

T h e F O R T R A N Automatic Coding System
J. W. BACKUS?, R. J. BEEBERt, S. BEST$, R. GOLDBERG?, L. M. HAIBTt,

H. L. HERRICK?, R. A. NELSON?, D. SAYRE?, P. B. SHERIDAN?,
H.STERNt, I. ZILLERt, R. A. HUGHES§, AN^ .. . R. NUTT~~

HE FORTRAN project was begun in the sum-
mer of 1954. I ts purpose was to reduce by a large
factor the task of preparing scientific problems for

IBM's next large computer, the 704. If i t were possible
for the 704 to code problems for itself and produce as
good programs as human coders (but without the
errors), i t was clear that large benefits could be achieved.
For i t was known that about two-thirds of the cost of
solving most scientific and engineering problems on
large computers was that of problem preparation.
Furthermore, more than 90 per cent of the elapsed time
for a problem was usually devoted to planning, writing,
and debugging the program. In many cases the de-
velopment of a general plan for solving a problem was
a small job in comparison to the task of devising and
coding machine procedures to carry out the plan. The
goal of the FORTRAN project was to enable the pro-
grammer to specify a numerical procedure using a con-
cise language like that of mathematics and obtain
automatically from this specification an efficient 704
program to carry out the procedure. I t was expected
that such a system would reduce the coding and de-
bugging task to less than one-fifth of the job it had been.

Two and one-half years and 18 man years have elapsed
since the beginning of the project. The FORTRAN

t Internat'l Business Machines Corp., New York, N. Y.
$ Mass. Inst. Tech., Computation Lab., Cambridge, Mass.

Radiation Lab., Univ. of California, Livermore, Calif.
nited Aircraft Corp., East Hartford, Conn.

system is now copplete. I t has two components: the
FORTRAN language, in which programs are written,
and the translator or executive routine for the 704
which effects the translation of FORTRAN language
programs into 704 programs. Descriptions of the FOR-
TRAN language and the translator form the principal
sections of this paper.

The experience of the FORTRAN group in using the
system has confirmed the original expectations con-
cerning reduction of the task of problem preparation

1

and the efficiency of output programs. A brief case
history of one job done with a system seldom gives a
good measure of its usefulness, particularly when the
selection is made by the authors of the system.
Nevertheless, here are the facts about a rather simple
but sizable job. The programmer attended a one-day
course on FORTRAN and spent some more time re-
ferring to the manual. He then programmed the job
in four hours, using 47 FORTRAN statements. These
were compiled by the 704 in six minutes, producing
about 1000 instructions. He ran the program and found
the output incorrect. He studied the output (no tracing
or memory dumps were used) and was able to localize
his error in a FORTRAN statement he had written.
He rewrote the offending statement, recompiled, and
found that the resulting program was correct. He esti-
mated that i t might have taken three days to code this
job by hand, plus an unknown time to debug it , and
that no appreciable increase in speed of execution would
have been achieved thereby.

Backus et al.; The FORTRAN Automatic Coding System 189

THE FORTRAN LANGUAGE
The FORTRAN language is most easily described

by reviewing some examples.

Arithmetic Statements

Example 1 : Compute :

- (B/2) 4- d(B/2) - AC .
root =

FORTRAN Program :

ROOT
= (- (B/2.0) + SQRTF((B/2.0) * * 2 - A * C))/A.

Notice that the desired erogram is a single FOR-
TRAN statement, an arithmetic formula. I ts meaning
is: "Evaluate the expression on the right of the = sign
and make this the value of the variable on the left.?'
The symbol * denotes multiplication and * * denotes
exponentiation (i.e., A * * B means AB). The program
which is generated from this statement effects the
computation in floating point arithmetic, avoids com-
puting (B/2.0) twice and computes (B/2.0) * * 2 by a
multiplication rather than by an exponentiation routine.
[Had (B/2.O) * * 2.01 appeared instead, an exponentia-
tion routine would necessarily be used, requiring more
time than the multiplication.]

The programmer can refer to quantities in both
floating point and integer form. Integer quantities

\ a re somewhat restricted in their use and serve primarily
a s subscripts or exponents. Integer constants are written
without a decimal point. Example: 2 (integer form) vs
2.0 (floating point form). Integer variables begin with
I , J, K, L, M, or N. Any meaningful arithmetic expres-
sion may appear on the right-hand side of an arithmetic
statement, provided the following restriction is ob-
served: an integer quantity can appear in a floating-
point expression only as a subscript or as an exponent
or as the argument of certain functions. The functions
which the programmer may refer to are limited only
by those available on the library tape a t the time, such
a s SQRTF, plus those simple functions which he has
defined for the given problem by means of function
statements. An example will serve to describe the latter.

Function Statements

Example 2: Define a function of three variables to be
used throughout a given problem, as follows: f

Function statements must precede the rest of the pro-
gram. They are composed of tho desired function name
(ending in F) followed by any desired arguments which
appear in the arithmetic expression on the right of the
= sign. The definition of a function may employ any

previously defined functions. Having defined ROOTF
as above, the programmer may apply i t to any set of
arguments in any subsequent arithmetic statements. For
example, a later arithmetic statement might be

THETA = 1.0 + GAMMA * ROOTF(P1, 3.2 * Y + 14.0, 7.63).

DO Statements, DIMENSION Statements, and Sub-
scripted Variables

Examgle 3: Set Qm,, equal to the largest quantity
P(ai+bi)/P(ai- bi) for some i between 1 and 1000
.where P(x) = C ~ + ~ ~ X + C ~ X ~ + C ~ X ~ .

