'FORTRAN'

J. W. BACKUS axp W. P. HEISING

Summary—The fundamental concepts of FORTRAN, the most
widely used high-level, scientific programming language, are set
forth and the significant characteristics are described in historical
order from inception of FORTRAN in 1954 to the present time. The
basic problem of how to get high quality programming from an-easy-
to-write high-level language is emphasized. - - v

§ INTRODUCTION. o

UCH HAS BEEN written about FORTRAN
M over the vears it has been on the computing

scene. Its shortcomings and merits have been

debated at length. The language and properties of
various FORTRAN svstems have been described in
detail in a number of manuals. The present paper will,
therefore, not include a description of the language (a

list of references giving brief or complete descriptions of

the language appears at the end of the paper), nor will

it take up again questions of compansons or possible -

improvements.

The current interests of pe0$>le who write compilers.
. and devise programming languages seem to center on

finding orderly and efficient methods of transforming

elaborate source programs into legitimate object pro-

grams. This paper describes some of the considerations
that led the group developing FORTRAN during 1954
to 1957 to put extreme emphasis not on orderly and

quick translation techniques, nor on elaborate source
language features, but rather on the efficiency of the

object programs themselves. There is some discussion

of problems raised by such emphasis and their impact.

on the language.

DEsicy ENVIRONMENT

Most of the FORTRAN language specifications were
frozen almost ten years ago. It was therefore desizned
in a different atmosphere within the computing industry
than exists today.

even used absotute octal or decimal machine instruc-
tions). Almost to a man, they firmly believed that any
‘mechanical coding method would fail to apply that
- versatile ingenuity ‘which each programmer felt he
possessed and constantly needed in his work. Therefore,
it was agreed, compilers could only turn out code which
would be intolerably less efficient than human coding
(intolerable, that is, unless that inefficiency could be

 buried under larger, but desirable, inefﬂciencies such as

Manuscript received February 27, 1

1964.
J. W. Backus is with IB\! Corp, Thomas J. Watson Research.

Center, Yorktown Heights.
W. P. Heising is with iB\l Corp Data Systems Division. New
York, N. Y. 3 o

IEEE e — Eco.»\?

At that time, most programmers
wrote symbolic machine instructions exclusively (some.

382
&13

the programmed floating point é:ithmetic uéualfy re-

quired then). There were some systems around at the
-time which tended to confirm this popular view.

This then was the professional climate in which the
design of the FORTRAN language was begun and

Qompletéd. Furthermore, the system was viewed as
- applying to just one machine, the IBM 704. For, al-
; though the' FORTRAN group hoped to radically

change the economics of scientific computing on that
machine (by making programming much cheaper}, it
never gave very much thought to the implications of

machine-independent source languages applied to a

variety of machines. Rather, the group’s attention was .

focussed on what seemed then to be the challenge: could w

an automatic coding system take ever a lot of tasks
from the programmer and still produce object programs. -
of competitive efficiency? The 704:was the first com- -
mercial computer with built-in floating point, therefore
most common operations were fast enough that poor-
coding of loops would greatly reduce efficiency. =

Confronted with this scepticism and a machine which
would make small lapses in arrangement of coding show
up as sizeable inefficiencies, the group had one primary -
fear. After working long and hard to produce a good

translator program, an important application might

promptly turn up which would confirm the views of
the sceptics: this application would be of the sort .

' FORTRAN was designed to handle and, even though
" well programmed in FORTRAN, its object program

would run at half the speed of a hand-coded version. It
was felt that such an occurrence,-or several of them,

~ would almost completely block acceptance of the sys-

tem. (Of course, few wculd feel that way today ¥

Major DESIGN Pxoawus

The question then arose: what part of a machine- -
produced code would be most subject to inefficiencies?
The coding of the principal arithmetical calculations
of the problem clearly offered some opportunities for
ineptness. But fairly simple rules could be envisaged to
avoid many of them. Rather, the worst inefficiencies, it
was believed, would come from address calculations
in which one or more multiplications were used vo find
addresses of elements in an array. If these elements were
accessed in an orderly fashion, the human-coded pro--
gram would obtain the address of each succeeding ele-
ment by adding an appropriate constant to the address
of the previous one. For machine-coded programs to
avoid computing ky+i+ksj (with its multiplication) to
get the address of 4:; the translator program would
have to tecogmze when # and] were changmg by con-

| “%LF -

o

Gl

stant amounts and be equipped, for exampie, to produce
coding which would preserve the address of 4,; and
id the constant ksd to it to obtain the address of

~ Thus, one problem was clearly that of distinguishing
between, on the one hand, references toan array element

. which the translator might treat (in the resulting object

program) by incrementing the address used for a previ-
ous reference, and those array references, on the other
hand, which would require an address calculation start-

ing from scratch with the coordinates of the referenced

element. One of the difficulties in determining whether
.a reference to A;; could be handled in the efficient way
involved tracing back through all preceding computa-
tional paths to see which ones contained modifications

‘of 4 and/or j only by constants.

