
..
/

AN ALGEBRAIC LANGUAGE FOR THE

MANIPULATION OF SYMBOLIC EXPRESSIONS

by John McCarthy

Abstract: This memorandl~ is an outline of the

ROLAND SILVER
248 8UCKMINSTER RD.

BROOKLINE 46. MASS.

specification of an incomplete algebraic language

for manipulating symbolic expressioris. The incom­

pleteness lies in the fact that while I am confident

that the language so far developed and described here

is adequate and even more convenient than any pre­

vious language for describing symbolic manipulations,

certain details of the process have to be explicitly

mentioned in some cases and can be left to the program

in others. This memorandu.m is only an outline and

is sketchy on some important points.

I. Introduction

First \ 'Je shall describe the uses to which the language

can be put and the general features that distinguish it

from other languages used for these purposes.

1.1. Applications of the language

1.1.1. Ttianipulating sentences in fOl"rnal languages

is neceasary for programs that prove theorems and also

for the ad~i£a ta~r projecta

1.1.2. The ' formal processes of mathematics such as

algebraic simplification, formal differentiation and

..

integration, etc. are conveniently programmed in this

language.

101.3. A compiler can be conveniently written in

this language except for input and output section. We

shall illustrate this in discussing the compiler for

this language.

1.1 0 4. Heuristic programs, i.e. pr.ograms involving

tentative procedures are best written in this sort of

language" On e reason is that trees of alternative actions

arc conveniently representedo

10105. In general this language is best suited for

representing expreSSions whose number and length may change

in "lays which it is not convenient for the progrannner to

predict and which have sub-expressions with the same char­

acteristicso It is not so convenient for represent1ng

lists of fixed lel1gth where one frequently wants the Eth

element where ~ is computed rather than obtained by adding

1 to n-l ..

1.2~ Features of the language

102.10 Expressions are represented by lists each

element of which occupies a computer wordo Each computer

word of a list in addition to containing a datum also con­

tains the address of the word containing the next element

of the listo 0 for the address of the next element indicates

the last element .. . If one element of an expression is a

subexpression th~ word corresponding to this element contains

--'

the address of the word containing the first element of

the subexpressiono In the IBM 704 or 709 whose 36 bit

word is divided (for the convenient use of certain machine

instructions) into two 15 bit parts (address and decrement)

and two 3 bit parts (prefix and tag) lists are represented

by storing ~n the decrement part of a word the address (in

our system actually the complement of the address) of the

next l'iord or thelisto The datum is contained mainly in the

address part of the word with the prefix and tag used either

for data or indicators of the kind of list structure o

The use of this kind of computer representation of

list structure was first developed by Newell, Simon and Shaw

for heuristic programming.

1.2.2 0 The convenience of algebraic notation for the

description of procedures derives in large part from the

fact that frequently the output of one procedure serves the

input for another and the funct10nal notation enables us to

avoid giving the intermediate result a name. Also the order

in which a functional formula is written permits us to start

mentally from the desired result and build it up successively

from its component computations.

The other main advantage of the algebraic notation for

list structure processing was first noticed by Gelernter. If

we make routines which form lists functions whose output is

the address of the list formed l complex structure can be formed

by single expression compounding hhe list forming functlonso

Algebraic notation for list processing is not used by

Net'Jell, Simon and Sha~l, pel"haps beaause to do so is most

convenient when a compiler is available, but is used by

Geler-nter in the geometry program. This was accomplished

(on the advice of the present author) by using the Fortran

compiler together with a set of machine language coded

functions for handling the primitive list processeG that

go from one element of a list to the next"

1 .. 203. It is frequently convenient to define certain

processes by recursiono This means that the program defining

a subroutine may use the subroutine itself. This pl"'~sents

the programming d:tfflculty that the intermediate results

forrn2d by a subroutine must be protected from alteration

l'7hen thG routine is used as 0. s ubroutine of itselfo This

is best accomplished by storing t hese results in list

structures. Ne\'lell ., Simon and Shall1 use this feature exten~

sively and provide lilhat they call push~do"'m lists for saving

intermccUate l"'~sults 0 The geometry progl"am has not used re~

cursive pl"'ograms so i'ar, and the list structure stora.ge of

t0mporary results is difficult in Fortran because of the

comparative inaccessibility of some of these interm8diate

results (ego index reglsters~ the register in which subscripts

are saved, and the temporary storages used 'fJlithin formulas) 0

In the present system the saving of temporary storage

is handled automatica.lly t!fithout spec:!:fic attention by the

pi."'ogrammer wr..en a subroutine is potentially capa.ble of calling

on itself"

