FOCAL

HOW TO WRITE NEW SUBROUTINES
AND USE INTERNAL ROUTINES

DOUG WREGE
Engineering Experiment Station

Georgia Institute of Technology
Atlanta,Georgia

SUPPORTED IN PART BY THE U.S. ATOMIC ENERGY COMMISSION.

TABLE OF CONTENTS

FOCAL: HOW TO WRITE NEW SUBROUTINES AND USE INTERNAL ROUTINES

ABSTRACT

I. INTRODUCTION

Il. ASSEMBLERS, COMPILERS, AND INTERPRETERS
Ill. THE PHILOSOPHY OF FOCAL

A. Text Editing

B. The Multiple Branch Routine
C. Recursion

D. Conclusion

V. TECHNICAL DETAILS; GENERAL

A. Arithmetic Manipulation
B. Storage - (Core Layout)
C. Holes :

D. Moving Bottom

V. TECHNICAL DATA - FOCAL SUBROUTINES

Page Zero Reference Locations
Text Handling Routines

. Utility

Pushdown List Controllers
Other Subroutines

moOw >

VI. LINKS TO FOCAL

A. Functions
B. Links to FOCAL - The LIBRARY Command
C. Debugging

VIil. ACKNOWLEDGMENTS
VIIl. APPENDIX A
A. A Prescription
IX. APPENDIX B
A. A Few Useful Routines
1. Argument Evaluator

2. LIBRARY Expansion

3. Function-command Extention

X. APPENDIX C

A. Example of a Recursive Subroutine - EVAL
B. Simplified Flowchart of Subroutine EVAL

XI. APPENDIX D

A. Field One Variable Array

1. Abstract
2. Requirements
3. Usage
a. Loading
b. Calling sequence
4. Discription

X1l. APPENDIX E
A. Disk Variable Storage

1. Abstract
2. Comments

XI111. APPENDIX F

A. Hints and Kinks Department

FOCAL: HOW TO WRITE NEW SUBROUTINES
AND USE INTERNAL ROUTINES* ‘

DECUS Program Library Write-up FOCAL-17

ABSTRACT

It is the aim of this paper to help the user to code specific routines in FOCAL so that his
dialect of FOCAL can be applied to his application (without being forced to understand in
detail all the workings of FOCAL). In this way, perhaps, each and every user can make
his particular dialect of FOCAL 'perfect’.

I. INTRODUCTION

Many users have found FOCAL ** to be the answer to their real-time and computational
problems. The language is extremely powerful and flexible with unique text editing and
debugging features. Although FOCAL is slow in execution compared to machine language
coding, for most real-time problems or one-time calculations, lack of speed is not a serious
‘handicap. Most users will agree that a program can be written, debugged, and executed in
"FOCAL" before the equivalent could even be coded (and/or punched) in any other Ianguoge.
Additions or changes are easily made.

It will be assumed that the reader has a basic knowledge of PDP-8 processor instructions, PAL
mnemonics (see Digital's Small Computer Handbook or Introduction to Programming), as well
as a familiarity with the Floating Point Package (DEC-08-YQYA-D). In addition, he should
be familiar with the "FOCAL"** language.

As many users have discovered, the internal workings of FOCAL are an incredibly complex
piece of programming. With the need to interface the computer to specialized equipment for
individual applications, there is the corresponding need for appropriate software. If FOCAL
could communicate with this equipment, one would have an extremely powerful and flexible
computation and control package. This paper is an attempt to explain how user developed
software can be interfaced to the basic FOCAL package, without requiring the user to spend
valuable time trying to understand all of its detailed workings.

Section Il will deal with a general discussion of how FOCAL works, in a descriptive fashion.
Section Ill will be concerned with the philosophy of the language. The last few sections will
be more technically oriented toward helping the user actually code his additions. Finally,
several examples and ready coded routines, which may be used to simplify the user's problems,
are included.

*Supported in part by the U. S. Atomic Energy Commission.
**Throughout this paper a "FOCAL" program written in the "FOCAL" language will be

enclosed in quotes. The machine language coding of the FOCAL interpreter will be reference
by the word FOCAL without quotes. '

[I. ASSEMBLERS, COMPILERS, AND INTERPRETERS

In general, there are three routes that the programmer can follow for machine execution. Programs
that perform translations are assemblers, compilers, or interpreters; each operate from conceptually
different vantage points.

In a compiler level language, such as FORTRAN, ALGOL, and BASIC, coding is written in a syntax
close to the way a human thinks. A compiler interprets this and generates an object code which is
close to machine language. This, in turn, is translated into actual machine language instructions.
Finally these machine language instructions must be read into core before execution. If any
corrections are to be made to the program (debugging, additions, or corrections), one must recompile
the source coding, read the new object coding in, and finally execute it.

An assembly level language is inherently closer to machine language than a compiler level language.
The user's coding is indeed remote from the way he thinks about formulating a problem (he is even
forced to think in binary or octal, the machine's way of formulationg problems). About all an
assembler lets the programmer do is use mnemonics (words) and symbols instead of binary numbers.

For example, in the PAL language, the instruction TAD | TEMP is assembled as follows from the
definitions:

TAD = lﬂQMS /in the assembler's internal symbol table
| = ¢4ﬂﬂ8 /internal symbol table
TEMP= mﬂﬁg /user defined in coding

The assembler masks out the first 5 bits from the last mnemonic
if there are more than one (in this case TEMP); it then ORS the
result with the other mnemonics:

1000
& p4p0
& ggg
1500 This is the machine equivalent.

