
r

SYMBOLIC INTEGRATION

by

Joel Moses

Submitted to the Department of Mathematics on September 1, 1967 in

partial fulfillment of the requirements for the degree of Doctor of

Philosophy

ABSTRACT

SIN and SOLDIER are heuristic programs written in LISP which solve

symbolic integration problems. SIN (Symbolic INtearator) solves inde

finite integration proble.. at the difficulty approaching those in the

larger integral tables. SIN contains several more methods than are used

in the previous symbolic integration program SAINT, and solves BIOst of

the problems attempted by SAINT in less than one second. . SOLDIER (SOLu

tion of Ordinary DIfferential Equations Routine) solves first order,

first degree ordinary differential equations at the level of a good col-

lege sophomore and at an average of about five seconds per problem attempted.

The differences in philosophy and operation between SAINT and SIN are

described, and suggestions for extending the work presented are made.

Thesis Supervisor: Marvin L. Minsky

Title: Professor of Electrical Engineering

1

-.,.-----~._~...._~

ACKNOWLEDGIENTS

The work reported herein was supported in part by Project MAC, an

MIT research program sponsored by the Advanced Research Projects Agenc~,

Department of Defense, under Office of Naval Research, contract Number

Nonr-4102(Ol), in part by the Joint Services Electronics Program (con

tract DP 28-043-AMC-02536 (E», the National Science Foundation (Grant

GP-2495), and the National Aeronautics and Space Administration (Grant

NsG-496). Reproduction in whole or in part is permitted for any purpose

of the United States Government.

I wish to thank Professor Marvin Minsky, the supervisor of this

thesis, and Professors Seymour Papert and Joseph Weizenbaum, the other

members of my thesis committee, for their criticism and guidance of this

work. I also wish to thank William Martin for many constructive disCUS

sions and suggestions. To Carl Engelman, MichSe1 Hanove, and Stephen

Bloom goes my gratitude for the use of their program, and to Ima, Laila

and Sandy it goes for having to read my handwriting.

2

TABLE OF OONTENTS

Abstract 1

Acknowledgments 2

Table of Contents 3

Dedication 4

Chapter 1 Introduction 5

Chapter 2 How SIN differs from SAIIT 11

Chapter 3 SCBATCHEN - A Matching Program for Algebraic Expressions 22

Chapter 4 SIN - The Symbolic Integrator 62

Chapter 5 The Edge Heuristic 107

Chapter 6 Solution of Ordinary Differential Equations

Chapter 7 Conclusions and Suggestions for Further Work

Appendix A ITALU· An Integral Table Look-Up

Appendix B Recursively Unsolvable Results in Integration

Appendix C SIN's Performance on SAINT's Problems

Appendix D Solution of Problems Proposed by McIntosh

Appendix E An Experiment with SOLDIER

Appendix F Listings of the Programs

Bibliography

Biography of the Author

3

124

140

153

160

172

176

180

193

262

267

To the descendants of the Maharal

who are endeavoring to build a Golem.

4

Chapter 1

Introduction

In the last few years there has been a surge of activity on

the design of algebraic manipulation systems*. Algebraic manipu-

lation systems are computer ba~ed systems which facilitate the

handling of algebraic and analytic expressions. One of the oft

stated capabilities desired of such systems is an ability to per-

form symbolic integration. Besides the obvious value of such a

capability in sYmbolic calculations there is the possibility of em-

ploying it as an adjunct to numerical integration programs for

functions which involve parameters. In such cases a single accur-

ate symbolic integration is likely to be preferable to numerical

integrations taken over the range of values of the parameters. An-

other reason for the interest in symbolic integration programs is

the fact that the ease with which such a program could be written

in a proposed language for algebraic manipulation has become an in-

formal test of the power of that language. Yet the only preViously

announced symbolic integration program with any claim to generality

is SAINT (SYmbolic Automatic INregrator), written as a doctoral

dissertation by Slagle in 1961 [~. Slagle described SAINT as be-

ing as powerful as a good freshman calculus student. Thus the un-

modified SAINT program does not appear powerful enough to warrant

*For a survey of the field of algebraic manipulation see Sammet CO].
For a bibliography of work in the field up to 1966 see Sammet 5~.

5

6

its use in a practical algebraic manipulation system. In 1964 a

program which integrates rational functions was written for the

MATHLAB project by Hanove, Bloom, and Engelman of the MIlRE Corpor

ation [36]. This program filled an important gap in the capabili

ties of SAINT. By using such a program it appeared possible to

write a more powerful integration program than SAINT. Furthermore

it seemed that programs which solve ordinary differential equations

at least as well 'as sophomore college students (and a good deal

faster than such students) could also be written. Such programs

became the goals of our research.

We used the rational function package of MATHLAB in writing a

second symbolic integration program called SIN (Symbolic INtegrator).

SIN, in turn. we used to write a program which solves first. order,

first degree ordinary differential equations. This program is

called SOLDIER (SOLution of DIfferential Equations Routine). SIN

and SOLDIER are both written in LISP [34]. [20] for the CTSS system

at Project MAC [11]. These experiments in symbolic integration are

the principal subjects of this thesis. We believe these programs to

possess sufficient power and efficiency that they could be effectively

used in a practical on-line algebraic manipulation system.

In order to clarify the domain of applicability of our pro

grams and in order to indicate the pOWer of the present versions

of SIN and SOLDIER. we present below two examples of problems

solved by each program. The solutions that these programs obtain

to the four prablems can be found in Chapters 4 and 6.

7

J I"AZ+B~Sin2x dx
s~n x

r 2 2
J(l+2x) eX dx

2
(2xy+5x+l)y'+y =0

(y+x-l)y'-y+2x+3=0

Problems solved by SIN and SOLDIER

Figure 1

Although the capabilities of SAINT are quite impressive,

we found compelling reasons for taking, in SIN, a substantially

different approach. The most fundamental difference between SIN

and SAINT is in the organization of the programs. SAINT utilizes

a tree search as its main organizational device. Slagle compares

the behavior of SAINT to that of freshman calculus students. We

sought an organizational model which behaved like our conception

of the behavior of an expert human integrator. This model was sup-

posed to determine the methods needed to solve a problem quite

quickly. A discussion of the approach taken in SIN is given in

Chapter 2.

SAINT utilizes a matching program for algebraic expressions

called Elinst (ELementary INSTance). We desired a program which

was more closely organized as an interpreter for a pattern matching

language. This program. called SCHATCHEN, is a service routine em-

ployed throughout SIN and SOLDIER. The power of SCHATCHEN greatly

simplified the problem of writing an algebraic simplification pro-

gram, called SCHVUOS. SCHATCHEN and SCHVUOS are described in Chap-

ter 3.

8

Chapter 4 contains a detailed description of SIN and its

methods. A comparison between methods used in SADT and SIN is

made. It is noted that SIN contains several methods not included

in SAINT. Among these is a decision procedure for a set of inte

gration problems. Thus SIN is able to determine that Je
x2

dx and

J~ dx are not integrable in closed form.
x

In Chapter 5 we introduce the Edge (EDucational GuEss) heur-

istic. The Edge heuristic is based on the Liouville theory of in-

tegration. In this theory it is shown that if a function is inte-

grable in closed form, then the form of the integral can be deduced

up to certain coefficients. A program which employs the Edge heur-

istic, called Edge, uses a s~ple analysis to guess at the form of

the integral and then it attempts to obtain the coefficients. Edge

is a nontraditional integration method and one that we believe is

the first in a line of very powerful methods.

The methods and organization of SOLDIER are introduced in

Chapter 6. The area of nonlinear first order differential equations

is much more difficult than just integration. Thus we were hardly

surprised at not being able to find a concept analogous to the Edge

heuristic of SIN. Nonetheless the power of the current version

Qf SOLDIER is comparable to that of a sophomore student in an or-

dinary differential equations course.

The appendices contain results of experiments performed with

SIN and SOLDIER and a report on some other work not directly con-

cerned with these programs.

9

Many people probably believe that the cheapest way to obtain

an integration capability would be to design An integral table

look-up program. While we do not espouse this course of action.

we did experiment with such a program (cal~ed I~U). Appendix A

describes this program.

Richardson has recently obtained a recursive unsolvability re

sult in integration wich has aroused great interest ~]. We des

cribe this theorem and present some of our own related results

which involve nonlinear differential equations in Appendix B.

SAINT was asked to solve 86 problems. Of these it solved 84

in an average time of 2.4 minutes. SIN solved all 86 problems

with solution times which were frequently more than two orders of

magnitude faster than SAINT. SIN solved the other two problems

by using integration methods not available 1n SAINT. The fact that

SIN was compiled and that SAINT was run interpretively accounted

for most of the gain in speed. Results and further interpretations

of this experiment are given in Appendix C.

A physicist. Harold MCIntosh. used an integral table to solve

eleven fairly difficult integration problems. SIN. after some

prodding. solved these problems and found some minor errors in

Professor MCIntosh's answers. This experiment is described in Ap

pendix D.

In order to test the effectiveness of SOLDIER we asked it to

solve 76 problems taken out of a differential equations text. SOL

DIER solved 67 of these problems cleanly with an average time of

10

about five seconds. One of these solutions indicated a misprint

in the solution given in the text. This experiment is described

in Appendix E.

With the exception of Chapter 7 which presents conclusions

and suggestions for further work the following chapters are fairly

self contained. Thus those who are only interested in algebraic

manipulation can reasonably ignore Chapter 2. Those interested in

AI may wish to ignore the higher numbered chapters.

CHAPTER 2

HOW SIN DIFFERS FROM SAINT

Introduction

In this chapter we discuss in broad terms the organizational dif

ferences between SIN and SAINT. SAINT employs rather loose progress

constraints in generating subproblems, and obtains a solution through

a tree search. SIN relies on a much tighter analysis of the problem

domain (i.e., integration) and strict constraints on progress in order

to obtain a relatively straightforward solution.

Heuristic Search

In "The Search for Generality" [45], Newell finds that the most

frequent organizational structure used in Artificial Intelligence pro

grams is one he calls heuristic search. We shall call programs which

employ this organization as the sole or central organizational device

HS programs. SAINT is an example of an HS program. HS programs can

be considered to be programs which attempt to generate a path from a

starting node A (usually the statement of the problem to be solved,

given in the internal representation) to a terminal node B (usually the

last link necessary to find a solution to A). The path from A to B con

sists of one or more nodes which are (again, usually) in the same problem

domain as A and B. Thus in a theorem proving program the nodes would

represent statements of possible theorems and in SAINT the nodes repre

sent expressions to be integrated. From each node the program is able

to generate one or more successor nodes. A!! of these successor nodes

could be examined to determine if they lead to a solution (a "B" node),

but it is in the nature of AI problems that if this were to occur the

11

12

program would consume too much time and space. Hence heuristics are used

to select a set (possibly a null set) of successor nodes for examination

in preferance to others. The use of such heuristics leads to the "heuris

tic" term in "heuristic search." The process of examining nodes in the

~ which is generally produced leads to the "search" term in "heuristic

search."

There are many strategies for guiding the search of the tree. How

ever several stand out and deserve to be mentioned. One strategy is

called "depth first." It usually selects the last node generated as the

one to be examined next. This strategy has the effect of forcing an

examination of a single path until it either leads to a solution or the

program decides that it will not yield a solutio.n. Such a strategy is

employed in most game playing programs. At the other extreme is a stra

tegy called "breadth first" which selects the node which was generated

earliest. Such a strategy was used in the Logic Theorist [44]. SAINT

chooses the node which represents an expression which it deems to be

one of the simplest subproblems to be integrated.

We wish to clarify the sense in which we refer to a program as an

US program. The fact that a subroutine in a program uses heuristic search

does not always imply that the program is an US program. For example if

SAINt's simplifier had used heuristic search in order to simplify expres

sions. then this fact does not imply that SAINT is an HS program (for

example SAINT could have been just a table look-up program). Nor is it

the case that any program which performs search even if the search is

guided by heuristics is always an HS program. We ~ish to reserve this

13

name to programs which rely on conducting a search in the same domain

in which the problem is posed. Thus programs which search for a plan

in a different space from the one in which the problem is posed and

*thereafter find the solution immediately are not HS programs.

The Trend toward Generality

One of Newell's other conclus ions in liThe Search for Generality"

is that AI programs have tended in the recent past to shy away from

dealing with complex problem domains such as chess~ geometry, or inte~

gration, and have increasingly concerned themselves with generality.

By programs which emphasize generality we shall mean programs which

are concerned with an examination of mechanisms (e .g., heuristic search)

which are useful in many problem domains. By programs which emphasize

expertise we shall mean programs which concentrate on a particular

(c.omplex) problem domain•. Examples of the trend toward generality are

the advice taking programs (e.g., Black 3], Slagle's DEDU<XJM{ 59],

and even Norton's ADEPT [47]). These programs solve toy problems

which have been posed from time to time by Mccarthy. One of the striking

fea~ures of these programs is how little knowledge they require in order

to obtain a solution. In fact Persson, in his recent thes1sl 49] which

deah with "sequence predictionll seems to feel that placing a great

deal of context dependant information in a program would be IJcheating."

This emphasis seems to be useful when one desires to study certain

* Our emphasis regarding the space to be searched may differ from Newell's.
In fact our ne~d to use intuitive definitions and rely on analogies and
examples points out the lack of a firm theoretical foundation in computa
tion, and in Artificial Intelligence.

14

problem solving mechanisms in as pure a manner as possible.

Slagle, too, desired to use SAINT as a vehicle for studying certain

problem solving mechanisms such as "character-method tables" (for example,

method A is probably useful when the problem is of type 1 or type 5--see

Minsky [41] for a discussion of this technique) and "inheritedre-

sources" (Minsky [41 J). We, on the other hand, intended no such

study of specific problem solving mechanisms, but mainly desired a

powerful integFation program which behaved closely to our conception

of expert human integrators (it should be noted that Slagle compared

the behavior of SAINT to that of college freshman calculus students).

Nonetheless our experiment with SIN may be used to modify or improve

general problem solving mechanisms.

SIN, we hope, signals a return to an examination of complex problem

domains. Greenblatt's chess program [22] is another example of a

recent program which deals with a complex problem domain which has been

considerably neglected in the last few years.

Ibe Emphasis on Analysis

Our emphasis in SIN is on the analysis of the problem domain. This

analysis is both an analysis that we performed and built into the pro-

gram, but more importantly an analysis which the program makes while

it is solving a problem. In order to achieve high performance in sym-

bolic integration we did not require that the program make a very com-

plex analysis of the situation. Nonetheless the analysis that SIN does

make markedly affects the performance of the program. When SIN is solving

one of SAINT's difficult problems the most noticeable difference between

its performance and SAINT's is not in the increased efficiency of the

15

*solution, but in how quickly SIN usually manages to decide which plan

to follow and the straightforward manner with which it obtains the

solution thereafter.

As we shall see in Chapter 4 SIN's methods are quite similar to

those used by SAINT. However SAINT does not commit itself to a parti-

cular method, but will frequently explore several paths to a solution

until it finds some path which succeeds in obtaining the answer. Heur-

istic search is used to find this solution path. Frequently such un-

certainty is necessary in SAINT because it lacks the powerful machinery

that SIN possesses and relies on (e.g., the rational function package

of MATHLAB). Thus SAINT is forced to search until it finds a path

which leads to subproblems that it can solve. For example, in Icot4x <b

SAINT cannot obtain a solution by using the substitution y • tan x whicl

leads to Jy4(1 ~ y2) dy since it Q4nnot integrate the rational function.

Thus SAINT is forced to contain a further substitution y • cot x which

SIN can easily afford to ignore. In other cases the large number of
J

subproblems proposed by SAINT arises when SAINT employs methods which

do not perform a sufficient analysis or possess sufficiently tight

~2+x
progress constraints. For example in J' Ix dx, SAINT will consider

transforming the quadratic in the numerator, though this transformation

is not reasonable when one considers the square-root in the denominator

In this problem SIN would note the square-root and would make a substi-

* Though SIN solves SAINT's problems about two orders of magnitude
faster than SAINT's published figures, this statistic is deceptive. If
SAINT were to be run under optimum conditions, SIN would only be about
three times as fast on the average. The principal reason for this fact
is that most of the processing time in SIN is spent in algebraic mani
pulation (e.g., simplification), and the cost for these operations is
fairly constant in SIN and SAINT (see Appendix C).

r----.~--

16

tution which would rationalize the denominator.

We feel that SAINT is not the only HS program' in which greater

analysis would yield improved results. In the MATER program of Simon

and Baylor [2], heuristic search is used to find a mating combination

in chess. When MATER considers the set of replies that Black might be

able to make in response to a given move of White, it stores these re

plies in a "try list." The try list is 'ordered so that moves which have

fewest responses are considered first. The set of moves which have the

same number of replies are normally considered in a first-in, first-out

manner ([2], p. 435). This leads to a breadth-first search. Had

the moves been stored in a last-in, first-out manner a depth-first

search would have resulted. This search would mean that the progra~

would explore a path until it became worse than some other path in con

trast to MATER's criterion that a path is abandoned When it is no better

than some other path. This slight change in the strategy of the program

would lead MATER to find solutions to some problems on which it ran out

of space, and would not materially affect its performance otherwise.

This analysis of MATER is due. to Henneman [26].

While we do not wish to suggest that a radically improved perfor

mance can be had in all HS programs through greater analysis, we cer

tainly want to emphasize the effect that such analysis can have on many

HS programs. Since any nontrivial analysis requires a good deal of

context dependent information, we also wish to emphasize the need for

such information in problem solving programs. In ,the long run, of

course, complex analyses and strategies will have to be represented in

17

specialized languages. We would like to see this development occur in

the Greenblatt program, for example.

The Three Stases of SIN

SIN is a three stage program. In this respect already the organi-

zation of SIN differs from most AI programs Which are composed of a

single stage with a heuristic search as its principal organization.

The multiplicity of stages allows the programs to devote increasing effort

in later stages.

Stage l"of SIN uses a method (Derivative-divides) which solves most

commonly occurring problems. The experiment in Appendix C indicates that

this method solves half the problems attempted by SAINT. Some problems

x2 2integrated by this method are: cos x, xe , tan x sec x, x{l + x~.

We feel that all too few AI programs employ the fact that in many

problem domains there exist methods which solve a large number of prublems

quickly. SAINT did employ this idea in its IMSLN (IMmediate SoLutioN)

routine (see Chapter 4). However IMSLN is not as powerful as SIN's first

stage. Evans' ANALOGY program [17] which is one of the few AI pro-

g rams which does not rely on heuristic search also could have profited

from a first stage method., Evans' program deals with geometry analogies.

Instructions given to humans taking a test based on these analogies are

as follows: "Find the rule by wbichfigure A has been changed to make

figure B. 4pply the rule to Figure C. Select the resulting figure from

figures 1-5." Evans' program performs -as if it were following the in-

structions: "Find the rule by which figure A has been changed to make

figure B. Also find rules which transfo~ figure C to each of the fig-

ures 1-5. Select the answer figure which corresponds to a t~ansformation

18

which most closely fits a transformation from A to B.", The test makers

are essentially suggesting that one should guess the answer figure. ~his

scheme, we have found, is effective in almost all the problems attempted

by~. Consider the figures A, B. C below:

A B

o
c

A reasonable guess of the answer using the test makers' advice is:

o
TRIAL ANSWER

If such a figure is present among the answer figures then one should

choose that answer. All that would be required for this step is that

one test the guess for an identity with the answer figures. If this

scheme should fail to find an answer, then one would enter a second

stage in the program in which one would "debug" the previous guess or

employ an analysis similar to Evans'. Yet once one is forced to enter

a second stage, one has a piece of information that ODe did not previ

ously possess--that the problem is relatively difficult. Such infor

mation may be \1sed to guide further processing. A further use of guessing

will be indicated below in discussing the Edge he\1ristic.

The second stage of SIN is t~ stage in ,.,uich we spent most of the

programming effort. In this stage tbeprogram is able to apply eleven

highly specific methods. The principle feature of this stage is that

19

the program decides which method, if any, is applicable to a problem

quite quickly. We shall call the manner by which this stage of SIN

operates hypothesis fOrmation. The routine at the heart of the hypo-

thesis formation mechanism in SIN is called FORK. FORM checks for

local clues in the integrand in order to generate an hypothesis regar-

ding which method is likely to be applicable. Currently FORM can

decide on the applicability of all but three of the eleven methods by

using local clues. For example, if·FORM notes the subexpressian sin(x),

then FORM will call the method which handles trigonometric functions.

The first step that any of the methods in this stage is supposed to

make is to verify the hypothesis that it is able to perform a transfor-

mationwhich will either solve the problem or simplify it. Thus if the

routine which handles trigonometric functions does not believe that it

is applicable to the problem, as in JSin x eXdx, then it will return

the value FALSE to FORM. In that case FORK IIlight entertain a second·

hypothesis. Otherwise the method will continue to work on t he problem.

More generally we think of hypothesis formation as a three step

process. First one analyzes the problem in order to obtain an hypothesis

regarding the solution m.ethod. Then the hypothesis is verified by the

method prior to attempting a solution of any subproblems. Finally, if

the method. appears applicable then it is used in an attempt to solve

the problem. If the method does not appear applicable, a new hypothesis

may be generated.

We think of hypothesis formation asa model for a planning mechanism.

As with any pl4Dnlng device one should ·strive to incorporate into the

planner a great deal of knowledge regarding the capabilities of the rest

r"

20

of the program. One aspect of the understandiilg that FORM has of SIN's

routines is incorporated in its ability to "make the problem fit the

method." By this phrase we mean that FORM is able to eliminate certain

ambiguities in the problem. These ambiguities arise when certain subex-

pressions in the statement of the problem hinder the recognition of the

true nature of the problem. For example, the analysis that FORM makes

of a problem allows it to suspect that an expression is a q~dratic in

x even thoughSCHATCHEN (see Chapter 3) did not match the expression to

a quadratic. Thh occurs' when FORM is examining a square-root of a

rational function. Let us suppose that none of the methods that FORM

bas available in this case decide that they are applicable. FORM will

now attempt a further analysis because such a subexpress10n usually

represents a block to- a solution. FORM considers two excuses for the

fact that the methods did not seem to be applicable. Both relate to

SCHATCHEN's matching capabilities. The first is that the rational func-

tion

that

inside the s,uare-root was not expanded (e.g., x(l + x»; the second

1the rational function was not completely rationalized (e.g., x +-).x

FORM will therefore determine if theye two transformations are applicable

to the rational function. If they are, it will reanalyze the problem to

determine if its methods are applicable. Thus FORM's analysis enables

it to localize the difficulties in a problem, and its understanding of

the rest of SIN allows it to find excuses for certain events and helps

it to overcome the difficulties in a problem. In some of t~e cases just

considered SAINT would have performed the same transformation (only expan-

sian, though). Yet these transformations would be applied to the whole

integrand and not to selected portions of it.

21

The third stage of SIN is the place that we reserved for general

methods of integration. Such methods either search a great deal or

involve much analysis and machinery. Hence we feel that they should

be considered as a last resort. The experiment described in Appendix C

indicates that only two problems required a method in this stage. The

most interesting method of stage 3 is Edge which is based on the Edge

heuristic and is discussed in Chapter 5. Edge is a novel integration

method since it guesses the general form of the integral. Once a guess

has been made. a "differencing" technique similar to GPS's [43] is

applied to obtain the answer. As will be seen in Chapter 5 the guess

is closely related to the antiderivative of a selected subexpression in

the integrand.

CHAPTER 3

SCHATCHEN - A MATCHING PROGRAM FOR ALGEBRAIC

EXPRESSIONS

Introduction

Our aim in this chapter is to develop a set of requirements

[or a language in which one can describe concisely and precisely

algorithms for the manipulation of algebraic expressions. Several

attempts at such languages have been made in the past. We would

like to distinguish among these attempts two distinct approaches to

an algebraic manipulation language. One could be called the

command-oriented language. An example of a command would be "Let

w be the name of the expression which results from substituting the

expression named x for that named y in expression named z." It is

customary to abbreviate this to something like "w = subst(x, y, z)."

The second approach can be called the pattern-directed (or

production) approach. An example of a statement in such a language

would be "x+x -+ 2*X," which means that if the expression currently

being examined matches (i.e., is of the form) x+x, then it is re

placed by the expression 2*x. Such statements will be henceforth

called rules. A rule is composed of two parts, a pattern-match part

(antecedent) and a replacement part (consequent).

22

23

A command-oriented language is desirable for man-machine

interaction because the human is able to perform the desired pattern

recognition by himself most of the time (see Martin [37], Engel-

man [15]). It is also useful in those situations in which the

algorithms being coded are straight-forward, that is, nothing

unusual is likely to happen. An example of such a situation is a

program which solves a system of linear equations with variable

coefficients (see ALPAK [6]).

When the algorithms being coded become increasingly complex,

the pattern recognition requirements of the algebraic manipulation

language are increased. To meet these requirements, highly command

oriented languages, such as FORMAC [5], include some pattern recog

nition facilities (e.g., the PART command). However, these facilities

are woefully inadequate for many purposes (e.g., simplification, in

tegration) and the need for a pattern-directed subset of an al

gebraic manipulation language has become clearly established.

In this chapter we shall be concerned solely with the pattern

directed approach. At first, we shall rely principally on the

reader's intuition and understanding of algebraic expressions. Our

discussion will become more and more precise as we proceed.

We shall first examine the requirements of the pattern-

match. The requirements of the replacement part, which are simpler,

are examined later. An application to simplification of the SCHATCHEN

program which fulfills these requirements will then be discussed. The

24

chapter ends with an essay on simplification.

Below "PLUS", "TlHES" will designate the usual arithmetic

operations of addition and multiplication. The former will also be

designated by 11+", and the latter by concatenation. "IXPT" will

represent exponentiation.

The Pattern-Match

Let us consider the intuitive pattern for a quadratic in x --

namely, pattern PI:

(PI) Ai + Bx + C

All would grant that the expression Bl satisfies the pattern

PI with the values for

(Bl) 2
3x + 2x + 5

A, B, C, being 3, 2, 5, respectively. Such an expression also

appears to offer no difficulties to a matching program since there

is a 1 - I correspondence between the elements in the expression and

the elements in the pattern. Thus, a straight-forward left-to-right

scan should yield the corresponding values for A, B, C and result in

a match. Consider, however, the expression H2. B2 is also a

quadratic in x. Yet it fails to have one of the properties that BI

enjoyed. A left-to-right scan of B2 will yield the

(El) 3x2 + 2x

value 3 for A and 2 for B. However, we will have difficulty in

25

assigning a value to C since no term in the expression corresponds

to the C term in the pattern. Obviously C should be matched with O.

We generalize the example to conclude that terms in a sum in the

pattern which are missing in the expression are to be matched with O.

Likewise, factors in a product in the pattern which are missing in

the expression are to be matched with 1. We should note though

that extra arguments in the expression might lead to failure as in

expression E3:

(E3) 4x
3 + 3x

2 + 2x + 5

Expression E4 presents us with a degenerate instance of

pattern Pl. Note that the operators PLUS and TIMES which are ex-

plicitly present in PI

(M)
2

x

are missing in E4. We can introduce these operators by rewriting

E4 as E4'.

(E4')
2

l·x + 0

Let us proceed now with matching PI and E4'. The value 1 for A is

easily obtained. The 0 term in E4' will match Bx and will result in

B=O. (This process will be clarified below.) Finally, due to the

requirement stated above regarding missing terms in a sum, C will

be matched with O. Then in order to match PI with E3 we required that

the match must recognize missing or implicit operators.

,-------_.._ .._----

26

Let us consider how the match might determine that Bx-o

implies that B.o. In Pl we implicitly introduced the convention that

constants such as x are represented by lower case Roman letters and

variables such as A, B, C, are represented by upper case Roman letters.

constants must match themselves. The values of variables are deter-

mined by the pattern-match and depend on the expression. Furthermore,

our knowledge of multiplication indicates that if a product in-

volves a 0 factor, then its value is O. Ole shalk ignore cases with

infinite factors.) Thus, if a product is matched with 0, it is re-

guired for a factor to match O. If Bx is matched with 0, then since

x must match itself, B must match 0, otherwise the match fails. A

complementary requirement we shall impose is that if a product is

matched with I, then each factor must match 1. This requirement is

redundant since it follows from our requirement for missing arguments

in a product.

In the above we have built into the match an understanding of

the arithmetic laws involving 0 and 1 in sums and products. Note

though that the match assumes that the expression has been simplified

to some extent. Thus, the pattern Ax2 will not match the expression

4 (1/2) . h . 2 i d t t h 1x S1nce t e constant express10n x s assume 0 ma c on y

itself.

However, information about 0-1 laws are insufficient as can be

seen when we consider expression E5:

(E5) x

27

In some cases such an expression could pass for a quadratic. In

other cases (for example, in applying the quadratic formula) such

an expression is not admissible as a quadratic. Note that the

match as described above will result in the value 0 for A, I for B,

and 0 for C for expression E5. We need to be able to describe to

the match that the value 0 for A is proscribed. In fact, we would

like a more general facility allowing one to delimit the range of

values that the variables in the match may have. We shall require

that the variable must be allowed to satisfy a predicate. We

shall indicate such a facility with a slash (/) as in pattern P2.

In P2 we require A to satisfy the predicate NONZERO.:

(P2) A/NONZERO x
2 + Bx + C

In examining expression E6 we see that we will need more

predicates to limit the values of A, B, C, since E6 is certainly

not a quadratic in x:

(E~)
2

x + s in (x) x + I

Let us consider pattern P3 which takes care of the difficulty

in E6.

2
(P3) A/NONZERO-AND-NUMBER x +B /NUMBER de /NUMBEi.

Pattern P3, however, may be a too restrictive condition. It requires

28

that A, B, C, be numbers.

For example, P3 will reject expressions E7 and !8

(E7)

(K8)

2
x +:rex

2
x + x + Y

since n does not appear like a number and since Y is certainly

'not a number. If we wish to accept both E7 and E8, pattern P4

might be suitable:

(P4) A!NONZERO-AND-FRBBOFX x
2

+B!FRBEOFX x+cIFRBEOFJ:

We shall assume that the predicate FREBOFX determines whether

an expression contains an occurrence of x and has the value T (true)

if it does not contain such an occurrence.

We thus can see that the predicate facility is both a blessing

and a headache since it forces one to consider quite carefully what

it is that he desires to be matched.

Further complications arIse when we consider the expression E9.

We recognize E9 to be a quadratic.

(K9)
2x+x

However, in doing so we made use of the fact that addition was a

commutative operation. This leads us to require that the match must

take into account the commutativity of addition and multiplication.

(Non-commutative addition and multip lication could be represented

with different operators than PLUS and TIMBS.) As it turns out this

29

requirement increases the cost of the match greatly. It is now

insufficient to perform a single left-to-right scan of the expression.

We may be forced to traverse the expression several times. We shall

assume, however, that the pattern is to be scanned once from left-to-

right. This will allow us to use the values of previously bound

variables. For example, a pattern for determining whether an ex-

pression is a perfect square might be written as P5

(P5) 2
A!NONZERD-AND-FREEOFX x +B!FRE£OFX x+C IFREEOFX _

2
AND - (B -4AC • 0)

since by the time we encounter C, the values for A and B should

already be known or else the match has already failed.

The predicate facility is one way in which the pattern can be

used to direct the match. Below we shall give descriptions of

other facilities and examples in which they might be used. These

facilitie~ are made available by the use of modes for the variables

in the match. The desirability of the first of these modes is indi-

cated in expression £10.

(£10) 2
3x y + 2x + 1

The difficulty in matching expression £10 is due to the

2
occurrence of more than one factor (other than x) in the terms in-

2volving x We would really be interested in having the variables A

2
and B act as coefficients of x and x, respectively. This means that

30

2
in the term involving x , the product of all the other factors is a

candidate for A. To show this we shall use the indicator COEFFT

(coefficient in TIMBS) as a modifier for A as is shown in P6:

(P6) A/COEFFT ,NONZERO-AND-FREEOFX x
2

+B/COEFFT ,FUEOFX x

i<:/COEFFP ,FUIOFX

In P6 we used the indicator COEFFP (coefficient in PLUS) to modify C.

This means that C will match the sum of the remaining terms in the

expressions. The result of matching P6 with ElO is : A=3y, B=2, Cml.

In expression Ell we see another phenomenon which will necessi-

tate the addition of a new mode. In Ell

(Ell) 2 - 22x + ,/2x + 3

2
there occur two terms invo lving x • If we assume that each term in

the pattern should match exactly one term in the expression, then

the single term Ax2 in the pattern will fail to account for the two

terms in ElO. We need a facility for specifYing to the match that

a particular variable in the pattern is to be considered a co-

efficient in both a product and a sum. This is done in pattern P7

by using the indicator COEFFPT (coefficient in PLUS and TIMES) to

modify A and B.

(17) A/COEFFPT ,NONZERO-AND-FREEOFX x
2

+B/COEFFPT, FREEOFX xi<:/COEFFP, FREEOFX

With the machinery we have developed we can now match pattern P7 with

31

the expression E12:

(E12) 322
y + 3nx y + 6x + Sy + 1

3The result of this match should be A=3ny + 6, B=O, C=y +Sy +1.

In the above examples we were attempting to determine whether

the expression was a quadratic in x. Suppose we wanted to generalize

the problem in order to determine whether the expression was a

quadratic in some atom, but where the atom was not fixed, but may

itself change. More precisely, we desire a function ~UADRATIC of

two arguments KIP and ARG. This function is expected to determine

whether EXP was a quadratic in ARG. P8 can be used as a pattern in

QUADRATIC.

(P8) A/COEFFPT ,NONZERO-AND- FREEOFARG (VAR/EQUALARG) 2 +

B/COEFFPT, FREEOFARG (VAR/EQUALARG) +

C/COEFFP,FREEOFARG

In P8 we introduced the predicate FREEOFARG which has the

obvious related function to FREEOFX in pattern P7. The predicate

E~UALARG tests the value that the match assigned to VAR for equality

to ARG.

Let us now conaider the problem of extracting a perfect square

from a sum. More precisely let us consider the situation in which a

2
sum has three terms which are individually of the form A*VAR , B*VAR

2
and C, and whose relation is defined by B -4AC=O. This differs from

32

the situation described in pattern '5 in that the expression may

now have more than three terms and in that the value of VAl is

originally unknown and depends on the expression being matched. Our

first attempt is to describe this situation with P9:

~/colrn

It turns out that pattern P9 does not satisfy our requirements

because there is some ambiguity regarding VAl. In predicate P8,

VAl was determined uniquely by the predicate IQUAUIG. In the

current situation no such a priori predicate exists. The first

value of VAl can bentially anythina. To indicate thia we can

write VAI/TKOI instead of VAl, where TlDI is a p~edicate which is

true on any input. However, th~ second occurrence of VAl in the

pattern (i.e., in B/NUMBIR VAl) is intended to be fi••d. That

occurrence of VAl must be the same as the previous value attached

to VAl.

(113)

To make this point clear, let U8 consider expression 113 :

2' ,
y +2x + I + 5z + 2y

Th~s expression will match pattern P9 with A-I, B-2, C-I, D-5z+2y,

and with the first value of VAl equal to y and the second equal to x.

To avoid this situation we could write the second occurrence of VAl

as VAII/IClJALVAI' This is a fairly clumsy mechanism (even though a

sUBilar device was used in P8). ihat we shall do instead is to

33

define a new mode called CONY in which the first occurrence of the

variable (e.s., VAR) will satisfy the predicate (e.8., TRUE) and

the latter occurrences must match the expression matched durins the

first occurrence. we thus arrive at pattern PlO. (The CONY mode is

directly related to the PAY (pattern variable) mode of CONVERI [23).)

(PlO)

C/NUMBER-AND- (82-4AC~) +D/COUFP

Pattern PlO will match E13 with A-l, B-2, C-l, D-2x+5z, and VAR-y.

Let us consider P10 with expression 114:

(E14) y + l + x
2

+ 2x + 1

The first attempt will be to match VAR with y. This attempt will

fail and the match will fail even though a perfect square exists if

VAR were to match x. What is required here is a facility for direct-

ing the match to search for further possibilities. It is assumed,

of course, that the user of such a facility is aware that it may

cause a profound increase in the cost of a match. we shall intro-

duce such a facility with a mode which indicates a loop over the

expression. Such a facility may be used when there exists a set of

variables (such as A. B, C) in ·pattern PlO which are mutually inter

2related (e.g., B -4AC~). This facility will direct the match to con-

tinue making trial guesses for the variables until one set is found

which is satisfied or until all possibilities have been exhausted.

34

In programming terms the loop facility in the problem of pattern P10

will ask for a 3-level loop in which all possible values for A, B, C

(note that VAR is determined along with A) are examined until one set

2
is found which satisfies B -4AC=O. The syntax for the loop facility

is given in pattern Pi1:

(P11) A/WOP (A, B,C) ,NONZERO-AND-NUMBER (VAR/CONV , TRUE) 2 +

B/NUMBER VAR+C/NUMBER_AND_(B2_4AC=O) +D/COEFFP

Although in the above we have concentrated entirely on

describing patterns for quadratics, our intention has been to

describe a set of requirements for a language which can handle a

far richer set of tasks. To indicate the power of the machinery we

have developed, we shall give below a pattern which tests for the

f
. 2 2.occurrence 0 Sin B + cos B in a sum. Pattern P12 will match ex-

pression E15 and results A=5cos
2

(y) + 1, B=2x, C=2, and D=3y+2sin
2

(x).

(P12) A/COEFFPT, LOOP (A ,C), NONZEiROsin
2

(B /CONV ,TRUE) +

C/COEFFPT,NONZERO COS
2

(B) + D/COEFFP

The implicit relationship between A and C in pattern P12

appears fairly trivial -- that is, both A and C must be nonzero.

35

However. expression E15 shows that the loop facility helps to get us

2out of the trap of matching B to x in the 28in (x) term.

We have so far neglected a discussion of the matching require-

ments of patterns which include exponentiation. we have let in-

tuition guide us through the cases where exponentiation did occur

in the patterns above. As before a constant expression in the pattern

of the fonn A
B

(e.g •• sin2 (x» must match itself. Otherwise. if AB

is to be matched against the expression O. we shall assume that it is

necessary and sufficient for A to match O. ('rhe difficulty tbat

arises if B likewise were to match 0 is ignored.)

If AB
is matched against 1. then either B must match 0 or A

must match 1. Note that this can lead to a difficulty ·if both A and

B are variables. since only one value will be determined. If AB is

E2
matched against El • then B must match ~ and A must match El or

E2
B must match 1 and A must match El

In pattern Pi3 we are testing for an expression of the form

n m)sin (x) cos (x). This pattern will match the expression sin(x

and result in the values N-l. M-o.

(P13)

Pattern P14 is included here to indicate some of the ambiguity that

is inherent in patterns.

(P14)
. N M/INTEGER

~A /NONZERO-AND- FREBOFX x/INTEGER + B/FRBBOFX) ,

36

n mP14 corresponds to the intuitive pattern (ax +b) • When P14 is

matched against (x
2
+l)J it will yield A-I, B-1, N~, M-J. When it

6 .
is matched against x it will yield A-I, 8-0, N-l, M-6, although

A-I, B-o, N~, M-J serves equally well as a set of solutions. we

used this pattern to indicate some of the limitations of the match-

ing program we have been defining. In the case of the expression

x6 , we obtain via pattern P14 the tmplicit relation ,NM-6. This

means that we have given the program insufficient information re-

garding the choice of values for Nand M in this case. The match

cannot be expected to do very well in this instance.

A second difficulty with pattern P14 which has already been

mentioned occurs when it is matched against 1. In this case our

requirements for the match indicate that all that shall result 1s

M-O. we could have .obtained A-D, B-1 if the requirements regarding

the matching of 1 had been reversed. Neither situation is wholly

satisfactory. However, it is hard to foresee a compromise solution

which will be wholly satisfactory.

The lesson that is learned from pattern P14 is that it is up

to the user to make his patterns sufficiently restrictive so as not

to yield ambiguous situations in those cases in which they are likely

to be applied.

The impression that is likely to be in the minds of some

readers is that more machinery is yet to be described. We do not in-

tend to do this. In some strong sense the design of a good algebraic

37

manipulation language is never over. Any description is only an

imperfect solution to many conflicting requirements. What makes a

language interesting is its usefulness in solving problems. The

set of requirements described above should satisfy this criterion

for many problems.

Before we end our discussion of the match and turn our atten

tion to the replacement part of the rule, there are a few remarks

which are in order.

The match that we have described is based on the form of the

expression. Frequently, we desire to know information regarding the

form to which the expression could be reduced under legal algebraic

transformations. When we ask "Is this expression a quadratic in x?"

we usually mean "Is this expression equivalent to a quadratic in x?"

rather than "Does it look like Ax
2

+Bx+c?". Thus expressions El6 and

El7 are quadratics in x which do not look like quadratics in x unless

we stretch our imagination a good deal. By restricting ourselves to

a match based on form we can hardly expect this match to determine

that El6 and El7 are quadratics.

(El6)

(El7) (x+l) (x+2)

The generality of the match means that its power is restricted. One

could, of course, design a special-purpose test for a quadratic in x.

It might check to see if the third derivative of the expression with

- ---~---~----~~--------------

38

respect to x is equivalent to 0 and if the second derivative is

different from O. Theoretical results by Richardson (see Appendix B)

indicate that there will be problems even with such a special purpose

match which it could not determine correctly in finite time. Special

purpose devices probably could be designed for each pattern that

could be written for our match. Some of these would have to be quite

ingenious in order to be more powerful than our match. These de-

vices might be necessary in certain situations. However, they run

counter to our desire for a language in which one can write concise

rules.

We shall have more to say about the pattern match when we dis-

cuss the existing algebraic manipulation languages below.

Replacement

Having discussed the matching part, we shall now describe the

process by which new expressions may be generated using the results

of the match. This process we shall call the replacement part of the

rule.

Let us consider the intuitive statement of rule RI~

(RI)
2 2 B

2
Ax + Bx + C ... Ay + C - 4A

A successful match of the left-hand-side of RI should result

in a dictionary containing the values of A, Band C. This dictiOnary

39

is then used to generate the right-hand-side expressions by re-

placing the variable names by the values which were assigned to them

during the match. If we consider the expression xZ+Zx+l, the match

should result in A=l, B=Z, C=l and the rule should yield the ex-

Z 22
pression ly +1- 4"1' Since this expression is unsightly we shall

require that the replacement step should simplify the expression.

2Thus, Rl would result in the expression y .

the operation of completing a square.)

Suppose we were given rule R2:

(Note that Rl performs

(R2)
n n n-2 . 2 n n-4 4

cos (nx)-icOS (x)- (Z)cos (x)sln (x)+(4)cOS (x)sin (x)

R2 computes the first 3 terms in the expansion of cos (nx) in terms

of cos x and sinx. If we had matched the expression cos (4x) with

rule Rl, we would result in an expression involving the combina-

toria 1 terms (i) and (~).

to further computation (i)
In order to have an expression amenable

4
and (4) should be evaluated to yield 6

and 1, respectively. Thus, we require a facility for evaluating

selected portions of the expression. With this facility R2 can be

written as R3.

(RJ)
n n (n-2) . 2 n

cos (nx) cos (x)-EVAL«2»cOS (x)Hn (x)+EVAL«4»

(n-4) 4cos s in (x)

r ... '

40

The replacement routine will substitute for each atom which

appears in the right-hand-side, its value in the dictionary if there

is such a value. If no such value exists, the atom will be replaced

by itself, that is, it will be quoted. we will require a supple-

mentary guoting mechanism so that we may use right-hand~sides in

which nailles of variables appear which are not replaced. An example

of a rule using such a facility is R4. DIFF(A,B) is assumed to

yield the formal derivative of A with respect to B.

(R4)
g(y)

f (x)
g(y)

~ f(x) BVAL (DIFF(g(y),(QUOTI x»)

Although for expository purposes we used only intuitively written

pattern matches in the rules above, it should be clear that in

practical situations the left-hand-sides of the rules would be re-

placed by more explicit matching forms.

41

Existing pattern-directed language.

The requirements given above for a matching and a replacement

program are satisfied by the SCHATCHEN* and REPLACE routines used

in SIN. We would like to place these programs in their historical

context. SCHATCHEN has been most influenced by ELINST (ELementary

INSTance), a set of routines included in Slagle's SAINT for the

purpose of matching algebraic expressions to forms. ELINST

satisfies many of the algebraic properties of SCHATCHEN such as
,

variable arguments to PLUS and TIMES, missing operators, and

commutative operators. It differs in that it does not give the

user explicit control mechanisms of the scan of the expression.

ELINST will generate All possible sets of values for the

variable and only then will it apply the side relations to

determine those which satisfy the pattern. Besides this- weakness,

ELINST suffers most-by being essentiallyundefcribed. I suspect

that had Slagle described ELINST in 1961, then some of the

proposals for algebraic manipulation languages which were made

since 1961 would have had a different character. ELINST had to

be as general as it is because the problem that Slagle W8strying

to solve required such generality. Furthermore Slagle encountered

grave problems in fitting his program into the memory (32K) of the

7094 and thus chose to make use of the economy of calls to ELINST

in many situations in which it would otherwise have been wiser to

write special purpose matches. Thus he claimed that one half of

the time that was spent usefully by SAINT (i~e., excluding

*match-maker in Yiddish

42

garbage collections) was spent in pattern recognition.

The features of the algebra-oriented· pattern-directed

languages that were introduced in the past six years (e.g.,

AMBIT I1d, FORMULA ALGOL ftS], Fenichel' s FAMOUS [19] PANON-

IB [8])* appear to have a great deal in COIDIDOIl. PLUS and TDIES are

restricted to at most two arguments. Operators that appear in

the pattern must explicitly appear in the expression. Sometimes

also PLUS and TIMES are not recognized as COllllDUtative operators.

All these restrictions mean thac the patterns are hishly.specific

and that several rules are necessary in order to accomplish a task

that can intuitively be stated in a single rule. The advant.age that

such matching routines have over a more general one such as SCRATCHER

is that each of the rules is quite readable and relatively efficient

to execute. However the effect of a set of rules which is equivalent

to a single SCRATCHEN· rule is probably harder to guage than the

SCRATCHEN rule itself. The. execution time of a set of rules is also

probably longer tnan the execution time of a single SCRATCHEN rule.

Here is the kind of rule set that would be required in such

languages in order to recognize a quadratic in x:

2 2x ax
2

+ bx
2

x ax + bx
2 +x 2 +x

(RS)
x ax

2 2
x + bx + c ax + bx +c

2 +x+c
2 + bx + cx ax

2 + c 2 + cx ax

43

*It should be noted that these languages have a greater generality

than a discussion of their usefulness in matching algebraic

expressions would indicate.

In proposing the above twelve rules we are assuming that the

language provides for commutativity in PLUS and TIMES and for the

ability for declaring a, b, c to be FREEOFX. In systems in which

a minus sign is recognized as a distinct operator one might require

even more rules. Unfortunately the rule set proposed is not as

powerful as Pattern P7 because each term in the pattern will be

matched with exactly one term in the expression. It appears that

one could overcome this restriction only by a recursive or iterative

application of the rules. In fact, the FAMOUS system relies on the

fact that the rule set is applied repeatedly to a given expression

although in FAMOUS' case the reason for this reliance has a deeper

philosophical significance owing to Fenichel's strong affirmation

of the concept of local transformation embodied in ~-theory.

In our previous discussion we have emphasized the desirability

of the implicit arithmetic operators PLUS, TIMES and EXPT in the

pattern. There are, however, instances where the operator must

explicitly be present. In the rule below which is used for

rationalizing sums in a recent thesis by Iturriaga
[28] ,

(RS) A+B/C ... AXC+B
C

the "+" operator must be present as well as the "/" operator. It

is possible to simulate the requirement that these operators must

F

44

be present by requiring that A cannot be 0 and that C cannot match

1. However such a situation is cl~y at best, and a facility for

explicit operators should be provided. With such a facility for

explicit operators (present in the early versions of SCHATCHEN,

but dropped because of lack of use),a user of the algebraic mani

pulation system will be capable of programming in a wide variety

of styles. These will range from tbe fairly rigid and inflexible

rules of tbe rule setU to the type of rule exemplified by pattern

PlI.

We shall also mention a slight controversy regarding tbe number

of arithmetic operators wbich should be present in the internal

structure of an algebraic manipulation system. So.. people appear

to believe that a large number of operators including unary minus,

quotient, and difference is a good idea. Experience has sbown,

however, that such systems, expecially when combined with an

inflexible pattern-match, require an increa.e in tbe user's awareness*

which tends to downgrade his problem solving ability. The less a

user must be concerned with what is actually happening, the more

likely he is to solve hard problema. Of course, if tbe details

which are hidden in the system involve exponential growth or the

like, hiding such details can be disastrous. This is not, however,

*"Awareness" is a term used by Weizenbaum to indicate the degree

of attention to detail which a user is required to maintain in

a given situation.

45

the situation when arithmetic operators are translated internally

into only three - PLUS, TIMES, and EXPT. At the input-output level,

just the opposite effect takes place. Here we wish to let the user

of the algebraic manipulation system have the flexibility with

which he feels comfortable. The recent trend in input-output

of algebraic expressions has been to have this flexibility

(Ma . [37])see rt~n .

