
~CTR-141

Mllrti a thltm-dls
bUr Mill, J.

'U4llil!liiln,t: ~-~

MSJ~rtf&f.1'.1-IMSTtTUB 0F lEQIN..CLOG:Y

~&a "1/iAC, ~ltQUm 0213'

The BCPL Reference Manual

by

Martin Richards

revised by

Arthur Evans, Jr.
Robert F. Mabee

11/26/74

This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense under ARPA Order No. 2095 which
was monitored by ONR Contract No. N00014-70-A-0362-0006.

The BCPL Reference Manual

The BCPL Reference Manual

by

Martin Richards

revised by

Arthur Evans, Jr.
Robert F. Mabee

11/26/74

Abstract

BCPL is a language which is readable and easy to learn, as well
as admitting of an efficient compiler capable of generating efficient
code. It is made self consistent and easy to define accurately by an
underlying structure based on a simple idealized object machine. The
treatment of data types is unusual and it allows the power and
convenience of a language with dynamically varying types and yet the
efficiency of FORTRAN. BCPL has been used successfully to implement a
number of languages and has proved to be a useful tool for compiler
writing. The BCPL compiler itself is written in BCPL and has been
designed to be easy to transfer to other machines; it has already been
transferred to more than ten different systems.

This research was supported in part by the Advanced Research Projects
Agency of the Department of Defense under ARPA Order No. 2095 which
was monitored by ONR Contract No. N00014-70-A-0362-0006.

- i -

The BCPL Reference Manual

TABLE OF CONTENTS

Section

1.0 Introduction
1.1 Implementation Guides

2.0 Hardware Representations and Syntax
2.1 Canonical BCPL
2.2 Formal Syntax
2.2.1 Syntactic Notation
2.2.2 The Canonical Syntax of BCPL
2.3 Hardware Representations
2.3.1 Names and System words
2.3.2 Section Brackets
2.3.3 Equivalent Representations of Canonical Symbols
2.4 Preprocessor Conventions
2.4.1 Section Brackets
2.4.2 Automatic Insertion of SEMICOLON
2.4.3 Automatic Insertion of DO
:.~.4 Comments
~-~.5 The Get Directive

3.0
3.1
3. 2
3.3
3.4
3.5
3.6
3.7
3.8

Fundamental Concepts of BCPL
The Object Machine
Variables, Manifest Constants, and Address Constants
Lvalues and Modes of Evaluation
Simple Assignment
'rhe Lv Operator
The Rv Operator
The vector Operator
Data Types

4.0 Expressions
4.1 Primary Expressions
4.1.1 Names
4.1.2 Numbers
4.1.3 String Constants
4.1.4 Character Constants
4.1.5 Truth Values
4.1.6 Nil
4.1.7 Bracketted Expressions
4.1.8 Result Blocks
4.1.9 Lv Expressions
4.1.10 Rv Expressions
4.1.11 Vector Expressions
4.1.12 Table and List Expressions
4.1.13 vector Applications
4.1.14 Function Applications
4.2 Arithmetic Expressions
4.3 Relational Expressions
4.4 Shift Expressions

- iii -

l
1

3
3
5
5
5
7
7
7
8
8
8
8
9
9

10

11
11
12
12
13
14
15
16
18

21
22
22
23
23
24
24
25
25
25
26
26
26
27
28
28
28
30
31

The BCPL Reference Manual

TABLE OF CONTENTS

Section

4.5
4.6
4.7
4.8

Logical Expressions
Conditional Expressions
Constant Expressions
Expression lists

Commands
Simple Assignment Commands
Assignment Commands
Routine Commands
Labelled Commands
Goto Commands
If Commands
While Commands
Test Commands
Repeat Commands

For Commands

5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

Loop, Break, and Endcase Commands
Finish Commands
Return Commands
Resultis Commands
Switchon Commands
Call Commands
Blocks

6.0 Definitions and Declarations
6.1 Scope and Scope Rules
6.2 Extent and Space Allocation
6.3 Let Declarations
6.3.1 Simple variable Definitions
6.3.2 Function and Routine Definitions
6.4 Manifest Declarations
6.5 Static Declarations
6.6 Global Declarations
6.7 External Declarations

References

- iv -

31
32
33
33

35
35
35
36
36
37
3'7
38
38
39
39
40
41
41
42
42
43
43

45
45
45
47
47

51
51
51
52

53

The BCPL Reference Manual

1.0 Introduction

BCPL (Basic CPL) is a general purpose programming language which
is particularly suitable for large nonnumerical problems in which
machine independence is important. It was originally designed as a
tool for compiler writing and has, so far, been used in at least three
compilers. BCPL is currently implemented and running on the Honeywell
635 under GECOS III, on the Honeywell 645 and 6180 under Multics, on
t~e ISM 360 under OS and CP/CMS, on the TX-2 at Lincoln Laboratory, on
:he CDC 6400, on the Univac 1108, and on the DEC PDP-9. There are
also BCPL compilers on the KDF 9 at Oxford and on Atlas 2 at
Cambridge. Other implementations are under construction.

BCPL is related to CPL (Combined Programming Language (1, 2)) and
was developed using experience gained from work on a CPL compiler.

The BCPL compiler is written in BCPL and is designed for fairly
easy transfer to any other machine. Where possible the implementation
dependent parts of the compiler have been separated out, so only a
small proportion (about 1/Sth) of the compiler needs to be rewritten
for a new implementation. This part consists mostly of the code
generator, which is entirely object-machine dependent. There is also
the command interface, which is entirely operating-system dependent.
In addition to modifying the compiler, it is necessary to design and
write the interface with the new operating system; this usually
includes several hundred lines of assembly language and ten or twenty
BCPL routines.

The cost of transferring BCPL to a new machine is usually between
2 and 5 man months.

1.1 Implementation Guides

This reference manual describes the BCPL language abstracted from
any particular implementation. For each implementation there should
be a specific implementation guide (possibly several documents) to
describe in detail:

(1) The representation of a BCPL program in the particular
character set, and other source file conventions such as
ignoring columns 73-80 in card images. There should be a
complete list of canonical symbols and their machine
representations.

(2) The form and meaning of constructs
implementation. This includes the get
external declaration, the call command, and
as possibly other construe~

left to
directive,

finish, as

the
the

well

(3) The maximum lengths of names, section bracket tags, numbers
and stringconstants, and the maximum number of cases in a

- 1 -

The BCPL Reference Manual

switchon, of elements in a table, of arguments to a function
or routine. There may also be restrictions on the length
and complexity of a program, on the depth of recursion, on
the length of a single stack frame, and the number of global
cells.

(4) The library. This consists of a number of routines written
in BCPL or assembly language which can be called by ordinary
BCPL calls. Usually a declaration for the library routines
will be made available on-line in a form suitable for
inclusion by the get directive.

(5) How a BCPL program is invoked from the command language or
from another compiler language.

(6) How to invoke the compiler. Also its options, input and
output files, temporary files, storage requirements, side
effects, etc.

(7) All the error messages or codes that can be generated by the
compiler or run-time routines.

(8) Extensions or restrictions in the canonical language. All
departures from the standard BCPL described in this manual
should be documented.

(9) Possibly some description .of the object program,
representation of strings, format of stack frame, etc.

(10) Several sample programs.

- 2 -

The BCPL Reference Manual

2.0 Hardware Representations and Syntax

Since BCPL is implemented on many machines having different
hardware character sets, it is useful to separate the machine
dependent hardware representation of a BCPL program from the canonical
syntax of the language. The details of the hardware representation
provided for any implementation can be found in the corresponding
implementation guide. In this chapter we give the machine independent
canonical syntax of BCPL and provide guide lines on which any hardware
representation should be based.

A BCPL program can be thought of as a stream of canonical symbols
laid out on a page. The canonical symbols are the basic words,
operators and symbols of the language and they are the terminal
symbols of the canonical syntax. Some canonical symbols are given
below:

let and "P3*n" 36 < + ; while

The symbols of a program are chosen tram a tinite set of tokens
along with the following unbounded sets:

<name>
<number>
<stringconst>
<charconst>
<sectbra>
<sectket>

As the representations of the tokens may differ in different
implementations because of character set limitations, this manual uses
a ~ancnical BCPL defined in the next section.

2.1 Canonical BCPL

The following are each a single canonical symbol with an
associated character string part:

<name>

<number>

<stringconst>

A name is a single lower-case letter or a
capital letter followed by any number of letters
and digits. For example: i Abe TaxRate V3

A number consists of one or more decimal digits;
other forms are described in section 4.1.2.