The PAL assembler is a little more sophisticated than this, of course, and performs functions a
little more complicated, but generally an assembler is incredibly stupid for what it can do. Note
the similarity between PAL mnemonics and machine language. Throughout the following sections
various mnemonics will be defined so that the PAL assembler can generate instructions compatible
with FOCAL (e.g. GETC = 4506 causes the assembler to add this to its symbol table).

In an interpretive level language, no machine language coding is generated for execution. An
interpreter is essentially a subroutine caller. It contains a subroutine for every conceivable
operation it thinks the user wishes to perform. If it cannot understand what the user wants, it
prints an error message and waits for the user to make himself clear. Every character that the
user inputs is stored in core. Upon execution the interpreter "interprets" the program character
by character and calls the subroutine indicated.

FOCAL is an interpretive level language. In particular, it is a recursive interpreter (see
Section IIl). That is, unlike FORTRAN, one may call a function from within itself.
Nevertheless, it is basically a subroutine caller, even though these subroutines may be
incredibly interlocked. It has a subroutine to evaluate arithmetic expressions (EVAL),
subroutines to make it recursive (PUSHJ, PUSHA, etc.), branching routines (SORTJ),

a subroutine to find a certain line (GETLN), one to get a character (GETC), etc. Once
the user understands what all these routines do, he can add his own coding in a highly
efficient and powerful manner. Descriptions of these subroutines will be given in later
sections.

I11. THE PHILISOPHY OF FOCAL
A. Text Editing

Since FOCAL is an interpretive language, it must have facilities for manipulation of user

written text. In order to facilitate these manipulations, there are a number of text formatting
and editing features, such as WRITE, MODIFY, TYPE, and the "trace" (" ?") function. One

of the main features of the FOCAL interpreter is the simplicity of concept and power of operation
of the format controlling statements. The user finds a convenient, easily understood way of
controlling the format of his output, regardless of his level of programming experience and
sphistication.

Since much of FOCAL execution is involved in various text decoding routines, FOCAL is slow

in execution of programs (compared to assembly or compiler language coding). The text handling
routines may be called from the user written assembly language subroutines, and thus are listed
with a short description of their function, in Table 1.

FOCAL is concerned with interpreting what the user's text means by specific combinations of
characters, so it must have a flexible means of decoding these characters according to type.
The most efficient way this can be done is to use a subroutine (SORTC) that compares the
present character with a list. It is necessary to have the address of the list as an argument for
this subroutine. For example, suppose that it is desired to find a text terminator. To do this,
a list is made of all legal terminators (;, carriage return, space comma, etc.), and the value
of the present character (stored in location CHAR) is compared to the list: if a match is found,
an index is set to the list element number, and a normal return is taken. If a match is not
found, then another return is taken.

B. The Multiple Branch Routine

FOCAL is in many ways similar to JOSS2. All of the JOSS-like languages incorporate a
“command" in addition to the arithmetic statements available in other languages (ALGOL,
FORTRAN). One of the advantages of the command is that, using only the first symbol of a

new statement, the interpreter (or compiler, inthe case of BASIC) can decode the action
required, and thus need not "understand" the whole line before proceeding. This is an advantage
in a small machine such as the PDP-8, where the paucity of core demands highly efficient coding.

2Joss - An Introduction to a Helpful Assistant, Rand Memos 5058-PR July 1966.

© e
é’%ﬁ ;

- A Unique feature of FOCAL is the ability to operate with single-letter abbreviations of the .
command. As an example, consider the subroutine that actually selects the command branches
(and is used for other operations within FOCAL, as well). This routine (SORTJ) is called with
an argument pointing to the list of characters to be compared and another argument containing
a pointer to a list of associated addresses. FORTRAN programmers might recognize the result
as a sort of character-driven computed GOTO. The calling sequence is:

SORTJ /Sort and Branch Routine

TABLE1-1 /pointer to character list
TABLE2-TABLE /difference in addresses of the tables
XXX /return if not in table

Absolute addresses are specified in the arguments; hence, tables may be stored between pages.

Since FOCAL refers to lists for its decoding operations, it is often referred to as a table driven
interpreter. A table driven interpreter is especially suited to addition of new coding, since only one
or two addresses need to be added to a table (list) for a new branch.

C. Recursion

One of the features of FOCAL which makes it so powerful is that of recursion. Recursion is the
ability of a subroutine to call itself, e.g. FSQT (1 - FSQT(X)). In most compiler level languages
this operation is carried out by repeating the machine language (FSQT) coding so that one version
of the subroutine can call the other. In these cases the subroutine never really calls itself, rather
it calls a separate identical piece of coding. An interpretive level language cannot afford multiple
identical subroutines for every possiblity, since it would take too much core.

Consider how a 'normal’, nonrecursive subroutine works. Schematically we may divide the sub-
routine into a segment in which the logical operations are coded and a segment where temporary
values in the calculation are stored. We can consider the subroutine return to be stored in this

temporary storage area also. VIZ,

- SQT, return addr. CODING
Intermediate *
Variable
Storage »| _(eval. argument) |

(take SQT of arg.)

If this hypothetical subroutine were to call another subroutine (as is normally done in assembly
language), there would be no difficulties provided that the intermediate storage of the two

subroutines are separate.

If the subroutine was to call itself from within its own coding, the original intermediate values of
the variables and the return pointer would be overwritten (as the program executes the coding the
second time). If there was a way to use a different intermediate storage area, the original values

would not be lost.