After some study of the problems posed by the desire
to increment old addresses to get new ones, it was found

" that the numbes of cases needing different treatment
which could be visualized was very large indeed. It

became clear that all cases could not be treated opti-
mally, at least net in the first translator. For example,
a loop containing both a reference to A(J, J) and the

statement “J = J+ F(K)” might permit the incremental .
" calculation of the-addresses of A(Z, J) but only if either

K remains constant within the loop or F is a linear

" function of K and K varies linearly within the loop. .

Just to handle this one simple case, the translator would

: ‘:/e to check for changes in X within the loop and if it

nd one, and all of them were linear, then it would
have to look up the definition of F, and if it was linear,
the translator weuld have to compute the appropriate
increments for use in the object program. In addition,
the translator would first have to ascertain that the

case at hand was this one; e.g., that the references to

A(I, J) in this loop did nor also belong to other inter-

ssecting loops with different treatment of I and J.

INFLUENCE OF DEsSIGN PROBLEMS ON LANGUAGE

In view of the conclusion, on the one hand, that all
cases of address calculation could not be treated opti-
mally, and the fear, on the other, that unfavorable
efficiency comparisons might result in rejection of the

system, it was felt that there should be some way for the

user to know which loops would be efficiently treated
and which would not be so treated. A loop-forming
statement, the DO statement, had already been pro-
posed as a convenience to the user. (A DO statement
specifies that a block of stztements should be executed
repeatedly for successive values of an index variable.)
It was decided to use this statement as the boundary
between incremented-address loops and computed-

- address loops, in the following sense: within a loop con-

lled by a DO statement addresses depending on its
ex variable would in general be obtained by incre-
menting techniques, wherezs other references to arrays

would be effected by calculating the required address
from the subscript values. This rule was to hold even

Backm and Heumg. FORTRAN L T | 383’

~though an array reference was deep within a “nest” of

DO statements. All of the testing of index quantities,’
modification of addresses, and initialization of quan-
tities at the beginning of a loop wéfe to be treated as
efficiently as possible in such nested loops. This was felt
necessary again to avoid embarrassing comparisons in
cases in which the inner loops of a nest were to be re-
peated only a small number of times, whereas the outer

loops were repeated .a large number of times.

A number of restrictions in the language now began
to emerge which were needed if the analytical abilities
of the translator were to be kept within bounds and the
above efficiency requirements met:

1) The index variable of a DO statement should vary
only by a constant increment. Unfortunately, the
state of understanding then and the machine for
which the sy stem was planned dictated a positive
increment. :

2) The expressions appearing as subscripts should be
linear in the index variables.

3) The number of subscripts should not exceed three,
since more subscript positions would have in-
creased the number of cases to be dtstmguashed
by a large factor. ‘

- 4) Control should not pass: from outsxde into a block

of statements govemed by a DO statemeat. This -
type of restriction is found in most programmmg i
languages. - ‘

In addition to ‘the r&mct:ons hsted above, others ,
arose from a desire to simplify and speed up the transla-
tion process at what seemed a very small price in con-
venience to the user (e.g., vmab%es must compnse no -

'more than six characters).:

INFLUENCE OF DESIGN »Pxoast ON TMNSLATOR'

The effect of the attitudes in the computing industry
and of the FORTRAN group circa 19541956, as out-
lined above, was to make the group expend great effort
toward eliminating every inefficiency it could from ob- -
ject programs produced by the translator. Every eye
was focused so intently on that particular ball that some
wryly amusing circumstances resulted after the trans-
lator began operating. For example, one concern was to'
avoid unnecessary storing and loading of index registers.
The analysis to prevent this involved a Monte Carlo .
calculation of the relative frequency of execution of the
parts of the program, followed by a complicated treat-
ment, in order of frequency, which assigned index
reg:sters to index quantities within larger and larger

“regions” of the program. Much of the considerable
time spent in this part of a compilation was devoted to
the process of “region formation.” Naturally, among the
first dozen or so programs compiled, a large complicated
one turned up which had no index quanpttes atall. Nev-
ertheless, of the 20 minutes it tooL' to compile, 10
minutes were devoted to “region formatxon,” despite
the fact that this left the program entirely unchanged.

