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Abstract 

BCPL is a language which is readable and easy to learn, as well 
as admitting of an efficient compiler capable of generating efficient 
code. It is made self consistent and easy to define accurately by an 
underlying structure based on a simple idealized object machine. The 
treatment of data types is unusual and it allows the power and 
convenience of a language with dynamically varying types and yet the 
efficiency of FORTRAN. BCPL has been used successfully to implement a 
number of languages and has proved to be a useful tool for compiler 
writing. The BCPL compiler itself is written in BCPL and has been 
designed to be easy to transfer to other machines; it has already been 
transferred to more than ten different systems. 

This research was supported in part by the Advanced Research Projects 
Agency of the Department of Defense under ARPA Order No. 2095 which 
was monitored by ONR Contract No. N00014-70-A-0362-0006. 
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1.0 Introduction 

BCPL (Basic CPL) is a general purpose programming language which 
is particularly suitable for large nonnumerical problems in which 
machine independence is important. It was originally designed as a 
tool for compiler writing and has, so far, been used in at least three 
compilers. BCPL is currently implemented and running on the Honeywell 
635 under GECOS III, on the Honeywell 645 and 6180 under Multics, on 
t~e ISM 360 under OS and CP/CMS, on the TX-2 at Lincoln Laboratory, on 
:he CDC 6400, on the Univac 1108, and on the DEC PDP-9. There are 
also BCPL compilers on the KDF 9 at Oxford and on Atlas 2 at 
Cambridge. Other implementations are under construction. 

BCPL is related to CPL (Combined Programming Language (1, 2)) and 
was developed using experience gained from work on a CPL compiler. 

The BCPL compiler is written in BCPL and is designed for fairly 
easy transfer to any other machine. Where possible the implementation 
dependent parts of the compiler have been separated out, so only a 
small proportion (about 1/Sth) of the compiler needs to be rewritten 
for a new implementation. This part consists mostly of the code 
generator, which is entirely object-machine dependent. There is also 
the command interface, which is entirely operating-system dependent. 
In addition to modifying the compiler, it is necessary to design and 
write the interface with the new operating system; this usually 
includes several hundred lines of assembly language and ten or twenty 
BCPL routines. 

The cost of transferring BCPL to a new machine is usually between 
2 and 5 man months. 

1.1 Implementation Guides 

This reference manual describes the BCPL language abstracted from 
any particular implementation. For each implementation there should 
be a specific implementation guide (possibly several documents) to 
describe in detail: 

(1) The representation of a BCPL program in the particular 
character set, and other source file conventions such as 
ignoring columns 73-80 in card images. There should be a 
complete list of canonical symbols and their machine 
representations. 

( 2) The form and meaning of constructs 
implementation. This includes the get 
external declaration, the call command, and 
as possibly other construe~ 

left to 
directive, 

finish, as 

the 
the 

well 

(3) The maximum lengths of names, section bracket tags, numbers 
and stringconstants, and the maximum number of cases in a 
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switchon, of elements in a table, of arguments to a function 
or routine. There may also be restrictions on the length 
and complexity of a program, on the depth of recursion, on 
the length of a single stack frame, and the number of global 
cells. 

(4) The library. This consists of a number of routines written 
in BCPL or assembly language which can be called by ordinary 
BCPL calls. Usually a declaration for the library routines 
will be made available on-line in a form suitable for 
inclusion by the get directive. 

(5) How a BCPL program is invoked from the command language or 
from another compiler language. 

(6) How to invoke the compiler. Also its options, input and 
output files, temporary files, storage requirements, side 
effects, etc. 

(7) All the error messages or codes that can be generated by the 
compiler or run-time routines. 

(8) Extensions or restrictions in the canonical language. All 
departures from the standard BCPL described in this manual 
should be documented. 

(9) Possibly some description .of the object program, 
representation of strings, format of stack frame, etc. 

(10) Several sample programs. 
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2.0 Hardware Representations and Syntax 

Since BCPL is implemented on many machines having different 
hardware character sets, it is useful to separate the machine 
dependent hardware representation of a BCPL program from the canonical 
syntax of the language. The details of the hardware representation 
provided for any implementation can be found in the corresponding 
implementation guide. In this chapter we give the machine independent 
canonical syntax of BCPL and provide guide lines on which any hardware 
representation should be based. 

A BCPL program can be thought of as a stream of canonical symbols 
laid out on a page. The canonical symbols are the basic words, 
operators and symbols of the language and they are the terminal 
symbols of the canonical syntax. Some canonical symbols are given 
below: 

let and "P3*n" 36 < + ; while 

The symbols of a program are chosen tram a tinite set of tokens 
along with the following unbounded sets: 

<name> 
<number> 
<stringconst> 
<charconst> 
<sectbra> 
<sectket> 

As the representations of the tokens may differ in different 
implementations because of character set limitations, this manual uses 
a ~ancnical BCPL defined in the next section. 

2.1 Canonical BCPL 

The following are each a single canonical symbol with an 
associated character string part: 

<name> 

<number> 

<stringconst> 

A name is a single lower-case letter or a 
capital letter followed by any number of letters 
and digits. For example: i Abe TaxRate V3 

A number consists of one or more decimal digits; 
other forms are described in section 4.1.2. 

A string constant consists of any 
string characters contained between 
quotes ("). An escape convention is 

number of 
two double 
described 

in section 4.1.3. For example: "abc" 
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A character constant is a single string 
character enclosed between two single quotes 
('). The same escape convention described in 
section 4.1.3 applies also to character 
constants. For example: 'p' ,.,, 

A left section bracket consists of $( followed 
by any number of letters and digits. 
For example: $( $(Trans $(1 

A right section bracket consists of$) followed 
by any number of letters and digits. 
For example: $) $)xyz 

These are all the other canonical symbols: 

and 
call 
eri'cJcase 
for 
Tfriot 
11st 
Tsfiitt 
not 
repeat 
return 
sw1tchon 
true 
vec 

+ 
I 
< 
> 
:= 

.+ 

./ 

.< 

. > 

be 
case 
external 
<Jlobal 
ifso 
I'ogand 
lv 
or 
repeatuntil 
rshift 
table 
unless 
while 

= 
> 
= 
1 

break 
default 
false 
<JOtO 
into 
Iogc)r 
manifest 
rem 
repeatwhile 
rv 
test 
until 

* 
= 

by 
do 
Tinish 
if 
let 
1i1P 
rep 
resultis 
static 
to 
valof 

* . 
, 
1 

Throughout this manual syntax and programming examples will be 
given in the representation defined in this section. 
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2.2 Formal Syntax 

2.2.1 Syntactic Notation 

The syntax given in this manual is Backus Naur Form with the 
following extensions: 

(1) Some common syntactic categories are not surrounded by 
meta-linguistic brackets. 

(2) The symbols { and} are used to indicate zero or more 
repetitions of the bracketted entity, for example: 

E { , E} means E I E, E I E, E, E I . . . etc 

The syntax given in the next section is ambiguous and is simply 
intended to list all the syntactic constructions available. The 
ambiguities are resolved later in the manual. 

