

 The BCPL Programming Manual

 by

 M. Richards

 The Computer Laboratory,

 University of Cambridge,

 Corn Exchange Street,

 Cambridge CB2 3QG November 1974

 TABLE OF CONTENTS

1. INTRODUCTION

2. LANGUAGE DEFINITION

 2.1 Program

 2.2 Elements

 2.3 Expressions

 2.3.1 Addressing operators

 2.3.2 Arithmetic operators

 2.3.3 Relations

 2.3.4 Shift operators

 2.3.5 Logical operators

 2.3.6 Conditional operator

 2.3.7 Table

 2.3.8 Constant expression

 2.4 Section brackets

 2.5 Commands

 2.5.1 Assignment

 2.5.2 Conditional commands

 2.5.3 For command

 2.5.4 Other repetitive commands

 2.5.5 Resultis command and valof expression

 2.5.6 Switchon command

 2.5.7 Transfer of control

 2.5.8 Compound command

 2.5.9 Block

 2.6 Declarations

 2.6.1 Global

 2.6.2 Manifest

 2.6.3 Static

 2.6.4 Dynamic

 2.6.5 Vector

 2.6.6 Function and routine

 2.6.7 Label

 2.6.8 Simultaneous declaration

 2.7 Miscellaneous features

 2.7.1 GET

 2.7.2 Comments and spaces

 2.7.3 Optional symbols and synonyms

 2.8 The run-time library

 2.8.1 Input-Output routines

 2.8.2 Other useful subroutines

 2.8.3 Library variables

3. USING BCPL ON THE 370

 3.1 Compilation

 3.1.1 Library declarations

 3.1.2 Diagnostics

 3.1.3 Compilation options

 3.2 Execution

 3.2.1 Loading

 3.2.2 Execution faults

 3.2.3 A complete job

Appendix A Basic symbols and synonyms

Appendix B The BCPL syntax

Appendix C The EBCDIC character code

Appendix D Common extensions

 1. INTRODUCTION

 BCPL is a programming language designed primarily for non-

numerical applications such as compiler-writing and general systems

programming. It has been used successfully to implement compilers,

interpreters, text editors, game playing programs and operating systems.

The BCPL compiler is written in BCPL and runs on several machines

including the IBM 370/165 at Cambridge.

 Some of the distinguishing features of BCPL are:

 The syntax is rich, allowing a variety of ways to write

 conditional branches, loops, and subroutine definitions.

 This allows one to write quite readable programs.

 The basic data object is a word (32 bits on the 370) with no

 particular disposition as to type. A word may be treated

 as a bit-pattern, a number, a subroutine entry or a label.

 Neither the compiler nor the run-time system makes any

 attempt to enforce type restrictions. In this respect BCPL

 has both the flexibility and pitfalls of machine language.

 Manipulation of pointers and vectors is simple and

 straightforward.

 All subroutines may be called recursively.

 This manual is not intended as a primer; the constructs of the

language are presented with scant motivation and few examples. To use

BCPL effectively on the 370 one must have a good understanding of how

the machine works and be familiar with its operating system. To the

experienced and disciplined programmer it is a powerful and useful

language but there are few provisions for the protection of naive users.

 The main body of this manual describes the official standard

subset of BCPL which will be supported at most BCPL installations. Many

of the larger installations provide extensions to the language and a

summary of the extensions available on the 370 implementation can be

found in Appendix D. Users are strongly recommended to remain within

the standard subset unless there are exceptionally strong reasons for

not doing so.

Acknowledgments

 The overall layout and organisation of this manual is based on a

manual written by J.H. Morris of the University of California, Berkeley,

which itself was based on a well-written memorandum by R.H. Canaday and

D.M. Richie of Bell Telephone Laboratories.

 The initial design and implementation of BCPL was done on CTSS

at Project MAC in 1967 and since then the language has developed and

been transferred to many machines around the world.

 The machine code library was implemented for the 370 by J.K.M.

Moody and many of the language extensions for the 370 were implemented

with the assistance of H.C.M. Meekings. Many of the extensions were

first designed and implemented by J.L. Dawson.

 The language design was strongly influenced by the author's

experience with CPL. This language is described by D.W. Barron et al

in "The Main Features of CPL", The Computer Journal, Vol. 6, p.134.

 2. LANGUAGE DEFINITION

2.1 Program

 At the outermost level, a BCPL program consists of a sequence of

declarations. To understand the meaning of a program, it is necessary

to understand the meaning of the more basic constructs of the language

from which it is made. We, therefore, choose to describe the language

from the inside out starting with one of the most basic constructs,

namely the 'element'.

2.2 Elements

 <element> ::= <identifier> | <number> |

 TRUE | FALSE | ? |

 <string constant> | <character constant>

 An <identifier> consists of a sequence of letters, digits and

underlines, the first character of which must be a letter.

 A <number> is either an integer consisting of a sequence of

decimal digits, or an octal constant consisting of the symbol '#'

followed by octal digits, or a hexadecimal constant consisting of the

character pair #X followed by hexadecimal digits. The reserved words

TRUE and FALSE denote -1 and 0 respectively (on a 2's complement

machine) and are used to represent the two truth values. The symbol

'?' may be used anywhere in an expression when no specific value is

required, as in:

 LET OP, A = ?, ?

 A <string constant> consists of up to 255 characters enclosed in

string quotes ("). The internal character set is EBCDIC (on the 370).

The character " may be represented only by the pair *" and the character

* can only be represented by the pair **. Other characters may be

represented as follows:

 *N is newline

 *C is carriage return

 *T is horizontal tab

 *S is space

 *B is backspace

 *P is newpage

 In a string the sequence

 * <newline> [<space> | <tab>] *

is skipped. Thus, the string

 "THIS STRING *

 CONTAINS NEWLINES

 * AND SPACES"

is equivalent to

 "THIS STRING CONTAINS NEWLINES AND SPACES"

 The machine representation of a string is the address of the

region of store where the length and characters of the string are

packed. The packing and unpacking of strings may be done using the

machine dependent library routines PACKSTRING and UNPACKSTRING, and

individual characters in a string can be accessed and updated using the

library routines GETBYTE and PUTBYTE, see section 2.8.2.

 A <character constant> consists of a single character enclosed

in character quotes ('). The character ' can be represented in a

character constant only by the pair *'. Other escape conventions are

the same as for a string constant. A character constant is right

justified in a word. Thus 'A' = 193 (on the 370).

2.3 Expressions

 Because an identifier has no type information associated with

it, the type of an element (and hence an expression) is assumed to match

the type required by its context.

 All expressions are listed below. E1, E2 and E3 represent

arbitrary expressions except as noted in the descriptions which follow

the list, and K0, K1 and K2 represent constant expressions (whose values

can be determined at compile time, see section 2.3.8).

Primary element

 (E1)

function call E1()

 E1(E2,E3,...)

addressing E1!E2 subscripting

 @E1 address generaton

 !E1 indirection

arithmetic E1 * E2

 E1 / E2

 E1 REM E2 integer remainder

 E1 + E2

 + E1

 E1 - E2

 - E1

relational E1 = E2

 E1 ~= E2 not equal

 E1 < E2

 E1 <= E2

 E1 > E2

 E1 >= E2

shift E1 << E2 left shift by E2(>=0) bits

 E1 >> E2 right shift by E2(>=0) bits

logical ~ E1 not (complement)

 E1 & E2 and

 E1 | E2 inclusive or

 E1 EQV E2 bitwise equivalence

 E1 NEQV E2 bitwise not-equivalence

 (exclusive or)

conditional E1 -> E2, E3

table TABLE K0,K1,K2,...

valof VALOF command

 The relative binding power of the operators is as follows:

 (highest, most binding) function call

 ! (subscripting)

 @ !

