
REPORT ON A PROPOSED INTERNATIONAL STANDARD FOR
A COMMON ALGEBRAIC LANGUAGE FOR DIGITAL COMPUTERS*

*Prepared by a Joint Committee on Algebraic Languages
of the Association for Computing Machinery (U.S.A.)
and the Gesellschaft fur Angewandte Mathematik and
Mechanik (Germany - Switzerland), September, 1958

REPORT ON A PROPOSED INTERNATIONAL STANDARD FOR
A COMMON ALGEBRAIC LANGUAGE FOR DIGITAL COMPUTERS

by

A. J. Perlis
H. Samelson

P.A..qT I. INTRODUCTION

In 1955, as a result of the Darmstadt meeting on electronic
computers, the GAMM (Association for Applied Mathematics and Mechanics),
Germany, set up a committee on programming (Programmierungsausschus).
Later a subcommittee began to work on formula translation and on the con
struction of a translator, and a considerable amount of work viaS done in
this direction.

A conference attended by representatives of the USE, SHARE, and
DUO organizations and the Association for Computing Machinery (ACM) was
held in Los Angeles on May 9 and 10, 1957 for the purpose of examining
ways and means for facilitating exchange of all types of computing infor
mation. Among other things, these conferees felt that a single universal
computer language would be very desirable. Indeed, the successful ex
change of programs within various organizations such as USE and SHARE had
proved to be very valuable to computer installations. They accordingly
recommended that the ACM appoint a committee to study and recommend action
toward a universal programming language.

By October 1957 the GAMM group, aware of the existence of many
programming languages, concluded that rather than present still another
formula language, an effort should be made toward unification. Consequently,
on October 19, 1957, a letter was written to Prof. John W. Carr III, presi
dent of the ACM. The letter suggested that a joint conference of repre
sentative of the GAMM and ACM be held in order to fix upon a common formula
language in the form of a recommendation.

An ACM Ad-Hoc committee was then established by Dr. Carr, which
represented computer users, computer manufacturers, and universities. This
committee held three meetings starting on January 24, 1958 and discussed
many technical details of programming language. The language that evolved
from these meetings was oriented more towards problem language than toward
computer language and was based on several existing programming systems.
On April 18, 1958 the committee appointed a sub-committee 1 to prepare a
report giving the technical specifications of a proposed language.

(1) In addition to the members of the conference, the following people
participated in the preliminary work of these committees:

GAMM P.Graeff, P.Lauchli, M.Paul, Dr. F.Penzlin
ACM D.Arden, J.McCarthy, R.Rich, R.Goodman, W.Turanski, S.Rosen,

P.Desilets, S.Gorn, H.Huskey, A.Orden, D.C.Evans.

-377-

-378-

A comparison of the ACM committee proposal with a similar pro
posal prepared by the GAMM group (presented at the above-mentioned ACM-Ad-Hoc
committee meeting of April 18, 1958) indicated many common features. In
deed, the GAMM group had planned on its own initiative, to use English
words wherever needed. The GAMM proposal represented a great deal of 'work
in its planning and the proposed language was expected to find wide accept
ance. On the other hand the ACM proposal was based on experience with
several successful, working problem oriented languages.

Both the GAMM and ACM committees felt that because of the
similarities of their proposals there was an excellent opportunity for
arriving at a unified language. They felt that a joint working session
would be very profitable and accordingly arranged for a conference in
Switzerland to be attended by four members from the GAMM group and four
members from the ACM committee. The meeting was held in Zurich, Switzer
land, from May 27 to June 2, 1958 and attended by F. L. Bauer~ H.
Bottenbruch, H. Rutishauser and K. Samelson from the GAMM committee and
by J. Backus, C. Katz, A. J. Perlis, and J. H. VJegstein for the ACM
committee.

It was agreed that the contents of the two proposals should
form the agenda of the meeting, and the following objectives were agreed
upon:

I. The new language should be as close as possible to standard
mathematical notation and be readable with little further explanation.

II. It should be possible to use it for the description of com
puting processes in publications.

III. The new language should be mechanically translatable into
machine programs.

There are certain differences between the language used in
publications and a language directly usable by a computer. Indeed, there
are many differences between the sets of characters useable by various
computers. Therefore, it was decided to focus atte~tion on three differ
ent levels of language, namely a Reference Language, a Publication Langu
age and several Hardware Representations.

Reference Language

1. It is the working language of this committee.
2. It is the defining language.
3. It has only one unique set of characters.
4. The characters are determined by ease of mutual understanding and

I
not by any computer limitations, coders notation, or pure mathe-
matical notation.

