
-,

o

o

o

'" .. -:: -- ~ :-

MACLISP REFERENCE MANUAL
December 17. 1975

Part 1 - The Language

1. General Information
2. Data Objects
3. The Basic Actions of Lisp

Part 2 - Function Descriptions

I. Predicates
2. The Evaluator
3. Manipulating- List Structure
-t. Flow of Control
5. Atomic Symbols
6. Numbers
7. Character Manipulation
8. Arrays

9. Mapping Functions

Part 3 - The System

I. The Top Level
2. Break Points
3. Contrel Characters
1. Exceptional Condition Handlmg
5. Debugging
6. Storage Management
7. Miscellaneous Functions

Part -4 - The Compiler

1. Peculiarities of [he Compiler
2. Declarations
3. Running Compiled Functions
1. Running the Compiler

December 17. 1975
Page i

. ,

o

o

o

o

o

Madisp Reference Manual

5. The Lisp Assembly Program, LAP
6. Calling Programs Written in Other Languages

Part 5 - Input and Output

1. The Reader
2. The Printer
3. Files
4. Terminals
5. Requests to the Host Operating System
6. "Old I/O"
7. "Moby I/O"

Part 6 - Using Madisp

1. Getting Used to Lisp
2. Extending the Language
3. The Grinder
4. Editors
5. Implementing Subsystems with Madisp
6. Internal Implementation Details
7. M adisp C lossary
8. Comparison with LISP 1.5
9. Comparison with InterLISP

Indices
Function Index
Atom Index
Concept Index

Page it December 17, 1975

o

0:

o

~---~----~~~~ ~~- ----

o
Part 1 - The Language

Ta.ble of Contents

1. General Information .. 1-1
1.1 The Maclisp Language .. 1-1
1.2 Structure of the Manual 1-3
1.3 Notational Conventiol1& 1-4

2. Data Objects .. 1-7

3. The Basic Actions of LISP 1-11
3.1 Binding of Variables 1-11
3.2 Evaluation of Forms ... 1-13
3.3 Application of Functions 1-15
3.1- Special Forms .. 1-19
3.5 Binding Context POinters 1-22

0

o

o

o

i
I

O!

o General Information

o

o

1. General Informa don

1.1 The Maclisp Language

Maclisp is a dialect of Lisp developed at M.LT.'s Project MAC and M.LT.'s
ArtifiCial Intel1igence Laboratory for use in artificial intelligence research and related
fields. M aclisp is descended from the common Iy-known Lisp 1.5 dialect; however,
many features of the language have been changed or augmented.

This document is intended both as a reference source for the language and as a
user's gUide to three implementations. These are, in chronological order, the M .I.T.
Artificial Intelligence Lab's implementation on the DEC pdp-lO computer under their
operating system ITS, hereafter referred to as "the ITS implementation," Project
MAC's implementation on Honeywel1's version of the Multics system, hereafter
referred to as "the Multics implementation," and the version that runs on the DEC
pdp-tO under DEC's TOPS-tO operating system, hereafter called "the DEC-IO
implememation." The DEC-lO implementation also runs under TENEX by means of
a TOPS-IO emulator. Since the ITS and DEC-lO implementations are closely related,
they are sometimes referred to collectively as the pdp-lO implementation. There are
reputed to be several other implementations.

These implementations are mostly compatible; however, some implementations
have extra features designed to exploit peculiar features of the system on which they
run, and some implementations are temporarily missing some features. Most
programs will work on any implementation, although it is possible to write machine
dependent code if you try hard enough.

The Maclisp system is structured as an environment, which is essentially a set of
names and bindings of those names to data structures and function definitions. The
environment contains a large number of useful functions. These functions can be
used through an intr:rpreter to define other functions, to control the enVironment, to
do useful work, etc.

The interpreter is the basiC lIser interface to the system. This is how the user
enters "commands." When Mac1isp is not doing anything else, such as running a
program, it waits for the user to enter a Lisp form. This form is evaluated and the
value is printed out. The form may can upon one of the system functions (or a user
defined function, of course) to perform some useful task. The ev'!-luation of a form

December 17, 1975 tl-l. Page 1-1

Mac1isp Reference Manual

rna y initiate the execution of a large and complex program, perhaps never returning
to the "top level" interpreter. or it may perform some simple action and immediately
wait for the user to type another form.

It is also possible to get into the interpreter while a program is running. using the
break facility. This is primarily used in debugging and related programming
acti v ities.

The functions invoked by the top-level interpreter may be executable machine
programs. or they may themselves be interpreted. This is entirely a matter of choice
and convenience. The system functions are mostly machine programs. User
functions are usually first used interpretively. After they work. the compiler may be
applied to them. turning them into machine programs which can then be loaded into
the environment.

All of this is done within a single consistent language. Lisp. whose virtue is that
the data structure is simple and general enough- that programs may easily operate on
programs. and that the program structure is simple and general enough that it can be
used as a command language.

Page 1-2 ii-1.1 December 17, 1975

o

o

o

o

General Information

1.2 Structure of the Manual

The manual is generally structured into sections on particular topics; each section
contains explanatory text and function definitions, interspersed. In general, each
section contains both elementary and complex material, with complexity increasing
toward the end of the section. An axiomatic, step-by-step development is not used.
Frequently the more complex information in a section will assume knowledge from
other sections which appear later in the manual. The new user is advised to skip
around, reading early chapters and early sections of chapters first.

Often descriptions of Lisp functions will be given not only in prose but also in
terms of other Lisp functions. These are as accurate as pOSSible, but should not be
taken too literally. Their main purpose is to serve as a source of examples.

Accessing information in the manual is dependent on both the user's level of
ability and the purpose for which she or he is using' the manual. Though cover to
cover reading is not recommended (though not excluded), it is suggested that someone
who has never previously seen this manual browse through it, touching the
beginning of each subdiVision that is listed in the Table of Contents, in order to
familiarize himself or herself with the material that it contains. To find an answer to
some particular question, one must use one of the provided access methods. Since the
manual is structured by topicS one can use the Table of Contents that is found at the
beginning of the manual, and the more detailed tables of contents found at the
beg'inning' of each of the six major parts, to find where information of a general class
will be found. Entry into the manual is also faCilitated by the Glossary and the
Concept Index, which are found at the end. Also at the end of the manual are a
Function Index and an Atomic Symbol Index which are probably most useful to a
regular and repeated user of the dialect, or to an experienced user of another dialect,
who wishes to find out the answer to a question about a specific function. When one
section of the manual assumes knowledg'e of another section a page number reference
to the other section will generally be given.

December 17, 1975 21-1.2 Page 1-3

Maclisp Reference Manual

1.3 Notational Conventions

There are some conventions of notation that must be mentioned at this time, due
to their being used in examples.

Most numbers are in octal radix (base eight). Numbers with a decimal point and
spelled-out numbers are in decimal radix. It is important to remember that by
default M aclisp inputs and outputs all numbers in octal radix. If you want to change
this, see the variables base and i base.

A combination of the characters equal sign and greater than symbol, "=>", will be
used in examples of Lisp code to mean evaluation. For instance, "F => V" means that
evaluating the form F produces the value V.

All uses of the phrase "Lisp reader," unless further qualified, refer to that part of
the Lisp system which reads input, and not to the person reading this document.

The terms "S-expression" and "Lisp object" are synonyms for "any piece of Lisp
data."

The character "s" always stands for dollar-Sign, never for "alt mode," unless that
is specifically stated.

The two characters accent acute, "/", and- semi-colon, "j", are examples of what
are called macro characters. Though the macro character facility, which is explained
in Part 5, is nor of immediate interest to a new user of the dialect, these two macro
characters come preset by the Lisp system and are useful. When the Lisp reader
encounters an accent acute, or quote mark, it reads in the next S-expression and
encloses it in a quote-form, which prevents evaluation of the S-expression. That is:

/some-atom

turns into:

(quote some-atom)

and

/(cons /a /b)

turns into

Page 1-4 H-1.3 December 17, 1975

o

o

o

o

o

o

General Information

(quote {cons (quote a) (quote b»)

The semi-colon (j) is used as a commenting character. When the Lisp reader
encounters it. the remainder of the line is discarded.

The term "newline" is used· to refer to that character or sequence of characters
which indicates the end of a line. This is implementation dependent. In Multics
Maclisp. newline is the Multics newline character. octal 012. In ITS Maclisp, newline
is carriage return (octal 015). optionally followed by line feed (octal 012.) In dec-IO
MacJisp. newline is carriage return followed by line feed.

All Lisp examples in this manual are written according to the case conventions of
the Multics implementation. which uses both upper and lower case letters and spells
the names of most system functions in lower case. Some implementations of MacJisp
use only upper case letters because they exist on systems which are not. or have not
always been. eqUipped with terminals capable of generating and displaying the full
ascii character set. However. these implementations will accept input in lower case
and translate it to upper case. unless the user has explicitly said not to.

December 17, 1975

Mac1isp Reference Manual o

o

o
Page 1-6 . U-1.3 December 17, 1975

o DmO~~

o

o

2. Data Objects

Lisp works with pieces of data called "objects" or "S-expressions." These can be
simple "atomic" objects or complex objects compounded out of other objects.
Functions, the basic units of a Lisp program, are also objects and may be
manipulated as data.

Objects come in several types. All types are manifest; that is, it is possible for a
prog'ram to tell what type an object is just by looking at the object itself, so it is not
necessary to declare the types of variables as in some other languages. One can make
declarations. however, in order to aid the compiler in producing optimal code. (See
part 4.2.)

It is important to know that Lisp represents objects as pointers. so that a storage
cell' (a "variable") will hold any object. and the same object may be held by several
different storage cells. For example. the same identical object may be a component of
two different compound objects.

The data-eypes are divided into three broad classes: the atomic types. the non
atomic types. and the composite types. Objects are divided into the same three classes
according' eo their type. Atomic objects are basic units which cannot be broken down
by ordinary chemical means (car and cdr). while non-atomic objects are structures
constructed out of other objects. Composite objects are indivisible, atomic. entities
which have other objects associated with them. These other objects may be
examined and replaced.

The atomic data types are numbers. atomic symbols. strings. and subr-objects.
Atomic symbols can also be regarded. as compOSite. See below.

In Lisp numbers can be represented by three fypes of atomic objects: fixnums,
ftonums. and bignums. A fixnum is a fixed-paint binary integer whose range of
values is machine-dependent. A flonum is a floating-point number whose precision
and range of values are machine-dependent. A bignum is an infinite-precision
integer. It is impossible to gee "overflow" in bignum arithmetic. as any integer can be
represented by a bignum. However. fixnum and flonum arithmetic is faster than
bignum arithmetic and requires less memory. Sometimes the word "fixnum fl is used to
include both fixnums and bignums (i.e. all integers); in this manual, however. the
word "fixnum" will never be used to include bignums unless that is explicitly stated.

December 17. 1975 B-2. Page 1-7

Maclisp Reference Manual

The printed representations for numbers are as follows: a fixnum is represented
as a sequence of dig-its in a specified base, usually octal. A trailing decimal point
indicates a decimal base. A ftonum is represented as a set of digits containing an
embedded or leading decimal point and/or a trailing exponen.t. The exponent is
introduced by an upper or lower case "e". A bignum looks like a fixnum except that
it has enough digits that it will not fit within the range available to fixnums. Any
number may be preceded by a + or - sign. Some examples of fixnums are 4, -1232,
-191., +46. An example of a bignum is 1565656565656565656565656565656565.
Some examples of ftonums are: 4.0, .01, -6e5, 4.2e-1.

One of the most importam Lisp data types is the atomic symbol. In fact, the
. word "acom" is often used to mean just atomic symbols, and not the other atomic
types. An atomic symbol has associated with it a name, a value, and possibly a list of
"properties". The name .is a sequence of characters, which is the printed
representation of the atomic symbol. This name is often called the "pname," or
"prim-name." A pname may comain any ascii character except the null character,
which causes trouble in some implementations. For example, a certain atomic symbol
would be represented externally as faa; imernally as a structure comaining the value,
the pname "faa", and the properties.

There are two special atomic symbols, t and nil. These always have their
respective selves as values and their values may not be changed. nil is used as a
"marker" in many contexts; it is essential to the construction of data structures such as
lists. t is usually used when an antithesis to nil is reqUired for some purpose, e.g. to
represent the logical conditions "true" and "false." Another property of the special
atomic symbol nil is that its car and its cdr are always nil.

The value of an atomic symbol can be any object of any type. There are
functions to set and get the value ofa symbol. Because atomic symbols have values
aSSOCiated with them, they can be used as variables in programs and as "dummy
arguments" in functions. It is also possible for an atomic symbol to have no value, in
which case it is said [0 be "undefined" or "unbound."

The property list of an atomic symbol is explained on page 2-48. It is used for
such things as recording the fact that an atomic symbol is the name of a function.

An atomic symbol with one or no characters in its pname is often called a
"character object" and used to represent an ascii character. The atomic symbol with a
zero-length pname represents the ascii null character, and the symbols with one
character pnames represent the character which is their pname. Functions which take
character objects as input usually also accept a string one character long or a fixnum
equal to the ascii-code value for the character. Character objects are always interned
on the obarra y (see page 2-54).

Page 1-8 81-2. December 17, 1975

o

o

o

o

Data Objects

Another Lisp data type is the string. This is a sequence of characters (possibly
zero-length). Strings are used to hold messages to be typed out and to manipulate
text when the structure of the text is not appropriate for the use of "list processing.'·
The printed representation of a string is a sequence of characters enclosed in double
quotes, e.g. II foo II. If a II is to be included in the string, it is written twice, e.g.
IIfoollllbar" is foo"bar. In implementations without strings, atomic symbols are used
instead; The pdp-IO implementations currently lack strings.

A "subr-object" is a special atomic data-type whose use is normally hidden in the
implementation. A subr-object represents executable machine code. The functions
built into the Lisp system are subr-objects, as are user functions that have been
compiled. A subr-object has no printed representation, so each system function has
an atomic symbol which serves as its name. The symbol has the subr-object as a
property.

One composite data type is the array. An array consists of a number of cells,
each of which may contain any Lisp object. The cells of an array are accessed by
subscripting; each cell is named by a tuple of integers. An array may have one or
more dimensions; the upper limit on the number of dimensions is implementation
defined. An array is not always associated with an atomic symbol which is its name.
Rather, an array is always deSignated by an array-pointer, which is a special kind of
atomic Lisp object. Frequently, an array-pointer will be placed on the property list of
a symbol under the indicator array and then that symbol will be used as the name of
the array, since symbols can have mnemonic names and a reasonable printed
representation. See page 2-85 for an explanation of how to create, use, and delete
arrays.

Another composite data type is the file-object, which is described on part 5.3.

The sole non-atomic data type is the "cons." A cons is a structure containing two
components, called the "car" and [he "cdr" for historical reasons. (These are names of
fields in an IBM 7094 machine word.) These two components may be any Lisp object,
even another cons (in fact, they could even be the same cons). In this way complex
structures can be built up our of simple conses. Internally a cons is represented in a
form similar to:

car cdr

where the boxes represent cells of memory large enough to hold a pointer, and "car"

December 17, 1975 el-2. Page 1-9

Maclisp Reference Manual

and "cdr" are two pointers to objects. The printed representation of a cons is the
"dotted-pair" notation (A • B) where A is the car and B is the cdr.

Another way to write the internal representation of a cons, which is more
convenient for large structures, is:

--~ a -----> cdr

I
I
V

car

There are three Lisp functions associated with conses: cons, car, and cdr. The
function cons combines its two arguments into a cansj (l , 2) can be generated by
evaluating (cons 1 2). The function car returns the car component of its
argument, and the function cdr returns the cdr component of its argument.

One type of structure, built out of conses, that is used quite often, is the "list." A
list is a row of objects. of arbitrary length. A list of three things 1, 2, and 3 is
constructed by (cons 1 (cons 2 (cons 3 nil»); nil is a special atom that is
used to mark the end of a list. The structure of a list can be diagrammed as:

--~ 0 ----> 0 ----> 0 ----> nil
I I I
I I I
V V V
1 2 3

From this it can be seen that the car of a list is its first element. that the cdr of a
list is a list of the ~lements after the first, and that the list of no elements is the same
as ni 1.

This list of 1, 2, and 3 could be represented in the dot-notation used for conses as
(1 • (2 • (3 • nil»). However, a more convenient notation for the printed
representation of lists has been defined: the "list-notation" (1 2 3). It is also
possible to have a hybrid of the two notations which is used for structures which are
almost a list except that they end in an atom other than n 11. For example, (A • (B
• (C . D») can be represented as (AB C . D).

A list not containing any elements is perfectly legal and frequently used. This
zero-length list is identified with the atom n i 1. It may be typed in as either nil or
O.

Page 1-10 ~1-2. December 17, 1975

o

o

o

o

o

The Basic Actions of LISP

3. The Basic Actions of LISP

3.1 Binding of Variables

The basic primitives of programming in Lisp are variables, forms, and functions.
A variabl~ is (In atomic aymbol whi(;h ha~ it valU!~ tia§Q(;iElt@d with itj tl'i@ §ymbgl i§
said to be bound to that value. The value may of course be any Lisp object
whatsoever. The atomic symbol acts simply as a name by which the program may
refer to the value while it is processing it.

This is similar to the concept of variables in other programming languages.
However, Lisp's concept of the scope of names is subtly different from that of most
"block-structured" languages. At a given moment, a variable may actually have
several bindings in existence. Only the most recent, or current binding, can be used.
When a new binding' is created, the previous one is pushed onto a stack. It will
become accessible again when the binding which superseded it is removed. Creation
and removal of bindings is synchronized with subroutine calling (and with certain
special forms described below) so this mechanism corresponds closely to the "local
variables" concept of other programming languag·es. However, Lisp considers that
there is only one variable whose binding changes, rather than several separate
variables which happen to have the same name. Any reference to a variable, even
from outside the particular progTam which gave it its current binding, gets the
current binding· and not one determined by "scope rules." It is possible to simulate
the other concept of scope of names by using binding context pointers, which are
described later (see pag'e 1-24).

Unlike many other languages, Lisp does not combine the concepts of name and
storage. Many languages associate with a variable (a name) a piece of storage which
can hold one object of a particular type, such as a floating point number. The
variable's value resides in this storage. It is then impossible for two variables to
really have "the same" value; one could have a copy of the value of another but not
the same identical object.

The situation in Lisp is qUite different. Binding a variable to a value is not
copying the value into storage aSSOciated with that variable. Values exist as separate
objects in their own right and in their own storage. Binding is simply an association
between a variable and a value; consequently there is no reason why two variables
cannot have truly identical values. Similarly, erasing the binding between a variable

December 17, 1975 81-3. Page H1

Mac1isp Reference Manual

and its valUe does not destroy or throwaway the value; it simply breaks the
association. Of course, if there is no other use for the value the storage it occupies
will eventually be reclaimed by the system and put to more productive use.

Often these processes of creating a new binding of a variable to a value and
reverting to a previous binding are referred to as binding and unbinding the
variable, respectively.

A slightly different way of creating a binding between a variable and a value is
aSSignment. When a variable is bound [0 a value, the previous binding is saved and
can be restored, but when a variable has a value assigned to it, the previous binding
is not saved, but is simply replaced. Thus binding may be regarded as creating a
new level of usage of a variable, while aSSignment sWitches a variable to a different
value within the same level. For instance, a subroutine or function may bind a
variable to an initial value when it is entered, and then proceed to make use of that
variable, possibly assigning a different value to it from time to time. The initial
binding of the variable establishes the (temporary) ownership of that variable by the
subroutine.

