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INTRODUCTION 

In the following, the first stage of an algorithmic language 
representing the basis of the formula translation project Zurich-Munchen
Mainz-Darmstadt is developed. The language is intended to permit com
plete description of any computing process in a compact and easily 
legible and controllabl~ form, with the important restriction that for 
the time being only calculations with real numbers are permitted. HYPer
complex ~uantities of all kinds (such as complex and double precision 
numbers, vectors, matrices,etc.) are not included at the moment; calcula
tions with such ~uantities must be written down componentwise. 

The symbols necessary for representation of the elements of 
the language are chosen as far as possible in conformity with usages of 
printing. Furthermore the language has been adapted as far as possible 
to the following postulates: 

I) The language should coincide wherever possible with standard 
mathematical formula notation, and should, for a mathematician, be reada
ble without further explanations. 

II) It should be possible to use the language in publications, 
for the description of computing processes. 

III) The language should describe any computing process as 
accurately as to allow automatic translation into machine programs. 

With regard to realization of postulate III it must be remarked 
that in conse~uence of the restricted number of characters on commercial 
input-output apparatus multiple use of certain characters or verbal 
transcriptions cannot be avoided. Possibilities of the international 
teletype code, and of punch card tabulators are carefully studied. 

1. Development of the Formula Language 

A first attempt to automatize programming for computers was made 
by H. Rutishauser (Lecture given at the GAMM-conference 1951; publication 
1952 "Automatische Rechenplanfertigung bei.programmgesteuerten 
Rechenmaschinenf1 ). 
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The method proposed required that formulae 'should be written 
down in an !!appropriate way!!, 

( (a X b) + c) => s 
(a - b) X. c => t 

t + s - (a Xc) + (b X b) => z 
(1) 

wherefrom the machine carries out translation into the machine program. 
The main principle was to write to the left of the tt ergibt tt_ 

symbol If =>tt the arithmetic expression to be evaluated and to the right 
the designation of the new quantity defined by the calculation. This 
Ifergibt tt symbol corresponds better to the dynamic process of computing 
than the usual equality symbol. Especially it can be used in situations 
where the latter may lead to contradictions, e.g., s + 2 => S (ttoldtt s 
plus 2 yields ttnewtt s). 

For description of loops generated by running subscripts, a 
symbolization of the following form was proposed (example for multiplica
tion of a matrix by a vector): 

FUr i 1(1) n: 
FUr j 0: 0 => h j 
F" 1(1) (aij ~ Xj) ur j n: h j - 1 + => h j 
F" ur j = n hj => Yi 

(2 ) 

2. Principles of the New Language 

The new language follows essentially the ideas given by 
Rutishauser in his original paper as stated in Section 1: A formula 
program, that is description of a computing process in this langu~ge, 
consists in ttergibt tt formulae (describing the arithmetic operations to 
be carried out), and in tf guiding symbols tf (e. g., for i = 1 ••• or similar 
verbal statements) describing the structure of the computing process. 
Ergibt-formulae and guiding-symbols are called tfstatementstf. 

In Ifergibt tf - formulae, to the left the usual arithmetic ex
pressions appear which may contain, as operands, numbers, simple vari
ables and subscripted variables; furthermore brackets and operations 
symbols (for restrictions see table of forbidden combinations in Section 
3). To the right of the ttergibt tt symbol, in any case only a (simple 
or subscripted) variable (this being the result of the calculation) is 
permitted. 

Following postulate I, the ttguiding symbols tt explained in 
Chapters II and III have been formulated verbally. 



