b}

ROLAND SILVER
248 BUCKMINSTER RD.
BROOKLINE 46, MASS.

AN ALGEBRAIC LANGUAGE FOR THE
MANIPULATION OF SYMBOLIC EXPRESSIONS

by John McCarthy

Abstract: This memorandum is an outline of the
specification of an incomplete algebralc language

for manipulating symbolid expressions. The incom-
pleteness lies in the fact that while I am confident
that the language so far developed and described here
i1s adequate and even more convenient than any pre-
vious languvage for describlng symbolic manipulations,
cerfain details of the process have to be explicitly
mentioned in some cases and can be left to the program
in others. This memorandum is only an outline and

is sketchy on some important points.

I. Introduction

First we shall describe the uses to which the language
can be put and the general features that distinguish it
from other languages used for these purposes.
l.1. Applications of the language

l1.1.1. Manipulating sentences in formal languages
is necessary for progréms that prove theorems and also

for the advice taker project.

1.1.2. The formal processes of mathematics such as

algebraic simplification, formal differentiation and

S

integration, etc. are conveniently programmed in this
language.

1l.1.3. A compiler can be conveniently written in
this language except for input and output section. We
shall illustrate this in discussing the compiler for
this language.

1.1.4, Heuristic programs, i.e. programs involving
tentative procedures are best written in this sort of
language. On e reason is that trees of alternative actions
are conveniently represented.

1.1.5. In general this language 1s best sulted for
representing expressions whose number and length may change
in ways which it is not convenient for the programer to
predict and which have sub.expressions with the same char-
acteristics. It is not so convenlient for representing
lists of fixed length where one frequently wants the nth
element where n 1s computed rather than obtained by adding
1 to n-1.

1.2, Features of the language

1.2.1. Expressions are represented by lists each
element of which occupies a computer word. Each computer
word of a 1list in addition to containing a datum also con-
tains the address of the word containing the next element
of the list. O for the address of the next element indicates
the last element. If one element of an expression is a

subexpression the word corresponding to this element contains

=32
the address of the word containing the first element of
the subexpression. In the IBM 704 or 709 whose 36 bit
word 1s divided {for the convenient use of certain machine
instructions) into two 15 bit parts (address and decrement)
and two 3 bit parts (prefix and tag) lists are represented
by storing in the decrement part of a word the address (in
our system actually the complement of the address) of the
next word or thellst. The datum 1s contained mainly in the
address part of the word with the prefix and tag used either
for data or indicators of the kind of list structure.

The use of this kind of computer representation of
list structure was first developed by Newell, Simon and Shaw
for heuristic programming.

1.2.2. The convenience of algebralc notation for the
description of procedures derives in large part from the
fact that frequently the output of one procedure serves the
input for another and the functlional notation enables us to
avold giving the intermedlate result a name. Also the order
in which a functional formula is written permits us to start
mentally from the desired result and build it up successively
from its component computations,

The other main advantage of the algebraic notation for

list structure processing was first noticed by Gelernter. If
we make routines which form lists functions whose output is
the address of the 1list formed, complex structure can be formed

by single expression compounding The list forming functions.

:
g TS

Algebraic notation feor 1list processing is not used by
Newell, Simon and Shaw, perhaps begause to do so is most
convenlent when a compiler 1s available, but 1s used by
Gelernter in the geometry program. Thlis was accomplished
{on the advice of the present author) by using the Fortran
compller together with a set of machine language coded
functlons for handling the primitlive list processes that
go from one element of a list to the next.

1.2.3. It is frequently convenieht to define certain
processes by recursion. Tnls means that the program defining
a subroutine may use the subroutine 1tself. Thils presents
the programming dlfficulty that the intermediate results
formed by a subroutine must be protected from alteration
uhen the routine is used as o subroutine ol itszlf. This
is best accomplished by storing these results in list
structures. Newell, Simon and Shaw use this feature exten-
sively and provide uliat they call push-down lists for saving
intermediate results. The geometry program has not used re-
cursive programs so far, and the list structure storage of
temporary results is difficult in Fortran because of the
comparative ilnaccessibility of some of these Interm=diate
results (eg. index registers, the register in which subscripts
are saved, and the temporary storages used within formulas).

In the present system the saving of temporary storage
is handled automatically without specific attention by the
progirammer when a subroutine 1is potentially capable of calling

on itselif.

