
J

:-
/ --/ I

/
!__...,,,·

(

MASSACHUSETTS INSTITUTE OF.TECHNOIOGY

Project MAC

Tc: Project 'MAC Participants

F1:om: Martin Richards

Subject: The BCPL Reference Manual

ABSTRACT

Memorandum-Iv, -3 52
July 21, 1%7

')

(

BCPL is a simple recursive programming language designed for

compiler writing and system prograIIDlling: it was derived from ·tr-ue

CPL (fombined frogramming b_anguage) by removing those features of the

full language which make compilation difficult namely, the type and

mode matching rules and the variety of definition structures with their

associated scope rules.

0.0 Index

1.0 Introduction

2.0 BCPL Syntax
2.1 Hardware Syntax
2 .1.-1 BCPL Canonical Symbols
2.1.2 Hardware Conventions and Preproc~ssor Rules
2.2 Canonical Syntax

3.0 Data Items
3.1 Rvalues, Lvalues and Data Items
3.2 Type~

4.0 Primary Expressions
4.1 Names
4.2 String Constants
4.3 Numerical Constants
4.4 True and False
4.5 Bracketted Expressions
4.6 Result Blocks
4.7 Vector Applications
4.8 Function Applications
4.9 Lv Expressions
4.10 Rv Expressions

5.0 Compound Expressions
5.1 Arithmetic Expressions
5.2 Relational Expressions
5.3 Shift Expressions
S.l~ Logical Expressions
5.5 Conditional Expressions

6.0 Connnands
6.1 As~ ignmen t Co1t!IIlallds
6.2 Simple Assignment Commands
6.3 Routine Commands
6.4 Labelled Commands
6._5 Goto Corranands
6.6 If Commands
6.7 Unless Commands
6.8 While Commands
6.9 Until Commands
6.10 Test Connnands
6.11 Repeated Commands
6.12 For Commands
6.13 Break Commands
6~14 Finish Commands
6.15 Return Commands
6.16 Resultis Commands
6.17 Switchon Commands
6.18 Blocks

7.0 Definitions
7.1 Scope Rules
7.2 Space Allocation and Extent of Data Items
7.3 Global Declarations
7.4 Manifest Declarations
7.5 Simple Definitions
7. 6 Vector Definitions
7.7 Function Definitions
7.8 Routine Definitions
7.9 Simultaneous Definitions

8.0 Example Program

-ii.

• 1i'

1.0 Introduction

BCPL is the heart of the BCPL Compiling System; Lt is a language-which

looks much like true CPL [l] but is, in fact, a v~ry simple language which_ is

easy to compile into efficient code. The main differences between BCPL and

CPL are:

(1) A simplified syntax.

(2)

(3)

(4)

(5)

(6)

All data items have Rvalues which are bit patterns of_ the same
length and the type of an Rvalue depends only· on the context of
its use and not on the decl~ration of the clata item. This .
simplifies the compiler· and improves the object code efficiency
but as a result there is no type checking.

~CPL has a manifest named.constant facility.

Functions and routines may only have free variables which are
manifest named constants or whose Lvalues are manifest con~tants
(i.e., explicit functions or routines, la.be.ls or global variables).

The user may manipulate both Land Rvalues explicitly.

There is a s~heme for separate compilation of segments of a
program.

2.0 BCPL Syntax

The syntactic notation used in this manual is basically BNF with the

following extensions:

(1) The symbols E, D and Care used as shorthand for

<expression> .c.definition> and aommand>.

(2). The metalinguistic brackets '< ' and '>' may be nested and th-us
used to group together more than one constituent sequence (which may
contain alternatives). An integer subscript may be attached ~o
the metalinguistic bracket '>' and used to specify repetition;
if it is the integer n, then the sequence within the brackets must
be repeated at least n times; if the integer is followed by a
·minus sign, then the sequence may be repeated a.t most n times· or
it may be absent.

2.1 Hardware Syntax

The hardware syntax is the syntax of an actual implementation of the

language and is therefore necessarily implementation dependent since it depends

on the character set that is available. To simplify the description of any

implementation of BCPL a canonical syntax has been defined and this is given in

the section 2.2. The canonical representation of a BCPL program consists of a

sequence of symbols from the following set.

