
 INTCODE - An Interpretive Machine

 Code for BCPL

 by

 M. Richards

 ABSTRACT

 INTCODE is a very simple machine code with an

 equally simple assembly language. An assembler

 and interpreter for it is easy to write and may

 be used for the initial step of bootstrapping

 BCPL onto a new machine.

 December 1972 (revised August 1975) The Computer Laboratory

 ------------- Corn Exchange Street

 Cambridge CB2 3QG

 INTCODE - An Interpretive Machine Code for BCPL

 INTCODE is an interpretive machine code which was designed to

 ease the initial bootstrapping of BCPL °1, 2, 3¢ onto a new machine.

 The main advantage of INTCODE is that it is compact and its assembler

 and interpreter are both easy to implement. The assembler and

 interpreter are together about 4 to 6 times smaller than a typical

 BCPL codegenerator from OCODE to assembly language and can be

 implemented in machine code in about 2 days. The INTCODE form of

 the entire BCPL compiler from BCPL to INTCODE takes about 1000 lines

 of 72 characters composed as follows:

 Syntax analyser BCPL to AE TREE 400 lines

 Translation phase AE TREE to OCODE 400 lines

 Code Generator OCODE to INTCODE 200 lines

 Even though with INTCODE one loses a factor of about 10 to one in

 execution speed, it is still a useful tool for the initial

 implementation of BCPL on a new machine since it allows the first

 production codegenerator to be written directly in BCPL.

 The INTCODE Machine

 The INTCODE machine has a store consisting of equal sized

 locations addressed by consecutive integers. The word size is

 implementation dependent but should normally be at least 24 bits

 in order to hold all the fields of an instruction. On a 16 bit

 machine, one can use 16 bit and 32 bit instructions; the choice

 between short and long instructions being made by the INTCODE

 assembler.

 The central registers of the machine are as follows:

 A,B: The Accumulator and Auxiliary Accumulator.

 C: The Control Register giving the location of

 next instruction to be executed.

 D: The Address register used to hold the effective address

 of an instruction.

 P: A pointer used to address the local work area and

 function arguments.

 G: A pointer used to address the global vector.

 The format of an instruction is composed of five fields

 as follows:

 Function Part: This is a three bit field specifying one of the

 eight possible machine functions described below.

 Address field: This is a field specifying a positive integer which

 is the initial value of D. The address field should

 contain at least 14 or 15 bits.

 P bit: A single bit to specify whether P is to be added

 into D at the second stage of address evaluation.

 G bit: A single bit to specify whether G is to be added

 into D at the third stage of address evaluation.

 I bit: This is the indirection bit. If it is a one then D

 is replaced by the contents of the location addressed

 by D at the last stage of address evaluation.

 The effective address is evaluated in the same way for every

 instruction independent of the particular machine function specified.

 The eight machine functions are as follows:

 0) Load Mnemonic L

 Load the effective address into the accumulator A saving

 its previous value in B.

 B := A; A := D

 1) Store Mnemonic S

 Store the accumulator A into the location addressed by D.

 Location (D) := A

 2) Add Mnemonic S

 Add the effective address D into the accumulator A.

 A := A + D

 3) Jump Mnemonic J

 Cause a transfer of control by setting the control register C

 to the effective address D.

 C := D

 4) Jump if True Mnemonic T

 This is a conditional transfer which sets the control register C

 to D if the Accumulator A is non-zero.

 IF A^= O DO C := D

 5) Jump if False Mnemonic F

 This is a conditional transfer which sets the control register C

 to D if the accumulator A is zero.

 IF A=0 DO C := D

 6) Call a function Mnemonic K

 Cause a recursive function call to take place. The current

 stack frame size is specified by D and the function entry point

 is given in A. The first two cells of the new stack frame are set

 to hold the return link information.

 D := P + D

 Location(D), Location(D+1) := P, C

 P,C := D,A

 7) Execute operation Mnemonic X

 This instruction allows auxiliary operations to be executed.

