
Friday, February 4, 1977 13:34:47 AI:PRATT;LSPLUG 380 

LISP - AN AMICUS CURIAE BRIEF 

V. R. Pratt 

1/19/77 

Page 2 

-- To the complexity of 

building a single interface 

bet~een people, machines, 

and problems, ~hich has 

made this brief so long. 

The department is presently considering the available choices 

of faci lities for a department-~ide educational computing resource. 

One such facility must be a language or languages. Of al I the 

faci tities (editors, processors, mass storage media, consoles, etc). 

the choice of language has the greatest impact on the student, if not 

on the professional programmer. This is because every encounter he 

has ~ith soft~are, ~hether on a machine, in the class-room, or in an 

exam, must go throu~h the ~edium of language. For example, ~t present 

the only choice of facilities critical to the department's various 

algorithms courses (6.046, 6.073, 6.851J and 6.854J) is that of 

language. 

The Ad Hoc Committee on Educational Computing Resources has 

narro~ed the choice to APL, PASCAL (or a similar algebraic 

block-structured language) and LISP. but appears to be un~illing to 

narro~ the choice any further, and instead proposes to make all three 

avai lable on an equal footing. The obvious democratic advantages of 

such a solution are counter-balanced by the increased maintenance 

costs associated ~ith promising full support for a variety of 



Fr~day, February 4, 1977 13:34:47 AI:PRATT;lSPlUG 38B 

languages •. Moreover. the choice of utility language for general 

classroom use (e.g. for e~p!essing algo~ithms) ~ill still be at the 

discretion of the individual instructor, requiring the students to be 

proficient in all languages supported for this purpose by the 

department. While it is reasonable to require our students to kno~ 

all the department's languages by the time they graduate. it is 

unreasonable to expect them to kno~ them all by the end of their first 

"year. Nor is it reasonable to expect them to kno~ them all equally 

~el I; in fact, given the demands ~e already place on our students' 

time, it seems unf~ir to demand a complete ~astery of mo~e t~~n one 

language. A ~orking kno~ledge of a variety of languages is ~ithout 

doubt a vital part of a computer science education, but ~e should not 

confuse working. kno~ledge with complete mastery when choo9ing a 

language for a course on the basis that the student has" been exposed 

to it at some time during his education. 

This position paper is intended to supply the committee ~ith 

infor~ation about LISP that can come only from someone ~ho has used 

LISP e~tensively y~t ~ho has also hac a com~a.·ab:e exposure ~o other 

languages co~~etitive with LISP. In ~y own case I used the 

implementation of ALGOL due to Randell and Russel I [9] from 1964 to 

1969 at the Basser Computing Department of the University of Sydney, 

and also taught ALGOL for approximately fifty contact hours in several 

departmental "crash courses". My LISP experience extends from 1979 to 

nou. It is hoped that the deeper understanding of LISP that this 

paper attempts to supply uill be of value to the committee in 

determining the optimal number of languages to be given full support 

by the department. 

There being no universally agreed on dialect of LISP to date, 

Page 2.1 



Friday, February 4, 1977 13:34:47 AI:PRATT;lSPLUG 389 

I have chosen to describe MACLtSP, the dialect implemented at MIT. 

(The major alternative dialects are INTERLISP. formerly BBN-LISP, and 

UCI-LISP, a derivative of Stanford's LISP f.s.) tven with such a 

concrete object as an implementation there is room for interpretation 

of what has been implemented. Thus it must be realized that the 

fol lo~ing represents one individual's perspective on one dialect of 

LISP. 

To a non-LISP-user, LISP's most forbidding aspect is its 

notation, and 50 it is appropriate before entering the main discussion 

to say a ~ord or two about·this. To many LISP users the standard 

notation offers advantages such as simplicity, ease of learning. and 

the appearance of being data (as indeed it actually is). However, 

those ~ho feel comfortable ~ith algebraic languages and do not require 

anything else need not be put off by the standard notation. MACLlSP 

has an alternative extensible algebraic syntax (called "CGOL") which 

. is siMilar to that of popular algebraic languages such as ALGOL and 

PL/l. except that, being just a notational variant of LISP, it 

inherits the many advantages of LISP that ue document be'o~. Item S 

of section A contains an ALGOL program together ~ith its remarkably 

simi lar translation into this algebraic variant of LISP. 

A. MERITS OF LISP. 

Page 2.2 

There are ten sections belo&.J, ~ith first sentences as follo&.ls. '. 

1. 

2. 

3. 

4. 

LISP 

LISP 

LISP 

LISP 

is yersati Ie. 

is ef f i c i ent. 

uses a standard charac ter se t. 

is interactive. 



Friday, February. 4, 1977 13:34:47 AI:PRATT;LSPLUG 389 

s. LISP is modular. 

S. LISP Is notation-independent. 

7 • LISP i s app I i ca t i ve. 

8. LISP is uidely used in academia. 

9. LISP,is used by half the MIT Computer Science faculty. 

19. No other language enjoys all the above advantages' of LISP. 

1. LISP is versati Ie. AI though LISP ,is caricatured by non-LISP 

users as being of use mainly for manipulation of irregularly 

structured data, this caricature does little justice to the careful 

~ork done by McCarthy, Levin and others in the formative years of LISP 

(around 1960) in developing a mathematically clean yet general 

programming language. Certainly Artificial Intelligence applications 

~ere a concern during that development; after all, AI uas the nutrient 

medium uithin uhich LISP developed. Yet the language has managed to 

remain remarkably free of the concessions ~ne might expect to arise 

from such p~essures, and is in our vieu one of the most 

domain-independent languages currently enjoying wide usage. 

We may illustrate LISP's versatility by reference to Its data 

types. These are: 

numbers 

bit vectors 

booleans 

atoms 

lists 

property lists 

arrays 

funct i on (a I) s 

integers (unl imi ted size). reals: 

various applications, e.g. PASCAL's' sets 

T and NIL (for false) 

serving dOUble duty as strings and variables 

for ~hich LISP is best knoun 

various applications. e.g. PASCAL's records 

unrestricted as to type or dimension 

using LAMBDA and APPLY 

Page 2.3 



Friday, February 4, 1977 13:34:47 Al:PRATT;LSPLUG 380 

programs using EVAL and QUOTE 

In ~he MACLISP implementation the above data types are almost 

"first-class citizens," a term used by the implementors of POP-2 [5] 

. to describe a data type that can be passed as a parameter, returned by 

a function as a value, assigned to a variable, and tested for 

equal ity. LISP's data types include some for ~hich equality cannot be 

decided, namely the last t~o. If ~e rule out the last ~equirement, 

then all LISP data types are first-class citizens. 

It is hard to appreciate ~hat first-class citizenship really 

means unti lone has programmed ~ith and ~ithout it. A generation of 

LISP programmers has capitalized on this asset of LISP in order to 

express themselves more economically yet more clearly. The examples 

one finds in textbooks- and manuals of LISP generally confine 

themselves to lists and numbers, but the same style carries over to 

the other data types of LISP when they are made available as 

first-class citizens. I for one can vouch for many occasions on ~hich 

this attribute, applied to arrays, property lists, functions and 

programs has been of value. For some (Joe Weizenbaum for example), 

the first-class citizenship of the data types FUNCTION and PROGRAM 

truly set LISP apart from other languages. Around MIT the notion of 

"procedural embedding of kno~ledge." starting ~ith theses by Carl 

He~itt ahd Terry Winograd, has capitalized on this asset of LISP. A 

good programming style can be developed along these lines in ~hich one 

stores information in small modules that can be evaluated by LISP ~hen 

they need to be queried. The advantage of this style is that such 

information can be made context-dependent because like all LISP code 

it has access to the environment. Moreover a module can be 

"intelligent" about ~hat it returns, possibly calling on other modules 

Page 2.4 



Friday, February 4, 1977 13:34:47 AI:PRATT;LSPLUG 389 

for help before mak~ng up its mind. Carl Heuitt has built a ~hole 

programming language [2) based solely on this philosophy and has 

demonstrated ho~ ACTORS (an apt term for the active modules of 

information that characterize this style of progra~ming) ca~ by 

-thems$lves supply the only foundations needed for a versati fe and 

efficient programming language. using methods analogous to the 

corresponding demonstration for the pure lambda-calculus. Some of my 

o~n soft~are benefits from this style of programming, ~hich is only 

possible for me as an ordinary LISP user because of LISP's according 

programs first-class citizen status. 

