
A sublanguage of ALGOL 68

ByP. G. Hibbard

This Report has been accepted by Working Group 2.1, reviewed by Technical Committee 2 on Programming
and approved for publication by the General Assembly of the International Federation for Information
Processing. Reproduction of the Report, for any purpose, but only of the whole text, is explicitly permitted without
formality.

O. Introduction

At the meeting of Working Group 2.1 of I.F.I.P. held in Vienna in 1972, a
definition of a sublanguage of ALGOL 68 was presented [l]. As a result of
comments by members of the Working Group, an enhanced sublanguage was
designed, and was discussed at the meeting in Dresden in 1973, at the meeting
of the Subcommittee on ALGOL 68 Support in Cambridge in 1974, and in a
paper presented at the 1974 International Conference on ALGOL 68 at
Winnepeg [2]. A formal definition was prepared [3] and discussed by the
Subcommittee in Boston in 1975. The Subcommittee appointed a Task Force to
prepare the definition for submission to the full Working Group. At the Working
Group meeting in Munich in 1975, this final report on the sublanguage was
accepted.

0.1. Aims and principles of design

a) The sublanguage of ALGOL 68 here defined is intended for use primarily
in numerical and related areas. Its field of application encompasses that of
ALGOL 60; however, it possesses greater generality and more expressive
power than that language permitting, for example, the definition and
manipulation of structured values and the definition of operations upon them.
These, and other features, are expected to lead to better structured and more
efficient programs.

b) Sufficient restrictions have been imposed to allow the sublanguage to be
implemented on small computers. Even "single-pass" compilation techniques
allow efficient code to be generated and good diagnostic information to be
provided, and essentially only "stack-oriented" storage allocation techniques
are required at run time.

c) Even though the sublanguage lacks many features of the full language, it
may be regarded as a complete language for its intended field of application;
i.e., programs written for that application area are likely to be substantially
the same as those which would be written in the full language.

O .2. Summary of contents

This report is an addendum to the Revised Report on the Algorithmic
Language ALGOL 68 [4], hereafter termed "the Report". It contains
modifications and additions to the Report which cause it then to define
particular-programs both in the full language, without change, and in a
sublanguage (Report 2 .2 .2 .c) of the full language.

Section 1 gives an informal list of the differences between the full
language and the sublanguage, and section 2 gives a commentary on the
techniques which have been adopted to modify the Report, to assist the reader.
The remaining sections of this report formally define the sublanguage. Section
3 gives the changes and additions to the syntax, and section 4 gives the changes
and additions to the semantics. Sections 5 and 6 specify, respectively, the
changes required in the standard-prelude of the Report, and the definitions
which are to be included in the particular-prelude.

(No changes in the pragmatic remarks of the Report have been included,
hence they will not be fully appropriate to the language described here.

A complete description of the sublanguage, using a less formal approach,
is available as a companion volume [5].)

1. Sublanguage restrictions

1.1. Modes

UNITED-declarers may not occur in the sublanguage, though calls of
routines which are created in the standard-prelude and have a parameter
whose mode envelops some 'UNITED', e.g. print and upb, are permitted.
Flexible-ROWS-of-MODE-declarators may not occur; however, an alternative
is provided for the mode of strings (such that they may be regarded as plain
values). ROWSI-of-ROWS2-of-MODE-declarators, and structured-with-

FIELDS-mode-declarators in which 'FIELDS' envelops a 'MODE' of the form
'ROWS of MODE2', may not occur in the sublanguage. The lower-bound of an
actual-row-rower must be present. The number of different sizes of arithmetic
values (including complex) and the number of different widths of bits and
bytes values which are allowed is an implementation characteristic. Only a
restricted number of the operators defined in the standard-prelude need be
supplied for modes whose size or width is not zero. The optional local-symbol in
a variable-declaration may not be omitted if the actual-declarer begins with a
style-i-sub-symbol (() .

1.2. Clauses

Parallel-clauses, void-collateral-clauses and vacuums do not occur.
Displays may not occur in certain balances (see 2 .2} or as the first phrase inside
a closed-clause. (Thus a collateral-clause cannot occur as the only phrase of a
closed-clause.} Conformity-clauses do not occur.

1.:i. Units

Only local-generators are allowed, and they may not occur as operands or
ROWS-rowers, or occur in a local range before it has been possible to detect
that it is local (Report 3.2.2.b} in a left-to-right scan. A jump to a label may not
pass over a declaration in the same reach as that label. A go-to is obligatory in
a jump, and procedure-yielding-MOID-jumps may not occur (and hence a jump
may never yield a routine}. Strings always have a lower bound of 1, and slices
involving strings may not have revised-lower-bounds. The reference-to
STRING-PRIMARY of a slice is always dereferenced (thus transient names do
not appear in the sublanguage}. A void-denotation may not occur. The times
ten-to-the-power-symbol is excluded.

1.4. Coercions

A character may be widened to a string, and a string may be widened to a
'row of character' value. Rowing only changes a 'MODE' value into a 'row of
MODE' value, and a 'ROWS of MODE' value into a 'row ROWS of MODE' value
(and does not, for example, change a 'REF to MODE' value into a 'REF to row of
MODE' value}.

1.5. Independence and identification

A defining-indicator, except in a label-definition, must come textually
before an applied-indicator which identifies it. An applied-mode-indication
may not occur in the actual-ROWS-rower of the actual-declarer of its mode
definition. The priority-definition of a dyadic-operator must come before the
first operation-definition of that operator, and the priority of an operator may
not be redefined in an inner range. The test for independence of operation
definitions in the sublanguage is based upon a "meekly related" condition. (For
example, the modes 'procedure yielding MOID' and 'reference to MOID' are
meekly related, though not firmly related.}

1.6. Symbols

A bold-TAG-token may not be defined as a mode-indication if that same
token has been defined as an operator in an outer range, or vice versa. Only
certain TAO-tokens may be defined as operators: these include all bold-TAG
tokens and a further set to be specified in the implementation characteristics
(subject always to the syntax of the Report, 9.4.2.1.). Certain TAO-tokens are
removed from the standard-prelude, so that the sets of TAO-tokens (e.g., ,!t,
**l} used in the construction of extra versions of operators are mutually
disjoint.

1.7. Trans put

Channel and file enqumes (e.g. estab possible, Report 10.3.l.2.c,
compressible, Report 10.3.1.3.e} are not permitted, and the conversion key of a
file may not be altered. The only event routines provided are on logical file end,
on physical file end, on page end and on line end. Files may be established,
opened, scratched and closed, but not created or locked. All the layout
routines, except backspace and set char number, are allowed. Conversion
routines, formatless transput and binary transput are provided. Formatted
transput is not provided.

2. Commentary

Most of the restrictions in the sublanguage are expressed by means of
changes to the hyper-rules of the Report. The only nontrivial changes in the
semantics of the Report are in those parts which apply exclusively to the
sublanguage. Several indicators which are defined in the standard-prelude are
not available in sublanguage-particular-programs, and a different particular
prelude is used.

