
l
.J

]
l
LJ

o
o
!]

n u
'I

I

...J

u
o
o
n u

o
o
o
o

AFCRL-67-0514

DESIGN AND IMPLEMENTATION OF FLIP,
A LISP FORMAT DIRECTED LIST PROCESSOR

Warren Teitelman

Bolt Beranek and Newman Inc
50 Moulton Street

Cambridge, Massachusetts

Contract No. AF19(628)-5065
Project No. 8668

Scientific Report No. 10

This research was sponsored by the Advanced Research Projects
Agency under ARPA Order No. 627, Amendment No.2

15 July 1967

Distribution of this document is unlimited. It may be released to the
Clearinghouse, Department of Commerce, for sale to the general public.

Contract Monitor: Stanley R. Petrick
Data Sciences Laboratory

Prepared for:

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS

r

L ..

r

L.

r'

l.

(~

l"

L

l

(

l ... ,

I

I. ..

n
U

o
n u

o
o
n
U

n u

n u

l
-.J

"I
J

I
J

l
...J

]
I
J

l
J

]

I

II

III

TABLE OF CONTENTS

INTRODUCTION ••••••••••••••••••• e, ••••••••••••

The FLIP Formalism

A.
B.

C.

Control Mechanisms

The Matching Process

Elementary Patterns

The Variable Pattern

Predicates

Subpatterns

EITHER

REPEAT

SET

Example

The Construct

VARF

Process

Subformats
EITHERF

REPEATF •.•....•... ' ..•••

Example

Implementation

.. -

A. Translation ..•..........

The FLIP Read Program

PRETTYFLIP .•........

......................

The Reject Mechanism•...•.
Other Advantages of Translation

-111-

2

7
7
8

9

10

13
15
18
21

23
23
24
25
26
26
28
30

37
41
43
43
46

III

IV

TABLE OF CONTENTS (Cont ..)

Implementation (cont.)

B.

C.

CONS Reductlon Techniques
Eliminating CONSes

Postponing CONSes

Search Strategy and the $

Using FLIP

A. Functions

REED ...•...•.•

PILOT

MATCH
PATTRAN

PDEFAULT

MATCH2 ..••.
NOCONS

MATCHP

MAPMATCH
CONSTRUCT

FORMTRAN ..••

FEDEFAULT ..•.
CONSTRUC'l'2

• • ·0

. . .

.

FLIP

TRANSFORM

RTRAC
ADDRULE

PRETTYFLIP

. . . .
Function

. . .

.

• • • e. • • • • •

. .

.

.
PF ...•.•..

-iv-

--------_._------

46
47
49
51
58
58
58
61
61
62
62
63
65
66
67

68

69
69
69
70
70
72

72

73
74

"" ,

1"'-'

\ ,

r

'. ,

i'

\,

I

l

il
U

o
n u

o
Il u

o
)]

il u

II
LJ
il
u

]
:1

.J

']

J

"I . I

J

]
1
J

TABLE OF CONTENTS (Concluded)

IV. Using FLIP (cont.)

B. The Dictionary Feature •....................... 75
The CONVERT Dictionary 75
The FLIP Dictionary 77
Modes Available in the FLIP Dictionary 81

Example 83
Segments and Items .~ 85

<BEGN> , <REPT>, and <CONT> 86

Dictionary Functions 87

NOCONS and the Dictionary 89
C. Other Features go

Appendices

Appendix 1:

Appendix 2:

Appendix 3:
Bibliography

Aborting the Search 90

Failure Predicate•................ 91

SIDE Conditions 93
NOT ...•....••.....••••..•...••..•......•... 93

Reentrant Subpattern 94
Reentrant REPEAT .•......•..................

Variable Patterns and Formats

Atomic Patterns and Formats •...............

Source Language

Intermediate Language .•.....•.•....•.......

Internal Language•..............

..

-v-

94
96

97
98
99

104

107

113

l ..

I
I

l

I

L,

l. ,

'-..

i'

i ..

r'

I ..•

o
o
o
o
o

o
o
o
o
o
o
o
o
o

DESIGN AND IMPLEMENTATION OF FLIP,

A LISP FORMAT DIRECTED LIST PROCESSOR

SECTION I

INTRODUCTION

BACKGROUND AND MOTIVATION

LISP [lJ is a function oriented language. Transformations of

symbolic structures are achieved by applying functions to lists
and using the values of these functions. Functions may be defined
using composition, conditionals, recursion, etc., all of which

makes LISP a very powerful symbol-manipulating language. However,

this explicit function oriented nature of LISP sometimes!makes it

difficult to express operations and transformations necessary for
the solution of certain types of problems. Basically, these are

operations which require locating certain substructures in a larger

structure, either to ascertain their presence, or as is more usual,

to use them in assembling other structures.

Consider the transformation given by the following instructions:

find in a list the first three atoms immediately preceding the

first occurrence of the atom A, and find the atom just after

the first occurrence of the atom B which follows these three

atoms; if such elements exist, exchange the position of the
three atoms and the one atom, delete the A and replace theB by C.

The LISP formalism cannot easily express a transformation of this

type, although such transformations can be individually programmed.

However, for applications that require many such transformations,

this can be tedious and time consuming for the programmer.

-2-

. _ .. - .. _----------- ----~.----~-~~--~-----.--...... .

[

L .. _

[
r
L

[

[

n u

c
r'
l.~

r~

L

[.\

•. J

o
o
o
o
o
o
J
o
n u

o
o
n u

o

!o

A notation for expressing such transformations is the basis for a

number of programming languages that exist today, such as COMIT,

SNOBOL, AXLE, and METEOR [2J which was an earlier embedding of

such a feature in LISP.[5] Each of these notations provides a

formal method for selecting substrings from a string, and then

indicating the structure of the transformed string. For example,

the above transformation written in COMIT is:

$+$3+A+$+B+$1+$ = 1+6+4+C+2+7

This is much easier to write and understand than the corresponding

LISP code for this transformation. However, in COMIT and similar
languages, it is cumbersome to express some of the operations

which are expressed quite easily is LISP, especially those which

depend strongly on the fact that lists can contain sUblists to

unlimited depth. An obvious solution to this difficulty is to

provide both types of language capability within the same pro

gramming system. [5] For example in LISP, a programmer might use

(FLIP (REVERSE W) '($ $3 'A $ 'B $1 $) '(#1#6 #4 'C #2 #7»

to transform the reversal of the list W according to the above rule.

The philosophy behind such an extension in the syntax of LISP is

similar to the motivation for allowing ALGOL_ type statements

to augment the older LISP 1.5 notation. We do not extend the

semantics of the language, but rather provide a capability which

vastly simplifies the construction of certain types of programs. [5]

Some Preliminary Considerations

Let us consider an example of a transformation that is suitable

for FLIP and arises from actual usage: the expansion of a FOR

statem~nt for LISP.

-3-

The FOR-statement of ALGOL allows the programmer to specify a

considerable range of iterative operations in a compact form. It

would be a powerful syntactic extension to LISP. However, it would
not represent a semantic extension, because the corresponding

operations could be programmed directly using PROG statements

with appropriate control loops. For example, if a programmer

wished to ·form the sum of all positive numbers in a list L, he

might write using the FOR-statement:

(FOR X (IN L)(UNLESS (LESSP X 0» (SETQ SUM (PLUS SUM»)

or 'he could write

(PROG (Y) (SETQ Y L)

LOOP (COND « NULL Y) (RETURN NIL»
«LESSP (CAR Y) 0) NIL)
(T (SETQ SUM (PLUS SUM (CAR y»»)

(SETQ Y (CDR Y»

(GO LOOP))

which would perform the same operation.

FOR would be implemented as a function for a LISP interpreter.
However, when compiling a function containing a FOR-statement,

. the function will run much more efficiently if the FOR-statement

is compiled "open", i.e. is transformed into an equivalent PROG

which is then compiled.

There are two observations to be made concerning the FOR state
ment. First, it illustrates a practical use for a facility sucn as

FLIP. Expanding the FOR statement involves determining which of

-4-

---------- --------- -~-~---.. --- ----------_ .. _-_.... . .. _- -- ---._-_._--------

r
I, I

LJ

[,

[

I'
L,

[

[
r
L ..

[
r
L ..

L,

r
I
l .. -,

C
I

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

several alternative patterns the statement matches, and constructing

the appropriate PROG. In other words, it involves a transformation

similar to, -although more complicated than, the ones we have been

discussing. If it were possible to express such transformations

in straightforward way, perhaps by one rule, and - here is the
second observation - if this did not cause (significant) degradation

in the performance of the compiler, from the standpoint of running

time or space, then a considerable amount of programming effort
would be saved in the construction of the LISP compiler itself.

However, such a facility would be of little or no use at all if it

involved a high overhead. The thing that makes the FOR statement

useful - and used by programmers is the fact that it does not cost

anything, and it simplifies programming, with the first consideration
outweighing the second. If the FOR statement were implemented in

a different, less efficient way, for example interpretively via a

call to a function FOR at run time, then although this feature
would still simplify programming, most experienced programmers

would prefer to write their own iterative loops because of the

greater efficiency.

It has been my goal in developing FLIP to produce a facility that

not only would be useful, but one which would be used. This has
entailed developing a compact, yet fairly powerful notation for

I

describing transformations, and a very efficient implementation of

these transformations. One of the central considerations has been

that the user should not have to pay for options which he does not
use. In other words, simple transformations must have a simple

notational representation, and run fast. Esoteric options which

slow down the operation of the pattern matching because of the
possibility of their being used are not desirable for our appli

cations. With respect to efficiency, FLIP includes features which

-5~

allow the programmer to exercise some degree of control over the
manner in which the matching portion of the operatiol'l is carried
out. However, even where this control is not exercised, a con
siderable amount of built in optimization insures the programmer

of an efficient operation.

-6-

~~- ------------------ ~~~. ----.---.~---~------------~- ---- -- - ----_._----- -_._----_.--_._-_._-_.- ---- ._----- --- --_._-_ .. __ ..

[,

[

[

r
L.

[,

C I

r'
L,

[
r
I,

L.

[
(~

L.~

[

I

o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o
o

---~----------- -----------~----- --------------~--

SECTION II

THE FLIP FORMALISM

A transformation in FLIP consists of two ind€pendent processes.
The first is a parsing, or segmentation of the" input structure"

according to some pattern. This is called the matching process.

The second is a construction of a structure utilizing this parsing
and some format. This is called the constructing process. A

transformation is usually specified by a single pattern and format.

The value of the transformation is NIL if the input list does not
match the pattern, otherwise it is the result of the construction.

It is possible to use the matching process as a pure predicate to

test the form of an input. In that case a format is not required.
One can also.perform several constructions using a single parsing.

In the discussion that follows, the matching and constructing
operations are treated separately because of this independence.

A. Control Mechanisms

Since FLIP is embedded within LISP, it does not have its own

control mechanism. In COMIT, SNOBOL, etc., this is the section
of the language devoted to the flow of control between the trans

for,mations or rules, and its dependence on the success or failure

of the matching process used to find the parsing. Several

different useful executive programs have been written in LISP to

facilitate using sets of rules, for example,
I. Repeat use of each rule until it (the match) fails, and then

-7-

go on to the next.

2. Every time a rule is successful go back to the top of the set

of rules. On failure go to the next rule.

3. After a match, control goes to a specified labelled rule.

(This is very similar to the COMIT control mechanism.)

One control program, TRANSFORM, is described in Section IV. Others

are easy to write since the user can call the matching and con

structing functions directly.

B. The Matching Process

The purpose of the matching process is to determine whether or

not the input list is an instance of a particular input pattern.

If it is, the matching process is designed to tell us this and

also to yield a parsing of the list with respect to this pattern.

This parsing can then be used by the construct process to build

new list structures.

The input pattern is a list of elementary patterns. Each of these

must match a portion of the input list, or else the entire pattern

will not match the list. Furthermore, there must be no gaps in

the list, i.e. these portions or segments as they will be called,

must together, and taken in order, make up the entire list. This

set of segments will then constitute the parsing of the list.

As an example, let us consider a pattern composed of the following

three elementary patterns:

$ which matches anything

$n where n is a number, which matches a segment of length n

-8-

[

I
I
'--

r
l

r
L"

I

[

r
u

r
L

[:

[

o
o
o
o
o
o
n
u

o
o

o
o
n u

o
o
o
o
o
o

x which matches x, i.e. a segment of length 1 consisting of

a single item equal to (the value of) x.

For the pattern

($ $3 'A $ $1 'B $)

and the list

(A W X Y Z ABC DEB CD),

the parsing would be:

[A WJ [X Y ZJ [AJ [B C DJ [EJ [BJ [C DJ

where each segment corresponds to one elementary pattern. Note

that 'A did not match the first A, because the $3 pattern must
first find a segment of length 3. The first $ matches the segment

up to the beginning of that matched by the $3. Similarly, 'B does

not match with the first B after the second A because there must

be at least 1 item between them to satisfy the $1 pattern. Finally,

note that if the $ at the end of the pattern were not present, then

there would be no match because there is no way for the segments

of the match to make up the entire list.

Elementary Patterns

$, $n, and a variable are prototypes of three of the elementary

patterns available in FLIP. Each of these patterns, as well as
the ones we will encounter below, can be embellished considerably

with various options. For tutorial purposes, we have chosen first

to present each elementary pattern in its simplest form, as was
done above, and then to introduce gradually the extensions and
generalizations that are permitted. However, a complete summary

of both the FLIP syntax and semantics may be found in the appendices.

-9-

The Variable Pattern

The variable pattern, or var for short, is so named because in its

simplest form it matches with the value of some variable. Actually,
var matches with the value of any LISP computation which includes

variables as well as other more complicated expressions. In the
above example, this computation was 'A, which is short for

(QUOTE A). The value of this computation is simply A, and so this

elementary pattern matched with A. If the value of X were A, then

the pattern ($ $3 X $ 'B $1 $) would match identically with the

one given above.

If X is a variable which has as its value the list (3 4 5), then

the pattern ($ X $) matches the list (1 2 3 4 5 6 (1) (2 3) (3 4 5)
(6» with parsing

[1 2 3 4 5 6 (1) (2 3)J [(3 4 5)J [(6)J

Suppose we wanted X to match with the segment [3 4 5J rather than

the item (3 4 5), which is a sublist of the original list. We

indicate this by using the prefix operator "*,, and write ($ *X $).

The parsing would then be

[1 2J [3 4 5J [6 (1) (2) (3 4 5) (6)J

Just as ($ X $) is identical to, in this case, ($ '(3 4 5) $),
($ *X $) is identical with ($ *'(3 4 5) $). This latter pattern
also will match the same list as the pattern ($ 3 4 5 $). How

ever, ($ 3 4 5 $) produces the slightly different parsing:

[1 2J [3J [4J [5J [6 (1) (2) (3 4 5) (6)J.

because it contains 5 elementary patterns instead of 3.

-10-

r
I

I '-,

!
I
'c-.

r
L

[:

r
L,

I'
L

o

r
L

[.
,'-'
L

[

r~

I
I "-.,1

['~
-,

r
u

o
o
o
o
D

o
o
n , I
L

o

n

U

o
o
o
)l
I !
U

o
o
o
o

Variables and quoted expressions are two types of LISP compu

tations. To indicate that a match is to take place with some

other LISP computation, the prefix operator "=" is used.* For
example, one can write

($ =(CAR (GET (QUOTE NAME) (QUOTE PROPERTY») $)

or

($ =(PROG (X Y) ... (RETURN X» $),

etc. In general, the elementary pattern =X matches a single

element equal to the value of X, which is computed during the

course of the match. To indicate that a match occurred with a

segment of a list, we use the prefix operator "*", as before, and

write *=X, where X is a LISP computation.

To refer back to items or segments already matched in the parsing,

a special type of var called a mark is provided. For example, the
pattern

($ $1 $ #2 $)

will match a list with two identical elements. For the list

(A BCD E F G B X), the parsing would be

[A] [B] [C D E F G] [B] [X]

In this example, #2 is a mark; it refers to the second elementary

pattern, namely $1, and it matches with the identical item or

segment that the $1 elementary pattern matched. For the list

* Actually, the "=" operator may be used for all LISP computations

including variables and quoted expressions. However, since these

two types occur so frequently,. special allowance is made for them

and the "=" operator can be omitted.

-11-

..... _--_ .. _---_. -----.--------.-------

(A B C (B C) D E (B C) B C F) and the pattern ($ X $ #2 $),
where X has the value (B C), the parsing is:

[A B C] [(B C)] [D E] [(B C)] [B C F]

A mark always matches identically with. the elementary pattern
to which it refers. If for the same input list and value of X
as above, we use the pattern ($ *X $ #2 $), then the parsing
would be:

[A] [B C] [(B C) D E (B C)] [B C] [F].

In this case, the mark matched with a segment [B C] instead of
an item, [(B C)].

A mark can also be used in a computation. In this case it has
the value of the segment matched by the elementary pattern to

which it refers, or in the case that this pattern matches a single
item, its value is that item. For example, we can write

($ $3 $ =(CADR #2) $) which matches with (A BCD E C G) producing
the parsing [A] [B C D] [E] [C] [G]. The pattern ($3 *=(REVERSE #1»
will match with the list (A Bee B A) producing the parsing
[A B C] [C B A]. Note that ($3 =(REVERSE #1», will not match
with (A Bee B A); it will match with (A B C (C B A».

Sometimes for long patterns such as ($ 'A $ 'B $ $1 $ #6 $),
it is easier to read and write the patterns if we .allow the mark
to count backwards from its position, writing ($ 'A $ 'B $1 $ #-2 $).
Both of these patterns will "find" the first common elements
following the first B that follows the first A.

We can also write #X to denote the Xth element of the parsing,

where X is any LISP form that evaluates to a number. Similarly
we can write $X to denote a segment of length X. Here it is

-12-

.. --._ ... _ •.. __ .--... _ .. _- .. --..• ---~ ---.. -.. -... - ... - -

r
L,

r
L;
r
i
U

[

[

C

n
LJ

[,

['

[

,-
i
_.,J

[

o
o
o
Q

o
o
o
n
I I
LJ

n U

o
o
o
c\
) ,I

U

o
o
o
o
o
o

important in order for the $ to be recognized as a prefix
operator that there be no space between it and the X. For

example, ($ X $) is not the same as ($X $), nor is {$.(CAR X) $)
the same as ($(CAR X) $).

Summary

The three elementary patterns discussed so far are:

$ which matches anything

$X where X is a computation whose value is a nonnegative
number N; matches a segment of length N

=X matches a single element equal to the value of X

X where X is atomic; same as =X

'X same as =(QUOTE X)

*=X matches a segment equal to the value of X

*X where X is atomic; same as *=X
*'X same as *=(QUOTE X)

#X where X is a computation whose value is a number N;
matches with the same thing matched by the Nth elementary

pattern. If N is positive, numbering proceeds from the

front of the pattern, left to right. If negative,
numbering proceeds from position where #X appears,

right to left. (Note: INI<position #X)

Predicates

Suppose we wanted to parse a list finding the last A before the

first B. The pattern ($ 'A $ 'B $) is not sufficient, because
with the list (A Z A Y A B C), for example, there are three

possible parsings,

-13-

[] [A] [Z A Y A] [B] [C];
[A Z] [A] [y A] [B] [C]; and
[A Z A Y] [A] [] [B] [C]

corresponding to the three different occurrences of A. While the
last parsing is the one desired, FLIP and most other pattern
driven languages would produce the first parsing, simply because
it is the first one found.

