
FOCAL
HOW TO WRITE NEW SUBROUTINES

AND USE INTERNAL ROUTINES

DOUG WREGE
Engineering Experiment Station
Georgia Institute of Technology

Atlanta ,Georgia

TABLE OF CONTENTS

FOCAL: HOW TO WRITE NEW SUBROUTINES AND USE INTERNAL ROUTINES

ABSTRACT

I. INTRODUCTION

II. ASSEMBLERS, COMPILERS, AND INTERPRETERS

III. THE PHILOSOPHY OF FOCAL

A. Text Editing
B. The Multiple Branch Routine
C. Recursion
D. Conclusion

IV. TECHNICAL DETAILS; GENERAL

A. Arithmetic Manipulation
B. Storage - (Core Layout)
C. Holes
D. Moving Bottom

V. TECHNICAL DATA - FOCAL SUBROUTINES

A. Page Zero Reference Locations
B. Text Handling Routines
C. Utility
D. Pushdown List Controllers
E. Other Subroutines

VI. LINKS TO FOCAL

A. Functions
B. Links to FOCAL - The LIBRARY Command
C. Debugging

VII. ACKNOWLEDGMENTS

VIII. APPENDIX A

A. A Prescription

IX. APPENDIX B

A. A Few Useful Routines
1. Argument Evaluator
2. LIBRARY Expansion
3. Function-command Extention

X. APPENDIX C

A. Example of a Recursive Subroutine - EVAL
B. Simplified Flowchart of Subroutine EVAL

XI. APPENDIX D

A. Field One Variable Array

XII. APPENDIX E

1. Abstract
2. Requirements
3. Usage

a. Loading
b. Call ing sequence

4. Discription

A. Disk Variable Storage
1. Abstract
2. Comments

XIII. APPENDIX F

A. Hints and Kinks Department

FOCAL: HOW TO WRITE NEW SUBROUTINES
AND USE INTERNAL ROUTINES*

DECUS Program Library Write-up FOCAL-17

ABSTRACT

It is the aim of this paper to help the user to code specific routines in FOCAL so that his
dialect of FOCAL can be appl ied to his appl ication (without being forced to understand in
detai I all the workings of FOCAL). In this way, perhaps, each and every user can make
his particular dialect of FOCAL 'perfect ' .

I. INTRODUCTION

Many users have found FOCAL ** to be the answer to their real-time and computational
problems. The language is extremely powerful and flexible with unique text editing and
debugging features. Although FOCAL is slow in execution compared to machine language
coding, for most real-time problems or one-time calculations, lack of speed is not a serious
handicap. Most users will agree that a program can be written, debugged, and executed in
"FOCAL" before the equivalent could even be coded (and/or punched) in any other language.
Additions or changes are easily made.

It will be assumed that the reader has a basic knowledge of PDP-8 processor instructions, PAL
mnemonics (see Digitalis Small Computer Handbook or Introduction to Programming), as well
as a familiarity with the Floating Point Package (DEC-08-YQYA-D). In addition, he should
be familiar with the IIFOCAL"** language.

As many users have discovered, the internal workings of FOCAL are an incredibly complex
piece of programming. With the need to interface the computer to special ized equipment for
individual applications, there is the corresponding need for appropriate software. If FOCAL
could communicate with this equipment, one would have an extremely powerful and flexible
computation and control package. This paper is an attempt to explain how user developed
software can be interfaced to the basic FOCAL package, without requiring the user to spend
valuable time trying to understand all of its detailed workings.

Section II wi II deal with a general discussion of how FOCAL works, in a descriptive fashion.
Section III will be concerned with the philosophy of the language. The last few sections will
be more technically oriented toward helping the user actually code his additions. Finally,
several examples and ready coded routines, which may be used to simplify the user's problems/
are included.

*Supported in part by the U. S. Atomic Energy Commission.

**Throughout this paper a IIFOCAL" program written in the "FOCAL" language will be
enclosed in quotes. The machine language coding of the FOCAL interpreter will be reference,
by the word FOCAL without quotes.

II. ASSEMBLERS, COMPILERS, AND INTERPRETERS

In general, there are three routes that the programmer can follow for machine execution. Programs
that perform translations are assemblers, compilers, or interpreters; each operate from conceptually
different vantage points.

In a compiler level language, such as fORTRAN, ALGOL, and BASIC, coding is written in a syntax
close to the way a human thinks. A compiler interprets this and generates an obiect code which is
close to machine language. This, in turn, is translated into actual machine language instructions.
Finally these machine language instructions must be read into core before execution. If any
corrections are to be made to the program (debugging, additions, or corrections), one must recompile
the source coding, read the new object coding in, and finally execute it.

An assembly level language is inherently closer to machine language than a compiler level language.
The user's coding is indeed remote from the way he thinks about formulating a problem (he is even
forced to think in binary or octal, the machine's way of formulationg problems). About all an
assembler lets the programmer do is use mnemonics (words) and symbols instead of binary numbers.
For example/ in the PAL language, the instruction TAD I TEMP is assembled as follows from the
definitions:

TAD:: 10'0'0'8

I:: 0'40'0'8

TEMp:: 0'10'0'8

lin the assembler's internal symbol table

/internal symbol table

/user defined in coding

The assembler masks out the first 5 bits from the last mnemonic
if there are more than one (in this case TEMP); it then ORS the
result with the other mnemonics:

10'0'0'
& 040'0'
& 0'10'0'

150'0' This is the machine equivalent.

The PAL assembler is a I ittle more sophisticated than this, of course, and performs functions a
I ittle more compl icated, but generally an assembler is incredibly stupid for what it can do. Note
the similarity between PAL mnemonics and machine language. Throughout the following sections
various mnemonics will be defined so that the PAL assembler can generate instructions compatible
with FOCAL (e.g. GETC = 450'6 causes the assembler to add this to its symbol table).

