
','N'!! u' !'T" t'iLb. *tIlL!*+#H+W!llltll!ttMIMt . 'H"""" IlHH"rpM'f 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
A. I. LABORATORY 

Artificial Intelligence 
Memo No. 279 

PRETTY -PRINTING 
CONVERTING LIST TO LINEAR STRUCTURE 

Ira Goldstein 

ABSTRACT 

February 1973 

Pretty-printing is the conversion of list structure to a readable 
format. This paper outlines the computational problems encountered 
in such a' task and documents the current algorithm in use. 

Work reported herein was conducted at the Artificial Intelligence Lab
oratory,' a Massachusetts Institute of Technology research program sup
ported in part by the Advanced Research Projects Agency of the Depart
ment of Defense and monitored by the Office of Naval Research under 
-Contract Number N00014-7.0-A-0362-0003. 

Reproduction of this document in whole or in part is permitted for 
any purpose of the United States Government. 



I. Introduction 

II. Computational Analysis 

A. The Basic Task 
E. Finite Width 
C. Linear Format 
D. Finite Length 

CONTENTS 

E. The RECURSIVE RE-PREDICTOR, A Top-Down ApTroach , 
F. The Table Scheme, A Bottom-Up Approach 
G. Semantics 
H. Comments 
I. History 

III. Documentation 

A. Top level functions 
1. GRIND and GRINDO 
2. GRINDEF 
3. Formatting 
4. RE~1GRIND 
5. Functions, atoms and properties reserved by grind. 

E. Predefined formats 
1. Standard formats 
2. Special GRINDFNs 
3. Inverting read macros 
4. System packages 

C. Comments 
1. Single semi comme1'1ts 
2. Double semi comments 
3. Triple semi comments 

D. Grind control 

E. Defining new formats 
1. GRINDFNs 
2. Vocabulary 
3. Examples 
4. GRINDMACROs 

IV. Suggested future improvements 

A. Con2,.eptual 
E. Implementation, 

\1,,,£2.,,,,,,,.,,,,, ,,,,,,,,"',,,,'" ",'''" ",''"' ,'" ,,,', '" 

( 

( 



,l,l.~ .. '. ~:~' , 

par-e 3 

J. INTRODUCTION 

. Pretty-printing is a funcamental debugeinp aid fer LISP. 
Ilist structure presented as an un forma tted linear strinp is very 
difficult for a person to understand. The purpo::e of prett~'
rrinting is to clarify the structure of a. LISP expressior. •. The 
simplest class of pretty-printers accomplishes this by. the juoicious 
j~nsertion of s~aces and carriage returns. Section II' an8.1yzes the 
computational complexity of such algorithms. [See section IV for 
suggestions for more sophisticated schemes which break the cede intc 
separate expressions.] The existence of alporithms which are only 
linearly more expensive than the standard LISP printing routines is 
demonstrated. Various extensions for adding semantic knowlecr:e to 
the pretty-printer are then considered. Section III documents 'the, 
pretty-print package currently available for t-1ACLISP. Section IV 
suggests additional improvements to be considered for the future. 

, II. COMPUTATIONAL ANALYSIS 

A. THE BASIC TASK 

The LISP PRINT'ing primitives print expressions as strings. 
Their only concession to clarity is the insertion of a carriage 
return each time the right margin is reached. This results in code 
which is not very readable when longer than a single line. Indeed, 
the carriage returns can even be inserted directly into the middle 
of a word. [The LISP reader ignores carriage return~ on inputl. 
'The following example is the definition of FACTORIAL PRINT'ec oy 
LISP. The dots represent the left and right margins. ..' 

. . 

• 

(DEFUN FACTORIAL (X) (CO 
ND «= X 0) 1) ({* (FACT 
ORIAL (1- X» X)))) 

Let L be a list of the following form: 

«FUNCTION> <ARG(1» <ARG(2» ••• <ARG(N») 

The objective of the pretty-printer. is t.o present L in a fashion 
which emphasizes its procedural role. The "~tandard format" :for 
accomplishing this is aligning the arguments one under the next. 



I a.,. 

.. - .•.• , ... ,----~----------------. 

«FUNCTICN> <PRETTY-FRINT ARG(1» 
<PRETTY-PRINT ARC(2» 

• 
• 

<PRETTY-PRINT ARC(N») 

Vsinr. this fermat, the FACTORIAL'function tayes on the followinp7 
Ulore understandable, appearance: 

• 

• 

(DEFUN FACTORIAL . 
(X) , . 

. ( COND « = X 0) 1) . «* (FACTORIAL (1- X» 
X»» 

110te that any format used by prettY-rrint must leave 1J re
readable by LISP. Hence, the following ~tructure would be illee:Hl': 

«FUNCTION> <PRETIY-PRIpT ARG(1» <PRETIY-PRIliT ARG(H/2 + 1» 
<PRETTY-PRINT ARG(2» <PRE~Y-PRIrIT ARG(N/2 + 2» 

• • 
• • · . 

<PRETIY-PRINT ARG(N/2» <PRETTY-PRINT ARG(N») 

If the only problem which the pretty-printer faced was the 
insertion 'ofextra sraces and carriape returns, the computational 
cost in excess of the standard LISP PRINT \-/ould be ne~ligible. The 
difficulty arises from the finite width of the pape, For 
sufficiently large s-expressions, every ~blist cannot be printed in 
standard format. Instead, the less desirable mi~er format must be 
used. 

«FUNCTION> 
<PRETTY-PRINT ARC (1» 

• 
• 
• 

<PRETIY-PRINT AHG (N») 

This format is minimal with respect to the indentation of the 
arguments. All arguments begin only one space over from the openir~ 
:parenthesis. 

There are rare instances of liFts that cannot be pretty-
printed even in miser forma.t. If the depth of the list • 
exceeds the vlidth of the ~e, indenti~ one for each level 

I~ 

111311171'1111., .......... ___________ .. Ull ..... _.&!!!!!!!!I ..••• !!!!I._._.!!!!!!!!! ...... !!!!l!I!,_ .!!I!!! .•.•.•.• R! ....... _ ...... !!I!!!!!!l ... _.!!!!I!!!!_ ... ""'-!! .... -!!!!I!!!! .• !!!I!!!I ... -.!I!!!!I! ... - .. _ ...... ![II!II!----~"""'"'-----~-:....:..--=--:~~---.-.~.,. 
~~;!! m,."_"" ._,_ . 



1.' . . ~ . 

is imros~ible. See suggestion A-3 i1'" ~ectior IV for a 
technique for handlinp expressions Of prea.t (lerth. 

IBpe 5 

The role of miser format is illu~trHted ·ty our FI\CTOETATJ 
examrles. When first shown PRINTed, the ra{"ewidth was.24 srBce.s. 
However, the paeewidth was increa.~ed to 35 in oreer to demon~trntc 
~tanoard fornlat. Wi thout the extra width, it is imrcssicle to ur.e 
standard format on the list and all of i t.s sub-expref"siors \vj thout 
exceeding the ripht-hand margin. Hence, the rrettY-rrinter is f2cer~ 
wi th the necessi ty to use miser format on son1e sub-expref:SiOr1fi if . 
the. entire list is to fit on the paee. This prediction represents 
the'tasic extra-cost above the standard IJISP PRI};T which the rrettv
printer requires. The following forma.t for FACTCRIAL ilustra:tes the 
cautious use of miser format until sufficient. width becomes 
available to switch to standard form. 