 The operation is specified by the value of D which should be a

 small integer. These operations are mainly of an arithmetic or

 logical nature working on the accumulators A and B, and are

 specified as follows:

 X1: A := Location (A)

 X2: A := -A

 X3: A := NOT A

 X4: This causes a return from the current function or routine;

 by convention the result fo a function is left in A.

 C := Location(P + 1)

 P := Location(P)

 X5: A := B * A

 X6: A := B / A

 X7: A := B REM A

 X8: A := B + A

 X9: A := B - A

 X10: A := B = A

 X11: A := B ^= A

 X12: A := B < A

 X13: A := B >= A

 X14: A := B > A

 X15: A := B <= A

 X16: A := B LSHIFT A // vacated positions

 X17: A := B RSHIFT A // are filled with zeroes

 X18: A := B LOGAND A

 X19: A := B LOGOR A

 X20: A := B NEQV A

 X21: A := B EQV A

 X22: FINISH

 X23: Switch on the value of A using data in the location

 addressed by C, C+1 etc.

 B, D := Location(C), Location(C + 1)

 UNTIL B = 0 DO

 $(B, C := B - 1, C + 2

 IF A=Location(C) DO

 $(D := Location(C + 1)

 BREAK $) $)

 C := D

 X24:These are implementation dependent instructions

 X25: for input/output operations and other special

 functions. See the listing of the INTCODE interpreter

 in the appendix.

 INTCODE Assembly Language

 The assembly language for INTCODE has been designed to be

 compact and simple to assemble, but care has also been taken so

 that it can be read and modified with reasonable ease by a

 programmer. The text of the assembly language is composed of

 letters, digits, spaces, newlines and the characters '/' and

 dollar '$'.

 Slash is used as a continuation symbol; it is skipped and

 the remaining characters of the line up to and including the

 next newline character are ignored. Its main purpose is to

 simplify the efficient use of cards as a medium for transferring

 INTCODE programs.

 Dollar marks the entry point of a function or routine and is

 otherwise ignorable. Its sole purpose is to help the implementer

 find his way around compiled code.

 The assembly form of an instruction consists of the mnemonic

 letter for the machine function, optionally followed by 'I' if

 indirection is specified, optionally followed by 'P' or 'G' if

 P or G modifications are specified, followed by the address which

 is either a decimal integer or an assembly parameter which appears

 as 'L' followed by a decimal integer. Assembly parameters are

 numbered in the range 1 to 500 and are used to label points in the

 program. A number not preceded by a letter is interpreted as a

 label and causes the specified assembly parameter to be set to the

 address of the next location to be loaded.

 The mnemonics for the machine functions are L, S, A, J, T, F, K

 and X as described in the previous section.

 Data may be assembled by a statement consisting of 'D' followed

 by a signed decimal integer for constant values or 'DL' followed by

 an assembly parameter number for pointers. Characters may be packed

 and assembled using character statements of the form 'C' followed by

 the integer code for the character. The character size and number

 of characters per word are machine dependent and it is left to the

 assembler to pack character strings appropriately. A label,

 instruction or data statement will cause the latest character string

 to be padded with zeros so that the loading pointer points to the

 start of a full word.

 It is possible to initialise global variables during assembly,

 using a directive of the form 'G' followed by a global number,

 followed by 'L' and an assembly parameter number. Thus G36L73 will

 cause global 36 of the INTCODE machine to be set to the value of

 assembly parameter number 73.

 'Z' is used to mark the end of each segment of code. Its effect

 is to unset all the numerical parameters.

 Conclusion

 The effectiveness of INTCODE lies mainly in its simplicity making

 it easy to understand and implement; however, it is also compact and

 even with a simple non-optimising code generator the compiled code is

 smaller than straightforward machine code for most machines by a factor

 of nearly two to one.