Due to the subtlety of the distinction between binding and aSSignment, some
people have proposed that assignment be eliminated wherever possible. The Maclisp
do function can often be useful in this regard.

There are several program constructs by which a variable can be bound. These
will be explained after forms and functions have been introduced.

Page 1-12 U-3.1 D@cemb@r I'. 1975

o

o

o

o The Basic Actions of LISP

o

o

3.2 Evaluation of Forms

The process of "executing" a Lisp program consists of the evaluation of forms.
Evaluation takes a form and produces from it a value (any Lisp object), according to
a strict set of rules which might be regarded as the complete semantics of Lisp.

If the form is atomic, it is evaluated in a way which depends on its data type. An
atomic symbol is a variable; it evaluates to the value to which it is currently bound.
If it is not bound, an error occurs. (See part 3.1:.) A number or a string is a literal
constant; it evaluates to itself. The special atomic symbols t and nil are also treated
as constants. A constant can also be created by use of the quote special form; the
value of (quote x) is x.

If the form is a list, its first element specifies the operation to be performed, and
its remaining elements specify arguments to that operation. Non-atomic forms come
in two types: special forms, which include the necessary programming operations such
as aSSignment and conditionals, and function references, in which the "operation" is a
function which is applied to the specified arguments. Thus functional composition is
the method by which programs are built up out of parts • as distinguished from
composition of data structures, for example. Lisp functions correspond closely to
subroutines in other programming languages.

A function may be either a primitiVe which is directly executable by the machine,
called a subr (short for "subroutine"), or a function defined by composition of
functions and special forms, called an I!xpr (short for "expreSSion.") Most subrs are
built in to the language, but it is possible for a user to convert his exprs into subrs by
using the compiler (see part 4.) This gains speed and compactness at some cost in
debugging features.

There is additional compleXity because special forms are actually implemented as
if they were function references. There is a special type of subr called an fsubr
which is used for this purpose. An fsubr is permitted to make any arbitrary
interpretation of its argument specification list, instead of following the standard
procedure which is described below. It is also possible to define a special form by an
expr, which is then called a fexpr. Most of the built-in special forms are handled
specially by the compiler. They are compiled as the appropriate code rather than as a
call to the fsubr.

Other types of functions are lsubr, which is just a subr with a variable number of
arguments, lexpr, which is an expr with a variable number of arguments, and macro,
which is a type of special form whose result is not a value, but another form; this
allows a "transformational" type of semantics.

December 17, 1975 U-3.2 Page 1-13

Maclisp Reference Manual

Consider the form

(F Al A2 ... An)

The evaluator first examines F to see if it is a function which defines a special
form, i.e. an fsubr, a fexpr, or a macro. If so, F is consulted and it decides how ta
produce a value. If not, F must be an ordinary function. The sub-farms Al through
An are evaluated, producing' n arguments, and then the definition of F is applied ta
the arguments. (Application is described in the following section.) This yields a result
(some Lisp object), which is then raken as the value of the form.

An atomic form of some random type, such as a subr-objecc, a file, or an array
pointer, evaluates to something random, often itself; or else causes an error depending
on the convenience of the implementation. Note that an array-painter is different
from an atomic symbol which happens [0 be the name of an array; such an atomic
symbol is evaluated the same as any other atomic symbol.

Page 1-11 H-3.2
.

December 17, 1975

o

o

o

o The Basic Actions of LISP

o

o

3.3 Application of Functions

When a non-atomic form is evaluated, the function specified by that form is
combined with the arguments specified by that form to produce a value. This process
is called application; the function is said to be applied to the arguments.

The first step in application is to convert the function-specifier into a functional
expression (sometimes confusingly called a functional form.) A functional expression
is a Lisp object which is stylized so that Lisp can know how to apply it to arguments.
The rules for this conversion will be described after the types of functional
expressions have been explained.

There are basically two types of functional expression. A 1 ambda-expression is a
functional expression which specifies some variables which are to be bound to the
arguments, and some forms which are to be evaluated. One would expect the forms
to depend on the variables. The value of the last form is used as the value of the
application of the lambda-expression. Any preceding' forms are present purely for
their side-effects. A 1 ambda-expression looks like:

(lambda (a bed)
forml
form2
form3)

Here a, b, C, and d are the variables to be bound to the values of the arguments,
called the 1 ambda-variables. If at a certain moment the current binding of a was the
one created by this 1 ambda-expression, a would be said to be 1 ambda-bound. Clearly
this 1 ambda-expression is a function which accepts four arguments. The application
of the functional expression to four arguments produces a value by evaluating
form I, then form2, and then form3. The value of form3 is the value of the whole
form. For example, the value of the form

«lambda (a b) b) 3 4)

is 4. The functional expression used is a very simple one which accepts two
arguments and returns the second one.

If we grant the existence of a primitive addition operation, whose functional
expression may be designated by +, then the value of the form -

«lambda (a b) (+ a b» 3 4)

December 17, 1975 H-3.3 Page 1-15

Maclisp Reference Manual

is 7. Actually,

(+ 3 4)

evaluates to the same thing.

The second basic type of functional expression is the subr, which is a program
directly executable by the machine. The argumems of the form are conveyed to this
program in a machine-dependent manner, it performs some arbitrary computation,
and it returns a result. The built in primitives of the language are subrs, and the
'user may write lambda-expressions which make use of these subrs to define his own
functions. The compiler may be used to convert user functions into subrs if extra
efficiency is required.

It is extremely convenient to be able to assign names to functional expressions.
OtherWise the definition of a function would have to be written out in full each time
it was used, which would be impossibly cumbersome.

Lisp uses atomic symbols to name functions. The "property list" mechanism is
used to associate an atomic symbol with a functional expression. (See page 2-48 for
an explanation of property lists.) Because the binding mechanism is not used, it is
possible for the same name to be used for both a variable and a function with no
conflict. Usually the defun special form is used to establish the association between a
function name and a functional expression.

Thus, the car of a form may be either a functional expression itself, or an atomic
symbol which names a functional expression. In the latter case, the name of the
"property" which associates the symbol with the expression gives additional
information:

A 1 ambda-expression is normally placed under the expr property. This defines
an ordinary expr.

If a 1 ambda-expression is placed under the fexpr property, it defines a special
form. In that case, the first 1 ambda-variable is bound to the cdr of the form being
evaluated. For example, if foo is a fexpr, and (foo (a b) (c d» is evaluated.
then foo's 1 ambda-variable would be bound to « a b) (c d». A second 1 ambda
variable may optionally be included in a fexpr. It will be bound to a "binding
context pointer" to the context of the evaluation of the form. (See page 1-24 for the
details of binding context pointers.)

If a 1 ambda-expression with one 1 ambda-variable is placed under the macro

Page 1-16 U-3.3 December 17. 1975

o

o

o

o

o

o

The Basic Actions of LISP

property, it defines the "macro" special form mentioned above. The 1 ambda
expression is applied to the entire form, as a single argument, and the value is a new
form that is evaluated in place of the original form.

If a subr-object is placed under the subr property, it defines a ~ubr. If a subr
object is placed under the fsubr property, it defines a special form. A subr-object
under the 1 subr property defines a subr which accepts varying numbers of
arguments.

There are some additional refinements. A 1 ambda-expression which accepts
varying numbers of arguments. called a 1 expr. looks as follows:

(lambda n
formI
form2)

The single, unparenthesized, 1 ambda-variable n is bound to the number of
arguments. The function argo described on page 2-10, may be used to obtain the
arguments.

Another property which resembles a functional property is the auto load
property. If Lisp encounters an autoload property while searching the property list
of a symbol for functional properties, it loads in the file of compiled functions
specified by the property. then searches [he property list again. Presumably the file
would contain a definition for the function being applied. and that definition would
be found the second rime through. In this way packages of functions which are not
always used can be present in the environmer:t only when needed.

An array may also be used as a function. The arguments are the subscripts and
the value is the contents of the selected cell of the array. An atomic symbol With an
array property appearing in the function position in a form causes that array to be
used.

If the function-specifier of a form doesn't meet any of the above tests, Lisp
evaluates it and tries again. In this way, "functional variables" and "computed
functions" can be used. However, it is better to use the funca 11 function. (See page
2-11.)

There are some other cases of lesser importance:

There is an obscure type of functional expression called a 1 abe l-expression. It
looks like

(label name (lambda (•..) ••• »

December 17, 1975 H-3.3 Page 1-17

Maclisp Reference Manual

The atomic symbol name is bound to the enclosed 1 ambda-expression for the duration
of the application of the label-expression. Thus if name is used as a functional
variable this temporary definition will be used. This is mostly of historical interest
and is rarely used in actual programming.

Another type of functional expression is the funarg. A funarg is a Jist
beginning" with the atomic symbol funarg, as you might expect, and containing a
function and a binding context pointer. Applying a funarg causes the contained
function to be applied in the contained binding context instead of the usual context.
funargs are created by the *function special form.

An expr property may be an atomic symbol rather than a lambda-expression. In
this case, the atomic symbol is used as the function. The original symbol is simply a
synonym for it.

In addition to the variety of application just described, which is used internally
by the evaluation procedure, there is a Similar but not identical application procedure
a vailable through the function apD ly. The main difference is that the function and
the arguments are passed to apD ly separately. They are not encoded into a form,
consequently macros are not accepted by this version of application. Note that what
is passed to app ly is a list of arguments, not a list of expressions which, evaluated,
would yield arguments.

Page 1-18 *1-3.3 December 17. 1975

o

o

o

o

o

o

The Basic Actions of LISP

3.4 Special Forms

This section briefly describes some of the special forms in Mactisp. For full
details on a specific special form, consult the Function Index in the back.

Constants

(quote x) evaluates to the S-expression x.

(funct i on x) evaluates to the functional expression x. There is little real
difference between quote and funct i on. The latter is simply' a mnemonic
reminder to anyone who reads the program - including the compiler - that the
specified expression is supposed to be some k.ind of function.

Conditionals

Conditionals c.ontrol whether or not certain forms are evaluated, depending on
the results of evaluating other forms. Thus both the value and the side effects
of the conditional form can be controlled.

< cond <predicate form] form2 • ••) (predicate form] form2 • ••) •••)

is a general conditional form. The lists of a predicate and some forms are
called clau.ses. The cond is evaluated by considering the clauses one by one in
the order they are written. The predicate of a clause is evaluated, and if the
result is true, that is, anything other than nil, then the forms in that clause are
evaluated and the cond is finished without examining the remaining clauses.
If [he result is not true, i.e. if it is nil, chen the next clause is examined in the
same way. If all the clauses are exhausted, that is not an error. The value of a
cond is the value of the last form it evaluates, which could be nil if no
predicate is true, or the value of a predicate if that predicate is true but has no
forms in its clause.

(an d form] form2 form3 • ••) evaluates [he forms in succession until one is nil
or the forms are exhausted, and the result is the value of the last form
evaluated.

(or forml fonn2 form3 •••) evaluates the forms until one is non-n 11 or the
forms are exhausted, and the result is the value of the last form evaluated.

December 17, 1975 Page 1-19

Maclisp Reference Manual

Non-Local Exits

(catch form tag) evaluates the form, but if the special form (throw value
tag) is encountered, and the tags are the same, the catch immediately returns
the value without further ado. See page 2-40 for the full details.

Iteration

(prog (variable ••.) fOl'm-or-tag ••.) allows Fortranoid "programs" with
goto's, local variables, and return's to be written.

(do ...) is the special form for iteration. See page 2-34 for the details of
prog and do.

Defining Functions

(defun name (argl arg2 ...) forml form2 •••) defines an (interpreted)
function. See page 2-56 for full details.

Error Control

(break name t) causes": bkpt name" to be typed out and gives control to a
read-eva l-pr; nt loop so that the user can examine and change the state of
the world. When he is satisfied, the user can cause the break to return a value.
See part 3.2 for the details of break.

(errset form) evaluates the fonr., but if an error occurs the errset simply
returns n; 1. If no error occurs, the value is a list whose single element is what
the value of the form would have been without errset.

ASSignment

(setq varl valuel var2 value2 ...) assigns the values to the variables. The
values are forms which are evaluated.

(store (array subscript! subscript2 ...) value) assigns the value to the array
cell selected by subscripting. See part 2.8 for further information on arrays.

Miscellaneous Parameters

(status name -optional args-) returns miscellaneous parameters of LISP.
name is a mnemonic name for what is to be done.

Page 1-20 H-3.4 December 17, 1975

o

o

()

o

o

The Basic Actions of LISP

(sstatus name -optional args-) sets miscellaneous parameters.

See part 3.7 for the details of status and sstatus.

Pretty-Printing

(gr i ndef x) prettily prints the vallie and function definition (if any) of the
atomic symbol x. Indentation is used to reveal structure, the quote special form
is represented by', etc. See part 6.3 for the details.

Tracing

(trace name) causes the function name to print a message whenever it is
called and whenever it returns. See part 3.5 for the many features and options
of trace.

December 17, 1975 81-3.4 Page 1-21

Maclisp Reference Manual

3.5 Binding Context Pointers

There is a special type of object called a binding context pointer, or sometimes an
"a-list pOinter", which can be used to refer to a binding context (a set of bindings of
variables and values which was extant at a particular instant.) Due to the stack
implementation of Maclisp, a binding context pointer is only valid while control is
nested within the binding' context it names. It is not possible to exit from within a
binding context but keep it around by retaining a pointer to it.

A binding context pointer is either a negative fixnum or nit nil means the
"global" or "top level" binding context. The negative fixnum is a special value of
implementation dependent meaning which should be obtained only from one of the
four following sources: the function eva 1 frame, the function errframe, the special
form *funct i on, or the second 1 ambda-variable of a fexpr.

The only use for binding context pointers is to pass them to the functions eva 1
and app ly to specify the binding context In which variables are to be evaluated and
assignrnents are to be performed during that evaluation or application. Binding
context pointers are also used internally by *funct i on. When it generates a funarg,
it puts in the funarg the functional expression it was given and a binding context
pointer designating the binding environment current at the time *funct i on was
called.

Page 1-22 H-3.S December 17, 1975

o

o

o

(\
\. /

o
Part 2 - Function Descriptions

Table of Contents

I. Predicates ;: : .. 2-1

2. The Evaluator .. 2-5

3. Manipulating List Structure 2-13
3.1 Conses ".................................... 2-13
3.2 Lists ... 2-16
3.3 Alteration of List Structure•.......... 2-21
3.1 Tables ... 2-23
3.5 Sorting ... 2-29

4. Flow of Control. .. 2-31
4.1 Conditionals ... 2-32
4.2

CJ 1.3
4.4

Iteration ... 2-34
Non-local EXits ... 2-40
Causing and Controlling Errors .. 2-42

5. Atomic Symbols ... 2-45
5.1 The Value Cell. .. 2-45
5.2 The Property List•... 2-48
5.3 The Print-Name ... 2-52
5.1 Interning of Symbols. .. 2-54
5.5 Defining Atomic Symbols as Functions. 2-56

6. Numbers " 2-59
6.1 Number Predicates ... 2-59
6.2 Comparison ... 2-61
6.3 Conversion " .. 2-63
6.4 Arithmetic ... 2-65
6.5 Exponentiation and Logarithm Functions 2-72
6.6 Trigonometric Functions 2-73
6.7 Random Functions. .. 2-74
6.S Logical Operations on Numbers 2-75

7. Character Manipulation 2-79
7.1 Character Objects ... 2-79

nJ

o

o

o
7.2 Character String's•.................•. 2.82

8. Arrays ... 2-85

9. Mapping Functions ... 2-93

o

o

o

o

o

o

o

o

Predicates

1. Predioates

A predicate is a function which tests for some condition involving its argument
and returns t if that condition is true, or nil if it is not true.

The following predicates are for checking data types. These predicates return t
if their argument is of the type indicated by the name of the function, nil if it is of
some other type. Note that the name of most predicates ends in the tetter p, by
convention.

atom

fixp

SUBR 1 arg

The atom predicate returns ni 1 if its argument is a dotted-pair or a list, or t if
it is any kind of atomic object such as a number, a character string, or an
atomic symbol.

SUBR 1 arg

The fixp predicate returns t if its argument is a fixnum or a bignum,
otherwise nil.

f10atp SUBR 1 arg .

The fl oa tp predicate returns t if its argument is a flonum, nil if it is not.

bigp SUBR 1 arg

The predicate bi gp returns t if its argument is a bignum, and nil otherwise.

numberp SUBR 1 arg

The numberp predicate returns t if its argument is any kind of number, nil if
it is not.

December 17, 1975 Page 2-1

Maclisp Reference Manual

typep SUBR 1 arg

typep is a general function for constructing type-predicates. It returns an
atomic symbol describing the type of its argument, chosen from the Jist

(fixnum flonum bignum list symbol string array random)

symbo 1 means atomic symbol. 1 i st means a list or a cons. array means
array-pointer. random is for all types that don't fit in any other category. Thus
numberp could have been defined by:

(defun numberp (x)

(and (memq (typep x) '(fixnum flonum bignum»
t»

The foltowing two functions only exist in the Multics implementation.

stringp SUBR 1 arg

The str i ngp predicate returns t if its argument is a string, otherwise nit

subrp SUBR 1 arg

The subrp predicate returns t if its argument is a "subr" object, i.e. a pointer
to the machine code for a compiled or system function. Example:

(subrp (get 'car 'subr» => t

The following are a more miscellaneous set of predicates.

eq SUBR 2 args

(eq x y) -> t if x and yare exactly the same object, nil otherwise (cf. aqua 1).
It should be noted that things that print the same are not necessarily eq to each
other. In particular, numbers with the same value need not be eq, and two
Similar lists are usually not eq. In general, two atomic symbols with the same
print-name are eq, but it is possible with maknam or multiple obarrays to

generate symbols which have the same print-name but are not eq. Examples:

Page 2-2 12-1. December 17, 1975

o

o

o

o Predicates

(eq 'a 'b) => nil
(eq 'a 'a) => t
(eq , (a • b) , (a • b» • > n i1 (usually)
(eq (cons 'a 'b) (cons 'a 'b» => nil (always)
(setq x '(a . b» (eq x x) => t since it is

the same copy of (a . b) in both arguments.
(setq x (setq y 17» (eq x y) => t or nil

depending on the implementation. You can
never rely on numbers being eq.

equal SUBR 2 args

The equa 1 predicate returns t if its arguments are similar (isomorphic) objects.
(cf. eq) Two numbers are equa 1 if they have the same value (a Ronum is never
equa 1 to a fixnum though). Two strings are equa 1 if they have the same
length, and the characters composing them are the same. All other atomic
objects are equa 1 if and only if they are eq. For dotted pairs and lists, equa 1
is defined recursively as the two car's being equal and the two cdr's being o equal. Thus equal could have been defined by:

o

(defun equal (x y)
(or (eq x y)

(and (numberp x) (numbarp y) (numaqual x y»
(and (not (atom x»

-

(not (atom y»
(equal (car x) (car y»
(equal (cdr x) (cdr y»»)

if there was an aUXiliary function for numeric equality:

(defun numequal (x y)
(and (eq (typep x) (typep y})

(zerop (difference x y»»

This numequa 1 function is not the same as the Mactisp numeric-equality
function, =, because the latter only compares non-big numbers.