5. It is the basic reference and guide for compiler builders.

-379-

6. It is the guide for all hardware representations.
7. It will not normally be used stating problems.
8. It is the guide for transliterating from publication language to any

locally appropriate hardware representations.
9. The main publication of the common language itself will use the

reference representation.

Publication Language (see Part IIIc)

1. The description of this language is in the form of permissible varia
tions of the reference language (e.g., subscripts, spaces, exponents,
Greek letters) according to usage of printing and handwriting.

2. It is used for stating and communicating problems.
3. The characters to be used may be different in different countries

but univocal correspondence with reference representation must be
secured.

Hardware Representations

1. Each one of these is a condensation of the reference language enforced
by the limited number of characters on standard input equipment.

2. Each one of these uses the character set of a particular computer and
is the language accepted by a translater for that computer.

3. Each one of these must be accompanied by a special set of rules for
transliterating from Publication language.

PART II. DESCRIPI'ION OF THE REFERENCE LANGUAGE

1. Structure of the Language

As stated in the introduction, the algorithmic language has
three different kinds of representations -- reference, hardware, and
publication and the development described in the sequal is in terms of
the reference representation. This means that all objects defined
within the language are represented by a given set of symbols -- and it
is only in the choice of symbols that the other two representations may
differ. Structure and content must be the same for all representations.

The purpose of the algorithmic language is to describe computa
tional processes. The basic concept used for the description of calculat
ing rules is the well known arithmetic expression containing as constitu-
ents numbers, variables, and functions. From such expressions are compounded,
by applying rules of arithmetic composition, self contained units of the
language -- explicit formulae -- called arithmetic statements.

-380-

To show the flmv of larger computational processes) certain
non-arithmetic statements are added which may describe e.g.) alterna
tives) or recursive repetitions of computing statements.

Statements may be supported by declarations which are not them
selves computing rules) but inform the translator of certain properties
of objects appearing in statements) such as the class of numbers taken
on as values by a variable) the dimension of an array of numbers or even
the set of rules defining a function.

Sequences of statements and declarations when appropriately
combined are called programs. However) whereas complete and rigid
formal rules for constructing translatable statements are described in
the following) no such rules can be given in the case of programs. Con
sequently) the notion of program must be considered to be informal and
intuitive) and the question whether a sequence of statements may be called
a program should be decided on the basis of the operational meaning of
the sequence.

In the sequel explicit rules--and associated interpretations-
will be given describing the syntax of the language. Any sequence of
symbols to which these rules do not assign a specific interpretation will
be considered to be undefined. Specific translators may give such se
quences different interpretations.

2. Basic Symbols

The reference language is built up from the basic symbols listed
in Part III) a. These are

1) Letters A (the standard alphabet of small and capital letters)
2) Figures (arabic numerals 0) ...) 9)
3) Delimiters 0 consisting of

a) operators W:
arithmetic operators
relational operators
logical operators
sequential operators

- --I \/ ,\ __

go to do return stop
if either for if

b) separators a:): .- -. ~ 10

c) brackets~: () []t~

d) declarators~: procedure array
switch
type comment

or or if

Of these symbols, letters do not have individual meaning. Figures and
delimiters have a fixed meaning which for the most part is obvious, or
else will be given at the appropriate place in the sequel.

Strings of letters and figures enclosed by delimiters repre
sent new entities. However, only two types of such strings are admissi-
ble:

1.

2.

Strings consisting of figures! only represent the (positive)
integers G (including 0) with the conventional meaning.
Strings beginning with a letter A followed by arbitrary
letters A and/or figures 1 are called identifiers.

They have no inherent meaning, but serve for identifying purposes only.

3. Expressions

Arithmetic and logical processes (in the most general sense~
which the algorithmic language is primarily intended to describe, are
given by arithmetic and logical expressions, respectively. Constituents
of these expressions, except for certain delimiters, are numbers, varia
bles, elementary arithmetic operators and relations, and other operators
called functions. Since the description of both variables and functions
may contain expressions, the definition of expressions, and their con
stituents, is necessarily recursive.

The following are the units from which expressions are con-
structed.

i) (positive) Numbers N.

Form: N G.Glo ~ G
where each G is an integer as defined above.

G.G is a decimal number of conventional form. The scale
factor10 ~ G is the power of ten given by ~ G. The following constitu
ents of a number may be omitted in any occurrence:

Examples:

The fractional part .00 ••• 0 of integer decimal numbers; the
integer 1 in front of a scale factor; the + sign in the scale
factor; the scale factorlO ~ O.

4711
137.06

2.99971010
10-12
3 -12 m

-382-

ii) Simple Variables V

Simple variables V are designations for arbitrary scalar quanti
ties) e.g.) numbers as in elementary arithmetic.

