BBN-LISP

TENEX Reference Manual
July 1971

W. Teitelman
D.G. Bobrow
A.K.Hartley
D.L. Murphy

Bolt Beranek and Newman Ine. 1=i=1i}

ACKNOWLEDGEMENTS

The design, construction and documentation of this system was
sponsored by the Information Processing Techniques section of
the Advanced Research Projects Agency. The basic design and
implementation of this paged LISP was done by D.G. Bobrow,
A.K. Hartley, D.L. Murphy, and W. Teitelman. Most of the
extended interactive features are the work of Warren Teitelman
and the existence of this extensive reference manual is due
primarily to his perseverence and effort. PRANSOR, the special
arithmetic functions, and a number of other utility functions
were written by J.W. Goodwin. The authors are grateful to
Karen O'Sullivan for her hard work and patience through endless
revisions of the text, and to Kathryn Paiva for her valualile
assistance.

Copyright July 1971

by

BOLT BERANEK AND NEWMAN INC.
50 Moulton Street
Cambridge, Massachusetts 02138

BBN-LISP is a trade and service mark of Bolt Beranek and Newman Inc.

V),

TABLE OF CONTENTS

page

SECTION I

Introduction ceceeeeeaena ceeennn .

SECTION II
Using LISP ® & ® 0 0 0 % 00 0 0 00 ® e e 0 0 e e ® & 0 0 0 0 0 06 0 0 0 00 00 0 e e o o 2.1

Using the LISP Manual «ceeeee.. cecesesscasnanse cean
Using the LISP SysStem On Tenex «esceseescencennas

SECTION III

Data Types, Storage Allocation, and Garbage
Collection ® & & © & & & 0 5 0 6 O 0 O O O O O 0 O O 0O O 0 e e 0 e

W
=

DAta TYPES e ceececcsoccccsccscscoscosscscssscscccsccs
Literal AtOMS .eeeeceoccsccscscncossascsocsscsss
PNAmesS eeeeceecccccscscssccscscsscsscscscsscscascacs
NUmMerical ALOMS ceeeececscsccccssccscanccncssae

Integers .ceceececcccecccssscscsccnscscsncccs
Floating Point NUMbErS ceeeececcscocscasce
LiStsS ceeeoccosceocscscssoscsasnscssccsscsosscncses

Arrays ® © 06 0 0 00600 0606060 060000000060 0000000000000 00

Strings ® ® & & & 5 9 5 0 0 & 0 0 O 0 " " 0 0" 0SS 0000 ... e o
Storage Allocation and Garbage Collection
S}lared LISP ® ® O & & 6 & & & 0 5 0 & 0 0" s s s 00O s 00 0000

Wwbbuwbwwwwwww
L]
FPHEKFHFRFROSUOL &N

~NSWw N o

SECTION IV

Function Types and Implicit Progn ceseseanee 4.1

SECTION V
Primitive Functions and PredicCatesS .eeeeeeeececccees 5.1

Primitive FUNCLIONS .citeeeeeseccocancssacsansssns 5
Predicates and Logical Connectives ...ceececocses 5.

iii

TAB

SECTION VI

LE OF CONTENTS (cont.)

List Manipulation and Concatenationccccceeees

SECTION VII

Property Lists and Hash Links

Property Listsiciiieeererencncnancnns e
Property List Functionsc.ceeeeeeenecens .
Hash LinksSitiiieeeeeeeeeeeoensanacnsennnns
Hash Link Functions S eececescccoscccaccs
Hash Overflow ,......... et ceneeenan Ceeteeeeaen
SECTION VIII
Function definition and Evaluation .«........ R

SECTION IX
The LISP Editor

Introduction ...
Commands for the
Attention Changi
Local Atten
Commands Th
Search

Search

Locatio

Commands Th
Chain .

New USEer ..iceccecccccscscacsosss
Ng CommMandsS eeceesccecccccsesancas
tion Changing Commands ...ccese.
at Search ..cciecececccccccccnnses
Algorithm ...cceeceeccccsccccccss
CommMandS ceeeececcsccccccssoscsoccscs
n Specification ...cceccceccanas
at Save and Restore the Edit

Commands That Modify Structurecccceecccecess

The A, B, :

COInm.andS ®© 060600 0000000 0000000000

Extract and Embed .ccccecceecccccccccosconcas

The MOVE Co
Commands Th
TO and THRU

Imnand ® ® © & & & & & o o & " 0 O " " O S o
at 'Move Parentheses'....cceceeee

Commands That Print ...ccececececscscscscscscascccacaes
Commands That EvAluate .cecececececccscesccccsoscssce

Commands That Te
MaACYOS eceeoccoese
Miscellaneous Ca
Editdefault
Editor Functions

St ® ® & & © & 0 © & o O & o O O O OO SO 0O e
MMANAS «ceececcscscscscscscscosccsonse

iv

6.1

NNNNN 9
L] [] L
S N

8.1

TABLE OF CONTENTS (cont.)

SECTION X
Atom, String Array, and Storage Manipulation
Atom Manipulation ...ceciercenrtcnenncnnns cesenn
String FUNCtiOoNS .ieeeererennsnensncecsnnoncceans
Searching Stringscciceeeieeenncnes ceeens
String Storage ceeeaas Ceessecacans ceeee
Array FUNCtionsceiceceeceecccsccccsccnncass
Storage Functionscieieeiecieceencecncenenans

SECTION XI
Functions with Functional Arguments .ccceecececececsss

Functions with Functional Arguments

Funarg LA R R S A I A IR SR

SECTION XII

Variable Bindings and Pushdown List Functions

The Pushdown List and the Interpreter
The Pushdown List and Compiled Functions
Pushdown List Functions

The Pushdown List and FUNARG

SECTION XIII

Arithmetic Functions

General Comments

Integer Arithmetic

Floating Point Arithmetic
General Arithmetic
Special Functions

Reusing Boxed Numbers - Setn
Box and Unbox ..

10.1

10.1
10.6
10.8
10.10
10.12
10.14

11.1

11.1
11.6

12.1

12.3
12.7
12.8
12.13

13.1

13.1
13.3
13.8
13.10
13.11
13.14
13.17

TABLE OF CONTENTS (cont.)

SECTION XIV

Input/Output FUNCtionscieciieeenecncananansas

Files
Input Functions

Output Functions e et ec et

Printlevel ...

Addressable Filesiveenecccnccnns e e
Input/Output Control Functlons

Control[] ...

Control([T] ...

Special Functionscceceeencncns ceeceeean
Symbolic File Input ceeseeenns et eeeeeaans
Symbolic File Output «:cccceceeecc.. ces e cse e
Prettyprjvnt R R
Comment FeatuUre cccecceccececcceosscssssocscaese

Prettydef

Special Prettyprint Controls «-...........
Lower Casing Comments -+ccceeeeccececencans

File Package

SECTION XV

Debugging - The Break Package

Debugging Facilities
Breakl

Break Commands

Brkcoms

Breakmacros

Break Functions

SECTION XVI

Error Handling

Error Handling in LISPieieeenennnrnnnn e
Unbound Atoms and Undefined Eunctlons ,,,,,,,,,,
Teletype Initiated Breakseeeee.... ceeeen

Control H ..
Control B ..
Control L ...
“Real” Errors ..

Breakcheck - When to BreaKceeeee . soeeeeone

Error Types

Error Functions

oooooooooooooooooooooooooooooooo

vi

14.1

14,1

14.6

14,12
14.13
14.15
14,17
14.19
14.20
14.22
14.23
14.24
14.24
14.25
14.27
14,33
14,35
14.41

15.1

15.1
15.5
15.7
15.16
15.16
15,17

16.1

l16.1
16.2
16.3
16.3
16.3
16.4
16.4
16.6
16.9
16.12

W,

J

TABLE OF CONTENTS (cont.)

page
SECTION XVII
Automatic Error Correction - The DWIM Facility 17.1
INtroduCtion iieeeeeeeecescsccccccscncocooscnesse 17.1
EXamMpPle tiieeeesseosscasossessaascccscscccscocscses 17.2
Interaction wWith DWIHM ..eeeeeeeoeccascococacossos 17.5
Spelling Correction Protocolcececececcecsss 17.5
Parentheses Errors ProtoColcecececcoscscose 17.7
U.D.F. T Errors ProtoCOl ...ceeececcccccccsccscss 17.8
Spelling Correction .ieeeeeceescecesccsssscccsss 17.10
Spelling LiStS ceeeececcccccssssccccsscsscccscans 17.12
EXror COXreCtiOnN eeeeeececcccsscccsscscscssccccsse 17.15
UnbouUnd AtOIMS eeeescoccocsccsssccscscssssscosces 17.17
Undefined Car Of FOYM .cieececsccocsnccssscos 17.18

Undefined Function in Apply (eeeeesecccasess 17.1¢
Spelling Corrector Algorithm ceceeeceecececcceceesees 17,20
DVJII]. FunCtionS ® ® © 0 5 0 0 9 92 0 5 0 00 0 OO 0 S0 0 O OO 0O 00 00 00 17.23

SECTION XVIII

o~ The Compiler and Assembler 18.1
The COMpilercieeiieennneeeenennnnnnns .. 18.1
Compiler QUEStIONSv''eeeeeeennnnnnonnns .. 18.3
Nlambdas | ...iiieineeneenneeneenneeneoneeonannns 18.5
Globalvars'iiierennnneeeneeesnneeennnnnns 18.6
Compiler FUNCtiONSii'iiiieeeernneennonnns 18.6
RECOMP Il | ., ... iiiretineneeeneeeennneennnannns 18.9
Open Functions .,........... ettt 18.12
Affecting the Compiled Codeeeveuuennnun 18.14
Function and Functional Arguments 18.16
Block COMPiling''ieeeeneneeennennannns 18.17
Linked Function Calls .,uu... e e 18.20
RELINKING |iiietitiiiiinnneneneeennnnnnnnn 18.24
The Block COMPLilerc.ceeeeennnnnnnnnens 18.25
Block Declarationsc.iciiieennennnnnns 18.27
oo 1< B . 18.30
Brecompile |, 0.t ieiiettttnnennnennnnann 18.32
Compiler Structure ,,...........cceeveeennenenennnn 18. 36
Assemble ||t it ittt et 18.36
Assemble Statements .c.ceceeccccscsscssccccccsccs 18.37
COXeVaAlsS teceecoosesoosscscossosccsscsosscscossssoacscs 18.41
LAP ceeeeovecscsoocoosossscsscocscsoscscsscsscssocssscscos 18.42
LAP Statements eceeceesesoccecsososcssocscssccncsccsas 18.42

. Using ASSEMD1E .cceeeccccccccccccsossccscscscscss 18.47
HM1SCEllBNEOUS ceeosesoesccsscscsscssossscsossscsssocss 16.47

vii

TABLE OF CONTENTS (cont.)

SECTION XIX

Advising

Implementation of Advising ..
Advise Functions

SECTION XX

Printstructure

SECTION XXI

Miscellaneous

® @ 0 060606000 000 000000000000 0

Time ®© 0 060 0000 00000000000 0000000000000 0000000e0so0
Breakdown ® e 00 0000000000000 00000000 ss0 00000000
Subsys ©® 00 0000000000000 000000000000000000000se0

Edita ® 6 0 0 05 00 00 000 00000000000 00 0000000000000 0

SECTION XXII

The Programmer's Assistant and LISPX .cceeevececann

Introductionceeeecccscns
Example ..ceceecccccccsccnnsne
OVEIrViewW ..ceececccccccccocns
Event Specification
History CommandsScceceees

® ®6 0 060 00 000 0000000

® 0600 000 00 00000000

® 060 06060 00000000000

Miscellaneous Features and CommandsS ...ceceeces-

UndOiINg ccceeeccosoccscccccss
TestMOdE.ceeeeeocccsceocss
Undoing Out of Order
Saveset tccececctcccccens

®© 60 0 ¢ 00 000000 0000

® 0 00 006000000 080000

Format and Use of the History List ...c.ccecee.

FUNCEIONS veeeecececenccsocosnse
The Editor and the Assistant

viii

® 60 00 0060 0000 00000

® 60 060 000600 000 00 00

19.1

19.3
19.5

20.1

21.1

21.1
21.5
21.8

21.10

22.1

22.1

22,2

22.8

22.15
22.18
22.29
22.39
22.42
22.43
22.44
22.45
22.48
22.59

APPENDIX

INDEX

1.

2.
3.

TABLE OF CONTENTS (cont.)

TrAQnSOY .cceeececccscsccsscsascsosssssnssoosssscnssss
INtrodUCtion .ceeeeeececccccscsccnscssscassasns
USIing TranSOr .ceeeccscccccscscscsccssssancscss
TRANSORSET cecevecesvossscsscsssccssoccsscncsas

BBN—LISP Interpreter ® ®© 00 0 00 0000 000 00000 000000

Control Characters

®© ® 6@ 00 00 20 00020000000 0000000

ix

page

Al.1l
Al.l
Al.3
Al.8

A2.1
A3.1

SECTION I

INTRODUCTION

This document descrikbes the BBN-LISP system currently
implemented on the DEC PDP-10 under the BB TENEX time sharing
system. BBN-LISP is designed to provide the user access to the
large virtual memory allowed by TENEX, with a relatively small
penalty in speed (using special paging techniques described in
Bobrow and Murphy, 1967). Additional data types have been
added, including strings and hash association tables (hash
links). This system has been designed to be a good on-line
interactive system. Some of the features provided include
sophisticated debugging facilities with tracing and conditional
breakpoints, a sophisticated LISP oriented editor within the
system, and compatible compiler and interpreter. ifachine code
can be intermixed with LISP expressions via the assemble
directive of the compiler. Utilization of a uniform error
processing through a user accessible function has allowed the
implementation of a do-what-I-mean feature which can correct
errors without losing the context of the computation. The

philosophy of the DWIM feature is described in Teitelman, 1969.

BBN LISP provides three levels of computation: a LISP inter-
preter, a compatible function compiler and a block compiler,
which allows a group of functions to ke compiled as a unit,
suppressing internal names. Fach successive level provides

greater speed at a cost of debugging ease.

To aid in converting to BBN-LISP programs written in other LISP
dialects, e.g., LIé} 1.5, Stanford LISP, we have implemented
TRANSOR, a subsystem which accepts transformations (or can
operate from previously defined transformations), and applies
these transformations to source programs written in another
LISP dialect, producing object programs which will run on BEN
LISP. In addition, TRANSOR alerts the programmer to problem
areas that (may) need further attention. TRANSOR was used
extensively in converting from 940 LISP to BRN-LISP on the
PDP-10. A set of transformations is available for converting
from Stanford LISP and LISP 1.5 to EBN LISP.

In addition to the sub-systems described in this manual, a
complete format directed list processing sub-system (FLIP,

Teitelman, 1967) is available for use within BEN LISP.

Although we have tried to be as clear and complete as possible,
this document is not designed to bLe an introduction to wLISP.
Therefore, some parts mav only be clear to people who have had
some experience with other LISP systems. A good introduction

to LISP has been written by Clark Weissman (1267). ZAlthough

not completely accurate witnh respect to BBI-LISP, the differences
are small enough to be mastered by use of this manual and on-line
interaction. Another useful introduction is given by Derkeley

(1964) in the collection of Berkelev and Bonirow (1966).

Changes to this manual will be issued oy replacing sections or
pages, and reissuing the index and taule of contents at periouic

intervals.

Bibliography

Berkeley, E.C. (1964) "LISP, A Simple Introduction" in Berkeley,
E.C. and Bobrow, D.G. (1966).

Berkeley, E.C., and Bobrow, D.G. (editors), (1966), The
Programming Language LISP, Its Operation and Applications,
MIT Press, 1966.

Bobrow, D.G., and Murphy, D.L. (1967) “The Structure of a LISP
System Using Two Level Storage”, Communications of the ACHM,
V15 3, March 1967.

McCarthy, J. et al, LISP 1.5 Programmer's :lanual, MIT Press, 1966.

Teitelman, V., "Toward a Programming Laboratory” in Walker, L. (ed)

International Joint Artificial Intelligence Conference. HMay,

Py

1969.

Teitelman, W., FLIP, A Format Directed List Processor in LISP,
BBN Report, 1967.

Weissman, C., (1967) LISP 1.5 Primer, Dickenson Press (1967).

SECTION II

USING LISP

Using the LISP Manual - Format, Notation, and Conventions

The LISP manual is divided into separate more or less independent
sections. Each section is paginated independently, i.e., Section
4 contains pages 4.1 to 4.4. This is to facilitate issuing up-
dates of sections. Each section begins with a list of key words,
functions, and variables contained in the section, and a rough
approximation of their location, i.e., a mini-table of contents.
In addition, there will be a complete index of functions and vari-

ables for the entire manual, plus several appendices and a table
of contents.

Throughout the manual, terminology and conventions will be offset
from the text and typed in italics, frequently at the beginning

of a section. For example, one such notational convention is:

The names of functions and variables are written in lower case

and underlined when they appear in the text. Meta-LISP notation
is used for describing forms.

Examples: member(x;y] is equivalent to (MEMBER X Y),
member [car [x] ;FOO] is equivalent to (MEMBER (CAR X) (QUOTE FO0O)).
Note that in meta-LISP notation lower case variables are evalu-

ated, upper case quoted.
notation is used to distinguish between cons and list.

e.g., if x=(A B C), (FOO x) is (FOO (A B c)), whereas (FOO . x)
is (FOO A B C). Note that this convention is in fact followed by
the read program, i.e., (FOO . (A B C)) and (FOC A B C)

read in as equal structures.

Other important conventions are:

TRUE in BBN-LISP means not NIL.

The purpose of this is to allow a single function to be used

both for the computation of some quantity, and as a test for a
condition. For example, the value of member[x;y] is either NIL,
or the tail of y beginning with x. Similarly, the value of or

is the value of its first TRUE, i.e., non-NIL, expression, and the

value of and is either NIL, or the value of its last expression.

Although most lists terminate in NIL, the occasional list that
ends in an atom, e.g., (A B . C) or worse, a number or string,
could cause bizarre effects. Accordingly, we have made the

following implementation decision:

A1l funetions that tterate through a list, e.g., member, length,
mape, ete. terminate by an nlistp check, ratier than the conven-
tional null-check, as a safety precaution against encountering
data types which might cause infinite ¢dr loops, e.g., Strings,
numbers, arrays.

Thus, member[x; (A B . C)l=member([x; (A B)]
reverse[{(A B . C)l=reverse[(A B)]

append[(A B . C);:;yl=append[(A B);vy]

For users with an application requiring extreme efficiency?* we

have provided fast versions of member, last, nth, assoc, and

length which compile open and terminate on NIL checks, and
therefore may cause infinite cdr loops if given poorly formed

arguments.,

*A HIL check can be executed in only one instruction, an nlistg
requires about 12, although both generate only one word of code.

2,2

Most functions that set system parameters, e.g., printlevel,
linelength, radix, etec., return as their value the olu setting.

1f given NIL as an argument, they return the current value
without changing <it.

All SUBRS, i.e., hand coded funections, such as read, print, eval,
cons, ete., have 'argument names' (U V W) as described under
arglist, section 8. However, for tutorial purposes, more
suggestive names are used in the descriptions of these functions
in the text.

Mdost functions whose names end in p are preaicates, e.g., numberp,
tatlp, exprp; most functions whose names end in q are nlambda's,

1.e., do not require gquoting their arguments, e.g., setq, defineg,
nlsetq.

"z 18 equal to y" means equallx;y]l is true, as opposed to 'x is
eg to y'' meaning eqlx;yl is true, Z.e., £ and y are the same
tdentical LISP pointer.

When new literal atoms are created (by the read program, pack,
or mkatom), they are provided with a function definition cell
initialized to NIL (Section 8), a value cell initialized to the
atom NOBIND (Section 16), and a property list initialized to
NIL (Section 7). The function definition cell is accessed by
the functions getd and putd described in Section 8. The value
cell of an atom s car of the atom, and its property list is
cdr of the atom. Iw particular, car of HIL anrd edr of NIL are
alvays §IL, and the system will restst attempls to change them
(p. 6.0, Do 6.8).

The term list refers to any structure created by one or more
conses, i.e. it does not have to end in NIL. For e;ample,

(A . B) is a list. The function listp, Section 5, is used to
test for lists. WNote that not being a list does not necessarily
imply an atom, e.g., strings and arrays are not lists, nor are
they atoms. See Section 10.

Using the LISP System on TENEX - An Overview

Call LISP by typing LISP followed by a carriage return. LISP will
type dn identifying message, the date, and a greeting, followed by
a '«'., This prompt character indicates that the user is "talking
to" the top level LISP executive, evalgt (Section 22), just as '@'
indicates the user is talking to TENEX. evalgt calls lispx which
accepts inputs in either eval, or apply format: if just one expres-
sion is typed on a line, it is evaluated; if two expressions are
typed, the first is apply-ed to the second. 1In both cases, the
value is typed, followed by + indicating LISP is ready for

another input.

LISP is normally exited via the function LOGOUT, i.e., the user
types LOGOUT (). However, typing control-C at any point in the
computation returns control immediatelv to TENEX. The user can
then continue his program with no ill effects with the TENEX
CONTINUL command, even if he interrupted it during a garbage
collection. Or he can reenter his program at evalqgt with the

TENEX REENTER command. 7he latter is DEFINITELY not advisable

if the Control-C was typed during a garbage collection. Typing
control-D at any point during a computation will return control

to evalgt. If typed during a garbage collection, the garbage
collection will first be completed, and then control will bhe
returned to LISP's top level, otherwise, control returns imme-

diately.

-

-~

When typing to the LISP read program, typing a control-Q will
cause LISP to print '##' and clear the input buffer, i.e., erase
the entire line up to the last carriage return. Typing control-A
erases the last character typed in, echoing a‘\ and the erased
character. Control-A will not back up beyond the last carriage
return. Control-O can be used to immediately clear the output
buffer, and rubout to immediately clear the input buffer.* In
addition, typing control-U (in most cases) will cause the LISP
cditor (Section 9) to be called on the expression being read,
when the read is completed. Appendix 3 contains a list of all
control characters, and a reference to that part of the manual
where they are described.

Since the LISP read program is normally line buffered to make
possible the action of control=-Q,** the user must type a carriage
return before any characters are delivered to the function request-
ing input, e.g., * E TJ

T
However, the read program automatically supplies (and prints)
this carriage return when a matching right parenthesis is typedqd,

making it unnecessary for the user to do so, e.g., <«CONS (A B)
(A . B)

The LISP read program treats square brackets as 'super-parentheses':
a right square bracket automatically supplies enough right paren-
theses to match back to the last left sguare bracket (in the expres-
sion being read), or if none has appeared, to match the first left
parentheses,
e.g., (A (B (C]=(A (B (C))),

(n [B (C (D] E)=(A (B (C (D))) E).

*The action of control-Q takes place when it is read. If the user
has 'typed ahead' several inputs, control-Q will only affect at
most the last line of input. Rubout however will clear the input
buffer when it is typed, i.e., even during a garbage collection.

**Except following control[T], see Section 14.

$ is the universal escape character for read. Thus to input an
atom containing a syntactic delimiter, precede it by %, e.g.
AB%(C or %¥%. See Section 14 for more details.

TN

/-\\\

SECTION III

DATA TYPES, STORAGE ALLOCATION, AND GARBAGE COLLECTION

LISP operates in an 18-bit address space. This address space is
divided into 512 word pages with a limit of 512 pages, or 262,144
words, but only that portion of address space currently in use
actually pxiéts"bn any storage medium. LISP itself and all data
storage are contained within this address space. A pointer to a
data element such as a number, atom, etc., is simply the address
of the data element in this 18-bit address space.

Data Type

The data types of BBN-LISP are lists, atoms, pnames, arrays, large
and small integers, floating point numbers, string characters and
string pointers. Compiled code and hash arrays are currently in-
cluded with arrays.

In the descriptions of the various data types civen below, for

each data type, first the input syntax and output format are described,
that is, what input sequence will cause the LISP read program to
construct an element of that type, and how the LISP print program

will print such an element. Next, those functions that construct
elements of that data type are given. Note that some data tyves
cannot be input, they can only be constructed, e.g. arrays.

Finally, the format in which an element of that data type is stored

in memory is described.

Literal Atoms

A literal atom is input as any string of non-delimiting characters
that cannot be interpreted as a number. The syntactic characters
that delimit atoms are space, end—of—line;+ line feed, % () " 1
and [. However, these characters may be included in atoms by
preceding them with the escape character %.

Literal atoms are printed by print and prin2 as a sequence of
characters with %'s inserted before all delimiting characters (so
that the atom will read back in properly). Literal atoms are
printed by prinl as a sequence of characters without these extra
$'s. For example, the atom consisting of the five characters

A, B, C, (, and D will be printed as ABC%(D by print and ABC(D by
prinl. The extra %'s are an artifact of the print program; they

are not stored in the atom's pname.

Literal atoms can be constructed by pack, mkatom, and gensym,

(which uses Q&gggg).

Literal atoms are unigque. In other words, if two literal atoms
have the same pname, i.e. print the same, they will always be the
same identical atom, that is, they will always have the same
address in memory, or equivalently, they will always be eq.* Thus

if pack or mkatom is given a list of characters corresponding to

a literal atom that already exists, they return a pointer to that
atom, and do not make a new atom. Similarly, if the read program is
given as input of a sequence of characters for which an atom

already exists, it returns a pointer to that atom.

TAn end-of-line character is transmitted by TENEX when it sees a
carriage return.

*Note that this is not true for strings, large integers, floa?ing
point numbers, and lists, i.e. they all can print the same without
being eq.

2

A literal atom is a 3 PDP-10) word datum containing:

) PROPERTY LIST 77T TOP LILVEL DINDING |
word 1: [(CDR) ! Rt
0 17 18 35
;
word 2: | FUNCTION CALLING INSTRUCTION ,
0 o T3E
——— R R SR R R
word 3: j PLAME RLSLRVEDnPQRT?QNCLIONb
1 N ‘ Ol FILLS
0 17 18 35

Car of a literal atom,i.e. the right half of word 1, contains its
top level binding, initially the atom NOBIND. Cdr of the atom is
a pointer to its property list, initially NIL.

Word 2, the function cell, is a full PDP-10 word, containing an
instruction to be executed for calling the function associated with
that atom, if any. The left half differs for different function
types (i.e., EXPR, SUBR, or compiled code); the right half is a
pointer to the function definition.+

The pname cell, the left half of the third word, contains a
pointer to the pname of the atom. The remaining half word is
reserved for an extension of LISP to permit storina function
definitions on files.

TThis use of a full word saves some time in function calls from

compiled code in that we do not need to look up the type of the
function definition at call time.

.f.

Pnames

The pnames of atoms,+ pointed to in the third word of the atom,
comprise another data type with storage assigned as it is needed.
This data type only occurs as a component of an atom or a string.
It does not appear, for example, as an element of a list.

Pnames have no input syntax or output format as they cannot be
directly referenced by user programs.

A pname is a sequence of 7 bit characters packed 5 to a word,
beginning at a word boundary. The first character of a pname
contains its length; thus the maximum length of a pname is 126

characters.

All BBN-LISP pointers have pnames, since we define a pname simply
to be how that pointer is printed. However, only literal atoms
and strings have their pnames explicitly stored. Thus, the use

the term pname in a discussion of data types or storage allocation
means pnames of atoms or strings, and refers to a sequence of char-

acters stored in a certain part of LISP's memory.

o~

Numerical Atoms

Numerical atoms, or simply numbers, do not have property lists,

value cells, function definition cells, or explicit pnames. There

are currently two types of numbers in BBN-LISP: integers, and floating
point numbers.

Integers
The input syntax for an integer is an optional sign (+ or -)

followed by a sequence of digits, followed by an optional 0O.*

If the Q is present, the digits are interpreted in octal, otherwise
in decimal, e.g. 77Q and 63 both correspond to the same integers,
and in fact are indistinguishable internally since no record is

kept of how the integers were created.

The setting of radix, p. 14.18, determines how integers are printed:

signed or unsigned, octal or decimal.

characters observing the above svntax, e.q.
(PACK (LIST 1 2 (QUOTE Q))) = 10. Integers are also created as a

result of arithmetic operations, as described in Chapter 13.

*and terminated by a delimiting character. Note that some data types
are self-delimiting, e.g. lists.

An integer is stored in one PDP-10 word; thus its magnitude must
be less that 235.+ To avoid having to store (and hence garbage
collect) the values of small integers, a few pages of address
space, overlapping the LISP machine language code, are reserved
for their representation. The small number pointer itost,
minus a constant, is the value of the number. Currently the range
of 'small' integers is -1536 thru +1535. The predicate smallp is
used to test whether an integer is 'small'.

While small

integers have a unique representation, large integers
do not. 1In

other words, two large integers may have the same value,

but not the same address in memory, and therefore not be ed. For

this reason the function_ggg (or equal) should be used to test
equality of large integers.

+If the sequence of digits used to create the integer is too large,

the high order portiQn is discarded. (The handling of overflow as
a result of arithmetic operations is discussed in Section 13.)

TN

—~

Floating Point Numbers

A floating point number is input as a signed integer, followed by

a decimal point, followed by another sequence of digits called the
fraction, followed by an exponent (represented by E followed by a
signed integer).* Both signs are optional, and either the fraction
following the decimal point, or the integer preceding the decimal
point may be omitted. One or the other of the decimal point or
exponent may also be omitted, but at least one of them must be present
to distinguish a floating point number from an integer. For example,
the following will be recognized as floating point numbers:

5. 5.00 5.01 .3 5E2 5.1E2

5E-3 -5.2E+6

Floating point numbers are printed using the facilities provided by
TENEX. LISP calls the floating point number to string conversion

routinesT using the format control specified by the function fltfmt.
fltfmt is initialized to 0, or free format. For example, the above

floating point numbers would be printed in free format as:

5.0 5.0 5.01 .3 500.0 510.0
.005 -5.2E6

Floating point numbers are also created by pack and mkatom, and as
a result of arithmetic operations as described in Chapter 13.

A floating point number is stored in one PDP-10 word in standard
PDP-10 format. The range is +2.94E-39 thru +1.69E38 (or 1x2-128
thru 1*2127).

* and terminated by a delimiter.

t Additional information concerning these conversions may be
obtained from the TENEX JSYS Manual.

Lists

The input syntax for a list is a sequence (at least one)* of LISP

data elements, e.g. literal atoms, numbers, other lists, etc. enclosed
in parentheses or brackets. A bracket can be used to terminate
several lists, e.g. (A (B (C], as described on page 2.5.

If there are two or more elements in a list, the final element can
be preceded by a . (delimited on both sides), indicating that cdr
of the final node in the list is to be the element immediately
following the . , e.g. (A . B) or (A BC . D), otherwise cdr of

the last node in a list will be NIL.** Note that the input sequence
(A B C . NIL) is thus equivalent to (A B C), and that (A B ., (C D))
is thus equivalent to (A B C D). Note however that (A B . C D)

will create a list containing the five literal atoms A B . C and D.

Lists are constructed by the primitive functions cons and list.

Lists are printed by printing a left parenthesis, and then printing

the first element of the list*, then printing a space, then printing
the second element, etc. until the final node 1is reached. Lists

are considered to terminate when cdr of some node is not a list. 1If
cdr of this terminal node is NIL (the usual case), car of the terminal
;;ge is printed followed by a right parenthesis. If cdr of the
terminal node is not NIL, car of the terminal node is printed,

followed by a space, a period, another space, cdr of the terminal node,

and then the right parenthesis. Note that a list input as (A B C . NIL)

* () is read as the atom NIL.

** Note that in BBN LISP terminology, a list does not have to end
in NIL, it 1is simply a structure composed of one or more conses.

t The individual elements of a list are printed using prin2 if the
list is being printed by print or prin2, and by prinl if the list
is being printed by prinl.

will print as (A B C), and a list input as (A B . (C D)) will print
as (A B C D). Note also that printlevel affects the printing of
lists to teletype, as described on page 14.13, and that carriage

returns may be inserted where dictated by linelength, as described
on page 14.18.

A list is stored as a chain of list nodes. A list node is stored

in one PDP-10 word, the right half containing car of the list (a
pointer to the first element of the list) and the left half containing
cdr of the list (a pointer to the next node of the list).

Arrazs

An array in LISP is a one dimensional block of contiguous storage
of arbitrary length. Arrays do not have input syntax, they can

only be created by the function array. Arrays are printed by both
print, prin2, and prinl, as # followed by the address of the array
pointer (in octal). Array elements can be referenced by the func-

tions elt and eltd, and set by the functions seta and setd, as
described in chapter 10.

Arrays are partitioned into four sections: a header, a section
containing unboxed numbers, a section containing LISP pointers, and

a section containing relocation information. The last three sections
can each be of arbitrary length (including 0); the header is two
words long and contains the length of the other sections as indicated
in the diagram below. The unboxed number region of an array is

used to store 36 bit quantities that are not LISP pointers, and
therefore not to be chased from during garbage collections, e.qg.
machine instructions. The relocation information is used when the
array contains the definition of a compiled function, and specifies
which locations in the unboxed region of the array must be changed

if the array is moved during a garbage collection.