One way to produce the last parsing is to restrict the segment
that the first $ matches by requiring that it not contain an A.
This is done in FLIP by means of a LISP predicate.

We write for the above pattern

($ 'A $[NOT (MEMBER 'A i)] 'B $)

By definition, $[X] matches anything for which the value of (X)
is T.

To reference in X the segment currently matched by the $, you can
use the variable "*",. as in the above example.

Predicates can also be used with the $N pattern and the VAR

pattern. Consider

($ $l[MEMBER * '(A E I 0 U)J $ $l[NOT (MEMBER * #l)J $)

Given the list (X Y Z I X M N), the parsing produced is

[X Y ZJ [IJ [XJ [MJ [N].

Let us consider another example using predicates. We can write $X

to match a segment of length X - suppose we wish to match a

[
r
L,

r
L

r
I
U

[
r
L

[

[

c
c
[.
r
L

[
r
L

segment with a length between two bounds? Here we must use a predicate. ~ I

.......... ;

[
-14-

[J

o

o
o
o
o
n
LJ

o
[J

o
o
o
o
o
n
o
o
o

($ 'A $[AND (LESSP(LENGTH *) 5) (GREATERP (LENGTH *) 1)] 'B $)

matches with (A BCD E A X B B)giving [A BCD EJ [AJ [X BJ [BJ [J.

Subpatterns

Predicates provide a means for calling the matching procedure

recursively. For example, we could require that a list match with
a given pattern by using the elementary pattern: $l[MATCH * PATTERNJ.

However, a more djrect way to achieve this is by means of a

subpattern. A subpattern is an elementary pattern that matches a
list in the same way that the top level pattern matches the top

level list. For example, given the list

(A (B C) D (B E F) G)

and the pattern

($ ($ 'F $) $),

a match will occur with the subpattern ($ 'F $) matching the
list (B E F). One of the advantages of using the subpattern over

a predicate is that the parsing produced by the recursive call

to match is saved in the top level parsing. Thus the complete

parsing for the match above would be

[A (B C) DJ

[[B EJ [FJ [] J

[GJ

This sub-parsing can then be referred into by_other elementary
patterns. For example,

($ ($ 'B $1) $ #[2,3J $)

matches with

«A B C) (A B D) (A B E) A E I 0 .0)

-15-

producing the top level parsing

[(A B e) (A B D)] [(A B E)] [A] [E] [IOU].

Here #[2,3] refers to the third element in the second element

in the parsing. When this elementary pattern is encountered;
the second element in the parsing is found and, treating this as

a parsing, the third element in this lower parsing is found. A

match will then be made with the same item or segment matched by
this element.

Since the mark notation using brackets is treated similarly to

that without brackets, the numbers 2 and 3 in the example above

could have been replaced by arbit~arycomputations, and similarly
negative numbers could have been used. The notation #2 is

equivalent to #[2]. The former is merely a convenient abbreviation.

Similarly, marks using bracket notation can be employed in arbi

trary LISP computations.

It is not necessary to refer into parsings produced by subpatterns;
items matched by subpatterns can be referred to by MARKS in the

same way as any other matched item. Thus the pattern

($ ($ '~ 'D) $ #2 $) will match with the list

«A B e) (A B D) (A B E) (X B D) (A B D) (A B e»
producing the top level parsing

[(A B e)] [(A B D)] [(A B E) (X B D)] [(A B D)] [(A Be)]
Note that #2 did not match with (X B D) even though ($ 'B 'D)

could have matched with it originally. #2 matched with (A-B D),
as did ($ 'B 'D) earlier.

-16-

[

\'
L.

[

[

[

[

r
LJ

[
r
L,

[

[

[

r
l...J

[

o
o
o

n u

o
o
n
I' o
n
U

o
o
n u

o
o
o
o
o
o

If a MARK is used inside of a subpattern, it is evaluated using
that subpattern's parsing. For example, in the pattern

($ ($1 $ #1) $), the #1 refers to the $1, not the first $, and

this pattern will match with

«A B C) (D E F) (G H G) (I J K))

to produce

[(A B C) (D E F)] [(G H G)J [(I J K)J.

If it is necessary to refer to the parsing outside of the current

parsing, one uses the full MARK notation, with brackets, and

heads this with the special token "t". For example

($ $1 $ ($ #[t,2J $) $)

matches with

(A B C (D E F) (G H I) (X Y C)),

with the $1 matching C. The 1ft" denotes that counting begins

with the top level parsing.

As with the case of VARs, a subpattern can be used to match a
segment as well as an item. This is also indicated by the prefix

operator n*n. Thus we can write

($ $3 *('A $ 'B) $1 $)

as a pattern which matches with the same lists as those matched

by the pattern

-17-

($ $3 'A $ 'B $1 $).

However, the first parsing will contain only five elements, since

there are only five elementary patterns. The second parsing will

of course contain seven elements. Furthermore, if #3 appears in
the first pattern (at the top level) it will refer to the entire

segment running from A through B, since this is what is matched

by the third elementary pattern in that pattern. #3 appearing
in the second parsing would refer to the single item A.

Finally, a subpattern can be computed. This is indicated by the
prefix operator II:". Thus we have for the subpattern:

:X matches a single item, a list, that matches, in the

sense described above, the value of X treated as a

pattern.

X where X is a list, same as :'X

*:X matches a segment that matches in the sense described

above the value of X treated asa pattern

*X where X is a list, same as *:'X

EITHER Pattern

The EITHER elementary pattern provides a means for defining a

match of one of several alternatives. The general form for the

EITHER pattern is

EITHER[E1; E2; E3; ••• ; En]

-18-

----------------- -- --------- ------ ---- -------

r
r-

\
L

I'
L.

[

[

[

[

r
\.-..

r,

L

c

r'
L

[

[

[

[
,--.

\
u

o

o
o
o
o
o
o

o
c
n U

o
o
o
o
o

Each Ei is a sequence of elementary patterns. EITHER attempts to
find a match with a segment of the list using first El, and if
that fails, then it tries with E2, etc. For example, the pattern

($ EITHER[A' $1; 'B $2; 'C $3] 'D $)

matches with the list

(X Y Z ABC D E F D G)

producing the parsing

[X y Z] [C D E F] [D] [G].

The element corresponding to the segment [C D E FJ matched by the
EITHER also contains the parsing [C] [D E FJ corresponding to the
two elementary patterns in the third alternative, the one that
matched. This is similar to the treatment of subpatterns
described earlier.

As an example of the use of an EITHER pattern, consider the

following definition of an integer.

digit = EITHER[1-2-3-4-5-6-7-8-9-0] , , , ,. , , , , ,

integer = EITHER[*:digit;*:digit *:integer]

With these two variables defined, we can use the pattern
*:integer to determine whether a list matches the Backus normal

form definition of integer given in the above two rules. For
exa~ple, the pattern

-19-

($ 'A *:integer 'B $)

matches with the list

(X Y Z A 1 W B A 3 2 6 B C)

producing the parsing

[X Y Z A 1 W B] [A] [3 2 6] [B] [C].

(Admittedly this is not the most efficient way to find integers.)

If any of the Ei's are empty, then, the EITHER pattern can match
with a null segment of the list. Thus the pattern

($ 'A EITHER ['B $1; 'C $2;] $)

matches with the list (X A Y) producing

[X] [AI [] [Y].

Here, the third, (empty) alternative was used.

If a mark is used inside of an EITHER pattern, it is evaluated
using the EITHER pattern's parsing, m~ch the same as with the
subpattern. For example, the pattern

($ EITHER[$l 'B #1; $1 #1] $)

will match with the list

(A BCD B D E)

-20-

... ------

fI
L.

I'
G

r
I

L"
f'

L

[
r
L

[
r ,
L...-

~.
'L.,.

r;
L

r
L

[

[
,..-,
I

L I

[
r
I

L

r
I
L

r
I

LJ

r>

lJ

o
o
n
U

o
c
n
L1

o

n
LJ

':I U

o
c
o
r , I
\.....)

o
o
o
o

using the first alternative. To refer to elements outside of the

EITHER pattern's domain from inside of it, use the mark notation
with brackets and t. Similarly, the EITHER pattern's parsing may

be referred into using the mark notation with brackets. For
example,

($ EITHER['B $1; 'e $1 $lJ #[2,-lJ $)

will match with the list

(A BeD E E G),

with the second alternative being used.

The REPEAT Pattern

The REPEAT pattern allows one to match with a repetitive pattern.

The general form for this elementary pattern is REPEAT[EJ, where

E is a sequence of elementary patterns. REPEAT will match zero

or more occurrences of this sequence. Thus the pattern

('A REPEAT['B $lJ)

will match with the lists

(A), (A B e), (A B e B D), etc., but not with

(A B e BeE), although

('A REPEAT['B $lJ $)

would match with the latter list. As with the case of the

-21-

subpattern and EITHER elementary pattern, the parsings obtained ...
by REPEAT as it matches are retained and available during the
course of the match and construct operation. Similarly, marks
used inside of the REPEAT pattern refer to the parsing of the
current repetition. For example, the pattern

(REPEAT[$l $1 #lJ) will match with the list

(A B A CDC E FE).

To refer to elements outside of the REPEAT pattern, marks with
brackets and t must be used.

The REPEAT pattern may take two optional arguments, Nl and N2.
If Nl is present, the REPEAT pattern must match at least Nl times.
If N2 is present,. the REPEAT will match at most N2 times. For

example, to match a segment containing from 1 to 6 letters (say
a representation of a FORTRAN variable) one can use:

REPEAT[$l[LETTER *J / 1-6J

where LETTER is a predicate which is true for letters.

The general form for REPEAT is thus:

REPEAT[E / Nl N2J where the value of Nl and the value
of N2 are both numbers, matches a
segment of a list which matches

repetitively the list of elementary

patterns E at least Nl times and not
more than N2 times.

-22-

[

I u

r
L

r
i I
'--"

c

r
I

U

r w

o
c
r
\ .
'--

c

r ,
L

o
II

I I
L.J

o
,0

o
II
U

o

IJ
n u

n
I. I
\:.....J

o

n u

o
o
Il u

o

REPEAT[E / NIJ

REPEAT[EJ

The SET Pattern

same as REPEAT[E / Nl N2Jwhere

N2 is effectively infinite.

same as REPEAT[E / 0]

The SET elementary pattern might more properly be called a

pseudo-pattern, because it does not affect the match. The SET

pattern is used to assign a value to a variable during the match.

There are two forms for the SET pattern. The first, (SET X Y),

where Y is some LISP form, assigns the value of Y to X. The

second form is X + Y·, where Y is some elementary pattern. In this

case X is set to whatever the elementary pattern matches. Thus

the effect is the same as writing in a pattern Y followed by

(SET X #-1). Note: Since this elementary pattern does not match

and does not affect the parsing, it should be ignored when com

puting MARKs. Thus ($ (SET X Y) $1 $ #2 $) will match two common

elements, the #2 referring to the $1.

Example

We are now ready to try a more complicated example. In LISP

applications, one frequently wishes to locate a balanced pair of

brackets in a string of tokens. Let us consider a general FLIP

pattern which finds the first balanced string following the unique

token LABEL, where the bounding tokens are variables; e.g. they

could be BEGIN and END, or "[11 and "JlI, etc. Let us refer to these

tokens by the variables OPEN and CLOSE. The general idea is to

find the first OPEN after LABEL and increment a counter one for

each OPEN, and decrement the counter for each CLOSE until the

-23-

count is zero. The pattern used is:

($ LABEL $ OPEN (SET N I)
REPEATCEITHERCOPEN (SET N (ADDI N»J

$l[NOT (EQ ~ CLOSE)]J
(SET N (SUBIN» $ltNOT (ZEROP N)]]]

$)

After the REPEAT pattern has matched, N will be zero, and the

segment matched will consist of the balanced string excluding the

initial OPEN and final CLOSE. Suppose we wish, however, to bind

the variable Faa to this entire balanced string. Then we might

write

($ LABEL $ FOOp*(OPEN (SET N I)
REPEATCEITHERCOPEN (SET N (ADDI N»J

$ICNOT CEQ ~ CLOSE)]J
(SET N (SUBt N») SleNOT (ZEROP N)J]] CLOSE

) $)

After this pattern has been matched, the value of Faa will be the

segment from the first OPEN after LABEL to its matching CLOSE.

Note the use of the subpattern consisting of four elementary

patterns: a VAR, SET, REPEAT and another VAR.

C. The Construct Process

The purpose of the Construct Operation is to construct a new list

structure using a format and a parsing from a match. Since the

flavor of Construct is similar to that of Match, and Construct

uses many of the same LISP functions as Match does, we will

-24-

I
L

,-
I
L.

I:
L

r.
L

r
L

n LJ

['

c
[

r
L..J

I'
I
L.,

LJ

L

o
o
o
o
o
o
D
o
o
o
o
o
D

o
C

o
o
o
o

discuss it in less detail.

The inputs to Construct are a representation of the parsing found

by Match, and a format. This format isa list of elementary

formats, which are evaluated sequentially from left to right,

their values being attached to the list structure under con

struction as specified below. For example, to perform the trans

formation on page 3 we match with ($ $3 'A $ 'B $1 $) and

construct with (#1 #6 #4 'C #2 #7).

VARF

VARF is the elementary format that corresponds to the elementary

pattern VAR. Its value is computed and attached at the end of

the list structure under construction as an item, or, if the

prefix "*" is used, as a segment. A MARK is attached as an item

if the elementary pattern to which it refers matched as an item,

otherwise as a segment. Negative numbers are permissible in

MARK's used in the construct process; they refer to elements by

a count from the right end of the parsing moving to the left.

Thus the format (#1 #-2 #4 'C #2 #-1) is equivalent to the format

above.

=X

x

'X

X is evaluated and attached as an item at the end

of the list being constructed, i.e. effect is the

same as APPENDing (LIST X) to this structure.

where X is an atom, same as =X

same as ='X, or =(QUOTE X)

*=X X is evaluated and attached as a segment, i.e.

APPENDing X.

*X where X is an atom, same as *=X

-25-

*'X s.ame as *='X or *=(QUOTE X)

#X,#[..] ~he elementary pattern referred to is located in

the same way as in the. match and then tbe item or

segment. it matched' is. attached appropriately to

t,he: list being construct:ed,.·

S'ubformat s

The subformat c'orresponds to the subpattern element.ary pattern ..

It is a. list o,f elementary format,·s which are used to construct.

a new list in exactly the same way as top level elementary

f'ormat q are used to construct a l.ist.. This sublist is then

attached to the. list being constructed either as aa item or as

q;' segment, as spec;ified. Subformats may b.e c:omputed; this, is'

indicated' by the prefix operator ".11 Subformatq' may' be used

within subformats:.

:X X is evaluated and treated as a f~rmat. It is

used: to. constru.c,t a list which is then added to

the next higher level list as an item.

where X is a. list, same as :'X

*:X X is evaluat.ed and treated as a forma.t. It is:

used to c'onstruc.t a list which. is then added to

the next higher level li.st as a segment ..

*x where X is. a list, s;ame' as *: 'X

EITHERF

ETTHERF i.s. the elementary format c,orresponding to the EITHER

patt'ern. It specifies the se.lectton of an alte.rnative format

-26-

c

c
c
[

c
r-'

L

C

C

C
C

C
C
[

[

[

[

C
C

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
IJ
o
o
o

to use for construction depending on which alternative in the

match was used. Its general form is

EITHER[El; E2; E3; .. , En / XJ

where each Ei is a sequence of elementary formats and

X .is a computation, usually a MARK, whose value must

be a parsing corresponding to some EITHER elementary

pattern. The format Ei corresponding to the chosen

Ei in the EITHER pattern is used in construction.

Comments

1. Ei may be empty.

2. During the course of the construction using Ei, the current

level parsing is that of the EITHER elementary pattern. This

means that any MARKs not employing t will be evaluated with

respect to the EITHER parsing. Thus, if one matches the list

(X Y A C D E F G) with

($ 'A E I THE R ['B $1; 'C $1 $1] $)

and constructs with

(#1 #2 EITHER[#2; #3 / #3J #4)

the result is

(X Y A E F G).

3. If X is not present, then the last EITHER (furthest right)

-27-

at the current level parsing is used. Thus, in the above case,
"I #3" could have been omitted. If no EITHER parsing is found,

an error occurs.

REPEATF

REPEATF is the elementary format corresponding to the elementary

pattern REPEAT. It specifies the iteration of a number of con
struction operations, the exact number being the number of times

the corresponding REPEAT matched. Its general form is

REPEAT[E I XJ where E is a sequence of elementary formats
and X is a computation, usually a MARK,

which must produce a parsing corresponding

to a REPEAT elementary pattern.

Comments

1. X may be omitted. In this case, the last (furthest right)
REPEAT of the current level parsing is used. If none is found,

an error occurs.

2. During the construction with E, the current level parsing is

that of the corresponding parsing in the REPEAT elementary pattern,

i.e. for the nth iteration of E, the nth match of the REPEAT

pattern. Thus to delete every third element in a list, match with

(REPEAT[$2 $lJ $),

and construct with

(REPEAT[HI / HIJ #2)

-28-

I
~"

. ,

i '
1
1_,'

[

[:

C
[;

[

[

C
C
[,

,I

C
[

[

[

[:

[

I' .. _)

[

o
o
o
\1

U

o
o
o
o
o
o
o
n u
\,1
U

o
o
o
o
o
o

or simply

(REPEAT[#lJ #2).

3. The value of X may be a number. In this case, the format E

is repeated that number of times, and the current level parsing

is the same as that when the REPEATF was entered. Thus to convert

(A BCD E) into (A A A B B Bee C D D DEE E),

match with

(REPEAT[$lJ),

construct with

(REPEAT[REPEAT[#l/ 3JJ).

The first REPEAT corresponds to the REPEATed pattern. The

second one is executed 3 times for each time the REPEAT pattern

matched, and #1 is the corresponding $1, etc.

4. It is possible to match with

(REPEAT[EITHER['A $1; 'B $lJJ)

and construct with

(REPEAT[EITHER[#2 #2; #2 #2 #2JJ).

Here the alternative format is selected according to which EITHER

matched on the corresponding iteration of the REPEATed format,

and the #2 is evaluated against the parsing of EITHER. This

-29-

---.- -----

transformation will produce

(X X Y Y Y Z Z X X Z Z Z)

from

(A X B Y A Z A X B Z).

In addition to these elementary formats, there is an assignment
statement available in construct similar to that in match. This
may be written either as (SET X y) or X+elementary format. In
the latter case, X is assigned the value of the elementary format.
In both cases, the assignment statement does not affect the list
being constructed.

Example

We are now in a position to write the transformation for the
FOR-statement expansion described earlier. The general form of

the FOR-statement we are using is:

(FOR loopvar loopcontrol whilephrase unlessphrase statement)

where

loopcontrol = (LOOP X)
or (RESET X Y)
or (IN X)

or (ON X)

or (STEP N I)

or (STEP N I

whilephrase = (WHILE X)
or empty

FN

-30-

M)

[

c
[

[

[

C
c
c
c
c

c
[:

[:

['

o
o
o
o
o
(l
U

o
n
U

o
o
1J

~

o
o
o
o
o
o
o

unlessphrase = (UNLESS X)

or empty

where X and Yare arbitrary forms, N, I, M are forms that

evaluate to numbers, and FN is a function.

