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AN ALGEBRAIC LANGUAGE FOR THE 

MANIPULATION OF SYMBOLIC EXPRESSIONS 

by John McCarthy 

Abstract: This memorandl~ is an outline of the 

ROLAND SILVER 
248 8UCKMINSTER RD. 

BROOKLINE 46. MASS. 

specification of an incomplete algebraic language 

for manipulating symbolic expressioris. The incom­

pleteness lies in the fact that while I am confident 

that the language so far developed and described here 

is adequate and even more convenient than any pre­

vious language for describing symbolic manipulations, 

certain details of the process have to be explicitly 

mentioned in some cases and can be left to the program 

in others. This memorandu.m is only an outline and 

is sketchy on some important points. 

I. Introduction 

First \ 'Je shall describe the uses to which the language 

can be put and the general features that distinguish it 

from other languages used for these purposes. 

1.1. Applications of the language 

1.1.1. Ttianipulating sentences in fOl"rnal languages 

is neceasary for programs that prove theorems and also 

for the ad~i£a ta~r projecta 

1.1.2. The ' formal processes of mathematics such as 

algebraic simplification, formal differentiation and 
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integration, etc. are conveniently programmed in this 

language. 

101.3. A compiler can be conveniently written in 

this language except for input and output section. We 

shall illustrate this in discussing the compiler for 

this language. 

1.1 0 4. Heuristic programs, i.e. pr.ograms involving 

tentative procedures are best written in this sort of 

language" On e reason is that trees of alternative actions 

arc conveniently representedo 

10105. In general this language is best suited for 

representing expreSSions whose number and length may change 

in "lays which it is not convenient for the progrannner to 

predict and which have sub-expressions with the same char­

acteristicso It is not so convenient for represent1ng 

lists of fixed lel1gth where one frequently wants the Eth 

element where ~ is computed rather than obtained by adding 

1 to n-l .. 

1.2~ Features of the language 

102.10 Expressions are represented by lists each 

element of which occupies a computer wordo Each computer 

word of a list in addition to containing a datum also con­

tains the address of the word containing the next element 

of the listo 0 for the address of the next element indicates 

the last element .. . If one element of an expression is a 

subexpression th~ word corresponding to this element contains 
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the address of the word containing the first element of 

the subexpressiono In the IBM 704 or 709 whose 36 bit 

word is divided (for the convenient use of certain machine 

instructions) into two 15 bit parts (address and decrement) 

and two 3 bit parts (prefix and tag) lists are represented 

by storing ~n the decrement part of a word the address (in 

our system actually the complement of the address) of the 

next l'iord or thelisto The datum is contained mainly in the 

address part of the word with the prefix and tag used either 

for data or indicators of the kind of list structure o 

The use of this kind of computer representation of 

list structure was first developed by Newell, Simon and Shaw 

for heuristic programming. 

1.2.2 0 The convenience of algebraic notation for the 

description of procedures derives in large part from the 

fact that frequently the output of one procedure serves the 

input for another and the funct10nal notation enables us to 

avoid giving the intermediate result a name. Also the order 

in which a functional formula is written permits us to start 

mentally from the desired result and build it up successively 

from its component computations. 

The other main advantage of the algebraic notation for 

list structure processing was first noticed by Gelernter. If 

we make routines which form lists functions whose output is 

the address of the list formed l complex structure can be formed 

by single expression compounding hhe list forming functlonso 



Algebraic notation for list processing is not used by 

Net'Jell, Simon and Sha~l, pel"haps beaause to do so is most 

convenient when a compiler is available, but is used by 

Geler-nter in the geometry program. This was accomplished 

(on the advice of the present author) by using the Fortran 

compiler together with a set of machine language coded 

functions for handling the primitive list processeG that 

go from one element of a list to the next" 