2.2.2 The Canonical Syntax of BCPL 

E r:= <name> I <stringconst> I <charconst> I <number> 
I true I false I nil I ( E ) I valof <block> 
I lvE l rv E I E-(-<arg list> ) I E ! E I E [ E 
I E<diadic op> E I <monadic op> E I E -> E, E 
I vec <constant expression> I table <constant list> 
I 11st <E list> 

<diadic op> : := * I .* I / I ./ I rem I + I .+ I -
I = I .= I ~ I -~ I < I .< l->-1 .> I < I .< 
I lshift I rshift I logand I logor I =-It -

<monadic op>::=+ I.+ - I . - not 

<E list> ::= <E rep> {, <E rep>} 

<E rep> ::= E I E rep <constant expression> 

<arg list> ::= <E list> I <empty> 

<constant expression> ::= E 

<constant list> ::= <constant rep> {, <constant rep>} 

<constant rep> ::= <constant expression> 

> 

I <constant expression> rep <constant expression> 

.> 

C : := <E list> := <E list> I E ( <arg list> 
I ~fto E I <name> : C I resultis E 
I 1 E do C I unless E do C I while E do C I until E do C 
I Crepeat I C repeatunTil E I C repeatwhile E 
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loop I break I return I finish I endcase 
test Ethen C or C I test E 1fso C ifnot C 
for <name>= Eto E de>C --
for <name>= E to Eby <constant expression> do C 
swTtchon E into<block> I case <constant expression>: C 
case <constant expression>to<constant expression>: C 
<lefaul t: C I call E ( <arg list> ) I <block> I <empty> 

D ::= <name> (<FPL>) = E I <name> ( <FPL> be C 
I <name list>= <E list> 

<FPL> ::= <name list> I <empty> 

<name list> ::= <name> {, <name>} 

<block> ::=$(<block body>$) 

<block body> ::= <block item> {: <block item> } 

<block item> ::= C I <declaration> 

<declaration> ::= let D {and D} 
I manifest <decl body> I global <decl body-> 
I external <decl body> I static <decl body> 

<decl body> ::= $( <C def> {: <C def>} $) 

<C def> ::= <name> : <constant expression> 
I <name>= <constant expression> 

<program> ::= <block body> 
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2.3 Hardware Representations 

Since the hardware character sets used for different 
implementations differ, it is practical to give only an outline of the 
hardware conventions which are common to most versions of BCPL. 

2.3.1 Names and System Words 

System words are sequences of letters used t~ denote canonical 
symbols for which there are no suitable graphics. The set of reserved 
system words is implementation dependent. Names are also composed of 
letters and digits and may be coined and used by the programmer to 
denote variables and constants within his program. If the available 
character set includes small letters then system words and names are 
syntactically distinct. 

For character sets with capital and small letters: 

(1) A system word is any sequence of two or more small letters, 
(2) A name is either 

(a) a single small letter 
(b) a capital letter followed by any sequence of letters, 

digits and possibly other suitable characters (e.g. 
• #) 

For character sets with only capital letters: 

(1) An identifier is a capital letter followed by any 
sequence of letters, digits and possibly other suitable 
characters (e.g. . #) 

(2) A name is an identifier which is not a system word. 

Thus on some implementations let and logor are system words while 
Let, LET, Logor and LOGOR may be used as names; but with a more 
restricted character set LET and LOGOR would be reserved system words 
and the programmer would have to represent the names in some other 
way, perhaps by: 

F_LET, S_LET, F LOGOR, S LOGOR 

2.3.2 Section Brackets 

The preferred representation of a left section bracket consists 
of° { followed by zero or more letters, digits, and other characters 
allowed in names. A right section bracket consists of} followed by 
zero or more letters, digits, etc. As the symbols { and } are used in 
this manual as meta-linguistic brackets, section brackets in the 
syntax and examples are represented using an alternate form also 
suitable for more limited character sets. 
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2.3.3 Equivalent Representations of Canonical Symbols 

Several canonical symbols have alternate representations for 
clarity and compatibility. Thus by may be represented as step, and do 
may be represented as then. Manysymbols ordinarily repr'es'ented by 
non-alphabetic characters may also be represented by system words. 
For example,= may be represented as eq. 

2.4 Preprocessor Conventions 

Several functions which the compiler performs before syntactic 
analysis to improve readability and as a convenience to the programmer 
are collectively called preprocessor conventions. 

2.4.1 Section Brackets 

Section brackets are used to bracket blocks and commands. To 
aid the readability of programs, section brackets may be tagged with 
any sequence of characters which may occur in identifiers. A closing 
section bracket matches an earlier open section bracket with the same 
tag and any outstanding sections will be closed automatically. For 
example: 

$(1 until i=0 do 
$(2 R ( i) -

i := i + 1 $)1 

is equivalent to: 

$(1 until i=0 do 
$(2 R ( i) -

i := i + 1 $)2 $)1 

2.4.2 Automatic Insertion of SEMICOLON 

The canonical symbol SEMICOLON is inserted by the compiler 
between pairs of items if they appeared on different lines and if the 
first was from the set of items which may end a command or definition, 
namely: --

loop break return finish endcase repeat 
<name> <number> <str1ngconst> <charconst> 

true false nil 
<sectket> ) J 

and the second is from the set of items which may start a command or 
declaration, namely: 

test for if unless until while goto resultis call 
swITcho'i1 case default endcase loop break return 
f1n1sh valor rv iv true false table 11st + 

- 8 -
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<number> 
manifest 

<stringconst> <charconst> 
static external let 

<sectbra> 

For example, the following two programs are equivalent: 

X := X + 1 
if x > y do y := 0 
R(x) 

2.4.3 Automatic Insertion of DO 

X := X + l; 
if x > y do y := 0; 
R(x) 

The canonical symbol DO is inserted by the compiler between 
pairs of items if they appeared on the same line and if the first is 
from the set of items which may end an expression, namely: 

true false 
<charconst> 

nil <name> 
<sectket> 

<number> <stringconst> 
] 

and the second is from the set of items which must start a command, 
namely: 

test for if unless until while got? _resultis ~ 
defaul-t-endcase loop break return f1n1sh sw1tchon call 

For example: 

unless 0 < T < Tmax resultis true 
if x=0 goto L-

is equivalent to: 

unless 0 < T < Tmax do resultis true 
if x=0 do-goto L 

2.4.4 Comments 

User's comments may be included in a program between a double 
slash '//' and the end of the line. Example: 

let R () be 
$( fori 

// this is a routine which refills Symb 
= 1 to 200 do // do it 200 times 

Readch (INPUT, lv Symb!i) $) // read a char 

- 9 -
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2.4.5 The Get Directive 

A directive of the form 

~ <specifier> 

may occur anywhere in a BCPL program: it directs the compiler to 
replace the characters of the directive by the text in the file 
referred to by the specifier. The syntactic form of the specifier is 
implementation dependent but will usually.be a string constant. 

- 10 -
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3.0 Fundamental Concepts of BCPL 

3.1 The Object Machine 

BCPL has a simple underlying semantic structure which is built 
around an idealized object machine. This method of design was chosen 
in order to make BCPL easy to define accurately and to facilitate the 
machine independence which is one of the fundamental aims of the 
language. 

The most important feature of the object machine is its store, 
which is represented diagrammatically in Figure 1. 

A ( n) A (n+l) A (n+2) A (n+3) 

Figure 1 - The Machine's Store 

It consists of a set of consecutive boxes (or storage cells) uniquely 
identified by arbitrary addresses. Some addressing function, A, 
places the consecutive integers in one-to-one correspondence with the 
addresses of consecutive cells. As is seen later, this property is 
important. 

Each storage cell holds a binary pattern called an Rvalue (or 
Right hand value). All storage cells are of the same size and the 
length of Rvalues is a constant of the implementation which is usually 
between 24 and 36 bits. An Rvalue is the only kind of object which 
can be manipulated directly in BCPL and the value of every variable 
and expression in the language will always be an Rvalue. 

Rvalues are used by the programmer to model abstract objects of 
many different kinds, such as truth values, strings and functions. A 
large number of basic operations on Rvalues have been provided in 
order to help the programmer model the transformation of his abstract 
objects. In particular, there are the usual arithmetic operations 
which operate on Rvalues in such a way that they closely model 
integers. One can either think of these operations as ones which 
interpret their operands as integers, perform the integer arithmetic 
and convert the result back into the Rvalue form, or alternatively one 
may think of them as operations which work directly on bit patterns 
and just happen to be useful for representing integers. This latter 
approach is closer to the BCPL philosophy. Although the BCPL 
programmer has direct access to the bits of an Rvalue, the details of 
the binary representation used to represent integers are not defined 
and he would be losing machine independence if he performed 
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nonnumerical operations on Rvalues he knows to represent integers. 

An operation of fundamental importance in the object machine is 
that of Indirection. This operation has one operand which is 
interpreted as an address and it locates the storage cell which is 
labelled by this address. This operation is assumed to be efficient 
and, as is seen later, the programmer may invoke it from within BCPL 
using the rv operator. 

3.2 Variables, Manifest Constants, and Address Constants 

Names in BCPL are associated either with storage cells or 
directly with Rvalues. A variable in BCPL is defined to be a name 
which has been associated with a storage cell. It has a value which 
is the Rvalue contained in the cell and it is called a variable since 
this Rvalue may be changed by an assignment command during execution. 
Variables are introduced by simple variable definitions, the for 
command, formal parameter lists, and the static and globaT 
declarations. 

