
March 20, 1957

FORTRAN INTRODUCTORY PROGRAMMER'S MANUAL

SECTION I

This first section of the forthcoming Introductory Pro­

grammer's Manual is being distributed in this form to permit its

early use for teaching purposes. The subsequent sections will be

distributed as they become available. Finally, the entire manual

will be distributed in type- set form.

This material may be reproduced as desired.

Programming Research Department

International Business Machines Corporation

590 Madison Avenue

New York, New York

INTRODUCTION

This manual is intended to inform its readers in as Goncise a

form as possible how a large-scale electronic calculator (the IBM

Type 704) may be employed to produce answers to many problems

in engineering, physics, and other related technical fieids. No
c

prerequisite ·knowledge of computing technology or techniques on

the part of the reader is assumed.

In order to clarify what the 704 can do and what it cannot do,

consider, for example, the problem of finding the roots of a

quadratic equation. The 704 cannot be given an equation of the

form

3x2 + 1. 7x - 31. 92 = 0

and asked to find its roots. The machine, however, can be

directed to compute the value of

(-'1. 7 + v' (1.7)2 - 4 (3)(-31. 92) / 2(3)

which gives one of the roots of the preceding equation. That is. the

704 must be told how to find the answer. It will do the work.

Once the 704 has been told how to solve a problem. it can take

2.

in data at a rate exceeding 1000 numbers per minute, perform

arithmetic steps at an approximate rate of 10,000 per second,

and print results at a rate of about 750 per minute. Thus the 704

can do in minutes calculations which would otherwise require

weeks or months to do.

Unfortunately, electronic computers, the 704 included, have

been designed to respond to a special type of language which takes

considerable effort to learn. It is this "machine language" which,

in the end, must be used to tell the machine what steps to perform

to solve a problem. However, it is not necessary to learn the

language ,of the machine. Instead, a simpler language for directing

the 704 will be presented in the succeeding sections of this manual.

It is called the FORTRAN language.

The FORTRAN statements which describe how to solve a

problem are not directly intelligible to the 704. However, the 704

can be told exactly how to translate a statement in FORTRAN language

into machine language. The FORTRAN System is a large set of

machine language instructions which causes the 704 to translate

the FORTRAN statements into instructions in machine language.

The 704 can later carry out these machine language instructions

3.

and do the actual computing job. The name FORTRAN comes from

"FORmula TRANslation" because many of the statements to be

translated look just like algebraic formulas.

In order to avoid having to read and learn more than is necess­

ary to solve the problems of immediate interest, three systems

will be described, each one permitting the convenient description

of more complex problem solving procedures than its predecessor.

Each system is complete in itself. Every statement which can be

made in System I can also be made in Systems II and III. Al1

statements in System II are valid in System III. Thus the description

of System II simply consists of showing how to write a few state­

ments not described in System I; etc. It is hoped that this progress

by easy stages wil1 result in a brief and clear presentation.

By using only the statements contained in System 1, it will be

possible to direct the 704 to take numbers from a card reader,

combine them according to formulas involving arithmetic operations

and functions such as sine, square root, log, etc., and final1y print

the results. System I also contains statements which can cause the

704 to make tests and follow different directions depending on the

outcome of the tests.

System II, in addition to the facilities of System I which make

4.

it possible to handle individual numbers, provides for treating

the elements of vectors or lists of numbers in a systematic,

repetitive manner. System II also provides for the possibility of

defining and using functions which are peculiar to the problem

being solved. It is also possible to direct the 704 to take input

information from magnetic tapes and record output information on

them. Since information can be placed on magnetic tapes and

printed fromthem by equipment separate from the 704 (card-to­

tape and tape-to-printer), it is possible for the 704 to take in

data from tape and record results on tape at a much greater speed

than by reading data cards and printing results directly. By using

magnetic tape for input and output, it is possible to read or write

more than 900 numbers per second. Greater flexibility in the format

of input and output data is also provided iIi System II.

System III adds to these facilities the ability to handle mat:rices

and three dimensional arrays of numbers, and nlore complex

repetitive procedures. Means are also provided for further con"

trolling the flow of control within the program.

Even System III does not include all of the facilities offered

by the complete FORTRAN System. Complete information about

FORTRAN is available in the FORTRAN Programmer's Reference

5.

Manual. the complete title of which is The FORTRAN Automatic

Coding System for the IBM 704 EDPM. This manual can be

ordered through your local IBM office.

It was stated earlier that this manual was going to describe

how to use the 704. However. it will not explain the details of

button pushing, tape loading, card feeding, and other related

operations needed to get the 704 working on a problem. It has

been assumed that the 704 will be operated by a computing center.