As a consequence of the above definition, it can be seen that aqua 1 need not
terminate when applied to looped list structure. In addition, eq always implies
aqua 1. An intUitive definition of equa 1 (which is not quite correct) is that two
objects are equa 1 if they look the same when printed out.

December 17, 1975 i2-1. Page 2-3

not

null

Mac1isp Reference Manual

SUBR 1 arg

not returns t if its argument is nil, otherWise nil.

SUBR 1 arg

This is the same as not. Both functions are provided for the sake of clarity.
nu 11 should be used to check if something is nil and return a logical value.
not should be used to invert the sense of a logical value. Even though Lisp
uses nil to represent logical "false," you shouldn't make understanding your
program depend on this .. For example, one often writes

(cond «not (null x)) ...)
(••. »

rather than

(cond (x •••)
(... »

There is no loss of efficiency since these .will compile into exactly the same
instructions.

See also the number predicates (page 2-61).

Page 2-4 e2-1. December 17, 1975

o

o

o

o

o

o

The Evaluator

2. The Evaluator

eval LSUBR 1 or 2 args

(eva 1 x) evaluates x. as a form. atomic or otherwise. and returns the result.

(eva 1 x p) evaluates x in the context specified by the binding context pointer
p. Example: .

(setq x 43 foo 'bar)
(eval (list 'cons x 'foo»

=> (43 . bar)

apply LSUBR 2 or 3 args

quote

(app ly f y) applies the function f to the list of arguments y. Unless f is an
fsubr or fexpr, such as cond or and, which evaluates its arguments in a funny
way, the arguments in the list yare used without being evaluated. Examples:

(setq f '+) (apply f '(1 2 3» => 6
(setq f '-) (apply f '(1 Z 3» => -4
(apply 'cons '«+ Z 3) 4» =>

((+ 2 3) • 4) not (5 • 4)

(app ly f y P) works like app ly with two arg'uments except that the application
is done with the variable bindings specified by the binding context pointer p.

FSUBR

The special form (quote x) returns x without trying to evaluate it. quote is
used to include constants in a form. For convenience. the read function
normally c~nverts any S-expression preceded by the apostrophe or acute accent
character (,) into the quote special form. For example,

(setq x '(some list»

is converted by the reader to:

December 17. 1975 ~2-2. Page 2-5

Maclisp Reference Manual

(setq x (quote (some list»)

which when evaluated causes the variable x [0 be set [0 the constant list value
shown. For more information on input syntax. see the detailed discussion in
part 5.1.

quote could have been defined by:

(defun Quote fexpr (x) (car x»

function FSUBR

funct i on is like quote except that its argument is a functional expression. To
the interpreter. quote and funct i on are identical. but the compiler needs to be
able to distinguish between a random piece of data. which should be left alone,
and a function. which should be compiled into machine code. Example:

(mapcar (function (lambda (p q)
(cond «eq p /*) q)

(t (list p /= q» »)
first-list-of-things
(compute-anothet-list))

calls mapcar with three arguments, the first of which is the function defined by
the lambda-expression. The acrual value passed to mapcar depends on
whether the form has been compiled. If it is interpreted. the lambda
expression written above will be passed. If it is compiled, an automatically
generated atomic symbol with the compiled code for the 1 ambda-expression as
its subr property will be passed. The usual thing to do with functional
arguments is to invoke them via app ly or funca 11, which accept both the
compiled and the interpreted functional forms.

funct i on makes no attempt to solve the "funarg problem." *funct i on should
be used for this purpose.

Page 2-6 82-2. December 17. 1975

()

o

o

o

o

o

The Evaluator

*function FSUBR

The value of (*function f) is a "funarg" of the function f. A funarg can
be used like a function. It has the additional property that it contains a
binding context pointer so that the values of variables are bound the same
during the application of the funarg as at the time it was created, provided
that the binding environment in which the funarg was created still exists on
the stack. Hence if foo is a function that accepts a functional argument, such
as

(defun foo (f)
(append one-value (f the-ather-value) »

or, better

(defun foo (f)
(append one-value (funeall f the-ather-value) »

then

(faa (*function bar»

works, but

(foo (prog (x y z)
(do something)
(return (*function bar» »

does not if bar intends to reference the prog variables x, y, and z.
*function is intended to help solve the "funarg problem," however it only
works in some easy cases. Funargs generated by *funct 1 on are intended for
use as functional arguments and cannot be returned as values of functional
applications. Thus, the user should be careful in his use of *funct i on to
make sure that his use does not exceed the limitations of the Mac1isp funarg
mechanism.

It is possible to assign a value to a variable when a previous binding of that
yariable has been made current by a funal'g. The aSSignment will be executed
in the proper context. (This has not always been the case in Maclispi it is a
fairly new feature.)

A funarg has the form
(funarg function. context-ptr)

December 17, 1975 ~2-2. Page 2-7

Maclisp Reference Manual

comment FSUBR

prog2

comment ignores its arguments and returns the atomic symbol comment.
Example:

(defun faa (x)
(cond «null x) 0)

(t (comment x has something in it)
(1+ (faa (cdr x»»»

Usually it is preferable to comment code using the semicolon-macro feature of
the standard input syntax. This allows the user to add comments to his code
which are ignored by the lisp reader.

Example:

(defun foo (x)
. (cond «null x) 0)

(t (1+ (foo (cdr x»» ;x has something in it
))

A problem With such comments is that they are discarded when the S
expression is read into lisp. If it is edited within lisp and printed back into a
file, the comments will be lost. However, most users edit the original file and
read the Changes into liSp, since this allows them to use the editor of their
choice. Thus this is not a real problem.

LSUBR 2 or more args

The expressions in a prog2 form are evaluated from left to right, as in any
Isubr-form. The result is the second argument. prog2 is most commonly used
to evaluate an expression with side effects. then return a value which needs to
be computed before the side effects happen.
Examples:

(prog2 (do-this) (do-that» ;just get 2 things evaluated

(setq x (prog2 nil y ;parallel assignment
(setq y x») ;which exchanges x and y

(defun prog2 nargs (arg 2»;a lexpr definition for prog2

Page 2-8 e2-2. December·17,1975

o

o

Ot

o

o

The Evaluator

progn LSUBR 1 or more args

'The expressions in a progo form are evaluated from left to right, as usual, and
the result is the value of the last one. In other words, progn is an Isubr which
does nothing but return its last argument. Although 1 ambda-expressions, prog
forms, do-forms, c~nd-forms, and i og-forms all use progn implicitly, that is,
they allow multiple forms in their bodies, there are occasions when one needs to
evaluate a number of forms for side-effects and make' them appear to be a
single form. progo serves this purpose. Example:

progv

(progo (setq a (cdr frob» (eq (car a) (cadr a»)

might be used as the antecedent of a cond clause.

progn could have been defined by:

(defun progn oargs
(and (> oargs 0)

(arg oargs»)

FSUBR

progv is a special form to provide the user with extra control over lambda
binding. It binds a list of variables to a list of values, and then evaluates some
forms. The lists of variables and values are computed quantities; this is what
makes progv different from 1 ambda, prog, and do.

(progv var-list value-list forml form2 •••)

first evaluates var-list and value-Ust. Then the variables are bound to the
values. In compiled code the variables must be speCial, since the compiler has
no way of knowing what symbols might appear in the var-llst. If too few
values are supplied, the remaining variables are bound to nil. If tQO many
values are supplied, the excess values are ignored.

After the variables have been bound to the values, the forms are evaluated, and
finally the variable bindings are undone. The result returned is the value of
the last form. Note that the "body" of a progv is similar to that of progn, not
that of prog.
Example:

December 17, 1975 ~2-2. Page 2-9

arg

Mac1isp Reference Manual

(setq a 'foo b 'bar)

(progv (list a b 'b) (list b) (list a b foo bar»
=> (foo nil bar nil)

During the evaluation of the body of this progv, foo is bound to bar, bar is
bound to nil, b is bound to nil, and a remains bound to foo.

SUBR 1 arg

(arg nil), when evaluated during the application of a lexpr, gives the
number of arguments supplied to that lexpr. This is primarily a debugging
aid, since lexprs also receive their number of arguments as the value of their
1 ambda-variable.

(arg i), when evaluated during the application of a lexpr, gives the value of
the i'th argument to the lexpr. i must be a fixnum in this case. It is an error if
i is les~ than 1 or greater than the number of arguments supplied to the lexpr.

Example:

(defun foo nargs
(print (arg 2)
(+ (arg 1)

(arg (- nargs 1»»

;define a lexpr foo.
;print the second argument.
;return the sum of the first
;and next to last arguments.

setarg SUBR 2 args

setarg is used only during the application of a lexpr. (setarg i x) sets the
lexpr's i'th argument to X. l must be greater than zero and not greater than the
number of arguments passed to the lexpr. After (setarg i x) has been done,
(arg i) will return X.

Page 2-10 e2-2. December 17, 1975

o

(~

o

o

o

o

The Evaluator

1 istify SUBR 1 arg

(1 is t i fy n) efficiently manufactures a list of n of the arguments of a lexpr.
With a positive argument n. it returns a list of the first n arguments of the
lexpr. With a negative argument n. it returns a list of the last (abs n)
arguments of the \expr. Basically. it works as if defined as follows:

funca11

(defun 1istify (n)
(cond «minusp n)

(listify1 (arg nil) (+ (arg nil) n 1»)
(t
(listifyl n 1» »

(defun 1istifyl (n m) ; auxiliary function.
(do «i n (1- i»

(result nil (cons (arg i) result»)
«< i m) result) »

LSUBR 1 or more args

(funca 11 f al a2 ... an) calls the function f with the arguments al. a2, .". an.
It is similar to app ly except that the separate arguments are given to funca 11.
rather than a list of arguments. If f is a fexpr or an fsubr there must be
exactly one argument. f may not be a macro. Example:

subrca11

(setq cons 'plus)
(cons 1 2) => (1 . 2)
(funca11 cons 1 2) => 3

FSUBR

subrca 11 is used to invoke a subr-poinrer directly. rather than by referring to
an atomic symbol of which the subr-poinrer is the subr property. The form is:

(subrca 11 type p al a2 ... an)

All arg'uments except the first are evaluated. type is the type of result expected:
fixnum, f1onum. or nil (any type). p is the subr pointer to be called. aJ
through an are the arguments to be passed to the subr. subrca 11 compiles
into efficient machine code.

December 17. 1975 ~2-2. Page 2-11

Maclisp Reference Manual

lsubrcall FSUBR

1 subrca 11 is identical to subrca 11 except that the subr-pointer called has to
be an 1 subr instead of a subr. This is because many Lisps use different
internal calling sequences for 1 subrs than for subrs.

arraycal1 FSUBR

arrayca 11 is similar to subrca 11 and 1 subrca 11 except that an array-pointer
is used instead of a subr-pointer. The first argument of arrayca 11 must
correspond to the type that the array was given when it was created. An
arrayca 11 expression may be used as the first argument to store.

symeval SUBR 1 arg

symeva 1 is used to get the value of an atomic symbol, when the particular
symbol which will be used is nor known when the program is written, (for
example in a language interpreter written in Lisp.) If the argument to
symeva 1 is not an atomic symbol, or is an atomic symbol but does not currently
ha ve a value, an error is signalled. The ad vantage of symeva lover eva 1 is
that it is compiled into very efficient code (which will not detect the above
mentioned error, so watch out.)

Page 2-12 ~2-2. December 17, 1975

o

o

o . Manipulating List Structure

o

0

3. Manipulating List Structure

a.1 Conses

car SUBR 1 arg

Returns the first component of a cons.

Example: (car '(a b» => a

cdr SUBR 1 arg

car

cdr

Returns the second component of a cons.

Example: (cdr '(a b c» => (b c)

SWITCH

SWITCH

Officially car and cdr are only applkable to lists. However. as a matter of
convenience the car and cdr of nil are n i 1. This allows programs to car and
cdr off the ends of lists without having to check, which is sometimes helpful.
Furthermore. some old programs apply car and cdr to objects other than lists
in order to hack with the internal representation. To provide control over this,
the value of car can be set to control which data types are subject to the car
operation. Similarly, the value of cdr controls the cdr operation. Illegal
operations will cause errors. For reasons of effiCiency, this error checking is
only enabled in (*rset t) mode (see part 3.5) and is mostly turned off in
compiled programs. The values to which the switches may be set are:

Value Operation applicable to

list lists.
nil lists and n i 1.
symbol lists, n 11, and symbols.
t anything.

December 17, 1975 e2-3. Page 2-13

Mac1isp Reference Manual

The default value of the switches is n i 1.

c ... r SUBR 1 arg

cons

All the compositions of up to four car's and cdr's are defined as functions in
their own right. The names begin with c and end with r, and in between is a
sequence of a's and d's corresponding to the composition performed by the
function.

For example,
(cddadr x) = (cdr (cdr (car (cdr x»»

Some of the most commonly used ones are: cadr, which gets the second element
of a list; caddr, which gets the third element of a list; cadddr, which gets the
fourth element of a list; caar, to car twice. -

The car'ing and cdr'ing operations of these functions have error checking
under the control of the car and cdr switches explained above, just as the car
and cdr functions themselves do.

SUBR 2 args

This is a primitive function to construct a new dotted pair whose car is the
first argument to cons, and whose cdr is the second argument to cons. Thus.
the following identities hold (except when numbers are involved; as always
numbers are not well-behaved with respect to eq):.

(eq (car (cons x y» x) => t
(eq (cdr (cons x y» y) => t

Examples:
(cons 'a 'b) => (a . b)
(cons 'a (cons 'b (cons 'c nil») => (a b c)
(cons 'a '(b c de f» => (a bed e f)

ncons SUBR 1 arg

(ncons x) • (cons x ni 1) .. (list x)

Page 2-14 l2-3.1 December 17, 1975

o

o

o

~, u

o

o

Manipulating List Structure

xcons SUBR 2 args

xcons ("exchange cons") is like cons except that the order of arguments is
reversed.

Example:

(xcons 'a 'b) => (b • a)

December 17, 1975 ~2-3.1 Page 2-15

MacUsp Reference Manual

3.2 Lists

last SUBR 1 arg

1 ast returns the last cons of the list which is its argument.

Example:
(setq x '(a b cd»
(last x) => (d)
(rplacd (last x) '(e f»
x => (a b c d e f)

last could have been defined by:

(defun last (x)
(cond «nuil xl x)

«null (cdr x» x)
«last (cdr x») »

In some implementations. the null check above may be replaced by an atom
check. which will catch dotted 1ists. Code which depends on this fact should
not be written though. because all implementations are subject to change on
this point.

length SUBR 1 arg

1 ength returns the length of its argument, which must be a list. The length of
a list is the number of top-level conses in it.

Examples:
(1ength nil) => 0
(length '(a b cd» => 4
(lengt~ '(a (b c) d» => 3

length could have been defined by:

Page 2-16 ~2-3.2 December 17. 1975

o

o

o

o

o

o

list

Manipulating List Structure

(defun length (x)
(eond «null x) 0)

«1+ (length (cdr x»» »
or by:

(defun length (x)
(do «n 0 (1+ n»

(y x (cdr y»)
«null y) n) »

The warning about dotted lists given under last applies also to length.

LSUBR 0 or more args

1 i st constructs and returns a list of its arguments.

Example:
(list 3 4 'a (car '(b. c» (+ 6 -2» => (3 4 a b 4)

1 i st could have been defined by:

(defun list nargs
(do «n nargs (1- n»

(s nil (cons (arg n) s»)
« zerop n) s) »

(This depends on parallel aSSignment to the control variables of do.)

append LSUBR 0 or more args

The arguments to append are lists. The result is a list which is the
concatenation of the arguments. The arguments are not changed (cf. ncone).
For example,

(append '(a b c) '(d e f) nil '(g» => (a bed e f g)

To make a copy of the top level of a list, that is, to copy the list but not its
elements, use (append x nil).

December 17, 1975 ~2-3.2 Page 2-17

Maclisp Reference Manual

A version of append which only accepts two arguments could have been
defined by:

(defun append2 (x y)
(cond «null x) y)

«cons (car x) (append2 (cdr x) y» »)

The generalization to any number of arguments could then be made using a
lexpr:

reverse

(defun append argcount
(do «i (1- argcount) (I-i»

(val (arg argcount) (append2 (arg ;) val»)
«zerop i) val) »

SUBR 1 arg

Given a list as argumem:,reverse creates anew list whose elements are the
elements of its argument taken in reverse order. reverse does not modify its
argument, unlike nreverse which is faster but does modify its argument.
Example: -

ncone

(reverse "(ab (cd) e» => (e(c d) b -a)

rever-se could have been defined by:

(defun revers-e (x)
{do-eel x (cdr 1»·

(r Iii 1
(cons (car -l)r»)

«null 1) r»)

; scan down argument,
; putting each element
; into list. until .
; no more elements.

LSUBR-O or more args

ncone takes lists as arguments. It returns a list which is the arguments
concatenate~ together. The arguments are changed. rather than copied. (cf.
appeno)

Example:
(nconc /(a be) '(d ef»=> (ab e d e f)

Page 2-18 l2-3.2 December 17, 1975

o

o

o

o

o

o

Manipulating List Structure

Note that the constant (a be) has now been changed to (a bed e f). If
this form is evaluated again, it will yield (a bed e f d e f). This is a
danger you always have to watch out for when using nconc.

nconc could have been defined by:

nreverse

(defun nconc (x Y) ;for simplicity. this definition
(cond «null x) y) i onlyworksfor2arguments.

(t (rplaed (last x) y) ;hook y onto x
x))) ;and return the modified x.

SUBR I arg

nreverse reverses its arg'ument. which should be a list. The argument is
destroyed by rp 1 aed's all through the list (cf. reverse).

Example:
(nreverse /(a be» => (c b a)

nreverse could have been defined by:

(defun nreverse (x)
(cond {(null x) nil)

«nreversel x nil»»

(defun nreversel (x y) ;auKiliary function
(cond «null (cdr x» (rplacd x y»

«nreversel (cdr x) (rp1acd x y»»)
; ; this last call depends on order of argument evaluation.

nreconc SUBR Z args

(nreconc x y) is exactly the same as {nconc (nreverse x) ,) except that it
is more effiCient.

nreconc could have been defined by:

(defun nreconc ex y)
(cond «null x) y)

«nreversel x y» »

December 17, 1975 a2-3.2 Page 2-19

Maclisp Reference Manual 0,
using the same nreversel as above.

o

Page 2-20 ~2-3.2 December 17. 1975 o

o

o

o

Manipulating List Structure

3.3 Alteration of List Structure

The functions rp 1 aca and rp 1 acd are used to make alterations in alread y
exlStmg list structure. The structure is not copied but physically altered; hence
caution should be exercised when using these functions as strange side-effects can
occur if portions of list structure become shared unbeknownst to the programmer.
The nconc, nreverse, and nreconc functions already described have the same
property. However, they are normally not used for this Side-effect; rather, the list
structure modification is purely for efficiency and compatible non-modifying functions
are provided.

rplaca SUBR 2 args

(rp 1 aca x y) changes the car of x to y and returns (the modified) x. Example:

(setq 9 ~(a be»

(rplaca (cdr g) ~d) => Cd c)

Now 9 => (a d c)

rplacd SUBR Z args

(rp 1 acd x y) Changes the cdr of x to y and returns (the modified) x. Example:

(setq x '(a be»

(rplacd x'd) => (a . d)

Now x => (a • d)

See also setp 1 i st (page 2-53).

subst SUBR 3 args

(subs t x "j z) substitutes x for all occurrences of 'Y in z, and returns the
modified copy of z. The original z is unchanged, as subst recursively copies
all of z rep lacing elements eq to y as it goes. If x and 'Yare nil, % is j usc
copied, which is a convenient way to copy arbitrary list structure.

