
Transcript of Question and Answer Section

the mean free error time on the 704 was a major factor in running large programs; it just
didn't hold out that long. The economics of compiling, testing, and recompiling were typi-
cally prohibitive with programs exceeding 300-400 statements. Later with the advent of
FORTRAN II, the ability to break up a program into pieces substantially removed this
restriction and the language became firmly established with virtually all application pro-
gramming at GM Research.

At this point I'd like to address some of the operational issues of the earliest FOR-
TRAN, the manner in which the compiler/translator ran on the 704. It did not come with
an operating system, but rather took over the whole machine when it ran, so a program-
mer typically approached the machine, getting four tape units ready, a printer, a card
reader, and a card punch. During translation, listings appeared on the printer and a binary
object deck issued forth from the punch. The programmer transferred this binary deck
from the punch to the reader, pushed "GO," and hoped. He finally retrieved the printed
output and the card decks, and that completed a session. Rarely could all of this activity
take place in less than 10 or 15 minutes per session, so machine time was scheduled in
15-minute blocks. All of this, I should say, was in marked contrast to our normal mode of
operating a machine. Earlier in 1955, in a joint effort with North American, we had de-
signed and implemented a so-called "multijob, tape-in, tape-out monitor system" for the
704. I guess today we'd call it an operating system. The resulting throughput advantages
prompted us to initiate a similar system for FORTRAN, and in fact, we had already de-
signed and all but checked out a new system for FORTRAN at the time it arrived. Within a
month it was also running in an operating system. Incidentally, after suggesting SENSE
LIGHT and SENSE SWITCH additions to FORTRAN, this nonstop automatic operation
was rendered almost useless.

Fortunately the earlier monitor had done a good job of tuning our computer system be-
cause the translator was highly reliant and extremely brutal on tapes and drums. From an
operational standpoint the only problem that plagued us for any extended period was the
numerous program halts built into the translator. But the translator eventually learned that
we would not put up with such laziness, and that if it had trouble with one source program,
it should simply go on and get the next one.

In the intervening years, the FORTRAN load built up to virtually 100% of our comput-
ing. Only in the last ten years has it yielded grudgingly to PL/I; until today it still accounts
for 50% of the load on three IBM 168 systems.

Our best, most efficient numerical analysis codes are still written in FORTRAN, as are
some huge programs for structural and fluid flow analysis, just to name a few.

I've enjoyed delving into the archives for this discussion and also sharing it with you. I
wish to thank the sponsors for the invitation to join you and the privilege of participating.

TRANSCRIPT OF QUESTION AND ANSWER SESSION

JAN LEE: Thank you, George. So, John, let me start offwith the most general question.
It is from Nancy Stem, and really it's not directly related to FORTRAN. " I notice that in
the May 1954 article, the term 'programmer' was used. From your experience, when did
the term 'programmer' begin and replace the word 'coder '?"

68 Part II

Transcript of Question and Answer Session

JOHN BACKUS: Well, the shortest answer I can give to that i s - - i t ' s the same reason that
janitors are now called "cus tod ians . " "P rog rammer" was considered a higher class enter-
prise than " c o d e r , " and things have a tendency to move in that direction.

LEE: Aaron Finerman, currently at SUNY, Stony Brook, says, " F O R T R A N , as you
noted, was greeted without enthusiasm by a skeptical if not hostile audience. To what then
do you attribute its rapid acceptance? Was it the ease of programming, the efficient code it
produced, or was it simply the thing to do? As a skeptical manager at the time, I have my
own perspective but would like to have yours . "

BACKUS: That ' s dangerous territory. I think there are a zillion different reasons why
people took it up ultimately, but mainly it was economics. That 's my be l i e f - - tha t it was
the sort of a proposition you couldn' t refuse unless you had problems of a special nature
that FORTRAN didn't deal with very well.

LEE: Bob Bemer from H.I.S. asks: " H o w about a word on how long it took Sayre and
Goldberg to pick up Best 's section when he left your group?"

BACKUS: That was just something I would have liked to have mentioned in my talk but I
didn't feel I had time. Sheldon Best wrote this enormously complex section 5, and then
rather promptly left and went back to MIT before it was completely debugged. So David
Sayre and Dick Goldberg, two good scholars, studied and studied and diagrammed the
section and completed its debugging.

LEE: Was that a short episode, or a long one?

BACKUS: Well, it was no longer than the whole episode of debugging. That was quite
long.

LEE: Tom Steel from AT&T asks: "Would you comment on the extent to which other
works, specifically PACT, influenced FORTRAN development?"

BACKUS: Well, PACT was an ambitious project instituted by a number of aerospace com-
panies in the Los Angeles area that performed a lot of services for the programmer, but
- -we l l , to make a short answer, I believe it had no influence because it began, you know,
about the time we had frozen our design, if I 'm not mistaken. At least, as far as we were
aware then, that was the case.

