

PREiIM1NAR.Y REPORT I

Specifications for the IBM Mathematical FOR.mula - TRANslating System, 3
I

The IBM Mathematical Formula Translating System or briefly, FOR.TRAN, will
C C J ; :::* :t? a large se t of programs to enable the IBM 704 to accept a concise
formulation of a problem in terms of a:r,?thematical notation and to produce
automatically a high speed 704 program for the solution of the problem. The
logic of the 704 is such that, for the f i r s t time, programming techniques have
been devised which can be applied by an automatic coding system in such a way
that an automatically coded problem, which has been concisely stated in a
language which does not resemble a machine language, will be executed in
&bout the same time that would be required had the problem be en laboriously
hand coded. Heretofore, systems which have sought to reduce the job of
coding and debugging problems have offered the choice of easy coding and slow
execution or laborious coding and fast execution.

,

It is felt that FORSTRAN offers a s convenient a language fcr stating problems
fo r machine solution a s is now known. Studies have indicated that a hand coded
Program for a problem will usually contain at least 5 times a s many characters
and sometimes 20 times a s many characters a s the problem statement in
FORTRAN language. Furthermore, after an hour course in FOR-TRAN
natation, the average programmer can fully understand the steps of a
procedure stated in FOR ?RAN language without any additional comments

1. Analysis and Programming
2. Coding
3. Debugging
4. Machine Solution

one can say that out of every dollar spent to solve an average problem on a . I

high speed computer, less than 25 cents is spent for analysis and programmin:,
more than 25 cents is spent for personnel coding and debugging cost, about
25 cents for machine debuggirg cost, and about 25 cents for machine running

~
cost.

Since F ORTR A N should virtually eliminate coding and debugging, it should
be possible to ~ l v e problems for less than half the cost that would be re-
quired without such a system. Furthermore, since it will be possible to
devote nearly all usable machine time to problem solution instead of only half
the usable machine time, the output of a given machine should be almost
doubled. Also, of course, the t o M elapsed time for the solution of a problem
should be a small fraction of the time required without FORITR.AN since the
time required for coding and debugging is usually more than 3/4 the total
elapsed time. Not only does FOR.TR.AN greatly reduce the initial investment
in producing a program, but it will reduce even more the cost of repro-
gramming problems for future IBM calculators, since each such calculator
should have a system similar to FORTRAN accompanying it which could
translate the statement of the problem in a language very much like FORTRAN
to i ts own code.

In addition to FDR.TR.ANf s great potentialities for economy, such a system
will make experimental investigation of various mathematical model.. and
numerical methods more feasible and convenient both in human and economic
terms. Also, FORTRAN may apply complex, lengthy techniques in coding
a problem which the human coder would have ; i l h e r the time nor inclination
to derive or a p ~ l y . Thus, in many cases, FORTRAN may actually produce
a better program than the normal human coder would be apt to produce.

i

Finally, the amount of knowledge necessary to utilize the 704 effectively
by w-ems of FCIIIrl'RAP.! is far less than the kr~owledge required to make
effective use of the 701 by direct coding. Information concerning how to
use subpl.ograrns, what machine instructions a re available, how to
optimize a sequence of calculations, and concerning a large fiumber of other
coding techniques, is built into the FOR.TRAN system and it is not necessary
fo r the programmer to be familiary with this information. In fact, a great
deal of the information the programmer needs to know about the FOR*TR-AN
system is already embodied in his knowledge of m a t h e ~ ~ a t i c s . Thus i t will
be possible to make the full capabilities of the 704 available to a much wider
range of pesple than would otherwise be possible without expensive and time
consumingtrainingprograms.

In . . summary, then, a system such a s FORTRAN has the following potential:
,' n . .

1. Great economy of time and money.
2. Feasibility of more inathematical expreiments. .

3. Ability to apply complex, lengthy techniques in coding a
- problem.

4. Ability to make the 704 avilable to more people with more
convenie~ice and less training.

Before beginning a descriptioh of the FORTR.AN system, it should be noted
that the following description is intended only to indicate present plans. A l - .
though the methods by which FOR.TR-AN will operate are well understood,
future developments in programming FORTR-AN may necessitate certain minor
changes in the systelil as it is presented below.

The following is a description of the admissible symbols and combinations of
' -

symbols in the FORTRAN language and how to use it:

CONSTANTS

' -. F E E D POINT (INTEGER8 .

i) General Form: ,

1 to 5 sequential decimal digits optionally preceded by a plus or
minus sign

ii) Examples: @ --

B. FLOATING POINT

i) General Form:

Any sequence of dtmimal digita with a dedimal point preceding or
intervening between any 2 digits ar following a sequence of digits, ' . ~
all of this optionally preceded by.8 plus or minus sign.

The number must be less than in absolute value and

greater than in absolute value.

ii) Exagles: -- , , .

17.0
5.0

FIXED POINT VARIABLES

i) General Form: - -
A sequence of 1 or 2 alphabetic or numeric characters the f i rs t
one of which is one of the following: i, j, k, 1, m, n

ii) Examples:

i, ia, ii, i j , i l

FLOATING POINT VARIABLES

i) General Form: -
A sequence of 1 or 2 alphabetic or numeric characters where the
first character is an alphabetic character, not one of the following:

i, j, k. 1, m, n

ii) Examples:

a, aa, ab, ai, a1

PER-A'I IONS

UNARY OPERATIONS (OPERATING ON A SINGLE VARUBLE OR
EXPRESSION)

i) + 'Take the value of the following constant, variable or expression.

ii) - Take the negative of the value of the following constant, variable
or expression. t

B1NAR.Y 0PER.A TIONS

i) + Add the constant, variable or expression preceding to the
constant, variable o r expression following.

ii) - Subtract

iii) >: Multiply

iv) / Divide. Note that a/b/c=(a/b)/c

No specific l i s t of functions is given since there is no limit on the number
of possible functions. Functions must be single-valued.