 * / REM

 + -

 relationals

 shifts (see section 2.3.4)

 ~

 &

 |

 EQV NEQV

 ->

 TABLE

 (lowest, least binding) VALOF

 Operators of equal binding power associate to the left. For

example,

 X + Y - Z

is equivalent to

 (X + Y) - Z

 In order that the rule allowing the omission of most semicolons

should work properly, a diadic operator may not be the first symbol on a

line.

 The function call will be described with the function definition

in section 2.6.6, and the valof expression will be described with the

resultis command in section 2.5.5.

2.3.1 Addressing operators

 A powerful pair of operators in BCPL are those which allow one

to generate and use addresses. An address may be manipulated using

integer arithmetic and is indistinguishable from an integer until it is

used in a context which requires an address. If the value of a

variable X is the address of a word in storage, then X+1 is the address

of the next word.

 If V is a variable, then associated with V is a single word of

memory, which is called a cell. The contents of the cell is called the

value of V and the address of the cell is called the address of V.

 An address may be used by applying the indirection operator (!).

The expression

 !E1

has, as value, the contents of the cell whose address is the value of

the expression E1. Only the low-order 22 bits of E1 are used (on the

370).

 An address may be generated by means of the operator @. The

expression

 @E1

is only valid if E1 is one of the following:

 (1) An identifier (not declared by a manifest declaration),

 in which case @V is the address of V.

 (2) A subscripted expression, in which case the value of

 @E1!E2 is E1+E2.

 (3) An indirection expression, in which case the value of

 @!E1 is E1.

Case (1) is self-explanatory. Case (2) is a consequence of the way

vectors are defined in BCPL. A vector of size n is a set of n + 1

contiguous words in memory, numbered 0, 1, 2, ..., n. The vector is

identified by the address of word 0. If V is an identifier associated

with a vector, then the value of V is the address of word 0 of the

vector.

 ------- -------

 V | *---|----------> | | 0

 ------- |-------|

 | | 1

 |-------|

 | | ...

 |-------|

 | | n

 The value of the expression

 V!E1

is the contents of cell number E1 of vector V, as one would expect. The

address of this cell is the value of

 V + E1

hence

 @(V!E1) = V + E1

This relation is true whether or not the expression

 V!E1

happens to be valid, and whether or not V is an identifier.

Case (3) is a consequence of the fact that the operators @ and ! are

inverse.

 The interpretation of

 !E1

depends on context as follows:

 (1) If it appears as the left-hand side of an assignment

 statement, e.g.

 !E1 := E2

 E1 is evaluated to produce the address of a cell

 and E2 is stored in it

 (2) @(!E1) = E1 as noted above.

 (3) In any other context E1 is evaluated and the contents

 of that value, treated as an address, is taken.

Thus, ! forces one more contents-taking than is normally demanded by the

context.

 As a summarising example, consider the four variables A, B, C

and D with initial values @C, @D, 5 and 7, respectively. Then, after

the assignment

 A := B

their values will be @D, @D, 5, 7.

If, instead, the assignment

 A := !B

had been executed, then the values would have been 7, @D, 5, 7.

And if the assignment

 !A := B

had been executed, then the values would have been @C, @D, @D, 7.

Note that

 @A := B

is not meaningful, since it would call for changing the address

associated with A, and that association is permanent.

2.3.2 Arithmetic operators

 The arithmetic operators *, /, REM, + and - act on 32 bit

quantities (on the 370) interpreted as integers.

 The operators * and / denote integer multiplication and

division. The operator REM yields the integer remainder after dividing

the left hand operand by the right hand one. If both operands are

positive the result will be positive, it is otherwise implementation

dependent.

 The operators + and - may be used in either a monadic or diadic

context and perform the appropriate integer arithmetic operations.

 The treatment of arithmetic overflow is undefined.

2.3.3 Relations

 A relational operator compares the integer values of its two

operands and yields a truth-value (TRUE or FALSE) as result. The

operators are as follows:

 = equal

 ~= not equal

 < less than

 <= less than or equal

 > greater than

 >= greater than or equal

 The operators = and ~= make bitwise comparisons of their

operands and so may be used to determine the equality of values

regardless of the kind of objects they represent.

 An extended relational expression such as

 'A' <= CH <= 'Z'

is equivalent to

 'A' <= CH & CH <= 'Z'

2.3.4 Shift operators

 In the expression E1 << E2 (E1 >> E2), E2 must evaluate to yield

a non-negative integer. The value is E1, taken as a bit-pattern,

shifted left (or right) by E2 places. Vacated positions are filled

with 0 bits.

 Syntactically, the shift operators have lower precedence on the

left than relational operators but greater precedence on the right.

Thus, for example,

 A << 10 = 14

is equivalent to

 (A<<10) = 14

but

 14 = A << 10

is equivalent to

 (14=A) << 10

2.3.5 Logical operators

 The effect of a logical operator depends on context. There are

two logical contexts: 'truth-value' and 'bit'. The truth-value context

exists whenever the result of the expression will be interpreted

immediately as true or false. In this case each subexpression is

interpreted, from left to right, in truth-value context until the truth

or falsehood of the expression is determined. Then evaluation stops.

Thus, in a truth-value context, the evaluation of

 E1 | E2 & ~E3

is as follows.

 E1 is evaluated, and if true the whole expression is true,

otherwise E2 is evaluated, and if false the whole expression is false,

otherwise E3 is evaluated, and if false the whole expression is true,

otherwise the whole expression is false.

 In a 'bit' context, the operator ~ causes bit-by-bit

complementation of its operand. The other operators combine their

operands bit-by-bit according to the following table:

 | | Operator |

 | Operands | |

 | | & | NEQV EQV |

 |------------|------------------------|

 | | |

 | 0 0 | 0 0 0 1 |

 | | |

 | 0 1 | 0 1 1 0 |

 | | |

 | 1 0 | 0 1 1 0 |

 | | |

 | 1 1 | 1 1 0 1 |

 | | |

2.3.6 Conditional operator

 The expression

 E1 -> E2, E3

is evaluated by evaluating E1 in truth-value context. If it yields

true, then the expression has value E2, otherwise E3. E2 and E3 are

never both evaluated.

2.3.7 Table

 The value of the table expression

 TABLE K0, K1, K2, ...

is the address of a static vector of cells initialised to the values of

K0, K1, K2, ... which must be constant expressions.

2.3.8 Constant expression

 A constant expression is any expression involving only numbers,

character constants, names declared by manifest declaration, TRUE, FALSE

and the operators *, /, REM, + and - .

2.4 Section brackets

 Blocks, compound commands and some other syntactic constructions

use the symbols $(and $) which are called opening and closing section

brackets.

 A section bracket may be tagged with a sequence of letters,

digits and underlines (the same characters as are used in identifiers).

A section bracket immediately followed by a space or newline is, in

effect, tagged with null.

 An opening section bracket can be matched only by an identically

tagged closing bracket. When the compiler finds a closing section

bracket with a non-null tag, if the nearest opening bracket (smallest

currently open section) does not match, that section is closed and the

process repeats until a matching opening section bracket is found.

 Thus it is impossible to write sections which are overlapping

(not nested).

2.5 Commands

 The complete set of commands is shown here, with E, E1, E2 and K

denoting expressions, C, C1 and C2 denoting commands, and D1 and D2

denoting declarations.

 routine call E(E1, E2, ...)

