TECHNICAL SPECIFICATIONS

FOCAL

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

W W W W W W W w w

CONTENTS (Cont)

Editing and Text Manipulation Facilities
The FOR Statement

The Conditional IF Statement

The GOTO Command

The RETURN Command

The QUIT Command

The Comment Statement

The CONTINUE Statement

The SET Statement

CHAPTER 4
PROGRAM SPECIFICATIONS

Machine Requirements ~
Design Specifications
Design Goals
Input
Output
Organi zation
Hardware Errors
Internal Environment
Floating=Point Arithmetic System
Internal Subroutine Conventions
Character Sorting

Language

APPENDIX A
FOCAL COMMAND SUMMARY

APPENDIX B
ERROR DIAGNOSTICS

APPENDIX C
TO SAVE BINARY OF INITIAL DIALOGUE

iv

Page
3-4
3-5
3-6
3-6
3-6
3-7
3-7
3-7
3-7

4-9
4-9

4-1

CONTENTS (Cont)

APPENDIX D
FOCAL CORE LAYOUT-USAGE

APPENDIX E
SYMBOL TABLE

APPENDIX F
FOCAL SYNTAX IN BACKUS NORMAL FORM

APPENDIX G
NOTES EXPLANATION OF NAGSW

APPENDIX H
FUNCTIONS

APPENDIX I
PROGRAM LISTS

ILLUSTRATIONS

Command Routines

Page

4-8

CHAPTER 1
INTRODUCTION

FOCALT is a service program for the PDP-8 family of computers, designed to help scientists,
engineers, and stu@ﬂ's solve numerical problems.
FOCAL

user creates his problem step by step, while sitting at the computer; as soon as the steps of the problem

language is designed to be used as a tool in a conversational mode; that is, the

have been completed, they can be executed and the results checked. Steps can be quickly changed,
added, or deleted.

One great advantage of a computer is that once a problem has been formulated, the machine
can be made to repeat the same steps in the calculation over and over again. Until now, the job of
generating the program was costly, time-consuming, and generally required the talents of a specialist
called a programmer. For many modest jobs of computation, a person unfamiliar with computers and
programming would use a desk calculator or slide rule to avoid the delays, expense, and bothersome de-
tail of setting up his problem so that the programmer could understand it.

FOCAL circumvents these difficulties by providing a set of simplified techniques that permit
the user to communicate directly with the computer. The user has the advantages of the computer put
at his disposal without the requirement that he master the intricacies of machine language programming,
since the FOCAL language consists of imperative English statements and standard mathematical notation
is used.

The FOCAL language is flexible; commands may be abbreviated, and some may be concat-
enated within the same line. Each input string or line containing one or more commands is terminated
by a carriage return.

A great deal of power has also been put into the editing properties of the command language.
Normally, deletions, replacements, and insertions are taken care of by the line number which indicates
where this line should go or what line is to be replaced. However, if single characters are to be
changed within a FOCAL command line, it is not necessary to retype the entire string. The changes
may be executed by using the MODIFY command. Thus, complex command strings may be modified
quite easily.

In operation, the program indicates that it is ready to receive input by typing an asterisk.
On-line command/input may be either direct (to be executed immediately) commands or indirect (to be

stored and executed later). An example of a direct command is

*TYPE 5*5*5,1 user
125.000 PDP-8

*

Formulating On-Line Calculations in Algebraic Language.
@Trademork of the Digital Equipment Corporohon, Maynard, Mass.

1-1

The final asterisk indicates that FOCAL is ready for its next command. All commands may be given in
immediate mode.

Text input requires that a numerical digit, in the form ab.cd and within a range of 1.01 to
15.99 follow the * . The number to the left of the period is called the group number. The nonzero
number to the right is called the specific line or step number. While keying in command/input strings,
the rubout key and the left arrow may be used to delete single characters or to kill the entire line,
respectively.

Since the command decoder is table driven, FOCAL could be modified by a small binary tape
to understand commands in foreign languages.

FOCAL is written especially for the educational market and is intended to be used as a stu-
dent's problem solving tool. It attempts to give quick and concise reinforcement, to minimize turnaround
time, and to provide an unambiguous printed record.

It is also an extremely flexible, high accuracy, high resolution, general purpose desk cal-

culator and demonstration program.

CHAPTER 2
USAGE

2.1 REQUIREMENTS

Any 4K PDP-8 family computer with Teletype may be used with FOCAL.

2.2 LOADING PROCEDURE

a. The RIM or Read-In-Mode Loader must be in memory. (See RIM Loader Manual for a
thorough discussion.)

b. The RIM Loader is used to load the Binary Loader. (See the Binary Loader Manual for
a complete description.)

c. The Binary Loader is used to load FOCAL.

d. Upon halting, press the CONTINUE key, since the program is loaded in three sections
for additional checksum protection.

e. Place 200, the starting address of FOCAL, into the Switch Register when the complete
tape has been loaded.

f. Press the LOAD ADDRESS key.
g. Press the START key.
h. The initial dialogue will begin.

2.3 INITIAL DIALOGUE

The program will identify which of the six DEC 12-bit computers you are using and make ap-
propriate corrections to itself. It will then permit you to reject the extended functions to provide extra
space, if desired.

*

FOCAL is ready for your commands when it types

2.4 OPERATION

2.4.1 Restart Procedure

There are two possible methods of restarting the system.
Method 1 - Type the character control/C at any time; (FOCAL acknowledges this by typing ?01.00).
Method 2 -

a. Put 200 into the Switch Register.

b. Press the LOAD ADDRESS key.

c. Press the START key.

2-1

d. The program will then type ?00.00 indicating a manual restart, and an asterisk indicating
it is ready to receive input.

2.4.2 Error Recovery

If an error is made while typing commands to FOCAL, one of the following two methods may
be used to recover.
a. Use the RUBOUT key on the teletype keyboard to erase the preceding character.
The RUBOUT key echoes \ when typed for each character removed.

Example: *2.70 SETS \SINE = TEMP
*WRITE 2.70
02.70 SET SINE = TEMP

b. Use the MODIFY command with the modify control characters to search the command
string for any character in error and alter or delete that character. Example is shown in the Command
List. Note that the RUBOUT key has the same function while in the modify command mode.

2.4.3 Saving FOCAL Programs

To save a FOCAL text type * WRITE ALL, turn on the punch, type @ marks for leader-
trailer, and type carriage return. When all of the program has been typed out, type additional @ marks

for more leader-trailer, turn off the punch, and continue your conversation with the computer.

2.4.4 Terminators

Any of the three types of parenthetical pairs may be used in alphanumeric expressions: paren-
theses (()), angle brackets (<>), and square brackets ([]). The program checks to see whether or
not the proper matching terminator has been used at the correct level. Use of these terminators in dif-
ferent configurations should provide additional clarity in reading alphanumeric expressions, especially
those which must contain many parenthetical expressions. The only place where normal parentheses

must be used is around the expression in the IF command.

2.4.5 Trace Feature

As a further aid to diagnosing or debugging difficulties in a program,

a. a trace feature may be used to find where your errors are, to follow program control, and
to create special formats. To operate the trace feature, insert a question mark into a command string at
any point other than as the left most character. Each succeeding character will then be typed out as it
is interpreted until another question mark is encountered.

2.4.6 Variable Names and Functions

A variable name consists of one or two alphanumeric characters of which the first must be a

letter. Additional characters are ignored.

Function names are easily distinguished from variable names because they start with the

letter F:

FSIN, FCOS, FATN, FLOG, FEXP, FSQT, FADC,
FDXS, FDIS, FRAN, FSGN, FABS, FITR, FNEW

2.4.7 Error Diagnostics

The error diagnostic printouts are intended to be efficient and yet informative on both a
general and explicit level. By using these in conjunction with the trace feature, errors may be pin-
pointed precisely.

The printout is in the form ?XX.YY. The XX is a category number, and the YY is a specific
number derived from the core address of the error call. The categories are:

00 - Console restart by manual control
01 - Interrupt by control = C

02 - Storage or number exceeded

03 - Miscellaneous or illegal character
04 - Format error

05 - Non-existent function or bad format

2.4.8 Arithmetic Priorities

+\ * —

Operations of equal priority are executed from left to right (e.g., T 21312=+1¢).