5=

1.2.4, Conditional expressilons. One of the weakest
features of present programming languages is in the means
they provide for treating conditionals, that 1s fthe cal-
culation of quantities where the operations used depends
on the result of certain prior tests. The use of proposi-
tional quantities, predicates, and conditional expressions,
essentially solves this problem and ellminates most of the
small scale branching from sgurce programs. JIn combination
wiith the feature of recursive definition it pérmits certain
subroutines to be defined by single formulas in this language

i

that

o]
W
Q

uite involved programs in other language.
1.2.5. The usc of functions and predicates as parameters
of subroutines makes possible some very powerful routines for

searching, transforming, and manipulating list structures.

2. Kinds of Quantity and Forms of Statement

2,1. Kings of guantity

There are several kinds of quantity used in this language.
The reader will notice the omisslon of the 1list or list struce
ture itsel? as a kind of quantity. This is because wnlle a
number of interesﬁing and useful operations_on whole lists
have heen defined, most of the calculations we aétually per-

.-Ft

orm cannot as yet be described in terms of these operations.
IC still seems to be necessary to compute with the addresses
of Cthe elements of the lists.

2.1.1. Infteger quantities. As in Fowrtran these secrve’

8]
[}

indexes or addresses., In a ccmpiler written for the

-6-

IBM 70l or 709 these willl also occupy the decrement parts
of words when referred to by single symbols. We do not
use typographical conventions to distinguish the integewrs
from other kinds of quantity, but rely on either context
or speclfic statement. Arithmetic with these quantities
will be as in Fortran,

2,1.2. Whole words. Whether we will make the arithe
metic symbels stand for floating polnt operations is as yet
unsettled.

251535 Propositiona; quantities., A propositional quan-
tity is represented as a single bit (i.e., has value O or 1),
How these shall be stored is not yet determined. 1In the IBM
709 the SI register might seem to be their natural home .
Propositional expressions are recursively formed by the
Boolean operationsA ,V, and < etc. from .propositional quan=
tities. They are also formed by predicates (functions taking
values on the set of twc elements consisting of 1 for truth
and O for falsehood). Examples of such predicate are (a=b)
and (a € b) where a and b range over arithmetic quantities.
Other predicates may be constructed by the procedures for
defining functions.

Quantities of other kinds may be constructed from proposi-

tional quantities by means of conditional expressions. If

pl,.z.,pk are proposltional expressions and Cqsee0,Cy are
expressions of any one kind then (p1~9 CysveosPp ~2 ck) is
an expression is the ¢ corregponding to the first of the p's

which is true. I£ none of the p’s is true the whole statement

2
involving the conditional expression is not to be executed.
2.1.4. Tocational quantities. A point in the program
may be labelled and the address of such a point (to which
control may be transferred)is called a locational quantity.
The computations with these gquantities is limlted.
2.1.5. Functional quantities., These will certainly be
allowed as parameters 6f subroutines, but theilr full possi~

bilities might not be explolted in an early system.

2.2 Kinds of Statement

This 1ist is again incomplete.

2.2.1. The arithmetic (Fortran term) or replacement
statement is the most important kind. It has the form awb
where a and b have the following forms:

a has one of the following forms:

1. The name of a variable (we shall not go into
the typographlcal rules for names at this point.)

2. A(i) where a is the name of a variable which
has been deslgnated as subscriptable and 1 is an integer
expression., (Arrays of more than one dimension may not be
included in the first system.)

3. cwr(i), cpr (1), ctr (1), car (i), csr (1)
cir (1), cbitr (i,n) or csegr (i,n,m).

In ali the above 1 represents an integer expression
designating a register in the machine and the expression
represents the contents of a certain part of that registef.
For example, statement beginning car (i) = causés a quantity-
to be computed and stored in the address part of register

leaving the rest of the regilster unchanged.

-8~

The b in a statement a=b is an arbitrary expression
whose value is compatible with the space allotted for it.
The recursive rules for the formation of expressions are
simllar to those of Fortran or the proposed international
algebraic language.

2,2,2. Control is transferred by the "go" statement.
go{e) causes control to be transferred to the location given
by evaluating the locational expression e, (If e is a
conditional expression then transfer of control will be
conditional).

2.2.3. The flexibliity of the go statement is increased
by the "sct" statumént set (A; Qyseces Qm) causes an array
A of size to be established whose contents are the quantities
Qyseees Qpe In particular the q's may be locational expres-
sions and then the expression A(1) where i i1s an integer
expression denotes the ith of the locational expressions
mentioned.

2.2.4, Subroutines are called to be executed simply
by writing them and their argument as statements. (i.e.,
as in Fortran but without the word CALL.)