If loopcontrol is (LOOP X), loopvar is initialized to X. For

RESET, it is initialized to X at the start of the loop and reset

to Y after each iteration. (ON X) indicates that the loopvar is

to be cycled through the list X. It makes the FOR-statement

work in a manner similar to the LISP function MAPLIST, setting

loopvar to successive tails of the list X. (IN X) sets loopvar

to successive elements of the list X. Finally, STEP specifies

a numerical loopcontrol. In the first case loopvar is initialized

to N and incremented by I after each iteration. No provision is

made for termination of the loop. In the second case, the loop

terminates when (FN X M) is true. For example,

(STEP 1 1 (GREATERP 10) will cause 10 iterations with loopvar be
ginning at 1 and going to 10.

Regardless of which loopcontrol is used, the WHILE phrase, allows

the user to specify a termination condition for the loop, and the

UNLESS phrase specifies exceptions for which the statement is not

to be executed.

The definition of FOR is given below. Note that the EITHER

pattern allows a compact treatment for the various loop control

cases. In particular, the two STEP cases and the IN and ON cases

can be treated together.

Following the definition are six examples of expansions produced

by FOR. The first two examples using LOOP and RESET both return

-31-

T for lists of even length and NIL for lists of odd length. The

third example using IN prints all atomic elements in a list L,

and the fourth example using ON prints all but the last four

elements in L. The last two examples, using STEP, compute the
sum of all odd integers less than N. The output was produced
using a special print program, PRETTYFLIP, described on page 43.

-32-

-------- -._ - _ ... _---_._-_._----_. __ .. _ .. _ _ ..

I
L,

[

[

['

[
r
!
U

c

c
c

c
c
[,

[

[

[

o
o
o
o
c
n u

o
n

iJ
n
LJ

n
U

n
LJ

o
o
o
o
o
o
o
o

...... __ ... _- ._--------_ .. _-- ----------

PRETTYFLIP«FOR»

(FOR
(LAMBDA (X) (FLIP

(FOR)
p

X
'('FOR LOO?VARp$1 . (EITHER['LOOP $1;

'RESET $1 $1;
EITHER['IN;

'ONJ $1 J

'STEP $1 $1
EITHER [$1 $1J

JJ)
EITHER[('WHILE $1);

J -
EITHER[('UNLESS $1);

J
$1)

'«SET LOO? (GENSYM» (SET LOOPt (GENSYM»
(SET EXIT (GENSYM»
'PROG
EITHERCNIL LOOP ('SETQ LOO?VAR H2);

NIL ('SETQ"LOO?VAR #2) LOO?;
(PROGVARp=(GENSYM» ('SETQ PROGVAR #2) LOOP

('COND «'NULL PROGVAR) C'GO EXIT»)
('SETQ LOOPVAR EITHER[('CAR PROGVAR)J

PROGVARJ)J

NIL ('SETQ LOO?VAR #2) LOOP
EITRER[C'COND «#1 LOOPVARQ2) ('GO EXIT»)J

JI fI[3.d]]
EITHER[C'COND «'NULL #(1~2J) ('GO EXIT»)J

I #-3J
EITHER('COND (H(1~2J (uGO LOOPt»)J

J
#-1
LOOPI
EITHER[;

C'SETQ LOOPVAR #3)';
('SETQ PROGVAR ('COR PROGVAR»,;
('SETQ LOOPVAR ('PLUS LOOPVAR #3» / ~[3#lJl

('GO LOOP)
EXIT»»

-33-

(FOR X (LOOP L)
(COND

«NULL X)
(f~ETUF!N T»

«NULL (CDR X»
(RETURN NIL»

(T (SETQ X (CDDR X»»)

(PROG NIL
A0175 (SETQ X L)

(COND
«NULL X)

(RETURN T»
((NULL (CDR X»

(RETURN NIL»
(T (SETQ X (CDDR X»»

A0176 (GO A0175)
A0177 NIL
)

(FOR X (RESET L (CDDR X»
(COND

((NULL X)
(RETURN T»

((NULL (CDR X»
(RETURN NIL»»

(PROG NIL
(SETG X L)

A0200 (COND
«NULL X)

(RETURN T»
«NULL (CDR X»

(RETURN NIL»)
A0201· (SETQ X (CDDR .X»

(GO A02(0)
A0202 NIL
)

-34-

\
L,

r
I
L_

r
I

U

I'
U

[

r
L_

[

[

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

(FOR X (IN L)
(UNLESS (NULL (ATOM X»)
(PRIN1 X»

(PROG (A0206)
(SETQ A0206 L)

A0203 (COND
«NULL. A0206)

(GO A02(5»)
(SETQ X (CAR A0206»
(COND

«NULL (ATOM X»
(GO A0204»)

(PRINt I X)
A0204 (SETQ A0206 (CDR A0206»

(GO A0203)
A0205 NIl..
)

(FOR X (ON L)
(WHILE (GREATERP (LENGTH X)

4»
(PRINT (CAR X»)

(PROG (A0212)
(SETQ A0212 L)

A0207 (COND
«NULL A0212)

(GO A0211»)
(S[i:Tl~ X A(212)
(COND

«NULL (GREATERP (LENGTH X)
4»

(GO A0211»)
(PRINT (CAR X»

A0210 (SETQ A0212 (CDR A0212»
(GO A0207>

A0211 'NIL
>

-35-

..

(fOR X (ST~P 1·2)
(WHIL~ (L~SSP X N»
(S~TQ SUM (PLUS SUM X»)

(PROG NIL
(S~TQ X 1)

A0213 (COND
«NULL (LESSP X N»

(GO A(215»)
(SETQ SUM (PLUS SUM X»

A0214 (SETQ X (PLUS X 2)
.(GO A(213)

A0215 NIL
)

(fOR X (ST~P 1·2 GREATERP.N)
(SETQ SUM (PLUS SUM X»)

(PROG NIL
. (SETQ Xl)

A0216 (COND
«GREATERP X N)

(GO A(220»)
(SETQ SUM (PLUS SUM X»

A0211 (SETQ.X (PLUS X 2»
(GO A(216)

A0220 NIL
)NIL

-36-

"'~'-"-"---"'------'----

[

I"
L.

[

[

C
[

r
G

c
c
c
r
LJ

r
G

C
C
r
u

c
f'
G

c

o
o
o
o
o
n u

o
n
U

I)
U

o
o
o
o
o
o
o
o
o
o

SECTION III

IMPLEHENTATION

This section discusses FLIP as a large systems pro~ram. It may

help users to write more efficient FLIP programs by explainin~

the way FLIP works, but it contains no new information on the

language. It has been included for comnleteness, and because we

feel that much of the experience gained in experimentin~ with and

using FLIP has been in the area of implementation, and may be

transferrable to the design and construction of other large LISP

systems.

The section is divided into three parts. The first part discusses

the technique of translation. The second part discusses techniques

for reducing the number of CONSes required. rl'he third Dart dc

scribes the operation of the $ function, which is responsible for

most of the search strategy in the matching operation. Thus the

first part talks about ways of speeding up MATCH and CONSTRUCT

before they are run. The second part talks about ways of speedinr.

up MATCH and CONSTRUCT indirectly by reducing garba~e collection

time, and the third part talks about ways of speeding up MATCH

while it is running, by a more efficient search.

A. Translation

Each of the elementary patterns and formats in FLIP have been

implemented by a single LISP function. There is a function called

$, and another function called VAR, etc. Although there are a

-37-

number of options with which each elementary pattern or format

can be embellished, for example, VAR can be made to match a seg

ment or an item, and mayor may not include a predicate, there is

still sufficient similarity in the tasks performed to permit only

one function.

However, given any input pattern or format, there is still the

problem of determining which functions are to be called, and with

what arguments. Since each of the seven elementary patterns dis

cussed earlier come in a variety of forms, a certain amount of

computation must be done to decide exactly which elementary pat

terns, and elementary formats, are represented in a given pattern

or format. This is the task of the translators.

The purpose of translation is to do as much of the work of inter

preting FLIP entities as possible, before the programs are run,

and to do this work only once. This is similar to the philosophy

of compilation. However, unlike compilers, the FLIP translators

do not produce machine instructions, but a sequence of LISP forms,

i.e., LISP functions with arguments. These forms correspond to

the individual functions which carry out the operations specified

by each elementary pattern or format. The arguments to these

functions indicate the options utilized. Since each of these

functions are themselVeS compiled, there is a minimum amount of

interpretation at run time.

As an examDle, consider the pattern

($ 'A $l[NOT (MEMBER * #l)J *=(REVERSE #1).

-38-

[

[

[

r
LJ

[

[

[

[

I'
L

c
[:

[:

[

I'
LJ

[

o
o
o The translation of this pattern is

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

*

(($)

(VAR (QUOTE A))

($N 1 (NOT (MEMBER * (MARK (1)))))

(VAR (REVERSE (MARK (1))) SEGMENT))

The translation of the first elementary pattern indicates that $

must match with any .segment, and no predicates are used. The
translation of 'A tells VAR that it is to match an item and that

this item must be equal to·the value of (QUOTE A). This is

evaluated and VAR compares the first (next) element in the list

being matched with A. The translation of the next elementary

pattern informs the $N function that it must match a segment of

length 1, and that the predicate (NOT (MEMBER * (MARK (1)))) must

be true for this segment. $N calls the LISP function EVAL on this
predicate after first binding the variable 11 *'i to the segment in

question. MARK is a LISP function whose value, in this case, is

segment matched by the first elementary pattern, i.e., the $.
The translation of the fourth elementary pattern indicates to VAR

(the same function that handled the second elemerlary pattern),

that it must match with the segment equal to the value of

(REVERSE (MARK (1))).

* VAR is really a function of three arguments: the form to be

matched, a segment-item flag, and a predicate. However,
BBN LISP [6J automatically supplies NIL for arguments not trans

mitted to a function so that (VAR (QUOTE A) NIL NIL) is equivilent

to (VAR (QUOTE A)), as translated above.

-39-

There are four different translation functions in FLIP. These
functions translate respectively, a pattern, a format, an EITIjER

elementary pattern, and a dictionary. (The last feature is dis

cussed in a later section.) Each of these translation functions

are called at the appropriate point in the computation and return

the translated version of their input. Furthermore, they also

physically alter the list structure of the input. This avoids

the necessity for multiple translations.

For example, consider the pa~tern

($:(GET X 'PATTERN) $).

The translation of this pattern is

«$) (PATTERN (GET X (QUOTE PATTERN») ($».

When the function PATTERN is entered, it evaluates

(GET X (QUOTE PATTERN»,

and since this value is then to be treated as a pattern, PATTERN

calls PATTRAN, the translating function for patterns. If X w~re

an atom and the pattern stored on its property list under the
property PATTERN,were

($ $3 'A $ 'B $1 $),

the value of PATTRAN would be

«$) ($N 3) (VAR (QUOTE A» ($) (VAR (QUOTE B» ($N 1) ($».

-40-

[

[

r'
L.

[

C

[

C
1:
I '

U

c
c
c
r
L

C
C
C
[

C
[

o
o
o
o
o
c
o
o
o
o
o
o
o
o
o
o
o
o
o

Furthermore, the property list of X would have been changed to

(... PATTERN ($PATTRAN «$) ($N 2) ... ($N 1) ($») ...)

after PATTRAN was finished operating. Should the same top level

pattern ever be used again, or should any other pattern also

refer to (GET X (QUOTE PATTERN», no translation would occur be

cause the pattern has already been translated, as indicated by

the special flag $PATTRAN. Similar techniques are used formats,

EITHER patterns, and dictionaries. Appendix 3 contains a summary

of translation conventions.

The FLIP Read Program

Even before patterns, formats, et aI, are translated to their final

internal representation, some degree of proce~ng is done on them
by the FLIP read program. This program performs the same task as

the normal LISP read program: that of transforming a sequence of

characters into LISP atoms and more complicated S-expressions.

However, the LISP read program only distinguishes the characters

"(II, II)", "[U, "]", """, comma, period, space, line feed and

carriage return whereas the FLIP read program is sensitive to these

as well as
. , ,$, *, = , : ,-+-, + , ; ,/ , t , ? , # , @ ,and \ .

The pattern ($ 'A $3 $ 'B $1 $) is read into LISP

by the FLIP read program as

« $) (QUOTE A) ($N 3) ($) (QUOTE B) ($N i) ($».

The only reason why translation is not carried out completely at

-41-

read time is that the read program cannot know whether a given

list will be used as a pattern, a format, in an EITHER pattern,

etc., and therefore cannot set up the cor~ect function calls.

Instead, the read program separates out the individual entities

thereby simplifying the task of translation.

For example:

($ X+Y+*';' (REVERSE HI)[EQ (CAR *) (CAR HI)])

is read in as

(($)

(SET X)
(SET Y)

(* = (REVERSE (MARK (1») (EQ (CAR *) (CAR (MARK (1))))))

and then translated to

« $)

(VAR(REVERSE (MARK (1») SEGMENT

(EQ (CAR *) (CAR (MARK (1»»)

(SETIX X)

(SETI Y Y)).

Note that the function SETI must operate after the elementary

pattern VAR has matched, even though it is read in first. 'l'he
translator perfbrms this reversal.

A complete list of the transformations performed by the read
program and the various translation prog~ams may be found in the

appendix. The read program itself is discussed in greater detail
in Section IV, page 58.

-42-

[,

[

[

c
[
r'
L

[.

[

C
c
c
c
r
L

[

[

[

[

C
c

o
o
o
o
o
o
o
o
)]

o
o
o
o
o
o
o
o
o
o

PRETTYFLIP

In order that the user not concern himselr about internal repre-
"

sentation, a special printing program for FLIP has be~n written.

This program, PRETTYFLIP, is responsible for the output shown

here.PRETTYFLIP will accept translated or untranslated data ,and

produce a pleasing and readable output.

No editing facilities designed specifically for FLIP data have

been implemented, but it is possible to suppress in translation

physical alteration of the input data. This will cause data to

be translated anew each time it is used, but will force the data
to remain in a more workable form than the translated version -

which is designed primarily for efficient FLIP operation rather

than !eadability.

The REJECT Mechanism

In addition to eliminating unnecessary interpretation at run time~

the translator helps to speed up the operation of the match by

providing a quick way of re.jecting certain lists. For example,

consider the pattern ($ $1 $ #2 IB $). No list can match this

pattern which does not contain a B.

During translation of a given pattern, that translator detects

and saves any occurrence of the elementary pattern VAR, (except

fo.r MARKS) and then stores this information with the translated

representation. This information is then used by MATCH, and by

the elementary pattern functions for EITHER, REPEAT, and PA1'TERN

to reject lists that obviously will not match. A considerable

savings in time is achieved by this simple pattern recognition

heuristic.

-43-

If the VAR occurs as the first elementary pattern in the pa~ter~,

the REJECT mechanism can be even more strict and use the LISP

predic~te EQUAL on the first element in the input list instead of
. ' , ,:'.,' .

MEMBER on the whole list. If the first elementary pattern is not

a VAR, the translator detects the VAR that is furthest ~iiht in . , '. . ',' .. :

the pattern, since this will save the most time. T,hus for the

pattern ($ $1 'A $ $3 'B $), matches will be attempted only wit~

lists that contain a B.

If the VAH selected by the translatpr is to match a segment, CAR

of i t.s value is used for r~j ection, unless the value is NIL.

The trapslator. is also sufficiently clever to note that X, ~n the

patte~nJ},X+$l $ X $), cannot be used for rejection. However,

the pattern ($ ($ X+$l $) $ X $)
>-

will cause difficulties since X is set in
the match, and rejection (using X) is done before the match is

, . ,

tried. For these cases, the special prefix operator "?" is used-

to indicate to the. translator not to use a VAR. for rejection pur

poses. In, other words, write

($'($ X+$l $) $?X $)

If the user wishes to use a di~erent VAR for rejection than the

one nQrrrl:ally se.1ected, he can siTTlilarly write

($ 'A,$?'B $)

This would be usefu1, for example, if B' s were more frequent than

A's in ~he lists to be matched by this pattern.

-44- ,

[

[

[

[

r
L,

r
I

L

[.

[

[
r
i
L.J

[

[

[.

[

[

[

o
o
o
o
n
U

n
U

o

o
11
, I

U

n u

o
o
o
\l U

o
o

Rejerition information is stored at the beginning of the transla

tion of the pattern. Thus the complete translation for the pattern
($ I A $ I B $) is

(NIL NIL QUOTE B)

($)

(VAR (QUOTE

($)

(VAR (QUOTE

($))

and for the pattern

«NIL T • X)

($)

A))

B))

(VAR (QUOTE A»
($)

(VAR X SEGMENT)

($»

($ 'A $ *X $)

Notice in the rejection information of the latter example,

(NIL T . X), the second element is T whereas it is NIL in the

first example. This indicates that X is a segment, whereas IB in

the first example is an item. If either IB or *X had appeared as

the first elementary pattern in their respective patterns, the

first element in the rejection information information would have

been T, e.g. (T T . X) or (T NIL QUOTE B). CDDR of the rejection

information is always the form to be matched.

-45-

Other Advantages of Translation

The fact that there exists an S-expression representation of the

pattern to be matched, as opposed to compiled code, allows the

individual elementary pattern functions themselves to take advan
tage of this information and to perform a rudimentary look-ahead.

The most significant use of this information is made by $ and is

discussed separately below. However, PATTERN~ for example, will

not attempt to match with an it~m if it is not the last item in

the list but the PATTERN 1s. For example, in the pattern

(:Ii $1 (:Ii $1 'A .. $)) no match will even be attempted using the ele
mentary pattern ($ $1 'A $) with any list that is not the last

element in the input list, regardless of whether or not it contains
an A. Similar checks are made by other elementary patterns when

ever a savings of time would result.

The translation is also used by CONSTRUCT to reduce CONSes by
,

enabling it to decide when it is necessary to COpy a list and when

this can be avoided. For example, in the format (#1 #1 #1), the

value of the MARK must be copied at least the first two times.

However, since the third elementary format is the last one, it is

not necessary to copy its .yalue before attachin~ it to the list

being constructed.

B. CONS Reduction Techniques

The ,CONS operation in LISP constructs a new word of list structure

by taking a cell from the free storage list. The true cos~ in

time for performing a CONS is therefore not only the execution

time for the CONS itself, but must include a proportionate amount

of the garbage collection time necessary to reconstruct the free

storage list when available space is exhausted. Therefore, in

situations in which garbage collection is expensive relative to

-46-

[

[

[

[

[
\1
U

, [.,

[:

[

[

[,

[

[

[

[:

o
o
o
o
o
[j

o
o
o
o
o
o
o
o
o
o
o
o
o

the total processing involved, eliminating superfluous CONSes

can drastically reduce computation time. Furthermore, in a LISP

system utili~ing secondary storage~ such as the BBN LISP system,
the actual execution time for the CONS may be large, even

excluding garbage collection, i.e., because it may involve reading
in drum pages. Thus saving CONSes is almost always worth the

effort.

This section describes briefly some of the ways in which CONSes
are saved in the FLIP system. While they mayor may not be

directly applicable to another type of program, an awareness of
the issues presented here should help all LISP programmers to

write more efficient programs.