The format of an array is as follows:

HEADL WORD # " ADDRESS OF RLELOCATION | - -
_ % INFORMATION ; LENGTH
WORD 1 ! GSED BY GARBAGE ADDRESS OF POILITERS
' COLLECTOR
FIRST DATA WORD
NOLi~-POINTERS
POINTERS
PLLOCATION

INFORIHATION

The header contains:

word ¢ right length of entirec klock=ARRAYSIZE+2.

left address of relocation information relative to

word 2 of block (>2 if relocation information
exists, negative if array is a hash array, #

if ordinary array).

word 1 right - address of pointers relative to word Z of Llock.

left

!

used bv garbage collector.

Strings

The input syntax for a string is a ", followed by a sequence of
any characters except " and %, terminated by a ". " and % may be
included in a string by preceding them with the escape character
%.

Strings are printed by print and prin2 with initial and final "'s,
and %'s inserted where necessary for it to read back in properly.
Strings are printed by prinl without the delimiting "'s and extra

$'s.

Strings are created by mkstring, substring, and concat.

Internally a string is stored in two parts; a string pointer and

the seguence of characters. The LISP pointer to a string is the
address of the string pointer. The string pointer, in turn, contains
the character position at which the string characters begin, and

the number of characters. String pointers and string characters

are two separate data types,* and Several‘gt:ing pointers may
reference the same characters. This method of storing strings
permits the creation of a substring by creating a new string pointer,
thus avoiding copying of the characters. For more details, see

p. 10.10. '

String characters are 7 bit bytes packed 53 to a (PLP-10) word.

The format of a string pointer is

57 OF CHARACTE '-.8'7'5"? "ADDPLSS OF S7RING + CHARACTIR]
e L — . rogrriorx_ |

0 14 1% 35

The maximum length of a string is 32X (F=1024) characters.

+String characters are not directly accessihle by user programs.

D

Storage Allocation and Garbage Collection

In the following discussion, we will speak of a quantity of
memory being assigned to a particular data type, meaning that

the space is reserved for storage of elements of that type.

" Alloecation will refer to the process used to obtain from the z3lreadv

assigned storage a particular location for storing one data
element.

A small amount of storage is assigned to each data type when
LISP is started; additional storage is assigned only duriqg a

garbage collection.

The page is the smallest unit of memory that may be assigned
for use by a particular data type. lor each page of memory
there is a one word entry in a type table. The entry contains
the data type residing on the page as well as other information
about the page. The type of a pointer is determined by

examining the appropriate entry in the type table.

Storage is allocated as is needed by the functions which create
new data elements, such as cons, pack, mkstring. For example, when

a large integer is created by iplus, the integer is stored in the

next available location in the space assigned to integers. If
there is no available location, a garbage collection is initiated,

which may result in more storage being assigned.

The storage allocation and garbage collection methods differ
for the various data types. The major distinction is betwecen
the types with elements of fixed length and the types with
elements of arbitrary length. List nodes, atoms, large
integers, floating point numbers, and string pointers are

fixed length; all occupy 1 word except atoms which use 3 words.

iirrays, pnames, and strings are variable length.

3.13

Elements of fixed length types are stored so that they do not
overlap page boundaries. Thus the pages assigned to a fixed
length type need not be adjacent. If more space is needed,

any empty page will be used. The method of glloeating storage
for these types employs a free-list of available locations;
that is, each available location contains a pointer to\ﬁhe next
available location. A new elenment is stored at the first loca-

tion on the free-list, and the free-list pointer is updated.¥*

Elements of variable length data tvpes are allowed to overlap

page boundaries. Consequently all pages assigned to a particular
variable length type must be contiguous. Space for a new element is
allocated following the last space used in the assigned block

of contiguous storage.

When LISP is first called, a few pages of memory are assigned to each
data type. When the allocation routine for a type determines

that no more space is available in the assigned storage for

that type, a garbage collection is initiated. The garbage

collector determines what data is currently in use and reclaims

that which is no 1longer in use. A garbagce collection may also be

initiated by the user with the function reclaim. (see p. 10.14).

Data in use (also called active data) is any data that can be
reached' from the currently running program (i.e., variable
bindings and functions in execution) or from atcms. To find the
active data the garbage collector 'chases' all pointers, beginning
with the contents of the push-down lists and the components (i.e.,
car, cdr, and function definition cell) of all atoms with at least

one non-trivial component.

The allocation routine for list nodes is more complicated. Each
page containing list nodes has a separate free list. First a page
is chosen (see CONS for details), then the free list for that page
is used. Lists are the only data type which operate this way.

2

TN

~

When a previously unmarked datum is encountered, it is .
marked, and all pointers contained in it are chased. Most data
types are marked using bit tables; that is tables containing
one bit for each datum. Arrays, however, are marked using a

half-word in the array header.

When the mark and chase process is completed, unmarked’(and there-
fore unused) space is reclaimed. Elemenf; of fixed length types
that are no longer active are reclaimed by adding their loca-
tions to the free list for that type. This’ free list allocation
method permits reclaiming space without moving any data,

thereby avoiding the time consuming process of updating all
pointers to moved data. 7o reclaim unused space in a

block of storage assigned to a variable length type, the

active elements are compacted toward the beginning of the
storage block, and then a scan of all active data that can
contain pointers to the moved data is verformed to update

the pointers.

Whenever a garbage collection of any type is initiated,* unused
space for all fixed length types is reclaimed since the
additional cost is slight. However, space for a variable
length type is reclaimed only when that type initiated the

garbage collecticn.

* The'type of a garbage collection'or the'type that initiated
a garbage collection 'means either the type that ran out of
space and called the garbage collector, or the argument to

‘reclaim.

3.15

If the amount of storage reclaimed for the type that initiated

the garbage collection is less than the minimum free storage
requirement for that type, the garbage collector will assign
enough additional storage to satisfy the minimum free storage
requirement. The minimum free storage requirement for each

data type may be set with the function minfs, p. 10.15. The garbage
collector assigns additional storage to fixed length types by
finding empty pages, and adding the appropriate size elements from
each page to the free list. Assigning additional storage to a
variable length type involves finding empty pages and moving

data so that the empty pages are at the end of the block of
storage assigned to that type.

In addition to increasing the storage assigned to the type
initiatinc a garbage collection, the garbage collector will
attempt to minimize garbage collections by assigning more
storage to other fized length types according to the following
algorithm.* If the amount of getive data of a tvpe has

increased since the last garbage collection by more tiian 1/4

of the minfs value for that type, storage is increased (if
necessary) to attain the minfs value. If active data has
increased by less than 1/4 of the minfs value, availakle

storage is increased to 1/2 minfs. If there has Leen no
increase, no more storage is added. For example, if the minfs
setting is 2000 words, the number of active words has increased
by 700, and after all unused words have been collected there

are 1000 words available, 1024 additional words (two pages) will
be assigned to bring the total to 2024 words available. If the
number of active words had increased by only 300, and there were

500 words available, 512 additional words would be assigned.

* Je may experiment with different algorithms.

3.16

N

Shared LISP

The LISP system initially obtained by the user is shared; that

is, all active users of LISP are actually using the same pages

of memory. As a user adds to the system, private pages are

added to his memory. Similarly, if the user changes anything in the
original shared LISP, for example, by advising a system function, a
private copy of the changed page is created.

In addition to the swapping time saved by having several users
accessing the same memory, the sharing mechanism permits a large
saving in garbage collection time, since we do not have to garbage
collect any data in the shared system, and thus do not need to chase

from any pointers on shared pages during garbage collections.

This reduction in garbage collection time is possible because the
shared system usually is not modified very much by the user.

If the shared system is changed extensively, the savings in time
will vanish, because once a page that was initially shared is
made private, every pointer on it must be assumed active, because
it may be pointed to by something in the shared system. Since
every pointer on an initially shared but now private page can also
point to private data, they must always be chased.

A user may create his own shared system with the function makesys.

If several people are using the same system, making the system

be shared will result in a savings in swapping time. Similarly, if

a system is large and seldom modified, making it be shared will result
in a reduction of garbage collection time, and may therefore be worth-

while even if the system is only being used by one user.

3.17

TN

SECTION IV

FUNCTION TYPES AND IMPLICIT PROGIN

In BBN LISP, each function may independently have:

a. 1its arguments evaluated or not evaluated;

b. a fixed number of arguments or an indefinite

nunber of arguments;

c. Dbe defined by a LISP expression, by built-in

machine code, or bhv compiled machine code.

llence there are twelve function tvpes (2 x 2 x 3).

Functions defined by LISP expressions are called exprs. Lxprs
must begin with either LAIBDA or NLAMBDA ,* indicating whether
the arguments to the function are to ke evaluated or not
evaluated, respectively. Following the LAMEDA or WLANDDZ in

the expr is the 'argument list', which is either

(1) a list of literal atoms or NIL (fixed number

of arguments); or
(2) any literal atom other than NIL, (indefinite

number of arguments).

* Vhere unambiguous, the term expr is used to refer to
either the function, or its definition.

Case (1) corresponds to a function with a fixed number of
arguments. Each atom in the list is the name of an argument
for the function defined by this expression. Arguments for

the function will be evaluated or not evaluated, as dictated by
whether the definition begins with LAMBDA or NLAMBDA, and then
paired with these argument names. This process is called
"spreading” the arguments, and the function is called a spread-
LAMBDA or a spread-NLAMBDA.

Case (2) corresponds to a function with an indefinite number of
arguments. Such a function is called a nospread function. If

its definition begins with NLAMBD2A, the atom which constitutes

its argument list is bound to the list of argquments to the function
(unevaluated). For example, if FOO is defined by (NLAMBDA X --),

when (FOO THIS IS A TEST) is evaluated, X will be bound to
(THIS IS A TEST).

If a nospread function begins with a LAMBDA, indicating its
arguments are to be evaluated, each of its n arguments are
evaluated and their values stored on the pushdown list. The
atom following the LAMBDA is then bound to the number of
arguments which have been evaluated. For example, if FOO is
defined by (LAMBDA X --) when (FOO A B C) is evaluated, &, B,
and C are evaluated and X is bound to 3. A built-in function
arg[atm;m] is available for computing the value of the mth
argument for the lambda-atom variable atm. arg is described

in section 8.

P

N

Compiled Functions

Functions defined by expressions can be compiled by the LISP
compiler, as described in section 18, "The Compiler and
Assembler". Functions may also be written directly in machine
code using the ASSEMBLE directive of the compiler. Functions
created by the compiler, whether from S-expressions or ASSEMBLE
directives, are referred to as compiled functions.

Function Type

The function fntyp[fn] returns the function type of fn. The
value of fntyp is one of the following 12 types:

EXPR CEXPR SUBR
FEXFR CFEXPR FSUBR
LXPR* CEXPR* SUBR¥*
FLXPR* CFEXPR¥* FSUBR*

The types in the first column are all defined bv expressions.

The types in the second column are compiled versions of tlhe types
in the first column, as indicated by the prefix C. 1In the third
column are the parallel types for built-in subroutines.

Functions of types in the first two rows have a fixed number of
arguments, i.e., are spread functions. Functions in the third
and fourth rows have an indefinite number of arguments, as indi-
cated by the suffix *. The prefix F indicates no evaluation of
arguments. Thus, for example, a CFEXPR* is a compiled form of

a nospread-liLAMBDA.

A standard feature of the BBN LISP system is8 that no error occurs
if a spread function is called with too many or too few arguments.
If a function 18 called with too many arguments, the extra argu-
ments are evaluated but ignored. If a function is called with

too few arguments, the unsupplied ones will be delivered as NIL.
In faet, the function itself cannot distinguish between being
given NIL as an argument, and not being given that argument, e.y.,
(FOO) and (FOO NIL) are exactly the same.

4.3

Progn

progn is a function of an arbitrary number of arguments.

progn evaluates the arguments in order and returns the value of
the last, i.e., it is an extension of the function prog2 of
LISP 1.5. Both cond and lambda/nlambda expressions have been

generalized to permit 'implicit progns' as described below.

Implicit Progn

The conditional expression has been generalized so thateach clause

may contain n forms (n>1l) which are interpreted as follows:

(COND
(Pl E11 £l12 E13)
(P2 E21 E22) [1]
(P3)
(P4 E41))

will be taken as equivalent to (in LISP 1.5):

(Conp
(P1 (PROGN El1l E12 E13))
(P2 (PROGKN L21 L22))
(P3 P3)
(P4 ©41)
(T NIL))

[2]

Note however that P3 is evaluated only

once in [1l], while it is evaluated a second time if the
expression is written as in [2]. Thus a list in a cond with
only a predicate and no following expression causes the value
of tie predicate itself to ke returned. Iiote also that WIL is
returned if all the predicates have value NIL, i.e., the cond
'falls off the end'. No error is generated.

o

LAMBDA and NLAMBDA expressions also allow implicit progn's;
thus for example

(LAMBDA (V1 V2) (Fl1 vl1) (F2 V2) NIL)
is interpreted as
(LAMBDA (V1 V2) (PROGN (F1 V1) (F2 Vv2) NIL))
The value of the last expression following LANMNBDA (or NLAMEDA)

is returned as the value of the entire expression. In this

example, the function would always return NIL.

PRIMITIVE FUNCTIONS AND PRELGICATEE
Contentz
1= CAR, CDR, CAAR ... CDDDDR, TOMS, CONSCOUNT,
2 RFLACD, RPLACA, FRPLACD, FRPLACA, QUOTE, KWGTE;
L COND, SELECY(Q, PROGL, PROGH, P“uo,
8 GO, RETURN, SET, SETQ, SETQQ, 4TCM, LITATOM,
9 Numn:k; 5TRINGP, ARRAYP, LL"D NLISTP, !
1g EQ, NEQ, NULL, NOT, EQP, EQUAL, AND, OR, EVERY,
11 SOME, NOTANY, NOTEVERY, MEMB, FMEME, MEIMBER
12 TAILP, ASS0C, FASSOC, SASSOC
Primitive Functions
carix car gives the first element of a list
¥, or the leit =zlement of a dotted
palr x. For literal atom, wvalue 1z
(" top level binding (valus) of the atom.

For all other nonlists, e.g., stwings,
arrays, and nunbers, the value is wnde-~

fined, i.e., it is the right 1¢ bits of x.

cdrx] cir gives the rest of a list {all but

the first eliement)., This is also the

right memoer a dotted pair. I x
te

ct
is a literal atom, cdrlx] gives the

property tist of x. Propexrty listes are
usually NIL urnless modified by the

user. The valuse of cdr ‘= undefined for

other nonlists, i.e. it is the l=fFf% 18
Lbits of w.

caar{x] = carlcarix]] All 30 combinations of nested cars

o o e s

. and cdrs up to 4 deep are included
cadr{x] = carlcdrixil]

in the system. All are compiled open
- cddddr [x] = by the compiler.
(w, [cdrindricdricdrixlliil Y RHe Conpl Led

51;4.; ato.

* Means car is on page 5.1, rplzad on page 5.2,

5
or

cons [

cons{x;y] is placed

1) on the page with

otherwise

2) on the page with

otherwise

on the same

Lad
o

otherwise

4) on any page

pa

Pl

<
v

16 LISP words.

conscount{]

rplacdlx;v]

e

e
b,

&
-

'

J

cons constructs a dotted pair of

X and X= If y is a list, % becomes
the fiyrst element of that list, To
minimize drum accesses the following
algorithm 1s used for finding a page
on which to put the constructed LISP

word.

Y if v is a list and there is rocom;

x if x is a list and there is room;

the last cons if there is room:;

a specified minimum of storage, precently)

Value is the number of conses since

this LISP was started up. ’

Places the.pcinter y in the decrement,
i.e. cdr, of the cell pointed to by

Xx. Thus it physically changes the in-
ternal list structure of x, as opposed
to cong which creates a new list element.
The only way to get a circular list

is by using rplacd to place a pointer

to the beginning cf a list in a spot

at the end of the list.

m
)
]

™

rplacalx;yl

The value of rplacd is x. An attempt

to rplacd NIL will cause an error

(except for rplacd[NIL;NIL]). For X a
literal atom, rplacd[x;y] will make y

be the property list of Xx. For all other
non-lists, rplacd should be used with
care: it will simply store y in the

left 18 bits of x.

similar to rplacd, but replaces the
address pointer of x, i.e., car, with
Y- The value of rplaca is x. An
attempt to rplaca NIL will cause an
error, (except for rplaca[NIL;NIL]).
For x a literal atom, rplacalx;y]
will make y be the top level value
for x. For all other non-lists,
rplaca should be used with care: it
will simply store y in the right 18

bits of x.

Convention: Naming a function by prefixing an existing function
name with f wusually indicates that the new function is a fast

version of the old,

one which has the same definition but

compiles open and runs without any 'safety' error checks.

frplacd([x;vy]

llas the same definition as rplacd but
compiles open as one instruction. Note
that no checks are made on X, so that a
compiled frplacd can clobber NIL, produc-

ing strange and wondrous effects.

frplacal[x;v]

quote [x]

kwote [x]

cond[cl;cz;...;ck]

Similar to gEElESQ'

This is a function that prevents
its argument from hLeing evaluated.
Its value is x itself.

(LIST (QUOTE QUOTE) X),

if x=A, y=B,

(KWOTE (CONS X Y)) =
(OQUOTE (A . B)).

The conditional function of LISP,
cond, takes an indefinite number of
arguments C1+85r+++Cyy called clauses.

Each clause = is a list (Sli"’gni)
of n>1 items. The clauses are consi-
dered in sequence as follows: the
first expression e i of the clause
S5 is evaluated and its value is
classified as false (equal to NIL)

or true (not equal to NIL). If the
value of e is true, the expressions
€ri°°*Cni that follow in clause <y
are evaluated in sequence, and the
value of the conditional is the value
of eni the last expression in the
clause. In particular, if n=1, i.e.,
if there is only one expression in
the clause Cir the value of the
conditional is the value of €14
(which is evaluated only once).

If e is false, then the remainder

1.1
of clause S5 is ignored, and the next
clause Ci+1 is considered. If no
gli is true for any clause, the value

of the conditional expression is NIL.

See p. 4.3 for an example.

C

™

selectq[x;yl;yz;...;yn;z] This very useful function is used to
select a sequence of instructions

based on the value of its first argu-

ment x. Each of the Yy is a list of

the form (s.

e

8i 813 S2j°°+8ki)

where 85 is the selection key.

If

tested to see if it is eq to s,

S; is an atom the value of x is

1

(not evaluated). If so, the

expressions €1 r-++8; are evaluated

in

sequence, and the value of the

selectq is the value of the last

expression evaluated, i.e. i

If

55 is a list, and if any element

ot . i
(n evaluated) of s; is eq to the

value of x, then e;; to ex; are evalu-

ated in turn as above.

If Xi is not selected in one of the

two ways described then Yi+1 is

tested, etc. until all the y's have

been tested. 1If none is selected,

the value of the selectq is the value

of

An

z. 2 must be present.

example of the form of a selectqg is:

(SELECTQ (CAR X)

(Q (PRINT FOO)
(FIE X))
(CA EI O
(VOWEL X))
(COND
((NULL X)
NIL)
(T (QUOTE STOP]

progl[xl;xz;...;xn]

progn[x;v;...;z]

prog[args;el;ez;...;en]

which has two cases, Q and (A E I O U)
and a default condition which is a
cond.

selectg compiles open, and is therefore
very fast; however, it will not work if
the value of x is a list, a large integer,
or floating point number, since it uses

€eq.

This function evaluates its arguments

in order, that is, first x then x

’ X5
etc. It returns the valuelof its first
argument §l'
progn evaluates each of its arguments

in sequence, and returns the value of
its last argument as its value. progn
is used to specify more than one compu-
tation where the syntax allows only

one, e.g.

(SELECTQ (PROGN ...))

allows evaluation of several expressicns

as the default condition for a selectq.

This feature allows the user to write
an ALGOL-like program containing LISP
statements to be executed. The first
'argument' is a list of program vari-
ables. (Must be NIL if no variables are
used). Each atom in this list is bound
to NIL. Each list must be of the form

5.6

»

J

)

(atom form). atom is bound to the
value of form, the evaluation taking
place before any bindings, e.g.,
(PROG ((X ¥) (Y X)) ...)

will bind X to the value of y and y
to the (original) value of Xx.

The rest of the prog is a sequence of
(non-atomic) statements (forms) and
atomic symbols used as labels for go.
The forms are evaluated sequentially,
with labels being skipped. The two
special functions go and return alter
this flow of control as described
below. The value of the prog is
usually specified by the function
return. If no return is executed, i.e.,
if the prog "falls off the end," the
value of the prog is undefined, i.e.
garbage.

go [x] go is the functiorn used to cause a
transfer in a prog. (GO L) will cause
the program to continue at the label
L. A go can be used at any level in

agro.

return [x] A return is the normal exit for a
prog. 1Its argument is evaluated and
is the value of the prog in which it
appears.

If a go or return is executed in an interpreted function which is

not a prog, the go or return will be executed in the last interpreted
prog entered if any, otherwise cause an error.

go or return inside of a compiled function that is not a prog is not
allowed, and will cause an error at compile time.

As a corollary, go or return in a functional argument, e.g. to mapc,
will not work compiled. Also, since nlsetq's and ersetqg's compile
as separate functions, a go or return cannot be used inside of a

compiled nlsetq or ersetq if the corresponding prog is outside, i.e.
above, the nlsetg or ersetqg.

set[x;v] This function sets X to y. Its value is
y. If x is not a literal atom, or
X is NIL, causes an error. Note that
set is a normal lambda-spread funct}on,
i.e., its arguments are evaluated be-
fore it is called. Thus, if the value
of x is ¢, and the value of y is b,
then set[x;y] would result in ¢ having
value b, and b being returned as the

value of set.

5.8

setq[x;y] An nlambda version of set: the first

argument is not evaluated. Thus if

the value

of x is ¢ and the value of

y is b, setg[x;y] would result in x

(not ¢) being set to b, and b being

returned.

If x is not a literal atom,

or x is NIL, an error is generated.

setqq [x:y] ' Identical to setq except that neither
argument is evaluated. Thus setqqlx;y]
sets X to Y.

Predicates and Logical Connectives

atom[x] is T if x
litatom[x] is T is x

a number,
numberp [x] is x if x

is an atom; NIL otherwise.

is a literal atom, i.e., not
NIL otherwise.

is a number, NIL otherwise.

Convention: Functions that end in p are frequently predicates,

i.e. they test for some condition.

stringp[x] is x if x

arrayp [x] is x if

1%

is a string, sNIL otherwise.*

is an array, NIL otherwise.

*For other string functions, see Section 10.

listp[x]

nlistp[x]

eqx;yl

neq[x;yl

null [x]

not [x]

eqplx;y]

equal(x;vy]

is x if x is a nonatomic list-
structure, i.e., one created by one or
more conses; NIL otherwise. Note
that arrays and strings are not

atoms, but are not lists.

not[listp([x]]

The value of eq is T if x and y are
pointers to the same structure in
memory, and NIL otherwise. eq is
compiled open by the compiler as a
36 bit compare of pointers. Its
value is not guaranteed T for equal

numbers which are not small integers.

See eqgp.

The value of neq is T if x is not eq
to y, and NIL otherwise.

eq[x;NIL]
same as null, that is eq[x;NIL].

The value of egp is T if x and y are
pointers to the same structure in
memory, or if x and y aré numbers and
have the same value. Its value is

NIL otherwise?¥

The value of this function is T if
x and y print identically; the value
of ecual is NIL otherwise. Note that

x and y do uxot have to be eg.

*For other number functions, see Section 13.

5.10

Or[X17X27"'7Xn]

every [everyx;everyf]

some [somex ; somef]

notany [sonex ; somef]

notevery [everyx;everyf]

Takes an indefinite number of arguments
(including @g). If all of its arguments
have non-null value, its value is the
value of its last argument, otherwise
NIL. E.g. and[x;member[x;y]] will have
as its value either NIL or a tail of y.
and[]=T. Evaluation stops at the first

argument whose value is NIL.

Takes an indefinite numl.er of arguments
(including f@). Its value is that of

the first argument whose value is not
NIL, otherwise NIL if all arguments have
value NIL. e.g. or[x;numberp[y]] has

its value x, y, or NIL. or[]=NIL. Evalu-
ation stops at the first argument whose
value is not NIL.

Is T if the result of applying everyf
to each element in everyx is true, other=-
wise NIL. E.g., every[(X Y Z); ATOM]=T.

is the tail of somex beginning with &

the first element that satisfies somef,

element is true. Value is NIL is no

such element exists. E.g.,
some [x; (LAMBDA (2) (ELUAL Z Y))] is
equivalent to member([v;x].

not[sone [somex;somef]]

not [every [everyx;everyf]]

memb [x;y] Determines if x is a member of list :)
Y, i.e., if there is an element of Y
eq to x. If so, its value is the tail
of the list y starting with that ele-

ment. If not, its value is NIL.

fmemb [x;vy] Fast version of memb that compiles open
as a five instruction loop, terminating
on a NULL check.

member [x;y] Identical to memb except that it uses
equal instead of eq to check member-
ship of x in y.

COMMENT: EQ VS EQUAL: The reason for the existence of both memb
and member is that eq compiles as one instruction but equal re-
quires a function call, and is therefore considerably more expen-

sive. Wherever possible, the user should write (and use) functions
that use eq instead of equal. :)
tailp([x;v] Is x, if x is a list and a tail of vy,

i.e., x 1s eq to some number of cdrs >7 *

of y, NIL otherwise.

assoc[x;vy] y is a list of lists (usually dotted
pairs). The value of assoc is the
first sublist of y whose car is eqg to
X. If such a list is not found, the
value is NIL. Example:
assoc[B;((A . 1)(B .2)(C . 3))]=(B . 2).

fassoc[x;y] Fast version of assoc that compiles
open as a 6 instruction loop, terminat-

ing on a NULL check.

sassoc([x;v] Same as assoc but uses equal instead of eq.

-

*If x is eg to some number of cdrs 21 of y, we say X is a proper tail
(of V)

5.12

OO £ o

list[x

SECTION VI

LIST MANIPULATION AND CONCATENATION

Contents

LIST, APPEND, NCONC, NCONC1l, TCONC, LCONC,
ATTACH, REMOVE, DREMOVE, COPY, REVERSE,
DREVERSE, SUBST, DSUBST, LSUBST, ESUBST,
SUBLIS, SUBPAIR, LAST, FLAST, NLEFT, LASTN,
NTH, FNTH, LENGTH, FLENGTH, COUNT, LDIFF,
INTERSECTION, UNION, SORT, MERGE, ALPHORDER

1;x2;...;xn] lambda-nospread function. Its value is

a list of the values of its arguments.

append [X(iX,i...i%] Copies the top level of the list X

TN
i

I

and appends this to a copy of top
level list X, appended to ... appended
to zn' e.g.
append[(A B) (C D E) (F G)] =
(A B CDETFQG)
Note that only the first n-1 lists
are copies. However n=]1 is treatec
specially; i.e. append[x] can be used to

copy the top level of a single list.*

The following examples illustrate the
treatment of non-lists.
append[(A B C);u]l = (A B C . D)
append[A; (L C D)] (B C D)
append[(A B C . D); (L F G)] =
(A B CLTG)

append[(A B C . D)] = (A B C . D)

= *To copy a list to all levels, use copy.

6.1

nconc[xl;xz;...;xn]

nconcl[lst;x]

tconc [ptr; x]

Returns same value as append but
actually modifies the list structure :)

of xl ees X

n-1

Performs nconc[lst;list[x]]. The

cons will be on the same page as lst.

tconc is useful for building a list
by adding elements one at a time at
the end. 1i.e. its role is similar to
that of EESEEl However, unlike
nconcl, tconc does not have to search
to the end of the list each time it is

called. It does this by keeping a
pointer to the end of the list being
assembled, and updating this pointer
after each call. The savings can be
considerable for long lists. The :>
cost is the extra word required for
storing both the list bheing assembed,
and the end of the list. ptr is

that word: car([ptr] is the list being
assembled, cdr([ptr] is last[car[ptr]].
The value of tconc is ptr, with the

approvriate modifications to car and

cdr. Example:

(RPTQ 5 (SETQ FOO (TCONC FOO RPTN)))
((5 4 321) 1)

tconc can be initialized in two ways.
If ptr is NIL, tconc will make up a

ptr. In this case, the program must
set some variable to the value of the

first call to tconc. After that, it

(L

~

/ AN

is unnecessary to reset since tconc

physically changes ptr. Thus

(SETQ FOO (TCONC NIL 1))
((1) 1)

(RPTQ 4 (TCONC FOO RPTN))
((1 4 321) 1)

If ptr is initially (NIL), the value
of tconc is the same as for ptr=NIL,
but tconc changes ptr, e.qg.

(SETQ FOO (CONS))

(NIL)

(RPTQ 5 (TCONC FOO RPTN))
((5 4 321) 1)

The latter method allows the program

to initialize, and then call tconc

without having to perform setqg on

its value.

lconc [ptr;x]

attach[x;vy]

Where tconc is used to add elements
at the end of a list, lconc is’ used
for building a list by adding lists
at the end, i.e. it is similar to
nconc instead of nconcl, e.qg.

(SETQ FOO (CONS))

(NIL)

(LCONC FOO (LIST 1 2))
((1 2)2)

(LCONC FOO (LIST 3 4 5))
((1L 2 3 45) 5)

(LCONC FOO NIL)

((1L 2 345) 5)

Note that

(TCONC FOO NIL))

((1L 2 3 4 5 NTIT) NIL)

(TCONC FOO (LIST 3 4 5))

((1 2 34 5NIL (3 45)) (3 415))

lconc uses the same pointer conventions

as tconc for eliminating searching to
the end of the list, so that the same
pointer can be given to tconc and
lconc interchangeably.

Value is equal to cons|[x;y], but
attaches x to the front of y by
doing an rplaca and rplacd, i.e. the

value of attach is eq to y, which it
physically changes. y must be a list
or an error is generated.

D

T W e T

TN
; 3

o~
/

remove [x;1]

CONVENTION:

Removes all occurrences of X from list
1, giving a copy of 1 with all elements
egual to X removed.

naming a function by prefixing an existing function

with d frequently indicates the new function is a destructive
version of the old one, 1.e. 1t does not make any new structure
but cannibalizes its argument(s).

dremove[x;1]

copy [x]

reverse[1]

Similar to remove, but uses eq instead
of equal, and actually modifies the
list 1l when removing X, and thus does
not use any additional storage. More

efficient than remove.

lakes a copy of the list x. The value
of copy is the copied list. All levels
of x are copied, down to non-lists,
i.e. if x contains arrays and strings
the copy of x will contain the identi-
cal arrays and strings. Copy is recur-
sive in the car direction only, so
that very long lists can be copied.
Note: to copy just the top level

of x, do append[x].

Reverses (and copies) the top level ot

a list, e.q.
reverse[(A B (C D))] = ((C D) B A)

If x is not a list, value is X,

dreverse[l]

subst [x;y;2]

dsubst [x;y:2]

lsubst[x;y;z]

Value is same as that of reverse,
but dreverse destroys the original
list 1l and thus does not use

any additional storage. More effi-

cient than reverse.

Value is the result of substitut-

ing the S-expression x for

all occurrences of thg S-expression
Yy in the S-expression z. Substitution
occurs whenever y is equal to car of

some subexpression of z or when y is
both atomic and eq to cdr of some

subexpression of z. For example:

subst[2;B;(C B (X . B))] =
(CA (X,R))

subst[A; (B C);((B C) DB C)] =
(ADBC), not (A D.A)

The value of subst is a copy of 2z
with the appropriate changes.
Furthermore, if x is a list, it is

copied at each substitution.

Similar to subst, but uses eq and does

not copy 2, but changes the list

structure z itself. Like subst, dsubst

substitutes with a copy of x. More

efficient than subst.

Like subst except x is substituted

as a segment, e.q.

lsubst[(A B); ¥; (XY 2)] is (X A B 2).

Note that if x is NIL, produces a copy
of z with all x's deleted.

6.6

D

esubst([x;y;z;flg]

sublis[alst;expr;flg]

subpair[old;new;expr; flg]

Similar to dsubst, but first checks to
see if y actually appears in z. If
not, calls error! where flg=T means
print a message of the form x ?. This
function is actually an implementation
of the editor's R command (see Section
9), so that y can use &, --, or alt-
modes a la the R command.

alst is a list of pairs:

with each uy atomic.

The value of gublis[alst;expr;flg]
is the result of substituting each
v for the corresponding u in expr.*
Example:

sublis[((A . X)(C . ¥));(A B C D)]=

(X B Y D)

New structure is created only if
needed or if flg=T, e.g. if flg=NIL
and there are no substitutions, value

is eq to expr.

Similar to sublis, except that elements
of new are substituted for correspond-
ing atoms of old in expr. Example:

subpair((A C); (X Y); (A B C D)]=

(X-B Y D)

As with sublis, new structure is
created only if needed, or if flg=T,
e.g. if flg=NIL and there are no sub-
stitutions, the value is eq to expr.