In an interpretive level language, no machine language coding is generated for execution. An
interpreter is essentially a subroutine caller. It contains a subroutine for every conceivable
operation it thinks the user wishes to perform. If it cannot understand what the user wants, it
prints an error message and waits for the user to make himself clear. Every character that the
user inputs is stored in core. Upon execution the interpreter "interprets" the program character
by character and calls the subroutine indicated.

2

FOCAL is an interpretive level language. In particular, it is a recursive interpreter (see
Section III). That is, unlike FORTRAN, one maycall a function from within itself.
Nevertheless, it is basically a subroutine caller, even though these subroutines may be
incredibly interlocked. It has a subroutine to evaluate arithmetic expressions (EVAL),
subroutines to make it recursive (PUSHJ, PUSHA, etc.), branching routines (SORT J),
a subroutine to find a certain line (GETLN), one to get a character (GETC), etc. Once
the user understands what all these routines do, he can add his own coding in a highly
efficient and powerful manner. Descriptions of these subroutines wi II be given in later
sections.

III. THE PHILISOPHY OF FOCAL

A. Text Editing

Since FOCAL is an interpretive language, it must have facilities for manipulation of user
written text. In order to faci! itate these manipulations, there are a number of text formatting
and editing features, such as WRITE, MODIFY, TYPE, and the I1trace l1 C' ?11) function. One
of the main features of the FOCAL interpreter is the simplicity of concept and power of operation
of the format control I ing statements. The user finds a convenient, easi Iy understood way of
controlling the format of his output, regardless of his level of programming experience and
sphistication.

Since much of FOCAL execution is involved in various text decoding routines, FOCAL is slow
in execution of programs (compared to assembly or compiler language coding). The text handling
routines may be called from the user written assembly language subroutines, and thus are listed
with a short description of their function, in Table 1.

FOCAL is concerned with interpreting what the user's text means by specific combinations of
characters, so it must have a flexible means of decoding these characters according to type.
The most efficient way this can be done is to use a subroutine (SORTC) that compares the
present character with a list. It is necessary to have the address of the I ist as an argument for
this subroutine. For example, suppose that it is desired to find'a text terminator. To do this,
a I ist is made of all legal terminators (i, carriage return, space comma, etc.), and the value
of the present character (stored in location CHAR) is compared to the list: if a match is found,
an index is set to the list e lement number, and a normal return is taken. If a match is not
found, then another return is taken.

B. The Multiple Branch Routine

FOCAL is in many ways similar to JOSS2. All of the JOSS-like languages incorporate a
I1commandl1 in addition to the arithmetic statements available in other languages (ALGOL,
FORTRAN). One of the advantages of the command is that, using only the first symbol of a
new statement, the interpreter (or compi ler, in t he case of BAS IC) can decode the action
required, and thus need not l1understandl1 the whole line before proceeding. This is an advantage
in a small machine such as the PDP-8, where the paucity of core demands highly efficient coding.

2
Joss - An Introduction to a Helpful Assistant, Rand Memos 5058-PR July 1966.

3

· A Unique feature .of FOCAL is the ability te .operate with single-Iette'r abbreviatiens .of the .
cemmand. As an example, consider the subreutine that actually selects the cemmand branches
(and is used fer.ether eperatienswithin FOCAL, as well). This reutine (SORTJ) is called with
an argument peinting te the I ist .of characters te be cempared and anether argument centain ing
a peinter te a list .of asseciated addresses. FORTRAN pregrammers mightrecegnize the result
as a sert .of character-driven cemputed GOTO. The calling sequence is:

SORTJ
TABLE1-l
T ABLE2-TABLE
XXX

ISert and Branch Reutine
/peinter te character list
/difference in addresses .of the tables
/return if net in table

Abselute addresses are specified in the arguments; hence, tables may be stered between pages.

Since FOCAL refers te lists fer its deceding eperatiens, it is .often referred te as a table driven
interpreter. A table driven interpreter is especially suited te additien .of new ceding, since .only .one
.or twe addresses need te be added te a table (list) fer a new branch.

C. Recursien

One .of the features .of, FOCAL which makes it se pewerful is that .of recursien. Recursien is the
ability .of a subreutine te call itself, e.g. FSQT (1 - FSQT(X)). In mest cempiler level languages
this eperatien is carried .out by repeating the machine language (FSQT) ceding se that .one versien
.of the subreutine can call the ether. In these cases the subreutine never really calls itself, rather
it calls a separate identical piece .of ceding. An interpretive level language cannet afferd multiple
identica.1 subreutines fer every pessiblity, since it weuld take tee much cere. .

Censider hew a 'nermal', nenrecursive subreutinewerks. Schematically we may divide the sub­
reutine inte a segment in which the legical eperatiens are ceded and a segment where temperary
values in the calculatien are stered. We can censider the subreutine return te be stered in this
temperarysterage area alse. VIZ,

SQT, return ad dr. COOING

Intermediate
Variable

_ (~al. ~9.!'"!!1!.!. _ Storage

(take SQT of arg.!

If this hypethetical subreutine were te call anether subreutine (as is nermally dene in assembly
language), there weuld be ne difficulties previded that the intermediate sterage .of thetwe
subreutines are separate.

If the subreutine was te call itself frem within its .own ceding, the .original intermediate values .of
the variables and the return peinter weuld be .overwritten (as the pregram executes the ceding the
secend time). If there was a way te use a different intermediate sterage area, the .original values
weuld net be lest.

4

The Push-Down List (PDL) concept involves an intermediate storage area which is II pushed-doWh ll

(making a new intermediate storage area available) whenever a subroutine is called and IIpopped­
Upll whenever a return occurs. VI Z,

STORAGE
AREA

CODING

J !,.va.!:. !!!g~m.!n!l
(take SQT of arg.l

SQT may be in
argument

To continue the example, the steps in the evaluation of FSQT l-FQST(X)) would proceed as
follows:

1. The main program calls the FSQT subroutine. Storage area 1 is now pushed­
down into the push-down list making area 2 available.

2. The argument 111_11 is evaluated up to the next FSQT(X}.
In order to evaluate this, the FSQT subroutine is cal leg again ~

3. On second entry to the subroutine, storage area 2 (containing the main
program return and the intermediate value of the argument) is pushed-down.