One can distinguish two cases in attempting CONS reduction. In
the first, a CONS can be immediately eliminated by alternate

coding. Programs may have a great number of such superfluous

CONSes, if only because the straightforward way of writing a pro

gram is not always the most efficient.

The second case involves postponing performing a CONS because

conditions to be determined later may make is unnecessary. This
technique is less obvious and more program dependent than simply

eliminating CONSes, but, at least with the FLIP system, often

results in far greater savings. Both techniques are discussed

below.

Eliminating CONSes

The theme central to techniques for eliminating CONSes is the

rather trivial question "Do I really need a CONS?" This question

is not trivial when one stops to consider the meaning of CONS.

-47-

CONS means construct, i.e., create, anew piece of list structure.

If the p~ogram, does, not need a new piece of list structure, it
does,not require a CONS.

A typical case is the decision between using APPEND or NCONC, the

standard LISP functions for joining two lists, e.g., the result

of joining (A B C) and (D E F) is the list (A BCD E F). APPEND

operates by first CONSing C onto (D E F), and then CONSing B onto
(C D E F), <:!.nd finally CONSing A onto (B C D E F). It thus copies

the first list entirely, performing three CONSes. NCONC on the

other hand does no CONSes, but physically alters the first list so
that the end of it points to the second list. The result in both

cases is a list which looks the same.

The choice between APPEND and NCONC is really a choice between
creating new list s,tructure, and using old list structure. If the

first list will be needed subsequently, for example, to be joined
to a third list, just an NCONC cannot be used since it will destroy

it. However, this does not mean that APPEND must be used. A

situation occurred frequently in FLIP where it was necessary to

create and process the join of list X with a list Y, and then the

join of X with Z and process this, and so forth. By saving a

pointer to the end of X, we were able to perform an NCONC on X

with Y, and later recover by locating the point in X-join-Yat ,
which Z was to be attached. Thus, if X had the value (A B C) and

Y had the value (D E F), X was physically changed to (A BCD E F),

but a pointer was saved whose value was (C D E F). Subsequently,

X could be joined to Z, which might be (G H I), by performing

RPLACD on (C D E F), giving (A B C G H I). Of course, this

destroyed the join of X to Y,but t~en we were finished with this

list. (A by-product of this technique is t~at the joining can be

performed without searching for the end of the first list, since

-48-

[

[

[

[
I'
L)

[
r
L

c

[,

C
I'

L

[,

[

[

[

~-- ----- --- -,----" ,-------

o
n
n
LJ

o
o
o
o
n u

)l
<---\

n

U

o
il
u

o
o
n u

[J

o
o

---- "---~-"--- "-------- -------."--------"-~-----"---

the pointer immediately gives this location.) The convention

used in FLIP is to represent a list to be joined in this fashion

as a pair of pointers, the first pointing to the head of the list,

and the second to the point where the join is to be-made. Thus

X-join-Y would be «A BCD E F) C D E F), and to join X to Z

would simply require (RPLACD (CDR X) Z).

Postponing CONSes

The technique of postponing CONSes is based on the supposition

that the CONS may never be necessary. For example, suppose that

initialization of a process requires construction of several lists,

and furthermore that the process may in fact terminate without

using these lists. In this case, the programmer will save CONSes

by not constructing these lists until they are needed, rather

than performing all of the initialization at one time at the

beginning of the program. Obviously, this will require more

effort on the part of the programmer since he must install checks

at the points that he wishes to use the lists to determine whether

or not they have been constructed.

The most significant savings achieved in FLIP by use of postpone

ment techniques occurs in the treatment of the $ pattern. If

the segment matched by the $ is not of interest, the list struc

ture corresponding to this segment need never be constructed.

For example, in the transformation specified by

(FLIP X '($ 'A $ 'B $) '(#5 #1))

the segment matched by the middle $ is not needed. However, there

is no way of determining, in advance, which segments will be needed,

if only because many different formats can be used with a single

parsing.

-49-

The solution adopted in FLIP is to retain enough information to

allow the construction of this segment without actually performing

all of the CONSes required to create it. By postponing these

CONSes until they are actually needed, a considerable savings is

realized without any sacrifice in the generality of the $ pattern.

This is done by representing the segment matched by the $ as two

pointers into the list being matched. The actual form is

«P2 Pl).YOINTERS), where Pl is the list before the $ matched,

and P2 is the list after $ has matched. In other words, the seg

ment matched by $ is the "difference" between the two lists Pl

and P2. The tag IIPOINTERS" is used to distinguish this data type

from conventional list structure.

Once this structure is created, the segment it represents can be

IIlengthened" by simply changing P2, using RPLACA. This will

correspond to adding new elements to the end of the segment

although no CONSes are performed. This is extremely useful since

the $ pattern will often search, attempt a match, fail, and resume

the search many times before a complete match ultimately is found.

If the segment matched is referenced by a MARK, the difference

between Pl and P2 is computed and stored with a changed repre

sentation so that upon subsequent references, no additional CONSes

will be performed. If in the interim the segment is lengthened,

only those CONSes necessary to lengthen the list structure already

created will be performed. At each stage, additional CONSes are

performed only if they are required. This, of course, is the

essence of the postponement technique.

-50-

I
L,

r

L

I'
L

c
c

[:

[

r--\

L

[

[
r-'
1 .

L

[
I

L

o
o
o
o
o
o
o
n o
()

LJ
r--'\ , I

I '
I I
U

o
il
u

n
U

o
n w

o
o
o
o

C. Search Strategy and the $ Function

Consider the pattern ($ $1 'A $) and an input list, or workspace,

(A BCD A E F). The translation of this pattern is

«$) ($N 1) (VAR (QUOTE A» ($»

indicating that four elementary pattern functions are to be called.

Each of these individual functions decide whether or not the ele

mentary pattern embodied in their arguments will match with the

current beginning of the workspace. It is necessary that all of

them match in order for the pattern to match the list.

The $ function is entered first and it initially matches the null

segment. $N then matches with A, as this is the first item in

the workspace at that point. VAR is entered, evaluates its argu

ment (QUOTE A), and compares the value, A, to the first item on

the workspace. Since the workspace at this point is

(B C D A E F), VAR fails, which causes $N to fail.

The $ function now continues searching and extends the segment it

matches from NIL to (A). $N matches with B and again VAR fails.

This process continues until $ matches with the segment (A B C),

$N matches with D, and VAR successfully matches with A. The last

$ is entered and matches with the rest of the workspace, which is

then (E F). Note that the entire process required four calls to

$N, and four calls to VAR.

Now let us consider the pattern ($ 'A $), and the list

(B C D E A F G). If the match were carried out in the manner

described above, VAR would be entered five times before it matched

with A. This would be an extremely slow execution of a very simple

-51-

search problem. Actually, the match is not carried out in this

way. Instead the $ function uses a number of strategies to make

a more efficient search.

Instead of expanding incrementally only one item at a time, the

$ function looks at the elementary pattern following the $ in the

pattern, and expands what the $ will match to include all items

in the workspace which could not possibly match the next element.

In the above example, the $ looks ahead and sees that the next
elementary pattern is a VAR. It evaluates (QUOTE A),' and then

calls a subfunction which performs successive CDRs on the work
space looking for A. Only when it finds an A does it allow VAR

to be entered and the match to proceed. This mode of operation

is more efficient than calling VAR a number of times since the

interpretation of the next element to be matched is performed
only once, inside the $ function, instead of each time the next

elementary pattern function is called.

The same technique is used when the next elementary pattern is:

1. a VAR that matches a segment;
2. a VAR that matches a MARK;

3. a PATTERN that matches an item, provided the translation

contains rejection information;

4. a PATTERN that matches a segment, provided the translation

contains reje~tion information indicating that the first' ele

mentary pattern function in the PATTERN is a VAR;

5. a REPEAT provided the translation contains rejection informa
tion indicating that the repeated pattern begins with a VAR;

6. an EITHER provided the translation contains rejection infor
mation indicating that each of the alternatives begins with

a VAR.

-52-

._-_ _ .. _ __ -- ---.... ---.--... -----.~~-.---.

or

~
L,

['

[
r-

L
[

[

[
r
L

l: u

r
L)

n
Lj

[
I'

L

[
I'

I
",.-

r'
L

[

r:
Lo

[

o
o
o
o
o
o
D
,0
n
U

o
II
I I
\...j

o
o
o
o
o
o
o
o

In each case, the $ function determines once what to search for

and then calls a special function which does nothing but perform

that search. Predicates used in conjunction with $N or VAR

patterns are taken into account in the search. In addition, $ is

sensitive to the presence of predicates modifying its own segment,

but does not apply them until after it finds a suitable point in

the workspace to attempt a match for the following elementary

pattern.

As an indication of the time saved by these techniques, results

of some test cases are presented below. Computation time is

given in seconds, * and each computation was run ten times and

the average time reported. The column labeled IHTH corresponds

to a match executed with the fast $ search strategy in effect.

The column labeled WITHOUT corresponds to a match in which the

next elementary pattern function was called each time the $

extended its segment. Note that the elementary pattern following

the $ matches the fourth element of the workspace in examples 1,

3, and 5, and the twentieth element in examples 2, 4, and 6.
Going from 4 to 20 with the fast $ involved only a 25% increase

in computation time, whereas going from 4 to 20 using no search
I

strategy required a 400% increase.

search techniques the time required

tional to the length of the segment

In other words, without fast

to match is directly propor

matched by $.

* The actual computation time is not significant, since these

particular examples were run with an uncompiled FLIP in a highly

competitive time-shared environment on the SDS 940.

-53-

WORKSPACE

1. (A B C D)

2. (A B C D E F
G H I J K L
M N 0 P Q R S T)

3. «A B C D)
(E F G H)
(I J K L
(M N 0 P»

4 . «A BCD)
(B C D E)
(C D E F)
etc.

(TUVW»

5." (X Y Z DAB C)

6. (F G H I J K L M
N 0 P Q R STU V
W X DAB C)

PATTERN WITH

($ ID $) 1.4

($ IT $) 1.7

($ (1M $) $) 1.6

($ (IT $) $) 2.1

($ EITHER['C $1; 'D $2; IE]

3.9

same 4.9

-54-

WITHOUT

1.9

9.0

3.4

16.1

$)

5.7

25.4

[

I -
c
[

[

[

c
c
\l
I '
U

c

c
r
L

[
I'
L

c
[

o
o
o
o
D

o
o
o
o
o

o
o
o

o
,n
LJ

D
o

Consider the pattern ($ EITHER['C $; 'D $lJ 'E $). If a C is

found in the workspace, the $ inside of the EITHER is entered.

However, at this point, the next elementary pattern function call

is not to VAR, but to a special housekeeping function inserted by
EITHER into the list of function calls immediately following the
$. This function has the task of taking the images of the ele

mentary patterns inside of the EITHER and grouping them together

into a single parsing. It is important that this function operate

before any other pattern functions are called so that patterns

such as ($ EITHER['C $1; 'D $2J ~[2,2J $), or
($ EITHER['C $1; 'D $2J #2 $) will operate correctly.

Note in our original example, ($ EITHER['C $; 'D $lJ 'E $)

that in order for the match to succeed, the $ must match every
thing up to an E. Therefore, $ looks through the housekeeping
function call to the VAR, searches for an E exactly as before,

and upon finding it, allows the match to proceed normally, i.e.,
calls the housekeeping function. However, the workspace is now

positioned correctly so that the VAR will match on the first call.

A similar situation occurs with the pattern (X+$ 'A $), which

translates to «$) (SETI X X) (VAR (QUOTE A» ($». The function

SETl, which performs the assignment of the variable X to the seg

ment that $ matches, must be called after $ matches, and before

VAR. However, $ looks through SETl, finds the VAR, searches for
A, and upon finding it, calls SETI in the normal way.

$ will look through an indefinite number of calls to SETI or

housekeeping functions until it finds an elementary pattern func
tion call specifying something that it can search for in the work

space. It then searches the workspace for the desired item or

segment until it finds it; if the $ runs out of workspace, the

next pattern cannot match and therefore the $ fails. Once $

-55-

locates the correct point in the workspace, it calls the next

elementary pattern function and proceeds as before. In the
special case that the next elementary pattern function was a VAR

or $N, $ performs the addition of this pattern image to the par

sing as well as its own image and bypasses the call to the func
tion entirely.

If a failure occurs subsequently, $ continues the search by again

looking for suitable place in the workspace. No additional inter

pretation or searching through the list of elementary pattern

function calls is necessary. For example, in the pattern
($ 'A $1 'c $) and the list (X Y Z A M N 0 P ABC D), $ finds
that the next elementary pattern is a VAR, and searches for A.

After matching [X Y Z] and passing control to the third elementary

pattern function which is $N, a failure occurs in the match with

'C. At that point, control reverts to $. $ takes up the search

with the workspace (W M N 0 A B C) and looks for an A as before.

It finds the second A, and this time a match occurs with $ matching
(X Y Z A W M NO).

If $ finds an elementary pattern function call which matches some

thing that it cannot search for specifically, such as another $,

or the subpattern ($ $3), before it finds something that it can
search for, it does a slow search, i.e., it initially matches the

null segment, and calls the next elementary pattern function, etc.

The $ thus assumes that any position in the workspace is as likely

to produce a match as any other.

If $ exhausts the list of elementary patterns before encountering

a pattern that it can search for, or one that it definitely cannot

search for, it automatically matches with the remainder of the
workspace, and calls the next elementary pattern function (if there

-56-

[

[

[

[

r
L.

r
L,

c
[

c
i'
L

LJ

[

o
o
o
o
o
o
o
n w

o
fl u

o
o

o
o
o
o
o
o

is none, $ returns immediately with the successful parsing). For

example, in the pattern ($ 'A X+$), which translates to

«$) (VAR (QUOTE A» ($) (SETI X X», the second $ matches with
\

the rest of the workspace and calls SETI to perform the assignment.

Another strategy of the $ function uses information about the

position of an elementary pattern in the pattern. If the elemen
tary pattern following $ is the last elementary pattern, and is to

match an item, $ will immediately go to the end of the workspace,

less one, before attempting a match. Thus in the pattern
($ 'A $ ($ 'B $», the second $ will expand its segment through

all elements except the last one, ignoring any intervening lists.

A similar technique is employed for $N where N~l. Thus in the
pattern ($ 'A $ $3) the second $ will immediately match a segment

consisting of the rest of the workspace less 3.

The fast $ can cause difficulty in patterns where a MARK follows

the $ which refers to either the $ itself, such as in the pattern

($ #1), or a portion of the match not yet completed, such as in

the pattern ($ *('A $1 $) #[2,2] $). A special elementary pattern,

$$, is available for this contingency. $$ acts exactly like $ in

slow search mode. It never looks ahead or utilizes any of the
fast search techniques described. The elementary pattern function

SLOW$ does the work for $$.

-57-

SEc'rION IV

USING FLIP

This section discusses FLIP as a working system. It describes

those functions that may be useful to a prospective user, and

discusses some additions and extensions to FLIP. It assumes that

the reader has read section II, describing the FLIP formalism,

and has at least skimmed Section III, describing the implementa

tion.

A. Functions

REED

Section II did not discuss the representation of FLIP elements as

LISP S-expressions, e.g., how the pattern ($ 'A X+$l[NUMBERP *J $)
is represented internally as an S-expression consisting of atoms

and dotted pairs. However, this representation need not concern

the user, because a special read program has been written for

FLIP which accepts FLIP formalism as well as standard S-expressions.

The name of this program is REED, and its value is one S-expression

read from the indicated input file.

REED is a function of one argument, which determines the CONTROL

setting. If this argument is NIL, CONTROL is set to NIL, the nor

mal setting with LISP READ, and the REED program must wait until a

carriage return before receiving any characters from the line buffer.

However, REED will respond to Control A and Control Q in the usual
way.

-58-

[

[

I
L.

c

I

,
~,

LJ

j'

L~

'1 U

o

D
o
o

o
fl
LJ

o
o
o

I 0
, 0
o

If REED's argument is T, the characters are delivered to REED as

they are typed. Used in this way, REED counts parentheses and per

forms a carriage return and line feed, and returns _its value when

the count reaches zero. Control Wand Control Q correspond to Con

trol A and Control Q for READ, although their interpretation is

somewhat different.

The character control W is used to delete the last element read,

whether it be an atom or a list. REED echoes the element on the

same line and performs a carriage return. Control W cannot be used

beyond the beginning of a list.

Example: (Control W is underlined)

REED(T)
($ 'BW(QUOTE B)
W($)
WW$ 'A X $WW1W($N 1) (1)
$I[NUBERPWNUBERP
WWNUMBERP-*]W($N 1 (NUMBERP *» (2)
") -
($ (QUOTE A) X)

(1) Initial Control W's ignored because every element in the

list has already been deleted. The two control W's are

ignored following the second $ because REED has been called

recursively, therefore, there is nothing to erase. After

"1" is typed completing the FLIP token, control W may erase

it, as in the example.

(2) Initial control W's are ignored because REED has been called

recursively for predicates. Again, it is necessary to

complete the expression before it can be erased.

Control Q is used to delete all elements back to the last open

left parentheses or bracket. There is no line deletion. REED

does a carriage return-line feed and echoes what has been deleted.

-59-

-----------~~~-

, Example:

(1)

REED(T)
(A (B (C D) E~
(B (C D) E
WA
WWQ
r
X
X

REED(T)
($ 'QQXQ
($) "{QUOTE X)
)
NIL

(1)

(2)

Control W is ignored as everything in the list has been de

leted. Control Q deletes through the left parenthesis. Thus

the situation is the same as when REED was first entered, and
typing X causes REED to return X.

(2) The first two control Q's are ignored because REED has been
called recursively. After this token has been completed by

typing X, it is possible to delete everything.

Note: "." is not a break or separator character for REED. Thus

"A.B" is a legitimate atom. To write (A . B), be sure to

space between A, ".", and B. To write atoms unusually

spelled as far as REED is concerned, use double quotes the

same as with the LISP READ, e.g. ,"[($]«)" is a legitimate

atom.

Note: If REED is given a second argument, it will treat this
as a file name. Otherwise it reads from the standard

input file.

-60-

----------, .. ~-.

[

I'
L...,'

c
[
r
I .
L..JI

r
G I

[

i'
LJ

c
I
L.J

[

[

[

o
o

o
o

o
n
LJ

,r-"""\

I i

11 u

o
o
o
o
o
o
o
o

PILOT

A convenient way to use REED is via PILOT. PILOT is a function

of one argument, that argument being used to determine the control

setting for REED. PILOT reads and executes doublets for

evalquote, using REED instead of READ. PILOT is buffered using

ERRORSET, and prints "PROCEED": following and error. To exit

from PILOT, type STOP, at which point PILOT returns NIL.

MATCH

MATCH is a function of four arguments. The first argument is the

list to be matched. The second argument is the input pattern,

which MATCH gives to PATTRAN (see below) to be translated. The

third argument is optional and is a dictionary for use during

the match. The dictionary feature is described later in this
'. ,

section. MATCH assumes the dictionary, if any, is already

translated. The fourth argument is also optional and is an

A-list. MATCH initializes the variables in this A-list before

beginning the matching operation. The effect is identical to

performing the bindings via the elementary pattern SET. For

example:

(MATCH X Y NIL '«FOO . 1) (FIE. 2»)
is the same as (MATCH X Z), where the first two elementary

patterns in Z are (SET FOO 1) and (SET FIE 2). In the current

implementation, variables are bound by performing the LISP

-61-

------------------------ ------,-- ---

function SET. This means that the programmer should use

distinctive names for these variables.

