
v A UVCL "LC J G ~ S U- -I--- -- ---- -we-- r - ----D

scene. Its shortcomings and merits have been
debated at length. The language and properties of
various FORTKaS systems have been described in
detail in a number of manuals. The present paper wiU,

never gave very much thought to the irnplicagicms of
machine-independent s<rurc$ bgaages appficd ta a
variety of machines. Ratha, the group's attendm was ,

focussed on what seemed then to be * chdkagt: a d d

D~src,.; ESVIRONMENT wodd atmost completely ijlod: acceptance of tbe s p
tern. (Of course, few would 'feel that way today.)

Most of the FORTR-IS language spleciftcations were
frozen almost ten years ago. I t was therefore designed

Backw and flddng: FORTRAN 385

1 stant amounts and be equipped, for example, to produce though an array reference was deep within a #nestn of
d i n g which would presen-e the address of A,,j and DO statements. A11 of the testing af index quantities,'

d the constant k& to it to obtain the address of modification of addresses, and initlialization of quan-
tities at the beginning of a imp were to be treated as

one probkm was clearly that of distinguishing efficiently as possible in such nested laops. This was felt
between, on t h one hand, references to an array element necessary again to avoid embarrming comparisons in
which the translamr might treat (in the resulting object cases in which the inner loops of a nest were to be re-
program) by ineremenring the address used for a previ- peated only a small number of times, whereas the outer
ous referen* an8 those m y references, on the other loops were repeated a large number of times.
hand, which wouM require an address calculation start- A number of restrictions in the language now began
ing from scratch with the coordinates of the referenced to emerge which were need4 3 the analytical abilities
dement. One of the dificulries in determining whether of the translator were to be kept within bounds and the
.a reference to Aij could be handled in the efficient way above efficiency requirements met:

tracing back through preceding 'OrnPuta- 1) The index variable a statement vary
tiond paths to we which ones contained modifications only by a constant increment. t'afortunately, the
of i and/or j only by constants. state of understanding then and the machine for

After some study of the problems posed by the desire which the system was pbnned dictated a positive
to increment old addresses to get new ones, it was found increment.
that the numbeaof cases needing different treatment 2) The expressions as 8ubsrripts shouM be
which could be visualized was very large indeed. I t linear in the index variables*

dear thrc cases could not be treated 'pti- 1) The number s u b s c r i ~ &*did not exceed three,
mally, a t least net in the first translator. For example, '

since more subscript positions would have in-
a loop containing both a reference to A(I, J) and the creased the number of ataes to be distinguished
statement &J== J+ F(K) might permit the incremental by a large factor.
calculation of the addresses of A (I, 4 but only if either 4) C,crol should not pass Irom oueide into a block
Ji: remains c o n a n t within the bop or F is a linear of statements governed by a rX) statemgpt. Thisl . function of K a d K varies linearly within the loop. type of restriction is found in most programming
Just to handle thh one simpIe carw, the trandator would languages.

to. check fas changes in K within the loop and if it
nd one, and an of them were linear, then it would In addition to the restrktiuns lise4 above, other8

have to look up tbe definition of F, and if it was linear, arose from a desire to simplify and spcsd up the transla-
the translator wwld have ro compute the appropriate tion process at what seemed a very small price in con-

I

increments fa me in the object program. In addition, venience to the user (c o t , v & a b must cornpri~e no
the translator would first have to ascertain that the more than six charactws).
case at hand was this one; e.g., that the references to
A(1, I) in this loop did nor also belong to other inter- INFLUENCE OF DESTGS PRPBLEB~S OX TRANSLATOR

secting loops with different treatment of I and J. The effect of the attitudes in the computing industry
and of the FORTIUS group circa 19544956, as out-

I N ~ ~ N C E OF DESIGS P B O B L ~ S ON LANGUAGE lined above, was to make the group expend great eBott
In view of the condusion, on the one hand, that all toward eliminating ever). inetfideecy it could from ob-

cases of address calculatior. could not be treated opti- ject programs p r o d u d by the t r ~ n h * . Every eye
many, and the kar, on the other, that unfavorable was focused so intendy on that W c u l a r ball that some
e6cieney comparisons mi& result in rejection of the wryly amusing circumstances resultad d ter the trans-
slstem, it was felt that there should be some way for the lator began operating. For a m p k , one concern was to
umr to know whkh loops ~ u l d be efficiently treated avoid unnecessary storing and loading of index registen.
and which would not be so treated. 4 loopforming The analysis to prex-ent this involved a Monte Carla
statement, the DO starement, had already been pro- calculation of the relative frequency of execution of the
posed as a convenience to the user. (A DO statement parts of the program, followed by a complicatad treat-
specifies that a block of sxtements should be executed ment, in order of irequency, assigned index
repeatedly for successive values of an index variable.) registers to index quantities within la~ger and larger
I t was decided to use this statement as the boundary Uregions" of the program. Much of the considerabla
between incremented-ziddr-5 loops and computed- time spent in this pan of a compiaation was devoted to
address loops, in the foha-\.ing sense: within a loop con- the process ot "region formath." Naturally, among the

Ued by a DO staternenr addresses depending on its first dozen or so programs compiled, a large complicated
@ex variable would in gtrieral be obtained by incre- one turned up which had no index qqanfities at all. Nev-

mcnting techniques, ~-hereks other references to arrays ertheless, of the 20 minutes it took! to compile, 10

1 would be effected by calcriating the required address minutes were devoted to 'region formation," despite
from the subsript values. This rule %-as to hold even the fact that this left the progtanr entirely unchanged.

