
A technological review of the FORTRAN I compiler

by F. E. ALLEN
IBM Thomas J . Watson Research Center
Yorktown Heights, New York

ABSTRACT

The FORTRAN I compiler functions and organizations are described and shown to
form the basis for many of the techniques used in modern compilers.

A Technological Review of the FORTRAN I Compiler 807

INTRODUCTION

Early in 1954, the FORTRAN I project was formed by John
Backus. A fundamental question posed by the project was
" . . . can a machine translate a sufficiently rich mathematical
language into a sufficiently economical program at a suf-
ficiently low cost to make the whole affair feasible?"' A major
goal was to provide an automatic programming system which
" . . . would produce programs almost as efficient as hand
coded ones and do so on virtually every job."' This seemingly
impossible goal was met to an astonishing degree. In some
cases, it produced code which was so good that users thought
it was wrong, since it bore no obvious relationship to the
source. It set a standard for object program efficiency that has
rarely been equalled. The FORTRAN I compiler, completed
in 1957, established modem compiler tasks, structure, and
techniques.

The compiler was developed for the 704, an IBM machine
introduced in 1954 featuring built-in floating point and index-
ing capabilities. It compiled the FORTRAN I language,
which was defined as part of the project and evolved consid-
erably as the project progressed. In order to achieve its effi-
ciency goals, the high-level arithmetic statements in the
source program had to be translated to minimize storage. ref-
erences, and, even more important, subscripts and their con-
trol had to make maximal use of the machine's three index
registers. The way in which this was achieved is described by
Backus, and other project member^;^ formalized by Sheri-
dan;3 and reviewed by Backus and Heising4 and Backus.' The
latter paper, presented at the 1978 Conference on the History
of Programming Languages, contains a penetrating analysis of
the project, its origins and development. The purpose of this
paper is to assess the technological impact of the FORTRAN
I compiler on compiler construction, theory, and practice as
it has evolved over the last 25 years.

COMPILER FUNCTIONS AND ORGANIZATION

The basic function of the FORTRAN I compiler was, of
course, to translate the source program to an objectprogram
for loading and executing on the target machine. However,
confronted with a belief that compilers could only turn out
code intolerably less efficient than hand coding and con-
fronted with a machine that would make small lapses in ar-
rangement of coding show up as sizeable inefficiencies, the
primary goal of the compiler, and indeed of the whole project,
was to produce very efficient code.

The greatest potential source for inefficiencies was believed
to be the address calculations rather than the code generated
for the arithmetic expressions. Thus, while the translator part
of the compiler was designed to produce excellent code for the

arithmetic expressions, the design and organization of the
entire compiler was driven by the need to produce nearly
perfect code for array addressing on the three-register 704.
Consider the FORTRAN program fragment in Figure 1.

DIMENSION A (10,lO)
DIMENSION B (10,lO)

Figure 1-FORTRAN program to move array B to array A

Remembering that FORTRAN stores arrays column-wise,
the expansion of the subscript on array B (as well as on A) is
(I - 1) + (J - 1)* 10. Clearly such a computation inside the
DO loops was intolerable-and certainly not two such corn- .
putations, one for A and one for B. It is interesting to note -
however that some current, nonoptimizing compilers do per-
form variants of this computation and are tolerated quite
happily.

To achieve a modicum of efficiency, there was also a need
to utilize the 704 index register instructions to increment, test
and branch to control the execution of the DO loops. Further-
more, the registers had to perform dual functions when possi-
ble, controlling the looping and indexing the arrays in the
loops. Assembly language programmers did this all the time,
and if compiled code was to compete, the FORTRAN trans-
lator had to also. The primary criterion which dictated the
design of the compiler was, therefore, the need to produce
excellent addressing code. In fact it is still the case today that
the biggest payoff for optimizing compilers for languages at
the FORTRAN level (e. g . , PL/I and Pascal) is in generating
good addressing code.

The compiler was divided into six sections (phases in to-
day's terminology):

1. A statement identifier and ari3hmetic statement
translator

2. A subscript and DO statement analyzer
3. A transformer which interfaced sections 2 and 4
4. A control flow analyzer
5. A global register allocator
6. Final assembly

As John Backus makes clear,' this organization evolved as
the problems associated with assigning index registers became
clear. The initial intent was to have translation and code gen-
eration, including register allocation, complete by the end of
Section 2 so that all that was left was final assembly; i.e.,

808 National Computer Conference, 1982

producing the binary code, load maps, etc. Section 1, the
translator, was to classify statements, compile object in-
structions for the arithmetic formulas, and partially compile
or record information about the remaining statements (the
110, DO, GO TO, IF, DIMENSION, and function definition
statements). Section 2 was to compile the instructions associ-
ated with subscripting and DOs. When it became clear that
the task of Section 2 was too complex, Sections 4 and 5 were
created and then Section 3 to glue everything together.