December 17, 1975 ~2-3.3 Page 2-21

Mac1isp Reference Manual

Example:

(subst 'Tempest 'Hurricane
'(Shakespeare wrote (The Hurricane»)

=> (Shakespeare wrote (The Tempest»

subst could have been defined by:

(defun subst (x y z)
(cond «eq z y) x) ;if item eq to y, replace.

«atom z) z) ;if no substructure, return argo
«cons (subst x y (car z» ;otherwise recurse.

(subst x y (cdr z»»»

sublis SUBR 2 args

sub 1 is makes substHutions for atomic symbols in an S-expression. The first
argument to sub 1 isis an association list (see the next section). The second
argument is the $-expression in which substitutions are to be made. sub 1 is
looks at all atomic symbols in the $-expression; if an atomic symbol appears in
the association list occurrences of it are replaced by the object it is associated
with. The argument is not modified; new conses are created where necessary
and only where necessary, so the newly created structure shares as much of its
substructure as possible with the old. For example, if no substitutions are
made, the result is eq to the old $-expression.
Example:

(sublis '«x. 100) (z'. zprime»
'(plus x (minus 9 z x p) 4»

=> (plus 100 (minus 9 zprime 100 p) 4)

In some implementations subl is works by putting temporary subl is
properties on the atomic symbols in the dotted pairs, so beware.

Page 2-22 ~2-3.3 December 17. 1975

o

o

o

o

o

0

Manipulating List Structure

3.4 Tables

Maclisp includes several functions which simplify the maintenanGe of tabular
data structures of several varieties. The simplest is a plain list of items, which models
(approXimately) the concept of a set. There are functions to add (cons), remove
(de 1 ete, de 1 q), and search for (member, memq) items in a list.

Association lists are very commonly used. An association list is a list of dotted
pairs. The car of each pair is a "key" and the cdr is "data". The functions assoc
and assq may be used to retrieve the data, given the key.

Structured records can be stored as association lists or as stereotyped S-expressions
where each element of the structure has a cerrain car-cdr path associated with it.
There are no built-in functions for these but it easy to define macros to implement
them (see part 6.2).

Simple list-structure is very convenient, but may not be efficient enough for large
data bases because it takes a long time to search a long list. Maclisp includes some
hashing functions (sxhash, maknum) which aid in the construction of more efficient,
hairier structures.

member SUBR 2 args

(member x y) returns n; 1 if x is not a member of the list y. OtherWise, it
returns the portion of y beginning with the first occurrence of x. The
comparison is made by equa 1. "j is searched on the top lev·el only.

Example:
(member 'x '(1 2 3 4» => n11
(member 'x '(a (x y) c x d e x f» => (x d e x f)

Note that the value returned by member is eq to the portion of the list
beginning with x. Thus rp 1 aca on the result of member maybe used, if you
first check to make sure member did not return n i 1.
Example:

(catch (rplaca (or (member x z)
(throw nil lose»

y)
lose) .

December 17, 1975 ~2-3.4 Page 2-23

memq

Maclisp Reference Manual

member could have been defined by:

(defun member (x y)
(cond «null y) nil)

«equal x (car y» y)
«member x (cdr y») »

SUBR 2 args

memq is like member, except eq is used for the comparison, instead of equal.
memq could have been defined by:

(defun memq (x y)
(cond «null y) nil)

«eq x (car y» y)
«memq x (cdr y») .»

delete LSUBR 2 or 3 args

(de 1 ete x y) returns the list y with all top-level occ~rrences of x removed.
equa 1 is used for the comparison. The argument y is actually modified
(rp 1 acd'ed) when instances of x are spliced out. de 1 ete should be used for
value, not for effect. That is, use

(setq a (delete 'b a»

rather than

(delete 'b a»

The latter is not eqUivalent when the first element of the value of a is b.

(de 1 ete x y n) is like (de 1 ete x y) except only the first n instances of x are
deleted. n is allowed [0 be zero. If n is greater than the number of occurrences
of x in the list, all occurrences of x in the list will be deleted.

Example:

(delete 'a '(b a c (a b) d a e» => (b c (a b) d e)

Page 2-24 ~2-3.4 December 17, 1975

o

o

o

o

(

Manipulating List Structure

delete could have been defined by:

(defun delete nargs
(delete1 (arg 1)

(arg 2)

j lexpr for 2 or 3 args
j pass along arguments ...

(cond «= nargs 3) (arg 3»
(123456789.) ») j infinity

(defun delete1 (x y n) jauxiliary function
(cond «or (null y) (zerop n» y)

«equal x (car y» (deletel x
(cdr y)
(1- n»)

«rplacd y (deletel x (cdr y) n»»)

delq LSUBR 2 or 3 args

de 1 Q is the same as de 1 ete except that eq is used for the comparison instead o of equal.

o

sxhash SUBR 1 arg

sxhash computes a hash code of an S-expression. and returns it as a fixnum.
which may be positive or negative. A property of sxhash is that (equal x y)
implies (= (sxhash x) (sxhash y». The number returned by sxhash is
some possibly large number in the range allowed by fixnums. It is guaranteed
that:

1) sxhash for an atomic symbol will always be positive.

2) sxhash of any particular expression will be constant in a particular
implementation for all time. probably.

3) Two different implementations may hash the same expression into different
values.

i) sxhash of any object of type random will be zero.

5) sxhash of a fixnum will = that fixnum.

December 17. 1975 n-3.4 Page 2-25

assoc

Mac1isp Reference Manual

Here is an example of how to use sxhash in maintaining
hash tables of S-expressions:

(dafun knownp (x) ; look up " in the table
(prog (1 bkt)

(satq i (plus 76 (remainder (sxhash x) 77»)
;The remainder should be reasonably randomized between
;-76 and 76, thus table size must be > 175 octal.

(setq bkt (table i»
;bkt is thus a list of all those expressions that hash
:into the same number as does x.

(return (member x bkt»»

To write an "intern" for S-expressions, one could

(defun sintern (x)
(prog (bkt item)

(setQ bkt (table {setq i (+ 2n-2 (\ (sxhash x) 2n-l»»)
;2n-l and 2n-l stand for a power of 2 minus one and
:minus two respectively. This is a good choice to
;randomize the result of the remainder operation.

(return (cond «setQ tem (member x bkt»
(car tern»

(t (store (table i) (cons x bkt»
x»»)

SUBR 2 args

(assoc x '1) looks up x in the aSSOCiation list (list of dotted pairs) y. The
value is the first dotted pair whose car is equal to x, or nil if there is none
such.

Examples:
(assoc "r "«a. b) (c • d) (r • x) (s • y) (r • z»)

=> (r. x)

(assoc "fooo "«foo • bar) (zoo. goo») => nil

It is okay to rplacd the result of assoc as long as it is not nil, if your
intention is to "update" the "table" "[hat was assoc's second argument.

Page 2-26 i2-3,4 December 17. 1975

o

o

o

o

o assq

Manipulating List Structure

Example:
(setq values "«x. 100) (y • 200) (z. 50»)
(assoc "y values) => (y . 200)
(rplacd (assoc "y values) 201)
(assoc "y values) => (y . 201) now

(One should always be careful about using rplacd however)

A typical trick is [0 say (cdr (assoc x y». Since the cdr of n 11 is
guaranteed to be nil, this yields n 1 1 if no pair is found (or if a pair is found
whose cdr is n 1 l.)

assoc could have been defined by:

(defun assoc (x y)

(cond «null y) n11)
«equal x (caar y» (car y»
((assoc x (cdr y») »

SUBR 2 args

assq is like assoc except that the comparison uses aq instead of aqua 1. assq
could have been defined by:

(defun assq (x y)

(cond «null y) n11)
«eq x (caar y» (car y»
«assq x (cdr y») »

sassoc SUBR 3 args

(sassoc x , z) is like (assoc x ,) except that if x is not found in ,. instead
of returning n 11 sassoc calls the function z with no arguments. sassoc could
ha ve been defined by:

(defun sassoc (x y z)
(or (assoc x y)

(app 1y z n 1 1)))

sassoc and sassq (see below) are of limited use. These are primarily leftovers
from Lisp 1.5.

December 17, 1975 e2-3.4 Page 2-27

Maclisp Reference Manual

sassq SUBR 3 args

(sassq x "j z) is like (assq x "j) except that if x is not found in y. instead of
returning nil sassq calls the function z with no arguments. sassq could
ha ve been defined by:

maknum

(defun sassq (x y z)
(or (assq x y)

(app ly z n i1) »

SUBR 1 arg

(maknum x) returns a positive fixnum which is unique to the object X; that is.
(maknum x) and (maknum y) are numerically equal if and only if (eq x y).
This can be used in hashing.

In the pdp-to implementations. maknum returns the memory address of its
argument. In the Multics implementation, an internal hash table is employed.

Note that unlike sxhash. maknum will not return the same value on an
expression which has been printed out and read back in again.

munkam SUBR 1 arg

munkam is the opposite of maknum. Given a number, it returns the object which
was given to maknum to get that number. It is inadvisable to apply munkam to a
number which did not come from maknum.

Page 2-28 *2-3.4 December 17. 1975

o

o

o

o Manipulating List Structure

o

o

3.5 Sorting

Several functions are provided for sorting arrays and lists. These functions use
algorithms which always terminate no matter what sorting predicate is used, provided
only that the predicate always terminates. The array sort is not necessarily stable, that
is equal items may not stay in their original order. However the list sort is stable.

After sorting, the argument (be it list or array) is rearranged internally so as to be
completely ordered. In the case of an array argument, this is accomplished by
permuting the elements of the array, while in the list case, the list is reordered by
rp1acd's in the same manner as nreverse. Thus if the argument should not be
clobbered, the user must sort a copy of the argument, obtainable by f1 11 array or
append, as appropriate.

Should the comparison predicate cause an error, such as a wrong type argument
error, the state of the list or array being sorted is undefined. However, if the error is
corrected the sort will, of course, proceed correctly.

Both sort and sortcar handle the case in which their second argument is the
function alpha 1 essp in a more efficient manner than usual. This efficiency is
primarily due to elimination of argument checks at comparison time.

sort SUBR 2 args

The first argument to sort is an array (or list), the second a predicate of two
arguments. Note that a "number array" cannot be sorted. The predicate must
be applicable to all the objects in the array or list. The predicate should take
two arguments, and return non-nil if and only if the first argument is strictly
less than the second (in some appropriate sense).

The sort function proceeds to sort the contents of the array or list under the
ordering imposed by the predicate, and returns the array or list modified into
sorted order, i.e. its modified first argument. Note that since sorting requires
many comparisons, and thus many calls to the predicate, sorting will be much
faster if the predicate is a compiled function rather than interpreted.

December 17, 1975 ~2-3.5 Page 2-29

Maclisp Reference Manual

Example:

(defun mostcar (x)
(cond «atom x) x)_

«mostcar (car x»»)

(sort "fooarray
(function (lambda (x y) _

(alphalessp (mostcar x) (mostcar y»»)

If fooarray contained these items before the sort:

(Tokens (The lion sleeps tonight»
(Carpenters (Close to you»
«Rolling Stones) (Brown sugar»
«Beach Boys) (I get around»
(Beatles (I want to hold your hand»

then after the sort fooarray would contain:

sortcar

«Beach Boys) (I get around»
(Beatles (I want to hold your hand»
(Carpenters (Close to you»
«Rolling Stones) (Brown sugar»
(Tokens (The lion sleeps tonight»

SUBR 2 args

sortcar is exactly like sort. but the items in the array or list being sorted
should all be non-atomic. sortcar takes the car of each item before handing
two items to the predicate. Thus sort car is to sort as map car is to map 1 is t.

Page 2-30 ~2-3.5 December 17. 1975

o

o

o

o

o

o

Flow of Control

4. Flow of Control

Mac1isp provides a variety of structures for flow of control.

Functional application is the basic method for construction of programs. All
operations are written as the application of a function to arguments. Mac1isp
programs are often written as a large collection of small functions which implement
simple operations. Some of the functions work by calling others of the functions,
thus defining some operations in terms of others.

Recursion exists when a function calls itself. This is analogous to mathematical
induction.

Iteration is a control structure present in most languages. It is similar to recursion
but sometimes less useful and sometimes more useful. Maclisp contains a generalized
iteration facility. The iteration facility also permits those who like "gotos" to use
chern.

Conditionals allow control to branch depending on the value of a predicate. and
and or are basically one-arm conditionals, while cond is a generalized multi-armed
conditional.

Nonlocal exits are similar to a return, except that the return is from several levels
of function calling rather than just one, and is determined at run time. These are
mostly used for applications such as escaping from the middle of a function when it
is discovered that the algorithm is not applicable.

Errors are a type of non-local exit used by the Lisp interpreter when it discovers
a condition that it does not like. Errors have the additional feature of correctabllity,
which allows a user-specified function (most often a break loop), to g·et a chance to
come in and correct the error or at least inspect what was happening and determine
what caused it, before the non local exit occurs. This is explained in detail on part
3.4.

Maclisp does not directly provide "hairy cancro I structure" such as multiple
processes, backtracking. or continuations.

December 17, 1975 Page 2-31

Mac1isp Reference Manual

4.1 Conditionals

and FSUBR

or

cond

(and form! form2 • ••) evaluates the forms one at a time, from left to right. If
any form evaluates to nil, and immediately returns n 11 without evaluating the
remaining forms. If all the forms evaluate non-nil, and returns the value of
the last one. and can be used both for logical operations, where nil stands for
False and t stands for True, and as a conditional expression.

Examples:
(and x y)

(and (setq temp (assq x y»
(rplacd temp z»

(and (nu" (errset (something»)
(prine "There was an error."»

Note: (and) • > t, which is the identity for this operation.

FSUBR

(or form! form2 •••) evaluates the forms one by one from left to right. If a
form evaluates to n i', or -proceeds to evaluate the next form. If there are no
more forms, or'returns nil. But if'a form evaluates non-n i', or immediately
returns that value without evaluating any remaining forms. or can be used
both for logical operations, where n i' stands for False and t for True, and as
a conditional expression.

Note: (or) = > nil, the identity for this operation.

FSUBR

The cond special form consists of the word cond followed by several clauses.
Each clause consists of a predicate followed by zero or more forms. Sometimes
the predicate is called the antecedent and the forms are catled the consequents.

Page 2-32 l2-4.1 December 17. 1975

o

o

o

o

o

o

Flow of Control

(cond (antecedent consequent consequent • ••)
(antecedent •••)
. ..)

The idea is that each clause represents a case which is selected if its predicate is
satisfied and the predicates of all preceding clauses are not satisfied. When a
case is selected, its consequent forms are evaluated.

cond processes its clauses in order from left to right. First the predicate of the
current clause is evaluated. If the result is n; 1, cond advances to the next
clause. OtherWise, the cdr of the clause is treated as a list of forms, or
consequents, which are evaluated in order from left to right. After evaluating
the consequents, cond returns without inspecting any remaining clauses. The
value of the cond special form is the value of the last consequent evaluated, or
the value of the antecedent if there were no consequents in the clause. If cond
runs out of clauses, that is, if every antecedent is n; 1, that is, if no case is
selected, the value of the cond is n; 1.

Example:
(cond «zerop x)

(+ y 3»

)

«null y)
(setq x 4)
(cons x z»

(z)

;First clause:
; (zerop x) is antecedent.
; (+ y 3) ;s consequent.
;A clause with Z consequents:
; this
; and this.
;A clause with no consequents:
; the antecedent is just z.
;This is the end of the condo

This is like the traditional Lisp 1.5 cond except that it is not necessary to have
exactly one consequent in each clause, and it is permissible to run out of
clauses.

December 17, 1975 l2-4.1 Page 2-33

Mactisp Reference Manual

4.2 Iteration

prog FSUBR

prog is the "program" special form. It provides temporary vari~bles, sequential

~YelmHitJn gf ~tett1m@m§: and fh~ i!9!1ifY m 99 "gm9~:" A ~r9Q 1ge~§ §9m@th!!1,
like:

(prog (varl var2 .• .)
tag}

statement}
statement2

tag2
statement3

)

var}, var2, ... are temporary variables. When the prog is entered the values of
the.?e. vgrittb!t;s ar~ ~aV~g. Wh@n th@ prgg i~ ~~iU!g th@y er@ n~~t9r~g. Th~
variables are initialized to nil when the prog is entered, thus they are said to
be "bound to nil" by the prog. However, variables which have been declared
fixnum or fionum will be initialized to 0 or 0.0 instead, but only in compiled
programs. You should be careful about relying on the initial value of prog
variables.

The part of a prog after the temporary variable list is the body. An item in
the body maybe an atomic symbol or a number, which is a tag, or a non
atomic form, which is a statement.

prog, after binding the temporary variables, processes its body sequentially.
tags are skipped over; statements are evaluated but the values are ignored. If
the end of the body is reached, prog returns n i 1. If (return x) is evaluated,
prog stops processing its body and returns the value x. If (go tag) is
evaluated, prog jumps to the part of the body labelled with the tag. The
argument to go is not evaluated unless it is non-atomic.

It should be noted that the Madisp prog is an extension of the Lisp 1.5 prog,
in that go's and return's may occur in more places than Lisp 1.5 allowed.
However, the Lisp compilers implemented on ITS, Multics, and the DECsystem
10 for Maclisp reqUire that go's and return's be lexically within the scope of
the prog. This makes a function which does not contain a prog, but which
does contain a go or return uncompilable.

December 1'7, 19'75

o

o

o

o

o

o

do

Flow of Control

See also the do special form, which uses a body similar to prog. The do,
catch, and throw special forms are included in MacUsp as an attempt to
encourage goto-Iess programming style, which leads to more readable, more
easily maintained code. The programmer is recommended to use these
functions instead of prog wherever reasonable.

Example:

(prog (x y z) ;x, y, z are prog variables - temporaries.
(setq y (car w) z (cdr w» ;wisafreevariable.

loop
(cond «null y) (return x»

«null z) (go err»)
rejoin

err

(setq x (cons {cons (car y) (car z»
x))

(setq y (cdr y)
z (cdr z»

(go loop)

(break are-you-sure? t)
(setq z y)
(go rejoin»

FSUBR

The do special form provides a -generalized "do. loop" facility. with an arbitrary
number of "index variables" whose values are saved when the do is entered
and restored when it is left, i.e. they are bound by the do. The index ·variables
are used in the- iteration performed by do. At the beginning they -are
initialized to specified values, and then at the end of each trip around the loop
the values of the index variables are Changed according to specified rules. do
allows the programmer to specify a predicate which determines wlJen the
iteration will terminate. The value to be returned as the result of the form may
optionally be specified.

do comes in two varieties.

December 17, 1975 . l2-4.2 Page 2-35

Mac1isp Reference Manual

The newer variety of do looks like:

(do « var init repeat) •••)
(end-test exit-form • ••)
body ...)

The first item in the form is a list of zero or more index variable specifiers.
Each index variable specifier is a list of the name of a variable var, an initial
value init, which defaults co nil (or possibly zero. as mentioned under prog) if
it is omitted. and a repeat value repeat. If repeat is omitted, the var is not
changed between loops.