46

Implementation of SCHATCHEN

SCHATCHEN is currently implemented as a set of LISP programs.

Several people have suggested that one should embed it in a more

general language. CONVERT [23] seems to be the regnant choice for

such a language. CONVERT is a general pattern directed language with

much machinery for the transformation of list structures. In fact,

two modes in CONVERT which were introduced in the past year (i.e.,

BUV - bucket variable - and UNO - unordered search) were introduced

by Guzman and McIntosh, the designers of CONVERT, with the intention

of such embedding. Interestingly enough, the BUV mode is sufficiently

general that it has replaced other CONVERT modes. The advantage of

such an embedding is that it would allow the user to employ other

facilities of CONVERT. These facilities are quite impressive. The

major disadvantages are due to inefficiencies in a straight-forward

implementation. In order to discuss these inefficiencies we will have

to describe the manner in which SCHATCHEN performs a scan.

Suppose we have a pattern of form I,

(I) PI + P2 + P3

and an expression of form II.

(II) EI + E2 + E3 + E4

The scan proceeds by attempting to match PI with EI. If that fails

an attempt will be made with PI and E2, then PI with E3. If PI

47

matches E3, then E3 will be deleted from II, and the scan proceeds

by matching P2 + P3 with El + E2 + E4. This deletion is done by

using the RPLACD subroutine of LISP. In general this is an unsafe

method. It means that any prior references to tt:will refer to the

expression with E3 deleted, which can be disastrous. However, great

care is used inside SCHATCHBN to maintain pointers to the excised

expression and to restore it to its original shape once the match

has been performed. FUrthermore, all the pointers that a pattern

can have to intermediate results are carefully copied. The alter

native to the deletion approach is to completely reproduce expression

II without 13. The alternative is quite costly especi~lly when the

number of failures in identification is taken into account. Suppose

patterns PI and P2 are related via a loop, then PI may have to be

rematched after an original successful match. More likely is the

case that PI is matched with 13, but P2 finds no match at all and

thus the match fails. The method of reproducing an expression en

tirely following a match of a subpattern with asubexpression is

thus seen to be quite expensive. A normal string transformation

language or even a list transformation language such as CONVERT

(except for the ~ mode) does not face this difficulty because the

scan along both the expression and the pattern is left-to-right. Thus,

if PI matches 13, P2 can only match subexpressions to the right of 13,

(Le., E4). When one introduces commutativity into the picture, the

situation becomes more complicated. Thus, in our example, after PI

48

matches E3, we must start P2 with 11" P2 with 12, P2 with 84. It

is the commutativity requirement which necessitates the rescan of

the expression.

An alternative to the SCHATCHIN scan is to scan 1eft-to-right

along the pattern with each subexpression. Thus, if 11 does not

match Pl, then a match is attempted between 11 and P2. With this

scan one is forced to keep intermediate results and perform complex

processing at the end of the scan in order to determine whether the

variables of the match satisfy their predicates and are properly

related. This alternative was rejected as beins too unwieldy.

Another aspect of the imp 1ementation of SCHATCHIH turns out

to have important semantic properties. Intermediate results in

SCHATCHEN are stored in a spec ia 1 lis t ca lled ANS. On this lis t we

"also find the excision information mentioned above as well as markers

used to indicate levels of scope of variable bindings. A successful

technique in using SCHATCHIN, is to use predicates which:are them

selves calls to SCHATCHIN and which introduce new variable bindings

to the AlS list. Thus, a variable A may be required to be of the

form Be, where Band C must match certain patterns. By calling

SCHATCHEN directly as the predica'te for A, then the values of Band

C would be lost. However, if one calls a routine exactly one level

be low SCHlTCHIN (name ly Hl). then one can preserve the va lues of B

and C in the final result as well as obtain the full power of SCHATCHIN

49

The fact that ANS is available for all to use during the match can be

dangerous since the predicates could accidentally destroy a great

deal of information. Nonetheless the advantage of such an implemen

tation device far overrides this difficulty. The ANS mechanism

represents another difference between CONVERT and SCHATCHEN. CONVERT

does not allow direct access to its dictionary. Many of the modes in

CONVERT, however, perform some change to this dictionary. In

this regard it should be noted that FLIP [62], another pattern

directed language which is similar to CONVERT in emphasizing the

transformation of lists, concentrates on the control o,f the scan by

the user. FLIP, however, lacks much of the recursive machinery of

CONVERT and thus appears to be less likely a candidate for a language

in which to embed SCHATCHEN.

A Partial Description of SCHATCHEN

SCHATCHEN has two arguments, an expression and a pattern.

These will be denoted e and p, respectively. Variables in the

pattern are written in the form (VAR name pred argl .•• argn)

where

name • name of variable

pred • predicate associated with the variable

argi are arguments 2 through (n+l) of pred.

The first argument of pred is assumed to be the expression that the

match assigns to the variable.

50

If a variable has a mode, the mode is written in prefix form.

Thus, A/COEFFPT,NUMBERx becomes (COEFFPT (VAR A NUMBER) x), and

A/COEFFP, E~UAL 5 becomes (COEFFP (VAR A EQUAL 5)). (Th is pa t tern

tests for the equality of the variable A with 5.)

51

SCHATCHEN (e p)

If e equals p, the match succeeds.

If p is of the fonn (VAR name pred argl, "', argn),

then pred (e argl arg2, ..• , argn) is evaluated.

(Note that argl, "', argn are replaced using ANS,

SCHATCHEN's internal push down list. If they contain

names of variables on ANS the most recent corresponding

values are used. Otherwise, EVAL (the LISP interpreter)

will obtain the value of the variables). If the value of

peed is TRUE, the match succeeds and «name • e» is

appended to ANS. Otherwise the match fails.

If P is of the fonn (op pI ... pn)and op is not PLUS,

TIMES or EXPT, then e must be of the form (op' el ..• en)

and each pi must match ei and op must match Op'. Other

wise the match fails.

If ~he pattern is of the form (EXPT pI p2), then 1) e is

(IIPT el e2) and pI matches el and p2 matches e2

or 2) e is 0 and pI matches 0

or 3) e is 1 and a) p2 matches 0 or b) pI matches 1

or 4) p2 matches 1 and pI matches e

Otherwise the match fails.

52

If the pattern is of the form (op pl p2 •••• pn) and

op - PLUS or TIMES. then if e is not of the form

(op el, ...• em), e is transfo.rmed to (op e). In this

case an attempt is made to match each pi with some ej. The

scan starts with pl matched with el. If that fails pl is

matched with e2. If pi matches some ej. ej .is deleted

(using RPLACD) from e and the scan continues with pi+l

matched with th~ first subexpression remaining in e. If

for some pi no ej can be found to match it. then pi is

matched with 0 if op - PLUS of 1 if op - TIMES.. If that

also fails. the match fails. If all the pi have been

matched. but some ej have not. the match likewise fails.

Exceptions to the treatment above are due to modes. If op -PLUS,

and pi is of the form (COEFFPT (VAR name pred argl •..•• arg~) pl •..••

pk). then the remaining expression is traversed with the pattern

(COEFFT (VAR name pred argl •..•• argn)pl ••.•• pk). Each sub

expression that is thus matched is deleted from the expression. The

s~plified sum of the results of the scan becomes the value of the

variable and is appended to ANS. If no subexpression could thus be

matched. then pred(O. argl, ...• argn) is attempted. If this too fails,

the match fails.

If op = PLUS and pn is of the form (COEFFP (VAR name pred argl •••.• argn»

then if e is currently of the form (PLUS ei •..•• en). then pred

(e argl •...• argn) is evaluated. If the value of pred is true

«name. e)) is appended to ANS. If no subexpressions remain in e

then pred (0 argl, ... , argn) is attempted. If it succeeds,

«name. 0)) is appended to ANS. Else the match fails.

If op = PLUS and pi is of the form

(COEFFT (VAR name pred argl, '.', argn)pl, "', pk), then

(TIMES pI, ... , pk) is matched with e. If the match succeeds and

e remains of the form (TIMES el, ... , en) then pred (e arg~... ,argn)

is attempted. If it fails, the match fails. If no subexpressions

remained in e, then predel argl, "', argn) is attempted. If this

succeeds « name. 1) is appended to ANS. Else the match fails.

All other matches fail.

54

An Application of SCHATCHEN

SCHVUOS - SCHATCHEN' S YERS ION OF AN !!.NASSUMING

Q,PERATIONAL [IMPLIFIER

Owing to space considerations of the 7094, SIN required a

small but powerful simplification program. Such a program,

called SCHVUOS, was written and it gained both its power and small

size by capitalizing on SCHATCHEN's matching capability. SAINT's

simplifier was a LAP (the machine-language assembler for LISP)

coded subroutine written as a Master's thesis by Goldberg in

1959 [21].

SCHVUOS does not assume a standard (canonical) form of an

expression. This means that it will be slow when the expressions

to be simplified are large. In integration, however, it is rare to

encounter large expressions. The speed gained by a canonical order

can be seen in the following example. Suppose, two simplified

expressions are to be added. If the expressions are to be canon

ically ordered, then the addition process is basically a merge of

the expressions witll a simplification occuring if two terms are

identical except for a constant factor. If, however, the express-

ions are not ordered then we generally require a two stage process.

Given a term in the second expression we must determine if there

exists a term in the first expression which is identical to it ex-

cept for a constant factor. This may require a complete traversal

along the first expression. If the number of terms in each of the

two expressions is n, this process takes on the order of n
2

term-to-

55

term matching steps. The canonical order scheme requires only on

the order of n steps. However, some time must be spent in deter-

mining the canonical description and keeping its value around.

FUrthermore, the routiDM that generate the canonical order are

usually very space consuming. Thus, the use of a canonical order

is only worthwhile if the expressions are to be heavily manipu-

lated.

As has been implied in the above, much of the program effort

and execution time in a standard simplification program is spent

in collecting terms in sums. Related effort is spent in collecting

exponents in products. In SCHVUOS the collection of terms in a

sum is handled by calling SCHATCHEN and asking it to determine the

coefficient of the first term in the sum.

Suppose we had the expression E18,

(E18)
2 22x + 3x y + z + x + yx

then SCHVUOS will strip the first term of the sum of its coefficient

and generate the pattern PIS:

(PIS) A/COEFFPT,NUMBERx + B/COEFFP

SCHATCHEN will yield A=3, B=3x2y+z+yx2 Next the pattern P16 is

generated on the expression B. Now SCHATCHEN will result in A-4,

(P16)
2

A/COEFFPT,NUMBERx Y + B/COEFFP

56

Note that x
2

y and yx
2

are recognized as equivalent. Thus, the

simplified sum is E19

(E19)
2

3x + 4x y + z

The operation of collecting exponents in a product is handled

similarly.

The basic simplification program requires only about two pages

of LISP code in contrast to a typical LISP simplification program

(such as Korsvo ld' s [33]) which requires about 20 pages of LISP

code and has the same power, for our purposes, as does SCHVUOS.

SCHVUOS contains some unusual simplification rules because of

the integration environment in which it operates. Thus, arcsin(sin x)

simplifies to x and sin (arccos x) becomes~. Moreover,

21+2 log y + log z becomes y ze.
e

hand led by a ca 11 to SCHATCHEN.)

(This transformation is also

The simplification of an expression is done recursively. Each

operator (e.g., PLUS) first simplifies all its arguments. The

exception is TIMES which results in 0 if any of its arguments is O.

It is possible to achieve an economy if expressions which have

been simplified in the past are not simplified redundantly. This

has led to the AUTSIM-bit in FORMAC [63] and to a similar device in

Martin's simplification program. In SCHVUOS one can sometimes achieve

this effect by setting a flag which means that the arguments of the

top level operator, PLUS, say, are already simplified although their

sum, say, need not be simplified. This is done in the differen-

tiation program used in SIN.

57

Attitudes Toward Simplification

There seems to be a wide range of attitudes of people in the

field of algebraic manipulation regarding the role that an alge

braic manipulation system should play in simplification. One view,

let me call it the conservative view (held by Fenichel, for example

maintains that the system should not simplify expressions until

specifically told to do so. In this point of view there is to be n

fixed system's simplifier and no fixed canonical order of expressio

The conservative view negates the view of those whom we shall call

the liberals (exemplified by the PORMAC design) who believe in a

canonical order, in a fixed simplifier and in implicit simplifi

cation. One might even define a third viewpoint, a radical one, in

which the system will represent expressions internally in a form

quite different from their external form. Rational function progra

(ALPAK [6], PM[12], and MATHLAB's rational function package £36])

adopt this approach. A radical system is prone to use the distri

butive law indiscriminantly and to transform trigonometric function

into their exponential form in order to take advantage of the power

ful simplification algorithms which are then available.

Two considerations should guide one in designing an approach

to simplification within a given system. The first is the general

ity of the system, that is the range of problems which could be

reasonably solved by it. The second is the efficiency of the SystE

in the solution of its problem. It appears to be an axiom that thE

58

more general a system is, the less efficient it is. The most radi-

cal attitude toward simplification usually belongs to systems which

are very powerful and fast in solving problems. We must, however,

adopt a rather broad outlook regarding efficiency in order to

understand what makes a liberal system more efficient than a con-

servative one for the problems that both can handle. It is not

necessarily execution time which is being decreased, it is the

burden of awareness on the part of a programmer which is decreased

in a liberal system. If you can make assumptions about the simpli-

fier then you need think much less about the problem while you are

programming its solution. Yet the argument for conservatism is too

strong to be neglected. It relies on the axiom that the simplest

expression depends on the problem being solved. Two examples which

demonstrate this point and which have previously appeared (Moses [42],

Fenichel [19]) are:

can be harder to integrate than 34x .
4

x

The latter strongly suggests making the simplifying substitution

y=x4 . The former disguises this substitution but is more likely

to be a result of any standard simplifier. Likewise, 1
l+cos x

may be harder to integrate than
2 cos x

esc x - sinLx which is equivalent

to it. The former is easier to graph, read and write. The latter

is immediately integrable, whereas the former requires the sub-

stitution y=ta~x.

59

While in the above examples one can reasonably hope to trans-

form one expression into another, this is not true of the example

below. This example is intended to show that even the most obvious

simplification rules can be harmful in some situations. Suppose

a user generates three terms of an infinite series. We shall

assume that he is attempting to obtain a general term. Suppose that

the first term is 1, the second 2x+l and the third 3x
2

+3x+l. I

2 2
maintain that if these terms were presented as x+l-x, x +2x+l-x ,

323
x +3x +3x+l-x , then the result would contain more information than

before, for it would lead to a reasonable hypothesis that the general

term is
n n

(x+l) -x . Yet one of the first rules of any existing

simplifier is x-x ~o.

One argument that can be given against the radical approach

. . . h b 1 f' . (+1) 10001S g1ven 1n t e pro em 0 1ntegrat1ng x . If one expands

this expression, as a rational function package is likely to do,

then one will use a great deal of space and time and result in an

unsightly expression. However, the expression can be easily inte-

grated to yield
1

1001 (1) 100 1 b 1 . . ., .. 1x+ y eav1ng 1t 1n 1tS or1g1na

form. Recent information indicates that future ALPAK systems will

leave expressions in their factored form in order to resolve

difficulties created by problems such as this.

What then is the attitude that one should adopt toward simpli-

fications? A reasonable one would be to use each of these attitudes

where they are most useful. In cases where there is a need for a

,--------------~-~~-----~~

60

great deal of rational function manipulation and relatively little

pattern recognition one should adopt a radical attitude. When the

problem is not easily framed as a rational function problem or

where the computational effort is light, but where the pattern

recognition is not crucial, then you adopt a liberal attitude.

Finally, when a standard simplifier will lead you into difficulty

you just must restrict its effect.

Separating the radical attitude within a program from the

liberal one is usually easy -- there is a separate program to

handle rational functions. Between the liberal and conservative

modes there are too many intermediate steps. Here what appears

to be required is a black-box simplifier with many inputs or in

dicators. With these inputs one could control the effect of the

simplifier. It would be interesting to see if one could formulate

a language in which a program (or a user) could communicate with

the simplifier. For example, it could check certain indicators

before attempting any given simplification. The cost for such

checking could be quite minimal.

An example of the use of such a sUnplifier is represented as

follows: A common simplification rule is (ab)m~ a~m. However,

in general this rule is inaccurate (e.g., when as-I, b--l, m~, the

left-hand-side yields 1, the right-hand-side, -1, assuming a atandard

interpretation of the square root). If one suspects that this rule

will lead to difficulty then one can leave a test condition in the

61

indicator for this rule which will weed out those cases in which

the result is erroneous.

CHAPTER 4

SIN - THE !YMBOLIC J!lEGRATOR

Introduction

In this chapter we describe the operation of SIN. At first SIN's

flow of control is analyzed. Then each of the methods used is described

in detail. Finally, the performance of SIN on two examples is shown.

Throughout this chapter the contrast between SIN's and SAINT's approach

and methods will be made clear.

Flow of Control and Subproblems in SIN and SAINT

A prQblem given to SIN may be said to pass through the three stages

of Figure 1.

Stage 1

I

No

Stage 2

Problem can be
transformed or
solved by spe- ~----~,~
cial methods?

+
No

Stage 3

Yes

Yes

Return integral

Either

1. Apply SIN to a trans
formed problem and
return value of SIN

or

2. Solve problem using
internal mechanisms and
return result as value.

1--':'" Yes

No

Return integral

Return notice of failure

Figure 1 - The 3 Stages of SIN

62

63

As figure 1 indicates, the first stage solve~ simple integration

problems. In the second stage, we determine whether one of about ten

specialized'methods is applicable to the problem. This determination is

made by a routine called FORM and is quite fast. If a method is found

to be applicable the problem will be either transformed and SIN will be

asked to integrate the transformed problem, or the problem will be inte-

grated using techniques internal to the methods. If no method is found

which is applicable, a more general method will be called in stage 3 in

order to solve the problem. In this chapter we shall describe a third

stage consisting of a simple tntegration-by-parts routine. In Chapter

5 we shall describe the Edge heuristic which we expect will be the basis

of methods used in this stage in the future.

Since most problems are expected to be solved by stages 1 and 2,

we shall describe the 'organization of these stages here. The control

of the methods used in stage 3 is specific to these methods and will

be described separately.

We note that the methods of stage 2 can call SIN to solve sub-

problems. When this occurs the flow of control and subproblems is given

by Figure 2.

Figure 2 - Usual Flow of
Control and Subproblems
in SIN

Figure 3 - Flow of Control
and Subproblems in SIN
When Problem is a Sum of
Three Terms

64

If a subproblem is a sum, then each term in the sum will be inte-

grated separately, and the flow is given by Figure 3.

It should be noted that if a method in stage 2 can transform a

problem, the problem is not passed to another method in stage 2 or stage

3, even though the transformed problem cannot be integrated by SIN. For

example,

J x Iain y xsin(e)dx is transformed to y dy after substituting y-e

fain yin stage 2. .. Y dy cannot be integrated by SIN. Thus, SIN concludes

that JSin(eX)dx is not integrable by it and will not pass it to stage 3.

In strictly enforcing such a decision we are depending upon the

methods to employ tight progress requirements. If the progress require

ments are made too tight, then few problems would be integrated by the

methods of SIN I S second stage. If, however, they are made too loose,

then the methods of stage 2 would verify the hypothesis that they are

applicable in problems in which they, in fact, are not appropriate, and

thus SIN would fail to solve these problems. The experiments with SIN

which are described in Appendices C, D, and E indicate the degree to

which we succeeded in finding good progress requirements. We wish to

point out that once such a discipline is successfully imposed on the

methods, one is in a position to relax the requirement against backtracking,

and thereby obtain somewhat greater power. We have not yet done so in

SIN's second stage.

SAINT, in contrast to SIN's stages 1 and 2, will allow a problem to

generate more than one subproblem. Bowever, only one of the subproblems

generated from any given problem must be solved in order to integrate the

given problem. In general, the subproblems generated by SAINT during the

65

course of solution will form a tree structure. Figure 4 is a simplified

description of the flow of control and subproblems in SAINt.

1M

b heur'd-ic tron3bm:J{D,
applicable k>~?

Trans{arn

toler~ pl't&n(s)
nto subproblem free.

a-rJiI'It"II proI:*m sd~?

Figure 4 - Simplified flow of
control (single arrow) and sub
problems (double arrow) in SAINT

If a problem in SAINT generates more than one subproblem, the node

in the tree corresponding to it is considered to be an OR node. Thus,

only one of the subproblems must be solved. If the problem is a sum,

a similar complication to the one in SIN; is made. The node generated

for ,such a probl.. is called an AND node. Bach of the terms in the

sum becomes a subproblem, and must be integrated. AND nodes are indi-

__ _r~ _. '_'_.~ .~_,__.••_~ ..._,_.~ . ._-........"..__~_._,

66

cated by an arc across the branches from that node. Thus, in general,

a goal tree in SAINT has the form of Figure 5.

Figure 5 - A Subproblem Tree in
SAINT when sums are present among
the subproblems

All subproblems in SAINT are given to IMSLN. This includes the

original problem and this fact is not shown in Figure 4. IMSLN thus

acts like SIN's first stage. IMSLN has its own methods of solution.

If it fails to solve the subproblem or some simple transformation of it,

the subproblem will be put on the subproblem tree.

The routine LOOP (see Figure 4) has access to a list of subproblems

to be tried called PLH. This list is ordered so that the first member

of the list represents a subproblem which has the lowest depth of nested

operators (e.g., PLUS, TIMES,COS) in the internal representation of the

problem. LOOP will select the first subproblem on the list. It will

67

then ask each of the methods of SAINT called the heuristic transformations

by Slagle to determine if they can transform the subproblem. These methods

will be guided by information about the subproblem called the character of

the subproblem. The character contains information such as whether the

subproblem represents a rational function, an elementary function of ex

ponentials or trigonemetric functions, etc. This information is used to

limit the number of heuristic transformations applicable to a problem. Yet

even with the use of the character mechanism as many as 11 out of the 17

heuristic transformations may be applied to a single subproblem.

The flow of control and information in SIN is called hierarchical.

In a hierarchical organization, subproblems which are communicated between

one routine and a second are private to these routines and are not known

to the rest of the program. SAINT's organization can be called~~

oriented. In such an organization the" goal is to transform the data base

(i.e., the goal tree in SAINT) to a desired state. In SAINT the desired

state is a tree which has a path from the top node (the original problem)

to a bottom node in which each node represents a solved problem. In a

data base oriented organization control is relinquished to routines which

manipulate the data base. In SAINT, all the heuristic transformations

relinquish control to the IMSLN program.

SAINT's data base oriented approach allows and, in fact, may be said

to encourage the program to backtrack, that is to leave one path of the

tree and start on another. SIN's approach is to discourage backtracks

at the first two stages. Backtracking is allowed in stage 3. However,

in stage 3 backtracking is only of a limited nature.

r

68

Conyentions

In describing SIN we shall use the usual convention that the

variable of integration is x. SIN is actually a function of ~wo argu-

ments. The first is the expression to be integrated and the second is

the variable of integration.

Below when we use the phrase "is a constant" we shall mean that

the expression contains no occurrence of the variable of integration.

2 2
Thus, sin x + cos X is not a constant when x is the variable of inte-

gration.

We shall not concern ourselves here with difficulties which may

arise due to the UDBolvability of the constant or matching problem for

the elementary functions. For a discussion of these difficulties see

Appendix B.

By the elementary expression,.2! 1! we _an the set ofexpre.ssions

composed of

1) constants, 2) x, 3) trigonometric functions ofx (e.g., sin(x),

cos(x», 4) logarithmic and arctrigona.etric functions of x (e.g.,

log x, arcsin x). and closed under the operations of addition, multi
e

plication, exponentiation, and substitution.

By an elementary expression !!l.t.UU (abbreviated elem(f(x», we

mean an expression obtained in the manner above, but where f(x) replaces

x 2ex 2xx in the definition. Thus, for example, (e + l)e + e is an elemen-

x xtary expression of e. The expression xe, on the other hand, is an

elementary express_ion of x, but not of eX.

By a problem integrable Ja finite~ we mean a problem whose

integral is representable by an elementary expression.

69

First Stage of SIN

The first stage of SIN uses the following three methods:

Method I If the integrand is a sum, each term is integrated separately

by calling SIN iteratively and the results are added.

*

Method II If the integrand is of the form

[Eui(x)]n, where n is a small positive integer, expand the

expression and apply Method 1.

Method III If the Derivative-divides routine is applicable, return its

results.

The first two transformations are made sO that the rest of the

program can assume that the integrand is a product (though possibly a

xtrivial product as in x or in e). The third method in this stage is

the method which has led us to call this stage the stage that solves

simple problems.

We shall now describe these ,methods in some detail.

I) Method I is an oft used method in practice. Using this method

one avoids the difficulty of integrating dissimilar expressions such as

sin x + eX. Integral tables, it will be noted, shun entries which are

sums. However, this is not a safe rule.to follow, in general. For

S
· 2 2 ,2

example, let us consider (ex + 2x eX)dx. Neither of the terms in

this sum is completely integrable in terms of elementary functions.

x2
However, the sum is the derivative of xe • Hence, breaking up the terms

in the sum and integrating them separately can disguise the integrability

of the sum. This difficulty was known throughout the course of this re

*search, and a heuristic for overcoming it in some cases was designed.

The heuristic that has been considered is of the following nature.
Suppose we have a product of terms of the form f(x)g(x)h(x). The deri
vative is frequently of the form f' (x)g(x)h(x)+f(x)g' (x)h(x)+f(x)g(x)h ' (x).
Thus if one finds an integrand which is a sum such that two terms in the

.,-_.,._" _/_••_ ..••~ '-O- .••••._. ~._ ~- -.-~.•_--' ••-- .•-,- -__ ~- - ~- ••~ ._- -.-,

70

However, no extension to this method has as yet been implemented.

Slagle considered this method to be sufficiently safe so that he

invariably followed it also.

Example

J(sin x + eX)dx • Jain x dx +Jex dx

II) The reason for method II can be seen by considering the problem

J x 2(x + e) dx. SIN has no machinery which deals with this problem in its

J
2 x 2xpresent form. However, if the problem is given as (x + 2xe + e)dx,

then the problem is easily integrated.

Example

I x2 J 2 x 2x(x + e) dx =(x + 2xe + e)dx

III) The Derivative-divides method is the heart of this stage in SIN.

As we shall see many problems are integrated by it quite quickly. The

inclusion of this method at this place in the program has an important

meth9dological basis. It is presumed that in many computer problem

solving systems there are methods of solution which solve most commonly

occurring problems relatively quickly. If these methods are employed

first by a problem solving system then many problems will be dispensed

with in short order. Thus, the problem solving system will be able to

afford to utilize expensive machinery in its later stages.

The Derivative-divides routine checks to see if the problem is of

the form:

sum are related by having two factors in each of the forms fig and fg't
respectively, and with the rest of the factors identical, then one can
guess the original product easily.

71

Ic op(u(x»u'(x)dx,

where c is a constant, u(x) is an elementary expression in x, u'(x) is

its derivative, and Q2. is an elementary operator. Op may be one of the

following operators: a) identity b) sin c) cos d) tan e) cot f) sec

g) csc h) arsin i) artan j) arsec k) log. Three more possibilities

for ~ involve the exponentiation operation. These presume that the ex-

ponential function has only one nonconstant argument. Thus, we get the

cases 1) u(x)-l m) u(x)d, d ~ 1, n) dU(x), where d is a constant. The

final case is when the integrand is a constant and then u(x) is trivial.

In that case the integral is simply cx.

The method of solution, once the problem has been determined to

posses the form above, is to look up ~ in a table and substitute u(x)

*for each occurrence of x in the expression given in the table. In

other words, the method performs an implicit substitution y = u(x), and

obtains the integral Ic op(y)dy by a table look up.

2x,

2 1
u(x) = x , ul(x) = 2x, c =

2

op = u(x) d. u(x) = 1 + x2 , u' (x) =

x -1
log(l + e), op = u(x) , u(x)dx

2)

3)

4)

Using this method the following examples can be integrated.

1) JSin x cos x dx =~in2x, op = identity, u(x) = sin(x), u'(x) = cos(x),

c = 1

.J 2
xe x dx

Jw'l + x2

1
c =2'

II {ex

c = 1

* See Appendix A for a description of integral table look-up methods.

72

5) J3/2dx 2 5/2
x ""SZ;' op • u(x)d. u(x)· x. u'(x)· 1, c - 1

A few more examples will indicate certain aspects of this method.

6) ICOS(2x + 3)dx - tSin(2x + 3), op - cos, u(x) - 2x + 3, u'(x) - 2,
1c-'2

The Derivative-divides method perfonDs an implicit linear 8ubsti-

tution in this case. SAINT would have performed an explicit linear

substitution and would have required two calls to IMSLH to solve the

problem.

7) J2YZe2Xdx "" yze2X , op • dU(x), u(x) - 2x, u'(x) - 2, c - YZ

This method handles constants easily. Constants can be generated

or can be present in the integrand. SAm would have removed the con-

stants explicitly.

J
2x xx 1: 3x

8) cos (e)sin(e)e dx - -je0s (e),

c "" -1

dop .. u(x) ,

This example demonstrates that the integral may be fairly complex

and the method will still apply.

One of the experiments which was made with SIN was to attempt the

86 problems attempted by SAINT (see Appendix C). Interestingly enough,

this method of Derivative-divides was able to solve fully 45 out of 86

problems. The average time on the 7094 was 0.6 seconds.

It is hoped that the above examples convincingly demonstrate the

usefulness of this method at an early stage in an integration program.

The method is to be recommended for those who desire an integration

capability, but who are unable or unwilling to avail themselves of a

more general program.

As was mentioned earlier, SAINT's IMSLN routine perfonDs some

73

functions which are similar to SIN's first stage. DfSIB employs a

table stmilar to that in the Derivative-divides routine but somewhat

larger. It also perfonDs eight transformations called algorithmic

transformations by Slagle. These transfonDations are attempted one at

a ttme. If one of them is successful the transformed problem is used

and the original problem is not considered again. Two of these trans

fOnDations are the same as method I and II in this stage of SIN. The

others factor a constant or a negation operator from the integral;

employ half angle identities; make a linear substitution; and perform

certain simplifications on the illtegrand. As has been pointed out

above, IMSIB also tends to the tree of subproblems and can determine

if the original problem has been solved. IMSIB doesn't actually solve

many problems so much as it is able to transfoxm a great number of

problems into a form which is more easily solved by the rest 'of SAINT.

It would appear that SIN's Derivative-di.vides.method solves more problems

immediately than does DfSLN. SAINT's Derivative-divide. heuristic trans

fOnDation, which is quite powerful, is not applied to a problem until

much later in the course of the solution.

The Second Stage of SIN

If a problem fails to be solved by SIN's first stage, then it is

determined whether one of eleven additional methods is applicable to

it. In order to determine which method is to be applied clues are ob

tained from the expression. We have called the technique by which these

clues are used hypothesis fOnDation (see Chapter 2). The routine that

obtains these clues and conducts the formation of an hypothesis is called

FORM. Associated with most of the methods are patterns in SCBATCBEN

74

which serve to differentiate the problems which are solvable by each

method from those solvable by other methods. It turns out that few

problems have more than one method applicable to them. In the cases

where a conflict does exist (e.g., in solving problems with algebraic

integrands) the actual method chosen appears to have little effect on

the cost of obtaining a solution.

In this stage of SIN, a single method CMethod 6) handles problems

which involve trigonometric expressions. When FORM sees a subexpres-

sion of an integrand which is a trigonometric function of a linear

argument in the variable of integration, this subexpression will act

as a clue, and FORM will call Method 6 to validate the hypothesis that

a substitution can be made for the trigonometric functions. If Method 6

decides that such a substitution is not applicable (e .g., Jsin x eXdJt) ,

then it will return the value NIL (FALSE). In such a case, FORM might

entertain another hypothesis but since there are none for trigonometric

functions, FORM will also return the value NIL. If Method 6 finds that

a transformation is applicable. it will hand SIN the transformed pro-

blem. The value of SIN, with a proper substitution to account for the

transformation that was made will be returned as the value of Method 6

and of FORM.

Examples of problems illtegrated by this stage of SIN:

(It is probable that none of these could be integrated by SAINT.)

1)

2)

VAl + Bls in2x dx
f sin x

J 2 x2
(1 + 2x)e dx

75

J 2x
3)

A : Be4x dx

4) Ix h+l dx

5) IXl / 2(x + 1)5/2dx

6) J4 1_ 1 dxx

Below we describe each of the methods used in this stage. Each

description contains the clue which FORM uses to determine whether the

method might be ,applicable. A more extended description of the manner

in which FORM operates will then follow.

Method 1) Elementary function of exponentials.

This method is applicable whenever the integrand has the form of
bXi+c ian elementary function of a i ' where the ai' bi , and c i are con-

stants.

bx+cClue -a subexpression of form a ; a, b, c are constants.

Examples -

L:x3J.x dx

J 2x

A : Be4x dx

J x x
10 e dx

becomes

becomes

becomes

becomes

L 1
dx, x

+ 3y2 Y e

J. y liy, x
A + By4 Y = e

II : y dy,
x

and
x+l xy == e e == ee

J/og elO xdy, y == e

r

76

bXi+ci (bi x+c i)log a
iMethod - a i is transformed into a1 a1 in order

to convert all bases to a common base a1 • Here a
l

is the first base

encountered in the integrand.

bx+c c bx
a l where c ~ 0 is converted to alaI. This facilitates the

transformation to be made.

- x ~
The substitution y • a l is made. Thus, each a l is replaced by

b
y and the resulting expression is divided by y log al.

e

~ - What is controversial about this method is that in converts all

bases to a single base which in not necessarily e. This may lead to

the introduction of unnecessarily clumsy constants (e.g., logS3).

SAINT I S method in this case was somewhat different. SAINT did

not handle different bases, nor all cases where constants (i.e., ci)

were present in the exp~nt. It did, thouah, fiad tbe areatest C(lllllDOn

k.xdivisor of the bi , k, say, and made the substitution y • a l • In SIN

this will be handled by algorithm 2 which will .ake the substitution

k x
z • y after y • a1 is made by the current method. The method that per-

k
forms the substitution z • y was not present in SAINT although it was

aUiSested as an extension

Hethod 2) Substitution for an integral power.

This method is applicable whenever the integrand is of the form

Xc Blem(xki), where c, k
i

are integers and where

k • gcd({c + 1, kl , k
2

, •••}), k ~ 1

Clue - Instead of obtaining a clue which determines whether this

transformation is applicable, FORK obtains a clue which determines

whether this transformation is not possible. PORK will note that this

transformation is not applicable when it sees a subexpression of the

77

a+bx .
form e or s1n(x). If none of the other methods is applicable, and

no such clue has been found, this transformation will be called.

Examples -

becomes

becomes

s~ sin y dy, Y
2

x

fl -L-. 4
4 3 dy, Y x

Y + 1

k
Method - Substitute y = x

~ - This method was suggested but not implemented by Slagle

who embedded it in a larger method which was implemented in SIN in two

separate methods (2 and 3).

This method is currently restricted to integer exponents. It

should be extended to handle exponents such as 3a, 2a in

Sx
3a

sin(x
2a

)dx

Method 3) Substitution for a rational root of a linear fractioD of x.

This method is applicable when the integrand is of the form

(ax + b~ (ax + b~
Elem(x, ex + dJ-L, ex + d: 2, ••.)

where the n. and m. are relatively prime integers with some Jm. I i 1,
111

and with a, b, c, d constants and ad - be i O.

Cl~ - A subexpression of the form

(c
axx ++ bd'~/ a, b, c, d constants; n, m, relatively prime integers, Iml i 1

Examples

Scos.r; dx becomes J2y cos y dy, y =.r;

,.----- ------~--".~_._-.-_._-~---.__ ._--_.? _.,-,.....-:--_. ----_._--,----.----_.------........__.-~.------_.~.-,~--_._---

78

Ix;;-+l dx becomes

The above two problems were attempted and not solved by SAINT.

1/3 dx
x

becomes 1/6y=x

JhX++1
3 dx becomes J 2l IKTI""

(2y2 - I)! dy, y =/~3

Method -

Substitute y =

Let k = least common multiple of the mi'

(ax +bY/k
'cx + d

is non-trivial.

~ - The restriction ad - be ; 0 assures that the substitution

~-If ad - bc = 0, then dx - O.

Slagle suggested methods 2 and 3 as a single method. Considering

them as two separate methods facilitated the coding. This method is

an extension of Slagle's suggestion since it covers linear functions.

Even this algorithm should be split into two parts. One would

n/m
handl~ the case restricted to (ax + b) , the other the more general

(ax + b'.n/m
case \)cx + d

Much of the time only the former is needed, but the machinery for

handling the latter, which is more expensive, is employed.

A weakness of this routine is its inability to deal with variable

exponents. These would usually result in the generation of a reduction

formula as opposed to an integral. The great advantage of an integral

table over SIN currently is the presence of the reduction formulas.

The Edge heuristic (See Chapter 5) can generate some reduction formulas,

79

but not many at present. (Or course, an instance of a variable exponent

should result in a solution in SIN~)

Method 4) Binomial - Chebyschev

This method is applicable whenever the integrand is not a rational

function and possesses the form

Axr(c
i

+ czxq)p, where A, c
l

' C
z

are constants, p, q, r are ratio

nal numbers and clcZqp 1 O.

Clue - A subexpression which is a nonintegral power of a rational

function. This is followed in FORM by a match of the integrand and the

form above.

Examples

Jx4 (1 - xZ)-S/Zdx becomes

becomes

x

Method - Binomial conversion to Chebyschev form (substitute y xq).

r + I
Thus A~A/q, and r

Z
~ p, r

l
~ ---q-- -1

Make the first applicable transformation

a) r
l

integer, r
Z

> 0

Substitute z = c
l

+ C z Y

b) r
Z

integer, r
l

a rational number with denominator d
l

Substitute z = yl/dl

c)

Substitute z =

< 0, r
Z

rational number with denominator d
Z

l/dZ(c
i

+ c zy)

80

Substitute

d) an integer
lId

z _ (C1; C~y) 1

Otherwise, return notice of failure to integrate problem.

~ - This method was also suggested but not Lmplemented by Slagle.

It has the advantage of being a decision procedure. That is, if an inte-

grand has the form given above, then either the method yields the integral

or the problem cannot be integrated in finite terms. This was proved by

Chebyschev (see Ritt [54], p. 27).

The argument used is roughly as follows: If r l , r
2

, or r l + r
2

is an

integer, then the substitutions above result in rational functions and thus

can be integrated. Otherwise we know from Abel's Theorem (see Chapter 5)

that the integral, if it is expressible in finite terms, is a sum of an

algebraic function and logarithmic terms. The residue of a Chebyschev

function is everywhere O. Hence the integral cannot contain logarithmic

terms. Further analysis shows that the assumption that the integral is

algebraic leads to a contradiction.

In this case also the integral tables contain many entries which

are reduction formulas for the cases when p, q. r are parameters. Some

such capability should be present in SIN also.

Method 5) Arctrigonometric substitutions

This method is applicable whenever the integral is of the form

R(x, lx i + bx + a) where a, b. c are constants and R is a rational

function of its arguments.

Clue - A subexpression of the form

2 n/2(cx + bx + a) ,where n is an odd integer.

81

2 2 2
(A + B lcos z d

A2 + B2 2 z.
(1 - 2 sin"-Z)

B

JSin\ d4 z. y a arcsin x
cos z

becomes

dy becomes

2 512 dx
(1 - x)

J/A2 + B2 -2B2y2

1 - y

Examples

J x
4

First eliminate the middle term of the quadratic by completing the

square

b
y - x +~.

yielding the integrand in the form

R(y - ~c .ley2 + a - ::)

b2
Let A .. a - 4c

c .. c

If C > O. A > O. substitute z - arctanIfy

If C > O. A < 0, substitute z .. arcsin~ y

If C > 0, A - O. replace the quadratic by IC y

If C < O. A > 0, substitute z - arcsec IF Y

If A and C are both numbers, then the signs are determined trivially.

If A or C are parameters. then the user will be asked whether they are

positive, negative, or zero through an appropriate message at the console.

For example if the value of A is e, a message would read

IS e POSITIVE

An answer of "yes" is expented if e is in fact positive. However, the

program can frequently determine whether A or C are positive. This is

82

done by assuming that all parameters are real valued and by using the

fact that sums of squares of real numbers are positive. Thus.

2i + 3e
4 + 5

is determined to be positive, whereas

_d2 _ 2(e + f)2

is determined to be negative. A single SCHATCHEN rule is used in making

this determination.

In cases where the coefficients are parameters, it is possible to

run the program several times and answer questions differently each time.

SAINT had two transformations which performed the function of this

method. One method eliminated the middle term from all quadratics, another

made the arctrigonometric substitutions in all quadratics with missing

middle terms. The arctrigonometric substitutions are ,normally made for

roots of quadratics as we have done and not in all quadratics as SAINT

attempted to do. SAINT also implicitly required that the coefficients

in the quadratic be numbers. The kind of interaction between the user

and the program which is required when one allows nonnumerical coefficients

became practical when time-sharing systems were introduced.

Method 6) Elementary function of trigonometric functions.

This method is applicable when the integrand is an elementary

function of the trigonometric functions applied to linear argument in

the variable of integration.

Clue - TRIG(a + bx) where TRIG & {sin, cos, sec, tan, cot, cse}

83

Examples

1) JSin
2

x dx becomes J(t - tcos 2x)dx

2) J/A2 +. B2s in2x
s~n x dx becomes J/AZ + B2(l ; y2)

1 - y
dy, y cos x

3) J 1 dx becomes
1 + cos x JdY, y

1
tan?

I) In problems where the arguments of the trigonometric functions

are not the same throughout the integrand, the following cases are

-cos(m - n) x _ cos(m + n)x
2(m - n) 2(m + n)

examined.

a) SSin m x cos n x dx

b) Ssin m x sin n x dx
sin(m - n)x

2(m - n)
sin(m + n)x

2(m + n)

c) J sin(m - n)xcos m x cos n x dx = ==~=---~~
2(m - n)

+ sin(m + n)x
2(m + n)

m, n, constants m f -n

Otherwise, the method returns notice of failure to integrate the problem.

II) If the arguments are the same but are not identically x, a

linear substitution y = a + bx is performed and the procedure continues

with the revised problem.

III) If the problem is of the form

S m nsin (y)cos (y)dy; m, n integers

II. nl 1 !l...:......!!!
a) m < n, transform to. ('2Hn 2y) ('2 + -zeos 2y) 2 dy

b) SIn 1 1 .!!L:.....!lm 2: n, transform to ('2sin 2y) ('2 - zeos 2y) 2 dy

IV) All trigonometric functions are transformed into sines and

cosines
sin y

(e.g., tan y ~) in order to test if the resulting expres-
cos y

sion is of the form a or b.

84

J 2n+l . 2a) sin (y)E1em(sLn (y),cos(y»dy.

In this case substitute z = cos(y)

J 2n+1 2b) cos (y)E1em(cos (y),sin(y»dy

In this case substitute z = sin(y).

v) All trigonometric functions are transformed into secants and

tangents in order to test whether the resulting expression is of the

form:

JE1em(tan(y),sec2(y»dy

In this case substitutez • tan(y).

VI) 1 sin yFinally, the substitution z • tan~2 = 1 is made.+ cos y

~ - In the case where the integrand is a rational function

of trigonometric functions of x all the problems can be reduced to

rational functions. The choice of the transformation governs the

simplicity of the resulting rational function and the final answer.

The transformation in step VI above which is always applicable in these

situations frequently leads to a great deal of work and to complex

results. Fortunately, a number of simpler transformations such as

those of steps III, IV, and V are easily recognized and are usually

applicable.

SAINT included all of the transformations given above, but they

were embedded in different places in the program. I is included in

the integral table. II is an algorithmic transformation, as is step III.

85

IV and V are three separate heuristic transformations. V is yet another

heuristic transformation. The initial stage in steps IV and V is per-

formed by still another method. This organization of the methods appli-

cable to trigonometric functions led to the generation of extraneous

subproblems since the heuristic transformations were disjoint and were

not aware of each others actions, nor, in fact, of their own actions.

For example, the method which performs the preliminary transformation

. sin x1n steps IV and V (e.g., tan x ~ -----) must be inhibited from performing
cox x

the opposite transformation later (e.g., sin ~ ~).
sec

More work is necessary in this area in handling arguments to

trigonometric functions which are linear, but different (e.g., S~~~~~~~dX)'

Some programs along this line have been designed by Edmund Berkeley, but

they have not been fully implemented.

Method 7) Rational function times an exponential

This method is applicable whenever the integrand is of the form

R(x)eP(x) , where R(x) is a rational function in x and P(x) is a polynomial

in x.

Clue - A subexpression of the form eP(x), where P is a polynomial

in x. If P(x) is linear in x, this method will be attempted if method

1 is not applicable.

1.

Examples

Sxexdx = xex _ eX

s(x
x

2.
x x = __e___

+ 1)2 e dx x + I

3. S(l 2 x2 x2
+ 2x)e dx = xe

4. Sx2
. e dx: not integrable

86

5. Je
x

dx: not integrable
x

Method - This method once again is a decision procedure. That

is, the method can tell whether a problem can be integrated in finite

terms or not. The method is an improvement of the decision procedure

in Ritt [54](p. 48) which handled the case by solving a system of

linear equations. The procedure is an application of the Liouville

theory for integration about which more will be found in Chapter 5.

This procedure is similar in flavor to Risch's [53] recent theoretical

treatment of results in the Liouville theory.

clxml + 81 (x)
Let R(x) - Q(x) where Sl' Q are polynomials

Sl is a polynomial of degree < m
l

,

Cl is a constant, C
l
~ o.

We know from the Liouville theory that the integral (if any) will

be a multiple of P(x)
e • (See Ritt [54], page 47.)

(P')2

Suppose the integral is represented by

(al(x) + bl(x»eP(x). then
Clxml + Sl{x)

P'(x)al + ai + P'(x)bl + bi = R(x) .. Q(x)

C mlIX
Let al (x) .. pi"Q""'

and

The numerator of P'b1 + bi is a polynomial T1(x). say, and a rational

function remainder, Ul(x), say. m2
Let the leading term of Tl(x) be C2x and

87

the rest of T1(X) be S2(x). Now continue the process indicated above

until some T. (T , say) is 0. This is guaranteed to occur since the
1 n

degree of the Ti is decreasing. If at that time the corresponding Ui

(i.e., U) is also 0, then the expression R(x)eP(x) is integrable and
n

n P(x)
the integral is L a (x)e • If U is not 0, then the problem is

i=l i n

not integrable in finite terms.
n n

Note that if U = 0, then R(x) - pI L a. - L a~ = 0.
n i=l 1 i=l 1

n
Let a = L a.(x); then we obtain the relation

i=1 1

pia + a l = R

I P P R PP ae + ale = e

P P(ae) I = Re

aeP = JRePdx

For the converse, we refer to Ritt. Also, note the discussion in

Chapter 5.

~ - SAINT was able to solve the first two of the examples

above. Both were solved using the Integration-by-parts method of

SAINT.

SAINT was unable to integrate Je
x2

dx because it found that no trans-

formations were applicable to the problem after approximately one minute

of computation.

The fact that SAINT was unable to integrate this problem does not

necessarily mean that the problem is not integrable in finite terms. This

statement is also true of SIN, in general. This is due to the fail-safe

nature of the programs. When a fail-safe integration program results in

88

an integral then we know that the problem is integrable. When such a

program does not yield an integral then one still does not know whether

the problem can be integrated or not. A semi-decision procedure for

integration would, in finite time, result in an integral or in the state

ment that the problem cannot be integrated in finite te~. Richardson's

result (see Appendix B) shows that for the integration problem as he

defines it, no decision procedure exists. Yet decision procedures exist

for many interesting subcases and especially when one avoids considering

the matching problems that Richardson shows are inherent in his charac

terization of the elementary functions. SIN embodies some decision pro

cedures. Future programs are likely to contain more (see Chapter 5).

One must be quite careful about the computational methods involved in

order to avoid the explosion which is apparently inherent in many decision

procedures in algebraic manipulation (see Moses[42 1). We would prefer

to see expensive decision methods to be attempt~d as a last resort, such

as stage 3 in SIN. A final consideration regarding methods for integration

is that they should not be too radical or else the result will become less

meaningful to the human user.

This method was implemented using the rational function package of

MATHLAB [36 1. SIN cOlllDUnicates with the rational function package by

a process called chaining. More will be said about chaining when we dis

cuss the integration of rational functions.

Method 8) Rational functions

This method is applicable whenever the integrand is a rational function.

Clue - FORM generates no local clue for rational functions. The

applicability of this method is determined separately. Sometimes this

89

method is called directly by other methods (e.g., methods 2 and 4).

1.

2.

3.