:u. The nest

The hyper-rules of Section 5 place additional information in the nest of a
construct. This information is as follows:

a) 'sublanguage' (1.2 .3 .BC). This occurs in the nest of a particular-program
if it is descended from the second alternative of hyper-rule 10.1.1.g. The
predicate 'where NEST indicates sublanguage' (2 .2 .l .aa) examines the nest for
'sublanguage', and is used to select alternatives of those notions whose
productions in the sublanguage are different from those in the full language.
Since the nest of the standard-prelude does not contain 'sublanguage', it is
possible for the external environment of sublanguage-particular-programs to
be the same as that of full-language-particular-programs.

b) 'mark' (1.2.3.B). At any point in the production tree of a construct, the
'mark's contained in the 'LAYER's divide the 'PROPS' into those which would
have been encountered at that point in a left-to-right scan, and those which
would not have been encountered. The 'mark's are used to ensure that certain
sublanguage restrictions are satisfied (5 .2 .3 .l.aa, 7 .1.1.ac, 7 .2 .l .ca). The
'mark' is moved through the 'LAYER' by hyper-rule 3.2.1.ba.

c) Layers and environs (1.2.3.B,BB). A 'LAYER' is added to the nest of each
of those constructs which, when elaborated, will cause an environ to be
established (Report 3.2.2.b). The 'ENVIRON' of a 'LAYER' is either 'nonlocal',
when the corresponding environ is nonlocal, or it is 'local' or 'restricted', when
it is local. If the 'ENVIRON' is 'restricted' then a local-generator cannot occur.
The 'ENVIRON' is determined by the syntax (3.2.1.aa, 3.4.1.i, 3.5.1.a,b,e, 4.2.1.b,
5.2.3.1.a,b, 5.4.2.1.a,b, 5.4.3.1.a), and is used to restrict the occurrences of local
generators in sublanguage-particular-programs (5 .2 .3 .l .aa) .

2 .2. The syntactic positions

Restrictions on the positions in which collateral-clauses may occur have
been imposed by introducing a further sort, viz, 'robust' (1.2.2.CA), and by
modifying the rules for balancing (3 .2 .l .f) . The metanotion 'PRACETY'
(3 .1.1.AA) is used to cause the first phrase of a closed-clause, if that phrase is a
unit, to be robust in sublanguage-particular-programs. Certain positions are
required to be robust (3.2.1.d,f). Displays may not occur in robust positions
(Report 3 .3 .l.d,e) .

2 .3. Independence of properties

Some of the tests for independence in sublanguage-particular-programs
require that all the 'PROPS' in the nest are examined, and not simply those

'PROPS' in some 'LAYER'. They are collected together by hyper-rules
7.1.1.af,ag. The independence tests differ according to the defining-indicator:

a) A 'DYADIC TAD' (7.1.l.ab) is required to be unrelated to all the collected
'PROPS' in the nest. If the 'TAD' is not a 'TAB', then it is also required to be one
of the acceptable 'TAD's for the implementation (7.1.l .aj).

b) A 'DUO TAD' (7.1.1.ac) is required to be unrelated to all 'DUO TAD's in the
collected 'PROPS' of the nest (see (f)) , and to be declared textually after a
priority-definition of that 'TAD' (7.1.1.ac).

c) A 'MONO TAM' (7.1.l.ad) is required to be unrelated to all 'MONO TAM's
in the collected 'PROPS' of the nest (see (f)), and its 'TAM' is required to be one
of the acceptable 'TAM's for the implementation (7.1.1.aj).

d) A 'TALLY TAB' (7.1.1.ae) is tested for independence by examining the
'PROPS' of the 'LA YER'. The collected 'PROPS' of the nest are examined to
ensure that its 'TAB' does not occur as a 'TAO' in an outer range (7.1.1.ah,ai).

e) A 'MABEL TAG' (7.1.l.aa) has the same tests for independence as in the
full language.

f) If the sublanguage is indicated in the nest, the ''firmly related" test for the
independence of operators is replaced by a "meekly related" test (7.1.1.na).

2 .4. Identification

a) In the sublanguage, it is required that a 'QUALITY TAX' which is
identified in the 'PROPSETY's of a 'LAYER' and which is not a 'label TAG' can
be identified in those 'PROPSETY's which precede the 'mark' in that 'LAYER'
(7 .2 .l .ca) . If it is a 'label TAG', it may identify 'PROP's after the 'mark',
provided no 'DEC's intervene.

b) In the nest of the constituent actual-ROWS-rower, if any, of the actual
declarer of a mode-definition, the 'mark' enveloped by the 'LAYER' of the
defining range of the applied-mode-indication is moved to before the 'PROP'
which envelops that 'TAB' (4.2.1.c). (This prevents that TAB-symbol occurring
in the actual-ROWS-rower.)

2 .5. Strings

The mode 'STRING' is 'structured with row of character letter aleph digit
one mode'. If the nest indicates the sublanguage, the mode of a string
denotation is 'STRING', otherwise 'row of character'. Additional alternatives of

hyper-rule 5.3.2.l.a deal with slices of strings. A "specially related" test
(7.1.1.nb) prevents the definition of operators which attempt to distinguish
between the modes 'STRING' and 'row of character'.

2 .6. Elidible hypernotions

Several of the hypernotions which have been introduced to define
sublanguage-particular-programs have been made elidible, to reduce the
number of trivial changes in the semantics.

2 .7. The preludes

a) In order to prevent the identification of certain defining-indicators in the
standard-prelude by applied-indicators in a sublanguage-particular-program,
the mechanism employed in the Report for hiding indicators (Report 10 .1.3) is
extended to allow different parts of the standard-prelude to be identified from
full-language-particular-programs and from sublanguage-particular
programs. 'subprelude' appears in the nest of the preludes if the particular
program is a sublanguage-particular-program (10.1.l .a,g). The number of
forms made in the steps of the Report, 10 .1.3, is limited in sublanguage
programs to allow for the implementer to restrict the number of lengths of
'INTREAL' values and widths of 'BITS' values which may be manipulated.

b) The particular-prelude contained in a program when the second
alternative of hyper-rule 10.l .Lg is used contains definitions of string and
several other indicators required by sublanguage-particular-programs.

:3. Modifications to the syntax of the Report

The modified and additional rules are listed below. It is to be understood
that a rule preceded by a single upper or lower case letter replaces the
corresponding rule ofthe Report, and that a rule labelled with two letters is
additional to the rules of the Report. All other rules of the Report are
unchanged.

Report 1.2 .2. ((Changes caused by the additional syntactic position))

C) SORT:: RONG; firm; meek; weak; soft.
CA) RONG : : strong ; robust.

Report 1.2 .3. ((Changes caused by the restrictions on identification, positions
where local-generators may occur and general sublanguage
restrictions))

B) LAYER : : NEW SUBLETY PROPSETYl mark PROPSETY2.
BA) NEW : : new ENVIRON.
BB) ENVIRON : : local ; restricted ; nonlocal.
BC) SUBLETY:: sublanguage; subprelude ; EMPTY.

Report 1.:u. ((Additional general predicates))

fa) where THINGl implies THING2 :
where THINGl, where THING2 ; unless THINGl.

na) where (NOTETYl) is not (NOTETY2) : unless (NOTETYl) is (NOTETY2).
nb) unless (NOTETYl) is not (NOTETY2): where (NOTETYl) is (NOTETY2).

Report 2.2.1. ((Changes caused by the new form of 'LAYER'))

a) program: strong void new local mark closed clause(3la).
aa) WHETHER NEST indicates sublanguage(3la,32f,33a,c,d,46e,g,h,j,s,52:3a,b,

532a,544a,65d,da,66a ,7lab,ac ,ad,ae ,i,j ,72ca,80a,812h,A34la) :
WHETHER (NEST) contains (sublanguage).