A string constant consists of any
string characters contained between
quotes ("). An escape convention is

number of
two double
described

in section 4.1.3. For example: "abc"

- 3 -

<char con st>

<sectbra>

<sectket>

The BCPL Reference Manual

A character constant is a single string
character enclosed between two single quotes
('). The same escape convention described in
section 4.1.3 applies also to character
constants. For example: 'p' ,.,,

A left section bracket consists of $(followed
by any number of letters and digits.
For example: $($(Trans $(1

A right section bracket consists of$) followed
by any number of letters and digits.
For example: $) $)xyz

These are all the other canonical symbols:

and
call
eri'cJcase
for
Tfriot
11st
Tsfiitt
not
repeat
return
sw1tchon
true
vec

+
I
<
>
:=

.+

./

.<

. >

be
case
external
<Jlobal
ifso
I'ogand
lv
or
repeatuntil
rshift
table
unless
while

=
>
=
1

break
default
false
<JOtO
into
Iogc)r
manifest
rem
repeatwhile
rv
test
until

*
=

by
do
Tinish
if
let
1i1P
rep
resultis
static
to
valof

* .
,
1

Throughout this manual syntax and programming examples will be
given in the representation defined in this section.

- 4 -

The BCPL Reference Manual

2.2 Formal Syntax

2.2.1 Syntactic Notation

The syntax given in this manual is Backus Naur Form with the
following extensions:

(1) Some common syntactic categories are not surrounded by
meta-linguistic brackets.

(2) The symbols { and} are used to indicate zero or more
repetitions of the bracketted entity, for example:

E { , E} means E I E, E I E, E, E I . . . etc

The syntax given in the next section is ambiguous and is simply
intended to list all the syntactic constructions available. The
ambiguities are resolved later in the manual.

2.2.2 The Canonical Syntax of BCPL

E r:= <name> I <stringconst> I <charconst> I <number>
I true I false I nil I (E) I valof <block>
I lvE l rv E I E-(-<arg list>) I E ! E I E [E
I E<diadic op> E I <monadic op> E I E -> E, E
I vec <constant expression> I table <constant list>
I 11st <E list>

<diadic op> : := * I .* I / I ./ I rem I + I .+ I -
I = I .= I ~ I -~ I < I .< l->-1 .> I < I .<
I lshift I rshift I logand I logor I =-It -

<monadic op>::=+ I.+ - I . - not

<E list> ::= <E rep> {, <E rep>}

<E rep> ::= E I E rep <constant expression>

<arg list> ::= <E list> I <empty>

<constant expression> ::= E

<constant list> ::= <constant rep> {, <constant rep>}

<constant rep> ::= <constant expression>

>

I <constant expression> rep <constant expression>

.>

C : := <E list> := <E list> I E (<arg list>
I ~fto E I <name> : C I resultis E
I 1 E do C I unless E do C I while E do C I until E do C
I Crepeat I C repeatunTil E I C repeatwhile E

- 5 -

The BCPL Reference Manual

loop I break I return I finish I endcase
test Ethen C or C I test E 1fso C ifnot C
for <name>= Eto E de>C --
for <name>= E to Eby <constant expression> do C
swTtchon E into<block> I case <constant expression>: C
case <constant expression>to<constant expression>: C
<lefaul t: C I call E (<arg list>) I <block> I <empty>

D ::= <name> (<FPL>) = E I <name> (<FPL> be C
I <name list>= <E list>

<FPL> ::= <name list> I <empty>

<name list> ::= <name> {, <name>}

<block> ::=$(<block body>$)

<block body> ::= <block item> {: <block item> }

<block item> ::= C I <declaration>

<declaration> ::= let D {and D}
I manifest <decl body> I global <decl body->
I external <decl body> I static <decl body>

<decl body> ::= $(<C def> {: <C def>} $)

<C def> ::= <name> : <constant expression>
I <name>= <constant expression>

<program> ::= <block body>

- 6 -

The BCPL Reference Manual

2.3 Hardware Representations

Since the hardware character sets used for different
implementations differ, it is practical to give only an outline of the
hardware conventions which are common to most versions of BCPL.

2.3.1 Names and System Words

System words are sequences of letters used t~ denote canonical
symbols for which there are no suitable graphics. The set of reserved
system words is implementation dependent. Names are also composed of
letters and digits and may be coined and used by the programmer to
denote variables and constants within his program. If the available
character set includes small letters then system words and names are
syntactically distinct.

For character sets with capital and small letters:

(1) A system word is any sequence of two or more small letters,
(2) A name is either

(a) a single small letter
(b) a capital letter followed by any sequence of letters,

digits and possibly other suitable characters (e.g.
• #)

For character sets with only capital letters:

(1) An identifier is a capital letter followed by any
sequence of letters, digits and possibly other suitable
characters (e.g. . #)

(2) A name is an identifier which is not a system word.

Thus on some implementations let and logor are system words while
Let, LET, Logor and LOGOR may be used as names; but with a more
restricted character set LET and LOGOR would be reserved system words
and the programmer would have to represent the names in some other
way, perhaps by:

F_LET, S_LET, F LOGOR, S LOGOR

2.3.2 Section Brackets

The preferred representation of a left section bracket consists
of° { followed by zero or more letters, digits, and other characters
allowed in names. A right section bracket consists of} followed by
zero or more letters, digits, etc. As the symbols { and } are used in
this manual as meta-linguistic brackets, section brackets in the
syntax and examples are represented using an alternate form also
suitable for more limited character sets.

- 7 -

The BCPL Reference Manual

2.3.3 Equivalent Representations of Canonical Symbols

Several canonical symbols have alternate representations for
clarity and compatibility. Thus by may be represented as step, and do
may be represented as then. Manysymbols ordinarily repr'es'ented by
non-alphabetic characters may also be represented by system words.
For example,= may be represented as eq.

2.4 Preprocessor Conventions

Several functions which the compiler performs before syntactic
analysis to improve readability and as a convenience to the programmer
are collectively called preprocessor conventions.

2.4.1 Section Brackets

Section brackets are used to bracket blocks and commands. To
aid the readability of programs, section brackets may be tagged with
any sequence of characters which may occur in identifiers. A closing
section bracket matches an earlier open section bracket with the same
tag and any outstanding sections will be closed automatically. For
example:

$(1 until i=0 do
$(2 R (i) -

i := i + 1 $)1

is equivalent to:

$(1 until i=0 do
$(2 R (i) -

i := i + 1 $)2 $)1

2.4.2 Automatic Insertion of SEMICOLON

The canonical symbol SEMICOLON is inserted by the compiler
between pairs of items if they appeared on different lines and if the
first was from the set of items which may end a command or definition,
namely: --

loop break return finish endcase repeat
<name> <number> <str1ngconst> <charconst>

true false nil
<sectket>) J

and the second is from the set of items which may start a command or
declaration, namely:

test for if unless until while goto resultis call
swITcho'i1 case default endcase loop break return
f1n1sh valor rv iv true false table 11st +

- 8 -

not

<name>
global

The BCPL Reference Manual

<number>
manifest

<stringconst> <charconst>
static external let

<sectbra>

For example, the following two programs are equivalent:

X := X + 1
if x > y do y := 0
R(x)

2.4.3 Automatic Insertion of DO

X := X + l;
if x > y do y := 0;
R(x)

The canonical symbol DO is inserted by the compiler between
pairs of items if they appeared on the same line and if the first is
from the set of items which may end an expression, namely:

true false
<charconst>

nil <name>
<sectket>

<number> <stringconst>
]

and the second is from the set of items which must start a command,
namely:

test for if unless until while got? _resultis ~
defaul-t-endcase loop break return f1n1sh sw1tchon call

For example:

unless 0 < T < Tmax resultis true
if x=0 goto L-

is equivalent to:

unless 0 < T < Tmax do resultis true
if x=0 do-goto L

2.4.4 Comments

User's comments may be included in a program between a double
slash '//' and the end of the line. Example:

let R () be
$(fori

// this is a routine which refills Symb
= 1 to 200 do // do it 200 times

Readch (INPUT, lv Symb!i) $) // read a char

- 9 -

The BCPL Reference Manual

2.4.5 The Get Directive

A directive of the form

~ <specifier>

may occur anywhere in a BCPL program: it directs the compiler to
replace the characters of the directive by the text in the file
referred to by the specifier. The syntactic form of the specifier is
implementation dependent but will usually.be a string constant.