Examples

I x 1 1 2 1 (2x - 1)
x3 +1 dx .. -'3loge (x + 1) + 6'loge (x - x + 1) + 73 arctan \ .13'

I 1 1 1 1 2
6 1 dx .. -'6l08e (x + 1) + '610ge (x + 1) +12108e (x - x + 1) -

x -
1 (1L:....1) 1 2 1 (2x:+ 1)- 273 arctan. 73- - l2l08e (x + x + 1) - 273 arctan /3

J.(.B~ _A2)X2l_ A~ 2 + A4 dx .. 2AB2-~ A3 loge (x + A) +2AB/ _ A3 lOBe (x - A)

Method - This method was programmed for the HATBLAB system by Hanove

and Bloom under the direction of Engelman of the MITRE Corporation. The

integration procedure which is used is described in Hardy [25 J. The

polynomial factorization routine used in this program essentially follows

Kronecker's method as described in Van der Waerden [65 J, p. 77-78. This

program is also written in LISP and is itself described in "Rational Func-

tions in MATIILAB," by Hanove. Bloom and Engelman [36 J.

Notes - The power of this method makes the coding of the rest of

SIN a great deal simpler. SAINT did not have a powerful rational function

integration program (it could integrate polynomials and ratios of poly·

nomials with linear and quadratic factors) and it suffered thereby; much

of the trial and error in some problems for SAINr can be attributed to

its inability to integrate certain rational functions which arose as

subproblems. Some of the extensions which were made to SAINr (e.g ••

methods 2 and 4) could not have been made unless a rational function

program was present. Thus. the second stage of SIN lets this routine

clean up the details such 8S rationalization of denominators which could

be ignored in making the transformations.

~_.-- '--~'--.~--------.

90

Slagle realized that the unavailability of a rational function

integration program was a basic defect in SAINT. However his proposal

for the manner in which such a routine should be written was not the

best. He proposed solving linear equations to obtain a partial faction

expansion of the rational function. The method in HATBLAB is superior

computationally.

As was mentioned earlier the experimental work (e.g., debugging

and testing) was done using Project HAC 's time sharing system CTSS. One

valuable feature of this system is the power to use programs written by

others. In our case it was valuable to have access to the rational func-

tion package of the HATHLAB system. To be sure, in conventional "batch"

processing one can employ large packages designed by others by using

intermediate tapes. In CTSS one can conveniently make use of a program

concurrently under development by another group, providing one is pre

*pared to spend some time for the process involved.

The rational function program which SIN uses is available in CTSS

as FUI&N SAVED. It is a separate core image from SIN and is called

using the chaining process given below.

a) SIN writes the problem to be integrated on file MANOVE LISP.

b) SIN saves itself as MOSES SAVED.

* The widespread availability of time sharing consoles has allowed SIN
to be used by several people other than the author. "Bugs" in the pro
gram.have been pointed out by Michael Levin of Information International,
Inc., Carl Hewitt and Peter Samson of Project -MAC, aut Russel Kirsch of
the National Bureau of Standards. We would hereby like to express our
appreciation of their efforts.

91

c) SIN directs CTSS to execute FUUfAN SAVED.

d) FlJUfAN reads MANOVE LISP.

e) FULMAN generates a solution to the problem.

f) FULMAN writes the solution on file MANOVE ARS.

g) FlJUfAN directs crss to resume HOSES SAVED.

h) HOSES (Le •• SIN) reads MANOVE ARS.

Experimentally the minimum time for this process has been determined

to be about 4.5 seconds of machine time. Host of the time is spent in

steps £ and g in Which 32k programs are loaded into core.

There are. at present. certain differenc.es in the internal repre-

sentation used in SIN and FULMAN. These differences are eliminated.

whenever possible. by two interface routines present in SIN. The dif-

ferences consist of the following:

a) log has two arguments in SIN. one in FUUJAN.

b) PLUS. TDfES have variable number or arguments in SIN and only

two in FUUfAN.

c) No floating point numbers are allowed in FUUfAN. Whenever

possible these are converted to rational numbers (i.e •• (a'b) Where a,b

are integers). Otherwise an error indication is given in SIN.

Method 9) Rational function times a log or arctrigonometric function

with a rational argument.

This method is applicable Whenever the integrand is of the form

R(x)F(S(x» Where F is log. arcsin. or arctan

R(x) and Sex) are rational functions

and Where Ja(x)dx is also rational.

,. fl€.

92

Clue - F(S(x» where F is log, arcsin or arctan and Sex) is a

rational function.

Examples

1) Ix log x dx becomes x2

2
log x - J~2· dx

e e 3

J2 3 J x dx
2) x arcsin x dx becomes ; arcsin x - 3/1 _ x2

1 . 2 --=L 2 I -1 (2x +2)
3) 2 log(x + 2x) becomes + llog(x + 2x) - .--;-1 2 dx

x +2x+l xx x+2x

Method - Let T(x) =JR(X)dx

a) F - log

Solution is T(x)log(S(x) - IT(x) f ~:} dx

b) F· arctan

r . SC~Solution is T(x)arctanS(x)- JT(x) 1 + S:(x) dx

c) F - arcsin

Solution is T(x)arcsinS(x)- IT(x) SICx) .
./1 - S2(x)

dx

~ - This routine handles three special cases of the method of

Integration-by-parts. The utility of these special cases is that they

direct the solution process quite clearly, wheress the more geners1 sol-

ution methods may make false starts or require more extended analysis.

SAINT would have attempted to solve most of the problems that fall

under this category with its Integration-by-parts method. If we presume

that SIN had only the rational function capability of SAINt, then this

method would allow SIN to be more powerful on these prob1_ to which

this method applies. This is due to the fact that SAINT could not tell

how much effOrt it could reasonably expend on its Integration-by-parts

method and it chose to spend less effort of it than would be required to

integrate the third problem avove, for exa~le.

93

Method 10) Rational function times an elementary function of

loge (2..1 + bx).

This method is applicable whenever the integrand is of the form

R(x)Elem(logc(a + bx» where R(x) is a rational function and a, b, c,

are constants.

Clue A subexpression of the form log (a + bx). This method is
c

attempted if method 9 fails to be applicable.

1)

Examples

J.
log x J.

-(-1-Og--x~e~+--1~)~2 dx becomes (y +Yl)2 eYdy, y =
e

log x
e

2) Sl 1
dx becomes Il

1 dy, log x
1 + log2x + y2 Yx ee

3) J.10~ x dx becomes SleYdY, x
Y = e

e y

Method - Substitute y log (a + bx)
c

results in

Notes - This method is used to reduce the problem to the exponen-

tial case where the powerful method 7 might be applicable. If method 7

is not applicable, the transformed problem stands as much a chance of

being integrated by SIN's current methods as did the original problem

in the logarithmic form.

Method 11) Expansion of the integrand.

This method is applicable whenever the integrand can be expanded

by distributing sums over products.

Clue - This method is used whenever all of the previous methods

have failed to be applicable. No clue for the applicability of this

method is found by FORM.

94

Examples

Jx(cos x + sin x)dx becomes J (x sin x + x cos x)dx

Jx + eX becomes J -xdx (xe + l)dxxe

I x(l + eX)2dx becomes J x 2x(x + 2xe + xe)dx

Notes - SAINT had two heuristic transformations which together per-

formed the job of this method. The first distributed nonconstant sums in

products, the second expanded positive integer powers of nonconstant sums.

In both cases, where Slagle considered the methods inappropriate, SIN

would have already applied one of the previous methods and solved the

problem. As a matter of fact, that is also true of the two problems

for which he considered the methods to be appropriate.

The Third Stage of SIN

This stage, the last stage of SIN, is the appropriate place for

methods of a rather general nature.

Two methods which properly belong in this stage have been programmed.

The first is the Integration-by-parts method. This method is used in

the experiment in Appendix C in which SIN was asked to solve the 86 problems

attempted by SAINT. Only two of those problems (Le., Ix cos x dx and

Scos Ii dx) required this method. The second method is based on the Edge

heuristic described in Chapter 5. A third method, a powerful Derivative-

divides method, has not been implemented, but will be discussed here.

In the long run it is expected that only one of these methods will

be used here--that is the method based on the Edge heuristic or some vari-

95

ant of it.

The Integration-by-Parts Method

Examples -

1) Ix cos x dx becomes x sin x - ISin x dx

Ix
2 2

Ix2) dx becomes
x 2

log x dxlog x -log x -
e 2 2 e

Method Let Maxparts be twice the maximum of the value of a

constant exponent of any nonconstant factor in the integrand. Thus

2
Maxparts is 2 for x cos (x) and 4 for x cos x.

Consider any partition of the integrand into a product of nonconstant

factors g and h, where H(x) = Ih dx can be obtained by SIN without calling

the Integration-by-parts method.

Now consider Ig'HdX. We require that this integral be found by

SIN by calling the Integration-by-parts method fewer than Maxparts times.

If both integrals are obtained, the solution is

Jgh dx = gH - IglH dx.

~ - The crucial aspect of this method is embodied in the phrase

"consider any partition." This method is thus willing to attempt several

partitions of the integrand. It is thus searching for a solution, and

searching very blindly indeed.

In order to avoid searching too large a space, we require that H(x)

must be found without using this method. SAINT, which also had an Inte-

gration-by-parts method required that H(x) be found by IMSLN, which is

a stronger restriction. Likewise the Maxparts device avoids an infinite

search for the second integral. SAINT, which did not use such a device

~----~----------~----:---..........------..."."....-....,----~-

96

This processis JSin
3
x dx.

x

appears vulnerable to difficulties such as in the problem fSin x dx •." x

Consider h ... sin x, g .1. Thus Sh dx • -cos x and Sg'H dx •x
Jcos

2
x dx.

x Jcos xOne subproblem generated by ----2- dx
x

can continue indefinitely unless measures are taken to curtail it.

JSin x(Actually ------ dx is not integrable in finite terms.)x

The Deriyative-Diyides Method

The method of Integration-by-parts and the Derivative-divides method

are the two general methods that a freshman calculus student is likely to

leam. Let us recall that SIN's first stage employed a Derivative-divides

method. However, that method is not as general &S it might be. The

Derivative-divides method attempts to determine Whether the integrand can

be put into the form g(u(x»u'(x). If this is the case then the substi

tution y ... u(x) transforms the problem into Sg(y)dY. In stage 1, g was

required to be a single operator. However, in a more general method g

would not be so limited and the following problems would be transformed

by this method. (Let us note again that this method is not ayailable in

y ... arcsin x

SIN at present.)

1) Scos x(l + sin3x)dx becomes S(l + y3)dy, y'" sin x

2) S~ 1+ lOg~x dx becomes J-l -:-y....2 dy, y. logeY
1 e .

3) S/1 _ xl 1 + ar:sinlX die becomes J-l":~=--Y""2 dy,

The first two of these problems can be solved by SIN's second stage

(in particular by methods 6 and 10). The third problem is one of the

simplest examples of a problem Which cannot be solved by SIN's first two

97

stages along with the Integration-by-parts method. However, the Edge

heuristic will correctly guess the integral arctan(arcsin x).

SAINT had a Derivative-divides method which was more powerful than

SIN's. Bowever, it suggested many bad transfo~tions in some cases.

The method essentially performed a search for a subexpression such that

the number of factors in the quotient of the expression and the deriva-

tive of the subexpression was smaller than the number of factors in the

original integrand. This is too strong a res~rict1on sometimes.

A Derivative-divides method was-designed but was never implemented

in SIN.

The kind of analysis we considered was as follows: Suppose the

integrand is f(x) and a nonlinear subexpression of 'it is u(x) , then if

~() can be represented as g(u(x», the method would propose substituting
u x ~

y - u(x) and attempting Jg(y)dy. We should, though, restrict the kind of

functions g that we would allow. For example, in sin x we might
sin x + cos x -

wish to disallow the substitution y - cos x since it introduces the alge-

braic term ./1 - 12 into the denominator. If we make the conditions on

the gf s sufficiently restrictive (e.g., rational, algebraic) then the num

ber of Aubstitutions per problem that this method would propose would be

small, and more significantly, each of the substitutions would be quite

reasonable.

Further Discussion of FORK

We would like now to discuss some of the aspects related to the

FORK routine in greater detail. We note that of the eleven methods

available in stage 2 of SIN, eight possess local clues which immediately

identify them to FORK. Method 2, substitution for an integer power.

98

possesses clues which allow FORM to reject the method in some cases.

Methods 8 (Rational) and 11 (Expansion) do not currently possess.local

clues in FORM and are attempted whenever FORM fails to find an applicable

method.

As may be recalled from Chapter 2, one of the advantages of hypo-

thesis formation is that one can attempt to fit the problem to the method

at hand. Since FORM is quite aware of the methods which are available to

it, some such "fitting" could be attempted. This was done in the case of

algebraic integrands. If an expression is of the form IR(x), where R is

rational in x, then FORM will attempt to see if methods 3, 4, or 5 are

applicable. If they are not, then this problem is going to cause some

difficulty since it would appear that nothing else except stage 3 methods

will be available to solve the problem. On the other hand it is possible

that Methods 3, 4, or 5 are applicable, but that SCBATCHEN' was unable to

make the match. Two excuses can be made for SCBATCHEN in this event. One

is that SCBATCHER failed because the rational function R(x) was not ex-

panded (e.g., 11 + x(l - x», or that the

.Ix x+lpletely rationalized (e.g., . + -----).x

rational function was not com-

FORM will thus determine if

these two transformations are applicable to R (not the whole integrand).

If they are,the problem is transformed to account for these changes and

an attempt will be made to consider Methods 3, 4, and 5 again. Hypothesis

formation is thus shown to be able to localize the difficulty in a problem.

An Example of SIN's Performance

We S8all now consider in some detail how SIN performs on the problem

dy

again FORM is called in

99

This problem stretches the capabilities of SIN a good deal. Thus

it can be used to indicate some of the strengths and particularly the

weaknesses in the program as it now stands. Our description will con-

centrate on the role that FORK plays in obtaining a solution.

This problem is not a simple one. So it will pass to stage 2, where

FORM will examine it. It turns out that FORM will arrive at the same

hypothesis regardless of whether it examines the numerator or denominator

first, but it will be more instructive to see how it operates on the numer-

ator. First, FORM will note the square-root (more precisely, the exponent

1of 2). Since the base is not rational, which would indicate that Methods

3, 4, or 5 might be applicable, the root is ignored and attention is

focused on the base A2 + B2sin2x. In this sum, the constant term A
2

is

encountered, and it yields no clue. The factor B
2 is likewise a constant

and yields no clue. This leaves the factor sin2x. The exponent of 2 is

not interesting. However, the base sin(x) does yield a clue since it is

a trigonometric function with a linear argument. FORM will, therefore,

call Method 6 in order to test the hpyothesis that the expression is an

elementary function of trigonometric functions of x. Method 6 determines

that the hypothesis is valid and will call SIN after making the substitution

y = cos x. The subproblem thus generated for SIN is

I:/A2 + Bzn - y2)
J- I - yZ

As before, this is not a simple problem and

order to generate an hypothesis. Interest will quickly focus on the square-

100

root in the numerator. Though the base is a rational function, none of

the clues in FORM appear to apply. As described ill the discussion above,

FORM will attempt to determine whether an expansion of the base is possible.

2 2 2 2Expansion is, of course, possible and yields the base A + B - B y which

matches the pattern used as a clue for Method s. Method 5 is now called

in order to determine whether an arctrigonometric substitution is possible

in the revised problem which is

'Method 5 first validates the hypothesis. In order to determine which

2 2substitution is appropriate, the routine decides that A + B is positive

and that _B2 is negative in the manner described in the discussion of

this method above. Method 5 will now make the substitution
By

z - arcsin IAi + 12

which is followed by a call to SIN with the subproblem

J-.! CA2 + 1 2
)C2s2Z

I A2 + I 2 dz.
1 - B2 sin z

it.

(1 -

Once again the subproblem is not simple and FORK is asked to examine

2In the integrand only two factors are interesting, cos z and

A2 + 1 2 2 -1B2 sin z) • Whichever FORK will be asked to examine first,

the conclusion will be the same--a hypothesis that the integrand is an

elementary function of trigonometric functions.

Method 6 will verify the hypothesis that only trigonometric functions

are present and will make the substitution w - tan(z). This will result

in yet another call to SIN with the subproblem

J1 A2 + B2
-- 2 2
B (1 + w2)2 (1 A Bt B

w2 dw
1 + ;Z)

101

This is a rational ~tion and PORM will find no clue in this case.

Since PORM alao did not find any clue to reject the po••ibility that

Method 2 (substitution for an integer power) is applicable, that method

is called next. Method 2 cannot make a substitution, but will call

Method 8 (rational) to solve this problem.

The rational function package will obtain this subproblem through

the chaining process described above under Method 8. First, it will

transform it by rationalization into a problem of the form given below

Then factorization and partial fraction decomposition will result in

Jt: 1 1 I I I]f 1 + w2 + '2A
Aw - 1 - i*Aw + I. dw

Straight forward integration will now yield the integral

I I
-I arctan w + 2'A loge (Aw - I) - ? loge (Aw + I)

This result will be sent back to SIN for the arduous backward sub-

stitution: The first substitution is w - tan z,.Which yields

-Iz + lA log (A tan z - I) - -2lA log (A tan z + I)
2 e 1 e

The second substitution is z • arcsin/AZ + 1 2 y. This results in

1
- 1 arcsin -:=:;;:::=:::;;::=

/ AZ +]52

1- -A log2 e

-- ------~-_----!_---_.--------

102

c
Hote that tan arcsin C is transformed into /1 ~ C2

The final substitution is y • cos X; this in turn yields

(B
-B arcsin IAZ + az

~
B cos x)

A .fAZ 2
log + B + B

e B2 2
~- At + B2cOS x

This is the result that SIN returns for the original problem.

BJ

SIN

does not simplify its results by rationalizing them or by combining log-

arithmic terms. This is certainly a drawback in this problem. Such

simplifying transformations would result in the answer

This result is to be compared with the answer in the table (Petit

Bois, p. 138). That result is
B

(
cos X) 2

B arccos ./A~ + BZ - A log (A cot x + IAZ csc x + B)
e

In more familiar terms, the table's answer is

(B) (A cos x + / A2 + BZ sin2x)
-B arcsin IA2 + B2 cos x - A loge sin x

This answer differs by a constant from the answer derived by SIN.

Although we can only guess at the method that the table's compiler

used, we can arrive at some conclusions regarding weaknesses in SIN's

method of solution.

Let us consider the first subproblem after the modification made to

it by FORM.

103

The transformation made above is a standard one in dealing with

algebraic integrands. The integral above, after division, becomes

J~2- A
2

2) 1 dy
(1 - y J .;7A;:;2;=+=B:::;2;;:::::_=B:::;2;r:y:::;;2r

Multiplying through we obtain two subproblems which together are

simpler to solve than the combined problem. SIN, by not bringing the

square-root to the denominator, unnecessarily complicates the work of

the rational function package. This is certainly one of its weaknesses

in dealing with algebraic integrands.

SAINT and SIN solutions of the same, problem

As a f9rther comparison of SAINT and SIN, we shall indicate how

both operate on the problem

This problem was chosen because it is discussed extensively in Slagle's

thesis.

In SIN, after determining that the problem is not simple, the factor

(1 - x2)-(5/2) acts as a clue in FORM and generates a call to Method 5

which validates the hypothesis that an arctrigonometric substitution is

possible. This method generates the subproblem

J 4
sin d
coa4; y

after making the substitution y = arcsin x.

Again, this is not a simple problem and this time sin(y) will act

104

8S 8 clue for the hypothesis that only trigonometric functions are present.

Method 6 validates this hypothesis and generates the subproblem

II ~4z2 dx

after making the substitution z -tan y.

This subproblem is rational and FOlK finds no local clue. Method" 2

is called and is ineffective. Method 8 (rational) is called and the rational

function package returns the expression

3
; - z + arctan z

as the integral.

Backward substitution yields

3
ta; y _ tan y + y

and finally we obtain the integral

1(1 - x2)-3t2 (1 _ X2')-1/2
3 2 - 2 + arcsin x

x x

In SAINT, the solution of

I(l ~4X2)572 dx

proceeds roughly as follows.

In this problem y '"' arcsin x is substituted yielding

ISin4Y
dI) cos4y Y

as in SIN.

Subproblem I is transformed into

II) Stan4y dy

and into

III) Scot
4

y dy

both of which will now be added to the subproblem tree. 1
Finally,z '"' tan p

105

transforms subproblem I into

IV) J32 (I + Z2)~1 _ zZ)4 dz

which is transformed by IMSLN into

V) 32 I(I + ZZ)(; _ z2)4 dz

No more transformations are possible on subproblem I, so transfor-

mation will be attempted on subproblell8 II, III, and V.

Subproblem II is transformed by z • tan y into

VI) II ~4z2 dz

IMSLN then performs the polynomial division and obtains

VII) J(-l + z2 + I ; z2) dz

From VII we obtain

VIII) S-dZ,
IX) Sz2dz , and

X) II; z2 dz

Subprobleu VIII and IX are solved by the table look up in DlSLN.

This leaves II, III, V and X.

III can be transformed by z - cot y, into

XI) Jz4(1-~ zZ) dz

and IMSLN will convert it to

XII) -Iz4(1 ; z2) dz

By now only subproblems V, X, and XII remain to be considered. The

transformation w • arctan z on subproblem X yields

XIII) SdW

106

which DfSIB solves by the table look up. Now IMSIB realizes that sub-

problem VII has been completely solved and by backward substitution can

obtain the final result

~an3arcsin x - tan arcsin x + arcsin x

We should note in the solution methods how SAINT keepB several

options to the particular path to be followed in obtaining the answer.

This is particularly noticeable in subproblem I iwhich generates II, III,

and IV. Only one of those three subproblems need be solved. SIN will

generate only one subproblem, and will cOlll¢.t itself to using it., Of

these subproblems only IV can truly be faulted. The tan t x tran1'ormation
/:", ,

is generally to be eschewed if any other transformation is posslble. How

ever, the lack of communication between SAINT's heuristics mak~~such a

principle difficult to implement.

Furthermore, it appears that subproblem XIII should logically follow

X. However, the cost of obtaining the character of subproblem X in SAINT

forced the particular order of events to be followed. A mechanism like

FORM would have simplified this situation tremendously.

CHAPTER 5

THE EDGE HEURISTIC

In this chapter we present the concepts underlying the Edge

heuristic. The heuristic guesses the form of the integral and then

attempts to obtain values for undetermined coefficients in that

form. A program called Edge, which implements some of the ideas

behind the Edge heuristic is described. The theoretical results

related to this approach to integration are discussed.

Let us suppose that we are given an integrand which is in

the form of a product. Then we can usually determine quite easily

which factor in the product is a singular or outstanding factor

in the sense that it is not contained in the other factors or their

derivatives, nor can it be derived from the other factors or their

2 2
derivatives through rational operations. In xex , the factor eX

is outstanding since x is contained in the derivative of this factor.

The outs tand ing fac tor in x 3 / l-x2 - is the fac tor ~. However,

there may be several such outstanding factors as in sinxe x where

both sinx and eX are not derivable from one another. In such a

case we shall say that the first factor in a right to left scan of

the expression is the outstanding factor. Moreover, in cases of

functions such as sin(x)cos(x) no factor is outstanding. Here we

shall choose the first factor on the right.

107

r-~-------c-------~---~--""--""

108

Given that we have decided on an outstanding factor in the

integrand, we can frequently make an educated guess regarding the

form of the integral, assuming, of course, that the integral can be

expressed in finite terms.

Suppose the integral f(x) has an outstanding factor of the

form eg(x), say, f(x) • h(x)eg(x) then we can guess that

I f(x)dx is of the form

a (x)eg (x) + b (x) • S f (x)dx - S h (x)eg (x)dx

where a <xl, b(x) are lUldetermined functions of x, and where

a(x) will not involve eg(x).

Certainly Sf(x)dx must c~ntain eg(x) since one cannot other

wise obtain such a function through differentiation. If Sf(x)dx

has a nonlinear occurrence of eg(x) then so will its derivative,

but this nonlinear occurrence will not cancel in f(x).

Given the above choice for Sf(x)dx, then by differentiation

we obtain

a (x)eg (x)g I (x) + a I (x)eg (x) + b I (x) • f (x) • eg (x)h (x)

A simple choice for the value of a(x) can be obtained by requiring

that the first coefficient of eg(x) on the left be equal to the

coefficient of eg(x) in f- Using this choice we obtain

a(x). f (x)
eg(x)gl~

_ h(x)
gf (lj:)

I

109

The value of b(x) is obtained in a subproblem.

b (x) - J-a I (x)eg (x)dx

Hopefully. the choice of a(x) made above will yield a s~pler

integration problem for the determination of b(x) than the original

problem. Let us consider a simple e~mple using this guessing

procedure.

f(x) x
- xe

a (x)e
x+ b (x) - Jf (x)dx

a(x)ex + a l (x)ex + b l (x)
x

- xe

a (x)
xxe

-~-x
e

a I (x) "" 1

The subproblem for b(x) is certainly simpler than the original

problem. It will be instructive to consider how the method out-

lined above will handle such a problem. Below we shall usually

ignore the functional characterization of a(x) and b(x).

x
'"' -e

a I 0
1

x
-e
-x
e

110

-1

b l

1 So dx constant

b

Finally,

x
-e + constant

Sf (x)dx
x

xe
x

e + constant

Let us now consider another example using this procedure.

f (x)
2 sin x2

x cos x e

The outstanding factor in f(x)

sin x2
ae + b = Jf(x)dx

sin x
2

is e

sin
ae

X 2 . 2
cos x2 2x + ales~n x + b'

2
2 sin x

x cos x e

a =;h
2

a' = 0

b' 0, b constant

Jf (x) dx
2

s in x
= ~ e + constant

111

The first of the two problems above is usually solved by 1n-

tegration-by-parts. However, that method requires an integration

step (i.e., SeXdx) which we did not perform. FUrthermore, the

integration by parts method is inapplicable in the second problem

above. The latter problem is handled by the Derivative-divides

method such as is used in SIN's first stage. So the analysis per-

formed by the Edge heuristic and in particular the analysis of

Edge that we have been presenting is different from either of these

two general methods of integration.

An analysis which is stmilar, but more complex than the one

made by Edge is employed by Method 7 of SIN's second stage. Let

us consider the manner in which the method proceeds in light of the

discussion above.

We recall that Method 7 deals with integrands of the form

R(x)eP(x) where R is rational and P is a polynomial in x.

An example solved by this method is

2 x2
f (x) = (2x +l)e

Edge would in this case guess

x2
a(x)e +b(x) = Sf (x)dx

and

112

Method 7 is superior in this case in that it considers the

R(x) factor term by term. Thus, it would guess

2x2
a(x) = (x 2)'

2/
2x

= x

It turns out that this is the correct value for a(x) since
2

the integral is exactly xe
x

.

On a more complex problem such as

2x
6 + 5x

4
+ x3 + 4x

2 + 1

(x2+l)2

2
x

e

Method 7 would proceed by first letting

a (x)
5x

4x4 + x3 + 5 _

The subproblem it generates is

4

i+l 2______-::- eX

(x+l)
2

Now it lets

etc.

113

Finally, the result is

5 3, 2 l
X + 2x + -ZX + x + 2

(X2+1)2

or

2
x

e

Thus, we see that although the heuristic of guessing the form

of the integral is correct in the two examples above, the particu-

lar mechanism for guessing the values of the undetermined coefficients

which is employed in Edge is not sufficiently powerful. We shall

now indicate two other difficulties with the analysis of Edge

described above.

Let us recall that Method 1 of SIN's second stage handles inte

grands of the form Elem(e
x
). This method substitutes y=e

x
. In

the case of rational functions of exponentials this substitution yields

a rational function. Thus, for example,

x 2x
f(x) = (e +l)e

becomes

(y+l)y

after making the substitution. The rational function package will

expand this integrand and integrate the resulting quadratic in y.

Edge would guess the form of the integral without making a corres-

ponding expansion. This leads to an incorrect guess of the form

114

since the two factors in f(x) are closely related. Had Edge ex-

panded the integrand and integrated the terms separately, it

would have easily obtained the integral of f(x).

Another difficulty with the manner in which Edge guesses the

form of an integral is shown in

f(x)
1 -x

e

Method 1 of SIN's second stage would yield a rational function

which would be factored and expanded in partial fractions by the

rational function package. Here again the two factors f(x) are

closely related and thus the guess of the form of the integral

made by Edge and the resulting guesses of the coefficients will

fail to yield the integral. A partial fraction expansion is re-

quired if the integrand is a rational function of related terms.

While keeping these weaknesses of Edge in mind, we shall con-

tinue to consider how the guessing heuristic operates on outstanding

factors of different forms.

Let us suppose that

f(x) h(x) log(g(x»

and that the logarithmic factor is the outstanding factor in f(x).

A good guess of the form Sf(x)dx, if it exists, is

2
clog (g(x» + a(x)log(g(x» + b(x) = Sf(x)dx

where c is a constant and a(x) does not involve log(g(x».

115

2The log term is necessary (e .g., f (x) "" l/x logx), but its

coefficient is only a constant. Otherwise the derivative of the

2fram above would contain a log term which would not cancel in

f(x).

Differentiating we obtain

Lw. Lw.2c g(x) log g(x) + a g(x) + a' log g(x) + b' .. h(x) log g(x)

or

Lw. aLw.+ b'(2c g(x) + a')log g(x) + g(x) .. h(x) log g(x)

In the above we grouped the terms involving the outstanding

factor log g(x). We note two differences from the exponential case.

First there is the constant c which did not arise before. Then

the coefficient of the log term is a' instead of a. We can solve

for a(x) by using the relationship

LMa' .. h(x) - 2c g(x)

a .. Sh(x)dx - 2c log g (x)

We now use the fact that a(x) is independent of log g(x) in

order to obta in a va lue for c. Tha t is, if Sh(x)dx has a term in

volving ~og g(x), the c is chosen so as to cancel that term.

Otherwise, we chose c-o. The value of b l is determined by the

relationship.

b '
a I (x'
-a~

g (x)

116

Let us consider an example.

f(x) = (x + l/x)log g(x)

2
c log x + a log x + b = J (x+l/x)log x dx

(2 c/x + a')log x + a/x + b ' (x + l/x) log x

a = J(x + l/x)dx - 2c log x =
2

1/2 x + log x - 2 c log x

2c

b '

1, c

-a/x

1/2, a

-1/2 x

2
b = -1/4 x

J(x + l/x)log x ex
2 2 2

1/2log x + 1/2 x log x - 1/4 x

It should be noted that J(x + l/x)dx can, of course, also be

obtained by a guess of the integral.

The guess for the logarithmic case generalizes when f(x) is

of the form

f (x)
n

h(x) log g(x), n > a

In this case we can guess

n+l n J nclog g(x) + a log g(x) + b ~ h(x)log g(x)dx

with a,b,c determined using the same method as above.

117

Let us consider how we can capitalize on our experience of the

types of outstanding factors dealt with above. Suppose f(x) is of

the form

factor.

f(x) = h(x) 1 .
2 ' where 1 + g!(x) is the outstanding

1 + g (x)

The argument now proceeds as follows: One could arrive at a

1factor 2 by two routes which do not involve complex con~

1 + g (x)
stants:

a)

b)

2
10g(1 + g (x»

arctan g(x).

In either case the coefficients must be constants since if they were

not the derivatives would contain terms more complex than found in

the integrand. Thus the guess is

c 10g(1 + g2(x» + d arctan g(x) • ff(X)dX

2cgg'

1 + g2

+ dg'
1 + g2

• hex)

1 + g2

in which division must be. attempted first, or in the case

1 2
2 which is equivalent to cos x.

1 + tan x

(2 gc + d) g' • h(x) where c, d are constants.

x
Consider f(x) • --=--

1 + x
4

2
(2x c + d)2x =.x

2x2C+ d _!
2C-O,d-!

J 1 2
f(x)dx - ~rctan x

5
We should note that our guess fails in such cases as _x=-_

1 + x4

of

118

In order to contrast the Edge heuristic approach with that used

in Stage 2 of SIN, let us consider functions of the form

hex)
f(x) =----=2::.a.=::.<--n"":'-2 ' n a positive integer

(1 - g (x»

An educated guess for the form of the integral of f(x) is

2
a

n/2 _ 1 + b • jf(x)dx, unless n = +1
(1 - g (x» ,

If n .. +1, then we shall also consider the possibility of a

c arcsin(g(x» term, where c is a constant.

An example we considered in Chapter 4 is

4x
f(x) - (1 _ x2)5/2

a I x
4

--~2-3~/:-2 + b .. 2 5/2 dx
(1 - x) (1 - x)

Now we shall generate

a1 + b
(1 _ x2)1/2 1

a subproblem.

-J _x
2

dx
(1 _ x2)3/2

a' - -11

119

1b I = -----'::.-~-

1 (1 _ x2)1/2

In this case we shall guess

2 1/2
a

2
(1 - x) + c arcsin x

-xa2 + c = 1

c = 1

a = 0
2

The final result is

J.
4 3

(1 _ :2)5/2 dx = ~ (1 - x
2

)-3/2 - x(1 - x2)-1/2 + arcsin x

We should like to mention how Edge handles trigonometric functions.

For outstanding factors of the form sin(g(x» it guesses cos(g(x» and

it guesses cos(g(x» for outstanding factors of the form sin(g(x».

However, this manner of dealing with trigonometric functions is not

necessarily the best one. Edge should in some cases consider the com-

plex exponential form of the trigonometric functions. In this way,.
Jsinnx dx can be found easily for integral values of n after expanding

the complex exponential form of the integrand. By keeping the trigo-

nometric form Edge is forced to deal with methods such as "solution by

transposition" which occurs in Isin x eXdx when one of the subproblems

is I-Sin x eXdx.

We have indicated above some examples in which Edge fails to

120

make a good guess for the form of the integral or the values of the

undetermined coefficients in the form. Thus, it is necessary to

determine whether Edge is progressing toward a solution. If the

outstanding term involves an exponent and the absolute value of the

exponent is decreasing, the routine thinks that it is making progress.

The same Is true if another factor in the integrand is exponentiated

and its exponent is decreasing while the outstanding factor remains

the same. The program is certainly not progressing if it obtains

a subproblem which is exactly the same as some previous subproblem,

though a solution by transposition is attempted if a subproblem is

a constant multlple other than one of some previous subproblem.

In the above we have indicated some cased' in which the form has co-

efficients which were constrained to be constants. The current

version of Edge handles these cases by attempting a guess which ig

nores a term (usually the one with a constant multiple). If that

guess fails to yield the integral 1,1sing the progress information

outlined above, the program backs up and introduces a new term in

the form while eliminating another term. In this manner Edge per

forms a depth first search.

Below we would like to indicate the theoretical results which

underlie the Edge heuristic.

Historically, the quest for results regarding the form of an

integral goes back to the early nineteenth.century. Laplace con

jectured that the integral of an algebraic function (y is algebraic

121

in x if P(x, y) = 0 where P is a polynomial with constant coefficients)

need contain only those algebraic functions which are present in the

integrand. This conjecture was proved by Abel. Liouville examined the

form of the integral of an elementary function in a series of papers in

the 1830's. Before we present the statement of Liouville's main theorem,

we shall need some preliminary considerations. An important feature of

Liouville's theory of integration is a hierarchy of elementary functions.

In level 0 of this hierarchy are the algebraic functions. The monomial

of level 0 is x. A monomial of level i + 1 is a function represented by

eY or log y, where y is a function of level i and where the monomial has

no representation which is of lower level than i + 1. Level i + 1 also

contains all functions which are algebraic combinations of monomials of

level i + 1 with functions of lower levels provided again that those
2xfunctions have no representation of lower level. Thus, xe is of level

x eX 2
1 and e e + log(l - ix) is of level 2. We should note that this

hierarchy includes all trigonometric and arctrigonometric functions by

using their complex exponential and logarithmic forms in order to clas-

s1£y them.

Given a representation of an elementary function one can list

the monomials. and algebraic functions of these monomials which were

combined to form the function. Among the monomials and the algebraic

functions there will be some which are of the highest level. Choose

one such function and call it the principal function. Thus, the

122

original function is a rational combination of the principal

functions with functions of equal or lower level. The principal

x2 x
2

function in xe is e and the principal function in

eX+l is eX. It is the concept of a principal function which we

2x 3 xe + e

were striving for when we defined the concept of an outstanding

factor in an integrand. We noted above some of the difficulties

that one encounters in making an educated guess for the form of the

integral when using only the notion of an outstanding factor. The

principal function concept surmounts these difficulties.

We are now in a position to ask whether there are any more

monomials and algebraic functions in the integral of a function

than in the function itself. The answer provided by Liouville's

general theorem is that except for logarithmic extensions there are

none. Liouville's theorem states that

S f (x)dx v (x) +
o

n
I:

i=l
c. log v.
~ ~

where the ci's are complex constants and the v. are rational
~

functions in the monomials and algebraic functions of these which

appear in f [54].

Liouville's theorem itself gives a strong rationale to the Edge

heuristic since it makes strong restrictions on the possible forms

123

of the integral. Recently, and independently of our work on Edge,

Risch [53] has strengthened the Liouville theorem by showing that

the constants c. need only be algebraic over the field of constants
1

generated by the constants in f(x) with the ground field of the

rational numbers. Risch has also given a decision procedure for

those functions obtained without using any algebraic operations

other than rational operations. His method is similar to the

one employed in Edge in that it relies on knowing the possible form

of the integral. However, it is superior to Edge in the manner in

which it obtains the undetermined coefficients and in its use of

partial fraction decomposition with respect to the principal

function in the integrand. When algebraic operations are allowed

in the integral, Risch believes that the integration problem may

in general be recursively unsolvable. (See Appendix B where the

integration problem is shown to be unsolvable using a different

formulation than Risch's.) However, he is optimistic about integrands

which are algebraic functions of level 0 in our hierarchy.

We believe that methods which rely on guessing the form of

the integral such as Edge or ones based on Risch's algorithm will in

the near future provide us with very powerful integration programs.

However, the amount of machinery that they call into play and their

use of radical transformations such as the complex exponential form

of the trigonometric functions indicate that those methods are not

to be applied when more specific and presumably more efficient

methods are available.

Chapter 6

SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

As a first approximation one might attempt to treat the pro-

blem of solving ordinary differential equations by using a similar

strategy to the one used in SIN for integration problems. Let us

recall that SIN used a three stage approach. First it attempted

to solve the problem using simple methods. Next the FORM routine

attempted to use local clues to determine which one of a specific

set of methods was applicable to the problem. Finally the Edge

routine employed a more general method of solution. In this

chapter we shall consider how such a strategy would fare in the

problem domain of first order, first degree ordinary differential

equations (Le. P(x,y)y'iQ(x,y)-O). We shall indicate the approach

that was finally taken and describe the methods of solution which

were prograumed.

There appears to be general agreement in the texts of ordin-

ary differential equations regarding the elementary forms of dif-

ferential equations. Linear, exact and separable equations seem

to constitute the universal choice as elementary forms. They are,

respectively, of the form f(x)y '+g(x)y+h(x)"'o, P(x,y)dx~(x,y)dy·O,

where ~P~Q, and A(x)B(y)dx+c(x)D(y)dy-O. These forms are relative
y x

ly easy to recognize, and immediately reduce to integration problems.

We shall adopt the usual convention that a reduction of a differ-

ential equation to one or more integration problems constitutes a

solution of the equation even !·f the expr.essions to be integrated

cannot be integrated in finite terms. Functions which can be ex-

124

r

125

pressed in terms of elementary functions and integrals of elemen

tary function are called Liouville functions. Due to the above

stated properties of linear, exact. and separable equations, the

set of methods which determine whether the equation matches one

of the forms constitute a reasonable analogue to SIN's first stage.

When we consider finding an analogue to the FORM routine of

SIN, we illlllediately arrive at difficuUties. It is rare that one

can make a slight change to a differential equation and still be

abl~ to use the same method of solution, let alone obtain a sim

ilar solution. Let us consider how the method of solution changes

as we modify the five equations below. The methods of solution

used (i.e., linear, exact. homogeneous. Bernoulli, and linear co

efficients) will be described later.

1) 2xy' + y+x+l-O

linear

2) 2xy'+y(y+X+l)-O

Bernoulli

3) (2x+y)y'+y+x+l-O

linear coefficients

4) x(x+y)y'+Y(Y+2x)-O

homogeneous

5) x(x+2y)y'+y(y+2x)+l-o

exact

It should be noted that none of the methods mentioned above

is applicable to any of the other four problems. The situation is

6)

7)

126

even more serious when we note that equation 6 is not integrable

in terms of Liouville functions, but equation 7, which varies

from equation 6 by only the addition of the constant 1, does

possess a Liouville solution (see Ritt[54] p. 73).

2 2 2
x y'+x (y -1)-2=0

2 2 2
x y'+x (y -1)-1-0

Since the equations above appear quite similar, any test based

on local clues only is going to fare quite badly. Thus the pos-

sibility of implementing an analogue to SIN's FORM routine does

not appear very promising. One could of course, use global clues

(such as the number of occurrences of x and y in the coefficient

of y') to conclude that certain methods are inapplicable (for ex-

ample, the linear method is inapplicable if there are any occur-

rences of y in the coefficient of y'). However, this approach is

not likely to give us a great increase in efficiency.

On the basis of the difficulty just noted, one would suppose

that a practical general method for solving first order, ftrst

degree ordinary differential equations is not likely to exist.

Surprisingly, a general method does exist. It is known as the

multiplier method. It can be shown that if a Liouville solution

exists, then there also exists a Liouville function u(x,y), which

can be used to multiply both sides of the equation'and obtain an

exact differential equation and thus an immediate solution. That

is, given P(x,y)dx+Q(x,y)dy-O, then uPdx+uQdy-O sat1sfiesjL(uP)=-E(uQ).
~ OK

There is, however, a slight catch in the multiplier method - it is

very hard to find an appropriate multiplier except in special

127

cases. In fact, several texts caution their readers against trying

to consider finding multipliers to differential equations. The

Liouville theory (see Chapter 5) yields a form that an elementary

solution to a first order differential equation must satisfy. How

ever it does not appear likely that one could write a method like

Edge which would exploit this information, except in special cases.

Negative results such as those in Appendix B appear to dampen the

hope that one could find a general method for solving differential

equations.

We thus conclude that finding an analogue to SIN'S strategy

in the domain of differential equations is quite difficult if not

impossible. We can, however, decrease our expectations and follow

the traditional technique given in texts on differential equations.

That is we can determine if the problem is solvable by one of a

set of special methods by examining the applicability of the methods

one at a time. It is this approach which ~as implemented. We were

reduced to a search for a method because of our inability to either

localize the problem or to find a simple model for it. The cru

cial role of constants in determining a solution frustrates even

the most primitive simplifying cODsiderations. '!here is one con

solation in the approach taken, and that is that once we find a

method which is applicable it is either ~ediately reducible to

integration problems or reduces to simple problems (i.e., linear,

exact, or separable) in one or at most two steps. Furthermore,

these steps are known in advance in most cases.

Eight methods of solution for first order, first degree

differential equations were coded. These include most of the

us

methods for solving first order equations taught in an introductory

course on ordinary differential equations. As stated above, the

methods are examined in tum in order to determine if they are

applicable. The simple methods are attempted first. These will

all call SIR whenever they apply in order to solve SOlDe integra

tion problems. The five other methods will generate subproblems

which are usually either linear, exact or separable.

The conventions for stating the problem to the machine are

the ones used in the text books or the tables. When the dependent

variable is x, and the independent variable is y, the problem may

be stated in either form I or II:

I P(x,y)y'+Q(x,y)

II P(x,y)dz+Q(x,y)dy

It is assumed that the expression given is to be equated to

O. The result, if found, will be stated in the form

f(x,y)=Co ,

where Co is a constant of integration. As will be seen, no attempt

is currently made to solve for y or to perform other simplifications

such as eliminating logs in the resulting expression.

Top level control resides in a routine called SOLDIER (SOLution

of DIfferential Equation Routine). SOLDIER will translate the pro

blem statanent into the form (either I or II) desired by the par

ticular method. It will be noted that books tend to state a problem

applicable to a given method in only one of the two forms (e.g.,

linear equations are usually in form I, and exact in form II).

No attempt was made to use this fact as a clue to a solution.

We now shall proceed in describing the methods.

129

He thad 1 LINEAR

~ f(x)y'+g(x)y+h(x)=O

Procedure

....wlLet P(x)- f(x) ,

The solution is

Jpdx
ye

....!!i!lQ(x)-f(x)

[
e SP(x)dx]

dx = Co

Notes

The recognition of this form is done by a SCHA'tSlIEN pattern.

Since equations of the form f(x)y'+g(x) [h(x)y+k(x)}=O will not be

recognized as linear by SCHAT~HEN using the pattern given above,

expansion is attempted as a heuristic aid to recognizing forms.

Expansion is, however, attempted only when a single occurrence of

y appears in the equation. Thus f(x)y'+g(x)y+h(x)[y+k(x)]=O 1s not

expanded and is not recognized 8S 4 linear differential equation.

Examples

1)

becomes

x r x
ye +Jxe dx=r<:o

Thus solution is

x x x
ye +Xe -e =Co

2) xy'+xy+1=O

results in ye~Jex dx = Co
x

Method 2 SEPARABLE

~ A(x)B(y)dx+C(x)D(y)dy=O

Procedure The solution is

130

J !i!l dx +J.!!.Ul dy = Co
C(x) B(y)

No attempt is made to recognize this form except through

SCHATCHEN's matching techniques. Thus no factorization of the

equations is attempted. That is the factorization must be explicit

although several factors may involve just y or just x.

Examples

1)
2 2

x(y -l)dx - y (x -l)dy=O

becomes

dx +(=-t- dy=Co
) y -1

Thus the solution is

2 2
1/2 log (x -1) - 1/2 log (y -l)=Co

This answer is normally simplified on tables to become

2 2 2
x -1 =Co or (x -l)=Co(y -1). As stated above no attempt is
-2-
y -1

currently made to perform such simplifications.

2)
~ . ,e s 1ny y +Xco8y= 0

becomes

f SinYdy 1xe"x
dJC=Co

. cosy
or

-x -x
-log cosy - xe -e =Co

The transformation of this problem to the dx, dy form is

performed by SOLDIER.

Method 3) Exact - Multipliers

~ P(x,y)dx + Q(x,y)dy=O

131

The method is applicable whenever

The answer is

I j Pdx + /[Q - dy:=Co

Since this method is closely related in form requirements

and solution method to certain special cases of the multiplier

method, these cases are considered here.

a) If oP - ~
oY gX = hex), i.e., the quotient is just a function of

Q jh(x)dx
x, then the multiplier is e

Procedure Let P (x,y)= P(x,y)*multiplier, Q(x,y)= Q(x,y)*multiplier

- -
P and Q are guaranteed to satisfy

~=.a§
oY OX

The solution is obtained using the procedure 0f equation I

above with P,Q replaced by P and Q, respectively.

b) If ~ _ ~ , that is the quotient is a function of y only,

OX oY = key)p

then

j k(y)dy .
e ~s a multiplier. Proceed as in step a).

c) If ~ = - ~oY OX
and ~ = ~

Ox oY
1

then the multiplier is -z--z. Proceed as in step a)
P+Q

ScHATCHEN is used to perform the matching required in testing

to determine if..a! equals~. C-learlyor lIU1tching· program such as
(jx oY

Martin IS [37] would be preferable in this case since no pattern

matching is necessary, but only a match for equivalence.

132

The division steps employ only SCHWaS's limited simpli-

fication methods for quotients. Thus no factorization is

attempted. At present there exists no simplification program

which can simplify quotients well. For example

xis not simplified to e +1 by any reported simplification program.

Another approach to determintng the applicability of the first

three multiplier cases is to differentiate the quotient with respect

to y in the first case and with respect to ~ in the aecondcase.

This reduces the recognition problem to a match for equivalence to

O. In this manner we avoid placing constraints on thesimplifica-

tion program for determining the applicability of the method. How-

ever this technique does not yield the desired value of the quotients.

There exist many other special cases for the multiplier. In

fact the origin of Lie Groups was motivated by considerations

regarding the families of differential equations which are solved

by particular multipliers.

Examples

1)
3 22 2 22 3 .

(4x y-12x y +5x +3x)y'+6x y -8xy +lOxy+3y=O

Solution is

3 2 2 3 2
2x y -4x y +5x y+3xy=Co

2) (2xy+5x+l)y,+y2=o

Solution is

2 -5/y +J-5/yxy e e dy = Co

Method 4 Bernoulli

133

n
f(x)y'+g(x)y + h(x)y =0, where n is a constant, nil

Procedure

tion

Substitute u(x)=y
l-n

in order to obtain the linear equa-

f(x) u'+(l-n) g(x)u+ (l-n)h(x)=O

The form of the equation is tested by SCHATCHEN. As in the

linear case expansion will be attempted to aid the pattern match,

but only when there are exactly two occurrences of y in the equation.

Examples

1) x(x- 2)y=0

transformed into the linear equation

y' + (x-2) Y +
x (x-l)

1
2

x (x-l)
=0

2) 43xy' - 3xy log x - Y = 0
e

is transformed into

y' +:i. + 3 log x = 0
ex

Method 5 Homogeneous

FORM P (x,y)dx + Q(x,y)dy 0

where P and Q are homogeneous functions in x and y of some

degree, n, say.