FORTRAN Program:

1) POLYF(X) =CO+X * (C l + X * (C2+X * C3)).
2) DIMENSION A(1000), B(1000).
3) QMAX = - 1.0 E20.
4) DO 5 I =1, 1000.
5) QMAX = MAXF(QMAX, POLYF(A(1)

+B(I))/POLYF(A(I) -B(I))).
6) STOP.

The program above is complete except for input and
output statements which will be described later. The
first statement is not executed; it defines the desired
polynomial (in factored form for efficient output pro-
gram). Similarly, the second statement merely informs
the executive routine that the vectors A and B each have
1000 elements. Statement 3 assigns a large negative
initial value to QMAX, - 1.0 X 1020, using a special
concise form for writing floating-point constants. State-
ment 4 says "DO the following sequence of statements
down to and including the statement numbered 5 for
successive values of I from 1 to 1000." In this case
there is only one statement 5 to be repeated. I t is exe-
cuted 1000 times; the first time reference is made to
A(l) and B(1), the second time to A(2) and B(2), etc.
After the 1000th execution of statement 5, statement
6-STOP-is finally encountered. In statement 5,
the function MAXF appears. MAXF may have two
or more arguments and its value, by definition, is the
value of its largest argument. Thus on each repetition
of statement 5 the old value of QMAX is replaced by
itself or by the value of POLY F(A(1) +B (I)) /POLYF
(A(1) - B (I)), whichever is larger. The value of QMAX
after the 1000th repetition is therefore the desired
maximum.

Example 4: Multiply the n Xlr matrix 520) by
its transpose, obtaining the product elements on or be-
low the main diagonal by the relation

cis j = 5 a i . k e a j , k (for j < i)
k-1

and the remaining elements by the relation

190 1957 WBSTGRhT. CQNP UTER PROCBEDINGS

FORTRAN Program:
DIMENSION ~ (2 0 , 20), C(20, 20)
D O 2 1 = 1 , N P

STOP

As in the preceding example, the DIMENSION
statement says that there are two matrices of maximum
size 20 X20 named A and C. For explanatory purposes
only, the three boxes around the program show the
sequence of statements controlled by each DO state-
ment. The first DO statement says that procedure P,
i.e., the following statements down to statement 2 (outer
box) is fo be carried out for I = 1 then for I = 2 and so
on up to I =N. The first statement of procedure
P (D 0 2 J = 1, I) directs that procedure Q be done for
J = 1 to J = I. And of course each execution of pro-
cedure Q involves N executions of procedure R for
K = l , 2, . . , N.

Consider procedure Q. Each time its last statement
is completed the "index" J of its controlling DO 'state-
ment is increased by 1 and control goes to the first
statement of Q, until finally its last statement is reached
and J = 1. Since this is also the last statement of P and
P has not been repeated until I = N, I will be increased
and control will then pass to the first statement of P.
This statement (DO 2 J = 1, I) causes the repetition
of Q to begin again. Finally, the last s t a t emen t~f Q and
P (statement 2) will be reached with J = I and I = M,
meaning that both Q and P have been repeated the
required number of times. Control will then go to the
next statement, STOP. Each time R is executed a new
term is added to a product element. Each time Q is
executed a new product element and its mate are ob:
tained. Each time P is executed a product row (over to
the diagonal) and the corresponding column (down to
the diagonal) are obtained.
' The last example contains a "nest" of Jstate-

ments, meaning that the sequence of statements con-
trolled by one DO statement contains other DO state-
ments. Another example of such a nest is shown in the
next column, on the left. Nests of the type shown on the
right are not permitted, since they would usually be
meaningless.

Although not illustrated in the examples given, the
programmer may also employ subscripted variables
having three independent subscripts.

READ, PRINT, FORMAT, I F and GO TO Statements

Examplep 5: For each case, read from cards two vec-
tors, ALPHA and RHO, and the number ARG. ALPHA
and RHO each have 25 elements and ALPHA(1)
LALPHA(I+I) , I = 1 to 24. Find the SUM of all the
elements of ALPHA from the beginning to the last
one which is less than or equal to ARG [assume
ALPHA(1) 5 ARG <ALPHA(~S) 1. If this last element
is the Nth, set VALUE = 3.14159 * RHO(N). Print a
line for each case with ARG, SUM, and VALUE.

FOR TRA N Program :

DIMENSION ALPHA(25), RHO(25)
1) FORMAT(SF12.4).
2) READ 1, ALPHA, RHO, ARG

SUM ~ 0 . 0
DO 3 I==l , 25
I F (ARG-ALPMA(1)) 4, 3, 3.

3) SUM =SUM +ALPHA(I)
4) VALUE = 3.14159 * RHO(I - 1)

L PRINT 1, ARG, SUM, VALUE
0 T O 2.