- 10 -

The BCPL Reference Manual

3.0 Fundamental Concepts of BCPL

3.1 The Object Machine

BCPL has a simple underlying semantic structure which is built
around an idealized object machine. This method of design was chosen
in order to make BCPL easy to define accurately and to facilitate the
machine independence which is one of the fundamental aims of the
language.

The most important feature of the object machine is its store,
which is represented diagrammatically in Figure 1.

A (n) A (n+l) A (n+2) A (n+3)

Figure 1 - The Machine's Store

It consists of a set of consecutive boxes (or storage cells) uniquely
identified by arbitrary addresses. Some addressing function, A,
places the consecutive integers in one-to-one correspondence with the
addresses of consecutive cells. As is seen later, this property is
important.

Each storage cell holds a binary pattern called an Rvalue (or
Right hand value). All storage cells are of the same size and the
length of Rvalues is a constant of the implementation which is usually
between 24 and 36 bits. An Rvalue is the only kind of object which
can be manipulated directly in BCPL and the value of every variable
and expression in the language will always be an Rvalue.

Rvalues are used by the programmer to model abstract objects of
many different kinds, such as truth values, strings and functions. A
large number of basic operations on Rvalues have been provided in
order to help the programmer model the transformation of his abstract
objects. In particular, there are the usual arithmetic operations
which operate on Rvalues in such a way that they closely model
integers. One can either think of these operations as ones which
interpret their operands as integers, perform the integer arithmetic
and convert the result back into the Rvalue form, or alternatively one
may think of them as operations which work directly on bit patterns
and just happen to be useful for representing integers. This latter
approach is closer to the BCPL philosophy. Although the BCPL
programmer has direct access to the bits of an Rvalue, the details of
the binary representation used to represent integers are not defined
and he would be losing machine independence if he performed

- 11 -

The BCPL Reference Manual

nonnumerical operations on Rvalues he knows to represent integers.

An operation of fundamental importance in the object machine is
that of Indirection. This operation has one operand which is
interpreted as an address and it locates the storage cell which is
labelled by this address. This operation is assumed to be efficient
and, as is seen later, the programmer may invoke it from within BCPL
using the rv operator.

3.2 Variables, Manifest Constants, and Address Constants

Names in BCPL are associated either with storage cells or
directly with Rvalues. A variable in BCPL is defined to be a name
which has been associated with a storage cell. It has a value which
is the Rvalue contained in the cell and it is called a variable since
this Rvalue may be changed by an assignment command during execution.
Variables are introduced by simple variable definitions, the for
command, formal parameter lists, and the static and globaT
declarations.

A manifest constant is a name which is directly associated with a
constant Rvalue; this association takes place at compile time and
remains the same throughout execution. Manifest constants are
introduced only by the manifest declaration. There are many
situations where manifest constants can be used to improve readability
at no cost in run time efficiency.

An address constant is defined to be a name which is directly
associated with an Rvalue representing in some way an address. The
Rvalue cannot be determined until "load time" (just before execution)
and remains the same during execution. Address constants cannot be
used in constant expressions, which must be evaluated at compile time.
Labels, the ex~ernal declaration, and routine and function definitions
introduce address constants.

3.3 Lvalues and Modes of Evaluation

As previously stated each storage cell is labelled by an address;
this address is called the Lvalue (or Left hand value) of the cell.
Since a variable is associated with a storage cell, it must also be
associated with an Lvalue and one can usefully represent a variable
diagrammatically as in Figure 2.

- 12 -

The BCPL Reference Manual

NT~ Storage Cell

• 1-------
LVALUE I RVALUE

I ---------
Figure 2 - The Form of a Variable

Within the machine an Lvalue is represented by a bit pattern of
the same size as an Rvalue, and so an Rvalue can represent an Lvalue
directly. The processes of finding the Lvalue and Rvalue of a
variable are called Lmode and Rrnode evaluation respectively. The idea
of mode of evaluation is useful since it applies to expressions in
general and can be used to clarify the semantics of the assignment
command and other features in the language.

3.4 Simple Assignment

The syntactic form of a simple assignment command is:

El : = E 2

where El and E2 are expressions. Loosely, the meaning of the
assignment is to evaluate E2 and store its value in the storage cell
referred to by El. It is clear that the expressions El and E2 are
evaluated in different ways and hence there is the classification into
the two modes of evaluation. The expression El to the left of the :=
is evaluated in Lmode to yield the Lvalue of some storage cell and the
right hand side E2 is evaluated in Rrnode to yield an Rvalue; the
contents of the storage cell is then replaced by the Rvalue. This
process is shown diagrammatically in Figure 3.

El :=

I Lmode
I evaluation ,

Lval ue
i

Identical I ----bit patterns I
I
V

Storage cell

E2

I Rmode
I evaluation • Rvalue
I
I
I
I

I I
Lvalue <---+--

The Rvalue is placed
in the cell

1 --------
Figure 3 - The Process of Assignment

- 13 -

The BCPL Reference Manual

The only expressions which may meaningfully appear on the left
hand side of an assignment are those which are associated with storage
cells; they are called Ltype expressions.

'!'he terms Lval ue and Rval ue derive from
assignment command and were first used by
reference manual [2].

3.5 The Lv Operator

consideration
Strachey in

of the
the CPL

As previously stated an Lvalue is represented by a bit pattern
which is the same size as an Rvalue. The lv expression provides the
facility of accessing the Lvalue of a storagecell.

The syntactic form of an lv expression is:

lv E

where Eis an Ltype expression. The evaluation process is shown in
Figure 4.

lv

I
I
I
I
I
I
I

' Rvalue

E

I Lmode
I evaluation

' Lvalue

<--------

!
I Identical
1--- bit patterns
I

Figure 4 - The Evaluation of an lv Expression

The operand is evaluated in Lmode to yield an Lvalue and the
result is a bit pattern identical to this Lvalue. Intuitively, lv x
is the address in memory of the variable x. The lv operator is
exceptional in that it is the only expression operator toinvoke Lmode
evaluation, and indeed in all other contexts, except the left hand
side of the assignment, expressions are evaluated in Rrnode.

- 14 -

The BCPL Reference Manual

3.6 The Rv Operator

The rv operator is important in BCPL sihce it provides the
underlyingrnechanisrn for manipulating vectors and data structures; its
operation is one of taking the contents (or Rvalue) of a storage cell
whose address (or Lvalue) is given.

The syntactic form of an rv expression is as follows:

rv E

and its process of evaluation is shown diagrammatically in Figure 5.

rv

I

I
I
I
I

I

'
Rvalue

E

I Rmode
I evaluation

' Rvalue
A
I Identical
1------ bit patterns

' Lvalue

Figure 5 - The Evaluation of an rv Expression

The operand is evaluated in Rrnode and then the storage cell whose
Lvalue is the identical bit pattern is found. If the rv expression is
being evaluated in Rrnode, then the contents of the celris the result;
it is also meaningful to evaluate it in Lmode, in which case the
Lvalue of the cell is the result. An rv expression is thus an Ltype
expression and so may appear on the lefthand side of an assignment
command, as in:

rv p := t

3nd one can deduce that this command will update the storage cell
pointed to by p with the Rvalue oft. Thus

rv 100 := 0

sets location 100 to zero.

- 15 -

The BCPL Reference Manual

3.7 The Vector Operator

The vector-application operator {represented here by
advantage of the consecutive arrangement of storage cells.
the n'th successor to a given cell, as shown in Figure 6.

V 3

I I I
V I V

-->Rval ue I Rval ue
I I I I
I 1 ____ 1 I
I 1----

I ' I Bit pattern <-------
I
I

Identical
bit patterns

. I
'+'

Lvalue

1
I

Identical
bit patterns

I
'+'

Lvalue

Figure 6 - An Interpretation of V 3

!) takes
It finds

The diagram above shows a possible interpretation of the
expression V!3. Some adjacent storage cells are shown and the left
hand one has an Lvalue which is the same bit pattern as the Rvalue of
v. The cell at the right is the third successor of the one on the
left. In terms of the addressing function A, if V = A {n) then the
Lvalue of the cell on the right is A {n+3). Thus the expression:

V I •
• l

accurately models a vector application, since, as i varies from zero
to three, the expression refers to the different elements of the set
of four cells pointed to by V. V can be thought of as the vector and
i as the integer subscript.