 Example

 The following BCPL program:

 GLOBAL $(START:1; WRITEF:76 $)

 LET START () BE $(1

 LET F(N) = N=0 -> 1, N*F(N-1)

 FOR I = 1 TO 10 DO WRITEF("F(%N), = %N*N", I, F(I))

 FINISH $)1

 compiles into the following INTCODE:

 $ 1 JL4

 $ 2 LO LIP2 X10 FL6 L1 SP3 JL5 6 LIP2 L1 X9 SP5 LIL3 K3 LIP2 X5 SP3 5 L/

 IP3 X4 4 L1 SP2 J17 8 LI499 SP5 LIP2 SP6 LIP2 SP9 LIL3 K7 SP7 LIG76 K3 /

 LIP2 A1 SP2 7 LIP2 L10 X15 TL8 X22 X22

 3 DL2 499 C11 C70 C40 C37 C78 C41 C32 C61 C32 C37 C78 C10

 GIL1

 Z

 References

 °1¢ Richards, M. BCPL - A tool for Compiler Writing and Sysyems

 Programming. SJCC 1969.

 °2¢ -------- BCPL Programming Manual. Computer Laboratory,

 Cambridge 1973.

 °3¢ -------- The Portability of the BCPL Compiler.

 Software Practice and Experience, Vol. 1,

 No. 2 (1971).

 Appendix - The INTCODE Assembler and Interpreter

 --

 // This program is an ASCII INTCODE assembler and interpreter

 // for a 16 bit EBCDIC machine, hence the need for the ASCII and

 // EBCDIC tables near the end. It has been tested on the IBM 370

 // (a 32 bit EBCDIC machine).

 GET "LIBHDR"

 GLOBAL $(

 SYSPRINT:100; SOURCE:101

 ETOA:102; ATOE:103

 $)

 MANIFEST $(

 FSHIFT=13

 IBIT=#10000; PBIT=#4000; GBIT=#2000; DBIT=#1000

 ABITS=#777

 WORDSIZE=16; BYTESIZE=8

 LIG1=#012001

 K2 =#140002

 X22 =#160026

 $)

 GLOBAL $(

 G:110; P:111; CH:112; CYCLECOUNT:113

 LABV:120; CP:121; A:122; B:123; C:124; D:125; W:126 $)

 LET ASSEMBLE() BE

 $(1 LET V = VEC 500

 LET F = 0

 LABV := V

 CLEAR:FOR I = 0 to 500 DO LABV:I := 0

 CP := 0

 NEXT: RCH()

 SW: SWITCHON CH INTO

 $(S DEFAULT: IF CH=ENDSTREAMCH RETURN

 WRITEF("*NBAD CH %C AT P = %N*N", CH, P)

 GOTO NEXT

 CASE '0' : CASE '1' : CASE '2' : CASE '3' : CASE '4' :

 CASE '5' : CASE '6' : CASE '7' : CASE '8' : CASE '9' :

 SETLAB(RDN())

 CP := 0

 GOTO SW

 CASE '$' : CASE '*S' : CASE '*N' : GOTO NEXT

 CASE 'L' : F := 0; ENDCASE

 CASE 'S' : F := 1; ENDCASE

 CASE 'A' : F := 2; ENDCASE

 CASE 'J' : F := 3; ENDCASE

 CASE 'T' : F := 4; ENDCASE

 CASE 'F' : F := 5; ENDCASE

 CASE 'K' : F := 6; ENDCASE

 CASE 'X' : F := 7; ENDCASE

 CASE 'C' : RCH(); STC(RDN()); GOTO SW

 CASE 'D' : RCH()

 TEST CH='L'

 THEN $(RCH()

 STW(0)

 LABREF(RDN(), P-1) $)

 OR STW(RDN())

 GOTO SW

 CASE 'G' : RCH()

 A := RDN() + G

 TEST CH='L' THEN RCH()

 OR WRITEF("*NBAD CODE AT P = %N*N", P)

]A := 0

 LABREF(RDN(), A)

 GOTO SW

 CASE 'Z' : FOR I = 0 TO 500 DO

 IF LABV]I>0 DO WRITEF("L%N UNSET*N", I)

