
Transcript of Presentation

Cress, Paul, Dirksen, Paul, and Graham, J. Wesley (1970). FORTRAN IV with WATFOR and WATFIV. Engle-
wood Cliffs, New Jersey: Prentice-Hall.

Dijkstra, Edsger W. (1976). A Discipline o f Programming. Englewood Cliffs, New Jersey: Prentice-Hall.
Grems, Mandalay, and Porter, R. E. (1956). A truly automatic programming system. In Proc. Western Joint

Computer Conf., San Francisco, pp. 10-21.
Hoare, C. A. R. (1969) October. An axiomatic basis for computer programming. CACM 12(10): 576-580, 583.

*IBM (1956) October 15. Programmer's Reference Manual, The FORTRAN Automatic Coding System for the
IBM 704 EDPM. New York: IBM Corp. [Applied Science Division and Programming Research Dept.,
Working Committee: J. W. Backus, R. J. Beeber, S. Best, R. Goldberg, H. L. Herrick, R. A. Hughes
(Univ. of Calif. Radiation Lab., Livermore, Calif.), L. B. Mitchell, R. A. Nelson, R. Nutt (United Air-
craft Corp., East Hartford, Conn.), D. Sayre, P. B. Sheridan, H. Stern, and I. Ziller.]

*IBM (1957). Programmer's Primei" for FORTRAN Automatic Coding System for the IBM 704. New York: IBM
Corp. Form No. 32-0306.

Knuth, Donald E., and Trabb Pardo, Luis (1977). Early development of programming languages. In Encyclope-
dia o f Computer Science and Technology. Vol. 7, pp. 419-493. New York: Dekker.

*Laning, J. H., and Zierler, N. (1954) January. A Program for Translation o f Mathematical Equations for Whirl-
wind I. Cambridge, Massachusetts: MIT Instrumentation Lab. Engineering Memorandum E-364.

McCracken, Daniel D. (1961). A Guide to FORTRAN Programming. New York: Wiley.
Moser, Nora B. (1954) May. Compiler method of automatic programming. In Proc. Symp. on Automatic Pro-

gramming for Digital Computers. Washington, D.C.: The Office of Naval Research.
Muller, David E. (1954) May. Interpretive routines in the ILLIAC library. In Proc. Symp. on Automatic Pro-

grammingfor Digital Computers. Washington, D.C.: The Office of Naval Research.
*Operator's Manual (1957) April 8. Preliminary Operator's Manual for the FORTRAN Automatic Coding Sys-

tem for the IBM 704 EDPM. New York: IBM Corp. Programming Research Dept.
Organick, Elliot I. (1963). A FORTRAN Primer. Reading, Massachusetts: Addison-Wesley.

*Perlis, A. J., Smith, J. W., and Van Zoeren, H. R. (1957) March. Internal Translator (IT): A Compiler for the
650. Pittsburgh, Pennsylvania: Carnegie Institute of Tech.

*Preliminary Report (1954) November 10. Specifications for the IBM Mathematical FORmula TRANslating Sys-
tem, FORTRAN. New York: IBM Corp. (Report by Programming Research Group, Applied Science Divi-
sion, IBM. Distributed to prospective 704 customers and other interested parties. 29 pp.)

*proposed Specifications (1957) September 25. Proposed Specifications for FORTRAN I l l or the 704. (Unpub-
lished memorandum, Programming Research Dept. IBM.)

*Remington-Rand, Inc. (1953) November 15. The A-2 Compiler System Operations Manual. Prepared by Rich-
ard K. Ridgway and Margaret H. Harper under the direction of Grace M. Hopper.

Rutishauser, Heinz (1952). Automatische Rechenplanfertigung bei programmgesteuerten Rechenmaschinen. In
Mitteilungen aus dem Inst. fiir angew. Math. an der E. T. H. Ztirich. No. 3. Basel: Birkh~user.

Sammet, Jean E. (1969). Programming Languages: History and Fundamentals. Englewood Cliffs, New Jersey:
Prentice-Hall.

*Schlesinger, S. I. (1953) July. Dual Coding System. Los Alamos, New Mexico: Los Alamos Scientific Lab. Los
Alamos Report LA 1573.

Sheridan, Peter B. (1959) February. The arithmetic translator-compiler of the IBM FORTRAN automatic cod-
ing system. CACM 2(2): 9-21.

Zuse, K. (1959). Ober den Plankalkiil. Elektron. Rechenanl. 1: 68-71.
Zuse, K. (1972). Der Plankalkiil. Berichte der GesellschaJqftir Mathematik und Datenverarbeitung. 63, part 3.

(Manuscript prepared in 1945.)

TRANSCRIPT OF PRESENTATION

JAN LEE: Our second session this morning, and the first session dealing explicitly with a
language, is to be the paper by John Backus on the His tory of F O R T R A N I, II, and III .

I had an interesting occurrence just before I left my office this week. I had a letter from
Taiwan, believe it or not, saying, " I n 1959 you wrote a program, and I have a cus tomer

FORTRAN Session 45

John Backus

who's very interested in this topic. Could you send me the source listing, etc., etc., of
this?" And believe it or not, I still do have the source listing. It turned out to be a language
which, as Grace would have said earlier on, died, and I was looking back and saying,
"Gee , 1959--why wasn' t I programming in FORTRAN at that time? What was I doing?"
And I realized of course that I was one of those people who were steadfastly resisting this
movement into the algebraic field, and I guess I really didn't understand that you could do
things with letters and alphabets and so on and so forth. So, amongst many many others, I
was behind the times. And it keeps coming back to haunt me, which worries me.

