n g SAFE ;
r e m e m b e r M O I D I MOLD2 SAFE.

SECONDARY{5C} ::
LEAP g e n e r a t o r c o e r c e e ; s e l e c t i o n c o e r c e e ; P R I M A R Y .

SHORTH{65E} :: l e t t e r s l e t t e r h l e t t e r o l e t t e r r l e t t e r t.
SHORTHETY{65G} :: S H O R T H S H O R T H E T Y ; EMPTY.
SHORTSETY{12F} :: s h o r t S H O R T S E T Y ; EMPTY.
SITHETY{65C} : : L E N G T H L E N G T H E T Y ; S H O R T H S H O R T H E T Y ; EMPTY.
SIZE{810A} :: l o n g ; s h o r t .
SIZETY{12D} :: l o n g L O N G S E T Y ; s h o r t S H O R T S E T Y ; EMPTY.
SOFT{61D} :: u n c h a n g e d f r o m ; s o f t l y d e p r o c e d u r e d to.
SOID{31A} :: S O R T MOLD.
SOME{122B} :: S O R T M O l D NEST.
SORT{122C} :: s t r o n g ; f i r m ; m e e k ; w e a k ; sof t .
STANDARD{942E} :: i n t e g r a l ; r e a l ; b o o l e a n ; c h a r a c t e r ; f o r m a t ; v o i d ;

c o m p l e x ; b i t s ; b y t e s ; s t r i n g ; s e m a ; f i l e ; c h a n n e l .
STOP{A1B} :: l a b e l l e t t e r s l e t t e r t l e t t e r o l e t t e r p.
STOWED{12H} :: s t r u c t u r e d w i t h F IELDS m o d e ;

F L E X E T Y R O W S of MODE.
STRONG{61A} :: FIRM ; w i d e n e d to ; r o w e d to ; v o i d e d to.
STYLE{133A} :: b r i e f ; b o l d ; s t y l e TALLY.

TAB{942D} :: b o l d TAG ; SIZETY S T A N D A R D .
TAD{942F} :: b o l d TAG ; DYAD B E C O M E S E T Y ;

DYAD c u m NOMAD B E C O M E S E T Y .
TAG{942A} :: L E T T E R ; TAG L E T T E R ; TAG DIGIT .
TAILETY{73C} :: M O l D ; F IELDS m o d e ; P A R A M E T E R S y i e l d i n g M O l D ;

M O O D S m o d e ; EMPTY.
TALLETY{542D} :: TALLY ; EMPTY.
TALLY{12W} :: i ; TALLY i.
TAM{942K} :: b o l d TAG ; M O N A D B E C O M E S E T Y ;

MONAD c u r e NOMAD B E C O M E S E T Y .
TAO{45B} :: TAD ; TAM.
TAX{48G} :: TAG ; T A B ; TAD ; TAM.
TERTIARY{5B} :: ADIC f o r m u l a c o e r c e e ; n i h i l ; SECONDARY.
THING{13D} :: N O T I O N ; (N O T E T Y I) N O T E T Y 2 ;

T H I N G (N O T E T Y I) N O T E T Y 2 .

235

236 van Wijngaarden, et al.

TYPE{A341P} :: i n t e g r a l ; r e a l ; b o o l e a n ; c o m p l e x ; s t r i n g ; b i t s ;
i n t e g r a l c h o i c e ; b o o l e a n c h o i c e ; f o r m a t ; g e n e r a l .

UNIT{5A} :: a s s i g n a t i o n c o e r c e e ; i d e n t i t y r e l a t i o n c o e r c e e ;
r o u t i n e t e x t c o e r c e e ; j u m p ; s k i p ; T E R T I A R Y .

UNITED{12S} :: un ion of M O O D S m o d e .
UNSUPPRESSETY{A3410} :: u n s u p p r e s s i b l e ; EMPTY.
VICTAL{46A} :: VIRACT ; f o r m a l .
VIRACT{46B} :: v i r t u a l ; a c t u a l .
WHETHER{13E} : : w h e r e ; un les s .