1 .. 203. It is frequently convenient to define certain 

processes by recursiono This means that the program defining 

a subroutine may use the subroutine itself. This pl"'~sents 

the programming d:tfflculty that the intermediate results 

forrn2d by a subroutine must be protected from alteration 

l'7hen thG routine is used as 0. s ubroutine of itselfo This 

is best accomplished by storing t hese results in list 

structures. Ne\'lell ., Simon and Shall1 use this feature exten~ 

sively and provide lilhat they call push~do"'m lists for saving 

intermccUate l"'~sults 0 The geometry progl"am has not used re~ 

cursive pl"'ograms so i'ar, and the list structure stora.ge of 

t0mporary results is difficult in Fortran because of the 

comparative inaccessibility of some of these interm8diate 

results (ego index reglsters~ the register in which subscripts 

are saved, and the temporary storages used 'fJlithin formulas) 0 

In the present system the saving of temporary storage 

is handled automatica.lly t!fithout spec:!:fic attention by the 

pi."'ogrammer wr..en a subroutine is potentially capa.ble of calling 

on itself" 
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1,,2oL~o Conditional expl'"'essionso One of the ?rcakest 

f0atU.1'CS of present programming languages is in the means 

they provide for treating conditionals, that is the cal~ 

culation of quantities where the operations used depends 

on t-;he rCfJult of certain prior tests. The use of proposi-

tional qu~ntitles? predicates, and conditional exp~c s ciono, 

essontially solves this problem and eliminates mos t of t he 

small scale branching from s ourc·e prograr:lS. In combina.tion 

\·1ith the fea ture of recul"'r:.live de fini t ion it permlts ce r t ain 

s ubroutir..E;S to be defi ned by single formulas in this la~1guagc 

t ho..t ar3 Quite involved p l"ograrn s in other languageo 

1.2.5. The usc of fU1:lctions and pl"'edicates D.S parameters 

of s1..ibl"'outines mal-ces possible some verlY pOiijerful routines for 

transforming, and manipulating list structures o 

201.. Kinds of quantity 

The:~e are several kinds of quantity used in this language., 

The l"2G.de:c lI>lill notice the omission of the list or list struc.., 

t Ul'e i tC() 1 t' as a kind of quantity. This is because t'rhilc a 

nu:r:tber of :lnteres ting and useful operations on whole lis ts 

have been defincd~ most of the calcula.tions we actually pCY'= 

f.'o:em cannot as yet be descl."ibed in terms of these ope1."ations 0 

It st:i.ll Se2TJS to be necessary to compute with the 8.ddl'esses 

of the clements of the lists .. 

as i !J.dexes 01" 2.ddresses., In 0. ccrnpiler \'Jrl tten fol" the 
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IBM 10l1. or 709 these Nil1 also occupy the decrement parts 

of words when referred to by single symbols. We do not 

use typographical conventions to distinguish the integers 

from other kinds of quantity, but rely on either context 

or specific statement. Arithmetic tdth these quantitien 

Nill be as in Fortrano 

20102. 11Jhole \'Iords o Whether we will malte the arith~ 

metic symbols stand for floating point operations is as yet 

unsettled .. 

2.1.30 Propositional quantities. A propositional quan­

tity is represented as a single bit (ioeo 8 has value 0 or l)Q 

How these shall be stored is not yet determined.. !n the IBM 

709 the SI register might seem to be their natural home. 

Propositional expressions are recursively formed by the 

Boolean operations" I V. and ~ etc. from propositional quan­

tities. They are also formed by predicates (functions taking 

values on the set of two elements consisting of 1 for truth 

and 0 for falsehood) • . Examples of such pred~cate are (a-b) 

and (a < b) l'Ihere a and b range over arithmetic quantitleso 

Other predicates may be constructed by the procedures for 

defining functions. 

Quantities of other ki~ds may be. constructed from proposi· .. 

tional quantities by means of conditional eA~ressions. If 

Pl ,. b .,Pk .are l?I.'<?positi.ona1 expressipns and °1, •• 0 :-ck are 

expressions of anyone kind th.en (P1 ~ °1 1. •• 0 "~k -) Ok} is 

an expression is the. ° cOI'l"esponding to the f .irs t of the p' s 

which is true. If. none of the p's .is true the Nhole statement 



involving the conditional expression is not to be executed. 

2.1.4. Locational quantities. A point in the program 

.may be la-belled and the ad:dress of such a point {to which 

control may be transferred)is called a locational quantity. 

The computations with these quantities is limited. 

2.1.5. Functional quantities. These will certainly be 

allowed as parameters of subroutines, but their full possi .. 

bilities might not be explo1ted 1n an early system. 

2.2 Kinds of Statement 

This list is aga1n incomplete. 