 GOTO CLEAR $)S

 W := F<<FSHIFT

 RCH()

 IF CH='I' DO $(W := W+IBIT; RCH() $)

 IF CH='P' DO $(W := W+PBIT; RCH() $)

 IF CH='G' DO $(W := W+GBIT; RCH() $)

 TEST CH='L'

 THEN $(RCH()

 STW(W+DBIT)

 STW(0)

 LABREF(RDN(), P-1) $)

 OR $(LET A = RDN()

 TEST (A&ABITS)=A

 THEN STW(W+A)

 OR $(STW(W+DBIT); STW(A) $) $)

 GOTO SW $)1

 AND STW(W) BE $(]P := W

 P, CP := P+1, 0 $)

 AND STC(C) BE $(IF CP=0 DO $(STW(0); CP := WORDSIZE $)

 CP := CP - BYTESIZE

](P-1) :=](P-1) + (C<<CP) $)

 AND RCH() BE $(1 CH := RDCH()

 UNLESS CH='/' RETURN

 UNTIL CH='*N' DO CH := RDCH() $)1 REPEAT

 AND RDN() = VALOF

 $(LET A, B = 0, FALSE

 IF CH='-' DO $(B := TRUE; RCH() $)

 WHILE '0'<=CH<='9' DO $(A := 10*A + CH - '0'; RCH() $)

 IF B DO A := -A

 RESULTIS A $)

 AND SETLAB(N) BE

 $(LET K = LABV]N

 IF K<0 DO WRITEF("L%N ALREADY SET TO %N AT P = %N*N",N,-K,P)

 WHILE K>0 DO $(LET N =]K

]K := P

 K := N $)

 LABV]N := -P $)

 AND LABREF(N, A) BE

 $(LET K = LABV]N

 TEST K<0 THEN K := -K OR LABV]N := A

]A :=]A + K $)

 AND INTERPRET() = VALOF

 $(1

 FETCH: CYCLECOUNT := CYCLECOUNT + 1

 W :=]C

 C := C + 1

 TEST (W&DBIT)=0

 THEN D := W&ABITS

 OR $(D :=]C; C := C + 1 $)

 IF (W & PBIT) NE 0 DO D := D + P

 IF (W & GBIT) NE 0 DO D:= D + G

 IF (W & IBIT) NE 0 DO D :=]D

 SWITCHON W>>FSHIFT INTO

 $(ERROR:

 DEFAULT: SELECTOUTPUT(SYSPRINT)

 WRITEF("*NINTCODE ERROR AT C = %N*N", C-1)