A manifest constant is a name which is directly associated with a 
constant Rvalue; this association takes place at compile time and 
remains the same throughout execution. Manifest constants are 
introduced only by the manifest declaration. There are many 
situations where manifest constants can be used to improve readability 
at no cost in run time efficiency. 

An address constant is defined to be a name which is directly 
associated with an Rvalue representing in some way an address. The 
Rvalue cannot be determined until "load time" (just before execution) 
and remains the same during execution. Address constants cannot be 
used in constant expressions, which must be evaluated at compile time. 
Labels, the ex~ernal declaration, and routine and function definitions 
introduce address constants. 

3.3 Lvalues and Modes of Evaluation 

As previously stated each storage cell is labelled by an address; 
this address is called the Lvalue (or Left hand value) of the cell. 
Since a variable is associated with a storage cell, it must also be 
associated with an Lvalue and one can usefully represent a variable 
diagrammatically as in Figure 2. 
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NT~ Storage Cell 

• 1-------
LVALUE I RVALUE 

I ---------
Figure 2 - The Form of a Variable 

Within the machine an Lvalue is represented by a bit pattern of 
the same size as an Rvalue, and so an Rvalue can represent an Lvalue 
directly. The processes of finding the Lvalue and Rvalue of a 
variable are called Lmode and Rrnode evaluation respectively. The idea 
of mode of evaluation is useful since it applies to expressions in 
general and can be used to clarify the semantics of the assignment 
command and other features in the language. 

3.4 Simple Assignment 

The syntactic form of a simple assignment command is: 

El : = E 2 

where El and E2 are expressions. Loosely, the meaning of the 
assignment is to evaluate E2 and store its value in the storage cell 
referred to by El. It is clear that the expressions El and E2 are 
evaluated in different ways and hence there is the classification into 
the two modes of evaluation. The expression El to the left of the := 
is evaluated in Lmode to yield the Lvalue of some storage cell and the 
right hand side E2 is evaluated in Rrnode to yield an Rvalue; the 
contents of the storage cell is then replaced by the Rvalue. This 
process is shown diagrammatically in Figure 3. 

El := 

I Lmode 
I evaluation , 

Lval ue 
i 

Identical I ----bit patterns I 
I 
V 

Storage cell 

E2 

I Rmode 
I evaluation • Rvalue 
I 
I 
I 
I 

I I 
Lvalue <---+--

The Rvalue is placed 
in the cell 

1 --------
Figure 3 - The Process of Assignment 
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The only expressions which may meaningfully appear on the left 
hand side of an assignment are those which are associated with storage 
cells; they are called Ltype expressions. 

'!'he terms Lval ue and Rval ue derive from 
assignment command and were first used by 
reference manual [2]. 

3.5 The Lv Operator 

consideration 
Strachey in 

of the 
the CPL 

As previously stated an Lvalue is represented by a bit pattern 
which is the same size as an Rvalue. The lv expression provides the 
facility of accessing the Lvalue of a storagecell. 

The syntactic form of an lv expression is: 

lv E 

where Eis an Ltype expression. The evaluation process is shown in 
Figure 4. 

lv 

I 
I 
I 
I 
I 
I 
I 

' Rvalue 

E 

I Lmode 
I evaluation 

' Lvalue 

<--------

! 
I Identical 
1--- bit patterns 
I 

Figure 4 - The Evaluation of an lv Expression 

The operand is evaluated in Lmode to yield an Lvalue and the 
result is a bit pattern identical to this Lvalue. Intuitively, lv x 
is the address in memory of the variable x. The lv operator is 
exceptional in that it is the only expression operator toinvoke Lmode 
evaluation, and indeed in all other contexts, except the left hand 
side of the assignment, expressions are evaluated in Rrnode. 
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3.6 The Rv Operator 

The rv operator is important in BCPL sihce it provides the 
underlyingrnechanisrn for manipulating vectors and data structures; its 
operation is one of taking the contents (or Rvalue) of a storage cell 
whose address (or Lvalue) is given. 

The syntactic form of an rv expression is as follows: 

rv E 

and its process of evaluation is shown diagrammatically in Figure 5. 

rv 

I 

I 
I 
I 
I 

I 

' 
Rvalue 

E 

I Rmode 
I evaluation 

' Rvalue 
A 
I Identical 
1------ bit patterns 

' Lvalue 

Figure 5 - The Evaluation of an rv Expression 

The operand is evaluated in Rrnode and then the storage cell whose 
Lvalue is the identical bit pattern is found. If the rv expression is 
being evaluated in Rrnode, then the contents of the celris the result; 
it is also meaningful to evaluate it in Lmode, in which case the 
Lvalue of the cell is the result. An rv expression is thus an Ltype 
expression and so may appear on the lefthand side of an assignment 
command, as in: 

rv p := t 

3nd one can deduce that this command will update the storage cell 
pointed to by p with the Rvalue oft. Thus 

rv 100 := 0 

sets location 100 to zero. 
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3.7 The Vector Operator 

The vector-application operator {represented here by 
advantage of the consecutive arrangement of storage cells. 
the n'th successor to a given cell, as shown in Figure 6. 

V 3 

I I I 
V I V 

-->Rval ue I Rval ue 
I I I I 
I 1 ____ 1 I 
I 1----

I ' I Bit pattern <-------
I 
I 

Identical 
bit patterns 

. I 
'+' 

Lvalue 

1 
I 

Identical 
bit patterns 

I 
'+' 

Lvalue 

Figure 6 - An Interpretation of V 3 

! ) takes 
It finds 

The diagram above shows a possible interpretation of the 
expression V!3. Some adjacent storage cells are shown and the left 
hand one has an Lvalue which is the same bit pattern as the Rvalue of 
v. The cell at the right is the third successor of the one on the 
left. In terms of the addressing function A, if V = A {n) then the 
Lvalue of the cell on the right is A {n+3). Thus the expression: 

V I • 
• l 

accurately models a vector application, since, as i varies from zero 
to three, the expression refers to the different elements of the set 
of four cells pointed to by V. V can be thought of as the vector and 
i as the integer subscript. 

A vector application is an Ltype expression: in Lmode evaluation 
it yields the address of the designated cell, and in Rmode evaluation 
it yields the contents. 

Figure 7 shows how a vector application can be thought of as a 
data structure select operation. The variable Xpart acts as a named 
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selector applied to the data structure V. Manifest constants are 
commonly used to define structure selectors of this kind. 

V 

--+--------> 
___ I 

The cell referred 
to by V!Xpart 

Xpart 

3 

Figure 7 - An Interpretation of V ! Xpart 

By letting the elements 
is possible to construct 
complexity. Figure 8 shows 
pointers. 

of structures themselves be structures it 
compound data structures of arbitrary 
a structure composed of integers and 

X 

--+----> I 36 I 
___ I I ___ I 

I --+----> -34 
I __ I 

---------+-- I 0 
I 1 __ 1 I 
I ---------------+----
1 I I 
I f --------+---_-
I ---- I I __ _ 
--> 13 I 

I 
52 --> 1 

Figure 8 - A Structure of Integers and Pointers 

- 17 -



The BCPL Reference Manual 

3.8 Data Types 

The unusual way in which BCPL treats data types is fundamental to 
its design and thus some discussion of types is in order here. It is 
useful to introduce two classes: 

(a) conceptual types 
(b) internal types 

The conceptual type of an expression is the kind of abstrkct 
object the programmer had in mind when he wrote the expression. It 
might be, for instance, a time in milliseconds, a weight in grams, a 
function to transform feet per second to miles per hour, or it might 
be a data structure representing a parse tree. It is, of course, 
impossible to enumerate all the possible conceptual types and it is 
equally impossible to provide for all of them individually within a 
programming language. The usual practice when designing a language is 
to select from the conceptual types a few basic ones and provide a 
suitable internal representation together with an adequate set of 
basic operations. The term internal type refers to any one of these 
basic types and the intention is that all the conceptual types can be 
modelled effectively using the internal types. A few of the internal 
types provided in a typical language, such as CPL, are listed below: 

real 
Inte1er 
labe 
integer function 
(real, boolean) vector 

Much of the flavor of BCPL is the result of the conscious design 
decision to provide only one internal type, namely: the bit pattern 
ror Rvalue). In order to allow the programmer to model any conceptual 
type a large set of useful primitive operations has been provided. 
For instance, the ordinary arithmetic operators+,-, * and / have 
been defined for Rvalues in such a way as to model the integer 
operations directly. The six standard relational operators have been 
defined and a complete set of bit manipulating operations provided. 
In addition, there are some stranger bit pattern operations which 
provide ways of representing functions, labels and, as we have already 
seen, vectors and structures. All the operations provided are 
uniformly efficient and they have not been overdefined. For instance, 
the effect of adding a number to a label, or a vector to a function is 
not defined even though it is possible for a programmer to cause it to 
take place. 