• 

E. FINITE ~IIDTH 

(DEFUN 
FACTORIAL 
(X) . 
(COND «= X 0) 1) «* (FACTORIAL (1-X)· 

X)) 

~lhat, then, are the basic computa.tional COr:tF for pretty-
rrinting on.a. rare of finite width? If listf" are descrit·ed as 
t.ree~, then the cost of rrinting iB ~imply that of visi tine ee.ch tip 
of the tree in left·-to-right order. The cost of pretty-printing 
will be a.nalyzed with respect to thiF basic "tree traversal" 
overhead. Uron first arrivinp at any non-terminal node o~ the tree, 
the pretty-printer ha.s no knowledge of the ~jze of the subtree 
teeinnill€' there. Hence, it cannot lrnOl-! whether thpre if-: sufficient 
space to use standard format. The pretty-printer mUFt aTply a 
prediction function to the subtree to estimate the width required to 
print it in standard format. If that width is more than is 
currently available, miser format must be used. The additional cost 
of pretty-printinp-, then, is simply the cost of rrediction. 

Cne criterion for judr:ing different rretty-print algorithms 
is the number of times each node of the tree must be revisited. In 
these terms, a minimal aleorithm would perform orly two tree 
traversals - one to obtain prediction information and one to 
actually'print the subtree. 

The following analysis will rroceeo at. a qualitative level. 
The as~uJf:rtion wjll be that Jist operaticn~ represent the ma~or 



': 

-
I 

iii 
') 

1 

:.,'" ,",,;Wi 1 

----"-,,-_.,,. .... .. ....... ----,.""-.. ...,.....,..-,~ 

cost, v!i th nurrerica.l operaticns tein[" cheHp. Th~ intentj on j ~ tc 
r-tve the reaCler the flavor of this cOJP.I'ut2..ticl1?l prol-1em. Fcw0.vr r 
1"0 tvrn th" se a~f:ertionf: into theorerr~s \'lculd reqvire n E·er\.! forr::>l' 
[;" ttack. For examrle, a rrecj Fe comparison of the co~t of nurr.0.T:i C~ 
verSUB list operations \Olould be necef"sary. CtherwiBe, ere rnsr" 
throvFh the the tree could be used to Godelize it.Subsequcrt 
computation coule then be entirely nUlIericnl. " 

Is a "minimal" t\tJo-traversa,l aleori thrr. pcs~i t lQ? The 
is yes. [This yes assumes that the number of lines reed~d tc rrjnt 
the expression iF: i~ored. The Fection en "fini tc If'nrtl· II ccn~i(~~rr; 
this additional complexity. ] One Tass cEnbe ft:~"ce to Hsro.ciptp vii th 
each sublist the mjnimal width needed to "print it in star.oe.rc 
format. This information comrletely determines how the _~exrre~:::ion 
is printed. The prettY-rrinter u~es the more eccnomj"cal miser 
format from the top down, until ,the ava.ila.ble wicth exceedr; the 
minimum needed to use standard format. fl.,t that Toint, the rrinter 
is assured of room to print all remainin{" suclists in stHndard . 
format. This is the structure which wa.s u~ec to printyt."CTCFIATJ in 
the last exrunple. " . 

A single rrediction 1<3,ss i~ sensible rrov:idire tre cost of" 
~torin[" and acceFf;in[" the minimum width comruted for each piece of 
Fubstructure is less thHn the cost of recomrutinr the number. 
Fortunately, thif' is the case. For examrle, a hash table accessed 
by a numerical comrutation Or! the pointer to the 8ublist takes:fixed 
time, reeardless of the size of the liFt structure. Of course, for 
~uffjciently small liF,t ~tructures, the lixec co~t of accessine and 
clearinp a hash table will not be 'Worthwhile. Put this is 
unint.ere~tinr mathematically. Il"ldeed, even :from a pra.ctical 
~tandroint, the hash scheme is so fa~t that it~ cverhead is not 
noticed cn small lists. 

c. LINEAR FORMAT 

AnalYf!is of the rretty-printing task was beeun ir. reacticn 
to the uninformative use of "linear format" l:y" the LISP rrimitives. 
However, when a f:ub-expression can fit in the spa.ce rerraininp on the 
line, lirear forlLat is sensible. As we shall see, even ~li th thi~ 
addi t ional ccmplexi ty, t\oJO tree traversal~ are sufficient. 

The rrediction pass must now Eave t\o!o -pieces of data - the 
linear ,,,ic1th of the sub-expression e.~ well as i t~ mipirnult width .. 
These two nu:rr.bers can be computed on the same ra,,~s throurh the tree. 
The rTinting plss is extended in the obvious wa~r • First preferer.ce 
is given to linear format if sufficient \-,idth is available. 
Otherwise, the al["orithm is as before. 

mi.,n"""."L """"'''~" .. ''''''.'''' ... -.'''''''''' ...... , ... """.""".,"" ...... ,,., ....... " .... " .. " .... ".".". """"". __ ._.""."n ..... "" .. " ... "_"" ... ,,. """""" ....... " .. ". "." .. "." " "" .. r] 



-. 

;. FINITE LEnCTH 

'Ih;-re is a.n addi tional elemert of cOr'r1eJri ty in rret.t:T-

rrint-in£." the.t haF not yet been considered. ~_'hen IIIST' code if' rrr0.i-c 
cut over rrar,y lines or, ~,orse, ffi2ny r8.{!e~, it Pl"P.il1 recor:e~ 
indeciphera.ble. Hence, a prettY-rrirt alpori thm should 81r-o a tt('r~Tt 
to fermat s-expressions in the least numteT of lines. Tc a:cYiev(' 
the minirr:um rumber of lines, \-/e shall have tc allow P.l: ir.crep~t1 in 
computational cost. Nevertheless, we wi]l rropo~e a scheme ,,!hich 
still requires only two tree traversals and i~ therefore linear in 
the size of the tree. 

The predictor described ~_bove car CO}!II'ute the nUTIlber of 
lines needed to rrint an expression in minimHl width. The 
difficulty, however, is that there maybe extra \.;idth available. 
This can allow the use of linear format to cecrease the r.umber of 
lines needed to r-rint the expres~ion. Fo:rexa.mple, for rACTCRIAI, 
the rretty-printer -always prints the secone arguITer.t of "*" under. 
the first. However, with suf:ficient ",idth, a lifle i~ saved by 
printing (* (FACTORIAL (1- X)) X) in lineer ~ormat. . 

• 
(DEFUN FACTORIAl, 

~~tlND «= X 0) 1) «* (FACTORIAL (1- X)) X)))) 
• • 

For function~ with many arguments such a~ (PI-US 1 2 ? 4 5 6 7), the 
use of linear format over standard forJr.at CHTl make a siP'nificHnt 
ilifference in the number of line~ ane, consequently, the 

-re:dability. Thus, remembering a ~inf"ledatvm corre~pondine to the 
number oflil!es needed to print a riven Fub-exrression in minimal 
\'!idth is not suffj cient inforn1ation. At first. blush, it would 
PII>ear neces~ary to reexamine each svb-exrre~~i()}'} nvery time the 
available width chanees. 