 E()

 assignment <left hand side list> := <expression list>

 conditional IF E THEN C

 UNLESS E THEN C

 TEST E THEN C1 OR C2

 repetitive WHILE E DO C

 UNTIL E DO C

 C REPEAT

 C REPEATWHILE E

 C REPEATUNTIL E

 FOR N = E1 TO E2 BY K DO C

 FOR N = E1 TO E2 DO C

 resultis RESULTIS E

 switchon SWITCHON E INTO <compound command>

 transfer GOTO E

 FINISH

 RETURN

 BREAK

 LOOP

 ENDCASE

 compound $(C1; C2; ... $)

 block $(D1; D2; ...; C1; C2; ... $)

Discussion of the routine call is deferred until section 2.6.6 where

function and routine declarations are described.

2.5.1 Assignment

 The command

 E1 := E2

causes the value of E2 to be stored into the cell specified by E1. E1

must have one of the following forms:

 (1) The identifier of a variable <identifier>

 (2) A subscripted expression E3!E4

 (3) An indirection expression !E3

In case (1) the cell belonging to the identifier is updated. Cases (2)

and (3) have been described in section 2.3.1.

 A list of assignments may be written thus:

 E1, E2, ..., En := F1, F2, ..., Fn

where Ei and Fi are expressions. This is equivalent to

 E1 := F1

 E2 := F2

 ...

 En := Fn

2.5.2 Conditional commands

 IF E THEN C1

 UNLESS E THEN C2

 TEST E THEN C1 OR C2

Expression E is evaluated in truth-value context. Command C1 is

executed if E is true, otherwise the command C2 is executed.

2.5.3 For command

 FOR N = E1 TO E2 BY K DO C

N must be an identifier and K must be a constant expression. This

command will be described by showing an equivalent block.

 $(LET N, t = E1, E2

 UNTIL N > t DO $(C

 N := N + K $)

 $)

If the value of K is negative the relation N > t is replaced by N < t.

The declaration

 LET N, t = E1, E2

declares two new cells with identifiers N and t; t being a new

identifier that does not occur in C. Note that the control variable N

is not available outside the scope of the command.

 The command

 FOR N = E1 TO E2 DO C

is equivalent to

 FOR N = E1 TO E2 BY 1 DO C

2.5.4 Other repetitive commands

 WHILE E DO C

 UNTIL E DO C

 C REPEAT

 C REPEATWHILE E

 C REPEATUNTIL E

Command C is executed repeatedly until condition E becomes true or false

as implied by the command. If the condition precedes the command

(WHILE, UNTIL) the test will be made before each execution of C. If it

follows the command (REPEATWHILE, REPEATUNTIL), the test will be made

after each execution of C, and so C is executed at least once. In the

case of

 C REPEAT

there is no condition and termination must be by a transfer or resultis

command in C. C will usually be a compound command or block.

 Within REPEAT, REPEATWHILE and REPEATUNTIL C is taken as short

as possible. Thus, for example

 IF E THEN C REPEAT

is the same as

 IF E THEN $(C REPEAT $)

and

 E := VALOF C REPEAT

is the same as

 E := VALOF $(C REPEAT $)

2.5.5 Resultis command and valof expression

 The expression

 VALOF C

where C is a command (usually a compound command or block) is called a

valof expression. It is evaluated by executing the commands (and

declarations) in C until a resultis command

 RESULTIS E

is encountered. The expression E is evaluated, its value becomes the

value of the valof expression and execution of the commands within C

ceases.

 A valof expression must contain one or more resultis commands

and one must be executed.

 In the case of nested valof expressions, the resultis command

terminates only the innermost valof expression containing it.

2.5.6 Switchon command

 SWITCHON E INTO <compound command>

where the compound command contains labels of the form

 CASE <constant expression>:

 or DEFAULT:

The expression E is first evaluated and, if a case exists which has a

constant with the same value, then execution is resumed at that label;

otherwise, if there is a default label, then execution is continued from

there, and if there is not, execution is resumed just after the end of

the switchon command.

 The switch is implemented as a direct switch, a sequential

search or a binary search depending on the number and range of case

constants.

2.5.7 Transfer of control

 GOTO E

 FINISH

 RETURN

 BREAK

 LOOP

 ENDCASE

The command GOTO E interprets the value of E as an address, and

transfers control to that address, see section 2.6.7. The command

FINISH causes an implementation dependent termination of the entire

program. RETURN causes control to return to the caller of a routine.

BREAK causes execution to be resumed at the point just after the

smallest textually enclosing repetitive command. The repetitive

commands are those with the following key words:

 UNTIL, WHILE, REPEAT, REPEATWHILE, REPEATUNTIL and FOR

LOOP causes execution to be resumed at the point just before the end of

the body of a repetitive command. For a for command it is the point

where the control variable is incremented, and for the other repetitive

commands it is where the condition (if any) is tested. ENDCASE causes

execution to be resumed at the point just after the smallest enclosing

switchon command.

2.5.8 Compound command

 A compound command is a sequence of commands enclosed in section

brackets.

 $(C1; C2; ... $)

The commands C1, C2, ... are executed in sequence.

2.5.9 Block

 A block is a sequence of declarations followed by a sequence of

commands enclosed together in section brackets.

 $(D1; D2; ... ; C1; C2; ... $)

The declarations D1, D2, ... and the commands C1, C2, ... are

executed in sequence. The scope of an identifier (i.e. the region of

program where the identifier is known) declared in a declaration is the

declaration itself (to allow recursive definition), the subsequent

declarations and the commands of the block. Notice that the scope does

not include earlier declarations or extend outside the block.

2.6 Declarations

 Every identifier used in a program must be declared explicitly.

There are 10 distinct declarations in BCPL:

 global, manifest, static, dynamic, vector, function, routine,

 formal parameter, label and for-loop control variable.

 The declaration of formal parameters is covered in sections

2.6.6 and 2.6.7, and the for-loop is described in section 2.5.3.

 The scope of identifiers declared at the head of a block is

described in the previous section.

2.6.1 Global

 A BCPL program need not be compiled in one piece. The sole

means of communication between separately compiled segments of program

is the global vector. The declaration

 GLOBAL $(Name : constant-expression $)

associates the identifier Name with the specified location in the global

vector. Thus Name identifies a static cell which may be accessed by

Name or by any other identifier associated with the same global vector

location.

 Global declarations may be combined.

 GLOBAL $(N1:K1; N2:K2; ...; Nn:Kn $)

is equivalent to

 GLOBAL $(N1:K1 $)

 GLOBAL $(N2:K2 $)

 ...

 GLOBAL $(Nn:Kn $)

2.6.2 Manifest

 An identifier may be associated with a constant by the

declaration

 MANIFEST $(Name = constant-expression $)

An identifier declared by a manifest declaration may only be used in

contexts where a constant would be allowable. It may not, for

instance, appear on the left hand side of an assignment. Like global

declarations, manifest declarations may be combined.

 MANIFEST $(N1=K1; N2=K2; ...; Nn=Kn $)

is equivalent to

 MANIFEST $(N1=K1 $)

 MANIFEST $(N2=K2 $)

 ...

 MANIFEST $(Nn=Kn $)

2.6.3 Static

 A variable may be declared and given an initial value by the

declaration

 STATIC $(Name = constant-expression $)

The variable that is declared is static, that is it has a cell

permanently allocated to it throughout the execution of the program

(even when control is not dynamically within the scope of the

declaration). Like global declarations, static declarations may be

combined.

 STATIC $(N1=K1; N2=K2; ...; Nn=Kn $)

is equivalent to

 STATIC $(N1=K1 $)

 STATIC $(N2=K2 $)

 ...

 STATIC $(Nn=Kn $)

2.6.4 Dynamic

 The declaration

 LET N1, N2, ..., Nn = E1, E2, ..., En

creates dynamic cells and associates with them the identifiers N1, N2,

..., Nn. These cells are initialised to the values of E1, E2, ..., En.

The space reserved for these cells is released when the block in which

the declaration appears is left.