CHAPTER 3
COMMANDS

3.1 TYPE AND ASK STATEMENTS

The TYPE and the ASK statements are used for output and input of literals and alphanumeric
calculations. Formatting of input/output is done within the statement itself. The simplest form of the
TYPE statement is a command such as TYPE A*1.4. This will cause the program to type = , evaluate
the expression, and type out the result. Several expressions of this kind may be typed from the same
statement if the expressions are each ended by commas. The ASK statement is similar in form except

that only single variable names may be used between commas, and the user types in the values.

3.1.1 Literals

For output of literals, the user may enclose characters between quotation marks. A carriage
return will automatically generate closing quotation marks. One unusual character that one might wish

to imbed in quotes is the bell, but it may only be inserted during initial input.

3.1.2 Print Positions

Carriage returns are not automatically supplied at the termination of a typeout. In order to
supply carriage returns within a TYPE or ASK statement, the exclamation mark (!) is used. This is
similar to the use of the slash in FORTRAN format statements.

Occasionally, it is desirable to return the carriage and type out again on the same line with-
out giving a line feed. A number sign (¥) returns the print mechanism to the left hand margin but does
not feed the paper forward. This feature might be used in plotting another variable along the same

coordinate.

3.1.3 Szmbol Table

The contents of the symbol table may be typed out to see what the current values are and
which variables have been created by TYPE $. The symbol table is typed with subscripts and values in
chronological order. The routine then returns as though a carriage return had been encountered in the
TYPE statement, thereby terminating the TYPE command. Both the TYPE and the ASK statements may

be followed by ; and other commands, unless a $ is in the string.

3.1.4 Output Formats

There is a symbol to change the output format within a TYPE statement: %X.YY, where X
and YY are positive integers less than or equal to 19. X is equal to the total number of digits to be
output and YY is equal to the number of digits to the right of the decimal point.

On output, leading Os are typed as spaces. If the number is larger than the field width shows,
Xs will be typed. E format is specified by % alone or by %.0X for X decimal points in the E format.
(Floating-point decimal: +0.XXXXXXXE Y where E means "10 to the Yth power.") The current out-

put format is retained until explicitly changed.

3.1.5 Special Characters

The exclamation point (1), percent (%), dollar sign ($), and the number sign () may be used
after the occurrence of quotation marks or by themselves. They cannot be used to terminate alphanu-
meric expressions. They may be used in either TYPE or ASK commands.

The TYPE statement precedes its numerical typeouts with an equal sign (=) before beginning
the output conversation process. The ASK statement types a colon (:) when it is ready to receive key-
board data.

If the user wishes an expression typed before its results, he may bracket the expression by

question marks. This is a special use of the trace feature.

*TYPE ?A*5.2?
A*5,2=+10.40

*

3.1.6 Terminators

In the ASK statement, arguments are scanned by the GETARG Recursive Routine and may
therefore be terminated by any legitimate terminating character (e.g., space, comma, * , etc.).
In the TYPE statement, arguments are scanned by the EVAL Recursive Routine and must therefore be

terminated by comma, semicolon, or carriage return. In either, command arguments may be preceded

by format control characters # 1 ",
3.1.7 Input Formats

Keyboard responses to the ASK inputs may
a. have leading spaces
b. be immediately preceded by + or — sign if desired or required

c. be in any fixed point or floating point format

3-2

d. be terminated by any terminating character, carriage return, or ALTMODE. However,
it is recommended that the space be adopted as the conventional and general purpose input terminator.
The ALTMODE is a special nonprinting terminator that may be used to synchronize the program with ex-
ternal events. For example, if you wish to insert special paper in the teletype before executing the
program, type Ask A; GO and RETURN, then load your paper, and hit ALTMODE.

3.1.8 Alphanumerics

Input data that is in response to an ASK command may take any format, may be signed or
unsigned, and must be terminated by a legitimate terminating character (space, CR, comma, /, etc.).
This means that alphabetic input may also be accepted by an ASK input command. This is done by a
simple hash-coding technique so that the program can recognize keyboard responses by a single compare.
See example under the IF command for an illustration of how to program the recognition of the user

reply "WAIT",

3.1.9 Off-Line Taees

To prepare data tapes off-line, type the data word, the terminating space, and the "here-is"
key. Use backspace and rubout to remove characters off-line. (See technical specs for alternate use

without interrupts.)

3.1.10 Corrections

For editing of input to an ASK command before the input has been terminated, the left arrow

(<) is used.

3.1.11 Roundoff

Numbers to be typed out are rounded to the last significant digit to be printed (i .e., the

rightmost digit of the requested format) or to the sixth significant digit, whichever is smaller.

3.2 THE DO COMMAND

The DO command is used chiefly to form subroutines out of single lines, groups of lines, or
of the entire text buffer. Thus, the instruction DO 3.3 makes a subroutine of line 3.3. For a single
line subroutine, control will be returned when the end of the line is encountered or when the line is
otherwise terminated (such as by a RETURN statement, or in the case of TYPE, with the $).

One of the most useful features of a command language of this type is the ability to form
subroutines out of entire groups. Thus, the statement DO 5 calls all of group 5 as a subroutine be-

ginning with the first group 5 line number. Control will then proceed through the group numbers going

3-3

from smaller to larger. A RETURN or EXIT is generated from this type of subroutine by using the word
RETURN, or by encountering the end of that group, or by transferring control out of that group via a
GOTO or IF command. Similarly, the entire text buffer may be used as a recursive subroutine by simply
using DO or DO 0.

The DO statement may be concatenated with other legitimate commands by terminating it with
a semicolon. Thus, a single line could contain a number of subroutine calls. In this way, several forms
of complex subroutine groupings may be tested from the console.

The number of DO commands which may be nested linearly or recursively is limited only by

the amount of core storage remaining after inclusion of the text buffer and the variable storage.

NOTE

When a GOTO or IF statement is executed within a DO
subroutine, control is transferred immediately to the ob-
ject line of the GOTO command. That line will be ex-
ecuted and return made to the DO processor. If the next
line number is within the group (if this is a group sub-
routine) it will be executed. If, however, a line number
outside of that group is about to be executed, then a re-
turn will be made from the DO subroutine and the remain-
der of the DO command line, if any, will be processed.

3.3 EDITING AND TEXT MANIPULATION FACILITIES

Line numbers which have already been used and are used again in a new input will cause the
new input to replace the line that previously had that number. Insertions are made at the appropriate
point in a numerically ordered string of lines. For example, line number 1.01 (the smallest line number)
will be inserted in front of (or above) line number 1.1. The largest line number is 15.99.

Removal of a single line may be made by using the ERASE command. For example, ERASE 2.2
will cause line 2.2 to be deleted. No error comment will be given if that line number does not exist.
The command ERASE 3 or 3.0 will cause all of group 3 to be erased. To delete all of the text, one must
type the words ERASE ALL. This insures that all text is not erased accidentally.

ERASE, used alone, has the function of merely removing the variables. This may also be
thought of as initializing the values of the variables to zero.

In order to examine the contents of a line, one may type WRITE 3.3. This will cause line 3.3
to be typed out with its line number on the Teletype. WRITE 4.0 will cause all of group four to be writ-
ten on the Teletype. The WRITE ALL will cause all of the text to be printed on the Teletype, left justi-

fied with title and line numbers in numerical order. The WRITE and ERASE commands may not be fol-

lowed by any other commands.

Often only a few characters need be changed in a particular line. To facilitate this job, so
that the entire line does not have to be replaced, we have included the properties of the MODIFY com-
mand. Thus, to modify characters in a line, one would type MODIFY 5.41, in order to modify the
characters of line 5.41. This command is terminated by a carriage return, whereupon the program waits

for the user to type that character at which he wishes to make changes or additions. After he has done

so, the program will type out the contents of that line until the search character is typed. (The search
character is not echoed when it is first keyed in by the user.) The program will now accept input.

At this point, the user has seven options. These are

a. to type in new characters in addition to the ones that have already been typed out .

b. to type a form-feed. This will cause the search to proceed to the next occurrence, if
any, of the search character.

c. type a bell which allows him to change the search character just as he did when first
beginning to use the MODIFY command.

d. use the rubout key to delete characters going to the left.

e. type a left arrow to delete the line over to the left margin.

f. type a carriage return to terminate the line at that point and move the text to the right.

g. type line-feed to save the remainder of the line.