2.1.-1 BCPL Canonical Symbols

NUMBER NAME STRINGCONS! TRUE FALSE

VALOF LV RV DIV REM PLUS MINUS

:EQ • NE LS GR LE GE NOT LSHIFT RSHIFT •
~

"LOG&.'lD LOGOR EQV NEQV COND COMMA

AND ASS GOTO RESULTIS ·coLON TEST

FOR IF UNLESS WHILE UNTIL REPEAT REPEATWHILE

REPEATUNTIL BREAK RETURN FINISH SWITCHON CASE

DEFAULT LET Mlu~IFEST GLOBAL
___ .J.-.---- - -·

BE SECTBRA SECTKET RBRA RKET SBRA SKET

SEMICOLON INTO TO 00 OR VEC • STAR

The symbols NUMBER, NAME, 'STRINGCONST, SECTBRA a.nd SECTKET denote

composite items which each have an associated sequence of characters.

2.1.2 Hardware Conventions and Preprocessor Rules

2.

(a) If the implementation character set contai~s both capital and small

letters then the following conventions hold:

(1) A name is either a single small letter or a sequence of
letters and digits starting with a capital letter. The
character immediately following a name may not be a
letter or a digit.

(2) A sequence of two or more small letters which is not part_
of a NAME, SECTBRA, SECTKET or STRINGCONST is a reserved
system word and may be used to represent a canonical symbol.
For example:

let and logor could be used to represent LET and LOGOR but
Let and Logor are names.

{b) User's comment may be included in a program between a double slash

' I I' and the end of the line. Example:

le·t R[] be // This routine refills the vector Symb

§ for i = 1 to 200 do Readch [INPUT, lv Symb->~ [i]] \

(c) Section brackets may be tagged with a sequence of letters and digits

and two section brackets are said to match if their tags are identical. More

than one section may be closed by a single closing section bracket since, on

encountering~ closing section bracket, if the current openi~g section bracket -)

is found n~t to match then the current ~0 ~~ion is auto~~tically clo~ed by the

insertion· vi an ext~:.1 closing brackr.+:. Th? process is ~-=pe 1ted until the

matching open se(' ~:i0u bracket is found.

3.

(d) The canonical symbol SEMICOLON is inserted between pairs of items
' if they appear~d on different iines and if the first was from the set of items

which may end a command or definition, namely:

BREA.X RETURN FINISH REPEAT SKET RKET

SECTKET NA.'\fE STRINGCONST NUMBER TRUE FALSE
,

and the second is from the set of items which may start: a command, namely:

TEST FOR IF UNLESS UNTIL WHILE GOTO RESULTIS

CASE DEFAULT BREA.1< RETURN FINISH SECTBRA

RBRA VALOF LV RV N&'1E

)

(e) The canonical symbol DO is inserted between pair of items if they

appeared on the same line and if the first is from the set of items which may

end an expression, namely:

SKET RKET SECTKET NAME NUMBER

STRINGCONST TRUE FALSE
.i
!
i
• i

and the second is from the set of items which must start a command,\ namely:

TEST FOR IF UNLESS UNTIL WHILE GOTO RESULTIS

CASE DEFAULT BREAK RETURN FINISH

(f) A directive of the form:

fil:E_ ~specifier>

\
~

may be used anywhere in a BCPL program; ·it directs the compiler to replace the

directive with the file or input stream of text referred to by the specifier.

)

The exact syntactic form of the specifier is implementation dependent but it will

usually be either a string constant or an integer.

Example:
The following is a complete program segment for separate compilation;

·-

it is written in a fictitious hardware representation and exhibits some of the

preprocessor r~les. Note that it was not necessary to write a single semicolon

since they will all be inserted automatically.

4.

get 'HEAD2' // This 'gets' the file called HEAD2 which presumably declares
Checkdistinct, Report and Dvec

let Checkdistinct[E, S] be

$(1 until E=S do // The symbol$(represents a SECTBRA

$(let p = E + 4
and N = Dvec*[E]

while p ls S do II Note that ls is a

II system word, pis a name.

$(if Dvec*[p]=N do Report [142, N]

p := P + e $)

E := E + e $)1 II Note that this closes
II two sections.

2. 2 tanonical Svnta.."'< 5.

The synta.""< given in this section defines all the legal ·construct:i.ons

in BCPL without specifying either the relative binding powers or association

rules of the command and expression operators. The~e.are given later in the

._,.. manual in the descriptions of each construction.

To improve t~e readability of t~e syntax a hardware representation of
• -.t'>

tµe canonical symbols has been used. For instance:

. () ([J '(1 are used to
·- ~ ••

denote RBRA RKET SBRJ. SKET SEC'rBRA and'

SE CT!tET ~ I

..... diadic OP>

~constant:-.