Procedure The substitution u(x) = ~ is made. After factoring
x

xn from the equation, one obtains an equation with the variables

separable (Method 2).

This is a common form for a differential equation. It is

f-----.·.

134

a subcase of method 8~ but is given special treatment here because

of the frequency and ease of recognition of this form.

The factorization of xn from the equation must~ in general~

be performed in order to have the result recognized as separable.

The recognition of homogeneity and factorization are performed by

SCHATCHEN and SCHVUOS and thus are not unusually powerful. For

2example 2L±!I y'+y=O is not recognized as homogeneous.
x

Examples

1)

2)

2 2 2
3x y' - 7y - 3xy-;lt =0

solution is

log x 3 - ~e - - arctant/7 =Corr x
3 2 3 2

2x(y +5x) y'+y -x y =9

solution I.S

2
log x + 10 log ~ - ~ loge(3+y-) = Co

e "'9 ex 9 ,
x

Method 6 Almost Linear

FORM f(x)g(y) y' + h(x,y) = 0

where

h(x~y) = k(x)l(y)+m(x)

and

l' (y) = g(y)

Procedure

Substitute u(x) = l(y) resulting in the linear equation

f(x)u' + k(x) u+m(x)=O

This is a method which is rarely indicated in the texts.

U5

Examples

1) xyy' + 2xl+l.-O

2
substitution is u(x)=y

yielding

lxu'+2xu+1=O
2 !

2) x2cosy y' + siny + eX = 0

substitution u = siny

yields
!

Method 7 Linear coefficients.

, (axt-bytc :\
FORM Y +F a'xt-b'Y+c~ = 0

Procedure

Substitute

Where a,b,c,a',b',c'
are constants and
ab' - a'b :/. 0

b'c - bc' ac' - a'c
x* = x - a' b _ ab' , y* = y' - a' b _ ab i

and obtain a homogeneous problem (method 5).

Recognition is based on matching

A(axt-by+c)n (a'xt-b'y+c') -n repeatedly

in F(x,y), where a,b,c,a',b',c' are assumed to remain fixed in

f(x,y).

Examples

1) (4y+llx-ll)y'-25y-8x+62=O

answer is

1 1 ~ (y-22)Ulog (x - -) - - log 1+2 -e 9 2 e 9
-1-
x9

r- -2~).
+ 3/2 loSe (4 + :.; j Co

136

answer is

1 (2) + /2 f2 (y -~6)oge Jrio"3 2 arctan 2 _
~ ~

2 3

+ 1/2 log. 0{YJ)J CO

3
nMethod 8 Substitution for x y

~ y'+L(x,y)=O

where L(x~y)= ~ H (xny)~x

Here H is a function of a single argument~

and n is a constant to be determined.

Procedure Substitute u(x)= xny resulting in the sep8%able equation

--......;d;:u;..,.....- = ~
u(n-H(u» x

The method employed to recognize this form uses the implicit

function theorem to yield an equation in n.

Consider

G(x,y) = ~ L(x,y)
y

We wish to determine if G(x~y) = H(xny) = H(u(x,y».

The implicit function theorem states that this relation will hold

if and only 1£

Note that this equation represents the Jacobian in the two

variable case.

relationships:

n
Since u(x~y)=x y~ we obtain the following

137

n n-l
x - noGx y=0

oy

or

n ..aQx
~

..aQ
y oY

If n is known, we can determine whether the above relationships

holds. However we can also use this relationship to generate a

value for n. If the right hand side of the last equation is a

constant than a substitution with n as that value is possible. If

it is not a constant, the method is inapplicable.

Notes

This method is a generalization of the homogeneous case

(Method 5). The method is rarely described although it accounts

for many of the substitutions in the first 367 equations in

Kamke [~. In some of these cases Kamke prefers to give other

methods of solution. For example, in (I 293)x(y2_3x)y'+2y3_5xy=0,

b
27 16

Kamke suggests dividing y x y instead of substituting
- 1/2

u(x,y) = x y.

In this method we resorted to a special purpose matching

rule instead of using SCHATCHEN. The use of the implicit function

theorem was suggested by Engelman. In this case the theorem

fits the situation beautifully. However one will probably have

to make some assumptions to recognize forms such as

(c) (') ab(,)f x y bxy - a = x y xy + cy

In order to perform the integration, y in G(x,y) is replaced

by
u

n
x

It is then hoped that SCHVUOS can rid the resulting

138

expression of all occurrences of x.

Examples

1)

(see appendix E for further discussion of these examples)

2
(x-x y) y'-y = 0

becomes

1 dx = 0
x

2) xy I + Y logex - y 10geY - y = 0

becomes

du =
u (-1 - (logeu-l»)

dx
x

In Appendix E we describe an experiment in which SOLDIER was

asked to solve 76 differential equations selected from a college

text. SOLDIER was able to completely solve 67 of these problems

with an average time on the order of 5 records. An analysis of

the problems it failed to solve and steps taken to improve SOLDIER's

performance on some of these problems is also given in Appendix E.

We would also like to mention the existence of a program

which solves linear differential equations of any order with con-

stant coefficients (see Engelman [36]). It was written by Brnst

for the MATHLAB system. It utilizes the Laplace Transform method

for solving such equations. The program makes use of the rational

f\Dlction package of the MATHLAB System.

Some methods which were not described above should be pointed

out. There are ~ny special cases of integrating factors which

can be considered. In particular, one method guesses the form

a b
of the integrating factor to be x y , substitutes that form

139

into the equation and solves the linear equations in the parameters

that result after setting up the conditions for exactness (i.e.,

1L ~M) = ~ ~N». If the system of equations can be satisfied,oY ax
then Method 3 (Exact) is applied. If the differential equation con-

tains a subexpression which isirrational in both a and y (e.g.,

sin (x
2

+ y2», then it might be useful to substitute for some part

2 2
of this subexpression (e.g., u = x +y). One can also attempt to

switch the independent and dependent variables. Such a change would

be useful in

since it leads to the Bernoulli differential equation

eY x' + xy + x
2

= 0

There is a large body of knowledge regarding ~tti and Abelian

2 3 2
equations (i.e., y =f(x)y + g(x)y+ h(x), and y'=f(x)y +g(x)y +

h(x)y+k(y». These methods, however, frequently rely on knowing

one or more particular solutions to the differential equation.

Information regarding methods applicable to Ricatti and Abelian

equations and to more general differential equations can be found

in Kamke. Kamke also contains a table of about 1250 equations

whose solution is frequently given in some detail.

As is pointed out in AppendixA, a great deal of the informa-

tion about differential equations could be stored in tables and

searched by computers. If we presume that a continual effort

will be made to generate a library of programs and tables for

differential equations, then programs will become a formidable

tools for solving these problems.

CHAPTER 7

CONCLUS IONS AND SUGGESTIONS FOR FURTHER WORK

The Performance of SIN

We believe that SIN is capable of solving integration problems as

difficult as ones found in the largest tables. The principal weakness

of SIN in relation to these tables is in cases of integrands which con-

tain variable exponents and which usually result in solutions which are

iterated integrals. Edge can solve some of theBe integrals (e.g.,

Sxncos x dx) since it contains special checks for variable exponents.

However none of SIN's methods in stage 2 are able to obtain such iterated

integrals. The experiment reported in Appendix D also showed SIN's

weakness in handling certain algebraic integrands. On the other hand

the power of HATHLAB's rational function package means that SIN is able

to integrate many problems not present in the tables. Decision proce-

dures for cases such as the Chebyschev integrals give SIN a capability

which is not present in most tables.

SIN appears to us to be faster and more powerful than SAINT. The

added power of SIN is principally due to the additional methods that SIN

possesses. The additional speed is gained by the change in the organi-

zation of SAINT and by the use of tighter progress requirements. In

Appendix C we pointed out that though SIN can solve problems solved by

SAINT two orders and frequently three orders of magnitude faster than

SAINT, that this figure is deceptive. It is probable that under optimal

conditions for SAINT and SIN these figures will reduce dramatically so

that the gain in speed will average to about a factor of three. In

140

141

cases where the Derivative-divides routine is successful in solving a

problem (about half the time), the ratio should be much higher. The

average will be lowered by the increased effort spent on algebraic mani-

pulation on the other problems. SIN's simplifier SCRVUOS, is probably

a good deal slower (but more powerful) than SAINT's hand-coded simpli-

fier. This factor affects the cost of most of the other processes such

as differentiation and matching.

On the Organization of SIN

Instead of describing the organization of SIN at this point, we

would like to indicate certain aspects of this organization which arise

out of the discussion in Chapter 4. The reader is referred back to

Chapter 2 for an outline of SIN's organization.

One of the difficulties that AI prog~ams will increasingly face

involves communication (see Newell [46 1). If a subroutine performs

an analysis of a problem then its analysis must be communicated to its

parent routine in such a manner that the parent routine can easily

understand the information. If two subroutines are working in parallel.

one may need to know what the other one is doing in order to perform

efficiently. An example of the usefulness" of the latter type of commu-

nication was pointed out in Chapter 4 in the section in which we described

SAINT's solution of J(l _ ::)372 dx. Here it was noted that in one of

the subproblems SAtNT should not have performed the substitution

1y • tauzx since another trigonometric substitution on the problem had

already been made which was undoubtedly superior. In this case SAINT

did not seek out the necessary information. A similar difficulty arose

~-~~-~-----_.-----------,---------

142

when SAINT's methods could have performed transformations which were

the inverse of previous transformations. This occurs in the method

sin xwhich substitutes ----- for tanx, since this method may later substicos x
tan x

tute ----- for sin x. In this case SAINT did communicate the existence
seC x

of the previous transformation. While we do not wish to minimize the

need for explicit communication in complex problem solving programs,

we do want to point out the usefulness of highly implicit communication

in certain situations. If a parent routine knows enough about the oper-

ation of its subroutines, then it is not necessary to communicate a

great deal of information, the parent routine can determine what has

probably occurred with just a few key works of exchange. We think that

such implicit cOlllDUnication occurs when PORM finds excuses for the

failure of its methods to solve certain problems. In fact in these cases

the methods are not aware of the situation as much as FORM is. SIN will

1not attempt the tanzx transformation if another trigonometric transfor-

mation is possible since this choice was built into the program. Similar

remarks hold for the trigonometric identity transformation. What these

examples appear to point out is that when one is able to centralize con-

trol in a routine which has sufficient understanding of a task, then the

communication requirements in the program are markedly reduced.

We noted in the discussion in Chapters 2 and 4 that SIN employs

tighter progress constraints than does SAINT. This implies that there

may be some problems which SIN will not attempt to handle though it has

sufficient machinery for solving them. (On the other hand, we believe

rSilt xthat SAINT will attempt to solve J- dx until it runs out of time orx

space.) We are not particularly worried by,such occurrences. It appears

143

to us that it is more important at present that a program have a good

understanding of what it is able to do rather than that it have a medi

ocre understanding and be able to solve more problems. If one desired

to increase the power of SIN we would wish that he spend the effort on

improving the analysis done by FORM rather than that he spend it on in

creasing the search in FORM. We understand, of course, that it is not

always possible to take this approach. The domain of nonlinear differ

ential equations is a good example of such a situation.

On the Organization of SOLDIER

We noted in the Introduction that we did not expect to find a con

cept as powerful as the Edge heuristic in the domain of first-order.

first-degree ordinary differential equations. Thus we were not surprised

to fail to find a practical method similar to Edge. Intact the most

notable aspect of SIN's organization that we carried over was the reli

ance on tight progress constraints. It seems to us that human analysis

of this problem domain also employs tight progress constraints in the

solution methods.

Let us recall from Chapter 6 that SOLDIER employs eight solution

methods. These methods are attempted one at a time. If a method decides

that it is able to make a simplifying transformation (i.e •• a direct re

duction to integration or a reduction to a known and simpler differential

equation form), then it will attempt it, and the result of the transfor

mation will be the value of SOLDIER. Otherwise the next method will be

considered.

In Appendix E we tested SOLDIER on some problems given in a differ

ential equations text. SOLDIER was able to solve 67 out of 76 of these

problems. We do not believe that one should conclude from this perfor-

144

mance that SOLDIER is far removed from being as powerful a differential

equation solver as expert humans are. We think that if the improvements

and extensions to SOLDIER that we suggest in Chapter 6 4ndbelow are made

then SOLDIER will be a powerful program indeed. We were disappointed

when we recognized this to be the case. The reason for it is that mathe

maticians have not made great advances in this problem domain over the

past three hundred years.

On the Applications of LISP

Unfortunately, and mainly wrongly, LISP has acquired the reputation

of being a language with very low execution speed. One factor leading

to this reputation is the slow speed of arithmetic in most LISP imple

mentations. (The Hawkinson-Yates system for the 7090 is an exception.)

Yet when one declares variables to be fixed or floating it is possible

for LISP to execute arithmetic statements as well as any other processor.

It is the convenience of mixed data types (during execution) which forces

the slow, interpretive execution speed of arithmetic operations in LISP.

Another factor leading to this reputation is that old and famous programs

such as SAINT ran interpretively. Compilation usually results in approx

imately a twenty fold gain in speed. However the largest factor leading

to this reputation is due to the attitude of the LISP programmers. LISP

programs were usually developed in research projects where speed was only

a minor consideration. (It is safe to say that many impressive programs

such as Bobrow's STUDENT [4 J, Evans' ANALOGY and Slagle's SAINT could

not have been written as doctoral dissertations except in LISP.) The

trend in the recent past has been toward using LISP as a practical language

145

for projects with real time constraints on response. For example the

MATHLAB system of Engelman and the robot projects at MIT and STANFORD

have such real time constraints. It is thus important to recognize

that LISP programs can be written which are relatively fast provided

that one takes speed into consideration in designing the programs. It

is our hope that SIN can serve as a model for this lesson and remove

some of the stigma attached to LISP. It is far too easy to write LISP

programs which execute slowly if one becomes beguiled by the ease of

using LISP's recursive mechanisms. SAINT's pattern matching program

Elinst was far too recursive to run efficiently. However it was a much

smaller program thereby and this factor was crucial in the implementation

of SAINT. The rational function package used in SIN runs slowly when

parameters are introduced into a rational function. While such a de-

crease in speed is inherent in the task, it is also due to the extensive

utilization of the recursive nature of the LISP list structure in the

representation of rational functions. A special purpose representation

of rational functions such as used in Brown's ALPAK [6] or Collins'

PM system [12] should increase the speed of the rational function pack-

age by one to two orders of magnitude.

On the Teaching of Integral Calculus

We would like to see the introduction into first year calculus

courses of the concepts underlying the Edge heuristic and the Liouville

Theory. Besides giving the student a very powerful integration method,

such a study might acquaint him with practical applications of notions

derived from modern logic such as Godel numbering or decidable problem

domains. Such a course might also indicate why Je
x2

dx is not an ele-

146

mentary function rather than leave such a statement without proof. The

relationship of the Edge heuristic and the problem solving technique of

guessing could reasonably be emphasized in courses aimed at a more prac-

tical foundation.

Improvements and Extensions to SIN and SOLDIER

All the programs discussed in this thesis would profit by being

rewritten for t~e LISP system of the MAC PDP-6. The PDP-6 LISP system
•

executes about three times as fast as the 7094 LISP system on compiled

function and even faster on interpreted ones. This is due to the im-

proved instruction set of the PDP-6 and to improved system's programming

rather than an increase in the machine speed. The MAC PDP-6 also has

256 K of memory which would mean that all the routines could certainly

be loaded at one time. This would allow greater interchange between

SIN and SOLDIER and the rational function package. It would allow

SIN and SOLDIER to be used as subroutines to the MATHLAB system of Engel-

man. The excellent scope output routines of Martin [37] are available

on the PDP-6 as are teletype output routines written by Millen for the

MATHLAB System [40]. Routines which accept FORTRAN-like (i.e., infix)

notation for algebraic expressions are available and should be used in-

stead of the LISP (i.e., prefix) notation Which is now used in inputs to

SIN and SOLDIER. Anderson of Harvard University is currently working on

a program which permits hand written input of algebraic expressions from

a Rand Tablet [1]. Such a program could be used in the future as well.

SCHATCHEN should be rewritten so that new modes can be defined by

the user without reprogramming relevant sections of SCHATCHEN. The

simplifier SCHVUOS served us well While we required a small simplifier.

However a new, more powerful and efficient simplifier written along the

147

lines indicated in Chapter 3 should be used. As is clear from Chapter 6

and Appendix E this simplifier should have factoring and division capabi

lities not currently available in general purpose simplifiers. The task

of matching expressions for identity should be performed by a program such

as Martin's matching program rather than by SCHATCHEN [37].

SIN's second stage would profit from a better handling of algebraic

integrands. This is clear from Appendix D. Another lesson learned in

that appendix is the usefulness of a capability whereby the user can com

municate with FORM and some of the methods used in SIN in order to intro

duce new functions such as the error function. A table of integrals invol

ving the error function which contains 145 entries was computed by Maurer

in 1958 [38]. Such a table should be computable by SIN as well.

It is clear that much more work needs to be done on the Edge heuris

tic both as a method for solving integration problems and as a possible

tool for teaching freshman calculus students. We understand that Risch

is currently programming his method of integration using the rational

function package. Such a program could be included in SIN's third stage

as well.

In discussing SOLDIER in Chapter 6 we noted that a great number of

methods are known which have not yet been programmed. An interesting

project is involved in finding particular solutions to differential equa

tions. Such solutions can be used to find general solutions to Ricatti

differential equations. In Appendix E we noted that the output of SOLDIER

rarely conforms with the form of the text books' output. Another project

would be to devise a routine which translates SOLDIER's output to conform

with the implicit conventions used in text books.

r

148

We believe that if work is continued on the implementation of new

methods for SOLDIER, then this program will become a truly formidable.

tool in solving ordinary differential equations. In fact a program such

as SOLDIER can become an active competitor with text books or journal

articles as a medium for the permanent storage of knowledge about methods

of solution.

On a Mathematical Laboratory

In a forthcoming monograph by Martin and Moses the concept of a math-

ematical laboratory- will be introduced. In a mathematical laboratory a

useT will be able to solve symbolic problems in mathematics. A mathema-

tical laboratory is envisioned to consist of tWo major components, a

general purpose system and a set of specialized programs. The general

purpose system will deal with input and output and will provide a

command-oriented language with many capabilities. The specialized

programs will deal with tasks which are sufficiently complex to require

a separate organization. SIN and SOLDIER are prototypes of such special-

ized programs. Specialized programs will in the future employ a set of

rather general routines such as a pattern directed language similar to

SCBATCHEN or a simplifier such as~SCHVUOS. These frequently used routines

will form a data base from which new specialized programs will be more

easily written in the future. Work is proceeding in this country on all

aspects of such a mathematical laboratory, but we shall concentrate our

discussion on the specialized programs. In a recent thesis [28], Itur-

riaga has written a program in FORMULA ALGOL for finding limits of expres-

sions and for determining whether one expression is greater in value than

another over some domain. This work represents an extension of work on

149

limits performed by Fenichel [19]. No work has been done to our know

ledge, on finding sums of infinite series. Jolley provides a table of

such series [29]. Nor has any significant work been done on definite

integration. Bierens de Haan's monumental work on this area can be

consulted [24]. In both of these cases one might at first utilize a

table look up as described in Appendix A.

Leaving aside the area of analysis we note that Maurer [39] and

McIntosh [57] reported on systems which deal with finite groups. Some

routines have also been written for solving specialized tasks in topology.

In fact a new theorem in topology was proved as a result of experiments

performed by such programs [50]. Likewise specialized programs in com

binatorics have been written [16]. Such programs should be expanded

upon, systematized, and made available as part of a larger symbolic mani

pulation system in pure mathematics.

Along with the need for practical work in algebraic manipulation

there is a need for parallel work on theoretical results. Collins' study

of the Greatest Common Divisor algorithm led to a major imporvement of

the Euclidean GCD method [13]. Similar studies are needed of methods

for factoring polynomials, especially over extensions of the ring of in

tegers. We need a study of the degree of growth of the results of certain

algebraic transformations. We should have examples of very bad problems.

In [42] we present such a problem in the domain of polynomial equations.

Recursively unsolvable results such as those in Appendix B point out cer

tain difficulties in algebraic manipulation. Proofs of the decidability

of certain subcases such as in Richardson [52], Caviness [9], Brown [7],

Risch [53], and Tobey [63] are useful also and these may in turn lead to

150

programs which implement the decision procedures used.

On Artificial Intelligence

In the area of Artificial Intelligence we would applaud all projects

which required and utilized a large base of specialized knowledge. Robot

projects are examples of such projects. On a less ambitious level we

would like to note that it might be useful to develop a program .which

solves word problems in the calculus. Such a program would counter, (if

only temporarily!) the objections of those who claim that the semantic

approach of Bobrow cannot be extended. One approach toward this problem

would be to construct several methods of solution (e.g., "rate" problems

of several types). Then the program would use local clues (probably key

word analysis as in Weizenbaum's Eliza [66) will do) to determine which

solution method is appropriate. Then the method~hosen should guide the

program in extracting the information from the problem statement necessary

for a complete solution.

It would also be interesting to have some work leading toward a

program which solves multiple choice questions on the level of the MAA

high school prize examinations. Let us consider a typical problem.

"At what time between 4 and 5 PM are the hands of the clock exactly

opposite each other'l"

If the program knows that the answer involves the denominator of 11

and one such answer is presented, then it should guess that answer. If

only one answer involves a denominator of 11 and is moreover between 4:50

and 4:55 PM, the program should guess it. These guesses would be made at

stage 1 of the program.

151

If stage 1 is not effective but if the program knows the method of

solution (a linear equation), then it should solve the equation. This

would be done at stage 2 of the program.

If neither of these stages is appropriate, then the program must

obtain an analysis of this situation. Such an analysis is presently

beyond the capabilities of AI programs, but not grossly beyond these

capabilities.

Presumably one of the methods available to this program is a rate

problem solver. The statement of the problem does not immediately imply

a rate problem but the knowledge that the minute hand and the hour hand

travel at different rates could lend weight to such an hypothesis. Let

x be the time in minutes past 4 o'clock at which the event occurs. Then

How-of the event.

the minute hand travelled x minutes between 4 o'clock and the occurrence

itThe hour hand travelled 12 minutes during that time.

ever the hour hand started with a 20 minute advantage and ended thirty

minutes (one half a revolution) behind. Thus

x
x = 20 + 30 + 12

= 600 = 54-& minutes
x 11 11

The solution above required the use of information about clocks

and the relationship between clocks and circles. It also required a

sophisticated word problem solver that was able to utilize this infor-

mation to set up the linear equation. Another method of solving this

problem relies somewhat more heavily on making inferences about diagrams.

In either case it appears that a good deal of machinery is required for

the analysis of this problem. Besides the word problem solver a program

which makes inferences based on diagrams of plane figures is also useful.

While such programs may not be sufficient in order to perform the analy-

152

sis of this problem, they certainly go a long way in that direction.

APPENDIX A

I~LU - AN INTEGRAL TABLE LOOK - UP

This appendix describes some experiJDents wicb were performed

with an integral table look-up. Although a table Inok-up is

probably inferlor in the long run to an integration program with

regard to power or speed, the techniques employed in this routine

could be found useful in other areas of symbolic mathematics such

as exact definite integration, summation of series, or differential

equations.

There are several ways in which one could search a table of

integrals. There is the brute force approach. In this'case each

entry in the table is matched for equivalence with the expression

to be integrated. This scheme is used in SIN'. Derivative-divides

routine. Such a scheme takes a long time wen the table is large,

of course. A better approach is to sort the entries in the table

by the factors which appear in them (e.g., all entries with sin x

as a factor are in one subtable). Thus when presented with

xsinxe ,one checks all subtables for the one which contains sinx.

In that subtable one checks for another part of the table which

contains sinxex and there one presumably finds the entry desired.

This approach would require that there be n: entries for an

integrand with n factors (unless the expre8sions are canonically

ordered). A table look-up along these lines was discussed in

Klerer and May [32)

153

!,.....,....-"~'--_•.~._---......--~~

154

Besides being relatively slow these approaches are not sensitive

to the fact that an integral table usually presents generalized forms

of integrands (e.g.~ ~x2+bx+c) and not just particular integrands.

(e.g., ~). This is due to the presence of undetermined constants

in the integrand. These constants are used as coefficients as in

I) I n rn . 1sin(ax+b dx or exponents as in X dx or x sinxdx.The examp e

J xnsinxdx points out a further feature of the integral table, that

is, the presence of iterated integrals in the table. A good integral

table look-up should be required to .-ke use of all of these features

of the tables.

An integral table look-up, called ITALU, was programmed to

account for the features of the table just mentioned. It had the

additional property of being relatively fast by .-king use of the

technique of hash-coding.

By carefully hash-coding the expression to be integrated one

can expect to obtain a number which would correspond to relatively

few expressions in the table. Furthermore the hash-code can be

designed to account for the distinctive features of the table. The

hash-coding scheme which was implemented ignored constants in sums

and products. Thus sin (ax+b) coded the same as sin(2K), sin(x+2),

sinx, and sin(31t x+5y+z). The hash-code, moreover, was a floating-

point number and the code of a sum was the sum of the codes of the

terms in the sum, with a similar rule for products. Thus the code

maintained the algebraic identities for sums and products. Hence

sinxex coded like eX sinx. In this manner we avoid the need for

155

a canonical form of an expression. One further feature of this

coding scheme was that terms in a sum which had codes identical

with those of previous terms were ignored. Thus sin (x+yx)

2 2coded like sinx and x +2xy+3x coded like (2y+3) x + x and

ax2+bx+c.

The coding scheme was obtained recursively. The variable of

integration had a fixed code of 0.95532. Any trigonometric,

arc trigonometric or logarithmic function had associated with it

a fixed floating-point constant which generally was exponentiated

by the code of its argument in order to obtain the code of the

expression. Sums and products were treated as described above.

Exponentiation was a relatively complex operator for the coding

scheme. This is due to the frequent occurrence of exponents

1 1
-2, -1, :2' 2' 2 in the tables. When these exponents occurred the

code for the base was raised to the exponent and the result was the

code of the expression. Any other constant exponent was coded as

1.43762 and the value of the subsequent exponentiation became the

code. Thus xn is coded like x3 or xa or x- 4 . 5

all coded alike. Thus eX coded like 2x or yX.

Fixed bases were

An advantage of this coding scheme was that SCHATCHEN patterns

could be coded easily as if they were expressions. This was due to

the fact that the variables in the pattern were considered constants

with respect to the variable of integration (assumed to be x

throughout the table), and hence were ignored in sums and products

and had a fixed value in exponents. Entries in the tables had

156

integrands which were SCHATCHEN patterns (e.g., sin (A/COEFFPT,

NONZERO-AND-FREEOFX x+B/COEFFP, FREEOFX). Thus the full matching

capability of SCHATCHEN could be employed in order to obtain the

values of the constants in the integral table entry.

ITALU had an internal table of code numbers for the expressions

in the table. This internal table was searched using a binary

search (i.e., the codes were linearly ordered by their numerical

values). Corresponding to each code in this table was the location

on the disk where the integral table entry resided. Once a code was

assigned to an expression, it was determined if an entry in the

table had an identical code, and the file on the disk containing

that entry (if any) was read. In order to conserve disk space

several entries were on the same file, but these entries were

associated with their codes so that the search of the file was

linear but rapid. For each expression having the desired code

(several are possible), SCHATCHEN was used to determine if there

was a match between the pattern which represented the integrand in

the table and the original expression. If no match was found, the

next expression was examined, and so on until all the expressions

with the appropriate code were examined. If a match was obtained,

the integral was evaluated after making appropriate substitution for

the result of the match. Thus the integral contained the values

of the constants in the integrand. The device of evaluating the

the integral allowed the integral to be a LISP function. In this

157

manner iterated integrals could be obtained. Hence the lTALU

program satisfied the requirements of an integral table look-up

that we considered above.

The implementation of lTALU was carried through up to the

point where all of the steps above had been implemented and the

program was tested on several problems. The largest number of

entries in the table was only ten at any given time, and thus

the properties of the coding could not be fully assessed (e.g.,

one could not tell how frequently unrelated entries yielded the

same code number). The execution time of a call to lTALU was

generally about 1 second. Most of this time was spent accessing

and reading the disk. A set of routines were written for

facilitating the addition of new entries to the table. However

the description of each entry as a SCHATCHEN pattern with a

corresponding integral was a fairly tedious job. A compact

representation of the expressions in the table was obviously

desirable, but was not implemented.

Modifications to the hash code of lTALU were considered.

Under the current coding scheme Jx2
+1 codes like x. One

possibility is to ignore the value of constants in sums and

products, but recognize their existence. Such a scheme would be

useful in handling algebraic expressions.

We also considered using a hash-coding scheme, such as

Martin's ~7]. Martin's hash codes are elements of finite

fields rather than floating point numbers. Finite field

----~---_ ..__.-------~.-

158

arithmetic is preferable when there is a risk of a floating-point

overflow or a round-off error during the computation of the hash

code. We felt that these difficulties could be ignored or easily

overcome in the coding of expressions to be integrated. In order

to account for round-off errors, we thus allowed for a variance

of 1 XlO- 6 between the code of an expression and one in the table.

In the domain of symbolic integration, a table look-up is

probably not the best solution. Programs can now compete

effectively in many cases with the tables with regard to speed

and completeness. The situation in the future can only improve

the relative position of the integration programs. Tables such

as Petit Bois' 51] with its 2500 entries contain many errors,

some of which are serious (e.g., Slog cosxdx. 1 ,[51] p. 150).cosx

However table look-up devices appear to have current

usefulness in other areas of symbolic mathematics. Very little

work is being done at present on summation of series and exact

definite integration. Tables in these areas exist - Jolley's ~~

in summation and Bierens de Haan' s [~] monumental work on definite

integration. For differential equations we reported solutions

methods.in Chapter 6. However much still remains to be done, and

tables could be used as long as programs have not caught up with

the full power of. tables such as Kamke's
[30]

Tables could be

extended to include a great deal of information besides exact

solutions. For example, tables could be employed to obtain good

numerical techniques for solution or references to papers on

159

particular cases. We should point out that some entries in a

table would be hard to look-up in any reasonable way. For

n
example. the entry xy'=yH(x y) properly deserves a special

purpose program as was done in Chapter 6. Information about

chemical compounds is currently being stored in tables which

are searched by specialized techniques. Similar methods could

be used in mathematics. The exact methods of IIALU are clearly

not extendable to the other problem domains - special purpose

programs should be used in each case. However the hash-coding

technique coupled with the use of a matching program for

increased power seem relevant to each of the areas considered.

APPENDIX B

RECURSIVELY UNSOLVABLE RESULTS IN INTEGRATION

A recent theorem by Richardson [52] showed that the matching

problem for a class of functions we shall call R-elementary is

recursively unsolvable. This result is easily applied to show that

the question of determining whether integrals of R-elementary functions

possess R-elementary solutions (or elementary solutions in the sense

of Liouville (Chapter 5» is likewise recursively unsolvable.

Richardson's result, announced January 1966, is probably the first

theorem about recursively unsolvable problems in analysis and has

aroused great interest in the field of algebraic manipulation. Refer

ences to it are made in Brown [7], Caviness [9 J, Feniche1 [19],

Moses [42], and Tobey [63J.

There is, however, a feeling among some (e.g., Risch [53]) that

Richardson's unsolvability result may be due to the fact that the

integration problem he showed unsolvable is not well-posed. In this

appendix we shall sketch Richardson's unaolvability proof and indicate

points in the proof where some of this contention has aris~n. We

shall then present results of a similar nature to Richardson's which

avoid these difficulties in the proof by extending the domain of the

problem to nonlinear differential equations. These results are proved

using similar techniques to Richardson's and were originally proved,

interestingly enough, over a year before Richardson announced his proof.

160

161

In order to proceed we shall require the following definitions.,

The R-el!!entary functions are obtained by the op~rations of

addition, multiplication, division and substitution upon real variables,

Xl' x2 ' .•• , xn using the constants rt, the rational numbers, 10ge2,

and the functions eX, sin x. cos x. and loglx~

The constant problem is to decide. given an R-elementary

function f(x), whether f(O)-o.

The identity(matching)problem is to decide, given an R

elementary function f(x), whether f(x)&O.

The integration problem is to decide. given an R-elementary

function f(x), whether there exists an R-elementary function g(x),

such that g'(x)llf(x).

Richardson first showed that the identity problem reduced to

solving the constant problem. Thus ,if one restricts the R-

elementary function to a domain where the constant problem is pre-

sumably solvable (e.g., by allowing only the rational operations), then

the matching problem is likewise solvable.

He then showed that the matching and integration problems for

the R-elementary functions is recursively unsolvable. In order to

proceed with our sketch of that proof, we shall require the following

definitions.

Hilbert's 10th Problem (The Diophantine Problem)

Does there exist a procedure for determining whether the

Theorem A

_. '__ ..._... ' '_". ____ ._--~",-~_. --'_.'.~--.,._- .----- .'._'.'-'---'~'._'-- -'-I"~----'-"::--":---------~'----'-

162

equation P (xl' x2 ' ..• , xn)=O, where P is any polynomial with

integer coefficients, has a solution where each xi is an integer?

Exponential Diophantine Problem

Does there exist a procedure for determining whether the

equation P(x l , x2 ' "', xn ' xn+l)-O, where P is any polynomial with

integer coefficients and where x 1 is replaced by 2xl , (i.e.,
n+

P(xl , "', xn ' 2
xl)aO) has a solution with each xi' i-I, ••• , n an

integer?

Theorem (Davis, Putnam, Robinson) [14J

The exponential diophantine problem is recursively unsolvable.

The version of the Davis-Putnam-Robinson result that Richard-

son used is as follows:

There exists a polynomial Q(y, xl' ••. , xn ' 2xl) such

that the problem of determining whether for each integer value of y

there exist integer solutions xl' •. ', xn to the equation

Q(y, xl' •.• , xn ' 2xl)_O, is recursively unsolvable.

Hilbert's 10th problem has not yet been decided although it is

suspected that the problem is recursively unsolvable as well.

Let us now proceed with Richardson's argument.

Consider the polynomial Q of Theorem 1. Let the xi be real

numbers. Then, if the equa~ion 1

(1) ~ . 2 2 (
~ S1n nX i + Q y, xl'

i=l

163

possesses real-valued solutions for an integer value of y, then the

x. must be integers, and if Q possesses integer solutions, equation I
1.

certainly has real solutions.

Note that since each term in I is real-valued, the 'sum of the

squares" device forces each term to be zero.

is an integer, the x. must all be integers.
1.

Since sinn x. = 0 - X.
1. 1.

This illustrates a con-

cept we shall call forcing. Forcing will be frequently used in this

appendix.
n

The term Z
i=l

. 2
s 1.n n X.

1.
forces Q to possess integer solu-

tions. The use of n and sin x in this manner was foreshadowed by

Tarski [6lJ.

The next step is to show that there exists and R-elementary

function fey, xl' ... , X
n

) such that fey, xl'

integer y and for some real x. if and only if
1.

... , x)< I for a given
n

xIQ(y, xy, x~, ... ,2)=0

for some integer values of the x~, and for the same integer value of y.
1.

Richardson shows that we can take fey, Xl' ... , X
n

) to be of

the form

n
2::

i=l

. 2
s 1.n nx.

1.

4
K. (y,

1.
Xl' "',

2
X) + Q (y,

n Xl' ... , X ,
n

where A is a large R-elementary function of n and each K. is a
1.

suitably chosen large R-elementary function of its arguments. In this

form f is an R-elementary function. The proof that f has the desired

."

164

property utilizes an argument based on the consideration that if f

is sufficiently close to 0 in value. let us suppose that

f(y. xl' x2 •••• , xn) ~ 1,

xl, say, then Q(y, xl' x2 '

and let each Xi be close to the integer,

Xl 1
••• ; xn ' 2) < A(n). What is desired is

to force ~ to have the value 0 at the xt- Since ~ is continuous in

its variables (it is a polynomial in them) and moreover has integer

values for integer arguments (the coefficients are integers), what

is necessary is that the derivative of ~ is sufficiently small so

that Q does not materially change its value on the interval between

Xi and xl· For this purpose the Ki which are based on the partial

derivatives of Q are forced to be small as well. This is dane by

2 1
requiring sin 1t Xi Ki s:; A(n)·

Now Richardson shows that one can obtain a coding which re-

duces the problem for the n variables Xi of Q to a single variable

x. He obtains a function G(y, x) such that G(y, x) < 1 for real

x .. (v vO) (G(y, x) < e) .. 3 real Xi

The coding is

Xl ... h (x), x2 - h (g (x», x3 - h(g(g(x»), •..

where h(x) ... xsinx, g(x) .. xsinx3 .

Richardson now uses the log Ixl function to obtain a decision.

Consider the following equations:

165

Ixi 10glxl . .. = e , thus the absolute value function is R-e1ementary.

. x-"+' x-·· I h': .x-y -~, t +8 subtract10n has value 0 if y-x.

Min(y,x) - y~(y:x), the minimum function restricted to non-

negative values.

Now if G(Y,x) ~ 1 for some real x and integer y, then

G(y,x) < i for some real x by the 8 case above, and for this x,

2:2G(y,x) > 1. Thus, min(l, 2:2G(y,x» - 1 for some real x. If

G(y,x) > 1 for all real x, then for all real x,min(1,2~2G(y,x» - O.

By the continuity of G which is preserved either min(l, 2~2G(y,x»=1

for some interval of values on the real axis for x and for a

fixed integer value of y, or min(l, 2&2G(y,x» 5 0 for all real x.

Now if we let M(y,x) 5 min(l, 2:2G(y,x», then the question of

deciding whether M(y,x) is identically 0 is equivalent to deciding

whether Q(y, xl' .•. , xn ' 2x1) - 0 has integer solutions and is thus

recursively unsolvable. M(y,x), we note, is R-elementary.

The above is a sket~h of the proof of the recursive unso1vabi1ity

of the matching problem. The recursive unso1vabi1ity of the integra-

tion problem is obtained as follows:

Consider

. 2
SM(y,x)ex dx

IfM =0 for some integer value of y, then the integrand isO

and possesses a solution (e.g., 0). If M IE 1, onsOlH interval then

166

the integrand is equivalent to ex2 which possesses no elementary

solution on any interval, as is well-known. Hence, the integration

problem for R-elementary functions is unsolvable since one cannot

tell whether M=O.

This completes the sketch of Richardson's proof. As was seen,

the decision step in the matching problem necessitated the use of

the absolute value function. Caviness argues that either the abso-

lute value function or the constant ~ (used in sin ~ x and needed

to assure a zero value on integer arguments) are the culprits in

allowing Richardson's results to hold. The constant ~ should not

be too surprising in the context since there are many problems re-

lated to the constants e and ~ which are not yet solved (note

sin ~ x
i:n:x -hee

e - e
2i

) . For example, it is not known whether

e+:n: is a rational number.

We should note that the absolute value function arose when we

considered only one of the infinite number of inverses to the log

function. For example we can obtain the absolute value function by

considering ~ to possess only one solution. If we were to

evaluate each of the values of an R-elementary function and were to

consider f(x) to be equivalent to 0 if it were 0 for each of its

values, then one might obtain a more tractable problem. One would

still be left with ticklish problems regarding the constants e and ~.

These one might suppose are not very interesting from a practical

167

standpoint. However, by introducing square-roots into the picture,

one might complicate the situation once more since such an intro-

duction appears to lead to difficulty in integration (see Ritt [54],

Risch [53]).

The recursive unsolvability of the integration problem was

obtained by making use of the fact that one could not tell what the

simplest description of the integrand was. In previous work on the

problem of integration in finite terms such a difficulty was usually

ignored. If one could ignore such a difficulty in the matching or

in the constant problem, then these problems would disappear. The

same cannot be said of the integration problem, of course.

The question now arises as to whether there are unsolvable

problems in the area of symbolic integration which avoid the use of

the absolute value function and which do not simply reduce to the

matching problem. Below we give SOme simple and hardly surprising

results which indicate that such problems do exist when one considers

nonlinear differential equations.

We shall require the following result:

Theorem B (see Ritt p. 73)

The equation

(II)
2

y' + Y I + P (~+l)

x

where p is a constant (a computable complex number, say), has a parti-

cular solution which is a rational function in x (with computable

168

complex coefficients) if and only if p is an integer.

Theorem 1

The exponential diophantine problem (Theorem A) is equivalent

to the problem of determining whether, for integer values of y, the

system of differential equation S has particular solutions which

are rational function in x.

(Hence, the latter problem is recursively unsolvable~

a)
dPi

- 0, i-l,dx ••• t n

dYi
+ y2 - 1

p. (Pi+l)
(8) b) + 1 i-l.dx x 2 , ••• I n

2 2Pl)
dz + z2

~ (y, Pl, ••• , Pn'
c) dx • 1 - x2

!!22f. Suppose S has such a set of solutions for a given integer

value of y.

By a) each Pi is a constant.

By b) and Theorem B each Pi is an integer.

Q(y, Pl' ... , Pl
P • 2) - 0 by c) for y an integer.n

This is so since by a) and b) Q is a constant. Thus, for z to

have a particular solution which is

for some integer q. But q(q+l) ~ 0

2a rational function, -Q -q(q+l)

2for in tegers q and -Q ~O since

Q is integer valued.
Pl

Thus, ~(y, Pl , ••• , P ,2) - 0 for integern .

169

values of PI' "', Pn'

Suppose Q did possess integer solutions c. for some integer
~

value of y, then by fixing each Pi to be the corresponding c
i

' we

obtain a set of rational solutions for S.

Theorem B has a corollary which states that the differential

equation II has a general solution which is a Liouville function if p

is an integer.

Theorem 1 can, therefore, be extended to show that the problem

of determining whether systems of differential equations of the

form S have solutions which are Liouville functions is recursively

unsolvable.

Let us consider the diophantine analogue of the system S (i.e.,

no exponentiation in Q). We now have a system of polynomial equa-

tions with integer coefficients. The solutions of such systems of

equations is in the domain of differential algebra (see Kaplansky [31]).

Theorem 1 leads to the result that Hilbert's 10th Problem reduces

to a decision problem in differential algebra.

Let us now consider the problem of determining whether a

differential equation f(x, z, z', ... , z(n)) = 0 has a solution z(x)

where z and all its indicated derivatives are real-valued functions

of x.

More precisely consider

g(y, x, z', ... , zen»)

z(n)2 + Q2(y, w
l

' w
2

' ... ,

= 0

170

w ,
n

In g, y is an integer, x is the independent variable and is

real, z is the dependent variable and the w. are defined as follows:
~

(n-l)z

(n-2) (n-l)
z - xz

wn _l (n-2)~

z - xz'
2 " (1) (n-l) (n-l)x z n- x z

+ -2-~- + ... + (-1) (n-l) ~

Theorem 2 The problem of deciding whether

g(y, x, z, z', ... , zen»~ = 0 has a real-valued solution which

possesses n real-valued derivatives is recursively unsolvable as

y varies over the integers.

Proof. Let y be fixed.

Suppose g has such a real-valued solution z(x). Since we are

dealing only with real-valued functions the term (z(n»2 forces

zen) = 0 and thus z must be a

Each wi was so chosen that if

polynomial of

n-l
z = a x

n-l

degree (n-l) at most.

Since

sin n w.
1

171

= 0, a. is forced to be an integer. Moreover, since
1

Wi
w

2
' "', 2) = 0, Q must possess a set of integer solu-

o has solutions X.= a.,
1 1

Xl
Suppose Q(y, xl' "', x n ' 2)

n-l
a i integers. Then z(x) = an_lx + ... + a

O
is a solution to g=O.

The statement of Theorem 2 is too general to make it a

satisfying decision problem since the set of all real-valued

functions with real derivatives is not computable. The theorem

would hold for any computable superset of functions of the set of

polynomials of degree n with integer coefficients.

Theorem 2 seems to indicate the concept of a real-valued

solution to a differential equation is quite elusive.

APPBNDlX C

SIN'S PE!tPORHANCE ON SAIN'l' S PBOBLBHS

As an experfment for testing SIN's perfo~nce, we attempted the

86 problems attempted by SAINT and reported -in Slagle's thesis. SAINT

integrated 84 our of these 86 problems and announced failure to integrate

x~ and cos Ii. Slagle reports that SAINr solved the 84 problems

with an average time of 2.4 J!dnutes (144 seconds). StH solved all 86

problems with an average time of 2.4 seconds. this average becomes 1.3

seconds when one discounts the cost of chaining. Chaining occurred on

22 our of the 86 problems. Chaining is. considered to take 4.5 seconds

in this accounting. That t1meappears ,to be a minimum bound for the

operation. In order to determine the time required by SIN to solve a

problem, we used the execution time reported by crsS. the swap time in

arss is ignored here.

Over half of the 86 problems (more precisely 45) were completely

,solved by SIN's first stage. These problems were solved with an average

time of 0.6 seconds. Of the remaining problems only two required the

Integration-by-parts routine (i.e., x cos x and cos /x - the latter gene-
t'

rates the subproblemJ2y cos y dy). Two routines were added to SIN in

order to solve the definite and double integrals among the 86 problems.

These routines call SIN to perform the integrations indicated and make

appropriate substitutions at the upper and lower bounds.

Below we list problems for which SAINT results are available and

the comparative'results for SIN.

172

173

SAINT time SIN t1lae discount

Problem in seconds in seconds for chain Rotes

2

I 1 dx 1.8 0.20 Fastest problemIX solved by SAINT,
integrated by table
look up in DfSUf

S sec2t dt 1080 9.18 4.6 Longest solution2
I + sec t - 3 tan t time in SAINT.

9 subgoaIs in
SAINT, 1 in SIN

S --S.. 126 0.87 7 8ubgoals in2sec x SAINT, 3 in SIN

J x2 + 1 dx 102 5.87 1.3 3 subgoals SAINT
.fx ISm

JIx2 +x2X + 5
dx 960 9.68 5.2 14 subgoals SAINT

Ism

J 2 120 0.33sin x cos x dx

J 2 2 cos x dx 228 2.48(sin x + 1)

J eXdx
102 0.28 2 subgoals SAINT1 + eX osm

J 2xe 222 6.23 1.7I + eX dx

J 1 d 120 9.78 5.3t - cos x x

.!
J3 2 144 0.47otan x sec x dx

174

SAINT time SIN time discount

Problem in seconds in seconds for chain Notes

1

Jx log x dx 132 0.70
0 e

1t

J~in x cos x dx 156 0.30 Largest speed
0 ratio between

SIN and SAINT

J x + 1 dx 576 10.1 5.6 Longest solution
/2x ,.; x2 in SIN.

13 subgoa1s SAINT
1 SIN

J 2ex
dx 360 8.25 3.7 4 subgoals SAINT

2 + 3e
2x 1 SIN

J (1
'+x 660 8.77 4.3 13 subgoals SAlNrx2)5/2 dx

2 SIN

J 6xe dx 510 7.92 3.5 10 subgoals SAINT
e4x + 1 1 SIN

J 2 390 7.20 2.7 10 subgoals SAINTlog (2 + 3x)dxe 1 SIN

The last 3 problems were solved by SAINT in 540, 318 and 210 seconds

respectively after an entry was added to SAINT's table which was used in

the solution of these problems.

175

In order to fully account for the effect of garbage collection the

problems were run in large batches. Thus garbage collection time was

distributed over the set of problems. Garbage collection time probably

accounts for less than 20% of the total time in SIN.

We should note some of the reasons for the time difference in the

results of SAINT and SIN. SAINT was run on the 7090 and SIN on the 7094.

This accounts for about 40% of the gain (2.18 vs. 2.00 microseconds in

the cycle time and overlapped instruction execution in the 7094). The

single major difference in the time is due to the fact that SAINT ran

mostly interpreted (a major exception being the simplifier), and SIN was

run mostly compiled. Compilation is usually considered to gain a factor

of 20-30 in the speed of the program. We tested some problems with SIN

being executed completely interpretively. We noted an average speed loss

of a factor of 15. However none of the problems -which were run inter

pretively included problems which required chaining. Thus we were unable

to run some of the more complex problems in the set interpretively.

By taking these factors into account we note that SIN would only

run about three times faster than SAINT on the average when both are

executed under optimal conditions. The reason for the relatively small

ratio in SIN's favor we believe is because most of the time spent in SIN

in solving the harder problems in the set is spent in algebraic manipu

lations (e.g., simplifications). Algebraic manipulation in SIN is not

materially faster than it is in SAINT. Though the analysis performed in

SIN yields a very direct solution, the total time spent to obtain the

solution is still significant. Hence the contrast with SAINT in regard

to total solution time is not very great.