At the computing center, the FORTRAN statements are first·

transcribed onto punched cards. The statements will be punched

exactly as they have been written, each letter, digit, or punctuation

mark resulting in one or a combination of holes in a single column

of a card. These cards are then put in the card-reading mechanism

of the 704. Instructions already in the machine cause the 704 to start

reading the FORTRAN statements from the cards. The 704 then

operates for a few minutes, translating the FORTRAN statements

which have been supp~ied to it into machine language instructions.

These machine instructions are recorded on punched cards by the

704. This new set of cards now contains a machine language "pro­

gram" which can be entered into the 704 any number of times, each

time causing the 704 to carry out the procedure specified by the

6.

priginal series of FOR 'fRAN statements.

Before descdbing FORTRAN Systems I, II, and III, a short

description of the 704 iteeH may be of interest. The 704 consists

of an arithmetic and logical unit, a storage unit capable of storing

4,000, 8,000 or 32,000 numbers, magnetic tape units and magnetic

drum units for holding iruormation exceeding the capacity of the

storage unit, a card reader, a card punch, and a printer. In addi­

tion there is a control unit which directs the flow of information

between these various units in accordance with instructions in the

storage unit.

Most calculations performed by the 704 ~re carried out in

"floating point" form. That is, numbers are represented in the

machine in a form analogous to floating decimal form and the

results produced by the arithmetic unit are usually in this form.

For example: calculation of the product

5xO.0037

would be carried out in a' form similar to

(.5000 OOOOx H)l) x (.3700 OOOOx 10-2)= (.1850 OOOOx 10- 1).

This would be the case e\l"en though the numbers were entered as

5.0 and 0.' 0037 and the result were printed as 0.0185. All floating

7.

point numbers in the 704 are carried to about 8 significant

decimal digits. Numbers outside the range 10- 38 to 1038 (other

than zero) cannot normally be accommodated.

'In the following sections of this manual, Section I describes

System 1, Sections land II describe System II, and Sections I, II

and In taken together describe System III. The division of the

'subject matter into three systems has been made to permit the

gradual introduction of new material. It is hoped that the end

of a section will not be regarded as a real boundary, but rather

that the mastery of one section will result in a desire to in­

vestigate the next.

Please remember that the FORTRAN language statements

are going to be translated by a. machine before the problem is

ready to be run. The machine has. no ability to understand what

was meant; it can only translate what was written. Therefore,'

the omission of a single decimal point or operation symbol may

make a FORTRAN statement unintelligible and incapable of being

translated correctly. For this reason the rules which must be

observed in writing FORTRAN statements should be followed

carefully. In devising the FORTRAN System considerable effort

was devoted to making these rules consistent and having them

8.

conform to common usage wherever possible. A number of

examples have been provided to illustrate these rules without

having to include specific statements of them in the text. It is

hoped. for example. that a fairly complete notion of what a

legitimate statement in System I must look like will be con­

veyedby the examples in Section I., A check-list of things-not­

to-write appearing at the end of each, sectio~ should answer any

remaining questions. Some of the rules in the check-list will

not have been explicitly stated elsewhere.

9.

SECTION 1°

Introduction

By way of introduction, consid~r the quadratic equation

example presented previously. The algebraic representation

could be written

-B + ../B2 - 4AC
root =----------2-A---------

where A = +3

B= +1.7

C = -31.92.

The complete FORTRAN progx:am which describes this calculation

and provides for printing the result may be written in six separate

statements as follows:

A = 3.

B = 1. 7

C=-31.92

ROOT = (- B + SQRTF (B**2~ - 4. *A*C))/(2. *A)

PRINT I, ROOT

STOP

10.

The first statement means lIassign the value 3. to the variable

A". The next two statements have a 'similar meaning. The fourth

statement means "evaluate the expression on the right side and

assign the ,x-esult to the yariable 'ROOT'''. The last statement

instructs the computer to stop.

Notice the sequential nature of the program. The computer

executes instructions in the same order as the order of the state­

ments. For example. if the fourth statement were to be moved

up and made the first statement, then the computer would evaulate

'ROOT' b~f()re obtaining the desired values of A. B. and C.

iROOT' would. therefore, be evaluated using some arbitrary,

unknown values for these variables.

(The above example was written to illustrate the use of variables.

However, the same result could be obtained by writing

ROOT = (-1. 7+SQRTF (1. 7**2. -4. *3. *(-31. 92))/(2.*3.),'

PRINT 1. ROOT

STOP

in which the actual numerical values appear in the statement des­

cribing the evaluation of 'ROOT'.)