CHAPI'ER I 

CONSTRUCTION OF ffergibt tt - FORMULAE 

3. Symbols for Construction of It ergibt tt - Formulae 

Elementary building blocks for ffergibt lt formulae are the 
following symbols which are only representatives for underlying abstract 
concepts. 

general abbreviation 
a) letters a b ...... z 

A B ••••• Z 
and other alphabets 

b) figures o 1 2 ..... 9 

c) decimal comma 1) , 

decimal base 
for scaling 10 (lowered small 10) 

d) separating symbols 

semicolon 
for strong separation 
colon 
brackets 
half line shift [Iff] 

; 

1 I or J J 

T 

() [ ] 
2) (for index positions) _/ 

e) operations symbols + 1) / 

f) definition symbols => .-

1) Alternative proposal: decimal point 
and multiplication symbol X 

2) Framing of symbols means that in printed texts the symbols are 
replaced by actual line shifts. On punching equipment where half 
line shifts are impossible~ symbols corresponding to printed as 
well as punched characters must be used. 
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4. Elements of "ergibt" formulae 

With the symbols defined so far the following entities can 

0:) Numbers Z 
general form: + ~~ .•• ~,S .•• Sl + ~ ••• s 

0-

where the optional scale factor 10 ~ ~ ••• s as well as + signs are 
optional. In integers, no decimal comma is needed. 

examples 

f3 ) Simple variables V 

273 
2,73 -10 2 
3,14159 

-0,047 
+0,478 - 2 

10 

as designations for numbers as in elementary arithmetics. 
general form: letter A followed by arbitrary letters and/or 

figures 
examples a 1 

xl ) 
alpha 

No distinctions are made between fixed point and floating point variables. 
All those combinations of letters which are used for guiding 

symbols can not be used as names for variables. They are listed below 

FOR 
FROM 
TO 
IF 
CASE 

ALWAYS 
END 
GO TO 
ANY 
STEP 

VARY 
STOP 
AND 
OR 

Also forbidden are combinations used generally as function names such as 
ABS, EXP, COS, SIGN. 

r) Subscripted Variables 2fI 
as designation for components of multidimensional arrays of 
numbers such as vectors and matrices 

general form: V 1II; ... j ill 
1) The figure 1 in second position is_to be interpreted as a distin

guishing mark, not as a subscript. 
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(name of variable, followed by line shift character downwards 
arbitrary number of index positions separated by semicolons 
and line shift character upwards) 

Index positions can be occupied by numbers, simple or subscripted variables 
as well as by arithmetic expressions [)[ as defined in Section 7. 

examples ai 

zeta7; i" (i+l )/2 
bi-j;k+j 
inverseiok 

J 

Subscripts can only take on integral values. At the moment, no provlslons 
are made for fractional subscripts as they appear in the calculus of 
finite differences. 

5. Functions and Functionals 

a) Functionsct! are abbreviations for complicated computing 
processes, especially for the standard functions of analysis. 

general form: 1fJ[ 
Function name (identical to variable with or without subscript) followed 
by opening function bracket "[It, an arbitrary number of argument posi
tions separated by semicolons, and the closing function bracket tl] II • 

The argument positions can be occupied by arbitrary arithmetic 
expressions as defined in Section 7 (in the simplest case by numbers Z 
or simple variables V). These expressions may themselves contain func-
tions. 

examples 
SQ,RT [x] 
SIN [(w.t )+f] 
P,e;m [y;w] 
COS [m.ARCCOS [x]] 
Q [UijVj] 

(4 ) 

Certain arguments of many standard functions of analysis usu
ally take on integral values only and are then formally written as sub
scripts. If such "subscriptslt take on non-integral values, they must 
be written as function arguments. 

Therefore not In+l / 2 [x] but J [n+l/2;x] 
With regard to the last example of (4), it must be remarked 

that for each argument, a separate argument position must be provided 
explicitly. The last example of (4) therefore can only mean that the 
two argument positions of the function Q[x;y] are to be occupied by 
the components ui and Vj respectively given by the present values of 
the subscripts i and j. 
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~) FunctionalsOtare introduced as abbreviations for computing 
processes which contain ar~itrary functions and/or variable array (e.g., 
vectors); the result of such a functional can only be a number (otherwise 
see Section 6). 

general form: "lIO[·· .... ] 
}J.. " ••• "" ••• 

Name of functional followed by function bracket, an arbitrary 
number of argument function positions, strong separation symbol, an arbi
trary number of argument positions and function bracket. The argument 
positions are occupied in the same way as in the case of functions. 

Argument function positions are occupied either by a function 
of a prescribed number of arguments or by a subscripted variable with a 
prescribed number of subscripts. 