All assignment to the index variables is done in parallel. At the beginning of
the first iteration, all the inits are evaluated, then the vars are saved, then the
vars are setq'ed [0 the values of the inits. To put it another way, the vars are
1 ambda-bound to the values of the inits. Note that the inits are evaluated
before the vars are bound. At the beginning of each succeeding iteration those
vars that have repeats get setq'ed to the values of their respective repeats.
Note that all the repeats are evaluated before any of the vars is changed.

The second element of the do-form is a list of an end testing predicate end-test
and zero or more forms, the exit-forms. At the beginning of each iteration,
after processing of the repeats, the end-test is evaluated. If the result is nil,
execution proceeds with the body of the do .. If the result is not ni 1. the exit
forms are evaluated from left to right and then do returns. The value of the
do is the value of the last exit-form, or nil if there were no exit-forms. Note
that the second element of the do-form resembles a cond clause.

If the second element of the form is nil, there is no end-test nor exit-forms, and
the body of the do is executed only once. In this type of do it is an error to
have repeats. This type of do isa"prog with initial values."

If the second element of the form is the S-expression (n i 1). there is no end
test or ·exit-forms, and the body of the do is executed over and over. This is a
"do forever." The infinite loop can be terminated by use of return or throw.

The remainder of the do-form constitutes a prog-body .. When the end of the
body is reached, the next iteration of the do begins. If return is used, do
returns the indicated value and no more iterations occur.

Page 2-36 l2-4.2 December 17, 1975

o

o

o

o

o

o

Flow of Control

The older variety of do is:

(do vaT init repeat end-test body • ••)

The first time through the loop var gets the value of init; the remaining times
through the loop it gets the value of repeat, which is re-evaluated each time.
Note that init is evaluated before the value of var is saved. After var is set,
end-test is evaluated. If it is non-ni 1, the do finishes and returns n 11. If the
end-test is nil, the bod, of the loop is executed. The body is like a prog body.
go may be used. If return is used, its argument is the value of the do. If the
end of the prog body is reached, another loop begins.

Examples of the older variety of do:

(setq n (cadr (arraydims x»)
(do i 0 (1+ i) (= i n)

(store (x i) 0» izeroes out the array x

(do zz x (cdr zz) (or (null zz) (zerop (f (car zz»»)
this applies f to each element of x

; continuously until f returns zero.

Examples of the new form of do:

(do «n (cadr (arraydims x»)
(i 0 0+ 1»)

«= i n)
(store (x i) 0»

jthis is like the example above,
;except n is local to the do

(do «x) (y) (z» (nil) body)
is like

(prog (x y z) bod,)

except that when it runs off the end of the body, do loops but prog returns
n i 1. On the ocher hand,

(do «x) (y) (z» nil body)

is identical to the prog above (it does not loop.)

December 17, 1975 ~2-4.2 Page 2-37

go

Maclisp Reference Manual

(do «x y (f x») «p x» body)

is like

(do x y (f x) (p x) body)

The construction

(do «x e(cdr x» (oldx x x» «null x» body)

exploits parallel assignment to index variables. On the first
iteration, the value of oldx is whatever value x had before the do was
entered. On succeeding iterations, 01 dx contains the value that x had on the
previous iteration.

In either form of do, the body may contain no forms at all. Very often an
iterative algorithm can be most clearly expressed entirely in the repeats and
exit-forms of a new-style do, and the body is empty.

(do «x x (cdr x»
(y y (cdr y»

(z nil (cons (f x y) z»)
«or (null x) (null y»
(nreverse z»

)

is like (mapl ist "f x y).

FSUBR

;exploits parallel
; aSSignment.
;typical use of nreverse.
;no do-body required.

The (go tag) special form is used to do a "go-to" within the body of a do or a
prog. If the tag is an atom, it is not evaluated. Otherwise it is evaluated and
should yield an atom. Then go transfers control to the point in the body
labelled by a tag eq or = to the one g·iven. (Tags may be either atomic symbols
or numbers). If there is no such tag in the body, it is an unseen-go-tag error.

-,

"Computed" go's should be avoided in compiled code, or altogether.

Page 2-38 e2-4.2 December 17, 1975

o

o

o

r'\
U

o

o

return

Example:

(prog (x y z)
(setQ x some frob)

loop
do somet/ling

Flow of Control

(and some predicate (go loop»
do something more
(go (cond «minusp x) 'loop)

(t 'endtag»)
endtag

(return z»

SUBR 1 arg

;regular go

; "computed go"

return is used to return from a prog or a do. The value of return's
argument is returned by prog or do as its value. In addition, break recognizes
the typed-in S-expression (return value) specially. If this form is typed at a
break, value ~i11 be evaluated and returned as the value of break. If not at
the top level of a form typed at a break, and not inside a prog or do, return
will cause a fa i l-act error. .
Example:

(do «x x (cdr x»
(nO(*n2»)

«null x) n)
(cond «atom (car x»

(setq n 0+ n»)
«memq (caar x) '(sys boom bleah»
(return n»»

December 17. 1975 l2-4.2 Page 2-39

Maclisp Reference Manual

4.3 Non-local Exits

catch FSUBR

catch is the Maclisp function for doing structured non-local exits. (catch x)
evaluates x and returns its value, except that if during the evaluation of x
(throw y) should be evaluated, catch immediately returns y without further
evaluating x.

catch may also be used with a second argument, not evaluated, which is used
as a tag to distinguish between nested catches. (catch x b) will catch a
(throw y b) but not a (throw y z). throw with only one argument always
throws to the innermost catch. catch with only one argument catches any
throw. It is an error if throw is done when there is no suitable catch.
Example:

(catch (mapcar (function (lambda (x)

y)
negative)

(cond «minusp x)
(throw x negative»

(t (f x» »)

which returns a list of f of each element of y if y is all positive. otherwise the
first negative member of y.

The user of catch and throw is adVised to stick to the 2 argument versions.
which are no less efficient, and tend to reduce the likelihood of bugs. The one
argument versions exist primarily as an easy way to fix old Lisp programs
which use err set and err for non-local exits. This latter practice is rather
confusing. because err and errset are supposed to be used for error
handling. not general program control.

The catch-tag break is used by the break function.

Page 2-10 December 17. 1975

o

o

o

o

o

Flow of Control

throw FSUBR

throw is lIsed with catch as a structured non-local exit mechanism.

(throw x) evaluates x and throws the value back to the most recent catch.

(throw x tag) throws the. value of x back to the most recent catch labelled
with tag or unlabelled. catch'es with tags not 8Q to tag are skipped over. x is
evaluated but tag is not.

See the description of catch for further details.

December 17. 1975 e2-4.3 Page 2-41

Maclisp Reference Manual

4.4 Causing and Controlling Errors

See the complete description of the Mac1isp error system (part 3.4) for more
information about how these functions work.

error LSUBR 0 to 3 args

This is a function which allows user functions to signal their own errors using
the Mac1isp error system.

(error) is the same as (err).

(error message) signals a simple error; no datum is printed and no user
interrupt is Signalled. The error message typed out is message.

(error message datum) signals an error with message as the message to be
typed out and datum as the Lisp object to be printed in the error message. No
user interrupt is signa tied.

(error message datum uint-clzn) signals an error but first signals a user
interrupt on channel llint-clzn. provided that there is such a channel. and it has
a 110n-n1 1 service function, and the special conditions concerning err set (see
part 3.4) are satisfied. uint-chn is the name of the user-interrupt channel to be
used (an atomic symbol); see part 3.4.2. If the service function returns an atom.
error goes ahead and signals a regular error. If the service function returns a
list, error returns as its value the car of that list. In this case it was a
"correctable" error. This is the only case in which error will return; in all
other cases control is thrown back to top level, or to the nearest enclosing
errset.

errset FSUBR

The special form (errset form flag) is used to trap an expected error.
err sot eval~ates the form. If an errol' occurs during the evalua.[ion of the
form. the error is prevented from escaping from inside the err set and errset
returns nil. If no errors occur, a list of one element. the result of the
evaluation. is returned. The result is Iistified so that there will no ambiguity if
it is n 11. err set may also be made to return any arbitrary value by use of the
err function.

Page 2-i2 e2-4.4 December 17, 1975

o

o

o

o

o

o

err

Flow of Control

The flag is optional. If present, it is evaluated before the form. If it is nil, no
error message will be printed if an error occurs during the evaluation of the
form. If it is not nil, or if it is omitted, any error messages generated will be
printed.

Examples:

If you are not sure x is a number:

(errset (setq x (addl x»)

This example may not work in complied code if the compiler chooses to open
code the addl rather than calling the addl subroutine. In general, one must be
extremely foolhardy to depend on error checking in compiled code.

To suppress the error message if the value of a is not an atomic symbol:

(errset (set a b) nil)

To do the same but generate one's own message:

(or (errset (set a b) nil)
(error '(not a variable) a»

FSUBR

(err) causes an error which is handled the same as a Lisp error except that
there is no preliminary user interrupt, and no message is typed out.

(er~ x)-'is like (err) except that if control returns to an errset. the value of
the err set will be the result of evaluating x, instead of n i 1.

(err x nil) is the same as (err x).

(err x t) is like (err x) except that x is not evaluated until just before the
errset returns it. That is, x is evaluated after unwinding the pdl and
restoring the bindings.

Note: some people use err and errset where catch and throw are indicated.
This is a very poor programming practice. See writeups of catch and throw
for details.

December 17, 1975 Page 2-43

Mac1isp Reference Manual

o

o
Page 2-41 82-4.4 December 17. 1975

o Atomic S mbols

o

()

5. Atomic Symbols

5.1 The Value Cell

Each atomic symbol has associated with ,t a value cell, which is a piece of storage
that can refer to one Lisp object. This obj ,!ct is called the symbol's value, since it is
what is returned if the symbol is evaluated. The binding of atomic symbols to values
allows them to be used in programming' the way "variables" are used in other
languages.

The value cell can also be empty, in which case the symbol has no value and is
said co be unbound or undefined. This is the initial state of a newly-created atomic
symbol. Attempting to evaluate an unbound symbol causes an error to be signalled.

An object can be placed into a symbol's value cell by lambda-binding or by
assignrlltmt. (See page 1-13.) The difference is in how closely the value-changing is
associated with control structure and in whether it is considered a side-effect.

setq FSUBR

The setq special form is used to aSSIgn values to variables (atomic symbols.)
setq processes the elements of its form in pairs, sequentially from left to right.
The first member of each pair is a variable, the second is a form which
evaluates to a value. The form is evaluated, but the variable is not. The
value-binding of the variable is made to be the value speCified. You must not
setq the special atomic-symbol constants t and nil. The value returned by
setq is the last value assigned, i.e. the result of the evaluation of the last
element of the setq-form.

Example: (setq x (+ 1 2 3) y (cons x nil))

This returns (6) and gives x a value of 6 and y a value of (6).

Note that the first assignment is completed before the second assignment is
started, resulting in the second use of x getting the value assigned in the first
pair of the setq.

December 17, 1975 ~2-5. Page 2-15

set

Maclisp RI ference Manual

SUBR 2 args

set is like setq except that the fi 'st argument is evaluated; also set only takes
one pair of arguments. The first ugument must evaluate to an atomic symbol.
whose value is changed to the va lue of the second argument. set returns the
value of its second argument. EXclmple:

(set (cond «predicate) ~atoml) (t ~atom2»
~stba)

evaluates to stba and gives either atoml or atom2 a value of stba.

set could have been defined by:

(defun set (x y)
(eval (list /setq x (list /quote y»»

Alternatively, setq could have been defined by:

(defun setq fexpr (x)
«lambda (var val rest)

(set var val)
(cond «null rest) val)

«apply (function setq) rest» »
(car x)
(eva 1 (cadr x»
(cddr x»)

; if more, recurse

symeval SUBR 1 arg

(symeva 1 a) returns the value of a, which must be an atomic symbol. The
compiler produces highly optimal code for symeva 1. making it much better
than eva 1 when the value of a symbol needs to be taken and the particular
symbol to be used varies.

Page 2-46 22-5.1 December 17. 1975

o

o

o

o

o

o

Atomic So:mbols

boundp SUBR 1 arg

The argument to boundp must be an atomic symbol. If it has a value, t is
returned. Otherwise nil is returned.

makunbound SUBR 1 arg

The argument to makunbound must bean atomic symbol. Its value is removed,
i.e. it becomes unbound.

Example:
(setQ a 1)
a => 1
(makunbound 'a)
a =>unbnd-vrbl error.

makunbound returns its argument.

December 11, 1975 ~2-5.1 Page2-i7

Mac1isp Re ference Manual

5.2 The Property List

A property-list is a list with an ever, number of elements. Each pair of elements
constitutes a property; the first element is called the "indicator" and the second is
called the "value" or, loosely, the "proI1erty." The indicator is generally an atomic
symbol which serves as the name of the property. The value is any Lisp object.

For example, one type of functional property uses the atom expr as its indicator.
In the case of an .expr-property, the value is a list beginning with 1 ambda.

An example of a property list with two properties on it is:

(expr (lambda (x) (plus 14 x» foobar t)

The first property has indicator expr and value (1 ambda (x) (p 1 us 14 x»,
the second property has indicator foobar and value t.

Each atomic symbol has associated with ita property-list, which can be retrieved
With the p 1 i st function. It is also possible to have "disembodied" property lists
which are not aSSOCiated with any symbol. These keep the property list on their cdr,
so the form of a disembodied property list is «anything) . plist). The way to
create a disembodied property list is (ncons nil). Atomic symbols also (usually)
keep their property list on their cdr, but you aren't allowed to know that. Use the
p 1 is t function to get the property list of a symbol.

Property lists are useful for associating "attributes" with symbols. Maclisp uses
properties to remember function definitions. The compiler uses properties internally
to keep track of some of what it knows about the program it is compiling ..

The user familiar with Lisp 1.5 will want to note that the property list. "flags"
which are allowed on Lisp 1.5 property lists do not exist in Maclisp. However, the
same effect can be achieved by using properties With a value of t or n i 1.

-', --

Some property riames are used internally byMac1isp, and should therefore be
a VOided in user code .. These include args. array. auto load, expr, fexpr,.
fsubr, lsubr. macro, pname, sublis, subr, value, used by the Lisp system
proper; arith, *array, atomindex, *expr, *fexpr, *lexpr, numfun,
number, numvar, ohome, special, sym, used by the compiler; grindfn,
gr i ndmacro, used by the grinder.

. Pao'e 2-48
Q n-S.2 December 17. 1975

o

o

o

o

o

o

get

getl

Atomic S\ mbols

SUBR 2 args

(get x 'J) gets x's y-property. x can be an atomic symbol or a disembodied
property list. The value of x's y-ploperty is returned, unless x has no y
property in which case nil is returned. It is not an error for x to be a number,
but ni 1 will always be returned since numbers do not have property lists.
Example:

(get "foo "bar)
=> nil ;inirially foo has no bar property

(putprop "foo "zoo "bar) ;give foo a bar property
=> zoo

(get "foo "bar) jretrieve that property
=> zoo

(plist "foo) ;Iook at foo's property list
=> (bar zoo ..• other properties .•.)

get could have been defined by:

(defun get (x y)
(do «z (cond «numberp x) nil) .

«atom x) (plist x»
(t (cdr x»)

(cddr z»)
«or (null z) (eq y (car z»)
(cadr z»»

This relies on the fact that the car and the cdr of nil are nil, and therefore
(cadr z) is nil if z is nit

SUBR 2 args

(get 1 x y) is like get except that y is a list of indicators rather than just a
single indicator. get 1 searches x's property list until a property whose indicator
appears in the list y is found.

The portion of x's property list beginning with the first such property is
returned. The car or this' is the indicator (property name) and the cadr is the
property value. get 1 returns nil if none of the indicators in y appear on the
property list of x.

December 17, 1975 ~2-S.2 Page 2-49

Maclisp Reference Manual

get 1 could h-ave been defined by:

(defun getl (x pl)
(do «q(plist x) (cddr q») ; scan down P-list of x

«or (null q) (memq (car q) pl»
q»)

This definition is simplified and doesn't take numbers and disembodied
property lists into account.

putprop SUBR 3 args

(putprop x y z) gives x a z-property of yand returns y. x may be an atomic
symbol or a disembodied property list. After somebody does (putprop x y z).
(get x z) will return y.

Example:
(putprop /Nixon /not /crook)

If the symbol already has a property with the same name that property is

removed first. This ensures that get 1 will always find the property which was
put on most recently. For instance. if you were to redefine an expr as a subr.
and then redefine it as an expr again, this effect of putprop causes the
evaluator to find the latest definition always.

A lisp definition of the basic putprop without the complications of numbers
and disembodied property lists might be:

defprop

(defun putprop (x y z)
(remprop x z)
(setplist x (cons z (cons y (plist x»»
y)

FSUBR

defprop is a version of putprop with no argument-evaluation. which is
sometimes more convenient for typing. For instance,

Page 2-50 e2-S.2 December 17. 1975

o

o

o

o

o

o

Atomic Symbols

(defprop foo bar oftenwith)

is equivalent to

(putprop /foo /bar /oftenwith)

remprop SUBR 2 args

plist

(remprop x 'J) removes x's y-property, by splicing it out of x's property list.
The value is nil if x had no y-property. If x did have a y-property, the value
is a list whose car is the property, and whose cdr is part of x's property list,
similar to (cdr (getl x /(y»).

x may be an atomic symbol or a disembodied property list. Example:

(remprop /foo /expr)

undefines the function foo, assuming it was defined by

(defun foo,(x) ••.)

SUBR 1 arg

(p lis t x) returns the property list of the atomic symbol x.

setplist SUBR 2 args

(setp 1 i st xl) sets the property list of the atomic symbol x to l. This is to be
used With caution, since in some implementations property lists contain internal
system properties which are essential to the workings of the Lisp system.

December 17, 1975 e2-S.2 Page 2-51

Maclisp Reference Manual

5.3 The Print-Name

Each atomic symbol has an associated character string called its "print-name," or
"pname" for short. This character string is used as the external representation of the
symbol. If the string is typed in, it is read as a reference to the symbol. If the
symbol is to be pr i n t'ed, the string is typed out.

See also page 2-81 for some other functions which have to do with pnames.

samepnamep SUBR 2 args

The arguments tosamepnamep must evaluate to atomic symbols or to character
strings. The resu It is t if they have the same pname, nil otherwise. The
pname of a character string is considered to be the string itself. Examples:

(samepnamep 'xyz (maknam '(x y z») => t

(samepnamep 'xyz (maknam '(w x y») => nil

(samepnamep 'x "x") => t

alphalessp SUBR 2 args

(a 1 pha 1 essp x y), where x and y evaluate to atomic symbols or character
string's, returns t if the pname of x occurs earlier in alphabetical order than the
pname of y. The pname of a character string is considered to be the string
itself. Examples:

(alphalessp 'x 'xl) => t

(alphalessp 'z 'q) => nil

(alphalessp "x" 'y) => t

Note that the "alphabetical order" used by alpha 1 essp is actually the ASCII
collating sequence. Consequently all upper case letters come before all lower
case letters.

Page 2-52 December 17, 1975

o

o

o

o

o

C)

Atomic Symbols

pnget SUBR 2 args

(pnget symbol n) returns the pname of the symbol as a list of fixnums
COntaining packed n-bit bytes. The legal values of n depend on the
implementation; in the pdp-IO implementation. 6 (SIX BIT) and 7 (ASCII) are
al\owed. If this seems obscure. that's because it is. Example:

(pnget 'MUMBLERATOR 7) =>
(-311246236550 -;~51327625542 -270_33)

pnput SUBR 2 args

This is a sort of inverse of pnget. (pnput (pnget foo 7) flag) returns a
symbol with the same pname as foo. The symbol is interned if flag is non-ni 1.