4. X is evaluated and then the square root is taken.

5. The subroutine returns (to the middle of itself) with the answer FSQT(X}.
When this return is effected, storage area 2 is popped-back-up (with the
old intermediate values).

6. The answer FSQT(X} is subtracted from 1 to form the argument l-FSQT(X}.
The square root of this is taken and the function returns to the main program.

Obviously, by using the PDL concept, subroutines may call themselves to any level (as long as
there is PDL space available).

For most-efficient core utilization, FOCAL uses the same PDL intermediate storage for all sub­
routines. To do this, one value (PDP-8 word) is pushed-down at a time. Values are 'popped '
in the reverse order that they are 'pushed ' .

An additional feature of a PDL is thqt it can be used for temporary storage of variables in non­
recursive routines. One may consider thePDL as an extension of page zero since it can be accessec
from any page. Section V will describe PDL handlers available in FOCAL.

D. Conclusion

The concepts outlined above will introduce the experienced programmer to the internal working
of FOCAL. In the sections that follow, a more technical exposition of these routines wi II be given,

5

MNEMONIC

GETC

SORTC

TESTN

TESTC

TESTLPR

READC

PRINTC

PACKC

PRINTLN

FINDLN

SPNOR

TABLE '1

FOCAL TEXT HANDLERS

DESCRIPTION

Get the next character from the text

Sort the present character against the table

Sort the present character into one of three types

Sort the present character into one of four other types

Test CHAR from left parenthesis

Read a character from the Teletype

Print CHAR on Teletype

Pack a character into buffer (store it)

Print the current line number

Find a given line

Ignore spaces

6

The Appendices contain examples elucidating the principles outlined in this report.

IV. TECHNICAL DETAILS - GENERAL

A. Arithmetic Manipulations

Arithmetic is done using the three word floating point format. Input and output of numbers
are handled via the Fleating Point Package (FPP) I/o controller (with modifications to run
with the interrupt enabled). For details, see FPP documentation (DEC-08-YQYA-D).

B. Storage - (Core Layout)

The FOCAL interpreter occupies locations 1 - 3220 (see Figure 1),· The FPP occupies
approximately 4600 - 7577, depending on how many functions are kept. The initial dialogue
sets BOTTOM, the end of storage space, depending on the number of functions kept. The
remaining storage is used for text, variable storage, and push-down lists.

3220 - 4577 with all functions

3220 - 5177 FEXP, FLOG, FATN deleted

3220 - 5232 FSIN, FCOS and above deleted

The text is bui It up from location 3220 occupying approximately two characters per location.
Variables are built upward from the top of the text. They occupy 5 locations per variable
and are created as they are found in execution. Whenever the indirect program is changed,
(modified, appended, or collapsed), a new starting point for variables is indicated; hence,
old variables are erased. The push-down I ist (explained more fully later) is bui It from the
FPP down toward the variable storage area. Error messages occur with termination of the
program whenever these I ists overlap.

Instructions are stored in the command/input buffer when in the command mode; the buffer
has sufficient locations for one line of characters.

C. Holes

The following locations are free for the user:

PAGE ZERO

FPP

16
162 - 175
171 - 175
5571 - 5577
5754 - 5777
6171 - 6177
7154 - 7177
7346 - 7377
7554 - 7577
6317 - 6377

7

(Auto Index Register)
(Free in 4K FOCAL)
(Free in 8K FOCAL)

is used by the high-speed
reader control -- if you do
not have one, this is available

0000
PAGE ZERO

FOCAL

INTERPRETER

3232 I TEXT U AREA ~

I VARI I I ABLES r---:~~:s~
V I ____ LASTV

"'---BOTTOM

4600 I PUSH D DOWN IV
5200r-

6400

7600

7777

TEXT STORAGE FORMAT

LINE

A I B

C I D

ASCn CHAR

77 15

J
C.R.

EXT. FUNCTIONS

FLOATING
POINT

PACKAGE

LOADERS-MONITORS

VARIABLES FORMAT

NA I ME

SUBSCRIPT

+ EXP -
+ MAN--

TlSSA

etc.

Figure 1

8

D. Moving Bottom

For additional user coding room, BOTTOM may be changed at the sacrifice of text storage
To move BOTTOM, set the contents of location 27 (C(27)) to the last location available for
text (PDL) storage; e.g. in order to free locations 4420-4577 for user additions to the inter­
preter, change C (27) to 4417.

V. TECHNICAL DATA - FOCAL SUBROUTINES

With the use of subroutines avai lable in the FOCAL interpreter and a I isting, a must, it is
relatively simple to write powerful user coded additions.

Unless otherwise stated, these subroutines must be entered with the AC = ¢; they return with the
AC=¢.

A. Page Zero Reference Locations

- CHAR - The contents of this location (142) contains the current character (in ASCII code)
from the text buffer.

SORTCN - This register contains references used by sorting routines (see below).

FLAC - This is the first word of the floating accumulator (contains the exponent). The floating
accumulator occupies locations 44 - 46.
FLAC is defined as 44.

B. Text Handl ing Routines

GETC = 4506
Gets next character from the text; exits with next character is CHAR.

SORTC= 4511
Call ing sequence:

Description:

Example:

SORTC
LIST -1

XXX.
XXX

Icall
/address of L1ST-1
/return if in LIST
/return if not in LIST

If the accumulator is nonzero, its contents are used;
otherwise the contents of CHAR are used to sort against
the LIST. If it is in the LIST, return to call + 2; if not,
return to call + 3. SORTCN is set to how far down in the
I ist the match occurred.

If we are testing for one of the following:

LIST
254
273

215
7777

9

I,
/;

=

/carriage return
Ilist is terminated by a negative

number

'I.·,

NOTE:

PRINTC = 4512

Assuming it is an error for CHAR not to be in the list,
the following coding appl ies:

SORTC
LIST -1
SKP
ERROR

Isort against LIST
laddress of LIST

Ido an error exit as not in LIST

If a match were found, SORTCN would have the values:

Contents of CHAR -------

carriage return

SORTCN Value

o
1
2

Lists are terminated by negative numbers.