APPENDIX D

Solution of P;9b~~ ~~9~9sed by MCIntosh

Professor MCIntosh (National Poleytechnic Institute of Mexico)

required the solution of eleven nontrivial' integration problems for

a physics paper that he was writing £35]. ,He found the solution to

these problems in Petit B01$1 table. He also asked us to solve

these problems using SIN. The problems involved variable coefficients

in a square root of a quadratic which the version of SIN current at

that time was not equipped to handle. Although we had intended to

add the variable coefficient capability to Method 5, it wa~ not

needed for the SAINT experiment described in Appendix C. We rewrote

Method 5 to account for variable coefficients. Interestingly enough

this was not sufficient for a satisfactory solution of the problems

since Professor MCIntosh required that the output be in terms of

the arcsin function. In some cases the transformations proposed

by Method 5 yielded an answer in terms of the log function. To

force the arcsin result a further method was added. Thus if the

integral was of the form

J C

1the substitution y= - was made.x

dx

This substitution rids the

denominator of the factor x. With these modifications SIN was able

to solve all eleven problems. In the solutions obtained by McIntosh

176

I

177

we noted some discrepancies from solutions o~tained by SIN. It

should be noted, however, that McIntosh was only interested in

the coefficient of the arcsin terms and not in the argument. All

the errors were minor and occurred only in the arguments of the

arcsin function.

Important lessons are to be obtained from this experiment.

It is quite likely that other users of SIN will have similar

requirements regarding the form of the output. SIN should there

fore be modified so that FORM can accept simple descriptions of new

substitutions written, say, as a SCHATCHEN and REPLACE rule.

An examination of the eleven problems will indicate that a

great deal of SIN's machinery was involved in solving these

problems. Thus it would appear that a program such as SIN is more

useful than a special purpose integration rou~ine written for

solving just this set of problems. Such a special purpose program

will require so much machinery as to make it uneconomical.

Finally we should note that this experiment points out the need

for further work on methods which transform algebraic integrands.

The method we introduced to force the arcsin result also decreased

the labor involved in the solution and should be normally available

1n SIN.

178

McIntosh Problems

Problem Constraints Answer equivalent to

J dr

1) t' 12Hr2 - a.Z H>O
1 ~-Ci arcsin I2ii r

J dr
2)

rJ2Hr
2

- ~ - e2 H>O

3)
f. dr

H2 > 2clx
"'r/2Hr

2
- ~- 1J.r

4

J dr
4)

r J2He
Z

- (} - eZ _ 1J.r
4

H2 > 2(~ + e2) K

-1 &. + e2
-;=;r===lI;jr arcsin ~:....;;..-
JcJ + e: 2 /iii r

1 Hr
2

- ~
2Ci arcsin 2 J 2 .;;;;.

r H -

1 Hr2 _ (~ + e2)
-;:n:::;:=::::;2' arcsin 2 J~ 2 2 2
2 Jcr + e: r H - 2(cr+E:)K

1 Kr - ~
- arcsin J 2 it}
a. rK+2r J2Hi - (1 - 2Kr

J dr5)

6) J dr

r dr

7) Jj2Er2 - ~

8) J r dr
j2ErZ - (.} _ eZ

179

Problems Constraints Answer equivalent to

9) J r dr
'J;:::ZE=r2;;:=='t=0::::;2~=Z=K=r::;:4=

Z
1 . ZKr-E
~ arCS1n J 2

EZ - ZKo:

J 2 0:2 2ZEr - - E:

S r dr10)

1
Z /2i(

Z
. ZKr - E

arCS1n j 2 2 2
E - ZK(o: + E:)

11)
r dr

- o:Z - ZKr
E < 0

JZErz - o:Z - ZKr + 1
ZE ZHE I-ZE

ZEr + K
arcsin J 2 2

K - ZEo:

- --------~------------,..----

APPENDIX E

AN EXPERIMENT WITH SOLDIER

As an experiment for testing the effectiveness of the

differential equations routines we attempted to solve the review

problems appearing in pages 54-56 of "Applied Differential Equations"

by Spiegel [60]. This text was chosen for sentimental reasons since

it was the book through which we first learned methods for 80tilng

ordinary differential equations. The methods described in Chapter 6

were mostly influenced by Ince's "Integration of Ordinary Differential

Equations" [27], and Kamke's IfDifferentia1g1eichungen" [30]. As

it turns out the methods in Spiegel were quite similar, which is not

a surprising fact. However, there were some differences and these

will be pointed out below.

Briefly, the results of the experiment were as follows: Of the

80 problems in pages 54-56 of the book, 4 involved second and higher

order equations (Le., y", y"'). These problems were not attempted

since SOLDIER had no machinery to deal with them. Thus the number of

problems actually attempted was 76. Of the 76, SOLDIER satisfactorily

solved 67 problems with an average time of 6.6 seconds. Discounting

the cost incurred by chaining (chaining occurred on 26 of these 66

problems), the average time was 4.3 seconds. Two problems were com

pletely reduced to integration problems, but were not integrated by

180

,,,.

181 .

problems were not solved at all. An examination of the result re

ported by SOLDIER for one of the problems (i.e., 51) indicated a

misprint in the book. As before, our timing information is based

on the report by CTSS of the execution time of the program.

The system on which this experiment was carried out had the

following characteristics: SCHATCHEN, SCHWOS, FORM, REPlACE, SOlDIER,

and a~l the solution methods for differential equations were com

piled. A few integration methods, especially the Derivative-divides

method, were also compiled. The rest of the integration methods were

run interpretively. This accounted for a noticeable increase in

solution time when one of the integration subproblems required a

solution method in stage 2 or 3 of SIN. As was the case in the ex

periment reported in Appendix C, the 76 problems were attempted in

large batches (about 15 at a time) so that the *ffects due to garbage

collection were fully considered.

Below we shall describe on the performance o~ SOLDIER on some

of the more interesting fully solved problems. We shall then describe

each of the 9 problems which it failed to solve fully.

182

Representative Solved Problems

The largest number of integrations needed to solve one of the

67 problems was 3. This was achieved by problem 69 among others.

(69) (eY+x+3)y 1 1 or (eY+x+3)dy - dx o

This problem is solved by one of the multiplier methods (Chap-

ter 6, Method 3)

a
(eY+x+3) 1

ax

a (- 1) 0
ay

1
(1- 0) - 1, and - 1 is function of y.

1
a

Thus the first integral is

S -1 dy -y

The multiplier is e- Y resulting in the exact equation

The second integral is

183

and the final integral is

S (l+3e -y)dy y-3e- y

The solution reported by SOLDIER is thus

The solution in Spiegel is

y y
x = ye -3+ce .

This solution is equivalent to the one obtained by SOLDIER.

This problem was solved in 5.2 seconds.

The most complex solution was obtained as a result to prob-

lem 73.

(73) ~ = x+3y
dx x-3y

This homogeneous problem required the solution of

o du
J u_J:£fu

l-3u

The final solution given by SOLDIER was

184

2

log x + ~ log (l+3~ + 21.) - J2 arc tan (~.'1 + ..Jz) Co
e e x x .)2 J2x

The solution in Spiegel was

2 2
log (x +2xy+3y)

e 2J2 arctan (:;~y) + c

This problem was solved in 15.3 seconds and required a chain

to the rational function package.

The problem in which we discovered a misprint in the book's

solution was problem 51.

(51) y' 3x+2y or y'-3x-2y o

The problem is linear (Chapter b, Method 1) and the first

integral required is

S -2dx -2x

The next integral is

S
-2x

-3x e dx

The final answer given by SOLDIER was

-2x (3 3 \ -2x
Co ye + 4" + 2 x)e

185

The book's solution was

-2x
Y = c e

3 3
2" x - 4

This solution differed from SOLDIER's in that the sign of

-2x
the exponent of e is wrong.

The answer was obtained in 9.0 seconds and required a chain

to solve the second integral.

The fastest solution time was obtained for problem 5.

(5) (3-y)dx + 2xdy 0, y(l) 1

This problem is also linear.

The first integral is

r 1
J-2x dx

1 (f 'l'f' -1/2 log x 1)The next integra a ter s~mp ~ y~ng e e =J;- is

dx
3

-Jx

The final result is

Co =...;Lx _ 3
Jx "jx

186

The book's solution is

(3_y)2 4x

which is equivalent ot SOLDIER's except that the constant of

integration was determined by using the initial condition.

This problem was solved in 0.8 seconds.

187

The Nine Unsolved Problems

Problems 48 and 75 were not solved primarily because SOLDIER

had no machinery for factoring them. In these two

(48)

(75)

2 2
~ = ~ eP -q
dp q

a+bproblems what is needed is to recognize that e a b
e e . A

powerful factoring routine would have yielded the result that both

of these problems are separable.

Problem 50 is also recognized to be separable

(50) (x+xcosy)dy - (y+ sin y)dx = 0

if one factors x+xcosy. When SOLDIER solved this problem it utilized

one of the multiplier methods.

The difficulties due to the lack of a general factoring or

division routine which was pointed out in Chapter 6 is one of the

outstanding problems which must be solved in order to achieve a

powerful routine for solving differential equations. The rational

function package which is not directly utilized by SOLDIER can

factor polynomials and some more general expressions (e.g., x+xcosy

188

could be factored by it), however, it must be extended in order to

recognize factorizations involving exponentials and logs.

A sUnilar difficulty to factoring faced the program in

problem 65.

(65) xy' + ylog x = ylog Y + Ye e

This problem is easily solved by the homogeneous method if it

is first transformed into

xy' - ylog Y.. - ye x

SOLDIER does not possess enough machinery to realize that this

transformation can be effected. Method 8 of Chapter 6 which normally

would have solved problem 65 without the log transformation failed

because SCHVUOS could not simplify a quotient which arose in the

course of the solution.

Problems 47 and 64 were not solved because SOlDIER lacked a

method given in Spiegel.

(47)

(64)

2
xdy - ydx - x ydy

2 2
xdy - ydx - 2x y dy

Spiegel suggested that one should watch out for frequently

occurring combinations such as xdy+ydx or xdy-ydx. He gave a method

which deals with some of these cases. In 47 he points out that by

7 ,

189

dividing by x2 one obtains the derivative of f on the left hand

side and ydy on the right hand side. In 64 one obtains 2y2dy on the

right hand side and once again the derivative of Z on the leftx

hand side. SOLDIER lacked this particular method and was unable to

solve these problems. Once again Method 8 of Chapter 6 was applicable

and did not find a solution due to problems in division.

Another method lacking in the program is pointed out by prob~

lem 57.

(57)
ds
d't- -L

s+t+l

Her~ the linear substitution u(t) - s+t+l would have left a

separable equation. Also a reversal of the independent variable

followed by multiplying out the denominator would have left the

equation

!!E. • s+t+l
ds

which is linear. The method of multiplying out the denominator is

also useful in problem 17.

(17)
4

I 2xy-yy • --
3x2

SOLDIER solved 17 by dividing through the denominator and using the

Bernoulli method. By multiplying out the denominator, the multiplier

190

method would solve the problem.

Problem 22 was not solved by SOLDIER because the almost-

linear method is not powerful enough.

(22) 2 2(tan y - tan y cos x)dx - xsec y dy = 0

The substitution u(x)-tan(y) results in the equation

2
(u-u cos x)dx - x du = 0

which is Bernoulli. However, the almost-linear method checks only

for the possibility that the resulting equation is linear and com-

pletely misses the possibility that it is Bernoulli.

Finally, two problems, 56 and 74, were not completely solved

because SIN did not have powerful enough machinery.

(56)

(l4)

dI + 31 = 10sin t
dt

y'cos x = y - sin2x

In 56 the linear method generates the subproblem

Without the Edge heuristic, SIN cannot integrate this problem.

There was not enough room in the system to include the Edge heuristic

(only 1500 words were left in free storage), so SIN failed to

191

integrate this problem.

SIN failed to handle the integration problems needed in 74

because it does not currently possess enough machinery for dealing

with sin(2x) and cos (x) in the same integrand. As has been indi

cated in Chapter 4 some machinery for just this situation was

designed but not fully implemented.

";I

192

Modifications to SOLDIER

Following the experUnent reported above we made two changes

to the methods employed by SOLDIER. First we added a simple factori-

zation routine to Method 8 of Chapter 6. With this routine Method 8

was able to solve problems 47, 64, and 65, as expected.

In addition we added an indicator to SCHWOS. When this

a+b a bindicator was on, SCHVUOS executed the rule e ~ e e. This

indicator was turned on in running Method 2 of Chapter 6 (Separable).

Thus, problems 48 and 75 were solved as well. The use of indicators

illustrates the approach toward sUnplification programs we had out

lined in Chapter 3. In that chapter we said that sUnplifiers should

be considered as black boxes with strings attached. When a decision

has to be made inside the simplification program, it can check to

see whether it had been given an instruction regarding the choice to

be made.

These changes must be considered as stop-gap measures and not

as solutions to the factoring problems which still remain in SOLDIER.

APPENDIX. F

LISTINGS

The listings of SIN and SOLDIER given below were produced by a LISP

program written by Diffie of the MATHLAB project and modified by us.

Listings of LISP programs are frequently printed by using the internal

representation of the program. The listings of programs written in most

other languages usually bear a close correspondence to the input form of

the program. This need not be the case for LISP programs. The routine

Edge which was not listed using Diffie's program is presented last. The

listing of this routine may be used to guage the effect of Diffie's pro

gram.

The listings of two recent LISP programs (i.e., Martin [37], Nor-

ton 47]) are also available. One can use these listings to compare

different styles of LISP programming. Norton accentuates the use of the

PROG feature and his programs thus have a FORTRAN-like appearance. Mar

tin's style is richer and leans toward greater use of "pure" LISP. Our

style is intermediate to these two styles.

193

.- ---------~~- -----

194

SCHATCHEN

-----_.~~-------

DEFINE
IIISCHATCME~ H21

(M2 (LAMBD~ (E P SPLISTI
IPROlj IANSI

(RETURN (COND ((NULL IM1 E PII NILI
((NULL ANSI Tl
IT ANS)))1))

IM1 ILAMBDA (E PI
ICOND (IEQUAL E P) T)

I I ATOM PI NI Ll
(IATOM ICAR PII

ICOND I lOR IEQ ICAR PI IQUOTE PLUS) I
IEQ ICAR PI I QUOTE TIMES))

I LOOPP E PI I
I(EQ (CAR PI IQUOTE EXPTlI IZEPOW E PI)
I (EQ (CAR EI ICAR PI) I EACHP E PI)
(lOP ICAR PII NILl
IIEQ (CAR PI IQUOTE COEFFTII
(CO~FFPORT E P (QUOT~ ITIMES 1 T))) I

((EQ ICAR PI (QUOTE COEFFPTII ICOEFFPT E P T))
((EQ (CAR P I I QUOTE COEFFP II

ICOEFFPORT E P IQUOTE IPLUS 0 TIll I
IIEQ ICAR PI IQUOTE COEFFTTII

ICOEFFTT E ICAOR PI T IQUOTE TIMESI)
IIEQ ICAR PI IQUOTE COEFFPPII

(COEFFTT E ICADR PI T IQUOTE PlUSII I
IIEQICAR pf IQUOTE OVCOEI) IOVCOE E P TIl
IIEQ ICAR PI IQUOTE ZEPOW)I IZEPOW E PII
llANO ISETQ ANS ICONS NIL ANSII ITESTA P E NILII

IRESTORElI I
I TIRE STORE I) I I

IIATOM ICUR PII
ICOND IIATOM f) NIL)

IIPROG2 ISETQ ANS ICONS NIL ANSI)
ITESTA ICAR PI ICAR E) E) I

ICONO IIOR IEQ ICAR EI IQUOTE PLUS))
IEQ ICAR EI IQUOTE TIMES))

ICOND IllOOPP E
ICONS ICAR E)

(COR P))1

(RESTORElI I
IT IRESTOREII II

(lAND ISETQ P ICONS ICAR EI ICDR P)II
IEACHP E PI I

IRESTORElI)
IT (RESTORE)) II

IT (RESTOREI) II
IT NILI)))))

DEFINE
IIILOOPP ILAMBDA IE PI

IPROG IX Z EEl
ISETQ EE

ICOND IINOT IEQ ICAR EI ICAR PIlI
I LIST ICAR PI EI I

(COND

lOOP

lS

l8

lZ

Ll7

Ll9

Ll8

LlO

III

LlZ

Ll3

Ll4

LlS

Ll6

l47

195

CT E)))
(SETQ Z PI
(SETQ ANS (CONS NIL ANSI)

(SETQ Z (CDR Z))
(CONO ((NULL Z)

(RETURN (CONO ((NULL (CDR EE)) (RESTOREl))
(T (RES TORE I) I)))

(SETQ l(EE)

(COND ((NULL (CDR X)) (GO Lln)
((OPI (CUR Z)) (GO UO) I
((EQ (CAAR Z) (QUOTE EXPTII (GO lI4))
((Ml (CAOR X) (CAR 1)) (GO lZ)))

(SETQ X (CDR X))
(GO lS)

(SETQ ANS (CONS (CONS X (CDR X)) ANS))
(RPlACO X (COOR X))
(GO lOOP)

(COND ((NOT (EQ (CAR P) (QUOTE PLUS))) (GO 118n
((Ml 0 (CAR Z)) (GO LOOP)) I

(RETURN (RESTORE))

(CONO ((AND (EQ (CAR P) (QUOTE TIMEStt
CMl 1 (CAR Zf))

(GO lOOP))
(T (RETURN (RESTORE))) I

((EQ (CAAR II (QUOTE COEFFT)) (GO lll)'
((EQ (CUR Z) (QUOTE COEFFPI t (GOL12) f
((EQ (CUR II (QUOTE COEFFPTn (GO LUll
((EQ (CUR zj (QUOTE COEFFTT)) 1GO Ll6)t
((EQ (CAAR zt (QUOTE COEFFPP)I (GO l47))
((EQ (CUR Zl (QUOTE ZEPown IGO Ll4))
((EQ (CUR Z) (QUOTE DVCOEt) (GOl43))
(T(GOllS)))

(COND ((COEFFPORT EE (CAR Z) (QUOTE (TIMES 1 HIll))
(GO LOOP))

(T (RETURN (RESTORE)I)

(COND ((COEFFPORT EE (CAR Z) (QUOTE (PLUS 0 Hill II
(GO LOOP))

(T (RETURN (RESTORE»))

(CONO ((COEFFPT EE (CAR Z) NIL) (GO LOOP))
(T (RETURN (RESTOREt)))

(CONO ((ZEPOW (ClOR X) (CAR Z)) (GO LZI) (T (GO L8))

(CONO ((lOOP EE (COAR Z)) (GO LOOP»)
(T (RETURN (RESTORE))))

(CONO ((COEFFTT EE (CADAR Z) NIL (QUOTE TIMES)
(GO lOOP))

(T (RETURN (RESTORE)))

196

... ' ..:; _ .itl. ~ :

leOND IleOEFFTT EE leAOAR Z' NIL lQUOTE PLUS"
IGO LOOP' •

IT IRETURN IRE~TORE'" 1
Llt3

leOND IIDVCOE (eADR X' ICAR l' NIL' IGO LOOP.)
IT IGO LS" ••••• r

DEFINE
I(ICOEFFPORT

(UMBDA
IE P IND)
IPROG IX 1 EE)

ISETQ ANS ICONS NIL ANS"
ISETa EE' E) .
(COND

I I EQ ICAR IND) IQUOTE PLUSH IGO 130))
IIEQ ICAR E) IQUOTE PLUS.) IGO L3i))
ClEQ ICAR EI IQUOTE TIMES)) IGO 132J) •

ISETQ EE ILIST IQUOTE TIMES) E))
IGO L2)

L32

L31

l30

L35

lZ

ICOND IICAODR IND) IGO L2)1 (T IGO Li))1

leOND
IINOT IClDOk IND" IGO Ll))
I INULL ICDDR E)) IGO L2IJ
IT IGO LZO)))

ICOND ClEQ ICAR EI IQUOTE PLI1SJI IGO 135IJ.
ISETa EE (LIST IQUOTE PlUSI E)I
lGO l2)

ICOND
I INULL ICDDR E)) IGO lZIJ
IIEQ ICAR HIDI IQUOTE PLUS •• IGO 12) I
IICADDR lNoJ IGO L2J)
IT IGO LU))

L6

ICOND ClEQUAL E 0) IGO l7IJ)
I serQ I ICDR PI1

lOOPi
I sera I ICDR IH
leOND IINUlL ZI IGO U).)
I SETa X EE)

ICOND
IINUlL ICDR X)) IGO LlOI'
IIEQ ICAAR II IQUOTE COEFFTT)) IGO l16).
IIEQ ICAAR I) IQUOTE COEFFPPI) IGO'l171)
IIMi ICADR XJ ICAR ZI. IGO l51 ••

ISETQ x ItOR X)) ,
IGO l6)

L5

L17

L16

l7

Iseru ANS ICONS ICONS X ICDR XII ANSIJ '
IRPLACD X ItDDR X),
I GO LOOPlI

ICOND IICOEFFTT EE leADAR I) NIL IQUoTe PLUS •• IGO LOoPi.l)
IGo L7.

ICoND IICOEFFTT EE ICADAR II NIL (QUOTE TIMES)) IGO lOOPil ••

197

(CONO
(INULL ICOR EE))

(RETURN (CONO ((TESTA ICAOR P) ICAOR INO) Nil)
(CONO IICAOOR IND) (RESTORE1)) (T IRESTOREZ))))

(T IRESTORE)) I))
((NULL ICOOR EE))

(RETURN ICONO ((TESTA (CAOR PI ICAOR EE) NILI
(PROGZ (SETa ANS

(CONS ICONS EE ICOR EEl) ANS))
(PROGZ (RPlACO EE (COOR EE»)

(CDNO (ICAOOR INO)
(RESTORE1))

IT IRESTOREZ)) I»))

l69

LlO

L20

Ll

L3

Ll2

l4

IT IRESTOREI) I)))

ISETa x (COPYl EE)I
ICONO (INULl ITESTA ICAOR PI X NIL)) (RETURN (RESTORE))

IICAOOR lNO) (RETURN IRESTDREl))))
ICONO llANO (COORE) (EQ (CAR INO) (QUOTE PlUSI)1

IPROGZ ISErQ ANS ICONS (cONS EE (COR EE») ANSI' IRPlACO EE Nil»))
IRETURN IRESTDREZ))

ICONO IINULl IHl (CAOR INO) (CAR I))) (RETURN IRESTORE))I)
IGO LOOPi)

IRETURN (RESTORE))

ISETa x EE)

ICONO ((NULL (COR X)) (GO Lit))
(ICOEffPORT ICAOR X) P (LIST (CAR INO) (CAOR INO) T)t (GO LiZ)))

I SETa X ICOR XII
IGO l3)

(SETQ ANS ICONS (CONS X (CDR X,) ANS"
IRPLACO X ICOOR Xl)
(RETURN IRESTOREZ),

ICONO IINUll IMl ICAOR INO' PI) IRETURN (RESTORE)I»
IRETURN IRESTOREZ») I»))'

Ll9

DEFINE
I((COEFFPT ILAMBOA (E P IND)

(PROG (I III
ISerQ I

ICONO (IEQ (CAR E) (QUOTE PLUS)) E)
IT HIST lQUOTE PLUS) "E))))

(SETQ ANS (CONS Nil ANSI)
ISE TQ II ICONS I QUOTE COEFFTI ICOR P))

ICONO ((NULL (COR I)' (GO l21)
IINUll (Hi (CAOR II Ill) (GO l20))

L22
(SETQ ANS iCONS (CONS I (CDR lI' ANS)'
IRPLACO I (COOR I))
IGO Ll9)

L20

L21

(SETa I ICOR I))
(GO 119)

(SETQ I
(FINOIT (CONO IIEQ ICAAOR P) IQUOTE VAR.»)

198

I CAR (COOAOR P I I I
IT (CAAOR PII III

{COND ((I~UlL II
IRETURN ICONO (INUll (TESTA (CAOR PI

o
NIL II

IRESTOREI I
(IND {RESTORElll
(T (PROG2 {RESTORE21 Oil III

I(NULl {COR III
(RETURN ICONO (INUll (TESTA ICAOR PI

(CAR l I
NIL II

(RESTOREI I
(IND (RESTORElI1
(T (PROG2 (RESTORE21

(CAR II) I I II I
(SETQ l (SIMPPLUS III
(COND (NULL (TESTA (CADR PI l (QUOTE COEFFPTIII

(RETURN (RESTOREII I
(I NO (RETURN I RESTORElIII I

IRETURN (PROG2 (RESTORE21 ZII III
IEACHP ILAMBDA (E PI

(PROG NIL
(CONO ((NOT {EQUAL (LENGTH EI (lENGTH Pili

IRETURN Nlll II
ISETQ AHS (CONS NIL ANSII

EACHPL
(SETQ E (CDR Ell
ICOND ((NULL EI (RETURN (RESTORElIII

IINULl (H1 ICAR EI ICAOR PIlI
IRETURN (RESTOREII II

(SETQ P (CDR PI I
(GO EACHPLl III

(IEPOW ILAMBDA IE PI
(PROG NIL

ISETQ ANS (CONS NIL ANSII
(COND IIATOH EI IGO l6111

L5

L9

UO

LS

L7

L6

(COND «NOT (EQ (CAR EI (QUOTE EXPT)II IGO LSII
«NOT (HI (CAOR EI (CAOR Pill (GO lSII
«NOT (HI rCADDR EI (CAODR PII)

IRETURN (RESTOREII II

(RETURN IRESTOREl11

ICONO llANO INOT IHI 0 (CADOR PIli
(NOT (HI 1 (CADR PIli I

(RETURN (RESTOREII II
IGO L91

ICOND «NOT (Ml E (CAOR P) II IRETURN IRESTOREIII
((NOT IH1 1 ICAOOR PIll IRETURN (RESTORE))I

IGO L91

(co,·m I (NOT IHI 0 ICADR PI)) IRETURN IRESTORE) I II
IGO 191

ICOND «(EQP E 11 (GO UOII
«EQP E 01 (GO L711
(T IGOlSII IIII

199

[LOOP [LAMBOA [E LPI
(PROG [Z V XI

[SETQ ANS [CONS [QUOTE *LOOPI [CONS NIL ANSIII
[SETQ X LPI

L5

L6

LlO

La

[SETQ Z EI

[CONO [[NULL [M! [CADR Z) [CAR XIII [GO LlOIII
(SETQ V (CONS (LIST X I [CDR ZII VII
[SETQ ANS [CONS [CONS Z [CDR ZII ANSII
[RPLACD Z (CDOR III
(SETQ X (CDR XII
[COND ([NULL XI (RETURN (RESTORE21111
(SETQ ANS (CONS [QUOTE *LOOP) ANSII
[GO LSI

(SETQ I (CDR ZI)
(COND [[NOT [NULL [COR IIII (GO L611

([EQUAL X LPI [RETURN (RESTOREII)

[SETQ X [CAAR YII
[RPLACD (CADAR YI (CADDAR YI)
[SETQ Z (CADDAR YI)
[SETQ Y (CDR YI I
(SETO ANS (CDR ANSII
(RESTORE31
(GO L61 11)11

DEFINE
[[[RESTORE3 [LAMBDA NIL

(PROG NIL
Ll

(COND ([NULL ANSI (ERROR (QUOTE RESTORE31))
[(NULL (CAR ANSII [ERROR (QUOTE RESTORE3111
[[EO (CAR ANSI (QUOTE *LOOP)) (RETURN NIL"
«NOT [ATOM (CAAR ANSIII

(RPLACD [CAAR ANS I [CDAR ANS II II
(SETQ ANS (CDR ANSII
[GO LlI II)

(RESTORE (LAMBDA NIL
(PROG (Y)

(SETO Y ANSI
Ll

[COND ([NULL VI (RETURN NILII
[[EQ [CAR VI (eUOTE *LOOPI)

(PROG2 [RPLACA Y (CADR YI)
(RPLACO Y (CDOR Y I j I)

[(NULL [CAR YII
IRETURN [PROG2 [SETO ANS (CDR VII NILl) I

[[NOT (ATOM [CAAR YI I I
[RPLACO [CAAR YI (CDAR YII II

(SETQ Y [CDR YII
(GO LlI I I I

[RESTOREl (LAMBDA NIL
[PROG [YI

L2
[SETQ Y ANSI
[CONO [[NULL ANSI [RETURN TIl

[(NULL (CAR ANSII
(RETURN (PROG2 (SETQ ANS (CDR ANSII TIl I

[(NOT [ATOM (CAAR ANSII) [GO L311 I
Ll

L3

200

(COND ((NULL (CDR YU IRETURN Tt)
((NULL ICADR YI)

(RETURN (PR062 (RPlACD Y ICDDR YII TIl
ttNOT IATOM tCAADR YI)I

(PROG2 t RPLACD CCUOR YI (CDADR YII
(RPlACD Y ICOOR YII II

IT (SETQ Y ICDR YI)) I
(GO Lt)

(RPLACD '(CAAR ANSI tCDAR ANSI)
(SETQ ANS (CDR ANSI)
IGO L21 U)

11

(RESTORE2 (LAMBDA NIL
IPROG IY)

ISETQ Y ANSI
ICOND nNUll ANS) (RETURN Tt I

((NUll ICAR ANS)I
(RETURNIPROG2 tSETQ ANS (CDR ANS» T») II

(COND I(NUlL (CDR YII (RETURN TIl
I tEQ (CADR VI (QUOTE -LOOP I I

(RPLACO Y (CDDR 'I) I
I(NULL CCADR Yl)

IRETURN' I PROG2 (RPLACD Y (CODR Y.. n I U
(SETQ Y ICDR YI) ,
(GO LU ..)

(TESTA- (LAMBDA (ALA EXP LOCI
(eOND lIeONO nEQ leADR ALAI (QUOTE FREE" IFREE EXP))

I (EQ ICADR ALA) lQUOTE NUMBERPI)
INUMBERP EXP))

IIEO leADR AUI lQUOTE TRUEU n
IT IAPPlY leADR AUI

1FINDTHEM ICDDR ALAI I
lAUsn II)

ICOND lINOT tMEMBER (CAR AUI SPUSTH
(PROG2 tS!TQ ANS

, teONS ICONS lCAR ALAI EXP)
ANS)J

T))
ITn ..

IT NILI »))
IFlINDTHEM (LAMBDA CARGSI (FINDTl ARGS ANS ICONS EXP NILU))
(FINDTl (LAMBDA IX Y ZI

ICOND (INULL X) ZI
I (NULL YI

IFINDTl ICDR X)
ANS
INCONC Z (LIST (EVAL ICAR X) IAUSn))) n

IIEQ (CU~ Y) (CAR' XI)
'IFINaTl (CDR XI AHS (NCONC Z ICONS (CDAR Y) NIL)))

(T (FINDTl X ICOR Y) Z))j)))
DEFINE
IIIOP ILAMBDA IFN)

IMEMBER FN
IQUOTE (PLUS TIMES

EXPT
SIN

COS
TAN
LOG
SEC

Ll

201

INTEGRAL
ARCSIN
ARCCOS
ARCTAN I»~»~

ICOPYI ILAMBoA IA) ICOND I INUll A) NIL) n ICONS ICAR A) ICOPY! ICoR AI»)))))
(FINoIT (LAMBDA IA)

IPROG IVZI
(SETO Y ICONS NIL ANS»

Ll
(COND (INULL ICoR V» IRETURN Z»

I IN.ULL (CADR V» IRETURN Z»
I(EO ICAADR V) A)

(PROG2 ISETO Z INCONC Z (LIST ICDAoR V»)))
(RPLA"Co V ICoDR Y» »

IT ISETQ V ICDR Y»)))
(GO Ll) I))

(FREE (LAMBDA (A)"
ICONo (IATOMA') (NOT (EO A VAR»)

IT UNO (FREE (CAR A)) IFREE (COR A)))) II)
10PI ILAMBoA IA)

(MEMBER A
(QUOTE (COEFFPT COEFFP

COEFFT
ZEPOW
COEFFPP
COEFf'TT
LOOP I)~~)

(COEFFTT (LAMBDA IEXP PAT INC OPINo)
(PROG IRES Z)

(SETO ANS (CONS NI"L ANS))
(COND (lAND INo (NOT IEQ (CAR,EXP) OPINo»)

(SETQ EXP (LIST OPINo EXP» »
(SETO Z EXP)
(SETO SPLIST ICONS ICAR PAT) SPLIST»

ICONo IINULl ICDR Z)) IGO l3))
(nESTA PAT ICAoR Z) NIL) IGO L2»

I SETQ Z ICDR Z))
IGO Ll)

L2

L3

Lit

ISETQ ANS ICONS ICONS Z ICDR Z» ANS»
ISETQ RES ICONS (CADR ZI RES»
IRPLACo Z (CoDR Z»
(GO 11)

(SETQ SPLIST (COR SPLIST»
(CONO (RES IGO Lit»

(INOT (TESTA PAT
(CONO IIEO OPINO

IQUOTE' PLUS)
o)
nU)

NIL »)
(RETURN (RESTORE))J

(CONO lIND (RETURN IRESTORE1))
(T IRETURN (RESTOREZ))))

(SETQ RES
(CONo IICoR RES) ICONS OPIND RES))

n (CAR RES»)1
ISETQ ANS ICONS (CONS ICAR PAT) (SIMP RES» ANSI)

LOOP

202

ICOND (IND IRETURN (RESTORE1III
IT IRETURN IRESTORE2111 IIII

lTESTA
ILAMBDA (ALA EXP BI

IPROG (V Z FUNC VALl
ICOND ((NOT (EQ ICAR ALAI IQUOTE VAR*j I I

IRETURN ITESTA* ALA EXP NILII I~
(SETQ Z ICADR ALAII
(SETQ ALA ICDDR ALAII

(COND (INULLZI
IRETURN IPROG2 ISETQ V

ICOND IVAL (141 EXP VII
IT lTESTA* ALA

EXP
NIL 1111

(COND llNULL VI NILI
IfUNC ISET ICAR ALAI EXPII
IT VI 1111

IIEQ ICAR ZI IQUOTE SETII ISETQ FUNC TIl
..c IEQ ICAR II (QUOTE UVARI I

(COND IISETQ V
ICDR (SASSOC (CAR ALAI

ANS
lQUOTE NILlI III

(SETQ VAL TI I
IT HI LI I I

IIAND IEQ B IQUOTE COEffPTII
tEQ ICAAR ZI (QUOTE COEFFPTII

(SETQ ALA ICADAR ZlI I I
ISETQ Z ICDR ZII
IGO lOOPI I)J II

SCHYUOS, REPLACE, DIFf

DEFINE
(1ISIMPPlUS

I LAMBDA
I EXP I
IPROG IV IHD I WANS A BAlI

ISETQ A 01
B

BB

C

AA

ICOND I (NULL EXPI (GO AAI I I
(SETQ V (SIMP ICAR EXPIII
ICONO

IIEQ (CAR VI IQUOTE PlUSI I IGO CI I
(INUMBERP VI ISETQ A IPLUS V AlII
I T I SETQ Z ICONS V lI)J I

(SETQ EXP ICDR EXPII
(GO BI

(CONO
IINUM8ERP ICAOR VII

IPROG2 ISETQ Z IAPPEND ICDOR VI III ISETQ A IPLUS ICADR VI UII
IT (SETQ I IAPPEND ICOR VI ZIlI I

IGO BBI

ICOND

203

«NULL Z) (uO EIII
«(NULL (CDR ZII (GO EEII
«EQ (CAAR Zl (QUOTE TIMESI) (GO Ell I

H
I SETQ Al 1l
I SETQ IND T)
(SETQ B (CAR Zl)
IGO FFI

E
(COND I(NOT (NUMBERP (CADAR ZIII (GO PI)I
{SETQ Al (CADAR ZII
(COND «NULL (CDDDAR ZI) (GO GI)I
(SETQ B (CDDAR Zl)
(SETQ IND NIL)
(GO FF)

P
(SETQ Al 11
(SETQ B (CDAR Z))
(SETQ IND NIL!
(GO FFI

G
(SETQ B (CADDAR Zll
(SETQ IND Tl

FF
(SETQ Z (CONS (QUOTE PLUS) (CDR ZII I
(SEH.! V

(COND
(IND (COEFFPT Z (LIST NIL {QUOTE (C NUMBERPII BI NILlI
IT (COEFFPT Z {CONS NIL (CONS {QUOTE (C NUMBERP) I BI) NILlI I I

(SETQ V (PLUS Al VI)
(COND

({ zeROP VI T)
{ (ONE? VI

ISETQ W (CONS (COND (IND BI IT (CONS (QUOTE TIMESI B))I WI) I
(IND {SETQ W (CONS (LIST (QUOTE TIMES) V B) Will
(T (SETQ W (CONS ICONS IQUOTE TIMESI (CONS V BII Will I

(SETQ Z (CDR ZII
(GO AA I

EE
(SETQ W (CONS (CAR ZI WI)

EI
(SEn) W (COND (IZEROP AI W) IT (CONS A Will)
(RESTORE)
(COND

«(NULL WI (RETURN 0))
((NULL (CDR WII (RETURN ICAR W)I)
{T (RETURN (CONS (QUOTE PLUSI W)II)1)))1

DEFINE
«(SIMPTIMES

(LAMBDA
(EXP)
(PROG (V DIV Z W A Al 8 ZZl

(SE TO A I I
tl

(COND «NULL EXP) (GO STARTII)
(SETQ V (SIMP (CAR EX?)I)
(COIllD ((EO (CAR V) (QUOTE TIMES)I

(COND «NUMBERP (CADR VI I
IPROG2 (SETQ A (TiMES (CADR VI AI)

(SETQ Z (APPEND ICDDR V) Z)) I)

G

204

IT (SETQ Z UPPEND (CDR V) ZI))))
(AND (NUMBERP Y) (IEROP V)) (RETURN 0))
«NUMBERP V) (SETQ A (TIMES VAl))
(T (SETQ 1 (CONS V 1))1)

(SerQ EXP (CDR EXP) I
(GO B I

START
(COND «AND (EQ (CAAR 1) (QUOTE PLUS) I

(NULL (CDR ZI)
(NULL WI
(NOT [ONEP A)))

(RETURN [PROG23 (CSETQ SIMPIND TI
[TIMESLOOP A [CDAR 1))
(CSETQ SIMPIND NIL) I)))

(CONO «NULL 1) (GO El))
«NULL (CDA ZlI (GO EE))
(EXPTSUM [RETURN (CONS [QUOTE TIMESI (CONS AI))))
[[EQ (CAAR l) [QUOTE EXPTI) (GO GIl)

(SETQ Al 11
(SETQ B (CAR l))
(GO FF)

(SETQ B (CADAR 1))
[SerQ Al

(COND ((NUMBERP (CADDAR I)) (CADDAR 1)1
(T (CONS (CADDAR l) NllI) »)

FF

K

JK

(SETQ 11 1)

(COND [(EQ (CAlOR III [QUOTE EXPTI) (GO H))
[(142 [CADR ZZI B NIlI (GO 1)1)

(COND «AND QUOTIND
[EQ (CAR B) (QUOTE PLUS I)
(EQ (CAAOR HI (Quore PLUS) I
(SETQ V [HATCHSUMI B(CADR 11))

lliO 0 I VlI)) .

(SET" ZZ (CDR ZZ) I
J

H

JJ

L

(COND [(COR 11) (GO KI))
(GO H)

(CONO [(142 (CAOADR III B NI~) [GO L)))
(COND(UNO QUOll NO

(EO [CAR B) (QUOTE PLUS))
(EQ (CAR (CADADR UII [QUOTE PLUS))
[SETQ Y [MATCHSUMI B (CADADR 11))))

I GO 01 V2 I II
IGO JKI

(RPLACD 11 (CDDR 1111
IGO JI

(SETQ Al ICONO IINUHBERP AI) (ADDI AI)) (T (CONS 1 UtI)~
IGQ JJI

I SETO Al
(COND I(ANO (NUMBERP AI) (NUMBERP (CADOAR (CDR ZI))I)

(PLUS Al (CADDAR (CDR 11»)))
IT (CONS (CADOAR (CDR 1111

(COND «ATOM AI) [LIST AI)) (T A1)1 1)11

205

(GO JJ I
1'1

(Si.:TQ Al (COND ((NU1'1BERP All All IT [SIMPPLUS AlIJ))
(SE TQ W

(COND ((NUMBERP All
(COND ((ZEROP AI) W)

((ONEP All (CONS 6 W))
IT (CONS (LIST (QUOTE EXPT) B All W)J))

(T (CONS (LIST (QUOTE EXPT) 6 All WI))1
(SETQ Z (COR ZII
(GO STARTl

EE
(SETQ W (CONS (CAR Zl WI I

E1
(SE TQ A

(COND ((NULL WI Al
((NULL (CDR W) I

(COND ((ONEP A) (CAR WI)
(T (LIST (QUOTE TIMES) A (CAR WI))))

1I0NEP A) (CONS (QUOTE TIMES) W))
(T (CONS (QUOTE TIMES) (CONS A W))))1

(COND (INULL DIV) (RETURN All
(T (RETURN (SIMPTIMES (LIST (CONS (QUOTE TIMES) DIVI A)J)))

DIV1
(COND ((AND INU1'1f>ERP Yl [SETQ A lTIMES A Y)l) (GO III

([SETQ DIV (CONS Y DIV)) (GO Ill)
DIV2

[SETQ DIV [CONS (SIMPEXPT (LIST Y (CAR (CODADR Zlll)) DIV))
(GO L I I)) I)

DEFINE
((IS IMP;:XP T

(LAMbDA
(EXPI
(PfWG (A 6l

(S E TQ 6 (S It~ PIC AD REX P)))
(SUW A (SIMP (CAR i.:XP)) I
(COND

((EyP A 0) (RETURN OIl
((AND

(EI.1 (CAR Al (QUOTE EXPTlI
(SETQ B (SIMPTIMES (LIST B (CADDR AI)J)
(Si.:TQ A (CADR A)I
NIL I

,II I L I
((EQP 6 01 (RETURN IJ)
((EQP 6 1) (RETURN At)
((EQP A 1) (RETURN III
([A~D (1IiUMBERP AI (NUM8ERP 8))

(RETURN (COND
[I"JOT EXPTINDI [EXPT A 61)
llANO (FIXP BI (GREATERP B -II) [EXPT A B))
(T (LIST (QUOTE EXPTl A 6)) J)l

«(EQ (CAR Al (QUOTE TIMES))
[RETURN ICONS (QUOTE TIMESI (EXPTLOOP (CDR AlII)

«AND EXPTSUM (EQ (CAR 61 (QUOTE PLUS) I I
(RE TURN

(CO"JS
(WUOTE TIMES)
(MAPLI ST (CDR B)

(FUNCTION (LAMBDA [C) (SIMPEXPT (LIST A (CAR C))))l I)))

----~--------

206

((NOT (ATOM BI I
(RETURN

(PROG [WI
[RE TURN

(CGND
((NOT (SETQ W

[M2
6
[QUOTE (PLUS (COEFFT (C TRUElI

(LOG (B1 TRUEI (A TRUEII
(COEFFP (E TRUEII II

NIL III
[LIST (QUOTE EXPTI A BI I

((NOT IEQUAL A (SUBLIS W (QUOTE B11111
(LIST (QUOTE EXPTI A BI I

IT
(SIMPTIMES (LIST

(SIMPEXPT (LIST (SUBLIS W (QUOTE All
(SUBLIS W (QUOTE CII II

[SIMPEXPT [LIST A (SUBLIS W (QUOTE EIIII 111111111
(RETURN (LIST (QUOTE EXPTI A B)I III

(EXPTLOOP
(LAMBDA

(AI
(PROG23

ICSETQ SIMPIND TI
(MAPLIST A (FUNCTION (LAMBDA (CI (SIMPEXPT (LIST (CAR CI BIIIII
(CSEnl SIMPINO NIl) III

(SIMP
(LAMBDA

(EXPI
(PROG (ll

(RETURN
(CONO

((ATOM EXPI EXPI
(SIMPIND EXPI
((NULL (SETQ l (GET (CAR EXP) (QUOTE SIMPII))

(CONS (CAR EXP)
(MAPLIST (COR EXP) (FUNCTION (LAMBDA (C) (SIMP (CAR CIIII) II

liEU l (QUOTE SIMPTIMESII (SIMPlIMES (CDR EXPIII
((EC,J l (QUOTE SIMPPLUSI I (SIMPPLUS (COR EXP) II
((EQ Z (QUOTE SIMPEXPT)) (SIMPEXPT (COR EXP»)
(T (APPLY l (LIST (CDR EXPI) (ALIST)) 1)1)')1

ATTRIti
{PLUS {SIMP SIMPPLUSII

ATTR 18
[TIMES (SIMP SIMPTIMESI)

ATTR IE;
{':XPT (SIMP SIMPEXPTI)

DeFINE
(({SIMPLOG

{LA~\BDA
(A I
{I'ROG {B I

(SETl.l 6 {SIMI' (CAOR AlII
(SETQ A (SIMP (CAR AlII
(CONO ((EQUAL A 61 (RETURN 11)

207

IlfQP B 11 IRETURN 0).
IIEQ ICAR BI IQUOTE EXPTII

ICOND llEQUAL A ICADR BlI IRETURN ICADDR Bill
IT IRETURN ILIST IQUOTE TIMESI

ICAODR BI
'LIST lQUOTE LOGI A (CADR BII 1)111

IT IRE TURN III ST IQUOTE tOG' • .BIll 1111 1I

ATTR [B
ILOG IS[MP S[MPLOGII

DEF[NE
IIIS[MPTR[G

I LAMBDA
IA 8 C 01
IPROG IVI

IRETURN ICOND
IIEQUAL 0 BI CI
IIATOM 01 ILIST A OIl
II SETQ V

ICOR ISASSOC ICAR 01
IGET A (,QUOTE S[MPTRIGII
IQUOTE NILLl Il)

IS[MP ISUBST ICADR 01 IQUOTE XI VII
IT 'LIST A DlI III 1I

ISIMPTR[GI ILAMBDA IAI ISIMPTR[G IQUOTE SINI 00 ISIMP ICAR A)lI11 II

ATTRIB
ISIN ISIMP S[MPTR[Glll

ATTRIB
ICOS ISIMP SIMPTRIG211

DEF[NE
IIISIMPTRIG2 ILAMBDA IAI (SIMPTRIG IQUOTE COSIO 1 ISIMP ICAR AIIIIIII

DEf[NE
III TlMESLOOP

ILAMBDA
lA BI
ICONS

IQUOTE PLUSI
IMAPLlST B
IfUNCTION ILAMBDA ICI

IS[MPTIMES IPROG23 ICSETQ SIMP[ND TI ILIST A ICAR CII ICSETQ SIMPIND NILII IIIIIII
I EXPAND

ILAMBDA
lA BI
ISIMPPLUS IMAPLIST B IFUNCTION ILAMBDA ICI ITIMESLOOP ICAR CI AIIIIl II·

IPROG23 ILAMBDA IA B CI BII II

DEf[NE
IIISIMPTAN ILAMBDA IAI

ICOND IIEQ ICUR Al IQUOTE ARCTANII IS[MP leADAR Atll
IT IS[MPTR[G IQUOTE TAN) 0 0 ISIMP ICAR AIIII III

ISIMPARCTAN (LAMBDA IAI
ICONO IIEQ ICAAR Al IQUOTE TANil IS[MP ICADAR AlII

IT IS[MPTR[G IQUOTE ARCTANI 00 ISIMP ICAR Atlll 1l1l1

ATTR [.8
ITAN IS[MP SIMPTANII

208

ATTR IB
IARCTA~ ISIMP SIMPARCTAN) I

DEfINE
IllSIMPDIffERENCE ILAM8DA IAI

ISIMPPLUS ILIST (CAR Al
ISIMPTIMES 11IST -1 ICADR A))) 1))1

ISIMPQUOTIENT ILAM8DA IAI
ISIMPTIMES ILIST (CAR Al

ISIMPEXPT ILIST ICADR A) -1)) lUI
ISIMPMII'4US ILAMBDA IAI ISIMPTIMES ILIST -1 ICAR AIIIII Ii

ATTRIB
IDIFfERENCE ISIMP SIMPDIfFERENCEII

ATTRI8
IQUOTIENT ISIMP SIHPQUOTIENTII

ATTRIB
IMINUS ISIMP SIMPMINUSII

ATTRIB
ISIN ISIMPTRIG IIARCSIN • XI

IARCCOS EXPT IDIFFERENCE 1 IEXPT X 2)1 D.SEQI
IARCTAN QUOTIENT X IEXPT IPLUS 1 IEXPT X 2») Q.SEOI) I))

ATTR liS
ICOS ISIMPTRIG IIARCSIN EXPT IDIFFERENCE 1 IEXPT X 2») Q.SEQI

(ARCCOS • XI
IARCTAN EXPT IPLUS 1 IEXPT X 21) -Q.SEQI)11

ATTRIB
ITAN ISIMPTRIG IIARCSIN QUOTIENT X IEXPT IDIfFERENCE 1 (EXPT X 2») Q.SEQII

IARCCOS QUOTIENT IEXPT IDIFFERENCE 1 IEXPT X 21) Q.SEQI XI
IARCTAN XI III

ATTR IB
IARCSIN ISIMPTRIG IISIN • XI ICOS PLUS X IQUOTIENT PI 2)1111

ATTRIB
IARCCOS ISIMPTRIG {ISIN DIFFERENCE X IQUOTIENT PI,2I} ICOS • X»))

ATTRIB
IARCUli ISIMPTRIG'llTAN. X))))

DEFINE
IIINILL ILAM8DA NIL IQUOTE INILlI))))

