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ABSTRACT 

The FORTRAN I compiler functions and organizations are described and shown to 
form the basis for many of the techniques used in modern compilers. 
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INTRODUCTION 

Early in 1954, the FORTRAN I project was formed by John 
Backus. A fundamental question posed by the project was 
" . . . can a machine translate a sufficiently rich mathematical 
language into a sufficiently economical program at a suf- 
ficiently low cost to make the whole affair feasible?"' A major 
goal was to provide an automatic programming system which 
" . . . would produce programs almost as efficient as hand 
coded ones and do so on virtually every job."' This seemingly 
impossible goal was met to an astonishing degree. In some 
cases, it produced code which was so good that users thought 
it was wrong, since it bore no obvious relationship to the 
source. It set a standard for object program efficiency that has 
rarely been equalled. The FORTRAN I compiler, completed 
in 1957, established modem compiler tasks, structure, and 
techniques. 

The compiler was developed for the 704, an IBM machine 
introduced in 1954 featuring built-in floating point and index- 
ing capabilities. It compiled the FORTRAN I language, 
which was defined as part of the project and evolved consid- 
erably as the project progressed. In order to achieve its effi- 
ciency goals, the high-level arithmetic statements in the 
source program had to be translated to minimize storage. ref- 
erences, and, even more important, subscripts and their con- 
trol had to make maximal use of the machine's three index 
registers. The way in which this was achieved is described by 
Backus, and other project  member^;^ formalized by Sheri- 
dan;3 and reviewed by Backus and Heising4 and Backus.' The 
latter paper, presented at the 1978 Conference on the History 
of Programming Languages, contains a penetrating analysis of 
the project, its origins and development. The purpose of this 
paper is to assess the technological impact of the FORTRAN 
I compiler on compiler construction, theory, and practice as 
it has evolved over the last 25 years. 

COMPILER FUNCTIONS AND ORGANIZATION 

The basic function of the FORTRAN I compiler was, of 
course, to translate the source program to an objectprogram 
for loading and executing on the target machine. However, 
confronted with a belief that compilers could only turn out 
code intolerably less efficient than hand coding and con- 
fronted with a machine that would make small lapses in ar- 
rangement of coding show up as sizeable inefficiencies, the 
primary goal of the compiler, and indeed of the whole project, 
was to produce very efficient code. 

The greatest potential source for inefficiencies was believed 
to be the address calculations rather than the code generated 
for the arithmetic expressions. Thus, while the translator part 
of the compiler was designed to produce excellent code for the 

arithmetic expressions, the design and organization of the 
entire compiler was driven by the need to produce nearly 
perfect code for array addressing on the three-register 704. 
Consider the FORTRAN program fragment in Figure 1. 

DIMENSION A (10,lO) 
DIMENSION B (10,lO) 

Figure 1-FORTRAN program to move array B to array A 

Remembering that FORTRAN stores arrays column-wise, 
the expansion of the subscript on array B (as well as on A) is 
(I - 1) + (J - 1)* 10. Clearly such a computation inside the 
DO loops was intolerable-and certainly not two such corn- . 
putations, one for A and one for B. It is interesting to note - 
however that some current, nonoptimizing compilers do per- 
form variants of this computation and are tolerated quite 
happily. 

To achieve a modicum of efficiency, there was also a need 
to utilize the 704 index register instructions to increment, test 
and branch to control the execution of the DO loops. Further- 
more, the registers had to perform dual functions when possi- 
ble, controlling the looping and indexing the arrays in the 
loops. Assembly language programmers did this all the time, 
and if compiled code was to compete, the FORTRAN trans- 
lator had to also. The primary criterion which dictated the 
design of the compiler was, therefore, the need to produce 
excellent addressing code. In fact it is still the case today that 
the biggest payoff for optimizing compilers for languages at 
the FORTRAN level (e. g . , PL/I and Pascal) is in generating 
good addressing code. 

The compiler was divided into six sections (phases in to- 
day's terminology): 

1. A statement identifier and ari3hmetic statement 
translator 

2. A subscript and DO statement analyzer 
3. A transformer which interfaced sections 2 and 4 
4. A control flow analyzer 
5. A global register allocator 
6. Final assembly 

As John Backus makes clear,' this organization evolved as 
the problems associated with assigning index registers became 
clear. The initial intent was to have translation and code gen- 
eration, including register allocation, complete by the end of 
Section 2 so that all that was left was final assembly; i.e., 



808 National Computer Conference, 1982 

producing the binary code, load maps, etc. Section 1, the 
translator, was to classify statements, compile object in- 
structions for the arithmetic formulas, and partially compile 
or record information about the remaining statements (the 
110, DO, GO TO, IF, DIMENSION, and function definition 
statements). Section 2 was to compile the instructions associ- 
ated with subscripting and DOs. When it became clear that 
the task of Section 2 was too complex, Sections 4 and 5 were 
created and then Section 3 to glue everything together. 

