
Program your minicomputer in FOCAL.
This conversational language conserves memory and is
adaptable to a wide variety of app lications.

Small, general-purpose, digital computers are
being used increasingly. But what about an easy­
to-use computer language for machines with
small core memories? FOCAL* (FOrmula CAL­
culator) was developed to meet this need. No
programming experience is necessary to under­
stand it, and it permits a minicomputer to per­
form many operations formerly restricted to a
remote terminal on a time-shared computer.

A high-level language for small computers
should have two basic design objectives: It must
operate effectively within 4000 words of core
memory and it should have complete editing
capability and interpretive execution. It should
also have a high degree of user orientation that
is compatible with engineering needs.

Commands described to save memory

It is desirable for clarity that commands
(Fig. 1) be spelled out completely to avoid
ambiguity. However, abbreviations are often de­
sired for speed and economy of core-memory
space, since all text is resident in core. The
FOCAL compromise is to choose commands so
that each has full mnemonic value, while begin­
ning with a different letter. By ignoring extra
letters, the language accepts either abbreviations
or expanded forms.

Many of the user-oriented features of FOCAL
come from the concepts of RAND Corp's JOSS
language. One of these is the line-number, group­
number structure, which allows use of a set of
lines as a subroutine for repeat computations.
It also is possible to execute a single line as a
subroutine. These subroutines are even recursive
-they permit computation involving successive
approximations.

The language has a natural format and read­
able structure with a minimum of arbitrary
formats and few cryptic character codes. Finally,
the program is a left-right, top-down interpreter,

•TM Digital Equipment Corp.

Richard Merri ll , Senior Programmer, Digital Equipment
Corp., Maynard, Mass.

86

which makes it easily understood. This, too,
makes it adaptable to re-entrant time-sharing.

The diagnostics are flexible

FOCAL has been provided with a large set of
precise error diagnostics that describe and locate
programming mistakes (Fig. 2). They provide
immediate and accurate indication of errors. The
error diagnostic is accompanied by the line num­
ber in which the error occurs. If further debug­
ging facilities are required, a trace feature is
provided that allows the user to pinpoint his
error to the offending character. A question mark
in the command text causes succeeding letters to
be typed until an error or another question mark
is encountered.

Most important is the ability to make correc­
tions within seconds. Recognizing that many
users will not be skilled typists, the developers of
FOCAL have let the user correct single and
multiple character errors within a line by using
the "modify" command. This is done by giving
positioning information, then inserting or de­
leting at a given spot within a text string.

Another feature is the large number of oper­
ations and functions available, (Fig. 1). And
there are input/ output facilities that include
real-time data acquisition and analysis, large
array storage and update functions, complex
scope control functions, an analog-to-digital con­
verter control and a Calcomp plotter function.

FOCAL also has a wide numerical range and
good accuracy. It normally has a seven-digit input
and six-digit output with roundoff. There is also
a 10-digit version. With a floating point format,
there is an exponential range of 10 to the ± 616
-greater than that conveniently available on
nearly any other computer.

The input/ output features provide a great deal
of flexibility and utility in creating meaningful
output. For example, a print-plot can be made
on the teletype with a single interactive state­
ment (Fig. 3):

FOR Y = 0, 5, 15; TYPE!; FOR X= O,
FSIN (Y) + 12; TYPE"*".
Histograms, line functions, multiple axes and

non-monotonic values can be plotted. Plotting on
the Teletype gives qualitative as well as quantita-

ELECTRONIC DESIGN 15, July 19, 1970

Focal Commands

Command
ASK

COMMENT

CONTINUE
DO

ERASE

FOR

GO

GO?

GOTO

IF

Abbre-
viation Example of Form Explanation

A ASKX,Y,Z FOCAL types a colon for each
variable; the user types a value
to define each variable.

c COMMENT If a line begins with the letter C,
the remainder of the line will be
ignored.

c c Dummy lines.
0 DO 4.1 Execute line 4.1; return to

command following DO
command.

DO 4.0 Execute all group 4 lines.
DO ALL Return to command following

DO command, or when a
RETURN is encountered.