2. LISP is efficient. Another myth popular among non-LISP users 

is that to use LISP one resigns oneself to gross inefficiency. 

To put this shibboleth to the test, members of the MACSYMA project 

took some_numerical benchmark programs of the sort that one ~ould 

normally think of as being well-suited to FORTRAN compilation. and 

compared thelr running times under each of an (admittedly old) FORTRAN 

compi ler and the LISP compiler used at MIT on ITS [11. Both 

compilations ~ere performed 0' the same machine, a POP-lB. The LISP 

compiler uon! With a iittle thought it becomes apparent that 

inefficient object code does not inhere in a language but rather is 

the result either of the program demanding something difficult such as 

a complicated parameter-passing task, or of the compile~-~riter9 not 

doing a good job. After all, ~hy should the FORTRAN statement 

AU,J) - B(I.K)~(K,J) 

and the LISP statement 

(STORE (A I J) (TIMES' (8 I K) (C K J))) 

produce different object code? In fact, in the experiment cited 

above, the slight superiority of the LISP code (involving an 

insignificant factor of about 1.2) ~as traceable not to the code 

Page 2.5 



Friday, February 4, 1977 13:34:47 AI:PRATT;LSPLUG 380 

generated for the arithmetic parts of the program. ~hich ~as almost 

identical in each case, but rather to the more efficient procedure 

cal ling in LISP. This I feel convincingly disposes of the argument 

that FORTRAN (and hence presumably most other high level languages) is 

more appropriate ~hen efficiency is needed. 

Abraham Bers' Plasma Dynamics group at MIT, uhich although in 

EECS is not a part of the Computer Science laboratories (LCS and All, 

does'considerable "number crunching," having used several hundred 

hours of computer time for a variety of heavily numerical problems. 

John L. 'Kutp of that group has experimented ~ith a fe~ numerical 

problems using FORTRAN on MULTICS and the 370/168, and LISP (under 

MACSYMA) on a PDPIB ~ith a KL-IB processor. Although the arithmetic 

unit on the 168 has' tuice the speed of that on the KL-1B, that group 

has chosen to do most of their uork on the PDP-1S ir LISP/MACSYMA, 

both because that factor of tuo is considerably diluted by the 

associated and inevitable non-numeric processing and because of the 

advantages of LISP over FORTRAN. (It shoulrl be noted that MACSYMA 

uses an algebraic notation, removing any notational advantage FORTRAN 

may possess over the standard LISP notation.) One complaint expressed 

to me by Charles Karney, another member of the group, ~as that LISP 

did not offer double precision reals or complex numbers. This is one 

area ~here FORTRAN's dedication to numerical applications puts it 

'ahead of LISP. Ho~ever, this shortcoming of LISP is in the category 

of implementation-dependent defects, and could be rectified ~ithout 

doing violence to. the LISP 'language per set Whether the department 

has the resources tO,rectify these defects is a question. ho~ever. 

In none of the above arguments have ~e claimed that one cannot 

~rite LISP programs that are inefficient. In a language as versati'le 

Page 2.6 



Friday, February 4, 1977 13:34:47 AI:PRAfT;LSPLUG 388 

as LISP it is inevitable that the user uill ~ant to take advantage of 

constructs that linguistically express perfectly ~hat he is trying to 

say-but co~putationaJly present obstacles to efficient code 

generation._ Our position on this is that the default should be that 

the programmer feel no compunctions about using to the full the 

features of a language, but that on those occasions ~hen it tr.uly is 

the case that the machine's time is uorth more than th~ programmer-s 

{together ~ith the time of those ~ho have to read his code} then the 

programmer should knou ~hich constructions to avoid to permit the 

opti~izer to do as good a job ~ith.his code as a good FORTRAN 

optimizer can do. Thus a systems programmer uriting ~idely used 

systems code in LISP might as a general policy avoid heavy use of 

functions that do considerable uork to keep the environment in a 

consistent state such as code associated uith LISP's "special" 

variables. (If systems programming in LISP sounds 'ike a 

contradiction in terms, it suffices to point to the MACLISP compiler. 

~hich is implemented in LISP. Much of the 5y5tem code a550ciated ~ith 

Richard Greenblatt's LISP-machine is also ~ritten in LISP.) 

3. LISP uses a standard character set. Essentially al I 

general-purpose terminals on the market no~ adhere pretty closely to 

the ASCII standard character set. It uould be next to unthinkable for 

a language designer today to propose a language that made heavy use of 

a radically different character set. so this claim almost goes uithout 

saying. 

4. LISP is interactive. If one ~ants to knou the value of 1+1 

~hile "talking ton'LISP, one types (PLUS 1 1) (or 1+1) and LISP 

replies 2 uithout further ado. If one ~ants to get a big job 

underuay, one simply invokes the top-level function of that job in 

Page 2.7 



Friday, February 4. 1977 13:34:47 AI:PRATT;LSPLUG 388 

exactly the same way. And of course one's program can al~ays type 

directly to the user and accept input from him at any time. Perhaps 

more significantly. one can interact ~ith one's program ~hile it is 

running, interrupting to both modify and/or examin~ the environment. 

In po~erful languages like LISP, environment examination is made more 

complicated by the complexity of the environment; nevertheless LISP 

provides the tools needed to explore nested contexts and complex data 

structures •. 

5. LISP is modular. One of the joys of programming in LISP is 

that almost everything one does can be done incrementally, either on 

·the user's command or under program control. If one is running a LISP 

program and ~ants to interrupt it to ~rite another function, one can 

d~ so on t~e spot ~ithout having to re-read the ~hole program back 

into LISP. If one takes a dislike to the behavior of ·the lexical 

analyzer, its benavior can be modified on the spot, either locally or 

by ~holesale and instantaneous replacement with a new analyzer. If 
the routine used by the top-level listen loop to print the ans~er is 

inappropriate to the task, it can be changed in one command; in fact, 

the entire top-level listen loop can be replaced. If a given 

system-defined function such as PLUS is not to the user's taste he can 

simply supply his o~n, ~ithout having to change every occurrence of 

PLUS in his program to a user-defined name. Even the READ function 

invoked by the top-fevel listen loop can be replaced ~ith a user 

supplied function, an advantage so important that ~e afford it special 

treatment in the next section. 