December 17. 1975 f2-S.3 Page 2-53

Mac1isp Reference Manual

5.4 Interning of Symbols

One normally wants to refer to the saine (eq) atomic symbol every time the same
pname is typed. Mac1isp implements this through what is called the obarray. The
obarra y is a hash-table of atomic symbols. These symbols are said to be interned, or
registered in the obarray. Whenever a pname is read in Lisp input, the obarray is
searched for a symbol with the same pname. If one is found, the pname is
considered to refer to that symbol. If flat, a new symbol is created and added to the
obarray.

The representation of an obarra y is a Lisp array. The first 510. (or thereabouts)
elements of the array contain lisrs which are buckets of a hash table. The last 128.
elements of the array contain the "character objects," symbols with I-character pnames.
(These entries contain nil if the corresponding symbol has not yet been interned.)
The character objects are treated specially for efficiency. There are usually one or
two unused array elements between these two areas.

In order to allow for multiple name spaces, Mac1isp allows multiple obarrays. An
obarra y can be made "current" by binding the symbol obarray to the appropriate
array-painter. See page 2-87 for details on how to manipulate abarrays and arrays in
general.

It is possible to have a symbol interned on several obarrays at the same time. It is
also possible to have two different (non-eq) symbols with the same pname interned on
different obarrays. Furthermore it is possible to have a symbol which is not interned
on any obarray, which is called an 1l.ninterned symbol. These are useful for purely
internal functions, but can cause difficulty in debugging since they can't be accessed
directly. Such a symbol can be accessed via some data structure that contains it, set
up by the program that created it.

Normally symbols are never removed from obarrays. It is possible for the user to
expliCitly remove a symbol from the current obarray. There is also a feature by
which "truly worthless" symbols may be removed automatically (see part 3.6).

intern SUBR 1 arg

(intern x), where x is an atomic symbol, returns the unique atomic symbol
which is "interned on the obarray" and has the same pname as x. If no symbol
on the current obarray has the sa·me pname as x, then intern will place x itself
on the obarray, and return it as the value.

Page 2-51 ~2-5.4 December 17, 1975

o

o

o

o

o

C)

Atomic Symbols

remob SUBR 1 arg

The argument to remob must be an atomic symbol. It is removed from the
current obarray if it is interned on that obarray. This makes the atomic
symbol inaccessible to any S-expressions that may be read in or loaded in the
future. remob returns nit

copysymbol SUBR 2 args

A subr of two arguments. The first argument must be a symbol. and the
second should be t or nil. The result is a new, uninterned symbol. with the
same pname as the argument "Uninterned" means that the symbol has not
been placed on any obarray. If the second argument is t, the new symbol will
be given the same value as the original and wilt have a copy of its property
list. Thus the new will start out with the same value and properties as the old.
but if it is setq'ed or putprop'ed, the value or property of the old will not be
Changed. If the second argument is nil, the new symbol has no value and no
properties (except possibly internal system properties.)

gensym LSUBR a or 1 ar9~

gensym creates and returns a new atomic symbol, which is not interned on an
obarray (and therefore is not recognized by read.) The atomic symbol's pname
is of the form prefix number, e.g. gOOO 1. The number is incremented each time.

If gensym is given an argument, a numeric argument is used to set the number;
The pname of an atomic-symbol argument is used to set the prefix. Por
example:

if (gensym) => g0007
then (gensym /foo) => f0008

(gensym 40) => f0032
and (gensym) => f0033

Note that the number is in deCimal and always four digits,- and the prefix is
alwa ys one character.

December 17. 1975 e2-S.4 Page 2-55

Madisp Reference Manual

5.5 Defining Atomic Symbols as Functions

Atomic symbols may be used as names for functions. This is done by putting the
actual function (a subr-object or a lambda-expression) on the property list of the
atomic symbol as a "functional property," i.e. under one of the indicators expr,
fexpr, macro, subr, lsubr, or fsub~

Arra y properties (see page 2-87) are a Iso considered to be functional properties, so
an atomic symbol which is the name of an array is also the name of a function, the
accessing function of that arra y ..

When an atomic symbol which is the name of a function is applied, the function
which it names is substituted.

defun FSUBR·

defun is used for defining functions. The general form is:

(defun name type (lambda-variable •••)
body . ••)

However, name and type may be interchanged. type, which is optional. may be
expr, fexpr, or macro. If it is omitted. expr is assumed. Examples:

(defunaddone (x) (l+x» ;defines an expr

(defun Quot.fexpr (x) (car x» ;defines a fexpr

(defun fexpr Quot (x) (car x». ;is the same

(defun zzz expr x ithis is how you
(foo(arg 1)(arg 2») ; define a lexpr.

The first exampleabove is really ju·st defining a synonym. Another way to do
this is:

(defpropaddone 1+ expr)

That· is~ an atomic functional property indicates synonyming. This can be
particularly ~seful to define a macro byan expr or fexpr. or even by a subr.

. The functions defprop and putprop may also be used for defining functions.

Page 2-56 f2':S.S· December 17. 1975

o

o

o

o

o

o

Atomic Symbols

There ii a feature by which, when a fil@ of functions has been c;ompiled and
loaded into the lisp environment, the file may be edited and then only those
functions which were changed may be loaded for interpretive execution. This
is done by compiling with the "E" switch, and then reading in the source file
with the variable defun bound non-n i 1. Each function will have an expr
hash property maintained, which contains the sxhash of the interpreted
definition of the function. defun will only redefine the function if this hash
code has changed. This feature is rather dangerous since reasonable
alterations to the function definition may not change the sxhash and
consequently may not take effect. Because of its generallosingness, this feature
is only available in the pdp-lO implementation and sometimes not even there.

defun could have been defined by:

(defun defun fexpr (x) jCircular, but you get the idea
(prog (name type body)

j first, analyze the form, get arguments.
(cond «memq (car x) '(expr fexpr macro»

(setq type (car x)
name (cadr x)
body (cddr x»)

«memq (cadr x) '(expr fexpr macro»
(setq name (car x)

type (cadr x)
body (cddr x»)

«setq name (car x)
type 'expr
body (cdr x»»

(setq body (cons 'lambda body»

; now, check for expr-hash hair.
(cond «and defun

)

(get name 'expr-hash)
(= (get name 'expr-hash)

(sxhash body»)

actually make the definition.
«putprop name body type»)

(return name»)

December 17, 1975 Page 2-57

args

sysp

Maclisp Reference Manual

LSUBR 1 or 2 args

(args f) tells you the number of arguments expected by the function f. If f
wants n arguments, args returns (n; 1 • n). If f can take from m to n
arguments, args returns (m . n). If f is an fsubr or a lexpr, expr. or fexpr, the
results are meaningless.

(args f x). where x is (nil. n) or (m . n). sets the number of arguments
desired by the function f. This only works for compiled. non-system functions.

SUBR 1 arg

The sysp predicate takes an atomic symbol as an argument. If the atomic
symbol is the name of a system function (and has not been redefined). sysp
returns the type of function (subr. 1 subr. or fsubr). Otherwise sysp
returns nil. Examples:

(sysp 'faa) => nil (presumably)

(sysp 'car) => subr

(sysp 'cond) => fsubr

,

Page 2-:58 t2-S.S December 17. 1975

o

o

o

o Numbers

o

o

6. Numbers

For ~ description of the various types of numbers used in Maclisp. see part 1.2.

6.1 Number Predicates

zerop SUBR 1 arg

The zerop predicate returns t if its argument is fixnum zero or flonum zero.
(There ~s no bignum zero.) Otherwise it returns n 11. It is an error if the
argument is not a number. If that is possible s i gnp should be used.

plusp SUBR 1 arg

The p 1 usp predicate returns t if its argument is strictly greater than zero. nil
jf it is zero or negative. It is an error if the argument is not a number.

minusp SUBR 1 arg

oddp

The mi nusp predicate returns t if its argument is a negative number, nil if it
is a non-negative number. It is an error if the argument is not a number.

SUBR 1 arg

The oddp predicate returns t if its argument is an odd number. otherwise n 11.
The argument must be a fixnum or a bignum.

signp FSUBR

The s i gnp predicate is used to test the sign of a number. (s i gnp c x) returns
t if x's sign satisfies the test C, n 11 if it does not. x is evaluated but C is not.
The result is always nil if x is not a number. C can be one of the following:

December 17. 1975 l2-6. Page 2-59

MacUsp Reference Manual

1 means x(O
le II x~O
e II x=O
n II x;to
ge II x2.0
9 II x>O

Examples:

haulong

(signp le -1) => t

(signp n 0) -> nil
(signp 9 /(foo • bar) => nil

SUBR 1 arg

(hau long x) returns the number of significant bits in x. x can be a fixnum or
a: bignum. The result is the least integer not less than the base-2 logarithm of
Ixl+l.

Page 2-60

Examples:
(haulong 0) => 0
(haulong 3) => 2
(haulong -7) => 3
(haulong 12345671234567) => 40.

n-6.1 December 17. 1975

o

o

o

o

o

o

Numbers

8.2 Comparison

SUBR Z args

(= x,) is t if x and, are numerically equal. x and 'J must be both fixnums or
both flonums. Use aqua 1 to compare bignums.

greaterp LSUBR 2 or more args

>

greaterp compares its arguments. which must be numbers. from left to right.
If any argument is not greater than the next, grea terp returns ni 1. But if the
arguments to greaterp are strictly- decreasing. the result is t. Ex-amples:

(greaterp 4 3) => t
(greaterp 1 1) => nil
(greaterp 4.03.6 -2) => t
(greaterp 4 3 1 2 0) => nil

SUBR 2 args

(> x 'J) is t if x is strictly greater than "j. and nil otherwise. x and 'J must be
both fixnums or both ftonums.

lessp LSUBR 2 or more args

1 essp compares its arguments. which must be numbers. from left to right. If
any argument is not less than the next. 1 essp returns n i 1. But if the
arguments to 1 essp are strictly increasing. the result is t. Examples: -

December 17. 1975

(lessp 3 4) => t

(lessp 1 1) => nil
(lessp -2 3.6 4) => t
(lessp 0 2 1 3 4) => nil

i2-6.2 Page 2-61

<

max

min

Maclisp Reference Manual

SUBR 2 args

« x ,) is t if x is strictly less' than ,. and nil otherwise.. x and 'J must be
both fixnums or both flonums.

LSUBR lor more args

max retUrns the largest of its arguments. which must be numbers. If any
.argument, isa, flonum. the result will be a flonum. Otherwise, it will be a
fixnum or a bignum depending on its magnitude.

LSUBR I armore args

min 'returns the smallest of its arguments. which must be numbers. If any
argument is aftonum. the result will be a Ranum. Otherwise. it will be a
ftxnum or abignum depending on its magnitude.

Page 2-62 n-6.2 December 17, 1975

o

o
i ..
) .

'.

'"

o

· .- .'. ~

o Numbers

o

o

8.3 Con version

fix SUBR 1 arg

(fix x) converts x to a fixnum or a bignum depending on its magnitude.
Examples:

(fix 7.3) => 7
(fix -1.2) => -2
(fix 104) => 104

float SUBR 1 arg

abs

(float x) converts x to a Ronum. Example:

(float 4) => 4.0
(float 3.27) => 3.27

SUBR 1 arg

(abs x) -> Ixl. the absolute value of the number x. abs could have been
defined by:

(defun abs (x) (cond «minusp x) (minus x»
(t x) »

minus SUBR 1 arg

minus returns the negative of its argument, which can be any kind of number.
Examples:

December 17, 1975

(minus 1) => -1
(minus -3.6) => 3.6

~2-6.3 Page 2-63

Mac1isp Reference Manual

haipart SUBR 2 args

(ha i part x n) extracts n leading or trailing bits from the internal
representation of x. x may be a fixnum or a bignum. n must be a fixnum.
The value is returned as a fixnum or a bignum. If n is positive, the result
contains the n high-order significant bits of I x I. If n is negative, the result
contains the In I low-order bits of Ixl. If Inl is bigger than the number of
significant bits in x, I x I is returned.

Examples:
(haipart 34567 7) => 162

(haipart 34567 -5) => 27

(haipart -34567 -5) => 27

Page 2-64 e2-6.3 December 17, 1975

o

o

o

o

o

o

Numbers

6.4 Arithmetic

General Ari thmetio

These functions will perform arithmetic on any kind of numbers, and always
yield an exact result, except when used With Ronums. (Flonums have limited
precision and range.) Conversions to Ronum or bignum representation are done as
needed. Flonum representation will be used if any of the arguments are flonums;
otherwise fixnum representation wilt be used if the result can fit in fixnum form, or
bignum representation if it cannot.

The two sections after this one describe other arithmetic functions which are
more efficient but less powerful.

plus LSUBR 0 or more args

plus returns the sum of its arguments, which may be any kind of numbers.

difference LSUBR 1 or more args

times

difference returns its first argument minus the rest of its arguments. It works
for any kind of numbers.

LSUBR 0 or more args

times returns the product of its arguments. It works for any kind of numbers.

quotient LSUBR 1 or more args

quotient returns its first argument diVided by the rest of its arguments. The
arguments may any kind of number.

Examples:
(quotient 3 2) => 1 :fixnum division truncates.

(quotient 3 2.0) => 1.5 ;but flonum div1sion dDes not.

(quotient 6.0 1.5 2.0) => 2.0

December 17. 1975 12-6.4 Page 2-65

Maclisp Reference Manual

addl . SUBR 1 arg

(addl x) => x+1. x may be any kind of number.

subl SUB.R 1 arg

(subl x) => x-I. x may be any kind of number.

remainder SUBR 2 args

ged

expt

(rema i nder x y) -> the remainder of the division of x by y. The sign of the
remainder is the same as the sign of the dividend. The arguments must be
fixnums or bignums.

SUBR 2 args

(ged x y) => the greatest common divisor of x and y. The arguments must be
fixnums or bignums.

SUBR Z args

(expt x z) = Xz

The exponent z may be a bignum if the base x is 0, I, or -1; otherwise z should
be a fixnum. x may be any kind of number.

As a special feature, expt allows its second argument to be a Ronum, in which
case the first argument is converted to a Ronum and the exponentiation is
performed in Roating pOint, using logarithms. The result is a Ronum in this
case. .

Page 2-66 ~2-6.4 December 17, 1975

o

o

o

o

o

o

Numbers

Fixnum Arithmetic

These functions require rheir arguments ro be fixnums and produce only fixnum
results. If the true result. which would be returned by the more general functions
described previously. is too large to be represented as a fixnum, the result actually
returned will be truncated to an implementation-dependent number of bits, which is
36. (including the sign) in the Multics and pdp-lO implementations. The compiler
produces highly-optimized code for these operations.

+

*

LSUBR 0 or more args

+ returns .the sum of its arguments. The arguments must be fixnums, and the
result is always a fixnum. Examples:

(+ 2 6 -1) => 7
(+ 3) => 3
(+) => 0

;trivial case
;identity element

LSUBR 0 or more args

This is the fixnum-only subtraction function. With one argument, it returns
the number's negation. With more than one argument, it returns the first
argument minus the rest of the arguments.

etc.

(-) => 0, the identity element
(- 3) => -3
(-53)=>2
(- 2 6 -1) => -3

LSUBR 0 or more args

* returns the product of its arguments. Examples:

(* 4 5 -6) => -120.
(* 3) => 3
(*) => 1

;trivial case
; identity element

December 17. 1975 22-6.4 Page 2-67

/

1+

1-

\

\\

Mac1isp Reference Manual

LSUBR 0 or more args

This is the fixnum-only division function. The arguments must be fixnums
and the result of the division is truncated to an integer and returned as a
fixnum. Note that the name of this function must be typed in as 1/, since Lisp
uses I as an escape character.

If used with more than one argument, it divides the first argument by the rest
of the arguments. If used With only one argument, it returns. the fixnum
reciprocal of that number, which is -1, 0, 1, or undefined depending on whether
the number is -1, large, 1, or 0.

(II) => 1, the identity element.
(1120.5) => 4
(II 100. 3 2) => 16.
etc.

SUBR 1 arg

(1+ x) => x+l. x must be a fixnum.

SUBR 1 arg

(1- x) -> x-l. x must be a fixnum.

SUBR 2 args

The result is always a fixnum.

The result is always a fixnum.

(\ x)I) returns the remainder of x divided by)I, with the sign of x. x and ")
must be fixnums. Examples:

(\ 5 2) => 1
(\ 65. -9.) => 2
(\ -65. 9.) => -2

SUBR 2 args

This subr of two arguments is like ged, but only accepts fixnums. This makes
it faster than ged.

Page 2-68 ~2-6.4 December 17, 1975

o

0

o

L~ ___________________________ _

o

o

Numbers

SUBR 2 args

A is the fixnum only exponentiation function. It is somewhat faster than expt,
but requires its arguments to be fixnums, uses fixnum arithmetic, and always
returns a fixnum result, which will be incorrect if the true result is too large to

. be represented as a fixnum.

December 17, 1975 e2-6.4 Page 2-69

Mac1isp Reference- Manual

Flonum Arithmetio

These functions require their arg,uments to be Honums, and always produce
Honum resuTts. If the true result is too large or- too small to- be represented as a
flonum, an arithmetic underflow or overflow error wilr occur. (In the pdp-l0
implementation these errors are not detected in compiled programs.) The compiler
produces highly-optimized code for these operations.

-s

LSUBR 0 or more args

+1 returns the sum of its arguments.

Examples:
(+S 4.1 3 .• 14) :.) 7.24
(+$ 2 .• 0 1.5 -3-.6)
(+$ 2.6) =-) 2.6

:) -0-.1

(+$) :) 0.0

LSUBR 0 or more args

;triv-ial case
;identity element

This is the ffonum-onlY subtraction function. When used with only one
argument, it returns the number's negation. Otherwise .. it returns the first
argument minus the rest. of the arguments.

(-I J => 0.0. the identity element
(-s~) -> the negation of X".

(-s- 6.~ l.5) :> 4.5-
{-S Z.O 1.5: -3.6)-->3 .. 1
etc..

lsuaR ~ or more args

*1: returns. the produce. at its arguments. Examples:

(*$ l.O l.O 4.0) => 24.~
(*S- 6.1l => 6.1
(*$")- => 1.Q

;trivial case
; identity eTement

Page 2-70 n-6.4- December 17,1975,

o

o

o

o

(J

o

/s

1+1

l-S

AS

Numbers

LSUBR 0 or more args

This is the fionum-only division function. Note that the name of this function
must be typed in as / IS, since Lisp uses I as an escape character. This
function computes the reciprocal if 'given only one argument. If given more
than one argument, it divides the first by the rest.

(I/S) = > 1. 0, the identity element
(I/S 5.0) => 0.2
(lIS 6.28 3.14) => 2.0
(I/S 100.0 3.0 2.0) -> 16.5
etc.

SUBR 1 arg

(l+S x) ::a> x+I.O. x must be a fionum. The result is always a fionum.

SUBR 1 arg

(l-S x) .. > x-I.O. x must be a fionum. The result is always a fionum.

SUBR 2 args

""'S is the fionum-only exponentiation function. The first argument must be a
fionum, the second must be a fixnum (repeat, a fixnum), and the result is a
ftonum. To raise a ftonum to a fionum power, use (expt x y) or (exp (*S y
(log x»).