E. THE RECURSIVE RE-PREDICTOR, A TOP-DO\·m ALGORITPN 

Let us bee-in by examinine. aPrroache~ that do reexamine 
sublists many times. One obvious alrorithm i~ to consider all 
r()ssible format choices at each l'1ode, comrut:in(" the resulting number 
cf lines required. By brute search, this aprroach is euaranteed to 
find the sequence of formats that yields the miniLum number cf 
lines. However, the exponential cost is certainly prohicitive. Ii 
less powerful but less costly alternative is the RECURSIVE RF
PREDICTOR. 

'The RECURSIVE RE-PREDICTCR \-lorkf! in the f'ollowinp \-lny. Upon 
arrivinF at a. e-iven node, the alporithm lmo\>/f·" N, the remEinir.F: 



DVClilable width. Linear format is used if N is sufficiently larre. 
Otherwise, it estimates how many lines it would take to Irint the 
2rl'.'umentE 

in\olidth (N - 1) corresfonding to the u.~e of' miser fermat 
and in width (N - <linear wldth of the functiol1» corresror:dinr-

to standard format. . 

The estimate is made by euessing that all sublists are printed in 
the following way: 

linear format if sufficient ",idth;· 
else standard format. 

This scheme is not guaranteed to find the sequence offorma.t choices, 
that results in the minimum number of liT!es. It doe~ not cor.sider 
all possible sequences. When insufficent sJ2ce cccurs, jt print~ 
the toplevel expression in miser format. It ipnores the possibility 
of printing the toplevel expression in standard format while 
rrinting the sublists in miser form. 

Computationally, the RECURSIVE RE~PREDICTOR can reexamine a 
€"iven subtree many times. Thus, the cost is still exponential in 
the \-forst case. Nf'vertheless, for variou~ reasons, this approach is 
rossible: 

1. Li~ts beginning with non-atomic. elements ~uch as LAHEDA 
expressions can always be printed in miser format. This 
avoids prediction costs for these sublists. 

2. There is no longer any point to remembering the minimum 
\\1idth needed for standard format. Since the -crecictor must 
reexamine each sublist for the number of lines, it can· at 

. the same time check that the list fits in the Fiven width. 

3. A hash. table can still used to remember the linear width. 

4. Empirically, much LISP code is broad rut not ceep. 
PROG's are typical examples. After r-redictir-p and printine 
the first level or two, it is often the case that the 
remainin{" elements almost all fit in linear format. Thus~ 
little recursive re-prediction is needed. 

This RECURSIVE RE-PREDICTOR is the current pretty-print 
algorithm in use. Empirical observations indicate tl:at it i~ only 
some four to five times slower than PRINT. Thus, it is of practical 
use. The next"" section describes an algorithm that is theoretically 
linear in the size of the list. It has not yet been implemented, 
and, in rractice, may not be worth implementillf'. The use of tables 
and numerical operations is required. The overhead of these ". 
computations mipht be prohibitive· for handline the averaf'e LISP 



pap'c 9 

C'YfrCf'f;ion. Also, svch ~urnerical operations are morpcf'ficicnt 
:'nnd-coded in IJAP than wri tten directl:',' ir. I,ISP. III pn~r C8r"E?, tr~c 
fina] verd ict mUFt (3.\"8.i t imp1ementa.tion. 

1'. TrE TA13IJE ALGCRITF, A EOTTCM-UP ATPROp.CE 

l. bottom-ur attack can yield a predictor which i~ lirnr-;r in 
the size of the tree. One predictior ra~:=:: i~ u~cd.. The tricl' \.Jj 11 
te tc ren~ember more than just the minimal "Jidthard corre~ror(~lnr 
leng~h. Instead, a step function must be,built for' €2ch node which 
rrovides the tlinirral number of lines resultirf" fer dj ffcrentlJd.c1t!1s. 
:For examrle, 

vlIDTH 

0-4 
5-7 
8-11 
12-LINEVlIDTI~ 

(PLUS 2 ;:4) 

# OF LINES 

impossible 
4' 
~ 
.; 

1 

FORHlT 

r,iser 
~tancard 
linear 

Such tabJes are fjnite. The number of'irtervals is limited by the 
finitenef-'s of LINEWIDTH. The tables for all of the daughters of a 
river node ,determine the table for the plrent •. Fefore pivinr more 
deta.ils of this table scheme,. notice that the co~t is only a linear 
increase in the tasic "tree traversal" computation. [This 8E.sumes 
that ·the cost of numerical COMPARE's needed to merre tables is 
rou£:hly com-ra.rable to moving ur HYld down levels in the 'tree.] 

'The table for the parent is "built' by rrrercinr the tables:for 
th.e daughters, creatjn(" their "refinement". For eXHJrple, the table 
for (PLUS 2 ?4) r-iven above is built· from the tpbles for the atoms 
FLUS, "2", "3" and "~". For each po~sible \~licth, the tal-Ie entry is 
the mininum rumber of lires to prett~,;r-print the riven sul'tree. This 
j.s deterDineo by checkinp the number of liT!e~ re~ul tj.np- f'ron: each 
format. The num"ber of lines torrint a riven tree in a giver! forrrut 
is completely determined by the choice of format a.nd the tables for 
the (~auehters. PI {"iven in.itjHl \o.'idth and B. piven format, imply a 
specific width for each daughter. The predictor, then, look!? up the 
number of lines that the daUf'hter requires for that \-,'idth. The 
totaJ n~mber of lines is obtciined by summinp over all the dau~hters. 

The format used to oetain the minimum number of lines is 
recorded as well. Ultima.tely, this bottom-Uf aprroach yjeldf" a 
table for the toplevel list. The entry for the total IJIKE\·lIITH 
eives tte number of lines to rril1t the e:xrresr:ior a.s weD as the 
rror;ram for doing it. 



~~ome savjnrs in cost is y.ossible. This c~nce dcne (:'It \ 
deterJ:~jnir[.T ljrnits for the width~ that H["ivc-n tab1A rrUF't ccrriccr. 
'The t:axicum width is: 

LINE".'IDTH - DEFTI-!. 

This is true ~ince each level of the tree co~ts Ht least one vr.it f'f 
\llid th in order to print the opening rarel1the~is. Al terM. ti VE.:l~.r y it 
can l-e viewed as the width corresponding to t~~inr only ndt;cr lorr:'.at. 
A lower "bound on the table is obtained by cOl"siderinr the u~e 01 
only star.dard format. This results in maximal il1dentaticn. For 
each use of standard format, the a.vaila.ble width decreases by· 

1 
+ FLAT 
+ 1 

;for theopeningrarenthesis 
;where FLAT equals the linear width of the first element 
;for the srace between the first and f:'ecor.c elemel"t:::;. 