In order to describe more com,pletelythe·types of statements

inciuded'in System I. each of the statements used in System I will

be considered in greater detail.

Arithmetic Formulas

11.

The first four statements in the above example are called

arithmetic formulas. As is evident, an" arithmetic formula looks

like a simple statement of equality. The left side of the equality

is a variable, and the right side is an expression which may

involve parentheses and symbols for operations, constants,

variables, and functions, combined in accordance with a set of

rules much like that of ordinary algebra .

. The fourth statement in the example illustrates the use of

the five basic operations in the system. The symbols "+" and

"_II are used in the usual way for addition and subtraction.· The

symbol "*" is used for multiplication, and "/" is used for division.

The last basic operation, A to the power B (AB) is written

Notice that in writing a constant, a decimal point must be

included. This is necessary in order to indicate to the computer

that the number is to be treated in floating point form, since all

calculations in System I are carried out in floating point arithmetic.

Just as in ordinary notation.

A>'.o:cB>:CC + D>!c>''''E/F - G

will be interpreted to mea.n

(ABC) + (DE/F) .. O.

12.

That is, if pa,l"enthese not used to specify the order of opel"ations,

this order. from inside t~ outside', is assumed to be:

(1) exponentiation

, '(2) multiplicaUon and division

(3) addition and lubtraction

P~rentheses a're used in,tlJe usual way to specify order. For

example

(A(B + C))D

ma y be written in FOR TitAN as

(A*(B + C»**D.

There a ~e just three eXC'eptiona to the ordinary rules of ma,the­

mati cal notation. These ,are:

(1) In ordinary notation "AB" means "A. B" or "A times

B". However. "AB" never means "A*Bij in FORTRAN'.

The multiplication operation symbol cannot be omitted.

(2) Ordinarily .. expressions like "A/B· C" and "A/BI e"

are considered ambiguous. However, such expressions

~ allowe4 in FORTRAN and will be interpreted as

follows:

A/B*C means (A/B)*C

A*B I C means (A*B) I C

AlBIC means (A/B)/C

A/B/C*D*E/F means ««A/B)/C)*b)*E)/F.

13.

That is, the order of operations is simply taken

to be from left to right. in the same way that
, .

A+B-C+D-E

means

«(A+B) - C)+D) - E.

(3) The expression "ABC" is often considered meaningful.

However. the corresponding FORTRAN expression

"A**B**C" is not allowed. It should be written as

"(A**B)**C" or "A**(B**C)", whichever is desired.

Besides the ability to indicate constants (like "3.57" and "2. "),

variables (like "A" and "ROOT"), and operations (like "_" and

"*"), it is also possible to use functions. In the above example

"SQRTF()" indicates the square root of the expression in

parenthe se s.

Since the number of possible functions is very large. each

704 computing center will have its own list of available functions.

with information about their use. Only functions given in this

list should be used and they should be referred to exactly as irt-

dicated •.

Some functions which might appear in a· typical list are:

ABSF(X)

SQRTF(X)

SINF(X)

(absolute valUe of X)

.;x
,:1
j.,,1 -

sin X

ARCTANF(X) ..•.•.•. arctan}(:

EXPF(X) ' ..
LOGEF(X)

LOG10F(X)
\ '

iNTF(X) integral part of X

MAXF(X, Y) maximum of X and Y

Notice, as in the last example, that a 'function may have more than

one argument, in which-. case the arguments are separated by commas.

Input- Output Statements

As explained in the Introduction, statements in System I can

direct the 704 to take numbers from a card reader and, after

carrying out the desired calculations, print the results. Consider

again the example of~iIld,ing a root of a quadratic equation. In

many cases it will be desired to find ROOT for a number of sets

15.

of values of A, B, and C. In that case the 704 would have to be

directed to read a card in which values for A, B, and C have been

punched, compute the value of ROOT, and print ROOT (along with

A,B, and C), read another card with different values for A, B,

and C, compute and print the corresponding value of ROOT and

so on. In this case, the FORTRAN program could be written

10 READ 1, A, B, C

ROOT = (-B+SQRTF(B**2. -4. *A*C»/(2. *A)

PRINT 1, A, B, C, ROOT

GO TO 10

The first statement (which has been given the number 10 for

reference purposes) causes the 704 to read the first card from

the deck in the hopper of the card reader. On this card must be

three numbers. The first number will be assigned as the value

of A, the second as the value of B, and the third as the value of

C. The machine then proceeds to compute ROOT as before,

after which it will print (on one line across the page) the values

of A, B, C, and ROOT in that order. Upon reaching the last

statement, the 704 is directed to "go to the statement numbered

10 and do what it says". Thus the 704 reads the next card with

16.

three new values for A, B, and C, then computes ROOT, prints,

and again returns to statement 10. This process will continue

as long as there are cards in the hopper of the card reader. When

the cards are exhausted the ma'chine wi11 stop in the attempt to

read a card which isn't there.