The value of MATCH is either a parsing, in the event ofa

successful match, or NIL in case of a failure.

PATTRAN

PATTRAN is a function of one argument, ~ pattern to be translated.

The value of PATTRAN is the translated version of this pattern.

If the variable $TRAN is set to T, its normal setting, PATTRAN

also physically changes its input pattern so that CAR of the input

is the atom $PATTRAN, and CDR of the input is the translated

version of the pattern. Whenever PATTRAN is called with a pattern

already translated, it immediately returns the translated version
without further processing. The same technique is used by the

other translating functions, ORTRAN, FORMTRAN, and DICTRAN, all
of which are sensitive to the setting of $TRAN.

PDEFAULT

The function PDEFAULT allows the user to introduce new translating

conventions and notational schemes to PATTRAN. PDEFAULT is

called wh~never an element is encountered in a pattern that

does not correspond to a recognizable elementary pattern, i.e.

it does not correspond to notation utilizing EITHER, REPEAT, *,
=, QUOTE, #, etc. PDEFAULT is a function of one argument, the

element in question. The value of PDEFAULT, if not NIL, is

translated instead of the unkown element. For example, one might

define PDEFAULT so that the element (N<$<M) translated the same

-62-

[

[
r
I w

c

c
I'
L;

c

c
[

c

c

o
o
o
o
o
o
o

c
o
1 L

o
D
o
n
o
o
o
o

as $[AND (GREATERP (LENGTH *) N) (LESSP (LENGTH *) M)], and could

therefore be used to match with segments of length betweenN and M.

When the value of PDEFAULT is NIL and the unknown element is a list,

it is translated as a subpattern. This corresponds to the defi
nitions given earlier on page 18. When the unknown element is an

atom (with the exception of the atoms .. and ••.• which are trans
lated as $ and $$ respectively) the value of (LIST DEFAULT
ATOM) is used; thus setting DEFAULT to QUOTE will cause all

atoms that appear in a pattern to be quoted.

The normal setting for DEFAULT is = and PDEFAULT is initially
defined as (LAMBDA (X) NIL). Thus, if the user does not change

either the variable DEFAULT, or the function PDEFAULT, the trans
lation conventions are identical to those specified earlier, on

pages 13 and 18, for VAR and subpattern.

MATCH2

MATCH2 is the function that does the work in matching. It is a
function of three arguments: the current workspace, the current

p~ttern, (already translated) and the current match. Whenever an

elementary patte~n function determines that its elementary pattern

~atches, it calls MATCH2 with the new workspace pattern and match

to perform the matching for the rest of the workspace and pattern.

·In the event of a successful match, the value of MATCH2 is a par

sin~. In the event of failure, CDR of 'the value of MATCH2 is NIL

~DR of a parsing is never NIL). Thus except for some initialization.

-63-

MATCH is essentially defined as

(PROG (X)
(SETQ X (MATCH2 WS (PATTRAN PATT) NIL»
(COND

«CDR X) (RETURN X»
(T (RETURN NIL»»

Variables used inside of MATCH

The following variables may be of interest to the user:

WS

PATT

MATCH

$MATCH

$A

$D

current workspace

current pattern list

current level match

push down list of higher level parsings,
used by subpatterns, EITHER, and REPEAT
elementary patterns

current A-list

current dictionary

Thus the elementary pattern $1[EQ (CAR WS) FOO] has the same effect

as the elementary pattern =FOO.

In addition to these variables, the variable TRAC controls a

tracing option in MATCH2. When TRAC is set to T,the workspace,

parsing, and A-list, if any,\ are printed each time MATCH2 is

called, or equivalently, for every elementary pattern. If the

value of TRAC is a list, printing occurs whenever an elementary

pattern function is a member of this list, or if its position,

from the right end of the pattern list, is a member of this list.

Thus if TRAC is set to (1 $N), tracing will occur in the pattern

($ FOO+$1 'A $) whenever either the function $N or the final $

is entered. This option is useful for debugging.

-64-

[

[

[

[

c

[
r
r

L

[J

~I

'1

L

C
,..
L

[

I
L

[

[

o
o
IJ

o
n
o

,~

I I

iJ

o
I' , I
1 i

U

o
IJ
o
o
o
o

NOCONS

,

It is possible to use MATCH as a pure predicate to produce a

value T or NIL but no parsing. When used in this mode, no CONSes

are performed to construct the parsing, which means that for most

cas~s, no CONSes are required for the entire operation ..

This has been achieved by using calls to a function KONS, instead

of CONS throughout MATCH. Executing (NOCONS T) will cause the

definition of KONS to be altered so that it merely returns an

appropriate quoted S-expression. Execut~ng (NOCONS) will cause

the definition of KONS to be restored to CONS .

. Since no parsing is being saved, MARKs cannot be used. However,

it is still permissible to use the assignment elementary pattern.

Thus while the pattern ($ $1 $ #2 $) will not work with NOCONS

turned on, the pattern ($ FOO+$l $ FOO $) will. In the latter

case, no CONSes will be performed. Of course the pattern

($ FOO+$2 $ *FOO $) will require two CONSes each time the

assignment is made in order to create the list structure corres

ponding to the segment matched by $2.

-65-

NOCONS During a Match

It is dangerous for the user to execute a NOCONS whil~ inside of

a match because of certain initialization problems. Therefore,
the special elementary pattern \ is provided for turning off
CONSes for certain portions of the mat ch. When \ appears as the

first element in the PATTERN, EITHER, or REPEAT elementary patterns,

it means that the parsing is not saved for this elementary pattern

only. NOCONS will be restored after this pattern is executed.

For example:

MATCH«A BCD E F G) ($ EITHERL\ 'C $2; 'D $lJ $»

will yield the parsing [A BJ [C D E] [F G], but no subparsing for

the EITHER elementary pattern.

Similarly, MATCH «A BCD E F G) (\ $ 'D $» will yield a parsing
indicating that (A BCD E F G) was matched, but no information

about the component parts. This technique is also useful for
turning off CONSes for certain selected rules in a rule set.

MATCHP

MATCHP is a pure predicate. It performs (NOCONS T), calls MATCH,

restores NOCONS, and returns with the value of MATCH, which is
either T or NIL.

-66-

[

[

[

C
C
c
[

c
c
r;
LJ

o
c

[:

[

C
c
c

n
lJ

o
n u

c

o

Ii

U

o
n
I J

U

o

o
n ! ,
U

n u
n u
n
U

o

MAP MATCH

MAPMATCH is a function of five arguments. The first argument is

a list and the second a pattern as with MATCH. Similarly, the

fourth argument is the optional dictionary and the fifth argument

the optional Alist. The third argument is a functional argument.

The effect of MAPMATCH is to apply this function to all possible

matches us~ng the given pattern and workspace. For example, the

value of MAPMATCH given

(A BCD E),($ $2 $), and (LAMBDA (X) (CONSTRUCT X '(#2)))

is

«A B) (B C) (C D) (D E))

It is best to process the parsing immediately as done above,

instead of saving it, because many of the elementary pattern

functions, e.g., $, EITHER, REPEAT, etc., will physically alter

the parsing.

-67-

CONSTRUCT

CONSTRUCT is a function of four arguments. The first argument is

a parsing, and the second argument is a format, which CONSTRUCT

gives to FORMTRAN to be translated. The third and fourth argu

ments are exactly the same as for MATCH, i.e., a dictionary and

an A-list. CONSTRUCT can be used with no parsing, provided the

format does not contain any MARKS, or EITHER or REPEAT formats

which require a parsing. For example:

(CONSTRUCT NIL '(X *=(GET Y z) Y))

is the same as

(CONS X (APPEND (GET Y Z) (LIST Y)))

During the operation of CONSTRUCT, the atom 11*" is bound to the

entire top level list which was matched. For example, matching

(A BCD E) with ($ $1 'C $) and constructing with (#2 *) will

yield (B (A BCD E)). The alternative is of course
(#2 (#1 #2 #3 #4)).

-68-

[

[

[
r
1_,

c

[:

n u

c
I

[I

[

o
o
o
n
U

o
n
u

c
n
u
n
I I
U

n u
n
I i
U

n u
n
I I

u

o
o
o
n u

n
U

o

FORMTRAN

FORMTRAN is the CONSTRUCT counterpart of PATTRAN. It is a function

of one argument, a format to be translated. Its value is the trans

lated version of the format. If the variable $TRAN is set to T,

FORMTRAN physically changes its input format so that CAR of the

input is the atom $FORMTRAN, and CDR of the input is the trans

lated version.

FDEFAULT

FDEFAULT is the counterpart of PDEFAULT. If the value of FDEFAULT

for an atom is NIL, * (LIST DEFAULT atom) is translated

instead. If the value of FDEFAULT for a list is NIL, the list

is translated as a subformat. FDEFAULT is initially defined as

(LAMBDA (X) NIL).

CONSTRUCT2

CONSTRUCT2 corresponds to MATCH2. The variables used by CONSTRUCT2

are MATCH, ~ORMAT, $A, and $D. There is no tracing option. NOCONS

does not affect the operation of CONSTRUCT or CONSTRUCT2.

* The atom .. is translated the same as #1 except where it is the

last elementary format in a format, in which case it translates

the #-1. Thus matching with C .. 'D ..) and constructing with

(.. 'E ..) is the same as matching with ($ 'D $) and constructing

with (#1 IE #-1).

-69-

FLIP

FLIP is a function of five argument~. The first argument is a

list to be matched, the second is a pattern, and the'third argu

ment is a format. The fourth argument is an optional dictionary
and the fifth an optional Alist. FLIP calls MATCH with arguments

l~, 2, Ii, and 5, and returns NIL if MATCH fails, or else returns

the value given by calling CONSTRUCT with the value of MATCH and

arguments 3, Ii, and 5.

TRANSFORM

TRANSFORM is a function of four arguments. The first argument is

a list to be transformed" and the second is a set of rules. The

third and fourth arguments ~re optional dictionaries~

A rule set is a list of rules and optional (atomic) labels. Each

rule consists of a pattern, a format, and an optional GOTOlabel.

TRANSFORM evaluates a rule set by starting with the first rule and
calling match with its pattern and TRANSFORM's first argument as

workspace. If a match succeeds, the parsing is given to CONSTRUCT
with the format. The value of TRANSFORM is the value of CONSTRUCT.

If the match fails, control passes to the next rule.

-70-

c
[

c

c
c
r
li

c
(I

U

n
L.:.J

n
U

C

c
c
c
[

[

[

o
o
rl
U

o
n
LJ

n
G

o
n
U

Special ·Cases:

1. If an atomic GOTO occurs in a rule~ and the match is
successful, control transfer to that labelled rule after

performing the indicated CONSTRUCT operation. The result of

CONSTRUCT is used as the new workspace. Note: do not use

NIL as a label.

2. If a GOTO label is listed, control goes to that labelled rule

if, and only if, the match fails. In this case, no CONSTRUCT

operation is performed, and the workspace is unchanged.

3. The special GOTO label, TOP, is the label for the first rule n of the rule set.
U

o
o
o
)l
U

o
o
o
o
o
c

4. The special label-* is the label for the very next rule.

5. 1'he special label -+- j s the label for the current rule.

6. The special labels EXIT and BOTTOM are labels for the end of

the rule set. For example: the rule

(pattern format (EXIT))

means EXIT from TRANSFORM if this match fails. Otherwise,

CONSTRUCT is called and control passes to the next rule.

No label is treated the same as EXIT.

7. The user may effect a computed GOTO by setting the variable

LABEL to the label he wishes control to transfer. If LABEL

is set during the match, transfer will occur regardless of

whether or not the match was successful. If LABEL is set

during the construct, control will only occur if the match

-71-

-----~.-------------~-----.----.. - _--------------

was successful, since otherwise CONSTRUCT would not have been

entered. LABEL is automatically reset to NIL before each

rule.

RTRAC

RTRAC controls a tracing option for rules. When RTRAC is set to

T, TRANSFORM prints out the label of each rule entered, and the

value of the list being processed. If RTRAC is a list, tracing

occurs only for rules whose label is in the list.

ADDRULE

ADDRULE is a function designed to facilitate adding rules to rule
sets at arbitrary locations. It is a function of four arguments.

The first argument is the rule set to be modified, * and the
second argument is the rule or label to be added. The third

argument specifies where the change is to take place, with TOP,

EXIT, and BOTTOM specifying locations consistent with TRANS

FORM. Numbers specify the corresponding numbered entry with
numbering proceeding from the top of the rule set and both rules

and labels being counted. Other atoms are treated as ordinary

labels and specify the location of that label.

* For functions of the form

. (LAMBDA & (TRANSFORM & 'ruleset &)), the name of the
function may be used as the first argument to ADDRULE. ADDRULE

will obtain the rule set from the definition.

-72-

[

[

[

c
r u

c
c
c

o
c
r
u

c
c
c
[

c

o
o
o
o
o
n
U

o
o
n u

o
o
n u

o
o
o
o
o
o
o

There are three different modifications allowed at the specified

location: insertion before, insertion ~fter, or replacement. The

normal operation is insertion after. To specify insertion before,
the label or number must be listed. For replacement, the fourth
argument to ADDRULE must be T. Replacement takes precedence over

insertion. In all cases, the changes are destructive.

Example: (ADDRULE RULES RULE (3» will insert RULE before the

third entry in RULES.

Example: (ADDRULE RULES RULE 3 T) will replace the third entry

in RULES with RULE.

Example: (ADDRULE RULES RULE Faa) will insert RULE just after

the label Faa.

Example: (ADDRULE RULES RULE TOP) wili insert RULE just after
the label TOP, in other words before the first entry

in RULES.

PRETTYFLIP

PRETTYFLIP is a function of three arguments. If the second and

third arguments are NIL, PRETTYFLIP acts just like PRETTYPRINT.
If the second argument is present, PRETTYFLIP acts like PRETTYDEF,

i.e., it can be used to write a file complete with DEFINEQ and

STOP.

-73-

The output produced by PRETTYFLIP is identical with the original

sequence of characters typed in to REED except for the fact that

carriage returns and spacing are introduced to produce an aesthetic

format. In some cases, the output may differ slightly between

translated and untranslated versions, but in either case, the
output produced, if read back in again, would result in the exact
same function definition. The differences occur because PRETTYFLIP

cannot tell that a list will be used as a rule set, or a dictionary,
until after it has been translated, and therefore cannot use a

format designed especially for these types.

PF

The function PF plays the role of SUPERPRINT for PRETTYFLIP.

PRETTYFLIP calls PF with the definition of a function. However,
PF can be used to print output that is not a function definition,

for example, a property list, or a portion of a function definition
being edited.

-74-

.[

C
[

[

C

[

C
C
n
L;.J

o
c
r
1 '

U

['

C
[

I

['

C
[

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

B. THE DICTIONARY FEATURE

The use of the dictionary is one of the more interesting

aspects of CONVERT, another pattern-driven programming language

embedded in LISP [7J. The CONVERT dictionary offers an

alternate way of specifying operations that can already be

specified in FLIP using a somewhat different notation.

However, some operations that can be written very simply using

the dictionary are much harder to write in FLIP without it.

The dictionary feature described below has been added to FLIP

in order to provide it with this increased notational flexibility.

Wherever possible, the CONVERT notation has been transferred

intact to FLIP, and the interpretation of dictionary operations

within the FLIP environment is consistent with the corresponding

operations in CONVERT.

The CONVERT Dictionary

'l'he CONVER'l1 dictionary is a list which contains the "definitions"

for some or all of the elements appearing in a pattern or

skeleton, the CONVERT counterpart of a format. Whenever an

atom is encountered during the operation of RESEMBLE or REPLACE,

the CONVERT counterparts of MATCH and CONSTRUCT, the definition

of the atom is obtained from the dictionary, and the appropriate

action is taken. This extra level of interpretation costs the

program in efficiency, but in return the ability to modify defi

nitions dynamically can be an extremely powerful asset.

-75-

Each definition consists of three parts: the variable being

defined, its MODE, and a third parameter containing additional

information required by the mode. The dictionary itself is

a list of the form

(VARI MODEl PARI VAR2 MODE2 PAR2 etc.)

consisting of the definitions strung out at the top level. For

example, the mode PAT indicates that a variable represents an

entire pattern. Thus using th~ dictionary (X PAT ($ $1 $ #2 $»,

the FLIP pattern ($ X $ X $) would be equivalent to the pattern

($ ($ $1 $ #2 $) $ ($ $1 $ #2 $) $).

Note that if the value of X is ($ $1 $ #2 $); the latter pattern

could also be written as ($:X $:X $).

The following is a list of some of the MODEs in CONVERT:

X VAR G

X DAR *

X PAT P

the variable mode. The letter X is used
to represent an expression however
complicated.

the undefined variable mode. X will
match anything, but the entry in the
dictionary is changed to read X VAR E,

. so that as a consequence if X appears as
part of a more complicated pattern it will
have·to match the same quantity each
time it occurs.

the pattern mode. The letter X represents
an entire pattern.

c
c
[

[

[

C
[

C
C
[:
I..;:..J

c
r'
L

C
[

[

[

[

[

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

X PAV P

X BUV (P •••)

X CUV (P K)

the pattern variable mode, which is a
combination of the modes PAT and UAR.
Not only must the pattern P match E, but
the dictionary is altered to read X VAR E
so that if X occurs several times it will
always match the same expression E.

the bucket variable mode. This mode is
similar to the PAV mode, but rather than
requiring that the same expression match
every occurrence of X, we simply make a
list of these expressions. Thus X in the
BUV mode will match any expression matched
by P, and the dictionary is modified to
read X BUV (P E ...).

the counting variable mode. This mode is
similar to BUV, but rather than listing
the matching expressions, we simply count
them. The dictionary is modified to read
X CUV (P K+l) after each match,.

If a variable in the dictionary is enclosed in parenthesis, it is

called a fragment variable, and matches with a fragment, i.e., a

segment of a list. This corresponds to using the prefix

operator II * II in FLIP.

The FLIP Dictionary

The basic differences in the FLIP and CONVERT versions of the

dictionary feature arise from the difference in philosophy between

the two languages. CONVERT is a richer, more recursive language

than FLIP, and quite complicated operations can be specified very

concisely. This is partly because nearly every expression is

interpreted, broken down into its composite subexpressions, until

atomic elements are encountered, and each of these are looked up

in the dictionary. This means that defi~itions can be built upon

-'77-

definitions in a very sophisticated way.

FLIP on the other hand is oriented more towards efficiency of

operation, occasionally at the expense of elegance. Consistent

with these goals, the dictionary has been implemented in such a

way that its presence does not penalize a program that did not

utilize it. As an example, the translating functions determine

which atoms are dictionary entries, and only these are looked up

at runtime. Thus if Y is a dictionary entry, the pattern (X Y Z)

might translate to «VAR X) (DIdVAR Y) (VAR Z», and only Y would

then be looked up at run time. This places the burden on the

programmer of declaring which elements 'are dictionary variables,

but, eliminates much of the interpretive aspects of the dictionary.