The ERASE ALL and MODIFY commands are generally used only in immediate mode since
they return to command mode upon completion. The reason for this is that internal pointers may be
changed by these commands.

During command/input the left arrow will delete the line numbers as well as the text. During
the MODIFY command the left arrow will not delete the line number.

When the rubout key is struck a backslash (\) is typed for each character that is deleted.

Any modifications to the text will cause the variables to be deleted as if an ERASE command
had been given. This is caused by the organization of our data structure. It is justified by the prin=-

ciple that a change of program probably means a change of variables as well.

3.4 THE FOR STATEMENT

This command is used for convenience in setting up program loops and iterations. The gén—
eral format is: FOR A =B,C,D;===. The index A is initialized to the value B, then the command string
following the semicolon is executed. When the carriage return is encountered, the value of A is incre-
mented by C and compared to the value of D. If A is less than or equal to D, then the command string

after the semicolon is executed again. This process is repeated until A is greater than D.

3-5

A must be a single variable; B, C, and D may all be expressions, variables, or numbers.
The computations involved in the FOR statement are done in floating point arithmetic. If comma and
the value C are omitted, then it is assumed that the increment is one.

Example: SETB=3; FORI= 0,10; TYPEB!tI,!

3.5 THE CONDITIONAL IF STATEMENT

In order to provide for transfer of control after a comparison, we have adopted the IF state-
ment format from FORTRAN. The normal form of the IF statement contains the word IF, space, a par-
enthesized expression, and three line numbers separated from each other by commas. The program will
GOTO the first line number if the expression is less than zero, the second line number if the statement
has a value of zero, and the third line number if the value of the expression is greater than zero.

Alternative forms of the IF command are obtained by replacing the comma between the line
numbers by a semicolon. In this case, if the condition is met which would normally cause the program
to transfer to a line number past that position, then the remainder of the line will be executed. Thus,
if one desires only a two way match, you may say "IF (expression) line number; other command".

Example: IF (REPLY - TWAIT + 10000) 6.4,5.01;RETURN
IF (REPLY - 1YES + 19000) 6.3,5.02;6.3

3.6 THE GOTO COMMAND

This command causes control of the program to be transferred to the indicated line number.
A specific line number must be given as the argument of the GOTO command. If command is initially
handed to the program by means of an immediately executed GO, control will proceed from low num-
bered lines to higher numbered lines as is usual in a computer program. Control will be returned to
command mode upon encountering a QUIT command, the end of the text or a RETURN at the top level.

The operation of the GOTO is slightly more complicated when used in conjunction with a

FOR or a DO statement. Its operation is perfectly straightforward when used with any other statement .

3.7 THE RETURN COMMAND

The RETURN command is used to exit from DO subroutines. It is implemented by merely

setting the current program counter to zero. When this situation is encountered by the DO statement it

exits. (Refer to the DO command, Section 3.2.)

3.8 THE QUIT COMMAND

A QUIT causes the program to return immediately to command/input mode, type * , and wait.

3.9 - THE COMMENT STATEMENT

Beginning a command string with the letter "C" will cause the remainder of that line to be

ignored so that comments may be inserted into the program.

3.10 THE CONTINUE STATEMENT

This word is used to indicate dummy lines. For example, it might be used to replace a line

referenced elsewhere without changing those references to that line number.

3.11 THE SET STATEMENT

The SET command for arithmetic substitution is used for setting the value of a variable equal
to the result of an expression. The SET statement may contain function calls, variable names, and
numerical literals on the right hand side of the equal sign. All of the usual arithmetic operations plus
exponentiation, may be used with these operands. The priority of the operators is a standard system:
+-/*t . These, however, may be superseded by the use of parenthetical expressions. The SET statement
may be terminated by either a carriage return or a semicolon, in which case it may be followed by ad-

ditional commands.

SET AA=B*(5+< 6+CONST> *ALPHA/[5/BETA])

CHAPTER 4
PROGRAM SPECIFICATIONS

4.1 MACHINE REQUIREMENTS

The minimum hardware configuration necessary to run this program is a 4K PDP-8 family or
PDP-5 computer with ASR-33.

EAE for speed, scope and an additional 4K memory for text storage are potential options.

4.2 DESIGN SPECIFICATIONS

4.2.1 Design Goals

This is a JOSS * -like or FORTRAN-like conversational language and operating system for

a basic PDP-8. It is designed to provide ease and power for on-line editing and execution of symbolic

programs .

4.2.2 Input

Either the keyboard or the low=speed reader is used for input of program text. The keyboard
is also used for typing commands to be executed immediately. Keyboard input is single buffered

internally.
4.2.2.1 Input Format- See the description of the commands in Chapter 3 for format information.

4.2.2.2 Character Set - Input and output characters are in ASCII teletype code.
Interpretive operations are also done internally in ASCII.

The text buffer is packed two characters to a word as follows.

number = represented as: prints as
300 = not packed = ignored: @
301 -336=01-36: A-Z
337 = not packed - edit control, kill line: «.
240 - 276 = 40 - 76: symbols
277 =37: 2.
340 - 376 = 7740 - 7776 (extended codes): non-printing

* JOSS is a copywrited name of the RAND Corporation.

4-1

377 = not packed - edit control, delete preceding character; if a
character is deleted, \ (backslash) is typed.

200 = not packed - ignored: leader-trailer
210 - 237 = 7701 = 7737: control characters
000 = not packed - ignored: blank tape.

4.2.3 Output

4.2.3.1 Output Format - See the TYPE and WRITE statements for format of output. The output

character set is the same as that for input.

4.2.3.2 The Input/Output and Interrupt Processor - The purpose of the interrupt handler and the 1/0

buffers is to permit input and output to proceed asynchronously with calculations. This allows an
optimal use of the computer time. When the interrupt handler finds that the teletype output flag has
been raised, it clears that flag and looks to see whether there are any additional characters in the
teletype output buffer to be printed. If there are, it takes the next character from the buffer, prints
it, clears that location in the buffer, and moves the pointers. Separate pointers are maintained for both
the interrupt processor and for the program output subroutine (XOUTL). If the interrupt handler finds that
there are no more characters to be output on the Teletype, it will clear a teletype in-progress-switch
called TELSW. If it does output another character it sets TELSW to a nonzero value.

When the program desires to place characters in the buffer for the interrupt processor to
print, it makes a call to XOUTL. This routine first checks to see whether or not TELSW has been set.
If TELSW is zero, then no further interrupts are expected by the interrupt processor so the output routine
immediately types the character itself and sets TELSW to a nonzero value. Otherwise, if the interrupt
processor is in motion, then the output routine places the character into the buffer and increments the
pointer. If there is no room in the buffer for additional characters, the low speed output routine waits
until there is. The keyboard input processors are similar in organization to the output routines except that
no in-progress=switch is needed and the input is only double buffered.

Another advantage of using the interrupt system is that it enables you to stop program
loops from the keyboard by typing Control C. The recovery routine will then reset the 1/O pointers,
type out the message code ?01.00, and return to command mode. Manual restart via the console
switches also goes to the recovery routine, resets the pointers, and types out message code ?0@.@0. In
fact, all error diagnostics go to the recovery routine. Error printing is withheld until prior printing is
complete. Otherwise, on occasion, a full buffer could be dumped and the error message could be printed

as many as 16 characters before it should have otherwise occurred. This would be misleading when using

4-2

the trace mode to discover specific errors within a character string .

The recovery routine may also be called by the interrupt processor if it discovers that there
is no more room in the keyboard buffer. This could occur for example, if the user continued to type on
the keyboard while the program was making computations. He should notice something unusual because
his characters would not be echoed back as he typed.

This error could also occur when reading a paper tape program into the text buffer. If the
output hardware were slower than the input hardware, more text would be read in than was being read
out of the buffer with the result that the program would not empty the reader buffer as quickly as it was
being filled up, since the program synchronizes the reading of the characters with sending them into the
buffers. In other words, the program synchronizes its side of the 1/O buffers, but the interrupt side of
the 1/0 buffers proceeds at a rate determined by the hardware. To guard against incurring this type of
error with long input tapes, which were prepared off line, carriage returns may be followed by some

blank tape which is ignored by the input routines, thereby giving the output routine time to catch up.

