
April 10., 1957

. FORTRAN INTRODUCTORY PROGRAMMER'S MANUAL

SECTION II

This material may be reproduced as desired.

Programming Research Department

International Business Machines Corporation

590 Madison Avenue

New York 22 •. New York

SECTION II

INTRODUCTION

At this point it should be possible to use that part of the FORTRAN

. language comprising System I to direct the operation of the 704 in the

solution of certain problems. However, it may be difficult or im~

possible to program the solution of some problems using only the six

statements described in Section I. In thi, section the vocabulary of

the. System I language will be enlarged in order to make it possible fo

direct the 704 in the solution of many more problems.

One shortcoming of the language of Sy~:t~m I is the laborious

programming which is necessary to carry~ut relatively simple re-

petitive calculations or logical steps such as are encountered in the
,

addition of twc;> vectors o·r the selection of a certain number· from a list

of numbers. However, it is possible to use the subscript notation of

mathematics in System II to make the programming of such problems

easier. Thus a mathematician would denote that ci is the sum of the

i = 1, 2, 3.

Notice that the first part of the statemeJ;lt

z.

is a general statement which, in effect, beco.mes tJ;l.reespecific

statements

c i = al+b r

Cz = aZ +bZ

c3 = a3+ b 3

by assigning the values 1, Z, and 3 to. i.

By using the FORTRAN language it is po.ssible to. make general

statements like "ci = ai + bi" and to. make o.ther statements w.hich assign

the deSired values to. i. When a general statement is executed it is

always executed in its specifi~ sense. Fo.r example, if the variable I

has the value 3 when the FORTRAN equivalent o.f ci = ai + bi'

C(I) = A(I) + B(I)

is executed, then the variables A(3) and B(3) are added and the sum is

assigned as the value of C(3). Thus to. co.mpute the sum vector

(C(1), C(2), C(3»)

it is neces~ary to. execute the general statement 3 times, each time

with I having one o.f the values I, 2, 3. Therefo.re, in additio.n to.

permitting arithmetic formulas with subscripted variables, it is nec

essary to pro.vide fo.r a metho.d of stating that a given set of such

fo.rmulas sho.uld be executed repetitively for certain values o.f the

subscript. The FORTRAN statement which pro.vides this ability is

3.

called':a DO statement. Together with arithmetic formulas, DO

statements are the most useful stat~mentsprovided in the FORTRAN

language. . An example of a "DO" statel11ent, followed by an explanation,

appear sbelow.

DO 20 I = 1. 250

This statement instructs the 704 to "execute all statements which follow,

up to and including the statement numbered 20, 250 times (the first

time for I = 1 ~ the second time for 1::; 2, and so. on, and the last time

for I = 250) and then go on to the statement following 20". Thus, to

. return to the example of vector addition, the FORTRAN statements

necessary to add (A(l) and B(I) are

DO 1 1 = 1, 3

1 C(I) = A(I) + B(I)

2

When the statement numbered 2 is finally encountered, the values of

. C(1) ,C(2), . and C(3) will have been computed and stored.

Example- It is required to compute the following quantities

Pi = ~ sin2 (AiBi+Ci) + cos2 (AiBi-Ci)

0i = sin2 (Ai+Ci) + cos2 (ACCi)

for i = 1, 100. A possible FORTRAN program for this calculation

follows.
I

4.

1 TRIGF(X, Y) = SINF(X+Y)**2+COSF(X-Y)**2

2 DIMENSION A(IOO), B(lOO), C(lOO).P(IOO), Q(100)
~.

3 READ 8, A, B, C

·4 DO 6 I = I, 100

S P(I) = SQRTF(TRIGF(A(I)*B(I), C(I»)

6 Q(I) = TRIGF(A(I), Ctl»

1 PRINT 8, (A(I) , B(I), C(I), P(I), Q(I), 1= I, 100)

8 FORMAT (SF 10.4)

9 STOP

Statement 1 defines the function TRIGF(X, Y) as. equal to the

expression (sin2(X+Y)+cc:>s2(X_Y». The DIMENSION state-

ment indicates that the arrays A, B, C, P, and Q each have

100 elements. A, B, and C having been specified .as arrays,

the list A, B, C in the READ statement will cause all

elements of A, then all elements of B, and then C to be

read into the 704 from cards. Notice that the READ state-

ment refers to a new type of statement (8), FORMAT. In

this example. the FORMAT statement specifies the external

arrangement for both input and output data. "SF 10.4" says

"there are ~ !'ixed point decirn:al fields per card or line~

each field being .!.Q. columns wide with 4 decimal placed to the

right of the decimal point". Hence A, B, C, P, and Q
'"