384 IEEE TRANSACTIONS OIV

In general the result of the concentratnon on efﬁ-

ciency was that compilation time was often a significant
portion of the total running time of an object program.
This was particularly true for small one-shot programs,
since their runhing time was small and since the 704
compiler required about one minute to translate the
program: “STOP?”; after the first minute, it would turn
out about 100 instructions per minute. On the other
hand, the object programs produced were quite efficient;
as long as the user formed loops with DO statements

and did not specify waste motion in his source program,

he usually got a program which compared well thh
hand-coded ones.

Thus, despite the slowness of compxlmg, by 1964'

standards (and its impediment to debugging in source
language), the 1957 FORTRAN compiler did effect
considerable programming economies over the practices

of that period and made the 704 computer directly-

.'accessible to a much larger group of users. The com-

puting community inspected the object programs, found

 them acceptable, and slowly proceeded to make larger
and larger use of the system and its conveniences.

The subsequent development of the FORTRAN lan-
guage and the many compilers which were produced for
a.great variety of computers did much to improve the
convenience and economies offered by the system. In

" particular, the problem of slow compilation, with the
debugging difficulties which ensued, was much lessened
by the introduction of FORTRAN II language (see
next section) and by a better balance in later compilers
between compilation speed and object program speed

GROWTH OF THE FORTRAN
LANGUAGE—FORTRAN I1

In the original FORTRAN system for the 704, an

- entire application was a single FORTRAN program
which was compiled in a single (rather lengthy) run.

If a minor change was to be made in any part of the

program the entire program had to be recompiled, and

since many small errors are normally encountered and

corrected during checkout, total compilation time on

the computer was considerable. A second weakness also

. became apparent in that, practically speaking, an appli-
cation had to be done entirely in FORTRAN or else not
at all.

Accordingly, in 1958 an etpanded FORTRA\' la.n-
guage, known as FORTRAN 11, wasintroduced to meet
the objections above. It made it possible for the user to
describe a process with a number of separately compil-
able programs, one main program and a number of
subprograms. New statements were added to the
FORTRAN language which described certain data as
common to all programs as well as conventions for one
program to invoke or be invoked by another. Thus an
application might consist of many FORTRAN pro-

grams and, if a change were required, normally only a

single program need be recompiled. =~

ELECTRONIC COMPUTERS - August
 FORTRAN 1I permitted several programmers. to. *
divide a large job more conveniently, each programmer

“writing one or more subprograms. Furthermore parts
of an application for which FORTRAN was unsatis-
factory or inconvenient could be written in symbolic.
machine code as independent subprograms. Additional -
provnsxons were made for handling and editing alpha-

numeric information for input and output. Althcmgh‘ Sy

FORTRAN was initially designed as and remains pri--
marily a language for scientific computing, the ability
to print table headings and other indicative information-

adds significantly to its usefuiness. Indeed, FORTRAN . B
*is used to some extent for conventional data processing =

by judicious use of hand-coded subroutines. However,
‘the FORTRAN language is not. weﬂ smted to largef o
scale use for this purpose. :

- Acceptance of FORTRAN Il was unmed:ate, in fm4 o

the extent of FORTRAN usage accelerated greatly and
“has contmued to broaden over the course of time.

: FORTRAN 1V C
‘ By 1961 it had become apparent tha.t the accaptanue o

of FORTRAN II was so great that design of an aug- ~]
mented FORTRAN language together with completely
new compilers was instituted. The 7090 FORTRAN II |

compiler had been based on the identical internal design
developed for the 704, and a complete rewrite afforded.

opportunity to introduce 2 number of simplifications. =

to the internal structure -and also to augment the.

FORTRAN language in several dnrectmns desxred by]

users of FORTRAN.

" The enriched language, which was called FORTRAN.

1V, contained among its principal additions:

1) labelled COMMON areas, asmanyasa FORTRAN]

programmer might find convenient. As contrasted with: -

languages such as ALGOL and COBOL, FORTRAN

“applications need not be compiled in one fell swoop. A’
complete application may consist of a series of modules.

(called subprograms) independently compiled and. S

tested. This aspect of FORTRAN, which is now perhaps.

its most distinctive feature, requires especially careful
attention to the layout of data areas that will be directly |
referred to by more than one subprogram. Itis necessary |
at compilation time to know which data are to be thus |

shared, s.e,, are in “COMMOXN.”