2.6.5 Vector

 The declaration

 LET N = VEC K

where K is a constant expression, creates a dynamic vector by reserving

K + 1 cells of contiguous storage in the stack, plus one cell which is

associated with the identifier N. Execution of the declaration causes

the value of N to become the address of the K + 1 cells. The storage

allocated is released when the block is left.

2.6.6 Function and routine

 The declaration

 LET N(P1, P2, ..., Pm) = E

declares a function named N with m parameters. The parentheses are

required even if m = 0. A parameter name has the same syntax as an

identifier, and its scope is the expression E. A routine declaration

is similar to a function declaration except that its body is a command.

 LET N(P1, P2, ..., Pm) BE C

 If the declaration is within the scope of a global declaration

for N, then the global cell will be initialised to the entry address of

the function (or routine) before execution of the program. Thus the

function may be accessed from anywhere. Otherwise, a static cell is

created, is associated with the identifier N, and is initialised to the

entry address.

 The function or routine is invoked by the call

 E0(E1, E2, ..., Em)

where expression E0 evaluates to the entry address. In particular,

within the scope of the identifier N, the function or routine may be

invoked by the call

 N(E1, E2, ..., Em)

provided the value of N has not been changed during the execution of the

program.

 Each value passed as a parameter is copied into a newly created

cell which is then associated with the corresponding parameter name. The

cells are consecutive in store and so the argument list behaves like an

initialised dynamic vector. The space allocated for the argument list

is released when evaluation of the call is complete. Notice that

arguments are always passed by value; however, the value passed may, of

course, be an address.

 A function call is a call in the context of an expression. If a

function is being called, the result is the value of E, and if a routine

is being called, the result is undefined. A routine call is a call

in the context of a command and may be used to call either a function or

a routine. A routine call has no result.

 No dynamic (or vector or formal) variable that is declared

outside the function may be referred to from within E.

2.6.7 Label

 A label may be declared by

 Name:

A label declaration may precede any command or label declaration, but

may not precede any other form of declaration. Exactly as in the case

of a function or routine, a label declaration creates a static cell if

it is not within the scope of a global declaration of the same

identifier. The local or global cell is initialised before execution

with the address of the point in the program labelled, so that the

command

 GOTO Name

has the expected effect.

 The scope of a label depends on its context. It is the

smallest of the following regions of program:

 (1) the command sequence of the smallest textually

 enclosing block,

 (2) the body of the smallest textually enclosing valof

 expression or routine,

 (3) the body of the smallest enclosing for command.

 Labels may be assigned to variables and passed as parameters. It

is, in general, not useful for them to be declared global, but they can

be assigned to global variables.

 Using a goto command to transfer to a label which is outside the

current function or routine will produce undefined (chaotic) results.

Such transfers can only be performed using the library functions LEVEL

and LONGJUMP which are described in section 2.8.2.

2.6.8 Simultaneous declaration

 Any declaration of the form

 LET ...

may be followed by one or more declarations of the form

 AND ...

where any construct which may follow LET may follow AND. As far as

scope is concerned, such a collection of declarations is treated like a

single declaration. This makes is possible, for example, for two

routines to know each other without recourse to the global vector.

2.7 Miscellaneous features

2.7.1 GET

 It is possible to include a file in the source text of a program

using a get directive of the form:

 GET "string"

On the 370, text of the get directive is replaced by the text of the

file whose DDNAME is string. A get directive should appear on a line

by itself.

2.7.2 Comments and spaces

 The character pair // introduces a comment. All characters

from (and including) // up to but not including the character 'newline'

will be ignored by the compiler. The character pair /* introduce a

comment which is terminated by the pair */, such a comment may extend

over several lines.

 Blank lines are also ignored.

 Space and tab characters may be inserted freely except inside a

basic symbol, but Space or tab characters are required to separate

identifiers or system words from adjoining identifiers or system words.

2.7.3 Optional symbols and synonyms

 The reserved words DO and THEN are synonyms in BCPL. Most

implementations of BCPL also allow other synonyms and a list of the

synonyms for the 370 implementation can be found in Appendix A.

 In order to make BCPL programs easier to read and to write, the

compiler allows the syntax rules to be relaxed in certain cases. The

word DO (or THEN) may be omitted whenever it is immediately followed by

the keyword of a command (e.g. RESULTIS). Any semicolon occurring as

the last symbol of a line may be omitted. As an example, the following

two programs are equivalent:

 IF A = 0 DO GOTO X; | IF A = 0 GOTO X

 A := A - 1; | A := A – 1

2.8 The run-time library

 This section summarises the library functions and routines that

are available on the 370 implementation of BCPL.

2.8.1 Input-Output routines

 The input/output facilities of BCPL are quite primitive and

simple, and are always invoked by means of function or routine calls.

FINDINPUT(ddname) is a function taking a string for the ddname of a

data-set as argument and returning a stream-pointer to be used by the

input routines. If the data-set is not already open for reading it is

opened. If the data-set does not exist, the result is zero.

SELECTINPUT(stream) is a routine which selects the specified input

stream for future reading.

RDCH() is a function whose result is the next character from the

currently selected input stream. If the stream is exhausted, it yields

ENDSTREAMCH(=-1).

UNRDCH() is a routine that will cause the next call of RDCH to yield the

same character that it returned on its last call for the currently

selected input stream.

REWIND() repositions the currently selected input stream to point to the

first record.

ENDREAD() closes the currently selected input stream.

FINDOUTPUT(ddname) is a function taking a string for the ddname of a

data-set as argument and returning a stream-pointer to be used by the

output routines. If the data-set is not already opened for writing it

is opened. If the data-set does not exist, the result is zero.

SELECTOUTPUT(stream) is a routine which selects the specified output

stream for future writing.

WRCH(CH) will write the character CH to the currently selected output

stream.

ENDWRITE() closes the currently selected output stream.

ENDTOINPUT() closes the currently selected output stream and reopens it

for reading.

INPUT() is a function that will return with the currently selected input

stream.

OUTPUT() is a function that will return with the currently selected

output stream.

TRIMINPUT(SW) sets the control that specifies the treatment of trailing

blanks in records read from the current input stream. If SW is true

trailing blanks will be skipped, if SW is false they will not.

READREC(V) is a function that will read a record from the current input

stream into the vector V packing four characters per word. The result

is the number of characters read, or -1 if the stream is exhausted.

WRITEREC(V,N) will write N characters from the vector V to the current

output stream followed by a newline. The characters in V are packed

four per word.

WRITESEG(V,N) will write N characters from the vector V to the current

output stream. The characters in V are packed four per word.

2.8.2 Other useful subroutines

PACKSTRING(V,S) is a function which packs the characters V!1 to V!N into

S, where N = V!0 & 255. The result is the subscript of the highest

element of S used (i.e. N/4 on the 370).

UNPACKSTRING(S,V) is a routine to unpack characters from the string S

into V!1 to V!N when N is the length of the string, and set V!0 = N.

GETBYTE(S, I) is a function whose result is the Ith character of the

string S. By convention the zeroth character of a string is its

length.

PUTBYTE(S, I, CH) is a routine which will update the Ith character of

the string S with CH.

WRITES(S) writes the string S to the current output stream.

NEWLINE() writes a newline to the current output stream.

WRITED(N,D) writes the integer N to the current output stream right

justified in a field of width D places. If D is too small the number

is written correctly using as many characters as necessary.

WRITEN(N) is equivalent to WRITED(N,0).

WRITEOCT(N,D) writes the D least significant octal digits of N to the

current output stream.

WRITEHEX(N,D) writes the D least significant hexadecimal digits of N to

the current output stream.