7
A. GENERAL FORM: 4

Three or more alphabetic o r numeric characters (beginning with an
alphabetic character) followed by a left parenthesis followed by 1st
argument followed by a right parenthesis o r by a comma followed
by 2nd argument followed by a right parenthesis o r by a comma
followed by 3rd argument, etc.

B. EXAMPLES:

c-

ii) sqrt(a+ b) : means da+b

iii) factl(m+n) : means (m+n) !
--

iv) sq r t (sin(axx2)) : means dsinta2)

v) max(a, b, c , d, e) : means select the largest of the quantities
a , b, c, d, e.

EXPRESSIONS

A, INFORMAL DESCRJPTION:

Any sequence of variables and functions separated by operation
symbols and parentheses which forms a meaningful mathematical
expression in the normal way. Note that every adjacent pair of
variables or functions must be separated by an operation symbol.

By repeated use of the following rules, all legal expressions may
be derived and al l expressions s o derived a r e legal provided they
have l e s s than 750 characters.

i

ii)

Any constant o r variable is an expression.

If E is an expression not of the form +F or T, then +E and -E
a r e expressions.

If xxx denotes a function of n arguments, and if E E2. . . En a r e
expressions, then in general xxx (El, E2,' . . , En) is an ex-
pression. Although functions may have this general f rom, certain
functions will place restrictions on the form of perrnjssi'nl.9 3

iii)

arguments.

iv) If E is an expression, s o is (E).

v) If E and F a r e expressions where F is not of the form +G or -G
and o is one of the permissable binary operations, then EoF is
an expression.

vi) If E and F a r e expressions, so is ExxF

C. EXAMPLES:

ii)

vii)

a/b/c Note that this is equivalent to (a/b)/c

a/bxc Note that this is equivalent to (a/b)xc

a/(b+c)xd Note that this is equivalent to (a/(b+c))xd

a+sin(bxc /(d+(e+ (f+g)))xcos(b))xbxxZ Note the use of redundant
parentheses in this example to indicate the desired order of
computation.

. .
2. xr Note that the decimal point is used to denote that 2 is
retained in floating point form.

1 . 5 3 ~ 1 0 ~ ~ - 1 4 denotes 1.53 x 10- 14

When the order of binary operations in an expression is not
completely specified by parentheses, the order of precedence is
understood to be a s follows:

1. addition - subtraction -
2.' multiplication - division

. . 3. exponentiation

For example, the expression

a+ b/c+dxxZxf -g .

will be taken to mean

<
(a)+(b/c)+ (d% - (g)

. .

Multiplication and division will have no fixed relationship of
precedence, except in the sense of example ii above.

D. F IXED POINT EXPR.E SSIONS, F LOATING POINT EXPR.ESSIONS,
. MIXED EXPRESSIONS

i) Fixed point expressions a r e expressions containing only fixed point
constants and variables.

a) A l l fixed point expressions will be evaluated by fixed point
integer arithmetic. Thus, the value of i+m/n w i l l be
i+ (the integral part (unr ounded) of m+n) .

ii) Floating point expressions a r e expressions containing only floating
point constants and variables with the exception of fixed point
arguments of certain functions and fixed point variables o r
constants following the operation xx. ,

a) Floating point expressions will be evaluated using floating
point arithmetic. It may be necessary in certain cases to use
redundant parentheses to indicate a particular sequence in
which the operations should be performed in order to avoid
obtaining intermediate results in the evaluation of the ex-
pression which might l ie outside of the range 1038 ?

iii) A mixed expression is any expression not belonging to one of the
two above catagories.

a) The type of arithmetic employed in evaluating a mixed ex-
pression is described below in the section headed:
ARITHMETIC FORMULAS.

VER.IFICATION OF CORRECT USE OF PARENrI'HESES

In complicated expressions involving the use of many parentheses,
i t is very easy to omit closing some parentheses. Therefore, in
such cases, i t is suggested that the programmer use the following
procedure to make su re that the parentheses in an expression
indicate the sequence of operatio'l::; he desires. Working f rom left
to right, number each parenthesis, right o r left, a s follows: Number
the f i r s t parenthesis rlln,' label each left parenthesis with an integer
one larger than the number of the parenthesis immediately to the left
of it. Label each right parenthesis with an integer one l e s s than the
number of the parenthesis immediately to the left of it. Having done
this, the mate of any left parenthesis labeled tintf will be the f i r s t
right parenthesis to the right of it labeled n-1. It should be noted
that these numbers a r e not part of the FORTRAN language and should
not be entered in the expression.

6. SUBSCR.IPTS A N D SUBSCR-IPT EXPRESSIONS: -- - - -
7 Subscripts and subscript expressions described below must have non-

negative, non-zero values at all times.

T" A. SUBSCRIP~LS
' . , . . . *

7 2'

A subscript is any fixed point variable o r constant.

B. A SUBSCRIPT EXPRESSION

A subscript. expression is a fixed point expression of not more than 3
t e rms where all but. one term is a single fixed point variable o r
constant and one te rm may be a product of two subscripts. A l l but
one of the variables in a subscript expression must be des ig~a ted a s
relative constants (see section, RELATIVE CONSTANTS, under
SPECIFIC ATION SENTENCES). Parentheses a r e not permitted in
subscript expressions.

i) Examples: --
where j and n a r e relative constants:

SUBSCRIPTED VARIABLES

A subscripted variable is a variable (fixed point o r floating poict
followed by a left parenthesis followed by one, two, o r three subscripts
o r subscript expressions (where each subscript o r subscript ex-
pressiofi excebt the last is followed by a comma) al l followed by a
right parenthesis.

