
• 

BASIC ALGOL 
by. DANI EL D. McCRACKEN, McCracken Assoc., 
Ossining, N.Y. 

"ALGOL will collapse of its own 
weight in a year or two. It's nothing 
but an intellectual exercise for recur
sive procedure theorists." So said an 
acquaintance a while ago, and I sus
pect he speaks for a great many com
puting people. 

I think it's time somebody spoke up 
for the power of ALGOL in doing 
"ordinary" programming-the kind of 

work in which recursive definition, "own" variables, and 
call-by-name seldom arise. The value of such "advanced" 
features of ALGOL should not be minimized, but neither 
should it be thought that until one. understands these as
pects thoroughly (a supposedly hopeless task), no use can 
be made of the language. In refutation of this position, let 
me list some obvious points of superiority of ALGOL over, 
say, FORTRAN, in doing simple calculations. 

(FORTRAN is chosen for comparison simply because it 
is the most widely used scientific programming language, 
and thus provides a good frame of reference.) 

1. Variable naming is easier: you don't have to worry 
about the IJKLMN business or the restriction to six char
acters. 

2. Constants are simpler to write: no more recompila
tions because you forgot to write a floating point 2 with 
a decimal point. 

3. Conditional expressions. are much more powerfuL In
stead of the extremely restricted format of the FORTRAN 
IF statement, you can write any Boolean expression, and 
there are other flexibilities available if you want to use 
them. It takes no great effort to devise realistic. examples 
of tests that take a half-dozen statements in FORTRAN 
and one in ALGOL. 

4. ALGOL offers great power and flexibility in writing 
loops, at no great penalty in difficulty of learning. If you 
want to execute a loop for several values of a parameter, 
you can simply list them. In the form of the ALGOL "for" 
statement that most closely corresponds to the FORTRAN 
DO statement, the three parameters can be any expression, 
rather than "a single unsigned fixed point constant or vari
able." This one thing alone would take dozens of state
ments out of some FORTRAN programs. Another varia
tion allows continued execution of a loop as long as a 
Boolean expression is still true. 

5. Subscripting capabilities in AlLGOL are more flexible 
and powerful. FORTRAN, for instance, will accept the 
subscript 2""N - 3, but reject N""2 - 3. ALGOL has no 
such annoyances; a subscript can be any expression, and 
that's that. Furthermore, the lower bound of a subscript 

December 1961 

a close-up of 
some clear-cut advantages 

is not restricted to the integer one, and array sizes can be 
established at execution time. 

6. Compilers will be faster, I am told. The speed of the 
Burroughs Algebraic Compiler for the 220 and of MAD, 
both of which are more like ALGOL than FORTRAN, 
would seem to bear out the contention. 

Other points could be listed, but these should demon
strate that there is a lot to be said for ALGOL besides 
the power of the advanced features. It may also be noted 
that this list contains nothing that is particularly difficult to 
learn. In fact, learning is easier in many particulars, be
cause you don't have to keep track of a lot of bothersome 
little restrictions. 

It is interesting to speculate on the origin of the myth 
of ALGOL's abstruseness, for which I suggest three rea
sons. First, the report in the ACM. Communications of 
May, 1960, is excellent for its intended purpose of defining 
the language; but somewhat lacking when viewed as a 
beginner's primer. I assume I am not the only one who 
spent twenty minutes on the report and promptly gave up 
on ALGOL because I thought it would be more trouble 
to learn than it was worth. (I assume I am also not the 
only one who found that the report is not all that difficult, 
once I took the trouble to learn the notation.) 

Second, most of the published discussion of ALGOL has 
centered around the advanced features, which is entirely 
reasonable, but misleading. It is only natural that those 
who are concerned with the development of advanced 
computer languages should spend their time on the diffi
cult things, after noting that· the "simple" advantages of 
the type listed above would be relatively easy to accom
plish. But this sort of discussion leaves those of us on the 
fringes with the entirely mistaken impression that ALGOL 
consists only of the difficult things. 

Third, the algorithms published in the Communications 
are slow going for some of us because the problems they 
solve are slow going for some of us. I for one don't know 
off-hand how a Riccati-Bessel function differs from a plain , 
Bessel function; of course I'm not going to get much out 
of a casual reading of an algorithm to compute a Riccati
Bessel function-no matter what the language. Once again, 
this is proper, but misleading. There is not too much point 
in publishing algorithms to do "ordinary" things, which 
can obviously be done fairly easily in any language., But 
in the process of exhibiting how ALGOL can be used for 
difficult problems, some of us got the impression that that 
was the whole story. 

In summary, it appears to me that ALGOL offers clear
cut advantages to anyone doing scientific computing, 
whether or not the application requires use of the more 
advanced features of the language. These features may 
very well turn out to be major advances in the computing 
art; in the meantime, there is no need to wait for the dust 
to settle before making use of the "simple" advantages. 

It's time for some of us to take a fresh look. • 

29 