5.

will be read or printed as (__ +'XX. XXXX). Statement

" says "DO the following s~atements thl!ough statement

number 6 forI = 1, I = 2, ...• I = 106. If Statements 5

and 6 compute Pi and Q1. The PlUNT statement says

IIprintthe arrays A, B. C. P, and o far I = I, rOOa.

specified by format statement numberS. "Statelrt-ent9

stops the computer. The neW' method of nOtatibit and the

use of the DO, FORMAT, DIMENSION and. !uncifoft'stat'e.

ment.s which have been introduced het-e.together with

" several other new statements for input and output a.ndtape

manipulation, will be presented in the following pages.

_ Integer Constants and Variables

In Section I, only floating point constants ,which must have a

·dedmal point) and variablea (which must not begin with I, J, K, L,

. M or N) were considered. However. it should be clear that floating

point number~ are neither desirable nor necessary for use as sub-

scriR.ts; i.e.. XI. 3 is not a very useful notation and X3. 0 is re

dundant and wastes space. Integer constants and variables are more

. useful in this regard and al;'e available in System II. 1'he two rules

whi.ch follow describe the method of writirig such numbers'.

1. Integer constants are written without a decimal . ,

point.

6.

Z. Integer variables must begin with I, J, K, L,

MorN.

Subsc.ripted variables when used in FORTRAN statements, are written

as the name of the variable< followed by the subscript (an integer con

. stant or variable) in parentheses, e. g. A(3) is the FORTRAN re

presentation of A3 and X(I) is the FORTRAN representation of Xi'.

Subscripts are not restricted to single quantities. They may take

the general form

K*I+L

where I represents any integer variable and K and L represent any

unsigned integer constants (L may, of course" be zero in which case

the form reduces. to K*I). Furthei- examples appear below~

Y(M+I) means

P(3*K-5) means

Ym+l

P3k-5

If a floating point variable, for example A, is used as a subscripted

variable, it represents the collection of variables A(1), A(Z), A(3),

•.• etc. and may not be used without a subscript, except in an input

output statement (like READ or PRINT) when it is desired to transfer

the entire array. Thus it is .notpossible to use·B(J) and B in different

statements and expect to have both a vector, B(J), and a variable, B.

7.

It should also be emphasized that reference to a subscripted variable

whose subscript is an integer variable, i. e. X(N). is always inter

preted in a specific sense determined by the 'value of N. Therefore,

some statement which assigns a value to N, such a$ liN = I + J", a

DO statement, or "READ 6, Nil, should always be encountered be

fore reaching a statement which refers to X(N).

Integer quantities are not permitted to appear in floating point

expressions except as subscripts or as exponents. However, an ex

pression containing integer quantities only (such as the one above)

may be written; such expressions will be evaluated. using integer

arithmetic rather than floating point arithmetic. Some examples of

expressions which are and are not permitted appear below.

Expression Permissable Arithmetic Used

A*B*(C**2) Yes Floating

Z*A No ------

1+ J Yes Integer

Z. *A Yes Floating

A**(I+J) Yes -Floating

2*1 Yes Integer

1 + A No ------

8 .

. As long as the expression on the righ~ side of an atitlltr{eti~· formula.

is a legitimate one as described above, there·are nofut't1ieri"estri~tions

on arithmetic formulas. There are, however, certaih pitfalls which

may be encountered if formulas are written having an integer expression

on one side and a floating point expression on the other. For example,

the formula

9.

Dimension Statements

~When~verasubscriptedvariableappe:ars,in ,a, FORTRAN program,

it is. n'eeessary to include a statement which indic':ates the sizElofthe array

refer,red to by this variable • Thiswpe,of'Btate1'Dent'isa 'DIMENSION

statementand,itpe.rmitsthe 704::to,asaign 'the proper number of storage

locations to each subscripted :variable.

The DIMENSION .,tatement consist,s of the name of reach subscripted

variable'followe'dby aninteg.er"inpar,entheses which represents the greatest

number of elements which will ever be included inth.e"array. The va~iables

are separated J~y,commas aadth.ewhole grcmp o~aame8''.iaprec~ded bytbe

word DIMENSION.