- When many programmess are working on a smg!ev S

apphcatxon, there must be mutual agreement on the

layout of “COMMON,” somewhat like the necessity ‘_
for carefully controlled and agreed on master record

design in data processing work. Changes in the
“COMMON?” layout may require récompilation, and
changes to the method of allocating COMMON plus

the addition of many “COMMON® areasin FORTRAN |
IV allows for the orderly g:owth of such shared data = -
areas as a complex application is being developed with =

minimum impact on already compiled subprogram&of B
the same apphcatxon, . S

“added to the language and the interpretation of arith-

mi. operators was extended to deal with them in a

manner,

‘? . . i
Y logical (truth) variables and the admission of rela-

1| tional expressions, the logical connectives “and,” “or,”"
:| and “not” were introduced as well as a new conditional
|| “IF” statement. Thus = :

| “IF(X.GT.3.AND.X LT.8)7 = X”

m eans R

“HX >3 and X <8, set ¥ =X,”

' 4) a “DATA?” statement was added to preset con-
i veniently any data areas to specified values prior to the
|| initiation of execution, v :

1l 35) the original FORTRAN performed operations on
|| only two “types” of data, integer and real {i.c., floating
. point). The initial letter of the name of a variable served
1| to distinguish them, thus all variables beginning with
|1, J, K, L, M, or N denoted integers. This was occa-

1/ might have to be called “NCOUNT? to indicate it is
|integer. With the introduction of three new types,
double precision, complex and logical, it did not seem
|desirable to extend the first letter “declension” system

T

\ ments were introduced to declare that variables whose
| \names were listed were of a given type, e.g., “INTE-
e OUNT,TOTAL).” Inthe absence of explicit type

|tvariable still applies, = . e -
i 6) certain statements referring to “TAPE,”
H“PUNCH,” etc., were eliminated in favor of a wholly
bolic 1/0 unit designation in keeping with the ca-

QUOTIENT OVERFLOW?” and similar 704 triggers
ent quietly to oblivion at the same time.

ared on computers produced by various manufac-
urers. The use of FORTRAN 1V has been growing
eadily although FORTRAN usage is still probably
{Ipreponderantly FORTRAN I1.- . o

Backus and Heising: FORTRAN

"2) double precision and complex quahﬁtiefs_were‘

+| sionally awkward, for example, a variable for counting

to encompass them. Accordingly, five new “type” state-
future.

id ations, the old rule of implication of real or integer -~ '
ilities of modern operating system monitor programs.

In 1963, a number of FORTRAN IV compilefs ap-

{31 J. W. Backus, “Automatic

7 - 385
FORTRAN STANDARDS _—

The existence of many FORTRAN compilers, all
handling similar but slightly different FORTRAN lan-

- guages has become increasingly troublesome as the

range and size of application work written in FORTRAN

- has grown, and users frequently wish to transfer work -

from one computer to another of a different type. Ac-
cordingly in 1962, a FORTRAN standards committee, ,
operating under the procedures of the American Stand-
ards Association and under the sponsorship of the Busi-
ness Equipment Manufacturers Association was formed
to work on FORTRAN standardization. Nost of the -

_principal U. S. manufacturers and computer users asso-

ciations concerned with FORTRAN are participating
indrafting American Standard F' ORTRAN.FORTRAN

IV is serving as the basis for this work. So many thou- . .
sands of programmers now use FORTRAN that the

‘standards work is primarily concerned with committing

common existing practice to writing rather than at-
tempting to alter or even to add to FORTRAN at this
time. This work is nearing completion and it is felt that
a useful purpose will be served by simplifying the trans-

. ferability of FORTRAN programs between computers.

While the process of converting from one computer to
another will never be painless, the reduction of a num-

~ ber of arbitrary differences between FORTRAN com-

pilers will perhaps further enhance FORTRAN usage
and serve as the basis of continued evolution in the
ACKNOWLEDGMENT RO
R. K. Ridgway, the present FORTRAN coordinator
in IBM, provided valuable assistance in preparing this
- REFERENCES ' ' s »
{1] Il-xw Backus, R. J. Beeber, S. Best, R. Goldberg, L. M. Haibt,
.L. Herrick, R. A. Nelson, D. S‘ﬁyre, P. B. Sheridan, H. Stern,
I Ziller, R. A. Hughes, and R. Nutt, “The FORTRAN Auto- -
matic Coding System,” Proc. of the Western Joint Computer -
Conference, Los Angeles, Calif.; Febma?', 1957. oo
{2] “FORTRAN IVLa nge ” IBM . 7090/7091 Programming
Systems File No, 70028 Form C. M
, Progummmf: Properties and Per-~ -
ormance of FORTRAN § 1 and 11,” Proc. Symp. on the .-
" Mechanisation of Thought Processes, Teddington, England; 1958. e