-5=

1,,2oL~o Conditional expl'"'essionso One of the ?rcakest

f0atU.1'CS of present programming languages is in the means

they provide for treating conditionals, that is the cal~

culation of quantities where the operations used depends

on t-;he rCfJult of certain prior tests. The use of proposi-

tional qu~ntitles? predicates, and conditional exp~c s ciono,

essontially solves this problem and eliminates mos t of t he

small scale branching from s ourc·e prograr:lS. In combina.tion

\·1ith the fea ture of recul"'r:.live de fini t ion it permlts ce r t ain

s ubroutir..E;S to be defi ned by single formulas in this la~1guagc

t ho..t ar3 Quite involved p l"ograrn s in other languageo

1.2.5. The usc of fU1:lctions and pl"'edicates D.S parameters

of s1..ibl"'outines mal-ces possible some verlY pOiijerful routines for

transforming, and manipulating list structures o

201.. Kinds of quantity

The:~e are several kinds of quantity used in this language.,

The l"2G.de:c lI>lill notice the omission of the list or list struc..,

t Ul'e i tC() 1 t' as a kind of quantity. This is because t'rhilc a

nu:r:tber of :lnteres ting and useful operations on whole lis ts

have been defincd~ most of the calcula.tions we actually pCY'=

f.'o:em cannot as yet be descl."ibed in terms of these ope1."ations 0

It st:i.ll Se2TJS to be necessary to compute with the 8.ddl'esses

of the clements of the lists ..

as i !J.dexes 01" 2.ddresses., In 0. ccrnpiler \'Jrl tten fol" the

-6~

IBM 10l1. or 709 these Nil1 also occupy the decrement parts

of words when referred to by single symbols. We do not

use typographical conventions to distinguish the integers

from other kinds of quantity, but rely on either context

or specific statement. Arithmetic tdth these quantitien

Nill be as in Fortrano

20102. 11Jhole \'Iords o Whether we will malte the arith~

metic symbols stand for floating point operations is as yet

unsettled ..

2.1.30 Propositional quantities. A propositional quan­

tity is represented as a single bit (ioeo 8 has value 0 or l)Q

How these shall be stored is not yet determined.. !n the IBM

709 the SI register might seem to be their natural home.

Propositional expressions are recursively formed by the

Boolean operations" I V. and ~ etc. from propositional quan­

tities. They are also formed by predicates (functions taking

values on the set of two elements consisting of 1 for truth

and 0 for falsehood) • . Examples of such pred~cate are (a-b)

and (a < b) l'Ihere a and b range over arithmetic quantitleso

Other predicates may be constructed by the procedures for

defining functions.

Quantities of other ki~ds may be. constructed from proposi· ..

tional quantities by means of conditional eA~ressions. If

Pl ,. b .,Pk .are l?I.'<?positi.ona1 expressipns and °1, •• 0 :-ck are

expressions of anyone kind th.en (P1 ~ °1 1. •• 0 "~k -) Ok} is

an expression is the. ° cOI'l"esponding to the f .irs t of the p' s

which is true. If. none of the p's .is true the Nhole statement

involving the conditional expression is not to be executed.

2.1.4. Locational quantities. A point in the program

.may be la-belled and the ad:dress of such a point {to which

control may be transferred)is called a locational quantity.

The computations with these quantities is limited.

2.1.5. Functional quantities. These will certainly be

allowed as parameters of subroutines, but their full possi ..

bilities might not be explo1ted 1n an early system.

2.2 Kinds of Statement

This list is aga1n incomplete.