DEFINE
IIISIMPARCSIN ILAMBDA IAI ISIMPTRIG IQUOTE ARCSINI 0 0 ISIMP ICAR A))III

ISIMPARCCOS
ILAMBDA IAI

ISIMPDIFFERENCE ILIST ISIMPQUOTIENT ILIST (QUOTE PII 2))
ISIMPARCSIN ILIST All)111

ISIMPARCCOT
I LAMBDA I Al

ISIMPDIFFERENCE ILIST ISIMPQUOTIENT ILIST IQUOTE PII 211
ISIMPARCTAN ILIST AJI))11)1

209

ATTRIB
(ARCSIN ISIMP SIMPARCSINII

ATTRIB
(ARCCOS (SIMP SIMPARCCOSI)

ATTRIB
(ARCCOT (SIMP SIMPARCCOTlI

DEFINE
(((MATCHSUMl (LAMBDA (ASUM BSUMI

(PROG (Z W LENGTH MI NLENGTH QUaT .MINQUOTI
(CONO ((NOT (EQUAL (LENGTH AS"'MI (LENGTH BSUMIII

(RETURN NILl II
(SETQ Z (CAOR ASUMII
(SETQ W (COR BSUMII
(SETQ MINLENGTH 10001

LOOP

A

OUT

(SETQ QUOT (SIMPQUOTJENT. (LIST (CAR WI Z III
(SETQ LENGTH

ILENGTH ICOND ((EQ(CAR QUOTI
(QUOTE TIMES I

(CDR QUOT I I
IT (QUOTE ItHlIlI III

(CONO ((GREATERP LENGTH MINLENGTHI (GO AlII
(SETQ MINLENGTH LENGTHI
(SETQ MINQUOT QUOTI

ICONO ((EQUAL MINLENGTH 11 (GO OUTIII
ISETQ W (COR WII
(CONO IW (GO LCOPIII

(CONO I (M2 BSUM
(TIMESLOOP MINQUOT (COR ASUMII
NIL I

(RETURN MINQUOTl II
IRETURN NILI IIIII

DEFINE
(((SIMPCOT (LAMBDA IXI (LIST IQUOTE EXPTI (SIMPTAN XI -111111

ATTRIB
(CUT (SIMP SIMPCOTII

OEF INE
(((REPLACE (LAMBDA (OICT EXP11

(PROG23 ICSETQ SIMPINO Tl IREPLAC EXPlI (CSETQ SIMPINO NIlII II
(REPLAC

(LAMBDA
(EXP 11
(PROG (ZlI

(RETURN
(CONO

I(NULL EXP11 NIlI
(INOT (ATOM EXPlJ I

(CONO
(IEQ (CAR EXPll (QUOTE EVAlII

I PROG2 .
I SETQ Zl (EVAl (REPLAC (CADR EXPlll (AUSTIll
(PROG23

(CSETQ SIMPINO NILI

210

I~IMP III
(CSETQ SIMPIND Tl III

(lEO lCt." EXPll lOUOTE QUOTE*II (CADR EXPlIl
(T (PROG III WI)

ISETQ II IREPLAC ICAR EXPllII
ISETQ 1;1 (REPLAC (CDR EXPlll)
1,,!:'TURN (COND llANO lEQ II ICAR EXPlI) IEQ WI ICOR EXPlIII

E XPI I
(T lSIMPl ICONS II WillI 11)11)

((NUM3ERP EXPl) E XPll
(ISETO II ISASSOC EXPI DICT (FUNCTION ILAMBDA NIL NILllll

(CDR III)
(T EXP 1 I I) I) I

(SIMPI (LAMBDA (EXPl)
(CONO

((A TOM E XP 11 E XP 11
(NOT (GET (CAR EXPl1 (QUOTE SIMPI)) EXPll
(IEQ ICAR EXPl1 (OUOTE TIMES)) (SIMPTIMES (CDR EXPlIll
(IEQ (CAR EXPl1 (WUOTE PLUSll (SIMPPLUS (COR EXPlI)1
I(EQ (CAR EXPl1 lQUOTE EXPTlI (SIMPEXPT (CDR EXPlll1
IT (APPLY (GET (CAR EXPll lQUOTE SIMP)I (LIST (CDR EXPlll (AUSTIll)1111

DEFINt:
«((DVCOE

(LAMBDA (E P IND)
(PROG (X Y l)

(SETQ ANS (CONS NIL ANSII
(CUNO (UWT lEQ (CAR EI (OUOTE TIMESlll

(SETQ E lLIST (QUOTE TIMES) Ell I)
(SETQ l (CDR PII

LOOP
(SETQ l (CDR III
(CONO (INULL l)

(COND (TESTA (CADR PI ISIMP (COPYl EI) NIL I
lRETURN (COND lIND (RESTOREI) I

IT (RESTOREZ)) II)
IT (RETURN (RESTORE)I) III

(SE TO X E I
(GO LOOPZI

LOOPI
(SETQ X ICOR XII

LOOP2
ICOND (INULL ICOR XII (GO L61)1
(COND ((EO (CAAOR XI (QUOTE EXPTl) (GO Llll

«(Ml (CADR Xl ICAR ll) IGO LZII)
(GO LOOPII

LZ
(SETQ ANS (CONS (CONS X (CDR Xl) ANS))
(KPLACO X (COOR X) I
lGO LOOP)

Ll
(COi~D (IEQ (CAAR II (QUOTE EXPT)) IGO L311

I(NOT (1011 ICAOADR XI lCAR ll)l IGO LOOPll)
(SE TQ Y -1)

L7
I SE TW ANS (CONS (CONS X ICDR XI) ANS) I
(kPLACO X

(CONS (SIMP (LIST ICAADR xl
(CADADR X)
lLIST (QUOTE PLUSI

(CAR (CCDADR XI)

211

Y) I)
(CDDR XI)}

(GU LUOP)
L3

ICOND [IMl (CAOADR X) (CADAR l)) IGO LS)))
(GO LOOPI)

LS
(COND «(MI [CAR [CDOAOR X)) (CADDAR ll) IGO L2111
(SETQ Y (SIMPMINUS [LIST (CAODAR l)I)1
(GO L 71

L6
(COND (IMI 1 (CAR ll) (GO LOOP)))
(SE TQ E

(CONS (CAR E)
(CONS ISIMPEXPT (LIST (CAR Z) -111 (COR El) I)

(GO LOOP) J)l))

OU INE
(1101FFl (LAMBDA (EXP VAR) [PROG23 (CSET SIMPINO TI (OIFF EXPI (CSET SIMPINO NIL))))

lolFF
(LAMBDA

(EXP)
[CONo

«ATUM EXP) (CONO «E;j EXP VARI II IT 01))
[(EQ ICAR EXP) [QUOTE EXPT))

(COND
(FREE [CAODR EXP1)

(SIMPTIMES III ST
(CAooR EXP I
(SIMPEXPT [LIST [CAOR EXP) ISIMPPLUS 11iST (CAooR EXP) -11))1
(oIFF (CAoR exP))))1

I(FREE [CADR EXP))
[SIMPTIMES {LI ST

EXP
(SIMPLOG (LIST (QUOTE EI (CAOR EXPIII
[OIFF (CADOR EXP) I))

(T
lSIMPTIMES

(L1 ST
E XP
(Slf~PPLUS lLi ST

(SIMPTIMES III ST
(CADuR EXPI
(DIFF [CADR EXP))
[SIMPEXPT lLiST ICAOR EXP) -III I)

(SIMPTIMES ILIST (SIMPLOG [LIST (QUOTE E) (CAOR EXP})I
[oIFF (CADoR EXP)))11))I)ll

(IEQ (CAR EXP) (QUOTE TIMESII
(SIMPPLUS

(MAPLIST
(CDR EXP)
(FUNCTION (LAMbDA (YI

(SIMPTIMtS (CONS (DIFF (CAR V»~ (CHOICE ICAR Y) lCOR EXPII)) 1111)
«(EQ (CAR EXP) (QUOTE PLUSI)

(SIMPPLUS (MAPLIST [CDR EXP) (FUNCTION (LAMBDA (Y) (OIFF (CAR YIIII)) I
(T (APPLY (GET (:AR EXP) IQUOTE OIFFI) [LIST ICOR EXP)) (ALISTII) III

(CHO ICE (L AM BOA (A B)
[CUNO «EQ A (CAR BI) (CDR BII IT ICONS (CAR Bl (CHOICE A lCOR BI))11 1)1)

DEFINE
[[(BIGDIFF ILAM~OA lA B)

212

(SIMPTIMES (LIST (DIFF (CAR A)I
(SUBST (CAR AI IQUOTE XI BI 1111)1

DEFINE
II(OIFLOG ILAMBDA IAI

IPROG NIL ISETQ A ICDR All IRETURN (BIGDIFF A IQUOTE (EXPT X -11)1))))
IDIFSIN ILAMBDA (A.I (BIGDIFf A (QUOTE (COS XII)II
IDIFCOS (LAMBDA (AI (BIGDIFF A (QUOTE (TIMeS -1 (SIN xn))))
IDIFTAN (LAMBDA (AI Il:llGDlfF A (QUOTE (E.XPT ISEC XI 2)1J))
IDIFSEC ILAMBDA (AI IBIGDIFF A (QUOTE (TIMES (SEC XI CTAN Xililil
IDIFARCTAN ILAMBDA IAI IBIGDIFF A (QUOTE (EXPT (PLUS 1 IEXPT X 2)) -1111))
IDIFARCSIN (LAMbDA IAI

IBIGDIFF A (QUOTE IEXPT (PLUS 1 (TIMeS -1 IEXPT X 21n -O.SEO))I))
IDIFCSC (LAMBDA IAI (BIGDIFF l (QUOTE (TIMES-1 (COT X) (CSC Xllll)1
IOIFCOT ILAMBDA IAI IBIGDIFF A IQUOTE (TIMES -1 (EXPT (CSC X) 2Ill))1
IDIFARCCOS (LAMBDA IA) IMINUS IDIFARCSIN All))
IDIFARCSEC

ILAMBDA (AI
IBIGDIFF A

(QUOTE IEXPT HIMES X
IEXPT IDlfFERENCE (EXPT X 21 1)

O.SEO Il
-1)) III

(DIFARCCSC (LAMBDA (AI (SIMPMINUS ILIST (OIFARCSEC Alilil
IDIFINTEGRAL (LAMBDA IXI

(CONO (IEQ (CADR X) VARI (CAR XI)
IT ISIMP (LIST (QUOTE INTEGRAL) (DIFF (CAR XII (CADR·X)))I 11))1

ATTRIB
(I~TEGRAL (DIFF DIFINTEGRALll

ATTRIB
(SIN IDIFF DIFSINII

ATTR IB
(COS (DIFF DIFCOS)I

ATTRIB
(TAN (DIFF DIFTAN))

ATTRIB
(SEC IDIFF DIFSECII

ATTillB
IARCTAN IDIFF DIFARCTAN))

ATTRIB
(ARCSIN (OIFF OIFARCSINII

ATTR IB
(lOG IDlfF DIFlOGl1

ATTRIB
ICSC IDIFF DIFCSCII

ATTRIB
(COT (DIFF DIFCOTII

ATTRIB
IARCCOS IDIFF DIFARCCOSI)

213

ATTR 11:\
(ARCSeC (DIFF DIFARCSfCl1

ATTRIEl
IARCCSC (DIFF DIFARCCSC))

DEFINE
({(EXPAND2 (LAMBDA {EXP) {PROG23 (CSET SIMPIND Tl (EXPANDI EXPI (CSET SIMPIND NIL))1
)

(EXPA'JDl
(LAI~BDA

(tXP)
ICJ'JD

({ATOM EXP) tXP)
((AND (EQ (CAR EXP) (QUOTE EXPTl)

{'JOT (ATOM (CADR EXP»))
(INTEGERP (CADDR EXP)
(EQ (CAADR t XP 1 (QUOTE PLUS I)
(GREATERP (CADDR EXP) 01
(LESSP (CADDR EXP) 6))

(dPANDeXPT (CADR EXf'l (CADDR EXPI)
«(EQ (C~R EXP I (QUOTE TIMES)

(COND ((CODR EXP)
(PRODEXPAND (EXPANDI (CADR EXP) I

(EXPlli'JDl (CONS (QUOTE TIMES) (CDoR EXP)))1
«COR EXPI (EXPANDl (CADR EXP)I)
(T NI Ll I)

(T (SIMPl (MAPLIST EXP (FUNCTION (LAMBDA (C) IEXPANDI (CAR G)l)))ll III
(PRUOEXPAND (LAMI:lDA (II 1:\)

ICO'!D
("JOT (OR (EQ (CAR A) (QUOTE PLUS)) (EQ {CAR BI (QUOTE PLUSI»1

(SIMPTIMES (LIST A 8)))

«('Jor (EQ (CAR A) (QUUTE PLUSI)) (TIMESLCOP A (CDR BI)
«("JOT (EQ (CAK 1:\1 (QUOTE PLUSlll lTIMESLOOP B (CDR AliI
(T (EXPAND (CDR Al (CDR BIll 1)11)

DeFINE
((RATIONALIZE

(LAMBDA
(EXP)
I PROG (Ii)

(RE TURN
(COND

{(NOT IEQ (CAR EXP) (QUOTE PLUS))) NIL!
((SE TQ

W
(M 2

EXP
(QUDTE

(PLUS
(T I Mt S

(COEFFTT
(C

(FUNCTION
(LAMBDA

(C I
(Ml
C
IGUOH

IE XP T
IAA (FUNCTION (LAMBDA (AAI

214

(AND (NOT (EQUAL AA 111
(NOT (E QUA L AA 0 I I I) I I

(N (fUNCTION (LAM8DA (Nt
(AND (NUM8ERP NI (LESSP NOli 1I11111111

ICOEffTT (8 TRUEII I
(COEfFPT (A TRUEII II

NIL II
1REPLAcE W (QUOTE (TI HES (PLUS (QUOTl ENT A CI 8) C) II)

IT NILI 1111111

FORM,SIN,DERIVATIVE-DIVIDES

DEFINE
II(TRUEI ILAMBOA IAI (OR (NOT (NUMBERP All INOT (ZEROP A11111

(INTEGEKPI {LAMBDA (A) IINTEGERP ISIMPTIMES (LIST 2 AI""
(VARP ILAM8DA (A) (EQUAL A VARII)
(FREEl (LAMBDA IA) (AND IFREE A) (OR INOT (NUMBERP All (NOT (ZEROP A'))1I1
IFIXPI ILAMBDA (A) (AND INUMBERP AI IFIXP A))))
IMASTER ILAMBDA IA)

IPROG IIIIL
IFILEWRITE IQUOTE MAIIIOVE) IQUOTE LISP' IQUOTE MASTERI1
IFILEAPND

IQUOTE MANOVE)
IQUOTE LI SP)
ILiST (CONS ICAR AI ITRANSL (SIMP (COR A))))))

ICHAIN (QUOTE (ISAVE MOSES Tl (R fULMAN MANOVE))II
IflLESEEK (eUOTE MANOVEI (QUOTE ANSI)
(RETURN (SIMP (urHR (READ)))) 11111

DEfINE
III fORM

(LAMBDA
(EXPRESI
ICDND

((FREE EXPRESI NIL)
«ATOM EXPRESJ NIL)
«(MEMBER ICAR EXPRESI IQUOTE (PLUS TIMES)I)

I I LAMBDA III
IPROG {VI
LOOP

(COND
«SETQ V IFORM ICAR LI)) IRETURN VII
IINOT (SETQ L ICDR LJ II (RETURN NIL))
IT (GO LOOPII)"

ICOR EXPRES) II
IIMEMBER {CAR EXPRES, (QUOTE (LOG ARCTAN ARCSIN'"

ICOND
(I SE'fQ ARG

(1'12
EXP
ILIST

(QUOTE TIMES'
{QUOTE (COEFFTT (C RAT8PRIME'.'1
(COlliS (CAR EXPRES'

(COND (IEQ (CAR EXPRES' (QUOTE LOGII
(CONS (CADR EXPRES' (QUOTE lIB RATB)'"

IT (QUOTE {(B RATSIIII III
NIL II

215

IRATLOG EXP VAR ICONS (CONS IQUOTE Al EXPRESI ARGII I
IT

(PROG IY ZI
(COND

I I SE TQ Y
(FORM ICOND IIEQ (CAR EXPRESI (QUOTE LOGII (CADDR EXPRESII

(T ICADR EXPRESI) II)
(RE TURN YI I

«AND
IEQ ICAR EXPRES) [QUOTE LOGII
ISETQ Z 1M2 [CADDR EXPRESI C NILII
IFREE (CADR EXPRESI)
I SE TQ Y

{M2
EXP
IQUOTE {TIMES (COEFFTT IC RAT81) (COEFFTT 10 ELEMIII I
NIL I I J

(RETURN
I I LAMBDA

IA BCD BASEl
I SUB S T

EXPRES
VAR
(INTEGRATE

ISIMPTIMES ILIST
ISUBST

I LI ST
IQUOTE QUOTIENTI
(LI ST

(QUOTE DIFFERENCEI
(LIST {QUOTE EXPTl BASE VARI
A I

B I
VAR
C I

{LI ST
(QUOTE QUOTIENTl
lLIST (QUOTE EXPTl BASE VARI
B)

(SUBST VAR EXPRES 01))
VAR I) I

(COR ISASSOC IQUOTE Al ZI)
(CDR ISASSOC (QUOTE BI ll)
{CDR (SASSOC (QUOTE CI YI I
(COR [SASSOC (QUOTE 01 Y) I
(CADR EXPRES) III

(T IRE TUR N NI Ll I I I I I I
IIOPTRIG [CAR EXPRES))

(COND
IINOT ISETQ W (M2 (CADR EXPRES) C NIlll1 (FORM ICADR EXPRESIII
(f IPROG2 ISETQ POWERLIST fl (MONSTERTRIG EXP VAR ICADR EXPRES)III II

(IFIXPI ICADDR EXPRES)I (FORM ICADR EXPRESII)
([FREE (CADR EXPRESI)

ICOND
(ISETQ W

(M2
EXP
(QUOfE (TIMES (COEFFTT IR RATBII (EXPT IBASE FREEl IP POLYPI)I
NIL I)

(CALLALGORT (SUBLIS W (QUOTE (R P BASE))I VARI I
I(M2 ICADDR EXPRES) C NILl (SUPEREXPT EXP VAR (CADR EXPRESII)

216

(T (FORM (CAOOR EXPRESIII II
I (NOT (RAT8 (CAOR EXPRESI I I IFORM ICAOR EX PRES III
(lAND ISETQ W (M2 (CADR EXPRESI RATROOTFORM NILII

IDENOMFIND ICAooR EXPRESII I
(PROG2 ISETQ POWERLIST TI IRATROOT EXP VAR ICAoR EXPRESI WII I

(INOT IINTEGERPl ICAooR EXPRESII'I
ICONO 11M2 EXP CHE8YFORM NILI ICHEBY EXP VARII

(T (FORM ICAOR EXPRESIII II
IISETQ W (M2 ICADR EXPRESI 0 NILII

ICOND
II SETQ ARG

1M2
EXP
(QUOTE ITIMES

(EXPT IVAR VARPI -11
ICOEFFTT (AA FREEII
IEXPT ISQ MiDI -O.SEOI II

NIL II
ISIMP

ISU8ST
ILIST (QUOTE EXPTI VAR -11
VAR
IALGE82

ILIST
(QUOTE TlMESI
-1
IREPLACE ARG (QUOTE AAII
III ST

IQUOTE EXPTI
I SETQ Y

IREPLACE ARG
(QUOTE (PLUS !TIMES A IEXPT VAR 211 lTIMES 8 VARI CI III

-O.SEO II
VAR
Y
IREPLACE ARb

IQUOTE IIIQUOTE- CI • AI I(QUOTE- 81. BI IIQUOTE- AI. CII 111111
IT IALGEB2 EXP VAR ICAOR EXPRESI WII I)

I(SETQ W ("12 ICAOR EXPRESI E NILII
IPROG2 (SETQ POWERLIST TI IROOTLINPROO EXP VAR (CAOR EVPRESI WII

11M2 EXP CHEBYFORM NILI ICHEBY EXP VARII
I(NOT 1M2 ISETQ W IEXPAN02 ICAOR EXPRESHI (CAoR EXPRESI NILII

IPROG2
I SETQ EXP I SIMP (SUBST W ICAOR EXPRESI EXPI II
(FORM (SIMP ILIST IQUOTE EXPTI W ICAOOR EXPRESIIII II

I(SETQ W IRATIONALIZE ICAOR EXPRESIII
IPROG2

I SETQ EXP I SIMP ISUBST W (CAOR EXPRESI EXPIII
IFORM ISIMP (LIST (QUOTE EXPTI W (CADOR EXPRESIIII II

IT NIII I I I II

DEFINE
II I INTEGRA TE

ILAMBDA
IEXP VARI
(PROG IV ARG POWERLIST 8 W C 0 E RATROOTFORM CHEBYFORMl

ICOND IIFREE EXPI (RETURN (SIMPTIMES ILIST EXP VARIIlll
ICOND

IINOT IEQ (CAR EXPI IQUOTE PLUSIII IGO 011
IT

[RETURN

o

LOOP

SKIP

217

ISIMPPLUS IMAPLIST ICOR EXPI
IFUNCTlO"l ILAMBOA ICI IINTEGRATEI ICAR CIIII IIIII

ICONO IISETQ Y IOIFFOIV EXP VARII IRETURN VIII
I SETQ V

ICONO IIEQ ICAR EXPI IQUOTE TIMESI I ICOR EXPI I IT ILlST EXPI I I I
ISETQ C

IQUOTE IPLUS ICOEFFPT IB FREEl IX VARPII ICOEFFPT IA FREEI}II I
ISETQ RATROOTFORM

IQUOTE ITIMES
ICOEFFTT IE FREEII
IPlUS ICDEFFPT IA FREEl IVAR VARPI I ICOEFFPT IB FREEl I I
IEXPT IPLUS ICOEFFPT IC FREEl IVAR VARPII ICOEFFPT 10 FREE»I
-1 1111

I SETQ
CHEBVFOKM
IQUOTE I TIMES

IEXPT IVAR VARPI IRI NUMBERPII
IEXPT IPLUS ITIMES ICOEFFTT ICZ FREEII IEXPT IVAR VARPI IQ FREElll1

ICOEFFP ICI FREEl I I
IRZ NUMBERPI I

ICOEFFTT IA FREEl I } II
I SE TQ 0

I QUOTE I PLUS
ICOEFFPT IC FREEl IEXPT IX VARPI ZII
ICDEFFPT IB FREEl IX VARPII
ICOEFFPT IA FREEl I I I I

I SETQ E
IQUOTE I TIMES IPLUS ICOEFFPT IA FREEl IVAR VARPII ICOEFFPT 18 FREE Ii I

IPLUS ICOEFFPT IC FREEl IVAR VARPII ICOEFFPT 10 FREEl II III

ICONO
IIRATS ICAR VII IGO SKIPII
IISETQ W IFORM ICAR YIII IRETURN WII
IT IGO SPECIALII I

I SETQ V ICOR YI I
ICONO I!NULL VI

IRETURN ICO"lo IISETQ Y IPOWERLIST EXP VARII YI
IT IMASTER ICONS VAR EXPIII IIII

I GO LOOP I
SPECIAL

IRETURN ICONo
IINOT IMZ EXP ISETQ Y IEXPANOZ EXPII NILII I INTEGRATE Y VARII
llANO INOT POWERllSTI ISETQ Y IPOWERLIST EXP VARIII YI
IISETQ Y IPARTS EXP VARII YI
IT ILIST IQUOTE INTEGRALI EXP VARII 1111111

DEFINE
IIIRATS ILAMdoA IEXPI

ICONO IIFREE EXPI TI
IIATOM HPI TI
((MEMBER ICAR EXPI IQUOTE IPLUS TIMES) II

(AND IRATS (CAoR EXPII
ICONO IICOoR EXP I

IRATS (CONS (CAR EXPI (CoOR EXPIII I
!TTl III

((NOT lEU ICAR EXPj (QUOTE EXPTlII NIlI
((FIXPI ICAoOR EXPII IRATS (CAOR EXPIII
IT NILI lilt!

218

DEFINE
II(INTEGRATEl ILAMBDA IA) (INTEGRATE A VAR)))))

DEFINE
IIIPOLYP ILAMBDA (EXPI

ICOND
I (fREE EXP) n
IIATOM EXP) n
(IMEMBE-R ICAR EXPI IQUOTE (PLUS TIMES)) I

lAND (POLYP (CADR EXPI)
(OR (NULL (CDDR EXP)) IPOLYP (CONS ICAR EXP) ICODR EXP),)))))

IIEQ ICAR EXP) IQUOTE EXPTJI
(AND

INUMBERP (CAOOR EXPII
IINTEGERP (CADDR EXPII
(GREATERP (CADDR EXPI 0)
IPOLYP ICADR EXPtI tI

n NIlI) tI
ICALLALGORT

ILAMBDA
IA VARI
IPROG NIL

IfILENRITE IQUOTE MANOVE) (QUOTE LISP) (QUOTE SUPERALGORTI)
IFILEAPND

IQUOTE MANOVE)
(QUOTE LI SP)
(LIST

ITRANSL ICAR All
(TRANSl ISIMPTIMES ILIST ICAOR A) (SIMPLQG ILIST (QUOTE E) (CADDR AtItI))
VAR))

(CHAIN IQUOTE I(SAVE MOSES TI (R FULMAN MANOVEtI)J
IFILESEEK IQUOTE MANOVE) IQUOTE ANSI I
(RETURN ISIMP (UNTR (READ)III)1)1)

DEFINE
(((SIN ILAMBDAIEXP VAR) IINTEGRATE ISIMP EXP)VARltl

IDPTRIG (LAMBDA (AI (MEMBER A (QUOTE (SIN COS SEC TAN CSC COTI)II)
(ElEM

ILAMBDA
IAI
(COND

IIFREE AI TI
IIATOM A) NILI
I(M2 A EXPRES NIL) T)
n (EVU ICONS IQUOTE AND)

(MAPLIST (COR A) (FUNCTION (LAMBDA (C) (ELEM (CAR ClI) It)
NIL) II) I) I

DEFINE
((IFReE (LAMBDA (A)

(COND(lATOM A) (NOT IEQ A VARI))
(t UNO (fREE (CAR AU (fREE (CDR A)))) tI)

(VARP (LAMBDA (A) IEQ AVAR)))))

DEFINE
(((DEFINITEINTEGRAL

(LAMBDA (EXP VAR LONER UPPER I
(PROG (Y)

(SETQ Y IPRINT (INTEGRATE EXP VAR)))
(RETURN ISIMPDIFFERENCE (LIST (SU85T UPPER VAR YI

(SUBST lOWER VAR Y) I)))))

219

(DOUBLEINTEGRAL
(LAMBDA (EXP Ll

IPROG (Y)
(SE TQ Y

(DEFINITEINTEGRAL EXP
(CAAR Ll
(CADAR LI
ICAR (CDDAR LI I I I

(RETURN (DEFINITEINTEGRAL Y
(CAADR LI
(CADADR LI
(CAR (CDDADR Ll) I) I I I II

DEFINE
[((INTEGRALLOOKUP

(LAMBDA
(EXP I
(COND

((EQ [CAR EXP) (QUOTE LOG))
(SIMP [SUBST

(CADDR EXPI
(QUOTE XI
(QUOTE (PLUS (TIMES X (LOG E X)I (TIMES -1 XI))1)

[(EQ (CAR EXP) (QUOTE PLUSI) (SIMPTIMES (LIST O.SEO EXP EXPII)
([EQ (CAR EXP) (QUOTE EXPTlI

[COND
((FREE (CADK EXPI)

(SIMPTIMES (SUBST
EXP
(QUOTE AI
(SUBST (CADR EXPI (QUOTE B) [QUOTE (A (EXPT (LOG E BI -11111 III

([EQP (CADDR EXPI -11
[SIMP (SUBST (CADR EXPI (QUOTE XI (QUOTE (LOG E XlIII I

(T (SIMP (SUBST
(SIMPPLUS (LI ST (CADOR EXP) 1 I I
(QUOTE Nl
[SUBST

(CAOR EXP)
[QUOTE Xl
(QUOTE (TH1ES (EXPT N -11 (EXPT X NIl))11)))

(T [SUBST
(CADR EXPI
(QUOTE Xl
(CDR [SASSOC

(CAR EXPI
(QUOTE ((SIN TIMES -1 (COS Xl)

(COS SIN Xl
!TAN LOG E (SEC X)I
(SEC LOG E (PLUS (SEC X) (TAN X)I)
[COT LO.., E (SIN XI)
(CSC LOG E (PLUS (SEC XI (TAN XI I) I)

(QUOTE NILLI 11111)1
IDIFFDIV

(LAMBDA
(EXP VARI
(PROG (Y A X V D Z W R)

(SE TQ X
(1012

EXP
(QUOTE !TIMES (COEFFTT (A FREEl) (COEFFTT (8 TRUE))I)
"l I L I I

A

220

(SETQ A (CDR (SASSOC (QUOTE A) XII}
(SETQ EXP (CDR (SASSOC (QUOTE BI XI}I
(CONO

((AND
(EQ (CAR EXPI (QUOTE EXPT)}
IEQ (CAAOR EXPI IQUOTE PLUSII
(INTEGERP IClOOR EXPII
ILESSP (CAOOR EXPI 61
IGREATERP IClOOR EXPI 01 I

IRETURN (SIMPTIMES (lIST A
(INTEGRATE (EXPANOEXPT ICAOR EXPI ICAOOR EXPII VARI 11111

I SETQ EXP
(CONO I(EQ ICAREXPI IQUOTE TIMESII EXPI

IT ILIST (QUOTE TIMESI EXPII))
ISETQ Z ICOR EXP}}

I SETQ V (CAR ZII
(SETQ R

ILIST IQUOTE PLUSI
(CONS IQUOTE COEFFPTl

ICONS (QUOTE IC FREEl)} ICHOICE V ICOR EXP} I} I} I
(CONO

IISETQ W 1M2 (OIFFI V VAR) R NILII
(RETURN

ISIMPTIMES
ILIST

V
A
V
ISIMPEXPT ILIST (SIMPTIMES ILIST 2 (COR ISASSOCIQUOTE CI Willi

-1 II}))II
ICONO

I(MEMBER ICAR YI IQUOTE (EXPT LOG")
ICONO

IIFREE ICAOR V)) ISETQ W ICAOOR VIII
((FREE (CAOOR VI) ISETQ W (CAOR VII)
IT (SerQ W 011 I)

((MEMBER ICAR VI IQUOTE (PLUS TIMESII) ISETQ W V)J.
IT ISETQ Ii ICAOR V}II I

ICONO
I (SETQ

W
ICONO

llANO
IEQ ICAR (SETQ X IOIFFl W VARIII IQUOTE PLUSII
IEQ

ICAR ISETQ VICAR ISETQ 0 (CHOICE V (COR EXP}I}III
IQUOTE PLUS) I

INOT ICOR 01 J I
(CONO IISETQ 0 IMATCHSUM ICOR XI ICOR V)}}

ILIST (CONS IQUOTE C) 011 I
IT NIlI II

IT (H2 X R NILI) II
(RETURN

ICONO
IINULL ISETQ X IINTEGRALlCOKUP VIII NILI
IT

I SIHPTIHES
ILIST

X
A

221

(COND
((EQ It Till
(T (SIHPEXPT (LIST (CDR (SASSOC (QUOTE CI WII -1'11 11111))1

(SETQ I (CDR I))
(COND ((NULL II (RETURN NILIII
(GO AI 11111

DEFINE
((TRUE (LAHBDA (AI TIIII

DEFINE
« (HATCHSUM

(LAMBDA
IALlST BLlST)
IPROG (R S C 01

(SETQ S
(M2

(CAR ALI Sf)
(QUOTE ITlMES ICOEFFTT (A FREEII ICOEFFTT (C TRUEI)))
NIL) I

(SETQ C (COR (SASSOC IQUOTE CI Sill
(COIIIO

«NOT (SETQ R
(M2

(CONS IQUOTE PLUSI BLIST)
(LIST

(QUOTE PLUS)
(CONS (QUOTE TIMES)

ICONS
IQUOTE (COEFFTT (B FREE1111
(COND IIEQ (CAR C) (QUOTE TIMESII ICDR C))

CT ILlST CII)))
IQUOTE 10 TRUE) I I

NIL I))
(RETURN NIL) II

(SETQ 0
ISIMP (LIST

IQUOTE TIMESI
(SUBLIS S IQUOTE A)I
ILlST (~UOTE EXPTI (SUBLIS R (QUOTE 811 -11 III

ICONO 11M2 (CONS (QUOTE PLUSI ALISTI (TIMESLOOP 0 BLISTI NILI
IRETURN D) I

(T IRETURN NILII I1III1

DEFINE
((EXPANDEXPT (LAMBDA (A N)

(PROG (VI
(SETQ V AI

LOOP
(SETQ N ISUBl NIl
(CONO IIIEROP NI (RETURN VI I I
(SETQ V

IEXPAND (CDR AI
(COND (CEQ (CAR VI

I QUOT E PLUS I
(CDR VI I

(T (LIST VII II)
(GO LOOPI II)))

METHODS 1-9 OF SINtS SECOND STAGE

222

DEFINE
(1ISUPEREXPT

(LAMBDA
[EXP VAR BASE)
IP~OG IEXPTFLAG Y W)

ISETQ Y (ELEMXPT EXP)I
ICOND IEXPTFLAG IRETURN NILI I I
IRETURN

I SIMP
ISUBST

I LIST (QUOTE E XPTl BASE VAR)
VAR
(INTEGRATE

(SIMPQUOTIENT
(LIST Y

ISIMPTIMES (LIST VAR (SIMPLOG [LIST (QUOTE EI BASEIII)))
VAR.. I)) I)))

[cLEMXPT
ILAMoDA

(cXP I
(COND

([FREE EXPI EXPI
(IATOM EXPI ISETQ EXPTFlAG TlI
[11~OT lEO ICAR EXPI IQUOTE EXPTlII

(CONS (CAR EXP)
(MAPLIST [CDR EXP) [FUNCTION [LAMBDA IC) (ELEMXPT (CAR CIIII) II

[(NOT (FREE (CADR EXP) I I
(LIST (QUOTE EXPTI (ELEMXPT (CADR EXPII IElEMXPT ICADDR EXPI))

[(NOT [EQ ICADR EXPI BASE))
IELEMXPT (LIST

(CUOTE EXPTI
BASE
[SIMP (LIST

(QUOTE TIMES)
(LIST (QUOTE LOG) BASE [CADR EXPI)
ICADDR EXPI 1))1)

(INOT ISETQ W
(I~ 2

[CADDR EXi')
(QUOTE IPLUS [COEFFPT IA FREEl (VAR VARP)) (COEFFPT IB FREEI))I
NIL)))

lLIST (CAR EXP) BASE [ELEMXPT ICADDR EXP))))
[T ISIMP [SUBST

BASE
[QUOTE BASEl
ISUBLIS W (QUOTE (TIMES [EXPT BASE B) [EXPT VAR AI))) I)))))))

DU INE
[[(SUBSTIO

I LAMBDA (EXi')
(CUND

I (ATOM EXP) E XP)
IIAND (EO [CAR UPI IQUOTE EXPTlI lEO (CADR EXP) VAR))

(LIST (CAR EXPI VAR liNTEGERP IQUOTIENT (CADDR EXPI D))I I
IT IMAPLIST EXP IFUNCTION (LAMBDA ICI ISUBSTlO ICAR CIIIIII III

IPOWERLIST
ILAMBDA

(CXP VARI

223

(PROG (Y Z C 0 POWERLIST B)
i SE TQ Y

(

(M2
EXP
(QUOTE (TIMES

L (EXPT (VAR VARPI (C INTEGERP»)
(COEFFTT (A FREEl I

. (COEFFTT (B TRUEl) I)
NIL I I

(SETQ B ICDR ISASSOC IQUOTE BI YI)I
(SETQ C (CDR (SASSOC (QUOTE C) V)~)

(CONO IINOT (SETQ Z IRAllO BI)) (RETURN NILI I I
ISETQ 0 lLISTGCD (CONS (ADDI C) POWERLISTI)I
(CONO IINULL 0) (RETURN NI LI))

(RETURN
(SIMP

I SUBST
(LIST (QUOTE EXPTI VAR 01
VAR
(INTEGRATES I SIMP III ST

IQUOTE TIMES)
(EXPT 0 -11
(CDR (SASSOC IQUOTE A) YI)
ILIST (QUOTE EXPTl VAR (SUBI IQUOTIENT (ADDI C) 0)1)
(SUBSllO BI))

VAR) II)) II
(RATIO ILAMBDA IEXPI

ICOND
I I FREE EXP) T I
(IATOM EXPI NIL)
IIEQ ICAR EXP) IQUOTE EXPTlI

(COND
(IEQ ICADR EXPI VAR)

(COND (I INTEGERP (CADDR EXPII
(SETQ POWERLIST ICONS (CADDR EXPI POWERLIST»)

IT NIL) »)
(T lAND IRAllO ICADR EXP) I IRAllO ICADDR EXPI»)) II

I (MEMBER ICAR EXP) IQUOTE (PLUS TIMES»)
lAND IRATIO ICADR EXP))

lOR (NULL ICDDR EXPI) IRAllO ICONS ICAR EXP) ICDDR EXPI) I)) 1
IIEQ ICAR EXP) (QUOTE LOGI) IRAllO ICADDR EXP)))
(T (RAllO (CADR EXP))))))

ILISTGCD (LAMBDA (POWERLIST)
IPROG 101

ISETQ 0 (CAR POWERLlSTlI
LOOP

ISETQ POWERLIST (COR POWERLISTI)
(COND IIONEP Dl (RETURN NIL)I)
ICOND IINULL POWERLlSTl IRETURN OIl)
(SETQ 0 (GCD 0 ICAR POWERLIST»)I
(GO LOOP))1))1

DEFINE
1« INTEGRA TE S (LAMBDA (E XP VAR)

(COND «RATB EXPI (MASTER ICONS VAR EXPIII
IT liNTEGRATE EXP VAR)) 1))1)

DEFINe
(I(ABSOLUTE ILAMBDA (AI ICOND (ILESSP A 01 (MINUS A)I IT AI)I))I

C

224

DEFINE
(((I~TEGERP (LAMBDA (A)

IPROG (VI
(SETQ V 11
(COND CCNOT INUMBERP All (RETURN NILI)

((NOT (FLOATP All (RETURN A)))

(COND
((EQP V A) IRETURN V))
((LESSP V A) IGO A))
((NOT IGREATERP (DIFFERENCE V A) O.98999999EO)) (RETURN NIL)))

(SETQ V (Suel VII
(GO C)

A
(COND (INOT (GREATERP IDIFFERENCE A Y) O.9B999999EO)) (RETURN NIL)))
I SETQ V IADDl V))
(GO C) II)

(FIXPl ILAMBDA (AI CAND INUMBERP A) (FIXP All))
(RAT3 (LAMBDA (EXP INO)

(CONO
((FREE EXP) TI
I (ATOM EXP) I NO)
((MEMBER (CAR EXP) (QUOTE (TIMES PLUS)))

lAND IRAT3 (CADR EXP) IND)
lOR INUll ICOOR EXP) 1 (RAn (CONS ICAR EXP) (COOR EXP)) INOI)))

((NOT (EQ (CAR EXP) IQUOTE EXpn)1
(COND CCEQ (CAR EXP) IQUOTE LOGIt IRAn (CDOR EXP) Tn

(T (RAB ICAOR EXP) n I))
((FREE (CAOR EXP) I IRAn (CADDR EXPI Ttl
IIFIXPl (CAOOR EXP)) IRAT3 ICAOR EXP) INDII
((AND (M2 ICADR EXPI RATROOT NILI IOENOMFIND (CAOOR EXP)))

I SETQ ROOTllST (CONS (OENOMFINO (CAOOR EXP)) ROOTlIST)))
(T (RAB (CAOR EXP) NILI)) II

(SUBST4 (LAMBDA (EXP)
(CONO

IIFREE EXPI EXP)
I (ATOM EXP I A)
IINOT IEQ ICAR EXPI IQUOTE EXpn)1

IMAPLIST EXP IFUNCTION (LAMBDA IC) (SUBST4 (CAR C))))))
II M2 I CAOR EXP) RATROOT NI LI

(LIST (CAR EXP) B IINTEGERP {TIMES K (CAOOR EXPI))))
IT (LIST (CAR EXPI (SUBST4 (CAOR EXPII (SUBST4 (CADDR EXP)))))))

(FINDINGK (LAMBDA (LISTI
(PROG (K I

(SETQ K U
A

(COND ((NULL LISTI (RETURN K)))
(SETQ K (QUOTIENT (TIMES K (CAR usn) (GCO K (CAR Usn)l)
(SETQ LIST (CDR LIST))
(GO AI)))

(OENOMFINO (LAMBDA (KI
(PROG (V)

(COND ((NOT (NUMBERP K)) (RETURN NILI))
(SETQ V U

A
(COND ((INTEGERP HIMES K V)) (RETURN V)))
(SETQ V (AODl V))
(COND ((LESSP V 25) (GO A) I)
(RETURN NIL))))

(GCD (LAMBDA (A B) .
(PROG NIL

225

A
ICOND I(ZEROP AI (RETURN (ABSOLUTE B))I
(SETQ B (REMAINDER BAil
(CO~D IIZEROP BI (RETURN IABSOLUTE AI)II
ISETQ A (REMAINDER A BII
(GO AI III

(RATROOT
(LAMBDA

IEXP VAR RATROOT WI
(PROG (ROOTLIST K Y Wll

(COND ((SETQ Y (CHEBY EXP VARII (RETURN Y))I
(COND «NOT (RAT3 EXP Til (RETURN NllIlI
(SETQ K (FINDINGK ROOTLISTII
(SETQ WI (CONS ICONS (QUOTE KI KI Jill I
I SETQ

Y
I SUBS141

EXP
ISIMP (SUBLIS WI

IQUOTE IQUOTIENT
(DIFFERENCE B (TIMES 0 (EXPT VAR Kill
(DIFFERENCE (TIMES C IEXPT VAR KII AI)) II

VAR II
(SETQ

Y
I INTEGRATE

(SIMP
(LIST

(QUOTE TlMESI
Y
(SUBLI S

WI
(QUOTE (QUOTIENT

ITIMES E
(DiffERENCE

(TIMES A 0 K (EXPT VAR (PLUS -1 Kill
(TIMeS B C K (EXPT VAR (PUJS -1 KIll))

IEXPT (DIFFERENCE (TIMES C (eXPT VAR KII AI 21)))1)
VAR I)

(RETURN ISIMP (SUBST
(SIMP (LIST (QUOTE EXPTI RATROOT (LIST (QUOTE EXPTI K -1111
VAR
Y 11111111

DEFINE
(((SUB5T41 (LAMBD~ (EXP A BI (SUBST4 EXPIIIII

DEfiNE
((ICHE8Y

(LAMBDA
(EXP VARI
(PROG (Rl R2 01 02 Nl N2 W QI

(COND
((NOT

(5ETQ
W
(M2

EXP
(QUOTE (TIMES

(EXPT (VAR VARPI (Rl NUf4BERPII
(EXPT (PLUS (TIMES (COEFFTT (e2 FREEII

226

(EXPT (VAR VARP) (Q FREElI))
(COEFFP (C1 FREE)))

(RZ NUMBERP))
(COEFFTT (A FREE))))

Nil)))
(RETURN NIL)))

(SETQ Q (CDR (SASSOC (QUOTE Q) WI))
(SETQ
w
(CONS

(CONS (QUOTE A)
(SIMPQUOTIENT (liST (CDR (SASSOC (QUOTE A) WI) Q)))

(CONS
(CONS

(QUOTE RlI
(SIMPQUOTIENT (liST (SIMPPlUS (liST

1
(SIMPMINUS (liST Q))
(COR (SASSOC (QUOTE RlI W)I)1

Q)))
W I))

(SETQ R1 (COR (SASSOC (QUOTE R11 W))I
(SETQ RZ (COR (SASSOC (QUOTE RZI W))I
(SETQ W (REVERSE WI)
(CONO

((NOT lAND
(SETQ 01 (OENOMFINO Rill
(SETQ OZ (OENOMFIND RZII
(SETQ N1 (INTEGERP (TIMES Rl 01)))
(SETQ NZ (INTEGERP (TIMES RZ OZ)))
(SETQ W

(CONS (CONS (QUOTE 01) 011
(CONS (CONS (QUOTE OZI OZI

(CONS (CONS (QUOTE Nil Nl)
(CONS (CONS (QUOTE NZ) NZ) WI))))))

(RETURN Nill I
((AND (INTEGERP RlI (GREATeRP RiOt)

(RETURN
(SIMP

(SUBST
(SU8lIS W (QUOTE (PLUS Cl (TIMES C2 (eXPT VAR Q))I))
VAR
(INTEGRA TE

(EXPAND
(SU811S W

(QUOTE (lTtMES
A
(eXPT VAR R2)
(eXPT CZ (MINUS (PLUS Rl 1))) I)))

(COR (EXPANOEXPT (SU8lIS W (QUOTE (PLUS VAR (TIMES -1 C1))))
Rl)))

VAR))111
((INTEGERP RZ)

(RE TURN
(SIMP

(SU8ST
(SU811S W (QUOTE (EXPT VAR (QUOTIENT l:: 011)))
VAR
(MASTER

(CONS
VAR

227

(SIMP
(SUBLIS W

(QUOTE ITI ME S
01
A
(EXPT VAR (PLUS N1 01 -111
(EXPT (PLUS (TIMES CZ (EXPT VAR 011' CI' RZI ""1"'"

((AND (INTEGERP RlI (LESSP R1 0'1
(RETURN
(SIMP

(SU8ST
(SUBLIS W

(QUOTE (EXPT (PLUS C1 lTIMES CZ (EXPT VAR 01' I
lQUOTIENT 1 OZ, III

VAR
(MASTER

(CONS
VAR
(SIMP ISUBUS W

lQUOTE (TIMES
A
01
(EXPT CZ (HI NUS (PLUS RI 1 tJ I
(EXPT VAR (PLUS NIDI -III
(EXPT (DIFFERENCE .IEXPT VAR 011 C11 Rl' """1'"

llINTEGERP (SIMPPLUS (LIST R1 RZ"I
lRETURN

lSIMP
(SUBST

(SUBLIS W
(QUOTE (EXPT (QUOTIENT lPLUS Cl (TIMES CZ IEXPT VAR 0111

(EXPT VAR 01 I
(QUOTIENT 1 011)J'

VAR
(MASTER

(CONS
VAR
(SIMP ISUBLIS W

(QUOTE lTIMES
-1
A
01
(EXPT Cl lPLUS Rl RZ 1'1
(EXPT VAR (PLUS NZ 01 -1'1
leXPT (DIFFERENCE (EXPT VAR 011 CZI

(TIMES -1 (PLUS R1 RZ ZII I HIIII)J)J
IT lRETURN NIL', 1"'"

DEFINE
1(IALGEB (LAMBDA (A B C 01 lALGEBZ ABC iCONS NIL 0111111

DEFINE
(1IALGEBZ

(LAMBDA
(EXP VAR SQUARE WI
lPROG lA Y B C F1 Al YI Xl E D H GI

lSETQ A lCDR ISASSOC (QUOTE AI W)JI
ISETQ B ICDR ISASSOC (QUOTE BI WIll
ISETQ C (COR (SASSOC (QUOTE CI W',I
(CONO ((NOT (RAT6 UP" (RETURN NILI I'
(SETQ Yl

11

L2

Lit

L3

L5

228

ISIMP ILIST
IQUOTE PLUS)
VAR
ILIST (QUOTE QUOTIENT) B ILIST lQUOTE TIMES) 2 cn)) I

I SETQ Xl
I SIMP III ST

IQUOTE DIFFERENCEI
VAR
ILIST (QUOTE QUOTIENT) B ILIST IQUOTE TIMESI 2 CII II)

I SETa Al
ISIMP 11IST

IQUOTE DIFFERENCE)
A
ILIST

IQUOTE QUOTIENTI
ILIST IQUOTE EXPT) B 21
ILIST IQUOTE TIMES) It C) I)))

ICOND
llANO 4NUMBERP C) IGREATERP C on IGO Lll)
llANO INUMBERP C) ILESSP co» IGO L2»)
llASKPOS C) IGO Lll)
IIASKNEG C) IGO L2» ,
IIASKIT C IQUOTE POSITIVE»IGO un
I IASKIT C IQUOTE NEGATIVE) I IGO L2»
l'T IRETURN ULGEB EXP VAR SQUARE -wn)

I COHO
I lAND INUMBERP All IGREATERP Al Oil IGO L3))

:, I lAND INUMBERP Al) ILESSP Al 0» IGO L51)
llANO (NUMBERP All (ZEROP Alii IGO Lit))
I lASl(POS AI) IGO l3» .
IIASKNEG AI) IGO L5»
IIASKIT Al (QUOTE POSITIVE» IGO L311
IIASKIT Al IQUOTE NEGATIVE)I IGO L5»
I IASKZERO AI) IGO Lit»
(T IRETURN (ALGEB EXP VAR SQUARE WI»~