December 17, 1975 e2-6.4 Page 2-71

Maclisp Reference Manual

8.5 Exponentiation and Logarithm Functions

sqrt SUBR 1 arg

exp

log

(sqrt x) => a Ranum which is the square root of the number x. This is more
accurate than (expt x 0.5). The following code. which is due to Cosper.
should be written if the square root of a bignum is desired. It is essentially a
Newton iteration. with appropriate precautions for integer truncation.

(defun bsqrt (n)
(bsqrtl (abs n)

(expt 2 (II (1+ (haulong n» 2»»

(defun bsqrtl (n guess)
«lambda (next)

(exp x) => eX

(cond «lessp next guess)
(bsqrt1 n next»

(t guess»)
(Quotient (plus guess (Quotient n guess»

2»)

SUBR 1 arg

SUBR 1 arg

(log x) -> the natural logarithm of x.

Page '2-72 n-6.S December 17. 1975

o

o

o

o

o

o

6.6

sin

cos

atan

Numbers

Trigonometric Functions

SUBR 1 arg

(s i n x) 'gives the trigonometric sine of x. x is in radians. x may be a fixnum
or a ftonum.

SUBR 1 arg

(cos x) returns the cosine of x. x is in radians. x may be a fixnum or a
ftonum.

SUBR 2 args

(atan x y) returns the arctangent of xly. in radians. x and "j may be fixnums
or ftonums. "j may be 0 as long as x is not also O.

December 17. 1975 ~2-6.6 Page 2-73

Maclisp Reference Manual

6.7 Random Functions

random LSUB~ 0 to 2 args

(random) returns a random fixnum.

(random nil) restarts the random sequence at its beginning.

(random x), where x is a fixnum, returns a random fixnum between 0 and x-l
inclusive. A useful function is:

(defun frandom ()
(liS (float (random 10000.» 10000.0»)

which returns a random Ronum between 0.0 and 1. O.

(random nl n2) sets the random number seed from the pair of integers nl. n2.

zunderflow SWITCH

If an intermediate or final fionum result in the interpretive arithmetic functions
(t imes, *S, expt, etc.) is too small in magnitude to be represented by the
machine, corrective action will be taken according to the zunderfl ow switch.

If the value of zunderfl ow is non-n il, the offending result wilt be set to 0.0
and computation will proceed. If the value of zunderfl ow is n i 1, an error will
be Signalled. nil is the initial value.

In the pdp-IO implementation compiled code is not affected by zunderflow if
the arithmetic in question was open-coded by the compiler. Instead.
computation proceeds using a result with a binary exponent 25& higher [han
the correct exponent. In the Multics implementation zunderflow works- [he
same for compiled code as for interpreted code.

See (sstatus divov). which controls division by zero (part 3.7).

Page 2-71- e2-6.7 December 17, 1975

o

o

o

o

o

o

Numbers

8.8 Logical Operations on Numbers

These functions may be used freely for bit manipulation; the compiler recognizes
them and produces efficient code.

boole LSUBR 3 or more args

(boo 1 e k x y) computes a bit by bit Boolean function of the fixnums x and 'J
under the control of k. k must be a fixnum between 0 and !7 (octal). If the
binary representation of k is abed, then the truth table for the Boolean
operation is:

y

101
01 a c

x 1
11 b d

If boo 1 e has more than three arguments, it goes from left to right; thus

(boole k x y z) = (boole k (boole k x y) z)

The most common values for k are 1 (and), 7 (or), 6 (x or). You can get the
complement, or logical negation. of x by (boo 1 e 6 x -1).

The following macros are often convenient:

(defun logand maero (x)
(subst (cdr x) "f "(boole 1 . f»)

(defun logor macro (x)
(subst (cdr x) "f "(boole 7 • f»)

(defun logxor macro (x)
(subst (cdr x) "f "(boole 6 . f»)

December 17, 1975 Page 2-75

lsh

rot

Maclisp Reference Manual

Alternatively. these could be defined with macrodef (see part 6.2):

(macrodef logand x (boole 1 . x)}

(macrodef logor x (boole 7 • x»

(macrodef lOQxor x (boole 6 . x»

SUBR Z args

(1 sh x 'J), where x and 'J are fixnums, returns x shifted left 'J bits if 'J is
positive, or x shifted right I'J 1 bits if y is negative. Zero-bits are shifted in to
fill unused positions. The result is undefined if I y I > 36. The number 36 is
implementation dependent, bur this is the number used in both the Multics and
pdp-IO implementations. Examples: "

(lsh 4 1) => 10 (octal)
(lsh 14 -Z) => 3
(lsh -1 1) => -Z

SUBR Z args

(rot x y) returns as a fixnum the 36-bit representation of x, rotated left 'j bits
if "j is positive, or rotated right I y 1 bits if "j is negative. x and "j must be
fixnums. The results are undefined if Iyl > 36. As with lsh. the number 36
depends on the implementation. Examples:

(rot 1 Z) => 4
(rot -1 7) => -1
(rot 601234 36.) => 601234
(rot 1 -Z) => ZOOOOOOOOOOO
(rot -6 6) => -501

The following feature only exists in the pdp-1O implementation.

The internal representation of ftonums may be hacked using these functions.
1 sh or rot applied to a ftanum operates on the internal representation of the
ftonum and returns a fixnum result. For example, (lsh 0.5 0) =>
200400000000 (octal). The following function also exists:

Page 2-76 ~2-6.8 December 17, 1975

o

o

o

o

o

o

fsc

Numbers

SUBR 2 args

(fsc x y) performs a FSC in~truction on the two numbers x and y. and returns
the result as a flonum. Consult the pdp-lO processor manual if you want to use
this.

x and y may be fixnums or flollums; fsc just uses the machine representations
of the numbers. If y is greater than 777777 octal. the FSC instruction is omitted
and the possibly-un normalized flonum with the same machine representation as
x is returned.

December 17. 1975 e2-6.8 Page 2-"

Maclisp Reference Manual o

o

Page 2-78 . December 17. 1975
o

o

o

o

Character Manipulation

7. Character ManipUlation

7.1 Character Objects

An atomic symbol with a one-character pname is often called a character obiect
and used to represent the ascii character which is its pname. In addition the atomic
symbol with a zero-length pname represents the ascii null character. Functions which
take a character object as an argument usually also accept a string one character long
or a fixnum equal to the ascii-code value for the character. Character objects are
always interned on the obarray (see page 2-56). so they may be compared with the
function eq.

ascii SUBR 1 arg

(asc i i x), where x is a number, returns the character object for the ascii code
x.

Examples:

(ascii 101) => A

(asci i 56) => /.

getchar SUBR Z args

(getchar x n). where x is an atomic symbol and n is a fixnum. returns the
n'th character of x's pname; n • 1 selects the leftmost character. The character
is returned as a character object. n i1 is returned if n is out of bounds.

getcharn SUBR 2 args

getcharn is the same as getchar except that the character is returned as a
fixnum instead of a character object.

December 17, 1975 e2-7. Page 2-79

Maclisp Reference Manual

maknam SUBR 1 arg

maknam takes as its argument a list of characters and returns an uninterned
atomic symbol whose pname is constructed from the list of characters. The
characters may be represented either as fixnums (ascii codes) or as character
objects. Example:

{maknam ~(a b 60 d» => abOd

implode SUBR 1 arg

implode is the same as maknam except that the resulting atomic symbol is
interned. It is more efficient than doing (intern (maknam x», although it is
less efficient than plain maknam which should be used when interning is not
reqUired.

readlist SUBR 1 arg

The argument to read 1 is t is a list of characters. The characters maybe
represented either as fixnums (ascii codes) or as character objects. The
characters in the list are assembled into an S-expression as if they had been
typed into read (see part 5.1.) If macro characters are used, any usage in the
macro character function of read. readch. tyi. or tyi peek not explicitly
specifying an input file takes input from readl i sts's argument rather than
from an I/O device or a file. This causes macro characters to work as you
would expect.

Examples:
(readlist ~(a be» => abc
(readl ist ~t I(p r 151 n t I I~ f 0 0 I) »

=} (print (quote fool) ;ascii 151 = "in

Note the use of the slashified special characters left parenthesis, space, quote,
right parenthesis in the argument to readl ist.

Page 2-80 e2-7.1 December 17. 1975

o

o

o

o

o

o

Character Manipulation

explode SUBR 1 arg

(exp lode x) returns a list of characters, which are the characters that would
be typed out if (pr i nIx) were done, including slashes for special characters
but not including extra newlines inserted to prevent characters from running
off the right margin. Each character is represented by a character object.
Example:

(explode /(+ 112 3» => (I(+ I II 11 12 I /3 I))
;Note the presence of slashified spaces in this list.

explodee SUBR 1 arg

(exp 1 odee x) returns a list of characters which are the characters that would
be typed out if (prine x) were done, not including extra newlines inserted to
prevent characters from running' off the right margin. SpeCial characters are
not slashified. Each character is represented by a character object. Example:

(explodee /(+ 112 3» => (I(+ I 11 12 I 13 I))

exploden SUBR 1 arg

(exp' oden x) returns a list of characters which are the characters that would
be typed out if (pr i ne x) were done, not including extra newlines inserted to
prevent characters from running off the right margin. Special characters are
not slashified. Each character is represented by a number which is the ascii
code for that character. cf. exp' odee. Example:

(exploden /(+ 112 3» => (50 53 40 61 62 40 63 51)

flatsize SUER 1 arg

flate

(flatsize x) returns the number of characters prinl would use to print x
our.

SUBR 1 arg

(flate x) returns the number of characters prine would use to print X out.
without slashifying special chal:acters.

December 17, 1975 €2-7.1 Page 2-81

*," •

Mac1isp Reference Manual

7.2 Cha.ra.cter Strings

These character string functions only exist at present in the Multics
impl~memarigrl gf M~u;1isp-. A predi(;iH@ rg ~e~t if ygur implemfmtiiW;m h8.§ theie
functions is

(status feature strings)

These functions all accept atomic symbol$ in place of strings as arguments; in this
case the pname of the atomic symbol is used as the string. When the value of one of
these functions is described as a string. it is always a string and never an atomic
symbol. Also see the fUnctions on page 2-54.

catenate LSUBR 0 or more args

index

The arguments are, character strings. The result is a string which is all the
arguments concatenated together. Example:

(catenate "fooD "-" "bar") => "foo-bar"

SUBR 2 args

index is like the PL/I builtin function index. The arguments are character
strings. The position of the first occurrence of the second argument in the first
is returned. or 0 if there is none. Examples:

(index "foobar" "ban) => 4
(index "foobar" "baz") => 0
(index "goobababa" "bab") => 4

stringlength SUBR 1 arg

The argument to stringlength must be a character string. The number of
: characters in it is returned. Examples:' , ,

Page 2-82

(stringlength "fooD) => 3
(stringlength "D) => 0

~2-7.2 December 17. 1975

o

o

o

o

o

o

Character Manipulation

substr LSUBR 2 or 3 args

This is like the PL/I substr builtin. (substr x m n) returns a string n
characters long, which is a portion of the string x beginning with its m'th
character and proceeding for n characters. m and n must be fixnums. x must
be a string.

(substr x, m) returns the portion of the string x beginning with its m'th
character and continuing until the end of the string. Examples:

(substr "foobar" 3 2) => "ob"
(substr "resultmunger" 6) => "tmunger"

SUBR 1 arg

(get_pname x) returns the pname of x as a character string. x must be an
atomic symbol.

SUBR 1 arg

make_atom returns an atomic symbol, uninterned. whose pname is given as a
character string argument. Example:

(make_atom "fooll) => foo

December 17. 1975 e2-7.2

;which is not eq to a
; foo that is read in.

Page 2-83

Maclisp Reference Manual o

o

Page 2-84 f2-7.2 December 17, 1975 o

o

o

()

Arrays

8. Arrays

As explained in part 1.2, an array is a group of cells which may contain Lisp
objects. The individual cells are selected by numerical subscripts.

An array is designated by a special atomic object called an array-pointer. Array
pointers can be returned by the array-creation functions array and *array. An
array-pointer may either be used directly to refer to the array, or, for convenience in
referring to the array through input/outpur media, it may be placed on the property
list of an atomic symbol under the indicator array, and then that symbol can be used
as the name of the array.

There are several types of arrays. The main types are ordinary arrays, whose
cells can hold any type of object, and number arrays, whose cells can only hold
numbers. Number arrays permit more effiCient code to be compiled for numerical
applications, and take less space than an ordinary array which contains the same
number of numbers. See the array* declaration (part 4.2) and the arrayca 11
function (page 2-14).

When an array is created its type must be declared by giving a "type code." The
type code for ordinary arrays is t. For number arrays, the type code is either fixnum
or f10num. A particular number array can only hold one type of numbers because its
cells contain the machine representation of the number, not the Lisp-object
representation.

Some other types of arrays are: un-garbage-collected arrays, with a type-code of
nil, which are the same as ordinary arrays except that they are not prote.cted by the
garbage collector and therefore can be used for cerrain esoteric hacks; obarrays, with
a type-code of obarray, which are used [Q maintain tables of known atomic symbols
so that the same atomic symbol will be referenced when the same pname is typed in;
and readtables, with a type-code of read tab 1 e, which are used to remember the
syntax specifications for the Lisp input reader. Normally, there is only one readtable
and one obarray, supplied by the system, but the user may create additional
readtables and obarrays in order to provide special non-Lisp environments or to gain
additional control over the Lisp environment. Lisp functions such as read can be
made to use an additional readtable or obarray by re-binding the variable
readtab 1 e or obarray, respectively.

An array-pointer may also be dead, in which case it does not point to any array.

December 17, 1975 ~2-8. Page 2-85

MacUsp Reference Manual

One of the functions array, *array, or *rearray may be used to revivify a dead
arra y-pointer.

The functions array and *array are used to create arrays. The first argument
may be an atomic symbol, which makes that atomic symbol the name of an array,
putting an array-pointer on its property list, or redefining an array-painter that was
already on the property list to point to the new array. Alternatively the first argument
may be an array pointer, which causes that array pointer to be redefined to point to a
new array. or it may be nil, which causes a new array pointer to be created and
returned. Except in the lauer case, array returns its first argument. *arrayalways
returns the array pOinter, never the atomic symbol.

A readtable or an obarray may not be created with user-specified dimensions.
The dimensions are always determined by Lisp. Other types of arrays allow any
reasonable number (at least 3, anyway) of dimensions to be speCified when they are
created. The subscripts range from 0 up to I less than the dimension specified.

Ordinary and un-garbage-collected arrays are initialized to n i 1. Fixnum arrays
are initia lized to O. Flonum arrays are initialized to O. O.

Obarrays are initialized according to the third argument given to array or
*array. n i 1 causes a completely empty obarray to be created. Not even nil will be
interned on this obarray. t causes the current obarray (value of the symbol
obarray) to be copied. An array-pointer which is an obarray, or an atomic symbol
which names an obarray, causes that obarray to be copied. If no third argument is
given, the current obarray is copied.

Readtables are initialized in a similar fashion. If the third argument of array or
*array is n i 1, then the current readtable is copied. If it is t, then the ieadtable
being created is initialized to the initial standard Lisp readtable, including the macro
characters / and ;. (Note that this is the opposite of the t-n i 1 convention for
obarra ys. This is for compatibility with the makreadtab 1 e function, which no longer
exists.) An array-pointer or symbol of a readtable to be copied may also be given. If
no third argument is given, the current read table is copied.

An array-pointer may be redefined to an entirely different type and size of array.
using the *array function. It remains the same array-pointer, eq to itself. If a
variabJe was setq'ed to the array-pointer, that variable will now indicate the new
arra y. If a symbol has that array-pointer on its property list, it will now be the name
of the new array_

The *rearray function can be used to redefine the size or arrangement of

Page 2:'86 e2-8. December 17. 1975

o

o

o

o

o

o

Arrays

dimensions of an array Without losing its contents, or to make an array-pointer not
point to any array (become dead). If there is only one argument, the array-pointer is
killed, the array's contents are discarded, and the array-pointer becomes a "dead
array" as described above. *array may now be used to redefine it as a new array.

If more than one argument is g'iven co *rearray, they are the same arguments as
to *array. *rearray with more than one argument cannot be used to change the
type of an array, and cannot operate on a readtable or an obarray, but it can be used
to change the dimensions of an array. The modified array will be initialized from its
old contents rather than n i 1, 0, or o. O. The elements are taken in row-major
order for initialization purposes, and if there are not enoug'h, n i 1, 0, or 0.0 will be
used to fill the remaining elements of the modified array, according to the type.

The Multics implementation also has a type of arrays called external arrays.
External arrays reside in a Multics segment rather than withm the Lisp environment.
They behave much like fixnum arrays, and should be declared as such to the
compiler. To create an external array, use a form such as

(array foo externa 1 pointer length)

The pointer is a packed pointer to the beginning of the array, Le. a fixnum whose
first six octal digits are the seg'ment number and whose second six octal digits are the
word address. The length is the number of words in the array. External arrays can
only have one dimension, can only contain fixnums, and are not initialized when they
are created. They cannot usefully be saved by the save function. This type of arra y
can be used for communication between Lisp programs and Multics programs or
SUbsystems written in other languages, when larg(amounts of numerical data or
machine words must be passed back and forth. See also defpll (part 4.6).

If you want the range of subscripts on arrays to be checked, it is necessary [0 set
the *rset flag non-nil (Le. run in (*rset t) mode) and to avoid the use of in-line
array accessing (Le. the array* declaration) in compiled programs. The amount of
checking performed when *rset is nil and/or compiled code is used depends on the
implementation.

December 17, 1975 e2-S. Page 2-87

- ~-- ------~---

Maclisp Reference Manual

Here is an example of a lise of arrays:

(defun matrix-multiply (arr1 arr2 result)
(and (eq (typep arr1) /symbol) iconvert arguments

(setq arr1 (get arr1 /array») ito array-pointers
(and (eq (typep arr2) /symbol)

(setq arr2 (get arr2 /array»)
(and (eq (typep result) /symbol)

(setq result (get result /array»)
(do «ii (cadr (arraydims result») iget relevant

(jj (caddr (arraydims result») idimensions
(kk (cadr (arraydims arr2»»

()

(do i 0 0+ i) (= i ii) iresult .- arr1 x arr2
(do j 0 (1+ j) (= j jj)

(do «k 0 (1+ k»

result)

(r 0.0»
«= k kk)
(store (arraycall flonum result i j) r»

(setq r (+t r (*S (arraycall flonum arr1 i k)
(arraycall flonum arr2 k j)

»»»)

LSUBR 3 or more args

(*array x y bl b2 ... bn) defines x to be an n-dimensional array. The first
subscript may range from 0 to bl minus I, the second from 0 to b2 minus I, etc.
y is the type of arra y, as explained above. It may be chosen from among: t,
nil, fixnum, flanum, readtable, obarray.

array FSUBR

(array x y bJ b2 ... bn) has the same effect as (*array (Quote x) (Quote y)
bl b2 ... bn). This special form is provided for your typing convenience.

Pag'e 2-88 ~2-8. December 17, 1975

o

o

o

o

10

o

Arrays

*rearray LSUBR 1 or more args

store

*rearray is used to redefine the dimensions of an array.

(*rearray x) kills the array-painter x, or the array-painter which is the array
property of the atomic symbol x. The storage used by the associated array is
reclaimed. The value returned is t if x was an array, nil if it was not.