2.2.1. The arithmetic (Fortran term) or replacement

statement is the most important kind. It has the form a-b

ll1hel"e a and b have the following forms:

a has one of the follo1'ling forms:

10 The name of a variable (we shall not go into

the typographical rules for names at this point.)

20 A(i) where a is the name of a variable which

has been designated as subscriptable and i is an integer

expression. (Arrays of more than one dimension may not be

included in the first system.)

3. cwr{i), cpr (1), ctr (1), car (iL csr (1)

cir (1), cbitr (i,n) or csegr (i,n,m)o

In all the above ! represents an integer expression

designating a register in the machine and the expression

represents the contents of a certain part of that register.

~ For example, statement beginning car (1) - causes a q~ritity

to be computed and stored in the address part of register

leaving the rest of the register unchangedo

r

-8-

The b in a statement a*b is an arbitrary exprGssion

\>Those value is compatible with the space allotted for ito

The recursive rules for the formation of expressions a~e

similar to those of Fortran or the proposed international

algebraic language.

2.202. Control is transferred by the "go" statemento

go(e) causes control to be transferred to the location given

by evaluating the locational expression e, (If e is a

conditional expression then transfer of control will be

conditional)~

2.2.3. The flexibitity of the go statement is increased

by the "set" stat~ment set (Ai ql' ••• ' qm) causes an array

A of size to be established whose contents are the quantities

qlP H, qn D In particular the q's may be locational expres.""

sions and then the expression A(i) where i is an integer

expression denotes the ith of the Ioeational expressions

mentioned.

2.2.4. Subroutines are called to be executed simply

by writing them and their argument as statements. (i.e.,

as in Fortran but loTi thout the word CALL.)

2.2.5. Declarative sentenceso These have the form

I declare (•••) where the dots represent a sequence of

assertions of one of the following forms:

1. (aj Pl, ••• ,Pn)

This causes the expressions Pl,ooo,Pn to be

entered in the property list associated with the sym­

bol ao Each symbol ~~ the program has such a property

-9-

list which is used and added to by the compiler

and is also made available to the object program.

2 • (a1 ' • • • lan' P),

This causes the expression p to be put on the

property list of all the a's.

2.2.6. Compound statements. A sequence of state­

ments can be enclosed in Ifpal"entheses Tl and given a nameC.

The symbols to be used for these Tlvertical parentheses"

are not yet determined.

2.2.7. Iteration statements. The exact forms of

"don (Fortran notation) to be provided are not determined

but they should include the Fortran kind, and a do over

an explicitly given list or a referred to list structure.

2.2~8. Subroutine definition. This will resemble

the Fortrnn system exc~pt that

1. Parameters can include functions and locat1onal

expressions.

2. Subroutines can either be compiled within a program

or separately.

3. Symbolic reference to variabl~ as well as to other

subroutines will be provided.

2.2.9. Input-output will be handled by subroutines

which can be made quite flexible through the use of property

lists.

c
-10-

3. Representation of Formal Expressions by Lint Structurey

and the Basic List Structure Operations

3.1. Representation of Expression.

The use of list structures for s"toring data corresponds

to the mathematical system which uses the sequences as the

basic expression. Thus, the sequence (a~ (b,c), (b~ (d,e»),

r) corresponds to the list structure

I 0 I
L. lIT] ->I~ I 01

However, some additional distinctions are required; here

t~,.e follow Gelerntero A word of a list L1 may refer to a list

L2 but we may not wish to regard the list L2 as a part of the

list Ll in the sense that" when the list Ll 1s erased, the list

L2 should also be erased. Also, for certain kinds of data it

is fr0quently convenient to use a whoie word.

Therefore, we shall regard bits 1 and 2 of a word as the

indicator part of the word and adopt the following convention

as to its meaning:

00 the address part of the word is a datum. (It may be

the address of a list~ but if so this new list is not to be

regarded as a sublist of the old one.)

01 the address part of the word refers to a datum word

which is to be erased when this list 1s erased.

10 the address part of the word refers to a sublist of

-11-

the given list.