*To remember the order on alst think of it as old to new, i.e.

. > V..
ul 1

‘\ Note that subst, dsubst, lsubst, and esubst all substitute copies

“ of the appropriate expression, whereas subpair and sublis substitute

| the identical structure (unless flg=T).

| ’ 1a§t[x]

| flast[x]

nleft[l;n]

lastn([1l;n]

nth[x;:;n]

fnthix;n]

Value is a pointer to the last cell
in the list X, e.q. if x=(A B C) then
last[x]=(C). If x=(A B . Q)

last[x] = (B . C). Value is NIL if
X is not a list.

Fast version of last that compiles
open as a 5 instruction loop, termi-
nating on a NULL check.

Value is last n elements of 1. Vvalue
is NIL if 1 is not a list of length

2 n.

Value is cons([x;y] where y is the last

n elements of 1, and X is the initial
segment. e.qg.

lastn[(A B C D E);2]=((A B C) D E)
lastn[(A B);2]=(NIL A B)

Value is NIL if 1 is not a list con-
taining at least n elements.

Value is the tail of x hecinning with
the nth element, e.g. if n=2, value

is cdr[x], if n=3, cddr(x], etc. If

n=1, value is x, if n=0, for consistency,

value is cons[NIL;x]

Fast version of nth that compiles open
as a 3 instruction loop, terminating
on a NULL check.

6.8

D)

D

D

. "\

length[x]

flength[x]

count [x]

1diff(x;y;z]

Value is the length of the list x
where length is defined as the number
of cdrs required to reach a nonlist,
e.g. length[(A B C)] = 3
length[{(A B C . D)] = 3
length[A] 0

Fast version of length that compiles
open as a 4 instruction loop, termi-

nating on a NULL check.

Value is the number of list words in
the structure x. Thus, count is like

a length that goes to all levels. Count
of a non-list is 0.

y must be a tail of x, i.e. eq to the
result of applying some number of
cdrs to x. 1ldiff([x;y] gives a list of
all elements in x but not iny, i.e.,
the list difference of x and y. Thus
1diff [x;member [FOO;x]] gives all
elements in x up to the first FOO.

Note that the value of 1ldiff is always
new list structure unless y=NIL, in

4

which case ldiff[x;NIL] is x itself.

If z is not NIL the value of 1ldiff
is effectively nconclz;ldiff([x;vy]],
i.e. the list difference is added at
the end of z. If y is not a tail of
X, generates an error. 1ldiff termi-

nates on a null cneck.

intersection[x;yl

union([x;y]

sort [data;comparefn]

*The value of union is

Value is a list whose elements are
members of both lists x and y. Note
that intersection[x;x] gives a list
of all members of x without any
duplications.

Value is a (new) list consisting of
all elements included on either of
the two original lists. It is more

efficient to make x be the shorter list.*

data is a list of items to be sorted
using comparefn, a predicate function
of two arguments which can compare

any two items on data and return T

if the first one belongs before the
second. If comparefn is NIL, alphorder
is used; thus sort[data] will alpha-
betize a list. 1If comparefn is T,
car's of items are given to alphorder;
thus sort[a-list;T] will alphabetize
by the car of each item. sort[x;ILESSP]
will sort a list of integers.

The value of sort is the sorted list.
The sort is destructive and uses no
extra LISP data space. The value
returned is eq to data but elements
have been switched around. Inter-

rupting with control D, E, or B

with all elements of X not in Y consed

on the front of it. Therefore, if an element appears twice in
y, it will appear twice in

union[(A) ; (A A)]
but union[(A A) ; (A)]
union is non-commutative.

union([x;y]. Also, since
(A A)
(A)

2

may cause loss of data, but control

H may be used at any time, and

sort will break at a clean state from
which + or control characters are safe.
The algorithm has been optimized with

respect to the number of compares.

Note that if comparefn[a;b] = comparefn[b;a] then the ordering of
a and b may or may not be preserved. For example, if (FOO . FIE)
appears before (FOO . FUM) in X, sort[x;T] may or may not reverse
the order of these two elements. Of course, the user can always
specify a more precise comparefn, e.q.
[LAMBDA (X Y)
(COND ((EQ (CAR X) (CAR Y)) (ALPHORDER (CDR X) (CDR Y)))

(T (ALPHORDER (CAR X) (CAR Y]

merge [a;b;comparefn] a and b are lists which have
previously been sorted using sort
and comparefn, Value is a destructive
merging of the two lists. It does not
matter which list is longer. After
reversing both a and b are eq to the

merged list. merge may be aborted
after control i.

alphorder(a;b] A predicate function of two afguments,
for alphabetizing. Returns T if its
first argument belongs before its
second. Numbers come before literal
atoms, and are ordered by magnitude
(using greaterp), Literal atoms and
strings are ordered by comparing the
(ASCII) character codes in their pnames.
Thus alphorder([23;122] is T, whereas
alphorder[A23;A123] 1is NIL, because
the character code for the digit 2 is
greater than the code for 1.

6.11

Atoms and strings are ordered before all
other data types. If neither a nor b
are atoms or strings, the value of
alphorder is T, i.e. in order. Note:
EEEEQEQEE does no unpacks, chcons,
conses, or nthchars. It is several

times faster for alphabetizing than

anything that can be written using
these other functions.

6.12

i

SECTION VIT

PROPERTY LISTS AND HASH LINKS

Contents

PUT, ADDPROP, REMPROP, CHANGEPROP, GET,

GETP, GETLIS, DEFLIST, HASH LINK, HASH-ITEM,
HASH-VALUE, HASH-ADDRESS, HASH-LINK,
SYSHASHARRAY, HARRAY, CLRHASH, PUTHASH,
GETHASH, REHASH, MAPHASH, DMPHASH, HASH OVERFLOW

[o2 TV, I gl WY R

Property Lists

Property lists are entities assoctiated with literal atoms, which

are stored on cdr of the atom. Property lists are conventionally
lists of the form (property value property value ... property value)
although the user can store anything he wishes in edr of a literal
atom. However, the functions which manipulate property lists
observe this convention by cycling down the property list two

edrs at a time. Similarly, most of these functions generate an
error 1f given an argument which i1s not a literal atom, i1.e., they
cannot be used directly on lists.

The term 'property name' or 'property' is used for the property
indicators appearing in the odd positions, and the term 'property
value' or 'value of a property' or simply 'value' for the values

appearing in the even positions. Sometimes the phrase 'to store
on the property --' is used, meaning to place the indicated infor-
mation on the property list under the property name --.

Properties are usually atoms, although no checks are made to
eliminate use of non-atoms in an odd position. However, the
property list searching functions all use eq.

Property List Functions

put [atm; prop;val] This function puts on the property
list of atm, the property prop with
value val. val replaces any previous
value for the property prop on tnis
property list. Generates an error if
atm is not a literal atom. Value is

val.

7.1

addprop [atm;prop;new; fl1g]

remprop [atm;prop]

changeprop [X;propl;prop2]

get(x;yl

This function adds the value new to
the list which is the value of pro-
perty prop on property list of atm. If ‘;>
flg is T, new is consed onto the

front of value of prop, otherwise

it is nconced on end (nconecl).

If atm does not have a prop, the effect
is EHZ same as put[atm;prop;list[new]].
e.g. if addprop[FOO;PROP;FIE] is
followed by addprop[FOO;PROP;FUM],

getp [FOO;PROP] will be (FIE FUM). The
value of addprop is the (new) property
value., 1If atm is not a literal atom,

an error occurs,

This function removes all occurrences

of the property prop (and its value)

from the property list of atm. Value

is EEEE.if any were found, otherwise :)

NIL., If atm is not a literal atom, an
error occurs.

Changes name of property propl to
prop2 on property list of E,(but does
not affect the value of the property).
Value is X, unless propl is not

found, in which case, the value is NIL.
If x is not a literal atom, an error

occurs.

Gets the item after the atom y on list

X. If y is not on the list x, value is
NIL. For example, get[(A B C D);B]=C.

iote that since get terminates on a non-
list, getl[atom,anything] is WIL.

Therefore, to search a property list, :>
getp should be used, or get applied to

cdr [atom] .

7.2

getp [atm;prop]

getlis[atm;props]

deflist[1l;propl

This function gets the property value
for prop from the property list of atm.
- The value of getp is NIL if atm is not
a literal atom, or prop is not found.
Note that the value may also be NIL if
the property value is NIL

Note: Since getp searches a list two
items at a time, the same object can be
both a property and a value. e.g.,
if the property list of atm is
(PROP1 A PROP2 B A C)
getp[atm;A] = C.
Note however that
get[cdr[atm] ;A] = PROP2

pProps is a list of properties. getlis
searches the property list of atm

two cdrs at a time, and returns the

property list as of the first property
on props that it finds E.9..

if the property list of atm is

(PROP1 A PROP3 B A C) ‘
getlis[atm; (PROP2 PROP3)]=(PROP3 B A C).
Value is NIL is atm not a literal atom

or no properties found.

This function is used to put values under
the same property name on the property
lists of several atoms. 1 is a list of
two-element lists. The first element

of each is a literal atom, and the

second element is the property value

for the property prop. The value of
deflist is NIL.

Note: Many atoms in the system already have property lists, ususally
for use by the compiler. Be careful not to clobber their property

lists by using rplacd. The value of sysprops is a list of the
property names used by the system.

7.3

Hash Links

The description of the hash link facility in BBN-LISP is included
in the chapter on property lists because of the similarities in
the ways the two features are used. A property list provides

a way of associating information with a particular atom. A hash
link is an association between any LISP pointer (atoms, numbers,
arrays, strings, lists, et al) called the hash-item, and any
other LISP pointer called the hash-value. Property lists are
stored in cdr of the atom. Hash links are implemented by computing
an address, called the hash-address, in a specified array, called
the hash-array, and storing the hash~value and the hash-item into
the cell with that address. The contents of that cell, i.e. the
hash-value and hash-item, is then called the hash-link.*

Since the hash-array is obviously much smaller than the total
number of possible hash-items,** the hash-address computed from
item may already contain a hash-link. If this link is from
Otherwise, another hash-address (in the same hash-array) must
be computed, etc, until an empty cell is found,**** or a cell
containing a hash-link from item.

*The term hash link (unhypehnated) refers to the process of
associating information this way, or the 'association' as an
abstract concept.

**which is the total number of LISP pointers, i.e., 256K.
***eq is used for comparing item with the hash-item in the cell
**k*k*After a certain number of iterations (the exact algorithm
is complicated), the hash-array is considered to be full, and

the array is either enlarged, or an error is generated, as
described below in the discussion of overflow.

P

When a hash link for item is being retrieved, the hash-address
is computed using the same algorithm as that emploved for making
the hash link. If the corresponding cell is empty, there is no
hash link for item. If it contains a hash-link from item, the
hash-value is returned. Otherwise, another hash-address must be

computed, and so forth,*

Note that more than one hash link can be attached to a given hash-

item by using more than one hash-array.

Hash Link Functions

In the description of the functions below, the argument array
has one of three forms: (1) NIL, in which case the hash-array
provided by the system, syshasharray, is used;** (2) a hash-array

created by the function harray, or created from an ordinary
array using clrhash as described below; or (3) a list car of
which is a hash-array. The latter form is used for specifying
what is to be done on overflow, as described below.

harray([n] ~ creates a hash-array of size n,

equivalent to clrhash[array([n]].

clrhash[array] sets all elements of array to #
and sets left half of first

word of header to -1.

nuthash[item;val;arrav] puts into array a hash-link from
item to val. Replaces previous
link from same item, if any. If
val=NIL any old link is removed,
(hence a hash-value of NIL is not
allowed) .

*For reasonable operation, the hash array should be ten to twenty
percent larger than the maximum number of hash links to be made to it.

** gyshasharray is not used bv the system, it is provided solely
for the user's benefit. It is initially 512 words large,
and is automatically enlarged by 50% whenever it is 'full'. See

p. 7.7.

7.5

gethash[item;array] finds hash-link from item in array

and returns the hash-value. Value

is NIL if no link exists.

rehash[oldar;newar] hashes all items and values in
oldar into newar, The two arrays do not

have to be (and usually aren't) the
same size. Value is newar.

maphash[array;maphfn] maphfn is a function of two arguments.
For each hash-link in array, maphfn
will be applied to the hash-value
and hash-item, e.qg.
maphash[array; (LAMBDA (X Y)
(AND (LISTP Y) (PRINT X)))]
will print the hash-value for all

hash-links from lists. The wvalue

of maghash is array.

dmphash [arrayname] Nlambda nospread that prints on the
primary output file a loadable form

which will restore what is in the arrav
specified by arrayname, e.qg.
(E (DMPHASH SYSHASHARRAY))
as a prettydef command will dump
the system hash-array.

Note that all eq identities except atoms and small integers are
lost by dumping and loading because new conses are done for each
item. Thus if two lists contain an eq substructure, when they are
dumped and loaded back in, the corresponding substructures, while

1 equal are no longer eg.

J

TN

N
! Y
i i

7N

Hash Overflow

The user can provide for automatic enlargement of a hash-array
when it overflows, i.e., is full and an attempt is made to store
a hash link into it, by using an array argument of the form
(hash-array . n), n a positive integer; (hash-array . f), £ a
floating point number; or (hash-array). In the first case, a
new hash-array is created with n more cells than the current
hash-array. The 0ld array is then rehashed into the new hash-
array, the new hash-array is rplacaed into the dotted pair, and
the computation continues. In the second case, the new hash
array will be f times the size of the current hash-array. The

third case, (hash-array), is equivalent to (hash-array . 1.5).

If a hash array overflows, and the array argument used was not
one of these three forms, an error is generated, HASH TABLE FULL,
which will either cause a break or unwind tc the last errorset

as per treatment of errors described in Section 16.

The system hash array, svshasharray, is automatically enlarged
by 1.5 when it is full.

l/‘\‘ H

T~

SECTION VIIT
FUNCTION DEFINITION AND EVALUATION

Contents

GETD, PUTD, PUTDQ, MOVD, FNTYP, SUBRP,
CCODEP, EXPRP, ARGTYPE, NARGS, ARGLIST,
DEFINE, DFNFLG, (FN REDEFINED), DEFINEQ,
SAVEDEF, UNSAVEDEF, EVAL, E, APPLY,
EVALA, RPT, RPTQ, ARG, SETARG

~ oo~ W

General Comments

A function definition in LISP is stored in a special cell
associated with each literal atom called the function definition
cell. This cell is directly accessible via the two functions
the definition from the cell. 1In addition, the function fntyp
returns the function type, i.e., EXPR, EXPR* ... FSUBR* as

described in chapter 4. exprp, ccodep, and subrp are true if

the function is an expr, compiled function, or subr respectively;
amtype returns g, 1, 2, or 3 depending on whether the function
is a spread or nospread (i.e., its fntyp ends in *), or evaluate
or no-evaluate (i.e., its fntyp begins with F or CF); arglist
returns the list of arguments; and nargs returns the number of

arguments. fntyp, exprp, ccodep, subrp, argtype, arglist, and

nargs can be given either a literal atom, in which case they
obtain the function definition from the atom's definition cell,

or a function definition itself.

§ubrs

Because subrs,* are called in a special way, their definitions
are stored differently than those of compiled or interpreted
functions. In the right half of the definition cell is the address
of the first instruction of the subr, and in the left half its
argtype: 0, 1, 2, 3. getd of a subr returns a dottecd pair or
argtype and address. This is not the same word as appears in
the definition cell, but a new cons; i.e., each getd of a subr
performs a cons. Similarly, putd of a definition of the form
(number . address), where number = 0, 1, 2, or 3, and address is
in the appropriate range, stores the definition as a subr, i.e.,
takes the cons apart and stores car in the left half of the
definition cell and cdr in the right half.

Validity of Definitions

Although the function definition cell is intended for function
definitions, putd and getd do not make thorough checks on the
validity of definitions that '"look like" exprs, compiled code,
or subrs. Thus if putd is given an array pointer, it treats
it as compiled code, and simply stores the array pointer in the
definition cell. getd will then return the array pointer.
Similarly, a call to that function will simply transfer to what
would normally be the entry point for the function, and produce

random results if the array were not a compiled function.

similarly, if putd is given a dotted pair of the form (number .

address) where number is 0, 1, 2, or 3 and address falls in the

*Basic functions, handcoded in machine languadge. e.a. cons, car, ‘
cond. The term subrs includes sy read/nospread, eval/noeval functions,
i.e. the four fntXE]s subr, fsubr, subr*, and fsubr*.

8.2

W,

subr range, putd assumes it is a subr and stores it away as
described earlier. getd would then return cons of the left and
right half, i.e., a dotted pair egual (but not eg) to the
expression originally given putd. Similarly, a call to this
function would transfer to the corresponding address.

Finally, if putd is given any other list, it simply stores it
away. A call to this function would then go through the inter-
preter as described in the appendix.

Note that putd does not actually check to see if the s-expression
is a valid definition, i.e., begins with LAMBDA or NLAMBDA.
Similarly, exprp is true if a definition is a list and not of

the form (number . address), number = 0, 1, 2, or 3 and address

a subr address; subrp is true if it is of this form. arglist

and nargs work correspondingly.

Only fntyp and argtype check function definitions further than
that described above: both argtype and fntyp return NWIL when
exprp is true but car of the definition is not LAMBDA or NLAMBDA.*
In other words, if the user uses putd to put (A B C) in a func-
tion definition cell, getd will return this value, the editor

and prettyprint will both treat it as a definition, exprp will
return T, ccodep and §EE£E NIL, arglist B, and §§£g§1.

* These functions have different value on LAIBDAs and NLAMBDAS
and hence must check. The compiler and interpreter also take
different actions for LAMBDAs and NLAMBDAs, and therefore
generate errors if the definition is neither.

getd [x]

putd [x;y]

putdqg[x;y]

movd [from; to; copyflg]

gets the function definition of x.

Value is the definition. Value is NIL

if x is not a literal atom, or has
no definition.

puts the definition y into x's

function cell. Value is y. Gives an

error if x is not a literal atom, or
y is a string, number, or literal
atom other than NIL.

nlambda version of putd; both argu-

ments are considered quoted.
X.

Value is

Moves definition of from to to, i.e., :>
redefines to. If copyflg=T, a copy)
of the definition of from is used.

copyflg=T is only meaningful for exprs,

although movd works for compiled codu

and subrs. The value of movd is to.

NOTE: fntyp, subrp, ccodep, exprp, argtype, nargs, and arglist
all can be given either the name of a function, or a definition.

fntyp[£fn] Value is NIL if fn is not a function
definition or the name of a defined
function. Otherwise fntyp returns
one of the following as defined in

the section on function types:

EXPR CEXPR SUBR
FEXPR CFEXPR FSUEBR
EXPR¥* CEXPR* SUBR¥*
FLXPR* CFEXPR¥* FSUBR¥*

The prefix F indicates unevaluated
arguments, the prefix C indicates
compiled code; and the suffix * indi-
cates an indefinite number of

arguments.

subrp[£fn] is true if and only if fntypl[fn] is
either SUBR, FSUBR, SUBR*, or ISUBR?*,

i.e., the third column of fntyp's

ccodep[fn] is true if and only if fntypl[fn] is
either CEXPR, CFEXPR, CLXPR*, or

CFEXPR*, i.e., second column of fntyp's

exprp[fn] is true if fntyplfn] is either LXPR,
I'CXFR, LXPR*, or I'LXFR*, i.e., first
column of fntyp's. lHowever, exprplfn]
is also true if fn is (has) a list
definition that is not a SUBR, »hut
does not begin with either LAMBDA or
NLAMBDA. In other words, exprp is

not guite as selective as fntyp.

argtype[fn] fn is the name of a function or its
definition. The value of argtype is
the argtype of fn, i.e., #, 1, 2, or
3, or NIL if £fn is not a function.
The interpretation of the argtype is:

0 eval/spread function
(EXPR, CEXPR, SUBR)

1 no-eval/spread functions
(FEXPR, CFEXPR, FSUBR)

2 eval/nospread functions
(EXPR*, CEXPR¥*, SUBRY)

3 no-eval/nospread inctions
(FEXPR*, CFEXIR*, FSUBR¥)

i.e., g;ggzgg>corresponds to the rows

of fntyps.

nargs [fn] value is the number of arguments of
fn, or WIL if fn is not a function.*
ggggg uses exprp, not fntvn, so that
nargs[(A (B C) D)]=2. Note that if
fn is a SUBR or FSUBR, nargs = 3,
;géardless of the number of arguments
logically needed/used by the routine.

If fn is a nospread function, nargs=1,

TN

arglist[fn]

value is the 'argument list' for fn.
Note that the 'argument list' is ;;
atom for nospread functions. Since
NIL is a possible value for arglist 2n

an error is generated if fn is not a
function. *

If fn is a SUBR or FSUBR, the value of arglist is (U V W), if a

SUBR* or FSUBRY,

the value is U. This is merelvy a 'feature' of

arglist, subrs do not actually store the names u, v, or w on the

stack. However, if the user breaks or traces a subr (Section 15),

these will be the argument names used when an equivalent expr

definition is constructed.

define [x]

The argument of define is a list.
Fach element of the list is itself

a list either of the form (name
definition) or (name arguments ...).
In the second case, following
arguments is the body of the defini-
tion. As an example, consider the
following two cauivalent expressions
for defining the function null.

1) (NULL (L2MpDA (X)) (EQ X mIL)))
2) (MULL (X)) (&0 X LIL))

define will generatec an error on en-
countering an atom where a defining
list is exvected. If §£E£l3=T: its
normal setting, an attempt to redefine
a function fn will cause ggfigg to
print the message (fn RIDEFINED) and
to save the old definition of fn

using savedef bhefore redefining it.

dote: define will operate correctly if the function is already
defined and broken, advised, or broken-in.

*i.e., if exprp, ccodep, and subrp are all NIL.

8.7

defineq[x;iX;7.eeix]

savedef[£fn]

nlambda nospread version of define, i.e.,

takes an indefinite number of arguments
which ére not evaluated. Each X,

must be a list, of the form described
in define. defineq calls define, so

dfnflg affects its operation the same
as define. '

Saves the definition of fn on its
property list under property EXPR,
CODE, or SUBR depending on its fntyp.
Value is the property name used. If
getd[fn] is non-NIL, but fntyp[fn] is
NIL, saves on property name LIST. This
situation can arise when a function is
redefined which was originally defined
with LAMBDA misspelled or omitted.

If fn is a list, savedef operates on
each function in the list, and its
value is a list of the individual

values.

D

W,

unsavedef [fn; prop]

Restores the definition of fn from

its property list under property prop
(see savedef above). Value is prop.
If nothing saved under prop, and fn is
defined, returns (prop NOT FOUND),

otherwise generates an error.

If prop is not given, unsavedef looks
under EXPR, CODE, and SUBR, in that

order. The value of unsavedef is the
property name, or if nothing is found and
fn is a function, the value is

(NOTHING FOUND) ; otnerwlise an error OCCurs.
If dfnflg=7", the current definition of fn,
if any, is saved using savedef. Thus one
can use unsavedef to switch back and forth
between two definitions of the same
function, keeping one on its property

list and the other in the function

definition cell.

If fn is a list, unsavedef operates on
each function of the list, and its
value is a list of the individual

values.

eval[x]*

e[x]

*eval is a subr so that the

the stack.

eval evaluates the expression x and

returns this value. Note that eval

is itself a lambda type function, so
its argument is first evaluated,

e‘g. r

+SET (FOO (ADD1 3))
(ADD1 3)

+ (EVAL FO00)
4

+EVAL (FOO)
(ADD1 3)

nlambda nospread version of eval.
Thus it eliminates the extra pair of
parentheses for the list of arguments

for eval. 1i.e., e x is equivalent to

eval[x]. liote however that in BBL-LISP,

the user can type just X to get x

evaluated. See page 2.4.

‘name' x does not actually appear on

W,

apply([fn;args]

evalal[x;al

apply applies the function fn to the
arguments args, i.e. the individual
elements of args are not evaluated by
apply. lowever like eval, apply is
a lambda function so ite arguments are
evaluated before it is called e.q.,
+SET (FOO1 3)
3
«SET (FOO2 4)
4
« (APPLY (QUOTE IPLUS) (LIST FOOl F002))
7
Here, fool and foo2 were evaluated
when the second argument to apply was
evaluated, Compare with
+SET (FOO1 (ADDL1 2))
(ADD1 2)
+SET (FOO2 (SUBL 5))
(suBl 5) :
« (APPLY (QUOTL IPLUS) (LIST FOOl F002))

NON=-NUMERIC ARG
(ADD1 2)

Note that:

«(EVAL (LIST (QUOTE IPLUS:) FOOl FOO0Z))
7

because
«EVAL ((LIST (QUOTL IPLUS) FOOl F002))
(IPLUS (ADD1 2) (suBl 5))

Sinulates a=-list evaluation as in

LISP 1.5. x is a form, a is a list of
dotted pairs of variable name and value.
a is 'spread' on the gtack, and then x
is evaluated, i.e., any variables
appearing free in x, that also appears
as car of an element of a will be

given the value in the cdr of that

element.

.11

rpt[rptn;rptf] Evaluates the expression rptf rptn

times, At any point, rptn is the
number of evaluations yet to take
place. Returns the value of the last
evaluation. If rptn < f, rptf is not
evaluated, and the value of rpt is NIL.

NOTE: rpt is a lambda function, so both its arguments are evalu-
ated before rpt is called. For most applications, the user will
probably want to use rptq.

rptqrptn; rptf] nlambda version of rpt: rptn is
evaluated, rptf quoted.

arg [var;m] Used to access the individual argu-
ments of a lambda nospread function.
arg is an nlambda function used like
setg: var is the name of the atomic
argument list, and is considered to be
quoted, m is the number of the desired
argument, and is evaluated. For
example, consider the following defi-
nition of iplus in terms of plus.

(LAMBDA X

(PROG C((M @

(N 8
LP (COND
(CEQ@ N X)
(RETURN M)>))

[SET@ M (PLUS M (ARG X (SETe& N (ADD1 NJ
(GO LP]

The value of arg is undefined for m
less than or equal to 0 or greater
than the value of var.* Lower numbered
arguments appear earlier in the form,
e.g. for (IPLUS A B C),

arg[X;l]=the value of A,

arg[X;2]=the value of B, and
arg[X;3]=the value of C. Note that
the lambda variable should never be
reset. Illowever, individual arguments
can be reset using setarg described
below.

* For lambda nosvpread funections, the lamhda variable i~ hound.
to the number of arguments actuallv given to the function.
See Section 4.

setarg[var;m;x]

sets to x the mth argument for the
lambda nospread function whose argu-
ment list is var. var is considered
guotea, m and X are evaluated; e.g.
in the previous example,

(SETARG X (ADD1l N) (MINUS M)) would
be an example of the correct form for

setarg.

8.14

SECTION IX

THE LISP EDITOR

Contents

2 CURRENT EXPRESSION, P, &, ?, PP, EDIT CHAIN, §, 4,

6 (n), (nel, ..., em), (-nel, ..., em), N, F, R, NX,

9 RI, UNDO, BK, BF, \, \P, &, --, $CALT-MODE), UP,

l6 B, A, :, DELETE, MBD, XTR, UP, ..., n, -n,

26 @, '@, *, NX, BK, (NX n), (BK n), !NX, (NTH n),

2L PATTERN MATCH, &, *ANY¥*, --, ==, ..., SEARCH ALGORITHM,
27 MAXLEVEL, UNFIND, F, (F pat n), (F pat T),

3¢ (F pat N), (F pat), FS, F=, ORF, BF, (BF pat T),

33 LOCATION SPECIFICATION, IF, ##, @, LC, LCL, 2ND,

34 3RD, (+ pat), BELOW, NEX, (NTH @), .., MARK, =+,

39 <<, \, UNFIND, \P, S, (n), (nel, ..., em),
41 (-n el, ..., em), N, B, A, :, DELETE, INSERT, REPLACE,
45 DELETE, ##, UPFINDFLG, XTR, EXTRACT, MBD, EMBED, MOVE,
6y BI, BO, LI, LO, RI, RO, THRU, TO, R, SW, P, 2,
68 ¥XCOMMENT®¥*, E, I, ##, COMS, COMSQ, IF, LP, LPQ, ORR,
75 MACROS, M, BIND, USERMACROS, NIL, TTY:, OK, STOP,

79 SAVE, REPACK, UNDO, TEST, !UNDO, UNBLOCK, EDITDEFAULT,
88 EDITE, EDITL, EDITF, PROP, UNSAVED, EDITV, EDITP,
94 EDITFNS, EDIT4E, EDITFPAT, EDITFINDP, ESUBST,
96 CHANGENAME

The LISP editor allows rapid, convenient modification of list
structures. Most often it is used to edit function definitions,
(often while the function itself is running) via the function
editf, e.g., EDITF(FOO). However, the editor can also bhe used
to edit the value of a variable, via editv, to edit a property
It is an important feature which allows good on-line inter-
action in the BBN LISP system.

This chapter bhegins with a lengthv introduction intended for

the new user. The reference portion begins on page 9.17.

Introduction

Let us introduce some of the basic editor commands, and give
a flavor for the editor's language structure by guiding the
reader through a hypothetical editing session. Suppose we are

editing the following incorrect definition of append

[LAMBDA (X)
Y
(COND
((NUL X)
7)
(T (CONS (CRR)
(APPFND (CDR X Y]

We call the editor via the function editf:

«EDITF(APPEND)

EDIT
*

The editor responds by typing EDIT followed by *, which is the
editor's ready character, i.e., it signifies that the editor is

ready to accept commands. T

At any given moment, the editor's attention is centered on some
substructure of the expression being edited. This substructure
is called the current expression, and it is what the user sees
when he gives the editor the command P, for print. 1Initially,
the current expression is the top level one, i.e., the entire
expression being edited. Thus:

=P
CLAMEDA (X)) Y (COND & &))

x

t In other words, all lines beginning with * were typed by the
the rest by the editor.

9.2

user,

-
}

Note that the editor prints the current expression as though
printlevel were set to 2, i.e., sublists of sublists are
printed as &. The command ? will print the current expression
as though printlevel were 1000

* ?
(LAMBDA (X) Y (COND ((KUL X) 2Z) (T (CCNS (CAR) (APPEND (CDR X Y))))))
E .

and the command PP will prettyprint the current expression.

A positive integer is interpreted by the editor as a command to
descend into the correspondingly numbered element of the current
expression. Thus:

* 2

* P
{(xX)

A negative integer has a similar effect, but counting begins
from the end of the current expression and proceeds backward,
i.e., ~1 refers to the last element in the current expression,
-2 the next to the last, etc. TFor either positive integer or
negative integer, if there is no such element, an error occurs,t
the editor tvpes the faulty command followed bv a ?, and then
another *. The current expression i1s never changed when a

command causes an error. Thus:

+'Editor errors' are not of the flavor described in Chapter 16,
i.e., they never cause breaks or even go through the error
machinery but are direct calls to error! (p. 16.13) indicating
that a command is in some way faulty. What happens next depends
on the context in which the command was being executed. For
example, there are conditional commands which branch on errors.

In most situations, though, an error will cause the editor to type
the faulty command followed by a ? and wait for more input. Note
that typing control-E while a command is being executed aborts

the command exactly as though it had caused an error.

A phrase of the form 'the current expression 18 changed' or
"the current expression becomes' refers to a shift in the
editor's attention, not to a modification of the structure
being edited.

When the user changes the current expression by descending into
it, the old current expression is not lost. Instead, the
editor actually operates by maintaining a chain of expressions
leading to the current one. The current expression is simply
the last link in the chain. Descending adds the indicated
subexpression onto the end of the chain, therebv making it be
the current expression. The command § is used to ascend the
chain; it removes the last link of the chain, thereby making

the previous link be the current expression. Thus:

* P

X

xd D

(¥)

«4 -1 P

(COND (& 2) (T &))

E

T

Note the use of several commands on a single line in the
previous output. The editor operates in a line buffered mode,
the same as evalgt. Thus no command is actually seen by the
editor, or executed, until the line is terminated, either by
a carriage return, or a matching right parenthesis. The user
can thus use control-A and control-Q for line-editing edit

commands, the same as he does for inputs to evalgt.

In our editing session, we will make the following corrections
to append: delete Y from where it appears, add Y to the end of
the argument list,t change NUL to NULL, change Z to Y, add Z
after CAR, and insert a right parenthesis following CDR X.

First we will delete Y. By now we have forgotten where we are
in the function definition, but we want to be at the "top," so
we use the command 4, which ascends through the entire chain of
expressions to the top level expression, which then becomes

the current expression, i.e., * removes all links excent the
first one.

*T D
(LAMBDR (X)) ¥ (COND & 8

*

Note that if we are already at the top, * has no effect, i.e.,
it is a NOP., However, @ would generate an error. In other

words, 4 means "go to the top," while @ means "ascend one link."

+ These two operations could be thought of as one operation,

i.e., MOVE Y from its current positicn to a new position, and
in fact there is a MOVE command in the editor. However, for

the purposes of this introduction, we will confine ourselves

to the simpler edit commands.