If,the Bubscripted'va'ri:abJ:es,ALPHAn), ,GAMMA(.J), and VECTOR(N)

had,appea-red ina FOItTR.A:NprQ;3ram, ,;thena .mMENSIONatatement

mentioning these var table s ,would have to be included. Assuming that th~

numberoi elements lnALP..HA{l) will never exceed 100, the number in

GAMMA(.J)~l1 never exceed ,'Z'5, ,and in'VE,CTOR(N) will never exceed ,1Z.

then the DIMENSiON statement would be written,as

DIMENSION .. ALP.HA(100), .GAMMA(Z5) ,VECTOR (IZ).

DlMENSl0N a.tatements are not actually executed. No instructions

corresponding to this BtatementwilLapp,ear in the translated

10.

program. However, a DIMENSION statement giving the~fiizeo£ each

array should precede the first executable statement mentioning that

array. A single DIMENSION statement, including all subscripted

variables mentioned in the program, may be used or separate state-

. ments may be inserted prior to mentioning each new array,

DO Statements

An example of the use of a DO statement appeared in the intro

duction to this section. The usefulness of such a statement for

carrying out repetitive calculations was mentioned briefly then. The

standard form for a DO statement in System II is

where

DO N

N is a statement number

I is an integer variable

m 1 and mZ are integer constants.

The meaning of the statement is "execute the statements following

this DO statement, up to and including the statement numbered N. first

with I equal to m l' then with I equal to m 1 + I, etc" and finally with

I = m2, and then go to the statement follOwing statement Nil,

The set of s.tatements following the DO statement and extending

through statement N is called the range 'of the DO statement. In

11.

System II, none ofc the statements in' the rangcf df'~' 00 statemetit can

be another DO 'statement. However,' th:~ range m~y c'ont:,;ili GO TO.

To illustrate the usefulnessof'thtsf6atu.ie'aa;weli'a·8'glv~i

. A~l)~nd a'number B. The problem is :'to' ·sid~i:t·th~;sm.illeiJt~tue of

I., if there is one •. for which B = A(I)., A;"progtafri'to'at:d:ifHpltsll'tJ1t.

ccnudJ;»ewrittenas foltows:

10" DO 1Z J=1,50 i .

11 IF (B'- AfJ)) 12. 20.; la .

12 CONTINUE

unsuccessful)

20' (if control reaches this a ta1:eJriE!ht';': the deiiired. valu~ .

ofl is available·foruse).

It '. should be noted that 'control pai!ls~s to" 'statem~t2 0, out'til'

the,~angeof the DO statement. as soon as'theinde'itofthe'DO, in this

case I, reaches a value for which B - A(I) equals zero': Anyiefererice . .

 12

which is now made to J will be interpreted for J equal to that specific value.

Whenever B-A(J) is not equal to zero, control goes to the last statement in the

range of the DO. This statement, CONTINUE, means "no operation." The

reason for using it relates to the meaning of the DO statement. The DO

statement causes the index, J in this example, to be increased by 1 each time

the last statement in its range, statement 12 in this example, is reached, after

which control goes to the first statement in its range. In this example, when

B-A(J) is not zero, it is desired to increase J and begin the range again. To

accomplish this, control must reach the last statement in the range (which

cannot be the IF statement) even though no more work remains to be done

with the current value of J. In this example, therefore, the last statement in

the range of the DO statement must be CONTINUE, which means "do

nothing."

Function Statements

Within the limits of the part of FORTRAN introduced in Section I, certain

functions, specified by the computing center, were permitted in writing

arithmetic expressions, such as square root, sine, log, etc. The functions were

restricted to those appearing in the list furnished by the computing center.

It is also possible, however, to write expressions involving functions

peculiar to the problem at hand. Each desired function is defined by means of

a function statement. For example, suppose it is desired to use the function

G(X) = 1.3 + J 4.1X+X 2

several times in a program.

NOTE: This page was blank in the original scanned document; the text has been recovered from the
similar document:

[Grace E. Mitchell.] The FORTRAN Automatic Coding System for the IBM 704 EDPM :
Programmer's Primer. International Business Machines Corporation, 1957, Form 32-0306.
https://archive.computerhistory.org/resources/text/Fortran/102665486.05.01.acc.pdf

13.