These UPTer and lower bounds are computed a.s the predictor travels 
down the tree. The tables are computed on the return trjp teck up. 
Thus no extra tree traversine is necessary. An B.cdi tional bound on 
the minimum width that need be considered for a f'ivell table js 
obtained by the left-to-rigpt analysis of the daughters of each 
node. Suppose the table fordaughter(1) asserts that it is 
impo~sible to pretty-print this subtree in less ,,,idth th3.D MIN;. 
Then, it is unnecessary to consider \-Jldths 1ess than MIN for the ~~~ 
remainine daughters. 

However, it is clear that such savin~s, thou~h useful fron a 
rractical standpoint, still leave the a1e.orithm linear in the ~ize 
of the tree. Indeed, the table algorithm is essentially minj~al in 
j.ts cost. This can ce illustrated by a worst ca:3e 3.naly~is. 

~ Suppose that 8.n intermedtate width \,1 in v ta.ble for the sublist I: is 
~ot computed. Obtaining the minimum number of lines can be made to 
hinge on just this piece of information. A sketch of the areumer-t 
is: 

Construct a supertree for L for ,\-,hich 13 sequence of" miser
standard choices could be mace resul tin£! in ",idth \,1 tein1.'.' 
possible. 

Construct the sisters of II such tha.t they rretty-print 
optimally in this width. . 

Then, if L behaves well for width ~!, it should be chcsen. 
Eut if the number of lines to print I in width \-! is laree, 
then it is not worth choosin~. 

Hence, the choice of format deper.ds on he,., L behaves in this 
width. 

t.·- . ..' ."'~" ,,,. ,!~ •• - ."". " ....................................... . 
'p' ., • ..,0"., ,. 

----- ---------



rr',pc 11 

, • SFNANTJCS 

So fur, \to'e have intrcduced only three forrr2 t~ for lir·tr.: 
• 

f'. tand ard f ort";2. t 
miser forrrat I 
linear format 

Knowledge of the semantics of varicu~ tYre~ of s-cxpressio~~ len(~ 
to acdi tional forms. For example, areurnel1t li~tF for PRcr;'~ ~.r.(1 
IIANBDA's are preferably rresented as blocks. 

(PROG (***** ***** ***** '***** 
***** ***** ***** *****) 

• • 
TAG . . . . . • . ) 

;tap~ are unjnderted • . . . . . 
Similarly, the preferred format for SIT0. f:!hould be: 

(SETe: NA~'1E(1) <PRETIY-PRJNT, CF VAIUE(1» 
NAME(2j <PRETTY-PRINT CF VPLUF(2» 

• . ) 

This additional versatility can reachieved ty ey.tendinr the rretty
rrint alpori thm. In the current PRETTY-PRI~IT ~ckaf'e, srecial 
formats have been desi£"l1ed for IrlB.ny I:ISP priTt'Li tives. [This jncludes 
informinp the rredictor of the srecial way ~vch :ful1ction~,as PROC 
nnd SETQ a.re handled.] If sufficient spa.ceisa .. vailable, th~se 
forma.ts p.re rrefetred over stHndard crmj~er forma.t., See section" 
III for details. 

F. CONME11YfS 
~ " ~' , ;', .. ~, '\ 'l'· ... i- . 

'The importance of docun:ertinp code cannot be under
estil1:atec. Fence, the pretty-printer, when applied to :files, 
formats semi-celen comments. These comments ca.n be inserted in the 
,code or rrinted on the ripht-hand half of the 'J'8Fe. Again see 
section III for details. 

,I. HISTORY 

Fill Gosrer developed one of the earliest pretty-print 
algorithms for LISP. It used the recursjve re-prediction scheme to 
minimize the number of lines. Eupene Charniak modified the .fregrani 
to proce~s semi-:-coloncornments. Ira Go1dstein extended the comment 
formats, made the pretty-printer proprammable with respect to addin~ 



revl formC't~ for ~I'ecial function~, added a h~shf"cher.:e fcr.ljncclr 
\o.~idth and develored the table a1eori thm discussed above. Carl 
Fe\oJitt, Guy Steele, John White, Cerry SUSBmal1, Terry \,,'incrrrac, P.ruc~ 
Roberts, and Stavros r~acrakiF provided many helpful FUFf"esticns. 

. , 

• 



pnp-e 1: 

TTl. Documentation 

'The }"Jew r-rind rackagf-~ rlifferE frolP. earlier ores tr. rntcvidirr 
D larger number of formats in which s-exrre~f"ionf' and corrrr.cnt~ cpn 
l~e fTound. A va.riety ofprec1efir.ed formatf" exist \#1hj ch can 1:; . 
~ssociated with any LISP functioTl. For unuf;vnl formFt~, t.he vr.r;r 
can cesirn his o":n procedures to control prir.dinr. 

The grind package is autcmatically loaded il1tc J.JSP ur.-on 
executiTlf' GRIND or GRINDEF. Alternatively, the v~cr cp.n obtp?n the 
file via: 

, 

(FASLOAD F GRIND cor·~) 

The REM feature can subsequently be used to elimina.te un\,'pnted cede 
(see section A-4). Send suggestions a.l1d bups to IRA. 

A. Top level functions , 

1. GRIND and GRINDO - . fexprs 

CRIND andGRINOO convert files to rrettY-rril!ted :rorlE. Their 
input format is that 'of the IJISP file ma~~iru1atirf:" i'ur.ctions like 
UREAD and U\ffiITE. . 

(GRIND <filename1> <filename2> <cevice> <uflame» 

UFlLE's a pretty-printed form of the file uncer the same name. The 
usual IJISP .coTJventions for default device, urer 2nd filenames a.re 
used.. To avoid rossible aisasters, use n>" as ~tour ~econd :file 
name. GRINOO doe8 notUFILE. Hence, it is useful for :filinrr the 
rrettY-rrinted file under a different name. For exarrple, 

(GRINDO CEO > DSK IRA) (UTILE CEO PRINT) 

results in the pretty-printed versiol! being filec a.s GEO PRINT. 

2. GRINDFF - fexrr 

GRINDEF takes atoms 8.S areurnent~. It then prett~T-prints 
their EXPR, FEXPH, MACRO and VALUE propertie~. For exaIDTle, 

(GRINDEF PROGRAt~1 PRCCRA~:2) 

pretty-prints these t.wo LISP functions. 

The default prorerties rretty-printed b~.r. CRINDEF cal1 be 
modified in two ways. 



I 

I 

I 

(GRINDEF <LIST OF ADDITIONAL PROPERTIES) <AT0f.11) <.tT0l-12) ••• ) 

apperds.the additional properties to the list o:f def2ult nrorertief-': 
for the duration of the current call to GRINDEF. A y.ermanent chanee 
to the default propertie~rretty-printed by GRInnEF is ru~(Je ly 
setting the atom "GRINDPROPERTIES" to anew list of prorertje~. 

" (GRINDEI')" wi 11 repeat the last call to GRINDFF. T}'" i ~ 
saves tYTing when r.epeatedly GRINDEF'ing the same furctic!n~. 