WRITEF(FORMAT,A,B, ...) is a routine to output A,B, ... to the

current output stream according to FORMAT. The FORMAT string is copied

to the stream until the end is reached or the warning character '%' is

encountered. The character following the '%' defines the format of the

next value to be printed as follows:

 %% print '%'

 %S print as a string

 %C print as a character

 %N print as a integer (minimum width)

 %In print as a integer width n

 %On print as an octal number width n

 %Xn print as a hexadecimal number width n

In the last three cases the width n is represented by a single

hexadecimal digit. The routine takes the format and a maximum of 11

additional arguments.

MAPSTORE() prints a map of the program area including function and

routine names, and the values of all global variables used.

BACKTRACE() prints a summary of the dynamic stack giving the names of

all functions and routines currently active and the values of the first

few local variables of each.

ABORT(CODE,ADDR) is called automatically by the system after most

faults. It calls BACKTRACE and MAPSTORE in order to provide the user

with some postmortem information.

STOP(N) will terminate the job step, returning a completion code N.

LEVEL() is a function whose result is the current value of the run-time

stack pointer for use with LONGJUMP. The stack pointer changes only

when a function or routine is entered or left.

LONGJUMP(P,L) will cause a non-local jump to the label L at the

activation level given by the stack pointer P.

TIME() is a function whose result is the computation time used in units

of 26 micro-seconds.

APTOVEC(F,N) is a function which will apply F to two arguments V and N

where V is a vector of size N. APTOVEC could (illegally) be defined in

BCPL as follows:

 LET APTOVEC(F,N) = VALOF

 $(LET V = VEC N

 RESULTIS F(V,N) $)

2.8.3 Library variables

STACKBASE points to the base of the runtime stack.

STACKEND points to the end of the runtime stack.

PARMS holds a string representing the PARM field for the current job

step.

TERMINATOR holds the character following the last digit of the most

recent number read in by READN.

ENDSTREAMCH is a manifest constant (=-1) which is produced by RDCH when

the input stream is exhausted.

 3. USING BCPL ON THE 370

 Files relating to the BCPL system are catalogued in the file

directory BCPLIB. These include the compiler itself BCPLIB.SYS2, the

library modules which are held in a partitioned data set BCPLIB.LIB and

the standard header file BCPLIB.LIBHDR which contains global

declarations for all the library routines. There is, also, an

information document BCPLIB.INFO which contains recent news about the

BCPL system.

 There are four catalogued procedures BCPLCLG, BCPLCL, BCPLC and

BCPLLG to simplify the use of the compiler.

3.1 Compilation

 The BCPL compiler is usually invoked by means of one of the

catalogued procedures. The following complete job illustrates the use

of BCPLCLG. It will compile and run the routine START.

 JOB ...

 LIMSTORE 150K

 // EXEC BCPLCLG

 //BCPL.SYSIN DD DATA

 GET "LIBHDR"

 LET START(PARM) BE $(1

 ...

 ...

 $)1

 /*

 The compiler runs as one job step and currently requires a

region size of 150K, hence the need for LIMSTORE 150K. The example

given above will cause the program to be compiled, link-edited and run

with the standard library. The catalogued procedure BCPLCLG is as

follows:

 //BCPLCLG PROC TRKS='5,5',PRINTC='SYSOUT=C',REGC=150K,

 // MINC=,SECC=20,CONDC=,PARMC='L12000/K',

 // LIBC='BCPLIB.SYS2',LIBHDR='BCPLIB.LIBHDR',

 // SYSLIBL='BCPLIB.LIB',IOSPACE=54K,

 // PRINTL='SYSOUT=C',REGL=98K,MINL=,SECL=20,

 // CONDL='4,LT,BCPL',

 // LISTL=LIST,MAPL=NOMAP,XREFL=NOXREF,LETL=LET,

 // ATTL=,CAL=CALL,DCBL=DCBS,BLKL=4096,

 // SIZEL='(999999,8K)',NAMEL='&GOSET(BCPLGO)',

 // DISPL='(NEW,PASS),SPACE=(TRK,(8,3,1),RLSE)',

 // PARMG=,PRINTG='SYSOUT=A',REGG=120K,MING=1439,

 // SECG=,CONDG='(4,LT,BCPL),(4,LT,LKED)'

 //*

 //BCPL EXEC PGM=BCPL,REGION=®C,PARM='$&IOSPACE.$&PARMC',

 // TIME=(&MINC,&SECC),COND=(&CONDC)

 //STEPLIB DD DISP=SHR,DSN=&LIBC

 //SYSPRINT DD &PRINTC

 //LIBHDR DD DISP=SHR,DSN=&LIBHDR

 //SYSGO DD DSN=&LOADSET,DISP=(MOD,PASS),UNIT=DISC,

 // SPACE=(TRK,(&TRKS),RLSE),

 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=2480)

 //LKED EXEC PGM=IEWL,REGION=®L,

 // PARM='SIZE=&SIZEL,&LISTL,&MAPL,&XREFL,&LETL,&ATTL,&CAL,&DCBL',

 // COND=(&CONDL),TIME=(&MINL,&SECL)

 //SYSLIB DD DSN=&SYSLIBL,DISP=SHR

 //SYSLMOD DD DSN=&NAMEL,DISP=&DISPL,DCB=BLKSIZE=&BLKL,UNIT=DISC

 //SYSPRINT DD &PRINTL

 //SYSUT1 DD UNIT=DISC,SPACE=(TRK,(&TRKS)),SEP=SYSLMOD,

 // DSN=&SYSUT1

 //SYSLIN DD DSN=&LOADSET,DISP=(OLD,DELETE)

 // DD DDNAME=SYSIN

 //GO EXEC PGM=*.LKED.SYSLMOD,COND=(&CONDG),REGION=®G,

 // PARM='&PARMG',TIME=(&MING,&SECG)

 //SYSPRINT DD &PRINTG

3.1.1 Library declarations

The directive

 GET "LIBHDR"

will insert the standard library declarations from the data-set whose

DDNAME is LIBHDR. The default setting of this data-set is

BCPLIB.LIBHDR. The items declared in this file are shown below. By

convention library variables are given global numbers in the range 1 to

99 and so users should avoid allocating globals in this region for their

own purposes.

 GLOBAL

 $(START:1 // The main routine

 ABORT:3 // Calls BACKTRACE and MAPSTORE

 BACKTRACE:4 // Summarise the run-time stack

 SELECTINPUT:11 // Select input stream

 SELECTOUTPUT:12 // Select output stream

 RDCH:13 // Read a character

 WRCH:14 // Write a character

 UNRDCH:15 // 'Unread' a character

 INPUT:16 // Find current input

 OUTPUT:17 // Find current output

 TRIMINPUT:20 // Set trailing blank control

 READREC:23 // Read a record

 WRITEREC:24 // Write record

 WRITESEG:25 // Write part-record

 TIME:28 // Find computation time

 STOP:30 // Terminate job step

 LEVEL:31 // Find activation pointer

 LONGJUMP:32 // Make non-local jump

 REWIND:35 // Rewind input stream

 APTOVEC:40 // Apply function to dynamic vector

 FINDOUTPUT:41 // Find specified output stream

 FINDINPUT:42 // Find specified input stream

 ENDREAD:46 // Close input stream

 ENDWRITE:47 // Close output stream

 ENDTOINPUT;51 // Close and reposition output stream

 STACKBASE:54 // Base of stack pointer

 STACKEND:55 // End of stack pointer

 WRITES:60 // Write a string

 WRITEN:62 // Write a number (minimum width)

 NEWLINE:63 // Write a newline

 PACKSTRING:66 // Pack characters

 UNPACKSTRING:67 // Unpack characters

 WRITED:68 // Write a number

 READN:70 // Read a number

 TERMINATOR:71 // Terminator character of READN

 WRITEHEX:75 // Write a hexadecimal number

 WRITEF:76 // Write with format

 WRITEOCT:77 // Write an octal number

 MAPSTORE:78 // Map the store

 GETBYTE:85 // Obtain a character from a string

 PUTBYTE:86 // Update a character in a string

 $)

 MANIFEST

 $(ENDSTREAMCH= -1 // End of stream character

 $)

3.1.2 Diagnostics

 The BCPL compiler has three passes: parse, translate and

code-generate. There are correspondingly three kinds of error

diagnostic.