The function statement defining G(X) might ~e written as follows:

GXXF(X) = 1. 3 + SQRTF(4. I*X+X**Z)

A later arHhlnetic formula in the program, employing GXXF might be

Y = 10. 3*GXXF(ALPHA*BETA) + 14. 7

In this use of GXXF, before the value of the function is computed, the

quantity ALPHA*BETA will be substituted for X in the expression de

fining GXXF.

In generd function statements. must obey the following rules:

1. All function statements in a program must be the first

statements in that program.

Z.The function name must have four to seven alphabetic

or numeric characters; the first must be alphabetic

and the last must be F.

3. The name of the function is followed by parentheses

enclosing the argument or arguments. Multiple

arguments are separated by commas. Each argument

must be a single variable.

4. Any argument which is a floating point variable in the

definition of a function should be a floating point

quantity in any subsequent use of the function. A similar

rule applies to integer arguments.

14 .•

5. The value of a function will be a floating point quantity

unless the name of the function begins with X, in which.

case the value will be an integer quantity.

An example will serve to ·show some properties of function state-

ments.

2 SECONDF(R, S) = SQRTF(FIRSTF(R/(R+S»)

15 Q(I) = FIRSTF(Y*B(I»

27 P = SECONDF(1. 7*DELTA, ALPHA)*PI

Notice that it is permissable to use a previously defined function

in the definition of subsequent functions. Notice also that the variable

A is involved in the definition of FIRSTF but it is not an argument. A

may be used like any other variable in the problem.and its current

value will be used each. ti'me FIRSTF is evaluated.

Tape Input and Output

Thus far, the only methods that have been mentioned for trans-
I

ferring decimal data into and out of the internal storate of the 704 are

15.

wte>o1'fthe card,reade:r; and p:rint,:,r attached to theeolnputer.The

opentUOn"o1'" these units,;i's cuntrolle;d·by·the·· READ' and' PRINT state ...

ments: introduced. in. Se:ction 1-;.

HOwever. there is:'anotlier tn:ethC)d'" for:~transferrlng: ibfOrtnatitm
, . . .' . .

iilto"and:outcd-inte:rnal. stor.g~,., nameiY7'uBe·of:magnetio~ tape&. Just

all; a. R.EA:U' statement' dir.e'Cted tlia '/04~ to. :cead data, fro In ca;:ltds, a

statetnent:oauses OD. .. Uila, printiD.&., a: WRI.'IlE;, OUTBUT TAPE statement

oauae:a> tIie:. ontput"inftl1~;lnatiqn to: De"written: on~magnetia tape;

Most, computer;' installation.s:· wHEhaN"ec available twO. machine s

wtiich are nat. connected to tlie computer,. ahe of these. machines

wm~ be. capal:Ua-: of.:readlng;: iDfo:mnation.from;'p~ched cards: and writing .

thi&informatio.n,on.,magne.tic~ tape., The: o.tlie:1':~machine will be able to,

read inforlnation, wzitten,;on, magp;etic.. tape and, print this information.,

B;~ using., ~e card;'to.-tape'rna-ctiijJ:e:., the buormation contained in a

~. oi':data:ca'rds, can,be" written. on magnetic tape' and read into the

704~ h~a READ, IN,PU'D TAR-lit statel'nent. The outp,ut" informa.tion

~itten"onjmagne,ti.e.·tape by a, WRITE ,OUTPUT TAPE statement can

be: read.andp'rinte'd. by using the tap.e to, .. pr inter. maohine.

The' advantages·, of: using' magnetic· tap.e for' input. and. output lie s

16.

in the fact that the computer reads from and writes on magnetic tape

much more rapidly than ,it reads cards and prints. 'I'.hl:.~ ,p:le~s;,that

a grfi!,at deal of computer time which would otherwise,berequired;.fo·r.

card reading and printing can be relegated to the relativelyinexpe~s:ive

ca:rd-to-tape and tape-to-printer equipment.

The 704 computer may have up to ten attached tape units which,

in the FORTRAN language, are referred to by the numbers 1, Z t •••

10. The general form of the two input-output statements mentioned

above is

READ INPUT TAPE I, N. List

WRITE OUTPUT TAPE I, N. List

where I is the number of the tape unit (an integer between 1 and 10

or an integer variable). N is the number of a FORMAT statement

(explained on page 18). and 'List' denotes a list of names of quantities

to be read or written. Note the resemblance between these state

ments and the general form for READ and PRINT

READ N. List

PRINT N. List

where. in System I. Nwas either 1 or 2 and referred to. particular

FORMAT statements supplied by the computing center.