The dictionary is given to the functions TRANSFORM, FLIP, MATCH
and CONSTRUCT as an optional argument. For MATCH and CONSTRUC'l',

the dictionary is the third argume~t. It ~s assumed to be pre

viously translated. For FLIP and TRANSFORM, the dictionary is

the fourth argument. Both of these functions will first trans

late it using the function DICTRAN, which modifies its input in

a manner analagous to PATTRAN and FORMTRAN discussed earlier. In

addition, TRANSFORM will accept as its third argument a dictionary

consisting of just a' list of variables. Each of these variables

is automati cally given the MODE UAR. Thus ('rRANSFORIVl X Y I (A B C»

is equivalent to (TRANSFORM X Y NIL '(A UAR -- B UAR -- C UAR --).

*

* It is unimportant what follows UAR in the dictionary, merely

that something does follow it to preserve the periodicity of the

dictionary.

-78-

[

[

c
[.

[

C

[

C

o
c
r
U

r u

c
[

[

[

[

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

The dictionary is available throughout the course of matching and

construction, and the value of dictionary variables can be

referenced by means of the prefix operator "@II. 'l'he value of a

dictionary variable is usually the parameter which comprises the

third part of its definition. However, for variables of mode BUV,

the value is the list, in reversed order, of the expressions

matched by the bucket variable, and for variables of mode CUV, the

value is the count. Thus, if X has mode BUV, =(CADR @X) will

match with the second element in the bucket corresponding to X.

"@" is read by REED as a call to a function which looks up the

value of X. Thus the form (CADR @X) can be evaluated directly

without further interpretation, and any requests for dictionary

variables will still be handled correctly. This is similar to the

treatment of # for marks.

It is unnecessary to use the prefix operator @ for a dictionary

variable that is being used as an elementary pattern or format,

because the translators check the dictionary befpre applying the

default declaration. Thus the pattern ($ X $) is equivalent to

($ @X $), provided X is defined in the dictionary at the time of

translation. Note that if X has CUV mode, the elementary pattern X

differs from the elementary pattern =@X. The former will match

with the pattern specified in the definition of X, and index the

count. The latter will match with a single number which is equal

in value to the current count, and will not make any changes in

the dictionary.

The translation of the dictionary consists of converting dictionary

entries into their corresponding function calls, which can then be

inserted into the pattern or format at the appropriate point. For

example, the translation of (X) UAR --, which specifies that X is

to match a segment of the list, consists of calls to two functions:
$ and SETD. When the elementary pattern X is first encountered,

-79-

its (current) definition is obtained from the dictionary, and

attached to the front of the pattern list. Then the match

continues and the function $ is entered. $ uses the fast search

strategy described earlier. It looks through the SETD function,

and any housekeeping or assignment functions it may encounter

until it finds something upon which it can concentrate its search.

After $ finishes operating, SETD is entered. The arguments to

SETD, which were determined at translation time, indicate that a

new definition must be entered in the dictionary. This entry will

define the variable X as having mode VAR and value whatever the $

matched. The actual function call generated for this entry is simply

(VAR (QUOTE s) SEGMENT), where s is the segment matched by $. If

X is subsequently encountered, it will be treated the same as

though it were initially defined as a fragment variable with VAR.

Whenever a failure occurs in the match, the dictionary is restored
before the match continues operating. This involves restoring

all variables having MODE VAR, BUV, CUV and PAY to the values

they had at the point the match is to be resumed. For example,

if X and Y have VAR MODE, then Y will be restored in the pattern

($ X $ EITHER[Y -- ; --J $)

if the first alternative of EI'l'HER fails, but X will not be

affected.

If the match is successful, the variable NEWDIC is set to the new

dictionary before exiting from MATCH. NEWDIC is already in

translated form since any changes made to the old dictionary

were performed by SETD. FLIP and TRANSFORM both automatically

transmit NEWDIC to CONSTRUCT as its third argument. Thus changes

made in the dictionary during matching can be used in constructing.

-80':"

[:
r
L

r
L

c
c
[

[,

C
n! !

- ,
L;;.J

c

c
c
n
L

[

C
[

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

--- ----------

Example: the following FLIP expression embodies a standard

trigonmetric formula.

(FLIP W '(COS X COS Y - SIN X SIN Y)
,(COS =(PLUS @X @Y)) *

'(X UAR - Y UAR -))
If W is (COS 23 COS 19 - SIN 23 SIN 29) the value of the FLIP

expression will be (COS 42).

Modes Available in the FLIP Dictionary

There are currently ten modes available in the FLIP dictionary:

VAR, UAR,PAT, PAY, BUV, CUV, EXPR, SKEL, REPT, and CONT. Variables

defined with modes VAR, UAR, PAT, PAY, BUV, and CUV may be used as

elementary patterns, and variables defined using modes EXPR, SKEL,

REPT, and CONT may be used as elementary formats. The interpreta

tion for each mode is given below, along with the value of diction

ary variables defined with that mode. Note that =@X is always a
legitimate elementary pattern or format, regardless of the mode of X.
However, if a variable is defined using modes EXPR, SKEL, REPT, or

CaNT, it cannot be used as an elementary pattern directly. Because

of the implementation, if X is defined using modes VAR, UAR, PAT,
PAY, BUV, and CUV, it may be used as an elementary format. The effect

is the same as =@X, or *=@X. Essentially, each of the modes VAR,

UAR, PAT, PAY, BUV, and CUV are interpreted as EXPR when in CONSTRUCT.

The segment-item distinction for dictionary variables used as ele

mentary patterns or elementary formats is based on whether or not the
variable was enclosed in parentheses in its dictionary definition, as

in the CONVERT dictionary. The prefix operator * has no effect on

dictionary variables.

* This assumes that DEFAULT is set to (QUOTE -). Otherwise, it

would be necessary to substitute 'COS, 'SIN, and '- for COS, SIN,
and -, respectively_

-81-

X VAH G

X UAR *

X PAT P

X PAY P

X BUV P

X CUV P

value isG itself (not the value of G),
and X matches G. Using X is thus exactly
the same as using the expression (QUOTE G).

value of X is NIL. X matches the same
as $1 (or $ if X is enclosed in parenthe
ses), and then a new entry is added to
the dictionary corresponding to X VAR S,
where S is the item matched by $1 (or
(X) VAR S, where S is the segment matched
by $).

value of X is P. X matches the same as
the elementa.ry pattern P.

value of X is NIL. X matches the same as
the elementary .pattern'P and then a new
entry is added to the dictionary corres
ponding to X VAR S, where S is the item
matched by P (or (X) VAR S, where S is
the segment match by P).

value of X is initially NIL. X matches
the same as the elementary pattern P. Each
time P matches, a new entry is added to the
dictionary corresponding to a BUV mode
variable whose value is the result of CONS
ing the item or segment matched by P to the
previous value. Thus at each point, the
value of X is a list, in reversed order,
of the expressions that were matched by P.

value of X is initially zero. X matches
the same as the elementary pattern P. Each
time P matches, a new entry is added to the
dictionary corresponding to a CUV mode
variable whose value is one more than the
previous value. Thus at each point, the
value of X is the number of times that P
matched.

-82-

c
I'
L~

[

[

c
[

c
c
c

c
c
c
c
c
[

[

c

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

X EXPR G

X SKEL F

X REPT R

X CONT R

Example

format counterpart for VAR mode. Value
of X is G.

analogue of PAT. The valu~ of constructing
with F as an elementary format is added to
the list being constructed. The value of
X, i.e., eX, is F.

When used as an elementary format, X
should not appear by itself but in the
form (X Al A2 ••. An). The value of this
entire expression is computed by first
constructing with the format (AI A2 .• An),
and then transforming this result using
the rule set R. (If R is either atomic
or an expression of the form
«LAMBDA ..) ..), the value of R is used
as the rule set.) The original dictionary
is used. Basically, the REPT mode is a
mechanism for defining functions internal
to a particular transformation. The value
of X, i.e., @X, is R.

Same as REPT except modified dictionary
is used during .transformation.

The following is a FLIP program to perform symbolic differentiation

and simplification. It is a straightforward adaptation of the

CONVERT program appearing on page 613 in [7], except that only some

of the simplification rules are shown. The basic idea of DERIV is

that the connective, +, -, *, /, or t is identified in the rule set

and then the appropriate simplification rules are called by means

of the dictionary variables SPLUS, SMINUS, STIMES, SDIV, SEXPT.

<BEGN> is explained below in section on CONVERT primitives.

Essentially, it means apply entire process to what follows <BEGN>.

-83-

(DER I V
(LAMBDA (EXPR VARBLE) (TRANSFORM

EXPR
'(C=VARBLE: 1)

C$l[ATOM *J 0)
CC •• + ••) (SPLUS DL DR»
CC •• - .~> (SMINUS DL DR»
CC •• ~ .~) (SPLUS CSTIMES LL DR) (STIMES

DL
RR»)

C(•• / ••) (SDIV CSMINUS (STIMES RR DL)
CSTIMES LL DR» CSEXPT RR 2»)

C(•• t ••) (STIMES RR (STIMES CSEXPT
l';L
(SMINUS RR 1» DL»»

NIL
'(K PAV

PAV
SKEL
SKEL
SKEL
SKEL
REPT

(UNLIST

L
LL
RR
DL
DR
SPLUS

SMINUS REPT

STIMES REPT

SDIV REPT

SEXPT REPT

»))

(LAMBDA (X) CCOND
(CCDR X) X)
(T (CAR X»»)

$1.[NUMBERP *J
SI (NUMBERP _*J
=(UNLIST #1)
=CUNLIST #3)
«BEGN> =CUNLIST #1»
«BEGN> =(UNLIST #3»
«(K _L) =(PLUS @K @L»
«$1 0) #1)
C (0 $1) f12)
«Sl #1.) (2 * #1»
C (SI $1) (# 1 + #2»)

«($1 0) #1)
«K L) =CPLUS @K CMINUS @L»)
«0 $1) (- #2»
«$1 Nl) 0)
«$1 $1) (SPLUS 61 (- #2»»

«C ... 0 ••) 0>
coa 1.> '#1)
((1 $1 > H2 >
«KL) =CTIMES @K @L»
«$1 #1> C#l t 2»
CC$1. SI) C61 * #2»)

CC(SI 1.) #1)
C(0S1} 0)
C($l #1) I>
CC$l $1) (61 / #2»)

«($1'1) 'I)
CCSI0) 1.>
C(l-$l) 1)
(Cll) (HI t 62»)

-84-

[

D
[

['

o
c
C
C

I

[I

[

C
[I

c

o
n
LJ

o

D

o
o

o
o
o
o
n

U

o
o
o
o
o
o

Segments and Items

Consider the dictionary (X PAT $3 (Y) PAT $1). According to the

dictionary, X is to match the same as the elementary pattern

$3 and Y is to match the same as the elementary pattern $1.

According to the CONVERT conventions, however, X is to match an

item and Y a segment. However, the elementary pattern $3 always

matches a segment, and the elementary pattern $1 always matches

an item. This ambiguity is resolved by adopting the convent10n

that when the dictionary variable is enclosed in parentheses,

the translation of the accompanying pattern indicates it is to

match a segment, if possible. Thus elementary patterns that

always match segments do so regardless of whether the corresponding

dictionary variable is listed. Elementary patterns that always

match items are similarly unaffected by the form of the corres

ponding dictionary variable.

However, it is best if the user follow the convention of enclosing

variables in parentheses in the dictionary whenever they are to

match segments, and not enclosing them in parentheses when they

are to match items, even where it seems unnecessary to make the

distinction, i.e., where the corresponding FLIP pattern always

matches the same way. One case where difficulty might occur,

otherwise, is with the mode PAVe PAV uses the original form of

the dictionary variable to determine the form for the new entry

that it adds to the dictionary. Thus, with the dictionary

X PAV $3, X will match the same as the elementary pattern $3.

However, the new entry added to the dictionary after $3 matches

the segment S, will be X VAR S. This means that the pattern

(X X) will not match with the list (A B CAB C). (It will match

with the list (A B C (A B C».) However, if the corresponding

dictionary entry had been (X) PAV $3, then (X X) would match with

(ABCABC).

-8~-

<BEGN>, <REPT>, and <CONT>

In addition to the dictionary, three elementary formats have been

borrowed from CONVERT and added to FLIP. These are <BEGN>,

<REPT>, and <CONT>. * They complement and are similar
to the CONT and REPT modes of the dictionary.

«BEGN> S)

«REPT> S R)

f ... ""f"'I~TrI"· S R) \ \JVt"., \

this form can only be used while inside
of TRANSFORM. Its value is computed by
first constructing using the format S,
and then transforming this using the ori
ginal rule set and original dictionary,
i.e., starting the TRANSFORM program all
over again.

value is the result of first constructing
using the format S, and then transforming
this using the rule set R and the original
dictionary. If R is an atom or an
expression of the form «LAMBDA ...) ..)
the value of R is used for the rule set.

~ame as REPT except modified dictionary
is used.

Each of these forms may take an extra argument whose value is

treated as a starting label for the accompanying rule set. Thus

«BEGN> S 'TOP) is the same as «BEGN> S), and «REPT> S R 'EXIT)
has the same value as constructing with the elementary format S.

* The CONVERT notation is =BEGN=, =CONT=, and =REPT= for items,

and *BEGN*, *CONT*, *REPT* for fragments. Since =X and *X have

a special meaning in FLI~, we use a different notation.

-86-

[

o
[

D
r
L

c
c
r
U

D
c
[:

c
[

n u

o
o

o
D
o
n
o
o
o
o
r

U

o
o
o
o
o
o

The value of each of these three elementary formats is added to

the list being constructed as an item, unless the entire elementary

format is preceded by the prefix operator "*", in.which case it

is added as a segment.

Example: the following FLIP function can be used to merge two

lists.

(MERGE (LAMBDA (X Y) (TRANSFORM (LIST X Y)

'««$1 ..) ($1 .• »

(#[l,lJ #[2,lJ *«BEGN> «#[1,2J) (#[2,2J»»)

«NIL NIL) NIL) »»

DICTIONARY FUNCTIONS

DIC'l'RAN

DICTRAN is a function of one argument, the dictionary. Its value

is the translated version of this dictionary. If $TRAN is T,

its normal setting, DICTRAN also physically modifies its input.

TRANSFORMl

TRANSFOHMl is the function that does the work for TRANSFORM. Its

first argument is the list to be transformed. Its second argument

is the rule set to be used in this transformation. Its third

argument is a dictionary. Its fourth argument is an optional

starting label in the rule set. TRANSFORMl is useful in conjunc

tion with the dictionary because it assumes that its dictionary

is already translated, and therefore can be used to perform trans

formations from inside of TRANSFORM, using the modified dictionary.

TRANSFORMl is used by <BEGN>, <REPT>, and <CONT>.

-87-

ADDICT

ADDICT is a function designed for modifying dictionaries either
before or after they have been translated. It can be used either

to add a new entry to the dictionary, or to modify a rule set for
an entry defined in mode CONT or REPT. Used in the first way, it

takes two arguments. The first is the dictionary to be modified,

or the name of a function whose definition contains the dictionary.
(In the latter case, the function definition must be of the form

(LAMBDA & (TRANSFORM & & &»). The second argument is the entry

to be added, which is then placed at the end of the dictionary.

Example: (ADDICT 'FOO 'ex PAY $1»

When ADDICT is used to modify rule sets in the dictionary, it may
take up to five arguments. The first argument is the dictionary

as described above, and the second is the modification. The third

argument is the dictionar~ variable whose rule set is to be changed.

This rule set is located and is given to ADDRULE as its first argu

ment, with the original second argument of ADDICT as the second
argument to ADDRULE. The last two arguments of ADDICT are the

last two arguments of ADDRULE. Thus to add the simplification rule
corresponding to «X t 2) t 3) = (X t 6) to SEXPT, perform

(ADDICT 'DERIV '«($1 t K) L) (#[l,lJ t =(TIMES @K @L»)

'SEXPT 3)

-88-

[

[

[

[

[

[

[

~

r
w

c
,'-'
;

[

[
r
L

[

[

[

c
o
c
c
o
c
o
o

o
c
o
c
o
o
o
o
D
o

Variables

RULES

ORIGDIC

R

$D

the complete rule set given to TRANSFORIVII
as its second argument.

the original dictionary, i.e., originally
given to the last call to TRANSFORMI.

the current rule set, e.g., if three rules
have already been processed, R would be
(CDDDR RULES).

the current dictionary - always in
translated form.

NOCONS and the Dictionary

~he dictionary feature itself does not require the parsing to be
saved. Therefore, the user can set NOCONS to T provided he does
not use any marks in his patterns or formats.

-89-

C. OTHER FEATURES

Aborting the Search

The predicate on the $ elementary pattern also allows the user to

indicate to the $ function when to abandon searching. Consider

the pattern

($[LESSP (LENGTH *) 5J $1 'A $).

This pattern requires that an A be found in the first six elements

of the input list. If no A is found, there will be much wasted

searching before the end of the list is encountered, because $

will keep extending its segment and evaluating its predicate.

Thus for the list (Z X Y W V U ... C B A), $ will attempt 26 un

successful matches before quitting. This can be avoided by

changing the first elementary pattern to

$[COND «GREATERP (LENGTH *) 5) (QUOTE FAIL» (T T)J

Whenever the value of the predicate on the $ is FAIL, $ immediately

abandons its search and reports a failure to the previous elemen

tary pattern. If the value of the predicate is NIL, $ continues

searching as before. If the value is T, or some value other than

FAIL or NIL, the match succeeds, at least as far as $ is concerned.

Note that for patterns such as ($[predJ 'A $), the predicate will

not be applied until an A is found, because of the fast search

techniques. For cases such as this, the abort feature also works

for $$, the slow $ elementary pattern.

-90-

I'
L

[

r
L

[

[

r
L

[

I'
L

I'
L

[

[

[

[

[

[

o
o
o
o
o
o

o
o
o
o
o
o
o
o
o
o
o

Failure Predicate

The failure predicate extension to the $ elementary pattern allows

the user additional control of the search. Basically, the failure

predicate allows the user to specify under what conditions $ is

to resume searching following a failure. It differs from the

abort predicate in that the abort predicate operates before the

$ matches, whereas the failure predicate operates after the $ has

matched, passed control to the next elementary pattern function,

and then been given back control due to a failure later in the

match. The failure predicate is written as another predicate, in

square brackets, immediately following the first one,

e.g., $[pred][failure pred]. If the value of the failure predi

cate is T, the search continues, exactly the same as though there

had been no failure predicate.

MARKS are handled in a special way wh~n the failure predicate is

being evaluated. Normally, a reference to a nonexistent portion

of a parsing produces an error. However, the value of a MARK

that refers to an elementary pattern that did not match is FAILED,

if that MARK is evaluated from a failure predicate. Furthermore,

the parsing that is used contains the matches of all successful

elementary patterns, not just those that precede the $. Thus

in the elementary pattern

($[][EQ #4 'FAILED] 'A $1 'B $1 'C 4)

the search will continue if and only if the reason for failure

was that a B was not found following the A. The above pattern

will not match the list (1 2 3 A 4 B 5 6 7 A 8 B 9 C), even though

the same pattern without the failure predicate would match it.

-91-

If the $ appears inside of an EITHER, REPEAT, or SUBPATTERN,

MARKs can be used in the failure predicate to reference segments

or items matched at higher levels, by using the full bracket no

tation with t. If the corresponding elementary pattern did not
match, the value of the MARK will again be FAILED.