D

~namelist>

C

<:block>

--~ .. cons tdef>

: :=

: : =

<na~_> ! <,Stringconst>_ f 41umber> I~£ l false I
(E) I valof <.block> I lv E f !.Y_E jE[E] j E[] IE~[E]

E <diadi~ ~p> E J"'E I +E I -E } E➔ E, E \ E ~ , E ~

* I / I ~ I + J - i = f 1 I < I> I ~ I~ l ~ift I rshift l /\ I V l = r ·:t
: := E

: := D <!!!§. D~I <name> [.~xiamelist> 1_1 = E

<.name> [<.namelist> 1_] be <block>

<,namelist> = E f <.name> = ~ ~constant>

: := <,name> <, <name> ¥
::=h E ,~c E 1 ,..gfj~_g<Sto E j <nmne::, :<C >i- I

vf£, E £2. C \.V unless E ~ C ~hile E i2. C ~til E §.2. C . f

::=

: :=

--C repeat ~ repeatwhile E eatuntil E

~ E then C £!. C f £2!. <name> = E 12. E do C

break l return f finish I resul tis E

switchon :C ~ <block> f ~ <constant> < C >1_

~~~ul_;: / C >i- f <block> 

C < • - , 

< manifest global > § <-:name> < = 

<; <name'> 

C > .o 

I i : > <:constant"> 

.:: = ! : ':,. .:.constant'> _ ~ 



3 . 0 I 1a ta I terns 6 . 

3.1 ·~values, Lvalues and Data Items 

An RVALUE is a binary b
0

it pattern of a fixed fongth (which is imple­

mentation dependent), it is usually the size of a comj,uter word.• Rvalues may 

be U;SE:d to represent a variety of. different; kinds of objects such as integers, 

truth values,·vectors or functions. The actual kind of object represented is 

called the TYPE of the Rvalue. 

A BCPL expression can be evaluated to yie_ld an Rvalue but its type 

remains undefined until the Rvalue, is used in some definitive context and it 

is then assumed to represent an object_ of the required type. For example, in 

the following function application 

t-he expression (B~·:[ i] ➔ f, g) is evaluated to yield an Rvalue which is then 

interpreted as the Rvalue of a function since t~e expression occurred in the 

operator position of a function application; whether f and g are in fact 

functions is not explicitly checked. Similarly the expression B1.-[ i] (which is 

a vector application) occurs where are boolean is expected and so its Rvalue is 

interpreted_ as a truth value. 

There is no explicit check to ensure that there are no type mismatches. 

An LVALUE is a bit pattern representing a storage location containing 

an Rvalue. An Lvalue is the same size as an Rvalue and is a type in BCPL. 

There is one context where an Rvalue is interpreted as an Rvalue and that is as 

the operand of the monadic operator rv. For example, in the expression 

rv f[l] 

the expression f[i] is evRluated to yield an Rvalue which is then interpreted 

as an Lvalue since it is the operand of rv. The application of£!:. on this Lvalue 

yields the Rvalue which is contained in the location represented (or referred to) 

by the Lvalue. 

An Lvalue may be obtained by applying the operator lv to an identifier, a 

vector application or an !.Y. expression, see section 4.9. 

A DATA ITEM is composed of an Lvalue, the referenced Rvalue and possibly 

an associated identifier. The term is used loosely to mean the Lvalue, Rvalue 

or identifier depending on context. 

I 
I 
I 



In BCPL a data item may have at most one identifier. The following 

diagram shows a data item for a six bit machine. 
! 

x_ 

7. 

The broken line indicates the semantic association between an identifier x and 

the storage location which is represented by the box; the unbroken arrow shows 

the correspondence between the Lvalue 001101 and the Rvalue 000101, and the 

broken arrow shows the correspondence between the identifier x and the Lvalue 

001101. 

It is meaningful to say that the Lvalue of the data item xis the bit 

pattern 001101, that the Rvalue of the data item xis the bit pattern 000101 and 

_ that the Lvalue 001101 refers to the data item x. 

3.2 Types 

An Rvalue may represent an object of one of the following types: 

integer, logical, Boolean, function, routine, label, 

string, vector, and Lvalue. 

Although the bitpattern representations of each type is implementation dependent 

certain relations between types is not. 

(1) The Rvalue of a vector v, say, is identical to the Lvalue of its 
zeroth element: 

and hence 

~ V = V'k[o] 

(2) The Lvalue of the nth element of a vector v may be obtained by 
adding the integer n to v; thus 

.!Y. V-k[n] = v+n. 
j 

(3) If x, y and tare the first, second and nth parameters of a function 
or routine and if v = lv x, then 

~[o] = X 

V'k[l] = y 
c:U,d v*[n] = t 



8. ) 

This property may be used to define functions and routines with a variable 

number of Elctual parameters. In the definition of sucq. a :function or routine 
l . 

it• is nece:;sary to give a formal parameter list which is at least as long as 

the longest actual parameter list of any call for it. 