The most important effects of designing a language in this way 
can be summarized as follows: 

1. There is no need for type declarations in the language, 
since the type of every variable is already known. This 
helps to make programs concise and also simplifies such 
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linguistic problems as the handling of actual parameters 
and separate compilation. 

2. It gives BCPL much of the power of a language with 
dynamically varying types and yet retains the efficiency 
of a language (like FORTRAN (3]) with manifest types; for, 
although the internal type of an expression is always 
known by the compiler, its conceptual type can never be 
and, indeed, it may depend on the values of variables 
within the expression. For instance, the conceptual type 
of V!i may depend on the value of i. One should note 
that, in languages (such as ALGOL [4] and CPL) where the 
elements of vectors must all have the same type, one needs 
some other linguistic device in order to handle more 
general data structures. 

3. Since there is only one internal type there can be no 
automatic type checking and it is possible to write 
nonsensical programs which the compiler will translate 
without complaint. This disadvantage is hopefully 
outweighed by the simplicity, power and efficiency that 
this treatment of types makes possible. 
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4.0 Expressions 

All BCPL expressions are described in this section. They are 
grouped into syntactic classes of decreasing binding power as follows: 

are: 

(a) Primary expressions. 

These are the most binding and most primitive expressions. 

Names, numbers, truth values, string constants, 
character constants, nil, bracketted expressions, 
result blocks, lv expressions, rv expressions, vec 
expressions, tahle and list expressions, vector-­
applications and functionapplications. 

(b) Arithmetic expressions. 

They 

These expressions provide the standard integer and floating point 
0perations of multiplication, division, remainder, addition and 
subtraction. They are less binding than the primary expressions. 

(c) Relational expressions. 

A relational expression takes integer or floating point arguments 
and yields a boolean value depending on the truth of the relation. 

(d) Shift expressions. 

The shift operations allow one to shift a bit pattern to the left 
or right by a specified number of places. 

(e) Logical expressions. 

These expressions allow one to manipulate bits of an Rvalue 
directly. They may be used in conjunction with the shift operators to 
pack and unpack data. The standard BCPL representations of true and 
false are chosen so that the logical operators may also be us'ect on 
boolean data. 

(f) Conditional expressions. 

A conditional expression allows for conditional evaluation of one 
of two expressions. 

This section ends with descriptions of <constant expression> and 
<E list> although they are not syntactic subcategories of expressions. 
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4.1 Primary Expressions 

All the primary expressions are described in this section. 

4.1.1 Names 

Syntactic form: 

A name is a canonical symbol of BCPL and its hardware 
representation is implementation dependent. If there are sufficient 
hardware characters available it consists of any sequence of letters, 
digits and underlines starting with a capital letter. A single small 
letter may also be used as a name. 

Examples: 

Semantics: 

H3 Tax rate F i 
List4 StackP 

A name may be associated directly with an Rvalue by means of a 
manifest declaration or by a label declaration, function or routine 
def1n1t1on, or external declaration, or it may be associated with a 
storage cell to form a variable using any other kind of declaration. 
A variable, manifest constant, or address constant can be referred to 
by its name throughout the scope of its declaration (see section 6.0 
on scopes and extents of definitions). 

A manifest constant or address constant can only be evaluated 
in Rmode and its result is the Rvalue which was associated with it by 
its declaration. 

A variable is the association of a name with a storage cell and 
it may be represented as follows: 

Lmode 

Name 

evaluation i ~ode evaluation 

I I 
Lvalue I Rvalue 

I ____ _ 

It may be evaluated in Lmode to yield the Lvalue of the storage cell, 
or it may be evaluated in Rmode to yield the contents of the cell; in 
either case the result is a bit pattern of standard Rvalue length. 
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Syntactic form: 

Examples: 

Semantics: 
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<digit> 
<number> 

::= 0111213141516171819 
::= <digit> {<digit>} 

I 8 <digit> {<digit>} 
I <digit> {<digit>} . 

132 43179 8377 3.14159 4 . 

{<digit>} 

A number is an Rtype expression and may only be evaluated in 
Rmode. The symbol 8 introduces an octal constant whose Rvalue is the 
right justified bit pattern specified by the sequence of octal digits. 
A decimal number is a sequence of digits not preceded by 8; its Rvalue 
is a bit pattern representing the integer in a way which- depends on 
the implementation. A floating point number is a sequence of digits 
with a decimal point embedded or at the end. The Rvalue is 
implementation dependent. 

Some implementations may admit of other number forms, such as 
hexadecimal. 

4.1.3 String Constants 

Syntactic form: " {<string character>} " 

A string constant is a canonical symbol of BCPL and its 
hardware representation is implementation dependent. Where possible 
it is a sequence of characters enclosed in double quotes ("). The 
asterisk (*) is used as an escape character with the following 
conventions: 

*n represents newline 
*s represents space 
*b represents backspace 
*t represents tab 
*" represents II 

* , represents 
** represents * 

Some implementations may admit additional escapes in strings. 

Examples: 

Semantics: 

"End of test" 
"*n*tTRA*tLl*n" 

11=11 

II U 

ti * It .. 

The Rvalue of a string constant is a pointer to a set of 
consecutive storage cells containing the length and characters of the 
string in some packed form. The number of bits per character and the 
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number of characters per storage cell are implementation dependent. 
For an implementation which packs four characters per word, the string 

"Abcl0*n" 

might be represented as follows: 

Rvalue ----> 6 A b C 

1 0 *n 0 

The storage cells 
some implementations use 
prevent updating. 

containing the string should not be updated; 
a "memory-protect" hardware facility to 

4.1.4 Character Constants 

Syntactic form: ' <string character> ' 

The same escape conventions that are used in string constants 
may be used in character constants. 

Examples: , X, '*n' , II , 

Semantics: 

Every string alphabet character has an integer code and the 
Rvalue of a character constant is the Rvalue of its corresponding 
integer code. The character code is implementation dependent. 

4.1.5 Truth Values 

Syntactic form: true or false 

Semantics: 

The Rvalue of false is a bit pattern entirely composed of zeros 
and the Rvalue of true 1s the complement of false, namely a bit 
pattern entirely composed of ones. (N.B. These are numerically equal 
in a ones-complement machine.) 
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4.1.6 Nil 

Syntactic form: nil 

Example: let X = nil 

Semantics: 

The Rvalue of nil is undefined. Its purpose is to avoid 
initializing a newly defined cell. In the example, the dynamic 
variable xis defined without an initial value. 

4.1.7 Bracketted Expressions 

Syntactic form: 

Examples: 

Semantics: 

E ) 

T rem ((x-y)/(x+y) + 2/z) 
(B---=>" A, B) ! (i+l) 

Parentheses may enclose 
mode of evaluation or its value. 
grouping. 

any expression without changing its 
Their sole purpose is to specify 

4.1.8 Result Blocks 

Syntactic form: 

Example: 

Semantics: 

valof <block> 

valof $( for i=l ton do 
-- if P-(i, xT resultis false 
resuTtis true $) 

A result block is a form of BCPL expression in which commands 
can be executed before the value of the expression is found. It is 
evaluated by executing the block until a resultis statement is 
encountered; this causes execution of the block to cease and the 
Rvalue of the expression in the resultis command is the result. See 
section 5.14. 
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4.1.9 Lv Expressions 

Syntactic form: lv E 
wnere Eis a primary expression. 