Because of the fast search strategies, the $ does not pass on

control until it finds a suitable point in the workspace. This
means that the elementary pattern

($[][NILL] 'A $ 'B $) *

will fail if a B is not found following the first A. However,

the first $ will search for and find an A before passing control

to the rest of the match. The failure predicate is evaluated
only when a failure occurs at some point after the second ele

mentary pattern. Compare this with the elementary pattern

($[][NILL] $1 'A $ 'B $)

This latter pattern will succeed only if an A is the second ele

ment in the workspace.

* NILL is a function of no arguments whose value is NIL.

-92-

I'

L

[

[

[

[

[:

[

[

c
c:
c
I'
I_I

[;

[

[,

[,

[

o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o
o

SIDE Conditions

The SIDE elementary pattern allows the user to exercise the same

controls over the matching process as that offered by the abort

and failure predicates of the $ elementary pattern .. However, SIDE

does not match, and aside from controlling the matching process,

does not affect the final parsing. The form of the SIDE elementary
pattern is

(SIDE predl pred2)

The first argument to SIDE, if present, acts exactly as the abort

predicate for $. It is evaluated when the SIDE elementary pattern

is entered. If its value is NIL, the SIDE elementary pattern
reports a failure. Otherwise, SIDE allows the match to continue.

If a failure occurs subsequently, the second argument to SIDE,

if present, is evaluated. MARKS are treated the same way as for

the failure predicate on the $. If its value i& NIL, SIDE reports

failure. Otherwise, a match is again attempted.

$ will look through SIDE in the same way as it does to assignment

and housekeeping functions. After $ finds a suitable point in the

workspace, the SIDE elementary pattern will be entered as before.

NOT

The elementary pattern (NOT form) matches a single item provided

that item is not equal to the value of form. (NOT form) is thus

equivalent to $l[NOT (EQUAL * form)], but (NOT form) will operate
faster.

-93-

Reentrant Subpattern

Normally, a subpattern which matches an item is not reentrant.

Thus, in the pattern ($ ($ $1 $) $ #[2,2]. $), if no match is

found for #[2,2J, control will return to the very first elementary

pattern. Using the normal subpattern, there is no way to cycle

through the list matched by the subpattern before continuing to

the next list, because once a subpattern successfully matches as
an item, it is finished operating. However, a subpattern-item

can be made reentrant by means of the prefix operator "+". 'l'hus

using the pattern ($ +($ $1 $) $ #[2,2,J $), a match would occur

with the list «A B C) (D E F) (G H I) X Y H). Similarly, the

pattern (+($ $1 $) ($ #[2,2J $» could be used to match a list of

two lists whenever the two lists have a common element.

Reentrant REPEAT

REPEAT is similar to the subpattern-item with respect to the re

entrant question: once REPEAT has finished matching, it is never

reentered after a failure. *

* Of course, if control reverts back to an elementary pattern

previous to the REPEAT, which then continues the match, such as $,

REPEAT will be entered again, the same as subpattern-item. However,

it is not reentered, i.e., allowed to continue on a match that it
had started previously.

-94-

r
L

r
L.j

[

[
I
I
L~.I

[

I
L

[
r
L

[

[

[

o
o
o
o
o
o
o
n
I I
U

o
n
I I
U

o
o
n
LJ

o
o
o
o
o
o

Since REPEAT also attempts to match as many times as it can,

without regard to elementary patterns that follow it, it may have

a different effect than intended. For example, the pattern

(REPEAT[EITHER [A;B]] A -li) can nevt::r JUatcu because the final A
would always be included in the segment matched by REPEAT.

Similarly, (REPEAT[$l] $1) will never match.

However, REPEAT [E] can be made reentrant by writing instead

REPEAT[E / T]

This REPEAT will match repetitively using the sequence of ele

mentary patterns E. However, if a failure occurs subsequently,

it will delete the last repetition, reset the workspace to the

value it had before the last repetition, and try again.

Essentially, REPEAT operates as before, except that after a
failure, it backs up. Using this notation, the ,elementary patterns

(REPEAT[$l / T] $1) and (REPEAT[EITHER[A;B] / TJ A $) will work

correctly.

The full form for the reentrant REPEAT is

REPEAT[E / Nl N2 P]

where Nl and N2 proscribe bounds on the number of times REPEAT is

to match, and P is evaluated after a failure to determine whether

REPEAT is to back up. REPEAT will continue to back up until

either the lower bound Nl has been reached, or until the value

of P becomes NIL. MARKs that appear in P can refer forward in

the parsing and are evaluated in the same way as those appearing

in the failure predicates for $ and SIDE.

-95-

-------,-~--------~--------------------.-, ,-

Variable Patterns and Formats

The elementary pattern :X was defined to mean that X ~s evaluated

and then treated as a subpattern, i.e. a list of elementary

patterns. This definition is extended to allow the value of

X to be an arbitrary elementary pattern. rhus it is permissible
for X to evaluate to $1, or EITHER [$1 'A;], aa well as a list of

elementary patterns, which is itself an elementary pattern,

namely the subpattern. The: operator simply evaluates its
argument, translates it, and then attaches the resulting functions

to the list of elementary pattern function calls. It is thus

exactly the same as the PAT mode in the dictionary, and in

fact, the translation of the two are indistinguishable.

As in the case of the PAT mode, $ is "smart" enought to evaluate

the argument of the: operator, translate it, and continue searching
whenever it encounters this type of elementary pattern. Thus

the pattern ($:X $), where X has the value A, will match

essentially as fast as ($ 'A $).

In the case of the elementary pattern *:X, X may also be an

arbitrary elementary pattern, which then matches a segment.

However, since EITHER, REPEAT, and $ always match segments, the

presence or absence of "*" will not affect their operation.

Similarly, if X evaluates to $1, :X and *:X have the exact

same effect, because $1 must match an item. The prefix operator

"*I! only makes a difference when the elementary pattern can

match either a segment on an item, i.e., for the two elementary

patterns VAR and SUBPATTERN. Since this determination is made at

translation time, i.e., the first time the pattern is used, one

cannot use both :X and *:X.

An analogous extension has been made for variable formats.

-96-

[

[
I'
L·

[.

[
r:
L

[
r
I
L ...)

c

c
[

r
LJ

[

r
L.

c
[

[

o
o
c
o
o
o
c
o
o
o
o
o
o
o
o
o
o
o
]

Atomic Patterns and Formats

MATCH has been extended to accept single elementary patterns of

the VAR, $N, $, and NOT types, as well as a list of elementary
patterns. No parsing is produced, but * will be bound to

the correct expression when CONSTRUCT is called with this parsing.

As a result of this extension, it is also possible to use MATCH

on atomic workspaces, for example, MATCH(l $l[NUfViBERP *]).

A similar extension is allowed for formats.

-97-

APPENDICES

The three appendices below .describe and summarize the three levels

of FLIP expressions. The first appendix treats the external syn

tax of FLIP expressions, sometimes called source language. This

represents the outermost lev~l. The second appendix describes

the operation of REED which converts source language to inter

mediate language, which is the form of FLIP expressions before

they are translated. The third appendix discusses the represen

tation of FLIP entities after translation, the innermost level.

PRETTYFLIP converts (by printing) expressions of level two or

level three to level one. Thus, we have the following relation

ship:

SOU RC E __ ---1~~1
LANGUAGE REED

~

I---.... ~ I NTERMEDIATE ~ TRANSLATORS
LANGUAGE I

"

PRETTY FLI P .. -

-98.,.

1-----1~.1 NTERNAL
LANGUAGE

r
L:

[
I
L
r
L,

I'

L;

[

[

[
r
L

[

c
r
L

[
r
L

r
I
L,

[

[

[

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
]

Appendix 1: Source Language

This appendix summarizes the FLIP syntax. Individual FLIP
expressions should be separated by at least one space or a

carriage return. Although the syntax is divided into expressions

used in MATCH and CONSTRUCT, the REED program makes no distinction.

The expression #[1,2J is read the same whether it is to be used

in a pattern or format, although the two interpretations are

different.

The following conventions are used below:

MATCH

$

$$

$[xJ
$$[x]

$[xJ[yJ

$$[xJ[yJ
$X

$X[y]

A is an atom; L is a list; X, Y, Z, Xl ... XN are

arbitrary LISP forms;

[xJ and [yJ mean that (x) and (y) are LISP forms;

E, El •.• EN are sequences of elementary patterns;

F is an elementary format, R is a ruleset.

same as $, no predicates allowed

$ without search strategies

same as $$, no predicates allowed

$ with predicate

$$ with predicate

$ with failure predicate

$$ with failure predicate

matches segment of length X
$X with predicate

-99-

=X

IX

A

=X[y]

*=X

*'X

*A

*=X[y]

#X

#[Xl,X2, .. Xn]

[t , Xl, X2 , .. Xn J

#Xly]

If [Xl, X2 .. Xn] [y]

#[t,Xl,X2, .. Xn

@X

L

*L

+L

:X

*:x

VAR, item type

same as =(QUOTE X); X can be an arbitrary
LISP expression, i.e., (A . B) is allowed.

if A is in dictionary, same as @A; other
wise same as lA, =A, or @A depending on
setting of DEFAULT and definition of
PDEB'AULT.

VAR with predicate

VAR, segment type

same as *=(QUOTE X)

if A is in dictionary, same as @A; other
wise same as *'A or *=A,depending on
setting of DEFAULT and definition of
PDEFAULT.

VAR with predicate

MARK

MARK

MARK. from top level

MARK with predicate

MARK with predicate

MARK from top level with predicate

Dictionary variable

Subpattern-item

Subpattern-segment

reentrant subpattern

variable pattern-item

variable pattern-segment

-100-

[

[

[,

[

[

[

[

I'
L

[

r
L

r
L

[
r
L

[

[

[

o
o
o
o
o
o
o
o
o
o
o
n u

o
o
o
o
o
o
]

EITHER[El,E2, .. En]

REPEAT[E]

REPEAT[E / T]

REPEAT[E / X]

REPEAT[E /

REPEAT[E /

(SFT A Y)

A+Y

(NOT X)

(SIDE X Y)

X

X'

Y]

Y Z]

EITHER

HEPEAT

Reentrant REPEAT

match at least X times

but not more than Y times

Reentrant REPEAT

assigns A to value of Y

where Y is an elementary pattern,
same as Y followed by
(SET A #-1). U+V+X+Y is allowed.

$l[NOT (EQUAL * X)]

Side condition

-101-

CONs'rRucrr

=X

'X

A

*=X

*'X

*A

#X

[Xl, X2 .. Xn J

[t Xl, X 2 , . . Xn J

L

*L

:X

*:X

EITHER[El;E2 .. En / XJ

EITHER[El;E2; .. EnJ

REPEAT[E / XJ

VARF, Item type

same as =(QUOTE X), X can be an
arbitrary ~xpression

if A is in dictionary same as @A;
otherwise same as 'A,=A, or @A,
depending on DEFAULT and definition
of PDEFAULT.

VAR, segment type

same as *=(QUOTE X)

if A is in dictionary same as @A,
otherwise same as *'A, *=A, or @A,
depending on setting of DEFAULT and
definition of PDEFAULT.

MARK

MARK

MARK, from top level

same as #1 unless it is last in a format,
subformat, EITHERF, or REPEATF format,
in which case it is same as #-1

Subformat-item

Sub format-segment

variable format-item

variable format-segment

EITHER elementary format

EITHER elementary format, search for
corresponding EITHER parsing automatically
performed

REPEAT elementary format

-102-

,--,
I
I

L

I'
L

[

[

[

[

[

[
I'
L

[

[
I'
l~

!
L~

I'
L

I'
I
L

r
I
L.

[.

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
]

REPEAT[E]

(SET A Y)

A+Y

@X

«BEGN> F)

«BEGN> F X)

«CONT> F R)
",~

«CONT> F R X)

«REPT> F R)

«REPT> F R X)

*«BEGN> F)

*«BEGN> F X)

*«CONT> F R)

*«CONT> F R X)

* «REPT> F R)

*«REPT> F R X)

REPEAT elementary format, search for
corresponding REPEAT parsing
automatically performed

assigns A to value of Y

where Y is an elementary format,
assigns A to the value of Y.

Dictionary variable

<BEGN> elementary format

<BEGN> with GOTO label

<CONT> elementary format

CONT with GO TO label

REPT elementary format

REPT with GOTO label

<BEGN>-segment

<BEGN>-segment with GOTO label

<CONT>-segment

<CONT>-segment with GOTO label

<REPT>-segment

<REPT>-segment with GO TO label

The dictiona~~y' syntax is summarized on pages 82-83.

-103-

---'--------------------

Appendix 2: Intermediate Language

This appendix describes the intermediate language, the form of

FLIP expressions before they are translated. The transformation

from source language to intermediate language is performed by the

FLIP read function, REED. The intermediate language representation

is designed for convenience of translation: separate FLIP expressions

correspond to separate LISP expressions, with prefix operators

attached at the front of the corresponding LISP expressions, and
predicates attached at the back. For example, the intermediate

language representation for $[GREATERP (LENGTH *) 5J is

($ (GREATERP (LENGTH *) 5»; the representation of

=(CAR X) is (= CAR X). The intermediate language is presented

by describing the operation of REED.

REED operates in the same way ~s READ (except for control charac

ters, see pages 58-60), until it encounters one of the characters

',*,?,:,+,=,@,#,$,+,[, or either of the two atoms REPEAT or

EITHER. The action taken for each of these cases is described

below. X, Xl ... Xn denotes an expression read by REED. Thus

'X is read as (QUOTE X) means that" 'FOO is read as

(QUOTE (QUOTE (QUOTE FOO»). However, if a space carriage return,

), [,], ; or / follows the character in question, no special action

1s taken, e.g.,' 'is read as (QUOTE I).

'X

*X

?X

:X
+X

=X

@X

(QUOTE X)

(* X), i.e., (CONS (QUOTE *) {REED»
(? • X)

(: • X)

(+ • X)

(= X)

(DICTIONARY X)

-104-

[

[
1";

L

I
l ...

[

[

[

I

i
L

[

r
L

l~
L

o
o
o
o
o
o
o
o
o
o
o
o
n
Lj

o
o
o
o
o
J

#X

[Xl, X2 , .•. Xn J

$

$X

XI+X2

[

(MARK (X», e.g., #1 is (MARK (1»

{MARK (Xl X2 ... Xn», e.g., #[t,I,2J is
(MARK (t I 2»
($)

($N X), e.g., $1 is ($N 1); $$ is ($N $)
but the translators make a special check
for this

read as two LISP expressions, (SET Xl)
and X2. Spaces between Xl, +, and X2 are
ignored; i.e., X+Y is the same as X + Y.

treated the same as with READ, i.e., REED
continues reading until it finds a matching
) or J. After REED completes reading
this expression, it attaches the expression
at the end of the previously read
expression. Thus, $l[MEMB * #2J is read
as two expressions ($N 1)' and
(MEMB * (MARK (2»), and then the second
expression is attached at the end of the
first giving ($N 1 (MEMB * (MARK (2»».
Spaces before "[" are ignored. If there
is no place to attach the expression, no
action is taken. For example, '[A B eJ
is read as (QUOTE (A B e», because there
is no place to put (A Be).

If the previous expression is atomic, the
setting of DEFAULT is used. For example,
if DEFAULT is =, A[EQUAL #2 #3J is read as
(= A (EQUAL (MARK (2» (MARK (3»».
Using a predicate with an atom, however,
1s very rarely necessary.

-105-

EITHER, REPEAT If the next character read, excluding
~paces and carriage returns, is [, it is
treated as· « (and an expression is read
using REED. During the reading of this
expression, ; is interpreted as)(, and
/ as ». EITHER or REPEAT is then CONSed
onto the resulting expression.

Examples:

EITHER[A; BJ

REPEAT[$l / 3 4J

(EITHER «A) (B»)

(REPEAT «$N 1» 3 4)

Spaces before or after ; or / are
optional. If next character is not [,
EITHER or REPEAT is read as any other
atom.

For all other FLIP expressions, the intermediate representation
is the same as the LISP representation, e.g.,
(SIDE NIL (EQUAL #3 'FAILED» is read and represented as
(SIDE NIL (EQUAL (MARK (3» (QUOTE FAILED»).

-106-

[

[
r
L

[

[

[

[

[

[

C
[
r
L

[

[

[

[

[

[

0
0
I' {J

0
0
c
0
0
ii
U

0
(l
u

0
r~1

I i
W

[J
11
LJ

0
0
0
]

Appendix 3: Internal Language

The translated form of patterns, formats, and dictionaries con

sists of sequences of function calls which are evaluated at the

proper time. The task of the translating functions, PATTRAN,

EITHERTRAN, FORMTRAN, and DICTRAN, is to convert FLIP expressions

to their corresponding function calls. Rather than describe

these transformations by listing again all of the FLIP entities

of Appendix 1 and their translated forms, the corresponding FLIP

functions are listed below with an explanation of their arguments.

From this, the individual translations may be inferred. For
example, given that the function $ has two arguments, an abort

predicate and a failure predicate, then the translation of $ is ($),
of $[x] is ($ (x)), and the translation of $[x][y] is ($ (x) (y)).

Translations are made permanent by altering the input list struc

ture whenever variable $TRAN is set tQ T, its normal setting.

PATTRAN

The basic difference between the translation of elementary patterns

and elementary formats is that the arguments of elementary format

functions are always evaluated, while the decision as to when and

if an argument is to be evaluated for an elementary pattern func

tion is left to the function itself. (This is necessary because

predicates cannot be evaluated until an elementary pattern has
tentatively matched. Also, failure predicates cannot be evaluated

until the rest of the match is tried.)

-107-

There are twelve elementary pattern functions: $N, VAR, NOTT,

SIDE, PATTERN, PAT, SETl,' $, SLOW$, EITHER, REPEAT, and DICVAR.

The arguments to the elementary pattern functions specify how it

is to match. PATTERN, EITHER, and REPEAT all require special

housekeeping functions after they match. Every other elementary

pattern translates into one, and only one, function call.

$N is a function of two arguments, Nand PRED. The value of N is
the length of segment matched by $N. PRED is the predicate, if
any.

VAR is a function of three arguments, V, SEG, and NPRED. The
value of V is matched by VAR as an item if SEG is NIL, otherwise
as a segment. (SEG is T if V is a MARK.) NPRED is the predicate.

NOTT is a function of one argument, X. NOTT matches provided
(CAR WS) is not equal to the value of X.

SIDE is a function of two arguments, PREDI and PRED2. The first
predicate, if present, is applied before matching. The second
predicate, if present, is applied after a failure.
(SIDE NIL NIL) is effectively a NOP.

PATTERN is a function of two arguments, PATTLIST and SEG.
PATTLIST is given to PATTRAN to be translated and is matched as
an item if SEG is NIL, as a reentrant item if SEG is T, and as a
segment if SEG is any other value.

PAT is a function of two argument~ XPAT and *. The value of
XPAT is translated as an elementary pattern. * is used by PATTRAN
for the t~anslation. PAT is the function corresponding to ele
mentary patterns that use the : operator. It differs from PATTERN
in that XPAT can be any elementary pattern, including a subpattern.

SET 1 is a function of two arguments, NAME and V. NAME is set to
the value of V. If V is identical to NAME, the segment-item last
matched is used for V, as in the case of elementary patterns such
as FOO+$l, which translates as «$N 1) (SETI FOO FOO».

$ is a function of two arguments, PREDI and PRED2, the two
predicates on the $ elementary pattern.

SLOW$ is a function of two arguments, PREDI and PRED2, the two
predicates on the $$ elementary pattern.