LISP~s modularity is important not only to a single programmer 

but to groups of programmers cooperatfng on ~ project. When one 

develops a IISP program for a specific application. it can be used 

Page 2.8 



Friday, February 4, 1977 13:34:47 Al:PR~TT;LSPLUG 388 

later as a subroutine of somebody else's program. While this is true 

to a limited e~tent of most languages, it holds to a much greater 

extent in LISP. An e~ample of this modularity concerns a 

program-proof-checker that Steve Litvintchouk, a graduate student of 

mine, has been ~riting in LISP. He complained to me that entering 

statements about programs into the computer ~as painfully slo~ because 

he ~as using standard LISP notation. So I made up a formal definition 

of the notation ~e had been using in clas~, implemented·it one 

afternoon, loaded it into a LISP that already had Litvintchouk's 

program loaded (after a fe~ debugging runs of' course) and ~e ~ere then 

able to talk to his program in the notation ~e ~anted. (Sample: 

tY:-X+Sl<V:-Y-l*>X.Y asserts that after setting Y to X+S, it is 

possible by iterating V:-Y-l to reach a state in ~hich XaV. We ~ere 

tiring of ~riting «0 {:- Y (+ X 5)}} ((<> (* (: ... Y (- V 1ll}) (- X 

Y»l to express the same thing.) The remarkable thing about this 

particular exe~ci~e Is that I had no idea ~hat his code looked like at 

the time as I had not then gotten around to reading it. and he had no 

idea ho~ one might go about changjng notation in LISP. Vet despite 

this mutual ignorance, and ~ithout making any changes'to his code, ~e 

~ere able to accomplish tn a quite simple ~ay ~hat ~ould require major 

surgery to the program in almost any other language. 

6. LISP is notation-independent. Mathem'atically speaking. LISP 

programs form a set containing "atoms" and closed under the pairing 

function CONS. Ho~ such programs are to be represented is an 

implementation-dependent issue. In any implementation there are at 

least t~o representations, internal (consisting in the 'interpreted 

case of a graph ~hose nodes are computer uords and ~h~se edges are 

. pointers, and in the compiled case of a string of machine 

instructions) and external (consisting traditionally of fully 

Page 2.9 



Friday, February 4, 1977 13:34:47 AI:PRATT;LSPLUG 38B 

parenthesized prefix (for~ard Polish notation) expressions). Ho~ever. 

this does not exhaust the possible representations of LISP programs by 

any means, a point that is frequently over-looked and yet one that ~as 

made right at the outset by McCarthy, uho used ~hat he called MLISP 

notation, an algebraic notation that Pl/I users uould feel much more 

comfortable ~ith than the fully parenthesized prefix notation. An 

implementation of MLISP exists at Stanford. and is the notation of 

choice for LISP users there. At MIT an MLISP-like notation called 

CGOl is available to the LISP user: at any time, even half-uay through 

running his program, he can simply say (CGOL) and from then on he can 

rephrase 

{QUOTIENT (PLUS (MINUS B) {SORT (DIFFERENCE (EXPT B 2) 

(TIMES 4 A Cl») 

(TIMES 2 A» 

as 

(-b+sqrt(b*~2-4*a*c»/(2*a) 

or 

{MAPCAR '(LAMBDA (I J) {PRINT (CAT 'IBuy I I 'I for I J 'I dollars. I)}) 
SHOPPINGLIST 

PRICELIST) 
as 

for in shoppinglist. j in pricelist do 

print "Buy" A i A " for" A j A " dollars." 

and 90 on. The versatility of LISP in comparison to most other 

programming languages becomes more apparent in an algebraic notation 

because.a more direct comparison is possible ~ithout the distractiQn 

of having to allo~ for radically different styles of notation. (An 

aside having nothing to do uith notation: although all programming 

languages deserving of the name can express the first of the above 

Page 2.19 



Friday, February 4, 1977 13:34:47 AI:PRATT;LSPLUG 380 

examples, very fe~ can cope ~ith the second quite so d~rectly.)· 

MACSYMA users also use an MLISP-like algebraic notation - in 

fact MACSYMA's parser is just the CGOL parser modified (by Michael 

Genesereth) to handle typed expressions. Unlike CGOL in plain·LISP, 

MACSYMA notation is the default language for MACSYMA users. 

The CGOl notation inher1ts LISP's modularity. in that it can 

be extended painlessly by the user even ~hile in the middle of running 

a program. This legacy of LISP's puts this algebraic notation ahead 

of almost all other available algebraic programming languages uith 

respect to syntactic extensibility. Only a fe~ research systems come 

close to this level of convenience. such as Bell Laboratories' 

recently developed YACC (Yet Another Compiler-Compiler) system, a 

version of which has been developed by Alan Snyder at MIT where it is 

used as the "front-end" of Barbara Liskov's CLU language. Even these 

advanced sQstems do. not offer the fast incremental extensibility of 

this syntactic front-end to LISP [6,81. While this may at first 

.appe~r to be. due to some sort of hreakthrough in extensible language 

~ork, it is really just a spin-off of LISP's excellent modularity. 

It may be in9tructive to compare an ALGOL program taken· 

verbatim from the Communications of ·the Association for Computing 

Machinery, Algorithm 482 [3J, ~ith its rendering in this algebraic 

dialect of LISP. We give t~e ALGOL version first. changing· only its 

comment section for the sake of brevity. 

comment We are given a set of to~ns numbered 1 to n. There are k one-~ay 

roads leading out of each to~n in such a ~ay that if you ever go on a 

trl~ you can alu~ys get back home again, though not necessarily by 

Page 2.11 



Friday, February 4, 1971 13:34:41 Al:PRATT;LSPLUG 389 

retracing your steps. Ho~ever, it is not guaranteed that you can 

a'~ays get to the to~n of your choice. The problem is to group the 

to~ns into equivalence classes of mutually accessible to~ns. 

The roads are represented by an array im[l:n, l:kJ such that 

Im[r,q] is the q-th to~n accessible from to~n r. You are given t~o 

arrays indtl:nl and orb[l:n] to store the results in. To~n i is to be 

in the ind[il-th equivalence class. Orb[iL is a list of tOL-lns 

arranged so that each equivalence class is in a contiguous block: the 

first to~n of each block is stored ~ith its sign bit complemented (in 

particular to~n 1 ~i'l appear in orb[ll as -1) to distinguish the 

beginning of the block. 

(The problem ~as stated in CACM in group-theoretic terms, ~ith 

orb referring to orbits of group elements, but the ALGOL solution 

given in CACM solves the more general problem ~e have just described.); 

procedure orbits(ind, orb, im, n t k); 

~ n t k; integer n f k; 

integer array ind, orb, im; 

begin 

i n t eger q. r, s, j. n t. n s, norb; 

fQc. j :- 1 ~ 1 YD1il n QQ. ind{jl :- B; 

norb :- B; ns :~ 1; 

for r :- 1 step 1 unt; , n do l! ind[rl - B then 

begin 

a: . 

norb :- norb + 1; ind[rJ :- norb;~ 

nt :- n9; orb{ns] :- -r; s :- r; 

n9 :- ns + 1; 

Page 2.12 



Friday~ February 4, 1977 13:34:47 

.f2!:. j : - 1 ill.I2. 1 Y!l.til k ~ 

begin 

Q :- im[s,j]: 

il ind[ql • e then 

begin 

AI:PRATT;LSPLUG 380 

nt :- n1 + 1; orbtntl :- q; ind[q] :- norb 

end 

if. os S nt 1Mn 

begin 9 :- orb[nsl; ~ ~ a· end 

end 

The fol lo~ing is the LISP rendering of the above procedure. 

using the algebraic dialect. For direct comparison ·~e hav~ adhered as 

closely as possible to the layout of the above program. 

define "ORBITS"(ind, orb, 1m. n f k); 

( 

a; 

ne&.l q. r, s, j. nt, nSf norb; 

for j in 1 to n do ind{j) :- B; 

norb :a 9; ns :a 1; 
for r 1n 1 to n ~o if ind(r} - B then 

(prog; • necessitated by the presence of (ugh) goto 1 

norb :- norb + 1; ind(r) :- norb; 

nt :- ns; orb(ns) :- -r; 8 :- r; 

ns :- ns + 1; 

for j in 1 to k do 

( 

Page 2.·13 



.Friday. February 4, 1977 13:34:47 AI:PRATT;LSPLUG 380 

q :- im(s,j): 

if ind(q~ - B then 

n t : - nt + 1; orb (nt) : - q; i nd (q) : - norb 

) 

) ; 

rf ns <- nt then 

( S :- orb(ns); go a ) 

) 

The only differences in this example are: 

ALGOL 

a [b] 

begin end 

integer 

procedure (and related text) 

f.Q.c. i : - 1 ~ 1 un til n 

a: (and assoc i ated goto) 

value 

·s 

(arrays) 

(blocK delimiters) 

ne,", (type declarations .inessential) 

define {and related text} 

for in 1 to n 

a; (and associated prog and go) 

redundant (arrays may be values in LISP) 

(s not in ASCII standard) 

None of these differences are particularly signific~nt. 