This first speaker this morning is the man who was trying to educate the rest of us and
say, "This is the way to go ." John mentioned to me, when we were discussing how I
should introduce him, that there was only one real thing to s a y - - a n d I'll say that at the
end, as we did with Grace. But I wanted to try and introduce him in two ways: one was
- - h o w would we have introduced him in 1955, if this were 23 years a g o - - w h a t would we
have said? At that point I guess we would say: Well, here 's an IBM-er; he 's a program-
mer, a very lazy programmer who feels that he wants to make everything much easier for
everybody else; holds a Master 's Degree in Mathematics from Columbia, and has cur-
rently moved from the Pure Science Division of IBM to the Applied Science Division of
IBM, which as an engineer I feel means he saw the light about that time.

Since that time things have progressed 23 years, and so I say, "Okay , now where are
we? How would I introduce him in 19787" Well, he 's an IBM Fellow, interested in pro-
gramming languages, and is still a lazy p ro g ram m er - - Jo h n Backus.

JOHN BACKUS: Well, Grace Hopper is a hard act to follow, but that 's my fate. Since I 'm
sure everyone has studied my paper very carefully already, I can skip parts of it, and
that 's fortunate because, of course, it would be impossible to cover everything in it.

I 'd like to begin by getting some idea of the make-up of this audience. And to do that I 'd
like everyone who was involved in programming before 1960 to raise their hand. 1960
- - W o w ! Okay, let's try 1956. My gosh! 1954. Getting smaller. O k a y - - I ' l l stop there. Be-
cause that 's the point where I 'm going to b eg in - -w h e re Grace Hopper left off. I 'd like to
try to add something to what Grace Hopper has already said about what things were like in
1954, and the attitudes that prevailed then.

It 's really difficult for a programmer today, who wasn ' t involved then, to realize how
ignorant we were then, and how primitive the ideas and tools were that we felt were really
advanced and sophisticated stuff. In late 1953 computers were pretty crazy things. They
had very primitive instructions and extremely bizarre inpu t -ou tpu t facilities. Some were
better than others. I think Grace had the benefit of rather good inpu t -ou tpu t facilities, but
the rest of us didn't.

So, overcoming the difficulties of these computers and cramming programs and data
into little tiny stores made programming really a black art. So each programmer had his
own inscrutable tricks for making programs as fast and as complicated as possible. Some
so-called automatic programming systems in 1953, would you believe, did the wonderful
thing of providing decimal input or decimal input and output, and some did other won-
derful things like providing symbolic addresses.

The most popular automatic programming systems, as Grace Hopper said, were inter-
pretive systems. These just conver ted the peculiar host machine into a different synthetic
machine which had floating point and improved I /O facilities and sometimes indexing.
Could I have the first slide [Frame 1], please?

46 Part II

Transcript of Presentation

Name Computer Place developed

DUAL IBM 701 Los Alamos
SHACO IBM 701 Los Alamos
Summer Session WHIRLWIND M.I.T.

t David Wheeler's ILLIAC Univ. of Illinois
tSPEEDCOD1NG IBM 701 IBM New York

Frame 1. 1953 interpretive systems. These systems were all operating in 1953. Each provided a synthetic
computer with floating point, indexingt and improved I/O.

Here are some 1953 interpretive systems that were running that I know of. Probably
nothing is complete but I 've done the best I can. So each one made its machine look like a
different machine. It had an order c o d e - - y o u know, a machinelike order code, but it now
could do floating point arithmetic, and things like that. So it made programming easier, but
you were still really programming for a machine. So, in addition to these interpretive sys-
tems, as far as I know there were three compilers operating in 1953--there they are [in
Frame 2]. I gather from what was said earlier, that the date for A-2 was earlier than that on
the slide, but these dates are taken from an article by Knuth and Trabb and that was the
date they gave, so I 'm not responsible for that. We'll take a look at some sample programs
for these systems in a minute. But let me just say that first of all, note that the AUTO-
CODE system was a fixed point system. It didn't provide floating point, and it was really
quite machine-dependent, as we'll point out a little more when we look at a program for it.

The A-2 language was not algebraic, but it did provide floating point operations. Its
input language was not what we would call sophisticated nowadays. And in fact, its input
language was somewhat more complicated and difficult to use than the machinelike lan-
guages of the interpretive systems.

Sometime in late 1954 or early 1955 the A-2 system acquired a pseudo-code that resem-
bled the input languages of the interpretive systems that were listed on the previous slide.

The Laning and Zierler system w a s - - I believe now everyone recognizes it to b e - - t h e
world's first algebraic compiler. It was operating in May 1953, and possibly earlier. Some
communications I 've had from what used to be called the "Instrumentat ion Laboratory"
indicated that it was perhaps earlier than that. Its input language was simple but elegant,
and it compiled algebraic expressions into programs that were then interpreted by a float-
ing point interpretive system.

(a) Alec Glennie's AUTOCODE, Manchester Mark I.
Not algebraic, very machine dependent, fixed point.
Early use: Sept. 1952

(b) Grace Hopper's A-2, UNIVAC.
Not algebraic, machine dependent, floating point.
Early use: late 1953 (A-0 & A-I earlier)

(c) Laning & Zierler's system, WHIRLWIND.
Algebraic, machine independent, interpreter
executes compiled floating point instructions.
Early use: May 1953.

Frame 2. Compilers operating in 1953 (and earlier).

