
DYNAMIC ~ODELING/COfPUT~k G APHICS SYSTEM DOCUMENT SYS.11.02

!~g!!.!E!£1!!1Q!i
A MEDDLE MANUAL r ORAf1
Gre·g Pfister

30 January 1972
t

MOT IV F.T I ON _,__, ______ _
I wanted to· be able to define events and put breakpoints

in NUDD LE programs.

Doing that implied being able to do two thir.gs: 1) say

where the breakpoints/events were; 2) modify the program (in th~

\ absence of monitor bits) to insert breakpoint and event

'-- "functions".

Since the above adds up to about 7/8 of an editor, I

figure~ that I might as well finish the job. It became somewhat

larger than I expected.

The acronym, by the way, stands for Muddle Editor,

Dynamic Debugger, and Little Else.

1. Pfister, Greg, A HUDDLE PRIMER -- SYS.11.01.

2. Daniels, Bruce, Micro Nuddle Manual -- SYS.11.03-

BO Di

!he body of the manual follo~s.

I

o:;so 2 SYS. ll.:J2

l LOADING

MEDDLE is an editor/debugger written in, written for, ~nd
running under MUDDLE.

To load it, type to r'!UDDLE

<FLOAD "MEDDLE" ">" "OSK" "MUDDLE">8

and wait a while.

Loading MEDDLE inserts 4 atoms into the root oblist.
c,nflicts with Lheir atom na~es must be mediated by the user.
They are:

MEDDLE
.1EDDLE BLOCK
MfDDLE:Q
:-tERDE

Ml.re :1u.y be added i:1 the future; they will be of the same general
form. You have been warned.

Loading MEDtLE also causes a modified
pretty-printer to be loaded for MEDDLE's use.
typeout function using it have atom names put
oblist so you h3.ve them available. The atoms

<PPRINI ◄object•>
<FRAMES ◄ n► >

copy of BKD's
It 3.nd a f ra:ne

into the :root
3.nd calls are:

The first pretty-prints ◄object ➔, the second pretty-prints ~n•
levels of FUNCT and AR;S.

MEDDLE will automatically start up when the FLOAD
finishes. To start it manually, for instance after an ERREI,
apply MEDDLE to no arguments. It will produce some form of
"hello" message, followed by a note on the use of <>'s.

3 SYS. ll.,J2

2 THE READER

The routine in MEDDLE which controls typein is the
reader. It nas two purposes, t~e first of which cannot, unjer
the current MUDDLE, be achieved without the secona:

1) Lexically blocking the ATOMs which desigr.ate MEDDLE's
comma1ds away from the user•s ;rJM;, while allowing access to
both sets of ATOMs.

2) Making it possible to avoid typing c anj > to apoly
~EDCLE's functions (commands). In the best case -- which occurs
ofte1 -- this h¼lves the number of keystrokes needed.

Since the outermost< aid> are provideJ by the MEDuLE
reader, where you would nornally say, for ir,stance,

<SET THING 1>8

you now need only say

SET THING lC

{although <SET THING l>S works too). The difference between the
two, as explained below, is the structure of the oblist used. In
the above cases, since none of the ATOMF held MEVDLE functions,
there was no difference.

This me3ns, by the way, that you can't type in more than
one FORM at a time.

Basically, you can use HECDLE's functions naively, ~ith
little chance of conflict. The occurence of conflicting ATOM
PNAMEs requires a little more work to get around, b~t only when
y,u wish to evaluate a function of your own under ~EDDLE.

The way to do this when there is conflict is to precede
the use of the ATOM name at tne highest level with I\N C ctrl-Nl.
E.g., to apply your function P (not ~EDDLE's), to the LVALs of
your ArOMs Sand B {which also conflict), type either of the
fol lowing tilto:

ANP .s .88
~<P .S .8>:J

The way the reader works is as follows:
r1e reader looks up toe first MUDDLE object typed on a

special oblist, namEly

C ,MEDDLE_bLCCK !.O ⇒LIST)

where ,rEDDLE~BLOCK is an oblist containing only fELDLE's
comma~ds. ~11 other objects typed are looked up on .OBLIST.

After the lookuF, a FORM is made out of the entire input
aid 2VALei. (Jnless there is only one object in the inrut and it
is a FO~M -- e.4., .FOO -- in which case the one object is

DGSD 4 SYS.11.02

EVALed. Or unless the first element of the fOR~ is an undefined
A.rO,•'., il whicn case it tells yo\l t:-iat the lUOI'-: is undefined.)