FORTRAN provides iacilities for specifying the format of

input data and of printed output in a great variety of ways.

'FORMAT' statements are used to apecify the desired arrangement

for input cards and for printing. Two particular FORMAT state­

ments are available for use with System 1. The general description

of FORMAT statements appears in Section II beginning page

One or both of the two FORMAT statements, which will

always be numbered 1 and 2, will be added to the completed pro­

gram by the computing center provided the computing center has

been requested to do so. All that is required in order to be able

to use these statements is a knowledge of the way in which the

input data should be arranged and of the arrangement of the printed

results. If one of these arrangements is suitable, then it may be

called for by using 'READ' or 'PRINT' with a 1 or a 2 following.

In this case, statement numbers 1 and 2 must be reserved fo-r the

FORMA T statements and should not be used as the number of any

17.

other FORTRAN statement. READ and PRINT statements are

similar in nature and in appearance. Consider first the READ

statement in the preceding example.

READ I, A. B. C

The first item after 'READ' is the number. of the FORMAT statement

which describes the arrangement of data on the cards to be read.

Then there follows a list of the variables which are to receive the

values to be read in (A. B, and C). Such a list can be as long as

necessary. In any case, when a READ statement is executed a

stream of numbers will come in from the card reader and each

will·be assigned as the value of the corre~ponding variable in the

'list' part of the statement, the first number corresponding to

the first variable, the second number to the second variable, etc.

The card reader will continue to read in numbers until the last

variable in the list has received a value (unless, of course, the

cards are exhausted first). Both FORMAT statements 1 and 2

specify five numbers on a card, therefore, the stream of numbers

which is brought in by giving either READ 1 or READ 2 consists

of five numbers from the first card. five from the second, and so

on until the list is exhausted. In the example only three variables

appear in the list. Thus the list is completed before the end of the

18.

card is reached and only the first three numbers on a card will

be read. Since each new execution of a READ begins with a new

carel, the values of A, B, Pond C would be placed in the first three

of the five fields on each card. The arrangement of the numbers

might appear as:

Field

card 1

card 2

card 3

etc.

1

3.

1.5794

- 180.

2

1. 7

- 11. 3

- • 001

3

- 31. 92

+ O. 00023

4.20

4

As has been mentioned, PRiNT statements are very similar to

5

READ statements. PRINT 1 and PRIN't 2 both speCify that five

numbers are to be printod on each line until all the variables in the

list which follows "PRINT" have been printed. The PRINT statement

in the above· example

PRINT 1, A, B, C, ROOT

would result in lines like

+3.00000

+1.579'10

etc.

+ 1. 70000

-17.30000

-31. 92000

:-+0.00023

being printed each time the statement is executed~

(value of ROOT)

(value of ROOT)

19.

The only difference between the two standard FORMAT sfat~ments

is that FORMAT 1 calls for fixed point input or output whereas

FORMA T 2 calls for floating point input or output.

If fixed point input is desired, data should be arranged in

five columns. Each line will be punched (by the computing center

usually) on a single card. Each number may have a sign, (un­

signed numbers are interpreted as positive) and must have a

decimal point. A maximum of ten digits per number is permitted.

Several examples follow.

Statement

READ 1, A, B, C, D, E, F

Data Sheet

Case 1 A, B, C I D, E

F

Case 2 A, B, C, D, E

F

etc.

1.0

14.2

4.7

-3.0

+50001.

-1763.

-.0007

+.0589

Statements (appearing together in a program)

READ 1, A, B, C

READ 1, D, E, F, G

160. - O. 0615

87. -0.0023

20.

Data Sheet (for both READ statements)

Case 1 A, B, C 150579. 1 10000000. 15. 1007

D, E. F, G -1005.7 -.00000005 +1.0003 14.