FORTRAN Session 47

John Backus

c@VA t@lC x@~C y@RC z@NC
INTEGERS +5 ~ c

---~t
+ t TESTA Z
- t

ENTRY Z
SUBROUTINE 6 ~ z

+ t t ----~ y ----~ x

+tx---~ y ----> x

+ z + c x CLOSE WRITE 1
a@/½ b@MA c@GA d@OA
INTEGERS +20 ~ b + 1 0 ~ c
LOOP 10n

n .--~ x

+ b - x - - ~ x

x - - - ~ q

SUBROUTINE 5 ~ a q

REPEAT n
+c-- -Hi

LOOP 10n
+ a n SUBROUTINE 1 ~ y
+ d - y T E S T A Z
+i SUBROUTINE 3
+e SUBROUTINE 4

CONTROL X
ENTRY Z

+i SUBROUTINE 3
+y SUBROUTINE 4

ENTRY X
+i - f - -* i

REPEAT n

c@PA f @ H A .@VE x@ME
+400 ---~d +999--~e +l----~ff

ENTRY A CONTROL A WRITE 2 START 2

Frame 3. An AUTOCODE program.

N o w we can see some of the programs for these things. [Frame 3 shows an A U T O C O D E
program.] I'm sure you can't read that very well. It looks somewhat symbolic, but it really
is more machine-dependent than it looks. Like "Test A" really refers to a particular ma-
chine register. "Close Right 1" means that that is the end of a subroutine, called "Subrou-
tine 1 ," which is referred to later. I can't really explain these programs at all. I just wanted
you to get a feel for what they looked like. This program is for a nonsense algorithm that
Knuth and Trabb programmed for lots of early languages, to compare them, called the
TPK Algorithm.

And here [in Frame 4] you can see the A-2 program that they coded for that same TPK
Algorithm. The horizontal lines separate unit operations, and some of them you can see
- - t h e ones beginning "GM" are "generators" that Dr. Hopper mentioned; the single line
operations are floating point instructions; and you see a couple of entries starting with
OWNCO, and that is Machine Code that was necessary to use; the point I am trying to
illustrate is that A-2 does not have a uniform input language. There's quite a variation in
the formats of the unit operations; some take one line, some take 2, some take three, and
some take four.

N o w we can move on to [Frame 5] the TPK Algorithm for Laning and Zierler's system,

48 Part II

Transcript of Presentation

GMIO00 000002
ITEMOi WS.O00
SERV02 BLOCKA
IRGO00 000000
GMMO00 000001
000180 020216
IRGO00 001000
AMO034 034040
RNA040 010040
APN034 012038
AMO002 038038

AAO040 038038 YTO036 038000 4RGO00 000007
ASO004 038040 GMMO00 000001 5RGO00 000006
QWN~CO DE~O03 000194 200220 6RGO00 000007
KO0000 KO0000 1RGO00 011000 iONO00 000002
F00912 EOO1RG GMMO00 000001 2CNO00 000014
000000 QOOlCN 000222 200196 1RSO00 000036
1RGO00 008040 1RGO00 012000 2RSO00 000037
iCNO00 000010 ALLOi2 FOOOTI QWN~C_O DE~O02
GMMO00 000001 iRGO00 013036 810000 820000
000188 020238 2RGO00 000037 900000 900000
iRGO00 009000 3RGO00 000006 IRGO00 014000

R~END~ INFO.R

Frame 4. A-2 " T P K " ALGORITHM. [From Donald E. Knuth and Luis Trabb Pardo, The early development of
programming languages. In Encyclopedia of Computer Science and Technology, Vol. 7, pp. 419-493. New
York: Dekker, 1977.]

and we see that their language is algebraic. It has single subscripts which are denoted by
the vertical bar, so that vii in the fourth line is Vj. Subroutines are indicated by the capital
" F " with superscripts, and the superscripts are the "catalog number" of the subroutine,
so you couldn't name subroutines except in that way. And it lacked a looping statement, a
FOR statement, or what-have-you. But this language certainly is elegant by comparison
with the earlier ones, and when you realize that it was running very early in 1953, if not
earlier, you can get some idea of the accomplishment that it represented. And yet of
course, as Grace Hopper said, the Establishment completely ignored this system for some
peculiar reason.

In addition to the compilers that were actually operating in 1953, Heinz Rutishauser in
Switzerland and Corrado B6hm in Italy had both published descriptions in 1952 of simple
algebraic languages and their compilers. They really published the details of their compil-
ers. And in fact, B6hm's compiler was actually written in its own language; the first exam-
ple of such a thing.

And even earlier, Konrad Zuse in Germany had described in 1945 what was perhaps the
most sophisticated programming language that was to emerge up to the mid 1960s. It was
really a dilly. A very powerful language with data types and all kinds of things. He wrote
many chess programs in that language at that early time.

For a discussion of these systems that I've shown, and other early systems--there are

vlN = (input), CP 3,
i = 0 , z = 999,

1 j = i+ 1, PRINT i,z.
ali = v]j, SP 4,
i = j, 3 PRINTi ,y .
e = i -10.5 , 4 i = i - I
CP 1, e = - 0 . 5 - i ,
i = 10, C P 2 ,

2 Y = Fl(Fll(ali))+5(ali)a, STOP
e = y-400 ,

Frame 5. Laning and Zierler " T P K " algorithm. [From Donald E. Knuth and Luis Trabb Pardo, The early
development of programming languages. In Encyclopedia of Computer Science and Technology, Vol. 7,
pp. 419-493, New York: Dekker, 1977.]

FORTRAN Session 49

John Backus

others - - I recommend the article I mentioned by Knuth and Trabb in the Encyclopedia of
Computer Science and Technology.

So I hope I've added a little something to what Grace Hopper said about the primitive
state of affairs at the beginning of 1954. That was the point at which the story of FOR-
TRAN begins.