4.2.4 Organization

4.2.4.1 The Internal Structure

a. Part 1 - Arithmetic Package - The arithmetic is done in the floating point system. The

three-word floating point package allows six digits of accuracy plus the extended functions. The
program will also be able to use four words without the trigonometric functions. The largest of the
floating point packages occupies locations 4600 - 7577. Both packages have an exponential range of
approximately ten to the six hundredth .

The four-word floating point system creates ten digits of accuracy, including roundoff.
It does, however, require more storage for variables and for push-down-list data.

b. Part 2 - Storage - The major components of the program occupy locations 1 - 3220.

The remaining storage 3220 - 4600 is used for text storage, variable storage, and push-down storage,
in that order. The text occupies approximately two characters per register. The variables occupy either
five or six locations per variable depending on whether the three or four-word option is utilized.
Remaining storage is allocated to the push-down list. Overflow will occur only when this push-down
list exceeds the remaining storage. This could happen in the case of complex programs which have
multiple levels or recursive subroutine calls.

The push-down list contains three kinds of data. One of these is a single location for
push-jump and pop-jump operations. The content of the accumulator is also pushed into the same list

in a single register. The third type of push-down storage is floating point storage.

4-3

This storage allocation scheme permits flexibility in the trade off of text size, number
of variables, and complexity of the program, rather than restricting the user to a fixed number of

statements or characters, or to a fixed number of subroutine calls, or to a limited number of variables.

4.3. HARDWARE ERRORS

The 8/S will halt at location EXIT +2 if a parity error occurs.

4.4, INTERNAL ENVIRONMENT

4.4.1 Floating=Point Arithmetic System

The FOCAL system was designed to be easily interfaced for new hardware such as LAB-8,
multiplexed ADC's real-time clocks, or to software such as a nonlinear function.

The information given below, the symbol table, the various lists, and a core layout are
sufficient for all required modifications and patches. This symbolic approach ensures greater flexibility
and compatibility with DEC modifications to FOCAL, other user's routines, and assembly via PAL III on
a PDP-8. ’

Example: Suppose we had a scope routine to display characters at a given point on a scope.
We will call this routine from FOCAL as function by FNEW (X, Y, SHOW). Here X and Y are
expressions to be used as display coordinates for the start of SHOW.

First we patch the function branch table:

*FNTABF + 12
XFNEW

When control arrives at XFNEW the X has already been evaluated:

XFNEW, JMS 1 INTEGER / make 12-bits
TAD FLAC + 1
DXL / set X =coor.
CLA

Now we should test for the possibility of another argument;

SPNOR / ignore spaces
TAD CHAR

TAD MCOMMA

SZA CLA

JMP I EFUN3I / no more

Move past the separating comma;
GETC

Test for the end of the parentheses;

TAD CHAR

TAD RPAR

SNA CLA

JMP I EFUNGSI / exit

Evaluate the second argument;

PUSHJ
EVAL
JMS I INTEGER
TAD FLAC +1
DYS; CLA /Set Y and intensify
SPNOR
TAD CHAR
TAD MCOMMA
SZA CLA
JMP I EFUNSI
Now we are ready to pick up the single letters for display until the end of the function is
reached.
DCHR, GETC
TAD CHAR
TAD RPAR
SNA CLA
JMP 1 EFUN3I
Char. display routine called
JMS DCHR
We now need a few definitions from the symbol table.
FLAC = 44
EFUNZI = 106
CHAR =152
SPNOR = 4527
Summary:
a. User defined functions must leave their value, if any, in FLAC and return by a JMP 1
EFUNZ3I.

b. FLAC is converted to an integer in FLAC + 1 by a JMS I INTEGER.
c. The floating point arithmetic interpreter is entered by JMS 1 7.

4-5

d. The address of the user's function is placed by him in the FNTABF list.

e. Location BOTTOM contains the address of the last location to be used for storage. If
BOTTOM is made to contain 4277, for example, then the user has from 4300 to 4577 for storage of his
function processor. The user is requested to achieve his function implementations using the information
given here and in the symbol table without needing the actual listing so that changes made by different
users may be compatible and so that they might also be relocated easily should any changes be made by
DEC.

f. The argument following the function name is evaluated and left in FLAC before control
is transferred to the particular function handler. Since evaluation is terminated by either , or a right
parenthesis, a special function could have more than one argument.

Only in the case of multiple arguments does a user need to worry about saving his
working machine language storage for a possible recursive use of his function. The contents of the AC
are saved by PUSHA and restored by POPA for this purpose. If there is another argument, it may be
evaluated by PUSHJ ; EVAL.

4.4.2 Internal Subroutine Conventions

4.4.2.1 Calling Sequences - The (AC) =@ unless it contains information for the subroutines. Upon

returns (AC) = @ unless it contains data.
There are six types of routines and subroutines used in the implementation of this program.

a. Normal subroutines called by an effective
JMS SUBR1
which contain zero at their entry point
SUBRT, @
and a return by a
JMP I SUBR1
b. New instructions called by
PRNTLN / (to print a line number)
and usually defined by

PRNTLN = JMS 1.
XPRNT

where XPRNT is the entry point for a normal subroutine. These new instructions may have multiple
returns and/or multiple arguments:

SORTJ /call;
LIST6-1 /data list minus one;
INLIST-LIST 6 /increment to branch table

/return if CHAR is not in LIST 6

These new instruction subroutines often have implied arguments, e.g., GETC, READC,
PACKC, TESTC, and SORTC all use the variable CHAR as their argument. The new instructions SORTJ
and PRINTC use CHAR only if the AC is zero. If the AC is nonzero, then that value is used. Still
others use only the AC for their argument: RTL6, TSTLPR, PUSHA, and TSTGRP.

c. Recursive routines called by

PUSHJ /call
EVAL /address
! /return

Where the address contains the first instruction of the routine. The return address is kept in the push-down
list, and exit is made by use of

POPJ /exit subroutine.

Such routines may call each other or themselves in any sequence and/or recursively by saving data on
" the push-down list. Others are EVAL, DELETE, PROCESS, PROC, and GETVAR.

d. Command processor routines to handle specific command formats are called by

SORTJ /go to command
CONLST-1
COMGO-COMLST

ERROR 3 /illegal command

The individual command routines use only new instructions and recursive routines. They may exit in one
of three possible ways:

(1) POPJ - if C.R. is encountered or
(2) transfer to another command routine or
(3) transfer to START.

e. Floating point groups of interpretive instructions similar to the following format:

FINT /enter floating interpreter,
FGET FLARG

FMPY 1 PT1

EPUT FLARG

FXIT /leave floating interpreter.

f. Main processor to handle text input and keyboard commands. This routine could be
"locked out by an instructor to protect and execute a stored program repeatedly.

IBAR, JMP GONE + 11

Similarly , selected commands are easily deleted by the instructor by placing zero in the appropriate
locations in COMLST .

Line number input and explicit replacements are "short=circuited" by

INPUTX + 4, NOP

4.4.2.2 Sdbroutine Organization - Figure 4-1 illustrates the internal use of various subroutines.

d. COMMAND ROUTINES

COMMAND AND
INPUT PROCESSOR

Do
GO TO

TYPE

START

NEW
b INSTRUCTIONS WRITE

a. NORMAL SUBROUTINES | °4| RECURSIVE SUBROUTINES

|
v | il

RECURSIVE SUBROUTINES

Figure 4-1

4.4.3 Character Sorting

If a program must contend with a number of different characters (or 11-bit items) each of
which can initiate different responses, we simply look up the address of the action that corresponds to
a given symbol or bit pattern. If the symbols do not form a continuum, the programmer must find the
most efficient method for determining the corresponding address .

The method used in FOCAL is the table sort and branch. This method uses a subroutine to
match up an input character with one member of a list of characters. The call to the subroutine is
followed by

a. the address minus one of the list and

b. the difference between that list and a second list. The latter list contains the correspond-
ing addresses. Thus if a match is found in the first list, the difference is added to the address of that match
to computer the address in the second list which contains the name of the action to be performed.

c. The next instruction to be executed if a match is not found.

In addition to being simple and concise, although more time consuming than other methods,
this technique has another advantage that is especially useful in a PDP-8: the tables may be placed
at page boundaries to take up the slack that often occurs at the end of a page. This results in a more

efficient use of available core storage.

4.4.4 Language

The program is written in PAL III with floating point commands plus program defined commands

implemented as subroutine calls.