Example 

The following definition 

let R[a, b, c, d, e, f] be 

~ let v = lv a 

defines the routine R which may be called with 6 or less actual parameters. 

During the execution of the routine, the variable v may be used as a vector 

whose first n elements are the first n actual parameters of the call; thus 

during the following call 

R[ 126, 36, 18, 99] .. 

the initial are Rvalues of 

Vk[O], Vk[l], v-x[2] and v-k[3] are 126, 36, 18 and 99 

The Rvalue of a label is a bit pattern representing the program position 

of the labelled command. Note that it does not contain information about the 

activation level of the function or routine in which the label occurred . 

. The Rvalue of a function or routine is a representation of the entry 

point of the function or routine. 

4.0 Primary expressions 

4.1 Names 

Syntactic form: A name is a sequence of one or more characters from 

a restricted alphabet called the name character alphabet. 

The hardware representation of characters in this alphabet 

and the rules for recognizing the starts and ends of names 

are implementation dependent. 

One hardware representation is as follows: 

The name character alphabet contains th~ 1~tters 

A .... Zand a .... z and the digits O .... 9 and th~se nrc 



Semantics: 

4.2 String Constants 

Syntactic form: 

Semantics: 

9. 
all represented directly by the same hardware characters. 

A name either starts with a capital letter and is termi­

nated by the first non-letter or digit, or it is a single 

small letter. 

Two names are equal if they have the same sequence 

of name alphabet characters. A name may always be evalu­

ated to yield-an Rvalue. If the name was declared to be 

a manifest constant (see section 7.4) then the Rvalue will 

be the same on every evaluation; if the name was declared 

in any other way then it is a variable and its Rvalue may 

be changed dynamically by an assignment connnand. If N is 

a variable then its Lvalue is tLe Rvalue of the expression: 

h N 

'<:string alphabet character> 0 ' 

The hardware representation of characters in the string 

alphabet is.implementation dependent. One hardware 

representation is as follows: 

The string character alphabet contains all the 

characters except* and' are represented directly. These 

two exceptions are represent~d by 

-lrlr and *' respectively. 

In addition 

*n represents newline 

*S " space 

*b " backspace 

*t " tab 

A string constant of length one has an Rvalue which 

is the bit pattern representation of the character; this 

is right justified and filled with zeros. 

A string constant with length other than one is 

represented as a BCPL vector; the length and the string 

characters are packed in succes~ive words of t~e vectcr. 



10. 

Example: 

If characters are packed 4 per word· then the string: 

'AbclOkn' 

is represented as follows: 
, 1 r-·-····1 • •• • -r-·--- - ·· ·-7 
L~'{al':l~_j-· ~:-~---• _'A_~--k-'b}_.J 'c'_j 

•: ' 1 ' • '0 ' '*n ' • 0 • 
-·· -··-·- __ ....., 

4.3 Numerical Constants 

Syntactic form: 

Semantics: 

4.4 True and False 

Syntactic form: 

Semantics: 

or 8 <digit' l 

The sequence of digits is interpreted as a decimal 

integer in the former case, and as a right justified octal 

number in the latter. 

true or false 

The Rvalue of ~ is a bit pattern entirely compos·ed 

of ones; the Rvalue of false is zero. Note that 

true = N false 

4.5 Bracketted Expressions 

Syntactic form: 

Semantics: 

4.6 Result Blocks 

Syntactic form: 

Semantics: 

( E ) 

Parentheses may enclose any expression; their sole 

purpose is to specify grouping. 

valof < block> 

A result block is a form of-BCPL expression; it is 

evaluated by executing the block until a resultis state­

ment is encountered, this causes execution of the block 

to cease and returns the value of the expression in the 

resultis command. 



4.7 Vector A~olications 11. 

4.8 

Syntactic form: 

Semantics: 

El* [ E2] 

The asterisk is necessary to distinguish a vector 

application from a function application. El is a primary 

expression. 

A vector is represented by a pointer to a consecutive 

group of words which are the elements of the vector. The 

pointer points to the zeroth element. To evaluate a vector 

application El and E2 are evaluated to yield two Rvalues, 

the first is interpreted as a vector pointer and the second 

as the subscript; the element is then accessed to yield the 

result. 

The Lvalue of an element may be obtained by evaluating 

the expression 

£! El * [ E2 ] 

The representations of Vee.tors, Lvalues and integers 

is such that the following relations are true: 