The FORMAT statement mys that numbers are to
be found (or print&) 5 per card (or line), that .each
number is in fixed; point form, that each number, oa-
cupies a field 12 mlumns wide and that *thq; decimal
point is lmated 4 digits h r n the right, T b l F Q R M A T
statemeat is not executed; i t is referred Wbfr the READ
and PRINT sgatements to describe itbg W r e d arrange-
ment iof data in the external medh

The READ statement says 'RE339.D eards in the
card reader which are arranged acc&iTg' to FORMAT
ej,tatement 1 and assign the suewsiwe nambers obtained
as values of ALPHA(1) I =? 1, 2& aigd RBQ(1) I = 1, 25
and ARG." Thus "ALPHA, RHO, ARC" is a descrip-
tion of a list of 51 quantities((tb~ 's ize of ALPHA and
RHO being obtained fidrn' kf& ' ~ I M E N S I O N state-
ment), Reading of c a d e ,'prxwmx!& until these SL,quarati-
ties have been obtai~ed~hahh QWQ having five nlmibers,
as per the FORMAT: d ~ w i p t i a h , except the Ids* w&.ich
has the value of sARG'ddyr ,8ine:ee ARG te~$niai tbd~the
list, the remaining f~a>~g,fiiel$sla~ the. last G~W? imp not
read. The PRINT statement is similar to READ except
that it specifies a list of only three quantities. Thus

Backus et al. : The F O R T R A N auto ma ti ti^. Coding System 191

Ach execution of PRINT causes a single line to be
printed with ARG, SUM, VALUE printed in the first
three of the five fields described by FORMAT state-
ment 1.

The IF' statement says " I f A RG - A L P H A (I) is
negative go tostatement 4, if it 3s zero go to statement
3, and if it is' 'positive go to 3." Thus the repetition
of the two Statements controlled by the DO consists
normally of computing ARG - ALPHA(1) , finding i t
zero or positive, and going to statement 3 followed by
the next repetition. H~wever , when I has been in-
creased to the extent that the first ALPHA exceeding
ARG is encountered, control will pass to statement 4:
Note that this statement does not belong to the se-
quence controlled by the DO. In such cases, the repeti-
tion specified by the DO is terminated and the value of
the index (in this ease I) is preserved. Thus if the first
ALPHA exceeding ARG were ALPHA (20), then RHO
(19) would be obtaihed in statement 4.

The GO T O statement, of course, passes control to
statement 2, which initiates reading the 11 cards for the
next case. The process will continue until there are no
more cards in the reader. The above program is entirely
complete. When punched in cards as shown, and comd
piled, the jcrandlator will produce a ready-to-run 704
program which will perform the job specified.

Other Types of F O R T R A N Statements

In the above examples the following types of FOR-
TRAN statements have been exhibited.

Arithmetic statements
Function statements
DO statements
I F statements
GO TO statements
READ statements
PRINT statements
STOP' statements
DIM ~ N S I O N statements
FORMAT statements.

The explanations accompanying each example have
attempted to show some of the possible applications and
variations of these statements. I t is felt that these
examples give a representative picture of the FOR-
TRAN language; however, many of its features have
had to be omitted. There are 23 other types of state-
ments in the language, many of them completely
analogous to some of those described here. They pro-
vide facilities for referring to other input-output' and
auxiliary storage devices (tapes, drums, and card
punch), for specifying preset and computed branching
of control, for detecting various conditions which may
arise such as an at tempt to divide by zero, and for pro-
viding various information about a program to the
translator. A complete description of the language is to
be found in Programmer's Reference Manual, the FOR-
T R A N Automatic Coding System for the IB M 704.

Preparation of a Program for Translation

The translator accepts statements punched one per
card (continuation cards may be used for very long
statements). There is a separate key on the keypunch-
ing device for each character used in FORTRAN state-
ments and each character is represented in the card by
several holes in a single column of the card. Five
columns are reserved for a statement number (if pres-
ent) and 66 are available for the statement. Keyguhch-
ing a FORTRAN program is therefore a prockss similar

. , to that of typing the program.

Translation

The deck of cards obtained by keypunching may
then be put in the card reader of a 704 equipped'with
the translator program. When the load buttori is Sressed
one gets either 1) a list of input statements which fail
to conform to specifications of the FORTRAN language
accompanied by remarks which indicate the type of
error in each case; 2) a deck of binary cards representing
the desired 704 program, 3) a binary tape of the program
which can either be preserved or loaded and executed
immediately after translation is complete, or 4) a tape
containing the output program in symbolic form suitable
for alteration and later assembly. (Some of these out- ,

puts may be unavailable a t the time of publication.)

THE FORTRAN TRANSLATOR
General Organization of the System

The FORTRAN translator consists of six successive
sections, as follows.

Sectiorc 1: Reads in and classifies statements. For
arithmetic formulas, compiles the object (output) in-
structions. For nonarithmetic statements including
input-output, does a partial compilation, and records
the remaining information in tables. All instructions
compiled in this section are in the COMPAIL file.

Section 2: Compiles the instructions associated with
indexing, which result from DO statements and the oe-
currence of subscripted variables, These instructions
are placed in the COMPDO file,

Section 3: Merges the COMPAIL and COMPDO
files into a single file, meanwhile completing the compila-
tion of nonarithmetic statements begun in Section 1.
The object program is now complete, but assumes an
object machine with a large number of index registers.

Section 4: Carries out an analysis of the flow of the
object program, to be used by Section 5.

Section 9: Converts the object program to one which
involves only the three index registers of the 704.

Section 6: Assembles the object program, producing
a relocatable binary program ready for running. Alsc
on demand produces the object program in SHARE
symbolic language.

(Note: Section 3 is of internal importance only; Sec- .
tion 6 is a fairly conventional assembly program. These
sections will be treated only briefly in what follows.)