Form: V-~ I.
where I is an identifier as defined above.
Examples:

a
xlI

PSI2

ALPHA

iii) Subscripted Variables V

Subscripted variables V designate quantities which are compon
ents of multidimensional arrays.

Form: Vr--I [,eJ
where ,e,...,E) E)i ••. \) E is a list of arithmetic expressions as defined
below. Each expression E occupies one subscript position of the sub
scripted variable) and is called a subscript. The complete list of sub

scripts is enclosed in the subscript brackets [] .
The array component referred to by a subscripted variable is

specified by the actual numerical value of its subscripts (cf. arithmetic
expressions).

Subscripts) however) are intrinsically integer valued) and
whenever the value of a subscript expression is not integral) it is re
placed by the nearest integer (in the sense of proper round off).

Variables (both simple and subscripted ones) designate arbi
trary real numbers unless otherwise specified. However) certain declara
tions (cf. type declarations) may specify them to be of a special type)
e.g.) integral) or Boolean. Boolean (or logical) ~ariables may assume
only the two values "true" and "false".

iV) Functions F

Functions F represent single numbers (function values)) which
result through the application of given sets of rules to fixed sets of
parameters.

Form: F,v I (p) p) L!.-~I) p)
\,here I is an identifier) and p)p) r~ .. 1) P is the ordered list of actual
parameters specifying the parameter values for which the function is to
be evaluated. A syntactic definition of parameters is given in the sec
tions on function declarations and procedure declarations. If the func
tion is defined by a function declaration) the parameters employed in any
use of the function are expressions compatible with the type of variables

contained in the corresponding parameter positions in the function declara
tion heading (cf. function declaration). Admissible parameters for func
tions defined by procedure declarations are the same as admissible input
parameters of procedures as listed in the section on procedure statements.

Identifiers designating functions, just as in the case of varia
bles) may be chosen according to taste. However, certain identifiers
should be reserved for the standard functions of analysis. This reserved
list should contain:

abs (E) for the modulus (absolute value) of the value of
the expression E

sign (E) for the sign of the value of E
entire (E) for the largest integer not greater than the value

of E
sqrt (E) for the square root of the value of E
sin (E) for the sine of the value of E

and so on according to common mathematical notation.

v) Arithmetic Expressions E

Arithmetic expressions E are defined as follows:

(a) A number, a variable (other than Boolean), or a function

(b)

is an expression

Form: E'UN
'UV

'U F
If El and E2 are expressions, the first s~abols of which
are neither "+" nar"-", then the following are expressions:

l. E 'U+ El
2. 'U- E2
3. 'U El + E2
4. 'U El - E2
5. 'U El x E2
6. 'U El / E2
7. 'U El fE2l
8. 'U (El)

The operators +) -) x, / appearing in 1 through 6 have the con
ventional meaning. The parentheses t J, used in 7 denote exponentation)
where the leading expression is the base and the expression enclosed in
parentheses is the exponent.

Examples:
2 l2t nu'
2 t 2 11'nJ,

means
means

The proper interpretation of expressions can always be arranged
by appropriate positioning of parentheses. An arithmetic expression is a

-384-

rule for computing one real number by executing the indicated arithmetic
operations on the actual numerical values of the constituents of the
expression. This value is obvious in the case of numbers N. For variables
V) it is the current value (assigned last in the dynamic sense)) and for
functions F it is the value arising from the computing rules defining the
function (cf. function declaration)when applied to the current values of
the function parameters given in the expression.

The sequence of operations within one expression is generally
from left to right) with the following additional rules:

a) parentheses are evaluated separately
b) for operators) the conventional rule of precedence applies:

first: x /
second: +

In order to avoid misunderstandings) redundant parentheses
should be used to express) for example) ab in the form (axb)/c or (a/c)xb c
rather than byaxb/c) or a/cxb) respectively) and to avoid constructions
such as alb/c.
Examples:

A

Alpha
Degree
A[l)l]
A[j+k-2) j-k]

A[mu[sJ]
axs in(omega x t)
0.5 x a[Nx(N-l)/2) oJ

vi) Boolean Expressions B

Boolean expressions B are defined analogously to arithmetic
expressions:

(a) A truth value) a variable (Boolean by declaration)) or a
function (Boolean by declaration) is an expression.
Form: B",O (the truth value "false")

'" 1 (the truth value "true")
"'V
"'F

(b) If El and E2 are arithmetic expressions then the following
arithmetic relations are expressions:

B"'(El < E2)
'" (El < E2)

'" (El " E2)
'" (El > E2)
'" (El :;: E2)

'" (El = E2)

Such expressions take on the (current) value "truth" whenever
the corresponding relation is satisfied for the expressions involved,
othenlise tlfalse lf •

(c) If Bl and B2 are expressions, the following are expressions:

B 'V --, Bl
'V Bl V B2
'V Bl A B2
'V Bl =: B2
'V (Bl)

The operators" V, A, :::: have the interpretations "not", "or", "and",
and "equivalent".