It is worthwhile looking in more detail at what went on here 
because it presents a model of an approach to solving very 
complex problems-the use of a divide and conquer strategy. 
Stated in today's terminology and from today's perspective 
(after 25 years of problem partition and solution), the prob- 
lems being solved were the following: 

1. (Section 2) Assuming an unlimited number of index reg- 
isters, to create.optima1 code for addressing and loop 
control. In today's terms this meant: (a) reassociating 
the subscript expansions to collect constants and make 
them part of the base address and to group sub- 
expressions to minimize the computation required in the 
loop; (b) finding common subexpressions; (c) moving 
computations out of loops; (d) performing strength re- 
duction so that subscript calculations become index reg- 
ister increments and decrements; (e) folding constants; 
and (f) replacing loop tests by tests on registers required 
for addressing within the loop, i.e., linear function test 
replacement. 

2. (Section 4) To perform the control flow analysis and 
identify (probabilistically) the relative frequency of pro- 
gram regions. 

3. (Section 5) To assign real registers to the symbolic regis- 
ters in order to minimize, using the control flow based 
frequency information, storage references and register- 
to-register moves. 

How does the overall organization of the FORTRAN I 
optimizer (Sections 2 through 5) differ from today's opti- 
mizing compilers? Today we would probably do control flow 
analysis first and use it as a basis for performing Section 2's 
optimizations. Separating register assignment from the prob- 
lem of optimizing code involving symbolic registers is now 
considered a good strategy,' though many optimizing com- 
pilers have not exposed loads, symbolic registers, and all of 
the addressing code to their optimizing sections and have 
ended up with most of the problems originally faced by the 
FORTRAN project when doing register allocation! 

How does the overall organization of the rest of the FOR- 
TRAN I compiler compare with today's compilers? The trans- 
lation phase is typically broken into several subparts today; 
syntactic analysis, semantic analysis, and code generation are 
common partitions, although the evolution here is by no 
means complete. 

Overall, the organization of the compiler was surprisingly 
simple. Most of the complexities arose from the desire to 
produce object programs competitive with hand code and the 
consequent need to gather information and postpone pro- 
ducing code until the analysis necessary to produce efficient 
code had been performed. 

We now turn to a closer examination of the significant set- 
tions of the compiler (Sections 1 , 2 , 4  and 5) in order to assess 
their technological impact in more detail. 

TRANSLATION 

Today's compilers often use elegant, language-independent 
translator systems. The theory behind these systems did not 
really start to develop until the 19603, but the problem ap- 
peared in its full form in this system. Given an arithmetic 
expression, the translator first created a sequence of arith- 
metic instructions, then transformed this sequence to elimi- 
nate redundant computations arising from the existence of 
common subexpressions (their term) and to reduce the num- 
ber of accesses to memory. These transformations have been 
the subject of numerous investigations ( ~ h o ~  gives a good set 
of references), and we now know that an optimal solution is 
inherently hard. It is interesting to note, however, that the 
compiler designers felt that "the near-optimum treatment of 
arithmetic expressions is simply not as complex a task as a 
similar treatment of 'housekeeping  operation^'."^ 

In addition to parsing and producing good code for the 
arithmetic expressions, the translator identified the other 
statements and transformed complex I10 lists into their com- 
ponent DO nests for treatment by the regular mechanisms of 
the rest of the compiler. The attempt here and in numerous 
other parts of the compiler to seek common mechanisms rath- 
er than create special case mechanisms is interesting in light of 
the overall complexity of the task and the amount of invention 
required for every part. 