The argument of subscript positions of the above-mentioned 
quantities are occupied by simple variables as dummies for defining the 
number of such positions. 

These dummy variables have meaning only for the functional 
in question and have no connections to synonymous variables occurring 
somewhere outside this functional. 

examples: SIMPSON [f[x};; a ; b ; n] 
RUNGE KUTTA [g[u;vJ;; x . y ; h] (5 ) J 

SCALAR PRODUCT [ak j bk .. n] 
J J 

,) Definition of Functions. 
If functions and functionals appearing in computing processes 

must be defined - which is always the case for functions and functionals 
for which no conventions exist - a constructive definition (i.e.,a com
puting procedure) must be given. Especially all functions occurring as 
argument functions in functionals must be defined in that way (even if 
they are standard functions) in order to clarify the meaning of the 
arguments of these argument functions. 

general form: d statements •••••• 

L' ...... => V ) cr := V . 1 

(For functionals write OJ- in place oif). 

Function (functional)symbol, followed by colon, then by the statements 
(formulae and guiding symbols) which define the value of the function (-al). 
These in turn are followed by the function value assignment which at the 
same time indicates the end of the function definition. 

1) An alternative proposal is the notation V =>~ for the function 
value assignment. 



-361-

Logically, a function definition is not a part of the formulae 
program but rather an auxiliary definition which may be written down at 
any place, preferably in the form of a footnote or at the end of the 
formulae program. 

In case the function value can be computed by one arithmetic 
expression D1-only, the latter may be combined with the function value 
assignment in the general form 

Warning: A function definition has "sectional character" and 
must therefore meet the section postulates I and II, formulated in 
Chapter II. 

6. Pseudoformulae 

Technically pseudoformulae serve for calling in library pro
grams which generally have the character of functionals Sl, but often 
yield several results Rl, ••• ,Rn which may be -arrays of numbers. 

Furthermore, because of internal decisions, they usually 
allow a number of emergency exits, which bear names Yl, ••• ,Yk. For 
these reasons they cannot be incorporated into arithmetic expressions 
but must be used in the form of pseudoformulae. 

general form: 

m Rl =>If)l '"VO ; ••• ; Rn 
IF Yl : Nl ; IF Y2 : N2 ; ••• IFYk: Nk;; 

Here otis a functional symbol with appropriate arguments. 
Rl ••• Rn are ngmes of pseudovariables each of which without bearing 
subscripts may represent an array of numbers. 

The Yl ••• Yk are names which correspond to internal decisions 
of the process,which is called in by the pseudoformula. The Nl ••• Nk 
are guiding symbols, namely the jumps which have to be carried out if 
the respective exits Yl ••• Yk occur. 

These jumps may be: 
a ) without return (executed by GO TO) 
b ) with return through the exit back into the process 

(so called intermediary exit) and must be executed 
by section-call (as defined in Section 11). 

The names Rl ••• Rn and Yl ••• Yk are characteristic for the 
process called in by the pseudoformula. 
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Example: 

GAUSS-JORDAN [aik : bt;m ;; n ; s j 10-8] 
INVERSE => Cj'k; SOLUTION => Ytjm ; DET => Zj (6) 
IF SING : GO TO 15 j IF SUM : ALARM ; j 

Warning: Pseudoformulae have sectional character and must 
therefore fulfill the section-postulates. 

7. Rules for the Construction of "ergibt lt Formulae 

a) Arithmetical expressions 0( are composed of 
Operation symbols ill 

Brackets ( ) 
Numbers 
Variables 
functions 
functionals 

z 
V, )f) 
£ r;r 

according to the usual rules of arithmetic. 
It should be noted that 

1) . / takes precedence over +-
2) not allowed (since not unique) is a/b.c or albic 
3) Intended multiplication (ab instead of a.b) is~ 

forbidden. 
4) Superfluous brackets are allowed. Numerically 

they are not meaningless, since expressions in 
brackets are computed at some time as intermediate 
results. 

5') Besides, the sequence of execution corresponds to 
the sequence of notation. 