192 1957 WESTERN COMPUTER PROCEEDINGS

Within the translator, information is passed from
section to section in two principal forms: as compiled
instructions, and as tables. The compiled instructions
(e.g., the COMPAIL and COMPDO files, and later their
merged result) exist in a four-word format which con-
tains all the elements of a symbolic 704 instruction;
ie., symbolic location, three-letter operation code, sym-
bolic address with relative absolute part, symbolic tag,
and absolute decrement. (Instructions which refer to
quantities given symbolic names by the programmer
have those same names in their addresses.) This sym-
bolic format is retained until section 6 . Throughout, the
order of the compiled instructions is maintained by
means of the symbolic locations (internal statement
numbers), which are assigned in sequential fashion by
section 1 as each new statement is encountered.

The tables contain all information which cannot yet
be embodied in compiled instructions. For this reason
the translator requires only the single scan of the source
program performed in section 1.

A final observation should be made about the organ-
ization of the system. Basically, i t is simple, and most
of the complexities which i t does possess arise from the
effort to cause i t to produce object programs which
can compete in efficiency with hand-written programs.
S ~ m e of these complexities will be found within the
individual sections; but also, in the system as a whole,
the sometimes complicated interplay between compiled
instructions and tables is a consequence of the desire to
postpone compiling until the analysis necessary to
produce high object-program efficiency has been per-
formed.

Section 1 (Beeber, Herrick, Nutt, Sheridan, and Stern)

The over-all flow of section 1 is

which can be compiled are compiltd, and the remaining
information is. extracted and placed in one or more of
the appropriate tables.

In contrast, arithmetic formulas are completely
treated in section 1, except for open (built-in) sub-
routines, which are added in section 3; a complete set
of compiled instructions is produced in the COMPAIL
file. This compilation involves two principal tasks: 1)
the generation of an appropriate sequence of arith-
metic instructions to carry out the computation speci-
fied by the formula, and 2) the generation of (symbolic)
tags for those arithmetic instructions which refer to
subscripted variables (variables which denote arrays)
which in combination with the indexing instructions to
be compiled in section 2 will refer correctly to the indi-
vidual members of those arrays. Both these tasks are
accomplished in the course of a single scan of the for-
mula.

Task 2) can be quickly disposed of. When a sub-
scripted variable is encountered in the scan, its sub-
script(~) are examined to determine the symbols used
in the subscripts, their multiplicative coefficients, and
the dimensions of the array. These items of information
are placed in tables where they will be available to
section 2 ; also from them is generated a subscript com-
bination name which is used as the symbolic tag of
those instructions which refer to the subscripted vari-
able.

The difficulty i n carrying out t a ~ k 1) is one of level;
there is implicit in every arithmetic formula an order of
computation, which arises from the control over order-
ing assigned by convention to the various symbols
(parentheses, + , - , * , /, etc.) which can appear, and
this implicit ordering must be made explicit before
compilation of the instructions can be done. This ex-
plicitness is achieved, during the formula scan, by

Read and classify next source statemen associating with each operation required, by the formula
and assign internal statement numbe a level number, such that if the operations are carried

Input-output Arithmetic out in the order of increasing level number the correct

t
sequence of arithmetic instructions will be obtained. The v,

Treat statement I I Treat statement I I Treat statement sequence of level numbers is obtained b y means of a
i I $. '1 set of rules, which specify for each possible pair formed

\section 2 1 of operation type and symbol type the increment to be
'added to or subtracted from the level number of the

For an input-output statement, section 1 compiles the preceding pair.
appropriate read or write select (RDS or WRS) in- In fact, the compilation is not carried out with the
struction, and the necessary copy (CPY) instructions raw set of level numbers produced during the scan.
(for binary operations) or transfer instructions to pre- After the scan, but before the compilation, the levels
written input-output routines which perform conver- are examined for empty sections which can be deleted,
sion between decimal and binary and govern format (for for permutations of operations on the same level, which
decimal operations). When the list of the input-output will reduce the number of accesses to memory, and for
statement is repetitive, table entries are made which redundant computation (arising from the existence of
will cause section 2 to generate the indexing instructions common subexpressions) which can be eliminated.
necessary to make the appropriate loops. An example will serve to show (somewhat inaccurate-

The treatment of state-ments which are neither input- ly) some of the principles employed in the level-analysis
output nor arithmetic is similar; i.e., those instructions process. Consider the following arithmetic expression:

<

Backus et al.: The FORTRAN Automatic Codi~g System

In the level analysis of this expression parentheses
are in effect inserted which define the proper order in
which the operations are to be performed. If only three
implied levels are recognized (corresponding to +, *
and * *) the expression obtains the following: a

+(* (* *A))+(* (* * B * *C)* [+(* (* *EN+(* (* * ~)) l) .

The brackets represent the parentheses appearing in the
original expression. (The level-analysis routine actually
recognizes an additional level corresponding to func-
tions.) Given the above expression the level-analysis
routine proceeds to define a sequence of new dependent
variables the first of which represents the value of the
entire expression. Each new variable is generated when-
ever a left parenthesis is encountered and its definition
is entered on another line. In the single scan of the ex-
pression i t is often necessary to begin the definition of
one new variable before the definition of another has
been completed. The subscripts of the u's in the follow-
ing sets of definitions indicate the order in which they
were defined.

2-49 = * *F.