(*rearray x type dim1 dim2 ... dimn) is like (*array x type dim] dim2 ...
(limn) except that the contents of the previously existing array named x are
copied into the new array named x. If it is a multi-dimensional array, row
major order is used. This means the last subscript varies the most rapidly as
the array is traversed.

FSUBR

The special form (store array-ref value) is used to store an object into a
particular cell of an array. The first element of the form, array-ref, must be a
subscripted reference to an array, or an invocation of arrayca 11. By
coincidence, certain other forms work as array-rtf, for instance (app ly f I)
where f turns out to be an array. The second elemerit, value, is evaluated and
stored into the specified cell of the array. store evaluates its second
"argument" before its first "argument".

Examples:

(store (data i j) (plus 1 j)

(store (sine-values (fix (*S x 10~.O»)
(sin x»

(store (arrayca1l fixnum az j) 43)

arraydims SUBR 1 arg

(arraydims x), where x is an array-pointer or an atomic symbol with an
array property, returns a list of the type and bounds of the array. Thus if A
was defined by (array A t 10 20),

(arraydims 'A) => (t 10 20)

December 17, 1975 e2-8. Page 2-89

Mac1isp Reference Manual

fillarray SUBR 2 args

(fillarraya l) fills the array a with consecutive items from the list I. If the
array is too short to contain all the items in the list. the extra items are ignored.
If the list is too short to fill up the array, the last element of the list is used to
fill each of the remaining cells in the array.

(fillarray x)I) fills the array x from the contents of the array y. If Y is
bigger than x, the extra elements are ignored. If y is smaller than x, the rest of
x is unchanged. x and y must be atomic symbols which have array properties.
or array-pointers. The two arrays must be of the same type, and they may not
be read tables or obarrays.

The list-into-arra y case of fi 11 array could have been defined by:

(defun fi11array (a x)
(do «x x (or (cdr x) x»

(n 0 (1+ n»

)
a)

(hbound (cadr (arraydims a»»
«= n hbound»

(store (a n) (car x»

An extension to the above definition is that fi11array will work with arrays
of more than one dimension. filling the array in row-major order. fi llarray
returns its first argument.

11starray LSUBR 1 or 2 args

(1 i starray array-name) takes the elements of the array specified by array
name and returns them as the elements of a list. The length of the list is the
size of the array and the elements are present in the list in the same order as
they are stored in the array. starting with the zero'th element. If the array has
more than one dimension row-major order is used.

(1 is tarray array-name n) is the same. except that at most the first n elements
will be listed.

array-name may be an array-painter or an atomic symbol with an array-
property.

Page 2-90 ~2-8. December 17. 1975

o

o

0

o

o

o

Arrays

Number arrays may be efficiently saved in the file system and restored by using
the functions loadarrays and dumparrays.

loadarrays SUBR 1 arg

(loadarrays file"spec) reloads the arrays in the file, and returns a list of S-lists.
of the form:

((nelllname old name Size) •••)

newname is a gensym'ed atom, which is the name of the reloaded array.
(nelllname ought to be an array-pointer, but this function was defined before
arra y·pointers were in vented.) ol,lname is the name the array had when it was
dumped. size is the number of elements in the array.

dumparrays SUBR 2 args

(dumparrays (array1 array2 •••) file-spec) dumps the listed arrays into the
specified file. The arrays must be fixnum or Ronum arrays.

In both of the above, the file-spec argument is dependent on the system. In ITS
or DEC-IO Lisp, the file-spec is a list of zero to fDur items, as in uread, and the
same defaults apply. In Multics Lisp, the file-spec is an atomic symbol or a
string which gives the path name of the segment to be used. The defaults and
other features of the Lisp I/O system are nor applied. Only a segment may be
specified, not a stream.

As a special compatibility feature, in Multics Lisp 10adarrays will recognize a
pdp-lO dumparrays file. (One can be moved to Multics through the ARPA
Network File Transfer Protocol if the "type image" and "byt.esize 36" commands
are employed.) The pnames will be converted to lower case and ftonums will be
converted EO the H6SS0 machine representation. dumparrays can create a file
which pdp-lO loadarrays can read, including upper-case pnames and pdp-tO
format ftonums, if it is invoked as follows:

(dumparrays (array1 array2 •••) /(pdplO file-spec»

December 17, 1975 ~2-8. Page 2-91

Maclisp Reference Manual

o

Page 2-92 ~2-8.
o

December 17, 1975

o

o

o

Mapping Functions

9. Mapping Funotions

Mapping is a type of iteration in which a function is successively applied to
pieces of a.list. There are several options for the way in which the pieces of the list
are chosen and for what is done with the results returned by the applications of the
function.

For example, mapear operates on successive elements of the list. As it goes down
the list, it ca11s the function giving· it an element of the list as its one argument: first
the car, then the eadr, then the eaddr, etc., continuing until the end of the list is
reached. The value returned by mapcar is a list of the results of the successive calls
to the function. An example of the use of mapcar would be mapcar'ing the function
abs over the list (1 -2 -4.5 6.0e15 -4.2). The result is (1 2 4.5 6.0e15 4.2).

The form of a call to mapcar is

(mapear f x)

where f is the function to be mapped and x is the list over which it is to be mapped.
Thus the example g·iven above would be written as

(mapear 'abs
'(1 -2 -4.5 6.0e1S -4.2))

This has been generalized to allow a form such as

(mapcar f xl x2 ... xn)

In th i sease f must be a function of n arguments. mapear will proceed down the
lists xl, x2, ... , xn in paral1el. The first argument to f will come from xl, the second
from x2, etc. The iteration stops as soon as any of the lists is exhausted.

There are five other mapping functions besides mapcar. map 1 i st is like mapcar
except that the function is applied to the list and successive cdr's of that list rather
than to successive elements of the list. map and mape are like map 1; st and mapcar
respectively except that the return value is the first list being mapped over and the
results of the function are ig·nored. mapean and mapeon are like mapear and
map 1 i st respectively except that they combine the results of the function using
ncone instead of 11st. That is,

December 17, 1975 e2-9. Page 2-93

Mac1isp Reference Manual

(defun mapeon (f x y)
(apply ~neonc (maplist f x y»)

Of course, this definition is far less general than the real one.

Sometimes a do or a straight recursion is preferable to a map; however, the
mapping functions should be used wherever they naturally apply because this
increases the clarity of the code.

Often f will be a lambda-type functional form rather than the atomic-symbol
name of a function. For example,

(mapcar ~(lambda (x) (cons x something» some-list)

The functional argument to a mapping function must be acceptable to app 1y - it
cannot be a macro. A fexpr or an fsubr may be acceptable however the results will
be bizarre. For instance, mapping set works better than mapping setq, and
mapping eond is unlikely to be useful.

It is permissible (and often useful) to break out of a map by use of a go.
return. or throw in a 1 ambda-type function being mapped. This is a relaxation of
the usual prohibition against "non-local" go's and return's. If go or return is used
the program may have to be compiled with the (mapex t) declaration, depending on
the implementation, so watch out! Consider this function which is similar to and,
except that it works on a list, instead of on separate arguments.

(defun andl (x)
(catch

(progn
(mape (function (lambda (y)

(or y (throw nil the-answer» »
x)

t)
the-answer»

Admittedly this could be better expressed as a do:

(defun and1 (x)
(do «y x (cdr~»)

«null y) t)
(or (car y) (return nil»

»
Page 2-94 n-9. December 17, 1975

o

o

i~ , {

;.

()

Mapping Functions

Here is a table showing the relations between the six map functions.

returns

mapa toms

applies function to

successive
sublists

successive
elements

---------------+--------------+----_._--------+
its own
second

argument
map mapc

... _-----------+--------------+---------------+
list of the
function
results

maplist mapcar

---------------+--------------+---------------+
nconc of the

function
results

mapcon mapcan

---------------+--------------+---------------+

LSUBR 1 or 2 args

(mapatoms fn obarray) applies the function fn to an the symbols on the specified
obarray. If the second argument is omitted, the current obarray is used. Note that
the obarray arg'ument must be an array-pointer, not a symbol which names an array.
The symbol obarray is bound to the obarray being mapped over during the
execution of mapa toms.

This function exists because some of the cells in an obarray contain lists of
symbols and others contain single symbols, and user programs shouldn't have to know
this.
Example:

(mapatoms
(function

(lambda (x)
(and (sysp x)

(print (list x (sysp x) (args x») »»

December 17, 1975 e2-9. Page 2-95

o

o

o

o

Function Index

Function Index

* 2-67
*S 2-70
*array 2-88
*funct ion 2-6
*rearray 2-88
+ 2-67
+S 2-70
- 2-67
-$ 2-70
I 2-67
IS 2-70
1+ 2-68
l+S 2-71
1- 2-68
1-S 2- 71
< 2-61
= 2-61
> 2-61
abs 2-63
addl 2-65
a1pha1essp 2-52
and 2-32
append 2-17
app ly 2-5
args 2-57
array 2-88
arrayca 11 2-12 .
arraydims 2-89
asci i 2-79
assoc 2-26
assq 2-27
atan 2-73
atom 2-1
bigp 2-1
boole 2-75
boundp 2-46
caaaar 2-14
caaadr 2-14
caaar 2-14
caadar 2-14

LSUBR 0 or more args
LSUER 0 or more args
LSUBR 3 or more args
FSUBR
LSUBR 1 or more args
LSUBR 0 or more args
LSUBR 0 or more args
LSUBR 0 or more args
LSUBR 0 or more arg's
LSUBR 0 or more args
LSUBR 0 or more args
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBR 131'g
SUBR 2 args
SUBR 2 args
SUER 2 arg's
SUBR 1 arg
SUBR 1 arg
SUBR 2 args
FSUBR
LSUBR 0 or more args
LSUBR 2 or 3 args
LSUBR 1 or 2 arg's
FSUBR
FSUBR
SUBR 1 arg
SUBR 1 arg
SUBR 2 args
SUBR 2 args
SUBR 2 arg's
SUBR 1 arg
SUBR 1 arg
LSUBR 3 or more args
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg

December 17, 1975 Function Index Page i

Maclisp Reference Manual

caaddr 2-14 SUBR 1 arg
caadr 2.-14 SUBR 1 arg
caar 2-14 SUBR 1 arg
cadaar 2-14 SUBR 1 arg
cadadr 2-14 SUBR 1 arg
cadar 2-14 SUBR 1 arg
caddar 2-14 SUER 1 arg
cadddr 2-14 SUBR 1 arg
caddr 2-14 SUBR 1 arg
cadr 2-14· SUBR 1 arg
car 2-13 SUBR 1 arg
catch 2-40 FSUBR
catenate 2-82
cdaaar 2-14
cdaadr 2-14
cdaar 2-14
cdadar 2-14
cdaddr 2-14
cdadr 2-14
cdar 2-14
cddaar 2-14
cddadr 2-14
cddar 2-14
cdddar 2-14
cddddr 2-14
cdddr 2-14
cddr 2-14
cdr 2-13
commen t 2-8
cond 2-32
cons 2-14
copysymbol 2-55
cos 2-73
defprop : 2-50
defun 2-56
de 1 ete 2-24
delq 2-25
difference 2-65
do 2-35
dumparrays 2-91

LSUBR 0 or more args
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBRI arg
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBR 1 argo
SUER 1 arg
SUBR 1 arg
SUBR 1 arg
SUER 1 arg
SUBR 1 arg
SUBR 1 arg
FSUER
FSUBR
SUER 2 args
SUER 2 args
SUBR 1 arg
FSUBR
FSUBR
LSUBR 2 or 3 args
LSUBR 2 or 3 args
LSU BR 1 or more args
FSUBR
SUBR 2 args

Page ii Function Index

.~~~------

o

·0
December 17, 1975

o

o

Function Index

eq 2-2 SUBR 2 args
equa 1. 2-3 SUBR 2 arg's
err 2-43 FSUBR
error 2-42 LSUBR 0 to 3 args
errset 2-42 FSUBR
eva 1 ~ ~ . 2-5
expo 2-72
exp lode 2-80
exp 1 odec 2-81
exp 1 oden 2-81
expt 2-66
fi 11 array 2-89
fix 2-63
fixp 2-1
flatc 2-81
flatsize 2-81
float 2-63
floatp 2-1
fsc " 2-76
funcall 2-11
function 2-6
ged 2-66
gensym 2-55
get 2-48
getchar 2-79
geteharn 2-79
get 1 2-49
get_pname 2-83
go 2-38
grea terp 2-61
haipart 2-63
haulong 2-60
implode 2-80
index 2-82
intern 2-54
last 2-16
length 2-16
1 essp " .. 2-61
1 ist 2-17
1 istarray 2-90

LSUBR 1 or 2 args
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBR 2 args
SUBR 2 args
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUER 1 arg
SUBR 1 arg
SUBR 2 args
LSU BR 1 or more args
FSUBR
SUBR 2 args
LSUBR 0 or 1 args
SUBR 2 args
SUBR 2 args
SUBR 2 args
SUBR 2 args
SUBR 1 arg
FSUBR
LSUBR 2 or more args
SUBR 2 args
SUBR 1 arg
SUBR 1 arg
SUBR 2 args
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
LSUBR 2 or more args
LSUBR 0 or more args
LSUBR 1 or 2 args

December 17, 1975 Function Index Page iii

Maclisp Reference Manual

1 is t i fy 2-10
10adarrays 2-91
log 2-72
lsh 2-76
lsubreall. 2-11
make_atom. 2-83
maknam 2-79
maknum 2-28
makunbound 2-47
map•............•..... 2-93
mapa toms 2-95
mape 2-93
mapean 2-93
mapcar•............... 2-93
mapcon 2-93
map 1 i st 2-93
max 2-62
member 2-23
memQ 2-24
min ~ 2-62
minus .. " ..•................. 2-63
minusp 2-59
munkam 2-28
nconc 2-18
ncons 2-14
not 2-4
nreconc 2-19
nreverse 2-19
nu 11 , 2-4
numberp 2-1
oddp 2-59
or 2-32
p 1 i st 2-51
plus ~ 2-65
plusp 2-59
pnget 2-52
pnput ..•..................... 2-53
prag 2-34
prog2 2-8
progn 2-8

SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBR 2 args
FSUBR
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
LSUBR 2 or more args
LSUBR 1 or 2 args
LSUBR 2 or more args
LSUBR 2 or more args
LSUBR 2 or more args
LSUBR 2 or more args
LSUBR ~ or more args
LSUBR lor more args
SUBR 2 args
SUBR 2 args
LSUBR lor more args
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
LSUBR 0 or more args
SUBR 1 arg
SUBR 1 arg
SUBR 2 args
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
FSUBR
SUBR 1 argo
LStJBR 0 or mor~ args
SUBR 1 arg
SUBR 2 args
SUBR 2 args
FSUBR
LSUBR 2 or more args
LSUBR lor more args

Pageiv Function Index

... ::-\
-. ,

"'-_/

o

C)
December 17, 1975

Function Index

progv 2-9
putprop 2-50
quote 2-5
quot i ent 2-65
random '" 2-74
readl i st 2-80
remainder 2-66
remob 2-54
remprop 2-51
return 2-39
reverse 2-18
rot 2-76
rplaca 2-21
rplacd 2-21
samepnamep 2-52
sassoc '" " ... 2-27
sassq 2-28
set 2-45
setplist ,,""" 2-51
setq 2-45
s i gnp 2-59
sin 2-73
sort 2-29
sortcar : 2-30
sqrt 2-72
store 2-89
stringlength ,,""" 2-82
stringp 2-2
subl 2-66
subl is '" ... 2-22
subrcall 2-11
subrp 2-2
subst 2-21
substr 2-82
sxhash 2-25
symeval 2-12
symeval 2-46
sysp 2-58
throw 2-40

FSUBR
SUBR 3 args
FSUBR
LSUBR lor more args
LSUBR 0 to 2 args
SUBR 1 arg
SUBR 2 args
SUBR 1 arg
SUBR 2 args
SUBR 1 arg
SUBR 1 arg
SUBR 2 args
SUBR 2 args
SUBR 2 args
SUBR 2 args
SUBR 3 args
SUBR 3 args
SUBR 2 args
SUBR 2 args
FSUBR
FSUBR
SUBR 1 arg
SUBR :'2 args
SUBR 2 args
SUBR 1 arg
FSUBR
SUBR 1 arg
SUBR 1 arg
SUBR 1 arg
SUBR 2 args
FSUER
SUER 1 arg
SUBR 3 args
LSUBR 2 or 3 args
SUBR 1 arg
SUER 1 arg
SUBR 1 arg
SUER 1 arg
FSUER

times 2-65 LSUBR 0 or more args

December 17, 1975 Function Index Page v

Mac1isp Reference Manual

typep 2-1
xcons 2-14
zerop 2-59
\ : 2-68
\\ 2-68
" 2-68
"s 2-71

SUBR 1 arg
SUBR 2 args
SUBR 1 arg
SUBR 2 args
SUBR 2 args
SUBR 2 args
SUBR 2 args

Page vi Function Index December 17. 1975

.r-
(....... ,
l~'

Mac1isp Reference Manual

Atom Index

array 2-2
bignum " .. 2-2
car 2-13
cdr 2-13
defun 2-56
fixnum 2-2
flonum 2-2
funarg 2-7
1 i st 2-2
ni 1. '" 1-10
random .. '" 2-2
string 2-2
symbo 1 2-2
zunderflow 2-74

o

0'- Page viii Atom Index. December 17. 1975

Mac1isp Reference Manual

Concept Index

apF~lication 1-15 lambda 1-15
argument. 1-14 lambda variable 1-15
arithmetic 2-59 lexpr 1-15
array 1-9 list 1-10
association list 2- 2 6 looping 2-31
atoll, 1-7 lsubr 1-15
atomic symbol 1-8 macro 1-15
big'num 1-7 mapping 2-93
bmding 1-11 mathematical functions 2-72
binding' context pointer 1-22 nil 1-8
boolean operations. 2-75 non-local exit 2-31
car 1-9 number 1-7
cdr 1-9 obarray 2-54
character manipulation 2-79 object .. '" '.' 1-7
character object. 1-8 pname 2-52
comment 2-8 predicate 2-1
cons 1-9 property 2- 48
defining' functions 2-56 property list 2-48
dot 1-9
dotted pair. 1-9

quote 2-5
recursion 2-31 o

eq versus equal 2-2 $-ex pression 1-7
errors 2-31 sortmg 2-29
evaluation 1-13 special forms 1-19
expr 1-15 string 1-8
fexpr 1-15 subr 1-15
fixnum 1-7 subr-object. 1-9
flonum , '" , .. 1-7 substitution 2-21
flow of control. 2-31 symbol 1-8
form 1-13 t 1-8
fsubr 1-15 value cell 2-45
funarg 1-18
funarg problem 2-6
function 1-13
functional property 1-15
gensym 2-55
hash table 2-25
indicator 2-48
intern 2-54
iteration 2-31
label. 1-17

Page x Concept Index December 17, 1975

.~--------'- --- --

	Contents
	Part 1 - The Language
	1. General Information
	2. Data Objects
	3. The Basic Actions of LISP

	Part 2 - Function Descriptions
	1. Predicates
	2. The Evaluator
	3. Manipulating List Structure
	4. Flow of Control
	5. Atomic Symbols
	6. Numbers
	7. Character Manipulation
	8. Arrays
	9. Mapping Functions

	Indexes
	Function Index
	Atom Index
	Concept Index