LEE: Mr. Peterson from Bonneville asks: "Concerning FORTRANSIT, what connec-
tions existed between Perlis's IT and your F O R T R A N ? "

BACKUS: Well, IT was an algebraic translator for the 650, and there were lots and lots of
650s around in universities. And so a translator was w r i t t en - -Bo b Bemer is the authority
on this. I think he wrote it. A translator to translate FORTRAN programs into IT pro-
grams so that you could run them on 650s.

LEE: From Mike Shapiro of NCR: "Y o u r paper tries to dispel the legend that three sub-
scripts came from three index registers, and yet a later FORTRAN had a seven index reg-
ister machine, and therefore had seven subscripts. What are your c u r r e n t thoughts on how
many subscripts are needed?"

BACKUS: Well, I stick by my original story. The complexity of analysis that Bob Nelson

FORTRAN Session 69

Transcript of Question and Answer Session

and Irv Ziller had to do to optimally deal with indexing and looping rose exponentially as
the number of subscripts went up. And that was, indeed, the reason we limited it to three.
The fact that some later group decided to allow seven subscripts in a seven index register
mach ine - - t ha t was out of my control. [Laughter]

LEE: Dr. Brebner from the University of Calgary asks: "With respect to FORTRAN,
what do you consider was your best design decision, and what was your wors t ?"

BACKUS: Gosh! I just can ' t answer that right now. I'll try that one later.

LEE: Helen Gigley asks: " W h y were the letters I through N chosen to designate in-
tegers?" [Laughter and applause]

BACKUS: Well, it just seemed for a while that people always used I, J, and K for sub-
scripts, and we thought we 'd be generous and add a few more.

LEE: Again from Helen Gigley: " W h y was the decision to check at the bot tom of a DO
loop m a d e ? " - - a s opposed to the beginning, I presume.

BACKUS: For efficiency. You would have had an extra instruction, at least, if you 'd done
it otherwise.

LEE: Richard Miller asks- -aga in , on the looping construct and the conditional construct:
" W h o wanted them originally, and was any support given by the hardware?"

BACKUS: NO support was given by the hardware, to my knowledge, except that it pro-
vided the usual instructions that made it possible. And as far as who wanted i t - - w e didn't
know the answer to that. We just provided it, because it seemed like a convenient thing to
do.

LEE: From David Dahm from Bu r ro u g h s - - an d I think this goes back to Grace 's talk. In
her three-address system, pointing out that in Grace 's system it was x + y = z, why did
you decide to put the variable on the left of the equal sign as opposed to the right of the
equal sign?

BACKUS: We thought it made programs more readable. If you put them on the right, the
variable being assigned to would be a little hard to find, whereas, they ' re easy to find if
they ' re on the left.

LEE: Juris Reinfelds from the University of Wollongong, Australia, asks: " W h y and
when was the decision made to interpret FORMATs, and does this not contradict your
assumption of developing efficient execution code?"

BACKUS: I think Roy Nutt should answer that question.

RoY NUTT: That was strictly a matter of expediency. The original intent was to compile
FORMAT statements, but we just couldn ' t get it done in time.

LEE: Roger Mills from TRW asks: "Was it your plan to have a subroutine facility from
the very beginning, or did FORTRAN I show you it was a problem?"

BACKUS: Well, as the preliminary report indicated, we did intend to have it from the be-
ginning, and in fact there were lots of things that never got into FORTRAN that were diffi-
cult to d o - - f o r example, summation never got in.

70 Part II

Full Text of All Questions Submitted

LEE: From Mike Shapiro again: "What comment do you have on the current trends in
FORTRAN extensions?"

BACKUS: Well, I have some remarks on that in my paper. Not about FORTRAN exten-
sions in particular, but about programming languages in general. I 'm not in favor of any of
them. I think conventional languages are for the birds. They're really low level languages.
They're just extensions of the yon Neumann computer, and they keep our noses pressed
in the dirt of dealing with individual words and computing addresses, and doing all kinds of
silly things like that, things that we've picked up from programming for computers; we've
built them into programming languages; we've built them into FORTRAN; we've built
them into PL/I; we've built them into almost every language. The only languages that
broke free from that are LISP and APL, and in my opinion they haven't gone far enough.

LEE: John, thank you very much.

FULL TEXT OF ALL QUESTIONS SUBMITTED

BOB BEMER

How about a word on how long it took Sayre and Goldberg to pick up Best's section
when he left?

M. A. BREBNER

With respect to FORTRAN, what do you consider was the best design decision, and
what do you feel was the worst design decision?

DAVE DAHM

Why did you decide to put the variable being assigned on the left rather than the right of
the " = " sign?

Where did the idea of the subscripted variable come from originally?

BILL DERBY

What language was used for your FORTRAN compiler, and how easily did it translate
to the 704's successor?

KEN DICKEY

How were the bounds of your Monte Carlo simulation flow analysis (section 4 of com-
piler) arrived at (i.e., how did you bound your system)?

HAROLD ENGELSOHN

In the initial stages of planning, was there any conscious effort to allow for data pro-
cessing as well as algebraic manipulation? If not, when were alphabetization capabilities,
for example, added to FORTRAN?

FORTRAN Session 71