Ho~ever, ~e ~ere fortunate that the goto did not leave a blOCK, which 

~ould have precluded as direct a translation. 

The attentive·reader may have noticed that the "for i in" 

construct used earlier to scan a shopping list uas used in this 

example to scan the list of integers 1 to n. If the user types the 

Page 2.14 



Friday, February 4, 1977 13:34:47 AI:PRATT:LSPLUG 380 

expression "1 to nM by itself, he ~ill get back that list; for obvious 

reasons the system does not do this explicitly in "for i in 1 to n" 

but instead just steadily increments the variable i ~o simulate 

scanning that list. This supplies a nice example of ho~ one can unify 

language con9tructs (in thi9 cage the tuo notions of scanning a list 

and successively incrementing a register) if one is ~illing to tet the 

optimizer (in this case, a source-level optimizer) .take over the task 

of deciding ~hether scanning or incrementing is required. This is 

already an essential point in APL, ~here for some progr.ams the naive 

implementation can be'disastrous, for example ~here one ~ants to 

search· the vector iota laaeeea (or I to leeSeee in LISP·notation) for 

the number of integers less than a million expressible in t~o ~ays as 

the 9um of t~o cubes. A smart APL interpreter uill only generate and 

keep around as much of iota leeeeee as it needs at anyone moment, 

avoiding demanding an unavailable amount of memory. 

Let us emphasize again the role the notation plays in this 

example, ~hich is to sho~ that a LISP program need not be very 

different from a typical ALGOL program. To stress that the notation 

only supplies some uindo~-dressing in this demonstration, ue restate 

the above program in the notation preferred by the majority of LISP 

users. 

(OEFUN ORBITS (INO ORB 1M N K) 

(PROG (0 R S J NT NS NORB) 

(DO «J 1. (ADOl J))) 

( (GREA TERP J N)} 

(STORE (IND J) B.) 

(SETa NORB 0. NS 1.) 

(00 «R 1. (ADOI R»)) 

Page 2.15 



Friday, February 4. 1977 13:34:47 AI:PRATT;LSPLUG 389 

((GREATERP R N)} 

{CONo ({ ZEROP (J NO R)} 

(PAOG NIL 

{SETa NORB (ADol NORB}) 

(STORE (IND RJ NORB) 

(SETa NT NS) 

(STORE (ORB NS) (MINUS R)l 

(SETa S R) 

A (SETQ NS (AODI NS1) 

(DO {(J 1. (ADOI J») 

«GREATERP J K)) 

(PROGN {SETa a (l M S J))' 

(CONO «(EQUAL (IND 0) e.} 
(SETa NT (ADOI NT) 

(STORE (ORB NT) 0) 

(STORE (J NO 0) 

NORB»») 

(CONO {(NOT (GREATERP NS NT}) 

(SETa S (ORB NS») 

(GO A}»»)}») 

The above comparison is a little like having a race bet~een a 

Ford and a Porsche ~here the drivers are required to behave 

identically. After a fe~ seconds the Porsche driver starts to grumble 

about being in third gear ~hen he should be in fifth. In the above 

example there are some clumsy programming constructs tnat are the 

result of programming in a language that does not provide adequately 

. for irregularly structured data. Actually, the input of this example 

(the array im) is regularly structured, but the result (the array orbt 

attempts clumsi Iy (using the sign bits of its entries) to represent 

Page 2.16 



Friday, February 4, 1977 13:34:47 AI:PRATT;LSPLUG 380 

.the irregularly structured ans~er. 

We give belo~ another version of the same algorithm, this time 

relaxing the constraint that ~e have to mimic the ALGOL solution as 

closely as possible. First ~e observe that the array im is really the 

only input data required. Second, ~e suggest that im be represented 

as a vector of lists. allowing a variable number of roads to leave 

each to~n. {In the gr9up-theoretic special case of this problem, k is 

. fixed, corresponding to having k generators of an n eleMent group, but 

the solution given in CACM makes no essential use of k being fixed.} 

Third, ~e suggest that the ans~er be an array {corresponding to ind in 

the above program} ~hose i-th element is a list of to~ns accessible 

from to~n i (numbering these equivalence lists as in the above 

programs seeMS pointless). 

All variables except adi (array dimensions of im) correspond 

to variables used in the above programs, though they may not be of the 

same type. 

As before ~e give the algorithm in both notations, ~jth the 

~referred notation first tht~ time to avoid giving to much prominence 

to the CGOL notatfon, ~hjch plays no essential role in the point being 

made by this second LISP version of the program. 

(DEFUN ORBITS (1M) 

(PROG {ADI IND N NT} 

'(SETa ADI (ARRAYDIMS 1M) 

(SETa INO (APPLY 'ARRAY (CONS NIL ADI») 

N {SUB1 (CAOR ADI)}) 

(DO 

Page 2.17 



"Friday, February 4, 1977 13:34:47 

«(R 1. (ADD1 R»)) 

«GREATER? R N)} 

(CONO 

('(NULL (I NO R)} 

AI:PRATT:LSPLUG 389 

(STORE (lNO R) (SETa NT (LIST R))) 

[MAPe 

'(LAMBDA (S) 

(MAPe 

'(LAMBDA (a) (COND «NULL (I NO 0» 

(I M 5)}) 

(lNO R)})}) 

(RETURN IND})) 

(STORE (lNO Q) (I NO R) 

(RPLACD NT (LIST 0» 

(SETa NT (CDR NT)}») 

The CGOL version of the above, for the sake of those fe~ ~ho 

find something objectionable about the above notation, is: 

define "ORBITS" iM; 

let adi - arraydims iM; 

tet ind - array{ni I adiJ tn. cadr{adi} - 1. nt - ni I: 

for r in 1 to n do if null ind(r) then 

( i nd (r) : - n t : - [r]; 

for s in ind(r) do 

for q in lm{g) do if null ind(q) then 

(ind(q) :2 lnd(r); cdr nt:- [q]; nt:- cdr nt»; 

ind 

, The DO-loop (the outermost for-loop in the CGOL version) looks 

Page 2.18 



Friday, February 4. 1977 13:34:47 AI:PRATT;LSPLUG 388 

for to~ns not yet in equivalence classes (LISP initializes untyped 

arrays to NIL, ~henee the NULL test). When a ne~ to~n R is ·found, a 

length-one equivalence list (LIST R) (in CGOl: [r}) is started for it, 

and NT is set to the last LISP cell of the list (~hich initially is 

a I so the firs t) • .Then for each toun S on the list, to~n9 reachab Ie 

from S that as yet belong to no Jist are put at the end of this list. 