Case 2 A. B, C 2704~3 100000. 23.0823

D. E. F. G -99.5 -.087654 +0.3879 7.

The data sheet for floating point input should be arranged with five

major columns, each column having a right-hand subcolumn wide

enough for the exponent (a sign and two digits).... The' same examples

could be written for floating point input as follows:

Statement

READ 2, A, B, C~ D, E. F

Data Sheet
j

Case 1 A,B,C.D,E 1.0 '+00 +50001. '+00 -.0007.+00 1. 61+02 -6. 15~
I I , , 1

F
1

I 1.42,+01 , ,
I

, I

':'2.3e1 Case. 2 A,B,C,D.E 4.7 ,+00 -17630. -01 +.0589:+00 . 8.7:+01 ,
·F

,
-3.00.+00 ,

Statements

READ 2, A, B, C

READ 2, D,E. F, G

. 21.

Data S~eet

D,E,F,G

1.5057911 +05 1. '+07 15. 1007 :+00 : 1 I 1
1 I I 1 I

I 1-08 +1. 00031+00 1 1
.. 1. 0057 ,+03 5.0 1.4. 1 +01 I 1 , I I 1 I

2.7043: +03 :+05
I

I I
1. 23.08231+00 1

I
, 1 I , I , 1

-9.95 1+01 -8. 7654: -02 +3.879 '-01 7.
,

+00
,

I I , I

Case 1 A, B, C

Case ~ A, B, C

D,E,F,G

It is necessary that there always be three characters in the exponent

field - a sign and two digits. The limit of ten digits per· column

leaves eight digits for the number ·(inaddition !o the two required

for the exponent) •.

For fixed point output, 'PRINT l'causes numbers to be printed

with five decimal places. Five numbers ar~ printed per line. It

. should not be used if any result will exceed 999,999. If th~ input

data of the preceding examples were to be printed in fixed point,

the FORTRAN statements and printed sheets would appear as

follows.

Statement

PRINT 1, A, B, C, D, E, F

Printed Sheet

+1.00000 +50001.00000 -0.00070 +160.00000 -0.06150

+14.20000
.. '. I ••

+4.70000 -1763.00000 +0.05890 +87.00000 -0.00230

-3.00000

Statements

PRINT 1, A, B, C

PRINT 1, D, E, F, G

Printed Sheet

+ 150579.10000

-1005.70000

+Z704.30000

-99.50000

(too large to print)

+0.00000

+100000.00000

-0.08765

+15. 10070

+1. 00030

+Z3.08Z30

+0.38790

ZZ.

+14.00000

+7.00000

The use of "PRINT Z" causes numbers to be pri~ted in floating

point form, five numbers to a line. The numbers appear with

the ~ign and one digit to the left of the decimal point and five

digits to the right of the decimal point, with the. letter "E"

and the sign and the two digits of the exponent immediately

following. The FORTRAN statements necessary to print the

numbers from the preceding examples in floating point form

appear below along with examples of the printed sheets.

Statement

PRINT 2~A. B. C. D, E, F

Printed Sheet

+1.OOOOOE+OO +S.OOOIOE+04

+1. 42000E+OI

+4.70000E+OO -1.76300E+03

-3.00000E+OO

Statements

23.

-7.00000E-04 +1.60000E+02 -6.IS000t-02

+S.89000E-02 +8.70000E+OI -2.30000E-03

PRINT 2, A., B, C

PRINT 2, D, E, F, G

Printed Sheet

+1.SOS79E+OS +1.OOOOOE+07

-1.OOS70E+03 +S.OOOOOE-08

+2.70430E+03 +1.OOOOOE+OS

-9.9S000E+OI -8. 76540E-02

Control Statements

+1. SI007E+OI

+1. 00030E+OO +1. 40000E+OI

+2.30823E+OI

+3. 87900E-OI +7.00000E+OO

Besides ai-ithmetic formulas and READ and PRINT statements,

there are three other statements which may be used in System 1.

Two of these have already appeared in the examples - 'STOP' and

'GO TO'.

The meaning of STOP is self-evident. A STOP statement

should be used, as in the first example, to tell the computer when

24.

th:¢ end of the calculation has been reached. It may be bmitted in

certain cases, such as that encountered in the second example,

where the absence of Cd rds in the card reader causes an automatic

halt.

The meaning and use of a GO TO statement is also quite

obvious. At any point in a program, if it is desired to specify

that the next statement to be executed is not, as is .normally the

case, the one following but instead, the statement numbered "nll,·

the statement 'GO TO n' will transfer control to that statement

and execution will proceed from there.

As an introduction to the third type of control statement,

consider the following problem:

Given values a, b, c, and d punched on a card and a

set of values for the variable x punched one per card,

to evaluate the function defined by

fax2 +bx+ c
f(x) = 0

-ax2 +bx - c

ifx..::d
if x = d
ifx>d

for each value of x and to print x and f(x).