2.2.1. The arithmetic (Fortran term) or replacement 

statement is the most important kind. It has the form a-b 

ll1hel"e a and b have the following forms: 

a has one of the follo1'ling forms: 

10 The name of a variable (we shall not go into 

the typographical rules for names at this point.) 

20 A(i) where a is the name of a variable which 

has been designated as subscriptable and i is an integer 

expression. (Arrays of more than one dimension may not be 

included in the first system.) 

3. cwr{i), cpr (1), ctr (1), car (iL csr (1) 

cir (1), cbitr (i,n) or csegr (i,n,m)o 

In all the above ! represents an integer expression 

designating a register in the machine and the expression 

represents the contents of a certain part of that register. 

~ For example, statement beginning car (1) - causes a q~ritity 

to be computed and stored in the address part of register 

leaving the rest of the register unchangedo 
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The b in a statement a*b is an arbitrary exprGssion 

\>Those value is compatible with the space allotted for ito 

The recursive rules for the formation of expressions a~e 

similar to those of Fortran or the proposed international 

algebraic language. 

2.202. Control is transferred by the "go" statemento 

go(e) causes control to be transferred to the location given 

by evaluating the locational expression e, (If e is a 

conditional expression then transfer of control will be 

conditional)~ 

2.2.3. The flexibitity of the go statement is increased 

by the "set" stat~ment set (Ai ql' ••• ' qm) causes an array 

A of size to be established whose contents are the quantities 

qlP H, qn D In particular the q's may be locational expres."" 

sions and then the expression A(i) where i is an integer 

expression denotes the ith of the Ioeational expressions 

mentioned. 

2.2.4. Subroutines are called to be executed simply 

by writing them and their argument as statements. (i.e., 

as in Fortran but loTi thout the word CALL.) 

2.2.5. Declarative sentenceso These have the form 

I declare ( ••• ) where the dots represent a sequence of 

assertions of one of the following forms: 

1. (aj Pl, ••• ,Pn) 

This causes the expressions Pl,ooo,Pn to be 

entered in the property list associated with the sym­

bol ao Each symbol ~~ the program has such a property 
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list which is used and added to by the compiler 

and is also made available to the object program. 

2 • (a1 ' • • • lan' P ), 

This causes the expression p to be put on the 

property list of all the a's. 

2.2.6. Compound statements. A sequence of state­

ments can be enclosed in Ifpal"entheses Tl and given a nameC. 

The symbols to be used for these Tlvertical parentheses" 

are not yet determined. 

2.2.7. Iteration statements. The exact forms of 

"don (Fortran notation) to be provided are not determined 

but they should include the Fortran kind, and a do over 

an explicitly given list or a referred to list structure. 

2.2~8. Subroutine definition. This will resemble 

the Fortrnn system exc~pt that 

1. Parameters can include functions and locat1onal 

expressions. 

2. Subroutines can either be compiled within a program 

or separately. 

3. Symbolic reference to variabl~ as well as to other 

subroutines will be provided. 

2.2.9. Input-output will be handled by subroutines 

which can be made quite flexible through the use of property 

lists. 
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3. Representation of Formal Expressions by Lint Structurey 

and the Basic List Structure Operations 

3.1. Representation of Expression. 

The use of list structures for s"toring data corresponds 

to the mathematical system which uses the sequences as the 

basic expression. Thus, the sequence (a~ (b,c), (b~ (d,e»), 

r) corresponds to the list structure 

I 0 I 
L. lIT] ->I~ I 01 

However, some additional distinctions are required; here 

t~,.e follow Gelerntero A word of a list L1 may refer to a list 

L2 but we may not wish to regard the list L2 as a part of the 

list Ll in the sense that" when the list Ll 1s erased, the list 

L2 should also be erased. Also, for certain kinds of data it 

is fr0quently convenient to use a whoie word. 

Therefore, we shall regard bits 1 and 2 of a word as the 

indicator part of the word and adopt the following convention 

as to its meaning: 

00 the address part of the word is a datum. (It may be 

the address of a list~ but if so this new list is not to be 

regarded as a sublist of the old one.) 

01 the address part of the word refers to a datum word 

which is to be erased when this list 1s erased. 

10 the address part of the word refers to a sublist of 
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the given list. 