Each subscript o r the elements of each subscript expression may be
subscripted fixed point variables.

Subscripted variables may be used in an expression in the same
manner a s ordinary variables.

No subscript o r element of a subscript expression which is a
subscript of a fixed point variable which, in turn, is the subscript
of another variable may have a subscript.

'

. u-.

EXAMPLES:

i) a(i)

ii) a(i, j)

iii) a(i9 j, k)

iv) a(3xi+n, m) : means a 3xi+n, m

vii) a (i(j)) : means a
i

viii) i(,j(k))
j

ix) a(n(i, j), m(k, 1)) : means a
ni, j, mk, 1

xi). a (l)

xii) a(i, i+l , i)

xiii) a(1, jj

xiv) a(5,7, 15)

8. ARITHMETIC FOR.MULAS -- -- ----
A. An arithmetic formula is a wriable (subscripted, or not), followed

by an equals sign, followed by an expression. .- - u ;..
B. It should be noted that the equals sign in an arithmetic formula has

the significance of 'lreplacetl. In effect, therefore, the meaning of
an arithmetic formula is a s follows: Evaluate the expression on the
right and substitute this value a s the value of the variable on the left.

C. If the variable on the left of an arithmetic formula is a fixed point
variable and the expression on the right is a mixed expression, then
the value of each floating point constant and variable in the mixed
expression, with the possible exception of arguments of certain
functions, will be truncated to integers. The value cf any floating
point valued function will also be converted to an integer and the
entire expression will be evaluated by fixed point integer arithmetic.
Similarly, if the variable on the left of an arithmetic formula is a I

floatin!:: point variable, and the expression on the right is a mixed
. expression, the values of fixed point constants and variables will be

represented a s floating point numbers and the expression will be
evaluated with floating point arithmetic.

D. If the variable on the left of an arithmetic formula is a fixed point
variablt- 2nd the expression on the right is a flo,ating point exprecijion,
the expression will be evaluated with f1c::tihg point arithmetic and
the result truncated to an integer. Similarly, iE the vwlable on the . 3
left of an arithmetic formula is a floating point variable and the
expression on the right is a fixed. poict. expression, the expression -

will be evaluz' ed using integer arithmetic and the result substituted
in floating point form for. the value of the variable on the left.

E. EXAMPLES:

i)

ii)

iii)

iv)

v)

vi)

vi i)

a(i, j)=sqrt(b(i)xx2+sin(c(j)x(g+cos(h/(p+q/(r+s)))))) means:

a(i, j) = ixj
I

i=i+ 15 means : increase value of i by 15 or i(n+l)-;i(n)+ 15

x (i) = bxxl
v

viii)

ix)

a(i)r=a(i)+5. 1 x sum (j, 1, 20, b(i, j)xc(j,) This formula means increase
the value of ai by the following quantity:

20
5. IX C bi, j ~ ~ j

j z1

FORMULA NUMBERS -- -- --
Each FORTRAN formula may have an integer associated with it called
the formula number. If a formula has a formula number, the formula
number is written to the left of the formula. The formula number must
be less than 100,000. If a formula is to be referred to by a control
formula a s described below, i t must be assigned a formula n!imber
which is different from the formula number of every other formula.
With this exception, the choice ofeformula number for a formula is
completely' arbitrary.

, .
A. EXAMPLE

10. CONTROLFORMULAS .-,--- - - - -
A sequence of arithmetic formulas indicate that the operations implied
by the f i r s t formula should be carried out and then the operations indicated
by the second one, etc. Certain formulas called control formulas are
provided to alter this sequence of operations in various ways.\.

9

In giving the general foiam of the control formulas beiow, iower case
letters and various symbols such as comma, equals sign and parentheses
will be given in the way which they must appear in the particular formula.
Capital letters wi l l be used to represent a class of symbols which may

3
appear at a g'ven point in a formula. Square brackets a r e used to enclose
symbols which may optionally appear inthe formula.

i) .Informal Description

Do-formulas specify a sequence of formulas to be repeated
a number of times for different values of a specified subxr ip t
and the formula to be executed next after the required number
of repetitions. Thus the formula.

will cause the sequence of formulas beginning with the formula
numbered 10 and ending with the formula numk1ered 14 to be
executed 9 times, the f i rs t time with i=4, the second time with
i= 6, the third time with i=8, etc. and the last time with iz20.
Formula 50 will be executed after formula 14 when i=20. Thus
the f i rs t number after the equals sign is the initial value of the
subscript, the next number the final value or upper bound for the
subscript, and the third number is the increment to be applied
each time. The increment need not be given when it is 1.-
Furthermore, since it frequently happens that a do-formula
immediately precedes the sequence of formulas to be repeated
and that the formula to be executed after the proper number of
repetitions immediately follows the repeated sequence, it is not
necessary in such a case to specify the f i rs t formula of the
sequence or the formula to be executed after the appropriate
repetitions of the sequence. Thus the formula:

causes the formulas immediately following itself up to and
including the formula numbered 17 to be repeated in sequence
20 times for i-1, i=2, . . . i=20, after which the formula
following the formula numbered 27 will be executed.

ii) Formal Description

General form:

or:

where:

F i s a formula number
S IS a subscript.
N is a fixed point constant, a subscript, o r a subscript expression.

iii) Range of a Do-Formula -
The range of do-formula A which specifies one formula rxmber
is the sequence of formulas immediately f oll.owing do-f ormula A

I

up to and inciuding the formula whose number is specjfied
except those formulas in the ranges of do formulas which are
in the range of do-formula A . The range of a do-formula B,
which specifies three formula numbers, is the sequence of for-

-._ _ mulas beginning with the formula havi ng the first formula
number specified and ending with the formula having the second
formula number specified except those formulas which a re in
the ranges of do formulas in the range of do-formula B.