Interpretation of the binary operators will be from left to
right. The scope of "," is the first expression to its right. Any
other desired precedence must be indicated by the use of parentheses.
Examples:

(x ;:: 0)
(X > 0) V (y > 0)
(p A q) V (x t y)

4. Statements L

Closed and self contained rules of operations are called
Statements L. They are defined recursively in the following way:

*

a) Basic statements L are those described in this section.
b)

c)

Strings of one or more statements* may be combined into
a single (compound) statement by enclosing them within the
"statement parentheses" begin and end. Single statements
are separated by the statement separator";".
Form: begin L; L; ... ; L end
A statement may be made identifiable by attaching to it a
label L, which is an identifier I, or an integer G (with
the meaning of identifier). The label precedes the attached
statement labelled, and is separated from it by the separator
colon (;). Label and statement together constitute a state
ment called "labelled statement".
Form: L L: L
A labelled statement may not itself be labelled. In the
case of labelled compound statements, the closing parenthe
ses end may be followed by the statement label (followed by
the statement separator) in order to indicate the range of
the compound statement:
Form: L L: begin L;L; ... ; Lend L" ,

Declarations which may be interspersed between statements have no
operational (dynamic) meaning. Therefore, they have no significance
in the definit"ion of compound statements"

-386-

i) Assignment Statements

Assignment statements serve for assigning the value of an ex
pression to a variable.

Form i) : Z·", V : = E

If the expression on the right hand side of the assignment delimiter :=
is arithmetical, the variable V on the left hand side must also be numeri
cal, i.e., it must not be Boolean.

Generally, the arithmetic type of the expression E is deter
mined by the constituents and operations of the expression E. However
V may be declared to be of a special type provided this declaration is
compatible with the possible values of the expression E.

Form ii): E ~ V := B

If the expression on the right hand side of the assignment statement is
Boolean, V may be any variable. This means that the truth values "true",
and "false 1l of the Boolean expression may be interpreted arithmetically
as integers "l",~and 110", which may then be assigned to a numerical
variable.

ii) Go to Statements

Normally, the sequence of operations (described by the state
ment of a program) coincides with the physical sequence of statements.
This normal sequence of execution may be interrupted by the use of go to
statements.

Form: Z ~ go to D

D is a designational expression specifying the label of the statement
next to be executed. It is either a label L or a switch variable I [E]
(cf. switch declaration), where I is an identifier and E a subscript
expression. In the latter case, the numerical value of E (the value of a
subscript) is an ordinal ,{hich identifies the component of the switch I
(named by declaration). This element which is again a designational
expression specifies the label to be used in the go to statement. This
label determination is obviously a recursive process, since the elements
of the switch may again be switch variables.

Examples: go to hell
go to exit [(it21- jt2~+1)/2]

where exit refers to the declaration
switch exit := [Dl , D2 , (... j, Dm]

-387-

iii) If Statements

The execution of a statement may be made to depend upon a
certain condition which is imposed by preceding the statement in question
by an if statement.

Form: L ~ if B

where B is a Boolean expression.
If the value of B is "true", the statement following the if

statement will be executed. Otherwise, it will be bypassed, and opera
tion will be resumed with the next statement following.

Example: In the sequence of statements

if
if
if

(a>o);
(a<O) ;
(a=O) ;

c: at2i/b'i2
c: a1'2t+ bt2~
go to bed

one and only one of the three statements rightmost in each line will be
executed.

iv) For Statements

Recursive processes may be initiated by use of a for statement,
which causes the execution of the following statement to be executed
several times, once for each of a series of values assigned to the recur
sing variable contained in the for statement.

Form: i) for V
ii) for V " Eil (ES1) Eel' F"3 Eik(Esk) Eek

where" is a list of k expressions El' E2, ... , Ek, and Ei., Es ., Ee. are
J ,1 J

expressions.
In Form 1) the intent is to assign to V in succession the value

,)f each expression of the list (expressLJns taken in .)rder of listing)
and the statement following the for statement is executed immediately
following each such assignment.

In Form ii) each group of expressions El(Es)Ee determines an
arithmetic progression. The value of Ei is the initial value, Es gives
the value of the increment (step), and Ee determines the end value which
is the lastterm of the progression contained in the interval Ei, Ee.
The intent is to assign to Veach value of every progression (these again
taken in the order of listing from left to right), and the statement
following the for statement is executed immediately following each such
assignment.