It is worthwhile looking in more detail at what went on here
because it presents a model of an approach to solving very
complex problems-the use of a divide and conquer strategy.
Stated in today's terminology and from today's perspective
(after 25 years of problem partition and solution), the prob-
lems being solved were the following:

1. (Section 2) Assuming an unlimited number of index reg-
isters, to create.optima1 code for addressing and loop
control. In today's terms this meant: (a) reassociating
the subscript expansions to collect constants and make
them part of the base address and to group sub-
expressions to minimize the computation required in the
loop; (b) finding common subexpressions; (c) moving
computations out of loops; (d) performing strength re-
duction so that subscript calculations become index reg-
ister increments and decrements; (e) folding constants;
and (f) replacing loop tests by tests on registers required
for addressing within the loop, i.e., linear function test
replacement.

2. (Section 4) To perform the control flow analysis and
identify (probabilistically) the relative frequency of pro-
gram regions.

3. (Section 5) To assign real registers to the symbolic regis-
ters in order to minimize, using the control flow based
frequency information, storage references and register-
to-register moves.

How does the overall organization of the FORTRAN I
optimizer (Sections 2 through 5) differ from today's opti-
mizing compilers? Today we would probably do control flow
analysis first and use it as a basis for performing Section 2's
optimizations. Separating register assignment from the prob-
lem of optimizing code involving symbolic registers is now
considered a good strategy,' though many optimizing com-
pilers have not exposed loads, symbolic registers, and all of
the addressing code to their optimizing sections and have
ended up with most of the problems originally faced by the
FORTRAN project when doing register allocation!

How does the overall organization of the rest of the FOR-
TRAN I compiler compare with today's compilers? The trans-
lation phase is typically broken into several subparts today;
syntactic analysis, semantic analysis, and code generation are
common partitions, although the evolution here is by no
means complete.

Overall, the organization of the compiler was surprisingly
simple. Most of the complexities arose from the desire to
produce object programs competitive with hand code and the
consequent need to gather information and postpone pro-
ducing code until the analysis necessary to produce efficient
code had been performed.

We now turn to a closer examination of the significant set-
tions of the compiler (Sections 1 , 2 , 4 and 5) in order to assess
their technological impact in more detail.

TRANSLATION

Today's compilers often use elegant, language-independent
translator systems. The theory behind these systems did not
really start to develop until the 19603, but the problem ap-
peared in its full form in this system. Given an arithmetic
expression, the translator first created a sequence of arith-
metic instructions, then transformed this sequence to elimi-
nate redundant computations arising from the existence of
common subexpressions (their term) and to reduce the num-
ber of accesses to memory. These transformations have been
the subject of numerous investigations (~ h o ~ gives a good set
of references), and we now know that an optimal solution is
inherently hard. It is interesting to note, however, that the
compiler designers felt that "the near-optimum treatment of
arithmetic expressions is simply not as complex a task as a
similar treatment of 'housekeeping operation^'."^

In addition to parsing and producing good code for the
arithmetic expressions, the translator identified the other
statements and transformed complex I10 lists into their com-
ponent DO nests for treatment by the regular mechanisms of
the rest of the compiler. The attempt here and in numerous
other parts of the compiler to seek common mechanisms rath-
er than create special case mechanisms is interesting in light of
the overall complexity of the task and the amount of invention
required for every part.

SUBSCRIPT AND DO STATEMENT OPTIMIZATION

The translator did not complete the translation of DO state-
ments and subscripts; that was the function of Section 2. A
symbolic index register corresponding to each particular sub-
script combination of a variable was created by the translator
and existed until Section 5 had assigned registers. The func-
tion of Section 2 was to optimize the calculation of subscripts
and DO control statements. The constant parts of the calcu-
lation were incorporated into operand addresses, operations
involving DO control variables were transformed into index
register increments when possible, loop independent parts of
the calculation were removed from the loop, and the loop exit
test was transformed to use one of the registers needed for
indexing. A nest of DO loops for array calculations was some-
times replaced by a single loop in the generated code! Some
of these transformations are now subsumed in more general
optimizations, but today's production compilers rarely do as
well.

FLOW ANALYSIS

The function of Sections 4 and 5 of the compiler was to assign
real registers to the symbolic registers. Except for the sym-
bolic registers and the assumption that they could all be as-
signed to real registers, the program on entry to Section 4 was
complete. The basic task, therefore, was to assign the sym-

A Technological Review of the FORTRAN I Compiler

bolic registers to real registers in order to minimize the time
spent loading and storing index registers. Section 4 of the
compiler did a flow anlaysis of the program to determine the
pattern and frequency of flow for use in Section 5, where the
actual assignment was made.

Basic blocks ("a basic block is a stretch of program which
has a single entry point and a single exit point"') were found
and a table of immediate predecessor blocks constructed.
Here, then, is the beginning of the elegant and fast control
flow algorithms of today. Basic blocks and predecessor (suc-
cessor) relationships are inputs to these algorithms.