2.2.5. Declarative sentences. These have the form
I declare (...) where the dots represent a sequence of
assertions of one of the following forms:

1. (a5 Pyseeespy)

This causes the expressions PyseecsPpy to be
entered in the property list assoclated with the syn-

bol a. Each symbol in the program has such a property

2o

list which is used and added to by the compiler

and is also made avallable to the obJject program.

2,

(al,...,an,p)

This causes the expression p to be put on the

property list of all the a’s.,

2.2.6, Compound statements. A sequence of state-

ments can be enclosed in "parentheses” and glven a name.

The symbols to be used for these "vertical parentheses”

are not yet determined.,

2.2,T. Iteration statements. The exact forms of

"do" {Fortran notation) to be provided are not determined

but they should include the Fortran kind, and a do over

an explicitly given list or a referred to list structure,

2.2,8. Subroutine definition, This will resemble

the Fortron system except that

1.

2

Parameters can include functions and locational
cxpressions.

Subroutines can elther be compiled within a program
or separately.

Symbolic reference to varilablas as well as to other

subroutines will be provided.

2.2.9. Input-~-output will be handled by subroutlnes

shich can be made guite flexible through the use of property

lists.

@] Qw

3. Rcpresentation of Formal Expressions by Liot Structurez

and the Basic List Structure Operations

3.1. Representation of Expression.

The use of 1list structures for storing data corresponds
to the mathematical system which uses the sequences as the
basic expression. Thus, the sequence {a, {(b,c), {b, {(d,e)),

f) corresponds to the list structure

ETl—— L] |— L1 blr Tl
e Ll G

o)
(s ki >le | o

However, some addltlonal distinctions are required; here

we follow CGelernter. A word of a list Ll may refer to a list
L2 but we may not wish to regard the list L2 as a part of the

1ist I; in the sense that when the list L. 18 erased, the list

1
L, should also be erased. Also, for certain kinds of data it
1s firequently convenlent to use a whole word,

Therefore, we shall regard bits 1 and 2 of a word as fthe
indicator part of the word and adopt the following conventlon
as to its meaning:

00 the address part of the word is a datum. (It may be
the address of a 1ist, but if so thils new list is not to be
regarded as a sublist of the old one.) |

01 the address part of the word refers to a datum word

which is to be erased when this list is erased.

10 the address part of the word refers to a sublist of

-11-

the glven list.

The case of a full datum word is only a matter of con-
venience to the program, but the distinction between a sub-
list of a given list and a reference to another list as an
element of a list is a basic distinction; it is the distinc-
tion between an element of a sequence being another sequence
or a name of a sequence.,

While a sequence 1s the baslc obJject represented by a
list structure certain other expressions ave also so repre-
sented by considering them as sequences.

For example, a functional expression f(el,...,eh) is
reprasented by the sequence (f,el,...,eh) and hence by the
corresyonding list structure. EXpressions involving oper-
ations like + are represented by sequences; namely a+b+c
is reprecsented by the sequence (4,a,b,¢). This corresponds
to the "Polish notation” of mathematical logic, but the
operations can have a varlable number of arguments since the
end of the sequence of arguments is expllicitly displayed.
3.2 The Basic Single Word Functions.

Programs for manlpulating list structures are described
mainly in terms of replacement statements (i.e., of the form
a=b). The right sides of these statements are compositions
of certain "functions". These functions, however, are not
all functions in the mathematvical sense for two reasons:

1. The value of a "function” may depend on the state
of storage of the machine. For example cwr {n) (contents of
the whole of register n) is the 36 bit quantity which is stored

in register n.

-12-

2. The execution of the program corresponding to
the "function" may change some of the arguments and certain
quantities referred to by them,

Before describing these "functions" we will mention the
frece storage l1list, This 1s a list of all the registers not
currently in use by the program. A certain fixed register
has the address of the first word on the 1list and each word
on the list has the address of the next word in its decre-
ment part (the rest of the word belng zero). The last word
has zero in its decrement; this belng the usual signal for
the end of a list. The routines that create lists take
registers from the beginning of the free storage list and
those that erase listo put the storage back on the free
storage 1lict.

The functions for list manipulation are divided into
those concarned with single words or at any rate with a
fized number and those routines dealing with lists as a
whole. The latter of course are compounded from the former
and naturally we shall discuss the former first.

| The baslc functions are divided into a number of classes.