Print the accumulator; if the AC = ~ print the contents of CHAR.

READC = 4513
Read and echo a character from the keyboard. Put it into CHAR.

SPNOR = 4521
Ignore spaces in text; exit with the first character that is not a space in CHAR.

ERROR = 4526
Used to exit upon error detection; transfers control to the command mode and terminates
execution; prints error message. (In the FOCAL listing there are ERROR2, ERROR3, and
ERROR4. All of these are identical.)

TESTN
This subroutine is actually a series of SORTes with various returns:

CALL:

TESTC (4525)

TESTN
return 1
return2
return3

Icall
Ireturn if a period
Ireturn if not a period or a number
Ireturn if a number; SORTCN is set to the

binary equivalent.

This routine tests only CHAR. AC must be 0.

This subroutine is actually a series of SORTC's with various returns:

10

CALL: TESTC
return 1
return2
return3
return4

SORT J {4510}

Icall
/terminator; SORTCN set according to TERMS
/number; SORTCN set as in TESTN
Ifunction; {CHAR=F}
lalphabetic character

This subroutine is used as a multiple sort and branch routine. CHAR 'or the AC if nonzero}
is compared to a list. If it is in the list, an address is looked up and an effective JMP
ADDRESS is executed. If a match is not in the list, then return is to call+ 3.

CALL: SORTJ
L1STl-1
L1ST2-L1STl
RETURN

IADDRESS of character list
Idifference in the addresses of lists
Ireturn here if not in L1STl

An example of this is the FOCAL branch to a library command:

where

POPA
SORTJ
COMLIST -1
COMGO-COMLIST
ERROR2

COMLIST = .

323 IS
306 IF
311 II
304/D
307/G
303/C
301/A
324 If
314/L

(ASCII)

Iget command CHAR
/branch

linval id command

COMGO=

SET
FOR
IF
DO
GO
COMMENTS
ASK
TYPE
LIBRARY

IADDRESS OF SET CODING
lAD DRESS OF FOR

7777 II ist is terminated by a negative number

NOTE: Lists are term inated by a negative number.

11

C. Utility

RTL6= 4520
Rotate the AC six places to the left.

D. Pushdown List Controllers

For those unfamiliar with more powerful processors than the PDP-S, the ideas of recursion
and pushdown lists are explained in Section II. These subroutines appear to simulate hardware
commands on more sophisticated machines like the PDP-10 and even use the same mnemonics!

PUSHA= 4503
Puts the contents of the AC on the PDL; clears the accumulator.

POPA =1413
Get the top entry on the PDL and put it in the AC. {Note: auto-index register 13 is the pointer
to the pushdown list; thus 'POPA' is actually TAD I 13.}

-PUSHF= 4504
This is essentially three PUSHA' S and is used for storage of floating point data.

Call:

POPF= 4505

PUSHF
ADRESS /address of first location of three word floating point number.

The inverse of the PUSHF routine.

Call:

PUSHJ = 4501

POPF
ADDRESS /address of where to put data"

This is the recursive subroutine call. The subroutine return is put on the PDL and a JMP to the
subroutine address is executed.

Call:

POPJ =5502

PUSHJ
SUBROUTINE
XXX

/address of SUBROUTINE
/address of this location is
/storedon the PDL

Recursive subroutine return; the top element of the PDL is used as the effective address of the
return.

12

E. Other Subroutines

INTEGER
Enter via a JMS I iNTEGER. This routine makes an integer out of the FLAC. The low order
part is in FLAC + 2, the high order part is in FLAC + 1. Also, returns with the low order part
in the accumulator.

EFUN31
This routine is the return from a function routine. It checks for a right bracket in CHAR (')1)
and normal izes the floating accumulator. Enter via a JMP I EFUN31.

EVAL
This subroutine evaluates arithmetic expressions; because it is recursive, it must be called via:

PUSHJ
EVAL
XXX /return

The subroutine return is to call + 2 with the floating point value of the expression it evaluated
in the FLAC. (How EVAL works is discussed in Appendix A.)

NOTE: All temporary storage must be in thePDL before calling EVAL. This data must be
restored after the return. (see Appendix for examples.)

VI. LINKS TO FOCAL

A. Functions

The general form of a function in "FOCALII is FUNC(ARG l,ARG2, ---). The function coding
is entered via a SORT J where the address in designated in the table:

FNTABF= .
XABS
XSGN
XINT
XDIS
XRAN
XDXS
XADC
ATN
EXP
LOG
SIN
COS
SQT
NEW

/(376) in FOCAL-W 8/68
/address of FABS coding
/FSGN
/etc.

/user defined function

To odd a user coded function put the entry point of the function coding in the appropriate
location in the above table. FOCAL will branch to that location after the function name is
decoded, and ARG 1 is evaluated in the floating accumulator (FLAC). To del~tA "": function
from the list, replace the current contents with 2725.

13

When the function evaluation is complete, the answer must be left in the FLAC, and a JMP I
EFUN31 executed. The EFUN31 routine will check tel see if there is a right parenthesis {"}"}
in CHAR, and normalize the FLAC, before returning to the appropriate place in FOCAL. {See
Hints and K inks, Section XIII A, if the answer is an integer'.}

B. Links to FOCAL - the LIBRARY Command

FOCAL has an unimplemented command, the LIBRARY command {SET, ASK, TYPE, etc. are
commands}. The general form of a command is:

X {any syntax allowable by coding}.

For example the SET command's allowable syntax is:

SET {variable} = {arithmetic expression}.

To generate the I ink to the user's LIBRARY command, put the entry address in 1201. FOCAL
will enter via a JMPwith CHAR containing 24.08 (a space). The following coding may be used
at the end of a LIBRARY command to space qver extraneous characters to a semicolon or carriage
return, which must be in CHAR before doing an effective JMP PROC to return to FOCAL:

C. Debugging

SKP
GETC
SORTC
GLiST-l
JMP PROC
JMP .-4

/entry
/fetch the next character
/sort for a i or c. r.