APPENDIX A

FOCAL COMMAND SUMMARY

Command Abbr Example of Form
TYPE T TYPE FSQT (ALt 3+FSQT (B))
TYPE "TEXT STRING"!
WRITE w WRITE ALL
WRITE 1
WRITE 1.1
IF I IF (X) 1.2,1.3,1.4;

Explanation
Evaluates expression, types out =, and
result in current output format

Types text. Use ! to generate carriage
return line feed.

FOCAL prints the entire indirect program.
FOCAL types out all group 1 lines.
FOCAL prints line 1.1

Where X is identifier or expression.

Control is transferred to the first, second, or third line number if (X) is less than, equal to,
or greater than zero respectively. If the semicolon is encountered prematurely then the remainder of the
line is executed.

MODIFY

M MODIFY 1.15

Enables editing of characters on

line 1.15

The next character typed becomes the search character. FOCAL will position itself after the
search character; then the user may

a.
b.
c.
d.
e.
f.
g.
QUIT
RETURN
SET
ASK
COMMENT
CONTINUE

type new text, or

form-feed to go to the next occurence, or
bell to change the search character, or
rubout to delete backwards, or

left arrow to kill backwards, or

carriage return to end the line, or

line-feed to save the rest of the line.

Q QUIT or * or control-C
R RETURN

S SET A=5/B * SCALE(3)
A ASK ALPHA (1 +2 * J)

C COMMENT
C C

Returns control to user.
Terminates DO subroutines
Substitution statement

FOCAL types a colon for each variable;
the user types a value to define each
variable.

If a line begins with the letter C, the
remainder of the line will be ignored.

Command Abbr
DO D
ERASE E
FOR F
GO G
GOTO G

Example of Form

DO 4.14
DO 4

DO ALL

ERASE
ERASE 2
ERASE 2.1
ERASE ALL

FORI =x,y,z; TYPEI

GO

GOTO 3.4

Explanation

Execute line 4.14; return

Execute all group 4 lines, return when
group is expanded or when a RETURN
is encountered.

Execute entire indirect text as a sub-
routine.

Erases the symbol table.
Erases all group 2 lines.
Deletes line 2.1.
Deletes all user text.

The command string following the semi-
colon is executed for each value. x,y,
z are constants, variables, or express-
ions. x =initial value of I, y = value
added to I until I is greater than z. y is
assumed = 1 if omitted.

Starts indirect program at lowest number-
ed line number.

Starts indirect program at or line 3.4

C - The Fourteen (14) Functions are

Square Root
Absolute Value

Sign Part of the Expression
Integer Part of the Expression
A Noise Generator

Natural Base to the Power

FCOS (),
Naperian Log

FATN () - Trig Functions

FDXS () - Scope Functions
Analog to Digital Input Function

User Function

A-2

ASK/TYPE CONTROL CHARACTER TABLE

J (Carriage Return)

Format delimiter

Text delimiter

Carriage return and line feed
Carriage return only

Type the symbol table contents
Terminator for names
Terminator for expressions
Terminator for commands

Terminator for lines

APPENDIX B
ERROR DIAGNOSTICS

Code Meaning

*?00.00 Manual start from console

*201.00 Interrupt from keyboard via CTRL/C

*?02.07 Bad line number format

*202.24 Keyboard input buffer overflow

*202.28 Group number or literal too large

*202.29 Illegal command used

*202.44 Line number too large

*?02.46 Imaginary square roots, or nonexistent line
referenced by DO

*?02.61 Nonexistent group referenced by DO

*?02.67 Bad argument for MODIFY

*202.80 Division by zero

*?02.87 Command input buffer exceeded

*?02.;0 Illegal step number

*?02.;3 Number too large to be made an integer

*?02.;7 Illegal or misspelled function name

*?03.10 Bad argument for ERASE

*?03.42 Log of zero requested

*?03.50 Improper step number

*?03.79 Variable storage exceeded, or exponent not a
positive integer

*204.12 Bad argument in IF command

*?04.13 Missing operator in an expression, or illegal E
format on input or literal

*?04.18 Bad argument in FOR, SET, or ASK

*?04.33 Operator missing before parenthesis

*?04.39 Error to left of equal sign

*?04 .45 Parentheses do not match

*?04.53 Excess right parenthesis

*?04.61 Illegal character in FOR

*?04.93 Double periods in a line number

*?04.;0 Function not followed immediately by parens

*?04.;2 . Multiple periods in a line number

*?04.;9 Double operators in an expression

*?05.11 No argument in IF command

*?05.28 Command not available

*?05.60 Error in FOR command format

*?05.;6 Function not loaded into core

NOTE

The above diagnostics apply only to the version of FOCAL,
1968 issued on tape DEC-08-AJAB-D .

B-1

—
.

NN N N N e et e ot ot ot ek d
AW DN = O V¥V 0 N OO O A W N — O

NV 00 N O hWwWwDN

APPENDIX C
TO SAVE BINARY OF INITIAL DIALOGUE

Load FOCAL and FLOAT;

start at 200;

type CNTL-C and "Erase All";

read in init ~dialogue program (Dialog);
load JR46;

start at 4600;

type T;

turn on the punch (low speed);

wait for leader-trailer;

stop computer, turn punch off;
restart at 4600;

type 144; 144p;

turn punch on, hit continue;

when punching stops, turn punch off;
type 165; 165P;

turn punch on, hit continue;

when punching stops, turn punch off;
type 3240; 4276P;

turn punch on, hit continue

when punching stops, turn punch off;
type "EY;

turn punch on, hit continue;

When some leader-trailer has been punched, stop the computer:

. You have punched the binary of the initial dialogue.

i.e., C(BUFR), C(LASTV), and C(FRST to C(BUFR)).
For generating the Error Diagnostic Codes

NOP-location CHINX-1 (2475)

APPENDIX D
FOCAL CORE LAYOUT-USAGE

Free Used Mnemonics What
0 ZERO
173
2 0200 START FOCAL PROPER
3251
[’} 3252 BUFBEG BUFFER AREA
4377
0 4400 BEGIN INITIAL DIALOGUE
4577
4600 FEXP A
4775
2 (BET 2+ 3)
5000 ARTN B
5166 EXTENDED
1 (FLAG 3 +1) FUNCTIONS
5200 FCOS
5365 J
12 (FLOA +11))
5400 OUTPUT
5576 P CONVERSION
1 4 (TEMPO + 1)
5600 DECONV
5752 X
25 (INFIX + 5) INPUT-
6000 FLOUTP OUTPUT
6175 ROUTINES
2 (OUTOG +4)
6200 FLINTP)
6315 <
62 (P43+1)
6400 FPNT
6576
1 > FLOATING-POINT
6600 ACMINS INTERPRETER
7355
22 (RART+1)
7400 DNORM
7556
21 (BUFFER + 10)
7600 BINARY LOADERS
7777 (RIM)

D-1

FOCAL CORE LAYOUT - DETAILED

Page 0 ~ Field 0

* 001 Miscellaneous
Numbers
Floating-Point Working Area
Constants
New Instruction Pointers
Variables
* 200
START
Command/Input
"GETLN - Line Read Routine
* 400 'DO' Routine
Push-POP Routines
* 600 'GOTO' and WRITE ' and Misc.
*1000 'TF', "SET", 'FOR' and Misc.
*1200 'ASK', 'TYPE', '"MODIFY'
*1400

"GETARG" - Recursive Routine
"SPNOR", "TESTN", "POPJ"
'RETRUN'

*1600 "EVAL" - Recursive Routine
OPNEXT - read operator
ARGNXT - read operand
ETERM - evaluate terminator
FLOP - floating operations called
ENUM - number processor
EFUN - function processor

*2000 ELPAR - left parens processor
EFUN3 - function returns
*2100 "DELETE" - Recursive Routine

DOK - group delete

DONE - garbage collection
*2200 "FINDLN" - Normal Routine

Find exact match or next larger

'ERASE' command processor
*2300 "GETC" - unpack text and trace
*2400 "ENDLN", "PRNTLN"

1/O Subroutines

Command Buffer

*2600 Interrupt Processor
ERROR Processor
*3000 "PACKC" - pack text

Rubout routine

D-2

*3220 1/O Buffer
*3240 Text Buffer Begin

T

*4400 - Once-Only Code
SELF-START
TEST ARITH
TEST EAE
TEST X-MEM
CLEAR ALL FLAGS
TYPE MESSAGE

*3600 ODT-JR (for X-FUN)
*4000 ODT-JR (standard)
*4600 ODT-JR (for dialogue)