The Meaning of a List

Examples of lists have already appeared in READ and PRINT

17.

s.tatements although they were not identified as such. A list is a set

of i~ems separated by commas and when the list appears in an input

or output statement, the order of reading or writing is the order of

the items as written.

For example, the statement

o Wru:TE OUTPUT TAPE 3, 20, A, B, C

has the llsf,IIA; B,C" and the quantities A, B, and C will be written

in that order. Ii any otthe items A, B, orC have ,been specified in a

dimensio~ stat~nii:mtas ar~ays, then the values of each 'element of the

array will be written. }i'or example, if A and C are simple variables

and B has been spec~fiedin a DIMENSION statement as a subscripted

variable havi,ng~ 'elements, then the quantities written (referring to the

statement a))o~e) wo~d be 0

A, B(l), B(2), B(3), C

If A and B were large arrays and one desired to specify the reading or

writing of the.qW1ntities

A'(I),B(; 1)" A(2),B(Z), ••• A(IOO), B(100)

in that order, the list would consist O{, the single .item

'(A(I), B(I), I = 1, 100)

If it were desired to specify the first 'seven elements, of the array A

followed by the first five elements of the array B, the list would consist

of the two items

(A(I), I = 1, 7), (B(I). I::: 1, 5)

18.

However, if A and B had dimensions seven and five respectively,

the simpler list

'B
would give the sam~~results.

When as above,lan item in a list specifies part of an array or

a mixture of arrays, t~e item must be enclosed in parentheses and
~

the variables inside should be followed by commas as shown. The
~

indexing information, aiS "I = 1, 100", is written exactly as in a DO
)~,

statement.

FORMAT Statements

An input or outputi<statement, such as READ or PRINT, specifies

the variab~es which are to receive -values or to be printed. ·It also

refers to the number of a FORMAT statement which specifies the

external arrangement of a· line of input and/or output data. The

FORMA T statement contains the specifications for each field in the

line. There are three general forms for a field specification

Iw, Ew. d, Fw. d

~here Iw indicates an Integer decimal number having a field width of
'1:';': - ,

w co1umnsl Ew. d indicates a floating decimal point number (E), having - -
a field width of w columns, and d places to the right of the decimal

19.

point; Fw. d indicates a Fixed decimal point numbe:r, having a field

width of w colUrJ'lns, and dplaces to the right of the decimal point.

25 FORMAT (EI0. 4, F8.3, F7. 5, E9.2, 13, F4. 1)

READ 25, A, B, C, D, I. E

The above statements might read the following lines of input data

'from cards into the 704.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6
r I ,

+345.648 +.56872 -2.34: E+ol +.87651 E+06 . +81 -1. 5

I I
-. 1223' E-02 +124.785 -.78963 -6.78, E+09 +15 +9.8

I 1 ,

1 -728.654 +. 12345 +4.35' E-07 -28 +. 1034. E+05 -2.3
I

• I

Note that the field width includes a column each for the sign, decimal

•
point, and in the case of floating decimal point numbers the four

characters of the exponent - the letter E, the sign of the exponent,

and the two digits of the exponent. Floating decimal or fixed deCimal

point numbers xnay have any number of digits in the input field;

however, only eight significant digits will be retained. If the decimal

point punched in the card does not agree with the specifications in

the FORMAT statement, the decimal point over rides the specification.

If no decimal point is given, the number is treated as if the decimal

point were located according to the spet:ification. Noprovision:~i:s

made for handling decimal integers larger than 32767. A

20 ..

line of input data may have a maximum of 72 characters.

Prior to sending the input data sheets to the computing center

for keypunching, the card columns for each of the fields must be

specified. Columns 1-72 are available for use. For this example,

the columns for field 1 should be specified as columns 1- 10 (since 10

columns are specified by the FORMAT statement for the first field),

field 2 columns 11-18, field 3 columns 19-25, field 4 columns 26- 34,

field 5 columns 35- 37, and field 6 columns 38-41.

Specifying a field width larger than the number of characters in

the field is particularly valuable for use with output statements.