-388-

The effect of a for statement may be precisely described in
terms of "more elementary" statement forms. Thus the form (i) is precisely
equivalent to

where L is the statement following the for statement.
The form (ii) is precisely equivalent to

v - Eil; Li :L*; V
V Eik ; Lk :L; V

Eil + ES1)
Eik + Esk ;

if (V < Ee)f*go to Ll;
if (V ~ Eek);~o Ll;

where L is the statement following the for statement.

Examples: a) for I := 1 (l)n; p = pxy + A[I]
b) for a := 1,3,5,9,76, I"-.:.J, - 13.75;

begin---------------------
---------------------end

v) Alternative Statements

An alternative statement is one which has the effect of select
ing for execution one from a set of given statements in accordance with
certain conditions vlhich exist when the statement is encountered.

Form: if either Bi; Ll; or if B2; ... ; or if Bk; Lk;
end where L is any statement other than a quanti
fier, i.e., if, for, or or if, and Bi is any
Boolean expression.

The effect of an alternative statement may be precisely de
scribed in terms of "more elementary" statement forms. 'Thus the above
form is precisely equivalent to the sequence of statements: if Bl;
begin Ll ; go to next end; if B2; begin L2; go to next end; ; if
Bk; Lk where "next" is the label of the statement following the alter
native statement.

Example: if either (a > 0); y := a + 2; or if (a < 0);
y := a/2; or if (a 0); y := .57 end.

* If L is a labeled statement Li is that label.
as though it had a (unique) label Li'

If not the effect is

** This relational form obtains if the progression is increasing; if
decreasing, the relation> is understood to employed.

vi) Do Statements

A statement, or string of statements, once written down, may
be entered again (in the sense of copying) in any place of the same
program by employing a do statement which during copying permits sub
stitution for certain constituents of the statement reused.

Form: L. do Ll , To- (S ~, :--:7:' , S ~) - ~c ~ ~ ~

where Ll and ~ are labels, the S~are strings of symbols not containing
the separator (~) and the I are identifiers, or labels, and the list
enclosed by parentheses is a substitution list.

The do statement operates on the string of statements from,
and including, the one labeled Ll through the one labeled ~, which
statements constitute the range of the do statement. If Ll is equal to
~, i.e., if the range is just the one statement Ll' the characters,
"~" may be omitted.

The do statement causes itself to be replaced by a copy of the
string of statements constituting its range. However, in this copy all
identifiers or labels, listed on the righthand side of a separator "~'
in the substitution list of the do statement, (and which are utilized in
these statements) are replaced bY-the corresponding strings of symbols
S~ on the left hand side of the separators 11 ~' • These strings S~ may
be chosen freely with the one restriction that the substitutions prod
uce formally correct statements in the copy~

Whenever a do statement contains in its range another do
statement, the copying, and substituting process for this second inner
most do will be executed first. Therefore the (actual) copy induced
from a do statement never contains a do statement. Declarations within
the range of a do statement are not reproduced in the copy

Examples do 5,12 (x[i]~y, black label ~ red label, , ..• j' f(x,y)~ g)
do l2A,ABC (x12t+ 3/y~A, r .. ~)

The range of a do statement should contain complete statements only, i.e.,
if the begin (end) delimiter of a compound statement lies in the range of
the do, then so should the matching end (begin). If this rule is not
complied with the result of the do statement may not be the one desired.

vii) Stop Statements

Stop is a delimiter which indicates an operational (dynamic)
end of the program containing it. Operationally, it has no successor
statement.

*

Form: L. 'V stop

Thus, in the copy produced any designational expression whose range is
a statement within the range of the do statement must be transformed
so that its range refers to the copy produced.

-390-

viii) Return Statements

Return is a delimiter which indicates an operational end of a
procedure. It may appear only in a procedure declaration. (cf. proce
dure declaration).

Form: L, '" return

ix) Procedure Stat2ments

A procedure statement serves to initiate (call for) the execu
tion of a procedure, that is, a closed, selfcontained process with a
fixed ordered set of input and output parameters, permanently defined
by a procedure declaration. (cf. procedure declaration).

Form:

Here I is an identifier which is the name of some procedure, i.e., it
appears in the heading of some procedure declaration. (cf. procedure
declarations). Pl, Pi' •.. , Pi is the ordered list of actual input
parameters specifying the input quantities to be processed by the
procedure.