Examples: 
(a+b).(c+d) 
a/(c+d) - b.e/f 
x.sin[a.y] + b.cos[c.y] 
aij j • b jjk 

(7) 

f3) The "ergibt" formulae, being the proper computing statements, 
have the form of equations solved for the unknown variable. 

general form: Ol => 7J7 
Arithmetic expression as defined above, followed by the ~rgibt 

symbol, the variable to be computed, and the separation character. 
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Names of variables are free as soon as the designated numbers 
are no longer needed. Reuse of a variable name is permitted even in the 
same formula. 

Example: s + aj => s (8) 

In printed texts only a reuse of a variable name should be 
indicated by adding a superscript in brackets; example (8) will then 
read as follows 



CHAPI'ER II 

GUIDING SYMBOLS FOR DESCRIPTION 
OF THE STRUCTURE OF COMPUTING PROCESSES 

In the following it will be shown how to describe structurally 
complicated computing processes with the aid of this language. 

The process is broken up into closed parts which in the sequel 
are called parts of sectional character. In ordinary programming they 
correspond to a) loops, b) open and closed subroutines, c) conditional 
parts of a program. 

These "sectional parts" which will be defined in Chapters II 
and III have to meet certain condition~namely: 

Section postUlate I ~ 

Any two "sectional parts 11 at and Vmust either be dis joint, 
or one of them must be totally contained in the other one. 
Section postUlate II 
In general it is. not allowed to jump to a place inside a 
sectional part from the outside (jumps are explained in 
Section 9). 

8. Guiding Symbols for Loop Control 

For the description of cyclic processes (for instance recur
rence formulae), the values of subscripts for which the calculation is 
to be carried out, must be defined: 

general form: 
FOR1f} FROM 0(1 TO ot2; STEP &(3: 

alternative 
FOR 1fJ : = 0( 1 ••• dt 2; STEP 0( 3: 

This means that all subsequent statements (up to the corres
ponding guiding symbol "VARY ", see below) are to be executed for the 
sequence of values 

0(1; 1(1 + 0i3; Oil + 2.()t'3; ••• 0(1 + n. 0(.3, 

where n < 0(2 - Otl < n + 1 
cJ(3 

if this n turns out to be negative the loop will be skipped completely. 
The following rules must be observed: 

a) 0'(1, ot2, 0(.3 may be arbitrary expressions in the 
sense of Section 5 a), which, however, must not con
tain the running variable itself. 

b) If <fi3 = 1, the part If; STEP I" may be omitted. 

-364-



c) The variable 1fJ need not take on integral values 
only. Therefore, also the values of expressionS 
0(1, Ot2, 013 are not necessar.ily integers. All 
values of expressions in subscript positions, how
ever, must be integers. 

d) Cyclic iteration processes may, or may not depend 
explicitly on a running variable. For safety rea
sons, however, a maximum number of iteration steps 
should be prescribed in any case by aid of the 
"FOR •••• II symbol with an appropriate 0(3. 

The end point of the loop in the formula program initiated by 
the guiding symbol IIFOR II is defined by the guiding symbol 

VARY 1f}; 

This replaces the words IIEnde Index 'J/}II in Rutishauser's original paper 
as well as the use of indentions in later proposals and in example (2). 

When the running variable JO has attained its final value the 
loop is left, and the statements written down immediately after the 
symbol "VARY 'lO" are carried out. If, in these statements, the vari
able~ appears again, it is given the value it had when leaving the 
loop (This holds even when the loop is left, because of an internal 
decision, by a separate exit). 

Example: a => ho 
FOR i := k ••• n; STEP k 
VARY i 
hi/k => gk 

In the description of multiply cyclic processes each loop, 
according to postulate I, must be enclosed totally by the next higher 
one as shown in the following example (Matrix. Vector): 

FOR i ,- 1 ••• n a => h(O) 

FOR j 1 ••• n hij-l)i+ ai;j (j) 
:= • Xj => hi' 

VARY j 
h~n) => Yi 1. 

VARY i 
STOP 

Warning: Loops have sectional character, and must meet section 
postulates I and II. 
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9. Jumps and Statement Numbers 

Statements may be labeled by statement numbers N in order to 
be reached by jumps from other places in the formula program. 

general form: s s ... S : 
an arbitrary number offigures followed by a colon. 