Report :u .1. ((Changes to make the first phrase of the serial-clause of a
closed-clause, if a unit in the sublanguage, in a robust position))

AA) PRACETY :: prefaced; EMPTY.

a) SOID NEST closed clause(22a,5D,55la,A34lh,A349a}:
SOID NEST PRACETY serial clause defining LAYER(32a) PACK,
where NEST indicates sublanguage{22aa) implies
(PRACETY) is (prefaced).

Report :3.2.l. ({Changes to determine 'ENVIRON', to move 'mark' through the
'LAYER', to make the first unit robust and to modify balancing))

a) SOID NESTI PRACETY serial clause defining
new ENVIRON SUBLETY mark PROPSETY(3la,34f,l,35h):

where ENVIRON determined by PROPSETY(aa),
SOID NESTI new ENVIRON SUBLETY mark PROPSETY
PRACETY series(b).

aa) WHETHER ENVIRON determined
by DECSETY LABSETY(a,aa,34c,523aa):

where (DECSETY) is (EMPTY), WHETHER (ENVIRON) is (nonlocal) ;
where (DECSETY) is (DYADIC TAD DECSETYI),
WHETHER ENVIRON determined by DECSETYI LABSETY(aa) ;

where (DECSETY) is (MOJO T ALLETY TAX DECSETYI),
WHETHER (ENVIRON) is (local).

b) SOID NEST2 PRACETY series(a,b,34c):
strong void NEST2 PRACETY unit(d),

go on{94f) token, SOJO NEST2 series(b);
where NEST2 advances past DECS2 to NEST3(ba),
NEST2 declaration of DECS2(4la),
go on{94f} token, SOJO NEST3 series{b);

where NEST2 advances past LAB2 to NEST3(ba),
NEST3 label definition of LAB2{c), SOJO NEST3 series(b);

where NEST2 advances past LAB2 to NEST3(ba),
where SOID NEST2 balances SOJO I and SOJ02(e),
SOJO I NEST2 PRACETY unit{d), completion (94 f) token,
NEST3 labe~ definition of LAB2(c), SOJ02 NEST3 series{b);

where (NEST2) is (NESTI NEW SUBLETY PROPSETY mark),
SOID NEST2 unit(d).

ba) WHETHER NEST LAYERI advances past PROPS
to NEST LAYER2(b,4la,b,c,42c):

where (LA YERI) is
(NEW SUBLETY PROPSETYI mark PROPS PROPSETY2),

WHETHER (LAYER2) is
(NEW SUBLETY PROPSETYI PROPS mark PROPSETY2) ;

where (PROPS) is (FIELDS), WHETHER (LAYER2) is (LAYERI).
d) SORT MOID NEST PRACETY unit

(b,33b,g,34i,35d,46m,n,521c,532c,541a,b,543c,A34Ab,c,d):
where (SORT cum PRACETY) is (strong cum prefaced),
robust MOID NEST UNIT{5A,-);

unless (SORT cum PRACETY) is (strong cum prefaced),
SORT MOID NEST UNIT(5A,-).

e) WHETHER SORT MOID NEST balances
SORT I MOIDI and SORT2 MOJ02(b,33b,34d,h):

WHETHER SORT NEST balances SORTI and SORT2{f}
and MOID balances MOJOI and MOJ02(g).

f) WHETHER SORT NEST balances SORTI and SORT2(e,522a):
where (SORT) is (strong),
WHETHER (SORT I cum SORT2) is (strong cum strong) ;

unless (SORT) is (strong),
WHETHER (SORTI cum SORT2) is (RONG cum SORT)
or (SORT I cum SORT2) is (SORT cum RONG),

where NEST indicates sublanguage(22aa) implies (RONG) is (robust).

i) * establishing clause :
SOID NEST PRACETY serial clause defining LA YER{a; ;
SOID NEST enquiry clause defining LAYER{34c).

Report 3 .3 .1. ({ Changes to restrict the occurence of collateral-clauses))

a) strong void NEST collateral clause(5D,55la):
unless NEST indicates sublanguage(22aa),
strong void NEST joined portrait(b) PACK.

b) SOID NEST joined portrait[a,b,c,d,34g):
where SOID NEST balances SOIDI and SOID2{32e},

SOIDI NEST unit{32d}, and also{94f) token,
SOID2 NEST unit[32d) .
or alternatively SOJ02 NEST joined portrait{b).

c) strong void NEST parallel clause(5D,55la):
unless NEST indicates sublanguage(22aa), paralleI(94f) token,
strong void NEST joined portrait(b} PACK.

d) strong ROWS of MODE NEST collateral clause(5D,55la):
where (ROWS) is (row), strong MODE NEST joined portrait{b) PACK;
where (ROWS) is (row ROWSI),
strong ROWSI of MODE NEST joined portrait{b) PACK;

unless NEST indicates sublanguage{22aa), EMPTY PACK.

Report 3.4.l. ({Changes caused by the new form of 'LAYER'))

c) MODE NESTI enquiry clause
defining new ENVIRON mark DECSETY2(b,32i,35g):

where ENVIRON determined by DECSETY2{32aa),
meek MODE NESTI new ENVIRON mark DECSETY2 series{32b).

d) SOID NEST2 alternate CHOICE STYLE clause(b}:
SOID NEST2 in CHOICE STYLE clause{e),
where SOID NEST2 balances SOIDI and SOID2(32e},
SOIDI NEST2 in CHOICE STYLE clause(e),
SOID2 NEST2 out CHOICE STYLE clause(I}.

h) SOID NEST2 in part of choice using UNITED(e,h}:
SOID NEST2 case part of choice using UNITED(i},
where SOID NEST2 balances SOIDI and SOID2{32e},
SOIDI NEST2 case part of choice using UNITED(i}, and also(94f} token,
SOID2 NEST2 in part of choice using UNITED{h).

i) SOID NEST2 case part of choice using UNITED(h} :
MOID NEST2 LAYER3 specification defining LAYER3{j,k,-},
where MOID unites to UNITED(64b},
where (LAYER3) is (new nonlocal mark DECSETY),
SOID NEST2 new nonlocal DECSETY mark unit{32d}.

j) MODE NEST3 specification defining new nonlocal mark MODE T AG3 {i} :
NEST3 declarative defining new nonlocal MODE TAG3 {54le} brief pack,
colon{94f} token.

k) MOID NEST3 specification defining new nonlocal mark EMPTY{i} :
formal MOID NEST3 declarer{46b} brief pack, colon {94f} token.

Report :L5.l. {{Changes caused by the new form of 'LAYER'
and the robust syntactic position})

a) RONG void NESTI loop clause(5D,55la}:
NESTI STYLE for part defining new nonlocal mark integral TAG2{b},
NESTI STYLE intervals(c},
NESTI STYLE repeating part with integral TAG2{e).

b) NESTI STYLE for part defining new nonlocal mark integral TAG2 {a} :
STYLE for{94f} token,
integral NESTI new nonlocal integral T AG2 mark
defining identifier with TAG2(48a};

where (T AG2) is (letter aleph), EMPTY.
e) NESTI STYLE repeating part with DEC2{a}:

NESTI new nonlocal DEC2 mark STYLE while do part{f} ;
NESTI new nonlocal DEC2 mark STYLE do part(h}.