—un=r Zéoo:mc-\:'\"\mmr-w)>'-'x)><\—l><rﬂ

Floating Point Routines

*4600 Extended Functions
*5400 1/O Controller
*6400 Basic

*7600 Binary Loader

or 8-SYS LIB Bootstrap
or Disk Bootstrap

*7756 Rim Loader
End of Field ZERO
Field ONE

Extended Text Storage

FOCAL CORE

LAYOUT - DYNAMIC STORAGE

FOCAL CORE LAYOUT

0000
PAGE ZERO
FOCAL f,S? £
" $F &
A
8
clo 3200
7715 % t
N [A
"
s| Exp ;
s FREE
PUSH A Q 1
PUSH J :
PUSH F
4600
EXTENDED FUNCTIONS
5400
FLOATING —POINT PACKAGE
LOADERS
7777

AUD
ALIST
ARGINXT
ASK
ATES
ATLIST
ATSwW
AXIN
AXOUT
BEG N
BELL
BF X
BF X X
ROTTOM
BOy
BUFBEG
BUFK
CCR
COF
CFRS
CHAR
CHIN
CHINX
CLF
CNTR
coL
COMBOT
COMBUF
COMEIN
COMGO
COMLST
COMMF N
COoMQUT
CSTAR
Ciee
Cl4¢p
cang
Cc26@
c77
pconT
DOTJR
DERGSW
DECO™
NecCe
DEj ETE
DGRP
NDGRP1
DMPSW
DO

Dok
DONE
ECHOLS
EFnpP

ShIC)
14756
171¢
17214
4476
1164
{1141
el
np17
440
b6
455%
4552
27
2516
31252
#144
Rz
7226
103
152
2467
2476
ALy
m142
1266
a225
@A172
2522
1175
7757
616
2675
A2 4
fde
3056
fgLé
rees
ra77
463
A
161
5622
7143
2e78
(474
433
M1r2
417
2113
2131
2374
F141

EFUN
EFUN?
FFUNS
EFUNTZ]
ELPAR
EAnD
ENDLN
ENDT
ENUM
EPAR
EPAR2
ERASE
ERG
ERL
ERRURZ
ERROR3
ERROK 4
ERRURD
ERR2
ERR3
ERR4
ERRS
ERV
ERVX
ERS
ESCA
ETERM
ETERMN
ETFRM1
ETERM2
EVAL
EXIT
EXTR
FCONT
FENY?
FEND3
FEXP
FINCR
FINDLN
FIMNUN
FINFIN
FINPUT
FISwW
FLAC
FLARG
FLARGP
FLARGZ
FLIMIT
FLINTP
FLIST1
FLISTZ
FLOP
FLOUTP

APPENDIX E

SYMBOL TABLE
1736 FLTONE
1747 FLTXR
2048 FLTZEK
7106 FNPT
1766 FNTARF
“ie4 FNTABL
4525 FOR
2105 FOUTPU
1725 FPNT
1763 FRST
1776 FRSTX
2203 GEND
2224 GETARG
2221 GETC
4534 GETLN
4535 GETVAR
4536 GET1
2737 GET3
2743 GEXIT
2723 GFND21
2731 GINC
2735 GllgT
2216 GONE
2237 GOTO
4551 GRPTST
3110 GSERCH
1642 GS1
1637 GS?2
1616 GS3
165¢ GS4
1622 GTEM
2652 IBAR
2317 1F
112 IF1
2271 1F2
2272 IF3
4600 IGNUR
1966 ILIST
4524 ILISTA
2247 ILIST1
1137 INRUF
(1ol InNDEV
ze51 INLIST
Ag44 INPUTX
171 INSUR
#1794 INTEGE
1142 INTRPT
1976 I0RYUF
62010 IRETN
7671 133
A576 LASTLN
1667 LASTOP
LY Ball]

E-1

LASTYV

2366
A315
237¢
455¢
2374
2165
1941
7190
64020
3249
3252
2340
1417
4514
4523
1423
2334
2351
1357
1521
2154
1413
1234
reds5
n745
1442
1461
1521
1463
1476
n@21
f211
1011
1037
1015
1026
¢216
102
a777
1045
2666
ni150
7571
"256
g3
ngshe
261y
322¢
A226
2516
ni6¢
A14¢
n165

’

"LCON

LIBRAR
LINENO
LISTGO
LISTN
LIST3
LISTS
LOOKUP
LPRTST
L2

LBA
LBAX
L8AY
L8R
MASK
MBREAK
MCR
MEQ

MF
MFLT
MINSKI
MINUSA
MODIFY
MOV
MPER
M100
M1l
M12
M137
M140
M2

M2
M249
M349
M4Q

M5

M77
NAGSW
NOTIN
ONE
oour
0P
OPNEX]
OPNEXT
OPTABL
NPTARS
OPTRI
OPTRO
OPTRQ
ouTt
OUTCK
OUTDEV
ouUTL

3373
2737
7153
1492
15566
ag7¢
3064
4571
2061
1321
4544
4547
4546
4545
rg26
2607
2073
1136
n604
2274
ags3
AB35
1304
3113
1546
2072
2076
2p14
2365
3e47
7234
2025
1545
376
2364
@e¢75
2023
7151
2377
@455
454(
3176
2160
1611
1724
2121
2665
2664
2663
2477
2512
v147
2157

OUTX
01

02

0%

04

05

06

P
PACBUF
PACKC
PACKST
PACx
PC
PCHK
PCx1
PC1
PUL AR
PLP
PLUPHI
PL?
PO3
PED
PER
POPA
POPF
PUPU
PRINTC
PRNT
PRNT N
PRNT?
PrOLC
PROCES
P11
PUSHA
PUSHF
PUSHJ
PL3
P17
P177
P2
P277
P3
P33/
P3877
P42

P7
P7ALR
P77v4
RAKPT
ReALC
ReECUVK
RETURN
ROT

25311
45587
4b6¢
456«
4444
4565
4566
N AAY
Ip57
4515
0163
3176
715%
0“‘319
3118
@61c
7R)

456

4574
1535
w555
1265
Apn2e
1413
4513
5514
4521
2434
4522
3175
N613
hele
N6«
4511
4512
4527
AY05
0631
la26
Abe
ap3e
P33
Npbea
Iuby
Inbea
45K7
Y2«
tp72
3217
4521
2757
1960
313g

RTLb
RuR?
RuR?
RURS
R4
SAVAC
SAVK

_SBAN

SCnuT
SET
SeEX
SEX(
SFOUND
SGOT
SIN

SJ
SUORTR
SURIC
SORTCH
SORTY
SPLAT
SPNOR
SRETN
SRNLST
START
STARTYV
SJRS

T

TASK
TASn4
TCRLF
TCRLF2
TOHHMP
TELSW
TERMS
TESTA
TESTC
TESTN
TEXTP
TGRP2
THISLA
THISOP
TINT
TINTR
TLIST
TLIST?2

TLISTS

TaHT
TR1
TSTURP
TSTLPR
TYPE
TYPLD

45206
SA1
3yiba
3483
334L
26ilh
2nh
133
1316
1941
1373
741
1334
1544
2723
116
1347
4517
1137
4516
358
4527
1342
1375
M177
1144
1533
AN
1216
1257
1255
126,
3135
2662
2847
n325%
4533
453 1
AxL7
A47 .
A150
m1s/
26305
12A7
141«
1424
1404
1246
$1ae
4532
45381
1215
124

T1

T2

UTE
urn
UTRA
urx
VAL
WAL L
WOROS
WRITF
WTESTO
WTESTZ2
WX
XARS
XADC

XCT

XCTIN
X0X5s
XJyYs
XENDLN
XF
XFInD
XGETLHN
XINy
X133
X4
XourL
XPorJ
XPR it
XPiJSHA
XPIUISHJY
XRAN
XRT
XRTLA
XRT?2
XSG
XSORTC
XSPNOR
XTESTC
XTESTH
XT3

X

XAl
Xn?2
XY?

fi16n
n167
2342
2311
2370
2322
2467
A667
LR
n63o
672
A6506
674
2435
3203
Anen
Aid06
1152
1146
2491
4561
2242
304
1156
2667
4567
2677
1563
2421
1477
ns521
32085
2211
412
na12
2427
A722
1533
A742
1547
n720
4554
4555
4550
2442

APPENDIX F
FOCAL SYNTAX IN BACKUS NORMAL FORM

<immediate command> : : = <program statement> C.R.
<indirect command> : :=<line #> <program statement> C.R.