DGSD 5

, 1 3 MEDDLE COMMANDS

3.1 GENERJIL

MEDDLE commands are all functions: using them evaluates
the•. You are so~ewhat buffered from typing errors by the
reader, which will not permit top-level application of anything
with no valc.te, a1d will tell you so. Any olher mist.akes will
lea4 you to a MUDDLE error. To return to the MEDDLE reader from
a higher level (say, an ERROR), type

<MERDE>$

(MEddle Re a Der Exit). Usually there are no bad results. CI f you
get any, tell me about them >

Not! that ~LL arguments to ~EDDLE functions must be legal
MUDDLE objects. In particular, you can't search for <SET , since
the <>'s aren't balanced. ~or can you insert it. (But you can,
for instance, search for and insert <SET THING l> and SET THING.)

Unless otherwise stated, every command (function) prints
the object immediately to the right of the FOinter when it is
do:ie -- unless it would print 11ore than a specified (changeable)
nu■ber of characters. In the latter case, it returns the ATOM
Moby. See the V com■and.

The notation_#_ after a command means that an optional
arg of type FIX causes the command to be refeated arg times.

the notation # # after a command means that it takes
two optional args of type-FIX. The:; e are used to refer to a
seg•nt around the cursor, with positive to the right and
negative to t:ie left. Specifying one arg causes the otner to be
taken as O; specifying neither causes the arguments 1 and O to be
used.

The format used in each of the following command
descriptions is the following:

COttr!AND

ENG LI SH EQU !VAL ENT

DESCRIPTION (text)

DGS !) 6 SYS.ll..J2

3.2 General Command~

?

huh?

Pri~ts a list of the currently available commands 3nd
their arguments • .

0

Open

(pen an object for editing. Takes G, l or 2 ar~s.
PJsitions the pointer just to the left of the entire object
specified. Returns strings to indicate whether it o~ened the
global or local value. If it can't find anything to open, it
tells you so.

No args -- Uses the last specified ones.
l arg -- Must be an ~TON, namely the one whose "value"

y:,u 11is:-i to edit. Uses global value if there is one, otherwise
local.

2 args -- First the same as above; existence of second
forces use of local value.

P_#_i_

Print

Pretty-prints objects around the pointer, ignoring
anything done via the V command.

Argl is FIX -- Prints a segment as described above.
Ctherwise -- Prints the entire ~bject Arg2 levels above

the current one. Default on ArgZ is 0, i.e., the current level.
Prints A!A when in this mode to indicate where the cursor is.

No args -- Rssumes a1 args of l ~nd O.

?C

Print Comment

Prints the comment associated with the object immediately
to the right of the pointer.

-..._,

D~SD 7

I/

Verbosity

No ar9s -- Toggles the verbosity ill Ode bet.ween normal (3.11
comman1s print something) and silent Conly P prints}.

l arg -- (of typ~ FIX) Sets t~e maximum number of
characters ·a non-P command will print in normal ~ode. Over that
linti t, \:.hey print the llTOM Noby.

.._,,

DGSu 8 SYS. 11. :) 2

3.3 Movement Commands

~ight

M~ve the pointer 1 object to the right.

l. #-

Left

Move the pointer l object to the left.

DL #

Down Left

Position the pointer just to the LEFT of the LEFTmost
object within the object to the RIGHT of the pointer.

DR ft - -
Down Right

Position the pointer just to the RI~HT of the RIGHTmost
object within the object to the RIGHT of the pointer.

Down

u _#_

Up

Equivalent to DI.

fosition the pointer just to the left of the object
within which the pointer currently is.

D~SD 9 SYS.ll.'.J2

WR ft

"Nalk Hight

Position the pointer just to the left of the ne~t otjtct
it would hit on a depth-first, left-first tree walk, starting a~
the object·to the right of he pointer.

WL f-f

Walk Left.

Like WR, b~t walk is depth-first, right-first.

MR_#_

Monad Right

WR until you hit a monad.

ML #

Monad Left

s

Search

WL until you hit a monad.

WR until the pointer is just to the left of a segment
with elements successively~? to it5 args. On success, prints
the segment. On failure, returns you to the place you were when
yJu issued the command. With no irgs, moves as far right as it
can without changing levels. ·

D~Su 10 SYS.11.02

3.4 Editinj Commands

I

I1 se rt

Inserts all its args into t~e structure being edited at
the pofitiop of the pointer. All ~rgs are quoted, so ycu can
i1sert unevaluated forms. The pointer ends up to the ri~ht of
the last object inserted. (If you attempt to insert other th~n a
CHARAC!ER or a STRING into a ST~ING, you will lose.)

I: ~type~_#_#_

I1sert a typ~ around a segment.

Grabs the ·segment specifiei, deletes it, ani re-inserts
it as an object of TYPE~typeJ.

DEL #

DELete

K # #

Kill

C

Change

Delete the object to the right of the pointtr.

Deletes the segment specified, as described above.

Equivalent to I followed by DEL.

. ..,___,,

DG5D 11 SYS.11.02

z

Zap

£qui val en t to:
1) Delete N objects, where~ is the nurr.be· of objects
last searched for
2) Insert z• s argumeilts.