,

a) Example

3 a(i, j) 4,;
4 b(j) xsum(i, 1, 10, a(i, j))

In the above example, the range of do-formula number 1
includes formula 2 and formula 4 only.

iv) Extmded Range of a Do-formula

The extended Yange of a do-formula A comprises the formulas
in the range of do-formula A p h s the formulas in the ranges of
do formulas in the range of do-formula . A .

. v) Control Formulas in tile Range of a Do-Formula
I

If a control formula is in the range of a do-formula A and
re fers control to do-formula A , the next formula to be
executed after the control formula will be thef i r s t formula

'in the range of do-formula A after the subscript specified
by do-formula A has been incremented once.

vi) Execution of a Do-Formula -- -
The execution (.f a do-formula A consists of the fcllowmg steps:

a) Begin execution of the sequence of formulas in the range
of do-formula A.

If the last formula in the range of do-formula A or a
control formula referring control to do-formula A is
encountered before a control formula referring to a
formula not in the range of do-formula A, increment
the specified subscript by the appropriate increment
and if the resulting value is not larger than the upper
bound specified for the subscript, begin step A again,
if this value is larger than the specified upper bound,
execute the formula having the third formula number
specified in do-formula A. If do-formula A specifies
only one formula number, execute the formula following
the last formula in the range of do-formula A. The
execution of a il --formula is considered complete only
when the formulas in its range have been repeated the
appropriate number of times o r when a control formula
in the range of the do-formula is encountered which
refers to a formula not in the range of the do-formula.

vii) Restrictions on the Range of a Do-Formula - ,._.
ir
, .

a) The third formula number specified by a do-formula A
may not refer to a formula in the range of do-formula
B unless do-formula A is itself in the range of do-
formula B. A similar restriction applies to formula
numbers specified by if-formulas and go to-formulas
described below.

b) If do-formula A and do-formula B are such that neither
lies in the range of the other and if S is the sequence of
formulas comprising the range of do-formula A and if
Sf is the sequence of formulas comprising the range of
do-formula B, then either S must be wholly included in
S1 or St must be wholly irlciuded in S, i f S and ST have
any formula in common. I

B. IF-FORMULAS

1) Informal ~escr ip t ion

If-formulas enable one to state an in~quality or equality
condition and indicate that one formula should be executed
next if the condition is satisfied and to indicate a second
formula to be executed next if the condition is not satisfied.

ii) Formal Description

General Form:

Where:

N may be a single floating point variable or constant or a
subscript or a subscript expression. -

S may be one of the following symbols:

F is a formula number.

Thug the symbols within the parentheses indicate an equality
or inequality. The f i rs t formula number indicates the formula
to be executed next if the equality or inequality is satisfied
and the second formula number indicates the formula to be
executed next if the equality or inequality is not satisfied.

iii) -. Example -

> Ti his formula means ~f mi = k+ 1, execute formula 3 next,
otherwise execute formula 9 nextH.

i) General Form ---

where F is a formula number indicating the formula to be
executed next.

i) General Form ---
Stop

E. RELABEL-FORMULAS

When such a formula is executed, the machine will stop. If
the s ta r t button is depressed following execution of a stop-
formula, the formula following will be executed next.

il)

1.

1;
Informal Description \

Relabel-f ormulas enable the programmer to cycl~ically
relabel the elements in a vector, the rows or cojumns of 3
a matrix, the rows or columns or planes of a thrlee dimensional
array. For example in a 4 by 4 matrix, he ma$ wish to
operate on rows 2 and 3, record rows 1 and 2 oh auxiliary
storage, replace rows 1 and 2 by new information, operate
on rows 4 and 1, record rows 3 and 4 and repldce them by
new information, operate on rows 2 and 3, etc, If, after
replacing the information in rows 1. and 2 with,new information,
he relabels the rows a s follows he can then us6 the same formulas
to car ry out the second se t of operations that he used to ca r ry
out the first:

Old row 3 becomes new row 1
I

Old row 4 becomes new row 2
Old row 1 becomes new row 3
013 row 2 becomes new row 4

Using this type of relabeling, the sequence of operations
indicated above becomes simply the repetition of the following
steps:

Operate on rows 2 and 3
Record rows 1 and 2
Replace rows 1 and 2 with new information
Relabel

Formal r.;*scription
\

General Form:

Relabel V

where V may be any subscripted variable all but one of '

whose subscripts is the integer 1 and whose remaining
subscript is either a constant or a single fixed point
variable. The subscript which i s not 1 indicates which

4 element, row or column, row, column or plane is to - become the new f i r s t element, f i r s t row or first column,
f i rs t row or f i r s t column or f i r s t plane.

iii) Examples: -
L 4 a) "Relabel a(3) ft has the following significance where a

is a vector of 7 elements. A reference to a(1) after
the execution of this formula is equivalent to a reference
to a(3) before the execution of this formula. Similarly, the

Q3

new a(2) correspo<ds to the old a(4), the new a(3) to the
old a(5), the new a(4) to the old a(6), the new a(5) to the
old a(?), the new a(6) to the old a(l) , the new a(7) to the
old a(2).

b) "Relabel a(1, n, 1)" has the following meaning where "a"
is a 3 by 4 by 5 a r ray and where n has the value 3, the
old a(i, 3, j) become the new a(i, 1, j) for all values of i
and j and finally the old a(i, 2, j) become the new a(i, 4, j)
for all values of i and j.

i
I

1 INPUT-OUTPUT FOR.MULAS
1 - -.-

Input-output formulas enable the programmer to specify that
information should be brought into the 704 from cards or input tapes
o r information should be printed or punched or written on oj~tput tapes. . Since the number of variables which may be referred to at any moment
in a calculation is limited by the extent of high speed storage, it may
be necessary to record the values of certain variables in auxiliary
storage and at other times to assign new values to certain variables
corresponding to information in auxiliary storage. Input-output
formulas a re prc; Lied for this purpose also. Capital let ters appearing
in the formula descriptions below will again be used to indicate the
class of symbols which may appear in the corresponding position in

'

the formula.