The FORTRAN program for this problem might be written

as follows:

10 READ 1, A, B, C, D

'25.

11 READ 1, X

12 IF (X - D) 13, 15, 17

13 FOFX= A*X**2. + B*X + C

14 GO TO 18

15 FOFX = O.

16 GO TO 18

17 FOFX= -A*X**2. + B*X - C

18 PRINT 1, 'X, FOFX

19 GO TO 11

The values for A, B. C, and D are read from the first card

(statement 10) and the first value of X is read from the next card

(statement 11). Statement 12 is then executed. It says "if the

quantity (X - D) is negative, go to statement 13, if it is zero, go

to statement 15, and if it is positive, go to statement 17." Hence,

if X < D, the value of FOFX is calculated using the proper formula

from the problem statement, and the execution of statement 14

results in statement 18 being executed next. Similarly. if X = D.

I

control goes from the IF statement to the proper formula (statement

15). and then from statement 16 to statement 18. If X ;:> D, the IF

statement selects statement 17, after which statement 18 is

automatically taken next. Thus in all three cases control eventually

26.

reaches the PRINT statement, which prints the value of X and

FOFX. Statement 19 then returns control to the READ statement

which reads in the next value of X, and the whole pattern repeat,s

until all of the X-cards have been proc~ssed. At this point, the

704 will automatically halt when it attempts to execute the READ

and finds no more cards in the card reader.

As has been illustrated, the 'IF' statement is really a kind

of conditional, three way,_ 'GO TO' statement. It often happens,

as in the above problem, that the computer must choose one of

two or three paths depending on whether the current value of an

expression is negative, positive, or zero. This is done by writing

IF (E) nl' n 2 ,' n3

where (E) is the expression and nl is the number of the statement

to which control is transferred if (E) is negative, n 2 if zero, and

n3 if positive.

It has been implied in this discussion that the FORTRAN

statements which make up the program are numbered. However,

it is not necessary to number every statement. The only state­

ments which must be numbered are those which are referred to

(as in 'GO TO' or 'IF' statements). Any numbers between 3 and

32,000 may be used as desired, provided two different statements

27.

are never given the same number. As has been mentioned earlier,

in System I statement numbers 1 and 2 have been reserved for two

standard I FORMAT' statements (page 16).

Checklist

In the preceding description of System I, no attempt has been

made to cover in detail all of the information which will.be necessary

or helpful in writing a program. The following list of items, to":,,

gether with what has already been presented should supply this

information.

1. 1 The basic characters which may be used in writing a

FORTRAN statement are

1. 1. 1

1. 1. 2

1. 1. 3

A, B, C, ... Z (26 alphabetic characters)

0, I, 2, ..• 9 (10 numeric characters)

+ (plus), - (minus), * (asterisk), / (slash),((left parenthesis),

) (right parenthesis), , (comma), = (equal sign), and.

(decimal point)

1. 2 Upper and lower case alphabetic characters are indisting-

uishable on a punched card, i. e. "A" and "a" will both be .

treated as "Afl.

28.

1. 3 The digits 1 and 0 must be carefully distinguished from

the alphabetic characters I and O.

1. 4 Every constant must have a decimal point.

I.5 A variable 'Symbol can consist of six or less characters.

It must satisfy the following conditions:

1.5. 1 The first character must be alphabetic.

I. S. 2' The .first character cannot be I, J, -K, L.M. or N (which ,.
are set aside to denote integer variables as discussed i~

Section iI).

1. 5. 3 Any character following the first may.be alphabetic or

numeric, but not one of the special characters.

1. 5.4 The names of all functions appearing in the list of funcU6ns

as well as these names without their final letter "F" must

. not be used as variable symbols. For example, if SINF

appears in the list of functions, then neither SINF nor SIN

can be used as a variable symbol.

1. 6 In indicating a function, the name of the function must

agree exactly with the name appearing in the list of

functions.

1. 7 The argument of a function is enclosed in parentheses.

29.

1. 8 If a function has more than one argument, the arguments

are separated by commas.

I. 9 The left side of an arithmetic formula must always be

a variable.

1. 10 Never omit the operation symbol between two quantities,

e. g. do not write "AB" for "A*B".

1. 11 Never have two operation symbols in a row, e. g. do not

1. 11. 1

write "A* -B" for "A*(-B)~I.

The only exception is the operation symbol 11,-.. *", which

is regarded as a single symbol.