Report 4.1.l. {{Changes to move 'mark' through the 'LAYER'}}

a) NEST declaration of DECS(a,32b}:
NEST COMMON declaration of DECS(42a,43a,44a,e,45a,-};
where (DECS) is (DECSI DECS2),
where NEST advances past DECSl to NESTI {32ba},
NEST COMMON declaration of DECSl {42a,43a,44a,e,45a,-},
and also(94f} token, NESTI declaration of DECS2(a}.

b) NEST COMMON joined definition of PROPS PROP
{b,42a,43a,44a,e,45a,46e,54le}:

where NEST advances past PROPS to NESTI {32ba},
NEST COMMON joined definition of PROPS{b,c}, and also{94f} token,
NESTI COMMON joined definition of PROP(c}.

c) NEST COMMON joined definition of PROP(b,42a,43a,44a,e,45a,46e,54le}:
where NEST advances past PROP to NESTI {32ba},
NESTI COMMON definition of PROP{42b,43b,44c,f,45c,46f,54lf,-}.

Report 4 .2 .1. {{ Changes to prevent an applied-mode-indication occurring in the
actual-declarer of its mode-definition}}

AA) NONROW : : PLAIN ; structured with FIELDS mode ;
REF to MODE ; PROCEDURE ; UNITED.

b) NEST mode definition of MOID TALLY TAB{4lc}:
where (TAB) is (bold TAG) or (NEST) is (NEW mark LAYER),
MOID TALLY NEST defining mode indication with T AB{48a},
is defined as(94d} token,
actual MOID TALLY NEST new restricted mark declarer(c }.

c) actual MOID TALLY I NEST LAYER! new restricted mark declarer{b}:
where (TALLY I) is (i) and (MOID) is (ROWS of MODE),
actual ROWS NEST LAYER2 new restricted mark
rower{46i} STYLE bracket,

where NEST LAYER2 advances past MOID i TAB2
to NEST LAYER I {32ba},

actual MODE NEST LA YERl new restricted mark declarer{46a} ;
where (TALLYl) is (i) and (MOID) is (NONROW),
actual NONROW NEST LA YERI new restricted mark
declarator{46c,d,g,h,o,s,-};

where (TALLY!) is (TALLY2 i),
MOID T ALLY2 NEST LA YERI
new restricted mark applied mode indication with TAB2{48b}.

Report 4 .6 .1. ((Changes to prevent ROWS1-of-ROWS2-of-MODE-declarators,
flexible-ROWS-of-MODE-declarators, 'FIELDS' of the form 'ROWS
of MODE' and UNITED-declarers, and to restrict the occurrence
of local-generators)}

B) VIRACT : : virtual ; actual ; actual STYLE.

e) VICTAL FIELDS NEST portrayer of FIELDS I (d,e):
VICTAL MODE NEST declarer(a,b),
where NEST indicates sublanguage(22aa) implies
(MODE) is (NONROW),

NEST MODE FIELDS joined definition of FIELDS I {41 b,c) ;
where (FIELDS!) is (FIELDS2 FIELDS3),
VICT AL MODE NEST declarer(a, b),
where NEST indicates sublanguage(22aa) implies
(MODE) is (NONROW),

NEST MODE FIELDS joined definition of FIELDS2(4lb,c),
and also(94 f) token, VICT AL FIELDS NEST portrayer of FIELDS3 (e).

g) VIRACT flexible ROWS of MODE NEST declarator(a,42c):
unless NEST indicates sublanguage(22aa), flexible(94d) token,
VIRACT ROWS of MODE NEST declarer(a).

h) VICT AL ROWS of MODE NEST declarator(a,b,42c) :
where (VICTAL) is (virtual) or (VICTAL) is (actual)

or (VICTAL) is (formal),
where NEST indicates sublanguage(22aa) implies
(MODE) is (NONROW),

VICT AL ROWS NEST rower(i ,j ,k,l) STYLE bracket,
VICTAL MODE NEST declarer(a,b);

where (VICTAL) is (actual STYLE),
where NEST indicates sublanguage(22a) implies (MODE) is (NONROW),
VICTAL ROWS NEST rower(i ,j ,k,l) STYLE bracket,
actual MODE NEST declarer{a).

j) actual row NEST rower(h,i):
NEST lower bound{m), up to{94f) token, NEST upper bound(n) ;
unless NEST indicates sublanguage{22a), NEST upper bound(n).

S) VICTAL union of MOODS I MOOD1 mode NEST declarator(a,b,42c):
unless NEST indicates sublanguage{22aa),
unless EMPTY with MOODS I MOOD1 incestuous{47f),
union of(94d} token, MOIDS NEST joined declarer(t,u) brief pack,
where MOIDS ravels to MOODS2(47g)
and safe MOODS! MOODl subset of safe MOODS2{73l)
and safe MOODS2 subset of safe MOODS I MOOD1 (731,m}.

Report 4 .8 .1. {(Changes caused by the identification conditions of the
sublanguage requiring 'NEST' to be present in some hypernotions))

a) QUALITY NEST NEW SUBLETY
PROPSETYI QUALITY TAX mark PROPSETY2 defining INDICATOR
with TAX(32c,35b,42b,43b,44c,f,45c,54lf):

where QUALITY TAX NEST unrelated
PROPSETYl mark PROPSETY2(7laa,ab,ac,ad,ae),

TAX(942A,D,F,K) token.
b) QUALITY NEST applied INDICATOR with TAX(42c,46a,b,5D,542a,b,544a):

where QUALITY TAX NEST identified in NEST(72a},
TAX(942A,D,F,K} token.

c) MODE field PROPSETYl MODE field TAG PROPSETY2
defining field selector with T AG(46f) :

where MODE field TAG NEW mark EMPTY independent
PROPSETYl PROPSETY2{7la,aa,ab),

TAG(942A) token.

Report 5.2.3.1. ((Changes to prevent the occurrence of heap-generators, and to
restrict the occurrence of local-generators))

a) reference to MODE NEST2 LEAP generator{5C):
where NEST2 indicates sublanguage(22aa} implies

LEAP NEST2 generatable(aa,-},
LEAP{94d,-} token,
actual MODE NEST2 new restricted mark declarer(46a}.

aa) where local NESTI new ENVIRON SUBLETY
PROPSETYl mark PROPSETY2 generatable(a,aa}:

where (ENVIRON) is (nonlocal), where NESTI generatable(aa);
where (ENVIRON) is (local),
where local determined by PROPSETYI PROPSETY2(32aa} implies
local determined by PROPSETYI (32aa} ;

where (ENVIRON) is (restricted), where false.
b) reference to MODINE NEST LEAP sample generator(44e):

where NEST indicates sublanguage(22aa} implies (LEAP) is (local),
LEAP(94d,-} token,
actual MODINE NEST new restricted mark declarer(44b,46a};

where (LEAP) is (local),
where NEST indicates sublanguage(22a) implies
(STYLE) is (brief),

actual STYLE MODINE NEST new restricted mark declarer{44b,46a}.