(Since "(MAPCAR ••• (IND A»" does not make a separate copy of the 

list (IND A) before scanning it, putting more to~ns on the end of the 

I ist forces the MAPCAR to consider those to~ns as ~ell, ~hich is ~hat 

~e want here. Though this is not goo,d LISP style~ it is ho,", one ,",auld 

use LISP to do ~hat ",as done in the ALGOL pr.ogram, which is not good 

style either.) When all towns have been put into classes, the array 

IND is returned. To use the subroutine bn input array X to find out 

~hat to~ns are accessible from to~n I, say «ORBITS X) I} ",hich ",ill 

compute the INO array and then apply it to I. This of course is an 

inefficient use of ORBITS; usually one will say (SETa X (ORBITS V»~ 

and later say (X I) for each I of interest. 

For those 'readers wondering how hard I had to look to find an 

example better coded in LISP than AL~OL, I should say that 1 simply 

selected the most recent short ALGOL contribution to CACM's algorithm9 

section that I could find on ~y bookshelf. originally had not 

intended to give the second LISP version, but could not resist it once 

I sau uhat the algorithm ",as up to. 

It must be admitted that any notational change to LISP raises 

the question of ,",hat constitutes a programming language; Must one buy 

lexicon, syntax, semantics and object code as a package, or can one 

shop around like a purchaser of a component stereo? The argument of 

this section has assumed that one ~ shop around, but ",hi Ie component 

Page 2.19 



FrJday, February 4, 1977 13:34:47 AI:PRATT;LSPLUG 380 

stereos may make se~se to an electrical engineer, the concept of 

component languages may require some getting used to. This issue 

drives home the disadvantage of most languages, that you cannot use it 

for its good features ~ithout also having to accept its bad features. 

The situation has encouraged an attitude among language users that 

permits arguments of the form, "We can't have X because it has a bad 

feature, namely its syntax." As the computer-using communi~y matures, 

it should grow more accustomed to the idea of purchasing language 

components and assembling them into their "ideal" system. As a 

spin-off from this sort of technology. ~e may hope to see a decrease 

in the number of languages available, a number ~hich from this point 

of vie~ ~e can attribute to the multiplicative ~ay in ~hich options 

must increase ~hen you cannot order systems component by component. 

For example, if the community demands t~o kinds of lexicons. t~o kinds 

of syntax, two kind3 of semantics and t~o kinds of code-generators, 

the market need supply only eight components in place of sixteen 

systems. Any increase in the sizes of the component options results 

in a rapid widening of thi~ gap. 

In this context the question of whether to choose a ~idely 

used language must be restated as ~hether to choose a widely used 

component.' Tryis question is perhaps most important for the syntax 

component, ~hich for the user is as at least as visible as any other 

component. Although I suggested above that CGOl or MACSYMA notation 

offers the algebraic-notation user an alternative to the standard 

notation, other notations are equally possible, such as the very 

~idely kno~n ALGOL notation. In fact, an ALGOL front-end has been 

built for IISP (by Camito Rueda) that adheres as closely to the 

Rev i sed ALGOL 60 .. repor t a9 the ASCII character set t.li II a II 0'"' 

(omitting dynamic own as ;9 customary). If the question of t.lhether 

Page 2.2! 



Friday. February 4. 1977 13:34:47 AI:PAATT;LSPLUG 388 

the notation ~as uidely knoun became a serious issue, the installation 

of ALGOL no,tation is straightforuard. modulo tortuous implementation 

~hen the (rarely used in practice) environment-handling ~apability of 

ALGOL is given full throttle. 

LISP's independence of choice of notation may be of value in 

an educational environment where, although a commitment to a single 

language may have already been ~adet individual instructors may 

nevertheless have a requirement for a different notation. LISP's 

abi lity to change notations in midstream uithout having to change 

languages reduces the overhead associated with maintaining several 

en~ire languages and their supporting maintenance teams and other 

paraphernalia. For example, if APL were needed on occasion, it uould 

not be impossible to embed it in LISP; indeed a 'very compact 

definition of APL is possible in LISP. However it would seem only 

fair to ask the users of such components to assume their maintenance 

costs. There is also the question of whether it is fair to ask the 

stUdents to learn one notation after' another as they proceed from one 

course to the next. 

7. LISP is applicative. That is. one can write non-trivial 

programs in LISP using only functional application. More 

significantly, this style can be used in LISP for progra~s that in 

most other languages ~ouJd have to be written iteratively or 

recursively. The two LISP functions (strictly, functionals or 

combinatcrs) that supply this pouer are MAPCAR and APPLY. NAPCAR 

permits a function to be applied to the elements of a list one at a 

time (coordinate-wise operation) while APPLY permits an operation such 

as PLUS to be applied to all the elements of the list (APL's notion of 

reduction, ~ritten +/a). APL, like LISP, offers non-applicative 

Page, 2.2 



Friday, February 4, 1977 13:34:47 Al:PRATT;LSPLUG 380 

features such as assignment and goto. but its users are.strongly 

encouraged to rely on the applicative part of APL, and (presumably) to 

ensure that this happens APL offers a bare minimum of non-applicative 

control structures. A significant benefit of this style is that 

reasoning about such programs can be done in the same algebraic 

formalism that ue have all been raised on since birth, instead of 

having to invent systems of logic especially to cope ~ith the 

non-algebraic control structures of conventional programming 

languages. For e~ample. knouing that + is associative even ~hen 

applied to equal-length vectors as opposed to scalars. ue can 

immediately see that (u+v)+u computes the same vector as u+(v+u). 

uhereas ue may have to argue more indirectly about the effect of the 

corresponding t~o programs in a non-applicative (in this case 

non-vector-manipufating) language. Vector spaces have been uell 

studied and their properties carryover readily to reasoning about APL 

programs. 

Let ~s give some examples ~here LISP can be used as an 

aprlicativ~ I~nguage. Using (APPLY (FUNCTION PLUS) A) for APL's +/A. 

uhere th~ APL vector A is represented as a list 1n LISP, and using 

(MAPCAR (FUNCTION TIMES) A B) for APL's A*B, ~hich multiplies vectors 

A and B coordinateuise to yield a ne~ vector of the same length as A 

and B, ~e may get the effect of APL's +/A~, ~hich computes the inner 

product of t~o vectors. via (APPLY (FUNCTION PLUS) (HAPCAR (FUNCTION 

TIMES) A B}l. (For algebraically inclined users, CGOl offers the 

variants a[b1 for (MAPCAR (FUNCTION A) 8) and alb} for (APPLY 

(FUNCTION A) B). a[{bl] denotes the composite of these t~o, realized 

in'LISP as (APPLY (FUNCTION MAPCAR) (CONS (FUNCTION Al B)l.) One ~ay 

to ~rite a one-line ~atrix ~u'tiplication routine in LISP (yes. APL 

has no monopoly on one-liners) ~ould be (in CGOL): 

Page 2.22 



Friday. February 4, 1977 13:34:47 Al:PRATT;LSPLUG 38B Page 2.23 

for i n x co I I ec t for in lis t [ {yl) co I I ec t p I us It irnes [i , j J} • 

~hich in the standard notation is 

(MAPCAR '{LAMBDA (I) (MAPCAR '{LAMBDA (J) (APPLY 'PLUS (MAPCAR 'TIMES I J»}} 

(APPLY (FUNCTION MAPCAR) {CONS (FUNCTION LIST) V») 

Xl 

(The rather complicated thing being done to V, ~hich is a list 

of lists of numbers representing a list of ro~s of a matrix, is simply 

transpos i t ion. ) 

In some respects LISP's applicative ability is superior to 

APL's. APL lacks a specific operator that permits coordinate-~ise 

appl ication of a scalar operator, but rather relies on the fact that a 

scalar operation is being applied to a vector to deduce that 

coordinate-~ise operation is called for. When a user has defined an 

operation that applies equally ~e'l to scalars and vectors, he cannot 

specify to AP~ ~hether or not he ~a~ts to ~pp'y his operation to the 

list as an entity or coordinate~ise to its individual components. In 

LISP one distinguishes these cases e~plicitly as (A Bl versus (MAPCAR 

(FUNCTION A) B) (in CGOL, alb) versus arb]). Ho~ever.'APL does 

distinguish reduction (e.g. +/a) explicitly. 