The case of a full datum word is only a matter of con­

venience to the program, but the distinction between a sub­

list of a given list and a refel~nce to another list as an 

element of a list is a basic distinction; it 1s the distinc­

tion between an element of. a sequence being another sequence 

or a name of a sequence. 

~fuile a sequence is the basic object represented by a 

list structure certain other expressions are also so repre­

sented by considering them as sequences. 

F01'" example, a functional expl"essioll f(ell ••• ,ah} is 

represented by the sequence (f,ell ••• ,eh ) and hence by the 

corresponding list structure. Expressions involving oper­

ations like + are represented by sequences; namely a+b+c 

is represented by the sequence (+,a,b,c). This corresponds 

to the flPolish notation" of mathematical logic .. but the 

operatIons can have a variable number of arguments since the 

end of the sequence of arguments is explicitly displayed. 

3.2 The Basic Single Word Functions. 

Programs for manipulating l1st structures are described 

mainly in terms of replacement statements (i.e., of the form 

a=b). The right sides of these statements are compOSitions 

of certain "functions". These functiOns, however, are not 

all functions in the mathematical sense for two reasons: 

1. The value of a nfunction" may depend on the state 

of storage of the machine. For example ct~ (n) (£ontents of 

c-) the whole of £egister n) is the 36 bit quantity which is stored 

in register n. 
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2. The execution of the program corresponding t o 

the "function" may change Borne of the arguments and certain 

quantities referred to by them. 

Before describing these ".functions" we will mention the 

free storage listo This is a list of all the registers not 

currently in use by the program. A certain fixed register 

has the address of the firs t t10rd on the lis t and each word 

on the list has the address of the next word in ita decre­

ment part (the rest of' the word being zero). The last word 

has zero in its decrement; this being the usual signal for 

the end of a 1isto The routines that create lists take 

registers from the beginning of the free storage list and 

those that erase 1istn put the storage back on the free 

storage li:Jt. 

The functions for list manipulation are divided into 

those conc:)rned t'lith single ''lords or at any rate with a 

fixed numb(~r and. those routines dealing with lis ts as a 

L1101e.. The latter ot: course are compounded from the former 

and naturally l're shall discuss the former first. 

The basic functions are divided into a number of classes. 

3.2.1. First t41e have those that extract parts of a 704 

word and form a word from parts. We shall distinguish the 

follol'Jing parts of a vl0rd and indicate ea.ch of them .by a 

characteristic letter. 

"ll the whole wmtti 

p the prefix (bits s,. 1, 2) 

i the indicator (bits 1 and 2) 

s the sign bit .. 
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the decrement (bits 3-17) 

the tag (bits 18-20) 

a the address (bits 21-35) 

Corresponding to these we have the functions Ere, Xnd, 

sgn, dec, tag and add which extract the corresponding parts - - - -
of the argument word. The result is regarded as an integer 

and hence 1s put in the decrement part of the ~·lOrd. 

In uddition to the above we can get the nth bit of a 

l"!Crd w with the function bit (w,n) and the segment of' bits 

from m to n with the function seg(t'1,m,n). (Needless to say 

the others are all special cases of' seg.) For putting a 

\'lOrd together out of parts t'le have the fW1ctions 

1. comb 4(p; d, t, a) which forms a word out of the 

four parts indicated by the arguments. 

2. comb 5(s, i, d, t, a) which forms a word from a 

still more detailed prescription). 

3. choice (c, ao' a l ,) This forms a word whose nth 

bit is the nth bit of ao if the nth bit of c is 0 and is 

the nth bit of 8 1 if the nth bit of c is 10 

3.2.2. Next t'ie have the reference functions which 

extract a part of the word in the register whose number 1s 

the argument. These functions are cwr, cpr, csr, eir, cdr, 

ctr, and car. For example, car (3) is the 15 bit quantity 

found in the address part of register 3. In addition we 

have cbr (n~m) which extracts the mth bit of' register nand 

csgr (n,rnl,m2) which e~ctracts the segment of bits from rnl to 
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m2 of the word in register number n. 

Needless to say, these functions are all combinations 

of the extraction functions and cwr. For example l enr (n) "" 

add (cw!' (n». 