-108-

[

[
r

L

[

c
[.
\
LJ

c
[
r
!~

[

C
[

['

.!

o
o
o
[l

o
o
o
o
o
o
o
o
o
o
o
o
]

J
]

EITHER is a function of one argument, $OR. tOR consists of a
list of patterns, and is translated by EITHERTRAN, as described
below.

REPEAT is a function of four arguments, $RPT, Nl, N2, and PRED.
$RPT ~s a list of elementary patterns, and is translated by
PATTRAN. A call to a special function REPEATI is attached at the
end of the translation. The value of Nl, if present, is the lower
bound on the number of repetitions. The value of N2,if present,
is the upper bound. PRED is a predicate used to decide whether
or not the REPEAT is to be reentered.

DICVAR is a function of one argument, X, the name of a dictionary
variable.

The translation of a pattern consists of the list of function

calls corresponding to the elementary patterns, and is headed by
the rejection information, described on pages 43-45.

Example: The translation of

($ $2 A ($ $1) $[][NILL] *=(GET (FOO #[4,2J)$) is

«NIL NIL . A)
($)

-($N 2)
(VAR A NIL NIL)
(PATTERN ($ $1»
(PATTERNI NIL NIL NIL NIL)
($ NIL (NILL»
(VAR (GET (QUOTE FOO) (MARK (4 2») SEGMENT NIL)
($))

PATTERNI is the housekeeping function associated with PATTERN and
EITHER. Its arguments are set by PATTERN, or EITHER, by actually

changing the expression (PATTERNI NIL NIL NIL NIL) in the trans
lation. Since the arguments to PATTERNI contain the complete

parsing, the translation of a pattern may appear very complicated
after it has been run a few times.

-109-

_______ •• _____ • _______ 0 ___ -

The translation is kept in pointer-pair format:. CAR of the
translation is the list of function calls and rejection information;

CDR is a pointer to the tail of this list.

EITHERTRAN

The argument of EITHERTRAN is a list of patterns corresponding to

the alternatives for an EITHER elementary pattern. EITHERTRAN

translates this list for subsequent use by the elementary pattern

function EITHER. This translation consists of translating in

turn each of the patterns, making a list of all of their trans
lations, and heading this list by special rejection information
for EITHER. This rejection information consists of a list of the

rejection information for each individual pattern, provided the
rejection information indicated that the corresponding pattern

began with a VAR. If each of the individual patterns fell into
this category, the

otherwise by NIL.

use by the fast $.

EITHER rejection information is headed by T,
This rejection information is primarily for

(see page 52)

Example: the translation of the elementary pattern

EITHER['A $2 ; 'C $J is

(EITHER «(QUOTE A) ($N 2»

(QUOTE C) ($)))

The translation of the argument to EITHER is

«T (NIL QUOTE A) (NIL QUOTE C»

«T NIL QUOTE A) (VAR (QUOTE A) NIL NIL) ($N 2»

«T NIL QUOTE C) (VAR (QUOTE C) NIL NIL) ($»)

except that the translation of the two patterns is in pointer-pair
format.

-110-

[

[
r
I
L.,

[

[

[

[

[.

I
[

[
r
L

[

[
r
l;

[

L
L

o
o
o
o
o
c
o
o
n. u
I~I

U

[J

o
J
J
]

]

]

]

]

FORMTRAN

There are nine elementary format functions: VARF, FORMAT, SETF,
EITHERF, REPEATF, <BEGN>, <CONT>, <REPT>, and DICVARF. Each

elementary format translates into one and only one function call.

VARF is a function of two arguments, X and SEG. X is attached to
the list being constr'ucted as an item if SEG is NIL or if X is an
atom. Otherwise, X is attached as a segment.

FORMAT is a function of two arguments, X and SEG. X is used to
construct a list which is then attached as an item if SEG is NIL,
otherwise as a segment. Both subformat and variable format trans-
late as calls to FORMAT. I

SETF is a function of two arguments, NAME and V. NAME is set to
V:--If V is identical to NAME, NAME is set to the value of the
next elementary format function, e.g., the translation of FOO+#3 is

«SETF (QUOTE FOO) (QUOTE FOO» (VARF (MARK (3» T».

EITHERF is a function of two argument~, X and Y.
corresponding EITHER elementary pattern. If Y is
searches the parsing as described in the text. 'X
formats used for constructing.

Yspecifies the
NIL, EITHERF
is a list of

REPEATF is ,a function of two argument, X and Y. Y specifies the
corresponding REPEAT elementary format, or a number. X is the
format used in constructing.

<BEGN> is a function of three arguments, X, SEG, and W. X is a
format, for constructing, SEG specifies whether the result is to
be attached as item or segment, and W is an optional GOTO label.
<REPT> and <CONT> are similar except their third argument is a
rule set and W is the fourth argument.

DICVARF is a function of one argument, X, the name of a dictionary
variable.

-111-

DICTRAN

The translation of a dictionary is of a list of dotted pairs~ con
sisting of the name of a dictionary variable and the form which

is its translation. The translation of modesVAR, PAT, EXPR, and
SKEL is straightforward into the corresponding functions VAR, PAT,

VARF, and FORMAT. Modes CONT and REPT translate to functions of

the same name that are very similar to <CONT> and <REPT>. The

translation of modes UAR, PAY, BUV, and CUV involves a special

function DICVARI.

DICVARI is a function of three arguments, X, Y, and Z. X is the

value of the dictionary variable. This is the argument that is

changed when dictionary variables with these modes match as
elementary patterns. The second argument of DICVARI is (T) if

the dictionary variable was enclosed in parentheses, otherwise
it is NIL. The third argument is the list of function calls for
matching. For PAY, BUV, and CUV, this list consists of a call

to PAT followed by a call to the function SETD. For VAR, it

consists of a call to either $N or $, followed by a call to SETD.
SETD is the function that modifies the dictionary.

The first argument to SETD is the mode of the variable. The

second a pointer to its translated definition so that SETD does

not have to look it up again. Thus, the translation of any

dictionary containing mode, VAR, PAY, BUV, or CUV is always

circular.

-112~

[

[
r
l~

[
[

I
L

r
L

[
r
L
r
L

[

[

[
[
[

[
[
[

o
o
o
o
o
o
D
o
o
'I

U

,.--,

J

]

]

]

l
-.J

]

J

1.

2.

3.

4.

5.

6.

7.

BIBLIOGRAPHY

Berkeley, E. C. and Bobrow, D. G. "The Programming Language
LISP: Its Operation and Applications,1I Information Inter
national Inc., Cambridge, Massachusetts, 1964.

Bobrow, D. G. "METEOR: A LISP Interpreter for String 'l'rans-
formations," in Berkeley and Bobrow (see above). '

Bobrow, D. G. and Murphy, D. L. "The Structure of a LISP
System Using Two-Level Storage!:, BBN Report No. 1467.
Comm. ACM (in press).

Bobrow, D. G. and Teitelman, W. "Format-Directed List
Processing in LISP", AFCRL-66-302, BBN Report No. 1366,
April 1966.

Bobrow, D. G. and Weizenbaum, J. "List Processing and the
Extension of Language Facility by Embedding",
T~ans. IEEE PGEC, August 1964.

Bobrow, D. G. et al., lIThe BBN-LISP System", BBN Scientific
Report No.1, October 1966.

Guzman, A. and McIntosh, H. V. "CONVER'l'," Comm. ACM, Vol. 19,
No.8, August 1966, pp 604-615.

-113-

[

[
r.
L'

['

[

C
[

[

[
r

L

[

I:
L

I
L

[

[

[

[

[

c

n
L.J

o
n
\'
LJ

ri

L

o
n
Ll

c
n u

o
o
o

-- -----------

Unclassified
Cl . f' Sec\! ri ty ass •• catlon

DOCUMENT CONTROL OAT A • R&D
(Scctuity classification of title, body of abstrlJct lfnd ;ndexinlJ annotation mu t be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) 20. REPORT SECURITY CLASSIFICATION
Bolt Beranek and Newman Inc Unclassified
50 Moulton Street 2b. GROUP

Cambridge, Massachusetts 02138
3. REPORT TITLE

DESIGN AND IMPLEMENTATION OF FLIP, A LISP FORMAT DIRECTED LIST PROCESSO

4. PESCRIPTIVE NOTES (Type of report and.inclusive dates)

Scientific. Interim.
5. AUTHOR(S~)'(First name, middle initial, last name)

Warren Teitelman

6· REPORT DATE 78. TOTAL NO. OF PAGES 17b. NO. OF REFS
15 July 1967 113 7

8a. CONTRACT OR GRANT NO. ARPA Order 0" ("')RIGINATOR"S REPORT NUM8ER{S)

AF-19(628)-5065 No. 627, BBN Report No.1495 I h. PF;!OJECT NO. Amendment No. 2 Scientific Report No. 10 8668
c. DoD Element 6154501R 9b. OTHER REPORT NO(S) (Any other numbers that may be Bssi~ned

thi s report)

DoD Subelement n/a AFCRL-67-0514
d.

10. DISTRIBUTION STATEMENT

- Distribution of this document is unlimited. It may be released to the
Clearinghouse, Department of Commerce, for sale to the general public.

'I· SUPPLEMENTARY NOTE"This research was 12. SPONSORING MILITARY ACTIVITY

Air Force Cambridge Research
sponsored by the Advanced Projectt Laboratories (CRB) Agency L. G. Hanscom Field

R""ri f'1"ll"'ri M,q~R,q(>hll~""t:t-.s n1 7~n
13. ABSTRACT

This paper discusses some of the considerations involved in
designing and implementing a pattern matching or II COMITII feature inside
of LISP.[lJ,[2J The programming language FLIP is presented here as a
paradigm for such a feature. The design and implementation of FLIP
discussed below emphasizes compact notation and efficiency of operation.
In addition, FLIP is a modular language and can be readily extended and
generalized to include features found in other pattern driven languages
such as CONVERT [6J and SNOBOL. This makes it extremely versatile.

The development of this paper proceeds from abstract considerati ns
to specific details. The syntax and semantics of FLIP are presented
first, followed by a discussion of the implementation with especial
attention devoted to techniques used for reducing the number of conses
required as well as improving search strategy. Finally FLIP is treated
as a working system and viewed from the user's standpoint. Here we
present some of the additions and extensions to FLIP that have evolved
out of almost two years of experimentation. These transform it from a
notational system into a practical and useful programming system.

o D ,FNOORyM651473
S/N 0101 -807-6811

(PAGE 1)
Unclassified

Security Classification
A-3HO·Q

Unclassified
Security Classification

14
KEV WORDS

LISP

List Processing
"!'i(

Language

Symbol Manipulating Language

String Transformations

Pattern-Driven Language

Format Directed List Processing

(BACK)
SIN 0101-807-6821

L.1NK A L.1N K B L.1NK C

ROL.E WT ROL.E WT ROL.E WT

Hnel ass; fj ed
Security Classification' A-31409

r
l~

r
LJ

n w

r
I
L;

I'
I
L;

r-~

.' I

L

r
I

LJ

c
I
I
L-'

c
r,
I
C

I'
i

!
',-,

[

[

	Teitelman-D_and_I_of_FLIP-1967_070001_a
	Teitelman-D_and_I_of_FLIP-1967_070001_b
	Teitelman-D_and_I_of_FLIP-1967_070002_a
	Teitelman-D_and_I_of_FLIP-1967_070002_b
	Teitelman-D_and_I_of_FLIP-1967_070003_a
	Teitelman-D_and_I_of_FLIP-1967_070003_b
	Teitelman-D_and_I_of_FLIP-1967_070004_a
	Teitelman-D_and_I_of_FLIP-1967_070004_b
	Teitelman-D_and_I_of_FLIP-1967_070005_a
	Teitelman-D_and_I_of_FLIP-1967_070005_b
	Teitelman-D_and_I_of_FLIP-1967_070006_a
	Teitelman-D_and_I_of_FLIP-1967_070006_b
	Teitelman-D_and_I_of_FLIP-1967_070007_a
	Teitelman-D_and_I_of_FLIP-1967_070007_b
	Teitelman-D_and_I_of_FLIP-1967_070008_a
	Teitelman-D_and_I_of_FLIP-1967_070008_b
	Teitelman-D_and_I_of_FLIP-1967_070009_a
	Teitelman-D_and_I_of_FLIP-1967_070009_b
	Teitelman-D_and_I_of_FLIP-1967_070010_a
	Teitelman-D_and_I_of_FLIP-1967_070010_b
	Teitelman-D_and_I_of_FLIP-1967_070011_a
	Teitelman-D_and_I_of_FLIP-1967_070011_b
	Teitelman-D_and_I_of_FLIP-1967_070012_a
	Teitelman-D_and_I_of_FLIP-1967_070012_b
	Teitelman-D_and_I_of_FLIP-1967_070013_a
	Teitelman-D_and_I_of_FLIP-1967_070013_b
	Teitelman-D_and_I_of_FLIP-1967_070014_a
	Teitelman-D_and_I_of_FLIP-1967_070014_b
	Teitelman-D_and_I_of_FLIP-1967_070015_a
	Teitelman-D_and_I_of_FLIP-1967_070015_b
	Teitelman-D_and_I_of_FLIP-1967_070016_a
	Teitelman-D_and_I_of_FLIP-1967_070016_b
	Teitelman-D_and_I_of_FLIP-1967_070017_a
	Teitelman-D_and_I_of_FLIP-1967_070017_b
	Teitelman-D_and_I_of_FLIP-1967_070018_a
	Teitelman-D_and_I_of_FLIP-1967_070018_b
	Teitelman-D_and_I_of_FLIP-1967_070019_a
	Teitelman-D_and_I_of_FLIP-1967_070019_b
	Teitelman-D_and_I_of_FLIP-1967_070020_a
	Teitelman-D_and_I_of_FLIP-1967_070020_b
	Teitelman-D_and_I_of_FLIP-1967_070021_a
	Teitelman-D_and_I_of_FLIP-1967_070021_b
	Teitelman-D_and_I_of_FLIP-1967_070022_a
	Teitelman-D_and_I_of_FLIP-1967_070022_b
	Teitelman-D_and_I_of_FLIP-1967_070023_a
	Teitelman-D_and_I_of_FLIP-1967_070023_b
	Teitelman-D_and_I_of_FLIP-1967_070024_a
	Teitelman-D_and_I_of_FLIP-1967_070024_b
	Teitelman-D_and_I_of_FLIP-1967_070025_a
	Teitelman-D_and_I_of_FLIP-1967_070025_b
	Teitelman-D_and_I_of_FLIP-1967_070026_a
	Teitelman-D_and_I_of_FLIP-1967_070026_b
	Teitelman-D_and_I_of_FLIP-1967_070027_a
	Teitelman-D_and_I_of_FLIP-1967_070027_b
	Teitelman-D_and_I_of_FLIP-1967_070028_a
	Teitelman-D_and_I_of_FLIP-1967_070028_b
	Teitelman-D_and_I_of_FLIP-1967_070029_a
	Teitelman-D_and_I_of_FLIP-1967_070029_b
	Teitelman-D_and_I_of_FLIP-1967_070030_a
	Teitelman-D_and_I_of_FLIP-1967_070030_b
	Teitelman-D_and_I_of_FLIP-1967_070031_a
	Teitelman-D_and_I_of_FLIP-1967_070031_b
	Teitelman-D_and_I_of_FLIP-1967_070032_a
	Teitelman-D_and_I_of_FLIP-1967_070032_b
	Teitelman-D_and_I_of_FLIP-1967_070033_a
	Teitelman-D_and_I_of_FLIP-1967_070033_b
	Teitelman-D_and_I_of_FLIP-1967_070034_a
	Teitelman-D_and_I_of_FLIP-1967_070034_b
	Teitelman-D_and_I_of_FLIP-1967_070035_a
	Teitelman-D_and_I_of_FLIP-1967_070035_b
	Teitelman-D_and_I_of_FLIP-1967_070036_a
	Teitelman-D_and_I_of_FLIP-1967_070036_b
	Teitelman-D_and_I_of_FLIP-1967_070037_a
	Teitelman-D_and_I_of_FLIP-1967_070037_b
	Teitelman-D_and_I_of_FLIP-1967_070038_a
	Teitelman-D_and_I_of_FLIP-1967_070038_b
	Teitelman-D_and_I_of_FLIP-1967_070039_a
	Teitelman-D_and_I_of_FLIP-1967_070039_b
	Teitelman-D_and_I_of_FLIP-1967_070040_a
	Teitelman-D_and_I_of_FLIP-1967_070040_b
	Teitelman-D_and_I_of_FLIP-1967_070041_a
	Teitelman-D_and_I_of_FLIP-1967_070041_b
	Teitelman-D_and_I_of_FLIP-1967_070042_a
	Teitelman-D_and_I_of_FLIP-1967_070042_b
	Teitelman-D_and_I_of_FLIP-1967_070043_a
	Teitelman-D_and_I_of_FLIP-1967_070043_b
	Teitelman-D_and_I_of_FLIP-1967_070044_a
	Teitelman-D_and_I_of_FLIP-1967_070044_b
	Teitelman-D_and_I_of_FLIP-1967_070045_a
	Teitelman-D_and_I_of_FLIP-1967_070045_b
	Teitelman-D_and_I_of_FLIP-1967_070046_a
	Teitelman-D_and_I_of_FLIP-1967_070046_b
	Teitelman-D_and_I_of_FLIP-1967_070047_a
	Teitelman-D_and_I_of_FLIP-1967_070047_b
	Teitelman-D_and_I_of_FLIP-1967_070048_a
	Teitelman-D_and_I_of_FLIP-1967_070048_b
	Teitelman-D_and_I_of_FLIP-1967_070049_a
	Teitelman-D_and_I_of_FLIP-1967_070049_b
	Teitelman-D_and_I_of_FLIP-1967_070050_a
	Teitelman-D_and_I_of_FLIP-1967_070050_b
	Teitelman-D_and_I_of_FLIP-1967_070051_a
	Teitelman-D_and_I_of_FLIP-1967_070051_b
	Teitelman-D_and_I_of_FLIP-1967_070052_a
	Teitelman-D_and_I_of_FLIP-1967_070052_b
	Teitelman-D_and_I_of_FLIP-1967_070053_a
	Teitelman-D_and_I_of_FLIP-1967_070053_b
	Teitelman-D_and_I_of_FLIP-1967_070054_a
	Teitelman-D_and_I_of_FLIP-1967_070054_b
	Teitelman-D_and_I_of_FLIP-1967_070055_a
	Teitelman-D_and_I_of_FLIP-1967_070055_b
	Teitelman-D_and_I_of_FLIP-1967_070056_a
	Teitelman-D_and_I_of_FLIP-1967_070056_b
	Teitelman-D_and_I_of_FLIP-1967_070057_a
	Teitelman-D_and_I_of_FLIP-1967_070057_b
	Teitelman-D_and_I_of_FLIP-1967_070058_a
	Teitelman-D_and_I_of_FLIP-1967_070058_b
	Teitelman-D_and_I_of_FLIP-1967_070059_a
	Teitelman-D_and_I_of_FLIP-1967_070059_b
	Teitelman-D_and_I_of_FLIP-1967_070060_a
	Teitelman-D_and_I_of_FLIP-1967_070060_b
	Teitelman-D_and_I_of_FLIP-1967_070061_a
	Teitelman-D_and_I_of_FLIP-1967_070061_b