About December 1953 I wrote a letter to my boss, Cuthbert Hurd, proposing that IBM
should develop a practical automatic programming system for what was then the recently
announced 704. He agreed, even without an argument. I don't know why Grace Hopper
had so much trouble with her management! [Laughter] But we didn't have any at all. They
kept backing us up for years and years without anything to show for it. But anyway, our
plan was to produce a system that would output efficient object code. We felt that this was
essential if the system was to be widely used for the big problems of the aerospace in-
dustry and that, of course, was the principal customer for the 704 at that time.

Most of the early systems we've seen, and many others, had hidden a lot of gross ineffi-
ciencies by virtue of the fact that most computing time was being spent in floating point
subroutines. Because of that you could get away with a lot of clumsy treatment of looping
and indexing, and references to arrays that escaped unnoticed because of all the time that
was chewed up by floating point subroutines. But now we were confronted with the 704
which, for the first time, had built-in floating point and indexing, and we knew that this
would make our goal of producing efficient object code very difficult because there was
just nowhere to hide inefficiencies. You couldn't do clumsy calculations of subscript com-
binations and get away with it in that machine.

So by 1954, the FORTRAN group had become actually a group. It consisted of Irving
Ziller--this is how he looks 24 years after the fact [Frame 6]; Harlan Herfick [Frame 7],
and Bob Nelson [Frame 8]. Bob was actually hired to do technical typing for our group,

Frame 6. Irving Ziller.

50 Part II

Transcript of Presentation

Frame 7. Harlan Herrick.

but he and Irv Ziller were soon involved in planning and programming one of the most
complex sections of the compiler. Nelson was later made an IBM Fellow, in fact, for his
work on Virtual Memory, that we 've heard mention of before! I t 's a rather broad term!
And I was the fourth member of the g r o u p - - s o you can see me as I am. And I was its
so-called "Manager . " [See photo on p. 74.]

The early thinking of our group about the system that was to become FORTRAN is
indicated by a paper that Herrick and I gave at the ONR symposium in May of 1954 which

Frame $. Bob Nelson.

FORTRAN Session 51

John Backus

"'[The programmer] would like to write Ea~j • b~k instead
of the . . . instructions [for] this express ion . "
" . . . a programmer might not be considered too unreasonable
if he were willing only to produce the formulas for the
numerical solution of his problem and perhaps a plan
showing how the data was to be moved from one storage
hierarchy to another and then demand that the machine
produce the results . . ."

F rame 9. From a May, 1954 article by Backus and Herrick. [From John W. Backus and Harlan Herrick,
IBM 701 speedcoding and other automatic coding sys tems . In Proc. Syrup. on Automatic Programming for
Digital Computers. Washington D.C.: ONR, May 13-14, 1954.]

was organized by Grace Hopper. Her name seems to keep popping up in all these things.
Here are some excerpts from that paper [Frame 9]. This shows that our plans for algebraic
input were, in May of 1954, a bit more sophisticated than the Laning and Zierler language
in that we had double subscripts and things like that. In fact I 'd say that the goal suggested
in the second paragraph about handling storage has yet to be satisfactorily achieved.

That brings up the questions of the influence of Laning's work on the FORTRAN lan-
guage. A few years after FORTRAN was finished I was asked where we got the idea for
algebraic input. Since I have a very poor memory, I recalled erroneously that we had
begun work later than we actually had and that we had gotten the idea of algebraic input
from seeing Laning and Zierler's system, and I went on believing this story for many
years. But recently Dr. Laning was good enough to send me a copy of the letter I sent him
in 1954 asking to see his system, and this let ter--plus some recent discussions with Irv
Zil ler--made clear what really happened. The letter, in fact, makes clear that we first
heard of Laning's work at the same ONR symposium at which those remarks appeared
that I just showed you, and so we had already been thinking about algebraic input, and a
fair number of other things. And so we can only conclude that we somehow had the idea
for algebraic input independently of them, even though Laning and Zierler already had
done their pioneering work and had their compiler running. As was common in those days

news didn't get around very well.
So, before taking up the chronological account of the development of FORTRAN, I'd

like to emphasize one other prevailing attitude in the period of 1954-1957, when we were
working; and this was the firm belief that almost all programmers he ld - - I guess JAN Lee
was one of them-- tha t no automatic programming system could produce code that was
even comparable in efficiency to hand-coded programs. This belief came from their expe-
rience in coding for small, badly designed computers-- that was truly a difficult t ask- -and
their experience with clumsy and slow automatic programming systems, of which there
are quite a few. I was the author of one of them.

By the spring and summer of 1954, the design of the FORTRAN language was well un-
derway. Most of the language was designed by Herrick, Ziller, and myself, but most of the
input-output language was designed, mostly later on, by Roy Nutt, and we'll see a picture
of him later on. Roy is one of the grand programmers of the profession. There's a m y t h - - I
don't know whether it's really true about him or no t - - tha t he sits down at the keypunch
and programs. You'll have to ask him though whether that's true or not, . . . but he

wrote an awful lot of programs for us.
There's very little I can say about how the language was designed. It never seemed like

much of a problem to us, for some reason. Very early in our fooling around we had the

52 Part II

Transcript of Presentation

" S i n c e F O R T R A N should v i r tua l ly e l imina te cod ing and

debugging[!] . . . "
"L . . an a u t o m a t i c a l l y coded p r o b l e m . . . wi l l be e x e c u t e d
in abou t the s a m e t ime tha t would be r equ i red had [it]
been l abor ious ly hand c o d e d . "
" F u r t h e r m o r e , a f te r an hour cou r se in F O R T R A N no ta t ion ,

the ave r age p r o g r a m m e r can ful ly u n d e r s t a n d . . . a pro-
c e d u r e s ta ted in F O R T R A N language . . .'"
" . . . s ince e a c h such [IBM] ca l cu l a to r shou ld h a v e a

s y s t e m s imi la r to F O R T R A N . . . "