The other task performed by Section 4 was the computation
of a probable frequency of execution of every predecessor
edge. To do this a Monte Carlo "execution" of the program
with initial weights assigned to each edge was developed. This
method is no longer commonly used to identify frequently
executed areas of a program; rather the program topology is
used more directly but with less resultant precision.

REGISTER ASSIGNMENT

LXD ONE,l load 1 into regl
LOOP CLA B + 1,l

ST0 A + 1,l
TXI * + 1,1,1 add 1 to reg1 and

goto next inst
TXL LOOP,l ,100 if regl s 100

got0 loop
. . .

ONE , ,1
A BES 100

B BES 100

data value one
reserve 100 locs,
ending with A
reserve 100 locs,
ending with B'

Figure 2-FORTRAN I translation of array move

In general the code produced by the compiler was not only
locally efficient but globally as well. The output program did
not contain long, precoded, predictable sequences but con-
tained code optimized to run efficiently in its context (where
the context included the whole program). The project was a
success.

Jean Sammet states, "Its major technical contribution was
Using the edge execution frequencies, regi0ns were formed so to demonstrate that efficient object code could be produced
that registers be assigned to the most exe- by a compiler; as a result. it became clear that productivity of
cuted areas (usually innermost loops), then to the next most programmers could be significantly improved.,,~~ Another
frequently executed areas, etc. until the entire program had major contribution of the project is the influence it has had
been treated. When a region had been processed, its entry and on compiler svucture and techniques. Overall ". . FOR-
exit conditions were recorded, i.e., the values which needed TRAN has probably had more impact on the computer field
to be loaded on entry and stored on exit. A processed region than any other single software development~~~o-because of
was not reexamined when its containing region was processed, the language, the technological impact on subsequent corn-
but the entry and exit conditions and whether or not it had any pilers, and the impetus it gave to widespread use of higher-
unassigned registers were used. The assignment of registers level languages.
within a basic block used the "distance to next use" criterion
to determine which register to displace when out of registers.
"Activity bits" were used to determine the necessity of storing
a value in a register for subsequent use if the register had to
be reused. In case of register assignment mismatches across
basic blocks, an attempt was made to permute the assignment.

This register assignment method was a phenomenal piece of
work. The displacement algorithm for straight-line code was
later proved optimal7 for the "one-cost model";' a displace-
ment costs the same whether you need to store the register
contents or not. Until 1980, when Greg Chaitin9 successfully
applied a graph coloring algorithm to the global assignment of
registers, most global assignments were essentially variants on
the FORTRAN I approach.

RESULTS

Perhaps the best way of demonstrating the results of this
project is to show an example of its output-an output which
startled this author. The FORTRAN program in Figure 1,
moved array B to array A in a double nest of DO loops. The
assembly program in Figure 2 is the FORTRAN I compiler's
output for this program and shows the move being done with
one loop instead of the two expected from the source. (FOR-
TRAN stored its arrays column-wise and backwards; the 704
subtracted the value in the index register from the address.)

REFERENCES

1. Backus, John. "The History of FORTRAN I, 11, and 111." ACM SIGPLAN
History of Programming Languages Conference, SIGPLAN Notices 13, 8
(August 1978), pp. 165-180.

2. Backus, J. W., R. J . Beeber, S. Best, R. Goldberg, L. M. Haibt, H. L.
Herrick, R. A. Nelson, D. Sayre, P. B. Sheridan, H. Stem, I. Ziller, R. A .
Hughes, and R. Nutt. "The FORTRAN Automatic Coding System." Pro-
ceedings Western Joint Computer Conference, Los Angeles, 1957, pp.
188-198.

3. Sheridan, Peter B. "The Arithmetic Translator-Compiler of the IBM FOR-
TRAN Automatic Coding System." CACM 2,2 (Feb. 1959), pp. 9-21.

4. Backus, J . W.. and W. P. Heising. "FORTRAN." IEEE Transactions on
Electronic Computers, EC-13,4 (August 1964), pp. 382-385.

5. Auslander, M. A. , and M. E. Hopkins. "An Overview of the PL.8 Com-
piler." Proceedings of the SIGPLAN Symposium on Compiler Construc-
tion, June 1982 (to appear).

6 . Aho, Alfred V. "Translator Writing Systems: Where DO They Stand?"
Computer, 13,8 (August 1980), pp. 9-14.

7. Belady, L. A. "A Study of Replacement Algorithms for a Virtual-Storage
Computer." IBM Systems Journal, 5,2 (1966), pp. 78-102.

8. Horwitz, L. P., R. M. Karp, R. E. Miller, and S. Winograd. "Index Reg-
ister Allocation." JACM 13,l (Jan. 1966), pp. 43-61.

9. Chaitin, Gregory J., Marc A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. "Register Allocation via
Coloring." Computer Languages 6 (1981), pp. 47-57.

10. Sammet, Jean E. "History of IBM's Technical Contributions to High Level
Programming Languages." IBM Journal of Research and Developmenr,
25,5 (Sept. 1981), pp. 520-534.