A vector application is an Ltype expression: in Lmode evaluation
it yields the address of the designated cell, and in Rmode evaluation
it yields the contents.

Figure 7 shows how a vector application can be thought of as a
data structure select operation. The variable Xpart acts as a named

- 16 -

The BCPL Reference Manual

selector applied to the data structure V. Manifest constants are
commonly used to define structure selectors of this kind.

V

--+-------->
___ I

The cell referred
to by V!Xpart

Xpart

3

Figure 7 - An Interpretation of V ! Xpart

By letting the elements
is possible to construct
complexity. Figure 8 shows
pointers.

of structures themselves be structures it
compound data structures of arbitrary
a structure composed of integers and

X

--+----> I 36 I
___ I I ___ I

I --+----> -34
I __ I

---------+-- I 0
I 1 __ 1 I
I ---------------+----
1 I I
I f --------+---_-
I ---- I I __ _
--> 13 I

I
52 --> 1

Figure 8 - A Structure of Integers and Pointers

- 17 -

The BCPL Reference Manual

3.8 Data Types

The unusual way in which BCPL treats data types is fundamental to
its design and thus some discussion of types is in order here. It is
useful to introduce two classes:

(a) conceptual types
(b) internal types

The conceptual type of an expression is the kind of abstrkct
object the programmer had in mind when he wrote the expression. It
might be, for instance, a time in milliseconds, a weight in grams, a
function to transform feet per second to miles per hour, or it might
be a data structure representing a parse tree. It is, of course,
impossible to enumerate all the possible conceptual types and it is
equally impossible to provide for all of them individually within a
programming language. The usual practice when designing a language is
to select from the conceptual types a few basic ones and provide a
suitable internal representation together with an adequate set of
basic operations. The term internal type refers to any one of these
basic types and the intention is that all the conceptual types can be
modelled effectively using the internal types. A few of the internal
types provided in a typical language, such as CPL, are listed below:

real
Inte1er
labe
integer function
(real, boolean) vector

Much of the flavor of BCPL is the result of the conscious design
decision to provide only one internal type, namely: the bit pattern
ror Rvalue). In order to allow the programmer to model any conceptual
type a large set of useful primitive operations has been provided.
For instance, the ordinary arithmetic operators+,-, * and / have
been defined for Rvalues in such a way as to model the integer
operations directly. The six standard relational operators have been
defined and a complete set of bit manipulating operations provided.
In addition, there are some stranger bit pattern operations which
provide ways of representing functions, labels and, as we have already
seen, vectors and structures. All the operations provided are
uniformly efficient and they have not been overdefined. For instance,
the effect of adding a number to a label, or a vector to a function is
not defined even though it is possible for a programmer to cause it to
take place.

The most important effects of designing a language in this way
can be summarized as follows:

1. There is no need for type declarations in the language,
since the type of every variable is already known. This
helps to make programs concise and also simplifies such

- 18 -

The BCPL Reference Manual

linguistic problems as the handling of actual parameters
and separate compilation.

2. It gives BCPL much of the power of a language with
dynamically varying types and yet retains the efficiency
of a language (like FORTRAN (3]) with manifest types; for,
although the internal type of an expression is always
known by the compiler, its conceptual type can never be
and, indeed, it may depend on the values of variables
within the expression. For instance, the conceptual type
of V!i may depend on the value of i. One should note
that, in languages (such as ALGOL [4] and CPL) where the
elements of vectors must all have the same type, one needs
some other linguistic device in order to handle more
general data structures.

3. Since there is only one internal type there can be no
automatic type checking and it is possible to write
nonsensical programs which the compiler will translate
without complaint. This disadvantage is hopefully
outweighed by the simplicity, power and efficiency that
this treatment of types makes possible.

- 19 -

The BCPL Reference Manual

4.0 Expressions

All BCPL expressions are described in this section. They are
grouped into syntactic classes of decreasing binding power as follows:

are:

(a) Primary expressions.

These are the most binding and most primitive expressions.

Names, numbers, truth values, string constants,
character constants, nil, bracketted expressions,
result blocks, lv expressions, rv expressions, vec
expressions, tahle and list expressions, vector-­
applications and functionapplications.

(b) Arithmetic expressions.

They

These expressions provide the standard integer and floating point
0perations of multiplication, division, remainder, addition and
subtraction. They are less binding than the primary expressions.

(c) Relational expressions.

A relational expression takes integer or floating point arguments
and yields a boolean value depending on the truth of the relation.

(d) Shift expressions.

The shift operations allow one to shift a bit pattern to the left
or right by a specified number of places.

(e) Logical expressions.

These expressions allow one to manipulate bits of an Rvalue
directly. They may be used in conjunction with the shift operators to
pack and unpack data. The standard BCPL representations of true and
false are chosen so that the logical operators may also be us'ect on
boolean data.

(f) Conditional expressions.

A conditional expression allows for conditional evaluation of one
of two expressions.

This section ends with descriptions of <constant expression> and
<E list> although they are not syntactic subcategories of expressions.

- 21 -

The BCPL Reference Manual

4.1 Primary Expressions

All the primary expressions are described in this section.

4.1.1 Names

Syntactic form:

A name is a canonical symbol of BCPL and its hardware
representation is implementation dependent. If there are sufficient
hardware characters available it consists of any sequence of letters,
digits and underlines starting with a capital letter. A single small
letter may also be used as a name.

Examples:

Semantics:

H3 Tax rate F i
List4 StackP

A name may be associated directly with an Rvalue by means of a
manifest declaration or by a label declaration, function or routine
def1n1t1on, or external declaration, or it may be associated with a
storage cell to form a variable using any other kind of declaration.
A variable, manifest constant, or address constant can be referred to
by its name throughout the scope of its declaration (see section 6.0
on scopes and extents of definitions).

A manifest constant or address constant can only be evaluated
in Rmode and its result is the Rvalue which was associated with it by
its declaration.

A variable is the association of a name with a storage cell and
it may be represented as follows:

Lmode

Name

evaluation i ~ode evaluation

I I
Lvalue I Rvalue

I ____ _

It may be evaluated in Lmode to yield the Lvalue of the storage cell,
or it may be evaluated in Rmode to yield the contents of the cell; in
either case the result is a bit pattern of standard Rvalue length.

- 22 -

4.1.2 Numbers

Syntactic form:

Examples:

Semantics:

The BCPL Reference Manual

<digit>
<number>

::= 0111213141516171819
::= <digit> {<digit>}

I 8 <digit> {<digit>}
I <digit> {<digit>} .

132 43179 8377 3.14159 4 .

{<digit>}

A number is an Rtype expression and may only be evaluated in
Rmode. The symbol 8 introduces an octal constant whose Rvalue is the
right justified bit pattern specified by the sequence of octal digits.
A decimal number is a sequence of digits not preceded by 8; its Rvalue
is a bit pattern representing the integer in a way which- depends on
the implementation. A floating point number is a sequence of digits
with a decimal point embedded or at the end. The Rvalue is
implementation dependent.

Some implementations may admit of other number forms, such as
hexadecimal.

4.1.3 String Constants

Syntactic form: " {<string character>} "

A string constant is a canonical symbol of BCPL and its
hardware representation is implementation dependent. Where possible
it is a sequence of characters enclosed in double quotes ("). The
asterisk (*) is used as an escape character with the following
conventions:

*n represents newline
*s represents space
*b represents backspace
*t represents tab
*" represents II

* , represents
** represents *

Some implementations may admit additional escapes in strings.

Examples:

Semantics:

"End of test"
"*n*tTRA*tLl*n"

11=11

II U

ti * It ..

The Rvalue of a string constant is a pointer to a set of
consecutive storage cells containing the length and characters of the
string in some packed form. The number of bits per character and the

- 23 -

The BCPL Reference Manual

number of characters per storage cell are implementation dependent.
For an implementation which packs four characters per word, the string

"Abcl0*n"

might be represented as follows:

Rvalue ----> 6 A b C

1 0 *n 0

The storage cells
some implementations use
prevent updating.

containing the string should not be updated;
a "memory-protect" hardware facility to

4.1.4 Character Constants

Syntactic form: ' <string character> '

The same escape conventions that are used in string constants
may be used in character constants.

Examples: , X, '*n' , II ,

Semantics:

Every string alphabet character has an integer code and the
Rvalue of a character constant is the Rvalue of its corresponding
integer code. The character code is implementation dependent.