F r a m e 10. E x c e r p t s f rom F O R T R A N Pt'eliminary Report, Nov. 1954.

notion of using algebraic expressions. It didn't seem to be very original. Subscripted vari-
ables didn't seem to be very original. And assignment statements. Shortly after that, Her-
rick, I believe it was, proposed the DO statement or " fo rmula" as we used to call state-
ments in those days. And the other features of the language just arose from the need to
make some machine function available. Many statements were machine-dependent
- - th ings like IF DIVIDE C H E C K or READ DRUM were popular items. And other state-
ments arose from just writing test programs and finding we didn't have enough statements
to write the programs, so we'd make up one and add it to the language.

So we always regarded the real problem to be that of consistently producing object pro-
grams about as efficient as hand coded ones, because we figured that if we didn't do that,
no one would use the system.

By November of 1954 our group had produced a paper that really completely described
the FORTRAN language and, we'll see a few excerpts from that report [Frame 10]. As you
can see from the first quote, we were not exactly a group of pessimists, and the third quote
may have been more of a comment about the quality of programmers then than about the
ease of learning FORTRAN. And here [Frame 1 I] is part of the description of expressions
in that paper, just so you'll get some idea of style. I omitted the two longer ones, of course.
And here [Frame 12] are some of the many proposed additions to the system that are sug-
gested at the end of the paper. There were quite a few of them. The description of the
proposed function definition facility is badly written, but it really does describe basically
what later appeared in FORTRAN II in 1958,

The last [item on Frame 12] is " summat ion . " We had planned to put in a summation
operator that would take the index of summation, and the bounds, and the expression to
be summed.

So the language described in that 1954 preliminary report was very close to the actual
language that came out as FORTRAN. It had several features that were later dropped or
changed. For example, the DO formula, as it was called, could specify a distant sequence
of formulas to be iterated on. It didn't have to follow the DO statement. It could also spec-

(i) Any cons t an t or va r i ab le is an exp re s s ion .
(ii) I f E is an e x p r e s s i o n not o f the form + F or - F , then

+ E and - E are exp re s s ions .
(iv) I f E is an e x p r e s s i o n , so is (E).
(vi) I f E and F are e x p r e s s i o n s , so is E x x F. [sic]

F r a m e 11. F o u r l ines (of six) f rom the " F o r m a l d e s c r i p t i o n " of " e x p r e s s i o n s " f rom the Preliminary Report,
Nov. 1954.

FORTRAN Session 53

John Backus

Begin Complex Arithmetic
Sort the vectors on tape N . . .
G e n e r a l F u n c t i o n : . . . the programmer [could] specify

the formula numbers of the formulas describing his
function and the arguments to be used in a given
instance. The value [would be obtained] having sub-
stituted the specified arguments for the original
arguments . . .

Summation

Frame 12. Excerpts from"Future additions to the FORTRAN system" from the P r e l i m i n a r y R e p o r t , Nov. 1954.

ify the s ta tement that was to follow the last iteration separately. Express ions could be
mixed mode, floating and fixed. And that got changed, I think, just because we didn ' t like
the rules as to what happened with mixed mode expressions, so we decided, " L e t ' s throw
it out. I t ' s eas ier . " And it did leave in the principal uses of mixed m o d e s - - l i k e even in
FOR TR AN I you could have an integer exponent and integer function arguments in a
floating point expression. In IF formulas in t h i s - - K n u t h calls it F O R T R A N 0 - - y o u could
use an inequality sign between two expressions and then give two formula numbers ; one
for the true case of the inequality, and one for the false case.

Then there was a R E L A B E L formula that ' s very hard to describe; it caused the sub-
scripts of a particular array that you mention to be reinterpreted in a rotated fashion, and
the purpose of that was to simplify calculations on arrays that were too large to fit in the
store, so that the same stated calculation would work and you could read in the new row,
wherever the current new row was supposed to go, and then rotate one place, and the
whole calculation would still work. But it was too hard to describe, and much too hard to
implement, so that got dropped.

F O R M A T statements were lacking then, but they appeared as the first i tem in the sec-
tion on future additions to the F O R T R A N system, part of which I showed you. And ap-
parently already at this time, we had been talking to Roy and that was probably his sugges-
tion.

I t ' s perhaps interesting to note that executable s ta tements in F O R T R A N 0 were called
" f o r m u l a s " but declarations such as E Q U I V A L E N C E and D I M E N S I O N statements
were called "specif icat ion sen tences . "

The final section of this paper discusses F O R T R A N programming techniques needed to
produce opt imum object programs. It discusses how the sys tem identifies identical subex-
pressions and points out that DO loops would be treated optimally, whereas loops formed
by I F ' s and G O T O ' s would not be.

In late 1954 and early 1955 Herr ick, Ziller, and I gave five or six talks in various places
about our plans for F O R T R A N to groups of IBM cus tomers who had ordered 704s. We
described the language and our plans for producing optimized object programs. We esti-
mated then that the compiler would be done in about six months, and this s ix-month inter-
val was to remain the est imated time to complet ion for the next two years. And of course
most of our listeners were ext remely skeptical about all of our claims. Other groups had
described in rosy terms their own automatic programming systems, and these had turned
out to have a lot of restrictions and oddities in real life that had not been ment ioned in the
early descriptions. And in particular, many of those sys tems had been dreadfully slow.