The list of actual output parameters Po'Po""'Po' specifies
the variables to which the results of the procedure will be assigned
and alternate exits if any. The procedure declaration defining the
procedu~e called contains, in its heading, a string of symbols identical
in form to the procedure statement, and the formal parameters occupying
input and output parameter positions there give complete information
concerning the admissibility of parameters employed in any procedure
call shown by the following replacement rules:

formal parameters
in procedure declaration

input parameters

single indentifier
(formal variable)

array, i.e., subscripted
variable with k(~ 1) empty
parameter positions

function with k empty
parameter positions

admissible parameters
in procedure statement

any expression (compatible
with the type of the
formal variable).

array with n(~ k) parameter
positions k of which are
empty

function with n(~k) parame
ter positiJns k of which
are empty

-391-

procedure with k empty
parameter positions

parameter
procedure
primitive

occurring in a
(added as a

* to the language)

procedure with k empty
parameter positions

every string of symbols s,
which does not contain the
symbol "," (comma)

output parameters

single identifier
(formal variable)
array (as above for input
parameters)

(formal) label

simple or subscripted
variable
array (as above for
input parameters)

label

If a parameter is at the same time an input and output parameter this
parameter must obviously meet the requirements of both input and output
parameters.

Within a program, a procedure statement causes execution of
the procedure called by the statement. The execution, however, is
effected as though all formal parameters listed in the procedure declara
tion heading were replaced, throughout the procedure, by the actual
parameters listed, in the corresponding position, in the procedure
statement.

This replacement may be considered to be a replacement of
every occurrence within the procedure of the symbols, or sets of symbols,
listed as formal parameters, by the symbols, or sets of symbols, listed
as actual parameters in the corresponding positions of the procedure
statement, after enclosing in parentheses every expression not enclosed
completely in parentheses already.

Furthermore, any return statement is to be replaced by a go
to statement referring, by its label, to the statement following the
procedure statement, which, if originally unlabeled, is treated as hav
ing been assigned a (unique) label during the replacement process.

The values assignable to, or computable by, the actual input
parameters must be compatible with type declarations concerning the
corresponding formal parameters which appear in the procedure.

For actual output parameters, only type declarations duplicat
ing given type declarations for the corresponding formal parameters may
be made.

* Within a program certain procedures may be called which are themselves
not defined by procedure declarations in the program, e.g., input -
output procedures. These procedures may require as parameters quanti
ties outside the language, e.g., a string of characters providing
input - output format information.

-392-

Array declarations concerning actual parameters must dupli
cate, in corresponding subscript positions, array declarations referring
to the corresponding formal parameters.

5. Declarations 6

Declarations serve to state certain facts about entities
referred to within the program. They have no operational meaning and
within a given program their order of appearance is immaterial. They
pertain to the entire program (or procedure) in which they occur and
their effect is not alterable by the running history of the program.

i) Type Declarations 6

Type declarations serve to declare certain variables, or
functions, to represent ~uantities of a given class, such as the class
of integers or class of Boolean values.

Form: 6 'V type (I, I, I ••• : 1,1[], 1:-~-~1
--)

1[,], I ••• 1[,,], ~-r) I ••• i l __ .-i 1 _____

where type is a symbolic representative of some type declarator such as
integer or Boolean, and the I are identifiers.

'Throughout the program, the variables, or functions named by
the identifiers I, are constrained to refer only to ~uantities of the
type indicated by the declarator. On the other hand, all variables, or
functions which are to represent other than arbitrary real numbers must
be so declared.

ii) Array declarations 6

Array declarations give the dimensions of multidimensional
arrays of ~uantities

Form: 6 'V array (1,1, Ei ' 1[1:11], 1,1, n ,1[1:1 1], I·· .j

where array is the array declarator, the I are identifiers, and the "1",
and "1 1 " are lists of integers separated by commas.

Within each pair of brackets, the number of positions of 1
must be the same as the number of positions of 11.

Each pair of lists enclosed in brackets [1:1 1] indicates that
the identifiers contained in the list 1,1, ... ,1 immediately preceding
it are the names of arrays with the following common properties:

a) The number of positions of 1 is the number of dimensions
-If every array.

-393-

b) the values of 1 and l' are the lower and upper bounds of
values of the corresponding subscripts of every array.

An array is defined only when all upper subscript bounds are not smaller
than the corresponding lower bounds.

iii) Switch Declarations 6

A switch declaration specifies the set of designational ex
pressions represented by a switch variable. If used in a go to statement,
its value specifies the label of the statement called by the go to
statement (cf. go to statement)

where switch is the switch declarator, I is an identifier, and the Di
are designational expressions (cf. go to statement).

The switch declaration declares the list Dl , I2, Dn to be
a symbolic vector (the "switch"), the designational expression D.k being
the kth component. Reference is made to the switch by the switch variable
I[E], where I is the switch identifier and E is a subscript expression.
The switch variable when used in go to statements selects by the actual
value of its subscript, that component of the switch determining the
label called for by the go to statement. A switch variable, being
designational expression, may appear as a component of a switch.

iv) Function Declarations 6

A function declaration declares a given expression to be a
function of certain of its variables. Thereby, the declaration gives
(for certain simple functions) the computing rule for assigning values
to the function (cf. functions) whenever this function appears in an
expression.