El* [ E2] = !Y_ (El+ E2) 

lv El* [ E2] = El+ E2 

Function Applications 

Syntactic form: 

Semantics: 

E 1 [ E2 , E3 , . . . En ] 
El is a primary expression. 

The function application is evaluated by evaluating 

the expressions El, E2 En and assigning the Rvalues of 

E2 ... En to the first n-1 formal parameters of the function 

whose Rvalue is the value of El; this function is then 

entered. The result of the application is the Rvalue of the 

expression in the function definition, see section 7.7. 



4.9 •·Lv Exoressions 

S)ntactic form: 

SEmant:ics: 

1., 

4.10 Rv Expressions 

Synt.actic form: 

Semantics: 

12. D 
lv E 
Eis a primary expression. 

The Lvalue 0£ some expressj,ons may ~e obtained by· 

applying the operator lv; it is only meaningtul to apply 

lv to a v·ector. application, an !..Y.. expression or an identi­

fier which is not a manifest constant. 

The result of the application depends on the leading 

operator of the operand.as follows: 

(a) A vector application. 

• The result is the Lvalue of t_he element 

. referenced, s~e section 4.7. 

(b) An£! expression. 

The result is the. value of the operand of 

rv. The following relation is always true: 

(c) A name. 

The result is the Lvalue of the data item 

with the given name (which must not be a· man if e·s t 

constant). If the name was declared explicitly 

.as a function, routine, global or label then its 

Lvalue is a manifest constant (but its Rvalue is 

not), see section 7.2. 

rv E -Eis a primary expression. 

The value of an !.Y. expression is obtained by evaluating 

its operand to yield an Rvalue which is then interpreted as 

the Lvalue of a data item. The result is the Rvalue of this 

data item. 



5.0 Com.pound Expressions 13. 

5.1 Arithmetic Expressions 

Syntactic form: El * E2 or El / E2 or El ~ E2 or 

El+ E2 or +El or El-E2 or -El 

Se·mantics: 

~he operators */and~ are more binding than+ and -

and associate to the right. The operators+ and - associate 

to the left. 

All these operators interpret the Rvalues of their 

operands as signed integers, and all yield integer results. 

The operator* denotes integer multiplication. 

The division operator/ yields the correct result of 

El is divisible by E2; it is otherwise implementation 

dependent but the rounding error is never greater than 1. 

The operator!!:!!! yields the remainder of El divided by 

E2; its exact specification is i.mplementation dependent. 

The operators+ and - are self-explanatory. 

5.2 Relational Expressions 

Syntactic form: 

Semantics: 

El <relop> E2 

where .c:::relop> : := = I =I j <I> ( ~ I ·-:-~ 
and n? 2 

En 

The relational operators are less binding than the 

arithmetic operators. 

The result of evaluating an extended relation is true 

if and only if all the individual relations are true. The 

order of evaluation is undefined. The Rvalues of the 

expressions El ... En are interpreted as signed- integers and 

the relational operators have their usual mathematical 

meanings. 



5.3 

5.4 

Shift Expressions 

Syntactic form: 

Semantics: 

14. ) 
El lshift E2 or El rshift E2 

E2 is any primary or arithmetic expression and El 

is any shift, relational, arithmetic or primary expression. 

Thus the shift operators are le3s binding than the relations 

on the left and more binding on the right. 

The Rvalue of El is interpreted as a logical bit 

pattern and that of E2 as an integer. The result of El 

lshift E2 is the bit pattern El shifted to the left by E2 

places. El rshift E2 is as for lshift but shifts to the 

right. Vacated positions are filled with zeros and the 

result is undefined if E2 is negative or greater than the 

data item size. 

Logical Expressions 

Syntactic form: or El /\ E2 or El V E2 or 

Semantics: 

El -:- E2 or El~ E:2 ,·-
The operator rv is most binding; then, in decreasing 

order of binding power are: 

A V 

All the logical operators are less binding than the shift 

·operators. 

The operands of all the logical operators are inter­

preted as binary bit patterns of ones and zeros. 

The application of the operator f'l.1 yields the logical 

negation of its operand. The result of the application of 

any other logical operator i~ a bit pattern whose nth bit 

depends only on the nth bits of the operands and can be 

determined by the following table~ 

values of the Operator 
..J. 

bits I'. \/ ----
both ones 1 1 1 0 

both zeros 0 0 1 0 

otherwise " 1 0 ! ... 

, 

I 
J 

t. 
l 
I 
t' 

' ► 

I 
' I 
I 

I 
i 



5.5 Conditional Expre~sions 15. 

Syntactic form: 

Semantics: 

6.0 Commands 

El--) E2, E3 