To be precise, statement numbers designate always the one state
ment following them, and serve only as points of reentry (after a jump) 
into the formula program. 

Jumps to the beginning of labeled statements are effected by 
the guiding symb?l 

GO TO N ; 

This means that the computation has to proceed from the entry point 
labeled by N without automatic return to the jump-off place. 

Warning: It has to be remembered that jumps from the outside 
into parts of sectional character according to section postulate II are 
dangerous and in general not allowed. 

It is quite reasonable on the other hand to leave a part of 
sectional character by a jump. In fact, this is usual procedure for 
leaving an iteration loop. 

10. Sections 

Closed parts of the formula program may be defined as sections 
for the dual purpose of a) clarifying the structure of the process, and 
b) repeated use at different places (in the sense of open or closed sub
routines in ordinary programming). 

A properly defined section consists of 
section designation symbol 
statements of the section 
section end symbol 

General form of the section designation symbol A: 

Name of section (at least one letter followed by an arbitrary 
number of letters arid/or figures) followed by a colon. 

example: a : 
pivots 
ak2 

General form of the section end symbol: 
!fEND!! followed by the section name and strong separation symbol. 

example: END pivots ;; 
END ak2;; 
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Naturally a section may contain other parts of sectional 
character such as section or loops. 

example: 17: ••• => x ; 
MATRIVECT : 
FOR i: =1. •• n: 0 => h; 
18: FOR J:=l ••• n: h + ai;j • Xj => h;' 

VARY j; 

VARY i; 
END MATRIVECT ;; 
19: FOR i:=l ••• n : Yi ••• ; 

(11) 

Of course, sections have sectional character, and have to meet the 
section postulates. Thus, in example (11), no jump is possible from 
outside of section MATRIVECT to point 18 but jumps are allowed from any 
point between FOR i ... and VARY i to point 18 as well as 17 and 19. 

11. Section Calls 

Section calls are the means of inserting (in a logical sense) 
sections already define~ somewhere else. 

general form: section name followed by semicolon. 
(For clarity, it seems advisable to add another word 
such as DO ••• in front of the section name~ 

example: pivots ; 
MATRIVECT ; 

In practive, it will happen quite often that the set of com
puting statements contained in a section A is to be used at a different 
place, X, but that the names of some of the variables in A must be re
placed according to the requirements of the process at position X. This 
is done by a substitution procedure initiated by the section call with 
substitution 

general form: 
AeJ-f}l:= Oll; ••• ;r;/Jn:= C(n;; /1:=C1. 1; ••• ~m:=OLm;;; ••• ]; 

Here, 1f} 1: =t't.l means that the variable symbol)IJ 1 appearing 
in section A must, for this call-in be replaced by the expression (J( 1. 
All variables contained in expression 0(1 must be defined numerically at 
point X. 

example: At place X in the formula program a matrix (aij) 
has to be multiplied by a vector (Pi), the re
sulting vectors being named (qi). Since the prod
uct matrix • vector is already defined as section 
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MATRIVECT - [see example (11)] the required 
operation can be performed by calling in section 
MATRIVECT as follows: 

••• of * ........ • => Pi; 
VARY i ; 

MATRIVECT [xi:= Pi; Yi:= qi] 
FOR i := l ... n: qi + ••• ; 

(12 ) 

In case the section MATRIVECT is to be used for the multiplica
tion of a matrix (aij) by a matrix (Pkh) it is not allowed to write this 
as follows: 

FOR h : = 1. .. n: 
MATRIVECT [xi: = Pi'h ; Yi 
VARY h ' 

because the number of subscripts of the variables which appear on both 
sides of :=, must be identical. To write it correctly, the column vectors 
of the matrix (Pij) have to be extracted, before entering the section 
call. 



CHAPl'ER III 

CONDITIONAL STATEMENTS 

12. Explicitly Conditional Statements 

If a computation has to proceed in different ways depending 
on certain results computed previously an "explicit condition;f, ~ 
(IF-formula) may be formulated. 

general form: IF Cl AND C2 AND AND Ck 

If IF", followed by an arbitrary number of cri terions Ci (in conjunction), 
separated by "ANDIt and terminated by colon. 