The basic structure modification commands in the editor are

(n) n>1 deletes the corresponding

element from the current expression.

(n €1y i) n,m>1 replaces the nth element in
the current expression with
€1, 8y
(-n el'...,em) n,m>1 inserts TR A hefore the
nth element in the current
expression.
Thus:
*P
(LAMBDA (X) Y (COND & &))
*(3)
*(2 (X Y))
*P

(LAMBDA (X Y) (COND'& &))

»

All structure modification done by the editor is destructive,
i.e., the editor uses rplaca and rplacd to physically change the
structure it was given.

Note that all three of the above commands perform their operation
with respect to the nth element from the front of the current
expression; the sign of n is used to specify whether the operation
is replacement or insertion. Thus, there is no way to specify
deletion or replacement of the nth element from the end of the
current expression, or insertion before the nth element from the
end without counting out that element's position from the front
of the list. Similarly, because we cannot specify insertion after
a particular element, we cannot attach something at the end of the
current expression using the above commands. Instead, we use the
command M (for nconc). Thus we could have performed the above changes
instead bv:
v «p

(LAMBDA (X) Y (COND & 8))

*(3)

*2 (N Y)

x P

(X Y)

xt P
«(LAMBDA (X Y) (COND & &))

*

w

SN

Now we are ready to change NUL to NULL. Rather than specify
the sequence of descent commands necessary to reach NUL, and
then replace it with NULL, i.e., 3 2 1 (1 NULL), we will use F,
the find command, to find NUL:

*P

(LAMBEDA (X Y) (COND & 8))
*F NUL

* P

(NUL X)

(1 NuUuLL)

*J P

({(NULL X) 7)

*

Note that F is special in that it corresponds to two inputs.

In other words, F says to the editor, "treat your next command

as an expression to be searched for." The search is carried

out in printout order in the current expression. If the target
expression is not found there, F automatically ascends and
searches those portions of the higher expressions that would
anpear after (in a printout) the current expression. If the
search 1is successfﬁl, the new current exXpression will be the structure
where the expression was found,T and the chain will be the same as
one resulting from the appropriate seaquence of ascent and descent
commands. If the search is not successful, an error occurs, and

neither the current expression nor the chain is changed: Tt

+ If the search is for an atom, e.g., F NUL, the current expression
will be the structure containing the atom. If the search is for a
list, e.g., F (NUL ¥), the current expression will be the list
itself.

++ F is never a NOP, i.e., if successful, the current expression
after the search will never be the same as the current expression
before the search. Thus F expr repeated without intervening
commands that change the edif chain can be used to find successive
instances of expr.

*p
((NULL X) 2)
«F COND P

COND ?

)

*((NULL X) 2)
™

llere the search failed to find a cond following the current

expression, although of course a cond does appear earlier in the

structure. This last example illustrates another facet of the
error recoverv mechanism: to avoid further confusion when an
error occurs, all commands on the line beyond the one which
caused the error (and all commands that mav have been typed

ahead while the editor was computing) are forgotten.t

We could also have used the R command (for replace) to change

NUI, to NULL. A command of the form (R e e2) will rewmlace all

1

occurrences of e in the current expression by e,-

be at least one such occurrence or the R command will generate

There must

an error. Let us use the R command to change all Z's (even

though there is only one) in append to Y:

«t (R 2 Y)
*F 2
Z ?
=PP
[LAMBDA (X Y)
(COND
((NULL X)
Y)

(T (CONS (CAR)
(APPEND (CDR X Y]

ti.e. the input buffer is cleared (and saved), see p. 14.17. It
can be restored, i.e., the type-ahead recovered, via the command

¢ {(alt-mode), described in saction 22.

9.8

)

FORRN
i

/4 .

The next task is to change (CAR) to (CAR X). We could do this
by, (R (CAR) (CAR X)), or by:

*F CAR
(N X)
* P
(CER X)

»

The expression we now want to change is the next expression
after the current expression, i.e., we are currently looking at
(CAR X) in (CONS (CAR X) (APPEND (CDR X Y))). We could get to
the append expression by typing 0 and then 3 or -1, or we can
use the command NX, which does both operations:

P
CChR XD

NY P

{RFEIND (CDR X Y))

*

Finally, to change (APPEND (CDR X Y)) to (APPEND (CDR X) Y), we
could perform (2 (CDR X) Y), or (2 (CDP X)) and (N Y), or

2 and (3), deleting the Y, and then 0 (N Y). However, if v
were a complex expression we would not want to have to retype
it. Instead, we could use a command which effectively inserts
and/or removes left and right parentheses. There are six of
these commands: BI, BO, LI, LO, RI, and RO, for both in,

both out, left in, left out, right in, and right out., 0f course,
we will always have the same number of left parentheses as

right parentheses, because the parentheses are just a notational
guide to structure that is provided by our print program.*

Thus, left in, left out, right in, and right out actually do not
insert or remove just one parenthesis, but this is very

suggestive of what actually happens.

* Herein lies one of the principal advantages of a LISP oriented
editor over a text editor: unbalanced parentheses errors are not
possible.

9.9

In this case, we would like a right parenthesis to appear

following X in (CDR X Y). Therefore, we use the command (RI 2 2),

which means insert a right parentheses after the second element

in the second element (of the current expression):

* P
(APPEND (CDR X Y))

*(RI 2 2)
*P

(APPEND (CDR X) Y)
*

Ve have now finished our editing, and can exit from the editor,
to test append, or we could test it while still inside of the

editor, by using the E command:

*E APPEND((R B) (C D EY)

(A B CDE)
*

The I command causes the next input to be given to evalagt. If
there is another input following it, as in the above example,
evalgt will apply the first to the second. Otherwise, evalgt

evals the first input.

*PP
(LAMBDA (X Y)
(COND
((NULL X)
Y)
(T (CONS (CAR X)
(APPEND (CDR X) Y]
* 0K
ARPPEND

-

PR
y, y
/

\,

Commands for the New User

As mentioned earlier, the BBN-LISP manual is intended primarily
as a reference manual, and the remainder of this chapter is
organized and presented accordingly. While the commands intro-
duced in the previous scenario constitute a complete set, i.e.,
the user could perform any and all editing operations using just
those commands, there are many situations in which knowing the
right command(s) can save the user considerable effort. Ve
include here as part of the introduction a list of those commands
which are not onlv frequently applicable but also easy to use.
They are not presented in any particular order, and are all dis-

cussed in detail in the reference portion of the chapter.

UNDO undoes the last modification to the
structure being edited, e.g., if the
user deletes the wrong element, UNDO
will restore it. The availakility of
UNDO should give the user confidence to
experiment with any anc¢ all editing
commands, no matter how complex,
because he can alwavs reverse the

effect of the command.

BX like NX, excent makes the expression
immediatelv before the current

expression hecome current.

BF backwards find. Like F, except searches

backwards, i.e., in inverse print order.

\P

Restores the current expression to the
expression before the last "big jump"”,
e.g., a find command, an 4, or another
\. For example, if the user types

F COND, and then F CAR, \ would take him
back to the COND. Another \ would take
him back to the CAR.

like \ except it restores the edit chain to
its state as of the last print, either Ly
P, ?, or PP. If the edit chain has not
been changed since the last print, \P
restores it to its state as of the

printing before that one, i.e., two chains

are always saved.

Thus if the user types P followed by 3 2 1 P, \P will take him

back to the first P, i.e., would be equivalent to 0 0 0.
Another \P would then take him back to the second P, i.e., he

can use \P to flip back and forth between two current expressions.

9.12

N

&,—- The search expression given to the F or
BF command need not be a literal
S-expression. Instead, it can be a pattern.
The symbol & can be used anywhere within
this pattern to match with any single
element of a list, and -- can he used to
match with any segment of a list. Thus,
in the incorrect definition of append
used earlier, F (NUL &) could have been
used to find (NUL X), and F (CDR --) or
F (CDR & &), but not I' (CDR &), to find
(CDR X Y).

Note that & and -- can be nested arbitrarily deeply in the
pattern. For example, if there are many places where the vari-
able X is set, F SETO may not find the desired expression, nor may
F (SETQ X &). It may be necessarv to use F (SrT0Q X (LIST --)).
However, the usual technique in such a case is to pick out a
unique atom which occurs prior to the desired exnression and
perform two F commands. This "homing in" process seems to be

more convenient than ultra-precise specification of the pattern.

9.13

$ (alt-mode) Any atom ending in alt-mode in a pattern ::)
will match with the first atom or string
that contains the same initial characters.
For example, F VERS$ will find VIERVLONGATOM.
$ can be nested inside of the pattern,
e.g., F (SETQ VERS (CONS =--)).

If the search is successful, the editor will
print = followed by the atom which matched
with the $-atom, e.g.,

*F (SETQ VERS &)

=VERYLONGATOM
*

Frequently the user will want to replace the entire current
expression, or insert something before it. 7Tn order to do this
using a command of the form (n el,...,em) or (-n el,...,em),
the user must be above the current expression. In other words,
he would have to perform a 0 followed bv a command with the ‘w)
appropriate number. However, if he has reached the current

expression via an F command, he may not know what that number

is. In this case, the user would like a command whose effect

would be to modify the edit chain so that the current expres-

sion became the first element in a new, higher current

expression. Then he could perform the desired operation via

(1 el,...,em) or (-1 el,...,em). UP is provided for this

purpose.

0

.14 D

up

after UP operates, the old current

expression is the first element of the
new current expression. Note that if the
current expression happens to be the
first element in the next higher
expression, then UP is exactly the same
as 0. Otherwise, UP modifies the edit
chain so that the new current expression is

a tailt of the next higher expression:

*F APPEND P

CAPPIND (CDR X) Y)
xUp p

~eo (APPEND & YY)
=4 p

fCONS (CAE X) (APPEND & Y))

*

The ... is used by the editor to indi-
cate that the current expression is a
tail of the next higher expression as
opposed to being an element (i.e., a
member) of the next higher expression.
Note: if the current expression is
already a tail, UP has no effect.

+Throughout this chapter 'tail' means 'proper tail', see p. 5.12.

(B ell oo o) em)

(ZL‘_ e, ...)e)

(: SRRy em)

DELETE

inserts el,...,em before the current
expression, i.e., does an UP and then
a -1.

inserts e een e after the current
expression, i.e., does an UP and then
either a (-2 eli...,em) or an

(N el,...,emL if the current expression
is the last one in the next higher
expression.

replaces current expression by SIUEERYE-
i.e., does an UP and then a (1 el,...,em).
deletes current expression, i.e., equiva-
lent to (:).

Earlier, we introduced the RI command in the append example.

The rest of the commands in this family: RI, RO, LI, LO, and RO,

perform similar functions and are useful in certain situations.

In addition, the commands MBD and XTR can be used to combine

the effects of several commands of the BI-BO family. MBD is

used to embed the current exmression in a larger expression.

For example, if the current expression is (PRINT bigexpression),

and the user wants to replace it by (COND (FLG (PRINT bigexpression))),
he can accomplish this by (LI 1), (-1 FILG), (LI 1), and (-1 COND),
or by a single MBD command.

XTR is used to extract an expression from the current expression.

For example, extracting the PRINT expression from the above COND
could be accomplished by (1), (LO 1), (1), and (LO 1) or by a

single XTR command.

The new user is encouraged to include XTR

and MBD in his repertoire as soon as he is familiar with the more

basic commands.,

9.16

o

N
3
| ¥

Attention Changing Commands

Commands to the editor fall into three classes: commands that
change the current expression (i.e., change the edit chain)
thereby "“shifting the editor's attention,” commands that
modify the structure being edited, and miscellaneous commands,

e.g., exiting from the editor, printing, evaluating expressions.

Within the context of commands that shift the editor's attention,
we can distinguish among (1) those commands whose operation
depends only on the structure of the edit chain, e.g., #, UP, NX;
(2) those which depend on the contents of the structure, i.e.,
commands that search; and (3) those commands which simply restore
the edit chain to some nrevious state, e.g.,\\,‘\P. (1) and (2)
can also be thought of as local, small steps versus open ended,
big jumps. Commands of type (1) are discussed on pp. 9.18 - 9.23;

type (2) on pp. 9.24 - 9.38; and type (3) on pp. 9.39 - 9.40.

Local Attention-Changing Commands

up

Examples:

(1) If a P command would cause the editor
to type ... before typing the current
expression, i.e. the current expression

is a tail of the next higher expression,
UP has no effect; otherwise

(2) UP modifies the edit chain so that the
old current expression (i.e., the one at
the time UP was called) is the first

element in the new current expression.t

The current expression in each case is

(COND ((NULL X) (RETURN Y))).

l‘

*]1 p
COMD
*UP P
(COND (& &))

%1 P

((NULL X) (RETURN Y))

*UP P

... ((NULL X) (RETURN Y)))
*UJP P

... ((MULL X) (RETURN Y)))

*F NULL P

(NULL X)

*UP P

((NULL X) (RETURN Y))

*UP P

«.. ((NULL X) (RETURN Y)))

+If the current expression is the first element in the next

higher expression UP simply does a f#.

Otherwise UP adds the

corresponding tail to the edit chain.

S~
i

S
|

The execution of UP is straightforward, except in those cases where

the current expression appears more than once in the next higher
expression. For example, if the current expression is

(A NIL B NIL C NIL) and the user performs 4 followed by UP, the
current expression should then be ... NIL C NIL). UP can deter-

mine which tail is the correct one because the commands that

descend save the last tail on an internal editor variable, lastail.

Thus after the 4 command is executed, lastail is (NIL C NIL).

When UP is called, it first determines if the current expression

is a tail of the next higher expression. If it is, UP is finished.

Otherwise, UP computes
memb [current-expression;next-higher-expression] to obtain a tail
beginning with the current expression.t+ If there are no other

instances of the current-expression in the next higher expression,

this tail is the correct one. Otherwise UP uses lastail to select

the correct tail.tt

+The current expression should always be either a tail or an
element of the next higher expression. If it is neither, for
example the user has directly (and incorrectly) imanipulated

" the edit chain, UP generates an error.

++Occasionally the user can get the edit chain into a state
where lastail cannot resolve the ambiguity, for example if
there were two non-atomic structures in the same expression
that were eq, and the user descended more than one level into
one of them and then tried to come back out using UP. TIn this
case, UP selects the first tail and prints LOCATION UNCIRTAINM
to warn the user. Of course, we could have solved this problem
completely in our implementation by saving at each descent both
elements and tails. Ilowever, this would bhe a costly solution
to a situation that arises infrequentlv, and when it does, has
no detrimental effects. The lastail solution is cheap and
resolves 99% of the ambigquities.

n (n>0) adds the nth element of the current
expression to the front of the edit
chain, thereby making it be the new
current expression. Sets lastail for
use by UP. Generates an error if the
current expression is not a list that

contains at least n elements.

-n (n>0) adds the nth element from the end of
the current exoression to the front of
the edit chain, thereby making it be the
new current expression. Sets lastail
for use by UP. Generates an error if
the current expression is not a list

that contains at least n elements.

') Sets edit chain to cdr of edit chain,
thereby making the next higher expression
be the new current expression. Generates
an error if there is no higher expression,

i.e., cdr of edit chain is NIL.

Note that ﬂ usually corresponds to going back to the next higher
left parenthesis, but not always. For example, if the current

expression is (A BC D E F G), and the user verforms

*3 UP P

.. CDEFQG)
*3 UP P
... EF G)
*ﬂP
... CDEFG)

If the intention is to go back to the next higher left parenthesjs,

regardless of any intervening tails, the command !# can be used. T

t1g is pronounced bang-zero.

W,

&) ‘does repeated f's until it reaches a

| point where the current expression is

not a tail of the next higher expression,
i.e., always goes back to the next

higher left parenthesis.

4 sets edit chain to last of edit chain,
therehy making the top level exnression
he the current expression. Xever

generates an error.

NX effectively does an UP folleowed bhv a 2,+
therehv making the current expression
be the next expression. Generates an
error if the current expression is the
last one in a list. Nowever, (MX

described below will handle this case.)

B¥ makes the current expression Lo the
previous expression in the next hicher
expression. Generates an error if
the current expression is the first

expression in a list.

For example, if the current expression is (COND ((NULL X) (RETURN Y)))

*F RETURN P
(RETURN Y)
*BK P

(NULL X)

*Both NX and BK operate by performing a !f# followed by an

appropriate number, i.e. there won't be an extra tail above
the new current expression, as there would be if NX operated
by performing an UP followed by a 2.

v

(NX n) n>0 equivalent to n NX commands, except if

an error occurs, the edit chain is not
changed.

(BK n) n>0 equivalent to n BK commands, except if
an error occurs, the edit chain is not

changed

Note: (NX -n) is edquivalent to (BK n), and vice versa.

.-
-
<
[y

¥

makes current expression be the next
expression at a higher level, i.e.,
goes trrough anv number of right paren-
theses to get to the next expression.

For example:

PP ;>
(PPOG ((L 1)

(UF L))
LE (COND
((NULL (SETQ L (CDR L)))
({ERROR!))
([NULL (CDR (FMEMB (CAR L)
(CADR 1]
(GO LP)))
(EDITCOM (QUOTE RX))
(SETQ UNFIND UF)
(REETURN L))
«F CDR ?
(CDR 1)
*NX

NX o 7?

xMNX P

{ERROR!

«INX P

({NULL %) (GO LP}))
«{NX P

(EDITCOM (QUOTE NX))

*

+NX operates by doing #'s until it reaches a stage where the
current expression is not the last expression in the next
higher expression, and then does a NX. Thus !NX always goes
through at least one unmatched right parenthesis, and the new
current expression is always on a different level, i.e. INX
and NX always produce different results. For example using thre

previous current expression:

*F CAR P
(CAR L)
»INX P
(GO LP)
*»\P P
(CAR L)
«NX P
(CADEK I

n

(NTH n) n#0 equivalent to n followed by UP, i.e.,

causes the list starting with the nth

N

element of the current expression (or
nth from the end if n<0) to hecome
the current expression.* Causes an
error if current expression does not

have at least n elements.

A generalized form of NTH using location specifications is

described on page 9.37.

*(NTH 1) is a NOP,

Commands That Search

All of the editor commands that search use the same pattern

matching routine.*

We will therefore begin our discussion of
searching by describing the pattern match mechanism. A

pattern pat matches with x if

l. pat is eq to x.

2. pat is &.

3. pat is a number and egp to x.

4. pat is a string and strequal(pat;x] is true.

5. If car[pat] is the atom *ANY*, cdr[pat] is a list of

patterns, and pat matches x if and only if one of
the patterns on cdr([pat] matches x.

6. If pat is » literal atom or string, and nthchar[pat;-1]
is $ (alt-mode), then pat matches with any literal
atom or string which has the same initial characters
as pat, e.g. VER$ matches with VERYLONGATOM, as well
as "VERYLONGSTRING".

tThis routine is available to the user directly, and is described
later in this chapter in the section on "Editor Functions-®

‘ 7. If car[pat] is the atom --, pat matches x if
- a. cdrlpat]=NIL, i.e. pat=(--), e.g.
(A =--) matches (A) (A B C) and (A . B)
In other words, -- can match any tail of a 1list.

b, cdr[pat] matches with some tail of X,
e.g. (A -- (&)) will match with (A B C (D)),
but not (A BC D), or (A BC (D) L). However,
note that (A -- (&) --) will match with
(A BC (D) E)..
In other words, -- can match any interior

segment of a list.

8. If car([pat] is the atom ==, pat matches x if and only

1 if cdr[pat] is eq to i'*

9. Otherwise if x is a list, pat matches x if car[pat]

matches car[x], and cdr[pat] matches cdr([x].

When searching, the pattern matching routine is called only

| e match with elements in the structure, unless the pattern begins
with ..., in which case cdr of the pattern is matched against
tails in the structure.t? Thus if the current expression is

(A BC (BC)),

*F (B ==)

*p

(B C)

*OF (... B ==)
*p

... B C(E C))
*F. (eee B ==)
*p

(B C)

*

*Pattern 8 is for use by programs that call the editor as a
subroutine, since any non-atomic expression in a command
typed in by the user obviously cannot be eq to existing structure.

TtIn this case, the tail does not have to be a proper tail, e.qg.
(e A =-=) will match with the element (A B C) as well as with
cdr of (X A B C), since (A B C) is a tail of (A B C).

Search Algorithm

Searching begins with the current expression and proceeds in
print order. Searching usually means find the next instance
of this pattern, and consequently a match is not attempted
that would leave the edit chain unchanged.* At each step, the
pattern is matched against the next element in the expression
currently being searched, unless the pattern begins with ...
in which case it is matched against the corresponding tail of

the expression.**

If the match is not successful, the search operation is
recursive first in the car direction and then in the cdr
direction, i.e., if the element under examination is a list,
the search descends into that list before attempting to match

with other elements (or tails) at tre same level j***

* lowever, there is a version of the find command which can
succeed and leave the current expression unchanged.

** og[pattern;tail-of-expression]=T also indicates a successful

match, so that a search for FOO will find the FOO in (FIE . FOO).
The onlv exception to this occurs when pattern=NIL, e.g., I NIL.
In this case, the pattern will not match with a null tail (since
most lists end in NIL) but will match with a NIL element.

**k*There is also a version of the find command which only attempts

matches at tie ton level of the current expression, i.e., cdoes
not descend into elements, or ascend to higher expressions.

)

A

N

However, at no point is the total recursive depth of the search
(sum of number of cars and cdrs descended into) allowed to exceed
the value of the variable maxlevel. At that point, the search

of that element or tail is abandoned, exactly as though the
element or tail had been completely searched without finding a
match, and the search continues with the next element or tail

for which the recursive depth is below maxlevel, This feature

is designed to enable the user to search circular list structures
(by setting maxlevel small), as well as protecting him from
accidentally encountering a circular list structure in the course

of normal editing. maxlevel is initially set to 300.%*

If a successful match is not found in the current expression,

the search automatically ascends to the next higher expression,**
and continues searciiing there on the next expression after the
expression it just finished searchiing. If there is none, it
ascends again, etc. This process continues until the entire eait
chain has been searched, at which point the search fails, and an
error is generated. If the search fails (or, what is eauivalent,
is aborted by Control-F), the edit chain is not changed (nor

are any conses performed).

If the search is successful, i.e., an expression is found that
the pattern matches, the edit chain is set to the value it would
have had had the user reached that expression via a sequence of

integer commands.

*maxlevel is a globalvar (see p. 18.6). If changed, it must be
reset not rebound.

See footnote * on previous page.

L

If the expression that matched was a list, it will be the

final link in the edit chain, i.e., the new current expression.

If the expression that matched is not a list, e.g., is an atom,
the current expression will be the tail beginning with that
atom,* i.e., that atom will be the first element in the new

current expression. In other words, the search effectively
does an UP . **

*ixcept for situations where match is with y in (x . y),

atomic and not NIL. In this case, the current exrression will
be (x . vy).

** Unless upfindflg=NIL (initially set to 7). For discussion,
see pp. 9.49-9.50.

I
i

Search Commands

All of the commands below set lastail for use by UP, set
unfind for use by \ (p. 9.39), and do not change the edit chain
or perform any conses if they are unsuccessful or aborted.

F pattern i.e., two commands: the F informs the
editor that the next command is to be
interpreted as a pattern. This is the
most common and useful form of the
find command. If successful, the edit
chain always changes, i.e., F pattern
means find the next instance of

If memb[pattern;current-expression] is
true, F does not proceed with a full

recursive search.

If the value of the memb is NIL, F
invokes the search algorithm descrihed

earlier.

Thus if the current exporession were

(PROG NIL LP (COND (-- (GO LP1l))) ... LP1 ...), F LP1 would

find the prog label, not the LPl inside of the GO expression,
even though the latter appears first (in print order) in the
current expression. Note that 1 (making the atom PROG be the
current expression), followed by F LP1l would find the first

LP1.

9.29

(F pattern nN) same as F pattern, i.e., finds the ncxt
instance of pattern, exceot the meml y:)
checl of F pattern is not performed.

(F nattern 7) Similar to F pattern, except mav succeed
without changing edit chain, and does

not perform the memb check.

Thus if the current expression is (COND ..), I' COND will look

for the next COND, but (F COND) will 'stav here'.

(F pattern n) n>0 Finds the nth place that pattern matches.
Equivalent to (F pattern T) followed by
(F pattern N) repeated n-1 times. Each

tirme pattern successfully matches, n is

decremented v 1, and the search continues,

until n reaches 0. MNote that the pattern

does not have to match with n identical
expressions: it just has to match n times.

“hus if the current expression is

(FOOL FOO2 F003), (F FOO$ 3) will find D
FON3.

If the pattern does not match successfullv
n times, an error is generated and the
edit chain is unchanced (even if the

pattern matched n-1 times).

(F pattern) or only matches with elements at the tov
(F rattern !IL) level of the current exrnression, i.e., the
search will not descend into the current
exnression, nor will it go outside of the
current expression. Mav succeed without

chancirnc edit chain.

For example, if the current exnression is
(PROG MNIL (SITO X (COND & &)) (COND &) ...)
F (CONI? ~=) will find the CONI inside the SPTO, wherecas

(» (Ccorp --)) will find the ton 1level COND, i.e., the second one.

(Fs patternl .o patternn) equivalent to F patternl followed
by F pattern2 ... followed by F patternn,
so that if F patternm fails, edit chain

is left at place pattern . matched.

(F= expression x) equivalent to
(F (== . expression) x), i.e.,

searches for a structure eq to expression,
see p. 9.25.

(ORF pattern1 .o patternn) equivalent to
(F (*ANY* pattern; ... patternn) N),
i.e., searches for an expression that is
matched by either patternl or ...
patternn. See p. 9.24.

BF pattern backwards find. Searches in reverse
print order, beginning with expression
immediately before the current expression
(unless the current expression is the
top level expression, in which case BF
searches the entire expression, in reverse
order) . |

BF uses the same pattern match routine as
F, and maxlevel and upfindflg have the
same effect, but the searching begins at
the end of each list, and descends into
each element bhefore attempting to match
that element. If unsuccessful, the
search continues with the next previous
element, etc., until the front of the
list is reached, at which point EF

ascends and hacks up, etc.

For example, if the current expression is

(PROG NIL (SETQ X (SETQ Y (LIST Z))) (COND ((SETQ W —--) ==)) ==)
F LIST followed by BF SETQ will leave the current expression as
(SETQ Y (LIST 2)), as will F COND followed by BF SETQ.

(BF pattern T) search always includes current expression,

i.e., starts at end of current expression
and works backward, then ascends and
backs up, etc.

Thus in the previous example, where F COND followed by BF SETQ

found (SETQ Y (LIST Z)), F COND followed by (BF SETQ T)
would find the (SETQ W --) expression.

(BF pattern) same as BF pattern.
(BF pattern NIL) '

9.32

—

Location Specification

Many of the more sophisticated commands described later in this
chapter use a more general method of specifying position called

a location specification. A location specification is a list

of edit commands that are executed in the normal fashion with
two exceptions. Tirst, all commands not recognized by the
editor are interpreted as though they had been preceded by F.*
For example, the location specification (COND 2 3) specifies
the 3rd element in the first clause of the next COND,**

Secondly, if an error occurs while evaluating one of the commands
in the location specification, and the edit chain had been
changed, i.e., was not the same as it was at the beginning of
that execution of the location specification, the location
operation will continue. In other words, the location operation
keeps going unless it reaches a state where it detects that it

is 'looping', at which point it gives up. Thus, if (COND 2 3)

is being located, and the first clause of the next COND contained
only two elements, the execution of the command 3 would cause an
error. The search would then continue by looking for the next
COND. However, if a point were reached where there were no
further CONDs, then the first command, COND, would cause the
error; the edit chain would not have been changed, and so the

entire location operation would fail, and cause an error.

*Normally such commands would cause errors.

**)Note that the user could always write (F COND 2 3) for (COND 2 3)

if he were not sure whether or not CONDL was the name of an atomic
command.

The IF command and the ## function provide a way of using in
location specifications arhitrary predicates applied to

elements in the current expression. IF and ## will be described
in detail later in the chapter, along with examples illustrating
their use in location specifications.

Throughout this chapter, the meta-symbol @ is used to denote

a location specification. Thus @ is a list of commands inter-
preted as described above. @ can also be atomic, in which case
it is interpreted as list([@]. |

(LC . Q) provides a way of explicitly invoking
the location operation, e.g. (LC COND 2 3)

will perform the search described above.

(LCL . @) Same as LC except search is confined to)
current expression, i.e., the edit chain
is rebound during the search so it looks as
if the editor were called on just the current
expression. For example, to find a COND con-
taining a RETURN, one might use the location
specification (COND (LCL RETURN) \)
where the \ would reverse the effects of
the LCL command, and make the final
current expression be the COND.

(2ND . @) Same as (LC . @) followed by another
(LC . @) except that if the first succeeds
and second fails, no change is made to
the edit chain.

(3RD . @) Similar to 2ND.

.'/g‘\

(« pattern) ascends the edit chain looking for a link
which matches pattern. In other words, it
keeps doing #'s until it gets to a specified
point. If pattern is atomic, it is matched
with the first element of each link, other-

wise witn the entire link.+
For example:
*xPP
[PROG NIL
(COND
[(NULL (SETQ L (CDR L)))
(COND
(FLG (RETURN L]
([NULL (CDR (FMEMB ({CAR L)
(CADR L]
(GO LP]
«F CADR
-x(« COND)
* P

(COND (& &) (& &))

*

Note 'that this command differs from PF in that it does not
search inside of each link, it simply ascends. Thus in the
above examnle, F CADR followed kv RF COMND would find

(COMD (FLG (RETUR!N L))), not the higher COND.

If no match is found, an error is

generated and the edit chain is unchanced.

t1f pattern is of the form (IF expression), expression is
evaluated at each link, anéd if its value is !NIL, or the evalua-
tion causes an error, the ascent continues.

9.35

(BELOW com X) ascends the edit chain looking for a
link specified by com, and stops x*
links below that, i.e. BELOW keeps doing
£'s until it gets to a specified point,
and then backs off n f#'s.

(BELOW com) same as (BELOW com 1).

For example, (BELOW COND) will cause the cond clause containing

the current expression to become the new current expression.

Thus if the current expression is as show above, F CADR followed

by (BELOW COND) will make the new expression be
([NULL (CDR (FMEMB (CAR L) CADR L]

equivalent to g g g #.

(GO LP)), and is therefore

BELOW operates by evaluating X and then
executing com, or (+ com) if com is not a
recognized edit command, and measuring the
length of the edit chain at that point. If
that length is m and the length of the cur-
rent edit chain is n, then BELOW ascends
n-m-y links where y is the value of x,
Generates an error if com causes ‘

an error, i.e., it can't find the higher

link, or if n-m—-y is negative.

The BELOW command is useful for locating a substructure by
specifying something it contains. For example, suppose the user
is editing a list of lists, and wants to find a sublist that

contains a FOO (at any depth). He simply executes F FOO (BELOW \).

* X is evaluated, e.g., (BELOW com (IPLUS X Y)).

U

(NEX x) same as (BELOW x) followed by NX.

For example, if the user is deep inside of a SELECTQ clause,
he can advance to the next clause with (NEX SELECTQ).

NEX same as (NEX «).

The atomic form of NEX is useful if the user will be performing
repeated executions of (NEX x). By simply MARKing (see p. 9.39)
the chain corresponding to x, he can use NEX to step through the
sublists. |

(NTH @) generalized NTH command. Effectively
performs (LCL . @), followed by (BELOW \),
followed by UP.

In other words, NTH locates @, using a search restricted to

the current expression, and then backs up to the current level,
where the new current expression is the tail whose first element
contains, however deeply, the expression that was the terminus
of the location operation. For example:

* P

{PROG (& &) LP (COND & &) (EDITCOM &) (SETQ UNFIND UF) (RETURN L))
*(NTH UF)

* P

sse (SETQ UNFIND UF) (RETURN L))
*

If the search is unsuccessful, NTH generates

an error and the edit chain is not changed.
Note that (NTH n) is just a special case of (NTH @), and in

fact, no special check is made for @ a number; both commands

are executed identically.

9.37

(pattern .. . @)Jr e.g., (COND .. RETURN). Finds a cond

that contains a return, at any depth.
Equivalent to (F pattern N), (LCL . Q)
followed by (+ pattern).

For example, if the current expression is

(PROG NIL (COND ((NULL L) (COND (FLG (RETURN L))))) =--) then

(COND .. RETURN) will make (COND (FLG (RETURN L))) be the

current expression. lNote that it is the innermost COND that is
found, because this is the first COND encountered when ascending
from the RETURN. In other wvords, (pattern .. @) is not eguivalent
to (F pattern N), followed by (LCL . @) followed by \.

Note that @ is a location specification, not just a pattern.

Thus (RETURN .. COND 2 3) can be used to find the RETURN which
contains a COND whose first clause contains (at least) three
elements. Note also that since @ permits any edit command,

the user can write commands of the form (COMD .. (RETURN .. COND)),
which will locate the first COND that contains a RETURN that
contains a COND.