 A parse diagnostic occurs when a relatively simple syntactic

error is detected during the first pass of compilation. The message

includes a portion of the source program to give the context and a brief

description of the probable error. The compiler usually skips to the

end of the line before continuing the parse. Later error messages

should be viewed with suspicion since the automatic recovery is often

not very successful.

 Translation phase diagnostics occur in the second pass of

compilation and report errors such as the use of an undeclared

identifier. Each error is briefly described and a representation of

the relevant portion of the parse tree is printed.

 Code-generation diagnostics are rare and usually result from

table overflows or compiler errors.

3.1.3 Compilation options

 The compilation of a program can be controlled by various

compilation options passed to the compiler by the PARM field of the EXEC

card that invoked the compiler. The options for the code-generator are

separated from those for the first phase of the compiler by a slash.

Most options are specified by single letters and some are primarily

debugging aids for the implementer of the compiler.

 The first phase options are as follows:

Ln Set the size of work-space area used during compilation.

 The best value of n is usually between 6000 and 12000.

Dn Set the size of the work-space area used to hold declared

 names. The default setting is D1800 which allows for 600 names

 to be declared at any one time.

N Disable the GET directive.

S List the source program with line numbers.

T Print the parse tree of the source program.

O Print the intermediate object code form of the program.

 The code generator options are as follows:

K Compile instructions with each function and routine to count

 the number of times they are executed. The counts can be

 printed using MAPSTORE.

P Compile instructions after labels and conditional jumps to

 accumulate execution counts. These counts can be printed

 using MAPSTORE and allow one to make a detailed analysis of

 the execution of the program.

G Execute the compiled program as a subroutine of the compiler

 and thus save the overhead of the 'link-edit' and 'go' steps.

 This option is particularly useful when running BCPL under the

 BATCH monitor, but one is limited to the region size and

 library used by the compiler.

H Construct a symbol table that gives the identifiers of local

 variables. The extended post-mortem will then print the

 values of such variables together with source names (specify

 NEEDS "PM" to obtain the special post-mortem).

L Output an assembly listing of the compiled program.

N Do not generate an object module for the program.

 The default setting of the PARM field when using BCPLCLG is

'L12000/K'.

3.2 Execution

3.2.1 Loading

 Each compiled segment of a BCPL program has an external

reference to BCPLMAIN which is the entry point of the standard machine

code library and this, in turn, has a reference to BLIB which is the

portion of the standard library written in BCPL. Thus, when the

compiled segments are link-edited together, the library modules are

automatically incorporated. The standard library modules are held in

BCPLIB.LIB.

 When the complete program is executed, the machine code library

initialises the run-time system and obtains space for the global vector

and stack. The globals are initialised to their appropriate values and

then control is passed to the BCPL program by calling the routine START

(global 1) which must have been defined by the programmer. START is

passed a string representing the PARM field of the job control card that

caused the program to be executed.

 The size of the global vector is the smallest multiple of 100

words large enough to accommodate the highest global number actually

used in any segment of the loaded program. The size of the run-time

stack depends on the space available in the region in which the program

is run. Some space is returned for input/output buffers and system

use. The limits of the stack are held in STACKBASE and STACKEND.

 If the PARM string starts with a sequence of the form:

 $kKgGiItTD$

then the standard initialisation is modified as follows:

 kK specifies the size of the I/O space.

 gG specifies that the global vector will be initialised in

blocks of g (default 100).

 iI specifies that the first iK bytes (default 250K) of the stack

will be initialised to '* STCK *'.

 tT specifies the amount of time in centi-seconds to be made

available for post mortem routines (default 0.75 seconds).

 D disable the standard trapping of faults (so that a SYSUDUMP

can be generated).

 All these directives are optional and may be omitted. The remainder

of the string following the second '$' is passed to the program (as the

argument of START).

 When START is called, the initial output selection is to

SYSPRINT, if it exists; and the initial input selection is from SYSIN,

if it exists.

3.2.2 Execution faults

 In the event of an execution fault such as division by zero or a

protection exception the routine ABORT is called. This will print the

fault number and the program address when the fault was detected,

followed by a summary of the runtime stack (printed out by BACKTRACE)

and a map of the program store and globals (printed out by MAPSTORE).

This information is output to SYSPRINT which should therefore always be

provided.

3.2.3 A complete job

 The following is an example of a complete BCPL job to compile

and execute a BCPL program using the catalogued procedure BCPLCLG.

 JOB ...

 LIMSTORE 150K

 // EXEC BCPLCLG

 //BCPL.SYSIN DD DATA

 // THIS IS A DEMOSTRATION BCPL PROGRAM

 GET "LIBHDR"

 // THIS INSERTS THE STANDARD GLOBAL DECLARATION

 LET START(PARM) BE $(1 // START(GLOBAL 1) IS THE MAIN ROUTINE

 GLOBAL $(TREE:100; TREEP:101; CH:102 $)

 STATIC $(COUNT=0; MIN=0; MAX=0 $)

 MANIFEST $(// THE FOLLOWING NAMES WILL

 // BE USED AS SELECTORS

 VAL=0; LEFT=1; RIGHT=2

 $)

 // THE FUNCTIONS PUT, LIST AND SUM(DEFINED BELOW)

 // OPERATE ON A TREE STRUCTURE WHOSE ROOT IS HELD

 // IN TREE. IF T IS A BRANCH IN THIS TREE THEN

 // EITHER T=0

 // OR T POINTS TO A TREE NODE AND VAL!T IS AN

 // INTEGER(K SAY), LEFT!T IS A BRANCH CONTAINING

 // NUMBERS <K AND RIGHT!T IS A BRANCH CONTAINING

 // NUMBERS >=K.

 LET PUT(K, P) BE // THE ROUTINE PUT WILL ADD A NODE TO THE

 // TREE WHOSE ROOT IS POINTED TO BY P.

 $(P UNTIL !P=0 DO

 $(LET T = !P

 P := K<VAL!T -> @LEFT!T, @RIGHT!T $)

 VAL!TREEP, LEFT!TREEP, RIGHT!TREEP := K, 0, 0

 !P := TREEP

 TREEP := TREEP + 3 $)P

 AND LIST(T) BE // LIST THE NUMBERS HELD IN THE TREE T

 UNLESS T=0 DO $(LIST(LEFT!T)

 IF COUNT REM 10 = 0 DO NEWLINE()

 COUNT := COUNT + 1

 WRITEF(" %I6", VAL!T)

 LIST(RIGHT!T) $)

 AND SUM(T) = T=0 -> 0,

 VAL!T<MIN -> SUM(RIGHT!T),

 VAL!T>MAX -> SUM(LEFT!T),

 VAL!T+SUM(LEFT!T)+SUM(RIGHT!T)

 LET V = VEC 600

 TREE, TREEP := 0, V

 NXT: CH := RDCH() // THIS IS A CONVENIENT WAY

 // TO ORGANISE A TEST PROGRAM

 SW: SWITCHON CH INTO

 $(S CASE 'Q': CASE ENDSTREAMCH:

 WRITES("*NEND OF TEST*N")

 FINISH

 CASE 'P': PUT(READN(), @TREE) // PUT A NUMBER

 CH := TERMINATOR // IN THE TREE

 GOTO SW

 CASE 'L': NEWLINE() // LIST THE NUMBERS IN THE TREE

 COUNT := 0

 LIST(TREE)