E ERASE Erases the symbol table.
ERASE 2.0 Erases all group 2 lines.
ERASE 2.1 Deletes line 2.1.
ERASE ALL Deletes all user input.

F For i=x,y ,z; Where the command following
(commands) is executed at each new value.
FOR i=x,z; x=initial value of i
(commands) y=value added to i until i is

greater than z.
G GO Stans indirect program at lowest

numbered line number.
G? GO? Starts at lowest numbered line

number and traces entire
indirect program until another?
is encountered, until an error
is encountered, or until
completion of program.

G GOTO 3.4 Starts indirect program
(transfers control to line 3.4)
Must have argument.

IF (X) Ln, Ln, Ln Where X is a defined identifier,
IF (X) Ln, Ln; a value, or an expression, followed
(commands) by one to three line numbers.
IF (X) Ln; If X is less than zero, control is
(commands) transferred to the first line

number, if X is equal to zero,
control is to the second line

Focal's Functions
FSOT(
FABS(
FSGN(
FITR()
FRAN()
FEXP()
FSIN()
FCOS()
FATN()
FLOG()
FDIS()
FADC()

FNEW(
FCOM(

Square Root
Absolute Value
Sign Part of the Expression
Integer Part of the Expression
A noise Generator (.5 - .9)
Natural Base to the Power
Sine
Cosine
Arctangent
Naperian Log
Scope Functions
Analog to Digital Input
Function
User Function
Storage Function

0

1. This is the FOCAL language, which includes com­
mands (a), functions (b) and operations (c). With these
instructions, a complete program can be written.

ELECTRONIC DESIGN 15, July 19, 1970

Abbre-
Command viation Example of Form Explanation

number.
If X is greater than zero, control
is to the third line number.

LIBRARY LC LIBRARY CALL Calls stored program from the
CALL name disk.

LIBRARY LO LIBRARY DELETE Removes program from the
DELETE name disk.

LIBRARY LL LIBRARY LIST Types directory of stored
LIST program names.

LIBRARY LS LIBRARY SAVE Savas program on the disk.
SAVE name

LINK L L For disk monitor system;
FOCAL types 4 locations
indicating start and end of text
area, end of variable list and
bottom of push-down list.

LOCATIONS L L For paper-tape system; types
same locations as LINK.

MODIFY M MODIFY 1.15 Enables editing of any character
on line 1.15 (see below).

QUIT Q QUIT Returns control to the user.
RETURN R RETURN Terminates DO subroutines,

returning to the original
sequence.

SET s SET A = 5/B*C; Defines identifiers in the
symbol table.

TYPE T TYPE A+ B- C; Evaluates expression and types
out = and result in current
output format.

TYPE A - B, C/E; Computes and types each
expression separated by commas.

TYPE "TEXT Types test. May be followed by !
STRING" to generate carriage return-line

feed, or # to generate carriage
return.

WRITE w WRITE FOCAL types out the entire
WRITE ALL indirect program.
WRITE 1.0 FOCAL types out all group 1

lines.
WRITE 1.1 FOCAL types out line 1.1.

Focal Operations and Their Symbols
Mathematical operators:
t Exponentiation

Multiplication
Division

+ Addition
Subtraction

Control Characters:
% Output format delimiter
! Carriage return and line feed
Carriage return
$ Type symbol table contents
() Parentheses i
I] Square brackets · (mathematics)
< > Angle brackets

Quotation marks (text stnng)
? ? Question marks (trace feature)

Asterisk (high-speed reader input)

Terminators:
SPACE key (names)
RETURN key (lines)
ALT MODE key (with ASK statement)
Comma (expressions)
Semicolon (compounds and statements)

(nonprinting)

87

t ive information . This is possible because one
can cause the carriage to return without a line
feed and can give a carriage return/ line feed
wherever desired.

FOCAL is handy in the laboratory

Among other I/O capabilities are some real­
time interactions. Thus FOCAL can be used in
the laboratory with devices controlled through
an output bus by means of FOCAL functions.
Where suitable FOCAL functions do not exist,
the user can write his own in machine language
and access them via a special FOCAL function
that he sets up. This function can be used as any
other. It can be imbedded within a set of compu­
tations, have any number of arguments and
allow complex control functions to be performed
in conversational language. The computer system
is fast enough to allow interaction with devices
that need servicing 10 times a second.