4.1.5 Truth Values

Syntactic form: true or false

Semantics:

The Rvalue of false is a bit pattern entirely composed of zeros
and the Rvalue of true 1s the complement of false, namely a bit
pattern entirely composed of ones. (N.B. These are numerically equal
in a ones-complement machine.)

- 24 -

The BCPL Reference Manual

4.1.6 Nil

Syntactic form: nil

Example: let X = nil

Semantics:

The Rvalue of nil is undefined. Its purpose is to avoid
initializing a newly defined cell. In the example, the dynamic
variable xis defined without an initial value.

4.1.7 Bracketted Expressions

Syntactic form:

Examples:

Semantics:

E)

T rem ((x-y)/(x+y) + 2/z)
(B---=>" A, B) ! (i+l)

Parentheses may enclose
mode of evaluation or its value.
grouping.

any expression without changing its
Their sole purpose is to specify

4.1.8 Result Blocks

Syntactic form:

Example:

Semantics:

valof <block>

valof $(for i=l ton do
-- if P-(i, xT resultis false
resuTtis true $)

A result block is a form of BCPL expression in which commands
can be executed before the value of the expression is found. It is
evaluated by executing the block until a resultis statement is
encountered; this causes execution of the block to cease and the
Rvalue of the expression in the resultis command is the result. See
section 5.14.

- 25 -

The BCPL Reference Manual

4.1.9 Lv Expressions

Syntactic form: lv E
wnere Eis a primary expression.

Examples: Readch (INPUT, lv Ch)
U := lv V!i

Semantics:

The Rvalue of an lv expression is the bit pattern obtained by
evaluating the operand-(which must be an Ltype expression) in Lmode.
See the discussion of left and right hand values in section 3.3, and
of the lv operator in section 3.5.

4.1.10 Rv Expressions

Syntactic form: rv E
wnere Eis a primary expression.

Example: rv x : = rv { f (i) + 2)

Semantics:

An rv expression is an Ltype expression and may be evaluated
to yield either an Lvalue or an Rvalue. It is evaluated by evaluating
its operand in Rmode to yield a bit pattern which is interpreted as
the Lvalue of a storage cell. In Lmode evaluation this bit pattern is
the result, but for Rmode evaluation the contents of the storage cell
is the result. The~ expression is described further in section 3.6.

4.1.11 Vector Expressions

Rvalue
word of
zero'th

Syntactic form: vec <constant expression>

Examples: let v = vec 100
Word := vec Vmax / 4

Semantics:

Let the value of the constant expression be n. Then the
of the vector expression is the address {Lvalue) of the first
a block of storage n + 1 words long. Thus there is both a
word and an n'th word.

The storage is dynamic in class and is newly allocated by each
evaluation of the expression. It remains allocated for as long as
execution is dynamically between the reference and the end of the
function or routine body, or the end of the smallest enclosing scope
of any dynamic variable declaration. In the first example above, the

- 26 -

The BCPL Reference Manual

storage remains allocated as long as the cell v does. Repeated
evaluation of the expression within a particular invocation of a
function or routine results in allocating the same block of storage
each time.

4.1.12 Table and List Expressions

Syntactic form:

Examples:

Semantics:

table
list

let T

Cv :=

<constant list>
<E list>

= table ·0·, ·1·, ·2·, ·3·,
4, ·s·, '6", ·7·, ·a·, ·9·,

'A', ·s·, ·c·, ·o·, 'E', ·p·
list "zero", "one", "two", "three",

"four", "five", "six", "seven",
"eight", "nine", "ten"

All the expressions which appear after table must have Rvalues
~~ich can be determined at compile time. The Rvalue of a table is a
;ointer to a set of consecutive storage cells whose initial values are
given by the list of constant expressions; the allocation of the
storage cells and the initialization are performed prior to execution
of the program.

A table may be used
to ·p· in the example above.
Jpdated; some implementations
to prevent updating.

as a vector; for instance, T!lS is equal
The elements of a table should not be
use a "memory-protect" hardware facility

The list expression is similar to table. The initial values
can be any expressions. They are evaluated and stored in the list at
the time the list expression is evaluated. The storage is allocated
dynamically as for vectors. See section 4.1.11.

let L = list E0, El, ... En

is equivalent to

let L = vec n
"[;'!"0", L !1-,-.. . L ! n : = E0, El, . . . En

- 27 -

The BCPL Reference Manual

4.1.13 Vector Applications

_Syntactic form: El E2 El [E3]

El and E2 are primary expressions and E3 is any expression.
The operator is left associative and thus

Examples:

Semantics:

x ! y ! z means (x ! y) ! z

V ! (i+l) := V ! i + p

case SEQ: Trans (x[H2])
Trans (x[H3])
return

Xpart

The expression El!E2 is defined
(E2) 'th successor to the cell whose Lvalue
explained in section 3.7.

to take the Rvalue of the
is El. Its purpose is

The expression El [E2] is equivalent to El!(E2).

4.1.14 Function Applications

Syntactic form: E0 (<E list>) I E0 ()

E0 is a primary expression and the <E list> may contain any
expressions.

Examples:

Semantics:

f (x)
H (1, 2*t)
(x=0 -> f, P3) (1, "ZT", y+2)
Nextparam ()

The evaluation of a function application is explained in
section 6.3.2.

4.2 Arithmetic Expressions

Syntactic form: E * E I E / E E rem E I
E + E I E - E
+ E I - E I
E * E I E ./ E .
E .+ E I E . - E
.+ E I .- E

The operators*/ rem.* and ./ are equally binding and associate

- 28 -

The BCPL Reference Manual

to the left; they are more binding than+ - .+ or - which also
associate to the left.

Thus

Examples:

Semantics:

x * y rem z means (x * y) rem z

x + y - z/t means (x+y) - (z/t)

2*x*x + 6*x*y + 7*y*y
v ! (f (x) rem 13) + G (x)
X .* 2.3 .+y.* 4.7

The arithmetic expressions evaluate their operands in Rmode. The
integer operators then interpret the Rvalues as integers and yield
Rvalues representing the integer results of the arithmetic. The
floating point operators similarly interpret the Rvalues as floating
point numbers and yield Rvalues representing the floating point
results of the arithmetic.

The operators* and/ denote integer multiplication and division
respectively.

The operator rem yields the remainder after dividing the left
hand operand by the right hand one. If both operands are positive the
result will be positive, it is otherwise implementation dependent.

The expression El+ E2 yields an Rvalue representing the integer
summation of El and E2.

The Rvalue of+ El is the Rvalue of El.

The expression El - E2 yields an Rvalue representing the result
of subtracting E2 from El.

The expression - El has the same meaning as 0 - El.

The operators .* and ./ denote floating point multiplication and
~ivision respectively.

The infixed operators .+ and - denote floating point addition
and subtraction.

The expression .+Eis the same as E.

The expression - Eis the same as 0.0 - E.

- 29 -

The BCPL Reference Manual

4.3 Relational Expressions

Syntactic form: E <relop>
<relop> : :=

E {<relop> E} where
=I ;!I <I >I <I
= I .;! I . < I . > I . < I >

. >

The relational operators are just less binding
arithmetic operators.

than

Examples:

Semantics:

if 0 < x < y goto L
A! i-:= f (x)-;-g (x}
X • = 0. 0 -) 0. 0, Y . / X

For a simple relational expression defined by

E <relop> E

the

the operands are evaluated in Rrnode; the Rvalues obtained are then
interpreted as integers or floating point numbers according to the
operator and if the particular relation is true then the result of the
expression is true, otherwise the result is false. An extended
relation such as

El <relop l> E2 <relop 2> E3

is equivalent to the following expression:

(El <relop l> E2} logand (E2 <relop 2> E3}

However, the number of times E2 is evaluated is undefined.

The correspondence between the operators and their meanings is
given below.

Integer Floating Point
Operator Operator Meaning

= = equal to ., -~ not equal to
< . < less than
> . > greater than
< . < less than or equal to
> :> greater than or equal to

- 30 -

The BCPL Reference Manual

4.4 Shift Expressions

Syntactic form: El lshift E2 I El rshift E2

E2 is any relational, arithmetic, or primary expression and El is
any shift, relational, arithmetic or primary expression; the shift
operators are thus just less binding than the relations and associate
to the left.

Examples:

Semantics:

let P (t) = t!3 rshift 10 logand 8377
x:= x !shift Bytes1ze logor Ch

The operands are evaluated in Rmode to yield Rvalues. The left
hand one is interpreted directly as a bit pattern and the right hand
one as an integer to indicate the number of places to shift.