3.2.3. The storage functions. In this system storage 

in a register can be accomplished in two ways. The simplest 

is by Nriting st-atements c:f one of the forms 

CWl"' ( ) = 
cpr ( ) =: 

csr ( ) = 

eir ( ) ;;or 

cdr ( ) ::a 

ctr ( ) ::& 

ea.r ( ) = 
cbr ( ,) a 

The second is by using one of the functions stwr, stpr, 

stsr, stir, stdl" .. sttr, and star. Each of these has tt'10 

arg\.unents, the number of the l'egister into which the datum 

is to be stored and the datum itself. The rest of the word 

referred to is unchanged and the value of the function is the 

old contents of the field referred to. It is this facility 

for getting the old contents to serve as an argument of a 

further process that gives this second method of storage 

some advantages. There are two additional storage functions 

stbI' and stagr of 3 and 4 argument respectively which store 

a single bit and a segment. 
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3.2.4. The construction fW1ctions. These construct 

elcIllGnts of list structures by taking '\>lords fl"'om free storage 

consw (w) puts the argument ttl into the first word on the 

free storage list, shortens the free storage list" and has 

a s vnlue the address of the word into which the datum is 

stOl"'edo The other f'unctions in this class are compounds of 

this one t:ith construction functions but occur 80 frequently 

that they need special names, conael (a,d) puts a in the 

address ar.j d in the decrement part of a word from free storage. 

consfl {\'l,d) takes ti'/O words from free storage puts w in one 

of them, puts the address of that one in the address field 

of the other with 1 in the indicator field and d in the decre­

ment field. consls (a,d) is like consel (a,d) except that the 

indicator field gets a 20 

302.5. The erase function erase (3) returns the word 

in location J to the free storage list. Its value is the 

old contents of this word. 

3.206. ' Pointep moving functions. These operations 

move a pOinter in a list structure, keeping a list for rever-

sion purposes. 

Point (J"K) creates a list If( I 0 I and points J at it; 

mova , (J) moves the painter in the address direction; movd (J) 

moves the pOinter in the decrement direction; movup (J) moves 

the pOinter up in the structure 1.e., deletes the first entry 

from the 'list belt!lnglng to the structure; kill (J) erases the 

/ / list structure belonging to the pointer. 
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3.3.. Basic operations on l'1hole list structures. 

This set, although 1ncomplete, is adequate for the 

examples given in the next section. 

3.3.1. eralis (J) erases the list structure to which 

J points m-;.d returns it to the free storage. It does not 

have a value. It can be described in terms of the elemen­

tary operations of the previous section by the following 

pl .... ogram. However, whether it will pay to use the facilities 

of the compiler or to write the routine in machine language 

as nn elementary routine will depend on the efficience of the 

compilel". 

subroutine eralis (J) 

/ J := 0 ~ return 

go (a (cir(J)) 

£I. (1) jnlc :;: erase (car (J» 

a(O) eralis (dec (erase(J») 

return 

a(2) eralis (car (J» 

'\ go (a(o» 

3.3.2. copy (J) This function copies the list structure 

to t'-lhich J pOints into free storage • . Its value is a pOinter 

to the CQpied structl~e. A program for it is function copy (J) 

/eopy := (J :: 0 -+ 0, cir (J) = 0 ~ consel (car(J) ~ copy (cdr 

(J) L cir (J) == 1 ~ consfl (cwl' (car (J» .. copy (cdr (J»)" 

eir (J) ; 2 ~ conals (copy (car(J), copy (cdr (J»» 

" return 
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This program ignores tags and signso A version which 

does not is , 

function copy (J) 

!copy =. JJ=O-+ 0, 1 ..-+consw (comb ~(cpr (3) t copy 

cdr(J) , ctt' (J), (cir·-·(J) 111& 0 ~ cal'" (J), cir(J) = 1 
\ 

~ consw (em- (car (J»), cir (J) = 2 ~ copy (car m»)) 
" return 

363.31 Search (L,J,Pl,P2,P3,M). The value of search 

(L,J,Pl,P2,P3,M) is the address J of the next element of the 

list structure L which satisfies the condition Pl. (Pl is 

a propositional expression in J and J is a dummy variable.) 

p.l-:--and ~ are expressions in J which define tIe .'list stL'ucture 

searched in that P is the condition that the structure con-

tinues in the address direction and p~ is the condition that 

it continues in the decrement direction. 

M is a location in which is stored a strcc turc \llhich 

keeps track of where we . are in the structure co that the 

search can be continued (by another statement or a return to 

the same one) from where it left off. 