TAn infix command, '..' is not a meta-symbol, it 18" the name of the

command. @ is cddr of the command.

9.38

D)

Py

Commands That Save and Restore The Idit Chain

Three facilities are available for saving the current edit chain
and later retrieving it. The commands are MARX, which marks
the current chain for future reference, +,T which returns to the
last mark without destroving it, and <+, which returns to the

last mark and also erases it.

MARK adds the current edit chain to the front
of the list marklst.

« makes the new edit chain he (CAF MARELST).
Generates an error if marklst is NIL, i.e.,
no MARKS have heen performed: or all have

heen erased.

++ similar to + but also erases the !"ADRK,
i.e., performs

(STTQ MARKLST (CDR MARKLET)) .

If the user did not prevare in advance for returning to a
particular edit chain, he may still be able to return to that

chain with a single command by using \ or \P.

\‘ makes the edit chain e the value of
unfind. Cenerates an error if
unfind=NTIIl.

tan atom:-.c command:; do not confuse with the list command
(+ pattern).

9.39

unfind is set to the current edit chain by each command that
makes a "big jump", i.e., a command that usually performs more
than a single ascent or descent, namely t, «, <+, INX, all
commands that involve a search, e.g., F, LC, .., BELOW, et al
and \ and \P themselves.*

For example, if the user types F COND, and then F CAR,\\ would
take him back to the COND. Another \ would take him back to
the CAR, etc.

\P restores the edit chain to its state as
of the last print operation, i.e. P, ?,
or PP, If the edit chain has not
changed since the last printing, \P
restores it to its state as of the
printing before that one, i.e., two
chains are always saved.

For example, if the user types P followed by 3 2 1 P,‘\P will
return to the first P, i.e., would be equivalent to 0 0 0.**
Another \P would then take him back to the second P, i.e., the
user could use \P to flip back &and forth between the two edit
chains.

(S var . @) sets var (using setq) to the current
expression after performing (LC . @).
Edit chain is not changed.

Thus (S FOO) will set foo to the current expression, (S FOO -1 1)
will set foo to the first element in the last element of the
current expression.

*Except that unfind is not reset when the current edit chain is the
top level expression, since this could always be returned to via
the 4 command.

**Note that if the user had typed P followed by F COND, ke could use
either \ or \P to return to the P, i.e., the action of \ and \P
are independent.

W

»

AN

Commands That Modify Structure

The basic structure modifications commands in the editor are:

(n) n2l deletes the corresponding element from

the current expression.

(n €] ... em) n,m2l replaces the nth element in the
current expression with €] .. €.
(-n ey «.. em) n,m21l inserts e, ... e before the nth

element in the current expression.

(N el cewe em) m2]1 attaches el .o em at the end of the

current expression.

As mentioned earlier:

all structure modification done by the editor is destructive,

1.e. the editor uses rplaca and rplacd to physically change
the structure it was given.

.« O

However, all structure modification is undoable, see UNDO p. 3.83.

211l of the above commands generate errors if the current expres-
sicn is not a list, or in tre case of the firast three commands,
if the list contains fewer than n elements. In addition, the
command (1), i.e. delete the first elemnent, will cause an error
if there is onlv one element, since deleting the first element
must be done bv replacing it with the second elenment, and then
deleting the second element. Or, to look at it another way,
deleting the first element when there is only one element would
require changing a list to an atom (i.e. to NIL) which cannot

be done.*

*However, the command DELETE will work even if there is only
one element in the current expression, since it will ascend
to a point where it can do the deletion.

Implementation of Structure Modification Commands

Note: Since all commands that insert, replace, delete or attach
structure use the same low level editor functions, the remarks
made here are valid for all structure changing commands.

For all replacement, insertion, and attaching at the end of a
list, unless the command was typed in directly to the editor,*
copies of the corresponding structure are used, because of the
possibility that the exact same command, (i.e. same list structure)
might be used again. Thus if the program constructs the command

(1 (A BC)) via (LIST 1 FOO), and gives this command to the editor,
the (A B C) used for the replacement will not be eq to foo.**

The rest of this section is included for applications wherein the «
editor is used to modify a data structure, and pointers into that
data structure are stored elsewhere. In these cases, the actual
mechanics of structure modification must be known in order to
predict the effect that various commands mav have on these outside
pointers. For example, if the value of FOO is cdr of the current
expression, what will the commands (2), (3), (2 XYy z), (-2 XY 2),
etc. do to foo?

*Some editor commands take as arguments a list of edit commands,
e.g. (LP F FOO (1 (CAR FOO))). In this case, the command

(1 (CAR FOO)) is not considered to have been "typed in" even
though the LP command itself may have been typed in. Similarly,
commands originating from macros, or commands given to the editor
as arguments to editf, editv, et al, e.g. EDITF(FOC F COND (N --))
are not considered typed 1n.

**The user can circumvent this by using the I command, which computes
the structure to be used. In the above example, the form of the
command would be (I 1 FOO), which would replace the first element
with the value of foo itself. See p. 9.70.

[

//\

Deletion of the first element in the current exoression is
performed by replacing it with the second element and deleting
the second element bv patching around it. Deletion of any
other element is done by vatching around it, i.e., the previous
tail is altered. Thus if foo is eq to the current expression
which is (A B C D), and fie is cdr or foo, after executing

the command (1), foo will be (B C D) (which is equal but not

eq to fie). FHowever, under the same initial conditions,

after executing (2) fie will be unchanged, i.e., fie will still
be (B C D) even though the current expression and foo are now
(A C D).*

Both replacement and insertion are accomplished by smashing hoth
car and cdr of the corresponding tail. Thus, if foo were eq to
the current expression, (A B C D), after (1 X Y 2), foo would

be (X Y Z B C D). Similarly, if foo were eg to the current
expression, (A B C D), then after (-1 X Y 2), foo would ke

(XY ZADRBCD).

current expression a la nconc. Thus if foo were eq to anv
tail of the current expression, after executing an ! command,
the corresponding expressions would also appear at the end of

foo.

In summarv, the only situation in which an edit overation will
not change an external pointer occurs when the external pointer

is to a proper tail of the data structure, i.e., to cdr of some

node in the structure, and the operation is deletion. If all
external pointers are to elements of the structure, i.e., to

car of some node, or if only insertions, replacements, or
attachments are performed, the edit operation will always have
the same effect on an external pointer as it does on the current

expression.

* N general solution of the problem just isn't possibkle, as it
would regquire being able to make two lists eq to each other that
werc 'originally different. Thus if fie is cdr of the current
expression, and fum is cddr of the current expression, performing
(2) would have to make fie be ea to fum if all subsecuent onera-

tions were to update both fie and fum correctly. Think about it.

9.43

The A,B,: Commands

In the (n), (n el,...,em), and (—h ell...,em) commands, the sign of
the integer is used to indicate the operation. As a result, there is
no direct way to express insertion after a particular element,
(hence the necessity for a separate N command). Similarly, the user
cannot specify deletion or replacement of the nth element from the
end of a list without first converting n to the corresponding
positive integer. Accordingly, we have:

(B ej,ees,ep) inserts e;,..., e, before the current
expression. Equivalent to UP followed by

(-1 ell LR em) °

For example, to insert FOO before the last element in the current
expression, perform -1 and then (B FO0O).

(A el,...,em) inserts €1y ceep € after the current expres-
sion. Equivalent to UP followed by
(-2 ey ..eyey) or (N ey ... e) whichever
is appropriate.

(: e, .00,€) replaces the current expression by ey ..., e
Equivalent to UP followed by (1 e, ..., e).

m*

DELETE or (:) deletes the current expression, or if the
current expression is a'tail, deletes its
first element.

DELTITI first tries to delete the current expression hv performing
an UP and then a (l1). This works in most cases. However, if
after performing UP, the new current expression contains only one
element, the command (1) will not work. Therefore, DELETFE starts
over and performs a BK, followed by UP, followed by (2). For
example, if the current expression is (COWD ((MEMR X Y)) (T Y)),
and the user performs -1, and then DELETI, the BK-UP-(2) method

is used, and the new current expression‘will be ... ((MEMB X Y)))

Bowever, if the next higher exnression contains onlv one element,
BK will not work. So in this case, DILETE performs UP, followed
by (: NIL), i.e., it replaces the higher eypression by MNII,. For
example, if the current expression is (COND ((MFMBE X Y)) (T Y))
and the user performs F MEMB and then DELFTF, the new current
expression will he ... MIL (T Y)) and the original expression
would now be (COND NIL (T Y)). The rationale hehind this is

that deleting (MDMB X Y) from ((MEMB X Y)) changes a list of one
element to a list of no elcments, i.e., () or NIL. DNote that 2
followed Lv DELETE would delete ((MFEMR ¥ Y)) not replace it hy
MIL.

If the current expression is a tail, then B, A, and :
will work exactlv the same as though the current exvression were

the first element in that tail. Thus if the current expression
were ... (PRINT Y) (PRINT Z)), (B (PRINT X)) would insert
(PRINT X) before (PRINT Y), leaving the current expression

... (PRINT X) (PRINT V) (PRINT 2)).

The following forms of the A, B, and : commands incorporate a

location specification:

(INSERT e BEFORE . @)* Similar to (LC . @) followed by

(B e

l,...'em
l'."'em).
* P

(PROG (& & X) *+*COMMENT»» (SELECTQ ATM & NIL) (OR & &) (PRIN{ & T)
(PRIN1 & T) (SETOo x & T

*» (INSERT LABEL B%FORF PRIN’)
* P
(PROG (R & X) **COMMENTx*x (SELECTQ ATM & NIL) (OR & &) LABEL (PRIN1 &
™ | '
*
Current edit chain is not changed, but
unfind is set to the edit chain after the
B was performed, i.e. \‘will make the edit
chain be that chain where the insertion was
performed.

(INSERT e,,..., €, AFTER . @) similar to INSERT BEFORE except uses
A instead of B.

(INSERT ey ..., e, FOR . @) similar to INSERT BEFORE except uses
: for B.

*i.e. @ is cdr[member [BEFORE;commanc]]

*Suﬁden termination of output followed by an extra carriage
return indicates printing was aborted by control-E.

.

AN

(REPLACE @ WITE ey ...,em)T Here @ is the segment of the command
between REPLACE and WITH. Same as

(INSERT e,y ...,e FOR . @).

Example: (REPLACE COND -1 WITH (T (RETURN L)))

(CHANGE @ TO el,...,em) Same as REPLACE WITH

(DELETE . @) does a (LC . @) followed by DELETL.
. Current edit chain is not changed,*
but unfind is set to the edit chain

after the DELETE was performed.

Example: (DELETE -1), (DELETE COND 3)

Y¥ote that if @ is MIL (emptv), the corresronding overation is
performed here (on the current edit chain), e.g. (RI'PLACI WITH (CAR ¥))
is equivalent to (: (CAR X)). For added readability, HERE is

also permitted, e.g. (INSERT (PRINT X) BEFORE IILRE) will insert

(PRINT X) before the current expression (but not change the edit
chain) .

iote also that @ does not have to specify a location within the
current expression, i.e. it is perfectly legal to ascend to
INSERT, REPLACE, or DELETE. For example

(INSERT (RETURN) AFTER 4 PROG -1) will go to the top, find the
first prog, and insert a (RETURN) at its end, and not change

the current edit chain.

tBY can be used for WITII.

*Unless the current expression is no longer a part of the expres-
sion being edited, e.g. if the current expression is ... C) and
the user performs (DELETE 1), the tail, (C), will have been cut
off. Similarly, if the current expression is (CDR Y) and tlte
user performs (REPLACE WITH (CAR X)).

9.47

Finally, the A, B, and : commands, (and consequently INSERT,
REPLACE, and CHANGE), all make special checks in e thru en for -

expressions of the form (## . coms). In this case, the expression

‘W

used for inserting or replacing is a copy of the current expression
after executing coms, a list of edit commands.* For example,
(INSERT (## F COND -1 -1) AFTER 3)** will make a copy of the

last form in the last clause of the next cond, and insert it

after the third element of the current exgression.

*The execution of coms does not change the current edit chain.

**Jot (INSERT F COND -1 (## -1) AFTER 3), which inserts four elements
after the third element, namely F, COND, -1, and a copy of the last
element in the current expression.

L/

The UP that is performed bhefore A, B, and : commands,* makes
these operations form-oriented. For example, if the user types

F SETQ, and then DELETE, or simply (DELETE SETQ), he will delete
the entire SETQ expression, whereas (DELETE X) if X is a variable,
deletes just the variable X. 1In both cases, the operation is
performed on the corresponding form and in both cases is probably
what the user intended. Similarly, if the user tynes

(INSERT (RETURN Y) BEFORE SETQ), he mcans before the SETQ
expression, not before the atom SETQ.** A consequent of this pro-
cedure 1is that a pattern of the form (SETQ Y --) can be viewed as
simply an elaboration and further refinement of the pattern SETQ.
Thus (INSERT (RETURN Y) BEFORE SETQ) and

(INSERT (RETURN Y) BEFORE (SETQ Y --)) perform the samc operation***
and, in fact, this is one of the motivations behind making the

current expression after I SET(Q, and F (SIETQ Y =--) be the same,.

Occasionally, however, a user mavy have a data structure in which
no special significance or meaning is attached to the position
of an atom in a list, as LISP attaches to atoms that appear as
car of a list,versus those appearing elsewhere in a list. 1In
general, the user may not even know whether a particular atom is
at the head of a list or not. Thus, when he writes

(INSERT expression AFTER FOO), he means after the atom FOO, whether

*and therefore in INSERT, CHANGL, REPLACE, and DELETE cormands
after the location portion of the operation has been performed.

**PThere is some ambiguity in (IISERT expr AFTER functionname), as
the user might mcan make expr be the function's first argument.
Similarly, the user cannot write (REPLACE SETQ WITH SETQQ) mean-
ing change th¢ name of the function. The user must in these cases
write (INSERT expr APTER functionname 1), and
(REPLACE SETQ 1 WITH SETQQ) .

***55suming the next SETO is of the form (SETQ Y -)).

or not it is car of a list. By setting the variable upfindflg to
NILT the user can suppress the implicit UP that follows searches
for atoms, and thus achieve the desired effect. With upfindflg=n71,
&hen following F FOO, for example, the current expression will be
the atom FOO. 1In this case, the A, B, and : operations will
operate with respect to the atom FOO. If the user intends the
operation to refer to the list which FOO heads, he simply uses
instead the pattern (FOO =--).

fInitially, and usually, set to T.

D

(U

N
H :
\

Extract and Embed

Extraction involves replacing the current expression with one

of its subexpressions (from any depth).

(XTR . @) replaces the original current expression
with the expression that is current after

performing (LCL . @).

For example, if the current expression is (COND ((MNULL X) (PRINT Y))),
(XTR PRINT), or (XTR 2 2) will replace the cond by the print,

If the current expression after (LCL . Q)
is a tail of a higher expression, its

first element is used.

For exanple, if the current expression is
(COND ((NULL X) Y) (T 2)), then (XTR Y) will revlace the cond
with Y.

If the extracted expression is a list,
then after %TR has finished, the current

expression will he that list.

Thus, in the first exanple, the current expression after the XTR
would be (PRINT Y).

If the extracted exoression is not a list,
the new current expression will be a tail

whose first element is that non-list.

Thus, in the second example, the current exprcssion after the
XTR would be ... Y follcwed hv whatever followed the CONI:.

If the current expression initially is a tail, extraction works ;>
exactly the same as though the current expression were the first

element in that tail. Thus if the current expression is

«.. (COND ((NULL X) (PRINT Y))) (RETURN Z)), then (XTR PRINT)

will replace the cond by the print, leaving (PRINT Y) as the

current expression.

The extract command can also incorporate a location specification.

(EXTRACT @ T

FROM . @ Performs (LC . @2) and then

(XTR . @,). Current edit chain
is not changed, but unfind is set
to the edit chain after the XTR

was performed.

1 2)

Example: If the current expression is :
(PRINT (COND ((NULL X) ¥Y) (T Z))) then following ' ;)
(EXTRACT Y FROM COND), the current expression will be (PRINT Y).

(EXTRACT 2 -1 FROM COND) , (EXTRACT Y FROM 2), (EXTRACT 2 -1 FROM 2)
will all produce the same result.

+@1 is the segment between EXTRACT and FROM.

9.52

‘ While extracting replaces the current expression by a subexpression,
| embedding replaces the current expression with one containing <t

7N

as a subexpression.

1-

(MBD X) x is a list, substitutes' the current
expression for all instances of the
atom * in x, and renlaces the current
expression with the result of that

substitution.

Example: If the current expression is (PRINT Y),

(MED (COMD ((NULL X) *) ((MULL (CAR Y)) * (GO LP))) would
replace (PRINT Y) with

(COND ((NULL X) (PRINT Y)) ((NULL (CAR Y)) (PRINT Y) (GO LP))).

(MBD e equivalent to (MBD (el ce. © %)),

1 e em) m

Ixample: If the current expression is (PRINT V), then (MBD SETC X

will replace it with (SETQ X (PRINT V)).

AN

(MBD x) x atomic, same as (MBD (x *)).

Example: TIf the current expression is (PRINT Y), (MRD RETURYN)

will replace it with (RTTURN (PRINT Y)).

All three forms of MBD leave the edit chain so that the larger

expression is the new current expression.

If the current exnpression initially is a tail, embedding works
exactly the same as though the current exnression were the first
element in that tail. “©Thus if the current expression were

oo (PRINT Y) (PRINT Z2)), (MBL SETG X) would replace (PRINT Y)
with (SETQ X (PRINT Y)).

T
a la subst, i.e., a fresh copy is useu for eacu suwstitution.

The embed command can also incorporate a location specification.

(EMBED Q@ IN . x)+ does (LC . @) and then (MBD . x). Edit
chain is not changed, but unfind is set
to the edit chain after the MBD was
performed.

Example: (EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN),
(EMBED COND 3 1 IN (OR * (NULL X))).

WITH can be used for IN, and SURROUND can be used for EMBED, .
e.g., (SURROUND NUMBERP WITH (AND * (MINUSP X))).

1-@ is the segment between EMBED and IN.

J

N

The _MOVE Command

The MOVE command allows the user to specifv (1) the expression
to be moved, (2) the place it is to be moved to, and (3) the
operation to be performed there, e.g., insert it before, insert
it after, replace, etc.

(MOVE @ TO com . @,)T ~ where com is BEFORE, AFTER, or

the name of a list command, e.g., :, N, etc.
performs (LC . @l), obtains the current
expression there (or its first element,

if it is a tail), let us call this expr;
MOVE then goes back to original edit chain,
performs (LC . @2), performs (com expr),*
then goes back to @1 and deletes expr. Edit
chain is not changed. Unfind is set to

edit chain after (com expr) was performed.

For exarple, if the current expression is (A B C D),

(MOVE 2 TO AFTER 4) will make the new current expression be
(A C D E). Note that 4 was executed as of the original edit
chain, and that the second element had not yvet been removed.

@l is the segment between MOVE and TO.
*Setting an internal flag so cxupr is not c0p1ed

9.55

As the following examples taken from actual editing will show,
the MOVE command is an extremely versatile and powerful feature
of the editor.

*?

(PROG ((L L)) (EDLOC (CDDR C)) (RETURN (CAR L)))
#(MOVE 3 T0 : CAR)
*?

(PROG ((L L)) (RETURN (EDLOC (CDDR C))))
o

xP

«ee (SELECTQ OBJPR & &) (RETURN &) LP2 (COND & &))
*(MOVE 2 To N 1)

*P

+es (SELECTQ OBJPR & & &) LP2 (COND & 8))

* P
(2R (EQ X LASTAIL) (NCT &) (AND & &8 &))
= (MOVE 4 TO AFTER (BELOW COND))
* P
(OR (EQ X LASTAIL) (WOT R))
*\ P
" ... (& &) (AND & & &) (T & &))
*

* P .

((NULL X) *#COMMENT=* (CCND & &))

* (-3 (GO DELETE]

* (NOVE 4 TO N (+« PROG))

«P

((NULL ¥) **COMMENT=*%* (GO DELETE))

*x\ P

(PROG (&) *#COMMENT=** (CCND & & &) (COND & & &) (COND & &))
* (INSERT DELETE REFORE =1)

* P

(PROG (&) **COMMENT=*» (COND & & &) (COND & & &) DELETE (COND & §))

3

9.56

e

Note that in the last example, the user could have added the
prog label DELETE and moved the cond in one operation by
performing (MOVE 4 TO N (« PROG) (N DELETE)). Similarly, in
the next example, in the course of specifying @2, the location
where the expression was to be moved to, the user also
performs a structure modification, via (N (T)), thus creating
the structure that will receive the expression being moved.

* P

{(CDR &) **COMMENT*» (SETQ CL &) (EDITSMASH CL & &))
*{MOVE 4 TO N & (N (T)) =11

* P

((CDR &) **COMMENTx*x (SETQ CL &))

«\ P

*»(T (ECITSMASH CL & &))

*

If @2 is NIL, or (HERE), the current position specifies where
the operation is to take place. In this case, unfind is set
to where the expression that was moved was originally located,

i.e, @l' For example:

*P
(TENEX)

*(MOVE + F APPLY TO N HEREZ)
*P

(TENEX (LPPLY & &))

*

*P
(PROG (& & & ATM IND VAL) (ORK & R) *%COMMENT*x (OR & &) (PRIN1 & T) (
PRINT & T) (SETQ INDT

« (MOVE * T0 REFORF HERE)
*P
(PROG (& & & ATM IND VAL) (OR & &) (OR & &) (PRIN1 g&T

*

+Sudden termination of output followed by an extra carriage return

indicates printing was aborted by control-E. The * in
(MOVE * TO BEFORE HERE) locates the comment, which is printed
as **COMMENT**, see p. 9.68.

9.57

*P

(T (PRIN1 C-EXP T))

*(MOVE * BF PRIN?1 TO N HERE)
* P

(T (PRIN1 C-EXP T) (PRIN1 & T))
L

Finally, if @1 is NIL, the MOVE command allows the user to
specify some place the current expression is to be moved to.
In this case, the edit chain is changed, and is the chain

where the current expression was moved to; unfind is set to
where it was.

»p

(SELECTQ OBJPR (&) (PROGN & &))
«(MOVE TO BEFORE LOOP)
P

«es (SELECTQ OBJPR & &) LOOP (FRPLACA DFPRP &) (FRPLACD DFPRP
&) (SELECTQ

»*

Commands That "Move Parentheses"

The commands presented in this section permit modification of
the list structure itself, as opposed to modifying components
thereof. Their effect can be described as inserting or
removing a single left or right parenthesis, or pair of left
and right parentheses. Of course, there will always be the
same number of left parentheses as right parentheses in any
list structure, since the parentheses are just a notational
guide to the structure provided by print. Thus, no command
can insert or remove just one parenthesis, but this is

suggestive of what actually happens.

In all six commands, n and m are used to specify an element of
a list, usually of the current expression. In practice, n and
m are usually positive or negative integers with the obvious
interpretation. However, all six commands use the generalized
NTH command, p. 9.37, to find their element(s), so that nth
element means the first element of the tail found by performing
(NTH n). In other words, if the current expression is

(LIST (CAR X) (SETQ Y (CONS W Z))), then

(BI 2 CONS), (BI X -1), and (BI X Z) all specify the exact same

operation.

All six commands generate an error if the element is not found,
i.e. the NTH fails. All are undoable.

(BI n m) both in, inserts a left parentheses before
the nth element and after the mth element
in the current expression. Generates an
error if the mth element is not contained
in the nth tail, i.e., the mth element
must be "to the right" of the nth element.

Example: If the current expression is (A B (C D E) F G), then
(BI 2 4) will modify it to be (A (B (C D E) F) G).

(BI n) same as (BI n n).

Example: If the current expression is (A B (C D E) F G), then
(BI -2) will modify it tobe (A B (CDE) (F) G).

(BO n) both out. Removes bhoth parentheses
from the nth element. Generates an error

if nth element is not a list.

Example: If the current expression is (A B (C D E) F G), then
(BO D) will modify it to be (A BCDETF G).

(LI n) left in, inserts a left parenthesis before
the nth element (and a matching right
parenthesis at the end of the current

expression), i.e. equivalent to (BI n -1).

Example: If the current expression is (A B (C D E) F G), then
(LT 2) will modify it to be (A (B (C D E) F G)).

(LO n) left out, removes a left parenthesis from
the nth element. All elements following
the nth element are deleted. Generates

an error if nth element is not a list.

Example: If the current expression is (A B (C D E) F G), then
(LO 3) will modify it to be (A B C D E).

9.60

(RI n m) right in, inserts a right parenthesis
The rest of the nth element is brought

up to the level of the current expression.

Example: If the current expression is (A (BC D E) F G), (RI 2 2)
will modifv it to be (A (B C) D E F G). Another way of thinking
about RI is to read it as "move the right parenthesis at the end
of the nth element Zn to after the mth element."

(RO n) right out, removes the right parenthesis
from the nth element, moving it to the
end of the current expression. R2ll
elements following the nth element are
moved inside of the nth element. Gene-

rates an error if nth element is not a list.

Example: If the current expression is (A B (C D E) F G), (RO 3)
will modify it to be (A B (C D E F G)). Another way of thinking
about RO is to read it as "move the right parenthesis at the end

of the nth element out to the end of the current expression."

TO and THRU

EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made to operate
on several contiguous elements, i.e., a segment of a list, by

using the TO or THRU command in their respective location
specifications.

(@1 THRU @2) does a (LC . @l), followed by an UP, and
then a (BI 1 @2), thereby grouping the
segment into a single element, and finally
does a 1, making the final current
expression be that element.

For example, if the current expression is

(A (B (CD) (E) (F G H) I) J K), following (C THRU G), the
current expression will be ((C D) (E) (F G H)).

(Rl TO 22) Same as THRU except last element not
included, i.e., after the BI, an (RI 1 -2)
is performed.

If both @1 and @2 are numbers, and @2 is greater than @1, then

@2 counts from the beginning of the current expression, the same

as 81. 1In other words, if the current exnression is (A B CDZETF G),
(3 THRU 4) means (C THRU D), not (C THRU F). In this case, the
corresponding BI command is (BI 1 €2-@1+1).

Y,

D

U

THRU to TO are not very useful commands by themselves, and are
not intended to be used "solo", but in conjunction with EXTRACT,
EMBED, DELETE, REPLACE, and MOVE. After THRU and TO have
operated, they set an internal editor flag informing the above
commands that the element they are operating on is actually a
segment, and that the extra pair of parentheses should he

removed when the operation is complete. Thus:

* P

(PROG (& & ATM IND VAL WORD) (PRIN1 & T) (PRINT & T) (SETQ IND &) (SETQ
VAL &) #**COMMENTxx (SETQOQ

* (MOVE (3 THRU 4) TO BEFORE 7)

*P

(PROG (& & ATM IND VAL WORD) (SETQ IND &) (SETQ VAL &) (PRIN1 & T) (
PRIN1T1 & T) *xCOMMENT*x*

*

* P

(*« FAIL RETURN FROM EDITOR. USER SHOULD NOTE THE VALUES OF SOURCEXPR AND
CURRENTFOEM, CURRFNTFORM IS THE LAST FORM IN SOURCEXPR WHICH WILL HAVE
BEEN TRANSLATED, :ND IT CRUSED THE ERROR,)

* (DELETE (USER THRU CURR%))

=CURRENTF"RM.

* P

(* FAIL RETURN FROM DITOR. CURRENTFORM IS

*

xP

wee LP ISELZCTQ & & R & HIL) (SETQ Y &) oUT (SETQ FLG &) (RETURN Y))
* (MOVE (1 T0 OUTY) T0 X H*EL]

* D ‘

.. OUT (STTQ FLG &) (RETUEN Y) LP (SELECTQ & & & & NIL) (SETQ Y &))

x

*PP
[(PROG (RF TEMP1 TEMP2)
(COND
((NOT (MEMB REMARG LISTING))
(SETQ TEMP1 (ASSOC REMARG NAMEDREMARKS)) w*COMMENTe#»
(SETQ TEMP2 (CADR TEMP1))
(GO SKIP))
(T sxCOMMENT »»
(SETQ TEMP1 REMARG))Y)
(NCONC1 LISTING REMARG)
(COND
((NOT (SETQ TEMP2 (SASSOC

* (EXTRACT (SETQ THRU CADR) FROM COND)

=P :

(PROG (RF TEMP1 TEMP2) (SETQ TEMP1 &) #*COMMENT** (SETQ TEMP2 &)
(NCONC1 LISTING REMARG) (COND & &

"

TO and THRU can also be used directly with XTR.T Thus in the
previous example, if the current expression had been the COND,
e.g. the user had first performed F COND, he could have used
(XTR (SETQ THRU caDR)) to perform the extraction.

+Because XTR involves a location specification while A,B,:, and
MBD do not.

9.64

U

-

(€1 TO), (@l THRU) both same as (@1 THRU -1), i.e., from @1
thru the end of the list.

=P

(VALUE (RPLACA DFPEP &) (RPLACD &) (RPLACAR VARSWORD &)} (RETURN))

* (MOVFE (2 TO) TO N (& PROG))

*(N (GO VLR))

* P |
(VALUE (G VAR))

»P

(T **COMMENT#** (COND &) **COMMENT=»« (EDITSMASH CL & &) (COND &))
*{(~3 (50 REPLACE))

*«(MOVE (COND TO) TO N ¢+ PROG (N REPLACE))

* P

(T **COMMENT=** (GO RLPLACE))

*\ P

(PROG (&) **xCOMMENT=* (COND & & &) (COND & & &) DELETE (COND & &)
REPLACE (COND &) *xCOMMENT=* (EDITSMASH CL & &) (COND &))

»

*PP
[LAMBDA (CLAUSALA X)
(PROG (A D)
(SETQ A CLAUSALR)
LP (COND
((NULL Q)
(RETURN))
(SERCH X RA)
(RUMARK (CDR A))
(NOTICECL (CAR R))
(SETQ A (CDR A))
(60 LP1
« (EXTRACT (SERCH THRU NOT$) FROM PROG)
=NOTICECL

xP
(LAMBDA (CLAUSALA X) (SERCH X A) (RUMARK &) (NOTICECL &))

* (EMBED (SERCH TO0) IN (MAP CLAUSALA (FUNCTION (LAMBDA (A) =)

«PP
[LAMBDA (CLAUSALA X)
(MAP CLAUSALA (FUNCTION (LAMBDA (A)
(SERCH X 1)
(RUMARK (CDR A))
(NOTICECL (CAR A]

(R x y) replaces all instances of x by y in the
current expression, e.g., (R CAADR CADAR).
Generates an error if there is not a

W,

least one instance.

R operates by performing a dsubst. The current expression is the
third argument to dsubst, i.e., the expression being substituted
into, and Y is the first argument to dsubst, i.e., the expression
being substituted. R computes the second argument to dsubst, the
expression to be substituted for, by performing (F x T). The
second argument is then the current expression at that point, or
if that current expression is a list and x is atomic, then the
first element of that current expression. Thus x can be the
S—-expression (or atom) to be substituted for, or can be a

pattern which specifies that S-expression (or atom).

For example, if the current expression is

(LIST FUNNYATOM1 FUNNYATOM2 (CAR FUNNYATOM1l)), then

(R FUNS FUNNYATOM3) will substitute FUNNYATOM3 for FUNNYATOM1

throughout the current expression. Note that FUNNYATOMZ2, even \:)
though it would have matched with the pattern FUNS, is not

replaced.

Similarly, if (LIST (CAR X) (CAR Y)) is the first expression
matched by (LIST --), then (R (LIST --) (LIST (CAR Y) (CAR Z)))

is equivalent to (R (LIST (CAR X) (CAR Y)) (LIST (CAR Y) (CAR 2))),
i.e., both will replace all instances of (LIST (CAR X) (CAR Y))

by (LIST (CAR Y) (CAR Z)). DNote that other forms beginning

with LIST will not be replaced, even though they would have

matched with (LIST --). To change all expressions of the form
(LIST --) to (LIST (CAR Y) (CAR Z)), the user should perform
(LP (REPLACE (LIST --) WITH (LIST (CAR Y) (CAR].

unfind is set to the edit chain following the find command so

that \ will make the current expression be the place where the

first substitution occurred.

9.66

e

e
P !
\

(SW n m)

For example,

switches the nth and mth elements of

the current expression.

if the current expression is

(LIST (CONS (CAR X) (CAR Y)) (CONS (CDR X) (CDR Y))),
(sw 2 3) will modifv it to be
(LIST (CONS (CDR X) (CDR Y)) (COMS (CAR X) (CAR Y))). The

relative order of n and m is not important, i.e., (SW 3 2) and

(S¥W 2 3) are equivalent.

S¥ uses the generalized NTH command to
find the nth and mth elements, a la the
BRI-BO commands.

Thus in the previous example, (SW CAR CDR) would produce the

same result.

Commands That Print

P prints current expression as though :D

printlevel were set to 2,

(P m) prints mth element of current expression as
though printlevel were set to 2.