The result of El !shift E2 is the bit pattern produced by
shifting El to the left by E2 places. The operator rshift is similar
to lshift, only it shifts to the right. vacated positions are filled
with zeros and the result is undefined if E2 is negative or greater
than the number of bits in an Rvalue.

4.5 Logical Expressions

Syntactic form: not E
IE logand E I E logor E

I E ~ E I E=L E

The operator not is most binding; then, in decreasing order of
binding power, the~are:

logand, logor, ~,=L

All the logical operators are less binding than the shift operators.

Examples: B := not B
if x=F""Iogor y=0 resultis f(t)
x:= x logand 8770077 logor y logand 87700

Semantics:

The operands of all the logical operators are interpreted as bit
patterns of ones and zeros.

The application of the operator not yields the logical negation
of its operand. The result of any otheriogical operator is a bit
pattern whose nth bit depends only on the nth bits of the operands and
can be determined from the following table.

- 31 -

The BCPL Reference Manual

nth bits Operator
of operands logand logor = f

both ones 1 1 1 0
both zeros 0 0 1 0
otherwise 0 1 0 1

The operators logand and logor are interpreted differently when
an expression is being evaluated to control conditional execution,
specifically in the if, while, test, and repeatwhile commands and the
conditional expression. In most implementations one operand is
evaluated first and if its value determines the result the other
operand is not evaluated. This occurs when one operand of logand is
false or when one operand of logor is true.

4.6 Conditional Expressions

Syntactic form: El-> E2, E3

El, E2 and E3 may be any logical expressions or expressions of
greater binding power. E2 and E3 may in addition be conditional
expressions. Thus:

Bl -> x, B2 -> y, z means Bl -> x, (B2 -> y, z)
and Bl -> B2 -> x, y, z means Bl -> (B2 -> x, y) ' z

Example: let f (x) = X < 0 -> 0 '
X > 10 -> 10,
X

Semantics:

The Rvalue of a conditional expression is obtained by evaluating
either E2 or E3 in Rmode depending on whether the value of El is true
or false.

true -> E2, E3 means E2
IaI'se -> E2, E3 means E3

If the value of El is neither true or false the result of the
conditional expression is undefined.

A conditional expression is an Ltype expression if both its
alternatives are Ltype expressions.

- 32 -

The BCPL Reference Manual

4.7 Constant Expressions

Syntactic form:

Example:

<constant expression> ::= E

36 + 3 * Table size

Semantics:

A constant expression is one whose Rvalue can be determined at
compile time. It may be a number, a truth value, a character
constant, a manifest constant, or a bracketted, relational, shift,
logical, or conditional expression composed of constant expressions.

Constant
(a)

expressions are used in
case labels

(b)
(C)

and (d)

vector expressions
manifest, static, global,
tables.

4.S Expression lists

Syntactic form: <E list> .. -.. - <E
<E rep> .. -.. - E

Examples: let T = table 0
a, b, C := a +
R (a, b, C rep

Semantics:

Lists of expressions are useful
argument lists and assignment commands.
feature.

E0 rep n

is equivalent to

E0 , E0 , . . . E0

and external declarations

rep> { , <E rep>}
I E rep <constant expression>

~ 10 II Array of zeros.
1, b + 1, C + 1
4)

in several contexts, such as
They are purely a syntactic

where the number of E0 terms is given by the value of n. Thus rep is
merely a notation to avoid repetitive typing.

- 33 -

The BCPL Reference Manual

5.0 Commands

5.1 Simple Assignment Commands

Syntactic form:

Examples:

Semantics:

El := E2

X := l
V ! i := U -i + w i

The assignment operation has already been discussed in section
3.4. El must be an Ltype expression and it is evaluated in Lmode to
yield an Lvalue, and E2 is evaluated in Rmode to yield an Rvalue. The
contents of the storage cell referred to by. the Lvalue is then
replaced by the Rvalue.

An Ltype expression may be of one of the following four kinds:

(a) A name referring to a storage cell.
(b) An rv expression.
(c) A vector application.
(d) A conditional expression whose alternatives are both

Ltype expressions.

5.2 Assignment Commands

Syntactic form: <E list> := <E list>

There must be the same number of expressions in the list on the
right of the := as there are on the left.

Example: x, V!i := 1, U!i + W!i

Semantics:

The assignment command is semantically equivalent to a sequence
of simple assignment commands. The general form

Ll, L2, . . . Ln : = Rl, R2, Rn

is equivalent to the following set of simple assignments:

Ll : = Rl
L2 := R2

Ln := Rn

- 35 -

The BCPL Reference Manual

The order of execution of the assignments is not defined and may not
be relied on. Note that the assignment:

X, y := y, X

will not interchange the values of x and y. The main advantage of the
general assignment command is the syntactic one of eliminating the
need for section brackets in certain circumstances. For instance the
following command

if x = y do$(V!3 := 0
B := true $)

may be written

if x = y do V!3, B := 0, true

Since the order of
strictly incorrect.

evaluation is not defined,
For example, the command:

Symb!i, i := Reh (), i + 1

some

may have different effects in different implementations.

5.3 Routine Commands

Syntactic form: E0 (<E list>) I E0 ()

commands are

E0 is any primary expression and the <E list> may contain any
expressions.

Examples:

Semantics:

R (x)
Compjump (x!H2, false, L)
(C ! i) ()

The execution of a routine application is explained in detail in
section 6.3.2.

5.4 Labelled Commands

Syntactic form:

Examples:

Semantics:

<name> : C

Next: Reh ()
L: Chkind := Kind (Ch)

A labelled command is a form of declaration which associates the

- 36 -

The BCPL Reference Manual

name directly with the Rvalue representing the location of the
command. The scope of the name is the smallest textually enclosing
routine or function body.

The Rvalue of a label may be the operand of a goto command, as
described in the next section. For an explanation of the term scope
see section 6.1.

5.5 Goto Commands

Syntactic form: 9-Q!Q E
wfi'ere Eis any expression.

Examples: goto Next
goto S i
goto x = 0 -> Error, Tvec!x

Semantics:

Eis evaluated to yield an Rvalue, and then execution jumps to
the command whose label has the same value. The point where execution
is resumed must be at the same activation level as that of the goto
command, or, in other words, the label and the goto command must both
be in the same function or routine body. The effect of violating this
rule is usually chaos.

As a general rule, it is a good policy to try to minimize the
number of labels in a program as this will tend to improve its
readability.

5.6 If Commands

Syntactic form:

Examples:

if E do C
unlessE do C

if X = 0 do X := 10
unless Syrri5=S COMMA do Report (30)
unless S ! i; W ! iresultis false

Note
example.

the automatic insertion of do by the compiler in the third
See section 2.4.3.

Semantics:

The command if E do C is executed by evaluating E to yield a
truth value (see section 4.5). If the result is false execution is
complete, if the result is true the command C is executed, and if the
result is neither true nor taTse the effect is undefined.

The command unless E do C is equivalent to if not (E) do C.

- 37 -

5.7 While Commands

Syntactic form:

The BCPL Reference Manual

while E do C
until E do C

Examples: while N > SSP do LoadT {S LOCAL, SSP)
until TT 0 = 0 do T := T-! 0

Semantics:

The command while E do C is equivalent to:

.9.oto L
M : C
L: if E goto M

where L and M are identifiers which do not occur elsewhere in the
program.

The command until E do C is equivalent to while not {E) do C.

5.8 Test Commands

Syntactic form:

Example:

Semantics:

test Ethen C or C
test E ifso C Tinot C

test 2*n > {CaseK ! n - CaseK
then Lswitch (1, n, D)
orBswitch (1, n, D)

The command test Ethen Cl or C2 is equivalent to:

if not {E) goto L
Cl -
goto M

L: ~
M :

1)/2 + 7

where Land Mare identifiers which are not used elsewhere in the
program.

The command test E ifso Ci ifnot C2 is equivalent to test Ethen
Cl or C2. The ifso and i1riot clauses may be interchanged.

- 38 -

5.9 Repeat Commands

Syntactic form:

Examples:

Semantics:

The BCPL Reference Manual

C repeatwhile E
C repeatunt1l E
C repeat

Reh() repeatuntil Ch= '*n'
$(WP:= WP+ l

S ! WP:= Ch
Reh () $) repeatwhile 'A' <Ch< 'z'

The repeat commands are defined in terms of other equivalent
commands, as follows:

C repeatwhile E
C repeatuntil E
C repeat

is equivalent to
is equivalent to
is equivalent to

L: C; if E goto L

C repeatwhile not (E)
C repeatwhile true

where L is an identifier which is not used elsewhere in the program.