8. LISP is ~idely used in academia. In a large portion of the 

academic computing community LISP is either a first or a second 

. language. 1 received last ~eek a letter from Gene Freuder, a recent 

MIT graduate no~ teaching at Indiana, ~here he is their AI 

representative. He ~as happy to report that in his department 

"everyone speaks LISP as a mother tongue." While one might not be 



Friday. February 4, 1977 13:34:47 AI:PRATT;LSPLUG 380 

surprised to hear this about a department ~ith a heavy Al bias, it is 

a tribute to LISP's ubiquity that it should be so honored in a 

department noted primarily for its ~ork on programming languages and 

multiple-valued logic. LISP enjoys considerable use at Stanford 

University, Stanford Research Institute, Xerox Palo Alto Research 

Center, Carnegie-Mellon University, Bolt Beranek and Ne~man, IBM 
Vorkto~n Heights (for their SCRATCHPAO system), and can even be found 

as far afield as the University of Edinburgh and Japan's 

Electro-Technologica Laboratories. It is a sine qua non for ~ny 

laboratory planning to embark on AI research, as it is the lingua 

franca of AI. Three of the above institutions (Xerox PARe, IBM and 

ETL) are only semi-academic, illustrating that LISP is not confined to 

universities alone. 

9. LISP is used by half the MIT Computer Science faculty. Thus 

choosing LISP as the main departmental language, if one language is to 

be chosen ueber arIes, ~ould seem to involve the least upheaval. 

Further, LISP as a high quality languag~ attracts high quall~y 

'maintenance personnel. LISP has been maintained here not only by Jon 

, L. White, a very experienced LISP systems programmer, but by some of 

the sharpest graduate students in the ~orld. Guy L. Steele, ~inner of 

the 1975 George Forsythe student paper competition [101, the main 

student-paper competition in the computer-science ~orld, has been a 

shining example of such help for several years dating back to his 

undergraduate days. The Situation seems simply to be that the best 

languages attract the best stUdents •. ·Unless MIT suddenly experiences 

a dearth of good students, a fate fe~ of us ~ant even to contemplate, 

this high quality maintenance should continue at or near its present 

enviably high level. 

Page 2.24 



Friday. February 4, 1977 13:34:47 AI:PRATT;LSPLUG 380 

1e. . No other language enjoys all the above advantages of LISP. 

This remains true even if advantages 2 and 4 ar~ omitted. Let us 

argue this point on a language-by-Ianguage basis,· choosing (at the 

risk of offending all ~hose languages have been,omitted) FORTRAN. 

COBOL, ALGOL 69, PL/I, APL, ALGOL 68 and PASCAL. In the follo~ing ue 

omit reference to items 2. 4, and 9; the first t~o are easy to satisfy 

~hi Ie the last is obviously impossible. 

FORTRAN: This fails on items 1, S. 6 and 7. FORTRAN's storage 

at location facilities and control primitives are too rudimentary to 

make FORTRAN useful outside the domain of numerical arrays, for ~hich 

it uas designed. By bending over back~ards one can do anything in 

FORTRAN, as in any vniversal language (in Turing's sense); for example 

Joseph Weizenbaum implemented SLIP, a list processing language. in 

FORTR~N, and it. is the language used for symbol manipulation at Bell 

Laboratories. Ho~ever, one is sufficiently hemmed in by petty 

restrictions and inadequate data and control structures that no very 

strong case can be made for it. 

COBOL. COBOL has something to offer academia that FORTRAN lacks, and 

that is a "data division" (to use COBOL terminology) that permit9 the 

user to define a rich variety of data types. This can lead to 

considerable simplification of the "program division,"'since the COBOL 

compi ler can automatically make many decisrons about uhere to put 

things and hou to represent them. Unfortunately COBOL's.data types 

are rich in about the same sense that an Eskimo finds a richness of 

snou varieties in the Arctic; this richness goes unappreciated in 

other climates, and COBOLtg concern ~ith business data processing 

makes it too narro~ for use in other environments. (In this re9pect 

SIMULA 67 fares much better.) We can rule out COBOL on the same 

Page 2.25 



Friday, February 4, 1977 13:34:47 AI:PRATT;LSPLUG 389 

grounds as FORTRAN, together ~ith item 8. 

ALGOL S9. In item 6 ~e observed a serious lack of versatility in 

ALGOL sa. This hQ~ever ~as a problem having to do ~ith ALGOL's rather 

limited data types and lack of first-class citizenship for arrays. In 

contrast ALGOL's control structures are remarkably po~erful; one can 

do truly astonishing things ~ith ALGOL's 9Q1Q statement, such as 

jumping out of a procedure body that has called itself recursively to 

a great depth, resulting in exiting from all those levels of recursion 

in response to one goto. Also ALGOL offers catl by name, ~hich 

permits such useful constructs as Jensen's device for implementing a 

summation.operator. Ho~evert not only does LISP offer facilities ~ith 

a11 of this po~er. but it packages the facilities better. For 

example, exiling from several levels of recursion at once in LISP is 

requested explicitly ~ith the THROW operation, ~hi·ch "thro~s" a value 

to a corresponding CATCH operation ~hose argument ~as ~esponsible for 

invoking the THROW. Moreover these strengths of ALGOL, such as t'hey 

are, do not make up for its ~eakness in the versatility of its data 

types. ALGOL fails on items 1,3 (to a small but not terribly 

important extent), 5, 6, and 7. 

PL/I. PL/I is nothing if not versatile. At least that is ~hat IBM 

had in mind ~hen they designed it. Houever. to be versatile ~ithout 

being modular is to be a super-market. uhere sometimes you spend more 

time looking for the aisle you need than all ·the other operations 

combined. PL/I fails on items 5, Sand 7, as ~ell as 1 in my opinion~ 

APL. APL passes strongly on item 7 (applicative), though not 

uithout a black mark for being unable to distinguish ordinary from 

coordinate-~ise application'explicitly. For uhat it attempts to be. 

Page 2.26 



Frlday. February 4. 1977 13:34:47 Al:PRATT:LSPLUG 380 

namely a vector-manipulating language. it also does ~ell on ~tem 1. 

Though ~e promised to omit reference to item 4 (interactive). this is 

a very strong feature of APL. and supplied me ~jth my one reason to 

use APL considerably during a summer visit to IBM. Unfortunately. 

little of my ~ork happened to fit the vector mold very ~ell. despite 

the fact that most of it was heavily numerical. and I found ~yself 

from time to time using the embryonic 36B LISP system maintained by 

Fred Blair at IBM. on the ground that the additional time I had to . 

spend running back and forth between the CP/CMS editor and LISP ~as 

made up for by the considerably decreased programming time in LISP. 