A. DESCRIPTION OF SEQUENCE OF AN 0RDER.ED ARR.AY

In specifying that the elements of a 1, 2, or 3 dimensional a r ray ,

of data should be recorded in auxiliary storage o r in specifying . that the elements of a 1, 2, o r 3 dimensional a r ray should be
assigned values corresponding to certain quantities in auxiliary
storage, it is necessary that a certain sequence of the elements- in
the a r ray be either understood or specified. This sequence is that
in which elements will be' recorded o r brought from auxiliary
storage. If no sequence is specified, the sequence will be
understood to be a19 a,. . . a in the case of vectors or all, aZ1. . . n
a
n19 a 129 a22,. . . a in the case of 2 dimensional a r rays or

mn

a in the case of three dimensional arrays.
nmk

When no sequence is specified for a given a r ray which is to be .

recorded on or read f rom auxiliary storage, it will be understood
that the entire a r ray is to be recorded on or read from auxiliary
storage.

i) Informal Description

A specification of sequence for a one dimensional a r r ay a(i)
might be %I, 7". This indicates the sequence al , a2, . . . a7.

A sgecification of sequence for a two dimensional array a(i, j)
might be j=4,8, i S , 10,2. This indicates the sequence

a l O , 8 * Note that a third quantity specified after the range of a

given subscript indicates an increment and if a third quantity is
not specified the increment is laken to be one.
In general, the subscript .specified f i rs t in a specification of
sequence is varied least frequently, the subscript specified
second is varied more frequently and the third subscript
specified is varied most frequently. If a specification of
sequence is given', each subscript of the a r r ay with i ts
appropriate range and possible increment must be listed in
the appropr jate order.

ii) Formal Description
,-

A description of sequence for a one dimen.:ional a r r ay has
the following form:

A description of sequence for a two dimensional a r r ay has
the following form:

S=N, N[, N], S-N, N[, N]

A description of sequence for a three dimensional a r r a y has
the following form:

, S=N, N[, N], S=N, N[, N], S=N, N[, N]

. where:

S I.... ay be a subscript which appears a s a subscript of the a r r a y
whose sequence is being specified

N may be a subscript o r subscript expression

Note that square brackets enclose symbols which are optional.
I

B. LLST OF QUANTITIES

A l i s t of quantities . . has the following form:

where V may be:

1. a single variable o r constant
2. a subscripted variable
3. a left parenthesis followed by one o r more

subscripted a r rays (each except the last
followed by a comma) followed by a
specification of sequence followed by a
right parenthesis.

if) Examples:

a) a, (b (i , j) c i j) j=l , 2, i=1,3), d, e

The above list of quantities specifies the following sequence:

The above l is t of quantities specifies the following sequence:

i) General Form: --
read L

where L may be l i s t of quantities. However, none of the
quantities in the l is t may be constants.

' a) Example

read n, (a(i, j) j= l , 20, i=5, lo), b(i)

This formula indicates that the sequence of variables n,
a 's and bits should be assigned the sequence of values 4 j
coming f rom the card reader in a one-to-one fashion.

CAR.D PUNCHING FORMULAS

i) General F o r m - - (h

punch L

where L is a list of quantities

ii) Card Punching Formulas indicate a sequence of quantities
to be punched on cards.

E, FRJNT FOR-MULA S

i) General Form: - - --
print L .

where L is a list of quantities

F. TAPE R.EADING FORIMULAS

i) General Form:

read tape (N) L

or:

G. TAPE WRITING FOR.MULAS

i) General Form: -
write tape (N) L

write output tape (N) L

where N is a tape number o r a fixed point variable and L is a
list of quantities.

H. ADDITIONAL F 0R.MULAS FOR- MANIPULATING TAPE

i) General Form:

end file (N)
rewind (N)
backspace (N)

where N may be a tape number or a fixed point variable.

DRUM READING FORMULAS

i) General Form: ----
read drum (N, M) L

where N is a drum number or fixed point variable and M is a
drum location or fixed point variable and L is a list of quantities.
The drum location is an integer between 1 and 2048. The effect
of this formula is to cause the quantities on the given drum
beginning at the given drum location and in the consecutively
numbered drum locations following to become the values of
the quantities specified in the list of quantities in high speed
storage.

J. DRUM WRITING FORtMULAS

i) General Form:

write drum (N, M) L

where N is a drum number or fixed point variable and M is a
drum location or fixed point variable and L is a l ist of
quantities.

K. RESTRICrIION ON LISTS OF QUANTITIES IN DRUM R.EADING AND
WRITING FORMULAS

If a specification of sequence is given with any ar ray specified in -
' a list of quantities in a drum reading or writing formula, the

subscripts appearing in such a specification of sequence must
appear in the opposite order from the subscripts associated with the
a r ray and only the last subscript may have an arbitrary range.
Subscripts other than the last must have ranges specified
beginning with 1 and ending with the maximum value possible
for that subscript. None of the subscripts in the specification
of sequence may have increments other than' 1. Only one ar ray
may appear with a specification of sequence in a single pair of
parentheses.

i) Examples:. --
The following list of quantities may correctly be specified by
drum reading or writing formulas:

a, ((i j, k) i=7, 10 j=l, 50, k=l, 50)

I
where 50 is the maximum possible~value for i and j.
The following list of quantities m a i not be correctly specified
by a drum reading or writing forrrda: 3

I

(a , j, k) k=l , 50, j--3,20, k=l, 50)

I

12- SPECIFICATION SENTENCES I

I

In addition to the problem formulation in terms of FOR.TRAN formuks,
certain additional information is either necessary or desirable to
enable the FORTRAN system to produce an efficient program.
Specificat ion sentences provide the means of supplying such information

I

to the FOR.TR.AN system.