This is the point reached a t the end of the formula
scan. What follows illustrates the further processing
applied to the set of levels. Notice that ua, for example,
is defined as * * F. Since there are not two or more
operands to be combined the * * serves only as a level
indication and no further purpose is served by having
defined us. The procedure therefore substitutes F for
UQ wherever UQ appears and the line uo = * * F is deleted.
Similarly, F is then substituted for us and us= * F is
deleted. This elimination of "redundant" u's is carried
to completion and results in the following:

No = + A + a3

u3 = * u4 * ug

These definitions, read up, describe a legitimate
proc-cdure for obtaining the value of the original ex-

pression. The number of u's remaining a t this point
(in this case four) determines the number of intermedi-
ate quantities which may need to be stored. However,
further examination of this case reveals that the result
of 243 is in the accumulator, ready for uo; therefore the
store and load instructions which would usually be
compiled between u3 and uo are omitted.

Section 2 (Nelson and Ziller)

Throughout the object program will appear in-
structions which refer to subscripted variables. Each
of these instructions will (until section 5) be tagged with
a symbolic index register corresponding to the particu-
l b subscript combination of the subscripts of the varia-
ble [e.g., (I , K , J) and (K, I , J) are two different sub-
script combinations]. If the object program is to work
correctly, every symbolic index register must be so
governed that i t will have the appropriate contents a t
every instant that it is being used. I t is the source pro-
gram, of course, which determines what these appro-
priate contents must be, primarily through its DO
statements, but also through arithmetic formulas (e.g.
I= N+1) which may define the values of variables ap-
pearing in subscripts, or input formulas which may
read such values in a t object time. Moreover, in the
case of DO statements, which are designed to produce
loops in the object program, it is necessary to provide
tests for loop exit. I t is these two tasks, the governing
of symbolic index registers and the testing of their
contents, which section 2 must carry out.

Much of the complexity of what follows arises from
the wish to carry out these tasks optimally; i.e., when
a variable upon which many subscript combinations de-
pend undergoes a change, to alter only those index
registers which really require changing in the light of
the problem flow, and to handle exits correctly with
a minimum number of tests.

If the following subscripted variable appears in a
FORTRAN program

A(2* I + 1 , 4 * J + 3 , 6 * K + 5) ,

the index quantity which must be in its symbolic index I
register when this reference to A is made is

(cli - 1) 3, (~ 2 j - 1)di + (~3k - 1)didj + 1,

where GI, h, and c3 in this case have the values 2, 4, and
6; i, j, and k are the values of I, J, and K a t the moment,
and di and d j are the I and J dimensions of A . The
effect of the addends 1, 3, and 5 is incorporated in the
address of the instruction which makes the reference.

In general, the index quantity associated with a sub-
I

script combination as given above, once formed, is not
recomputed. Rather, every time one of the variables in
a subscript combination is incremented under control of
a DO, the corresponding quantity is incremented by
the appropriate amount. In the example given, if K

I

I

I

I

i Y

194 1957 WESTERN COMPUTER PBOCEEDIJVGS

is increased by n (under control of a DO), the index
quantity is increased by cSdid,rt, giving the correct new
value' The following paragraphs discuss in further detail
the ways in which index quantities are computed and
modified.

Choosing the Indexing Instructions; Case of Subscrifits
Controlled by DO'S

We distinguish between two classes of subscript ;
those which are in the range of a DO having that sub-
script as its index symbol, and those subscripts which
are not controlled by DO'S.

The fundamental idea for subscripts controlled by
DO'S is that a sequence of indexing instruction groups
can be selected to answer the requirements, and that
the choice of a particular instruction group depends
mainly on the arrangement of the subscripts within the
subscript combination and the order of the DO'S con-
trolling each subscript.

DO'S often exist in nests. A nest of PO'S consists of
all the DO'S contained by some one DO which is itself
not contained by any other. Within a nest, DO'S are
assigned level numbers. Wherever the index symbol of a
DO appears as a subscript within the range of that DO,
the level number of the DO is assigned to the subscript.
The relative values of the level numbers in a subscript
combination produce a group number which, along with
other information, determines which indexing instruc-
tion group is to be compiled.

The source language,

,
The decrement parts of the FORTRAN indexing

instructions are functions of the dimensions of arrays
and of the parameters of DO's; that is, of the initial
value nl, the upper bound n ~ , and the increment n3
appearing in the statement DO 1 i = n l , nz, n3. The
general form of the function is [(nz - nl +m)/ns]fiag
where g represents necessary coefficients and dimen-
sions, and [x] denates the integral part of x.

If all the parameters are constants, the decrement
parts are computed during the execution of the FOR-
TRAN executive program. If the parametel's are vari-
able symbols, then instructions are compiled in the
object program to compute the proper decrement val-
ues. For object program efficiency, it is desirable to
associate these computing instructions with the outer-
most DO of a nest, where possible, and not with the
inner loops, even fhough these inner DO's may have
variable parameters. Such a variable parameter (e.g.,
N in "DO 7 I= 1, N") may be assigned values by the
programmer by any of a number of methods; i t may be
a value brought in by a READ statement, i t 'may be
calculated by an arithmetic statement, i t may take its
value from a transfer exit from some other DO whose
index symbol is the pertinent variable symbol, or i t may
be under the control of a DO in the nest. A search is
made to determine the smallest level number in the
nest within which the variable parameter is not assigned
a new value. This level number determines the place
a t which computing instructions can best be compiled.

Case of Subscripts not Controlled by DO'S

The second of the twos classes of subscript symbols is
that of subscript symbols which are not under control

5 . . . A(I, J, K) . . . (some statement referring to of DO'S. Such a subscript can be given a value in a 1

A (1, J, K)) : number of ways similar to the defining of DO param- I

produces the following DO structure and group combi-
nations :

rr level 1

I rJ level 2

level 3

K , J , I - (3, 2, 1) - 1.