ICOND
I(AND INUMBERP AI) (GREATERP Al 0» IGO L6) I
(lAND INUMBERP All (LESSP Al Oil

(RETURN IALGiB EXP VAR SQUARE WI))
((ASKPOS AI) IGO L6)
(IASKIT Ai (QUOTE POSITIVE» tGO L6))
(T (RETURN (ALGEB EXP VAR SQUARE Will

ISETQ C (SIMPEXPT ILIST C 0.5EOI)1
ISETQ V (SUBST6 EXP Xl ISIMP ILIST lQUOTE TIMES) C VAR))II

. (SETa v IINTEGRATE ISIMP V) VAR))
IRETURN ISIMP (SUBST VI VAR VII)

(SETQ H (QUOTE (ARCTAN X»))
ISETQ E IQUOTE (TAN X)))
I SETQ Fl IQUOTE (SEC X)))
I SETQ G IQUOTE (EXPT ISEC X) 2»)
IGO GETOUTI

I SETQ H IQUOTE (ARCSEC XII)
ISETQ E (QUOTE ISEC X»))
(SETQ Al ISIMPMIHUS ILIST AlII)
(SETQ F1 (QUOTE I TAN X.J)
I SETQ G IQUOTE (TIMES lTAN X) (SEC X»)))

L6

229

(GO GETO·UTI

[SETQ E (QUOTE (SIN XII)
(SETQ G (QUOTE (COS Xl) I
(SETQ C [SIMPMINUS (LIST C)l)
(SETQ H (QUOTE (ARCSIN XIII
{SETQ F1 (QUOTE (COS XII)

GE TOUT
(SETQ C (SIMPEXPT {LIST (SIMPQUOTIENT (LIST Al Cll 0.5EOIII
lSETQ 0 (SIMPEXPT (LIST Al 0.5EOlll
(SETQ

Y
(SUBST6

EXP
(EXPAN02 (SIMP (LIST (QUOTE PLUSI

(LIST (CUOTE TIMES)
C
(SUBST VAR IQUOTE Xl E) 1

(SIMPDIFFERENCE (LIST Xl VARII III
(SIMP (LIST (QUOTE TIMESI 0 lSUBST VAR «QUOTE Xl FIll) II

[SUQ Y (SIMP (LIST lQUDTE TIMES) C (SUBST VAR (QUOTE XI G) V)))

(SETO Y (INTEGRATE IEXPAN02 YI VARII
(RETURN (SIMP (SUBST

(SUBS T
(LIST (QUOTE TIMESI (LIST (QUOTE EXPTI C -11 YlI
(OUOTE Xl
H I

VAR
Y III 1 1 1 I I

DEFINE
I (ASKIT ILAMBDA (A BI

(AND
(NOT [PRIN1 (OUOTE IS) I I
(NOT (PRIN1 BLANKI)
(PRINT Al
(PRINT BI
I EO (RDFLX) (QUOTE YESlI) II

(ASKZERO (LAMBDA (A) IASKIT A (QUOTE ZEROlll1
IASKPOS

(LAMBDA
I A)
1M2
A
(QUOTE IPLUS (COEFFPT

(B (FUNCTION !LAMBDA lBl lAND (NUMBERP BI (GREATERP B 0)) I))
(COEFFTT IC POSFNII III

NIL III
(ASKNEG

[LAMBDA
(A I
[M2

A
(QUOTE (PLUS (COEFFPT

(B (FUNCTION (LAMBDA IBl lAND [NUMBERP B) lLESSP B 0)) III
ICOEFFTT (C POSFNII I))

NIL III
(POSFN ILAMBDA (CI

(COND
[IATOM C) (GET C lQUOTE POSITIVEll)
(lEO (CAR C) (OUOTE EXPT))

230

(COND
IINUMBERP ICADDR CII IINTEGERP (QUOTIENT [CACDR CI 2111
«(ATOM {CADR Cll (GET ICADR CI (QUOTE POSITIVEI II
(TNILl II

IT NILl 1111)

DEFINE
I{(PFCTSQ (LAMBDA (X)

IPROG (YI
(SETQ Y 11

A
(COND (EQP (TIMES Y YI Xl (RETURN YI I

((GREATERP (TIMES Y YI XI [RETURN NILlI
(SETQ Y (ADDI Y)I
(GO A) I))

{RAT6 (LAMBDA (EXPI
ICOND

I(FREE EXPI T)
(I ATOM EXP) Tl
((MEMBER (CAR EXPI (QUOTE (PLUS TIMESIII

lAND IRAT6 ICADR EXPII
(OR (r'WLL (CDDR EXPI) IRAT6 (CONS ICAR EXPI (CDDR EXPIIII II

IINOT IEQ (CAR EXPI (QUOTE EXPTlII NILl
IIFIXPI (CADDR EXPII (RAT6 ICADR EXPIII
((NOT (INTEGERP (SIMPTIMES (LIST 2 (CADDR EXPIIIII NIL)
IT 1M2 (CADR EXPI SQUARE NILlI I))

(SUBST6
(LAMBDA

(EXP A B)
ICorw ((FREE EXPI EXPI

I (ATOM EXPI AI
I(MEMBER (CAR EXPI IQUOTE (PLUS TIMESIIJ

(CONS (CAR EXPI
(MAPLIST (CDR EXPI

(FUNCTION (LAMBDA (CI (SUBST6 (CAR CI A BIll)1)
(INOT IEQ ICAR EXPI (QUOTE EXPTlII (ERRORII
((FIXPI (CADDR EXPII

(LIST (CAR EXPI (SUBST6 (CADR EXPI A BI (ODOR EXPII I
(T (LIST (CAR EXPI B (INTEGERP ITIMES 2 (CACDR EXPIJ III I II

(TR IGSQR T
(LAMBDA

IEXP VAR SQUARE WI
IPROG (Y ABC 0 E Fl G HI

ISETQ A (CDR (SASSOC IQUOTE AI Will
(SETQ B (CDR (SASSOC (QUOTE B) WI) I
(COND «(OR INOT INUMBERPAII (NOT INUMBERP b)11

(RETURN (ALGEB EXP VAR SQUARE WII I
(NOT (RAT6 EXPII IRETURN NILlI I

(COND I(GREATERP A 01
(COND ((GREATERP B 0)

(AND ISETQ H (QUOTE (ARCTAN XIII
ISETQ E (QUOTE ITAN XIII
ISETQ Fl (QUOTE ISEC XIII
(SETQ G (QUOTE IEXPT ISEC XI 2111 II

(T (AND (SETQ E (QUOTE ISIN XIII
(SE TQ G (QUOTE I COS XJ I I
ISETQ B (MINUS BII
(SETQ Fl (QUOTE (COS XIII
(SETQ H (QUOTE IARCSIN XI II I III

IT (AND (SETQ E (QUOTE (SEC XII I
(SETQ A IMINUS All

231

NIL I I

(LIST (QUOTE TIMESI
(LIST (QUOTE EXPT) C -1)
VAR)

(QUOTE Xl
H)

Fl (QUOTE lTAN XIII
G (QUOTE lTIMES lTAN XI (SEC XliII
H (QUOTE (ARCSEC XI) I II I
(PFCTSQ (QUOTIENT A BII)) (RETURN
(PFCTSQ AIII (RETURN NILII)

{SE TQ
(SETQ
{SETQ

(SE TQ C
(SE TQ D

E XP
(SIMP (LIST (QUOTE TIMESI

C
(SUBST VAR (QUOTE XI EI I)

(SIMP (LIST (QUOTE TIMESI
o
(SUBST VAR (QUOTE XI Fll III)

(SIMP (LIST (QUOTE TIMES) C (SUBST VAR (QUOTE XI GI Ylll
(TRIGINT Y VARI)
(SIMP (SUBST (SUBST

((NOT
(NOT
Y
(SUBST6

(SETQ Y
(SET" Y
(RE TURN

(COND

(SETQ

VAR
Y)) I) I I))

DEF HIE
(I(ALGEB

(LAMBDA
(EXP VAR SQUARE WI
(PROG (A B C Al Cl Y PROBLI

(SeTQ A (CDR (SASSOC IQUGH Al Will
(SETQ B (CDR (SASSOC (QUOTE BI W)II
(SETQ C (CDR (SASSOC (QUOTE CI Will
(COND «(NOT (RAT6 EXPI) (RETURN NILlll
(COND

((AND (NOT (NUMBERP C)) (ASK CI)
(SETQ Cl (SIMPEXPT (LIST C 0.5EO)I)

((NOT (NUMBERP CI I (GO A»)
«(NOT (GREATERP COl) (GO A))
IT (SETQ Cl (SIMPSQRT Clll)

(SETQ Y
(SUBST6

EXP
(SUBSTL (A B Cl VARI

(QUOTIENT (DIFFERENCE (EXPT VAR 21 Al
(PLUS B (TIMES 2 ITIMES VAR Cll) I II

(SUBSTL (A B VAR Cll
(QUOTIENT (PLUS (TIMES (EXPT VAR 21 Cll (TIMES B VAR) (TIMES A ClIl

(PLUS B (TIMES 2 (TIMES VAR Cl))1 1)1)
(SETQ

PROBl
(LI ST

(QUOTE TIMES)
Y
(SUBSTL (A B Cl VARI

(TI ME S 2
(TIMES (PLUS (TIMES 8 VARI lTIMES (EXPT VAR 21 ClI (TIMES A Clll

(EXPT (PLUS B ITIMES 2 (TIMES VAR Cll) -21 I II II
(SE TQ Y

(SUtlSTL (VAR C1 SQUARE I
(PLUS (TIMES VAR Cll (EXPT SQUARE (QUOTIENT 1 2)1) II

(GO BI
A

232

B

ICOND
llANO (NOT INUMBERP A)' tASK A»

ISETQ Al ISIMPEXPT (LIST A 0.5EO)')
IINOT INUMBERP A» (ERROR (QUOTE (NOT YET'»)
IILESSP A ot IERROR IQUOTE INOT YEn)),
IT ISETQ Al ISIMPSQRT At»)

I SETQ Y
I SU8ST6

EXP
ISUBSTl IB C AIVAR)

(QUOTIENT IDIFFERENCE ITIMES Z (TIMES VAR AI)' B'
IDIFFERENCE C IEXPT VAR Z" "

ISU8STL 18 C Al VAR'
IQUOTIENT IPLUS

ITIMES Al (EXPT VAR Z"
ITIMES -1 ITIMES' 8 VAR) t
(TI ME S AI C')

IDIFFERENCE C IEXPT VAR Z») I»)
I SETQ
PRoal
11IST

IQUOTE TIMES)
Y
IsuaSTl IB C Al VAR'

ITIMES
I TIMES Z

IPLUS
ITIMES Al IEXPT VAR 2)'
ITIMES -1 ITIMES a VAR)t
I TI ME S AI Ct »

IEXPT IDIFFERENCE C IEXPT VAR 2» -2))tt)
ISETQ Y

ISUBSTl IVAR Al SQUARE'
IQUOTIENT IDIFFERENCE (EXPT SQUARE IQUOTIENT 1 Z), AI) VAR) t)

IRETURN (SIMP (UNTR ISU8ST Y VAR IMASTER (CONS VAR PROBL»»))),t)t

DEFlIST
I(ISU8STl

ILAMBDA IA AlIST)
ISUBLIS IMAPLIST ICAR At

IFUNCTIONILAMBDA IB)
(CONS lCAR B)

IEVAL ICAR B) AlIST) »)
ICADR At))))

FEXPR)

DEFINE
IIISIMPSQRT (lAMBDA IX)

IPROO I Y)
ISETQ Y 11

A
ICOND IIEQP ITIMES Y Yt X) IRETURN Ytl

IIGREATERP ITIMES Y Y) xt
IRETURN ILIST (QUOTE EXPTI

·X
(QUOTE I QUOH ENT 1 2 t t »»

ISETQ Y (ADDI Y)t
IGO A))))))

233

DEF INE
If IASK ILAMBDA IX)

(AND (NOT" (PRINl (QUOTE IS»))
INOT IPRINl BLANK))
(PRINT XI
IPRINT IQUOTE POSITIVE))
(EQ (RDFLXI (QUOTE YES)I 1)111

DEFINE
(((TRIGl (LAMBDA IAI (MEMBER A lQUOTE ISIN COS)))JJ

I SUPER TR IG
fLAMBDA (EXP'

ICOND
((FREE EXP) Tl
IIATOM EXP) NIl)
((MEMBER (CAR EXPI (QUOTE (PLUS TlMESI))

(AND lSUPERTRIG ICADR EXP))
(OR (NUll (CDOR EXPII (SUPERTRIG (CONS (CAR EXP) (CDDR EXP)IJ)))

(IMEMBER ICAR EXP) IQUOTE IEXPT lOG))
(AND (SUPERTRIG (CAOR EXPI) (SUPERTRIG (CADDR EXP»))

((MEMBER ICAR EXP) (QUOTE (SIN COS TAN SEC COT CSCIlI
(CONO

I(M2 (CADR EXPI TRIGARG NIl) Tl
(1M2

(CADR EXPI
IQUOTE IPLUS ICOEFFPT (B FREEl (X VARP)I (COEFFPT (A FREEl) II
NIL)

(AND (SETQ NOT SAME Tl NIU)
IT (SUPERTRIG (CADR EXPII) II

(T (SUPERTRIG (CADREXP)JJ IJ)
(SUBST2 ILAMBDA (EXP PAT)

ICOND
I I NULL EXP) NI l)
((M2 EXP PAT NILl VARI
I (ATOM EXP) EXP)
(T (CONS (SUBST2 (CAR EXPI PATl (SUBST2 (CDR EXP) PATlI))))

IMONSTERTRIG
(LAMBDA

(EXP VAR TR I GARG)
IPRDG INOTSAME W A B Y 01

(CONO
IISUPERTRIG EXP) (GO A) I
«(NULL NOTSAMEI (RETURN NIl) I
«(NOT I SETQ Y

(M2
EXP
(QUOTE (TIMES

(COEFFTT (A FREE)
((B TRIGll (TIMES (X VARPI (COEFFTT (M FREEl)))
110 TRIGl) (TIMES (X VARP) (COEFFTT (N FREE)I))))

Nil I))

(GO BI)
«NOT I AND

(MEMBER (SETQ B ICDR (SASSOC (QUOTE B) V)))
(QUOTE (SIN COSII)

(MEMBER (SETQ 0 (CDR ISASSOC (QUOTE D) V)))
(QUOTE (SIN CDS)) III

(RETURN NILI I
llANO IEQ B IQUOTE SIN)I (EQ 0 (QUOTE SINIII

(RETURN
(SIMPTIMES

,.----<- ~~. '-~ ----~-~--~-

B

234

(SUBVAR
(SUBLI S

Y
(QUOTE (A (DIFFERENCE

(QUOTIENT
(SIN (TIMES (DIFFERENCE M NI XII
(TIMES 2 (DIFFERENCE M Nil I

(QUOTIENT (SIN (TIMES (PLUS M N) XII
(TIMES 2 (PLUS 14 NI) 1)111)1))

llANO (EQ B (QUOTE COSII (EQ 0 (QUOTE COS) II
(RETURN

(SIHPTIMES
(SUBVAR

(SUBLIS
Y
(QUOTE lA (PLUS

(QUOTIENT
(SI~ (TIMES (DIFFERENCE H N) X)I
(TIMES 2 (DIFFERENCE M N)) I

(QUOTIENT (SIN (TIMES (PLUS M NI XII
, (TIMES 2 (PLUS 14 Nil 11))11)))

((OR (AND
(EQ B (QUOTE COS)I
(SETQ W (CDR (SASSOC (QUOTE MI Y) J)
(RPlACD (SASSOC (QUOTE 141 YI (CDR (SASSOC (QUOTE NI YI) I
(RPlACD (SASSOC (QUOTE N) Y) WI I

T I
(RETURN

(SIMPTIMES
(SUBVAR

(SUBLIS
Y
(QUOTE (-1 A

(PLUS
(QUOTIENT

(COS (TIMES (DIFFERENCE 14 N) XI)
!TIMES 2 (DIFFERENCE 14 Nil I

(QUOTIENT (COS (TIMES (PLUS M NI XI)
(TIMES 2 (PLUS M N))))1111111)

(COND
((NOT

(SETQ
Y
(PROG2

(SETQ TRIGARG VARI
1M2

EXP
(QUOTE I TIMES

(COEFFTT (A FREEII
llB TRIGlI (TIMES (X VARPI (COEFFTTIN INTEGERPJ) n
(COEFFTT (C SUPERTRIGII)1

NIL) n I
(RETURN NIlI II

(RETURN
(INTEGRATE

(EXPAND2
(LIST

(QUOTE TIMESI
(REPLACE Y (QUOTE CII
(COND

235

IIEQ (SUQ B (REPLACE Y (QUOTE BIll (<;;UOTE COSII
(SUB S T

VAR
(QUOTE XI
(SUPERCOS"JX (REPLACE Y (QUOTE NIl) »)

(T (SUBST VAR (QUOTE XI (SUPERSINX (REPLACE Y (QUOTE Nlll) Ill)
VA"..))

A
(SETe W (SUBST2 EXP TRIGARGI)
I SE TQ B

(CDR (SASSOC (OUOTE BI
(0'12

TRIGARG
(QUOTE (PLUS (COCFFPT (B FREE) (X VARP1) (ClJEFFPT (A FREEl) I l

"J I L)) I l
(R~TURN (SUeST TRIGARG VAR (TRIGINT (SIMPQUOTIENT (LIST W Bll VARll)ll)

ITRIG2 (LAMBDA (A) (MEMBt'R A (QUOTE (SIN COS TA'! ceT SEC CSC))I)) II

IN)) I I

(T If1 ESir, » I))
) I)

T I M.ES I(QUOTE
I
ISINNX
IT 1))

(Ll S T

ICOND (ILESSP N 0) -1)
(N I
((LAMBDA (I) IEXPAND2 (COSNX (TIMES

(COND ((LESSP N 0) -I) IT 11) 1)1

($UPERCOSNX (LAMbDA

D~F P,E
(((SUPERSINX (LAMBDA (N)

(ILAMbDA (I)
(EXPAND2

(SI~NX (LAMBDA (N)
(COND ((EWUAL N 1) (QUOTE (SIN X» I

(T (LIST (QUOTE PLUS)
(LIST (QUOTE TIMESI

(CUOTE ISIN Xl I
(COSNX I SUBI Nl)

(LIST (QUOTE TIMES)
IQUOTE (COS Xl)
(SINNX (SUB1 Nll)1))

ICOSNX (LAMBDA (N)
(COND ((ECUAL N 1) (QUCHE (COS XIII

(T (LIST (QUOTE PLUS)
ILIST IQUOTE TIMES)

{QUOTE (COS XI)
(CCSNX (SUBI Nl)

(LIST (QUOTE TIMES)
-I
IQUOTE (SIN XII
(SINNX (SUB1 NIl 111)1»)

DEFINE
((IPOSEVE"J (LAMBDA (AI (AND (EVEN A) (GREATERP A -lll11

(TRIGFREE (LAMBDA (A)
(COND

IIATOM Al ("Jor (MEMBER A IQUUTE (SIN. COS. SEC. TAN·))I)
(T lAND ITRIGFREE ICAK A)l ITRIGFREE ICDR AII)1 II)

(UNTR (LAMBDA (EXPI
ICUND

((ATOM EXP) EXPI
(lEW (CAR EXPl (QUOTE LOG))

(CO"JD (NULL ICDDR EXP»)
(LIST (CAR EXP) (QUOTE El IUNTR (CADR EXP)ll)

(T ILIST (CAR EXPI ICADR EXPI (UNTR (CADDR EXP»)1 II

236

((EQ (CAR EXPI (QUOTE MINUSII (LIST IQUOTE TIMESI -1 (UNTR ICADR EXPIIII
(IEQ (CAR EXPI IQUOTE SQRTlI

I LI ST I QUOTE EXPTI I UNTR ICADR EXPII O. 5EO I I
IIEO (CAR EXpl (QUOTE INTEGRALII ILIST (CAR EXPI ICADR EXPI VARII
IIEQ (CAR EXpl (QUOTE DIFFERENCEll

ILIST IQUOTE pLUSI
IUNTR ICADR EXPII
ILiST (QUOTE TIMESI -1 IUNTR (CADOR EXpllI II

(IEQ (CAR EXPI (QUOTE QUOTIENTlI
ILIST (QUOTE TIMESI

IUNTR ICAOR EXPII
(LIST IQUOTE EXpTI IUNTR (CADDR expii -lJ II

IT IMApLiST EXp (Fl,jNCTICN lLAMBOA IAI !UNTR ICAR AIIIIII 11I1I

DEFINE
III TRANSL

ILAMBDA
IEXpl
(COND
((NUMBERP EXP I

IPROG ITEMP I
IRETUR"t ICOtolD

(IFIXp EXpl EXpl
IISETQ TEMP IINTEGERp EXpl1 TEMPI
IISETQ TEMP' IDENOMFIND Expll

ILIST IQUOTE QUOTIENTI (INTEGERI' (TIMES TEMP EXPII TEMPI I
IT (ERROR IQUOTE TRANSLII) IIII

I I ATOM EXpl EXpl
((AND IMEMBER (CAR EXpl (QUOTE (PLUS TIMES~II

(GREATERI' (LENGTH (CDR EXpl1 21 I
ILIST

ICAR EXpl
URAHSL (CADR EXpl1
ITRANSL (CONS ICAR EXPI (CDDR EXPIII II

llANO (EQ ICAR EXpl (QUOTE LOG)) (CDDR EXplJ
ICOND (IEQ ICADR EXpl (QUOTE Ell ICOtoiS (CAR EXpl ICDOR EXpIl1

IT ILIST
(QUOTE QUOTIENTl
ILIST IQUOTE LOGI ITRANS-t. lCAOOR EXPIII
11IST (QUOTE LOGI .(CADR EX")) 1I11

IT (MApLIST EXp IFUNCTION ILAMBOA IAI !TRANSt. (CAR AlIlI II til
IRATI (LAMBDA (EXpl

(pROG IBI NOTSAMEI
(COHO (lAND (NUMBERp EXpl (ZEROp EXPII IRETURN NILIII
(SETQ Bl (SU6ST 8 IQUOTE 81 IQUOTE (EXpT B (N EVENlIlII
(RETURN (pROG2 ISETQ YY (RAT EXPII ICONO IINOT NOTSAMEI YVI IT /lULlII 1I11

IRAT
(LAMBDA

I EXP I
IpROG IYl

IRETURN
ICOHO

IIEQ EXp AI IQooTE XII
IIATOM EXP,

ICONO (IMEMBER EXP IQUOTE ISIN- CijS- SEC- TAN-Ill
(SETQ NOTSAME TI I

IT EXP' II
IISETQ V 1M2 EXp Bl NILII IF3 YII
IT (CONS (CAR EXpl

IMAPLIST ICOR EXP' IFUNCTION (LAMBDA IGI (RAT (CAR GlIIlI 1111111
1F3 ILAM80A IVI

237

(SUBST
C
(QUOTE CI
(SUBST

(QUOTIENT (CDR (SASSOC (QUOTE NI Y NILII 21
(QUOTE NI
(QUOTE (EXPT (PLUS 1 ITIMES C· IEXPT X 2111 N)) II))

10001
(LAMBDA

(ill I
ICONO IINOT IZEROP IREMAINDER N 21)1

I SETQ YZ
I SUBST
C
IQUOTE CI
(LIST

IQUOTE EXPTI
IQUOTE IPLUS 1 ITIMES C (EXPT X 21111
IQUOTIENT (SUB1 NI 21 1)11

IT NILI) II
(EVEN (LAMBDA IAI lAND INUMBERP AI IINTEGERP (QUOTlENT A 2)) I) I
ISUBVAR ILAMBDA (BI (SUBST VAR (QUOTE XI BIll
ITRIGINT

ILAMBDA
(EXP VARI
(PROb IY REPL Y1 Y2 YY Z M N C YZ A BI

I SETQ Y2
(SUBLIS (SU8VAR IQUOTE I((SIN XI • SIN-I

((COS XI • COS-)
IITAN XI • TAN-I
I(COT XI EXPT TAN- -II
((SEC X) • SEC-I
I (CSC XI EXPT SEC- -11 III

EXP II
(SETQ Yl

I SETQ Y
(SIMP (SUBLIS IQUOTE ((TAN- TIMES SIN- IEXPT COS- -111 ISEC- EXPT COS- -1111

Y2 II))
ICOND (INULL ISETQ Z

(142
Y
.QUOTE (TIMES

(COEFFTT (B TRIGFREEII
(EXPT SIN- 1M POSEVENII
(EXPT COS- (N POSEVENII II

NIL) II
(GO LlI II

ISETQ 14 ICOR (SASSOC (QUOTE 141 1))1
ISETQ N (COR (SASSOC (QUOTE HI 1)11
I SE TQ A

(INTEGERP ITIMES
O.SEQ

(COND IILESSP 14 NI 11 IT -111
IPLUS N ITIMES -1 MIl III

I SETQ I ICONS ICONS IOUOTE AI AI Z11
IRETURN

I SIMP
(LIST

(QUOTE T1MESI
ICOR ISASSOC IQUOTE BI Z)I
O.SEQ

Ll

GET3

GETI

238

(SUBST
(LIST (QUOTE T[MES1 2 VAR)
(CUD TE XI
([NTEGRATE

(SIMP
(CONO
{(LESSPMNI

(SUB Ll S l
(QUOTE (TIMES

(E Xi' TIT [ME SO. 5 E0 (S I,~ X)) 1'1)

(EXPT (PLUS 0.5EO ITIMES 0.5EO ICOS Xl)1 Al I»)
I T (S UB II S l

(wUOTE (TIr-'IES
(cXPT (T[MES 0.5EO (SIN X) NI
(EXPT (PLUS 0.5EO (T[MES -O.SEO (COS X)I) Al II))))

(Q UU r to XI)) I))

(SE TQ C - I I
ISi::TQ A (QUClTE S[f\J-))
(SET\.i B (wUOTE COS*))
Ii;;ONO ((AND

(:~2 Y (QULJTE ICU"FFPT IC RATll IEXPT COS* (N 0001))1) NIL)
(SETe Kt:rL III ST (CUOTE SIN) VAR)))

(Gel GE TOUT)))
(SETQ A B)
(SETQ B IQUuTE S[N*))
(COND I(AND

1M2 Y (QUOTE ICOEFFPT (C RATl) (EXPT SIN* (N 00011))) NIL)
I SETO REPL (ll ST (QUOTE CDS) VARll)

(GO GE T31) I
(SUO Y

(S[MP (SueLlS (QUOTE (IS[N- TIMES TAN- (EXPT SEC* -1)) (COS* EXPT SEC* -III)
Y2)))

(SUQ C 1)
{SETQ A (QUOTE TAN-»
(SET., B (QUOTE SEC-))
(COND ((AND (RATl YI (SUQ REPL (UST (QUOTE TANl VAR») (GO GETl)l)
(SEh) A tJ)

(SETe B (QUOTE TAN-II
(COND ((AND

(1'12 Y (QUOTE (COEFFPT (C RATlI IEXPT TAN* (N ODDlll I) NIL)
(SETQ REPL (LIST (QUOTE SEC) VARII)

(GO GETOUT))1
(SE T., Y

(SIMP (SUBLIS (QUOTE «(SIN* TIMES 2 X (EXPT (PLUS 1 IEXPT X 2)1 -ill

I COS*
TIME S
(PLUS 1 (T[MES -1 (EXPT X 2)))
(EXPT (PLUS 1 IEXPT X 21) -II II)

Yl »))

(SE Te; Y
(LI ST

(QUOTE T[MESI
Y
(QUOTE (T[MES 2 (EXPT (PLUS 1 (EXPT X 21) -illl II

ISETQ REPL (SUBVAR (QUOTE (QUOTIENT (SIN X) (PLUS 1 ICOS XIIIIl)
(GO GET21

{SETQ Y (UST (QUOTE TIMeS) -1 YY Ylll
(GO GET2)

239

(SE TQ V
(LIST (QUOTE TIMESI (QUOTE (EXPT (PLUS 1 (EXPT X 211 -III VVI)

(GO GET2)
GETOUT

(SETQ V (LIST (QUOTE TIMESI VV VOl
GET2

(SETQ V (SIMP VII
(RETURN (SIMP (SUBST REPL (QUOTE XI (INTEGRATE V (QUOTE XlIII) 11111

DEFINE
« (ALGORT

(LAMBDA
(Rl PI VARll
(PRUG (R OLDSI OLDREST P VAR PO Q S SI S2 ANS Al A2 A3 NUM A M BREST)

(CSETQ VARLI ST (LI ST VARI I)
(r-.jEWVAR Rll
(r-.jEWVAR Pi)
(SETQ R (REP RIll
(SETQ P (REP Pll)
(SETQ VAR (REP vARl))
(SETQ PO (PFOERIVATIVE PII
(SETQ Q IOENOMINATORF RI I
(SETQ SI (r-.jUMERATORF RII

LOOP
(COr-.jD (INOT (POLP 51)1 (GO All I
(SETQ B (LIST (CAR SII))
(SUQ S (SIMPOL (CDR 511))
(SETQ M I SUBI (LENGTH SI»))

B
(SETQ ANS (PLUSF A ANS»)
(SETQ OLOSI 51)
(SETQ OLOREST REST)
(SETQ A (QUOTIENTF (TIMESF B (POLEXPT VAR M)) (TIMESF PO QJI)
(SETQ A3 (TIMESF A (PFOERIVATIVE QII)

(SETQ A2
(QUOTIENTF (MINUSF (TIMESF B (POLDERIVATIVE (POLEXPT VAR M))

PO))
(SUQ Al

(QUOTIENTF (TIMESF (TIMESF B (POLEXPT VAR MIl (PFDERIVATIVE PD)I
(PULEXPT PO 2) I)

ISETQ S2 (SEP (PLUSF IPLUSF S REST) (PLUSF Al (PLUSF A2 A3ll))
(SETQ SI (CAR S2)
(SETQ REST (CDR S2»)
(COND (SI (GO LOOP»)
(SETQ REST (SIMPSIMP <TRANS REST»)
(COND (I AND (NUMBERP REST) (ZEROP REST I)

(RETURN (SIMPSIMP (LIST
(QUOTE TIMES)
(TRANS (PLUSF A ANSI)
(LIST (QUOTE EXPTI (QUOTE EI Pll 11111

(RETURN
(PLUSSIMP

(LI ST
(QUOTE PLUS)
(SIMP SIMP {LI 5 T

(Q UO TE TI ME S)
(TRANS ANS)
(LIST (QUOTE EXPT) (QUOTE E) Pll »)

(LI ST
(QUOTE I NTEGRALl
(LI ST

240

(QUOTE TlMESI
ICONO ((NOT OLDRESTI lTRANS IQUOTIENTF OLDSI QIII

(T (TRANS (QUDTIENTF (CDR S21 Q) II
(LIST (QUOTE EXPTI (QUOTE EI PII 1111)

A
(SETQ B (CONS (LIST (CAAR SIll (CDR SIlII
(SETQ S

(COND «SETQ S (SIMPOL (CDAR S1))) (CONS S (CDR SIll) IT S)))
(5ETQ M (SUBI {LENGTH (CAR S1)I))
(GO B) I) I I)

DEFINE
{((SEP {LAMBDA (R)

{PRDG (S D N)
{COND {(POLP R) (RETURN (CONS R NIL))) I
(SETQ N (NUMERATORF R))
(SETQ D (DENOMINATORF RII
(COND ((AND (ONEP (LENGTH N)) (ONEP (LENGTH D)) I

(RETURN (CONS R NIL)) I)? (SETQ S (POLDIVIDE N D) I
(RETURN (CONS (CAR SI (QUOTlENTF (CDR SI DIll I))))

DEFINE
{({SUPERALGORT (LAMBDA

, '\

5r'rtr~h- ~ a/it '0
(R P VAR)
(PROG NIL

{FILEWRITE (QUOTE MANOVEI
{QUOTE ANSI
(ALGORT R P VAR)

(CHAIN (QUOTE ~(R MOSES)))
)

)))) I

DEFINE
({ {MASTER {LAMBDA (Y)

(PRU\; (FLI STI
(CSETQ VARLIST (LIST (CAR Y)))
(NEWVAR (CDR Y) I
(CSETQ REPSWITCH NIL)
(FILEWRITE (QUOTE MANOVEI

(QUOTE ANSI
(SIMPSIMP (FPROG (REP (CDR YII)))

(CHAIN (QUOTE ((R MOSES)))) 1))11

DEFINE
({(RAT8PRIME (LAMBDA (C) (AND IRAT8 CI (OR (NOT (NUMBERP C)) {NOT (ZEROP C))))))

(FIND (LAMBDA (EXP)
(COND «ATOM EXP) {MEMBER EXP (QUOTE (LOG INTEGRAL ARCTAN))))

IT lOR (FII,D ICAR EXPI) {FIND (CDR EXP)))) III
(RA HUG

(LA~18DA
{EXP VAR FORMI
(PROG (A B C CC D Y Z W)

I SETQ Y FORM)
(SETQ B (CDR (SASSOC IQUOTE B) YI II
(SETQ C (CDR (SASSOC (QUOTE CI YIII
(SETQ Y (INTEGRATE C VAR))
(COND «(FIND YI (RETURN NIL)))
(SETQ D CDIFFI {CDR ISASSOC IQUOTE Al FORM)I VAR)I
(COND ({EQ (CADAR FORM) (QUOTE ARCSIN) I (GO B)))

C
ISET\,) Z {INTEGRATE (SIMPTIMES (LIST Y DII VARII

A
{SETQ 0 {CDR {SASSDC (QUOTE A) FORMI I)

241

(RETURN (SIMP (LIST (QUOTE DIFFERENCE) (LIST (QUOTE TIMES) V D) Z)))
B

(COND
((NOT

(SETQ
iii
(142
o
(QUOTE

(PLUS
(COEFFPT

(C TRUE1I
(EXPT

(CC (LAMBDA (CC)
(141 CC

(QUOTE (PLUS (COEFFPT (B FREE) (EXPT (X VARP) 2)1
(COEFFP (A FREE)))1))1

(N INTEGERPll)))1111
(GO CI II

(SETQ CC (CDR (SASSOC (QUOTE CC) W)II
(SET" Z lTRIGSQRT (LIST (QtJOTE TIMES) VOl VAR CC W)I
(CONO ((NUlL ZI (RETURN NIU))
(GO AI)I)))

DEFINE
(((FINDI (LAMBDA (V A)

(COND
((EO V A) 1)
((ATOM V) NI 1I
(T (OR (FINDI (CAR V) A) (FINDI (CDR V) A))))))

(MAXPARTS
(LAMBDA

tAl
(PROG (V I

(SETQ V] I
LOOP

(SETQ V
(MAX Y

(COND ((EQ (CAR VI (QUOTE EXP1) I
(COND ((NUMBERP (CADDAR V)I

(COND ((LESSP (CADDAR V) 0) (MINUS (CAOOAR YIII
(T (CADDAM V))))

IT 11))
(T 11))1

(SETQ A (CDR A) I
(COND ((NUll AI (RETURN V)))
(GO LUOP))))

INTEGRATION-BV-PARTS

(PARTS
(LAMBDA

(EXP VARI
(PROG (A 8 V Z W G TOPPARTI

(CONO (NOPARTS (RETURN NIL)II
(COND ((NOT (GET (QUOTE TOPI (QUOTE APVAll))

(CSETQ TOP (SETQ TOPPART (GENSVMI))))
(SETQ V

(142

8

LOOP

A

242

EXP
(QUOTE ITIMES (COEFFTT fA FREE)) ICOEFFTT (8 TRUE))))
NIL))

(SETQ A (CDR (SASSOC (QUOTE AI VI))
(SETQ 8 (CDR (SASSOC (QUOTE 8) VI))
(COND ((NOT (EQ (CAR 8) (QUOTE TIMES))) (RETURN NIL)))
(COND

((NOT (GET (QUOTE MAXPARTSI (QUOTE APVALl))
(AND (CSETQ MAXPARTS (TIMES 2 (MAXPARTS 81))
(CSET~ NUMPARTS 11 I)

((AND (CSETQ NUMPARTS (ADDI NUMPARTSII
(GREATERP NUMPARTS MAXPARTSI)

(RETURN NILl I)

($ETQ V (CDR 811

(CSETQ NOPARTS T)
(SETQ l (INTEGRATE (CAR V) VARI)
(CSETQ NOPARTS NIL)
ICOND IIFINDI l (QUOTE INTEGRALII (GO All)
ISETQ G ICHOICE (CAR V) 8))
ISETQ iii IlNTEGRATE ISIMPTIMES (LIST (DIFFI G VAll.I III VAR)I
ICOND ((FINOI W (QUOTE INTEGRALI) (GO A)))
(SETQ

V
(SIMPTIMES ILIST A (SIMPOIFFERENCE (LIST ISIMPTIMES (LIST G l)) 1011)1

(RETURN (COND (IEQ TOPPART TOP)
(PROG23

(REMPROP IQUOTE TOPI (QUOTE APVALl)
V
(REMPROP IQUOTE MAXPARTSI (QUOTE APVAL))))

"T V)))

I SETQ V (CDR V) I
(COHO ((NULL VI (RETURN NILlII
(COND (INOT (EQ TOP TOPPARTII (GO LOOPIII
(CSETQ MAXPARTS (TIMES 2 (MAXPARTS 8111
(CSETQ NUMPARTS 11
(GO LOOPI III))

CSET
l"lUMPARTS 11

CSET
(NOPARTS NILI

SOLDIER

DEFINE
(((SOL

(LAM8DA
(EXP INDVAR DEPVARI
(SU8ST

INDVAR
(QUOTE XI
(SU8ST

DEPVAR
(QUOTE VI

243

(SOLDIER
(SUBST

(QUOTE XI
INOVAR
(SUeST

(QUOTE YI
DEPVAR
(SUBST

(QUOTE OX)
(INTERN (MKNAM (lJo. .CLEARBUFFI (PACK (QUOTE OIl (PACK INDVARIII I
(SUBST

(QUOTE OYI
(INTERN (MKNAM (OR (CLEARBUFFI (PACK (QUOTE 011 (PACK DEPVARI.II I
(SUBST

(QUOTE YPRI
(INTERN IMKNAM (OR

(C LEARB UfF I
(PACK DEPVARI
(PACK (QUOTE PI I
(PACK (QUOTE RII III

EXP I I I I I I I I I I
(SOLCON

(LAMBDA
IEXP INOVAR DEPVAR X YI
((LAMBDA (Z I

((LAMBDA no
ICOND (INULL WI NILI

(T (LIST
(QUOTE EQUAL I
(SIMP (SUBST Y DEPVAR (SUBST X INDVAR WIll
W 1111

(COND
((NULL II rHLl
((EQ (CADR II (QUOTE COl I (CAODR III
IT (CADR III III

(SOL EXP INDVAR DEPVARI III
(SOLDIER

(LAMBDA
(EXPI
(PROG (W EXPl EXP21

(COND
«(SETQ W

(M2
EXP
(QUOTE (PLUS (COEFFPT (A TRUEI OYI (COEFFPT (B TRUEI OXIII
NIL II

(GO Al I
((SETQ W

(M2
EXP
(QUOTE (PLUS (COEFFPT (A TRUEI YPRI (COEFFPT (8 TRUEIIII
NIL II

NIL I
(T (RETURN NILlI I

(SErQ EXPl (REPLACE W IQUOTE (PLUS (TIMES A OYI (TIMES B OXIIIII
(SEnl EXP2 EXPI
(GO BI

(SHQ EXP2 (REPLACE W (QUOTE (PLUS (TIMES A YPRI BIll)
(SETQ EXPl EXPI

B

244

(CO~JD {(TI{YSULD {QUUTE (LINEAK
SEP
E XAC T
HOMOG TYPE
BER'JOULL I
L INEARCOEFF
ALMOSTLlr>.JEAR
REVERSEVAR
XNYl »)

{QUOTe (EXPl EXPI EXPl EXPl EXP2 EXP2 EXPl EXPl EXP2)))
(RETURN w))

(T (RtTUR!'J NILl) I»))
(TRYSOLC (LAMBDA (A B)

(COND
{(NULL Al 'JIll
((SETQw «(CAt'(A) (COND I[EQ [CAR. B) (QUOTE EXP1I1 EXP1) (T EXPZII)) W)

(T {TRYSOLD (CDR Al (CDR B))) I))))

DcFIr>.JE
{({FACTORXY

(L 1I,'1BDA
(EXP J
(CCl"lD

{[NOT (E" (CAk EXP) [QUOTE TIMES))) EXP)
(T

(SIMPTIMES
{MAPLIST

(COR EXP)
{fU:'JCTIUN {LAMIJDA (eXPI

(CONI)
((EQ (SAAR. UP) (QUOTE PLUS)) (FACTORXY2 (CAR EXP»)
«AND (EQ (CAAR EXP) (QUOH EXPTlI

(EQ (CAA[)AR EXP) (QUOTE PLUS)))
(SIMPEXPT {LIST [FACTORXY2 (CADAR EXP)) (CADDAR EXP))))

(T (C AK cxr))) I))) I)))
(FACTCRXY2

(LMiBDA
(EAP)

(P? 0 G [l I:-J 0 R" S W)
{SET'" l (CDR EXP)
(SCTQ 1"10 «(lUOTE X) I

LOOP
{COND

{ {N:.JT
{ SUQ

W
('12

(Ci\R Zl
(QUOTE

ICUEFFT
(B TR UE I
(t XP T

(,\ Ml IND)
IN (FUNCTION (LAMBDA ("I)

(AND (NUMI3ERP "I) (GREATERP N 0.98999999EO» J))))

NIL »))
(GO NO) I)

(SEH) RES
(CO"JS (KEPLACE w (QUOTE (TIMES B (EXPT A (PLUS N -11»)) RES))

(CO"lO ((NOT {SETQ l (CDR l)))

(RETURr>.J (SIMPTIMES (LIST I"JO (SI~P~LUS RES»»)) I

245

(GO LOOP)
1'10

[COND (cO I,~D (QUOTE V)) (R.ETURN EXPII)
[SUQ I"JD IQUOTE VI)
(SETQ l (CDR EXP))
(SUQ RES NILl
(GO LUOP))))))

DEFINE
«((SIMPEXPT

(LAM80A
[E XP)
(PRO::; [A Bl

[SETQ tJ (SIMP (CAOR cXPI))
(SUO A (SIMP (CAR EXPIlI
(CONO

[(COP A 01 (RETURN 0))
[(AND

IEQ (CAR A) (QUOTE EXPTl)
(SETQ B (SIMPTlMES lUST B (CAOOR AI)))
(S"TQ A [CAOR A))
I~ I L)

\I I L)
([lOOP B 0) (RETURN 1))
(EWP B 1) (RETURN A))
«(EQP A 1) (RETURN IT)
(lAND (NUM6ERP A) (:\lUMBERP B))

(ReTURN (CUNO
«(NOT EXPTI'JDI IcXPT A BII
«liND (FIXP B) (GREATERP B -11) (EXPT A B))
(T (LIST (QUOTE EXPTl A Bll)1)

«(cO (CAR Al (QUOTE TIMt:S))
(R.ETUR"J (CO>..JS (QUOTE TIMES) (EXPTLOOP (CDR A))))

IIA"JD :::XPTSUM [EQ ICAR B) (QUOTE PLUS)))
(ReTURN

(CONS
(QUOTE TIMES)
(MAPLIST (CDR Bl

(FU"JCTION [LAMBDA (C) (SIMPEXPT (LIST A (CAR CllI)) 1)1)
([NUT (ATUM B))

[R E TURN
IPROG (WI

(RETUR~j

(CUNO
«(NOT (SETO W

(1'12
8
[QUOTE (PLUS (CCEFFT [C TRUEl)

(LOG (81 TRUE) (A TRUE))
(COEFFP (E TRUE))))

NIL I))
(LIST ((,;'UOTE EXPTI A [)l)

«NOT (EQUAL A (SUBLIS w (QUOTE Bl))))
(LIST (QUOTE EXPTl A BI I

(T
(SIMPTIMES (LIST

(SIMPEXPT [LIST (SUBLIS W (QUOTE Al)
(SUBLIS W (QUOTE CII)1

(SIMPEXPT (LIST A (SUBLIS W I~UOTE Ell I)))))))11)
(RETURN {LIST (QUOTE EXPTI A B)))))

I EXPTLOOP

246

(LAMBDA
(A J
IPROG23

(CSETQ SIMPIND TJ
(MAPllST A (FU"JCTlor~ (LAMBDA IC) (SIMPEXPT (LIST (CAR C) BIIIII
(CSETQ SIMPIIIJD NILl)1)))

DEF INE
«(ILU'ltAR

(LAMBDA
(EXP)
(PROG (Y l wI

(RE TURN
(COND

(r:WT
(SETQ

W
(M2

EXP
(QUOTE

(PLUS
(COEFFPT (F FREEX (QUOTE YII DYI
(COEFFPT (A I~l

(QUOTE (PLUS (COEFFPT (G FREEX (QUOTE YII Y)
(COEFFPT (H FREEX (QUOTE Y))) III

DX) I J
NI L)))

(COND (AND (THEREXNY EXP II
(NOT 1M2 EXP (SETQ W (EXPAND2 EXPII NILlI I

(LINEAR WI)
(TNILl I)

(T
(LIST

(QUOTE EQUALl
(QUOTE CO)
(SIMPPLUS

(LI ST
(LI ST

(QUOTE TI ME SI
(QUOTE Yl
(SE TQ

Z
(SIMPEXPT

(LI ST
(QUOTE E)
(SIN (SIMPQUOTIENT (LIST (REPLACE W (QUOTE GI

(REPLACE W (QUOTE FI) II
(Q UO TE X) I I I))

(SIN
(SIMP TI ME S (LI S T Z

(SIMPQUOTIENT (LIST (REPLACE W (QUOTE HII
(REPLACE w (QUOTE FI I I II J

(QUO TE XI I I I I I I I) I I
(THEREXNY (LAMBDA (EXP NI (EQUAL N (COUNTY EXPIIII
(COUNTY (LAMBDA (EXPI

(COND ((ATOM EXP) (COND (EQ EXP (QUOTE YII 11 (f 0111
(T (PLUS (COUNTY (CAR EXPII (COUNTY (CDR EXPIIII 1111)

DEFIIIJE
I « SEP

(LAMBDA

247

(r:XP)
(PkOG (w)

(RETURN
(CUI~D

((SETQW
(M2

(PRuG23 ICSCTQ EXPTSUM Tl (SIMP EXP) (CSETQ EXPTSUM NILI)
(QUUTE (PLUS

(TI ME S
OX
{COEFFTT (M FREEX {QUOTE XI I I
(COEFFTT (R FREEX (QUOTE YI I)

(TI ME S
DY
(COEFFTT (N FREEX (QUCTE XII)

(COEFFTT {S FREEX (QUOTE YIII I))

NIL))
(LI ST

(QUOTE EQUAL I
{SIMPPLUS (LIST

(SIN {SUBLIS W (QUOTE (QUOTIENT R S))) (QUOTE XII
{SIN (SUBLIS \oj (QUOTE (QUOTIENT N MIl) (QUOTE Y)I))

(QUU TE CO)) I
(T NIII }))

(FREEX (LAMBDA (A VAR)
([OND (ATOM Al (NCH (EQ A VARI) I

(T {AND {FREEX (CAR A) VAR) (FREEX (CDR Al VAR))I »)))1

DEFINE
(((EXACT

(LAMBDA
(EXP)
(pQUG (~ P \,) DPDY DQOX Y 1'1)

{COND «(NOT {SETQ w
{ M2

EXP
(QUOTE (PLUS (C(JEFFPT IP TRUE) DX) (COEFFPT (Q TRUE) DYII I

NIL) II
(RETURN NIL) II

(SETQ P {SUBLIS w (QUOTE PI))
(SET\,) Q {SUBLIS W (QUOTE Q))
(SET\,) DPDY lDIFFl P (QUOTE YI))
(SETQ DQDX (DIFF1 Q (QUOTE X)))
(COND ((NOT (M2 DPDY DQDX NILl) (GO A))

OUT
(SErQ Y (SI~J P {QUOTE X)II
(RETURN
(LI ST

(QUUTE EQUAL)
(CUOTE CO)
(SlMPPLUS

(LIS T
Y
(SIN

(EXPAND2 (SlMPDIFFERENCE (LIST Q (OIFFI Y (QUOTE Y»»}
(QUO T E Y)) I))

A
(COND

{ (NOT
{ FREEX

(SETQ 1'1

248

ISIHPQUOTIENT ILIST ISIHPDIFFERENCE ILIST DPDV DQDXII QII I
IQUOTE VI II

IGO BI I I
ISETQ Y ISIHPEXPT ILIST IQUOTE EI ISIN FI I(;lUOTE XIlIII
ISETQ P ISIHPTIHES ILIST Y Pili
ISETQ 0 (SIMPTIHES IllST V 0111
IGO DUll