3.2.1. First we have those that extract parts of a 704
word and form a word from parts. We shall distinguish the
following parts of a word and indicate each of them by a
characteristic letter,

w the whole wad

p the prefix (bits s, 1, 2)

i the indicator (bits 1 and 2)
s the sign bit

=13%

d the decrement (bits 3-1T7)
& the tag (bits 18-20)
a the address (bits 21-35)

Corresponding to these we have the functlions pre, ind,
sgn, dec, tag and add which extract the corresponding parts
of the argument word. The result is regarded as an integer
and hence 1is put in the decrement part of the word.

In addition to the above we can get the nth bit of a
word w with the function bit (w,n) and the segment of bits
from m to n with the function seg{w,m,n). (Needless to say
the others are all special cases of seg.) For putting a
uord together out of parts we have the functions

1. comb 4(p, 4, t, a) which forms a word out of the
four parts indicated by the arguments.

2, comb 5{s, i, 4, t, a) which forms a word from a
still more detailed prescription).

3. choice {c, a,, al,) This forms a word whose nth
bit is the nth bit of a, if the nth bit of ¢ is o and is

the nth bit of a, if the nth bit of ¢ is 1.

g’
3.2.2. Next we have the reference functions which
extract a part of the word in the reglister whose number 1s
the argument. These functions are cwr, cpr, csr, cir, cdr,
ctr, and car. For example, car (3) is the 15 bit quantity
found in the address part of register 3. In addition we
have cbr (n,m) which extracts the mth bit of register n and

csgr (n,ml,m2) which extracts the segment of bits from ml to

<ilie

m2 of the word in register number n.

Needless to say, these functions are all combinations
of the extraction functions and cwr. For example, car (n) =
add (ewr (n)). '

3.2.3. The storage functions. In this system storage
in a register can be accomplished in two ways. The simplest
is by writing statements « ocne of the forms

=

cwr

it

cpr (

csT

-

e e’ Ww® Nt W e’ S’ s N

-
A]

oy

The second 1s by using one of the functions stwr, stpr,
stsr, stir, stdr, sttr, and star. Each of these has two
avgunmeints, the number of the register into which the datum
1s to be stored and the datum itself., The rest of the word
referred to 1s unchanged and the value of the function is the
old contents of the field feferred to. It is this facility
Tor getting the old contents to serve as an argument of a
further process that gives this second method of storage
some advantages. There are two additional storage functions
stbr and stsgr of 3 and 4 argument respectively which store

a single bit and a segment.

15

3.2.4, The construction functlons. These construct
elements of list structures by taking words from free storage
consw (w) puts the argument w into the first word on the
free storage list, shortens the free storage list, and has
a s value the address of the word into which the datum is
stored. The other functions in this class are compounds of
this one with construction functions but occur so frequently
that they need special names, consel (a,d) puts a in the
address and d in the decrement part of a word from free storage.
consfl {w,d) takes two words from free storage puts w in one
of them, puts the address of that one in the address fileld
of the other with 1 in the indicator field and d in the decre-
ment field. consls (a,d) is like consel (a,d) except that the
indicator field gets a 2.

3.2.5. The erase function erase (J) returns the word
in location J to the free stbrage list, Its value is the
cld contents of this word.

3.2.6. 'Pointer moving functions. These operations
move a pelinter in a list structure, keeping a list for rever-

sion purposes.

Point (J,K) creates a list {K | O and points J at 1t;

mova, {J) moves the pointer in the address direction; movd (J)
moves the pointer in the decrement direction; movup (J) noves
the polnter up in the structure 1.e., deletes the first entry
from the 1list belénglng to the structure; kill (J) erases the
b///’ 1ist structure belonging to the pointer. '

=16e

3.3. Basilc operations on vhole 1list structures.
Thils set, although incomplete, 18 adequate for the
examples given in the next section.,
3.3.1. eralis (J) erases the 1list structure to which
J polnts and returns 1t to the free storage. It does not
have a value., It can be described in terms of the elemen-
tary operations of the previous section by the following
program. However, whether it wlll pay to use the facilities
of the compiler or to write the routine in machine language
as an elementary routine will depend on the efficlence of the
compiler,
subroutine eralis (J)
/ J=0 —> return
go (a {cir(d)))
a{l) jnk = erase (car (J))

a.{0) eralis (dec (erase(J)))

return
a(2) eralis (car (J))
N\ 8o (a(o))

3.3.2. copy (J) This function copies the list structure
to which J points into free storage. Its value is a pointer
to the copied structure. A program for it is function copy (J)
/copy = {J = 0 ~»0, cir (J) = 0 =» consel (car(J), copy (cdr
(1)), cir (J) =1 —» consfl (cwr {car (J)), copy (cdr (J))),
cir (J) = 2 = consls (copy (car(J), copy (cdr (J))))