It L * 0 or if no element is found the value of search is 

0 ... 

3.3.4. Maplist (L,J,f(J)}. The value of this function 

is the address of' a list formed from the l1st L by mappil'lg 

the element J into f(J)o 

3.3.5. list (il~ ••• ,in)o The value of list tl, ... i n ) 

is the address of a . . list whose items are iI' _ •• ,in- Appropriate 
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indications are included in the words if the items are 

full '!'lords or sublists. 

The major form of input consists of symbolic expressions 

on IBM cards. 

Such expressions are translated on input as fOllows: 

1. Certain characters on a card are regarded as con-

nectives and both serve as punctuation and to denote certain 

operations. With the present Fortran characters these include 

everything but the digits, the letters and the decimal point 

immediately following a digit. These characters or sequences 

of them except when in a quoted text separate the text into 

pal"ts. Bla111ts are ignored except in column 1 of a card \'lhere 

they are regarded as a period and right after a dot where 

they indicate that it is to be regarded as a period rather 

than as a decimal pOint. A format may also designate certain 

coll1.l1'1.n t11 unsitions as punctuation symbols. 

The pi."imal"'Y way expl"essions are taT.!'itten is as sequences 

of the form (el,oo.,em) where the a's are expressionso This 

is read in as a list~ each e being put in the address part 

of a \'rord t'Ji th the decrement containing the address of the 

next word on the list. If an e is not a term the corresponding 

e;~pression is read in to free storage and the address of the 

resulting lint is the datum of the higher listo It the item 

is a term it is treated as follows: 

1. An integer is converted to binary and stored in the 

address part of the word. 
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2. A symbol ls looked up in the symbol table and its 

value stored in the address part. 

3. A floating point number is stored in a data word 

and the address ot this word is stored. 

4. A text 1s stored character by charaoter in a list 

structure. 

3.3.6. Read (source~ format, symbol table)~ 

Read (SoLll:·ce,. format) symbol table) has as its value 

the address of the structure into which the data read is 

put. The first argL~ent is the source of input data~ the 

second is the format in which this data is stored~ and the 

third is a symbol table relating literal symbols in. the 

ext0rnal medium to the addresses i'lhere the referents of 

these s~-mbols are to be stored. 

3.3.7. Equal (Ll,L2). This predicate tests the 

equality of th~ list structures to which Ll and L2 point. 

It is defined by the formulas 
'> 

3 equal (Ll "L2) =- (Ll - L2~ 1" cir (Ll) ~ cir (L2) 

-> 0, ci!~ (Ll) :a 0 1\ car· (Ll) f car (L2) ---;;'0,. cir (Ll) 

AI 1 A Ci'Ir (car(Ll» f CtrJl" (C2.r(.L2» --;>0 ... careLl) "" 2 1\ ~ 

equal (car~'Ll) ~ car (L2») -> 0,. l-?> equal (cdt ·'Ll)" Cdl" (L2) ) 

.. 
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APPENDIX I. 

As an example of the use of the language we shall give 

a program for analytically differentiating a simple class of 

formulas. The formulas in question are in a single variable 

x and constants; these are combined by addition and multipli­

cation. 

A formula is represented by a list structure. A sum 1s 

a list whose first tAlord contains a constant representing Uplus " 

in its address part and the summands in the address parts of 

the successive elements. A product has ntimes" as its first 

element followed by the factors. The variable x has "XU in 

the address part and a constant has 1 in its tag part and the 

datQ~ in the address part. 

The function dirf (J) where J points to the structure 

representing the £ormula to be differentiated produces a 

n8"(:J' formula, the derivative of the old" and its value is a 

pointer to this formula. The program 1s: 

function d1ft(J) (O"'s~{ (0) 0) 

dirf ~ (ctr(J) = 1 ---> 0 1 car(J) = 

Goa-.sei Cj )0) 
Ox" -> 1, car (el) 

= "plus n -)consel("plus" .. maplist(cdr(J),K,diff(K») .. car 

(J) = "times" _)Consel{nplus ", maplist t Cdr(J),K, consel 

(ntim0s u
" rnaPlist {Cdl"(J)"L1 ~ = K -> diff(L) .. L =ft K -> 

copy (L)]};))) 
retUI'n 

I . 