Examples: Readch (INPUT, lv Ch) 
U := lv V!i 

Semantics: 

The Rvalue of an lv expression is the bit pattern obtained by 
evaluating the operand-(which must be an Ltype expression) in Lmode. 
See the discussion of left and right hand values in section 3.3, and 
of the lv operator in section 3.5. 

4.1.10 Rv Expressions 

Syntactic form: rv E 
wnere Eis a primary expression. 

Example: rv x : = rv { f ( i) + 2) 

Semantics: 

An rv expression is an Ltype expression and may be evaluated 
to yield either an Lvalue or an Rvalue. It is evaluated by evaluating 
its operand in Rmode to yield a bit pattern which is interpreted as 
the Lvalue of a storage cell. In Lmode evaluation this bit pattern is 
the result, but for Rmode evaluation the contents of the storage cell 
is the result. The~ expression is described further in section 3.6. 

4.1.11 Vector Expressions 

Rvalue 
word of 
zero'th 

Syntactic form: vec <constant expression> 

Examples: let v = vec 100 
Word := vec Vmax / 4 

Semantics: 

Let the value of the constant expression be n. Then the 
of the vector expression is the address {Lvalue) of the first 
a block of storage n + 1 words long. Thus there is both a 
word and an n'th word. 

The storage is dynamic in class and is newly allocated by each 
evaluation of the expression. It remains allocated for as long as 
execution is dynamically between the reference and the end of the 
function or routine body, or the end of the smallest enclosing scope 
of any dynamic variable declaration. In the first example above, the 
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storage remains allocated as long as the cell v does. Repeated 
evaluation of the expression within a particular invocation of a 
function or routine results in allocating the same block of storage 
each time. 

4.1.12 Table and List Expressions 

Syntactic form: 

Examples: 

Semantics: 

table 
list 

let T 

Cv := 

<constant list> 
<E list> 

= table ·0·, ·1·, ·2·, ·3·, 
4, ·s·, '6", ·7·, ·a·, ·9·, 

'A', ·s·, ·c·, ·o·, 'E', ·p· 
list "zero", "one", "two", "three", 

"four", "five", "six", "seven", 
"eight", "nine", "ten" 

All the expressions which appear after table must have Rvalues 
~~ich can be determined at compile time. The Rvalue of a table is a 
;ointer to a set of consecutive storage cells whose initial values are 
given by the list of constant expressions; the allocation of the 
storage cells and the initialization are performed prior to execution 
of the program. 

A table may be used 
to ·p· in the example above. 
Jpdated; some implementations 
to prevent updating. 

as a vector; for instance, T!lS is equal 
The elements of a table should not be 
use a "memory-protect" hardware facility 

The list expression is similar to table. The initial values 
can be any expressions. They are evaluated and stored in the list at 
the time the list expression is evaluated. The storage is allocated 
dynamically as for vectors. See section 4.1.11. 

let L = list E0, El, ... En 

is equivalent to 

let L = vec n 
"[;'!"0", L !1-,-.. . L ! n : = E0, El, . . . En 
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4.1.13 Vector Applications 

_Syntactic form: El E2 El [ E3 ] 

El and E2 are primary expressions and E3 is any expression. 
The operator is left associative and thus 

Examples: 

Semantics: 

x ! y ! z means (x ! y) ! z 

V ! (i+l) := V ! i + p 

case SEQ: Trans (x[H2]) 
Trans (x[H3]) 
return 

Xpart 

The expression El!E2 is defined 
(E2) 'th successor to the cell whose Lvalue 
explained in section 3.7. 

to take the Rvalue of the 
is El. Its purpose is 

The expression El [E2] is equivalent to El!(E2). 

4.1.14 Function Applications 

Syntactic form: E0 (<E list>) I E0 () 

E0 is a primary expression and the <E list> may contain any 
expressions. 

Examples: 

Semantics: 

f (x) 
H (1, 2*t) 
(x=0 -> f, P3) (1, "ZT", y+2) 
Nextparam () 

The evaluation of a function application is explained in 
section 6.3.2. 

4.2 Arithmetic Expressions 

Syntactic form: E * E I E / E E rem E I 
E + E I E - E 
+ E I - E I 
E * E I E ./ E . 
E .+ E I E . - E 
.+ E I .- E 

The operators*/ rem.* and ./ are equally binding and associate 
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to the left; they are more binding than+ - .+ or - which also 
associate to the left. 

Thus 

Examples: 

Semantics: 

x * y rem z means (x * y) rem z 

x + y - z/t means (x+y) - (z/t) 

2*x*x + 6*x*y + 7*y*y 
v ! ( f ( x) rem 13 ) + G ( x) 
X .* 2.3 .+y.* 4.7 

The arithmetic expressions evaluate their operands in Rmode. The 
integer operators then interpret the Rvalues as integers and yield 
Rvalues representing the integer results of the arithmetic. The 
floating point operators similarly interpret the Rvalues as floating 
point numbers and yield Rvalues representing the floating point 
results of the arithmetic. 

The operators* and/ denote integer multiplication and division 
respectively. 

The operator rem yields the remainder after dividing the left 
hand operand by the right hand one. If both operands are positive the 
result will be positive, it is otherwise implementation dependent. 

The expression El+ E2 yields an Rvalue representing the integer 
summation of El and E2. 

The Rvalue of+ El is the Rvalue of El. 

The expression El - E2 yields an Rvalue representing the result 
of subtracting E2 from El. 

The expression - El has the same meaning as 0 - El. 

The operators .* and ./ denote floating point multiplication and 
~ivision respectively. 

The infixed operators .+ and - denote floating point addition 
and subtraction. 

The expression .+Eis the same as E. 

The expression - Eis the same as 0.0 - E. 
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4.3 Relational Expressions 

Syntactic form: E <relop> 
<relop> : := 

E {<relop> E} where 
=I ;!I <I >I <I 
= I .;! I . < I . > I . < I > 

. > 

The relational operators are just less binding 
arithmetic operators. 

than 

Examples: 

Semantics: 

if 0 < x < y goto L 
A! i-:= f (x)-;-g (x} 
X • = 0. 0 -) 0. 0, Y . / X 

For a simple relational expression defined by 

E <relop> E 

the 

the operands are evaluated in Rrnode; the Rvalues obtained are then 
interpreted as integers or floating point numbers according to the 
operator and if the particular relation is true then the result of the 
expression is true, otherwise the result is false. An extended 
relation such as 

El <relop l> E2 <relop 2> E3 

is equivalent to the following expression: 

(El <relop l> E2} logand (E2 <relop 2> E3} 

However, the number of times E2 is evaluated is undefined. 

The correspondence between the operators and their meanings is 
given below. 

Integer Floating Point 
Operator Operator Meaning 

= = equal to ., -~ not equal to 
< . < less than 
> . > greater than 
< . < less than or equal to 
> :> greater than or equal to 
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4.4 Shift Expressions 

Syntactic form: El lshift E2 I El rshift E2 

E2 is any relational, arithmetic, or primary expression and El is 
any shift, relational, arithmetic or primary expression; the shift 
operators are thus just less binding than the relations and associate 
to the left. 

Examples: 

Semantics: 

let P (t) = t!3 rshift 10 logand 8377 
x:= x !shift Bytes1ze logor Ch 

The operands are evaluated in Rmode to yield Rvalues. The left 
hand one is interpreted directly as a bit pattern and the right hand 
one as an integer to indicate the number of places to shift. 

The result of El !shift E2 is the bit pattern produced by 
shifting El to the left by E2 places. The operator rshift is similar 
to lshift, only it shifts to the right. vacated positions are filled 
with zeros and the result is undefined if E2 is negative or greater 
than the number of bits in an Rvalue. 

4.5 Logical Expressions 

Syntactic form: not E 
IE logand E I E logor E 

I E ~ E I E=L E 

The operator not is most binding; then, in decreasing order of 
binding power, the~are: 

logand, logor, ~,=L 

All the logical operators are less binding than the shift operators. 

Examples: B := not B 
if x=F""Iogor y=0 resultis f(t) 
x:= x logand 8770077 logor y logand 87700 

Semantics: 

The operands of all the logical operators are interpreted as bit 
patterns of ones and zeros. 