PRINT 10, A, B, C, D, I, E

10· FORMAT (EI4.4, Fl1. 3, FI0.5, E13.3, 16, F7.1)

The above statements would print the example data as follows:

0.8765E 06

-0. 1223E-02

o. 1034E 05

. 345.648 .

124.785

-728.654

.56872

-.78963

. 12345

-0. 234E 02

-0.678E 10

O.435E-06

,81

15

-28

. -1. 5

9.8

-2.3

Note the three column separation between fields provided for by the

FORMAT statement. In the case of floating decimal point numbers the

field width includes the zer6 preceding the decimal point. Floating

decimal point numbers are printed with the first significant digit

immediately to the right of the decimal point, therefore, these numbers

will have as many significant digitsc'as there are decimal places

21.

specified. However, no more than eight significant digits are possible.

A maximum of 119 characters may be printed per line.

The FORMAT statement is not executed and may be placed

anywhere in the program. The field specifications are enclosed in

'parentheses with commas between the specifications for successive

fields. Successive fields having the same format may be specified by

inserting a' coefficient (indicating the number of identical fields) before

the code letter E. F, or 1. Thus

FORMAT (13. ZEll.3, F8.4)

is equivalent to

FORMAT (13, Ell.3, Ell. 3 t , F8. 4)

It may be of interest to consider now the FORMAT statements

which were referred to as 1 and l in Section 1. FORMAT statement

1. which referred to fixed decimal point input and output, is written

as

l' FORMAT (5F14.5)

The code letter F is preceded by the number 5, which indicates

how many times this specification is to be repeated per line. The

field width of 14 allows for six digits and a sign to the left of the

decimal point (1 spaces), the decimal point (1 space), and five digits

to the right of the decimal point (5 spaces), plus one additonal space

for field separation.

ZZ.

FORMA T 2, which referred to floating decimal point !nput

and output. is written as

Z FORMAT (lP5E14.5)

The scale factor (IP) shifts the decimal point so that there is

one significant digit to the left of the decimal point. (See Section

III for scale factors.) The field width of 14 allows for one digit

and a sign to the left of the decimal point, the decimal point, five

digits to the right of the decimal point, the four character exponent

field, plus two additional spaced for field separation.

General Information About the Use of Tapes '

Information is recorded linearly on magnetic tape in blocks

called "records". Records may be of varying lengths. Each record

is separated from the next by a gap of blank tape, the "end-of-record

gap".

When a WRITE OUTPUT TAPE statement is executed, the tape

writing ~echanism writes, as a single record, all of the quantities

in the List. For example

WRITE OUTPUT TAPE 2, X, Y, Z

would cause the three numbers which are the current values of X. Y,

and Z to be written as a single record (in the order X. Y, Z) on tape

2. Physically. the tape would be moved forward over the stationarr

23.

tape . .read-write head which records magnetically the three numbers

and then erases a short segment of tape as the end-of-record gap.

At the end of this operation the tape is in position for writing the

next record.

The effect of the statement

READ INPUT TAPE 2. X. Y. Z

would be to move tape 2 forwa:::."d over the read-wri1te head to start

reading the first record encountered, assigning the first number of

the record as the value of X, the sec'.>l1u as the value of y, and the

third as the value of Z. If the list in the READ INPUT TAPE state-

ment specifies more quantities then there are numbers in the record,

the computer will stop since this;condition is regarded as 'an error.

If the list specifies N quantities and the next record on the tape

contains more than N quantities, only the first N numbers will be

read from the record. After l'eading these N numbers. the tape will

be moved (without reading) to the next inter-record gap.

A tape can be read or written only in the forward direction.

However, the.re are two statements which can be used to move the

tape backward. Theseare

I

REWINn::I.

BACKSPACE I

24.

where I is the number of the tape unit.

REWIND moves the tape back to t:le physical starting point

regardless of its current position and nay be used to position the

tape at the beginning of the first unit record to be written or read.

BACKSPACE moves the tape back to the beginning of the pre

ceding record. If the tape is in a rewound position. a BACKSPACE

statement has no effect. In order to move a tape forward one record

without reading any information into storage, the statement "READ

TAPE III. with no list specified, may be used.