3. Formatting 

The pretty-printer can be. pro~amrned in the :follcwinp wit~rs: 

a. «grind-control-:fn> <argument~») executes the rrird-ccntrcl
fn on the giyen arguments. A tyrical grind control function is 
PROGRAMSPACE. (FROORAMSPACE 80) sets the wi(1th f1v~i18.l:le for 
rretty-printing code to 80. Comr1ete documer.tation follett's jn 
III-C. 

t. «GRIl'JDFN or GRINDMACRO>· <:function) <E"rina-format» aSf:)ipns 
the erind-format to the :function as either 'a CRINDFN or 
GRINDMACRO; Whenever the pretty-printer encounters thei"unction 
as the first element of a li~t, the list is Trinted usillf' the 
special format. The gri~d-~ormat can either· be the name of a \ 
function of no inputs or the body of a. la.mbdH defini t.ion. A 
va.riety of predefined formats such as ·PROG-roRH are described in 
the next sect.ion. The mechanism for buiJdin€" new f'ormat~ is 
rresented in section III-E. 

c.. (UNFC'RMAT <function» removes any s~cial, C~IIJDFN or 
-'GRINDMACRO properties of the function. 

For all of the above specifications, <function) can 1'e replaced ~y 
<list of functions). The grind specjfication is then apr1ied to 
each function in the list. 

Typicall~l, format ·statements are ei therrlaced in a "GRIND 
(INIT)" file read by the grind plckarewhen loaded; or inserted . 
directly into the user's file as . 

; ;*(GRINDFN THPROO PROG-IORMr (PROGRAMSPACE 80) <cr>. 

Comments beginninp with ";;*" cause the pretty-printer to evaluate 
the remainder of the line. If the line consists of only a single s
expression, the toplevel j:8rentheses are optional. 

;j*GRIKDFN THPROG PROG-FORM 

The normal LISP HEAD-EVAL-PRINT loop ignores ~emi-colon comments. 
Hence, ;;* ccmmeJ1ts only haveef:fect when the file is ground. 

( 



:1;~~ / 

~ -/ 
.. <.1$7 P3P€ .15 

"', '~ ,~",""", .. 
" 

ri / 

L:, ' 
" 

'~. RFEGRIND - fexpr 

(REt~GRIND) removes a.ll of the grind rackvPC'F furctiC'n~ frcF. 
;~.·uscr's IIISP. Alternatively, the user can le more ['elective in 
zrrunjng the F-pace occupied by the erind rackape ry era.sir~ onl~! 
~:.those features he does not need. This if; aone a.~ follo\t!f:": -

(RE~lGRIND FILE)- erases GRIND and GRJrH)Q. 
GRINDEF is needed. 

Useful "lhen orl~" oj 

(REMGRIND UCONTROL) - erases the formatttng functionf'. It 
does not erase those special forma.t~ already defined by the. 
user. But it prevents him from cefinine any more. U~efvl 
after the user ha~ created his s~€cia_l formats. . 

(RENGRIND FORMAT) - eraseE- both the form2ttinp: functions as 
well as any all srecial formats.- . 

(REMGRIND SEI4I) - erases special function~ for handlinr 
semi-colon comments. 

5. Functions, atoms and properties reserved bYe-rind. 

The functions ana atoms re~erved by erind can be found in 
the DECLARE statement in the grind file. The prind racka.ge also 
uses the indicators "GRINDFN" and "GRINDNACRC" fer ~recifyinp-, 
srecial prine formats. 

P. Predefined format~ 

1. Standard formats 

The followine formats are.used by the pretty-printer in the 
2.bsence of any s:recial format tirl€' instructions. Choice deperd s en 
the avaliable width and the cost in number of lines. The alf"ori thm , 
is described in section II. 

~'::<e.. LINEAR-FORM - The expression is printed wi th no extra insertion 
;;tof carriage-returns and spaces. this is the,format used by the LISP 
printing primitives. It is used by GRIND only when there 'is 
sufficient width remaining on the line. 

t. STANDARD-FORM - This is the preferred format for lir--ts beC'inni~ 
with atomic function~. It is a.lso used on other lists if fewer 
lines are needed to rrint the code this way. 

«function> <pr,etty-rrint of are, (1» 
. . <prettY-rrint of arg(2» 

-~-','-'-'--~ '.-.--~-- .. , ... -----------:*'.tfi5"~-



'r, ,t! 
I ' 

\ 

. 
<rrettY-rrint of arr:(2») 

c. NISER-Fom·~ - This format conserve~ the sJ.'a.ce rerr?ininr or. t~0 
line. \'lhen tn width trouble, furcticn lists are rrirted thi.r- Wf!.~'. 

«pretty-print of elezr.ent (1) >, 
<pretty-print of element(2» 

• 
<pretty-print of elen:el1t (n) » . 

d. FUNNY-FORI-j - Occasionaly, this format ·decrea~es tbe number of" 
lines needed to rrint an expression. It is used whenever thi::; io!:" 
the case. If PREDICT is NIL, cOJrputa.tion is, ~avec b~! if!l1orinr it. 

( <ETJEI~1ENT (1 ) > <ELEr·:iF.NT ( 2) > •• • <PRETTY-PRINT OF rIFr.1En-r ( N ) ) ) 

2. Srecial GRINDTNs 

Each of the followinp prind-formats ca.n ce a~sipned to ary 
function by: 

(CRINDFN <function) <p-rind-fcrmat» 

2 .• BIJOCK-FORM - thr entire expression is pTound HS ~ext where the 
Jeft marrin follows the opening yarel1the.f"i$ of the expre~sior. For 
examrle, 

(A B C'D F F G 
HIJKIJHN 
OPORSTU 
V la! X Y z) 

Typically, arrument lists and planner patterr.s arer-Tound as blocks. 

1::. DFF-FORM - Def-form is the standard fermat for rrindin~ 
cefiniticns. The "defun", function-name, incicators and argument 
list are always. erour.d on the first line. The ~lrEument list i~ . 
eround a~ a block. The remainillf' elements of the definition are 
ground as a "body", i. e. depending on their size, tbey are rround 
one under the ether in : 

i. either the splce remainiPF on the line, e •. p. 

(DEFUN FlTNAHE <AROLIST GROUND AS PLOCK) *"***** 
****** 



, . ,..~., -.... (.' ......• 

****** ) 

E. in standard format, i. e. alifTleC under the fur-cUen 

name: 
(DEFUN FNNAME INDICATOR <ARGI,IST GROmlD ft.S PLOCK) 

****** 
****** 
******) 

iii. or in miser format, i. e. aligned under the defun: 

(DEFUN FNNAME INDICATOR <ARGLIST GROUND AS P..tOCK) 
****** 
****** 
******) 

c. LAMBDA-FORM _ the LAMPDA and its arglil"t eTe pTound on the first 
line. The argli:"t is ground as a block. The rerra~ning elements of 
the LAMBDA are ground as a "body" i. e. de:pendinp on their size, and 
in order of rreference,: 

i. in either the space re"mair.ing on the "line, e. g. 

(LAHPDA <ARGIJIST GROUND IS BLOCK> ****** ****** 

ii. in standard format: 

(LAr~~PDA <ARGLIST GROUND AS BLOCK> 
*********** 
*********** ) 

iii. or in miser format: 
• I ~. 

(LAt.~BDA <ARGLIST GROUND AS BLOCK> 
************* 
*************) 

******) 

d. PROG-FORM _ This format used for PROG's is similar to LAMPDA
FORM, except that tags areunindented • 

. e. MEM-FORM _ The first argument is ground as code. The remainder 
are also ground as code unless quoted, in which case, they are 
groul1d as a block. For example, . 