 RESULTIS -1

 CASE 0: B := A; A := D; GOTO FETCH

 CASE 1:]D := A; GOTO FETCH

 CASE 2: A := A + D; GOTO FETCH

 CASE 3: C := D; GOTO FETCH

 CASE 4: A := NOT A

 CASE 5: UNLESS A DO C := D; GOTO FETCH

 CASE 6: D := P + D

 D]0, D]1 := P, C

 P, C := D, A

 GOTO FETCH

 CASE 7: SWITCHON D INTO

 $(DEFAULT: GOTO ERROR

 CASE 1: A :=]A; GOTO FETCH

 CASE 2: A := -A; GOTO FETCH

 CASE 3: A := NOT A; GOTO FETCH

 CASE 4: C := P]1

 P := P]0

 GOTO FETCH

 CASE 5: A := B * A; GOTO FETCH

 CASE 6: A := B / A; GOTO FETCH

 CASE 7: A := B REM A; GOTO FETCH

 CASE 8: A := B + A; GOTO FETCH

 CASE 9: A := B - A; GOTO FETCH

 CASE 10: A := B = A; GOTO FETCH

 CASE 11: A := B NE A; GOTO FETCH

 CASE 12: A := B < A; GOTO FETCH

 CASE 13: A := B >= A; GOTO FETCH

 CASE 14: A := B > A; GOTO FETCH

 CASE 15: A := B <= A; GOTO FETCH

 CASE 16: A := B << A; GOTO FETCH

 CASE 17: A := B >> A; GOTO FETCH

 CASE 18: A := B & A; GOTO FETCH

 CASE 19: A := B LOGOR A; GOTO FETCH

 CASE 20: A := B NEQV A; GOTO FETCH

 CASE 21: A := B EQV A; GOTO FETCH

 CASE 22: RESULTIS 0 // FINISH

 CASE 23: B, D := C]0, C]1 // SWITCHON

 UNTIL B=0 DO

 $(B, C := B-1, C+2

 IF A=C]0 DO

 $(D := C]1

 BREAK $) $)

 C := D

 GOTO FETCH

 // CASES 24 UPWARDS ARE ONLY CALLED FROM THE FOLLOWING

 // HAND WRITTEN INTCODE LIBRARY - ICLIB:

 // 11 LIP2 X24 X4 G11L11 /SELECTINPUT

 // 12 LIP2 X25 X4 G12L12 /SELECTOUTPUT

 // 13 X26 X4 G13L13 /RDCH

 // 14 LIP2 X27 X4 G14L14 /WRCH

 // 42 LIP2 X28 X4 G42L42 /FINDINPUT

 // 41 LIP2 X29 X4 G41L41 /FINDOUTPUT

 // 30 LIP2 X30 X4 G30L30 /STOP

 // 31 X31 X4 G31L31 /LEVEL

 // 32 LIP3 LIP2 X32 G32L32 /LONGJUMP

 // 46 X33 X4 G46L46 /ENDREAD

 // 47 X34 X4 G47L47 /ENDWRITE

 // 40 LIP3 LIP2 X35 G40L40 /APTOVEC

 // 85 LIP3 LIP2 X36 X4 G85L85 /GETBYTE

 // 86 LIP3 LIP2 X37 X4 G86L86 /PUTBYTE

 // Z

 CASE 24: SELECTINPUT(A); GOTO FETCH

 CASE 25: SELECTOUTPUT(A); GOTO FETCH

 CASE 26: A := ETOA]RDCH(); GOTO FETCH

 CASE 27: WRCH(ATOE]A); GOTO FETCH

 CASE 28: A := FINDINPUT(STRING370(A)); GOTO FETCH

 CASE 29: A := FINDOUTPUT(STRING370(A)); GOTO FETCH

 CASE 30: RESULTIS A; // STOP(A)

 CASE 31: A := P]0; GOTO FETCH // USED IN LEVEL()

 CASE 32: P, C := A, B; // USED IN LONGJUMP(P,L)

 GOTO FETCH

 CASE 33: ENDREAD(); GOTO FETCH

 CASE 34: ENDWRITE(); GOTO FETCH

 CASE 35: D := P+B+1 // USED IN APTOVEC(F, N)

 D]0, D]1, D]2, D]3 := P]0, P]1, P, B

 P, C := D, A

 GOTO FETCH

 CASE 36: A := ICGETBYTE(A, B) // GETBYTE(S, I)

 GOTO FETCH

 CASE 37: ICPUTBYTE(A, B, P]4) // PUTBYTE(S, I, CH)

 GOTO FETCH

 $) $) $)1

 AND STRINGTO370(S) = VALOF

 $(LET T = TABLE 0,0,0,0,0,0,0,0

 PUTBYTE(T, 0, ICGETBYTE(S, 0))

 FOR I = 1 TO ICGETBYTE(S, 0) DO

 PUTBYTE(T,I,ATOE]ICGETBYTE(S,I))

 RESULTIS T $)

 AND ICGETBYTE(S, I) = VALOF

 $(LET W = S](I/2)

 IF (I&1)=0 DO W := W>>8

 RESULTIS W&255 $)

 AND ICPUTBYTE(S, I, CH) BE

 $(LET P= @S](I/2)