So our claims were even more outlandish than those of others, and thus the skepticism

54 Part II

Transcript of Presentation

Frame 13. Roy Nutt.

they aroused was not really unreasonable. Our claims that we would produce efficient ob-
ject code were especially disbelieved.

But one of these talks to customers had a very fortunate and crucial result. After our
talk at United Aircraft, Walter Ramshaw, who was the head of that shop, agreed that Roy
Nutt [Frame 13] would become a regular member of our group and contribute his expertise
on input-output and assembly programs. As many of you know, Roy wrote the SHARE
assembly program called SAP, and a lot of other utility programs for SHARE. All the time
he worked with us he remained an employee of United Aircraft, and he used to travel from
Hartford to New York two or three times a week from early 1955 up until early 1957.

There is no way to know what influence the FORTRAN preliminary report had on other
groups. But some other groups produced algebraic compilers which were running before
we distributed FORTRAN in April of 1957. They were able to do this in part because they
had more modest goals. Mainly, they were not attempting to optimize their object pro-
grams. But we did have the impression that the fairly wide distribution of our preliminary
report, plus the general awareness of many programming groups that we were involved in
a fairly big effort and were pretty serious about i t - - tha t this provided a stimulus to some
other groups that they might not have had otherwise.

In any event, the IT compiler at Purdue-- i t was later carried on at Carnegie Tech- - the
MATH-MATIC Compiler at Sperry Rand, and the BACAIC Compiler at Boeing were
done at various points after late 1954. It's hard to be precise about when each of these
began running, just as it's hard to be precise about when FORTRAN began running. For
example, FORTRAN ran in various stages, and then the complete system ran for some
unknown time before we distributed it. The only really definite date is when we distributed
it.

In any case, whatever the order in which these systems began running, it's certainly
clear that those three systems were running before we distributed FORTRAN.

FORTRAN Session 55

John Backus

The most important of these compilers was the IT compiler for the IBM 650 that was
done by Alan Perlis and his colleagues. It was begun in the fall of 1955 and since, like the
others, it was less ambitious than FORTRAN, it was running about a year later. After
FORTRAN and IT were both in operation for a while, Alan Perlis used to give some talks
that really annoyed me. The idea of these talks was that he couldn't understand why those
clods working on FORTRAN had taken 25 man-years to produce a compiler, since one of
his graduate students had written an IT compiler in a single summer. He apparently didn't
understand the problems of optimization in those days. I was annoyed only because I
thought he did!

In any case, whatever the influence the FORTRAN preliminary report and our project
had on the other projects that I mentioned, if it had any, it is clear that they didn't influ-
ence our design because we had our plans quite firm in November of 1954, before they had
begun.

Work on the FORTRAN compiler got underway in January or February of 1955, and my
paper for the conference goes into some detail about its construction, over, I might say,
the objections of our chairman who doesn't think that's a proper subject for this confer-
ence. And it references other papers with further details. But now I would just like to
sketch very briefly what each of the six sections of the compiler did and show you its prin-
cipal architects if we haven't seen them already.

The main point to understand about the way the thing was put together was that each
section was a separate and autonomous project in itself of one or two people. Each section
really was an individual enterprise; each had its proprietor or proprietors and was de-
signed, planned, and programmed by a very small group. That planning often involved the
invention of a number of new techniques by the proprietors, and many of those tech-
niques, of course, played an important role in future compilers. The proprietors of each
section would consult with the neighboring sections and by doing so on and off for a long
time, they gradually converged on specifications for their input from the preceding sec-
tion, and the output they would give to the next section.

Section 1 read the entire source program. In that sense, the compiler was one-pass. It
compiled instructions for the arithmetic expressions, and filed all the other information in
tables for use by later sections.

Peter Sheridan [Frame 14] did the compilation and optimization of expressions in Sec-
tion 1. His output rearranged the computation so that the recomputation of common sub-
expressions and unnecessary fetches and stores were avoided. That work as we'll discuss
later often changed the way expressions were evaluated in a radical and surprising fash-
ion. Roy Nutt handled the I/O statements in Section 1--the main thing that he had to do
was replace the I/O "lists of quantities" that were involved by nests of DO formulas,
which were then treated by the rest of the compiler in a regular fashion. Herrick did the
table formation work in Section 1.

Section 2 optimized the treatment of DO formulas and references to arrays. To do so, it
had to analyze the structure of the entire source program. There is not enough time to
discuss the powerful and complex analysis of cases that it used to produce code. It yielded
virtually optimal use of indexing and looping. Section 2 is the largest and one of the two
most complex sections of the compiler. It was planned and programmed by Bob Nelson
and Irving Ziller.

The degree of optimization they achieved was really not equalled again in subsequent
compilers until the mid-60s when the work of Fran Allen and John Cocke began to be used

56 Part II

Transcript of Presentation

Frame 14. Peter Sheridan.

in fairly sophisticated optimizing compilers. They really did an incredible job, even taking
out single instructions that you wouldn't believe could have been taken out of a program.

Originally Ziller and Nelson had planned to produce code which used only the three
index registers for the 704, but as things progressed it began to appear that that was going
to be extremely difficult to do in an optimal way. So at that point, I proposed that they
should produce code for a mythical 704 that had an unlimited number of index registers,
and that we would somehow produce later sections that would convert that program into
one for a three-index-register machine.

This suggestion resulted in two new sections of the compiler, but before they could
begin we had to have a Section 3 which consolidated all the information from Sections 1
and 2, and was a fairly involved program. This was programmed by Dick Goldberg [Frame
15J.

Section 4 was programmed by Lois Haibt [Frame 16]. It made a statistical analysis of
the frequency of execution of the different parts of the source program by simulating the
execution of the source program. It also collected information about the usage of the ficti-
tious and unlimited index registers.