A. DIMENSION SENTENCES

The maximum possible dimensions of each 1, 2 or 3 dimensional
a r r ay referred to in any formula in the problem formulation must
be specifically given. Thus if a(i, j, k) is specified a s a 5 x 10 x 20 - -
array, then at no time when a reference to a(i, j, k) is made should - . . --
i exceed 5, or j exceed I l k exceed ~ H a v i n g s o specified
a , , , it is nevertheless possible to regard a(i, j, k) a s representing L

a 4 x 4 x 4 ar ray in a particular instance. This type of situation
will obtain where the dimensions of an a r ray a re input parameters.

13 r
i) General Form: -- -..--

Dimension V[, V, V, . . . ':
where V is a subscripted variable whose subscripts a re fixed
point ccnstants. T ~ J S a(10,11,12) occurring in a dimension
sentence indicates that the maximum dimensions of the a r ray 2
a r e 10 x 11 x 12.

rjote that dimensi on sentences specifying the dimensions of all
----L-

ar rays apga':Tii'g In a problem-lulation must be given. -- .-. 4- - ---- -.I-- -- -

B. EQUIVALENCE SENTENCES

In certain cases, it may be possible for the FORTR.AN system to
assign the same storage location to several variables. For the
Purpose of defining when this is possible, we shall say that a
variable appears in a formula in a type 1 position if the execution
of the formula could not possibly alter the value of the variable
and we shall say that a variable -appears in a formula in a type 2
position if the execution of the formula could result in changing
the value of the variable. Thus a variable appears in a type 1

position if: .

1) it is on the right side of an arithmetic formula.

2) it is a ~:u')cript of a va~~iable on the left side of an
arithrrietic formula.

3) it appears in an output formula.

4) it appears in a do-formula-but not a s the subscript to
be varied.

5) it appears in an "if1' or a ''go tof1 formula.

And similarly, a variable appears in a type 2 position if:

1) it is the variable on the left side of an arithmetic formula.

2) it appears in an input formula.

3) it appears a s the subscript to be varied in a do-formula.
rt

. ,,- '
Thus a so: '&. variables m a y be assigned the same storage location
if for any two variables a and b in the set, a type 2 appearance of a

.I

followed by a type 1 appcaranc; of b always means there is an
intervening type 2 appearance of b -where the order of appearance
is the order of execution of the foF'mulas. Under the same con
ditions it is also possible to allot overlapping storage space to the
elements of two different arrays. Equivalence sentences specify
sets of variables and arrays such that ali variables or a r rays in
the same set may be assigreed the sarne storage area.

General Form:

Equi-alence (V, V[, V, V. , . I)[, (V, V[, V, V, . . I), 1
where V is a variable symbol. The variable symbol may be
-?ither or,e assocjated with a simple variable or one associated
with an array. Thus, to indicate that the variable a, the a r ray
b(i, j) and the a r ray c(i, j, k) can be assigned overlapping storage
space, one includes in a dimension sentence the se t (a, b, c).
If the product of the maximum dimensions of c(i, j, k) is greater
than the product of the maximum dimensions of b(i, j), the
inclusion of the above set in an equivalence sentence means
that the storage space allotted to b(i, j) will be included in the
storage space allotted to c(i, j, k) and that the storage space
allotted to a will be included in that allotted to b(i,,j).

CI
\

C. FREQUENCY SENTENCES

Frequency sentences enable the programmer to provide the
F OR.Tr?AN system with information concerning estimates of the
frequency with which certain portions of the program will be
executed. Thus the programmer may indicate that he expects the
condition specified by an if-formula to be satisfied 10,000 times
and that the condition will not be satisfied 400 times during the
execution of the program. If the if -formula has formula number
3, this estimate would be stated in a frequency sentence a s follows:

Similarly, if a do-f ormula has a variable range for the subscript
that is to be varied, the programmer may specify that on the
average he expects the do-formula to call for, say, 200 repetitions.
If the do-formula has the formula number 17, the programmer
would indicate this estimate as follows:

a s part of a frequency sentence, and finally if a go to-formula has
a fixed point variable included in it, the programmer may give
estimates of the frequency with which the fixed point variable
will assume the various possible values. If the go to-formula has
the formula number 2 and reads "go to ntl and if n may take on the
values 14, 15 and 16, then the estimate (2, 13, 100, 14, 10, 15,
1000) indicates that he expects n to take on the value 13, 100 times,
the value 14, 10 times and the value 14, 1000 times. The above
three types of estimates, one for if -f ormulas, one for do-f ormulas '
and one for go to-formulas are the only permissible types cb
estimates which can appear in a frequency sentence.

i) General Form:
Y C I -

Frequency E[, E, E.. .]

where E is an estimate of any of the three types described above.

R-ELATIVE CONSTANT SENTENCES

In certain cases it wi l l be possible for the FORTRAN system to*
produce a more efficient program for a problem if it is supplied
information specifying those fixed point variables whose values
change very infrequently on a relative basis. R.elative constant
sentences offer the programmer the opportunity of providing this
information to the FORTRAN system.

i) - General Form:

R.elative constants N[, N, N, . . .]

where N i.s a fixed point variable. Thus the sentence,

Relative constants i, n
I

where i is a single fixed point variable and n(j) is a fixed point
vector, indicate that the value of i and the values of nll), n(2), . . .
change very infrequently.