By use of the above statements, a tape may be positioned for

reading or writing at the beginning of any record desired. However,

because of the nature of the tape read-write mechanism, writing a

new record on tape will make it impossible to read any old in

formation following this new record. It would not be possible to write'

over a record in the middle of a tape and then read old information

written after this point. Since the tape can be positioned only at the

beginning of a record, it is not possible to begin reading or writing

in the middle of a record.

In order to indicate that the last record of information has been

written on a tape, the statement

END FILE I

where I is the number of the tape unit, is used. ThiB ca.uses an end-

of-file mark to be written on the specified tape which can later be

recognized by the tape reading mechanism to stop tape reading at

. that point.

Examples

Several examples which illustrate the use of many of the state-

ments introduced in this section appear below.

1. It is required to calculate the amount of heat nec.ess~ry

to raise the temperature of a mixture of ten ga.es from a given

base temperature, T l , to a series of higher temperatures.

These temperatures will be 25 degrees apart and will range·

from T 1 up to a maximum of T Z•

The heat required may be calculated by multiplying the

heat capacity of the gas mixture by the temperature difference.

However, the heat capacity is dependent upon the temperature.

The mean heat capacity over a given range may be estimated

by utiling the equation
J

26.

where Cp = the mean heat capacity

T = the upper temperature, degrees Kelvin

TO = the lower temperature, degrees Kelvin

a, b, c = empirical constants, different for each gas

(degrees Kelvin = degrees Centigrade + 273. 1)

Input data will include the amount of each gas present, the three

empirical constants for each gas. the base temperature, and the

maximum temperature (in °C).

A possible FORTRAN program to carry out this calculation appears

below. It has been written to provide the individual heat capacities in

each range as well as t~~total heat require~ent.

9 DIMENSION X(10). B(lO), .C(lO). CP(10)

10 FORMAT (10F6. 3)

11 FORMAT (lOEll. 3)

12 READ INPUT TAPE 4. 10, X, A, Tl, T2

13 READ INPUT TAPE 4. 11. B, C

14 SUM =0.0

15 T lK = T 1 + 273. 1

16 TK= TIK

17. TK= TK + 25.0

18 IF (TK - 273. 1) - T2) 19, 27. 27

19 DO 21 I = 1, 10

20 CP(I) = A(I)+B(I)*(TK+TIK)/2.0

+C(I) *(TK**2 +TK*T lK + T IK**2) /3. 0

21 SUM = X(l)*CP(I)+SUM

22 HEAT = SUM*(TK-TIK)

23 T = TK - 273. 1

24 WRITE OUTPUT TAPE 5, 31, TI, T, HEAT

25 WRITE OUTPUT TAPE 5, 32, .X, CP

26 'GO TO 11

27 IF (T2 - 2500.) 12, 28. 28

28 END FILE 5

29 REWIND 4

30 REWIND 5

31 FORMAT (2FIO. I, EI5.5)

32 FORMAT (F8. 1. EI4.5)

33 STOP

27.

The DIMENSION statement sets aside storage locations for the

constants and results. Statemen~s 10 and 1,1 describe the arrangement

of the input data as .follows:

X (fractional amount of each gas) = O. xxx

A = +x.xx

B = +xx. xxxE+ee

C = +x. xxxE+ee

28.

Tl, T2 = + xXx. x

Statements 31 and 32 desc:dbe the arrangement of the output

data as follows:

x

CP

=

=
TI. T =

HEAT. =

o.xxx

O. xxxxxE+ ee

+xxxx. x

+0. xxxxxE+ee

Statements 12 and 13 cause the data for a case to be transferred

into the 704 from tape unit 4. Statement 14 sets the location designated

as SUM to zero. The calculation of the absolute temperature in de ..

grees Kelvin .Irom the base temperature is carried out by statement

15. Statement 16 sets the original value of the temperature range to

zero, while statement 17 causes the range to be increased by the

specified i,ncrement. The upper limit of the range is compared to t~e

maximum temperature specified for this case. If the maximum has

not been .reached, control reaches the DO statement (statement

19). The statements in the range of the DO (statements 20 and 21)

cause the specific heat of each component to be calculated land

weighted according to the fraction of that component in the mixture.

29.

The actual calculation of the,heat requirement is described by

statement 22. Statement 23 causes the upper limit of the range to be

expressed in degrees Centigrade~ Writing of the results, along .
with the fractions of each component, on tape unit 5 il[l accomplished

by statements 24 and 25. A transfer to begin the calculation for the

next range is effected by statement 20.