The proprietor of Section 5 was Sheldon Best [Frame 17] who was loaned to us by
Charles Adams at MIT. (Sheldon was really the same age as the rest of us, but that is the
only picture we have that was taken when we were actually working on the project.) Sec-
tion 5 did the actual transformation of a program with an unlimited number of index regis-
ters into one using only three. The index register allocation procedure that Sheldon de-
vised for Section 5 was at least as optimal as any procedure developed during the next 15
years, and it probably is in fact optimal. Nobody has shown that it isn't. On the other
hand, nobody has proved that it is--although his straight-line allocation procedure has

FORTRAN Session 57

John Backus

Frame 15. Dick Goldberg. Frame 16. Lois Haibt.

Frame 17. Sheldon Best.

58 Part II

Transcript of Presentation

been proved to be optimal, and at the time, he had a fairly convincing argument that it
was. His work was the basis of a lot of later work on the register allocation problem.

Finally, Roy Nutt wrote Section 6. This assembled the final program into relocatable
binary. It also produced the storage map of the program and data, and obtained the library
routines that were needed, including routines that interpreted the FORMAT statements in
the program. Roy also wrote the FORMAT interpreter and all of the I /O program. The
assembler took advantage of the special nature of its input and was about ten times faster
than the standard SHARE as semble r - -SAP.

By the summer of 1956, large parts of the compiler were working; an algebraic subsys-
tem was in productive use at United Aircraft from the summer of 1956 until the full system
was distributed. From the late spring of 1956 until early 1957 the pace of debugging of the
system was really intense. We would rent rooms at the Langdon Hotel across the street
from where the computer was in New York, and we 'd sleep there a little bit during the day
and then stay up all night to get as much time on the machine as possible. We usually had it
all to ourselves then. It was a really exciting period because by late summer and early fall
we were beginning to get fragments of compiled programs out of the system, and we were
often astonished at the code it produced. It often transformed the source code so radically
that we would think it had made an error, and we'd study the program carefully, and fi-
nally realize it was correct. Many of the changes in the computation were surprising, even
to the authors of the section responsible for them. But the changes really were effective in
giving efficient programs, and they would, for example, make a major rearrangement of
the program just to save a single instruction. For example, control transfers would appear
in the program that corresponded to no control statement in the original program. And a
given DO statement would sometimes produce no instructions if you put it in one context,
and if you took the same identical DO statement and put it in a different context , it would
produce a whole lot of instructions in a lot of different places in the object program.

S o - - i n the summer of 1956 David Sayre [Frame 18], a crystallographer, rejoined our

Frame 18. David Sayre.

FORTRAN Session 59

John Backus

group. He had briefly consulted with Sheldon Best about Section 5 earlier. He began
writing the FORTRAN programmer's reference manual. This manual stood for some time
as a unique example of a clear, concise, and accurate description of a programming lan-
guage, and it may still stand as such. It appeared in a glossy cover and handsomely printed
in October of 1956, and there's a shot of the cover [Frame 19]. Here is the Table of Con-
tents [Frame 20], and here's a sample program that appeared on Page 1 of Chapter 1
[Frame 21], to show you the flavor of things. Here is a description of arithmetic formulas
[Frame 22]. You can see that it had very wide margins with headings out in the margin.
Here is the description of DO formulas [Frame 23: see Fig. 3 in Paper]. It followed this
general pattern of having a description of the general form of a statement and then some
examples, and then text giving the details. And finally, there is a longer program that ap-
peared toward the end of the manual [Frame 24], an example, showing various features.

The entire Reference Manual was only 51 pages long. That's some kind of record, I
think, and as you noticed, the pages even had wide margins.

I 'm afraid I haven't really done justice in this brief talk to the work my friends did on the

Frame 19. Cover of first FORTRAN Manual. [Courtesy of International Business Machines Corporation.]

60 Part II

T A B L E O F C O N T E N T S

THE F O R T R A N S Y S T E M

C H A P T E R 1. G E N E R A L P R O P E R T I E S OF A F O R T R A N S O U R C E P R O G r a M

2. T H E F O R T R A N L A N G U A G E :

C o n s t l t n f s . V m r i a b l e $. a n d S u b s c r i p t s

3. T H E F O R T R A N L A N G U A G E :

F u n c | i o n ~ . E x p r e s s i o n s , a n d A r~ thme tec F o r m u l a , s 12

4 . T H E F O R T R A N L A N G U A G E :

C o n t r o l S | a f e m e n l s

S. T H E F O R T R A N L A N G U A G E :

I n p u f . O u t p u t S t m f e m o n t $

6. T H E F O R T R A N L A N G U A G E :

S p e c i f i c a t i o n S l a f e r n e n H J ~

7. M I S C E L L A N E O U S D E T A I L S A B O U T F O R T R A N

#. E X A M P L E S O F F O R T R A N P R O G R A M M I N G 4 ~

A P P E N O I X A. T A B L E O F F O R T R A N C H A R A C T E R S

T A B L E O F F O R T R A N S T A T E M E N T S

iNOEX

Frame 20. From the first FORTRAN Manual. [Courtesy of International Business Machines Corporation.]

~ ~ i ~ ' i ~

I

I ,

Q

0 E.
0

0

0

Z <

©

62

° ~

~s

o

o

a~

o

E

o

Z

0

E
2

68

John Backus

Frame 24. From the first FORTRAN Manual. [Courtesy of International Business Machines Corporation.]

project, but I hope that the paper does a better job of that. It's just that there's a lack of
time to talk about what they did in sufficient detail.