5.10 For Commands

Syntactic form: for <name> =
ror <name> =

Example: for i = 0 to

Semantics:

The for command can be defined
forms:

for N = El to E2 by E3 do C

is equivalent to

$ (let N, Z = El, E2
wFiTle N < Z do

$(C

E to E do
E to E by

122 do V

by the

N := N + E3 $) $)

if E3 is positive, or

$(let N, Z = El, E2
wFiTle N > Z do

$(C
N := N + E3 $) $)

C
<constant> do C

! i := i

following equivalent

if E3 is negative. (The value of E3 is known at compile time.) Z is

- 39 -

The BCPL Reference Manual

an identifier not used elsewhere in the program. Also:

for N = El to E2 do C

is equivalent to

for N = El to E2 by 1 do C

The to and by clauses may be interchanged.
valueand end limit expressions El and E2 are
must be a constant expression so that its
time.

5.11 Loop, Break, and Endcase Commands

Syntactic form:

Examples:

loop
'Ereak
endcase

for i = 1 to v!0 do
$(Ietx=v!i

Note that the initial
evaluated only once. E3
sign is known at compile

Trx = 0 loop

Semantics:

$)
L2:

break
Ll:

switchon Op into
$(case SWITCHON:

case SEQ:

$)
L3:

Transswitch (x)
endcase
Tr ans (x ! 1)
Tr ans (x ! 2)
endcase

Execution of the break command causes a jump to the point just
after the smallest textually enclosing loop, introduced by one of the
following key words:

until, while, repeat, repeatwhile, repeatuntil and for.

In the example, this is the point labelled L2.

The loop command causes a jump to the end of the body of the
smallest enclosing loop, so that the end condition is tested and the

- 40 -

The BCPL Reference Manual

loop repeated as required. In the example, this is the point labelled
11. In a for loop the loop command also causes the index to be
incremented before the test is made (as usual).

The endcase command causes a jump to the point just after the
smallest textually enclosing switchon block. In the third example,
this is the point labelled 13.

5.12 Finish Commands

Syntactic form:

Example:

Semantics:

finish

if Reportcount > Reportmax do
$(Writes ('*nToo many errors*n')

Endwrite (OUTPUT)
finish $)

The finish
an orderly manner.

command causes execution of the program to cease in
Its exact effect is implementation dependent.

5.13 Return Commands

Syntactic form:

Example:

Semantics:

return

let MapB (F, x) be
$(1 if x -;;;-0 return

TI x!Hl = S COMMA do
$(MapB-(F, x!H3)

F (x!H2)
return$)

F (x) $)1

The
enclosing
just after
body.

return command causes the execution of the smallest
routine body to cease and so control returns to the point
the routine call that invoked the current activation of the

- 41 -

The BCPL Reference Manual

5.14 Resultis Commands

Syntactic form:

Example:

Semantics:

resultis E

valof $(for i = 0 ton do
if V!i7 U!1resultis false

resuitis true $)

The execution of the command resultis E causes the execution of
the smallest enclosing result block to cease and yield the value which
is the Rvalue of E.

5.15 Switchon Commands

Syntactic form:

or

Example:

Semantics:

switchon E into <block>
where the EI'ock contains labels of the form:
case <constant>: case <constant> to <constant>:
aefault:

let Trans (x) be
--$(1 if x = 0 return

switchon x ! Hl into
$(default: Report(l00); return

case S LET: - - -

endcase

case S_SEQ: Trans (x
Trans (x
endcase

H2)
H3)

$)1

The expression after switchon is evaluated to yield an Rvalue
and then, if a case label exists which has a case constant of the same
value then execution jumps to that point, otherwise if there is a
default label execution resumes there. If the switch has no default
label and if no case constant matches the switch expression then the
effect is undefined.

The case label

case El to E2:

is equivalent to

case El: case El+ 1: case El+ 2: ... case E2:

- 42 -

The BCPL Reference Manual

where E2 must not be less than El.

Note that the names S LET and S SEQ in the example above must
have been declared to be manifest constants.

The switch is implemented by any one of a number of methods
(e.g. direct switch, sequential search, hash table, binary tree)
depending on the number and range of the case constants.

5.16 Call Commands

Syntactic form: call E0 (<E list>) I call E0 ()

Example: call Terminate (Name char 32, lv Code fixed)

Semantics:

In most implementations BCPL does not use the system standard
call sequence. The call command provides a way of calling routines
not written in BCPL. The nature of the argument list is extremely
implementation dependent. In the implementation from which the
example is drawn, the types of the arguments must usually be provided
to the called program. This information is provided by infixed and
postfixed operators which are not allowed in any other context.

5.17 Blocks

Syntactic form:

Example:

Semantics:

<block item>
<block body>
<block>

::= C I <declaration>
::= <block item> {; <block item>}
::= $(<block body>$)

$(let List2 (x, y) = valof
$(let P = Newvec (1)

P""T 0, P 1 := x, y
resultis P $)

finish$)

A block body consists of a sequence of intermixed commands and
declarations. It is executed by executing the declarations and
commands in sequence.

The names declared by the declarations are local to the block
and the dynamic storage cells allocated only remain in existence as
long as execution is dynamically within the block. For a detailed
discussion of scopes and extents see sections 6.1 and 6.2.

- 43 -

The BCPL Reference Manual

6.0 Definitions and Declarations

Before a name may be used in a BCPL program it must be declared
by the programmer in order to specify its scope, extent and, possibly,
its initial value.

6.1 Scope and Scope Rules

The SCOPE of a name N is the textual region of program throughout
which N refers to the same variable, manifest constant, or address
constant. The scope of a name depends on its declaration as follows:

(a) A formal parameter list of a function or routine
definition declares a list of names whose scope is the
body of the function or routine defined.

(b) A name labelling a command is a form of declaration and
it declares a name whose scope is the smallest enclosing
routine or function body.

(c) A let declaration declares a name or set of names whose
scope is the declaration itself and all succeeding
commands and declarations within the smallest enclosing
block body. A let declaration at the outer level of a
program includes tn:e-rest of the program in its scope.

(d) A manifest, external, global, or static declaration
declares a set of names whose scope is all succeeding
commands and declarations within the smallest enclosing
block body or program.

(e) The scope of the control variable of a for command is the
body of the command.

If two variables have identical scopes then they must have
distinct names and so, for instance, the names in a formal parameter
list and the labels in the routine body must all be different.

6.2 Extent and Space Allocation

The EXTENT of a variable is the time through which it exists and
has a storage cell (with its associated Lvalue). Throughout the
extent of a variable it remains associated with the same storage cell
and so the Lvalue remains constant; however, the contents of the cell
(or Rvalue) may be replaced by the execution of an assignment command.
In BCPL, variables can be divided into two classes:

- 45 -

(a)

The BCPL Reference Manual

Static variables
These are variables whose
program is running. The
variable is allocated prior
exist until the program has

extents last as long as the
storage cell of a static

to execution and continues to
finished or longer.

(b) Dynamic variables
The extent of a dynamic variable starts when its
declaration is executed and continues until execution
leaves its scope. Dynamic variables are useful when one
needs some working space for a short period (perhaps
during the execution of a routine) and it is too wasteful
to use static storage. Dynamic variables are
particularly useful when using functions and routines
recursively.

The class of a variable depends only on its declaration. Static
variables are declared by

static declarations,
and global declarations.

Dynamic variables are declared by

simple variable definitions,
f.or commands,

and formal parameters.

During the execution of a program there are three separate areas
of storage in which variables may reside; these are:

(a) the global vector,
(b) the stack,
(c) miscellaneous static cells.

The global vector provides a facility rather similar to COMMON in
FORTRAN and is used as a means of communication between separately
compiled segments of program. The programmer may use a global
declaration to associate names with particular cells in the global
vector.

The stack is needed
used to hold dynamic
arguments) and anonymous
expressions.

for the implementation of recursion and is
variables (such as vectors and function
results needed during the evaluation of

The miscellaneous static cells hold non-global static variables
which are local to the segment in which they are declared.

Function and routine definitions, labels, and the manifest and
external declarations do not introduce variables.