The application of the operator not yields the logical negation 
of its operand. The result of any otheriogical operator is a bit 
pattern whose nth bit depends only on the nth bits of the operands and 
can be determined from the following table. 
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nth bits Operator 
of operands logand logor = f 

both ones 1 1 1 0 
both zeros 0 0 1 0 
otherwise 0 1 0 1 

The operators logand and logor are interpreted differently when 
an expression is being evaluated to control conditional execution, 
specifically in the if, while, test, and repeatwhile commands and the 
conditional expression. In most implementations one operand is 
evaluated first and if its value determines the result the other 
operand is not evaluated. This occurs when one operand of logand is 
false or when one operand of logor is true. 

4.6 Conditional Expressions 

Syntactic form: El-> E2, E3 

El, E2 and E3 may be any logical expressions or expressions of 
greater binding power. E2 and E3 may in addition be conditional 
expressions. Thus: 

Bl -> x, B2 -> y, z means Bl -> x, (B2 -> y, z) 
and Bl -> B2 -> x, y, z means Bl -> (B2 -> x, y) ' z 

Example: let f (x) = X < 0 -> 0 ' 
X > 10 -> 10, 
X 

Semantics: 

The Rvalue of a conditional expression is obtained by evaluating 
either E2 or E3 in Rmode depending on whether the value of El is true 
or false. 

true -> E2, E3 means E2 
IaI'se -> E2, E3 means E3 

If the value of El is neither true or false the result of the 
conditional expression is undefined. 

A conditional expression is an Ltype expression if both its 
alternatives are Ltype expressions. 
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4.7 Constant Expressions 

Syntactic form: 

Example: 

<constant expression> ::= E 

36 + 3 * Table size 

Semantics: 

A constant expression is one whose Rvalue can be determined at 
compile time. It may be a number, a truth value, a character 
constant, a manifest constant, or a bracketted, relational, shift, 
logical, or conditional expression composed of constant expressions. 

Constant 
(a) 

expressions are used in 
case labels 

( b) 
(C) 

and (d) 

vector expressions 
manifest, static, global, 
tables. 

4.S Expression lists 

Syntactic form: <E list> .. -.. - <E 
<E rep> .. -.. - E 

Examples: let T = table 0 
a, b, C := a + 
R (a, b, C rep 

Semantics: 

Lists of expressions are useful 
argument lists and assignment commands. 
feature. 

E0 rep n 

is equivalent to 

E0 , E0 , . . . E0 

and external declarations 

rep> { , <E rep>} 
I E rep <constant expression> 

~ 10 II Array of zeros. 
1, b + 1, C + 1 
4) 

in several contexts, such as 
They are purely a syntactic 

where the number of E0 terms is given by the value of n. Thus rep is 
merely a notation to avoid repetitive typing. 
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5.0 Commands 

5.1 Simple Assignment Commands 

Syntactic form: 

Examples: 

Semantics: 

El := E2 

X := l 
V ! i := U -i + w i 

The assignment operation has already been discussed in section 
3.4. El must be an Ltype expression and it is evaluated in Lmode to 
yield an Lvalue, and E2 is evaluated in Rmode to yield an Rvalue. The 
contents of the storage cell referred to by. the Lvalue is then 
replaced by the Rvalue. 

An Ltype expression may be of one of the following four kinds: 

(a) A name referring to a storage cell. 
(b) An rv expression. 
(c) A vector application. 
(d) A conditional expression whose alternatives are both 

Ltype expressions. 

5.2 Assignment Commands 

Syntactic form: <E list> := <E list> 

There must be the same number of expressions in the list on the 
right of the := as there are on the left. 

Example: x, V!i := 1, U!i + W!i 

Semantics: 

The assignment command is semantically equivalent to a sequence 
of simple assignment commands. The general form 

Ll, L2, . . . Ln : = Rl, R2, Rn 

is equivalent to the following set of simple assignments: 

Ll : = Rl 
L2 := R2 

Ln := Rn 
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The order of execution of the assignments is not defined and may not 
be relied on. Note that the assignment: 

X, y := y, X 

will not interchange the values of x and y. The main advantage of the 
general assignment command is the syntactic one of eliminating the 
need for section brackets in certain circumstances. For instance the 
following command 

if x = y do$( V!3 := 0 
B := true $) 

may be written 

if x = y do V!3, B := 0, true 

Since the order of 
strictly incorrect. 

evaluation is not defined, 
For example, the command: 

Symb!i, i := Reh (), i + 1 

some 

may have different effects in different implementations. 

5.3 Routine Commands 

Syntactic form: E0 (<E list>) I E0 () 

commands are 

E0 is any primary expression and the <E list> may contain any 
expressions. 

Examples: 

Semantics: 

R (x) 
Compjump (x!H2, false, L) 
(C ! i) () 

The execution of a routine application is explained in detail in 
section 6.3.2. 

5.4 Labelled Commands 

Syntactic form: 

Examples: 

Semantics: 

<name> : C 

Next: Reh () 
L: Chkind := Kind (Ch) 

A labelled command is a form of declaration which associates the 
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name directly with the Rvalue representing the location of the 
command. The scope of the name is the smallest textually enclosing 
routine or function body. 

The Rvalue of a label may be the operand of a goto command, as 
described in the next section. For an explanation of the term scope 
see section 6.1. 

5.5 Goto Commands 

Syntactic form: 9-Q!Q E 
wfi'ere Eis any expression. 

Examples: goto Next 
goto S i 
goto x = 0 -> Error, Tvec!x 

Semantics: 

Eis evaluated to yield an Rvalue, and then execution jumps to 
the command whose label has the same value. The point where execution 
is resumed must be at the same activation level as that of the goto 
command, or, in other words, the label and the goto command must both 
be in the same function or routine body. The effect of violating this 
rule is usually chaos. 

As a general rule, it is a good policy to try to minimize the 
number of labels in a program as this will tend to improve its 
readability. 

5.6 If Commands 

Syntactic form: 

Examples: 

if E do C 
unlessE do C 

if X = 0 do X := 10 
unless Syrri5=S COMMA do Report (30) 
unless S ! i; W ! iresultis false 

Note 
example. 

the automatic insertion of do by the compiler in the third 
See section 2.4.3. 

Semantics: 

The command if E do C is executed by evaluating E to yield a 
truth value (see section 4.5). If the result is false execution is 
complete, if the result is true the command C is executed, and if the 
result is neither true nor taTse the effect is undefined. 

The command unless E do C is equivalent to if not (E) do C. 
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while E do C 
until E do C 

Examples: while N > SSP do LoadT {S LOCAL, SSP) 
until TT 0 = 0 do T := T-! 0 

Semantics: 

The command while E do C is equivalent to: 

.9.oto L 
M : C 
L: if E goto M 

where L and M are identifiers which do not occur elsewhere in the 
program. 

The command until E do C is equivalent to while not {E) do C. 

5.8 Test Commands 

Syntactic form: 

Example: 

Semantics: 

test Ethen C or C 
test E ifso C Tinot C 

test 2*n > {CaseK ! n - CaseK 
then Lswitch (1, n, D) 
orBswitch (1, n, D) 

The command test Ethen Cl or C2 is equivalent to: 

if not {E) goto L 
Cl -
goto M 

L: ~ 
M : 

1)/2 + 7 

where Land Mare identifiers which are not used elsewhere in the 
program. 

The command test E ifso Ci ifnot C2 is equivalent to test Ethen 
Cl or C2. The ifso and i1riot clauses may be interchanged. 
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C repeatwhile E 
C repeatunt1l E 
C repeat 

Reh() repeatuntil Ch= '*n' 
$(WP:= WP+ l 

S ! WP:= Ch 
Reh () $) repeatwhile 'A' <Ch< 'z' 

The repeat commands are defined in terms of other equivalent 
commands, as follows: 

C repeatwhile E 
C repeatuntil E 
C repeat 

is equivalent to 
is equivalent to 
is equivalent to 

L: C; if E goto L 

C repeatwhile not (E) 
C repeatwhile true 

where L is an identifier which is not used elsewhere in the program. 