The Push-Down List (PDL) concept involves an intermediate storage area which is "pushed-down"
(making a new intermediate storage area available) whenever a subroutine is called and "popped-
up" whenever a return occurs. VIZ, ’

STORAGE CODING
AREA
: 4 %] Sovar. arqument) |G By be i
v (338{,% 3 * (take SQTof arg.)
PDL l_ ﬂ

To continue the example, the steps in the evaluation of FSQT 1-FGST(X)) would proceed as
follows:

1. The main program calls the FSQT subroutine. Storage area 1 is now pushed-
down into the push-down list making area 2 available.

2. The argument "1-" is evaluated up to the next FSQT(X).
In order to evaluate this, the FSQT subroutine is called again !

3. On second entry to the subroutine, storage area 2 (containing the main
program return and the intermediate value of the argument) is pushed-down.

4. X is evaluated and then the square root is taken.

5. The subroutine returns (to the middle of itself) with the answer FSQT(X).
When this return is effected, storage area 2 is popped-back-up (with the
old intermediate values).

6. The answer FSQT(X) is subtracted from 1 to form the argument 1-FSQT(X).

The square root of this is taken and the function returns to the main program.

Obviously, by using the PDL concept, subroutines may call themselves to any level (as long as
there is PDL space available).

For most-efficient core utilization, FOCAL uses the same PDL intermediate storage for all sub-
routines. To do this, one value (PDP-8 word) is pushed-down at a time. Values are 'popped"
in the reverse order that they are 'pushed'.

An additional feature of a PDL is that it can be used for temporary storage of variables in non-
recursive routines. One may consider the PDL as an extension of page zero since it can be accessec
from any page. Section V will describe PDL handlers available in FOCAL.

D. Conclusion

The concepts outlined above will introduce the experienced programmer to the internal working
of FOCAL. |In the sections that follow, a more technical exposition of these routines will be given.

MNEMONIC

GETC
SORTC
TESTN
TESTC
TESTLPR
READC
PRINTC
PACKC
PRINTLN
FINDLN

SPNOR

TABLE 1

FOCAL TEXT HANDLERS

DESCRIPTION

Get the next character from the text

Sort the present character against the table

Sort the present character into one of three types
Sort the present character into one of four other types
Test CHAR from left parenthesis

Read a character from the Teletype

Print CHAR on Teletype

Pack a character into buffer (store it)

Print the current line number

Find a given line

Ignore spaces

The Appendices contain examples elucidating the principles cutlined in this report.
IV. TECHNICAL DETAILS - GENERAL
A. Arithmetic Manipulations

Arithmetic is done using the three word floating point format. Input and output of numbers
are handled via the Flcating Point Package (FPP) 1/O controller (with modifications to run
with the interrupt enabled). For details, see FPP documentation (DEC-08-YQYA-D).

B. Storage - (Core Layout)

The FOCAL interpreter occupies locations 1 = 3220 (see Figure 1)." The FPP occupies
approximately 4600 - 7577, depending on how many functions are kept. The initial dialogue
sets BOTTOM, the end of storage space, depending on the number of functions kept. The
remaining storage is used for text, variable storage, and push-down lists.

3220 - 4577 | with all functions
3220 - 5177 FEXP, FLOG, FATN deleted
3220 - 5232 FSIN, FCOS and above deleted

The text is built up from location 3220 occupying approximately two characters per location.
Variables are built upward from the top of the text. They occupy 5 locations per variable
and are created as they are found in execution. Whenever the indirect program is changed,
(modified, appended, or collapsed), a new starting point for variables is indicated; hence,
old variables are erased. The push-down list (explained more fully later) is built from the
FPP down toward the variable storage area. Error messages occur with termination of the
program whenever these lists overlap.

Instructions are stored in the command/input buffer when in the command mode; the buffer
has sufficient locations for one line of characters.

C. Holes

The following locations are free for the user:

PAGE ZERO 16 (Auto Index Register)
162 - 175 (Free in 4K FOCAL)
171 - 175 (Free in 8K FOCAL)
FPP 5571 - 5577
5754 - 5777
6171 - 6177
7154 - 7177
7346 - 7377
7554 - 7577
6317 - 6377 is used by the high-speed
reader control == if you do

not have one, this is available

0000

PAGE ZERO
FOCAL
INTERPRETER
3232
TEXT AREA
VARI ! !ABLES
4600 PUSH DOWN
52007
EXT. FUNCTIONS
6400 FLOATING
POINT
PACKAGE
7600
LOADERS-MONITORS
7777
TEXT STORAGE FORMAT
LINE
ASCII CHAR
77 15
C.R.

Figure 1

VARIABLES FORMAT
na | mE

SUBSCRIPT
+

EXP
MAN-
TISSA

+

etc.

D. Moving Bottom
For additional user coding room, BOTTOM may be changed at the sacrifice of text storage
To move BOTTOM, set the contents of location 27 (C(27)) to the last location available for

text (PDL) storage; e.g. in order to free locations 4420-4577 for user additions to the inter-
preter, change C(27) to 4417.

V. TECHNICAL DATA - FOCAL SUBROUTINES

With the use of subroutines available in the FOCAL interpreter and a listing, a must, it is
relatively simple to write powerful user coded additions.

Unless otherwise stated, these subroutines must be entered with the AC = @J; they return with the

AC=40.
A. Page Zero Reference Locations

- CHAR - The contents of this location (142) contains the current character (in ASCII code)
from the text buffer.

SORTCN - This register contains references used by sorting routines (see below).

FLAC - This is the first word of the floating accumulator (contains the exponent). The floating
accumulator occupies locations 44 - 46,

FLAC is defined as 44.