 LET W =]P

 TEST (I&1)=0 THEN]P := Wÿ LOGOR CH<<8

 OR]P := W＀ LOGOR CH $)

 LET START(PARM) BE

 $(1

 LET PROGVEC = VEC 20000

 LET GLOBVEC = VEC 400

 G, P := GLOBVEC, PROGVEC

 SYSPRINT := FINDOUTPUT("SYSPRINT")

 SELECTOUTPUT(SYSPRINT)

 WRITES("INTCODE SYSTEM ENTERED*N")

 SOURCE := FINDINPUT("INTIN")

 SELECTINPUT(SOURCE)

 ASSEMBLE()

 SOURCE := FINDINPUT("SYSIN")

 UNLESS SOURCE=0 DO SELECTINPUT(SOURCE)

 WRITEF("*NPROGRAM SIZE = %N*N", P-PROGVEC)

 OTOE := 1+TABLE -1,

 0, 0, 0, 0, 0, 0, 0, 0, // ASCII TO EBCDIC

 0, 5, 21, 0, 12, 0, 0, 0, // '*T' '*N' '*P'

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 64, 90,127,123, 91,108, 80,125, // '*S'] " # $ % & '

 77, 93, 92, 78,107, 96, 75, 97, // () * + , - . /

 240,241,242,243,244,245,246,247, // 0 1 2 3 4 5 6 7

 248,249,122, 94, 76,126,110,111, // 8 9 : ; < = > ?

 124,193,194,195,196,197,198,199, // @ A B C D E F G

 200,201,209,210,211,212,213,214, // H I J K L M N O

 215,216,217,226,227,228,229,230, // P Q R S T U V W

 231,232,233, 66, 98, 67,101,102, // X Y Z ° ≤ ¢ µ ∂

 64,129,130,131,132,133,134,135, // a b c d e f g

 136,137,145,146,147,148,149,150, // h i j k l m n o

 151,152,153,162,163,164,165,166, // p q r s t u v w

 167,168,169, 64, 79, 64, 95,255 // x y z ! ^

 ETOA := 1+TABLE -1,

 0, 0, 0, 0, 0, #11, 0, 0,

 0, 0, 0, #13, #14, #15, 0, 0,

 0, 0, 0, 0, 0, #12, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, #12, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 #40, 0,#133,#135, 0, 0, 0, 0,

 0, 0, 0, #56, #74, #50, #53,#174,

 #46, 0, 0, 0, 0, 0, 0, 0,

 0, 0, #41, #44, #52, #51, #73,#176,

 #55, #57,#134, 0, 0,#136,#137, 0,

 0, 0, 0, #54, #45,#140, #76, #77,

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, #72, #43,#100, #47, #75, #42,

 0,#141,#142,#143,#144,#145,#146,#147,

 #150,#151, 0, 0, 0, 0, 0, 0,

 0,#152,#153,#154,#155,#156,#157,#160,

 #161,#162, 0, 0, 0, 0, 0, 0,

 0, 0,#163,#164,#165,#166,#167,#170,

 #171,#172, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 0, 0, 0, 0, 0, 0, 0, 0,

 0,#101,#102,#103,#104,#105,#106,#107,

 #110,#111, 0, 0, 0, 0, 0, 0,

 0,#112,#113,#114,#115,#116,#117,#120,

 #121,#122, 0, 0, 0, 0, 0, 0,

 0, 0,#123,#124,#125,#126,#127,#130,

 #131,#132, 0, 0, 0, 0, 0, 0,

 #60, #61, #62, #63, #64, #65, #66, #67,

 #70, #71, 0, 0, 0, 0, 0, 0

 C := TABLE L1G1, K2, X22

 CYCLEOUT := 0

 A := INTERPRET()

 SELECTOUTPUT(SYSPRINT)

 WRITEF("*N*NEXECUTION CYCLES = %N, CODE = %N*N", CYCLEOUT, A)

 IF A<0 DO MAPSTORE()

 FINISH $)1