Producing the Decrement Parts of Indexing Instructions

The part of the TO4 instruction used to change or test
the contents of an index register is called the decrement
part of the instruction.

eters: a value may be read in by a READ statement,
i t may be calculated by an arithmetic statement, or i t
may be defined by an exit made from a DO &h tha t
index symbol.

I

For subscript combinations with no subsc(ipt under
the control of a DO, the basic technique use$ to intro-
duce the proper values into a symbolic in&x register is

i

that of determining where such definitipns occur, and,
a t the point of definition, using a subroutine to compute \

the new index quantity. These subrou$~es are generated
I

a t executive time, if i t is determined tha t they are I

necessary.
If the index quantity exists in a DO nest a t the time

of a transfer exit, then no cubr routine calculations are
necessary since the exit values are precisely the desired
values.

I

Mixed Cases

In cases in which some subscripts in a subscript com- I

bination are controlled by DO'S, andmxne are not,
instructions are compiled to compute the initial value

I

I 1

I

Backus et al.: The FORTRAN Automatic Coding System 195

of the subscript combination a t the beginning of the
outside loop. If the non-DO-controlled subscript sym-
bol is then defined inside the loop (that is, after the
computing of the load quantity) the procedure of using
a subroutine a t the point,of subscript definition will
bring the new value into the index register.

An exception to the use of a subroutine is made when
the subscript is defined by a transfer exit from a DO,
and that DO is within the range of a DO controlling
some other subscript in the subscript combination.
In such instances, if the index quantity is used in the
inner DO, no calculation is necessary; the exit values
are used. If the index quantity is not used, instructions
are compiled to simulate this use, so that in either case
the transfer exit leaves the correct function value in
the index register.

Modification and O@timization

Initializing and computing instructions correspond-
ing to a given DO are placed in the object program a t a
point corresponding to the lowest possible (outermost)
DO level rather than a t the point corresponding to the
given DO. This technique results in the desired removal
of certain instructions from the most frequent inner-
most loops of the object program. However, it necessi-
tates the consideration of some complex questions when
the flow within a nest of DO'S is complicated by the
occurrence of transfer escapes from DO-type repetition
and by other IF and GO TO flow paths. Consider a
simple example, a nest having a DO on I containing a
DO on J , where the subscript combination (I , J) appears
only in the inner loop. If the object program corre-
sponded precisely to the FORTRAN language pro-
gram, there would be instructions a t the entrance point
of the inner loop to set the value of J in (I , J) to the
initial value specified by the inner DO. Usually, how-
ever, it is more efficient to reset the value of J in (I, J)
a t the end of the inner loop upon leaving it, and the ob-
ject program is so constructed. In this case it becomes
necessary to compile instructions which follow every
transfer exit from the inner loop into the outer loop (if
there are any such exits) which will also reset the value
of J in (I , J) to the initial value i t should have a t the
entrance of the inner loop. These instructions, plus the
initialization of both I and J in (I , J) a t the entrance
of the outer loop (on I) , insure that J always has its
proper initial value a t the entrance of the inner loop
even though no instructions appear a t that point which
change J. The situation becomes considerably more
complicated if the subscript combination (I , J) also ap-
pears in the outer loop. In this case two independent
index quantities are created, one corresponding to
(I, J) in the inner loop, the other to (I , J) in the outer
loop.

Optimizing features play an important role in the
modification of the procedures and techniques outlined
above. I t may be the case that the DO structure and

subscript combinations of a nest describe the scanning
of a two- or three-dimensional array which is the equiva-
lent of a sequential scan of a vector; i.e., a reference
to each of a set of memory locations in descending order.
Such an equivalent procedure is discovered, and where
the flow of a nest permits, is used in place of more com-
plicated indexing. This substitution is not of an empiri-
cal nature, but is instead the logical result of a general-
ized analysis.

Other optimizing techniques concern, for example,
the computing instructions compiled to evaluate the
functions (governing index values and decrements) men-
fioned previously. When some of the parameters are
constant, the functions are reduced a t executive time,
and a frequent result is th2 compilation of only one
instruction, a reference to a variable, to obtain a proper
initializing value.

In choosing the symbolic index register in which to
test the value of a subscript for exit purposes, those
index registers are avoided which would require the
compilation of instructions to modify the test instruc-
tion decrement.

Section 4 (Haibt) pnd Section 5 (Best)

The result of section 3 is a complete program, but one
in which tagged instructions are tagged only sym-
bolically, and which assumes that there will be a real
index register available for every symbolic one. I t is the
task of sections 4 and 5 to convert this program to one
involving only the three real index registers of the 704.
Generally, this requires the setting up, for each symbolic
index register, of a storage cell which will act as an
index cell, and the addition of instructions to load the
real index registers from, and store them into, the index
cells. This is done in section 5 (tag analysis) on the basis
of information about the pattern and frequency of flow
provided by section 4 (flow analysis) in such a way
that the time spent in loading and storing index registers
will be nearly minimum.