B. Text Handling Routines

GETC = 4506
Gets next character from the text; exits with next character is CHAR.
SORTC= 4511
Calling sequence: SORTC /call
LIST-1 /address of LIST-1
XXX /return if in LIST
XXX /return if not in LIST
Description: If the accumulator is nonzero, its contents are used;
otherwise the contents of CHAR are used to sort against
the LIST. If it is in the LIST, return to call + 2; if not,
return to call + 3. SORTCN is set to how far down in the
list the match occurred.
Example: If we are testing for one of the following:
LIST =,
254 /,
273/,

215 /carriage return
7777 /list is terminated by a negative

9 number

Assuming it is an error for CHAR not to be in the list,
the following coding applies:

SORTC /sort against LIST

LIST-1 /address of LIST

SKP

ERROR /do an error exit as not in LIST

If a match were found, SORTCN would have the values:

Confenfs_o_f CHAR SORTCN Value

, g
;]
carriage return 2
NOTE: Lists are terminated by negative numbers.

PRINTC = 4512
Print the accumulator; if the AC =, print the contents of CHAR.

READC = 4513
Read and echo a character from the keyboard. Put it into CHAR.

SPNOR = 4521
Ignore spaces in text; exit with the first character that is not a space in CHAR.

ERROR = 4526

Used to exit upon error detection; transfers control to the command mode and terminates
execution; prints error message. (In the FOCAL listing there are ERROR2, ERROR3, and
ERROR4. All of these are identical.)

TESTN
This subroutine is actually a series of SORTC's with various returns:
CALL: TESTN /call
return] /return if a period
return2 /return if not a period or a number
return3 /return if a number; SORTCN is set to the

binary equivalent.
This routine tests only CHAR. AC must be @.

TESTC (4525)
This subroutine is actually a series of SORTC's with various returns:

10

CALL: TESTC /call

return] /terminator; SORTCN set according to TERMS
return2 /number; SORTCN set as in TESTN

return3 /function; (CHAR=F)

return4 /alphabetic character

SORTJ (4510)

This subroutine is used as a multiple sort and branch routine. CHAR (or the AC if nonzero)
is compared to a list. If it is in the list, an address is looked up and an effective JMP
ADDRESS is executed. If a match is not in the list, then return is to call+3.

CALL: SORTJ
LIST1-1 /ADDRESS of character list
LIST2-LIST1 /difference in the addresses of lists
RETURN /return here if not in LIST]1

An example of this is the FOCAL branch to a library command:

POPA /get command CHAR
SORTJ /branch
COMLIST-1
COMGO-COMLIST
ERROR2 /invalid command
where
COMLIST =, COMGO =
323 /S (ASCII) SET /ADDRESS OF SET CODING
306 /F FOR /ADDRESS OF FOR
311 /I IF
304 /D DO
307 /G GO
303 /C COMMENTS
301 /A ASK
324 /T TYPE
314 /L LIBRARY

7777 /list is terminated by a negative number

NOTE: Lists are terminated by a negative number.

11

C. Utility

RTL6= 4520
Rotate the AC six places to the left.

D. Pushdown List Controllers

For those unfamiliar with more powerful processors than the PDP-8, the ideas of recursion
and pushdown lists are explained in Section Il. These subroutines appear to simulate hardware
commands on more sophisticated machines like the PDP-10 and even use the same mnemonics |

PUSHA = 4503
Puts the contents of the AC on the PDL; clears the accumulator.

POPA = 1413
Get the top entry on the PDL and put it in the AC. (Note: auto-index register 13 is the pointer
to the pushdown list; thus 'POPA' is actually TAD | 13.)

PUSHF = 4504
This is essentially three PUSHA's and is used for storage of floating point data.
Call: PUSHF
ADRESS /address of first location of three word floating point number.
POPF= 4505

The inverse of the PUSHF routine.

Call: POPF
ADDRESS /address of where to put data.

PUSHJ = 4501
This is the recursive subroutine call. The subroutine return is put on the PDL and a JMP to the
subroutine address is executed.

Call: PUSHJ
SUBROUTINE /address of SUBROUTINE
XXX /address of this location is
/stored on the PDL
POPJ =5502

Recursive subroutine return; the top element of the PDL is used as the effective address of the
return.

12

E. Other Subroutines

INTEGER

Enter via a JMS | INTEGER. This routine makes an integer out of the FLAC. The low order
part is in FLAC + 2, the high order part is in FLAC+ 1. Also, returns with the low order part
in the accumulator.

EFUNS3I
This routine is the return from a function routine. It checks for a right bracket in CHAR (*)")
and normalizes the floating accumulator. Enter via a JMP | EFUNA3I. ‘

EVAL

This subroutine evaluates arithmetic expressions; because it is recursive, it must be called via:
PUSHJ
EVAL
XXX /return

The subroutine return is to call + 2 with the floating point value of the expression it evaluated

in the FLAC. (How EVAL works is discussed in Appendix A.)

NOTE: All temporary storage must be in the PDL before calling EVAL. This data must be
restored after the return. (see Appendix for examples.)

VI. LINKS TO FOCAL
A. Functions

The general form of a function in "FOCAL" is FUNC(ARG1,ARG2,---). The function coding
is entered via a SORTJ where the address in designated in the table:

FNTABF = . /(376) in FOCAL-W 8/68
XABS /address of FABS coding
XSGN /FSGN
XINT /etc.

XDIS
XRAN
XDXS
XADC
ATN
EXP
LOG
SIN
COsS
SQT
NEW /user defined function

To add a user coded function put the entry point of the function coding in the appropriate
location in the above table. FOCAL will branch to that location after the function name is
decoded, and ARG1 is evaluated in the floating accumulator (FLAC). To delete ~ function
from the list, replace the current contents with 2725,

) 13

When the function evaluation is complete, the answer must be left in the FLAC, and a JMP |
EFUN3I executed. The EFUNZ3I routine will check to see if there is a right parenthesis (")")
in CHAR, and normalize the FLAC, before returning to the appropriate place in FOCAL. (See
Hints and Kinks, Section XIII A, if the answer is an integer.)