The case of a full datum word is only a matter of con­

venience to the program, but the distinction between a sub­

list of a given list and a refel~nce to another list as an

element of a list is a basic distinction; it 1s the distinc­

tion between an element of. a sequence being another sequence

or a name of a sequence.

~fuile a sequence is the basic object represented by a

list structure certain other expressions are also so repre­

sented by considering them as sequences.

F01'" example, a functional expl"essioll f(ell ••• ,ah} is

represented by the sequence (f,ell ••• ,eh) and hence by the

corresponding list structure. Expressions involving oper­

ations like + are represented by sequences; namely a+b+c

is represented by the sequence (+,a,b,c). This corresponds

to the flPolish notation" of mathematical logic .. but the

operatIons can have a variable number of arguments since the

end of the sequence of arguments is explicitly displayed.

3.2 The Basic Single Word Functions.

Programs for manipulating l1st structures are described

mainly in terms of replacement statements (i.e., of the form

a=b). The right sides of these statements are compOSitions

of certain "functions". These functiOns, however, are not

all functions in the mathematical sense for two reasons:

1. The value of a nfunction" may depend on the state

of storage of the machine. For example ct~ (n) (£ontents of

c-) the whole of £egister n) is the 36 bit quantity which is stored

in register n.

-12-

2. The execution of the program corresponding t o

the "function" may change Borne of the arguments and certain

quantities referred to by them.

Before describing these ".functions" we will mention the

free storage listo This is a list of all the registers not

currently in use by the program. A certain fixed register

has the address of the firs t t10rd on the lis t and each word

on the list has the address of the next word in ita decre­

ment part (the rest of' the word being zero). The last word

has zero in its decrement; this being the usual signal for

the end of a 1isto The routines that create lists take

registers from the beginning of the free storage list and

those that erase 1istn put the storage back on the free

storage li:Jt.

The functions for list manipulation are divided into

those conc:)rned t'lith single ''lords or at any rate with a

fixed numb(~r and. those routines dealing with lis ts as a

L1101e.. The latter ot: course are compounded from the former

and naturally l're shall discuss the former first.

The basic functions are divided into a number of classes.

3.2.1. First t41e have those that extract parts of a 704

word and form a word from parts. We shall distinguish the

follol'Jing parts of a vl0rd and indicate ea.ch of them .by a

characteristic letter.

"ll the whole wmtti

p the prefix (bits s,. 1, 2)

i the indicator (bits 1 and 2)

s the sign bit ..

() d

t

-13-

the decrement (bits 3-17)

the tag (bits 18-20)

a the address (bits 21-35)

Corresponding to these we have the functions Ere, Xnd,

sgn, dec, tag and add which extract the corresponding parts - - - -
of the argument word. The result is regarded as an integer

and hence 1s put in the decrement part of the ~·lOrd.

In uddition to the above we can get the nth bit of a

l"!Crd w with the function bit (w,n) and the segment of' bits

from m to n with the function seg(t'1,m,n). (Needless to say

the others are all special cases of' seg.) For putting a

\'lOrd together out of parts t'le have the fW1ctions

1. comb 4(p; d, t, a) which forms a word out of the

four parts indicated by the arguments.

2. comb 5(s, i, d, t, a) which forms a word from a

still more detailed prescription).

3. choice (c, ao' a l ,) This forms a word whose nth

bit is the nth bit of ao if the nth bit of c is 0 and is

the nth bit of 8 1 if the nth bit of c is 10

3.2.2. Next t'ie have the reference functions which

extract a part of the word in the register whose number 1s

the argument. These functions are cwr, cpr, csr, eir, cdr,

ctr, and car. For example, car (3) is the 15 bit quantity

found in the address part of register 3. In addition we

have cbr (n~m) which extracts the mth bit of' register nand

csgr (n,rnl,m2) which e~ctracts the segment of bits from rnl to

,
r

-14-

m2 of the word in register number n.

Needless to say, these functions are all combinations

of the extraction functions and cwr. For example l enr (n) ""

add (cw!' (n».