(p 0) same as P

(P m n) prints mth element of current expression
as though printlevel were set to n.

(P 0 n) prints current expression as though

printlevel were set to n.

)

same as (P 4 100)

Both (P m) and (P m n) use the general NTH command to obtain ‘:)
the corresponding element, so that m does not have to be a number,
e.g. (P COND 3) will work.

All printing functions print to the teletype, regardless of the
primary output file. ©No printing function ever changes the edit
chain. All record the current edit chain for use hy \P, p. 9.40
All can be aborted with Control-E. PP causes all comments to

be printed as **COMMENT** (see p. 14.26). P and ? print as
COMMENT only those comments that are (top level) elements of
the current expression.

TLower expressions are not seen; the pPrinting command simply
sets printlevel and calls print.

o Commands That Evaluate

E only when typed in, *causes the editor
to call lispx giving it the next input
as érgument.**

Example: *E BREAK(FIE FUM)
(FIE FUM)
*E (FOO)

(FIE RROKEN)

(E x) evaluates x, i.e., performs eval[x], and

prints the result on the teletype.
(E x T) same as (E x) but does not print.

The (E x) and (E x T) commands are mainly intended for use by
macros and subroutine calls to the editor; the user would

-

probably type in a form for evaluation using tlie more convenient
format of the (atomic) E command.

*i.e. (INSERT D BEFORE E) will treat E as a pattern.

** lispx is used by evalat and break for processing teletvpe
inputs. If nothing else is typed on the same line, lispx
evaluates its argument. Otherwise, lispx anplies it to the
next input. In bhoth cases, lispx prints the result. See example,
and Sections 2 and 22.

TN

(I cxy oeu x) same as (c y; ... y) where y ,=eval[x,].

Example: (I 3 (GETD (QUOTE FOO)) will replace the 3rd element
of the current expression with the definition of 229.*

(I N FOO (CAR FIE)) will attach the value of foo and car of
the value of fie to the end of the current expression.

(I F= FOO T) will search for an expression egq to the value of
foo.

If ¢ is not an atom, it is evaluated

as well.
Example: (I (COND ((NULL FLG) (QUOTE -1)) (T 1)) FoOO), if Elg
is NIL, inserts the value of foo before the first element of the
current expression, otherwise replaces the first element by the

value of foo.

##[com ;com,; ... jcom] is an NLAMBDA, NOSPREAD function (not
a command). Its value is what the current
expression would be after executing the edit
commands com; ... com, starting from the
present edit chain. Generates an error if
any of comy thru com =~ cause errors. The
current edit chain is never changed.**

Example: (I R (QUOTE X) (## (CONS .. Z))) replaces all X's in
the current expression by the first cons containing a Z.

*The I command sets an internal flag to indicate to the structure
modification commands not to copy expression(s) when inserting,
replacing, or attaching.

**Recall that A,B,:,INSERT, REPLACE, and CHANGE make special checks
for ##% forms in the expressions used for inserting or replacing,
and use a copy of ## form instead (see p.9.48). Thus,

(INSERT (##%# 3 2) AFTER 1) is equivalent to
(I INSERT (COPY (## 3 2)) (QUOTE AFTER) 1).

W,

The I command is not very convenient for computing an entire
edit command for execution, since it computes the command name
and its arguments separately. Also, the I command cannot be
used to compute an atomic command. The following two commands

provide more general wavs of computing commands.

(coMs xl,...,xn) Each X is evaluated and its value

executed as a command.

For example, (COMS (COND (X (LIST 1 X)))) will replace the first
element of the current expression with the value of x if non-NIL,
otherwise do nothing.*

(COMSO coml,...,comn) executes com,, ..., com .

COMSO is mainly useful in conjunction with the COMS command.
For example, suppose the user wishes to compute an entire list
of commands for evaluation, as opposed to computing each
command one at a time as does the COMS command. e would then
write (COMS (CONS (QUOTE COMSO) x)) where x computed the list
of commands, e.g.,

(COi1Ss (CONS (QUOTE CNMSO) (GETP FOO (QUOTL COMMANDS)))).

*NIL as a cormmand is a NOP, see p. 9.76.

Commands That Test

(IF x) generates an error unless the value of
eval[x] is true, i.e., if eval[x] causes
an error or eval[x]=NIL, IF will cause

an error.

For some editor commands, the occurrence of an error has a well
defined meaning, i.e., they use errors to branch on as cond
uses NIL and non-NIIL.. For example, an error condition in a
location specification may simply mean "not this one, try the
next." Thus the location specification

(IPLUS (E (OR (NUMBERP (## 3)) (ERROR!)) T)) specifies the first
IPLUS whose second argument is a number. The IF command, by
equating NIL to error, provides a more natural way of
accomplishing the same result. Thus, an equivalent location

specification is (IPLUS (IF (NUMBERP (## 3)))).

The IF command can also be used to select between two alternate
lists of commands for execution.

(IF x coms | comsz) If eval[x] is true, execute coms, ; if
eval[x] causes an error or is equal to

NIL, execute comsz.+

For example, the command (IF (RFADP T) NIL (F)) will print the

current expression provided the input buffer is empty.

IF can also be written as

(IF x comsl) if eval([x] is true, execute coms, ;

otherwise generate an error.

tThus IF is equivalent to (COMS (CONS (QUOTE COMSQ) (COND
((CAR (NLSETQ (EVAL X))) COMS1)
(T COMS2)))).

D

O

,"ﬁ\n

(LP . coms) repeatedly executes coms, a list of
commands, until an error occurs.

For example, (LP F PRINT (N T)) will attach a T at the end of

every print expression. (LP F PRINT (IF (## 3) NIL ((N T))))
will attach a T at the end of each print expression which doc.

not already have a second argument,*

When an error occurs, LP onrints n
OCCURRENCES. where n is the number of
times coms was successfully executed.
The edit chain is left as of the last
complete successful execution of coms.

(LPQ . coms) Same as LP but does not print
n OCCURRENCES.

In order to prevent non-terminating loops, both LP and LPQ
terminate when the number of iterations reaches maxloop,
initially set to 30. Since the edit chain is left as of the
last successful completion of the loop, the

user can simply continue the LP command with REDO (Section 22).

*j.e. the form (## 3) will cause an error if the edit command 3
causes an error, thereby selecting ((N T)) as the list of commands
to be executed. The IF could also be written as
(IF (CDDR (##)) NIL ((N T))).

(ORR comsl,...,comsn) ORR begins by executing coms,, a list of
commands. If no error occurs, ORR is
finished. Otherwise, ORR restores the
edit chain to its original value, and

2 etc. If

none of the command lists execute without

continues by executing coms

errors, i.e., the ORR "drops off the end",
ORR generates an error. Otherwise, the
edit chain is left as of the completion
of the first command list which executes

without an error.*

For example, (ORR (NX) (!NX) NIL) will verform a NX, if possible,

otherwise a INX, if possible, otherwise do nothing. Similarly,

DELETE could be written as (ORR (UP (1)) (BK UP (2)) (UP (: NIL))).

* NIL as a command list is perfectly legal, and wjll alwavs
execute successfully. Thus, making the last 'argument' to ORR
he NIL will insure that the ORR never causes an error. Any
other atom is treated as (atom), i.e., the above example could
be written as (ORR NX !NX NIL).

9.74

7
7)
{ .

Macros

Many of the more sophisticated branching commands in the editor,
such as ORR, IF, etc., are most often used in conjunction with
edit macros. The macro feature permits the user to define new
commands and thereby expand the editor's repertoire.* Macros
are defined by using the M command.

(M ¢ . coms) For ¢ an atom, M defines ¢ as an atomic
command.** Fxecuting ¢ is then the same

as executing the list of commands coms.

For example, (M BP BK UP P) will define BP as an atomic command
which does three things, é BK, an UP, and a P. lote that
macros can use commands defined hv macros as well as built in
commands in their definitions. For example, suppose Z is
defined by (M Z -1 (IF (READP T) NIL (P))), i.e. ¢ does a -1,
and then if nothing has been typed, a P. Now we can define

27 by (M 22 -1 2), and 22ZZ by (M 222 -1 -1 Z) or (M ZzZZ -1 22Z).

Macros can also define list commands, i.e., commands that take

arguments.

M (c) (argl,...,argn) . coms) ¢ an atom. M defines c as a
list command. Fxecuting (c el,...,en)
is then performed bv substituting e for
ardq, ... € for arqg throuchout cors,

and then executing coms.

For example, we could define a more general RBP by
(M (BP) (N) (BK N) UP P). Thus, (BP 3) would perform (BK 3),
followed by an UP, followed by a P.

* However huilt in commands always take precedence over macros,
i.e., the editor's repertoire can be expanded, but not modified.

** Tf a macro is redefined, it new definition replaces its old.

A list command can he defined via a macro so as to take a
fixed or indefinite number of 'arguments', i.e., be spread or
nospread. The form given ahove specified a macro with a fixed
number of arguments, as indicated by its argument list. If
the 'argument list' is atomie, the command takes an indefinite
number of arguments.*

(M (c) args . coms) name, args both atoms, defines c as

a list command. Executing (c el!""en)
is performed by substituting (el,...,en),
i.e., cdr of the command, for args

throughout coms, and then executing coms.

For example, the command 2ND, p. 9.35 , can be defined as a
macro by (M (2ND) X (ORR ((LC . X) (LC . X)))).

Note that for all editor commands, 'built in' commands as well

as commands defined by macros, atomic definitions and list defi-
nitions are completely independent. 1In other words, the exis-
tence of an atomic definition for ¢ in no way affects the treat-
ment of ¢ when it appears as car of a list command, and the
existence of a list definition for ¢ in no way affects the treat-
ment of c when it appears as an atom. In particular, c can be
used as the name of either an atomic command, or a list command,
or both. 1In the latter case, two entirely different definitions

can be used.

Note also that once ¢ is defined as an atomic command via

a macro definition, it will. not be searched for when used in a
location specification, unless it is preceded by an F. Thus
(INSERT -- BEFORE BP) would not search for DBP, but instead
perform a R¥, an UP, and a P, and tlien do the insertion. The
corresponding also holds true for list commands.

* Note parallelism to EXPR's and EXPR*'s.

7

Occasionally, the user will want to emplov the S command in a
macro to save some temporary result. For example, the SW
command could be defined as

(M (SW) (N M) (NTH N) (S FOO 1) MARLK g (NTH M) (S FIFE 1)
(I 1 FOO) <+« (I 1 FIE))

Since SW sets foo and fie, using SW may have undesirable side
effects, especially when the editor was called from deep in a

computation. Thus we must always be careful to make up unique

names for dummy variables used in edit macros, which is bother-
some. Furthermore, it would be impossible to define a command
that called itself recursively while setting free variables. The
BIND command solves both problems.

(BIND . coms) binds three dummy variahles #1, #2,
$#3, (initialized to NIL), and then
executes the edit commands coms. lote
that these bindings are only in effect
while the commands are being executed,
and that BIND can be used recursively:
it will rebind #1, #2, and #3 each time

it is invoked.+t+t

Thus we could now write SW safelv as
(1 (swW) (N M) (BIND (NTH M) (S 41 1) MARK ¥ (NTH M) (S #2 1)
(I 1 #1) <« (T 1 #2))).

User macros are stored on a list usermacros.ttt Thus if the user

wants to save his macros, he should save the value of usermacros.tttt

¥Xmore elegant definition would be

M (SW) (N M) (NTH N) MARK # (NTH M) (s FIE 1) (T 1 (## <« 1))
«« (I 1 FIE)), but this would still use one free variable.

t++ BIND is implemented by (PROG (#1 #2 #3) (EDITCOMS (CDR COM)))
where com corresponds to the BIND command, and editcoms is an
internal editor function which executes a list of commanas,

tt+usermacros is initially NIL.
++++The user probably should also save the value of editcomsa and

editcomsl, see p. 9.85.

9.77

(U

Miscellaneous Commands

NIL unless preceded by F or BF, is always a
NOP. Thus extra right parentheses or
square brackets at the ends of commands

are ignored.

TTY: calls the editor recursively. The user
can then type in commands, and have them
executed. The TTY: command is completed
when the user exits from the lower editor.
(See OK and STOP below).

The TTY: command is extremely useful. It enables the user to set

up a complex operation, and perform interactive attention-—changinc
commands part way through it. For example the command

(MOVE 3 TO AFTER COND 3 P TTY:) allows the user to interact, in D
effect, within the MOVE command. Thus he can verify for himself

that the correct location has been found, or complete the

specification "by hand." In effect, TTY: says "I'll tell you

what you should do when you get there."

The TTY: command operates by printing TTY: and then calling the
editor. The initial edit chain in the lower editor is the one
that existed in the higher editor at the time the TTY: command
was entered. Until the user exits from the lower editor, any

attention changing commands he executes only affect the lover
editor's edit chain.* When the TTY: command finishes, the lcwer

editor's edit chain becomes tlie edit chain of the higher editor.

*Of course, if the user performs any structure modification commands
while under a TTY: command, these will modify the structure in both
editors, since it is the same structure.

—

o

OK exits from the editor

STOP exits from the editor with an error.
Mainly for use in conjunction with TTY:
commands that the user wants to abort..

Since all of the commands in the editor are errorset protected, the
user must exit from the editor via a command.fl STOP provides a
way of distinguishing betweéen a successful and unsuccessful (from
the user's standpoint) editing session. For example, if the user
is executing (MOVE 3 TO AFTER COND TTY:), and he exits from the
lower editor with an OK, the MOVE command will lthen complete its
operation. If the user wants to abort the MOVE command, he must
make the TTY: command generate an error. He does this by exiting

from the lower editor with a STOP command. In this case, the higher
editor's edit chaln 'l not e changed by the TTY: command.

SAVE exits from the editor and saves the 'state
of the edit' on the property list 2f the
function/variable being edited under the
property EDIT-SAVE. If the editor is called
again on the same structure, the editing is
effectively "continued,” i.e., the edit

chain, mark list, value of unfind and undolst

are restored.
For example:

*p

(NULL X)

* F COND P

(COND (& &) (T &))
SAVE

FOO

>

+EDIT (FOO)

EDIT

*p

(COND (& &) (T &))
*\P

(NULL X)

*

tor by typing a control-D. STCP is preferred even if the user is
editing at the evaigt level, as it will perform tbe.nece§§ary
‘wrapup' to insure that the changes made while editing will be
undquge (see Secticn 22).

9.79

SAVE is necessary only if the user is editing many different
expressions, an exit from the editor via CK ziways saves the :)

state of the edit of that call to thas nditorj'Whenever the aditor

[

is entered, iiL checks toc see if it i1s editing the same expression
as the last one edited. In

this case, it restoras the mark lisz+,
the undolst, and sests uniind to be the ¢dit chain as of the
previous exxi from the editor. For wxanples
<EDITF (FOO)
EPIT
*p
(LAMBDA (X) (PROG & & LP & & & &))

L]

L]
xp
(CoND & &)

*0OK
FCO
L o
. any number of evalgt inputs cxcept for ~
-

. calls to the editer ‘~>
«EDYITF (FOO) ’
EDIT
*p

(LAMBDA (X) (PROG & & LP & & & &))

*\ P

(COND & &)

N

Furthermore, as a result of the history feature (Section 22},

if the editor is called on the same expression within a certain
nunber of evalgt inputs,ffthe state of the edit of that expression
is restored, regardless of how many ctner expressions may have
been edited in the meantime.

e o e e i

Ton the property list of the atom ECIT, urnder the property‘namc
LASTVALUE. OK also remprops ERIT-SAVE from the property list
of the function/variable being edited.

Tt 17amely, the size of the history list, initiallv 30, but it can
be increased bv the uscr.

For example:

<EDITF (FOO)

EDIT
*

*P.
(COND (& &) (& &) (&) (T &))
*OK
FOO

“
. less than 30 evalgt inputs, including editing

+EDiTF(Foo)

EDIT

*\ P

(COND (& &) (& &) (&) (T &))
*

Thus the user can always continue editing, including undoing

changes from a previous editing session, if
(1) No other expressions have been edited since that
session;* or
(2) That session was ‘sufficiently recent; or

(3) It was ended with a SAVE command.

t Since saving takes place at exit time, intervening calls that
were ahorted wvia control-D or exited via STOP will not affect
the editor's memory of this last session.

%$%,RAISE,LOWER,CAP Used for editing lower case comments.
See pp. 14.39-14.40.

REPACK Permits the 'editing' of an atom or string.

For example:

*p

.. "THIS IS A LOGN STRING")

REPACK

*EDIT

P

(T HIS%$% IS% A% LOGNS% STRING)
*(SW G N)

*OK

"THIS IS A LONG STRING"

*

REPACK operates by calling the editor recursively on unpack of

the current expression, or if it is a list, on unpack of its

first element. If the lower editor is exited successfully, i.e.
via OK as opposed to STOP, the list of atoms is made into a single
atom or string, which replaces the atom or string being 'repacked.'
The new atom or string is always printed.

(REPACK @) does (LC . @) followed by REPACK, e.g.
(REPACK THISS).

U

P

UNDO

Each command that causes structure modification automatically adds
an entry to the front of undolst containing the information required

to restore all pointers that were changed by the command.

UNDO undoes the last, i.e. most recent, structure
modification command that has not yet been
undone, * and prints the name of that command,
e.g., MBD UNDONE. The edit chain is then
exactly what it was before the 'undone’
command had been performed. If there are no
commands to undo, UNDO types NOTHING SAVED.

{UNDO undoes all modifications performed during
this editing session, i.e. this call to the
editor. As each command is undone, its
name is printed a la UNDO. If there is
nothing to be undone, !UNDO prints NOTHING
SAVED,

Whenever the user continues an editing session as described on
pages 9.79-9.81, the undo information of the previous session(s) is
protected by inserting a special blip, called an undo-block on the
front of undolst. This undo-block will terminate the operation of
a !UNDO, thereby confining its effect to the current session, and
will similarly prevent an UNDO command from operating on commands

executed in the previous session.

*Since UNDO and !UNDO causes structure modification, they also add
an entry to undolst. However, UNDO and !UNDO entries are skipped

by UNDO, e.g., i1f the user performs an INSERT, and then an MBD, the
first UNDO will undo the MBD, and the second will undo the INSERT.
However, the user can also specify precisely which commands he wants
undone by identifying the corresponding entry on the history list

as described in Chapter 22. 1In this case, he can undo an

UNDO command, e.g. by typing UNDO UNDO, or undo a !UNDO comrand, oOr
undo a command other than that most recently performed.

9.83

Thus, if the user enters the editor continuing a session, and immed- :)
iately executes an UNDO or !UNDO, UNDO and !UNDO will type BLOCKED,

instead of NOTHING SAVED. Similarly, if the user executes several

commands and then undoes them all, either via several UNDO commands

or a !UNDO command, another UNDO or !UNDO will also type BLOCKED.

UNBLOCK removes an undo-block. If executed at a
non-blocked state, i.e. if UNDO or !UNDO
could operate, types NOT BLOCKED.

TEST adds an undo-block at the front of undolst.
Note that TEST together with !UNDO provide a 'tentative' mode for

editing, i.e. the user can perform a number of changes, and then
undo all of them with a single !UNDO command.

Editdefault

Whenever a command is not recognized, i.e., is not 'built in'
or defined as a macro, the editor calls an internal function,
editdefault to determine what action to take. If a location
specification is being executed, an internal flag informs

editdefault to treat the command as though it had been preceded
by an F.

If the command is a list command, an attempt is made to perform

list of all list edit gommands.** If spelling correctlon is
successful,*** the correct command name is rplacaed into the
command, and the editor continues by executing the command. In
other words, if the user types (LP F PRINT (MBBD AND (NULL FLG))),
only one spelling corrections will be necessary to change MBBD to
MBD. If spelling correction is not successful, an error is
generated.

If the command given to editdefault is atomic, but was not typed

in directly, the procedure is similar to that of list commands,
namely to attempt spelling correction using editcomsa, a list of
atomic edit commands, and if successful, make the change in the
command list that the atomic command came from, and then continue.
Thus (LP FF PRINT (MBD AND (NULL FLG))) will require only one

spelling correction to change FF to F.

* unless dw1mflg—NIL See section 17 for discussion of spelling
correction.

** When a macro is defined via the M command, the command name
is added to editcomsa or editcomsl, depending on whether it is
an atomic or lIist command. Thus if the user saves his macro
deflnltlons by dumplng the value of usermacros, he should also
to include his macros, or if he wants to use the 'line command
format', described on next page, with macros.

*** Tf the command was not typed in directly, the user will be
asked to approve the correction. See section 17.

If the command is atomic and typed in directly, the procedure

followed is a little more elaborate.

1)

2)

If the command is one of the list commands, i.e., a member
of editcomsl, and there is additional input on the same
teletype line, treat the entire line as a single list
command.t Thus, the user may omit parentheses for any list

command typed in at the top level (which is not also

an atomic command, e.g. NX, BK). For example
*p

(COND (& &) (T &))

*XTR 3 2)

*MOVE TO AFTER LP

*

If the command is on the list editcomsl but no additional
input is on the teletype line, an error is generated, e.q.
*p

(COND (& &) (T &))
*MOVE

MOVE ?
*

If the first character in the command is an 8, treat the 8
as a mistyped left parenthesis, and the rest of the line

as the arguments to the command, e.g.,

*p

(COND (& &) (T &))

8-2 (Y (RETURN 2)))

*p

(COND (Y &) (& &) (T &))

t uses readline, p. 14.11. Thus the line can be terminated by
carriage return, right parenthesis or square bracket, or a list.

(J

3) If the last character in the command is P, and the first
n-1 characters comprise the command «, 4, UP, NX, BK, .NX,
UNDO, REDO, or a number, assume that the user intended two
commands, e.dg.,

*p
(COND (& &) (T &))
*ﬂp

(SETQ X (COND & &))

4) Otherwise, spelling correct using editcomsa, and if successful,t

execute the corrected command.

5) Otherwise, if there is additional input on the same line,

spelling correct using editcomsl, e.qg.,

*MBBD SETQ X
=MBD

6) Otherwise, generate an error.

t No approval necessary since command was typed in directly.

ikditor Functions

edite[expr;coms;atm]

edits an expression. Its value is
the last element of :)
editl[list[expr] ;coms;atm]. Generates

an error if expr is not a list,

editl[l;coms;atm;marklst;mess] editlt <s the editor. Its first argu-

+ edit-ell, not edit-one.

ment is the edit chain, and its value
is an edit chain, namely the value of

1l at the time editl is exited.*

coms is an optional list of commands.
For interactive editing, coms is NIL.
In this case, editl types EDIT

and then waits for input from the tele-
type.** Exit occurs only via an OK,

STOP, or SAVE command,

(J

-

If coms is 5ot NIL, no message 1is

typed, and each member of coms is

treated as a command and executed.

If an error occurs in the execution of
one of the commands, no error message ic¢
printed, the rest of the commands are
ignored, and editl exits with an error,
i,e, the effect is the same as though

a STOP command had been executed. If
all commands execute successfully,

editl returns the current value °f,£°

marklst is the list of marks.

*] is a srccvar, and so can be examined or set by edit commands.
For example, Tt is equivalent to (E (SETQ L(LAST L)) T)

**If mess is not NIL, editl tvpes it instead of EDIT. For example, the

D

TTY: command is essentially (SETQ L (EDITL I NIL NIL NIL (OUOTE TTV:))).

9.88

atm is optional. On calls from editf,
it is the name of the function being
edited; on calls from editv, the name
of the variable, and calls from editp,
the atom whose property list is bheing
edited. The property list of atm is
used by the SAVE command for saving
the state of the edit. Thus SAVE will
not save anything if atm=NIL i.e. when
editing arbitrary expressions via edite
or editl directly. Furthermore, if
atm=NIL, editl does not search the
history list looking for a previous
call to the editor, as described on

p. 9.80.

9.89

editf [x] nlambda, nospread function for editing
a function. car([x] is the name of the t:)
function, cdr[x] an optional list of
commands. For the rest of the dis-
cussion, fn is car[x], and coms is

cdr([x].

The value of editf is fn.

(1) In the most common case, fn is an expr, and editf simply
performs putd[fn;edite[getd[fn]; coms;fn]].

(2) If fn is not an expr, but has an EXPR property, editf prints
PROP, and performs editel[getp[fn;EXPR];coms;fn]. When edite
returns, if the editing is not terminated by a STOP,
editf does unsavedef[fn], prints UNSAVED, and then does
putd[fn; value-of-edite].

(3) If fn is neither an expr nor has an EXPR property, but its

o

top level value is a list, editf assumes the user meant to
call editv, prints =EDITV, calls editv and returns. Similarly,
if fn has a non-NIL property list, editf prints =ECITP, calls
editp and returns.

(4) If fn is neither a function, nor has an EXPR property, nor
a top level -value that is a list, nor a non-NIL property
list, editf attempts spelling correction on the list userwords,*

and if successful, goes back to (1).

Otherwise, editf generates an fn WOT EDITABLE error.

*Unless dwimflg=NIL. Spelling correction is via the function
misspelled? 1f £n=NIL, misspelled returns the last

Tword' referenced, e.g. bv definea, editf, prettyprint etc. Thus
if the user defines foo and types editf[], the editor_will assume
he meant foo, type =FOO, and then type EDIT. See Section 17.

@

9.90

If editf ultimately succeeds in finding a function to edit, i.e.
does not exit by calling editv or editp, editf calls
the function addspell after editing has been completed.* Addspell

'notices' fn, i.e. sets lastword to fn, and adds fn to the
appropriate spelling lists. editf also calls newfile?, which
performs the updating for the file package as described on p. 14.41.

*Unless dwimflg=NIL. addspell is described in Section 17.

editv([editvx] nlambda, nospread function, similar

to editf, for editing values.

car[editvx] specifies the value, ;)
cdrfeditvx] is an optional list of
commands .

If car([editvx] is a list, it is evaluated and its value given to
edite, e.g. EDITV((CDR (ASSOC (QUOTE FOO) DICTIONARY)))). In this

case, the value of editv is T.

However, in most cases, car[editvx] is a variable, e.g. EDITV(FOO) ;
and editv calls edite on the value of the variable.

If the value of car[editvx] is NOBIND, editv first attempts
spelling correction using the list userwords.* Then editv will
call edite on the value of car[editvx] (or the corrected spelling
thereof). Thus, if the value of foo is NIL, and the user performs
(EDITV FOO), no spelling correction will occur, since foo is the
name of a variable in the user's system,i.e. it has a value. How-
ever, edite will generate an error, since foo's value is not a list, .:>
and hence not editable. If the user performs (EDITV FOOO), where
the value of fooo is NOBIND, and foo is on the user's spelling
list, the spelling corrector will correct FOOO to FOO. Then edite
will be called on the value of foo. Note that this may still
result in an error if the value of foo is not a list.

When (if) edite returns, editv sets the variable to the value

returned, and calls addspell and newfile?.

The value of editv is the name of the variable whose value was
edited.

*Unless dwimflg=NIL. Spelling correction is also performed it
car[editvx] is NIL, so that EDITV() will edit lastword.

9.92

editp([x]

nlambda, nospread function, similar

to editf for editing property lists.

If the property list of car([x] is
NIL, editp attempts spelling
correction using userwords. Then

editp calls edite on the propertv list

of car(x], (or the corrected spelling
thereof). When (if) edite returns,

editp rplacd's car[x] with the value

returned, and calls addspell,

The wvalue of editE is the atom whose
property list was edited.

9.93

editfns[x] nlambda, nospread function, used to
perform the same editing operations
on several functions. car([x] is
evaluated to obtain a list of
functions. cdr([x] is a list of edit
commands. editfns maps down the
list of functions, prints the name of
each function, and calls the editor
(via editf) on that function.*

For example, EDITFNS (FOOFNS (R FIE FUM)) will change every FIE to
FUM in each of the functions on foofns.

The call to the editor is errorset
protected, so that if the editing
of one function causes an error,
editfns will proceed to the next

function.**

Thus in the above example, if one of the functions did not contain

a FIE, the R command would cause an error, but editing would

continue with the next function.

The value of editfns is NIL

*j.e. the definition of editfns might be

(MAPC (EVAL (CAR X)) (FUNCTION (LAMBDA (Y)
(APPLY (QUOTE EDITF)
(CONS (PRINT Y T) (CDR X]

**In particular, if that function was being edited via its EXPR
propertv, it will not be unsaved. In other words, only those
functions for which the commands are successfully completed are
unsaved, Thus, in our example, only those functions which con-
tained a FIE, i.e. only those actually changed would be unsaved.

9.94

editde[pat;yl is the pattern match routine. 1Its
value is T if pat matches y. See
pp. 9.24-25 for definition of 'match'.

Note: before each search operation in the editor begins, the entire
pattern is scanned for atoms or strings that end in alt-modes. These
are replaced by patterns of the form

(CONS (QUOTE $) (CHCON atom/string)). Thus from the standpoint of
editde, pattern type 6, atoms or strings ending in alt-modes, is
really "If car[pat] is the atom § (alt-mode), pat will match with
any literal atom or string whose initial character codes* are the
same as those in cdr[pat]."

If the user wishes to call edit4e directly, he must therefore
convert any patterns which contain atoms or strings ending in
alt-modes to the form recognized by edit4e. This can be done via

the function editfgat.

editfpat([pat;£flg] makes a copy of pat with all patterns
of type 6 converted to tre form
expected by editde, **

editfindpl[x;pat;flgl] allows a program to use the edit find
command as a pure predicate from out-
side the editor. x is an expression,
pat a pattern. The value of
editfindp is T if the command F pat
would succeed, NIL otherwise.
editfindp calls editfpat to convert
pat to the form expected by editde,
unless flg=T. Thus, if the program
is applying editfindp to several dif-
ferent expressions using the same
pattern, it will be more efficient
to call editfpat once, and then call
editfindp with the converted pattern
and flg=T.

*Up to the 27, the character code for §.

**f1g=T is for internal use by the editor.

9.95

esubst([x;y;2z;flg]

changename|[fn; from;to]

equivalent to performing (R y x) with 2
as the current expression, i.e. the order

of arguments is the same as for subst.
The value of esubst is the modified z.
Generates an error* if y not found ig
2. If flg=T, also prints an error
message of the form y ?. gee p. 6.7.

replaces all occurrences of from by
to in the definition of fn. If fn is
an expr, changename performs
nlseta[esubst[to; from;getd[fn]]]. If

fn is compiled, changename searches
the literals of fn (and all of its
compiler generated subfunctions), re-
placing each occurrence of from with

to.**

The value of changename is fn if at

least one instance of from was found,

otherwise NIL.

changename is used by break and advise for changing calls to fnl to

calls to fnl-IN-fn2.

*of the type that never causes a break.

*%Will succeed even if from is called from fn via a linked.call.
In this case, the call will also be relinked to call to instead.

D

U,

editracefn[com]

is available to help the user debug
complex edit macros, or subroutine
calls to the editor. editracefn is

to be defined by the‘user. Whenever
the value of editracefn is T, the

editor calls the function editracefn

before executing each command (at
any level), giving it that command as

its argument.

For example, defineing editracefn as

(LAMBDA (C) (PRINT C)

(PRINT (CAR L))) will print each command and

the corresponding current expression. (LAMBDA (C) (BREAK1 T T)) will

cause a break before executing each command.

editracefn is initially equal to NIL,

and undefined.

O

SECTION X

ATOM, STRING, ARRAY, AND STORAGE MANIPULATION

Contents

PNAME, PRIN2-PNAME, PACK, UNPACK, DUNPACK,

NCHARS, NTHCHAR, CHCON, CHCON1, DCHCON,

CHARACTEF, GENSYM, GENNUM, MAPATOMS, STRINGP,
STREQUAL, MKSTRING, RSTRING, SUBSTRING, GNC,

GLC, CONCAT, RPLSTRING, MKATOM, SEARCHING STRINGS,
STRPOS, STRING STORAGE, ARRAY, ARRAYSIZE,

12 ARRAYP, ELT, SETA, ELTD, SETD, RECLAIM, MNTYP,

14 TYPEP, GCGAG, MINFS, STORAGE, GCTRP, CONSCOUNT,

17 CLOSER, OPENR

CCNO W=

Atom Manipulation

The term 'print name' (of an atom) in LISP 1.5 referred to the
characters that were output whenever the atom was printed. Since
these characters were stored on the atom's property list under
the property PNAME, pname was used interchangeably with 'print
name'. In BBN-LISP, all pointers have pnames, although only
literal atoms and strings have their pname explicitly stored.

The pname of a pointer is those characters that are output when
the pointer is printed using prinl,

e.g. the pname of the atom ABCS (DT consists of the five characters
ABC(D. The pname of the list (A B C) consists of the seven

characters (A B C) (two of the characters are spaces).

Sometimes we will have occasion to refer to the prinZ-pname.

The prin2-pname are those characters output when the corresponding
pointer is printed using prini.

Thus the prin2-pname of the atom ABC% (D is the six characters

ABC% (D, Note that the pname of numbers depends on the setting

of radix.

T % is tne escape character. See sections 2 and 14.