5.10 For Commands 

Syntactic form: for <name> = 
ror <name> = 

Example: for i = 0 to 

Semantics: 

The for command can be defined 
forms: 

for N = El to E2 by E3 do C 

is equivalent to 

$ ( let N, Z = El, E2 
wFiTle N < Z do 

$( C 

E to E do 
E to E by 

122 do V 

by the 

N := N + E3 $) $) 

if E3 is positive, or 

$( let N, Z = El, E2 
wFiTle N > Z do 

$( C 
N := N + E3 $) $) 

C 
<constant> do C 

! i := i 

following equivalent 

if E3 is negative. (The value of E3 is known at compile time.) Z is 
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an identifier not used elsewhere in the program. Also: 

for N = El to E2 do C 

is equivalent to 

for N = El to E2 by 1 do C 

The to and by clauses may be interchanged. 
valueand end limit expressions El and E2 are 
must be a constant expression so that its 
time. 

5.11 Loop, Break, and Endcase Commands 

Syntactic form: 

Examples: 

loop 
'Ereak 
endcase 

for i = 1 to v!0 do 
$( Ietx=v!i 

Note that the initial 
evaluated only once. E3 
sign is known at compile 

Trx = 0 loop 

Semantics: 

$) 
L2: 

break 
Ll: 

switchon Op into 
$( case SWITCHON: 

case SEQ: 

$) 
L3: 

Transswitch (x) 
endcase 
Tr ans ( x ! 1) 
Tr ans ( x ! 2) 
endcase 

Execution of the break command causes a jump to the point just 
after the smallest textually enclosing loop, introduced by one of the 
following key words: 

until, while, repeat, repeatwhile, repeatuntil and for. 

In the example, this is the point labelled L2. 

The loop command causes a jump to the end of the body of the 
smallest enclosing loop, so that the end condition is tested and the 
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loop repeated as required. In the example, this is the point labelled 
11. In a for loop the loop command also causes the index to be 
incremented before the test is made (as usual). 

The endcase command causes a jump to the point just after the 
smallest textually enclosing switchon block. In the third example, 
this is the point labelled 13. 

5.12 Finish Commands 

Syntactic form: 

Example: 

Semantics: 

finish 

if Reportcount > Reportmax do 
$( Writes ('*nToo many errors*n') 

Endwrite (OUTPUT) 
finish $) 

The finish 
an orderly manner. 

command causes execution of the program to cease in 
Its exact effect is implementation dependent. 

5.13 Return Commands 

Syntactic form: 

Example: 

Semantics: 

return 

let MapB (F, x) be 
$(1 if x -;;;-0 return 

TI x!Hl = S COMMA do 
$( MapB-(F, x!H3) 

F (x!H2) 
return$) 

F (x) $)1 

The 
enclosing 
just after 
body. 

return command causes the execution of the smallest 
routine body to cease and so control returns to the point 
the routine call that invoked the current activation of the 

- 41 -



The BCPL Reference Manual 

5.14 Resultis Commands 

Syntactic form: 

Example: 

Semantics: 

resultis E 

valof $( for i = 0 ton do 
if V!i7 U!1resultis false 

resuitis true $) 

The execution of the command resultis E causes the execution of 
the smallest enclosing result block to cease and yield the value which 
is the Rvalue of E. 

5.15 Switchon Commands 

Syntactic form: 

or 

Example: 

Semantics: 

switchon E into <block> 
where the EI'ock contains labels of the form: 
case <constant>: case <constant> to <constant>: 
aefault: 

let Trans (x) be 
--$(1 if x = 0 return 

switchon x ! Hl into 
$( default: Report(l00); return 

case S LET: - - -

endcase 

case S_SEQ: Trans (x 
Trans (x 
endcase 

H2) 
H3) 

$)1 

The expression after switchon is evaluated to yield an Rvalue 
and then, if a case label exists which has a case constant of the same 
value then execution jumps to that point, otherwise if there is a 
default label execution resumes there. If the switch has no default 
label and if no case constant matches the switch expression then the 
effect is undefined. 

The case label 

case El to E2: 

is equivalent to 

case El: case El+ 1: case El+ 2: ... case E2: 
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where E2 must not be less than El. 

Note that the names S LET and S SEQ in the example above must 
have been declared to be manifest constants. 

The switch is implemented by any one of a number of methods 
(e.g. direct switch, sequential search, hash table, binary tree) 
depending on the number and range of the case constants. 

5.16 Call Commands 

Syntactic form: call E0 (<E list>) I call E0 () 

Example: call Terminate (Name char 32, lv Code fixed) 

Semantics: 

In most implementations BCPL does not use the system standard 
call sequence. The call command provides a way of calling routines 
not written in BCPL. The nature of the argument list is extremely 
implementation dependent. In the implementation from which the 
example is drawn, the types of the arguments must usually be provided 
to the called program. This information is provided by infixed and 
postfixed operators which are not allowed in any other context. 

5.17 Blocks 

Syntactic form: 

Example: 

Semantics: 

<block item> 
<block body> 
<block> 

::= C I <declaration> 
::= <block item> {; <block item>} 
::= $( <block body>$) 

$( let List2 (x, y) = valof 
$( let P = Newvec (1) 

P""T 0, P 1 := x, y 
resultis P $) 

finish$) 

A block body consists of a sequence of intermixed commands and 
declarations. It is executed by executing the declarations and 
commands in sequence. 

The names declared by the declarations are local to the block 
and the dynamic storage cells allocated only remain in existence as 
long as execution is dynamically within the block. For a detailed 
discussion of scopes and extents see sections 6.1 and 6.2. 
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6.0 Definitions and Declarations 

Before a name may be used in a BCPL program it must be declared 
by the programmer in order to specify its scope, extent and, possibly, 
its initial value. 

6.1 Scope and Scope Rules 

The SCOPE of a name N is the textual region of program throughout 
which N refers to the same variable, manifest constant, or address 
constant. The scope of a name depends on its declaration as follows: 

(a) A formal parameter list of a function or routine 
definition declares a list of names whose scope is the 
body of the function or routine defined. 

(b) A name labelling a command is a form of declaration and 
it declares a name whose scope is the smallest enclosing 
routine or function body. 

(c) A let declaration declares a name or set of names whose 
scope is the declaration itself and all succeeding 
commands and declarations within the smallest enclosing 
block body. A let declaration at the outer level of a 
program includes tn:e-rest of the program in its scope. 

(d) A manifest, external, global, or static declaration 
declares a set of names whose scope is all succeeding 
commands and declarations within the smallest enclosing 
block body or program. 

(e) The scope of the control variable of a for command is the 
body of the command. 

If two variables have identical scopes then they must have 
distinct names and so, for instance, the names in a formal parameter 
list and the labels in the routine body must all be different. 

6.2 Extent and Space Allocation 

The EXTENT of a variable is the time through which it exists and 
has a storage cell (with its associated Lvalue). Throughout the 
extent of a variable it remains associated with the same storage cell 
and so the Lvalue remains constant; however, the contents of the cell 
(or Rvalue) may be replaced by the execution of an assignment command. 
In BCPL, variables can be divided into two classes: 
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Static variables 
These are variables whose 
program is running. The 
variable is allocated prior 
exist until the program has 

extents last as long as the 
storage cell of a static 

to execution and continues to 
finished or longer. 

(b) Dynamic variables 
The extent of a dynamic variable starts when its 
declaration is executed and continues until execution 
leaves its scope. Dynamic variables are useful when one 
needs some working space for a short period (perhaps 
during the execution of a routine) and it is too wasteful 
to use static storage. Dynamic variables are 
particularly useful when using functions and routines 
recursively. 

The class of a variable depends only on its declaration. Static 
variables are declared by 

static declarations, 
and global declarations. 

Dynamic variables are declared by 

simple variable definitions, 
f.or commands, 

and formal parameters. 

During the execution of a program there are three separate areas 
of storage in which variables may reside; these are: 

(a) the global vector, 
(b) the stack, 
(c) miscellaneous static cells. 

The global vector provides a facility rather similar to COMMON in 
FORTRAN and is used as a means of communication between separately 
compiled segments of program. The programmer may use a global 
declaration to associate names with particular cells in the global 
vector. 

The stack is needed 
used to hold dynamic 
arguments) and anonymous 
expressions. 

for the implementation of recursion and is 
variables (such as vectors and function 
results needed during the evaluation of 

The miscellaneous static cells hold non-global static variables 
which are local to the segment in which they are declared. 