In general, the result of the concentration on effi- FORTRAN XI permitted setteraE programmers. W.
ciency was that compifatiarr time was often a significant divide a large job more conwni;endy, each programmer
portion of the total running time of an object program. writing one or more subprograms. Furthermore pafits

This was particblarly true for small one-shot programs, of an application for which FCSRTFXAN was ~lnsatis-
since their run$;ng time was small and since the 704 factory or inconvenient could be written in symbolic
compiler required about one minute to translate the machine code as independent subprograms. Addition&
program: "STOPn; after the first minute, it would turn provisions were made for handling and editing alp&-
out about 100 instructions per minute. On the other numeric iniormation for input and output. Afth&gh
hand, the object programs produced were quite efficient; FORTRAN was initially designed as and remains gaP'-
as long as the user formed loops with DO statements rnarily a language for scientific computing, the ability.
and did not specify waste motion in his source program, to print table headings and ocher indicative information
he usualiy got a program which compared welt with adds significantly to its useiulness. Indeed, F0RTRL"LX
hand-coded ones. is used to some extent for convmtional data procedp

Thus,' despite the sloitvness of compiling, by 1964 by judicious use of h a n d a d d su6woutines. Hawever,
standards (and its impediment to debugging in source the FORTRAN language is not well suited to 1-
language), the 1957 FORTRAX compiler did effect scale use for this purpose.

'

considerable programming economies over the practices Acceptance of FORTFUS LI was immediate, in fact.
t of that period and made the 704 computer directly the extent af FORTRAN usage au3eleratd greatly and

.

V accessible to a much larger group of users. The com- -has continued to broaden otrer the COW of timer
puting community inspected the object programs, found
them acceptable, and slowly proceeded to make larger F0RTIU.X EV

i and larger use of the system and its conveniences. By 1961, i t had become app"lkttnt that the accept-
The subsequent development of the FORTRAN lan- of FORTRAN II was SO grwt that design of an aqp -

guage and the many compilers which were produced for rnented FORTRAN language tmgetbr with com~plez&y
a great variety of computers did much to improve the new compilers was instituted. The 7090 FQRTRAX EI
convenience and economies offered by the system. In compiler had been based on the identical internal design

' particular, the problem of slow compilation, with the developed for the \704, and a ~ ~ ~ ~ g d t t e rewrite a i t r ~ t d d ~
, debugging difficulties which ensued, was much lessened opportunity to introduce a number of &nplification%

by the introduction of FORTRAN II language (see to the internal structure a d also to ygmccmt the
next section) and by a better balance in later compilers FORTRAN language in several directions desire& by
between compilation speed and object program speed. users of FORTRAN.

The enriched language, wWtc& was died FORTR4N
GROWTH OF THE FORTRAN EV, contained among its ptr*&eigd additions:
LANGUAGE-FORTRAN II 1) lab1ElesdCOMMON8~1~8%,~ma;ny;aeaFQRTR~

In the original FORTRAS system for the 704, an programmer might find mnvleniist. As contrasted Pwi*
entire application was a single FORTRAN program languages such as ALGOL and COBOL, EORTRaN
which was compiled in a single (rather lengthy) run. applications need not be compiEed in one fell s w p A
Ef a minor change was to be made in any part of the complete application may caasie of a series of ,mod*
program the entire program had to be recompiled, and (caged aubpmgrams) , indepeadimtiy m p 3 d and
since many small errors are normally encountered and tested. This aspea of FORT ILL\', which is now perhap
corrected during checkout, total compilation time on its moat dktinctive feature, req0Ei.m~ especialty c d d
the compute? was considerable. A seeond weakness also attention to the layout of d a t l w m that will be directly
became apparent in that, practically speaking, an appli- referred to by more than one8wrbpr~rn.. It is necessary
cation had to be done entirely in FORTRAN, or else not at compilation t h e to know v&kh data are to be *us
a t all. shared, ice., are in "COM3f OXR

Accordingly, in 1958 an expanded FORTRAN lan- When many pmgrarnmem sre wartring on a $ingtle
guage, known as F O R T U S I I. was introduced to meet application, there must be mutual agreement on. ttK
the objections above. I t made i t possible for the kser to layout of %OM MON," soawwb8t Iik the ntrcessity
describe a process with a number of separately campil- for carefully controlled and @ on master r e a d
able programs, one main program and a number of design in data p r o c d g vorlr. Change. in. thr-
subprograms. New statements were added to the "COMMON" layout may require ~ m p i l a t i o n , an(t
FORTRAN language which described certain data as changes to the method of alioc&tiw COMMt3N plw
common to all programs a s well as conventions for one the addition of many 'COY SIOY ateas in FORT&%?#
program to invoke or be invoked by another. Thus an IV ailmvs for the orderiy growth of such shared dats
application might consist of many FORTRAN pro- areas as a complex application h Mng developed with
grams and, if a change were required, normally only a minimum impact on already coapilcd subprogdams of