10.1

pack [x]

If x is a list of atoms, the value

of pack is a single atom whose

pname is the concatenation of the
pnames of the atoms in x, e.g.
pack[(A BC DEF G)]=ABCDEFG

Although x is usually a list of

atoms, it can be a list of arbit-
rary LISP pointers. The value of
pack is still a single atom whose

pname is the same as the concate-
nation of the pnames of all the

pointers in x. e.g.
pack[(1 "3.4™ 5)] 13.45,

a floating point number
pack[(A (B C) D)] = A%(B% C%)D,

In other words, mapc[x;prinl] and

prinl[pack[x]] produce exactly the
same output. 1In fact, pack actually
operates by calling prinl to convert
the pointers to a stream of charac-
ters (without printing) and then

makes an atom out of the result.

Note however that atoms are restricted
to < 99 characters. Attempting to
create a larger &tom either via pack
or by typing one in (or reading from

a file) will cause an error.

10.2

o

=y

unpack [x:£f1g]

dunpack[x;scratchlist;flg]

nchars [x]

The value of unpack is the pname of
X as a list of characters (atoms) *

e.g.
unpack [ABC] = (A B C)

unpack ["ABC(D"] = (A B C %(D)
In other words prinl(x] and
mapc [unpack [x] ;prinl] produce the
same output. If flg=T, the

prin2-pname of X is used, e.gq.
unpack ["ABC (D" ; Tl=
(%"ABC%(D%")
Note that ungack performs n conses,
where n is the number of characters

in the pname of x.

a destructive unEack that uses

scratchlist to make a list equal to

unpack([x;flg]. If the p-name is too

long to fit in scratchlist, dunpack

returns unpack(x;flg]. Gives error
if scratchlist is not a list.

number of characters in pname of x.**

*There are no special 'character-atoms' in BBN-LISP, i.e. an atom
consisting of a single character is the same as any other atom.

**Both nthchar and nchars work much faster on objgcts that
actually have an internal representation of their pname, i.e.

literal atoms and strings,
printing.

as they do not have to simulate

10.3

nthchar[x;n]

chcon([x;flg]

chconl [x]

dchcon [x;scratchlist; flg]

character([n]

*See footnote p. 10.3.

Value is nth character of pname of x.
Equivalent to car[nth[unpack[x];n]]
but faster and does no conses. n
can be negative, in which case counts
from end of pname, e.g. -1 refers

to last character, -2 the next to
last, etc. If n is greater than the
number of characters in the pname,

or less than minus that number, or

0, value is NIL.

returns the pname of X as a list of
(ASCII) character codes, i.e. numbers,
e.g. chcon[FOO] = (70 79 79). 1If
flg=t, the prin2-pname is used.

returns character code of first
character of pname of x, e.q.
chconl[FOO] = 70. Thus

chcon[x] = mapcar[unpack[x];chconl]

similar to dunpack

n is an ASCII character code. Value is

the atom having the corresponding single

character as its pname* e.q.
character[70] = F. Thus,

unpack [x]=mapcar [chcon[x] ;character]

10.4

)

N

gensym[]

Generates a new atom of the form

Annnn, in which each of the n's is
replaced by a digit. Thus, the first
one génerated is A0001l, the second
A0002, etc. This is a way of generat-
ing new atoms for various uses within
the system. The value of gennum,
initially 10000, determines the next
gensym, e.g. if gennum is set to 10023,
gensyn|[]=A0024.

The term gensym is also used to indicate an atom that was pro-
duced by the function gensym.

mapatoms [fn]

Applies fn to every literal atom in

the systen:;, e.q.

mapatoms [(LAMBDA (X) (AND (SUBRP X)
(PRINT X)))]

will print everv subr. Value is HNIL.

10.5

String Functions

stringp[x]

strequal[x;vy]

mkstring [x]

rstring[]

substring[x;n;m]

Is x if x is a string, NIL otherwise.
Note: if x is a string, nlistp([x] is
T, but atom[x] is NIL.

Is x if x'and y are both strings and
equal. equal uses strequal. Note that
strings may be equal without being eq.

Value is string corresponding to

prinl of x.

Reads a string - see Section 14.

Value issubstring of x consisting of

the nth thru mth characters of x. If ™
m is NIL, the substring is the nth ~
character of x thru the end of x. n
and m can be negative numbers, a la
nthchar, p. 10.4, i.e.

equal [substring([x;1;-1]:x] is T.

Returns NIL if the substring is not well
defined, e.g. n or m > nchars[x] or

< minus[nchars[x]] or n is to the

right of m in x. 1If X is not a string,
equivalent to

substring [rmkstring[x];n;m], except

does not have to actually make a string
if x is a literal atom. (See next

section on string storage).

10.6 ~:>

~TN

gnc [x]

glc(x]

concat[xl;X27---:Xn]

rplstring([x;n;y]

get next character of string x.
Returns the next character of the
string, (as an atom), and removes
the character from the string.
Returns NIL if x is the null string.
If x isn't a string, a string is
made. Used for sequential access to

characters of a string.

Note that if x is a substring of y
gnc[x] does not remove the character
from y, i.e. gnc doesn't physically
change the string of characters, just

the pointer and the byte count.,*

gets last character of string x.
Above remarks about gnc also apply

to glc.

lambda nospread function.,
Concatenates (copies of) any number

of strings. The arguments are trans-
formed to strings if they aren't
strings. Value is the new string, e.g.

concat ["ABC" ;DEF;"GHI"] = "ABCDLFGHI"

Replace characters of string X begin-
ning at character n with string Yo
n may be positive or negative. X and
Yy are converted to strings if they

aren't already. Characters are smashed

*See string storage section that follows.

10.7

into (converted) x. Returns new X.
Error if the new string would be
longer than the original.* Note
that if x is a substring of z, z will

also be modified by the action of

rglstring.

mkatom([x] Creates an atom whose pname is the
same as that of the string x or if
X isn't a string, the same as that
of mkstring[x], e.g. mkatom[(A B C)]
is the atom % (A% B% C%). If atom
would have > 99 characters, causes an

error.

Searching Strings

strpos is a function for searching one string looking for another.
Roughly it corresponds to member, except that it returns a
character position number instead of a tail. This number can then

be given to substring or utilized in other calls to strpos.

strpos[x;y;start;skip;anchor;tail]

X and y are both strings (or else thev

are converted automatically). Searches

Y beginning at character number start,

(or else 1 if start is NIL) and looks

for a sequence of characters equal to

x. If a match is found, the corres-

ponding character position is returned,

otherwise NIL.

e.g. strpos|["ABC","XYZABCDEF"]=4
strpos["ABC","XYZABCDEF" ; 5]=NIL
strpos["ABC","XYZABCDEFABC" ;5]1=10

*If y was not a string, x will already have been partially moditied
since Eplstrlng does not know whether y will 'fit' without actually
attempting the transfer.

10.8

2

skip can be used to specify a charac-
ter in x that matches any character in
X’ eog-

strpos ["A&C&" ; "XYZABCDEF" ;NIL; &]=4

If anchor is T, strpos compares X with
the characters beginning at position
start, or 1. If that comparison fails,
strpos returns NIL without searching
any further down y. Thus it can be used
to compare one string with some portion
of another string, e.g.

strpos["ABC";"XYZABCDEF";NIL;NIL;T]=NIL
strpos ["ABC"; "XYZABCDEF" ;4;NIL;T]=4

Finally, if tail is T, the value return-
ed if successful is not the starting
position of the sequence of characters
corresponding to x, but the position of
the first character after that, i.e.

starting point plus nchars([x] e.g.

strpos ["ABC"; "XYZABCDEFABC" ;NIL;NIL;NIL;T]=7

Note that strpos["A";"A";NIL;NIL;NIL;T]=2
Example Problem

Given the strings x, y, and z, write a function foo that will make
a string corresponding to that portion of x between y and z,

e.g. foo["NOW IS THE TIME FOR ALL GOOL MEN" "I&" "FOR"] jg
" THE TIME ".

(FOO
CLAMBDA (X Y 2)
(AND (SETQ Y (STRPOS Y X NIL NIL NIL T))
(SETQ Z (STRPOS Z X Y)»)
(SUBSTRING X Y (SUB1 ZM)

10.9

)

String Storage

‘A string is stored in 2 parts; the characters of the string, and

a pointer to the characters. The pointer,aor 'string pointer',
indicates the byte at which the string begins and the length of the
string. It occupies one word of storage. The characters of the

string are stored in a portion of the LISP address space devoted
exclusively to storing characters, five characters tc¢ a word.

Since the internal pname of literal atoms also consists of a pointer
to the beginning of a string of characters and a byte count, con-
version between literal atoms and strings does not require any ad-
ditional storage for the characters of the pname, although one

cell is required for the string pointer.*

When the conversion is done internally, e.g. as in substring or

strpos, no additional storage is required for using literal atoms A:)
instead of strings.

The use of storage by the basic string functions is given below:

mkstring [x] X string no space

X literal aton new pointer

other new cnaracters and pointer
substring[x;n;m] x string new pointer

X literal atcm new pointer

other new characters and pointer

*Except when the string is to be smashed by rplstring. 1In this
case, its characters must be copicd to avoid smashing the pname

of an atom, rplstring automatically performs this operation.

10.10

L~
E

gnc([x];alc(x] x string

other
concat[x ...z]

args any type

rplstring[x;n;y] x string

X other

y any type

10.11

no space, pointer is modified
like mkstring, but doesn't make

much sense

new characters for whole new

string, one new pointer

no new space unless characters
are in pname space (as result
of mkstringl[atom]) in which case
X is quietly copied to string

space

new pointer and characters

type of y doesn't matter

Array Functions

Space for arrays and compiled code are both allocated out of a ‘J
common array space. Arrays of pointers and unboxed integers

may be manipulated by the following three functions:

arrav[n;o;v] this function allocates a block of
n+2 words, of which the first two
are header information. "he next
p<n are cells which will contain
unboxed integers, and are initialized
to unhoxed @#. The last n-p>g cells
will contain pointers initialized with

v, i.e., both car and cdr are avail-

able for storing information, and

each initially contain v. If p is NIL,

is used (i.e., an array containing

all LISP pointers). The value

of array is the arrav, also called an

arrav nointer. If sufficient space is ~:>
not availakle for the array, a garhage
collection of arrav swace, C: 1, is
initiated. If this is unsuccessful

in obktaining sufficient space, an

error 1is generated

Array-pointers print as #n, where n 1s the octal representation
of the pointer. VlNote that #n will Le read as an atom, and not
an array pointer.

arraysize(al Returns the size of array a. Generates

an error if a is rot an array.

arrayp [x] Value is x if x is an array pointer
otherwise NIL. No check is made to
ensure that x actually addresses the

beginning of an array. -

10.12

elt[a;n] Value is nth element of the array a.*
If n corresponds to the unboxed region
of a, the value of elt is the full 36
bit word, as a boxed integer. If n
corresponds to the pointer region of a,
the value of elt is the car half of the
corresponding element. elt generates
an error if a is not the beginning of

an array.**

setala;n;v] sets the nth element of the array a.
If n corresponds to the unboxed region
of a, v must be a number, and is unboxed
and stored as a full 36 bit word into the
nth element of a. If n corresponds to the
pointer region of a, v replaces the car
half of the nth element.

Note that seta and elt are always inverse onerations.

eltd[a;n] same as elt for unhoxed region of a,
but returns cdr half of nth element, if

n corresponds to the pointer region of a.

setd[a;n;v] same as seta for unboxed region of a,
but sets cdr half of nth element, if n

corresponds to the pointer region of a.

In other words, eltd and setd are alwavs inverse operations.

*actuallyv corresponds to n+2nd cell because of the 2 word header.

**arrayp is true for nointers into the middle of arravs, but elt

and seta must bhe given a pointer to the beginning of an arrav,

i.e., a value of arrav.

Storage Functions

reclaim[n]

Initiates a garbage collection of
type n. Value of reclaim is number
of words available (for that type)
after the collection.

Garbage collections, whether invoked directly by the user or
indirectly by need for storage, do not confine their activity
solely to the data type for which they were called, but auto-
matically collect some or all of the other types.

ntyp [x]

typep[x;n]

gcgag [message]

Value is type number for the data
type of LISP pointer X, e.q.
ntyp[(A . B)] is 8, the type number
for lists. Thus GC: 8 indicates a

garbage collection of list words.

type number
arrays, compiled code 1
stack positions 2
list words 8
atoms 12
floating point numbers 16
large integers 18
small integers 20
string pointers 24
pname storage 28
string storage 30

eq[ntyp [x];n]

message is a string or atom to be
printed (using prinl) wherever a
garbage collection is begun. If
message=T, its stondard setting, GC:

is printed, followed by the type number.
When the garbage collection is complete,
two numbers will be printed out: the
number of words collected for that
type, and the total number of words
available for that type, i.e. allocated
but not necessarily currently in use

(see minfs bhelow).

10.14

D

Example:
~RECLAIM(18)

GCs 18

511, 3871 FREE WORDS
3071

~RECLAIMC12)

GC: 12
1020, 1026 FREE WORDS
1020

If message=NIL, no garbage collection
message is printed, either on entering
or leaving the garbage collector.

Value of gcgag is old setting.

minfs[n;typl Sets the minimum amount of free
storage which will be maintained by
the garbage collector for data types
of type number typ. If, after any
garbage collection for that type,
fewer than n free words are present,
sufficient storage will be added (in
512 word chunks) to raise the level
to n. If n=NIL, 8 is used, i.e.

minfs refers to list words.

A minfs setting can also be changed dynamically, even during

a garbage collection, by typing control-S followed by a number,
followed by a period.*

fWhen the control-S is typed, LISP immediately clears and saves the
input buffer, rings the bell, and waits for input, which is termi-
nated by any non-number. The input buffer is then restored anc

the program continues. If the input was terminated Ly other than
a period, the whole interaction is ignored.

10.15

If the control-S was typed during a garbage collection, the

number is the new minfs setting for the type being collected,
otherwise for type 8, i.e. list words.

Note: A garbage collection of a 'related' type may also cause

more storage to be assigned to that type. See discussion of
garbage collector algorithm, Section 3,

storage([flg] Prints amount of storage (by type

number) used by and assigned to the
user, e.g.

=STORAGE]

TYPE USED ASSIGNED
1 8o072 87552
8 7970 9216
12 7032 7680
16 ? 512

18 1124 2560
24 118 512

28 4226 4608
30 573 1924
SuM 101115 113664

If £f1g=T, includes storage used by
and assigned to the system. Value
is NIL.

10.16

J

™

gctrp[n]

conscount|[]

closerfa;x]

openr[al

garbage collection trap. Causes a
(simulated) control-H interrupt when
the number of free list words (type 8)
remaining equals n, i.e. when a garbage
collection would occur in n more conses.
The message GCTRP is printed, the
function interrupt (Section 16) is
called, and a break occurs. Note that
by advising (Section 19) interrupt the
user can program the handling of a

gctrp instead of going into a break.
Value of gctrp is its last setting.

gctrp[-1] will 'disable' a previous
gctrp since there are never -1 free
list words. gctrp is initialized this
way . 4

gctrp[] is number of list words left,
i.e. number of conses until next type

8 garbage collection, see p. 21.4.

Value is number of conses since LISP
started up. If given a number, resets

conscount. to that number.

Stores x into memory location a. Both x

and a must be numbers.

Value is number in memory location a,

i.e. boxed.

10.17

SECTION XI

FUNCTIONS WITH FUNCTIONAL ARGUMENTS

Con;ents

FUNCTION, MAP, MAPC, MAPLIST, MAPCAR,
MAPCON, MAPCONC, MAP2C, MAP2CAR,
MAPRINT, MAPDL, SEARCHPDL, MAPATOMS,
EVERY, SOME, NOTEVERY, NOTANY, FUNARG

v\ o

As in all LISP 1.5 Systems, arguments can be passed which can
then be used as functions. Functions which use functional
arguments should use variables with obscure names to avoid con-
flict of variable names with variables used freely in a functional
argument. All svstem functions standardly use variable names
consisting of the function name concatenated with x or fn etc.
Eowever, by specifying the free variables used in a functional
argument as the second argument to function, thereby using

the BBN-LISP TUNARG feature, the user can be sure of no clash.

function([x;y] is an nlambda function. If y=NllL,
the value of function is x,
i.e., function is identical to
yquote, for example
?QREE'LST (FUNCTION PRINT)) will
cause mapc to ke called with
two arguments, the value of lst
and PRINT. Similarly,
(MAPCAR LST (FUNCTION (LAMBDA (Z)

(LIST (CAR Z)))))

will cause mapcar to be called

with the value of lst and

11.1

map [mapx;mapfnl;mapfn2]

(LAMBDA (Z) (LIST CAR 2))).

When compiled, function will
cause code to be compiled for

X; quote will not. Thus

(MAPCAR LST (QUOTE (LAMBDA --=)))
will cause mapcar to be called
with the value of lst and the
expression (LAMBDA --). The
functional argument will there-
fore still be interpreted. The
corresponding expression using
function will cause a dummy
function to be created with
definition (LAMBDA --), and then
compiled. mapcar would then be
called with the value of 1lst and
the name of the dummy function.
See p. 18.16.

If y is not NIL, it is a list of
variables that are (presumably) used
freely by x. 7Tn this case, the value of
function is an expression of the

form (FUNARG x array), where

bindings for those variables on y.

Funarg is described on pp. 11.6-11.7.

If mapfn2 is NIL this function
applies the function mapfnl to
successive tails of the list mapx.
That is, first it computes

marfnl [mapx], and then

mapfnl [cdr[mapx]], etc., until

11.2

)

TN
’ 5

mapx is exhausted.* If mapfn2

is provided, mapfn2[mapx] is used

instead of cdr[mapx] for the next
| call for mapfnl, e.g., if mapfn2

were cddr, alternate elements of

! the list would be skipped.

The value of map is NIL.

mapc [mapx;mapfnl;mapfn2] Identical to map, except that
mapfnl [car[mapx]] is computed each
time instead of mapfnl [mapx],
i.e., mapc works on elements, map
on tails. The value of mapc is
NIL.

maplist[mapx;mapfnl;mapfn2] computes successively the same
values that map would compute;
and returns a list consisting of

those successive values.

mapcar [mapx;mapfnl;mapfn2] computes the same values that
mapc would compute, and returns
a list consisting of those values.
e.g. mapcar[x;FNTYP] is a list of

fntXEs for each element on X.

*j.e., becomes a non-list.

11.3

mapcon [mapx;mapfnl;mapfn2] Computes the same values as map and
maplist, but nconcs these values to
form a list which it returns.

mapconc [mapx;mapfnl;mapfn2] Computes the same values as mapc and
mapcar, but nconcs the values to form
a list which it returns.

Note that mapcar creates a new list which is a mapping of the old
list in that each element of the new list is the result of applying
a function to the corresponding element on the original list.
mapconc is used when there are a variable number of elements
(including none) to be inserted at each iteration. e.g.
mapconc [X; (LAMBDA (Y) (AND Y (LIST Y)))] will make a list consist-
ing of x with all NILs removed, ,
mapconc [X; (LAMBDA (v) (AND (LISTP Y) Y))] will make a linear list
consisting of all the lists on X, e.g. it applied to

((A B) C (DEF) (G) HI) will yield (A BDE F G).*

map2c[mapx;mapy;mapfnl;mapfn2] Identical to mapc except_mapfnl
is a function of two arguments, and
mapfnl [car[mapx] ;car[mapy]] is computed
each time.** Terminates when either

mapx or mapy are exhausted.

map2car [mapx ;jmapy;mapfnl;mapfn2] Identical to mapcar except mapfnl
is a function of two arguments and
mapfnl{car[mapx];car[mapyl]] is used to
assemble the new list. Terminates

when either mapx or mapy is exhausted.

*Note that since mapconc uses nconc to string the corresponding
lists together, iIn this example, the original list will be
clobbered, i.e. it would now be ((A BDE F G) C (DE F G) (G) H I).
If this is an undesirable side effect, the functional argument to
mapconc chould return instead a top level copy, e.g. in this case,
use (AND (LISTP Y) (APPEND Y))).

**mapfn2 is still a function of one argument, and is applied twice

on each iteration; mapfn2[mapx] gives the new mapx, mapfn2[mapy]
the new mapy. cdr is used if mapfn2 is not supp§1ed, i.e., is NIL.

11.4

maprint([lst;file;left;right;sep;pfn] is a general printing

mapdl,searchpdl

mapatoms

every,some,notevery,notany

function. It cycles through lst
applying pfn (or prinl if pfn not
given) to each element of 1lst
Between each application it per-

forms prinl of sep, or " " if not

given. If left is given, it is
printed (using prinl) initially;
if right is given it is printed
(using prinl) at the end.

For example, maprint([x;NIL;%(;%)] is
equivalent to prinl for lists. To
print a list with commas between each
element and a final '.' one could

use maprint[x;T;NIL;%.;%,].

See Section 12.

See Section 5.

See Section 5.

1L.5

Funarg

function is a function of two arguments, x, a function, and y a
list of variables used freely by x. If y is not NIL, the value of
function is an expression of the form (FUNARG x array), where array
contains the bindings of the variables on y at the time the call to
function was evaluated. funarg is not a function itself. Like
LAMBDA and NLAMBDA, it has meaning and is speciallv recognized by
LISP only in the context of applving a function to arguments. 1In
other words, the expression (FUNARGC x array) is used exactlyv like a
function.* When a funarg is applied, the stack is modified so that
the bindings contained in the arrav will be in force when x, the

function, is called.**

For example, suppose a program wished to compute

(FOO X (FUNCTION FIE)), and fie used y and z as free variables.
If foo rebound y and z, fie would obtain the rebound values
when it was called from inside cf foo. By evaluating instead
(FOO X (FUNCTION FIL (Y 2))), foo would be called with

(FUNARG FIE array) as its second argument, where array con-
tained the bindings of y and z (at the time foo was called).
Thus when fie was called from inside of foo, it would 'see' the

original values of y and z.

However, funarg is more than just a way of circumventing the
clashing of variables. For example, a funarg expression can
be returned as the value of a computation, and then used ‘higher
up', e.g., when the bindings of the variables contained in array

were no longer on the stack. Furthermore, if the function in a

* LAMBDA, NLAMBDA, and FUNARC expressions are sometimes called
'function objects' to distinguish them from functions, i.e.,
literal atoms which have function definitions.

**The implementation of funarg is described on pp. 12.13-12.14.

11.6

L/

L

funarg expression sets any of the variables contained in the
array, the arrav itself (and only the array) will be changed.
For example, suppose foo is defined as

(LAMBDA (I.ST FN) (PROG (Y Z) (SETQ Y &) (SFETO 7 &)

(MAPC LIST FN) ...))

and (00 X (FUNCTIOIN FIF (Y Z))) is evaluated. If one avpli-
cation of g}g'(by the mapc in ggg) chanages v and z, then the
next application of fie will obtain the changed values of v
and z resulting from the previous application of fie, since
both applications of fie come from the exact same funarg
oh»ject, and hence use the exact same arrav. The bhindings of
y and z bound inside of foo, and the hindings of y and z above
foo would not he affected. In other words, the variable bindings
contained in array are a part of the function object, i.e., the

funarg carries its environment with it.

Thus by creating a funarg expression with function, a program
can create a function object which has updateable binding(s)
associated with that object which last between calls to it, but
are only accessible through that instance of the function.

For example, using the funarg device, a program could maintain
two different instances of the same random number generator

in different states, and run them independently.

Examgle

if 299 is defined as (LAMBDA (X) (COND ((ZEROP A) X) (T (MINUS X))))
and ﬁig as (LAMBDA NIL (PROG (A) (SETQ A 2) (RETURN (FUNCTION FO00)))).
then if we perform (SETQ A #), (SETQ FUM (FIE)), the value of fum

is FOO, and the value of (FUM 3) is 3, because the value of 2 at

the time foo is called is §.

However if fie were defined instead as (LAMBDA NIL (PROG (A)
(SETQ A 2) (RETURN (FUNCTION FOO (A))))), the value of fum would
be (FUNARG FOO array) and so the value of (FUM 3) would be -3,
because the value of A seen by foo is the value A had when the

funarg was created inside of fie, i.e. 2.

11.7

W D—"Lo\ﬂ\N

—

SECTION XII

VARIABLE BINDINGS AND PUSH DOWN LIST FUNCTIONS

Contents

PARAMETER PUSH DOWN LIST, CONTROL PUSH DOWN LIST,
#6, *FORM*, EVAL-BLIP, STKPOS, STKNTH, STKNAME,
STKNARGS, STKARG, VARIABLES, STKARGS, STKSCAN,
EVALV, STKEVAL, RETFROM, RETEVAL, MAPDL, SEARCHPDL
SKIPBLIP, FUNARG)

A number of schemes have been used in different implementations

of LISP for storing the values of variéblés. These include:

1.

4.

Storing values on an association list paired with the

variable names.

Storing values on the property list of the atom which is

the name of the variable.
Storing values in a special value cell associated with
the atom name, putting old values on a pushdown list,

and restoring these values when exiting from a function.

Storing values on a pushdown list.

The first three schemes all have the property that values are

scattered throughout list structure space, and, in general, in a

paging environment would require references to many pages to deter-

mine the value of a variable. This would be very undesirable in

our system. In order to avoid this scattering, and possibly ex-

cessive drum references, we utilize a variation on the fourth

standard scheme, usually only usea for transmitting values of

12.1

arguments to compiled functions; that is, we place these values
on the pushdown list.* But since we use an interpreter as well
as a compiler, the variable names must also be kept. The pushdown
list thus contains pairs, each consisting of a variable name and

its value. Each pair occupies one word or 'slot' on the push-
down list, with the name in the left half, i.e. cdr, and the
value in the right half, i.e. car. The interpreter gets the
value of a variable by searching back up the pushdown list
looking for a 'slot' for which cdr is the name of the variable.

car is then its value.

One advantage of this scheme is that the current top of the push-
down stack is usually in core, and thus drum references are
rarely required to find the value of a variable. Free variables work

automatically in a way similar to the association list scheme.

An additional advantage of this scheme is that it is completely
compatible with compiled functions which pick up their arguments

on the pushdown list from known positions, instead of doing a
search. To keep complete compatibility, our compiled functions

put the names of their arguments on the pushdown list, although

they do not use them to reference variables. Thus, free variables
can be used between compiled and interpreted functions with no
special declarations necessary. The names on the pushdown list

are also very useful in debugging, for they make possible a complete
symbolic backtrace in case of error. Thus this technigue, for

a small extra overhead, minimizes drum references, provides
symbolic debugging information, and allows completely free mixing

of compiled and interpreted routines.

* Also called the stack.

12.2

There are three pushdown lists used in BBN LISP: the first is
called the parameter pushdown list, and contains pairs of
variable names and values, and temporary storage of pointers;

the second is called the control pushdown list, and contains
function returns and other control information; and the third is
called the number stack and is used for storing temporary partial

results of numeric operations.

However, it is more convenient for the user to consider the
push-down list as a single "list" containing the names of func-
tions that have been entered but not yet exited, and the names
and values of the corresponding variables. The multiplicity of
pushdown lists in the actual implementation is for efficiency

of operation only.

The Push-Down List and the Interpreter

In addition to the names and values of arguments for functions,
information regarding paftially-evaluated expressions is kept on
the push-down list. For example, consider the function fact
(intentionally faulty):

(raci
[(Lad3nas CN)
(CIND
CC7EDP ND
L)
(i (LIiTMES N (FACT (U3l YD)

12.3

In evaluating (FACT 1) as soon as fact is entered, the inter-
preter begins evaluating the implicit progn following the
LAMBDA (see p. 4.3-4.4). The first function entered in this
process is cond. cond begins to process its list of clauses.

After calling zerop and getting a NIL value, cond proceeds to
the next clause and evaluates T. Since T is true, the evalua-
tion of the implicit progn that is the consequent of the T
clause is begun (see p. 4.3). This requires calling the
function itimes. However before itimes can be called, its
arguments must be evaluated. The first argument is evaluated
by searching the stack for the last binding of n; the second
involves a recursive call to fact, and another implicit progn,
etc.

Note that at each stage of this process, some portion of an
expression has been evaluated, and another is awaiting evalua-
tion. The output below illustrates this by showing the state
of the push-down list at thg point in the computation of

(FACT 1) when the unbound atom L is reached.

12.4

*FACT(1)
UeBesAe

(L. BROKEN)
$BTV?

FORM (BREAK! L T L NIL #41059)
| FAULTX L
0 (L)

#0 (CCZEROP N) L) (T CITIMES N (FACT (SUB1 N))>)>))
COND

FORM (COND ((ZEROP N) L) (T (ITIMES N (FACT (SUB1 N)»)>»)>))
#0 (C(COND C(C(ZEROP N> L) (T CITIMES N (FACT (SUB1 N>)>)>)>))

N o
FACT

o *FORM* (FACT (SUB1 N)>)
- #2 ITIMES
- #0 (C(FACT C(SUB! N
#0 1
FORM CITIMES N (FACT (SUB1 N)))
#0 (CITIMES N (FACT ¢SUB1 N)>)>))

#0 C(CCZEROP N> L) (T CITIMES N (FACT (SUB1 N)»)>)>))
COND

FORM# (COND ((ZEROP N) L) (T C(ITIMES N (FACT (SUB1 N))>)>))
#0 (C(COND ((ZEROP N> L) (T CITIMES N (FACT (SUB1 N)»)»))))

N 1
FACT

*xkTOP%x*x

12.5

Internal calls to gval, e.g., from cond and the interpreter, are
marked on the push-down list by a special mark called an eval-
blip. eval-blips are indicated by the appearance of (VAG 16)

in the left-half, i.e. the variable name position, for that
slot. They are printed by the backtrace as *FORM*. The
genealogy of *FORM*'s is thus a history of the computation.
Other temporary information is frequently recorded on the push-
down list in slots for which the 'variable name' is (VAG @), which
prints as #@. In this example, this information consists of (1)
the tail of a list of cond clauses, (2) the tail of an implicit
progn, i.e., the definition of fact, (3) the tail of an argument
list, (4) the value of a previously evaluated argument, (5) the
tail of a cond clause whose predicate evaluated to true, and

(6) and (7) same as (1) and (2).

Note that a function is not actually entered and does not appear

-

on the stack, until its arguments have been evaluated.* Also

note that the #0 'bindings' comprise the actual working storage.

In other words, in the above example, if a (lower) function changed
the value of the binding at (1) the cond would continue interpret-
ing the new binding as a list of cond clauses. Similarly, if (4)
were changed, the new value would be given to itimes as its first
argument after its second argument had been evaluated, and itimes
was actually called.

*except for functions which do not have their arguments evaluated,
although they themselves may call eval, e.g. cond.

12.6 . ‘:)

The Pushdown List and Compiled Functions

Calls to compiled functions, and the bindings of their arguments,
i.e. names and values, are handled in the same way as for interpre-
ted functions (hence the compatibility between interpreted and com-
piled functions). However, compiled functions treat free variables in
a special way that interpreted functions do not. Interpreted
functions 'look up' free variables when 'they get to them,' and

may look up the same variable many times. However, compiled
functions look up each free variable only once.* Whenever a com-
piled function is entered, the pushdown 1list is scanned and the

most recent binding for each free variable used in the function is
found (or value cell if no binding) and stored in the right half of a
slot on the stack (an unboxed 0 is stored in the left half to distin-
guish this 'binding' from ordinary bindings). Thus, following the
bindings of their arguments, compiled functions store on the pushdown
list pointers to the bindings for each free variable used in the

function.

In addition to the pointers to free variable bindings, compiled
functions differ from interpreted functions in the way they treat
locally bound variables, i.e. progs and open lambdas. Whereas in
interpreted functions progs and open lambdas are called in the
ordinary way as functions, in compilation, progs and open lambdas
disappear, although the variables bound by them are stored on the
stack in the conventional manner so that functions called from in-
side them can reference the variables. These variables appear on
the stack following the arguments to the compiled function (if any)
and the free variable pointers (if any). The only way to determine
dynamically what variables are bound locally by a compiled function
is to search the stack from the first slot beyond the last argument
to the function (which can be found with stknargs and stkarg
described below), to the slot corresponding to the first argument

of the next function. Any slots encountered that contain literal

atoms in their left half are local bindings.

*A list of all free variables is generated at compile time, and is
in fact computable from the compiled definition. See Chapter 18.

12,7

Pushdown List Functions

NOTE: Unless otherwise stated, for all pushdown list functions, ;:>
pos is a position on the control stack. If pos is a literal atom
other than NIL, (STKPOS pos 1) is used. 1In this case, if pos is

not found, i.e., stkpos returns NIL, and ILLEGAL STACK ARG error
is generated.

stkpos[fn;n;pos] Searches the control stack starting
at pos for the nth occurrence of fn.
Returns control stack position of
that fn if found,* else NIL. If n is
positive, searches backward (normal
usage). If n is negative, searches
forward, i.e., down the control stack.
For example, stkpos[FO00;-2;FIE] finds
second call to TI'OO after (below) the
last call to FIE. If n is NIL, 1 is
user. If pos is NIL, the search starts
at the current position. stkpos[] is :)

the current position.

stknth[n;pos] Value is the stack position (control
stack) of the nth function call relative
to position pos. 1If pos is NIL, the
top of stack is assumed for n>0, and the
current position is assumed for n<o0.
I.e., stknth[-1] is the call before
stknth, stknth{l] is the call to
evalgt at the top level. Value of
stknth is NIL if there is no such call -
e.g., stknth[10000] or stknth[-10; stknth[5]].