/FOUND IT ~
/not yet

It has always been a problem to debug FOCAL programs, as FOCAL runs with the interrupt on.
Recently, a DECUS program XOD (DECUS #8-89) became available. This program may be used
in field 1 to debug FOCAL in field .0 with the following patches made by J. C. Alderman.

FIX UP XOD

Patch FOCAL
{field m
Patch XOD
(field 1)

0001
0175
6761
6762
6763
6764
6765
6766

14

5575
2603
5002
0002
5404
0003
6613
0004

VII. ACKNOWLEDGEMENTS

The author wishes to express his thanks to J. C. Alderman for his help in formulation of ideas
and text editing. Also, an emphatic "thank you" to Rick Merrill for the most beautiful program
in the world, FOCAL!

15

VIII. APPENDIX A

A. A Prescri pt i on

To add a function:

1. Put the function address in FNT ABF.

2. Do coding.

a. Use PDL for temporary storage

b. If more than one argument is needed:

PUSHJ
ARG

where ARG is a suppl ied subroutine (See Appendix B). ARG is
a subroutine which moves past commas and evaluates arithmetic
statements, leaving the result in the FLAC.

3. Put the functional result in the FLAC.

4. Return to FOCAL via JMP I EFUN31.

To add the LIBRARY command:

1. Put the initial address in the contents of 1201
(for expansion of commands see Appendix B).

2. Exit from coding via an effective JMP PROC. Note: the contents of CHAR
must be either; or a carriage return.

16

X. APPENDIX C

A. Example of a Recursive Subroutine - EVAL

The subroutine EVAL is an example of a recursive subroutine. The PDL is used to defer
evaluation so that the arithmetic operations are performed according to operand priority.

In order to take care of bracketed quantities EVAL does the following:

if a left bracket occurs - PUSHJ
EVAL

if a right bracket occurs - POPJ.

Given that EVAL eval ueates arithmetic expressions, the above operations have the effect of
changing all bracketed quantities to evaluated numbers. Hence, all bracketed quantities
have now "gone away" and we are left with expressions I ike:

A + B *C -D IE t F.

Operand priority is assigned as follows:

opperation

+

*
/ .,.

priority level

1
2
3
4
5

A flow diagram approximating this subroutine is given in Figure 2.

17

IX. APPENDIX B

A. A Few Useful Routines

1. Argument evaluator

A common requirement, expecially in function additions, is a routine which test for and
evaluates additional arguments. The subroutine ARG (coded below), checks if the contents
of CHAR is a comma (,), moves past the comma, eval uates the argument, and returns to
call+3. If the contents of CHAR is anything other than a comma, return is to call +2.

Call:

ARG,

2. LIBRARY expansion

PUSHJ
ARG

XXX
XXX

/C HAR was not a comma
/return with ARG{next) in FLAC

TAD CHAR /get CHAR
TAD MCOMMA
SZA CLA /A comma?
JMP .+4 /yes: exit via POP J
PUSHJ /move past comma and evaluate next argo

EVAL-l
lAC /increment return
POPJ

As FOCAL has only one lextra l command character, LI BRARY, a routine to expand the number
of commands is useful. In this way the normal format:

L (statement)

which allows only one command branch, may be extended into the syntax:

L X (statement)

where X represents another command. A I isting of this routine follows.

3. Function-command extention

The user may desire to perform a branch within a function, e. g. ARG2 in the function call
FNEW (ARG l,ARG2, ARG3, ---) may be used as a command letter to specify a branch to
perform different operations. An example of a subroutine to do this follows. (see next page)

NOTE: The return to FOCAL from each branch must be via a JMP I EFUN31.

With the use of the last two routines, the number of commands and/or functions may be extended
to any level.

18

I
*(:)'<CO+10

L.IIrp,r
I

;'" 7 3f: (,
IC·)":·:[:.\JP rrlCF:'::S)F
I
LIft!'-;:, SF\J') F

TP,D CHAr
PUSHP

IIGNOFF SFACES

I
I

*5~-71

eLI ;:T=.
3 ~:3
3 ~)~

320
7777
I·
I

* f 1 71
C'lLIST=.
S·1 .. AP
r E':~:Tor·
FTlT
I
I

*

eFTC
SJ~TC

(,LI 5T- 1
;"l'\P
,JV;P • - L'

S~)Nrlr

PJFP
5.]1.TJ

CLI ST- 1
COLIST-CLIST

FFFJF

IS1/AF
IFFSTDr
IPUT

ICFT CJ~V;A~[CHAF
I~~TASE IT
I rET ,\In:''r
IX!JVE Tl TFF~I\JATD\

II G\li)::F ~'FACF s
I OT CO-~'Ij A 1)[. C~;..; {'oI

1('0 THFFF

n.r:n I \J L I ~: T

ICO~MAND LIST TERMINATor

19

I

IF1CAL CO~MPND DFCODEf
I

JM S I I NTF eET­
PlJSHA
TAD CHM;
TADMCO~·:~f!

SZA CLf!
ERFOFLj
GFTC
SPNOP
TAD CHAr
PUSHA

. STETC

IMAKF ARGUMENT AN I~TFCEF

ISAVE IT
ICOMMA SHOULL BE NEXT

IYJOvE PAST CO:v1:'1A
I I GN(jrF SPACES
IGFT COM~ANL CHAF.
ISTASH IT

TFF:v1S-1 IIGNOFE FEST O~ NA~E

J~P .+3 II~ LIST
GETC ICFT NEXT AND IGNOFE
JMP .-4
SPNOP IICNOFF SPACES
POPA ICET COMMAND CHAP
SO?TJ

CO:v1MAl'JDS- 1
ADDS- COMMMJ[S I GO TO APPFO?! I ATF FOUTI \IF

FREDF4 INOT IN LIST
M COM:v1 A, - 254
I

*

20

SIMPLIFIED FLOWCHART OF SUBROUTINE EVAL

Evaluate a variable
(possible link to
functions)
(cheCk for brackets)
(check for terminators)