1. 12 Blank spaces can be used as desired since blanks are

ignored in the translation. For example,

A = 0.1

could be written as

A = 0.1

and

GO TO 25

could be written as

GOT025

1. 13 The prescribed form for the various non-arithmetic state­

ments must be followed exactly (except for the arbitrary

30.

use of blank spaces). For example, the statements

READ lA, B

IF A - B, 5, 6, 7

are incorrectly written. They should be written

READ I, A, B

IF (A-B) 5,6,7

with the punctuation marks appearing exactly as specified.

I. 14 The ~agnitude 01 every n~n-zero quantity must lie bet~een

10- 38 and 1038• By "quantity" is meant any constant or any

value assumed by a variable, or function in the course of

th.,~ calcuU!1tion.

1. 15 ~bers\o be read by means of a "READ l" statement
, ,

must not exceed 10 digits.

1. 16 ,'Numbers to be read by means of a "READ 2" statement

. must not exceed 8 digits. The exponent must have two

digits and a sign.

1. 17 ,Nlitmbers to be printed by means of a "PRINT I" statement

. should not exceed 999,999.99999.

1.18
, , '

The (physically) last statement of a program should be a

STOP statement or a statement which causes a tra~sfer

31.

to some other st;.ttc~n(mt in the program (a GO TO or an

IF statement).

Further Examples

1. To find the approximate numerical solution of the or­

dinary differential equation

dy/dx = xy+ 1

in the interval o ~ x ~ 1, given that

y = 0 when x = o.

A crude but sometimes effective method of solving such an equation

is as follows:

Assume that a point (xO' YO) of the solution function is

known. Then from the differential equation it is also

known that dy/dx, the rate of change of y with respect

to x, at this point is xoy 0 + 1. Hence, an increment of

A x, in x would produce an approximate change in y of

Ay = Ax(xOYO + 1)

and

y(at Xl) = y(at x+ Ax) = yo + Ax (xOYO+ 1).

After the point (x l' y 1) has been obtained, it can be used

to find (xZ' YZ) in the same way, i. e.

32 .

.
Y2(at x2) = Y2(at xl + I:J. x) = Yl + I:J.x(xlY l + 1).

This procedure is continued until the point x = 1 is

reached. In general, the equation for stepping forward

Since tfiie error of apprqximation depends on the mesh size,
'",

I:J. x, it wi¥ ~'e left as a parameter in the program. Then tlle
~.

solutionsrbr various values of I:J.x can be compared to give an

empirical idea of the error. 7'0 print the value of every point

obtained wOuld be unnecessary and costly. since I:J.x will be quite

stilall, so the program will be arranged to print only at intervals

of 0.01. The program, and an eJCPlanation of some of the state-

ments, follows.

READ I, DE.LTAX

PRINT 1, DELTAX

XPRINT = 0.01

x = 0.0

Y = 0.0

3 Y = Y + DELTAX*(X*Y + 1. 0)

x = X+DELTAX

IF (X - XPRINT) 3, 4, 4

4 PRINT 2, X, Y

XPRINT = XPRINT + O. 01

IF(X- LO) 3,5,5

5 STOP

33.

The only input to the program is the value of DELTAXpunched

in fixed point on a card, which is read by the first statement and

printed to head the answer sheet by the second statement.. The

third statement initializes the "next value to be printed" (1. e.

XPRINT) to 0.01, and the next two statements to assign the proper

initial values to X and Y. Statement 3 is the basic equation for

finding the next value of Y. Notice that the previous value of Y is

used in the calculation, and then is replaced by the result of the

calculation to give the neW value of Y. The next statement cal­

culates the new value of X. This value of X is then compared with

the value of XPRlNT and if it is less than this value control goes

back to calculate the next point. As soon as X equals or, exceeds

XPRINT, the calculation is interrupted to allow the current values

of X and Y to be printed ac(:ording to statement 4 (in floating point

form). The value of XPRlNT is increased by 0.01 for the next

34.

value to be printed. Then a test is made to determine whether

the value of X has reached 1. O. If X equals or exceeds 1. 0, the

problem is finished and the computer stops (statement 5); if not,

control returns to statement 3 to calculate the next point. (Note:

the time required by the computer to calculate a point is about 0.9

milliseconds. Hence, for the case Ilx = 10- 5 , i. e. 100,000

points. the calculation time would be about 1. 5 minute s.)

2. To determine the current in an alternating current

circuit consisting of a resistance, an inductance, and a capacitance,

havin:.g been given a number of sets of values of resistance, in-

ductanee, and frequency. Th,e current is to be determined for a
. ,

\ n~mber of equally spaced values of the capacitance (which lie be-

tw~en specified limits) for voltages of 1. 0, 1. 5, 2.0, 2. 5, and 3.0
\
\\

vol\ts.