3.2.3. The storage functions. In this system storage

in a register can be accomplished in two ways. The simplest

is by Nriting st-atements c:f one of the forms

CWl"' () =
cpr () =:

csr () =

eir () ;;or

cdr () ::a

ctr () ::&

ea.r () =
cbr (,) a

The second is by using one of the functions stwr, stpr,

stsr, stir, stdl" .. sttr, and star. Each of these has tt'10

arg\.unents, the number of the l'egister into which the datum

is to be stored and the datum itself. The rest of the word

referred to is unchanged and the value of the function is the

old contents of the field referred to. It is this facility

for getting the old contents to serve as an argument of a

further process that gives this second method of storage

some advantages. There are two additional storage functions

stbI' and stagr of 3 and 4 argument respectively which store

a single bit and a segment.

-15-

3.2.4. The construction fW1ctions. These construct

elcIllGnts of list structures by taking '\>lords fl"'om free storage

consw (w) puts the argument ttl into the first word on the

free storage list, shortens the free storage list" and has

a s vnlue the address of the word into which the datum is

stOl"'edo The other f'unctions in this class are compounds of

this one t:ith construction functions but occur 80 frequently

that they need special names, conael (a,d) puts a in the

address ar.j d in the decrement part of a word from free storage.

consfl {\'l,d) takes ti'/O words from free storage puts w in one

of them, puts the address of that one in the address field

of the other with 1 in the indicator field and d in the decre­

ment field. consls (a,d) is like consel (a,d) except that the

indicator field gets a 20

302.5. The erase function erase (3) returns the word

in location J to the free storage list. Its value is the

old contents of this word.

3.206. ' Pointep moving functions. These operations

move a pOinter in a list structure, keeping a list for rever-

sion purposes.

Point (J"K) creates a list If(I 0 I and points J at it;

mova , (J) moves the painter in the address direction; movd (J)

moves the pOinter in the decrement direction; movup (J) moves

the pOinter up in the structure 1.e., deletes the first entry

from the 'list belt!lnglng to the structure; kill (J) erases the

/ / list structure belonging to the pointer.

-16-

3.3.. Basic operations on l'1hole list structures.

This set, although 1ncomplete, is adequate for the

examples given in the next section.

3.3.1. eralis (J) erases the list structure to which

J points m-;.d returns it to the free storage. It does not

have a value. It can be described in terms of the elemen­

tary operations of the previous section by the following

pl ogram. However, whether it will pay to use the facilities

of the compiler or to write the routine in machine language

as nn elementary routine will depend on the efficience of the

compilel".

subroutine eralis (J)

/ J := 0 ~ return

go (a (cir(J))

£I. (1) jnlc :;: erase (car (J»

a(O) eralis (dec (erase(J»)

return

a(2) eralis (car (J»

'\ go (a(o»

3.3.2. copy (J) This function copies the list structure

to t'-lhich J pOints into free storage • . Its value is a pOinter

to the CQpied structl~e. A program for it is function copy (J)

/eopy := (J :: 0 -+ 0, cir (J) = 0 ~ consel (car(J) ~ copy (cdr

(J) L cir (J) == 1 ~ consfl (cwl' (car (J» .. copy (cdr (J»)"

eir (J) ; 2 ~ conals (copy (car(J), copy (cdr (J»»

" return

I

-17-

This program ignores tags and signso A version which

does not is ,

function copy (J)

!copy =. JJ=O-+ 0, 1 ..-+consw (comb ~(cpr (3) t copy

cdr(J) , ctt' (J), (cir·-·(J) 111& 0 ~ cal'" (J), cir(J) = 1
\

~ consw (em- (car (J»), cir (J) = 2 ~ copy (car m»))
" return

363.31 Search (L,J,Pl,P2,P3,M). The value of search

(L,J,Pl,P2,P3,M) is the address J of the next element of the

list structure L which satisfies the condition Pl. (Pl is

a propositional expression in J and J is a dummy variable.)

p.l-:--and ~ are expressions in J which define tIe .'list stL'ucture

searched in that P is the condition that the structure con-

tinues in the address direction and p~ is the condition that

it continues in the decrement direction.

M is a location in which is stored a strcc turc \llhich

keeps track of where we . are in the structure co that the

search can be continued (by another statement or a return to

the same one) from where it left off.