El, E2 and E3 may be any logical expressions or 

expressions of greater binding power. E2 and E3 may, 

in addition, be conditional expressions. \ 

The value of the conditional expression El-> E2, E3 

is the Rvalue of E2 or E3 depending on whether the value 

of El represents true or false respectively. In either 

case oD:lY one alternative is evaluated. If the value of 

El does not represent either true or false then the result 

of the conditional expression is undefined. 

6.1 Assignment Corranands 

Syntactic form: 

Semantics: 

Ll, L2, ... Ln : = Rl, R2, ... Rn 

The semantics of the assignment command is defined 

in terms of the simple assignmE?nt connnand; the command 

given above is semantically equivalent to the following 

sequence: 

Ll := Rl 

L2 := R2 

Ln := Rn 

Note that the individual assignments are executed from 

left to right and not simultaneously. 

6.2 Simple Assignment Commands 

Syn~actic form: 

Semantics: 

El := E2 

El may either be an identifier, a vector application 

or an~ expression, and its effect is as follows: 

(a) If El is an identifier: 

The identifier must refer to a data item 

which has an Lvalue (i.e., it must not be declared 

as a ma.nife.:. ': i.~ a!:led constant). The assignment 

replaces tht~ Rvalue of this data item by the Rvalue 

of E2. 



6.3 Routine Commands 

Syntactic form: 

s·eman tics : 

6.4 Labelled Cotnmands 

Syntactic form: 

Semantics: 

6.5 Goto Connnands 

Syntactic form: 

Semantics: 

- 16. .D 
(b) If El is a vector application: 

The element referenced by El is· updated 

with the Rvalue of E2 

(c) If El is an !.Y. expression: 

. The· opercmd of rv is evaluated to yield 

a value which is then interpreted as an Lvalue; 

The Rvalue of E2 then replaces the Rvalue of 

the data item.referred to by the Lvalue. 

El[ E2, .E3, ... En] 
where El is a primary expression. 

The above command is executed by assigning the Rvalues 

of E2, E3, ... , En to the first n-1 formal ·parameters of 

the routine whose Rvalue is the value of El; this routine 

is then entered. The execution of this conn:nand is complete 

when the execution of th~ routine body is complete. 

N: C where N is a name. 

This declares a data item with name N; its scope is 

the smalles~ textually enclosing routine body or result 

block and its initial Rvalue is a bit pattern representing 

the program position of the command C. Its Lvalue is a 

manifest consta.,t, and refers to a position in the global 

vect~r (see section 7.3) if and only if the labelled 

command occurs within the scope of a global with the same 

name as the label. The Rvalue of a label is initialized 

prior to execution of the program. 

Eis evaluated to yield an Rvalue, then execution is 

resumed at the statement whose label had the same initial 

Rvalue. 



6.6 If Corrnnands 

Syntactic form: 

Semantics: 

6.7 Unless Commands 

Syntactic form: 

Semantics: 

6.8 While Connnands 

Syntactic form: 

Semantics: 

6.9 Until Commands 

Syntactic form: 

Semantics: 

17. 

if E do C 

Eis evaluated to yield an Rvalue which is then 

interpreted as a truth value. In BCPL,false is repre­

sented by zero and~ by the complement of false. 

rv false 

If the value of E represents false then the.command C 

is not executed; if it represents tr\!_~_ then it is executed 

and if it represents neither true nor false then the effect 

is implementation dependent. 

unless E do C 

This statement is exactly equivalent to the following: 

if rv ( E ) do C 

while E do C 

This is equivalent to the following sequence: 

goto L 

M: C 

L: if E goto M 

where Land Mare identifiers which do not occur elsewhere 

in the program. 

until E do C 

This statement is equivalent to 

while N ( E ) do C 



6.10 Test Commands 

Syntactic form: 

Semantics: 

6.11 Repeated Comm.ands 

Syntactic form: 

Semantics: 

~ E then Cl or C2 

This stateioont is equivalent to the following 

sequence: 

if N ( E ) goto L 

Cl 

goto M 

L: C2 

M: 

18. 

where Land Mare identifiers which do not occur else­

.where in the program. 

C repeat or 

C repeatwhile E or C repeatuntil E 

-
Where. C is anL.£C.QmwaJwt..2!:ill:~..: 

until, while,~ or for 

C repeat is equivalent to: 

L: C 

goto L 

C repeatwhile E is equivalent to: 

L: C 

if E goto L 

C repeatuntil 

L: C 

E is equivalent to: 

if N ( E ) goto L 

where Lis an identifier which does not occur elsewher~ 

in the program. 

D 



C 

6.12 For Commands 

Syntactic form: 

Semantics: 

6.13 Break Cotmnands 

Syntactic form: 

Semantics: 

for N = El !£ E2 • do C 

where N is a name. 

The above statement is equivalent to: 

§ let N = El 