<line #>: : = <group no.> * <line no.>|<variable>*

<group no.>: :=1-15]01-15

<line no.>: :=01-9911-9

<program statement> : : = <command> |
<command> <space> <arguments> | <command string> |
<program statement>;<program statement>

<command> : : = WRITE| DO | ERASE | GO | GOTO

<arguments> : : = ALL | <line#> | <group no.>

<command string> : : = <type statement>| <Library statement>|

<Ask statement> |<If statement>
<Modify statement>| <Set statement>
<For statement>) QUIT | RETURN | COMMENT | CONTINUE

<Set statement> : : = SET <space> <variable> = <expression>
<For statement> : : = FOR <space> <variable> = <expression>,
<expression>, <expression>; <program statement> |

FOR <space> <variable>= <expression>, <expression>;
<program statement>

<If statement> : : = IF <space> (<expression>) <line #>; |
IF <space> (<expression>) <line #>, <line #>;|
IF <space> (<expression>) <line #>, <line #>, <line #>
<Ask statement> : : = ASK <space> <Ask arguments>
<Ask arguments> : : = <operand>, <Ask arguments> |
! <Ask arguments> | #<Ask arguments> | % <format code>,<Ask arguments> |
" <character string> " <Ask arguments>| <null>|
<operand> <space> | $
<format code> : : = <line?> | <null> | roup no.>
<Library statement>: : =
LIBRARY <space> <Library Command>
<space> <file descriptions>
<Library Command> : : = CALL | SAVE | DELETE |LIST

* Not yet implemented.

F-1

<file description> : : =
DATA <space> <data list> |
FILE <space> <File name> |
FILE <space> <File name> ; <program statement> |
SYSTEM <space> <File name> |
SYSTEM <space> <File name> : <program statement> |
DATA FILES SYSTEMS
<File name> : : = <character string>
<data list> : : = <variable> | <variable>, <data list>
<Type statement> : : = TYPE <space> <Type arguments>
<Type Arguments> : : = <Ask arguments> | <expression>
<Type Arguments>,< Type arguments >
<Modify statement> : : = MODIFY <space> <line #>
This command is then followed by keyboard input
characters defined as <search character>
plus

<null> | <character string> ! <control character> |
<character string> <control character>

<control character> : : = <search character> |
[bell] | [form] [[line-feed] | C.R. |
[C1 1 « 1lrub-out]
<Variable> : : = <letter> | <letter> <character>
<Variable> <not space> <subscript>
<Subscript> : : = <left paren > <expression> <right paren>
<operand> : : = <variable> <constant> | <subscript> | <function>
<left paren>: : =< (|l
<right paren>: :=>1)]
<expression> : : = <unary> <operand> <operand>
<expression> <operator> <expression>
<unary>::=+ |-
<operator>::= T |* |/ 1+ -
<Function> : : = F <function code> <subscript>

<function code> : : = SIN | COS |LOG |ATN | EXP |
SQT |ADC | DIS | DXS [|ITR |
ABS | SGN |IRAN | NEW |

<character string> : : = <null> |<character> <character string>
<character> : : = a-z |<digit> | <special symbols>
<digit>::=1-9 |0

<terminator>: : = <space> |, |; | C.R.

<not space> : : = <null> | <character>

<special symbols>::= & |'|: |@

<leader-trailer>: : = @ | [200] | <null>

<space>: : =

Note: spaces are ignored except when required.

F-3

APPENDIX G
NOTES: EXPLANATION OF NAGSW

G.l1 NOT ALL OR GROUP SWITCH

Since LINENO may be modified, a record is needed of whether a specific line number was
given by
XX.YY
Where XX and YY are nonzero or whether a group was indicated by
XX or XX. or XX.YY
Where YY =0

or whether "all" text was indicated by either zero, less than one, or a non-numeric argument:

NAGSW =
For one line 4000
For a group 0000
For all text 0001

Code for testing NAGSW:
Skip if

or or

ONE SNA /SNA
ALL SPA SNA7SPA
GROUP SZA SNA SZA

G.2 EXPLANATION OF DATA INACCURACIES

"From the inequality 108 < 227, we are likely to conclude that we can represent 8-digit
decimal floating=point numbers accurately by 27-bit floating=point numbers. However, we need 28
significant bits to represent some 8-digit numbers accurately. In general, we can show that if 10°< 2q-l’
then q significant bits are always enough for p~digit decimal accuracy. Finally, we can define a com=-

pact 27-bit floating=point representation that will give 28 significant bits, for numbers of practical

1
importance."

]Goldberg, B. "8-Digit Accuracy”,
Communications of the ACM
Vol. 10, No. 2, February, 1967

APPENDIX H
FUNCTIONS

H.1 THE STANDARD FUNCTIONS

The functions are provided to give extended arithmetic capabilities and the potential for
expansion to additional input/output devices. There are basically three types of functions. The first
group contains integer parts, sign part, square root, fractional, and absolute value functions. The second
group has the input/output for scope and analog/digital converter functions. The third group has extended
arithmetic computations of trigonometric and exponential functions.

A function call consists of four letters beginning with the letter F and followed by a parenthet-
ical expression: "FSGN (A-B *2)". This expression is evaluated before transferring to the function
process itself.

The function FADC() is used to take a reading from an analog to digital converter. The value
of the function is an integer reading. Additional versions of the ADC function could be designed and

incorporated in the program to provide for synchronization by a clock or other means.
*SET A= FADC () *5

The scope functions FDYS (expression) and FDXS (expression) are used to set and display an
" X-=Y coordinate on a model 34 scope and scope interface. The DXS function only sets the value of the
X-coordinate to the integer part of the expression in parentheses. The DYS function sets the Y-coordin-
ate value and intensifies the point. This makes it convenient for the programmer to set an X value and
then display as many Y points along that coordinate as desired. The value returned for each of these
functions is the integer part of the expression in parentheses. This expression is called the function's
argument .

The extended arithmetic functions are retained at the option of the user. They consume
approximately 800 characters worth of his text storage area. These arithmetic functions are adapted
from the extended arithmetic functions of the three word floating point package and are described in
the pertinent document .

An unorthodox distribution is provided in the basic package for a random number generator:
FRAN (). It uses the program itself as a table of random numbers. An expanded version could

incorporate the random number generator from the DECUS library .

H.1.1 Trigonometric Functions

All arguments are in radians

FSIN () - the sine functions
FCOS() - the cosine function
FATN() - the arctangent

From these the user may compute all other trigonometric functions.

Logrithmic Functions

FLOG() - log to the base e or Naperian base .
FEXP () - etothe power

Arithmetic Functions

FSQT () - the square root

FSGN() - one (1) with the sign of the argument

FABS () - the absolute value

FITR () - the next smaller integer part maximum of 1024

LOG,, (ARG) =LOG_ (ARG) *LOG'O(e)

10
LOG,, () =#.434295
LOG, (10) = 2.39258
e=2.71828

1 degree = .0174533 radians
1 radian = 57.2958 degrees

H.1.1.1 Using The Arctangent - An arctan function cycles between + m/2 and - ®/2. Thus to get a

correct range for 0-27 radians from the expression FATN(Y/X) we must use the signs of X and Y.

X Y FATN (Y/X)
+ + 0-P1/2

- + PI/2 - PI

- = PL-312
+ - 3*P1/2 - PI*2

13.01 IF (X) 13.1, 13.02, 13.1

13.02 SET X = 1E-200
13.1 SET THETA = FATN (FABS <Y/X>)
13.2 SET PI = 3.14159
13.3 IF (Y) 13.4; if (x) 13.5;
13.4 IF (X) 13.6; R
13.5 SET TH=PI-TH;R
13.6 SET TH=PI + TH; R
13.7 SET TH=-TH; R
H.2 NEW FUNCTIONS (proposed)

These functions will be available as optional patches.

H.2.1 For LAB-8
FDIS - for display

FORM: "SET Z = FDIS (X,Y)"
Where Z is a dummy variable
FUNCTION:

Setup X = Coordinate with X - value;
Setup Y - Coordinate with Y - value;
Intensify the point;

Return zero.