POP- up
new LAS TOP

Figure 2

21

push-down

LASTOP

Two locations, LASTOP and THISOP, contain the priority assignment of the present and last
operands respectively. The steps in the evaluation of

A+ B*C-O/E't F

would be:

THISOP LASTOP HAC POL EXPLANATION

N.A. ri A evaluate A into FLAC; lastop
starts out rio

ri A plus has priority 1

A THISOP higher than LASTOP;
ri put LASTOP and FLAC in POL

B A evaluate B into HAC; put THISOP
ri into LASTOP

3 B A TH ISOP has priority 3 - *
ri

3 B THISOP higher than LASTOP;
1 put LASTOP and FLAC in POL
A put THISOP into LASTOP
ri

3 C B evaluate C into FLAC
1
A
¢

2 3 C B - has priority 2
1
A
ri

2 C*B 1 do the last operation between
A FLAC and top of POL.
ri

2 C*B A get new LASTOP from POL
¢

22

THISOP LASTOP FLAC PDL EXPLANATION

2 C*B THISOP higher than LASTOP
1 put LASTOP and FLAC in PDL
A put THISOP in LASTOP
)1

2 D C*B evaluate D
1
A
)1

4 2 D C*B / has priority 4
1
A
)1

4 D THISOP higher than LASTOP
2 put lASTOP and FLAC in PDL

C*B put THISOP into LASTOP
1
A
)1

5 4 E D l' has priority 5
2 evaluate E

C*B
1
A
)1

5 E THISOP higher than LASTOP
4 put LASTOP and FLAC in PDL
D put THISOP into LASTOP
2

C*B
1
A
)1

5 F (same as evaluate F
above) no more operations so this

operation has priority)1

23

"THISOP LASTOP FLAC PDL EXPLANATION

" 4 ~1'F D THISOP lower than LASTOP
2 do LASTOP with top of PDL

C*B get new LASTOP from PDL
1
A
¢

¢ 2 D/E1'F C*B THISOP lower than LASTOP
1 do LASTOP with top of PDL
A get new LASTOP from PDL
¢

C*B-D/El'F A (same as above)
¢

¢ ¢ A+B*C-D/E1'F (same as above)

THISOP LASTOP ¢ hence we are done: do POPJ exit

24

XI. APPENDIX D

A. Field One Variable Array

1. Abstract

A new form of 8K FOCAL W. (DEC-08AJAD-PB), is available which uses field one to store
data arrays in three word floating-point form. This foci! ity is added to 4K FOCAL W via the
function call FNEW. T he function may be called recursively to any level, and all of the
features of FOCAL are retained. In addition, an ERASE or ERASE ALL command will not wipe
out the array. Hence, variables may be stored for use in successive programs.

2. Requirements

Fits into unused locations in the Floating-Point Package (DEC-08-YQYA-PB)

3. Usage

Loading

7154-7177
6572-6576
5755-5764
7554-7577

Load after FOCAL W. has been loaded into the machine (before or after initial dialogue). Restart
FOCAL W. at 2008 ,

Call ing sequence

To store a variable Z as array element J:

* S X =FNEW(J,Z)

or
* 4.3 S X= FNEW(J,Z)

In addition X will be set equal to Z.

To get the data from array element K and set Z equal to this element:

* S Z = FNEW(K)

i. e. If there is only one argument the instruction is interpreted as a 'GET'. If there are two
arguments it is interpreted as a IPur. In the above examples the arguments may be any
arithmetical expression that can be evaluated.

25

C. Recursive calling

The function FNEW may be called recursively at any level. VIZ,

* S Z= FNEW(J,FNEW(J +10))

sets Z FNEW(J+10) and stores FNEW(+10) in, array element J.

* 3.2 S Z= FDXS(J*l 000) + FDIS(FNEW(J)*NORM)

The arguments may be any arithmetical expression. The following are val id:

* S Z = FNEW(J*M-3, FEXP(X*2)*Y)

* S Z = FNEW(J,FNEW(J)*FEXP(FNEW(L)))

4. Description

The function FNEW protects the binary loader in upper core. The user, of course, may subdivide
his array into any number of smaller arrays, keeping track of his own indecies.

26

P'rC 5755
FJTTO\j OO:::;?
c:-: f'l elL! '2
F Fh'0 3 leI 00
:r. \'j 7573
~'\;T 0077
tl }JF 4526
F').6L 1603
E'F>!T LlLJ07
F F::T 0000
F LJ' COO LJ L:

r L I ,r T 1 0603
Fe..;;L 3000
F \j F 1:" 7 1 5, I)

F \)'T ?' F F 0 3 7 6
r-.:" 7~)5/J

r L. I c: TILl 0 6
I c\!;)r O? 1 7
ILI.c:T 0761
I>JTFCF 0052
I lFDJ 0231
Vi COv;~A 01(3
V}C~ 00f5
P'JT:'A lLl13
}T;-'J 550?
F n:-:HA 1)503
!T5HJ LJ501
en'T 756LJ
r 7fOO 002/1
FFP['C /..)513
~- FTliP 6572
::01TC 4511
,COFTe) LJ510
c-ll\j'Jr LJ521
:TAFTV 013LJ
TEPEE 7173
TLl :~T lLJ07
T2 0157

27

I
I
I

FIELD 0
I

IPAGE ZERO CONSTANTS
I
*163

0163 7524 ~Ca~~A~ -254
I
I
*F;.\JTAEF+15

0413 7154 FNEW IPUT ADDrESS I~ FNTPEF

r: c r.

7154
7155
7156
7157
7160

7161
7162
7163
716L!
7165
7166
7167
7170
7171
7172
7173
717L!
7175

7176
7177

4407
3373
0000
4452
7500

5366
1056
7700
4526
10L!6
4503
L1501
5755
5777
5776
0002
3000
0000

7564
7554

I
I

* 715/1
IF! ELL·
ICALL:
I

I
I
FNF.~':~

THEFE~

I
I
I

ONE F;\JEV; VAFI AELF~~
FNFDCAFGl) ICET
FNFV(AFG1~ArG2) IPUT

A

APRAY ELEMF~T AfGl
VALUE O~ ArCl 1~ ArrAY

FFNT IF,\)TET
F:"iq~ THrEE
FFXT
JMS I INTEGEr:
SYlp.