If the comparison at statement 18 indlcates that the maximum

temperature for the given case has been exceeded, control reaches

statement 27. At this point the -:maximum temperature is examined

to determine whether it exceeds 25000 C (which witl be theihdication

that the problem is completed). If it does. control reaches statement

28, and end-of-file is written, tapes are rewound. (statements 28,

29, and 30). and the 704 stops. If the problem has no~ been com-

pleted. control is transferred to statement 12- which causes data for

a new case to be read from the input tape.

2. G~ven Xi. Yi. Zjfor i = 1, 10 and j = 1, 20-to compute:

where

, ' (10)
PROD= '2: Ai
, - i = 1

(~ 1 Zj)
Ai = Xi 2 + Y i if I Xi I > I Y i I
Ai = Xi + Yi2 if PCi I < I Yi I
Ai =- 0 if PCi I = I Yi I

A possible FORTRAN program follows.

3 DIMENSION X(10),., Y(10), Z(20)

4 FORMAT (5FI4. 4)

30.

5 READ 4, X, Y, Z

6 SUMA= 0.0

7 DO 12 I = 1, 10'

8 IF(ABSF(X(I» - ABSF(Y(I») 9, 12, n

9 SUMA = SUMAtX(I)tY(I)**2

10 GO TO 12

11 SUMA = SUMAtX(I)**Z+Y(I)

12 CONTINUE

13 SUMZ = 0.0

14 DO 15 J = 1. 20

15 SUMZ = SUMZtZ(J)

16 PROD = SUMA*SUMZ

17 PRINT 4. SUMA, SUMZ, PROD

18 STOP

The DIMENSION statement sets aside storage locations for the

input data. Statement 4 specifies the input and outptit data as fi~ed poillt

numbers having 4 decimal places. The READ statement reads the

input data from cards into the 704. Statement 6 sets the quantity

SUMA to zero. Statements 8-12, Under control of the DO statement
10 20

7, compute E Ai. Statement 15 computes l: Zj under the
i= 1 j= 1

control of DO statement 14. The following sta~ements compute and

print PROD. Statement 12, CONTINUE, serves as a common re-

31.

ference point; and since it is the last statement in the range of the DO.

after its completion I is increased and the next repetition begun.

SECTION II Check List

II.'l All subscripted variables must appear in a DIMENSION state

ment. This statement must appear in the program before

reference is made to the variables.

II. Z Negative subscripts are not ,permitted.

II. 3 Subscripting of subscripts is: not permitted.

II. 4 Integer variables and constants can be used only as subscripts

and exponents in 'a floating-point expression.

II.S Intege,r constants are wl;itten without a' decimal point; integer

variables must begin with I. J, K, L,. M, or N.

II.6

II.7

11.8

11.9

II. 10

II. 11

The last statement in the range of a DO may not be a transfe,~.

Decimal integers larger than 3Z767 are treated modulo 3Z768.

An end-of-file should always be written on output tapes.

Provision for rewinding tapes should be made in the program..

No constants may be given in a LIST. only variables. ,

. The first character of the first field in a FORMAT statem.ent

for output must be a blank.

(Refer to the end of Section I for additional check points.)

	Intro-Section_II_Page_01
	Intro-Section_II_Page_02
	Intro-Section_II_Page_03
	Intro-Section_II_Page_04
	Intro-Section_II_Page_05
	Intro-Section_II_Page_06
	Intro-Section_II_Page_07
	Intro-Section_II_Page_08
	Intro-Section_II_Page_09
	Intro-Section_II_Page_10
	Intro-Section_II_Page_11
	Intro-Section_II_Page_12
	Intro-Section_II_Page_13
	Intro-Section_II_Page_14
	Intro-Section_II_Page_15
	Intro-Section_II_Page_16
	Intro-Section_II_Page_17
	Intro-Section_II_Page_18
	Intro-Section_II_Page_19
	Intro-Section_II_Page_20
	Intro-Section_II_Page_21
	Intro-Section_II_Page_22
	Intro-Section_II_Page_23
	Intro-Section_II_Page_24
	Intro-Section_II_Page_25
	Intro-Section_II_Page_26
	Intro-Section_II_Page_27
	Intro-Section_II_Page_28
	Intro-Section_II_Page_29
	Intro-Section_II_Page_30
	Intro-Section_II_Page_31
	Intro-Section_II_Page_32