The fundamental unit of program is the basic block; a
basic block is a stretch of program which has a single
entry point and a single exit point. The purpose of sec-
tion 4 is to prepare for section 5 a table of predecessors
(PRED table) which enumerates the basic blocks and
lists for every basic block each of the basic blocks which
can be its immediate predecessor in flow, together with
the absolute frequency of each such basic block link.
This table is obtained by an actual "execution" of the
program in Monte-Carlo fashion, in which the outcome
of conditional transfers arising out of IF-type state-
ments and computed GO TO'S is determined by a ran-
dom number generator suitably weighted according
to whatever FREQUENCY statements have been pro-
vided. 1

Section 5 is divided into four parts, of which par t , l is
the most important. I t makes all the major decisions
concerning the handling of index registers, but records

1 0 1

1957 WESTERN COMPUTER PROCEEDINGS

them simply as bits in the PRED table and a table of
all tagged instructions, the STAG table. Part 2 merely
reorganizes those tables; part 3 adds a slight further
treatment to basic blocks which are terminated by an
assigned GO TO; and finally part 4 compiles the finished
program under the direction of the bits in the PRED and
STAG tables. Since part 1 does the real work involved
in handling the index registers, attention will be con-
fined to this part in the sequel.

The basic flow of part 1 of sectipn 5 is,

Yes

Consider a moment partway through the execution
of part 1, when a new region has just been treated. The
less frequent basic blocks have not yet been encoun-
tered; each basic block that has been treated is a mem-
ber of some region. The existing regions are of two
types: transparent, in which there is a t least one real
index register which has not beeq used in any of the
member basic blocks, and opaque. Bits have been en-
tered in the STAG table, calling where necessary for
an LXD (load index register from index cell) instruc-
tion preceding, or an S X D (store index register in index
cell) instruction following-, the tagged instructions of the
basic blocks that have been treated. For each basic
block that has been treated is recorded the required
contents of each of the three real index registers for
entrance into the block, and the contents upon exit.
In the P R E D table, entries that have been considered
may contain bits calling for interblock LXD's and
SXD's, when the exit and entrance conditions across the
link do not match.

Now the PRED table is scanned for the highest-
frequency link not yet considered. The new region is
formed by working both forward over successors and
backward over predecessors from this point, always
choosing the most frequent remaining path of control.
The marking out of a new region is terminated by en-
countering 1) a basic block which belongs to an opaque
region, 2) a basic block which has no remaining links
into it (when working backward) or from i t (when
working forward), or which belongs to a transparent
region with no such links remaining, or 3) a basic block
which closes a loop. Thus the new region generally
includes both basic blocks not hitherto encountered, and
entire regions of basic blocks which have already been
treated.

The treatment of hitherto untreated basic blocks in
the new region is carried out by simulating the action
of the program. Three cells are set aside to represent the
object machine index registers. As each new tagged in-
struction is encountered these cells are examined to see

I Any PRED entries not yet considered? Form new region I
4 +

if one of them contains the required tag; if not, the
program is searched ahead to determine which oS/ the
three index registers is the least undesirable to replace,
and a bit is entered in the STAG table calling for an
LXD instruction to that index register. When the
simulation of a new basic block is finished, the en-
trance and exit conditions are recorded, and the next
item in the new region is considered. If i t is a new basic
block, the simulation continues; if i t is a region, the
index register assignment throdghout the region is
examined to see if a permutation of the index registers
would not make i t match better, and any remaining mis-
match is taken care of by entries in P R E D calling for
interblock LXD's.

A final concept is that of index register activity.
When a symbolic index register is initialized, or when
its contents are altered by an indexing instruction, the
value of the corresponding index cell falls out of date,

No
+

and a subsequent LXD will be incorrect without an

Treat new region
I

intervening SXD. This problem is handled by activity
bits, which indicate when the index cell is out of date;
when an LXD is required the activity bit is interrogated,
and if i t is on an SXD is called for immediately after the
initializing or indexing instruction responsible for the
activity, or in the interblock link from the region con- .
taining that instruction, depending upon whether the
basic block containing that instruction was a new basic
block or one in a .region already treated.

When the new region has been treated, all of the
old regions yhich belonged to i t simply lose their iden-
tity; their basic blocks and the hitherto untreated basic
blocks become the basic blocks of the new region. Thus
a t the end of part 1 there is but one single region, and
it is the entire program. The high-frequency parts of the
program were treated early; the entrance and exit con-
ditions and indeed the whole handling of the index
registers reflect primarily the efficiency needs of these
high-frequency paths. The loading and unloading of the
index registers is therefore as much as possible placed
in the low-frequency paths, and the object program
time consumed in these qera t ions is thus brought near
to a minimum.

Part 2

The preceding sections of this paper have described
the language and the translator program of the FOR-
TRAN system. Following are some comments on the
system aqd its application.

Scope of A pfilicability

The language of the system is intended to be capable 1
of expressing virtually any numerical procedure. Some
problems programmed in FORTRAN language to date
include: reactor shielding, matrix inversion, numerical
integration, tray-to-tray distillation, microwave propa-
gation, radome design, numerical weather prediction,
plotting and root location of a quartic, a pracedure for
playing the game "nim," helicopter design, and a number

Backus et al.: The FORTRAN Automatic Coding System 197

of others. The sizes of these first programs range from
about 10 FORTRAN statements to well over 1000, or
in terms of machine instructions, from about 100 to
7500.