Form: 6 ~ IN (1,1 •.. ,1) := E

where the I are identifiers and E is an expression which, among its
constituents, may contain simple variables named by identifiers appear
ing in the parentheses.

The identifier IN is the function name. The identifiers in
parentheses designate the formal parameters of the function.

Whenever the function IN (p,p, ... ,p) appears in an expression
(a function call) the value assigned to the function in actual computa
tion is the computed value of the defining expression E. For the evalua
tion, every variable V which is listed as a parameter I in the function
declaration, is assigned the current value of the actual parameter P in
the corresponding position of the parameter list of the function in the

-394-

function call. The (formal) variables V in E which are listed as
parameters in the declaration bear no relationship to variables possess
ing the same identifier, but appearing elsewhere in the program. All
variables other than parameters appearing in E have values as currently
assigned in the program.

Example: I(Z) := Z + 3xy

alpha := q + I(h+9xmu)

In the statement assigning a value to alpha the computation is:

alpha := q + ((h + 9 x mu) + 3 x y)

v) Comment Declarations ~

Comment declarations are used to add to a program informal
comments, possibly in a natural language, which have no meaning what
soever in the algorithmic language, and no effect on the program, and
are intended only as additional information for the reader.

Form: ~ ""' comment S. ,

where comment is the comment declarator, and S. is any string of symbols ,
not containing the symbol " j ".

vi) Procedure Declarations ~

A procedure declaration declares a program to be a closed unit
(a procedure) which may be regarded as a single compound operation (in
the sense of a generalized function) depending on a certain fixed set of
input parameters, yielding a fixed set of results designated by output
parameters, and having a fixed set of possible exits defining possible
successors.

Execution of the procedure operation is initiated by a
procedure statement which furnished values for the input parameters,
assigns the results to certain variables as output parameters, and
assigns labels to the exits.

Form: ~ ""' procedure I (Pi) =: (po), I(Pi)
(po), CJ , I(Pi) =: (po)

~; ~; ~ j ~ begin L.j L.; ~ ; ~j ~; r~ ... i L.; L.j end

Here, the I are identifiers giving the names of the different procedures
contained in the procedure declaration. Each Pi represents an ordered
list of formal input parameters, each Po a list of formal output parame
ters which include any exits required by the corresponding procedures.

-395-

Some of the strings "==: (po)" defining outputs and exits may
be missing in which case the corresponding symbols "1(Pi)" define a
procedure that may be called within expressions.

The ~ s in front of the delimiter begin are declarations
concerning only input and output parameters. The entire string of
symbols from the declarator procedure (inclusive) up to the delimiter
begin (exclusive) is the procedure heading.

Among the statements enclosed by the parentheses begin and end
there must be, for each identifier I listed in the heading as a procedure
name, exactly one statement labeled with this identifier, which then
serves as the entry to the procedure. For each single output procedure
I (Pi) listed in the heading, a value must be assigned within the
procedure by an assignment statement "I :== E", where I is the identifier
naming that procedure.

'To each procedure listed in heading, at least one return
statement must correspond within the procedure. Some of these return
statements may however be identical for different procedures listed in
the heading.

Since a procedure is a self-contained (except for parameters)
program, the defining rules for statements and declarations within
procedures are those already given.

A formal input
a)
b)

parameter may be
a single identifier
an array 1[, ,~ ...
subscript positions

I (formal variable).
,1 with k (k == 1,2, ...) empty

c) a function f (, , L~~.~ ,) with k (k == 1,2, ...) empty
parameter positions.

d) a procedure P (, ,
parameter positions.

,) with k (k == 1,2, ...) empty

e) an identifier occurring in a procedure which is added as
a primitive to the language.

A formal output parameter may be
a) a single identifier (formal variable).
b) an array with k (k == 1,2, .•.) empty subscript positions

A formal (exit) label may be only a label.

A label is an admissible formal exit label if, within the procedure, it
appears in go to statements or switch declaration.

An array declaration contained in the heading of the procedure
declaration, and referring to a formal parameter, may contain expressions
in its lists defining subscript ranges. These expressions may contain:

1. numbers
2. formal input variables, arrays, and functions.

-396-

All identifiers and all labels contained in the procedure
have identity only within the procedure, and have no relationship to
identical identifiers or labels outside the procedure, with the excep
tiJn of the labels identical to the different procedure names contained
in the heading.

A procedure declaration, once made) is permanent, and the only
identifiable constituents of the declaration are the procedure declara
tion heading, and the entrance labels. All rules of operations and
declarations contained within the procedure may be considered to be in
a language different from the algorithmic language. For this reason,
a procedure may even initially be composed of statements given in a
language other than the algorithmic language, e.g., a machine may be
required for expressing input-output procedures.