B. Links to FOCAL - the LIBRARY Command

FOCAL has an unimplemented command, the LIBRARY command (SET, ASK, TYPE, etc. are
commands). The general form of a command is:

X _ (any syntax allowable by coding).
For example the SET command's allowable syntax is:

SET _ (variable)= (arithmetic expression).
To generate the link to the user's LIBRARY command, put the entry address in 1201. FOCAL
will enter via a JMPwith CHAR containing 24[258 (a space). The following coding may be used

at the end of a LIBRARY command to space over extraneous characters to a semicolon or carriage

return, which must be in CHAR before doing an effective JMP PROC to return to FOCAL:

SKP /entry

GETC /fetch the next character
SORTC /sort for a ; or c.r.
GLIST-1

JMP PROC /FOUND IT .
JMP . -4 /not yet

C. Debugging
It has always been a problem to debug FOCAL programs, as FOCAL runs with the interrupt on.

Recently, a DECUS program XOD (DECUS #8-89) became available. This program may be used
in field 1 to debug FOCAL in field @ with the following patches made by J. C. Aldermon.

FIX UP XOD
Patch FOCAL 0001 5575
(field 2) 0175 2603
6761 5002
Patch XOD 6762 0002
(Field 1) 6763 5404
6764 0003
6765 6613
6766 0004

14

VII. ACKNOWLEDGEMENTS

The author wishes to express his thanks to J. C. Alderman for his help in formulation of ideas
and text editing. Also, an emphatic "thank you" to Rick Merrill for the most beautiful program

in the world, FOCAL!

15

VIIl. APPENDIX A

A. A Prescription

To add a function:

1.

Put the function address in FNTABF.

2. Do coding.

a.

b.

Use PDL for temporary storage
If more than one argument is needed:

PUSHJ
ARG

where ARG is a supplied subroutine (See Appendix B). ARG is
a subroutine which moves past commas and evaluates arithmetic
statements, leaving the result in the FLAC.

3. Put the functional result in the FLAC.

4. Return to FOCAL via JMP | EFUN3I.

To add the LIBRARY command:

1.

Put the initial address in the contents of 1201
(for expansion of commands see Appendix B).

Exit from coding via an effective JMP PROC. Note: the contents of CHAR
must be either ; or a carriage return.

16

X. APPENDIX C
A. Example of a Recursive Subroutine - EVAL

The subroutine EVAL is an example of a recursive subroutine. The PDL is used to defer
evaluation so that the arithmetic operations are performed according to operand priority.

In order to take care of bracketed quantities EVAL does the following:
if a left bracket occurs - PUSHJ
EVAL
if a right bracket occurs - POPJ.
Given that EVAL evalueates arithmetic expressions, the above operations have the effect of
changing all bracketed quantities to evaluated numbers. Hence, all bracketed quantities
have now "gone away" and we are left with expressions like: ‘

A+B*C-D/E* F.

Operand priority is assigned as follows:

opperation priority level
‘ + 1
- - 2
* 3
/ 4
+ 5

A flow diagram approximating this subroutine is given in Figure 2.

17

IX. APPENDIX B
A. A Few Useful Routines

1. Argument evaluator

A common requirement, expecially in function additions, is a routine which test for and
evaluates additional arguments. The subroutine ARG (coded below), checks if the contents
of CHAR is a comma (,), moves past the comma, evaluates the argument, and returns to
call+ 3. If the contents of CHAR is anything other than a comma, return is to call + 2.

Call: PUSHJ
ARG
XXX , /CHAR was not a comma
XXX /return with ARG (next) in FLAC
ARG, TAD CHAR /get CHAR
TAD MCOMMA

SZA CLA /A comma?
JMP . +4 /yes: exit via POPJ

< PUSHJ /move past comma and evaluate next arg.
EVAL-1
IAC /increment return
POPJ

2. LIBRARY expansion

As FOCAL has only one 'extra' command character, LIBRARY, a routine to expand the number
of commands is useful. In this way the normal format:

L (statement)
which allows only one command branch, may be extended into the syntax:
L X (statement)

where X represents another command. A listing of this routine follows.

3. Function-command extention

The user may desire to perform a branch within a function, e.g. ARG2 in the function call
FNEW (ARG1,ARG2, ARG3, --~) may be used as a command letter to specify a branch to

perform different operations. An example of a subroutine to do this follows. (see next page)
NOTE: The return to FOCAL from each branch must be via a JMP | EFUN3I.