13. PROBLEM PREPARATION

Problem preparakion for automatic coding by the FORTRAN system
consists of the following steps:

PROGRAMMING

The formulas specifying the problem are written in the form given
above. Note that the exact symbol used for writing, say, multiply,
is arbitrary provided the proper Hollerith code for multiply is
punched in the formula cards. In addition to the formulas specifying
the problem, dimension sentences giving the maximum dimensions
of all arrays in the problem and possibly other specification
sentences must be written in the form described above.

DATA PREP.PlRATI:ON

Input daka, referred to by card reading formulas or read input
tape formulas in the problem, should be written on standard forms
suitable for key-punching in standard card forms associated with
card reading formulas and read input tape formulas.

CHECK O F DATA STORAGE SPACE REQUIRED

The data, storage required for a. given problem if no equivalence
sentences are specified, is computed a s the number of single
varia,bles and constants p1u.s the sum of the products of the
maximum dimensions of each a.rsa.y referred to in the probl.em.
In computing data stora.ge space, i t i s only necessary to count one
space for a sequence of constants separated by arithmetic
operations. If equivalence formulas are given, the amount of
storage space required i s ihe number of constant.^ plus the number
of single vaxi.ables not appearing in an equivalence sentence plus
the sum of the product s of the maximum dimensions of arrays not
appearing in equivalence sentences plus the sum of the products of
the maximum dimensions of the largest array a.ppearing in each
set in an equivalence sentence plus the number of the sets,
containing only shgle vaxiables, which appear in equivalence
sentences. The data, storage space required for a, program must
be less than a certain amount which will depend on the total high
speed storage space of the machine on. which the problem is to be

r in . The amount of storage space that would be available in any
machine with 4096 words will be a t least 3,000 units. Problems
must be planned in such a way that the data storage space
i'equired is l e s s than the a p p r ~ p r i a t e amount.

3

ICE Y PUNC H1NG

The formulas specifying the problem a r e punched on cards in the
exact form in which they a r e written. There will be space for
approximately 65 characters on each card. There will be a
space on each card for a formula number which will be left blank
if the formula has no number assigned. Large formulas may
extend over many cards. An indication on each card will indicate
whether o r not the information on the card is a continuation of a
formula on a preceding card. Spaces (denoted by blank columns
on a card) are ignored by the FORTRAN system. This means
that, if desired, the key puncher can space between symbols
in exactly the way they a r e written, o r not, without disturbing the
meaning of the formula. Specification sentences a r e also punched
in a manner s imilar to that of formulas. Note again that dimension
sentences must be punched for any problem making reference to
arrays . Data cards a r e punched in the appropriate form to be
accepted by card reading formulas o r to prepare tapes which a r e
to be read by input tape reading formulas.

E. PREPARATION OF CARD DECKS AND INPUT TAPES

The FORTRAN system offers two options:

1) punching of binary program deck for the problem or preparation
of s imilar program tape and printing of program.

2) immediate execution of problem .
If the user of the system selects option 1, he should prepare a
deck of ca rds in the following order: all specification sentence
cards followed by formula cards in the correct order followed by -
a specially punched card indicating the end of the FOR.TR.AN
formulas for the problem. If the user selects option 2, he should
prepare the same deck a s above and, in addition, a deck of data
ca rds for each input'tape ,:mployed ir. the problem and for the
card reader, if employed.
Having prepared the above decks of cards , he should then prepare
the appropriate input tapes, if any, on auxiliary card to tape
equiprnect. He may further elect to enter the FORTRAN formula
deck directly f rom the 704 card reader o r to prepare an input tape
f rom this formula deck and enter the formulas in the 704 f rom this
input tape.

- F. AUTOMATIC PROELEM CODING OF PROBLEM BY 'IHE FORSIRAN
SYSTEM b

, . ' . I

If the user has selected option 1 (to obt.ain the binary ca rd s
representixg his program or a tape representing his program),
he should simply load the FORTRAN system f r cm i t s tape and
place the deck of FORTRAN formulas in the card reader o r the
corresponding tape on a t a ~ unit. He should then s e t a sense
switch indicating th;:t he has elected option 1. He should s e t
another switch indicating that the program should ei ther be
punched on binary ca rds o r that it should be written on magnetic
tape. Press ing the s t a r t button will 'then cause the FORTRAN
system to write the required program, check it, and ei ther
punch i t on binary ca rds o r write i t on tape and prepare an
output tape which can be used to print the program on auxiliary
tape- to -printer equipment. (Ihstallations not having auxiliary
tape -to-printer devices may arrange to have the program printed
directly).

Lf the user selects option 2 (immediate execution), he should put
the appropriate input :apes on the appropriate tape units and
the appropriate ca rd deck, if my, in the ca rd reader . When the
FORTRAN system is loaded and the appropriate switches s e t and
the s t a r t button pressed, the FORTRAN sys tem wil l write the
required program and cause i t s executian to begin immediately
thereafter . , 4

14. FUTURE ADDITTJONS TO THE FCIRrIRANSYSTEM
I

?he lariguage of FORTRAN formulas and sentences described above
is to be regarded ocly as the basic FORTPAN lariguage. he F9.FiTR.AS
sys tem will be corstructed in a manner to make the addition of new

. formulas, new shntences and new functiocs as easy a s possible.
It is expected that the FORTRAN language will be continually enriched
by such additions to make i t more economical, more convenient and
more ~ f f i c i en t . Some of the possibilities for future additions to
FORTR AN are listed below:

A. A VARIETY OF NEW INPUT-OUTPUT F'OR~MULAS WHICH WOULD
ENABLE THE PROGRAMMER TO SPECWY VARIOUS FORMATS
FOR CARDS, PRINTING, INPUT TAPES A N D OUTPUT TAPES

B. POSSIELE ADDITIONAL CONTROL FOR~MULAS

i) Begin Complex Arithmetic . .