Thus I ~ould fail APL on item 1, though not as seriously as the above 

languages. What really makes APL totally unacceptable is the 

insistence on a character set so out of touch ~ith the ASCII standard 

that the department ~ould be locked into an unacceptably inflexible 

(not to say expensive) situation if it were to generally adopt APL. 

APL also fails on 5 and 6.' 

ALGOL 68. This language is full of nice ideas. It has been 

carefully thought auout by people 'Jith a concern for elegarcf and 

mathematical ~recision. Unfortunately the former has been sacrificed 

to the latter, and to learn ALGOL 68 requires considerable patience 

~hi Ie one discovers the correspondence between one's programming 

intuition and the picturesque vocabu1ary of an ALGOL 68 programming 

guide (not to be confused ~ith the 1anguage's formal definition. ~hich 

is ~ritten in an almost inaccessible meta-language). ALGOL 68 fails 

on items S. 7 and 8. 

PASCAL. Nicklaus Wirth sensibly designed PASCAL to be simple in 

concept, easy to implement. efficient; yet versatile in its data 

types. Moreover, he sau to it that a good implementation on a machine 

Page 2.27 



Friday, February 4, 1977 13:34:47 AI:PRATT;LSPLUG 38B 

commonly found in universities (a large CDC machine) ~as made 

avai lable. As a result, PASCAL has attracted the attention of many 

computer science departments as being an ideal pedagogical language. 

PASCAL's greatest drawback is the extent to which Wirth compromised 

(unnecessarily in my opinion) to achieve ease of implementation. As a 

result. PASCAL (like every other language above) lacks the 

first-class-citizen property that makes LISP so pleasant to use yet 

simple to implement in the event that you are ~illing to forego 

efficiency on some of the data types. believe that this concession 

to efficiency, ~hi Ie it has many merits, detracts considerably from 

PASCAL's otheruise excellent versatility. As ue have remarked 

else~here, efficiency should be a concern of the compiler as far as 

possible. Nevertheless, PASCAL remains among the more attractive 

possibilities. 

B. DRAWBACKS OF LISP. 

Most of the complaints of this section are 

implementation-specific and do not inhere in the LISP language itself. 

The one major exception to this is LISP's typelessness. It is 

unlikely that future implementations of LISP ~il' clear up this issue· 

~ithout introducing substantial incompatibilities ~ith exis~ing LISP 

soft~are. Moreover, many feel that typelessness is more virtue than 

vice. In contrast, the various complaints about the implementation 

cannot be taken seriously from a long-term 9tand-~oint since they are 

of a fairly trivial nature (except for the FUNARG problem). Moreover. 

other implementations of LISP are presently in an experimental stage, 

one in hard~are (Richard Greenblatt's LISP machine) and one using the 

lexical scoping of the lambda calculus (Guy Steele and Gerald 

Sussman). Thus implementation-specific properties of LISP are at 

Pa~8 2.28 



Friday, February 4, 1977 13:34:47 AI:PRATT;LSPLUG 380 

present in a state of flux, and taking them into accoun~ in deciding 

that LISP was inadequate would be a case of throwing out the baby with 

the bathuater. Let us now begin ~ith my one implementation

independent complaint. 

LISP does not in any systematic ~ay permit the user to specify 

the types of his data and variables. In fact some types are 

implemented directly as other types ~ithout LISP being able to tel I 

uhich type is intended. For example. NIL serves double duty as the 

boolean FALSE and the empty list, as "~ell as being recognized by LISP 

as an atom (though not one that can be used as ~ variaqle). And bit 

vectors are just single-precision integers; indeed only the presence 

of bit-manipulating operations permits LISP to claim that it has the 

type bit vector. Though this typelessness of LISP has an advantage in 

permitting the user to save programming time by not having to declare 

types. there remains the fact that many bugs are detectable because 

they violate type constraints. These violations ~ill be caught by the 

interpreter" (if at all) only ~hen the offending portion of the code is 

actually run; for this reason some LISP users compile their ne~ly 

~ritten code before or even instead of debugging it interpretively as 

a first debugging step on the ground that at least the compiler does a 

fair to moderate job of detecting type violations. This philosophy of 

tight control over types is at the heart of the design ~hiloso~hy of 

Barbara Liskov's CLU language at MIT along ~ith similar research 

languages at· other campuses such as Carnegie-Mellon's ALPHARO 

language. 

Many LISP users do not agree on this point, and feel that 

types, like gauges, cause more trouble than they cure by being" 

themselves the major bugs in the users program. Also, for beginning 

Page 2.29 



Friday, February 4, 1977 13:34:47 Al:PRATT;LSPLUG 38B 

programmers, and for people wanting the minimum "hassle" ~hi Ie trying 

to ~rite a program that they kno~ will be correct on account of its 

extreme simplicity, the added burden of having to declare types is 

unreasonable. Thus this objection is at present controversial. 

Another source of troubles with LISP is the ~Iassic FUNARG 

problem, so named by Joel Moses [4] in an early discussion of the 

problem. Although a completely correct handling of this problem is 

not at the top of all users' lists of demands, it is for some; also, 

the formal description of LISP is simplified if one assumes that the 

problem, ~hich involves being able to pass around program-environment 

pairs just like any other data, is properly taken care of. As things 

stand at present, the partial solution i~plemented in MACLISP is 

better described operationally, leading to a more clumsy description 

of LISP than is possible other~ise. Several plausible solutions 

(by Richard Greenblatt, Henry Baker, Guy Steele and Gerald Sussman) are 

in the air, and one may soon find its way into MACLISP. 

A much less serious complaint is that the user may not specify 

a lo~er bound for any array dimension other than B. To an extent this 

objection can be overcome using the notational flexi~ility discuss~d 

in section 6 by permitting a{i) to denote {A (PLUS I 7) or ~hatever. 

Another complaint is that ~ith the bit-vector data type, LISP itself 

only offers 36-bit bit vectors. However, LIBLSP (the public LISP 

soft~are library on the ITS machines) offers a package ~ritten by 

,Henry Baker that confers efficient unlimited-length bit-vector 

processing capability on LISP. This package really ought to be 

avai lable directly to LISP users. In my LINGOL natvral language 

system, ~hich does a considerable amount of set-oriented processing 

involving set intersection and union, bit vectors have supplied a very 

Page 2.30 



Friday, February 4, .1977 13:34:47 AI:PRATT;LSPLUG 38B 

efficient implementation of sets. 

A .continual source of petty irritation for me is the compi Jer, 

~hich overlooks many simple optimizations. Ho~ever. my pique 

not~ithstanding, the compiler is probably the best LISP compiler 

available any~here a9 it does a remarkably good job of optimization 

consi~ering LISP's versatility. No matter ~hat language the 

department settles on, if it is as po~erful as LISP, people ~i II be 

Complaining about overlooked "Obvious" optimizations for quite a 

~hi Ie, possibly for ever. 

One can come up.~ith a vari~ty of minor complaints of this 

ilk, but beyond the first t~o major complaints about LISP~s 

typelessness (regarded by many others as a virtue) and lack of 

environment-manipulating capability, 1 personally am pretty satisfied 

~ith the language. 

c. DEPARTMENTAL REQUIREMENTS. 

Though the department has asked for a good educational 

language, there is no harm (if we are considering LISP) in asking that 

the-research needs of the department ·also be considered. Here are a 

number of headings (suggested to me by Ronald Rivest) under ~hich one 

may ask about the· uti lity of LISP. 