With the use of the last two routines, the number of commands and/or functions may be extended
to any level. 18

/
#COMC0+10
LITvran
/
E RTINS
ZCOAVMMAEND FEICEESOE
/
LIFYAY, ESPNOF
TAD CHAF
PUISHA
» CFTC
&)rTC
CLIST=1
“KP
JVE e=4
FOPA
SOVTJ
CLIST-1
COLIET=-CLIST
FEEDE
/
/
* 5571
CLIST=.
363 / SVAP
30F /EESTOY
320 /PUT
T777
/
/
k6171
COLIST=.
svap
FECTOR
PUT
/
/

/IGNOFF

SPACES

/CET COMYANL CHAER
/STESH IT

/CET NEXT

/VOVE TD TEEMINATO)

/ICGNDTF SPACES
/CFT CO¥YMANLD CHAL
/G THEFF

/NDT IN LIST

/COVMMAND LIST TERMINATOE

19

AT.Co

MCOMMAS
/

*

/
/B0CAL COMMAND
/
F

CECODET

JME I INTFCET
PUSHA
TAD CHaAW
TAD MCOMMA
£7a CLaA
EEFEOFR4
GFTC
SPNOF
TAL CHAF
PUSHA
SORTC
TEFME=-1
JMP o+ 2
GETC
JMP o= 4
SPNOFE
POF&
SOFTJ
COMMANDSE=-1
ADDS=COMMANLS
EEEDF4
-254

/CET NEX

/MAKE AFCUMENT AN
/SEUE IT
/COMMA SHOULL EE

/MOVE PAST COM¥A
/IGNOTE SPACES
/GET COMMANL CHAT.
/STASH IT

/ICNOTE FEST OF NA&X
/1IN LIST

T ANL IGNOTE
/ICNOFF SPACES

/CET COVMMAND CHAT

/GO TO APFFOFFIALTE

/NDT 1IN LIST

20

INTECEF

NEXT

2

FOUTINE

SIMPLIFIED FLOWCHART OF SUBROUTINE EVAL

set LASTOP=0

put THISOP
IN LASTOP

Evaluate a variable
(possible link to
functions)

(check for brackets)
(check for terminators)

answer _in FLAC push-down
variable(FLAC)

get THISOP push-down
SORTC for priority LASTOP

do LASTOP
between FLAC &
var. on top of PDL,

POP- up
new LASTOP

Figure 2

21

Two locations, LASTOP and THISOP, contain the priority assignment of the present and last

operands respectively. The steps in the evaluation of

would be:

THISOP

N.A.

LASTOP

g

A+ B*C-D/ET F
FLAC PDL
A
A
A
g
B A
g
B A
g
B
1
A
g
C B
1
A
g
C B
1
A
g
C*B 1
A
g
C*B A
g

22

EXPLANATION

evaluate A into FLAC; lastop
starts out @.

plus has priority 1

THISOP higher than LASTOP;
put LASTOP and FLAC in PDL

evaluate B into FLAC; put THISOP
into LASTOP
THISOP has priority 3 = *

THISOP higher than LASTOP;
put LASTOP and FLAC in PDL
put THISOP into LASTOP

evaluate C into FLAC

- has priority 2

do the last operation between
FLAC and top of PDL.

get new LASTOP from PDL

THISOP

LASTOP

FLAC

PoL

C*B

C*B

Q> —

C*B

=2 > —

= N O

B

= > —

B

ar—-Qvo

‘&)>—-'ch.hm
(ve)

(same as
above)

23

EXPLANATION

THISOP higher than LASTOP
put LASTOP and FLAC in PDL
put THISOP in LASTOP

evaluate D

/ has priority 4

THISOP higher than LASTOP
put LASTOP and FLAC in PDL
put THISOP into LASTOP

M has priority 5

evaluate E

THISOP higher than LASTOP
put LASTOP and FLAC in PDL
put THISOP into LASTOP

evaluate F
no more operations so this
operation has priority @

THISOP : LASTOP FLAC

I/ 4 ETF
g 2 D/EAF

g 1 C*B-D/EF

g g A+B*C -D/EAF

THISOP LASTOP & hence we are done: do POPJ exit

24

PDL

* N O

B

—

= >

C*B

=2 -_>»> -

EXPLANATION

THISOP lower than LASTOP
do LASTOP with top of PDL
get new LASTOP from PDL

THISOP lower than LASTOP
do LASTOP with top of PDL
get new LASTOP from PDL

(same as above)

(same as above)

X1. APPENDIX D

A. Field One Variable Array

1. Abstract

A new form of 8K FOCAL W. (DEC-08AJAD-PB), is available which uses field one to store
data arrays in three word floating-point form. This facility is added to 4K FOCAL W via the
function call FNEW. The function may be called recursively to any level, and all of the
features of FOCAL are retained. In addition, an ERASE or ERASE ALL command will not wipe
out the array. Hence, variables may be stored for use in successive programs.

2. Requirements

Fits into unused locations in the Floating-Point Package (DEC-08-YQYA-PB)

7154-7177
6572-6576
5755-5764
7554-7577
3. Usage
Loading

Load after FOCAL W. has been loaded into the machine (before or after initial dialogue). Restart
FOCAL W. at 200g.

Calling sequence

To store a variable Z as array element J:

| *

S X =FNEW(J, Z)

or

4.3 S X=FNEW(, Z)

| *

In addition X will be set equal to Z.
To get the data from array element K and set Z equal to this element:
* S Z=FNEW(K)
i.e. If there is only one argument the instruction is interpreted as a 'GET'. If there are two

arguments it is interpreted as a 'PUT'. In the above examples the arguments may be any
arithmetical expression that can be evaluated.

25

C. Recursive calling

The function FNEW may be called recursively at any level. VIZ,
* S Z= FNEW(J,FNEW(J *+10))
sets Z FNEW(J+10) and stores FNEW(+10) in array element J.
*3.25 Z=FDXS(J*1000) + FDIS(FNEW(J)*NORM)
The arguments may be any arithmetical expression. The following are valid:
*S Z= FNEW(J*M-3, FEXP‘(X*Z)*Y)
*S Z = FNEW(J,FNEW(J)*FEXP(FNEW(L)))

The function FNEW protects the binary loader in upper core. The user, of course, may subdivide
his array into any number of smaller arrays, keeping track of his own indecies.