J:"1P .+5
TAr: 56
StIP. CLA
FEEOF
TAD F'LAC+ 2
PtlSHA
PPEHJ

AFG
,J:v1 P GET
JMP PUT
2
3000
0000

'28

F?P
I~ULT. ADDrES~ lY THrEE FOI THPFF
IFP STJFt-',GF
IMAKE IT AN INTEGEr ADLEFSS
IEEGIN CHECK FOl' OUETi\'.!:I TI:-JC LOADEi

10.K.
1+2XX

IMUST PROTECT LJArEF
ICET ALLPF5S OF ArrAY
ISTOFF. DJ j'::DL
IFUALUP.TF. Arr,2:

IARG~ EXISTS;GFT DATA
IPt1T DATA Al,·;P,·{
ICHANGE THIS For Tva VORD
lOr: INTEGER STorACE

::-~ 7':.")S
::'75(,
C,757
S 760
5 7f 1
5762
'5763

11 LJ 2
1163
7 f.40
5364
Li 501
1602
7001

57(·LJ 5502

7 :--. ~,ll /1777
7555 1416
7SSf: 30L'4
7557 1 Lf 1 6
7560 30LJ5
7561 li116
7562 30LJ E
75(;3 5373
75(,[j L177?
7565 104/!
75(,(:. 3LI16
7567 1 OLl 5
7570 3L! 16
7571 lOLl 6
7572 3Li 1.6

7573 f,201
757LJ 5500

7577 6572

(57'2
6573
fSrlL'

f,575

0000
1 L!l3
3016
6211

6576 5772

* 5755
IF\)ALUATF !y\} p,Fn::1F:'JT~ IF 0]DT
ITHFPE FFTUPN TO CALL+2 VIA FOFJ
IIF THFFE TO CALL+3
I
Ar.,C,

I
I
¥755 / j

eFT,

PliT,

F:c\l"[,

I
I

*6572

TP,[C;-: AT
TAD 'I] CDYJY1A
SZA CLA lIS IT A CO~~A?
J:v'!P .+/: I~O:AFGS XISSI~C

PllSHJ
FVA.L- 1

lAC
FO?J

I I 0JCFE\1j F0!1' FFTU:>J
IDO seEr OUT! '\lE :-'FTi::"!

J>j ::":
TAL,
DCP,
i'!"[
LCP
TAD
[,CA
J:<F
JV c: \.... " 1 ~

TP[
DCA
TAD
DC?,
TAD
DCA
C I::.F
0.>~F'

5ETUP
I 1 (,
FLA,C
I 16
FLAC+ 1
I 1 6
FLAC+ '2
F,\i[,
::FTllF
FLAC
I 1 6
FLAC+ 1
I 1 6
FLAC+ 2
I 1 6

I EFU:'}3I

IS F T T T' :; 'J L\T T i.; 1 -;:' 0 Le; T ,C

ICFT F:<FO\JF\JT

I(,ET L01." Oi:LFF

IFESTOFF DATA FIELD
ILO FTJ:'JCTID:IJ FET1'I,')

ISET UP FlDlTEF TO ArrAY 1"J XF-IE
ICHA~GE TO DATA FIEL[1
I
~·.,FTtF,

/

I

o
POPA
DCA 16
CDF 10

IGFT ALCFFSS

JYlt:' I SETUP

29

", XII. APPENDIX E

A. Disk Variable Storage

1. Abstract

This FOCAL overlay is equivalent to the FIELD ONE variable addition to FOCAL described in
Appendix D. In this case, however, variables are stored on the Disk.

2. Comments

The contents of location 167 (BASE) must be set for the user's machine configuration. Disk
variables are written on the disk from BASE upward. BASE is the disk extended address of the
lowest used location.

e.g.
last 4K of one disk system

last SK of twodisk system

last 16K of two disk system

C(167) = 7¢¢S·

C(167) = 16¢¢

C(167) = 14¢¢

The present listing is for the last 4K on a two disk system, i.e. C(167)= 17¢¢S'

30

{C, Fe 57~5
t- !-'CC ";. 0167 • J

r ') TTO "1 002}
c'P 016LJ
CHP!! 0142
J; rt'~ 31 ClOD
}. :vT 0077
F }! Dr 4526
F l,:PeL 1603
to F\iT L1LI07
FF\T 0000
FL.0C OO/..1ll

FLI~:Tl 0603
F··:'1JtJL 3000
l' ,\1 F 1.' 71SLl
fo \}TAlF C37f-
C L. I ~: T 1 L:O 6
I ODr Of'17
ILI5T 0761
I i\l,ccTF 7565
1 ,\)IE CF 005?
I IFT\i 0231
y, CO ,,!:v; p 0162
:';CF 0065
'vj ')FF 755L1
~':)FA 1 L! 13
FO?J 5502
Pl'SHP 11503
1-'llSHJ 4501
F Li3 757LJ,
~ .. 700 7172
F7fOO '002L!
IFlH-: 0165
FFADC LJ513
fTL6 4520
E:·)fTC LJ511
SOFTJ LI510
5PNOF L!521
5TAFTV O13LJ
THFEF: 7173
TLIST 1407
T2 0157
'I'e 0163
FBI TE 0166

31

/LFFI [\JI LI I)\lC* F')C{;L
/
CH AF= 142
FTL6=LJ520
FPSHA=L.!503
P:) P A= 1 L! 1 3
Pt'SHJ=LJ 50 1
FOPJ=550:?
F\iAL= 1603
I \lTETFF= 52
FFF'JF=L!526
FLAC= L.!/J