Report 5.2.4.1. ((Changes caused by the new strength of syntactic position)}

a) RONG reference to MODE NEST nihil(5B): nil{94f} token

Report 5.3.2.1. "Changes to allow slicing of strings in the sublanguage"

AA) STRING : :
structured with row of character field letter aleph digit one mode.

a) REFETY MODEi NEST slice{5D) :
weak REFLEXETY ROWSl of MODEi NEST PRIMARY{5D),
ROWS I leaving EMPTY NEST indexer{b,c,-) STYLE bracket,
where (REFETY) is derived from (REFLEXETY){53lb,c,-);

where (MODEi) is (ROWS2 of MODE2),
weak REFLEXETY ROWS I of MODE2 NEST PRIMARY{5D),
ROWS I leaving ROWS2 NEST indexer{b,d,-) STYLE bracket,
where (REFETY) is derived from (REFLEXETY){53lb,c,-);

where NEST indicates sublanguage{22aa),
where (REFETY MODEi) is (character),
meek STRING NEST PRIMARY{5D),
row leaving EMPTY NEST indexer{b,d,-) STYLE bracket;

where NEST indicates sublanguage{22aa),
where (REFETY MODEi) is (STRING),
meek STRING NEST PRIMARY{5D),
row leaving row NEST strindexer{da) STYLE bracket.

da) row leaving row NEST strindexer{a): NEST strimmer{fa); EMPTY.
fa) NEST strimmer{da) : NEST lower bound{46m) option,

up to{94f) token, NEST upper bound{46n} option.
h) * trimscript: NEST subscript{e); NEST trimmer{{);

NEST strimmer{fa) ; NEST revised lower bound{g) option.
i) * indexer: ROWS leaving ROWSETY NEST indexer{b,c,d);

row leaving row NEST strindexer{da).

Report 5 .4 .1.1. ((Changes caused by the new form of 'LA YER'))

a) procedure yielding MOID NESTI routine text{44d,5A} :
formal MOID NESTI declarer{46b), routine{94f) token,
strong MOID NESTI new local mark unit{32d).

b) procedure with PARAMETERS yielding MOID NEST routine text{44d,5A):
NESTI new local mark DECS2 declarative

defining new local mark DECS2 {e) brief pack,
where DECS2 like PARAMETERS{c,d,-),
formal MOID NESTI declarer{46b), routine{94f} token,
strong MOID NESTI new local DECS2 mark unit{32d).

e) NEST2 declarative defining NEW mark DECS2{l),e ,34j) :
formal MODE NEST2 declarer{46b),

NEST2 MODE parameter joined definition of DECS2 {41 b,c} ;
where (DECS2) is (DECS3 DECS4), formal MODE NEST2 declarer{46b),

NEST2 MODE parameter joined definition of DECS3 {41 b,c},
and also{94f) token,
NEST2 declarative defining NEW mark DECS4{e).

Report 5.4.2.1. {{Changes caused by the new form of 'LAYER', and to restrict
the occurrence of local-generators)}

a) MOID NEST DYADIC formula{c,5B):
MODEi NEST new restricted mark DYADIC TALLETYoperand{c,-),
procedure with MODEi parameter MODE2 parameter yielding MOID
NEST applied operator with TAD{48b),

where NEST DYADIC TAD identified in NEST{72a),
MODE2 NEST new restricted mark DYADIC TALLY operand{c ,-}.

b) MOID NEST MONADIC formula{c,5B):
procedure with MODE parameter yielding MOID NEST

applied operator with TAM{48b),
MODE NEST new restricted mark MONADIC operand{c).

Report 5.4.3.1. {{Changes caused by the new form of 'LAYER'))

a) MOID NEST call{5D} :
meek procedure with PARAMETERS yielding MOID NEST PRIMARY{5D),
actual NEST new local mark PARAMETERS{b,c) brief pack.

Report 5.4.4.l. ((Changes caused by the new strength and to restrict the modes
of jumps))

a) RONG MOID NEST jump(5A) :
where NEST indicates sublanguage[22aa),
where (MOID) is (NONPROC)
or (MOID) is (REF to procedure yielding MOIDl),

go to(b), label NEST applied identifier with TAG(48b);
unless NEST indicates sublanguage[22aa), go to(48b) option,
label NEST applied identifier with TAG{48b).

Report 5.5.2 .1. ((Changes caused by the new strength))

a) RONG MOID NEST skip(5A) skip(94f) token.

Report 6.1.1. ((Changes caused by the new strength))

a) RONG MOID FORM coercee(5A,B,C,D,Aa4li):
where (FORM) is (MORF), STRONG(A) MOID MORF ;
where (FORM) is (COMORF), STRONG(A) MOID COMORF,
unless (STRONG MOID) is (deprocedured to void).

Report 6.5.l. ((Changes to allow the widening of a 'STRING' value to a
'row of character' value))

CA) COERCEE : selection ; slice ; routine text ; ADIC formula ; call ;
applied identifier with TAG; assignation; identity relation ;
LEAP generator ; cast ; denoter ; format text.

d) widened to row of character NEST COERCEE[61 A} :
MEEK(61C} BYTES NEST COERCEE;
where NEST indicates sublanguage(22aa},
MEEK(61C} STRING NEST COERCEE.

da) widened to STRING NEST COERCEE[61AJ:
where NEST indicates sublanguage(22aa),
MEEK[61C} character NEST COERCEE.

Report 6.6.1. ([Changes to restrict the forms of rowing)}

a) rowed to REFETY ROWSI of MODE FORM[61A):
where NEST indicates sublanguage(22aa) implies (REFETY) is (EMPTY),
where (ROWS I) is (row), STRONG(61 A) REFLEXETY MODE FORM,
where (REFETY) is derived from (REFLEXETY)(5alb,c,-);

where NEST indicates sublanguage[22aa) implies (REFETY) is (EMPTY),
where (ROWSI) is (row ROWS2),
STRONG[61A) REFLEXETY ROWS2 of MODE FORM,
where (REFETY) is derived from (REFLEXETY)(5alb,c,-}.

Report 7.1.1. ((Changes to the tests for independence, etc., in the sublanguage))

C) PREFSETY : : PREF PREFSETY ; EMPTY.
CA) MABEL : : MODE ; label.
CB) PRADIC :: PRAM; DYADIC.
CC) FEEKLY :: firmly; meekly.
CD) A meta production rule is to be added for the metanotion "SUBTAO" (for

which no meta production rule is given in this Report), each of whose
hypemotions is some 'DYAD BECOMESETY' or 'DYAD cum NOMAD
BECOMESETY'.

a) WHETHER PROPI NEST independent PROPS2 PROP2
(a,c,72a,aa,ab,ac,ad,ae) :

WHETHER PROPI NEST independent PROPS2{a,c)
and PROPI NEST independent PROP2 {c).

aa) WHETHER MABEL TAG NEST unrelated
PROPSETY2 mark PROPSETY3{48a,c):

WHETHER MABEL TAG NEST independent
PROPSETY2 PROPSETY3(a,b,c).

ab) WHETHER DYADIC TAD NEST unrelated
PROPSETY2 mark PROPSETY3(48a,c) :

where NEST indicates sublanguage{22aa),
where PROPSETYI collected properties from NEST(af,ag),
WHETHER DYADIC TAD NEST independent
PROPSETYI PROPSETY2 PROPSETY3{a,b,c)
and TAD NEST acceptable caption (aj) ;.

unless NEST indicates sublanguage(22aa),
WHETHER DYADIC TAD NEST independent
PROPSETY2 PROPSETY3{a,b,c).

ac) WHETHER DUO TAD NEST unrelated
PROPSETY2 mark PROPSETY3{48a}:

where NEST indicates sublanguage{22aa},
where PROPSETYI collected properties from NEST(af,ag},
where DUO TAD NEST independent

PROPSETYI PROPSETY2 PROPSETY3(a,b,c}
and DYADIC TAD contained in PROPSETYl PROPSETY2 ;

unless NEST indicates sublanguage{22aa},
WHETHER DUO TAD NEST independent
PROPSETY2 PROPSETY3(a,b,c}.