N\ return

4

-SYTE-

This program ignores tags and signs. A version which
does not is

function copy (J)

/copy = (§=0~=>0, 1 =Pconsw (comb &(cor (J), copy
(car(3)), ctr (J), (cir (J) = 0 —Dcar (J), cir(J) =1
—> consw {cwr (car (J))), cir (J) =2 —> copy (car (3))))))

™\ return

3.3.3¢ Search (L,J,pl,pe,ps,M). The value of search
(L,J,pl,pe,p3,M) is the address J of the next element of the
1ist structure L which satisfies the condition Py (pl is
a propositlonal expression in J and J is a dummy variable.)
p}and ;1% are expressions in J which definc tle:list structure
searched in that plfis the condition that the structure con-
tinues in the address direction and Pg is the conditlon that
it continues in the decrement direction.

M is a location in which is stored a structure which
keeps track of where we are in the structure co that the
search can be continued (by another statement or a return to
the same one) from where it left off.

If L = O or if no eleﬁent is found the value of search is
0.

3.3.4. Maplist (L,J,£(J)). The value of this function
1s the address of a list formed from the 1list L by mapping
the element J into £{J).

3.3.5. 1list (11,...,1n), The value of list @1,...in)

is the address of a list whose ltems are il,...,in. Appropriate

-18-

indications are included in the words if the items are
full words or sublists.

The major form of input consists of symbolic expressions
on IBM cards.

Such expressions are translated on input as follows:

1. Certaln characters on a card are regarded as con-
nectives and both serve as punctuation and to denote certain
opcrations, WWith the present Fortran characters these include
cverything but the digits, the letters and the decimal point
impediately following a digit. These characters or sequences
of them except when in a quoted text separate the text into
parts. Blanks are ignored except in column 1 of a card where
they are regarded as a period and right after a dot where
they indicate that it is to be regarded as a perlod rather
than as a decimal point. A format may also designate certain
column transitions as punctuation symbols.

The primary way expressions are weitten is as sequences

of the form (el,.o.,em) where the e’s are expressions. This
is read in as a 1ist, each e being put in the address part
of a vord with the decrement containing the address of the

ezt word on the list., If an e is not a term the corresponding

expression is read in to free storage and the address of the

resulting list is the datum of the higher 1list. If the item
is a term it 1is treated as follows:
1. An integer 1is converted to binary and stored in the

address part of the word.

-19-

2. A symbol is looked up in the symbol table and its
value stored in the address part.

3. A floating point number is stored in a data word
and the address of this word is stored.

4, A text is stored character by character in a list
structure,

3.3.6. Read (source, format, symbol table).

Read (source, format, symbol table) has as its value
the address of the structure into which the data read is
put. The first argument is the source of input data, the
sccond is the format in which this data is stored, and the
third is a symbol table relating literal symbols in the
external mediuvm to the addresses where the referents of
these symbols are to be stored.

3.3.7. Equal (L1,L2). This predicate tests the
equallity of the list structures fo which L1 and L2 polnt.
1t isqdefined by the formula:

3 equal (v,,12) = (L, = La'-ﬁ? 1, cir (L1) # cir (L,)
—2> 0, cir (L1) = 0 A car (L1) # car (L2) —>0, cir (I1)
=1 A cur (car(Ll))/é cwr (car-(le))—?O, car(Ll) =2 A =~
equal {car{Ll), car (12))—>0, 1 —>equal (cdefll), cdr(L2))

APPENDIX I.

As an example of the use of the language we shall give
a program for analytically differentiating a simple class of
formulas. The formulas in question are in a single varlable
x and constants; these are combined by addition and multipli-
cation,

A formula is representéd by a list styucture. A sum is
a list whose flrst word contains a constant representing “plus”
in its address part and the summands in the address parts of
the successive elements, A product has "times" as its first
element followed by the factors. The variable x has "x" in
the address part and a constant has 1 in lts tag part and the
datum in the address part.

The function diff (J) where J points to the structure
representing the formula to be differentiated produces a
new forimula, the derivative of the old, and its value is a
pointer to this formula. The program is:

function Aiff(J) comsel (0,0) consel (f,0)

Aiff = {ctr(J) =1 —P 0, car(J) = "x" —> 1, car (J)
= "plus” —>consel("plus"”, maplist(cdr(J),K,diff(K))), car
(7) = "times" ~= consel{"plus”, maplist (cdr(J),K, consel
(Vtimes?, maplist{cdr(J),L, L = k—>aire(L), L 4 K —>
copy (£)]}3)))

return

1.