1~ Desktop calc.ulators. As pointed out before, one need merely type 

(PLUS 1 (TIMES 2 3» (though this is a case uhere one of the algeb~aic 

notations, permitting 1+2*3, uould seem preferable) to get the ans~er 

7. Although my secretary cannot program she has used LISP regularly 

for t~o years for precisely this application, even though the bulk 

Page 2.31 



Friday, February 4, 1977 13:34:47 AI:PRATT;LSPLUG 38B 

of her arithmetic is just adding up numbers. In fact almost any 

expression that can be typed on an SR-Sl, say, can be typed almost 

uith no change to LISP using CGOL. Moreover, the comparatively 

unlimited storage .of .LISP is available for storing intermediate 

results. Thus a LISP terminal consisting of'a calculator-'sized 

keyboard and a IS-digit display ~ould already provide enormous po~er. 

Going to a 3B-character alphanumeric display ~ould increase the 

uti lity of such a terminal considerably. Such terminals could be so 

cheap that each office in the building could have t~o or more if 

necessary. With reasonable system design, the formalities of logging 

such terminals on and off could be dispensed ~ith. Thus LISP ~ould be 

available as a po~erful replacement for programmable calculators. yet 

lacking none of their convenience. The possibi lity exists of making 

such terminals completely portable, at least ~ithin the building. 

relying on a radio link for contact ~ith the depart~ent's system. 

2. Number-crunching. We have already referred to the department's 

Plasma Dynamics group, in the section on efficiency. This supplies an 

example of ~here LISP is already in use ~ithin the department for 

hnumber-crunching" on a large scale. 

3. Classroom language. Not surprisingly, LISP is ·the classroom 

language for Patrick Winston's AI course. It is also one of the 

languages taught in 6.831. These are two of the department's core 

course. In addition LISP is used (admittedly ~ith the CGOL dialect) 

in 6.e46, my algorithms course; using any other ~idely available 

. language I ~ould find many of the algorithms I teach a~k~ard to 

express. 

4. Publication Language. This is one area uhere the case for LISP is 

Page 2.32 



Friday. February 4, 1977 13:34:47 AI:PRATT;LSPLUG 38B 

~eak. Ho~ever, the committee has already conceded that a language 

need not be rejected as a teaching language just because there exists 

a 'Iarge body of soft~are ~ritten in some other language. In other 

~ord9. on the soft~are-input side, language is not a serious 

consideration from the committee's point of vie~, and they recommend 

that FORTRAN be made available for soft~are-input ~ithout at the same 

time inflicting it on the students. It ~ould seem reasonable to apply 

the argument to soft~are-output as ~ell, making available a 

pUblication language {say FORTRAN, to return tit for tat, though 

seriously PL/I is probably a better choice} for the purposes of 

debugging programs about to be published. 

In summary, I ~ould say very simply that LISP ~ould make an 

excellent departmental language. All things considered, .i t has Ii tt Ie 

serious competition from any language except PASCAL, and even that 

competition is minimal. At this point it is appropriate to include 

the ad hominem argument that LISP, an MIT product, has had a 

considerable impact on the· academic computing community over the past 

decade and a half, and along ~ith magnetic core storage, CTSS, MUlTICS 

and MACSYMA has been responsible for making MIT among the ~orld's most 

influential sources of Computer Science ideas. 

Bib I i ography. 

[1] Fateman. Richard J. "Reply to an Editorial." SIGSAM Bulletin 

25. 9-11. (March 1973). 

[2] Hewitt, C. E. t P. Bishop. and R. Steiger. "A Universal 

Modular ACTOR Formalism for Artificial Intelligence," Proc. IJCAI 

3, p. 235. 1973. 

Page 2.33 



Friday. February 4. 1977 13:34:47 AI:PRATT;LSPLUG 380 

[3] M~Kay. John and E. Regener. "Transitivity Sets." Algorithm 

482. CACM lI. 8, 47B. (August 1974). 

[4] Moses. Joel. "The Function of FUNCTION in LISP." AI Memo 199. 

MIT AI Lab (Cambridge. June 197B). 

[5] Popp1estone, R. J. "The Design Philosophy of POP-2." Machine 

Intelligence 3 (ed. D. Michie), 393-4B2, Edinburgh U. Press, 1968. 

[6] Pratt, V. R. "Top Oo~n Operator Precedence." Proc. ACM 

SIGACT/SIGPLAN Conf. on Principles of Programming Languages (POPL 1), 

Bos ton. (October 1973). 

[7] --------."A Linguistics Oriented Programming Language." 

Proc. 3rd International Joint Conference on AI, Stanford, 1973. 

[81 --------. 
For LISP Users." 

"CGOL - an Alternative External Representation 

MIT AI Lab Working Paper 89. 1976. 

[9] Randell, B. and L. J. Russell. ALGOL sa Implementation. 

Academic Pr~ss, London, 1964. 

[10] Steele, Guy Le~is Jr. "Multiprocessing Compactifying Garbage 

Collection." Comm. ACM 18,9,495-508. (September 1975). 

Page 2.34 


	Pratt-LISP_Amicus_Curiae_Brief-19770001_a
	Pratt-LISP_Amicus_Curiae_Brief-19770002_a
	Pratt-LISP_Amicus_Curiae_Brief-19770003_a
	Pratt-LISP_Amicus_Curiae_Brief-19770004_a
	Pratt-LISP_Amicus_Curiae_Brief-19770005_a
	Pratt-LISP_Amicus_Curiae_Brief-19770006_a
	Pratt-LISP_Amicus_Curiae_Brief-19770007_a
	Pratt-LISP_Amicus_Curiae_Brief-19770008_a
	Pratt-LISP_Amicus_Curiae_Brief-19770009_a
	Pratt-LISP_Amicus_Curiae_Brief-19770010_a
	Pratt-LISP_Amicus_Curiae_Brief-19770011_a
	Pratt-LISP_Amicus_Curiae_Brief-19770012_a
	Pratt-LISP_Amicus_Curiae_Brief-19770013_a
	Pratt-LISP_Amicus_Curiae_Brief-19770014_a
	Pratt-LISP_Amicus_Curiae_Brief-19770015_a
	Pratt-LISP_Amicus_Curiae_Brief-19770016_a
	Pratt-LISP_Amicus_Curiae_Brief-19770017_a
	Pratt-LISP_Amicus_Curiae_Brief-19770018_a
	Pratt-LISP_Amicus_Curiae_Brief-19770019_a
	Pratt-LISP_Amicus_Curiae_Brief-19770020_a
	Pratt-LISP_Amicus_Curiae_Brief-19770021_a
	Pratt-LISP_Amicus_Curiae_Brief-19770022_a
	Pratt-LISP_Amicus_Curiae_Brief-19770023_a
	Pratt-LISP_Amicus_Curiae_Brief-19770024_a
	Pratt-LISP_Amicus_Curiae_Brief-19770025_a
	Pratt-LISP_Amicus_Curiae_Brief-19770026_a
	Pratt-LISP_Amicus_Curiae_Brief-19770027_a
	Pratt-LISP_Amicus_Curiae_Brief-19770028_a
	Pratt-LISP_Amicus_Curiae_Brief-19770029_a
	Pratt-LISP_Amicus_Curiae_Brief-19770030_a
	Pratt-LISP_Amicus_Curiae_Brief-19770031_a
	Pratt-LISP_Amicus_Curiae_Brief-19770032_a
	Pratt-LISP_Amicus_Curiae_Brief-19770033_a
	Pratt-LISP_Amicus_Curiae_Brief-19770034_a
	Pratt-LISP_Amicus_Curiae_Brief-19770035_a
	Pratt-LISP_Amicus_Curiae_Brief-19770036_a