ad) WHETHER MONOT AM NEST unrelated
PROPSETY2 mark PROPSETY3 {48a} :

where NEST indicates sublanguage{22aa},
where PROPSETYI collected properties from NEST(af,ag},
WHETHER MONOT AM NEST independent

PROPSETYI PROPSETY2 PROPSETY3(a,b,c}
and TAM NEST acceptable caption (aj} ;

unless NEST indicates sublanguage{22aa},
WHETHER MONOT AM NEST independent

PROPSETY2 PROPSETY3(a,b,c}.
ae) WHETHER MOID TALLY TAB NEST unrelated

PROPSETY2 mark PROPSETY3(48a} :
where NEST indicates sublanguage(22aa},
where PROPSETYI collected properties from NEST(af,ag},
WHETHER MOID TALLY TAB NEST independent
PROPSETY2 PROPSETY3(a,b,c}
and TAB not operator in PROPSETYI (ah,ai} ;

unless NEST indicates sublanguage(22aa},
WHETHER MOID TALLY TAB NEST independent

PROPSETY2 PROPSETY3(a,p,c}.
af) WHETHER EMPTY collected properties

from NEW SUBLETY mark(ab,ac,ad,ae,ag}:
WHETHER true.

ag) WHETHER PROPSETYI PROPSETY2 collected properties
from NEST NEW SUBLETY PRbPSETY2 mark PROPSETY3
(ab,ac;ad,ae,ag}:

WHETHER PROPSETYI collected properties from NEST(af,ag}.
ah) WHETHER TAB not operator in EMPTY(ae ,ai} : WHETHER true.
ai) WHETHER TAB not operator in PROPSETY PROP(ae,ai}

where (PROP) is (PRADIC TAB), WHETHER false ;
where (PROP) is (MOID TALLY TAB), WHETHER true ;
unless (PROP) contains (TAB),
WHETHER TAB not operator in PROPSETY(ah,ai}.

aj) WHETHER TAO LAYER new local PROPS mark
NEST acceptable caption(ab,ad} :

where (TAO) begins with (bold), WHETHER true;
unless (TAO) begins with (bold),
WHETHER (TAO) is (SUBTAO) or (PROPS) contains (TAO).%A

b) WHETHER PROP NEST independent EMPTY{72a,aa,ab,ac,ad,ae}:
WHETHER true.

c) WHETHER QUALITY! TAXI NEST independent
QUALITY2 TAX2(a,72a,aa,ab,ac,ad,ae}:

unless (TAXI) is (TAX2), WHETHER true ;
where (TAXI) is (TAX2) and (TAXI) is (TAO),
WHETHER QUALITY I NEST independent QUALITY2(d}.

d) WHETHER QUALITY I NEST independent QUALITY2(c} :
where QUALITY I NEST related QUALITY2(e,f,g,h,i,j,-},
WHETHER false ;

unless QUALITY I NEST related QUALITY2(e,f,g,h,i,j,-}, WHETHER true.
e) WHETHER MONO NEST related DUO(d} : WHETHER false.
f) WHETHER DUO NEST related MONO(d} : WHETHER false.
g) WHETHER PRAM NEST related DYADIC(d} . WHETHER false.
h) WHETHER DYADIC NEST related PRAM(d} : WHETHER false.
i) WHETHER procedure with MODEi parameter MODE2 parameter

yielding MOIDI NEST related
procedure with MODE3 parameter MODE4 parameter
yielding MOID2(d} :

WHETHER MODEi FEEKLY related MODE3(k,na}
and MODE2 FEEKLY related MODE4(k,na},

where NEST indicates sublanguage{22aa} implies (FEEKLY) is (meekly).
j) WHETHER procedure with MODEi parameter yielding MOIDI

NEST related procedure with MODE2 parameter yielding MOID2(d} :
WHETHER MODEi FEEKLY related MODE2(k,na},
where NEST indicates sublanguage(22aa} implies (FEEKLY) is (meekly).

na) WHETHER PREFSETYI NONPREFI meekly related
PREFSETY2 NONPREF2{i,j} :

WHETHER NONPREFI specially related NONPREF2(nb}.
nb) WHETHER NONPREFI specially related NONPREF2(na,nb}:

where (NONPREFI) is (NOTETYI STRING NOTETY2),
WHETHER NOTETYI row of character NOTETY2 specially related
NONPREF2(nb} ;

where(NONPREF2) is (NOTETYI STRING NOTETY2),
WHETHER NONPREFI specially related
NOTETYI row of character NOTETY2(nb} ;

unless (NONPREFI cum NONPREF2) contains
(field letter aleph digit one),

WHETHER NONPREFI equivalent NONPREF2{73a).

Report 7.2.l. ((Changes caused by the new form of 'LAYER'))

a) WHETHER PROP NESTI identified in
NEST2 NEW SUBLETY PROPSETYI mark PROPSETY2(a,48b,542a):

where PROP resides in PROPSETYI PROPSETY2(b,c,-),
WHETHER PROP NESTI acceptable from
NEST2 NEW SUBLETY PROPSETYI mark PROPSETY2 (ca) ;

where PROP NESTI independent PROPSETYI PROPSETY2(7la,b,c),
WHETHER PROP NESTI identified in NEST2(a,-).

ca) WHETHER QUALITY TAX NEST acceptable from
NEST2 NEW SUBLETY PROPSETYI mark PROPSETY2 (a) :

where NEST indicates sublanguage (22aa), unless (QUALITY) is (label),
WHETHER QUALITYTAXresides in PROPSETYI (b,c,-);

where NEST indicates sublanguage{22aa) and (QUALITY) is (label),
WHETHER (PROPSETY2) is (LABSETY2) ;

unless NEST indicates sublanguage {22aa), WHETHER true.

Report 8.0.l. ((Changes caused by the restrictions on the number of sizes of
'INTREAL' values and widths of 'BITS' values))

AA) SUBMODE : : SUBINTREAL ; SUBBITS ; character ; boolean ; STRING.
AB) A meta production rule is to be added for the metanotion "SUBINTREAL"

("SUBBITS") (for which no meta production rule is given in this report},
each of whose hypernotions is some 'INTREAL' ('BITS') .

a) MOID NEST denoter{5D,A34li) :
where NEST indicates sublanguage(22aa) implies (MOID) is (SUBMODE),
pragment{92a) sequence option,
MOID denotation (810a ,81 la,813a,814a,815a ,82a,b,c ,83a,aa ,-}
or MOID NEST denotation (810a,812a) ;

unless NEST indicates sublanguage{22aa) or (MOID) is (STRING),
pragment(92a) sequence option,
MOID denotation (810a,81 la ,813a,814a ,815a ,82a ,b,c ,83a ,-}
or MOID NEST denotation (810a,812a).

Report 8.1.0.1. ((Changes caused by the exclusion of the
times-ten-to-the-power-symbol))

A) NESTETY : : NEST ; EMPTY.

a) SIZE INTREAL NESTETY denotation (a ,80a) :
SIZE symbol {94d), INTREAL NESTETY denotation (a,8lla ,812a).

b) • plain denotation : PLAIN NESTETY denotation (a,8lla,812a,813a,814a) ;
void denotation{815a).