26

&FC
FOTTOM
Caer
FEFUNZI

VM COMM A
viCH
pOTA
FOHJ
FUSHA
PUIEHJ
=0T
7600
FPEATLC
SETUF
SOTTC
SOFTJ
SPNIOF
STAETV
THFEE
TLIST
T2

575%
0027
Clag
c100
7573
0077
L5526
1603
4407
000C
004
GeC3
3000
7154

‘P 0376

7554
1406
02117
C7¢€1
0052
0231
0163
00€FE
1413
5502
4503
4501
7564
0024
4513
€572
4511
4510
4521
0134
7173
1407
157

27

IELD O

PACGE ZERD CONSTANTS

NN NTN NN

: *163
C163 7524 MCOMYA, =254
/
/
*FNTAEF+15
0413 17154 FNEU /PUT ADDFESS IN FNTOFRF
) / ’
/
*7154
/FIFLL ONF FNEV UAFIABLES
/CALL: FNEWCAFGL) /CET APLAY FLEMENT AFGI
/ FNFUCAFCG1s ARCS) /PUT VALUF OF AFCl IN AFFALY FLFMENT
rce o
/
/
7154 4407 FNEV, FFNT /FNTEF FEP
7155 3373 F4Ul. THFREE /¥MULTe ADDIESS LY THEEF FOI THFFF
7156 0000 FEAT /FP STOTACE
7157 44usg JMS I INTEGEE /MAKE IT ON INTECFF ADDEFSS
7160 7500 evAa ' /EEGIN CHECK FOF OUFNWIITINC LOADE:
7161 5366 JMP +5 /0K
7162 1056 TAL S6 /+EXY
7163 7700 s4e CLA
7164 4526 FEFOF /MUST PEJDTECT L2ALEFE
7165 1046 TAD FLAC+2 /CET ALLTESS OF ATTAY
71646 4503 PUSHA /STOFF IN PLL
7167 4501 PUSHJ /FUELUATE AT GE
7170 5755 &Y C
7171 ST77 JMP CET /AECES EXISTS3 CFT DATE
7172 5776 JMP PUT /PUT DATA AVAY :
7173 0002 THFEE, 2 /CHENGE THIS FOF TuD WOFD
7174 3000 3000 /0F INTEGEE STOFACE
7175 0000 B 0000 :
/
/
/

7176 7564
7177 7554

28

5758
5756
ST57
57€¢0
£7€¢1
S7¢2
873
5764

7554
7555
78556
7557
7560
7561
7562
7563
7564
7TH65
75606
7567
7570
7571
T578
7573
7574

£57€
€573
en7e
6575
£576

1149

1163
7640
5364
4501
1602
7001
55092

nHrTT
1416
3044
1416
3045
1416
304¢
5373
Q777
1044
3416
1045
3416
1046
3416
6201
5500

CQoo
1413
3016
€211
5772

*5755

/EVALTA

/ THEERE
/1F THE
/

ALC,

*THE4
CETo»

PUT»

FNLo»

/
/

*ES72
/SET UP
/CHANCE
/
CETUR,

TE AN
DETUEN TO CALL+2
FE TO CALL+3

TAL
TAL

CHATL
MCOMMA
S7ze CLe /1S
JVP e+ L
PUSHJ
EVAL-1

I4C

POPJ /D0

JUE SETUR

TeL I 16
LCA FLAC
TAL I 16
LC& FLAC+1
TED I 16
LCA FLAC+E
JYP END
JYE EETUP
TAL FLAC
pCa 1 16
TAD FLAC+1
CCA I 16
TED FLAC+2
LocCe I 16
CLF

JUE

I EFUNSI

POINTER TO A
TO LATA FIELL 1

G

POPA
DCA
CLF
J¥r

lé
10
I BETUP

29

SUEBEIDUTINE

TAY IN

AFCUMENT; IF NOT

via FOFJ

IT & COwMAa?

/NO:ARCE ¥ISSING

/INCFEMENT

TETU

CETUEN

N

[

/SET T L&Te

/CET

UP POINTEL
FXPONENT

/CET HICGH DIDEN MANTISOA

/CET

/FPUT

avAY EXP

/EESTOFE DATA FIFLD
/00 FUNCTION EFTURN

XF=-16€

/GET ALLDTESS

“ XIl. APPENDIX E
A. Disk Variable Storage
1. Abstract

This FOCAL overlay is equivalent to the FIELD ONE variable addition to FOCAL described in

Appendix D. In this case, however, variables are stored on the Disk.
2. Comments
The contents of location 167 (BASE) must be set for the user's machine configuration. Disk

variables are written on the disk from BASE upward. BASE is the disk extended address of the
lowest used location.

e.g.
last 4K of one disk system C(167) = 7!5!38
last 8K of two disk system C(167) = 1600
last 16K of two disk system C(167) = 1400

The present listing is for the last 4K on a two disk system, i.e. C(167)=]7¢¢8.