Each of the criterions has the form 

where 1, 2 are "expressions" as defined in Section 7 ex), and (C is 
one of the "comparing characters" listed helow: 

= f > ~ < ~ 

The statements following an explicit condition de up to the 
symbol ALWAYS which terminates the range of validity of <f. , are carried 
out only if that condition is fulfilled; otherwise these statements are 
skipped and the computation is continued immediately after ALWAYS. ' 

Moreover, the range of validity of an explicit condition is 
terminated by a new IF - Formula, as well as after GO TO. 

examples: 
a) IF ABS 

ALWAYS 
[(x+y) • x] > -5: statements 

. 10 
; 

, 
(14) 

means therefore, that the statements are carried out 
only if I (x+y) xl> 10-5. 

b) IF a > 0 a a + b • b => c 
IF a < 0 2 . a • b => c . , -
ALWAYS 
FOR i : = 
Here c is computed as a2 + b2 or 2ab depending on 

whether a > 0 or a < O. After that, FOR i:= ... 
is carried out unconditionally. 
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c) IF x > -1 statement 1 
IF x < 1 statement 2 (16) 
IF x 0 statement 3 

In this case, for x < -1 only statement 2, for x > 1 
only statement 1 is carried out, but for Ixl< 1 
statements 1 and 2; for x = o all 3 statements are 
carried out in the sequence given. 

Example c) shows that IF-formulae are completely independent 
from each other. On the other hand the rules stated make it impossible 
to build up a hierarchy of conditions (i.e., to define sub-cases of a 
condition). For such cases see Section 13. 

Warning: The program part lying between IF and the next IF or 
ALWAY~ i.e., the set of all statements which are carried out under one 
condition, has sectional character and has to fulfill the section postu
lates. Therefore the following combination is forbidden: 

FOR i 
IF k > 0 
VJ:\RY i 
ALWAYS 

statements ; 
statements ; 

since the two segments FOR-VJ:\RY and IF-ALWAYS overlap. 
According to the section-postulates, the range of validity of 

an explicit conditionis not terminated by a section call, regardless of 
possible IF-formulae which may occur in the section. 

Thus IF x > 0 

ALWAYS 

statements 
RIVET 
statements 

(18 ) 

means the condition x > 0 remains valid through RIVET until the next 
ALWAYS after it, even if a new IF-formula and a corresponding ALWAYS 
occurs in the section RIVET. 

Important applications of explicit conditions are conditional 
jumps in the formula program which are effectuated by the combination 

IF ••• : GO TO N : 

Here no closing ALWAYS is needed, since GO TO itself cancels the validity 
of IF ••• 

As a further example we give here the complete formula pro
gram for the computation of In x (not the best method): 

1: (x. x + 1)/2x => Po ; (x • x - 1)/2x => qo 
2: FOR k:= ~ ••• 20 : 

SQRT [1/2 • (1 + Pk-l)] => Pk . (19) 

qk-l < Pk => qk 
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3: IF ABS [Pk-l] - 10-5 < 0 GO TO 6: 
4: VARY k ; 

(19-Cont ' d) 
5: NOT CONV ; 
6: 3·Qk/(2 + Pk) => In x ; STOP; 

Here the iteration loop is left as soon as IPk-ll < 10-5 which.yields 
a Il-digit-accuracy of In x. Since this condition is for any x with 
10-200 < x < 10200 fulfilled after at most 20 steps, the upper limit 
20 in the guiding symbol FOR k:= 1 ••• 20 is only a safety limit in case 
of machine error. 