SUBSCRIPT AND DO STATEMENT OPTIMIZATION 

The translator did not complete the translation of DO state- 
ments and subscripts; that was the function of Section 2. A 
symbolic index register corresponding to each particular sub- 
script combination of a variable was created by the translator 
and existed until Section 5 had assigned registers. The func- 
tion of Section 2 was to optimize the calculation of subscripts 
and DO control statements. The constant parts of the calcu- 
lation were incorporated into operand addresses, operations 
involving DO control variables were transformed into index 
register increments when possible, loop independent parts of 
the calculation were removed from the loop, and the loop exit 
test was transformed to use one of the registers needed for 
indexing. A nest of DO loops for array calculations was some- 
times replaced by a single loop in the generated code! Some 
of these transformations are now subsumed in more general 
optimizations, but today's production compilers rarely do as 
well. 

FLOW ANALYSIS 

The function of Sections 4 and 5 of the compiler was to assign 
real registers to the symbolic registers. Except for the sym- 
bolic registers and the assumption that they could all be as- 
signed to real registers, the program on entry to Section 4 was 
complete. The basic task, therefore, was to assign the sym- 
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bolic registers to real registers in order to minimize the time 
spent loading and storing index registers. Section 4 of the 
compiler did a flow anlaysis of the program to determine the 
pattern and frequency of flow for use in Section 5, where the 
actual assignment was made. 

Basic blocks ("a basic block is a stretch of program which 
has a single entry point and a single exit point"') were found 
and a table of immediate predecessor blocks constructed. 
Here, then, is the beginning of the elegant and fast control 
flow algorithms of today. Basic blocks and predecessor (suc- 
cessor) relationships are inputs to these algorithms. 

The other task performed by Section 4 was the computation 
of a probable frequency of execution of every predecessor 
edge. To do this a Monte Carlo "execution" of the program 
with initial weights assigned to each edge was developed. This 
method is no longer commonly used to identify frequently 
executed areas of a program; rather the program topology is 
used more directly but with less resultant precision. 

REGISTER ASSIGNMENT 

LXD ONE,l load 1 into regl 
LOOP CLA B + 1,l 

ST0 A + 1,l 
TXI * + 1,1,1 add 1 to reg1 and 

goto next inst 
TXL LOOP,l ,100 if regl s 100 

got0 loop 
. . .  

ONE , ,1 
A BES 100 

B BES 100 

data value one 
reserve 100 locs, 
ending with A 
reserve 100 locs, 
ending with B' 

Figure 2-FORTRAN I translation of array move 

In general the code produced by the compiler was not only 
locally efficient but globally as well. The output program did 
not contain long, precoded, predictable sequences but con- 
tained code optimized to run efficiently in its context (where 
the context included the whole program). The project was a 
success. 

Jean Sammet states, "Its major technical contribution was 
Using the edge execution frequencies, regi0ns were formed so to demonstrate that efficient object code could be produced 
that registers be assigned to the most exe- by a compiler; as a result. it became clear that productivity of 
cuted areas (usually innermost loops), then to the next most programmers could be significantly improved.,,~~ Another 
frequently executed areas, etc. until the entire program had major contribution of the project is the influence it has had 
been treated. When a region had been processed, its entry and on compiler svucture and techniques. Overall ". . FOR- 
exit conditions were recorded, i.e., the values which needed TRAN has probably had more impact on the computer field 
to be loaded on entry and stored on exit. A processed region than any other single software development~~~o-because of 
was not reexamined when its containing region was processed, the language, the technological impact on subsequent corn- 
but the entry and exit conditions and whether or not it had any pilers, and the impetus it gave to widespread use of higher- 
unassigned registers were used. The assignment of registers level languages. 
within a basic block used the "distance to next use" criterion 
to determine which register to displace when out of registers. 
"Activity bits" were used to determine the necessity of storing 
a value in a register for subsequent use if the register had to 
be reused. In case of register assignment mismatches across 
basic blocks, an attempt was made to permute the assignment. 

This register assignment method was a phenomenal piece of 
work. The displacement algorithm for straight-line code was 
later proved optimal7 for the "one-cost model";' a displace- 
ment costs the same whether you need to store the register 
contents or not. Until 1980, when Greg Chaitin9 successfully 
applied a graph coloring algorithm to the global assignment of 
registers, most global assignments were essentially variants on 
the FORTRAN I approach. 

RESULTS 

Perhaps the best way of demonstrating the results of this 
project is to show an example of its output-an output which 
startled this author. The FORTRAN program in Figure 1, 
moved array B to array A in a double nest of DO loops. The 
assembly program in Figure 2 is the FORTRAN I compiler's 
output for this program and shows the move being done with 
one loop instead of the two expected from the source. (FOR- 
TRAN stored its arrays column-wise and backwards; the 704 
subtracted the value in the index register from the address.) 
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