FADC - for analog to digital converter

FORM: “SET Z = FADC (X)"
FUNCTION:
FOR X.GE .¢g

Set Multiplexor to A/D channel number X;
Convert and return conversion value;
Disable auto-convert flip-flop.

H.2.2

FSEL - for clock, relay,

FOR X = -1

Enable RC clock and auto-convert;
Wait for ADC done flag;

Then read converter and return value.
FOR X =-2

Enable external clock and auto-convert .

SR selection and control .

FORM: "SET Z = FSEL (x; Xo X3 x4)
Where Y is an expression, and x; are digits
FUNCTION:

FORY =8, AND Y,

FOR x3 EQUAL T, 2, 4

Select clock:

x4 1 =RC, 2 = Crystal, 4 = external;
Return number of clock interrupts since last
call;

Zero clock count

FOR x, EQUAL 1, 2, 4

Select relays to turn on (microprogramable):
Xo: 1=R1,2=R2,4=R4

FOR X, EQUAL 1 turn all relays off.

FOR X, EQUAL 2 output pulse on Sg

FOR Y NOT ZERO:

The number x1, x,, X, x4, (Octal) is masked

(AND) with SR bits and results returned in
decimal.

'~ For Display VD 8/1 (Techtronics 611)

FDIS - for display control

FORM: "SETZ=FDIS(X, Y , L "

FUNCTION: at X and Y execute the display function L:

The X and Y are coordinate values, and
L is a letter plus arguments, if appropriate:

H.3

- Absolute reference

- Incremental

- Circle (full)

- Segment, ANGLE (in 1/16ths)
Text display, T*E*X*T

- Reset to zero

- Erase screen

- no change

Omoz—10vn—>»
1

FCUR - for cursor control

FORM: "SET Z = FCUR(X)"
FUNCTION:

Return current coordinate position .

(i .e., the last position at which the
button was pushed).

Range is +511 to -511.

FOR X EQUAL 1 return X-coordinate
FOR X EQUAL 0 return Y-coordinate

NEW COMMAND FOR FOCAL WITH DF32 DISK

a. Form.

"LIBRARY a b ¢ "

Where a = operation to be done:

SAVE (create a disk item)

CALL (use a disk item)

DELETE (remove a disk item)

LIST (print names of disk items)

and b = type of file or data:
FILE (program text)

SYSTEM (in-progress core image)
DATA (variables)

and ¢ = file name or description:

four letter name for a
FILE or SYSTEM, and
a list of variables for DATA

b. Examples

LIBRARY CALL DATA NAME; A1, B2, C(2)...
LIBRARY CALL FILE NAME
LIBRARY CALL SYSTEM NAME

or

L C S NAME

LIBRARY DELETE DATA NAME Al, B2, C(2)...

LIBRARY DELETE FILE NAME

LIBRARY DELETE SYSTEM NAME

or
L D S NAME
For a FILE or a SYSTEM in a SAVE command, the command string, if any, that follows

the semicolon is placed in the command buffer to be executed as a direct command when the program has
been loaded via a CALL.

LIBRARY SAVE DATA NAME; AL(I1+1)...

LIBRARY SAVE FILE NAME; GOTO 3.4
LIBRARY SAVE SYSTEM NAME;

To list all files of type n

LIBRARY LIST DATA
LIBRARY LIST FILES
LIBRARY LIST SYSTEMS
or
LLS
Only LIBRARY SAVE n may be followed by ;.
c. Elucidation

These command features will permit optimum usage of available disk storage. It will be
compatible with the disk "Monitor” .

When a new program is called, the old one in core is erased and control is transferred
to the command buffer, thereby automatically starting the program, if desired. Thus programs may link
together and branch out in complex sequences. _

Common variables may be referenced by establishing common names. Those variables
saved by the LIBRARY command are stored in a FOCAL Scratch Area and may not be referenced by PIP.
FILES and SYSTEMS are saved as .USER files.

A program may also save itself by some conventional name such as MAIN; GO before
calling another program. That program could then return control to the original routine with

LIBRARY CALL SYSTEM MAIN. Thus, programs may be used as subroutines.

d. Raw Date

- -

144 = BUFR, R

165 = LASTV, X/changed to R

2522 = COMEIN
2577 = COMOUT-6
3240 = FRST

LR
(" Page ZERO
2522 = COMEIN

2577

3200 = FRST - 40

X

8 N] A
SUBSCRIPT
DATA (3) < S EXPONENT

S MANTISSA (11)
MANTISSA (12)

FILE (1)

N

SYSTEM (2)

e

-

e. Loading Procedure

(1) Load and build the Disk Monitor.
(2) Add FOCAL to the system. Add LIBRARY to the system.
(3) Load FOCAL DISK SYSTEM tape

(SA =200)
(4) Start it.
(5) The following files will be created.
FOCA.USER MAIN + DIALOG
.FL.X Floating Point Section
ALT.X Library Command Section
FCON.SYS Latest Program
REEN .SYS Reentrant Program
.VR.X Variables

(6) It will then commence the initial dialog.
f. Control - C

When FOCAL (disk version) is given a control - C it will save itself as FCON.SYS and
return control to the Disk Monitor. He could then resume where he left off by typing
.FCONT
and the program will continue. If he wishes to restart FOCAL, retain his FOCAL text and to go into
command-input mode , he may type |

REENTER

H-7

g. Currently available, on an experimental basis only, are an 8K version of FOCAL, a
two user system, a patch to utilize the CalComp plotter, and a patch to utilize the high speed reader .
The latter is implemented as a command: **; or ** (return). When the * command is
executed the interrupts are disabled, echo is disabled, and all input is taken from the high speed reader.
This input may be commands, program text, or data. All output is presented to the high speed punch.
An * command on the tape will cause all interrupts, echos, and input device pointers
to be restored. Out of tape condition will generate the same result. A user without a high speed reader
will, therefore, not get into trouble by using the * command. This also means that several programs
may be linked together via the reader.

A user without a high speed punch will get hungup!

H-8

APPENDIX 1
PROGRAM LISTS

/ NEW INSTRUCTIONS:

PUSHJ=JMS T . /RECURSIVE SUBROUTINE CALL
XPUSHJ
POPA =TAD I POLXR /RESTORE AC

POPJ=JMP 1. /SUBROUTINE RETURN
XPUPJ

PUSHA =JMS 1. /SAVE AC
XPUSHA

PUSHF = JMS 1 /SAVE GROUP OF DATA
PD2

POPF =JMS 1 /RESTORE GROUP
PD3

GETC=JMS 1T . /UNPACK A CHARACTER
UTRA

PACKC =JMST . /PACK A CHARACTER
PACBUF

SORTJ =JMS 1. /SORT AND BRANCH ON AC OR CHAR

SJ, SORTB

/ NUMERICAL LIST - 1

/ ADDRESS LIST - NUMERICAL LIST

SORTC=JMS T . /SORT CHAR
XSORTC

PRINTC = JMS 1 /PRINT AC OR CHAR
ouT

READC = JMS 1 /READ ASR - 33 INTO CHAR AND PRINT IT
CHIN

PRNTLN =JMS T . /PRINT C (LINENO)
XPRNT

GETLN=JMS T . /UNPACK AND FORM A LINENUMBER
XGETLN

FINDLN = JMS 1 /SEARCH FOR A GIVEN LINE
XFIND

ENDLN =JMS T L /INSERT LINE POINTERS
XENDLN

RTL6 = JMS I /ROTATE LEFT SIX
XRTL6

SPNOR = JMS 1 /IGNORE SPACE AND LEADING ZEROS
XSPNOR

TESTN =JMS 1 /PERIOD: OTHER: NUMBER
XTESTN

TSTLPR = JMS 1 /SKIP IS 5 < SORTCN < 11 (I.E. AN L-PAR)
LPRTST

TSTGRP =JMS T . /SKIP IF G(AC) = G (LINENO)
GRPTST

TESTC =JMS 1 /TERM; NUMBER; FUNCTION; LETTER

XTESTC

I-1

ERROR2 = JMS 1 . /EXCESS SOMETHING ERROR

ERR2

ERROR3=JMS 1 . /MISCELLANEOUS ERROR
ERR3

ERROR4 =JMS 1 . /FORMAT ERROR
ERR4

1-2

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