It has to be noted, that also criteria of non-arithmetic 
character are admitted in IF-formulae; 

e.g., IF SENSE-SWITCH ON 
IF u = Q-Number 

13. II Discriminations ll 

For complicated branchings of a formula program, the discrimi
nations can be used. These consist of 

a) Definition of cases 
b) Call in of cases 

a) The Definition of a case has the general form: 
Designation of the case (letter A, followed by one or 

more figures and closing bracket) 
and a criterion (same as in IF-formulae, see Section 12) 
terminated by semicolon. 
example: al) x < 0 

a2) x = 0 
a3) ELSE 

(20 ) 

Here three cases are defined: case al) corresponds to x < O,case a2) to 
x 0 and case a3) to the complement of the sum of the two others, i.e., 
x > O. 

What is done with case a3) is called a remainder - case definition 
and is preferably used to avoid that in complicated situations for some 
values of the variables no case at all is defined. 

Moreover, as in Section 12, several criterions may be used in 
conjunction to define cases, e.g., 

bl) x < 0 AND Y < 0 
b2) x < 0 AND y:::O 
b3) x = 0 AND y = 0 (21) 
b4) x > 0 AND y < 0 
b5) x >0 AND y> 0 ; 
b6) ELSE 
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b) The "Call in't of cases. 
The cases thus defined can be called in later arbitrarily 

and several times if needed. Such a call in is effectuated as follows: 

general form of tT Call in": 

CASE, followed by designation of case and colon; later on 
the statements to be carried out under the condition of the case and 
terminated by the guiding symbol 

ANY CASE 

or by another "CASE" 

examples: CASE al) statements 1 . , 
CASE a2) statements 2 ; 
CASE a.3) st.atements .3 ; 
CASE al) statements 4 ; 
ANY CASE . , 
statements 5 

Here statements I and 4 are carried out if the criterion of case al 
(x < 0) is fulfilled, whereas the statements 5 are unconditionally. 

It is allowed: 

(22 ) 

1) After ANYCASE to call in again some of the cases at 
any time. 

2) ~o call in some of the cases together as shown by the 
following example: 

CASE al) 
CASE a2) OR a.3) 
ANY CASE ; 
statements 8 ; 

.3) To define subcases 

statements 6 ; 
statements 7 ; (2.3 ) 

If a case has been called in sub cases may be defined 
and designated in the sense of decimal classification. 

example: (Suppose the cases aI, a2, a.3 of example (20) 
are already defined here) . 

CASE al) statements ; 
all) y < 0 ; 
a12) y .::: 0 · , 

CASE a2) statements ; (24 ) 
a21) y = 0 · , 
a22) ELSE ; 

CASE a.3) statements ; 
a.3l) y < 0 · , 
a.32) y > 0 · , 
a33) ELSE ; 
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Thus the cases of example (20) are split up into subcases 
all, a12 •.. a33 which in fact coincide with the cases 
bl, .•• b6 of example 21 (b6 = logical sum of cases a22 and 
a33) • 
These sub cases may be called in themselves and further sub
cases alll), al12) ..• may be defined then. 

4) If, after subcases have been defined, for instance 
CASE a3) 

Warnings: 
5) 

is called in, this means automatically a re-unition of all 
subcases of a3) but by a subsequent 

CASE a31) 
the sub case a31) alone is again called in. 

The call in of a case, more exactly, the interval from a 
CASE to the next CASE or ANYCASE has sectional character 
and has therefore to meet the section postulates. On the 
other hand it is allowed to insert IF-formulae under a case. 

6) A new definition of a case a ss ... s automatically cancels 
all cases which have been defined earlier under the same 
letter. Therefore, if two families of cases have to be 
used independently at the same time, different guiding 
letters have to be used, e.g., 

al) 
a2) 
bl) 
b2) 
b3) 

x>O 
ELSE 
y>O 
y = 0 
ELSE 

Definition of cases 

} statements 1 
(these are unconditional) 

CASE al) OR bl) 
CASE a2) 
ANYCASE 

statements 2 
statements 3 

] unconditional statements 4 

CASE bl) 
CASE b2) OR a2 ) 
ANYCASE 

al) z = 0 

Here only the statements 1, 
statements if x < 0, y > O. 

statements 5 
statements 6 

} . unconditional statements 7 

~--- This new definition of a case destroys 
the previously defined cases al and a2. 

3, 4, 6 are executed if x < 0, y < 0, but all 
Zurich, May 9, 1958. 
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