About April of 1957, we felt the system was sufficiently free of bugs to distribute it. But
before the system was finally distributed on magnetic tapes there was a vast confusion and
a binary deck of the system was sent out to the Bettis installation at Westinghouse; this
was just an unlabeled box of about 2000 binary cards with no instructions or data of any
kind. It arrived there on a Friday afternoon, and Herb Bright and his colleagues at West-
inghouse suspected that it just might be the FORTRAN system deck, so they proceeded to
put blank tapes on every tape unit. They put cards in the card punch, and cleared the
memory. They put this mystery deck in the card reader and pressed s t a r t . They observed
some tapes moving, and after all the cards had been read, all the tapes rewound them-
selves and the machine stopped with the " ready" light on. They next put a small FOR-
TRAN test program in the card reader and pressed "s tar t" again. Again, some tapes were
seen to move, plus others that hadn't moved the first time. And this time there was some
action at the printer. It had printed a message saying that a comma was missing from a
particular statement. The offending statement was corrected, and the source program
placed in the card reader again, and "s tar t" was pressed a third time.

After a few seconds of computing, the card punch produced a small deck of binary
cards. Bright and his friends put the binary deck in the card reader and pressed the "s tar t"
button for the fourth time. Again, there were a few seconds of computing, and then the
printer started up once more. This time it produced 28 pages of results. All the output from
their test program was actually correct, with, of course, the exception of a few FORMAT

64 Part II

Transcript of Presentation

errors. That took place on April 20, 1957, and it was probably the last time that Westing-
house Bettis was to have such a trouble-free run of FORTRAN for a
long time.

Anyway, after the system was distributed, the proprietors of the six sections were kept
very busy tracking down bugs. Hal Stern collected a stream of telegrams, letters, and
phone calls from all over the country and distributed them to the appropriate people. He
then collected the corrections and made up correction cards that he distributed back to all
the installations.

In the meantime, Grace Mitchell had been working on a programmer's primer. It came
out in the winter of 1957 and a slightly revised edition came out in March of 1958 [Frame
25]. By the fall of 1958, over half the instructions for some 66 704s were being produced by
FORTRAN. SHARE, the 704 user's group, had made it their second official language (the
first being SAP).

There is just enough time left, I hope to let me say a little about FORTRAN II. FOR-
TRAN II was designed mostly by Nelson, Ziller, and myself. It provided some much
needed subroutine definition facilities, and the ability to compile subroutines separately. It
kept their symbolic names in the binary decks for each subroutine. These independent
subroutine decks could be loaded by a linking loader that would put them together prop-
erly. It came out in the spring of 1958.

Frame 25. Cover of first FORTRAN Primer. [Courtesy of International Business Machines Corporation.]

FORTRAN Session 65

George Ryckman

FORTRAN III was designed by Irv Ziiler. It provided the ability to intermix FOR-
TRAN statements and machine instructions with FORTRAN variables as addresses. It
also introduced a number of features such as Boolean expressions and string handling fa-
cilities that later appeared in FORTRAN IV. In fact, most of the facilities of FORTRAN
IV are to be found in FORTRAN III. It was mostly an internal IBM system and was first
used in the winter of 1958-1959.

So, in closing, let me remark that there seems to be general agreement among the origi-
nal FORTRAN group that it was one of the most enjoyable projects any of us ever worked
on. We were graced by this wonderful independent status that Cuthbert Hurd and my sub-
sequent bosses conferred on us, so that we were completely on our own. We knew we
were going to provide a valuable tool, even if few others did, and we worked quite hard.
But perhaps the best part was the uncertainty and exci tement of waiting to see what kinds
of object code all that work was finally going to produce. I only wish that programming
today could be half as exciting and enjoyable as the FORTRAN project was.

Thank you.

TRANSCRIPT OF DISCUSSANT'S REMARKS

JAN LEE: Thank you, John. We invited John to prepare a paper on FORTRAN, and then
we searched around to find somebody who might have some other thoughts, and I use that
word " o t h e r " very carefully. We were somewhat concerned it might be "o p p o s i t e "
thoughts, "cor robora t ing" thoughts, or any other. And we looked hard and long. You
may notice that John said that one of the motivations for FORTRAN in those early days
was this growing space industry. And so we looked to a down-to-earth space industry, and
came up with General Motors, as a source of a Discussant. And then went to our friends at
General Motors and said, " O k a y - - w h o was it out there who really bore the brunt of try-
ing to get FORTRAN operational and knew what was going o n ?" and came up with
George Ryckman. George has a Bachelor 's Degree from the University of Virginia, and
then went to the University of Michigan where he obtained a degree in Electrical Engi-
neering. He ' s been at General Motors since 1952, starting off as a research engineer, su-
pervisor of computer operations when FORTRAN was getting its feet on the ground, and
now Assistant Department Head of the Computer Science Department at General Motors.

GEORGE RYCKMAN: Thank you, JAN. My remarks will deal primarily with the impact
FORTRAN had on our organization, General Motors Research Laboratories , although I
will have a few comments on the language design and its implementation. I'll begin with
some pre-FORTRAN history, followed by our early experience with FORTRAN, some
operational issues, and finally a comment on our more recent history.

In the three years prior to the first distribution of FORTRAN, we were preoccupied
with programming and operating our first stored program machine, the IBM 701, and in
preparing and installing its successor, the IBM 704. Still we took advantage of several op-
portunities to examine, critique and plan for FORTRAN at our installation. For example,
my log book notes on March 17, 1955: "Rece ived proposed additions to the FORTRAN:
incorporated new symbols and formulas ." And another entry on March 16, 1956: "FOR-
TRAN code plates ordered for the keypunch machines ."

66 Part II