B
ICOND

IINOT
I FREEX

I SEnl Fl
ISIHPQUOTIENT (LIST ISIHPDIFFERENCE (LIST DClDX DPDVII PII I

IQUOTE XI II
IGO CI II

(SETQ Y ISIHPEXPT 11IST IQUOTE EI ISIN Fl IQUOTE VIIIII
ISETQ P ISIHPTIHES ILIST Y PIlI
ISETQ Q ISIHPTIMES ILIST Y QIII
(GO OUlI

C
ICOND IINOT (ANO (H2 DPDY ISIMPMINUS ILl~T DQDXII NILI

IH2 IOIFFI P (QUOTE XII (DIFFI Q (QUOTE VII NIL! II
IRETURN NIL I II

I SEN Y
ISIHPPLUS 11IST ISIMPTI"ES ILIST P PI! ISIMPTIMES ILIST Q QlIlI I

(SETO P ISIMPQUOTIENT ILIST P VI)I
(SETQ Q ISIMPQUOTIENT ILIST Q VIII
(GO OUlI III II

DEF INE
III BE~NOULLI

ILAMBDA
IEXPI
I PROG I WI

IRETURN
ICOND

II NOT
I SETQ

;;
IH2

EXP
IQUOTE

IPLUS
ICOEFFPT IB TRUEI VPRI
ICOEFFPT IP FREEX IQUOTE VII VI
(COEFFPT

(0 FREEX IQUOTE VII
IEXPT V

IN ILI\HBDA UI
lAND INUHBERP AI INOT IZEROP AlII 1IIIII

NI L)) I
ICOND llANO ITHEREXNV EXP 21

INOT IH2 EXP ISETQ W IEXPAN02 EXPII NILII
I BERNOULLI WI I

ITNILI II
(IFREEX IREPLACE W IQUOTE 811 IQUOTE VII
II LAMdDA

IP I.l NIl
ISUBST

(SIMPEXPT ILIST (QUOTE VI NIII
IQUOTE VI

249

(LINEAR (SIMPPLUS (lIST (QUOTE DV)
(LIST

(QUOTE TIMES)
(QUOTE DX)
(LI ST

(QUOTE PLUS)
(LIST (QUOTE TIMES) Nl P (QUOTE VII
(LIST (QUOTE TIMES) Nl Q) »)11)

(REPLACE W (QUOTE (QUOTIENT P B)I)
(REPLACE W (QUOTE (QUOTIENT 0 BI»
(SIMPDIFFERENCE (LIST 1 (SU811S W (QUOTE N)))))))))1)))

DEFINE
(((HOMOGT'fPE

(LAMBDA
(EXP)
(PROG 1 V Z W)

(COND
((NOT (SETQ \II

(M2
EXP
(QUOTE (PLUS (COEFFPT (P TRUEI DIU (COEFFPT (0 TRUE) DY)))
NIL II)

(RETURN NILI)
((NOT (AND

(SETQ Z (HOMOG (SUBLIS W (QUOTE P)I»
(SETQ V (HOMOG (SUBLIS W 10UOTE 0)1»
(EOP V Z)) I

(RETURN PU LI)
IT

(RETURN
(LIST

IQUOTE EQUALI
(LIST

(QUOTE PLUS)
(QUOTE (LOG E XI)
(SIMP

(SUBST
(QUOTE (QUOTIENT Y X)I
(QUOTE V)
(SIN

(SI MPQUOn ENT
(LIST

ISETQ Y
(SIMP (SUBST 1 (QUOTE XI (SUBLIS W tQUDTE on))I

(SIMPPLUS (LIST
(SIfW '(SUBST 1 (OUOTE 10 (SUBLIS W (QUOTE P»))
(SIMPTIMES (LIST (QUOTE V) V») I)))

(QUOTE YI) I I
(QUOTE COl 1»»11

IHDMOG (LAMBDA IEXP)
(PROG (NOTHOM YI

(SETQ Y (HOMOGEN EXP) I
(COND (NOTHOM IRETURN NI L)) IT IRETURN YI")) I

(HOMOGEN
(LAMBDA

(EXP I
ICOND

((ATOM EXPI ICOND (IEQ EXP (QUOTE V)) 11 IIEQ EXP (QUOTE XIt 1) IT onl
((EQ (CAR EXP I (QUOTE TIMES) I

(EVAL ICONS (QUOTE PLUS)

250

(MAPLIST ICDR EXPI IFUNCTION ILAMBDA (CI IHOMOGEN (CAR CI I I I I I
(ALIST) I I

((EQ (CAR EXPI IQUOTE PLUSII
((LAMBDA (Y I

(PROG III
ISETQ Z IHOMOGEN (CAR YII·I

LOOP
ISETQ Y ICDR YI)
ICOND
IINUll YI (RETURN ZII
(INOT (EQUAL Z (HOMOGEN (CAR YIIII

(RETURN (PROG2 (SETQ NOTHOM TI -100011
(T (GO lOOP I) I I 1

I CDR EXP I))
II EQICAR EXPI IQUOTE EXPTlI

ICOND
IINUM8ERP (CADDR EXPII ITIMES (HOMOGEN ICADR EXP) (CADOR EXP)ll
llANO (ZEROP (HOMOGEN (CADR EXPIII IZEROP IHOMOGEN (CADDR EXPII)I 01
IT IPROG2 ISETQ NOTHOM T) -100011 II

I(EQ (CAR EXPI (QUOTE lOG))
ICOND ((ZEROP (HOMOGEN (CADDR EXPI)I 01

(T (PROG2 ISETQ NOTHOM TI -1000» II
((ZEROP IHOMOGEN (CADR EXP)II 0)
IT (PROG2 ISETQ NOTHOM n -10001))1)))

DEFINE
(II AU40STL INEAR

ILAMBDA
(EXPI
IPROG IW 0 DDDYI

(RETURN
(COND

I (NULL
I SETQ

W
1M2

EXP
(QUOTE

(PLUS
ITIMES DV ICOEFFTT (A TRUEII)
(TIMES

OX
IPLUS

(TIMES
ICOEFFTT (C FREEX IQUOTE VI»
(COEFFTT

(0 IF UNC TI ON (LAMBDA (A I I NOT I FREEX A (QUOT E Y1))1 I) I)
ICOEFFPP (E FREEX IQUOTE YIII)1)1

NIL)1)
NIL I

I (EQUAL 0
I SETQ DDDY

IDIFFI (SETQ 0 (REPLACE W (QUOTE Oil) IQUOTE YII I)
NIL I

((NOT (EQUAL 0 (OIFFI DDDY (QUOTE XlIII NIlI
(T

(SUBST
o
(QUOTE YI
(LINEAR

(REPLACE

251

(CONS (CO~S (QUOTE B)
(SIMPQUOTIENT (LIST (REPLACE W (QUOTE A)) ODDY»))

W I
(QUOTE

(PLUS
(TIMES BOY)
(TIMES OX

(PLUS
E
l TIMES C V)
lTUtES -1 B (EI/AL IOIFFl (QUOTE 0) (QUOTE X)))))I)))))))))))))

DEFINE
I(IIEROPI ILAMBDA IA) lAND INUMBERP A) (ZEROP AI)))

IFREEXV ILAMBDA IA) lAND IFREEX A (QUOTE X)) (FREEX A (QUOTE V)))))
(LINEARCOEFF

(LAMBDA
l EXP)
IPROG (I~O WA B APR BPR)

(RETURN
(COND

((NOT (ELEMLIN EXP)) NIL)
(lOR

lAND
IZERDPI (SETQ A (SUBLIS W (QUOTE A))))
(ZEROPI ISETQ B (SUBLIS W (QUOTE B))))

lAND
IZEROPI (SETQ APR (SUBlIS W (QUOTE APR))))
(ZEROPI (SETQ BPR (SUBLIS W (QUOTE BPR)))))

IZEROPI (SIMPDIFFERENCE (LIST (SIMPTIMES (LIST A BPR))
ISIMPTIMES (LIST APR B)) I)))

IRETURN NIll)
IT

IREPLACE
IREPLACE
NIL
IQUOTE

II X
EI/AL
IQUOTE

(REPLACE
W
IQUOTE I PLUS X

(MINUS (QUOTIENT
(DIFFERENCE (TIMES BPR C)

ITIMES B CPR))
IOIFFERENCE (TIMES APR B)

ITIMES A BPR))))))))1
(Y

EVAl
IQUOTE

IREPLACE
W
IQUOTE IPLUS Y

(MINUS (QUOTIENT
IDIFFERENCE ITIMES A CPR)

(TI ME S APR C))
(DIFFERENCE (TIMES APR B)

ITIMES A BPR) I))))))))))
IHOMOGTYPE (SUBSTlIN EXP)))))))1)

I ElEML IN

252

(LAMBDA
(El(PI
((LAMBDA (y I

(COND ((NULL YI NILI
(T (ElEMlINl (REPLACE Y (QUOTE (QUOTIENT A BI lIlI II

(MZ EXP (QUOTE (PLUS (COEFFPT (8 TRUEI YPRI (COEFFPT U TRUE II II NILI 111
(SUBSTLIN

(LAM8DA
(EXP I
(LIST

(QUOTE PLUSI
(QUOTE DYI
(SIMPTIHES

(LIST
(QUOTE DXI
(SUBSTLINI (REPLACE (MZ

EXP
(QUOTE (PLUS (COEFFPT (8 TRUEI YPRI (COEFFPT fA TRUEII)I
NIL I

(QUOTE (QUOTIENT A 811 111)))1
(ELEMLlNl

(LAMBDA
(eXp)
(COND

((FREEXY EXPI TI
((SETQ

W
(MZ

EXP
(COND

liND INDI
(T

(QUOTE (TIMES
ICOEFFTT (AA FREEXYII
IEXPT (PLUS

(COEFFPT (A FREEXYI X)
(COEFFPT (B FREEXYI YI
(C FREEXY) I

IN NUM8ERP I I
IEXPT

(PLUS
(COEFFPT (APR FREEXYI XI
(COEFFPT (BPR FREEXYI VI
(CPR FREE XVI I

(1'1 (FUNCTION (LAMBDA (1'1 NI (EQUAL 1'1 (MINUS N)1I1 NI 111)1
NIL) I

(COND liND INDI IT (SETQ IND EXPIII I
((ATOM EXPI NILI
I T (AND (ElEMLlNl (CAR EXPI I (ELEMlINl (CDR EXPI I II I) I

(SUBSTlINl
(LAMBDA

(EXPI
(COND

((FREEXY EXPI TI
((HZ EXP INDI

I SIMP (SUBLIS W
(QUOTE (TIME S

AA
I EXPT (PLUS (TIMES A XI ITI MES B VI I NI
(EXPT (PLUS (TIMES APR XI (TIMES BPR VII (MINUS Nil 11111

IT IMAPLIST EXP IFUNCTION (LAMBDA (CI (SUBSTLlNl (CAR CIIIIII 11111

253

DEFINE
(((XNYl

(LAMBDA
(EXP)
(PROG (W C H FX S A B N)

(COND ((NOT (SETQ W
1M2

EXP
(QUOTE (PLUS ICOEFFPT lA TRUE) YP1U ICOEFFPT (B TRUE)))I
NIL It I

(RETURN NIL I I I
ISETQ C IREPLACE W (QUOTE (QUOTIENT (MINUS BI A)III
(SETQ

H
(CONO

(IEQ (CAR CI (QUOTE PLUSII
(SIMPPLUS

(MAPLI ST
(COR CI
IFUNCTION (LAMBDA (G)

(SIMPTIMES (LIST (QUOTE XI (QUOTE (EXPT Y -11) (CAR GIt))))11
IT ISIMPTlMES (LIST (QUOTE XI (QUOTE (EXPT Y -11) CI))))

(SETQ FX (QUOTE (TIMES (EXPT X N) Yltl
(SETQ H (FACTORXY HI)
(SETQ

S
I EXPAND2

(SIMPDIFfERENCE (LIST
(SIMPTIMES (LIST (DIFFI H (QUOTE XI) (DIFFl FX (QUOTE V))))
(SIHPTlMES (LIST (DiFFl H (QUOTE V)) (DIFFI FX (QUOTE X))J))')))

ICOND ((NOT (SETQ ~

(M2
S
(QUOTE (PLUS (COEFFPT fA TRUE) N) (COEFFP (8 TRUE It It
NIL))1

IRETURN Nllt) I
(SETQ A (COR (SASSOC (QUOTE A) Wit)
(SETQ B (COR (SASSOC (QUOTE B) W))I
(COND (lOR (ZEROPl A) (ZEROPI Bit (RETURN NIlt It
(SETQ N

(COND
((AND (EQ ICAR A) (QUOTE PLUSIt (EQ (CAR 81 (QUOTE PLUS) It

(MATCHSUM (CDR (SIMPMINUS (LIST 8))) (CDR A) I)
(T ISIMPQUOTlENT (LIST (SIMPMINUS (LIST BII All))J

(COND ((NOT (NUMBERP N)) (RETURN NIlI) I
(RETURN

(LIST
(QUOTE EQUAlI
(QUOTE CO)
(SIMPQUOTl ENT
(t.I ST

I SIMP€XPT
(LIST

(QUOTE E)
(REPLACE

(LIST ICONS
(QUOTE UI
(SIMPTIMES (LIST (QUOTE V) (SIHPEXPT (LIST (QUOTE XI N))) III

(SIN
(LIST

254

(QUOTE QUOT! ENTl
1
III ST

(QUOTE Tlt~ES)

(QUOTE Ul
ILI ST

«(JUOTE PLUS)
N
(REPLACE

(LIST (CONS (QUOTE Y)
(SIMP (LIST

(QUOTE QUOTIENT)
(QUOTE U)
(LIST (QUOTE EXPTl (QUOTE Xl N)))

HIlI)
(QUOTE Ul 1)1)

(QUOTE X)))1))))))

ADDITIONAL METHODS

DEFINE
(((KEVERSEVAR

(LA~djOA

(EXP)
(PROG (YI

(RETURN (COND ((SETQ Y
(LINEAR ISUBLIS (QUOTE ((X. Y) (Y. X) (OX. OY) (DY • OX»)

EXP) II
(SUBLIS (QUOTE ((X. Y) (Y. X») Y))

(T NIl) II)))))

DEFINE
« DAYB

(LAMBDA
(EXP)
(PROG (\oj

M
N
XYDMOY
XYONDX
XM
YN
COEXM
COEYN
XAYB
A
B
FOKM
XYOIFF
Al
A2
Bl
B2
C 1
C2
DET
FAC T)

(CONO «(NOT (SETQ ~

255

(M2
E XP
(QUUTE {PLUS ICUEFFPT (M TRUE) OXI ICOEFFPT IN TRUE) OYll I
NIL }»

(RETURN NIL))
(SET~ M {REPLACE W (QUOTE Ml))
(SETQ N (REPLACE W (QUOTE N)))
(SE Tll XYOMOY

(EXPAN02 lSIMPTIMES (LIST IQUOTE Xl (QUOTE Y) (OIFFI M (QUOTE Y)ll)))
(SETQ XYONOX

(EXPANOZ (SIMPTIMES (LIST (QUOTE X) (QUOTE YI {DIFFI N lQUOTE XlIII II
lSETQ XM (EXPANDZ (SIMPTIMES (LIST (QUOTE Xl MI))I
(SET0 YN IEXPAND2 ISIMPTIMES (LIST -1 (QUOTE YI N)I))
ISETQ XYDIFF lSIMPDIFFERENCE (LIST XYDNOX XYDMDYI))
(SEc H,) W

(M2
(CUI~D «EQ ICAR YNI (QUOTE PLUSII ICADR YN)) IT YN))
{QUOTE {TIMES (CDEFFTT (B FREEXYII (COEFFTT lC TRU!:))))
NIL I)

(SETQ Bl (REPLACE .. {QUOTE B)II
ISETQ FACT lREPLACE W (QUOTE CII)
I SETQ YN

(COND (IEQ (CAR YN) [QUOTE PLUSI) {CONS (CUOTE PLUS) ICDOR YN))1
(T 0 I »)

(SETO FORM
{LI S T

{QUOTE PLuSI
(CONS (QUOTE COEFFPTJ

[CONS IQUOTE (B FREEXY)
(CONU {[EO (CAR FACT) (QUOTE TIMESI) (COR FACTII

{T (LIST FACT)) I)~

(QUOTE (COEFFPP (0 TRUE»I)}
(SET>,) W (M2 XM FORM NILl)
(SETQAl (REPLACE W (QUOTE B)I)
{SETQ XM (REPLACE .. (QUCJTE 01)
(SETO W (M2 XYDIFF FORM NIL))
(SETI,) Cl (RePLACE \\ (QUOTE B)I)
(SETQ XYDIFF (REPLACE W (QUOTE 0)1)
(COND [(M2 YN a NILl (GO B2lEROI)1
(SElO W

(M2
(CONO «EQ (CAR YN) (QUOTE PLUS)) (CADR YNI) IT YNII
(QUOTE (TIMES {COEFFTT (B FREEXYI) (COEFFTT (C TRUEI)))
NIL))

(SETw B2 (REPLACE W (OUOTE B)II
(SETQ FACT (KEPLACE W (QUOTE CII I
(SETQ FORt-'

(LI S T
(QUO TE P LUS)
(CON S (Q UO TE CO EFF P T)

(CONS (QUUTE (B FREEXYI)
(CoND (lEO ICAR FACTI (QUOTE TIMEcSI) (CDR FACTI)

IT (LIST FACT)) III
(QUOTE (COEFFPP (0 TRUE}))))

(SETQ W 1M2 XM FORM ,'HUI
(SETQ A2 (REPLACE W (QUOTE BIll

B2BACK
(SElO W (M2 XYDIFF FORM NILlI
(SETQ C2 (REPLACE W (QUOTE Bl})
I SEnl OET

(SIMP (LIST

256

IQUOTE DIFFERENCEI
ILIST IQUOTE TIMESI 82 All
11IST IQUOTE TIMESI 8.1 A21 III

ICOND 11M2 DET 0 NIlt IRETURN NILII I
(SETQ 8

ISIMP ILIST
IQUOTE QUOTIENTI
11IST

IQUOTE DIFFERENCE I
ILIST IQUOTE TIMESI 82 Cl)
11IST (QUOTE TIMESI Bl C21

DE T I II
I SETQ A

I SIMP III ST
IQUOTE QUOTIENTI
III ST

IQUOTE DIFFERENCEI
ILIST IQUOTE TIMESI Al C21
ILIST IQUOTE TIMESI A2 Cll

DET III
I SETQ XAVB

ISIMPTIMES (LIST ILIST IQUOTE EXPTI CQUOTE XI AI
ILIST CQUOTE EXPTI CQUOTE VI 8) III

IRE TURN IEXACT ILIST
IQUOTE PLUS)
11IST

IQUOTE TIMESI
IQUOTE DXI
IEXPAND2 ISIMPTIMES (LIST M XAYBIII I

11IST
CQUOTE TIMES)
IQUOTE DVI
IEXPAND2 ISIMPTIMES ILIST N XAVBIII IIJI

82lERO
ISETQ B2 01
ISETQ W

1M2
CCOND IIEQ ICAR Xl'll (QUOTE PLUSJI ICADR XMII IT XMII
IQUOTE (TIMES ICOEFFTT (B fREEXVl1 (COEFFTT IC TRUEIIII
NIL I)

(SETQ A2 (REPLACE W (QUOTE BIll
(SETQ fACT IREPLACE W CQUOTE C'II
ISETQ FORM

(LIST
(QUOTE PLUSI
(CONS (QUOTE COEfFPTI

ICONS (QUOTE (B FREEXVII
(COND ICEQ (CAR FACTI (QUOTE TIMESII (COR FACTII

(T 11IST FACTII III
IQUOTE (COEffPP (0 TRUEIII II

(GO B28ACKI IIIII

DefINE
I ((KAMKE329

lLAM80A
(EXP I
IPROG (W DET AA 8BI

ICONO
(INOT

(SETQ
W

257

1M2
IEXPAND2 EXPI
(QUOTE

IPLUS
lCOEFFPT IC 1"1

(QUOTE (PLUS ICOEFFPT (ALPHA FREEXY) X)
ICOEFFPT

IA FREEXY)
(EXPT X IP FREEXY))
(EXPT Y IQ FREEXY))))))

YPR)
ICOEFFPT (BETA FREEXYI Y)
(COEFFPT

(B FREEXYI
(EXPT X IR FREEXY))
IEXPT Y IS FREEXV)))))

NIL))1
IRETURN NIlI)

(INOT lAND
1M2 1 IREPLACE W IQUOTE (DIFFERENCE P R))) NIL)
1M2 1 IREPLACE W IQUOTE IDIFFERENCE S Q))) NIL)))

(RETURN NI L))
((M2

o
I SETQ DET

IREPLACE W
(QUOTE IDIFFERENCE ITIMES A BETA) ITHIES B ALPHA) I) II

NIL I
(RETURN NIL)))

I SETQ AA
IREPLAC-E W

IQUOTE (QUOTIENT (DIFFERENCE ITIMES Q BETA) IT IMES R ALPHA))
I EVAl DE T))))1

(SETQ BB
I REPLACE \II-

(QUOTE IQUOTIENT (DIFFERENCE ITIMES Q B) ITIMES R A)) IEVAL DET) I I))
(RETURN

IREPLACE
W
I QUOTE

(EQUAL CO
IPLUS

IQUOTIENT ITIMES IEXPT Y ITIMES A (EVAL AA1))
IEXPT X ITIMES B lEVU AA)) I)

lEVU AA))
IQUOTIENT IUMES IEXPT Y ITIMES ALPHA IEVAL BB) I)

IEXPT X (TIMES BETA IEVAL BBIII)
(EVAL BB))))))1)))))

EDGE

DEFINEII
IFREEILAMBDA(A)(COND(IATOM A)INOTIEQ A VAR)))
(TIAND(FREE(CAR A))IFREE (CDR A))I)III))
DEFINEI(,
IEDGEILAMBDAIEXP VAR)IPROG
(PRDBL ARCLOG POSEXPT OlDPROBL ONEHORE NON RAT NEWe' G W CONST NONCON
B ANSW ~ FF AORA' H A

258

NINTXP At 8' LDERIV HI
lSETQ B' lTRIGSUBST EXPII
lSETC NINTXPlH2 8'ICUOTElTIHESl8B HIlQUOTElEXPTlA lCUOTElLAHBOAlXllNOT

l FR EE XI I I I I(N
lQUOTElLAHBDAlXllNOTlNUHBERP XlIII IIII
lCOEFFTTlC TRUEIIIINILII

lbO BEGI

LOUP1CONDllRAT8 B'llGO FINISHEDIII

lCONDllEQlCAR NONCONllQUOTE TIHESIIIGO AAIII
l sere FF NONCON I
lGO GUESSI
AAlSETQ LDERIVlCONSlQUOTE PLUSllHAPLIST lCoR NONCONI

lFUNCTIONlLAH80AlCIlDIFFIlCAR CIVARIIIIII
lSETQ HlCOR NONCONII
lSETQ LlCOR LOERIVII
LOOP21CONOllRAT8lCAR HIICGO SKIPIII
lCONDllNOTlH2 CCHtHCe ICAR LI LOERIVI

lLISTlCUOTE PLUSIlLISTlQUOTE TIHESIlCAR HI
lCUOTElCOEFFTTlA TRUEIIII

lQUOTElB TRUE))I NIL)) lGO ENoPI))
SKIPlSETQ NONRATlCAR HII
lSETQ HlCDR H))
l serQ Ll CDR L11
I~ONDlHlGO LOOP2111
ISETQ FF NONRATI
lGO GUESSI
ENoPISETQ FFlCAR HII

GUESSlSETQ ARCLOG NILI
ISETQ POSEXPT NILI
ISerQ GleaNo
IlEClCAR FFllQUOTE COSIIlPROG2lSETQ AORA' TIlLISTIQUOTE SINllCAoR FFIIII
llECICAR FFIlQUOTE SINlllPROG2ISET~ AORA' TllLISTlQUOTE eOSllCAoR FFIIII
llEQICAR FFIlQUOTE LOGlllPROG~lSETQ AORA' NILIFFIl
IIEQICAR FFllQUOTE ARCSINII IPROG2lSETQ AORA' NILIFfl1
IlEQlCAR FfllQUOTE ARCTANlIlPROG21SETQ AORA' NILlfFll
IIEQICAR FFIIQUOTE EXPTlIICONQ
I l FREE l CAoR FF i)(PROl;2 CSETQ .AORA' .HFF))
IINOTlNUHBERPlCAOOR FFIIIlPROG23lSETQ AOR.' HllISTlQUOTE EXPTI(CADR FFl
lSIHPPLUSILISTICAOOR FFIlIll

lSETQ POSEXPT T)II

IIGREATERPICAoDR FFIOIlPROG23lSETQ AORA' TIILISTIQUOTE EXPTllCADR FFI
ISIHPPlUSllISTlCADoR FFIlll1
lSETC POSEXPT TIll

llLESSPlCAooR FFI-1IIPROG2lSETC AORA' TllLlSTlQUOTE EXPTI
lCAoR FFllSIHPPLUSllISTICAooR FFllllll1

IlANDlEQUAllCAooR FFl-O.51ISETQ WIH21CAoR FFI
ICUOTElPLUSICOEFFPIA FREEOlllCOEFFTIC M2lQUOTElEXPTlo TRUEllN EVENIIINILI_

lB fREEllIINIlJl1
lPROG23lSETQ AORA' TIIREPLACE W. .
IQUOTElARCSINIEXPTlQUOTIENTlTIMESlHINUS BICIAlO.5111IlSETQ ARCLOG TIll

IlEQUALlCADoR FFJ-IIICONDIISETQ WlM21CAoR FFl
lQUOTECPLUSCCOEFFPlA FREEOHICQEFFTlC M2,CQUOIEIEXPTIO TRUEI.IN EVEN))INILJ

lB FREEIIIINILlI

259

IPROG23lSETQ AORA' TIlREPLACE WlQUOTElARCTANIEXPTIQUOTIENTlTIMES B CIAID.51111
ISETQ ARC LOG TI II
lTlPROGZ3lSETQ AORA' T)lLISTIQUOTE LOGIlQUOTE EIICAOR FFIIlSETC ARClOG TIIIII

ITIERRORlQUOTElNOT YET ACCOUNTED FDRIIIIII
ITIERRORlQUOTElGUESS NOT YET FINISHEDIJIIII

GOGOICONOIINOT AORA'IIGO A'SETIII
ISETQ AISIMPQUOTIENTlLIST NONCONlDIFFl G VARIIII
ISETQ AICONDl{AND ARCLOGlSETQ WIMZ AlQUOTE

ITIMESIB MZIQUOTEIEXPT{PLUSICOEFFPIBl FREEDII
ICOEFFTlBZ TRUEIlB3 FREElll-lIINILI

rc HZlQUOTEIPLUSlCOEFFPlCl FREEOII
ICOEFFTICZ TRUE11lC3 FREEIIIINILIlCOEFFTTID TRUEIIIINILIII
ICONOIISETQ HIHATCHSUHlCOAORlREPLACE W(QUOTE BI)I

ICDRIREPLACE WlQUOTE CIIIII
ISIMPQUOTIENT(LISTlREPlACE W(QUOTE DIIHIII

IT AlII
IT AlII

ISETQ A'IOIFFl A VARII
ISETQ NEWB'lCONOl(NOTIEQICAR A'IIQUOTE PLUS)IIISIHPMINUSILIST

ISIMPTIMESILIST G A'IIIII
ITlTIMESLOOPlSIMPMINUSlLIST GIIlCDR AIIIII

I GO LOOP 51
A'SETISETQ A'ISIHPQUOTIENTILIST NONCON GIll
ICONDllFINOllSETQ AIINTEGRATE A' VARIIIQUOTE INTEGRALIIIGO KILLI)I
ISETQ NEWB'ICOND(IEQ(CAR AIIQUOTE PLUSII ITIMESLOOPISIMPHINUS

lLISTIDIFFl G VARllllCOR AliI
ITISIHPTIMESILIST -110IFFl G VARIAIIIII

LOOP5lSETQ PROBLICONSILIST B' CONST NONCON G FF A A' ARCLOG POSEXPTIPROBLII
ICONDIIANO ARCLOGINOTIFREE AlII lSETQ ARCLOG 1111
ICONDIIANO POSEXPT(NOTIFREE AlII ISETQ POSEXPT 1111
IPRINT NEWB'I
ISETQ B' NEWB'I
BEG ISETQ WIMZ B'IQUOTEITIHESICOEFFTTIA FREEIIICOEFFTTIB TRUEIIIINILII
ISETQ CONSTIREPLACE WIQUOTE AlII
ISETQ NONCONIREPlACE W(QUOTE BI)I
I SETQ L PROBL I
LOOP3lCONDllNULL LIIGO PROGRESSII
IIMZICADDAR LINONCON NILIIGO AlII
I SETQ Ll CDR LlI
I GO LOOP31
AI SETQ M PROBLl
I SETQ W CONSTl
AZISETQ WISIMPTIMESILIST W ICADAR MIIII
ICONDIIEQ M LIIGO Al111
ISETQ MICDR HII
IGO AZI
AlICONDllMZ WICADAR L1NIlIIGO KILLlII

IRPLACAICDAR Ll
ISIHPQUOTIENTILISTICADAR LI ISIMPDIFFERENCEILISTICADAR LIWIIIII

ISETQ ANSW 01
SKIPZISETQ L PROBLI
LOOP4lCONDIlNULL LIIRETURN ANSWll1
ISETQ ANSWISIMPTIMESILISTICADAR LI

260

ISIMPPLUSILISTISIMPTIHESILISTICAOORICOOOAR LIIICARICDOOAR LII)IANSWIIII)
I SETQ l(COR LJI
lGO LOOP41
FINISHEOISETQ ANSWIINTEGRATE BI VARII
I bO SKIP21

PROGRESSICONOIIRAT8 BIIIGO FINISHEOII
IONEMOREIRETURNIQUOTEINO PROGRESSIIII
IIEQUAL POSEXPT 111SETQ ONE MORE Til
I IEQUAL ARC LOG 111SETQ ONEHORE Till
ICONOIINOT NINTXPIIGO LOOPIII
ISETQ WIM2 BIIQUOTEITIMESIEXPTIA EQUALIREPLACE NINTXPIQUOTE AlII

IH TRUE1111COEFFTTIO TRUEIIIINIUI
ICONOIINULL WIIERRORCQUOTE NINTXPIIII
ISETQ MISIMPOIFFERENCEILISTCREPLACE NINTXPIQUOTE N)I

IREPLACE WIQUOTE HIIIII
ICONOCINOTINUMSERP MIIIERRORILISTIQUOTE NINTXPIMIII
IIZEROP MIIGO LOOPII
IIGREATERP" OlIGO N111
IONEHOREIRETURN-IQUOTEINO PROGRESS NINTXPIIIII
ISETQ ONEMORE TI
(GO LOOPI
N11SETQ ANSW(LISTI~UOTE INTEGRALI NIL ILISTIQUOTE QUOTEIBII ILISTIQUOTE QUOTE I

VAR III
IGO SKIP21

KILL1 ISETQ PROBLICOR PROBLII
KILL21CONOllNULL PROBLIIGO MAYBEONEMOREIII
ISETQ LICAR PROBLII
ICONOIICARICOOOORICOOOOR LII)IGO POSEXPTIII
ICONOIINOTICAOOOR ICDOOOR LIIIIGO KILL111
IIEQICARCCADOOR LItCQUOTE LOGI)(GO KILLlII
I
ISETQ FFICAOOORICOR LIII
ISETQ S'ICAR L11
ISETQ CONSTCCAOR LII
ISETQ NONCONICAOOR LII
I SETQ AORA I II
ISETQ GICONOIIEQICARICAOOOR LI)IQUOTE ARCSINII

ILISTIQUOTE EXPT~{CAOR FFICSIHPPLUSILISTCCAOOR FFI111))
ITILISTIQUOTE LOGIIQUOTE EIICAOR FFIIIII

I SETQ PROSLICORPROBU I
ISETQ ONEMORE NILI
IGO GOGO)
KILLISETQ OLDPROBL PROBLI
IGO KILL21

HAYBEONEMOREICONDIONEMOREIRETURNIQUOTEII GIVEUP))III
IPRINTILISTIQUOTE ONEMOREIOlOPROBll)
ISETQ PROBl OlOPROBLI
ISETQ ONEMORE TI
IGO lOOPI

POSEXPTICONOIIEQUALICARICOOOORICOOODR ll»1)(GO KILllll1
ISETQ FflCAOOORICOR LI»)
ISETQ POSEXPT 11
I SETQ AORA I TI
ISETQ SI ICAR III
IPRINTILISTIQUOTE POSEXPTIBI»
ISETQ CONSTICAO~ III
ISETQ NONCONCCAOOR L)I

261

lSETQ G FFI
I S"TQ PROBUCDR PROBLl)
I GO GOGO I
)) III

DEFINEll
ITRIGSUBSTlLAMBDAIEXPI
ICOND
IIATOM EXPIEXP)
II~OTIMEMBERICAR EXPI IQUOTEITAN COT SEC CSCI I I I

ISIMPIMAPLIST EXPIFUNCTION(LAMBDAIGllTRIGSUBSTICAR GIl I IIII
IIEQICAR EXPIIQUOTE TANlIlSIMPQUOTIENTlLISTIUSTlQUOTE SINIIGADR EXPII

ILISTIQUOTE COSIIGADR EXPIJIII
(IEQICAR EXPIIQUOTE COTI I ISIMPQUOTIENTILISTILISTIQUOTE COSIICADR EXPII

ILISTlQUOTE SIN)IGADR EXPIJ III
(IEQICAR EXPIIQUOTE SECIIISIMPQUOTIENTILIST llLISTIQUOTE COSIICADR EXPIIIII
»))))

------~._----------

BIBLIOGRAPHY

1. Anderson, R., "Syntax-Directed Recognition of Hand-Printed Two
Dimensional Mathematics," Memorandum 64, Project TACT, Harvard
University, Cambridge, Mass., July 1967.

2. Baylor, G.W., and Simon, H.A., "A Chess Mating Combination Pro
gram," Proceedings 1966 Spring Joint Computer Conference, Spartan
Books, Washington, D.C., pp. 431-447.

3. Black, F., "A Deductive Question Answering System,;' doctoral disser
tation, Harvard University, Cambridge, Mass., 1964.

4. Bobrow, D.G., "A Question Answering System for High School Algebra
Word Problems," Proceedings of the 1964 Fall Joint Computer Confer
~, Spartan Press, Baltimore, Maryland.

5.. Bond, E., et.a1., "An Experimental Formula Manipulation Compiler,"
Proceedings 1964 ACM National Conference, pp. K2.I-l-K2.I-ll.

6. Brown, W.S., Hyde, J.P., and Tague, B.A., "The ALPAK System for
Non-numerical Algebra on a Digital Computer - II," Bell System
Tech. Journal XLIII, No.2, 1964, pp. 785-804.

7. Brown, W.S., Rational Exponential Expressions and a Conjecture Con
cerning ~ and e, Bell Telephone Laboratories, Murray Hill, New Jer
sey, 1967.

8. Caracciolo di Farino, A., Spanedda, L. and Workenstein, N., "PANON-IB
--A Programming Language for Symbol Manipulation," University of Pisa,
Italy, 1966.

9. Caviness, B.F., "On Canonical Forms and Simplifications ," doctoral
dissertation, Carnegie Institute of Technology, 1967.

10. Christensen, C., "On the Implementation of AMBIT, A Language for
Symbol Manipulation," CODIlunications of the ACM, Vol. 9, No.8,
August 1966.

11. Crisman, P.A. (ed.), The Cgmpatible Time-Sharing System: A Program
mer's Guide (second edition), MIT Press, Cambridge, Mass., 1965.

12. Collins, G.E., "PH, A System for PolynOmial Manipulations, " .QQIIIm!
nications of the ACM, Vol. 9, No.8, August 1966, pp. 578-589.

262

263

13. Collins, G.E., IISubresultants and Reduced Polynomial Remainder
Sequences,1I Journal of the ACM, Vol. 14, No.1, January 1967,
pp. 128-142.

14. Davis, M., Putnam, H., and Robinson, J., liThe Decision Problem for
Exponential Diophantine Equations,1I Annals of Math., Vol. 74, 1961.

15. Engelman, C., IlMATHLAB: A Program for On-Line Assistance in Sym
bolic Computations,1I Proceedings 1965 FJCC, Spartan Books, Wash
ington, D.C.

16. Evans, J .W., Harary, F., and Lynn, M.S., liOn the Computer Enumera
tion of Finite Topologies," Communications of the ACM, Vol. 10,
No.5, May 1967, pp. 295-297, 313.

17 • Evans, T.G., IIA Program for the Solution of a Class of Geometry
Analogy Intelligence-Test Questions,1I Report AFCRL-64-884, Air
Force Cambridge Research Laboratories, Hanscom Field, Mass., 1964.
(A paper based on this dissertation was presented at the 1964 Spring
Joint Computer Conference.)

18. Feigenbaum, E.A., and Feldman, J. (eds.), Computers and Thought,
McGraw-Hill, New York, 1963.

19. Fenichel, R.R., IIAn On-Line System for Algebraic Manipulations,1I
doctoral dissertation, Harvard University, July 1966, (also avail
able as Report MAC-TR-35, Project MAC, MIT, Cambridge, Mass., Dec.
1966).

20. Fenichel, R.R., and Moses, J., IIA New Version of CTSS LISP,II Memo
randum MAC-M-296, Project MAC, MIT, Cambridge, Mass., Dec. 1966.

21. Goldberg, S.H., IISol ution of an Electrical Network Using a Digital
Computer," M.S. Thesis, MIT, Cambridge, Mass., 1959.

22. Greenblatt, R.D., Eastlake, P.E., and Crocker, S.D., liThe Green
blatt- Chess Program,1I to appear in the Proceedings of the 1967 Fall
Joint Computer Conference.

23. Guzman, A., and McIntosh, H.V., IICONVERT,II Communications of the
ACM, Vol. 9, No.8, August 1966, pp. 604-615.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

264

, ,
Haa~, Bierens de, Nouvelle Table, d' Integrals Definees, G.T. Stechert,

New York, 1939.

Hardy, G.B., The Integration of Functions of a Sipgle Variable,
second ed., Cambridge Univ. Press, Cambridge, England, 1916.

Henneman, W., private coamunication, 1966.

Ince, E.L., Integration of OrdinarvDifferential Eguations, 7th ed.,
Oliver and Boyd, London, 1963.

Iturriaga, I.., "Contributions to Mechanical Mathematics,II doctoral
dissertation, Carnegie Institute of Technology, Pittsburgh, Penna.,
April, 1967.

Jolley, L.B.W., Summation of Series, second edition, Dover, New York,
1961.

Kamke, E., Differentialg1eichungen. LOstgl8smethoden and WZungen.
Vol. I, second edition, J .W. Edwards, Ann Arbor, Mich., 19 5.

Kaplansky, I., An Introdyctionto Differential Algebra, Paris, 1957.

Klerer, M., and May, J., "An Experiment in a User Oriented Computer
System," Copp. A.C.M., vo!. 7, No.5, 1964, pp. 290-294.

Korsvold, K., "An On-Line Algebraic Simplify Program," Art. Intel!.
Project Memo 37, Stanford Univ., Palo Alto, Calif., 1966.

McCarthy, J., et al., LISP 1.5 Progra-r' s· Manual, MIT Press, Cam
bridge, Mass., 1963.

McIntosh, B.V., "Degeneracy of the Magnetic Monopole," Bull. of
Amer. Physical Society, series II, vol. 12, p. 699, 1967.

Manove, H., Bloom, S., and Engelman, 'C., "Rational I'unctions in MATH- ,
LAB," Proc .of the 1.1'.I.P. Working Con~. on Symbol Manipulation Lan-
guages, Pisa, Italy, Sept. 1966 (to appear). .

Martin, W.A., "Symbolic Mathematical Laboratory," doctoral disser
tation, MIT, Cambridge, Mass., Jan. 1961' (also Report n-36, Project
MAC, MIT).

Maurer, W.D., "A Table of Integrals Involving the Error :Function and
Related Functions," Argonne National Laboratory, Reactor Engineering
Group, 1958.

39. Maurer, W.D., "Computer Experiments in I'inite Algebra," Comm. ACjK,
vol. 9, No.8, August 1966, pp. 589-603.

265

40. Millen. J.K.. "CHARYBDIS: A LISP Prosram to Display Mathematical
Expressions on Typewriter-Like Devices." presented at ACM Symposium
on Interactive Systems for- Experimental AppUd Mathematics. Wash ••
D.C •• August 1967.

41. Minsky. M.L•• "Steps Toward Artificial InteUigence." in Computers
and Thought. McGraw-Rill. Hew York. 1963.

42. Hoses. J •• "Solution of Syste.s of PolynOlllial Equations by Elimi
nation." Cowp. of the 4CM. Vol. 9. Bo. 8. August 1966. pp. 634
637.

43. Hewell. A•• Shaw. J .C. and Simon. R.A-•• ""'port all a General Problem
Solving Program." inC_uters ,nd TboUSht • McGraw-Bill. New York.
1963.

44. Hewell. A•• Shaw. J .C. and Simon. B.A•• _"Blllpirieal Explorations of
the Logic Theory Machine: A Case StUdyln Beuristics.n in Computers
and Thousht. McGraw-Bill. Hew York. 1963.

45. Hewell. A•• and Ernst. G•• "The Search for Generality." Proc. DIP
Congress. 1965. Vol. I. pp. 17-24.

6-6. Hewell. A•• "SOM Problems of Ba.ic OrSa1lhation in Problem SolVing
Programs." in Self-OrunizilUl: Syst81111 1962. Tovits. M•• Jacobi. G.
and Goldstein. G•• editors. Spartan Books. 1962. pp. 393-423.

47. Horton. L.M•• IlADBfT - A Beuristic Progr. for Proving Theorems of
Group Theory." Tech. Report TIl-33. Prc.j ect MAC. MIT. Cambridge.
Mass•• Oct. 1966.

48. Perlis. A.J •• Iturriage. R•• and Standish. T.A •• "A Definition of
FOJ:1QUla ALGOL.." Depart. of Computer Science. Carnegie Inst. of Tech ••
Pittsburgh. Penna •• March 1966.

49. Persson. A•• "Some Sequence Extrapolating Prosrams: A Study of Re
presentation and Modeling in Inquiring Systems." Tech. Report CS50.
Computer Science Depart •• Stanford Univ •• Palo Alto. Calif •• Sept.
1966.

50. Peterson. F.P •• and Sims. C•• "The Formulation of the Statement of
a Cobo:tdi_ Struc~re Theorem." Mathe.tical Algoritbas. VoL I.
Ho. 3. July 1966. pp. 1-11.

51. Petit Bois. G•• Tables of Indefinite Integrals. Dover Publications.
Hew York. 1961.

52. Richardson. D•• doctoral dissertation. Univ. of Bristol. Bristol.
England. 1966.

53. Risch. R.R•• "The Problem of Integration in Finite Terms." Report

266

SP-2801, Systems Development Corp., Santa Monica, Calif., March 1967.

54. Ritt, J.F., Integration in Finite Terms, Columbia Univ. Press, New
York, 1947.

55. Sammet, J.E., "Survey of Formula Manipulation," COII!I!l of the Ag,
Vol. 9, No.8, Aug. 1966, pp. 555-569.

56. Sammet, J.E., "An Annotated Description Based Bibliography on the
Use of Computers for Non-Numerical Mathematics," Computing Review,
Vol. 7, No.4, July 1966, pp. B1-B31.

57. Segovia, R. and McIntosh, H.V., "Computer Analysis of Finite Groups,"
presented at 1966 Fall Joint Computer Conf.

58. Slagle, J .R., "A Heuristic Program that Solves Symbolic Integration
Problems in Freshman Calculus, Symbolic Automatic Integrator (SAINT),"
doctoral dissertation, MIT, 1961 (a paper based on this thesis is in
Computers and Thought, McGraw-Hill, New York, 1963).

59. Slagle, J .R., "Experiments with a Deductive Question Answering Pro
gram," Comm. AQIJ., Vol. 8, 1965, pp. 792-798.

60. Spiegel, M.R., Applied Differential Equations, Prentice-Hall, Engle
wood Cliffs, New,Jersey, 1958.

61. Tarski, A., A Decision Method for Elementary Algebra and Geometry,
second ed., Univ. of calif. Press, Berkeley, Calif., 1951.

62. Teite1man, W., "FLIP - A Format List Processor," Memo MAC-M-263,
Project MAC, MIT, cambridge, Mass., 1965.

63. Tobey, R.G., Bobrow, R.J. and Zilles, S., "Automatic Simplification
in FORHAC," Proc. 1965 FJCC, Spartan Books, pp. 37-57.

64. Tobey, R.G., doctoral dissertation, Harvard Univ., Cambridge, Mass.,
1967.

65. van der Waerden, B.L., Modern Algebra, vol. 1, Frederick Unger, New
York, 1953.

66. Weizenbaum, J., "ELIZA - A Computer Program for the Study of Natural
Language Communication between Man and Machine," Comm• ACM, Vol. 9,
No.1, Jan. 1966, pp. 36-45.

BIOGRAPHY OF THE AUTHOR

Joel Moses was born in Petach Tikvall, Israel, on November 25, 1941.

He entered the United Stated on September 1, 1954 and became a naturalized

citizen in 1960. After graduating from Midwood High School, Brooklyn,

New York, in June 1959, he entered Columbia College from which he graduated

Magna Cum Laude in June 1962. During this time he held a New York State

Engineering and Science Scholarship. He then enrolled in the Graduate

Faculties of Columbia University and held an IBM Fellowship for the year

1962-1963. He received a Master of Arts in Applied Mathematics in June

1963. Since that time he has been a graduate student at MIT in its Depart

ment of Mathematics and a research assistant at its Research Laboratory of

Electronics and Project MAC.

The author has been employed by IBM's Watson Research Laboratory, New

York, New York, and Boston Advanced Progr8lllllling Department, Cambridge,

Massachusetts, and by the Lincoln Laboratory, Lexington, Massachusetts.

He has accepted emplo.yment as Assistant Professor in the Department of

Electrical Engineering at MIT.

His publications include:

"Solution of Systems of Polynomial Equations by Elimination," Communi

cations of the ACM 9, 8 (August 1966), pp. 634-637.

The author is a member of The American Mathematical Society, The

Association for Computing Machinery, Phi Beta Kappa, and Sigma Xi.

267

SeaIdtJ a_ te

DOCIR1.1T CDMT-.L DATA- aDc_",__.,."',__........__..____,_,·-..

I. _TI..O "CTIYITY ee-~POttT "CUlltTY CL.......IC..T_

.....c:hua.tu Iutitute of T.cbao1olY -=tASIUlID... -Project IMC ...
•.OItT TITL.

S,.bo1ic 1Dt••r.t~

.. _.,"TIY. "OT.' C"-"__ _ 01_~

JIb.D. 'Ebub. DepertMllt of ..tb..ti". leJK.....r 1967
I. "UT_II cz.- _ - __at)

~e•• Joel

..OIlT D"TIE , .. TOT"L NO. 0.. 171. "0.0"

Deee.ber 1967 268 66
... CONT....CT OIl O.....T NO.

... __..T-' ._T_._

Offic. of1reb. Boar--4102 (01) IMC-ra-.7 (DISD).........CTNO.
n 048-189 .. OT...R __T_,...-....... - -.....---U 003-09-01

~

,I. .." ..IL....LITY/L....T..T_ NOTIC.'

DiatributioD of tbb do~t b aU.ited.

II. _L_TAltY MOTIE. IL • 1..___ ..LIT..RT ..CTlYITT
£dyeac:edreb Proj.ct. Aaacy

IIoDe .200
v.-1aatoIa. D. C. 20301

I'.TR..CT

8D nil SOtDIII ere beurbtic proar.. writteD ill LISP lIblc:ll eo1"e .,.abol1c

iDtep-.t loll prob1... 8Dr (8,.abol1c Drtear.tor) _1".. 1DdefiDite iDt.ar.t1oll pro~

1.. at the difficulty eppro.cb1q bo.. iD tb. larpr iDtqral tal... 8D coat••

• evere1 _r. _thoU thea .re ueed iD the prev10u .,.IIollc btep.tloD 'I'OP'- 1ADr'l.

nil eol".. aoet of the prob1.. .tt...ted by 1ADft' iD 1... thea ClIDII .ecoad. IOLDDa

(IOLatioD of Ord1Dllry Dlff.AIltle1tloM.DaU...) eol".. firat-oder. firet-elear-I

ord1Dllry differentialt1ou et the 1...1 of a pod coll.........re ... et _

."er... of e1lout fi"e .eCODll. per prob1••tc..pt". 'Dae dlff.reacu In plt11aeopy ...

operat101l betwell 1ADft' ... 8Dr .re "'cr1bed...........tioae are ~.for acelMl1Da

tble work•

... ..,,-
A11ebrdc -.nlpulet1oD 1IlJ1t1ple-eccee. cc.pat.ra s,.IIol1c tatep'atloa
Cc:lIItNtera OD-11De cc.put.n rriDI
x.cb1De-.Wed c:ap1t~ ...l-tiae cc.pat.n r-...u.red cc.paten

DD .=-'.. 1473 (MJ.T.)
s.-itra 'C 2'