(rEHFFR X 
'(A E C D E F G E I J K T 
NNOPQRSTUV~IX 
Y z» 

_._----_ ............ -............................... ----.~--.... ~ ............ --..... -..• -~ .. -'"', .... 

Py def'ault, r,1ENQ, MEr"iPER, the NAP :functicn~~ pnc the 'ASSCG function~ 
are rround in this format. 

f. CCNNEl\l'-FORl1 - The CDR of' the expressicn i~ pround a~ R bJccl:. 
For exarnrle, 

(CO~W:ENT THIS IS A VERY LONG 
COMl-1ENT THAT TAKES 
SEVERAL LINES) 

COMMENT, REMOE and *ITXPR, *EXPR, *LFXPR,' **t.RRAY, SPFCII'Tt ara 
UNSPECIAIJ clauses of DECLARE's are ground in thif: format. 

F. SITe-FORM - Sre·ce perrri ttil1p, va.riables ard v21ue~ B.re Freund as 
rairs. For examrle, 

(SETC A (PLUS 1 1) 
. B 0) 

If there is insuff'~cjent space, BtaTJdard or miser forJrt8.t is used. 

? Irvertin~ read macros 

rUOTE-tyre read macros can be inverted ~!hen rretty-printed. 

reader prind 
<char> <expr> - - -> (function <expr» ~ - -> <Ch8I} <expr} 

'This is a.ccom~lished via the READMACRO instruction: 

(HEADNACRO <function> <macro chara.cter or characters» 

The HlHcro character is PRINC'ed and. then the <exrr> is pretty
rrinted. Two examples are: 

(READNACRO QUOTE I') 8: (READr~ft.CRO TEV /$/?) 

Ll. System packaees 

A packape of special format~ currently exipt~ for MICRC
FLNR. To utjlize them, place either (PLNR) in ycur CRI};!D (INIT) 



file or ; ;*PTJJR cj rectly in ;rcur micro-rlnr file~. 

C. CC r.rmerts 

Semi-colon ccmmerts are defined as a sem5-colon follc~.,.'ccl"::,~ 
text and concluded by a carriage return. The~e comr:cnt:=:- cC?,n l~e, 
inserted any" .. here in an s-exrresr-ion or apr-ear alone at the tor 
J:eve]. 'They are comrletely ipnored ty the IJJSJ> rea.der. The prirc: 
rackaee rretty-prints these con1IIlents in f:evera~ fOTJf:2.tf" derArclirp or 
\ifhether the comment begins wi th 1, 2 or ? FeEj-cclon~. 

1. Sine1e semi's 

Comments be£i nninp wi th a sine-le ser.d -colon Bre rrinte(1 to 
the right of the cede. Sequel1ce~ of sinrle-~emi'~ are merged. 'The 
code is norm2..11y ground in the first 70 f:fe.ces of t!1e lire 
(PROGRANSPACE) while the sine1e semi's are ['Tound in the fin[~l ~~' 

.·,spaces (CO~1SrACE) • GAP = 1 is the s~ce r,et\o.~een cod f. anc COl'r;: ef1t r::. 

~--pro£ramr-race;---

70 
-f.Bf- ---ccms~pCA---

1 49 
------------ragewidth = 120-'-------

Th se values can be altered, for example, by insertir.e tre fcllo"tin~ 
comment iY1tr a fj Ie: ' 

; ;* (PAGF\'IIDTH 12089 1 30) 

This resul ts in PROGH.~MSFACE beccminp 89, GAP 1 ~nd COHSrACE ~O. 

For code that contains no sinrle semi's, a PPOGRt,fv1SPP.GF ('I 
'80. is preferable. 

2. Double seRi's 

'These con:ments are printed as part of the code \td th the 
rroper indentation. Sequences of double semi's 2re merp-ed. at the 
top level, TOPvlIDTH = PAGFVJIDTH is used. Inside code, double f':er,i'~ 
11"F€ 1 il11i ted to PEOGRANSPACE. To a1 ter TOP\~lIDTH, execute: 

(TOPvlIDTH <ne"'lvalue») 

Triple 
. , 

ser.il S 

";;; ••• " 8.re similar to ";; ••• " with re0rect to indertation. 
However, they are otherwise not modified by [,"rind. Srace~ 8re not 
fi.l1ed ard sequences of comments a.re never JI!erreo. They are thu~~ 

'u$€ful when the user desires hi~ cormnent to l'e rrinted eyactl~lr p~ 



- .-- .. 
'~-' -

cr' ['"j n211;' tYTed. 

n. Grind control 

Th se functions set variou~ ~wi tches 2nd vp.rjnblc8 fer thr: 
rretty-printer. 

1. FILL causes mtiltirle spaces arpearing in rjnple ard dcubl~ ;crj'f:" 
to be merped. Periods ending se~tences are followed b~r two r-:-~cr:[~. 
This is the default case. 

2. NOFIIJJ causes multiple spaces to r,e treR.t~f: nf" such. TriTlr.; 
semi's are always NOFILL'ed. 

3. MFRGE causes double semi's to be JIler["eo, i:f f;ufficient GCr:~:Jt.CF 
remains on the line. 

4. NONERGF causes double seJni's not to be marped. Tr-i~ j.s the 
manner in which triple semi' f3 are hand led. The :full raP'€\llid th i~ 
used. 

5. PP,GE causes the output of a. fcrmfeed. 

6. IT cau[~es f'Tind to insert formfeeds arrroximately every 60 lines. \. 
Formfeeds are only inserted at the toplevel, }"lever arrearing ~li thin 
s-exrresF'ions. This is the default case. 

7. NCIT limits the insertion of form:feed~ to exrlicit calls of "PlCF. 

8. WAGE causes {'Tind to rreserve orie-inal ~p"iT1€ of user's "file. 

9. NOPREDICT - This switch makes the prif'lc dumber but :faster. The 
alpori thm no loneer consider as many a,l ternati ve~ for prilldinp each 
expression. F'or PROG-FORM and DFF-FORM, formpt 1 is no longer 
considered. Similarly, FUNNY-FORr~AT is never corsidered. Dumb ~ode 
is fhe default state. 

10. PREDICT - All of the forreats discussed il1 the previous fef'es are 
consjdered. 

11. PAGEv!IDTH <p1gewidth> <programsre.ce> <rar> (col1lJnentsrace> 

12. PRCGRAMSPACF <value> - resetf: the value cf the PROGR1J~~SPt.CF .. 
Fnlar~inr PROGRM~SPACF shrinks CCMSPACF. 

13. COMS1"'ACE <value> resets the wicth used fer sinple ser:i CCIDr.:'prts" 
'The tradeoff is (?.gain wi th the PRCGRA.NSPACF.. 

14. 'IOPv!IDTE <value> - resets the width used for tonlevel double 
semi comrr.ents. 