FOCAL is one of the first standard programs
for the small computer to run asynchronously.
It buffers data to and from the Teletype-a dis­
tinct advantage when running FOCAL on slower
computers, because it allows data to be fed into
the computer at a higher speed than the compu­
tional cycle. An enormous decrease in the re-

Focal's Error Diagnostics
Code Me1ning

?00.00
?01.00
?01.40
?01.78
?01.96
?01.:5
?01.;4
?02.32
?02.52
?02.79
?03.05
?03.28
?04.39
?04.52
?04.60
?04.:3
?05.48
?06.06
?06.54
?07 .22
?07.38
?07.:9
?07.;6
?08.47
?09.11
?10.:5
?11.35
?20.34
?23.36
?26.99
?28.73
?30.05
?31 .<7

M1n1111I stan given from console.
Interrupt from keyboard via CTRL/C.
Illegal step or line number used.
Group number is too large.
Double periods found in a line number.
Line number is too large.
Group zero is an illegal line number.
Nonexistent group referenced by 'DD'.
Nonexistent line referenced by 'DD'.
Storage was filled by push-down~ist.
Nonexistent line used after 'GOTO' or 'IF'.
Illegal command used.
Left of" = " in error in 'FOR' or 'SET'.
Excess right terminators encountered.
Illegal terminator in 'FOR' command.
Missing argument in display command.
Bid argument to 'MODIFY'.
Illegal use of function or number.
Storage is filled by variables.
Operator missing in expression or double 'E'.
No operator used before parenthesis.
No argument given after function call.
Illegal function name or double operators.
Parentheses do not match.
Bad argument in 'ERASE'.
Storage was filled by text.
Input buffer has overflowed.
Logarithm of zero requested.
Literal number is too large.
Exponent is too large or negative.
Division by zero requested.
Imaginary square roots required.
Illegal character, unavailable command, or unavailable function used.

2. Error diagnostics are of great help in debugging a
program, and FOCAL's diagnostics are extensive, in
spite of its small core requirements.

88

sponse time of the program is possible and
operation of the keyboard is smoother.

Another advantage of the interrupt system is
that it permits the ending of program loops­
for example, from the keyboard, by typing
"Control-C." The recovery routine will then go
into reset mode, type out the message code
"?01.00" and return to command mode. Manual
restart via the console switches, as well as all
error diagnostics, also go to the recovery routine.

Error printing is witheld until prior printing
is complete. Otherwise an error message could be
printed prematurely, and the result might be
misleading when attempting to trace specific
errors within a character string.

Data formats are varied

There are several powerful output formats:
floating point, fixed point and automatic right­
shifting of the decimal point if numbers are
larger than the allowed integer field. Any desired
format can be specified by giving the total num­
ber of digits in the field and the number of digits
to be allocated initially to the decimal field. Many
input formats are acceptable: leading signs, lead­
ing blanks, E format, decimal format. Any
reasonable specification of an input number is
accepted by the machine. The program can accept
alphanumeric strings, which it promptly com­
presses into a single code number. Thus an inter­
active program may accept the answers "YES,"
or "NO," or "MAYBE," etc. Such responses are
recognized by comparison with "numbers" that
begin with the digit zero-for example: IF
(REPLY - OYES) 2.1. In this example REPLY
is a variable name and OYES is .a constant.

The compromise used to overcome the size
limitation and still gain power is a sacrifice of
speed and compatibility with other languages.
The objective was to achieve maximum utility
within the space allowed and still have enough
user storage left to do fairly complex jobs.

User determines memory configuration

Since even the best intentioned design doesn't
satisfy everyone, a good language lets the user
establish the limits of the system. When FOCAL
is first loaded into core from the tape on which
it is supplied, it goes through an initial dialogue,
which is actually an interactive FOCAL program
whose variables are assessed by machine
language. The dialogue requires no extra space,
since it occupies the initially "blank" program
tape area; it enhances user compatibility by
causing changes in the structure of the program
itself. In this way FOCAL asks the user whether
he wishes to use certain of the extended func­
tions, such as arctangent, logarithm and expo-

ELECTRONIC DESIGN 15, July 19, 1970

nential. Users who do not need these can recover
the unused memory space, create larger arrays
or use the space as program text storage.