Report 8.1.2.1. ((Changes caused by the exclusion of the
times-ten-to-the-power-symbol))

a) real NESTdenotation{80a,810a}:
variable point numeral{b) ; NEST floating point numeral (e).

e) NEST floating point numeral {a) :
stagnant part{f), NEST exponent part{g).

g) NEST exponent part{e) :
NEST times ten to the power choice(h), power of ten {i).

h) NEST times ten to the power choice(g) :
unless NEST indicates sublanguage {22a),
times ten to the power symbol(94b) ;

letter e symbol{94a).

Report 8.3.1. ((Changes caused by the mode 'STRING')}

aa) STRING denotation (80a ,83c) :
quote{94b) symbol, string{b) option, quote(94b) symbol.

c) * stringdenotation :
row of character denotation {a) ; STRING denotation (aa).

Report 10.1.1. ((Changes to introduce 'subprelude' and 'sublanguage' into
the nest))

a) program text :
STYLE begin {94f} token, LA YER new local mark DECSI preludes {b),
parallel(94f) token,
LA YER new'local DECSI mark tasks {d) PACK, STYLE end {94f) token,
where (LA YER) is (new local EMPTY mark)
or (LAYER) is (new subprelude local EMPTY mark).

b) LAYER new local mark DECS preludes{a) :
where (DECS) is (DECSI DECSETY2 DECSETY3),

LA YER new local mark DECSI DECSETY2 DECSETY3 standard prelude
with DECSI {c),

LAYER new local DECSI mark DECSETY2 DECSETY3
library prelude with DECSETY2(c},

LA YER new local DECSI DECSETY2 mark DECSETY3
system prelude with DECSETY3{c).

f) NESTI user task{d) :
NESTI new local mark DECS STOP particular prelude with DECS{c),
NESTI new local DECS mark STOP particular program {g) PACK,
go on (94f) token,
NESTI new local DECS mark STOP particular postlude (i).

g) NEST2 particular program {f} :
where (NEST2) contains (subprelude),
NEST2 sublanguage particular program(ga);

unless (NEST2) contains (subprelude),
NEST2 full language particular program{gb).

ga) NEST2 sublanguage particular program{g) :
NEST2 new sublanguage local mark LABSETY3

joined label definition of LABSETY3{h),
strong void NEST2 new sublanguage local LABSETY3 mark

ENCLOSED clause {3 la ,33a ,c ,34a,35a).
gb) NEST2 full language particular program{g):

NEST2 new local mark LABSETY3
joined label definition of LABSETY3{h),

strong void NEST2 new local LABSETY3 mark
ENCLOSED clause{3la,33a,c,34a,35a).

Report 10.3.4.1.1. ((Change caused by the exclusion of formatted transput))

a) FORMAT NEST format text(5D) :
unless NEST indicates sublangliage(22a), formatter(94f) token,
NEST collection{b) list, formatter(94f) token.

4. Modifications to the semantics of the Report

Each of the subsections in this section specifies a change required in the
semantics of the Report. It is to be understood that the text betweeen # and => is
to be replaced, in the Report, by that between=> and#.

a) ((Additional elidible hypernotions are required. The following change is to
be made to the list in the Report, 1.1.4.2.c:})
"defining LA YER". =>
"defining LAYER"• "ENVIRON"• "mark"• "SUBLETY". #

b) ((The PRIMARY of a slice may be a 'STRING' value, and a change is
required in 5.3.2.2.a and b. In section a, the following change is required: I)

the value referred to by V; =>
the value referred to by V or of the value selected in V by 'letter aleph digit
one'; #

((Also in section a, the following bullet is to be replaced:})
#Wis the value ... by (11, ... , In).=>
If the mode of Vis 'STRING', .
then Wis the value selected by (11, ... , In) in {2.1.3.4.a,i) the field of V

selected by (2.1.3.3.a) 'letter aleph digit one';
otherwise, Wis the value selected in (2.1.3.4.a,g,i) or the name generated

from{2.l.3.4.j)Vby(l1, ... ,ln). #

((In section b the following change is required: })
Case B: the i-th trimscript is a trimmer T: =>
Case B: the i-th trimscript is a trimmer or a strimmer T: #

c) ((An additional case is required for the widening of a 'STRING' value into a
'row of character' value. This is added to the end of section 6.5.2.l)
#.=>;
Case D: 'MODE' is 'STRING':

W is the structured value whose (only) field is a multiple value
composed of a descriptor ((1, 1)) and V. #

d) ((A string.denotation is either a STRING-denotation or it is a row-of
character-denotation. Modifications are required to the semantics of
section 8 .3 .2. The following replacement is required:))
The yield of a string.denotation D =>
a) The yield of a row-of-character-denotation D #

((An additional subsection deals with STRING-denotations:))
=>
b) The yield of a STRING-denotation Dis a structured value whose (only)
field is the yield of a row-of-character-denotation akin (1.1.3 .2 .k) to D. #

e) ((In order to hide certain indicators in the EXTERNAL-preludes in
sublanguage-particular-programs, the mark+ is introduced. This is either
replaced by ~ or it .is erased, according to whether the protonotion
'.subprelude' is contained in the nest (3 .0 .2) of the EXTERNAL-prelude. The
first change, in section· 10 .1.3, reintroduces 'NEST', which had been
elided:))

f)

A representation ... following steps: =>
A representation of a NEST-EXTERNAL-prelude, NEST-system-task

or NEST-particular-postlude is obtained by altering each form in the
relevant section of this chapter in the following steps: #

((An additional step, inserted between steps 1 and 2 of section 10 .1.3 causes
the mark Ho be replaced or removed:))
Step 1.5: If, in some form, as possibly made in the step above, the mark+

occurs, then, if the predicate 'where (NEST) contains (subprelude)'
holds, the mark+ is replaced by the mark~; otherwise, (the predicate
does not hold and) the mark + is deleted; Step 1.5 is then taken
again; #

((Throughout the steps the term "sufficient number" is modified so that in
the sublanguage the implementer is not required to have declarers for all
sizes and widths of values, nor even all the operators, etc., involving those
which he does allow. The following change is to be made twice in Step· 4
and twice in Step 5:))
sufficient number => some number#

((The following paragraph is to be inserted after Step 9, to specify the
number of forms which are to be made:))

=>
If the predicate 'where (NEST) contains (subprelude)' holds, then the

number of new forms made in steps 4 and 5 above is a characteristic of the
implementation, and must be at least one for all forms except those
derived from 10.2.3.3.q, 10.2.3.4.n, 10.2.3.7.n, 10.2.3.8.n, and 10.2.3.9.d
{Ieng}, and 10.2.3.3.r, 10.2.3.4.o, 10.2.3.7.o, 10.2.3.8.o, and 10.2.3.9.e {shorten)
(for which no replacements need be supplied); otherwise, (the predicate·
does not hold and) the number of new forms is some sufficient number. #

({Changes are required in section 10.5.1 to specify that different
particular-preludes are incorporated into a program for a sublanguage
particular-program and for a full-language-particular-program. This is
done by specifying a different "base set" of definitions for each. The
changes are as follows:))
The representation of the particular-prelude ... following forms,=>
aa) The representation of the NEST-particular-prelude of each user-task
is obtained from the "basis" forms (ab),#.