- 46 -

The BCPL Reference Manual

6.3 Let Declarations

Syntactic form:

Example:

Semantics:

let D {and D}
where D denotes a definition

let x, y = 0, 1
and f (t) = 2*t - 1
and Itermv = vec 22

A let declaration may occur in a block body or at the outer level
of a program and may be used to declare simple variables, functions
and routines. The scope of the names declared is the textual region
of program consisting of the let declaration itself and the succeeding
declarations and commands of the block. At the outer level of a
program a let declaration may only declare functions and routines.
The defin1t1ons between the ands are at the same level and are
effectively executed simultaneously, and by this means a let
declaration may be used to declare a set of mutually recursTve
functions and routines.

The various kinds of basic definitions are described below.

6.3.1 Simple Variable Definitions

Syntactic form: <name> {, <name>}= <E list>

All the names must be distinct and the number of names on the
left of the = must be the same as the number of expressions on the
right of the=.

Example:

Semantics:

let X = 1
and y, z = f (t) + 3, A!H2
and v = vec 50

In the general form

Nl, N2, ... Nn = El, E2, ... En

dynamic data items with names Nl, N2, ... Nn are first declared but
not initialized, then the assignment command

Nl, N2, . . . Nn := El, E2, En

is executed.

- 47 -

The BCPL Reference Manual

6.3.2 Function and Routine Definitions

Syntactic form:

<function definition> ::= <name> () = E I
<name> (<name list>) = E

<routine definition> ::= <name> () be C I
<name> (<name list>) be C

The list of names in parentheses is called the formal parameter
list.

Example:

let Node (x) = valof
$(let P = Freelist

Freelist := P + 3
P!0, P!l, P!2 := x, 0, 0
resultis P $)

and Put (x, t) be

Semantics:

$(if tT0 = x return
t:= t!0 (X -) t + 1, t + 2
test rv t = 0
then rv t := Node (x)
or Put (x, rv t) $)

The purpose of a function or routine definition is to associate
a name with an Rvalue which may be used in a function or routine call.
The heading of the definition consists of the name of the function or
routine being defined, followed by a list of formal parameters
(possibly empty) enclosed in parentheses. The formal parameter list
is a form of declaration which declares a set of variables with the
specified names and they all have the same scope, namely, the body of
the function or routine. Formal parameters are dynamic variables
whose storage cells are allocated at the moment of call. The initial
values are given by the actual parameters of the call.

The process of calling a function or routine is
diagrammatically in Figure 9.

- 48 -

shown

The BCPL Reference Manual

E0 El, E2, ... En)
I I I I
I I <- - I <- - I <- 1. Evaluate the
I I I I arguments in Rmode.
I V V V
I Rvalue Rvalue Rvalue
I I I I
I I <- - I <- - I <- 2. Place the Rvalues in
I I I I n new consecutive
I I I .. I storage cells.
I f f f
I
I ! ' V I

Rvalue I
I
I
I
I
I
I
I
I
I
V
N

I
<- - - - + - - - - - - - - - - - - - 3. Find the function or

I routine corresponding
I to the Rvalue of E0.
I
I <- - <- - - - - - - - 4. Associate the formal
I parameters with the
I storage cells
I left to right.
I = E
Nl, N2,

be C

5. Evaluate or execute the body of the function or
routine in the environment of the definition
extended by the new variables.

6a. For a routine call return to the point just after
the call.

6b. For a function application, yield as result the
Rvalue of the body of the function.

Figure 9 - The Process of Calling a Function or Routine

from

The number of formal parameters need not equal the number of
actual parameters and so it is possible to define a variadic routine.
Consider:

let R (a, b, c, d, e, f) be
$(let v = lv a

v!0
- - - - v!3
- - - - $)

R (4, 32, -14, 63)

- 49 -

The BCPL Reference Manual

Within the body of R, the variable v may be thought of as a vector
whose elements are the arguments of the call, and thus in this example
v!0 equals 4 and v!3 equals 63.

Note that the parameters of a BCPL call are passed by value;
however, it is still possible to achieve the effect of a call by
reference using the lv and !..Y operators. Consider:

let S (x, y) be rv x := y
let A, B = 0,-r
S(lv A, B)

The effect of the call for Sis to assign the current value of B
(namely 1) to the variable pointed to by lv A (namely A), thus after
the call A has value 1.

which
call.

All functions and routines may be defined and used recursively.

There is one important restriction on functions and routines
has been imposed in order to achieve a very efficient recursive
This restriction is as follows:

Every name which is used in the body of a
routine but which is not declared there
manifest constant or address constant
variable (see section 6.2).

function or
must be a

or static

In terms of the implementation, this restriction states that
either the Rvalue or the Lvalue of every free variable of a function
or routine is known prior to execution (but not necessarily at compile
time) .

Note that the following program is illegal:

let a, b = 1, 2
let f (x) = a*x + b

However, it may be corrected as follows:

static$(a= l; b = 2 $)
let f (x) = a*x + b

but this is not necessarily equivalent - e.g., if a orb is updated.

- 50 -

The BCPL Reference Manual

6.4 Manifest Declarations

Syntactic form:

Examples:

Semantics:

manifest$(<decl item> {; <decl item>} $)
where <decl item> ::=<name>= <constant>

manifest$(Hl=0; H2=1; H3=2 $)
manifest$(S LET=74

S-SEQ=73
S-COMMA=38 $)

A manifest declaration associates Rvalues directly with the
declared names; the association takes place at compile time and cannot
thereafter be changed. The names so declared are not variables and
may not appear in a left hand context. Any constant expression may be
used.

6.5 Static Declarations

Syntactic Form:

Example:

Semantics:

static$(<decl item> {; <decl item>} $)
where <decl item> ::=<name>= <constant>

static$(P = 0; Q = 0
Reportmax = 10 $)

A static declaration declares a set of static variables (see
section 6.2) whose initial values are given. Both the allocation of
storage cells and the initialization are performed prior to execution
of the program .. Thus the initialization is performed only once. Any
constant expression may be used.

6.6 Global Declarations

Syntactic form:

Examples:

Semantics:

global$(<decl item> {; <decl item>} $)
where <decl item> ::= <name> : <constant>

global$(Charcode:127; Option:128 $)
global$(Rdblockbody:140; Rdblock:141

Rexp:144; Rdef:145; Rcom:146 $)

A global declaration declares variables whose storage cells are
in the global vector (see section 6.2). The main purpose of the
global vector is to provide a means of communication between
separately compiled segments of program. Each name in a global
declaration is associated with a constant expression whose value

- 51 -

The BCPL Reference Manual

specifies which storage
The same global storage
separate segments and
segment to another.

cell in the global vector belongs to the name.
cell may be associated with variables in many

hence may be used to pass values from one

6.7 External Declarations

Syntactic form:

Example:

Semantics:

external$(<decl item> {; <decl item>} $)
where <decl item> ::=<name>= <constant>

external$(Initiate= "hcs_$initiate 11 $)

The external declaration defines a set of names directly
associated with Rvalues representing routines and functions in other
separately compiled programs. The constant expression in the
declaration is implementation dependent but will usually be a string
constant representing the name of an "external reference".

this
rule:

The external declaration can also be used to make routines in
program known to other programs, as a result of the following

If a function or routine definition occurs within
the scope of an external declaration with the same
name, then the function or routine is defined as
an "external symbol" with the name derived from
the external declaration.

The connection between an external reference and the
corresponding external symbol will be made by a loader (linker,
binder) sometime before or during execution, the details depending on
the operating system.

For example, the following segment will define an external
function.

external$(F = "f$F" $)
let F (g,x) = g (x) + g (-x)

The following program fragment is a segment which uses the function
defined in the last example.

external
$ (F = "f$F"

Write= "library$Write"
$)

let G (t) = t * t + t + 3
for i = 0 to 10 do Write (F (G, i))

- 52 -

The BCPL Reference Manual

References

[l] Barron, D. W.
et al

[2] Strachey, c.

[3] IBM Reference Manual

[4) Naur, P.
(ed)

"The Main Features of CPL"
The Computer Journal, Vol. 6,
1963, p. 134.

"CPL working Papers"
Cambridge University Mathematical
Laboratory and London Institute of
Computer Science (1965)

709/7094 FORTRAN Programming System,
Form C28-6054-2

"Revised Report on the Algorithmic
Language ALGOL 60"
The Computer Journal, Vol. 5,
January 1963, p. 349

- 53 -

	Table of Contents
	1. Introduction
	2. Hardware Representation and Syntax
	3. Fundamental Concepts of BCPL
	4. Expressions
	5. Commands
	6. Definitions and Declarations
	References