Size limitations place serious burdens on the
core layout and on implementation of the pro­
gram. However, the program is easily expand­
able to 8000 words. The 4000-word version ac­
commodates a typical program of 20 lines and 40
variables, or about 1000 working cells. A dynamic
allocation of resources is supplied in addition to
the selection of configuration.

A user is not restricted to 20 lines, 40 variables,
a fixed depth of subroutine calls or a fixed depth

x
x

x
x

x

x
x

x
x

x

x
x

x
x

x

•

II

.. • ..
)l

•.

•
•.
•.

@

•X

x

x

x

x

x

x
x

x

x
x

x

x
x

x

01.10 ASK "Al0 1Al, 110MEGA11
1W1

11 T011 ,TQ,"OAMPING FACTOR",OAMPINGFACTOR
·01.20 ASK "HOW MANY PERIOOS DO YOU WANT TO PLOT ?",PERIOD
01. 25 ASK "WHAT INCREMENT 00 YOU WANT TO PLOT IN ?''.INCREMENT
01.30 SET PI=3.lUSb
01.•0 FOR TaO, INCREMENT0 PI/l80,PERI00"2"PIIDO 2.0
01.so QUIT
02.10 SET Yl• A1°FSIN<W 0 T-TOI
02.20 SET YOaAJ.°FEXP<~lNGFACTOR•n•FSIN<w•T-TOI
02.30 FOR Y•O,i!'liTYPE " "
02.'tO TYPE "•"••
Oi!.SO FOR Y•O,i!'l+<YlllTYPE " •
02.loO TYPE "X",t
Di!. 70 FOR Y•Q, 2'1+<YOllTYPE " "
oa.ao TYPE 11 • 11 .1
Di!. '10 RETUIN
•GO
Al:i!O
OMEGA:l
TO:O
DAMPING FACTOR: .25 ·
HOW MANY PERIODS DO YOU WANT TO PLOT ?:3
WHAT INCREMENT DO YOU WANT TO PLOT IN ?:30

@

3. This simultaneous print-plot of a damped and un­
damped sinusoid (a) results from the program (b) shown ,
and is a typical example of FOCAL problem-solving. By
contrast, FORTRAN requires many more statements for
the same results.

ELECTRONIC DESIGN 15, July 19, 1970

of nested expressions. The 1000 words of work­
ing space can be a llocated to whatever purpose is
required in a program: a short program with
many variables or a long program with few
variable assignments.

Punctation conserves memory

A special character can terminate a command
string. Thus by using a semicolon to connect two
commands, a user saves the data overhead
associated with a line pointer, line number and
carriage return; a semicolon saves three loca­
tions in the text buffer. This convention also fits
naturally with the "FOR" command format :

FOR A = b,c,d ; . .. This reads : "For the
variable A, equal initially to the value of
the expression b, incremented by c until A
exceeds d, do the command string that fol­
lows the semicolon."
The command string can contain other com­

mands and semicolons giving the language a
powerful and easily understood iterative state­
ment implemented in minimum core.

The IF command also was improved by the
semicolon. The normal form, similar to that of
FORTRAN is:

IF (expression) a, b, c; where a, b, c, are
line numbers to go to if the result of the ex­
pression in parentheses is negative, zero, or
positive, respectively.
The semicolon can shorten the IF command,

and execution continues along the same line :
IF (exp) 1.45, 3.2; TYPE "GREATER

THAN ZERO."
There is one other unique feature of FOCAL.

It is possible to convert the computer operation
into a desk calculator mode. Simple arithmetic
calculations can be made, and the utility of the
computer is enhanced for those who have no need
for more elaborate programming. • •

Test your retention

H ere are questions based on the main
points of this article. Their purpose is to
help you make sure you have not overlooked
any important ideas. You'll find the answers
in the article.

1. What are the requirements for a
language to be used with small computers?

2. Is asynchronous operation desirable in
a conversational language?

3. Why are abbreviations desirable?

4. What is the trace f ea tu re?

89