---~--~~---.~ --... -.----~-~-~--



p:lrc 1 

r. Defininrr neW" form2tf: 

The user may wish to po beyond thp. rredefinA(l fori'ptr 
ttiscussed in ~ection III-B. To do this, CRIr:DFN, can l;e VriAr. +'0' 
(~fire sr€ciel crind functions [SGF'f-"] of hi~ owr- op.s5rn. T}->n 
:syntHx if:' as follows: ' 

(GRINDTN <atom or list of [1tom~> <[,rirc";"fcrrr.v.t») 

where the definition i~ either the na.rne cf O-inrvt proce(lure or 1hr; 
·body, of a LAHFDA expression. 

GRINDFNs are processed a~ fol1o\oJ~: arsume the a tern Il1 har- n. 
SGF associated with it. Then, whenever exrres~icYl~ cf the fcrr;; (r1 
••• IJJ) aTe encountered, [,"rind rrint~ ,,(,' anc thpn transfers control 
to the defjnitior of the SGF. Uron enterinp'the SC"f.', the foJlovdnr 
free variables are relevant: 

L <- (L1 .•• IN) 
r <- CF:RCT = rernairillf.' line' width, followi!![" the "(". 

f.. SGY penera] ly rroce~se~ ~oJPe. ini ti2.1 sepmel1t of IJ, CDR' inr 
'T in the rrocesf:. Note that the Say must at leaf:t proce~s IJ1. Upon 
comrletion, if L has been set to NIL, ["rind Fimply prints the 
closinp rarellthepis n)". If, on the other hand, L has been rebound 
to some terminal sep:ment of itself, 

then {"rind prints the relliainder of L as the cody of 8, DEF-FCRrt;, i. 
e. the el('me'~ts cf L are printed one ,under the other in either 

H. the srace rem2ininl" on the Ijr!e 
b. aligned urder L2 

or c. aligned uT'der L 1'. 

2. Vocabulary 

'Ihe followinC vocabulary is useful fer defirdnp SGF's: 

1. (REl'·'lSFNI) - e:xpr - This function rroces~e~ p.n~.r ; comments that 
cccur as ini tial element~ of L, CDR'ine L in the process •. 

c. (rFRIN S }') -expr - S is printed in the format srecif'ied by F 
\-lhere F can le: 

'LI~~ - equivaler!t to PRIN1 
'BLOCK - BLOCK-FORM 



'LIST - CCf.llvjElIT-FCRM 
'COT'E - 2.rplte~ rretty-printer to S. 

lpnII~ shculd not be piven ; comments as input. (REr·~fJ:t:I) j.G. 