 NEWLINE()

 GOTO NXT

 CASE 'S': MIN := READN()

 MAX := READN()

 WRITEF("*NSUM OF NUMBERS BETWEEN %N AND %N IS %N*N",

 MIN, MAX, SUM(TREE))

 CH := TERMINATOR

 GOTO NXT

 CASE 'M': MAPSTORE(); GOTO NXT // PRINT A STORE MAP

 CASE 'Z': TREE := 0; WRITES("*NTREE CLEARED*N"); GOTO NXT

 CASE '*S': CASE '*N': GOTO NXT // IGNORE SPACE AND NEWLINE

 DEFAULT: WRITEF("*NBAD CH '%C'*N", CH); GOTO NXT $)S

 $)1 // END OF PROGRAM

 /*

 //GO.SYSIN DD *

 P24 P13 P96 P46 P-12 P0 P45

 L S10 50

 Q

 /*

When this job is run, its GO step will output the following:

 -12 0 13 24 45 46 96

SUM OF NUMBERS BETWEEN 10 AND 50 IS 128

END OF TEST

 Appendix A: Basic symbols and synonyms

 The following list of words and symbols are treated as atoms by

the syntax analyser. The name of the symbol or its standard

representation on the 370 is given in the first column, and examples or

synonyms are given in the second.

 Basic symbol Examples and synonyms

 identifier A H1 PQRST TAX_RATE

 number 126 7249 #3771

 string constant "A" "*NTEST"

 character constant 'X' ')' '*N' '"'

 TRUE

 FALSE

 (

)

 @ LV

 ! RV

 *

 /

 REM

 +

 -

 = EQ

 ~= NE

 <= LE

 >= GE

 < LS

 > GR

 << LSHIFT

 >> RSHIFT

 ~ NOT

 & /\ LOGAND

 | \/ LOGOR

 EQV

 NEQV

 ->

 ,

 TABLE

 VALOF

 ;

 :

 $($(AB $(1

 $) $)AB $)1

 VEC

 BE

 LET

 AND

 :=

 BREAK

 LOOP

 ENDCASE

 RETURN

 FINISH

 GOTO

 RESULTIS

 SWITCHON

 INTO

 REPEAT

 REPEATUNTIL

 REPEATWHILE

 DO THEN

 UNTIL

 WHILE

 FOR

 TO

 BY

 TEST

 THEN DO

 OR ELSE

 IF

 UNLESS

 CASE

 DEFAULT

 Appendix B: BNF of BCPL

 This appendix presents the Backus Naur Form of the syntax of

BCPL. The whole syntax is given, with the following exceptions:

1. Comments are not included, and the space character is not

 represented even where required.

2. The section bracket tagging rule is not included, since it

 is impossible to represent in BNF.

3. The graphic escape sequences allowable in string and

 character constants are not represented.

4. No account is made of the rules which allow dropping of

 semicolon and DO in most cases. It seemed that these

 rules unnecessarily complicate the BNF syntax yet are easy

 to understand by other means.

5. BCPL has several synonymous system words and operators:

 for example, DO and THEN. Only a standard form of these

 symbols is shown in the syntax; a list of synonyms can

 be found in Appendix A.

6. Certain constructions can be used only in specific contexts.

 Not all these restrictions are included: for example,

 CASE and DEFAULT can only be used in switches, and RESULTIS

 only in VALOF expressions. Finally, there is the necessity

 of declaring all identifiers that are used in a program.

7. There is a syntactic ambiguity relating to <repeated command>

 which is resolved in section 2.5.4.

The brackets [] imply arbitrary repetition of the categories enclosed.

1. Identifiers, Strings, Numbers

<letter> ::= A | B | ... | Z

<octal digit> ::= 0 | 1 | ... | 7

<hex digit> ::= 0 | 1 | ... | F

<digit> ::= 0 | 1 | ... | 9

<string constant> ::= "<255 or fewer characters>"

<character constant> ::= '<one character>'

<octal number> ::= # <octal digit> [<octal digit>]

<hex number> ::= #X <hex digit> [<hex digit>]

<number> ::= <octal number> | <hex number> | <digit> [<digit>]

<identifier> ::= <letter> [<letter> | <digit> | _]

2. Operators

<address op> ::= @ | !

<mult op> ::= * | / | REM

<add op> ::= + | -

<rel op> ::= = | ~= | <= | >= | < | >

<shift op> ::= << | >>

<and op> ::= &

<or op> ::= |

<eqv op> ::= EQV | NEQV

3. Expressions

<element> ::= <character constant> | <string constant> |

 <number> | <identifier> | TRUE | FALSE

<primary E> ::= <primary E> (<expression list>) |

 <primary E> () |

 (<expression>) | <element>

<vector E> ::= <vector E> ! <primary E> | <primary E>

<address E> ::= <address op> <address E> | <vector E>

<mult E> ::= <mult E> <mult op> <address E> | <address E>

<add E> ::= <add E> <add op> <mult E> |

 <add op> <mult E> |

 <mult E>

<rel E> ::= <add E> [<rel op> <add E>]

<shift E> ::= <shift E> <shift op> <add E> | <rel E>

<not E> ::= ~ <shift E> | <shift E>

<and E> ::= <not E> [<and op> <not E>]

<or E> ::= <and E> [<or op> <and E>]

<eqv E> ::= <or E> [<eqv op> <or E>]

<conditional E> ::= <eqv E> -> <conditional E> , <conditional E> |

 <eqv E>

<expression> ::= <conditional E> |

 TABLE <constant expression>

 [, <constant expression>] |

 VALOF <command>

4. Constant Expressions

<C element> ::= <character constant> | <number> | <identifier> |

 TRUE | FALSE | (<const expression>)

<C mult E> ::= <C mult E> <mult op> <C element> | <C element>

<constant expression> ::= <constant expression> <add op> <C mult E> |

 <add op> <C mult E> | <C mult E>

5. Lists of Expressions and Identifiers

<expression list> ::= <expression> [, <expression>]

<name list> ::= <name> [, <name>]

6. Declarations

<manifest item> ::= <identifier> = <constant expression>

<manifest list> ::= <manifest item> [; <manifest item>]

<manifest declaration> ::= MANIFEST $(<manifest list> $)

<static declaration> ::= STATIC $(<manifest list> $)

<global item> ::= <identifier> : <constant expression>

<global list> ::= <global item> [; <global item>]

<global declaration> ::= GLOBAL $(<global list> $)

<simple definition> ::= <name list> = <expression list>

<vector definition> ::= <identifier> = VEC <constant expression>

<function definition> ::= <identifier> (<name list>) = <expression> |

 <identifier> () = <expression>

<routine definition> ::= <identifier> (<name list>) BE <command> |

 <identifier> () BE <command>

<definition> ::= <simple definition> | <vector definition> |

 <function definition> | <routine definition>

<simultaneous declaration> ::= LET <definition> [AND <definition>]

<declaration> ::= <simultaneous declaration> |

 <manifest declaration> |

 <static declaration> |

 <global declaration>

7. Left hand side Expressions

<LHSE> ::= <identifier> | <vector E> ! <primary E> |

 ! <primary E>

<left hand side list> ::= <LHSE> [, <LHSE>]

8. Unlabelled Commands

<assignment> ::= <left hand side list> := <expression list>

<simple command> ::= BREAK | LOOP | ENDCASE | RETURN | FINISH

<goto command> ::= GOTO <expression>

<routine command> ::= <primary E> (<expression list>) |

 <primary E> ()