({The following subsection is added after that paragraph:})
=>
ab) The "basis" forms of a NEST-particular-prelude are obtained as
follows:
If the predicate 'unless (NEST) contains (sublanguage)' holds, then the
forms are those given iri 10.5.l .a,b,c,d,e,f,g,h,i only;
otherwise, they are all the forms in section 10.5.1. #

5. Modifications to the standard preludes of the Report

This section gives the changes required to the forms in the standard
environment of the Report {10.2, 10.3, 10.4, 10.5). In each subsection the change
which is made is the insertion of the mark+ between mode (the mode-symbol},
op (the operator-symbol), proc (the procedure-symbol) or the representation of
some declarer, and the indicator which follows it. In order to abbreviate this
section, only the reference within the Report, the relevant indicator and an
indication of the reason for the change are given.

(Thus, since the list includes, under 10.2.2., i) {DJ string the form in 10.2.2.i
is to be altered to mode+ string= flex [I: O] char;)

a)

b)

(The letter in braces indicates the reason for the change, as follows:
A- The indicator is not available in sublanguage-particular-programs.
B - The presence of the declarer string in the form necessitates that a

copy of the form is included in each sublanguage-particular-prelude
in order that it may identify the revised mode-declaration for string-in
that particular-prelude. No language restriction is implied by this
change.

C- The form defines a group of operators (e.g. {r, **, upf) one of which is,
in some other form, associated with some different group (e.g. {r, up,
shl::f) . A copy of the forrp, without that operator, is included in the
particular-prelude.

D - A modified copy of the form is present in the particular-prelude.)

10.2.1.
a) {A) int /,engths
e) {A) real shorths
j) {A) L bits width
m) {A) L bytes width
s) {A) flop

10.2.2.
i) (DJ string

b) {A) int shorths
h) {A) bits lengths
k) {A) bytes /,engths
q) {A) null character
t) {A) error char

d) {A) real lengths
i) {A) bits shorths
l) {A) bytes shorths
r) {A) flip
u) {A) blank

c) 10.2.3.0, m) 10.2.3.ll.
a) {C) up, down, L, r q) (B} {plusab, +: =:f r) (B} {plusto, +=: :f

s) (B} {plusab, +: =:f t) (B} {plusto, +=: :f
u) (B} {t/mesab,x:=,•:=:f

d) 10.2.3.1.
b) (C} {lwb, L;f c) (C} {upb, r :f d) (C} f/wb, L f
e) {C) {upb, rf n) 10.2.4.

a) (A} sema b) (A} level c) (A} level
d) (A} down e) (A} up

e) 10.2.3.3.
p) (C} {f, **, up:f

o) 10.3.1.2.
c) (A} estab possible d) (A} stand conv

f) 10.2.3.4.
r) (C} {en tier, r :f

p) 10.3.l.3.
b) (A} get possible c) (A} put possible d) (A} bin possible

g) 10.2.3.5. e) (A} compressible f) (A} reset possible g) (A} set possible
g) (C} {r, ••, up:f h) (A} reidf possible j) (A} make conv k) (B} make term

p) (A} on format end q) (A} on value error r) (A} on char error
s) (A} reidf

h) 10.2.3.6.
b) (B} +

q) 10.3.1.4.
b) (B} establish c) (A} create d) {B} open

i) 10.2.3.7. o) (A} lock p) (A} scratch
t) (C) {r, ••, up:f

r) 10.3 .1.6.
j) 10.2.3.8. b) (A} backspace k) (A} set char number

g) (C} {f, up, shl:f h) (C} {!, down, shr:f

S) 10.3.2.l.
k) 10.2.3.9. b) (B} whole c) (B} fixed d) (B} float

c) (B} L bytes pack l) (A} char in string m) {A} Lint width n) {A} L real width
o) {A} L exp width

l) 10.2.3.10.
a) (B} {<, /t:f b) {B} {5_, <=, lef c) {B} {=, eq:f t) 10.3.5.

d) (B} N, /=, ne:f e) {B} b >=, ge:f f) {B} {>, gtf a) (A} format

g) {B} R h) {B} R i) {B} +
j) {B} + k) {B} + l) (B} {x, •f
m) (B} {x, •:f n) {B} {x, •f o) (B} {x, •f u) 10.3.5.l.

a) {A} putf

/

v) 10.3.5.2.
a) {A) getf

w) 10.5.l.
f) {A) print/, {A) write/ g) {A) readf

6. The sublanguage particular prelude

The forms in this section are to be added to those of the particular-prelude
of the Report {10.5.l). In addition, a sufficient number of other forms, not listed
below, which are copies of forms in sections 10.2 and 10.3 of the Report, are also
to be included in order that every applied-indicator in the forms in the
particular-prelude and particular-postlude may identify a defining-indicator in
the EXTERNAL-preludes. (These forms will all include the mark~ before the
defining-indicator.) The list is in two parts. Part a contains those forms which
are identical to the forms in the Report (and which are indicated by Bin section
4); only the reference to the Report of the corresponding form is given. Part b
contains the definitions of operators (which are indicated by C in section 4) and
of the mode-indication -string. In these forms, a routine-text may have been
replaced by a pseudo-comment. It is to be understood that the pseudo-comment
is to be replaced by the routine-text of the form whose (Report) reference is
given in the pseudo-comment.

a) Forms which are copies of forms in the standard-prelude of the Report (as
indicated by Bin section 4 above)

10.2.3.6.b
10.2.3.9.c
10.2.3.10.a, b, c, d, e, f, g, h, i, j, k, I, m, n, o
10.2.3.ll.q, r, s, t, u
10.3.1.3.k
10.3.l.4.b, d
10.3.2.l.b, C, d

b) Additional forms (as indicated by C and Din section 4 above)
a) mode string = struct(flex [1: O] char Fl);
b) op lwb = c 10.2 .3.1.b c;
c) opupb=cl0.2.3.l.cc;

d) op upb = (string a) Int : upb Fl of a;
e) op lwb = c 10.2.3.l.d c;
f) opupb=cl0.2.3.l.ec;
g) Op {t, **:t = C 10.2.3.3.p C;

h) op entler= c 10.2.3.4.r c;
i) op{t,••:f=cl0.2.3.5.gc;
j) op{t,••:f=cl0.2.3.7.tc;
k) opshl=cl0.2.3.8.gc;
1) opshr=cl0.2.3.8.hc;

7. Acknowledgements

The assistance of the members of the Subcommittee for ALGOL 68
support, especially C. H. Lindsey and P. Knueven, and the comments and
criticisms of the members of the full Working Group are gratefully
acknowledged.

8. References

[l] Hibbard, P. G., A Minimum General Purpose Sublanguage of ALGOL 68,
ALGOL Bulletin, AB35.3.2, 1973.

[2] Hibbard, P. G., The Design of an ALGOL68 Sublanguage, in Proceedings
of an International Omference on ALGOL 68 implementation (Ed. P. King),
Utilitas Mathematica Publishing Inc., 1974.

[3] Hibbard, P. G., A Proposed Sublanguage of ALGOL 68, ALGOL Bulletin,
AB37.4.4, 1974.

[4] Van Wijngaarden, A. et al., Revised Report on the Algorithmic Language
ALGOL 68, Acta Informatica, Vol. 5, pts 1-3, 1975.

[5] Hibbard, P. G., Informal Description of an ALGOL 68 Sublanguage, to be
published.

	0. Introduction
	1. Sublanguage restrictions
	2. Commentary
	3. Modifications to the syntax of the Report
	4. Modifications to the semantics of the Report
	5. Modifications to the standard preludes of the Report
	6. The sublanguage particular prelude
	7. Acknowledgements
	8. References