cenerall;{ used to ~void this. FFRIN doef' not rrjnt r; ~~ce 
follc\oJinr s. 
3. (l'CRH F) - exrr - Thif.' furction is derir-YlC0 to relieve the u~C'r 
of ar exrljcit concern for ccmmerts. It p.l~c :freef: tim from 
rrintill[:'" sraces between elements of ,I. It~ cefirjtic-rJ if": 

~~~~f~~lgAR L) F)· . 
~AND (SETe) L (CDR L)) (PRINe 'j )) 

Its action is to first a.pply RENSEMI, rer.:ovinr ar.~! . iri ti~l cC!r.r.~er!t!"> 
from L. It then rrettY-rrintoS (CAR L)in the sreci.fjp.d form::t Y. 
FinaJly it CDR's L and print~ a ~pace if there if'" stjll rore to rOe 

4. (TURPRI) - exrr - A carri8.{"e return ir- prj ntec • 'I'ERPEI sr~oulcl 
not l~e used. 

5. (JNDEET-TC N) - expr - This function cnUf-'€f: CERCT to be set to n 
l'y printjl1f-' a carriape retur~ if necessary (N > CEReT) a1!d sraces. 
~Note that CERCT j~ the current width. This rumber i~ equal to the \, 
indertatjon subtracted from the total line width; A common tUfT is 
to treat N as the indentation. 

6. (INDENT 14) - exrr - M spaces a.re rrintec. An error re~ults if H 
exceeds the ~pace reJ;1a.injng en the ljne. 

7. CrePL) - expr - L i~ f"et to (CDR I). Thell RFMSFHI is a.pplied. 
The net result ir to CDR L until its CAR i~ not a comwent. 

8 a. (TESTL) - lexrr - return~ the fjrst eleIrent ofL thHt IS NOr 
a. If;" cornmert. 

b. (TESTL j) returns the jth e~ernert of L thati~ ro! a.corrnen~. 
c. (TESTL J t) returns the entlre rema1nder of L bep-lnr1.n[" l;TIT!. 

the jth element. 

9. (SEHI? K) exrr - returns T only if Y isa semi-colon comment. 

3. EXAMPI.FS 

Follo\o:inp are some examples of SGF'f:. LAMPDA'8 are [Yround 
by default in DBF-FORM. The user could achieve the ~aIT:e effect t.v 
definine the follol;!ilJp' SGF: ~ 

1 (GRINDFN LAMPDA (FORf\1 'LJNF) 
(FORl-'1 'PIOC¥)) 



(FCRI": 'LINE) in line 1 print~ LAMP·DA and rop~ L. (FeRn 'pr,ocrr ) j 1'1 
line 2 print~ the arrument Ij.~t of the LANPDJl. in PI.OCK-FCIHl :lno 
f1.rain rors L. Contrcl is then returned to p-rind nne thr. rr.mp i nd rr 
cf the LAMBDA is printed as a. body • 

. ".nother examrle mieht. be where the ur--er wir-her; to rrj nd p].1 
cxpre~sions cf the form: 

(DEFPFiOP <ATON) <DEFINITION) <EXPR, FFXPR OR r'~ACRC» 

as DEFUN's. This would be done by: 

1 (GRINDFN DEFPI-:OP 
2 ( COND «( NFMQ (TESTL 4) , (FXPR FEXPR ~1ACRO) 
3 (SETQ L . . 
4 (APPEND (LIST 'DFFUN (TFSTI.2») 
5( COIJD « FO (TFSTI. 4) 'EXPR) 
6 NIL) , 
7 , ( (LI ST (TESTIJ 4») 
8 ' (CDR (TFSTL 3»» 
9 (DEF-FORM» 
10 «FORM LINF.)) 

The 1'~EMQ of line 2 checks for whether the indicator is a function 
rroperty. If so, L is redefined as the appropria.te DEFUN: 

(CADR L) = function name 
The cond of line 5 puts fexpr/macro into the DF.FUN 
(CDR (CADDR L)) i~ the arpument list of the function 
(CDDR (CADDR L) is the bOdy of the function . 

2.nd then Fround jn DFF-roRM. If not, DEFPROP is printed and control 
is returned to prind. 

Finally, consider a function called_CMEANS whose arguments 
are rroperty lists. It lS to be fTound as follows: 

(CMEANS 
«IND-11> <GRIND PROP-11> 

• 
<IND-1N> <GRIND PROP-1N» 

• 

· «IND-M1> (CRIND PROP-N1> 
• 

<IND-MN> <GRIND PROp-r~N») 

Suppose the additional subtlety is desired that rroperties with 
indicator FCC are l'-round as 'tlocks while all other propertieF are 
{'Tound ordinarily as code. The followirJf" SCY achir"ves this format. 

, ••• - ... ". ". • - '_on,,_. 'ridE'· '.,,, J 



(GI\JNDFN CMFANS (PROG NIL 
1 !FORM 'I,INE) 
~' SITO N (*DIF N 4.) 
? REl1SEMI) 
4 p~ (LAMBDA (JJ) 
~ (PROG NIL 
(; INDFNT-TC (/nD1 E» 
7 PRINe '/() 
l B REH~MI) 
9 INDENT-TO N) 
10 
11 FORt4 'LIJ:F) 
12 FORM 'FLeCK» 
13 ( FORl·1 IJJIIJFl 14 FORN 'corF ») 
15 ~AND (T.· FST.L ... ) (GO P) 
16 PRINe ' I» . 
17 REMSEMI)) 
18 (CAR L) . 
19 (COND ({roPIJ) (00 A»») 

I,ine 1 print~ "Clv1RANS". Line 2 e~tablishes the j.ndenta tj on of" the 
arguments of CMEA.NS. Line 3 processes any comments rrecedinp the 
first. arpume~~ t. Idne 4 binds the ~:recial :free 'vpriableI, to the 
current arrument of CMEANS for u~e by FORM and REM. Line 6 indents 
for the current ar~ument. Line 8 processes any injtial comments 
embedded in the arrument. The condof line 10 forks dependinr: on 
t.A!hether or not the indicator is "FOO". In line 15, TESTI returns 
rTIL if L conta.in~ no more indicator-rroperty pairs. Line 16 printr> 
the closing I'.are~the~is. 17 I'roce~ses any ren:aininpconm:ent~. Py 
line 19, the current argument of CMEANS ha.s been ground. Hence,L 
js popped. If there are no more arguments, POPLreturns NITJ and thp' 
SCP is done. 

4. GRINDr~ACROs 

;~-:.' 

J. CRINDMACRO differs from the above prinafunctions in that 
the rrind rackaf'e take~ nothing for [",ranted. It doe~ not 
automatically print the openirlE rarenthe:::is, the h~lance of Ii and 
the closing rarenthesis. If the GRINDMACRO function returns T, then jll 
the rretty-printer does nothing more on II. The assurrption i~ that \,1 

the CRINDMACRO has done all the \Olork. This ~lould be the case for n ~ 
CRINDMACRO for "QUOTE": I 

(GRINDMACRO QUOTE (PRINC 'I') 
(FPRI1I (CADR II) I CODF) 
T) 



pare 25 

P,lternatively, if the GRTNDMACRO returns NIl" the T'rettY-rriT!ter 
rrin\~ 1. a.~ thouph no~hinp-'.had harreJ1ed •. This mode i~ uf"eful :f?r ? 
CRINDlvlACRC used to prlnt "lncex" lnformatlon as con;men.t::: rrec,~dlr:C'" 
the E-exrres~ion. 

CRINDr~ACRCs can be defined similHrly to CRIND}lJs. 

(CRINDMACRO <ATOlv1 or LIST OF ATOr~S> <f"rird-fcrma t>") 

P.ga.il'l the definition can be ei ther the body of a. IJJ\J~rDA or n 
function of 0 inruts • 

__________ ~---'---_ __'_ ____ ~~ ____ ~_______.:.c_~_~--=----=-----=,----=------=-·=::"3~'!';.~--~~===J·-... 



VI. ro~~ible future improvements 

f... Cc:nCEJ~UAIJ 

1. The lal1puap-e for r-;pecifyinr. forma t~ should be exr1"!ndec:. l 
rattern-crie:nted or templa.te approach mipht cr-:- rrei"er2.blc:. 

2. The ta.ble scheMe "Jould allow the rre tty-rrintcr t.c cor:-:id(!r 
indentations for the arruements of a functior, irterretiietp. l.nt~·lc:r;(l 
n;iser and standard format. 'The alrori thrc covlq choorc tt:e p'rr:~ t, (>~: t 
indel1tation that doef' not ca.use extrf.3. lires to be prj ntec: • 

. ;. Pretti-printers could do more thUl1 just ir.~ert sp2cef; and 
carriage returns. For example, FACTOR I All could "te printed 8.;
follows: 

(DEFUN Fft.CTORIAL (X) (COND «= X 0) 1) (-»)) 

(* (FACTORIAlJ (1- X)) X) 

n=>" is interpreted by the reader to rnea.n that the l1ext expressi on 
READ should be inserted here. This t;uE'eestion i~ due to HIl'ISKY. 

4. The fa.ct that conunent~ are not read in as rart o:f the list t-
~trvcture presents a serious obstacle to interactive debur-e.ine. The 
user must return to a.' text edi tinp. la.n['Uar-e to rrEke corrections in 
his code. Otherwise, he loses ary commentaT"J. One TOf)sible 
["olution would be for comments to be re~jdent. PapiTle could be used 
to store all comrneflts on the ~ame rape. Thi~· would a.llo\-! therr to be 
~wa.Pfed out durillp' runtiffie. The evaluator would have to be JTIonified 
t.o i{'ilore pointers to a comment ra.f."e~. These modific2.tions are 
rrobably well worth the effort. The user would be able to move 
continuously bet\lJeen definillf', running and editirg programs. 

P. INPLENENTATION 

1. Grind should accert a wider Variety of TJ6'like sr€cifications. 
for examrle, 

;*DASH -> 1,1ne of dashes 
;*CENTER <text> -> Centers text in comment 

2. The current scheme for ; comments leads to enormou~ list 
structures since every commert i~ expanded to a list~ one letter per 
node. Alternatives to this approach are: 

A. TYT ra.ther than readch. 
P. Pack fisc ii characters into pnames or Hrray. 
C. Use rea.d to pB.ck by turning off syntax or parentheses, 

Periodf), commas. ( " 


	Goldstein-AIM279-Pretty_printing0001_a
	Goldstein-AIM279-Pretty_printing0001_b
	Goldstein-AIM279-Pretty_printing0002_a
	Goldstein-AIM279-Pretty_printing0002_b
	Goldstein-AIM279-Pretty_printing0003_a
	Goldstein-AIM279-Pretty_printing0003_b
	Goldstein-AIM279-Pretty_printing0004_a
	Goldstein-AIM279-Pretty_printing0004_b
	Goldstein-AIM279-Pretty_printing0005_a
	Goldstein-AIM279-Pretty_printing0005_b
	Goldstein-AIM279-Pretty_printing0006_a
	Goldstein-AIM279-Pretty_printing0006_b
	Goldstein-AIM279-Pretty_printing0007_a
	Goldstein-AIM279-Pretty_printing0007_b
	Goldstein-AIM279-Pretty_printing0008_a
	Goldstein-AIM279-Pretty_printing0008_b
	Goldstein-AIM279-Pretty_printing0009_a
	Goldstein-AIM279-Pretty_printing0009_b
	Goldstein-AIM279-Pretty_printing0010_a
	Goldstein-AIM279-Pretty_printing0010_b
	Goldstein-AIM279-Pretty_printing0011_a
	Goldstein-AIM279-Pretty_printing0011_b
	Goldstein-AIM279-Pretty_printing0012_a
	Goldstein-AIM279-Pretty_printing0012_b
	Goldstein-AIM279-Pretty_printing0013_a
	Goldstein-AIM279-Pretty_printing0013_b