30

erc
BACT
FTTOV
Ce
CHaY
F*UINGI
BNT
FHFIOF
F‘fL

PVT@LP
CLIST
I1CNDT
ILIET
INCTE
INTECE
ITETN
ViCOMM A
Y C¥F
ViIJTE
=0rA
POrd
PTISHA
FUIEHJ
P4l
=700
P7600
FAr
FEALC
FTLE
EDETC
SOFRTJ
SPNOF
STAFRTV
THEEE
TLIST
T2

vC
VFITE

5785
0167
ooce7
GCles
0142
clco
Q077
L5264
103
4407
cooo
0oL
0603
3000
7154

C27¢

1406
0e17
07€1
7565
0052

02321

CleZ
Q068
7554
1413
5502
4503
4501
7574
7172
0024
C1€es
4513
4520
4511
4510
4521
0134
7173
1407
0157
0163
0166

31

/LDFFINIDIONC*

/
CHav=149
FTL 6= 4520
POPA=1£13
PUISHJ=4501
FOPJ=55092
FUAL= 1603
INTECFI=582
FREDF=45886
FLAC=42
SOITJ=£510
SOETC=4511
FFUN2I=100
STAFTU= 132
IFFTN=231
VCP=65
TLIST=1407
FLIST1=A03
CENTTOM=87
ENT=77
Te=157
P7600=24
FFALC=£4513
CLICST=1406
CPNIF=4521
IGNOF=217
FENT=4407
FYTUL=3000
FEXT=0
ILIST=761
FNTAEF=376
/

/

/

FIFLD O

32

016t
C1£3
0164
r1#5
SRR
wiey

0413

5755
AT S
5757
5760
ST761
STee
HTEZ

STeL

7154

718858
7156
7157
7160
7161
7162
T163
Tl64
7165
T1é6
T167
7170
7171
717¢
7173
717

T5¢4
7750
7751
EAQZ
A0S

1700

1122

1168
7640
S364
4501
102
7001
5502

4407
3373
CGGOo
LhED
45G3
1045
4520
02372
1167
4503
4501
5755
T34
57717
0700
0002

/
/

FIELD ©

/

Lk

/FACE ZFEIN CONSTANTS

/

* 162
MCIOVMA,
LCo»

Cets
FELLS
Whi 1.
EASE,

/

/
/

-£8 4
7750

7751
DMAY

1700

/LINK TD FOCAL
KENTALF+15

NN N

/
*575%

FNEU

/EVALUATE AN AFCGUYFNT;

/TEFIFE FEETURN

siv
/
AFC,

/
/
*X7154

didaseiam

e UMLILLTS

TaL CHAF
TALD MCO¥MA
SZf8 CLs
JMF e+ 4
PUSHJ
FveL-1
IAC
POPJ

/DI SK FNEU

/
FNELS

F700,
THEFF»

FENT
FYMUL THFEFE
FEXT

JMS5 I INTECEF

PUSHA
TAD FLAC+1
ETLA

ANL P700
TAD BASF
PUSHA

PUSHJ

ARG

STA CLL TAL
JYP MOTE
700

o

T2 CeLL+#&

33

IF

/-2

NOT

-
3=

/ENALLF

/Y ERE
/PUSH LISK
/GET HICH -
/SHIFT FOF
/MASK EFOF
/ALL DISX
/SAVE LDEA
/EVALUATE

AN I

FOIL RE
/SAVE LDATA

VOFD FR

NTECGEL
ViEMe ELLo
ODBLEL ¥ATT

EXTENDFL &LLY

EXTENIFI FITS
EASF ALLTESE

ATGEZ

AL

NUXLEE:

L0

FES

7173
7172
7178

7177

7854
7555
7556
7857
7560
7561
7565
75z
TSEL
7565
7566
7567
7570
7571
7578
7573
7574

ocee
3GCC
0coc

11€6
3365
1413
FAR1S
T34€
3563
12724
3564
1413
0000
~002
£Ae2
5367
€eC1
001
5500
0043

/
/

* 7554
MOTESs

INSTY S

PL3,

3000

-
U

LRI

INETE

T&L
LCeA
BIpe
LFAL
STA CLL PFTL
BECa I wC
TAL F&43

LCa I Co
PO
G
IDF
LrFSC
Jr
LCYa
I0N
JYF I

~
43

=1

FFUNGI

34

JULAF TICH
/CET LE&
/TEANSFET

/INT) FLZC

/GET DMe

/CI SALLF INT

/TINF?
/N0 Vel
/ABEH FLEGS

v

1

il

il

/LD A FUNCTION

L]

i

ERIVA DAY

R T
PYTE N
JAND S SN,

X1, APPENDIX F
A. Hints and Kinks Department
For the experienced programmer the following may be helpful.

1. Location EVAL-1 contains the subroutine call GETC. Hence, to move past a character
and evaluate an argument one may:

PUSHJ
EVAL-1

2. The first instruction in the POPJ subroutine is TAD | 13. Hence, for multiple returns
from a subroutine one may POPJ with the AC nonzero, e.g. if the AC is 1, return is to
call +3 instead of call +2 (as in a normal POPJ return). VIZ,

PUSHJ /call
SUB
XX /normal return
XX /POPJ return if AC= 1 when POPJ
called
XX /return if AC= 2
/ei'c.

In all cases the subroutine will return with the AC =0.

3. When using signed and unsigned integers core must be taken that minus zero is not in the
FLAC since EFUN3I normalizes the FLAC. (FOCAL will 'hang' in that event.) The following
coding will apply for unsigned integers.

CLL RAR /make sure sign bit is @
DCA FLAC +1

RAR

DCA FLAC+ 2 /put carry bit away
TAD P14

DCA FLAC /put exponent in

JMP | EFUNSI

for signed integers:

CLL RAL

SNA

CLL /make sure positive @
RAR '

DCA FLAC + 1

DCA FLAC + 2

TAD DCA FLAC

JMP | EFUNSI

35

4. There is a BUG in FOCAL. The RMF in the interrupt routine must be moved to just
prior to the ION. This will not give trouble until field one coding is added.

5. For hardware initialization when FOCAL recovers (Control-C) one may use location
2775.

6. For machines without a high-speed reader, additional coding room of 6320-6377 may
be gained by overwriting the HRS routine. To remove the * command deposit 2725 in
location 1207. '

36