Conciseness and Convenience

The statement of a program in FORTRAN lan-
guage rather than in machine language or assembly
program language is intended to result in a considerable
reduction in the amount of thinking, bookkeeping,
writing, and time required. In the problems mentioned
in the preceding paragraph, the ratio of the number of
output machine instructions to the number of input
FORTRAN statements for each problem varied be-
tween about 4 and 20. (The number of machine instruc-
tions does no t include any library subroutines and thus
represents approximately the number which would need
to be hand coded, since FORTRAN does not normally
produce programs appreciably longer than correspond-
ing hand-coded ones.) The ratio tends to be high, of
course, for problems with many long arithmetic expres-
sions or with complex loop structure and subscript ma-
nipulation. The ratio is a rough measure of the concise-
ness of the language.

The convenience of using FORTRAN language is
necessarily more difficult t o measure than its concise-
ness. However the ratio of coding times, assembly pro-
gram language vs FORTRAN language, gives some in-
dication of the reduction in thinking and bookkeeping
as well as in writing. This time reduction ratio appears
to range also from about 4 to 20 although i t is difficult
to estimate accurately. The largest ratios are usually
obtained by those problems with complex loops and
subscript manipulation as a result of the planning of
indexing and bookkeeping procedures by the translator
rather than by the programmer.

Education

I t is considerably easier to teach people untrained in
the use of computers how to write programs in
FORTRAN language than i t is to teach them machine
language. A FORTRAN manual specifically designed
as a teaching tool will be available soon. Despite the
unavailability of this manual, a number of successful
courses for nonprogrammers, ranging from one to three
days, have been completed using only the present ref-
erence manual.

Debugging

The structure of FORTRAN statements is such that
the translator can detect and indicate many errors
which may occur in a FORTRAN-language program.
Furthermore, the nature of the language makes it possi-
ble to write programs with far fewer errors than are to
be expected in machine-language programs.

Of course, it is only necessary to obtain a correct
FORTRAN-language program for a problem, therefore
all debugging efforts are directed toward this end. Any

errors in the translator program or any machine mal-
function during the process of translation will be de-
tected and corrected by procedures distinct from the
process of debugging a particular FORTRAN program.

In order to produce a program with built-in debugging
facilities, i t is a simple matter for the programmer to
write various PRINT statements, which cause "snap-
shots" of pertinent information to be taken a t appropri-
ate points in his procedure, and insert these in the deck
of cards comprising his original FORTRAN program.
After compiling this program, running the resulting
machine program, and comparing the resulting snap-
shots with hand-calculated or known values, the pro-
grammer can localize the specific area in his FORTRAN
program which is causing the difficulty. After making
the appropriate corrections in the FORTRAN program
he mky remove the snapshot cards and recompile the
final program or leave them in and recompile if the prod
gram is not yet fully checked.

Experience in debugging, FORTRAN programs t o
date has been somewhat clouded by the simultaneous
process of debugging the translator program. However,
i t becomes clear that most errors in FORTRAN pro-
grams are detected in the process of translation. So far,
those programs having errors undetected by the trans-
lator have been corrected with ease by examining the
FORTRAN program and the data output of the ma-
chine program.

Method of Translation

In general the translation of a FORTRAN program
to a machine-language program is characterized by the
fact that each piece of the output program has been
constructed, instruction by instruction, so as not only
to produce an efficient piece locally but also to fit effi-
ciently into its context as a result of many consideratjons
of the structure of its neighboring pieces and of the
entire program. With the exception of subroutines (cor-
responding to various functions and input-output
statements appearing in the FORTRAN program), the
output program does not contain long precoded instruc-
tion sequences with parameters inserted during trans-
lation. Such instruction sequences must be designed to
do a variety of related tasks and are often not efficient
in particular cases to which they are applied.
FORTRAN-written programs seldom contain sequences
of even three instructions whose operation parts alone
could be considered a precoded "skeleton."

There are a number of interesting observations con-
cerning FORTRAN-written programs which may throw
some light on the nature of the translation process.
Many object programs, for example, contain a large
number of instructions which are not attributable to
any particular statement in the original FORTRAN
program. Even transfers of control will appear which
do not correspond to any control statement (e.g., DO,
IF, GO TO) in the original program. The instructions
arising from an arithmetic expression are optimally

1957 WESTERN COMPUTER PROCEEDINGS

arranged, often in asurprisingly different sequence than
the expression would lead one to expect. Depending
on its context, the same DO statement may give rise to
no instructions or to several complicated groups of in-
structions located a t different points in the program.

While i t is felt that the.ability of the system to trana-
late algebraic expressions provides an important and
necessary convenience, its ability to treat subscripted
variables, DO statements, and the various input-output
and FORMAT statements often provides even more
significant conveniences.

In any case, the major part of the translator program
is devoted to handling these last mentioned facilities
rather than to translating arithmetic expressions. (The
near-optimal treatment of arithmetic expressions is sim-
ply not as complex a task as a similar treatment of
"housekeepingn operations.) A list of the approximate
number of instructions in each of the six sections of the
translator will give a crude picture of the effort expend-
ed in each area. (Recall that Section 1 completely treats

arithmetic statements in addition to performing a num-
ber of other tasks.)

Sectdole s umber Number of Irtstructians
1 5500
2 6000
3 2500
4 3000
5 5000
6 . 2000

The generality and complexity of some of the tech-
niques employed to achieve efficient output programs
may often be superfluous in many common applications.
However the use af such techniques should enable the
EQRTRAN system to produce efficient programs for .
important problems which involve complex and unusual
procedures. In any case the intellectual satisfaction of
having formulated and solved some difficult problems
of translation and the knowledge and experience ac-
quired in the process are themselves almost a sufficient
reward for the long effort expended on the FORTRAN
project.