Function and routine definitions, labels, and the manifest and 
external declarations do not introduce variables. 
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6.3 Let Declarations 

Syntactic form: 

Example: 

Semantics: 

let D {and D} 
where D denotes a definition 

let x, y = 0, 1 
and f (t) = 2*t - 1 
and Itermv = vec 22 

A let declaration may occur in a block body or at the outer level 
of a program and may be used to declare simple variables, functions 
and routines. The scope of the names declared is the textual region 
of program consisting of the let declaration itself and the succeeding 
declarations and commands of the block. At the outer level of a 
program a let declaration may only declare functions and routines. 
The defin1t1ons between the ands are at the same level and are 
effectively executed simultaneously, and by this means a let 
declaration may be used to declare a set of mutually recursTve 
functions and routines. 

The various kinds of basic definitions are described below. 

6.3.1 Simple Variable Definitions 

Syntactic form: <name> {, <name>}= <E list> 

All the names must be distinct and the number of names on the 
left of the = must be the same as the number of expressions on the 
right of the=. 

Example: 

Semantics: 

let X = 1 
and y, z = f (t) + 3, A!H2 
and v = vec 50 

In the general form 

Nl, N2, ... Nn = El, E2, ... En 

dynamic data items with names Nl, N2, ... Nn are first declared but 
not initialized, then the assignment command 

Nl, N2, . . . Nn := El, E2, En 

is executed. 
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6.3.2 Function and Routine Definitions 

Syntactic form: 

<function definition> ::= <name> () = E I 
<name> (<name list>) = E 

<routine definition> ::= <name> () be C I 
<name> (<name list>) be C 

The list of names in parentheses is called the formal parameter 
list. 

Example: 

let Node (x) = valof 
$( let P = Freelist 

Freelist := P + 3 
P!0, P!l, P!2 := x, 0, 0 
resultis P $) 

and Put (x, t) be 

Semantics: 

$( if tT0 = x return 
t:= t!0 ( X -) t + 1, t + 2 
test rv t = 0 
then rv t := Node (x) 
or Put (x, rv t) $) 

The purpose of a function or routine definition is to associate 
a name with an Rvalue which may be used in a function or routine call. 
The heading of the definition consists of the name of the function or 
routine being defined, followed by a list of formal parameters 
(possibly empty) enclosed in parentheses. The formal parameter list 
is a form of declaration which declares a set of variables with the 
specified names and they all have the same scope, namely, the body of 
the function or routine. Formal parameters are dynamic variables 
whose storage cells are allocated at the moment of call. The initial 
values are given by the actual parameters of the call. 

The process of calling a function or routine is 
diagrammatically in Figure 9. 
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E0 El, E2, ... En ) 
I I I I 
I I <- - I <- - I <- 1. Evaluate the 
I I I I arguments in Rmode. 
I V V V 
I Rvalue Rvalue Rvalue 
I I I I 
I I <- - I <- - I <- 2. Place the Rvalues in 
I I I I n new consecutive 
I I I .. I storage cells. 
I f f f 
I 
I ! ' V I 

Rvalue I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
V 
N 

I 
<- - - - + - - - - - - - - - - - - - 3. Find the function or 

I routine corresponding 
I to the Rvalue of E0. 
I 
I <- - <- - - - - - - - 4. Associate the formal 
I parameters with the 
I storage cells 
I left to right. 
I = E 
Nl, N2, . . . . . . 

be C 

5. Evaluate or execute the body of the function or 
routine in the environment of the definition 
extended by the new variables. 

6a. For a routine call return to the point just after 
the call. 

6b. For a function application, yield as result the 
Rvalue of the body of the function. 

Figure 9 - The Process of Calling a Function or Routine 

from 

The number of formal parameters need not equal the number of 
actual parameters and so it is possible to define a variadic routine. 
Consider: 

let R (a, b, c, d, e, f) be 
$( let v = lv a 

v!0 
- - - - v!3 
- - - - $) 

R (4, 32, -14, 63) 
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Within the body of R, the variable v may be thought of as a vector 
whose elements are the arguments of the call, and thus in this example 
v!0 equals 4 and v!3 equals 63. 

Note that the parameters of a BCPL call are passed by value; 
however, it is still possible to achieve the effect of a call by 
reference using the lv and !..Y operators. Consider: 

let S (x, y) be rv x := y 
let A, B = 0,-r 
S(lv A, B) 

The effect of the call for Sis to assign the current value of B 
(namely 1) to the variable pointed to by lv A (namely A), thus after 
the call A has value 1. 

which 
call. 

All functions and routines may be defined and used recursively. 

There is one important restriction on functions and routines 
has been imposed in order to achieve a very efficient recursive 
This restriction is as follows: 

Every name which is used in the body of a 
routine but which is not declared there 
manifest constant or address constant 
variable (see section 6.2). 

function or 
must be a 

or static 

In terms of the implementation, this restriction states that 
either the Rvalue or the Lvalue of every free variable of a function 
or routine is known prior to execution (but not necessarily at compile 
time) . 

Note that the following program is illegal: 

let a, b = 1, 2 
let f (x) = a*x + b 

However, it may be corrected as follows: 

static$( a= l; b = 2 $) 
let f (x) = a*x + b 

but this is not necessarily equivalent - e.g., if a orb is updated. 
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6.4 Manifest Declarations 

Syntactic form: 

Examples: 

Semantics: 

manifest$( <decl item> {; <decl item>} $) 
where <decl item> ::=<name>= <constant> 

manifest$( Hl=0; H2=1; H3=2 $) 
manifest$( S LET=74 

S-SEQ=73 
S-COMMA=38 $) 

A manifest declaration associates Rvalues directly with the 
declared names; the association takes place at compile time and cannot 
thereafter be changed. The names so declared are not variables and 
may not appear in a left hand context. Any constant expression may be 
used. 

6.5 Static Declarations 

Syntactic Form: 

Example: 

Semantics: 

static$( <decl item> {; <decl item>} $) 
where <decl item> ::=<name>= <constant> 

static$( P = 0; Q = 0 
Reportmax = 10 $) 

A static declaration declares a set of static variables (see 
section 6.2) whose initial values are given. Both the allocation of 
storage cells and the initialization are performed prior to execution 
of the program .. Thus the initialization is performed only once. Any 
constant expression may be used. 

6.6 Global Declarations 

Syntactic form: 

Examples: 

Semantics: 

global$( <decl item> {; <decl item>} $) 
where <decl item> ::= <name> : <constant> 

global$( Charcode:127; Option:128 $) 
global$( Rdblockbody:140; Rdblock:141 

Rexp:144; Rdef:145; Rcom:146 $) 

A global declaration declares variables whose storage cells are 
in the global vector (see section 6.2). The main purpose of the 
global vector is to provide a means of communication between 
separately compiled segments of program. Each name in a global 
declaration is associated with a constant expression whose value 
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specifies which storage 
The same global storage 
separate segments and 
segment to another. 

cell in the global vector belongs to the name. 
cell may be associated with variables in many 

hence may be used to pass values from one 

6.7 External Declarations 

Syntactic form: 

Example: 

Semantics: 

external$( <decl item> {; <decl item>} $) 
where <decl item> ::=<name>= <constant> 

external$( Initiate= "hcs_$initiate 11 $) 

The external declaration defines a set of names directly 
associated with Rvalues representing routines and functions in other 
separately compiled programs. The constant expression in the 
declaration is implementation dependent but will usually be a string 
constant representing the name of an "external reference". 

this 
rule: 

The external declaration can also be used to make routines in 
program known to other programs, as a result of the following 

If a function or routine definition occurs within 
the scope of an external declaration with the same 
name, then the function or routine is defined as 
an "external symbol" with the name derived from 
the external declaration. 

The connection between an external reference and the 
corresponding external symbol will be made by a loader (linker, 
binder) sometime before or during execution, the details depending on 
the operating system. 

For example, the following segment will define an external 
function. 

external$( F = "f$F" $) 
let F (g,x) = g (x) + g (-x) 

The following program fragment is a segment which uses the function 
defined in the last example. 

external 
$ ( F = "f$F" 

Write= "library$Write" 
$) 

let G (t) = t * t + t + 3 
for i = 0 to 10 do Write (F (G, i)) 
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