* .

ii) End Complex Arithmetic . P

. .
iii) Begin Double Precision Arithmetic .

c .

iv)

v)

vi)

vii)

viii)

ix)

x)

End Double Precision Arithmetic

Begin Matrix Arithmetic

End Matrix Arithmetic

Sort the Vectors on Tape Number N using the kth element of
each vector a s indicative information

Solve the following N simultaneous equations

Solve the following system of ordinary f i r s t order differential
equations

Find the vector x(i) which maximizes the linear function f
and satisfies the following linear inequalities

C. POSSIBLE ADDITIONAL FUNCTIONS

There will, of course, eventually be a large l ist of arithmetic
functions available to the FORTRAN system. The following
items indicate certain slightly unusual types of functions.

i)

ii)

iii)

iv)

- -

General Function:
-

------ -3;
Such a function would enable a programmer to avoid rewriting L

a se t of formulas describing a function peculiar to his problem I

hut which occurs frequently in his problem. Such-a function
would enable the programmer to specify the formula numbers of
the formulas describing his function and the arguments to be
used in a given instance. The value of the function would be
the value of the right hand expression of the last specified
formula in the function description, having substituted the
specified arguments fo r the original arguments appearing in
the formula description of the function.

Definite Integral . ---.L. -r-.-.).le ,----
.

. . I

Such a function would enable the programmer to specify the
independent variable, the limits of integration and the expression
to be integrated.

Summation .

This function would enable the programmer to specify the
index of summation, the limits of summation and the expression
to be summed. 3

able Lookup

t
4

1 his fur.cl.ion would enable the programmer to specify the table
number and the argument (or arguments if the particular functi.3n
was bivarih 1 t.: .

Although the FORTRAN system is being designed to produce a correct
program from a correct meaningful se t of FDRTR-AN formulas and
ali ..,ugh the programmer will invariably discover many possible
formulations of the same problem, the use of certain techniques will,
of course, result in more efficient 704

A. REPRESENTA'iION OF COMPLICATED EXPRSESSIOPJS

In translating a single arithmetic formula, the FORTRAN system
wil l permute the operaliocs indicated in the express ion on the right
wherever this is permissible in order to minimize the number of
ST0R.E instructions which will be required ir, the re .xlting 704
program. Thus a x b x c /d/e would be permuted to a/dxb/exc.
However, any order of comput-ation which is specified by use of
parerit.hesis will be followed. Furthermore, if certain portions
of am expression a r e identical to certain other port.ions of the same
expression (all in the same formula), i.he system will recognize
this and avois duplicaE-~Z'culat.ions. To enable the FORTRAN
system to recognize duplications of various subexpressions in an
. -:~.,)ressiorl . - .. on the riglit side of arL arithmetic formula, i t will only
be necessary to ericlose duplicat.ed subexpressiori~ where they
apFear a s part of a term in the expression. Where duplicated
subex~;ressio~;s occur a s comple1.e terms, it will not be necessary
to E ~ C ~ O S ~ . l)io i erm ir; paren+t:eses. FurtLermore, if +:he duplicated
subexpression i s a function which apFears in several places with
the same argumefif;, it, wiil not be riecessary to enclose the function
i r k parentheses even though it, may be a portion of a te rm. T ! x
the f ollowifig ex~ressior. :

. ,

a r b A c xisl xbxc+eycos (a))/ : i~bxe+fxcos (a)) +syrt (a~bxe+fxcos(a))

may be wri:feri in (he followirg forrn to avoid duplicak calculaticns:

((axb) xc) x((axb) xc-t-exos (a;)/ ((aib)xe+f x o s (a j) + sqrl ((arb)xe+fxcos (a))

In general then, if a complicafed expression is involved in a problem,
il is best not to introduce new dependent variables to represent
port ions of tile w m ~ l i c a t e d expressior. and the11 to represent the
complicated expression as an expression involving the new dependent
variables. Adherence to this pr iriciple allows ihe FORrTR.A N system
to c a r r y out the maximum amount of optimization.

B. FORMATION OF LOOPS

In specifying operations on sequential items in ordered arrays,
it is best to w e do-formulas wherever possible since such formulas
present the control information which the system needs in forming
loops in a consolidated form. The use of formulas such a s

if (i>n) n l , n2

may result in some unnecessary instr'uctions in the resulting
program if such instructions a re used to formloops which could
be otherwise formed by the use of do-formulas.

C. DEBUGGING

No special provisions have been included in the FORoTRAN system
for locating e r ro r s in formulas. After some experience has been
gained in the use of the system, it will be possible to write a
program to locate the most common of the frequently occurring
e r ro r s in a formula program. Since FORTRAN formulas a r e
fairly readable, it should be possible to check their correctness
by independently recreating the specifications for the problem from
its FORTRAN formulation. In this way it should be possible to
write correct formula programs from which the FOR.?'R.AN system
wi l l of course produce correct 704 programs.

D, PROGRAM CHECKS

There a re no automatic provisions in the FORZRAN system for .
including checks on correct machine operation in an automatically
coded program unless the checks a re provided for in the original
formula program. Since FORZRAN-written 704 programs wi l l be
written in accordance with certain uniform principles, it should
be relatively simple for an operator experienced with F ORTRAN-
written programs to determine what has happened in a program
after a machine failure.