until N > E2 do 

§ C 

N := NH ~\ 

break 

. 19. 

When this statement is executed it causes execution 

to be resumed at the point just after the smallest text­

ually enclosing loop command-. The loop commands are 

- those with the following key words: 

6.14 Finish Commands 

Syntactic form: 

Semantics: 

6 .15 Re t·urn Commands 

_Syntactic form: 

Semantics: 

6.19 Resultis Conunands 

Syntactic form: 

Semantics: 

·until, while, repeat, repeatwhile, repeatuntil 

and for. 

finish 

This causes the execution of the program to cease. 

return 

This causes a return from a routine body to the 

point just after the routine command which made the routine 

call. 

resultis E 

This causes execution of the smallest enclosing 

result block to cease and return the Rvalue of E. 



6.17 Switchon Commands 20. D ' 

Syntactic form: 

Semantics: 

6.18 Blocks 

Syntactic form: 

Semantics: 

7.0 Definitions 

7.1 Scope Rules 

switchon E into <block> 

where the block contains. labels of the form: 

case <constant:- or 

default; 

The expression is first evaluated, then if a case 

exists which has a constant with the same value then 

execution is resumed at that label; otherwise if there 

is a default label then execution is continued from 

there; otherwise execution is resumed just after the 

end of the switchon command. 

The switch is implemented as a direct switch, a 

sequential search or a hash switch depending on the 

number and range of the case constants. 

C 

6 < let D - ' --
§ or 

<.constdef > > --. 1 ... _ , 

A block is executed by executing the declarations 

(if any) in sequence and then executing the commands of 

the block. 

The scope of the definee of a declaration is the 

region of program consisting of the declaration itself, 

the succeeding declarations and the command sequence. 

-The SCOPE of a name N is the textual region of program throughout which 

N refers to the same data item. Every occurrence of a name must be in the scope 

of a declaration of the same name. 

There are three kinds of declaration: 

(1) 

(2) 

A formal parameter list of a function or routine: its scope is the 
function or routine body. 

The set of labels set by colon of a routine or result bloc\: its 
scope is the routine or result block body. 

j 



-·, ( ' 

... 

(3) Each declaration in the declaration sequence of a block: its 
scope is the region of program consisting of the declaration 
itself, the succeeding declarations and the command sequence 
of the block. 

21. 

Two data items are said to be declared at the same level of definition 

if they were declared in the same formal parameter list, as labels of the same 

routine or result block, or in the same definition. 

7.2 

an 

and 

There are three semantic restrictions concerning scope rules; these are: 

(a) Two data items with the same name may not be declared in the same 
level of definition. 

(b) If a name N is used but not declared within the body of a function 
or routine, then it must either be a manifest named constant or a 
data item with a manifest constant Lvalue, that is it nrust have 
been declared as a global, an explicit function or routine, or as 
a label. 

(c) A label set by colon may not occur within the scope of a data item 
with the same name if that data item was ceclared within the scope 
of the label and was not a global. 

Space Allocation and Extent of Data Items 

The EXTENT of a data item is the time through which it exists and has 

Lvalue. Throughout the extent of a data item, its Lvalue remains constant 

its Rvalue is changed only by assignment. 

In BCPL data items ca.., be divided into two classes 

(1) Static data items: 

Those data items whose extents lasts as long as the program 
execution time; such data items have manifest constant Lvalues. 
Every static data item nrust have been declared either in a fu~ction 
or routine definition, in a global declaration or as a label set by 
colon. 

(2) Dynamic data items: 

Those data items whose extent is limi-ted; the extent of a 
dynamic data item starts when its declaration is executed and 
continues until execution leaves the scope of.the declaration. 
Every dynamic data item must be declared either by a simple 
definition, a vector definition or as a formal parameter. The 
Lvalue of such a data item is not a manifest constant. 

\ 



I 
I 

22. 

A data item is initialized at most once at the start of its extent; static 

data items are intialized pr_ior to execution of the program and a dynamic data 

item at the time when its declaration -is executed. Both static and dynamic 

data items may have their Rvalues changed by assignment. 