C:

Change Type

Change the type of the object to the right of the pointer
to the type given a·s an argument. Attempts to do se,mething
reasonable for every type change. (If you tell it to change a
STRING to a LIST, you get a LIST of CHARACTERS. If you atternrt
tJ ch1~ge a structure whose element~ are other th1n CHARACTER a~d
STRINGs to a STRING1 you will lose.)

DEL:

Delete Type

Deletes the brackets (generically meant) around an
object. I.e., DELs the object aid I~ its members into the
structure of which it was a part.

SC

Set Comment

~ttach the arg to the command to the object to the right
of the pointer as a COMME~T.

DGSD 12 SYS.11.02

3.5 Breakpoints

B

Bre:1.kpoint

Inserts a breakpoint "around 11 the object to the right of
the cursor. Takes any numbEr of arguments. Whenevfr that object
would have been evaluated, you instead hit a breakpoint function
which:

1} rype s *BREAK*

2) For ei~h argument you gave B, types

~what you typed ➔ = 4Value of what you typed➔

Unless what you typed was of the form
<print_thing argumnts> where print_thing can be PRINT,
PRINl,'PRINC, or TERPRI. In that case, it just
evaluates the form.

3) Enters th~ MEDDLE reader.

You continue by typing ~Te, like it says.

Breikpoints are currently inelegant. They are
implemented by inserting a FORM of the form

<MEDDLE_B (~args to B►) 4the object you put Bon►>

in place of the object the breakpoint was put on, so don't te
surprised if you come across things like that. They really screw
up the printin9 of the object.

thing
work.
w:> rk.

CAUTIONS: The breakpoint function returns EVAL of the
it is put "around", and there are cases where this does not

There are, however, always e~uivalent places which do
Cases: ·

1) Breakpoint on first element of a FJRM does
not work. Put ·1t on the whole form.

2) Breakpoint on a list which is an argument to
a CON[does not work. Fut it on the first form in the
list.

DGSD 13 SYS.11. D2
..

" KBP 1S

Kill BreakPoinTS

Removes all the breakpoints in the currently open object.

-z_,,,,,.

'--../

DGSD 14 SYS.11. Q2

3.5 "Q-registers"

NOrE: "Q-registers" in an editor running under a systen
like MU DLE are intrinsically the wrong way to do thing • They
will be r!placed with something much more reasonable, including a
reasonable ·way to do "macros", as soon as I can convince myself
that it works.

QALL

who are Q-ALL?

Prints the names and contents of all current
Q-registers.

extract

Gets a copy of the ~egm~nt specified and inserts it into
the Q-register designated by ~q ➔• ~q~ may be any MUDDLE object.
If such a Q-register does not yet exist, it is created and you
are so informed. Otherwise, the old one is used, and you are not
so informed.

zapY

Queer.

Like X, but with segment specified as in z.

Like. X, but:
l) Only the object to the right of the pointer

is obtained.
2) Th~ object itself -- i.e., shared, not a

copy -- is used.
Q plus G ~an create circular lists - so watch out.

DG5D 15 SYS.lL 02

Get

Inserts the contents of ~q ➔ at the fDSition of the
cursor.

'----"'

DGSD 16 ~YS.11.02

1 E:<3.mple

Suppose you have the furction

#FUNCTION {('A) <EVAL .. A>}

as the global value of the ATOM SIMPi and you wish to change it
t:,

#FUN,:TION ((11 BIND" B 'A.) (<EVAL .A .B> .fl))

usi3g MEDDLE. :onsJle input (ending withe) and output are on
the left, and the ~osition of the cutsor (AfA) is sho~n at the
right.· rhe reason for the blank output lines is th3.t there is
nothing to the right of the cursor ..

0 SI MP$
nc;i cbal value used. II .

A! A# FU NC T I ON ((' A) <EVAL • A>)
p 28
'A ~FUN:TION((A!~'A) <EVRL •A>)
I "IHND II B~
'A #FUNCTION(("BUW" B A!l\ 1 A) <EVAL • A>)
s ~.Ae · ..
.A #FUNCTION(("BIND" B 'j\) <EYAL A!A.A>)
Re

iFUNCfION{("BIND" B 'A) <EVAL • A. /\!A>)
I .ne

ffFUNCTION{("BIND" B 'A} <EVAL .A .BA!I\>)
ue

·<EV~L .A • B> #FUNCTION(("BIND 11 B I A) A!A<EVAL .A .B>)
I: LISTS
(<EVAL • A • B>) #FUNCTION{ ("BI~D 11 B I 1') A!A(<EVAL .A • B>))
DR$

#FUNCTION(("BIND 11 B 'A) (<EVA.L .A .. B>l\!A))

I .• A$
#FUNCIION((,.BIND" B I A) (< EVAL ./l. .B> .A/\!/\))

	A MEDDLE MANUAL 30 January 1972
	1 Loading
	2 The Reader
	3 MEDDLE Commands
	4 Example