The equation for determining the current flowing through

such a circuit is

i =
E

~~""\»4IW'I4_'''-~'''''_." __

VR2+1(2lTfL-. 1)2
2 lTfC

where i:: current, amperes

E = voltage, volts

R = resistance, ohms

L = inductance, henrys

35.

C = capacitance, farads

f = frequency, cycles per second

1T= 3.1416

The FORTRAN program could be written as follows:

10 READ 1, OHM, FREQ, HENRY

11 READ 2, FRD 1, FRDFIN

12 PRINT 1, OHM, FREQ, HENRY

13 VOLT = 1. 0

14 PRINT 1, VOLT

15 FARAD = FRD 1

16 AMP = VOLT/SQRTF(OHM**2. +(6. 2832*FREQ*HENRY

-1. /(6. 2832*FREQ*FARAD»**2.)

17 PRINT 2, FARAD, AMP

18 IF (FARAD - FRDFIN) 19, 2 I, 2 1

19 ' FARAD = FARAD+O. 000 000 01

.. :0 GO TO 16

21 IF (VOLT - 3.0) 22, 10, 10

22 VOLT = VOLT+0.5

23 GO TO 14

36.

Statement 10 causes the values of the resistance, the fre-

quency, and the inductance to be read, in that order, from the

first card. Statement 11 causes He initial and final values of the

capacitance to be read from the next ca,rd. The values of the

resistance, frequency, and inductance are printed (statement 12)

in fixed point form. The initial value of the voltage is introduced

and printed (statements 13 and 14). Statement 15 causes the initial

value of the capacitance to replace the "current" value of the

capacitance (denoted as FARAD). The actual calculation is

specified by statement 16. The result of that calculation, together

with the current value of the capacitance, is printed (statement 17).'

The current value of the capacitance is compared with the

.
final value to determine whether or not all values have been in-

vestigated (statement 18). If not, the expression is negative and

the program proceeds to statement 19, which causes the value of

the capacitance to be increased by the given increment. This is

followed by a transfer (statement 20) to statement 16 which causes

the calculation to be repeated for the new value of the capacitance.

If the expression in statement 18 is zero or positive, all values of

the capacitance have been investigated and the program transfers

to statement 21.

At this point the value of the voltage is compared with the

37.

upper bound to determine whether or not all specified values of the

voltage have been used. If not, the expression in statement 21 is

negative and the program proceeds to statement 22 which causes:

the value of the voltage to be increased.' Following this, a transfer

. (statement 23) is made to statement 14, which causes the new

value of the voltage to be printed and the entire process of in­

vestigating all values of the capacitance is begun again •. If all

values of the voltage have been used (the expression in statement

21 is zero or positive), the calculations for the current set of

values of resistance, frequency, and inductance are finished.

The program is returned to statement 10 so that the two cards

defining the next case may be read and the program repeated.

This process is repeated until all of the cases have been con­

sidered, 1. e.all of the cards have been read.

	Intro-Section_I_Page_01
	Intro-Section_I_Page_02
	Intro-Section_I_Page_03
	Intro-Section_I_Page_04
	Intro-Section_I_Page_05
	Intro-Section_I_Page_06
	Intro-Section_I_Page_07
	Intro-Section_I_Page_08
	Intro-Section_I_Page_09
	Intro-Section_I_Page_10
	Intro-Section_I_Page_11
	Intro-Section_I_Page_12
	Intro-Section_I_Page_13
	Intro-Section_I_Page_14
	Intro-Section_I_Page_15
	Intro-Section_I_Page_16
	Intro-Section_I_Page_17
	Intro-Section_I_Page_18
	Intro-Section_I_Page_19
	Intro-Section_I_Page_20
	Intro-Section_I_Page_21
	Intro-Section_I_Page_22
	Intro-Section_I_Page_23
	Intro-Section_I_Page_24
	Intro-Section_I_Page_25
	Intro-Section_I_Page_26
	Intro-Section_I_Page_27
	Intro-Section_I_Page_28
	Intro-Section_I_Page_29
	Intro-Section_I_Page_30
	Intro-Section_I_Page_31
	Intro-Section_I_Page_32
	Intro-Section_I_Page_33
	Intro-Section_I_Page_34
	Intro-Section_I_Page_35
	Intro-Section_I_Page_36
	Intro-Section_I_Page_37
	Intro-Section_I_Page_38