During the execution of a recursive function or routine, a single textural 

declaration may give rise to more than one activation of its definee. The only 

declarations which can give rise to nrultiple activations are those that declare 

dynamic data items namely: 

simple definitions, vector definitions and formal parameters. 

7.3 Global Declarations 

Syntatic form: global § < name> : ..c:.,cons tant> 

Semantics: 

<; <name> : c::constant> 

The global vector is the sole means of communication . 
between separately compiled segments of a program. To 

call a function or routine which is declared in one 

segment from a position in another it is necessary to 

declare it as a global in each of the two segments. 

The above declaration declares a set of names to 
'J t be global and allocates the positions in the global 

i, .vector as defined by the manifest constants. 
·r-i 
l A global variable is a static data item and has an 

., Lvalue whiCh is a manifest constant. 

7.4 Manifest Declarations 

Syntactic form: manifest § <name> = <.constant-;> 

Semantics: 

<i ~name~= ~constant> 

This declaration declares each name to be a manifest 

constant with a value equal to the value of its associated 

constant expression. The maaning of a program would remain 

unchanged if all occurrences of manifest named constants 

were textually replaced by their corresponding values. 

This facility has been provided to impro~7 P. t}ie ) 

readability of programs and to give the pr:-·grarr~cr ~reater 

flexibility in the choice of internal represen,·ations of 

data. 



. . 
7.5 Si.mple Definitions 

•Syntactic form: 

Semantics: 

7.6 Vector Definitions 

Syntactic form: 

Semantics: 

7.7 Function Definitions 

Syntactic form: 

Semantics: 

23. 

Nl, N2 , .... Nn • = E 1 , E2 , . . . En • 

Data items with names Nl ... Nn are first declared, 

but not initialized, and then the following assignment 

command is executed 

Nl , N2, . . . Nn : = E 1, E2 , .. ~ En 

A simple definition declares dynamic data items. 

N = y!:..£_ <.constant> 

where N is a name. 

The value of the constant expression must be a 

manifest constant and it defines the maximum allowable sub­

script value of the ·vector N. The minimum subscript value 

is always zero. The initial Rvalue of N is the Lvalue of 

the zeroth element of the vector; both N and the elements 

of the vector are dynamic data items. 

The use of a vector is described in section 4.7. 

N[ ·<:1_1amelist> 
1

_] = E 

where N is a name. 

This defines a function with name N; the data item 

defined is static and has its Rvalue initialized prior to 

execution of the program. The Lvalue of N is a manifest 

_ constant, and refers to a position in the global vector 

if and only if the function definition is in the scope of 

a global definition of the same name. 

The names in the name list are called formal para­

meters and their scope is the body of the function E. The 

extent of a formal parameter lasts from the moment of its 

initialization in a call until the time when the evaluation 

of the body is co~plete. 

All func'ions and routines may be defined and used 

recursive.i.y. 

Function applications are described in section 4.8. 



7.8 Routine Definitions 

,Syntactic form: N[ ~namelist:> 1:..] be 41ock> · 

where N is a name. 

• 24. 

Semantics: This defines ·a routine with name N. The semantics 

of a routine definition is e:xactly as •for a function 

-- definition except that the body ~fa routine is a block 

and therefore its application yields no result. A 

routine should therefore only be called in the context 

of a command. 

Routine commands are described in section 6.3. 

7.9 Simultaneous Definitions 

Syntactic form: D <. and D >-
-- 0 

Semantics: 

8.0 Example Program 

All the definitions are effectively executed 

• simultaneously and all the defined data items have the 

~ame scope which,_ by the scope rules given in 7.1, 

includes the simultaneous definition itself; a set of 

mutually recursive functions and routines may thus be 

declared. 

The program given in this section .is part of the BCPL library used in the 

BCPL compiler itself. 

The hardware representation was specially designed to suit an IBM 1050 

typewriter with a 938 golf ball. Note that the symbols '('and')' represent 

the canonical symbols SBRA and SKET respectively. 

In the example {which was run on the Project MAC 7094 computer), two files 

were pr~nted out and then the former was compiled into relocatable binary. 

It is hoped that this example eY.hibits the readability of BCPL as well as 

some of it~ features. 

D 