<resultis command> ::= RESULTIS <expression>

<switchon command> ::= SWITCHON <expression> INTO <compound command>

<repeatable command> ::= <assignment> | <simple command> |

 <goto command> | <routine command> |

 <resultis command> | <repeated command> |

 <switchon command> | <compound command> |

 <block>

<repeated command> ::= <repeatable command> REPEAT |

 <repeatable command> REPEATUNTIL <expression> |

 <repeatable command> REPEATWHILE <expression>

<until command> ::= UNTIL <expression> DO <command>

<while command> ::= WHILE <expression> DO <command>

<for command> ::= FOR <identifier> = <expression> TO <expression>

 BY <constant expression> DO <command> |

 FOR <identifier> = <expression> TO <expression>

 DO <command>

<repetitive command> ::= <repeated command> | <until command> |

 <while command> | <for command>

<test command> ::= TEST <expression> THEN <command> OR <command>

<if command> ::= IF <expression> THEN <command>

<unless command> ::= UNLESS <expression> THEN <command>

<unlabelled command> ::= <repeatable command> | <repetitive command>

 <test command> | <if command> |

 <unless command>

9. Labelled Commands

<label prefix> ::= <identifier> :

<case prefix> ::= CASE <constant expression> :

<default prefix> ::= DEFAULT :

<prefix> ::= <label prefix> | <case prefix> | <default prefix>

<command> ::= <unlabelled command> |

 <prefix> <command> |

 <prefix>

10. Blocks and Compound Commands

<command list> ::= <command> [; <command>]

<declaration part> ::= <declaration> [; <declaration>]

<block> ::= $(<declaration part> ; <command list> $)

<compound command> ::= $(<command list> $)

<program> ::= <declaration part>

 Appendix C: The EBCDIC character set

 The following table gives the decimal values and graphics of the

characters available on the 370 implementation of BCPL.

 0 1 2 3 4 5 HT 6 7

 8 9 10 11 12 NP 13 CR 14 15

 16 17 18 19 20 21 NL 22 BS 23

 24 25 26 27 28 29 30 31

 32 33 34 35 36 37 LF 38 39

 40 41 42 43 44 45 46 47

 48 49 50 51 52 53 54 55

 56 57 58 59 60 61 62 63

 64 SP 65 66 [67] 68 69 70 71

 72 73 74 75 . 76 < 77 (78 + 79 |

 80 & 81 82 83 84 85 86 87

 88 89 90 ! 91 $ 92 * 93) 94 ; 95 ~

 96 - 97 / 98 \ 99 │ 100 ┤ 101 ^ 102 _ 103

 104 105 106 107 , 108 % 109 _ 110 > 111 ?

 112 113 114 115 116 117 118 119

 120 121 122 : 123 # 124 @ 125 ' 126 = 127 "

 128 129 a 130 b 131 c 132 d 133 e 134 f 135 g

 136 h 137 i 138 139 140 141 142 143

 144 145 j 146 k 147 l 148 m 149 n 150 o 151 p

 152 q 153 r 154 155 156 157 158 159

 160 161 162 s 163 t 164 u 165 v 166 w 167 x

 168 y 169 z 170 171 172 173 174 175

 176 177 178 179 180 181 182 183

 184 185 186 187 188 189 190 191

 192 193 A 194 B 195 C 196 D 197 E 198 F 199 G

 200 H 201 I 202 203 204 205 206 207

 208 209 J 210 K 211 L 212 M 213 N 214 O 215 P

 216 Q 217 R 218 219 220 221 222 223

 224 225 226 S 227 T 228 U 229 V 230 W 231 X

 232 Y 233 Z 234 235 236 237 238 239

 240 0 241 1 242 2 243 3 244 4 245 5 246 6 247 7

 248 8 249 9 250 251 252 253 254 255

Where HT is horizontal tab

 NL is newline

 CR is carriage return

 LF is line feed

 NP is newpage

 BS is backspace

 SP is space

and the end-of-stream character ENDSTREAMCH is minus one.

 Appendix D: Common extensions

 The extensions given here are available on the 370 version of

BCPL and, although they are not in the standard language, they should be

considered by other implementers of BCPL planning to extend the

language. This appendix is provided in the hope that it will reduce

needless incompatibilities between different implementations.

 It must be stressed that these extensions should only be used

where absolutely necessary, and then as sparingly as possible. They

tend to decrease the efficiency and the understandability of the program

and often indicate bad programming style.

 On machines with suitable wordlengths, floating-point arithmetic

and field selection are appropriate extensions. These are described in

the next two sections The last section describes other miscellaneous

extensions[

Floating-point arithmetic

 A floating-point constant may have one of the following forms:

 i.jEk

 i.j

 iEk

where i and j are unsigned integers and k is a (possibly signed)

integer. The value is represented on the 370 as a 32 bit floating-

point number.

 The arithmetic and relational operators for floating-point

quantities are as follows:

 #* #/

 #+ #-

 #= #~= #<= #>= #< #>

They have the same precedence as the corresponding integer operators.

There are, also, two monadic operators FIX and FLOAT for conversions

between integers and floating-point numbers. They have the same

precedence as @.

Field selectors

 Field selectors allow quantities smaller than a whole word to be

accessed with reasonable convenience and efficiency. A selector is

applied to a pointer using the operator OF(or ::). It has three

components: the size, the shift and the offset. The size is the number

of bits in the field, the shift is the number of bits between the

right-most bit of the field and the right hand end of the word

containing it, and the offset is the position of the word containing the

field relative to the pointer.

 The precedence of OF is the same as that of the subscription

operator(!), but its left operand (the selector) must be a constant

expression. A convenient way to specify a selector is to use the

operator SLCT whose syntax is as follows:

 <constant expression> ::= SLCT <size>:<shift>:<offset> |

 SLCT <size>:<shift> |

 SLCT <size>

where <size>, <shift> and <offset> are constant expressions. Unless

explicitly specified the shift and offset are assumed to be zero by

default. A size of zero indicates that the field extends to the left

hand end of the word.

 Selectors are best defined using manifest declarations.

 A selector application may be used on the left hand side of an

assignment and in any other context where an expression may be used,

except as the operand of @. In the assignment

 F OF P := E

the appropriate number of bits from the right hand end of E are assigned

to the specified field. When

 F OF P

is evaluated in any other context, the specified field is extracted and

shifted so as to appear at the right hand end of the result.

 On the 370, fields corresponding to half-words and bytes are

treated efficiently.

Miscellaneous extensions

a) Identifiers

 Capital and small letters, dots and underlines may be used in

identifiers and section bracket tags. System words must still be spelt

in capitals.

b) Constants

 Binary, octal and hexadecimal constants may be written using the

warning sequences #B, #O(or just #) and #X. They denote right

justified values.

c) Comments

The sequence || (like //) introduces a comment which extends to the end

of the line. The sequence |* ... *| (like /* ... */) is a

bracketed comment (possibly containing newlines).

d) Operators

 The monadic operators ABS and #ABS obtain the absolute value of

an integer or floating-point number. They have the same precedence as

@.

 The operator <> has a similar meaning to semicolon but is

syntactically more binding than DO, OR, REPEAT etc. For example

 IF E DO C1 <> C2

is equivalent to

 IF E DO $(C1 ; C2 $)

 The operator _ is a synonym for the assignment operator :=, and

both may be preceded by one of the following diadic operators:

 * / REM #* #/

 + - #+ #-

 &

 |

 EQV NEQV

The meaning of

 E1 <op>:= E2

is the same as

 E1 := E1 <op> E2

e) Segment headings

 A segment of BCPL program may start with a directive of the

following form:

 SECTION "name"

where name is a module name acceptable to the linkage-editor. It

defines the section name given to the object module corresponding to the

segment of program.

 This directive may be followed by one or more directives of the

form:

 NEEDS "name"

where name is a module name acceptable to the linkage-editor. It

causes an external reference to be set up in the object module, with the

result that the specified object will be retrieved automatically by the

linkage-editor.