A tagging system may be required to identify the language
form in which procedures are expressed. The specific nature of such a
system is not in the scope of this report.

Thus by using procedure declarations, new primitive elements
may be added to the algorithmic language at will.

PART III

A. Basic Symbols

Delimitors
Operators Separators Brackets Declarators

ill rv + go to B rv (procedure
do) switch

x return [array

/ stop .- J type*
...., for i comment
V if ~

'" A or if 10 begin
if either end

1=
-:;

>
<
<
>

* Representant-

non-delimiters ~

letters

A A """hrough! ~." -!

a ~hr~o~~~l
digits

Z

z

"1 0 It:~i~~~~ 9

Syllables

list

1- 'V E, E, C:~] , E

simple variable

V'V I

subscripted variable

function

F'V I (p, P,i ..••. :, p)

-397-

B. Syntactic Skeleton

expression and Boolean expression

E } B For the composition rules see the appropriate sections in Part II.

statement label

L'V I

L'V G

designational expression

D'V L
D'V I [E]

parameters

P For the composition rules see the appropriate sections in Part II.

identifier

-398-

integer

number
~. I

10 ~ G ---may be empty
t ____________ J--1 may be empty

strings of symbols

sa xxx I .• :.~~ xxCX where x is not ex and ex is a particular delimiter

Statements L.

assignment statement

L.'VV =E

'VV: =B

compound statement

L. 'V begin ,L.; L. r3; L. I end
. "

at least one L.

labeled statement

L.'V L L., where L. is unlabeled.

go to - statement

L. 'V go to D

do - statement

L. 'V do ~ ~-:1.7._~~~~ f;-.--:], Sd rJ
may be empty may be empty

quantifier statement

L. 'V if B
'V for V
'V for V

Alternative

£
= E (E) E, E (E) E, [;~ , E (E) E

L. 'V if either Bl ; ~; or if B2;~; [.-:-:-:1

stop - and return - statement

L. 'V stop
'V return

-399-

procedure call statement

L. rv I (R) = : (R) where R rv P, P ~ , P

Declarations 6.

function declaration

6. rv I (R): = R

procedure declaration

6. rv procedure I (R)~I (R)~ [:::-:-::J
may be empty may be empty

I~
may be empty

where R rv (p, P, P, [-~-, .J , P, p)

switch declaration

6. rv switch I: = (D, D, L'::::J ' D)

array declaration

6. rv array (I, I, I."~J, I [1: 1], I, L __ ,., __ ~J, I [1 1], I, ~)

symbol classification declaration

comment declaration

6. rv comment S.
J

C, Publication Language

As stated in the introduction, the reference language is a link between
hardware languages and handwritten, typed or printed documentation,
For transliteration between the reference language and a language suita
ble for publications*, the following transliteration rules may be used

* For example, for lectures in Numerical Analysis.

Reference Language

subscript brackets []

exponentiation parentheses i J,

parentheses ()

basis of ten 10

statement separator

-400-

Publication Language

lowering of the line between the
brackets

raising of the line between the
arrows

any form of parentheses, brackets,
braces

raising of the ten and ,.)f the
following integral number, insert
ing of the intended multiplication
sign

line convention: each statement on
a separate line may be used

Furthermore, if line convention is used, the following
changes may be simultaneously used

multiplication cross x multiplication dot

decimal point decimal comma

separation mark any common separation mark that
will not be ambiguous

Example: integration of a function F(x) by Simpson!s Rule.
of F(x) are supplied by an assumed existent function routine.

The values
The mesh

size is halved until two successive Simpson sums agree to within a
prescribed error. During the mesh reduction F(x) is evaluated at most
once for any x. A value V greater than the maximum absolute value
attained by the function on the interval is required for initializing.
If F(x) changes sign in [a,b] one can apply the routine to F(x) + C,
where C > V.

procedure

comment

begin
Simps:

Simps (F (), a, b, delta, V)

a, b are the min and max, resp. of the points def.
interval of integ. F() is the function to integrated.
delta is the permissible difference between two successive
Simpson sums.V is greater than the maximum abs.)lute value
of F on a, b;

Ibar
n

h

J

V x (b-2)
1
(b-a)/2
hx(F(a) + F(b))

-401-

Jl: S := 0

for k : = 1 (1) n
S := S+F (a + (2xk-l) xh)
I = J + 4 x h x S

if (delta < abs (I - Ibar)) *
begin I Ibar

J : = (I+J)/4
n : = 2 x n; h h/2
go to Jl

end Simps .- I/3

return

integer

end

(k, n)

Simps

* abs (absolute value) is the name of a standard procedure always
available to the programmer so that it need not be supplied as
an input parameter.