SOLT\.J=I.!510
SOFTC=LJ511
EFt!:'J31 = 100
:: TAFT~'}= 13~
I FFTN= ~!31
V;CF::f5
TLIST=ILJ07
FLI 5T 1= 1S03

. [OT1"')'Ii=27
FNT=77
12= 157
P 7600= r'Lj
rFALC=L.!513
eLI ~T= 1L!0f.
SF~.JF=Lj521

I G\J()F= 217
FENT=LIL!07
F"-l'L= 3000
FFXT=O
ILI51=761
FNTAEF= 376
/
/
/
FI ELD 0

32

1 f~ 7':>~ L1

C 1(3 7750
0 1 (1j 775 1
C' 1 (.~ (J,03
n 1 (: (, (-(·n c

t I 1 ('/ 1 700

I
I

fIEL.L C
I

-44-

IF~rF ~Fr~ CQ~STPNTS
I
'1' 162
i!: C 0'1, '1 ,0, - ~) ~ LI

\. C, 7750
CA, 775 1
FE.PI, D,v;A.:
\\[i I '-'~

EA~b 1 700
I
I
I

ILl \JK TO F:)C~L

* F\:TALI<+ 15
n 11 1 ~, 7 1 5 L! FN F \'

5 755 1 1 L! 2
k 7,,(- 1 1 6P
~~ 7S7 7 hLI CJ

:. 760 5364
c, 7(1 1.:50 1
L, 'i (c) 1 fO? (

~, 7(-,3 700 1
L, 7tL! 5502

715L; LILJ07
7155 3373
715f CCOO
7157 L1L!S2

7160 L!503
71 f 1 10L15
7 16 ~~ L15~0

711':3 0372
716Ll 1167
7165 L1503
71f6 LJ 501
7167 5755
7170 734 L1
7171 5777
7172 0700
7173 0002
717

I
I

I
I

*575~

IFiJAU'f.>TF AN AFGF'1FNT; IF NOT
I ThFFF FFTl..T\l T'J CALL+~~

I

APC,

I
I

* 715L!

T/-I1) CHAr
TAL '1CO"l:"lA
:::ZA CLP
J\iP .+L!
Fl.:SEJ

FVAL- 1
I AC
FOFJ

IDI SK F)JEr ..
I
FNFb FENT

F"i{'L THFEE
FEXT
Jl'1 S I I c\JTE GET
PUSHA
TAD FLAC+l
FTL6
AND P700
TAD BASF
PUSHA
Pt;5HJ

AFG
S T A. CLL r tiL
JVjP :VSOFE

P 700, 700
THFEE, 2

33

h';AiH A\) I:-JTEGEi
IPt'SH II5i'1 yjEV;. {:Ll.
I G T HIGH . 0 i:[E r }: Ai T
I~H1FT FOF FXTF~[F[A[LI~~S
I:1ASi-<; For FYTF~rFl rITS
IAf,[D1 SK EA~.:F ALL1;E S~
I SAVE DE?',
IF~)ALUATE AU;2

/-2 FO) EF/T
1~')P,\lE D.PTA

7 1 7~"
7 1 7Ll

717~

oco~; Tj-1[F b

300e
0000

I

/
7177 755 L4

* 75~/.)
755L] 11((, ,~')FF,

7~55

7~:-,F

75::-'7
75 .. 0
7~fl

7 !l (, f'
7 r:''«'
7 SCi!
75(5
75f6
7r:::67
7570
7571
7572
7573
757iJ

~~ 3 ('5

1 LJ 1 3
ef1S
73LJ (-,
3563
137L!
3:', fL!

lL!13
0000
fOO~

((,22
53(7
((Cl
(·00 1
5500

I \J5TI ,

00L13 PL13,
I
I

(,
<

:H10C

TiC,[;'II'n
LCA I \)::·.TF
F;}F{:l

LF0L
~T{c\ CLL rTL
rCA I ~,C

TAL FLJ3
LCP, I Ct
PJj-p
(I

I;) F
LF5C
J1:t' .-1
L(Ii to;
I ()\]
J.<F :"Fll\J:<I
Ll3

34

,'··'Ii ;'C', 1·)\:

leFT rl· (

11\)1) FLJC

ILI,c.MLF I\;'IF I! •
IL')\:F?
I 'In T., p, I T
I'JA;::.i-i FL,C C:

1[;'1 A Fr'\CTI ,)\ i i Ti'!,:--:

XIII. APPENDIX F

A. Hints and Kinks Department

For the experienced programmer the following may be helpful.

1. location EVAl-1 contains the subroutine call GETC. Hence, to move past a character
and eval uate an argument one may:

PUSHJ
EVAl-1

2. The first instruction in the POP J subroutine is TAD I 13. Hence, for multiple returns
from a subroutine one may POP J with the AC nonzero, e. g. if the AC is 1, return is to
call + 3 instead of call + 2 (as in a normal POP J return). VIZ,

PUSHJ
SUB

XX
XX

XX

In all cases the subroutine wi II return with the AC = 0.

/call

/normal return
/POP J return if AC = 1 when POP J

called
/return if AC= 2
/etc.

3. When using signed and unsigned integers core must be taken that minus zero is not in the
FlAC since EFUN31 normalizes the FlAC. (FOCAL will 'hang' in that event.) The following
coding will apply for unsigned integers.

for signed integers:

Cll RAR
DCA FlAC + 1
RAR
DCA FlAC+ 2
TAD P14
DCA FlAC
JMP I EFUN31

Cll RAl
SNA
Cll
RAR
DCA FlAC + 1
DCA FlAC + 2
TAD DCA FlAC

JMP I EFUN31

35

/make sure sign bit is 0

/put carry bit away

/put exponent in

/make sure positive 0

4. There is a BUG in FOCAL. The RMF in the interrupt routine must be moved to just
prior to the ION. This will not give trouble until field one coding is added.

5. For hardware initial ization when FOCAL recovers (Control-C) one may use location
2775.

6. For machines without a high-speed reader I additional coding room of 6320-6377 may
be gained by overwriting the HRS routine . To remove the * command deposit 2725 in
location 1207.

36