It L * 0 or if no element is found the value of search is

0 ...

3.3.4. Maplist (L,J,f(J)}. The value of this function

is the address of' a list formed from the l1st L by mappil'lg

the element J into f(J)o

3.3.5. list (il~ ••• ,in)o The value of list tl, ... i n)

is the address of a . . list whose items are iI' _ •• ,in- Appropriate

r :

r

f"
l

I
I

-18-

indications are included in the words if the items are

full '!'lords or sublists.

The major form of input consists of symbolic expressions

on IBM cards.

Such expressions are translated on input as fOllows:

1. Certain characters on a card are regarded as con-

nectives and both serve as punctuation and to denote certain

operations. With the present Fortran characters these include

everything but the digits, the letters and the decimal point

immediately following a digit. These characters or sequences

of them except when in a quoted text separate the text into

pal"ts. Bla111ts are ignored except in column 1 of a card \'lhere

they are regarded as a period and right after a dot where

they indicate that it is to be regarded as a period rather

than as a decimal pOint. A format may also designate certain

coll1.l1'1.n t11 unsitions as punctuation symbols.

The pi."imal"'Y way expl"essions are taT.!'itten is as sequences

of the form (el,oo.,em) where the a's are expressionso This

is read in as a list~ each e being put in the address part

of a \'rord t'Ji th the decrement containing the address of the

next word on the list. If an e is not a term the corresponding

e;~pression is read in to free storage and the address of the

resulting lint is the datum of the higher listo It the item

is a term it is treated as follows:

1. An integer is converted to binary and stored in the

address part of the word.

('

-19:--

2. A symbol ls looked up in the symbol table and its

value stored in the address part.

3. A floating point number is stored in a data word

and the address ot this word is stored.

4. A text 1s stored character by charaoter in a list

structure.

3.3.6. Read (source~ format, symbol table)~

Read (SoLll:·ce,. format) symbol table) has as its value

the address of the structure into which the data read is

put. The first argL~ent is the source of input data~ the

second is the format in which this data is stored~ and the

third is a symbol table relating literal symbols in. the

ext0rnal medium to the addresses i'lhere the referents of

these s~-mbols are to be stored.

3.3.7. Equal (Ll,L2). This predicate tests the

equality of th~ list structures to which Ll and L2 point.

It is defined by the formulas
'>

3 equal (Ll "L2) =- (Ll - L2~ 1" cir (Ll) ~ cir (L2)

-> 0, ci!~ (Ll) :a 0 1\ car· (Ll) f car (L2) ---;;'0,. cir (Ll)

AI 1 A Ci'Ir (car(Ll» f CtrJl" (C2.r(.L2» --;>0 ... careLl) "" 2 1\ ~

equal (car~'Ll) ~ car (L2») -> 0,. l-?> equal (cdt ·'Ll)" Cdl" (L2))

..

"

r

APPENDIX I.

As an example of the use of the language we shall give

a program for analytically differentiating a simple class of

formulas. The formulas in question are in a single variable

x and constants; these are combined by addition and multipli­

cation.

A formula is represented by a list structure. A sum 1s

a list whose first tAlord contains a constant representing Uplus "

in its address part and the summands in the address parts of

the successive elements. A product has ntimes" as its first

element followed by the factors. The variable x has "XU in

the address part and a constant has 1 in its tag part and the

datQ~ in the address part.

The function dirf (J) where J points to the structure

representing the £ormula to be differentiated produces a

n8"(:J' formula, the derivative of the old" and its value is a

pointer to this formula. The program 1s:

function d1ft(J) (O"'s~{ (0) 0)

dirf ~ (ctr(J) = 1 ---> 0 1 car(J) =

Goa-.sei Cj)0)
Ox" -> 1, car (el)

= "plus n -)consel("plus" .. maplist(cdr(J),K,diff(K») .. car

(J) = "times" _)Consel{nplus ", maplist t Cdr(J),K, consel

(ntim0s u
" rnaPlist {Cdl"(J)"L1 ~ = K -> diff(L) .. L =ft K ->

copy (L)]};)))
retUI'n

I .