* A stack position is a pointer to the corresponding slot on the
control or parameter stack, i.e., the address of that cell. It
prints as an unboxed number, e.g., #32002, and its type is 2
(Section 10).

12.8

stkname [pos] Value is the name of the function at
control stack position pos. In this

case, pos must be a real stack position,
not an atom.

Thus stkpos converts function names to stack positions, stknth
converts numbers to stack positions, and stkname converts posi-
tions to function names.

Information about the variables bound at a particular function
call can be obtained using the following functions:

stknargs[pos] Value is the number of arguments bound by

the function at position pos.

stkarg[n;pos] Value is a pointer to the nth argument
(named or not)* of the function at
position pos, i.e., the value is a para-
meter stack position. car of this
pointer gives the value of the binding,
cdr the name. n=1 corresponds to the
first argument at pos. n can be f# or
negative, i.e., stkarg[@;FO0O] is a
pointer to the slot immediately before
the first argument to FOO, stkarg[-1;FOO0]
the one before that, etc.

Note that the user can change (set) the value of a particular
binding by performing an rplaca on the value of stkarg.

Similarly, rplacd changes (sets) the name.

*Subrs do not store the names of their arguments.

12.9

The value of stkarg is a position (slot) on the parameter stack. 4
There is currently no analogue to stknth for the parameter stack. :)
However, the parameter stack is a contiguous block of memory, so
to obtain the slot previous to a given slot, perform
vag[subl[loc([slot]]]; to obtain the next slot perform
vag[addl[loc([slot]]], i.e. stkarg[2;pos] =

vag [addl [loc[stkarg([l;pos]]]j.*

As an example of the use of stknargs and stkarg:

variables [pos] returns list of variables bound at

pos.

can be defined by

(vaxTARBLES
{LAMBDA (PU3)
(PROG (N L)
(5ELQ N (3TXNARGS PJ>))

LB C(CIUND)
((ZEr0” D) =

(RETURN LI
(5ETQ L (CON5S (CDR (3iXARG N PJ5))
Ly
CoEIQ N (5UB1 N))
(G LP1D)

The counterpart of variables is also available.

stkargs[pos] Returns list of values of variables

bound at pos.

*See Section 13 for discussion of vag and loc.

12.10

The next three functions, stkscan, evalv, and stkeval all involve
searching the parameter pushdown stack. For all three functions,
pos may be a position on the control stack, i.e., a value of
stkpos or stknth.* 1In this case, the search starts at
stkarg[stknargs[pos];:pos], i.e., it will include the arguments to
the function at pos but not any locally bound variables. pos may
also be a position on the parameter stack, in which case the

search starts with, and includes that position. Finally, pos can
be NIL, in which case the search starts with the current position
on the parameter stack.

stkscan|[var;pos] Searches backward on the parameter
stack from pos for a binding of var.
Value is the slot for that binding if
found, i.e., a parameter stack
position, otherwise var itself (so

that car of stkscan is always the

value of var).

evalv([var;pos] car [stkscan[var;pos]], i.e., returns
the value of the atom var as of
position pos.

stkeval [pos; form] is a more general evalv. It is equiva-
lent to eval[form] at position pos,
i.e., all variables evaluated in form,

will be evaluated as of pos.**

* or a function name, which is equivalent to stkpos[pos;1l] as
described earlier.

** Jowever, any functions in form that specifically reference thg
stack, e.g., stkpos, stknth, retfrom, etc., 'see' the stack as it
currently is. (See pp. 12.13, 12,14 for description of how
stkeval is implemented.)

12.11

Finally, we have two functions which clear the stacks:

retfrom[pos,value]

reteval [pos; form]

We also have:

mapdl [mapdlfn;mapdlpos]

For example,

clears the stack back to the function at
position pos, and effects a return from :)
that function with value as its value.

clears the stack back to the function at

position Egg,‘then evaluates form and re-
turns with its value to next higher
function. I.e., reteval[pos,form] =
retfrom|[pos;stkeval([pos;form]],if

form does not involve any stack

functions itself.

starts at position mapdlpos (current

if NIL), and applies mapdlfn to the

function name at each pushdown

position, i.e., to stkname[mapdlpos] D
until the top of stack is reached.

Value is NIL. mapdlpos is updated at

each iteration.

mapdl | (LAMBDA (X) (COND ((EQ (FNTYP X) (QUOTE EXPR)) (PRINT X|]

will print all exprs on the push-down list.
mapdl[(LAMEDA(X) (COND ((GREATERP (STKNARG MAPDLPOS) 2) (PRINT X]

will print all functions of more than two arguments.

searchpdl [srchfn;srchpos]

searches the pushdown 1list starting at
position srchpos (current if NIL) until

it finds a position for which srchfn

applied to the name of the function

called at that position is not NIL.

Value is (name . position) if such a

position is found, otherwise NIL. ‘:D
srchpos is updated at each iteration.

12,12

et

The Pushdown List and Funarg

The linear scan up the parameter stack for a variable binding

can be interrupted by a special mark called a skipblip appearing
on the stack in a name position (See figure on p. 12.14). In the
value position is a pointer to the position on the stack where the
search is to be continued. This is what is used to make stkeval,

p. 12.11 work. It is also used by the funarg device (p. 11l.6).

When a funarg is applied, LISP puts a skipblip on the parameter
stack with a pointer to the funarg array, and another skipblip

at the top of the funarg array pointing back to the stack. The
effect is to make the stack look like it has a patch. The names
and values stored in the funarg array will thus be seen before
those higher on the stack. Similarly, setting a variable whose
binding is contained in the funarg array will change only the
array. Note however that as a consequence of this implementation,

the same instance of a funarg objeet cannot be used recursively.

12.13

Use of 'SKIPBLIPs'
Parameter
Stack
nm val
nm val |[é=
nm val [®|arguments
nm val to STKEVAL
skip
nm val |[4-begin
nm val evaluation of
. form
STKEVAL
Parameter
Stack
- skip| N
: T nm val
nm va nm val
zgip va nm val
5 nm val
nm val >
nm val funarg
array
FUNAPG

12,14

SECTION XIII

NUMBERS AND ARITHMETIC FUNCTIONS

Contents

SMALL INTEGERS, LARGE INTEGERS, FLOATING POINT

NUMBERS, BOXING, UNBOXING, GC:18, GC:16, IPLUS,

IMINUS, IDIFFERENCE, ADD1, SuBl, ITIMES, IQUOTIENT,
IREMAINDER, IGREATERP, ILESSP, ZEROP, MINUSP, EQP,

SMALLP, FIXP, FIX, LOGAND, LOGOR, LOGXOR, LSH, RSH,

LLSH, LRSH, FPLUS, FMINUS, FTIMES, FQUOTIENT,

FREMAINDER, MINUSP, EQP, FGTP, FLOATP, FLOAT,

PLUS, MINUS, DIFFERENCE, TIMES, QUOTIENT, REMAINDER,
GREATERP, LESSP, ABS, EXPT, SQRT, LOG, ANTILOG, SIN, COS,
TAN, ARCSIN, ARCCOS, ARCTAN, RAND, RANDSET, SETN, LOC, VAG

PR OO £ o

Pt b et

General Comments

There are three different tYpes of numbers in BBN LISP: small
integers, large integers, and floating point numbers.* Since a
large integer or floating point number can be (in value) any 36
bit gquantity (and vice versa), it is necessary to distinguish
between those 36 bit quantities that represent large integers
or floating point numbers, and other LISP pointers. We do this
by "boxing" the number, which is sort of like a special "cons":
when a large integer or floating point number is created (via
an arithmetic operation or by read), LISP gets a new word from
"number storage" and puts the large integer or floating point
number into that word. LISP then passes around the pointer to
that word, i.e., the "boxed number", rather than the actual 36
bit quantity itself. Then when a numeric function needs

the actual numeric quantity, it performs the extra level

* Floating point numbers are created by the read program when a .
or an E appears in a number, e.g., 1000 is an integer, 1000. a
floating point number, as are 1lE3 and 1l.E3. ©Note that 1000D,
1000F, and 1lE3D are perfectly legal literal atoms.

13.1

of addressing to obtain the 'value' of the number. This latter
process is called "unboxing". Note that unboxing does not use
any storage, but that each boxing operation uses one new word

of number storage. Thus, if a computation creates many large
integers or floating point numbers, i.e., does lots of boxes, it
may cause a garbage collection of large integer space, GC:18, or

of floating point number space, GC:16.

Small Integers

Small integers are those integers for which smallp is true,

currently integers whose absolute value is less than 1536. Small
integers are boxed by offsetting them by a constant so that they

overlay an area of LISP's address space that does not correspond

to any LISP data type. Thus boxing small numbers does not use

any storage, and furthermore, each small number has a unique
representation, so that eq may ke used to check equality. YNote (:)
that eq should not be used for large integers or floating point

numbers, e.g., eq[2000;add1[1999]] is NIL! eqp or equal must

be used instead.

13.2

Integer Arithmetic

All of the functions described below work on integers. Unless
specified otherwise, if given a floating point number, they
first convert the number to an integer by truncating the frac-
tional kits, e.g., iplus[2.3,3.8]=5; if given a non-numeric
argument, they generate an error.

It is important to use the integer arithmetic functions, when-
ever possible, in place of the more general arithmetic functions
which allow mixed floating point and integer arithmetic, e.qg.,

iplus vs plus, igreaterp vs greaterp, because the integer func-

tions compile open, and therefore run faster than the general
arithmetic functions, and because the compiler is "smart"” about
eliminating unnecessary boxing and unboxing. Thus, the

expression
(IPLUS (IQUOTIENT (ITIMES N 100) M) (ITIMES X Y))

will compile to perform only one box, the outer one, and the

expression
(IGREATERP (IPLUS X Y) (IDIFFLERENCE A B))
will compile to do no boxing at all.
Note that the PDP-10 is a 36 bit machine, so that all integers

35 and 235

a result outside this range causes overflow, e.g., 2

are between -2 -1.* Adding two integers which produce

34+234.

The procedure on overflow is to return the largest possible

35-1 or else generate an error.** The function

integer, i.e. 2
overflow dictates the choice:
overflow[] - return a value, overflow([T] - give an error.

overflow[] is the standard setting.

*Approximately 34 billion

**Tf the overflow occurs by _trying to create a negative number of
too large a magnitude, -235 is used instead of 235-1.

13.3

Integer Functions

iplus[xl;xz;...;xn]
iminus [x]
idifference[x;y]
addl [x]

subl [x]

1t1mes[x1;x2;...;xn]

iquotient [x;vVy]

iremainder[x;v]

igreaterp(x;y]
ilessplx;yl

zerop [x]

X +X,+...+X
n

172

the product of 51’52""5n

x/y truncated, e.g.,
iquotient([3;2]=1,
igquotient([-3,2]=-1

the remainder when x is divided

by Y, €.9., iremainder[3;2]=1
T if x>y; NIL otherwise
T is x<y; 1'IL otherwise

defined as eqlx;#].

Note that zerop should not be
used for floating point numbers
because it uses eg. Use

eqplx;@] instead.

13.4

minusp[x]

eqp[n;m]

smallp[n]

fixp([x]

fix[x]

T if x is negative; NIL otherwise.
Does not convert x to an integer,

but simply checks sign bit.

T if n and m are eq, or egual
numbers, NIL otherwise. (eg may
be used if n and m are known to
be small integers.) egp does not
convert n and m to integers, e.g.,
eqp[2000;2000.3]=NIL, but it can
be used to compare an integer and
a floating point number, e.g.,
eqp[2000;2000.0]=T. eqp does not
generate an error if n or m are

not numbers.

T if n is a small integer, else
NIL. smallp does not generate an

error if n is not a number.

x if x is an integer, else NIL.
Does not generate an error if x

is not a number.

Converts x to an integer by trun-
cating fractional hits, e.g.,
fix[2.3] = 2, fix[-1.7] = -1.

If x is already an integer,
fix[x]=x and doesn't use any

storage.

13.5

logand[xl;xz;...;xn]

logor[xl;xz;...;xn]

logxor[xl;xz;...;x]

n

1sh[n;m]

rshin;m]

llshin;m]

lambda no-spread, value is logi-
cal and of all its arguments, as
an integer, e.g., logand[7;5;6]=4.

lambda no-spread, value is the
logical or of all its arguments,
as an integer, e.q.,
logor[1;3;9]=11.

lambda no-spread, value is the
logical exclusive or of its
arguments, as an integer, e.qg.,
logxor[11;5]=14, logxor[1l1l;5;92] =
logxor[l4;:;9]=7.

(arithmetic) left shift, value
is n*2m, i.e., n is shifted left
m places. n can be positive or
negative. If m is negative, n

is shifted right -m places.

(arithmetic) right shift, value
is n*2_m, i.e., n is shifted
right m nlaces. n can e posi-
tive or negative. If m is
negative, n is shifted left -m

rlaces.

logical left shift. On FDP-10,

llsh is equivalent to 1lsh.

>

lrsh[n;m] logical right shift.

The difference between a logical and arithmetic right shift lies
in the treatment of the sign bit for negative numbers. For
arithmetic right shifting of negative numbers, the sign bit is
propagated, i.e., the value is a negative number. For logical
right shift, zeroes are propagated. Note that shifting (arith-
metic) a negative number 'all the way' to the right yields -1,
not f.

13.7

Floating Point Arithmetic

All of the functions described below work on floating point {:)
numbers. Unless specified otherwise, if given an integer, they

first convert the number to a floating point numker, e.g.,

fplus(1;2.3] = fplus[l1l.0;2.3] = 3.3; if given a non-numeric

argument, they generate an error.

The largest floating point number is 1.7014118K38, the smallest
positive (non-zero) floating point number is 1.4€93679LC-39. The
procedure on overflow is the same as for integer arithmetic, and
the function overflow has the same effect. For underflow, i.e.
trying to create a number of too small a magnitude, the value will

be § (if a value is to be returned) .

fplus[xl;x2;...xn] xl+x2...+xn

fminus[x] - X

ftlmes[xl,xz,...,xn] Xq x2...*xn

fquotient[x;vy] x/y

fremainder [x;v] the remainder when x is divided
vy y, e.g9., fremainder[1.0;3.0]=
3.725295-9.

minusp[x] T if X is negative; LiIL otherwise.
iwvorks for both integers and

floating point numbers.

eqp[x;vy] T if x and y are ey, or equal

numuers. See discussion p. 13.5.

fgtpix;vl T if x>y, WIL otherwvise.

13.8

is x if x is a floating point

floatp([x]
number; NIL otherwise. Does not

give an error if x is not a

number.

Note that if numberp[x] is true, then either fixp[x] or

floatp[x] is true.

Converts X to a floating point

float[x]
number, e.g., float(g] = #.4.

13.9

@

General Arithmetic

he functions in this section are 'contagious floating point
arithmetic' functions, i.e., if any of the arguments are
floating point numbers, they act exactly like floating point
functions, and float all arguments and return a floating point
number as their value. Otherwise, they act like the integer

functions. If given a non-numeric argument, they generate an

error.

plus[xl;xz;...;xn] xl+x2+...+xn

minus [x] - X

difference[x;v] X =Y

1 . . . * * P RV

tlmes[xl,xz,...,xn] X *X* L ER

guotient([x;y] if x and y are both integers, '
value is iquotient([x;y], other-
wise fquotient(x;yl.

remainder[x;y] if x and y are both integers,

value is iremainder{x;y], other-

wise fremainder([x;y].

+]

greaterp(x;yl if x>y, NIL otherwise.

=

lessplx;yl] 7T if x<y, nIL otherwise.

abs [x] x if x>Jg, otherwise -Xx.
abs uses greaterp and minus,

(not igreaterp and iminus).

Y
/

Special Functions

These functions are all "borrowed" from the FCRTRAN library

and handcoded in LISP via ASSEMBLE. They utilize a power

series expansion and their values are (supposed to he) 27

bits accurate, e.g., sin[30]=.5 exactly.

expt[m;n]

sgrt[n]

log[x]

antilog[x]

sin[x;radiansflg]

cos[x;radiansflg]

tan[x;radiansflg]

value is m". 1If m is an integer
and n is a positive integer, value
is an integer, e.g., expt[3;4]=81,
otherwise the value is a floating
point number. If m is negative and

n fractional, an error is generated.

value is a square root of n as a
floating point number. n may be fixed
or floating point. Generates an error
if n is negative. sqrt[n] is about

twice as fast as expt[n;.5]

value is natural logarithm of x ac

a floating voint number. X can ¢

integer or floating point.

value is floating point number
whose logarithm is x. x can bLe
integer or floating point, e.g.,
antilog[l] = e = 2.71828...

X in degrees unless radiansflg=T.

valuc is sine of x as a floating

point number.
Similar to gig.

Similar to sin.

13,11

arcsin[x;radiansflg]

arcos [x;radiansflg]

arctan[x;radiansflqg]

rand [lower; upper]

X i1s a number between -1 and 1

(or an error is generated).

The value of arcsin is a

floating point number, and is

In other words, if
arcsin[x;radiansflg]l=z then
sin[z;radiansflg]=x. The range of the
value of arcsin is =90 to +90 for

degrees, —-%—to +% for radians.

Similar to arcsin. Range is # to
180, # to w,

Similar to arcsin. Range is # to
180, # to w.

Value is a pseudo-random number
between lower and upper inclusive,

i.e. rand can be used to generate

a sequence of random numbers. If
both limits are integers, the value
of rand is an integer, otlerwise it

is a floating point number. The
algorithm is completely deterministic,
i.e. given the same initial state,
rand produces the same sequence of
values. The internal state of rand
is initialized using the function
randset described below, and is

stored on the free variable randstate.

13.12

randset [x]

Value is internal state of rand

after randset has finished operating,
(as a dotted pair of two integers).
If x=NIL, no changes are made, i.e.
value is current state. If x=T,
randstate is initialized using the
clocks. Otherwise, x is interpreted
as a previous internal state, i.e. a
value of randset, and is used to

reset randstate. For example,

1. (SETQ OLDSTATE (RANDSET))

2, Use rand to generate some random
numbers.

3. (RANDSET OLDSTATE)

4, rand will generate same sequence
as in 2.

15.13

Reusing Boxed Numbers - setn *:>

rplaca and rplacd provide a way of cannibalizing list structure
for reuse in order to avoid making new structure and causing
garbage collections.* This section describes an analogous func-
tion for large integers and floating point numbers, setn. setn
is used like setq, i.e., its first argument is considered as
quoted, its second is evaluated. If the current value of the
variable being set is a large integer or floating point number,
the new value is deposited into that word in number storage, i.e.,
no new storage is used.** If the current value is not a large
integer or floating point number, e.g., it can be NIL, setn
operates exactly like setq, i.e., the large integer or floating
point number is boxed, and the variable is set. This eliminates

initialization of the variable.

setn will work interpretively, i.e., reuse a word in number

storage, but will not yield any savings of storage because the ::)
boxing (of the second argument) has already taken place, i.e.,

before setn was called. The elimination of a box is achieved

only when the call to setn is compiled, since setn compiles

open, and does not perform the box if the old value of the

variahle can be reused.

Caveats

t“l.ere are three situations to watch out for when using setn.
The first occurs when the same variable is being used for
floating point numbers and large integers. If the current value

* his technique is frowned upon except in well~defined, loca-
lized situations where efficiency is paramount.

**7The second argument to setn must always be a number or an
error is generated.

13.14

of the variable is a floating point number, and it is reset
to a large integer, via setn, the large integer is simply
deposited into a word in floating point number storage, and

hence will be interpreted as a floating point number. Thus,

~(SETQ FOO 2.3)
23

«~(SETN FOO 10000)
2.183529E-43

Similarly, if the current value is a large integer, and tie new

value is a floating point number, equally strange results occur.

The second situation occurs when a setn variable is reset from

a large integer to a small integer. In this case, the small
integer is simply deposited into large integer storage. It will
then print correctly, and function arithmetically correctly, but
it is not a small integer, and hence not eq to another integer

of the same value, e.g.,

“(oETL FOUu 12m00)
10004

“C(oBE0N FIO D)

1

~(IFLUS FOO 5)

6

~(ED FuY 1)

NTL

- (SMALLE FJW)

NI

In particular, note that zerop will return NIL even if the vari-
aille is equal to #. Thus a program which begins with FOO set to
a large integer and counts it down by (SLTN FOO (SUBl FOC)) must
terminate with (EQP IOC &), not (ZLEROP FOO).

13.15

Finally, the third situation to watch out for occurs when you
want to save the currcent value of a setn variacle for later

use. For example, if FOO is being used by setn, and the user
wants to save its current value on FIE, (SETQ FOO I'IE) is not
sufficent, since the next setn on FOO will also change FIE,
because it changes the word in number storage pointed to by FO0O,
and hence pointed to by FIE. The number must be copied, e.g.,
(SETQ FIL (IPLUS FOO)), which sets FIE to a new word in number

storage.

setn[var;x] nlambda function like setq. var
is quoted, x is evaluated, and
its value must be a number. var
will be set to this number. If
the current value of var is a
large integer or floating point
number, that word in number
storage is cannibalized. The
value of setn is the (new) value

of var.

13.16

,//\ ~
)

Box and Unbox

Some applications may require that a user program explicitly
perform the boxing and unboxing operations that are usually
implicit (and invisible) to most programs. The functions that
perform these operations are loc and vag respectively. TFor
example, if a user program executes a TENEX JSYS using the
ASSEMBLE directive, the value of the ASSEMBLL expression will
have to be boxed to be used arithmetically, e.g.,’

(IPLUS X (LOC (ASSEMBLE --))). It must be emphasized that

Arbitrary unboxed numbers should not be passed around as
ordinary values because they can cause trouble for the garbage
collector.

For example, suppose the value of x were 150000, and you
created (vag x), and this just happened to be an address on the
free storage list! The next garbage collection could bLe
disastrous. For this reason, the function vag must be used

with extreme caution when its argument's range is not known.

One place where vag is safe to use is for performing computations

on stack positions, which are simply addresses of the correspcnd-

ing positions (cells) on the stack. To treat these addresses as
numbers, the program must first box them. Conversely, to convert
numbers to corresponding stack positions, the program must unbox
them. Thus, suppose X were the value of stkarg, i.e., X corres-
ponds to a position on the parameter stack. To obtain the next
position on the stack, the program must compute (VAG (ADD1l (LOC X))).
Thus if x were #32002,* (LOC X) would be 32002Q,** (ADDl (LOC X))
32003Q, and (VAG (ADD1 (LOC X))) #32003.

* A LISP pointer (address) which does not correspond to the
address of a list structure, or an atom, or a number, or a
string, is printed as #n, n given in octal.

**() following a number means the numeric quantity is expressed
in octal.

13.17

Note that rather than starting with a number, and unboxing it

to obtain its numeric quantity, here we started with an address,
i.e., a 36 bit quantity, and wishing to treat it as a number,
boxed it. For example, loc of an atom, e.g., (LOC (QUOTE FOO)),
treats the atom as a 36 bit quantity, and makes a number out of
it. If the address of the atom FOO were 125000, (LOC (QUOTE FO0O0))
would be 125000, i.e. the location of FOO. It is for this reason

that the box operation is called loc, which is short for location.*

Note that FOO does not print as #364110 (125000 in octal) because
the print routine recognizes that it is an atom, and therefore
prints it in a special way, i.e. by printing the individual
characters that comprise it. Thus (VAG 125000) would print as
FOO, and would be in fact FOO.

loc[x] Makes a number out of x, i.e.,

returns the location of X.

vag [x] The inverse of loc. x must be a
number; the value of vag is the

unbox of X.

The compiler eliminates extra vag's and loc's, for example
(IPLUS X (LOC (ASSEMBLE =--))) will not box the value of the
ASSEMBLE, and then unbox it for the addition.

*vag is an abbreviation of value get.

13.18

2

SECTION XIV

INPUT/OUTPUT FUNCTIOHNS

gontenQE

1 PRIMARY, INPUT, OUTPUT, INFILE, OUTFILE, INFILEP,
4 OUTFILEP, CLOSEF, CLOSEALL, OPENP, READ, %, ', RATOM,
8 RSTRING, RATOMS, SETSEPR, SETBRK, GETSEPR, GETBRK,

9 ESCAPE, RATEST, READC, PEEKC, UREAD, READP, READLINE,
12 PRIN1, PRIN2, PRIN3, PRINT, #, SPACES, TERPRI,

13 PRINTLEVEL, &, CONTROL-P, CONTROL-0O, IOFILE, SFPTR,
16 FILEPOS, CLEARBUF, LINBUF, SYSBUF, BKLINBUF,

17 BKSYSBUF, RADIX, LINELENGTH, POSITION, CONTROL,

19 CONTROL-A, CONTROL-0, CONTROL[T], SYSOUT, SYSIN,
23 LOAD, READFILE, WRITEFILE, PP, PRETTYPRINT, COMMENTS,
25 ¥, XXCOMMENT#¥*, PRETTYDEF, PRINTFNS, PRINTDATE, TAB,
32 ENDFILE, PRINTDEF, #RPARS,], LINELENGTH, FIRSTCOL,
33 PRETTYLCOM, WIDEPAPER, COMMENTFLG, PRETTYFLG,
34 PRETTYMACROS, %%, LCASELST, UCASELST, ABBREVLST,
38 L-CASE, U-CASE, RAISE, LOWER, CAP, %%F, %%, FILELST,
42 MAKEFILE, NOTLISTEDFILES, NOTCOMPILEDFILES,
L3 MAKEFILES, LISTFILES, FILES?, CLEANUP

Files

All input/output functions in BBN-LISP can specify their
source/destination file with an optional extra argument which

is the name of the file. This file must be opened as specified
below. If the extra argument is not given (has value NIL), the
file specified as "primary" for input (output) is used. Normally
these are both T, for teletype input and output. However, the
primary input/output file may be changed by

input[filel* Sets file as the primary input file.

Its value is the name of the old

primary input file.

input[] is current primary iuput file,
which is not changed.

*The argument name file is used for tutorial purposes only. The '
arguments to all subrs are U,V, and W as described in arglist, p. 8...

14,1

output[file] Same as input except operates on
primary output file.

U

Any file which is made primary must have been previously opened
for input/output, except for the file T, which 18 always open.

infile[file] Opens file for input, and sets it as
the primary input file.* The vaiue
of infile is the previous
primary input file. If file is
already open, same as input([file].
Generates a FILE WON'T OPEN error if
file won't open, e.g., file is already

open for output.

outfile[file] Opens file for output, and sets it
as the primarv output file.* The
value of outfile is the previous
primary output file. If file is L:)
already open, same as output[file].
Generates a FILE WON'T OPEN error if
file won't open, e.q., if file is

already open for input.

For all input/output functions, file follows the TENEX conventions
for file names, i.e. file can be prefixed by a directory name
enclosed in angle brackets, can contain alt-modes or control-F's,
and can includé suffixes and/of version numbers. Consistent

with TENEX, when a file is opened for input and no version

number is given, the highest version number is used.

Similarly, when a file is opened for output and no version number
is given, a new file is created with a version number one higher

than the highest one currently in use with that file name.

*To open file without changing primary input file, perform i:)

input [infile[file]]. Similarly for output.

14.2

Regardless of the file name given to the LISP function that openeé
the file, LISP maintains only full TENEX file names* in its internal
table of open files and any function whose value is a file name

always returns a full file name, e.g. openp[FOO]=FO00.;3.
Whenever a file argument is given to an i/o function, LISP first

checks to see if the file is in its internal table. If not, LISP
executes the appropriate TENEX JSYS to "recognize" the file. 1If
TENEX does not successfully recognize the file, a FILE NOT FOUND
error is generated.** If TENEX does recognize the file, it
returns to LISP the full file name. Then, LISP can continue with
the indicated operation. If the file is being opened, LISP opens
the file and stores its (full) name in the file table. If it is
being closed, or written to or read from, LISP checks its internal
table to make sure the file is open, and then executes the cor-

responding operation.

Note that each time a full file name is not used, LISP must call
TENEX to recognize the name. Thus if repeated operations are to
be performed, it will be more efficient to obtain the full file
name once, e.g. via infilep or outfilep. Also, note that recog-
nition by TENEX is performed on the user's entire directory.

Thus, even if only one file is open, say F00.;1l, F$ (F altmode)
will not be recognized if the user's directory also contains the
file FIE.;l. Similarly, it is possible for a file name that was
previously recognized to become ambiguous. For example, a program
performs infile[FOO], opening F00.;1l, and reads several expressions
from FOO. Then the user types control-C, creates a F0O0.;2 and
reenters his program. Now a call to read giving it FOO as its file
argument will generate a FILE NOT OPEN error, because TENLX will
recognize FOO as FO0O0.;2.

*j .e. name, extension, and version, plus directory name if it differs
from connected directory.

**except for infilep, outfilep and openp, which in this case return
NIL.

14.3

infilepl[file]

Returns full file name of file if
recognized by TENEX, NIL otherwise.
The full file name will contain a
directory field only if the directory
differs from the currently attached
directory. Recognition is in input
context, i.e. if no version number

is given, the highest version number
is returned.

;ggzéegtznd outfilep do th open any files, or change the primary
N ey are pure predicates.

outfilep[file]

closef([filce]

Similar to infilep, except recog-
nition is in output context, i.e. if
no version number is given, a version
number one higher than the highest

version nurmber is returned.

Closes file. Generates an error if

file not open. If file is NIL, it
attempts to close the primary input
file if other than teletvpe. Tailing
that, it attempts to close the primary
output file if other than teletyre.
Failing both, it returns I"IL. If

it closes any file, it returns the
name of that file. If it closes cither
of the primary files, it resets that

nrimary file to telectvpe.

14.4

»)

N
{ N

closeall|]

openp[file;typel

Closes all open files (except T).
Value is a list of the files closed.

If type=NIL, value is file (full name)
if file is open either for reading or
for writing. Otherwise value is NIL.

If type is INPUT or OUTPUT, value is
file if open for corresponding type,
otherwise NIL., If type is BOTH,
value is file if open for both input
and outpu;T_Tsee iofile, p. 14.16)
otherwise NIL.

Note: the value of openp is NIL if

file is not recognized, i.e. openp
does not generate an error.

openp[] is a list of all files open

for input or output, excluding T.

14.5

Input Functions

Most of the functions described below have an (optional) argument
ile which specifies the name of the file on which the operation
18 to take place. If that argument is NIL, the primary input file

will be used.

Note: in all LISP symbolic files, end of line is indicated by the
characters carriage return and line feed in that order. Accordingly,
on input from files, LISP will skip all line-feeds which immediately
follow ecarriage-returns.x On input from teletype, LISP will echo a
line-feed whenever a carriage-return is input.

For all input functions except readc and peekec, when reading from
the teletype control-A erases the last character typed in, echoing
a \ and the erased character. Control-A will not backup beyond the
last carriage return. Typzng control-@ causes LISP to print ## and
clear the input buffer, i.e. erase the entire line back to the last
carriage return.

read(file; flg] Reads one S-expression from file.

' Atoms are delimited by parentheses,
brackets, double quotes, spaces, and
carriage returns. To input an atom
which contains one of these syntactic
delimiters, precede the delimiter by

the escape character %, e.g. AB%(C,
is the atom aAB(C, %% is the atom %.

Strings are delimited by double quotes.
To input a string containing a double
quote or a %, precede it by %, e.qg.

"A B%"C" is the string AB"C. Note

that % can always be typed even if next
character is not 'special', e.g. %A%B%C

is read as ABC.

If an atom is interpretable as a number,

read will create a number, e.g. 1E3
reads as a floating point number, 1D3
as a literal atom, 1.§ as a number,

* Actuallv, LISP skips the next character after a carriage return
without looling at it at all.

14.6

)

D

l,§ as a literal atom, etc. Note
that an integer can be input in
octal by terminating it with a ¢,
e.g. 17Q and 15 read in as the same
integer. The setting of radix,

p. 14,18, determines how they are
printed.

When reading from the teletype, all input is line-buffered to
enable the action of control-Q.* Thus no characters are actually
seen by the program until a carriage-return is typed. However,
for reading by read or uread, when a matching right parenthesis
18 encountered, the effect is the same as though a carriage
return were typed, i.e. the characters are transmitted. To indi-
cate this, LISP also prints a carriage-return line-feed on the
teletype.

read (continued) £f1g=T suppresses the carriage-return
normally typed by read following a
matching right parenthesis. (However,
the characters are still given to

read - i.e. the user does not have

to type the carriage return himself.)

ratom[file] Reads in one atom from Eilg. Separat-
ion of atoms is defined by action of
setsepr and setbrk described below.
% is also an escape character for
ratom, and the remarks concerning
control-A, control-Q, and line buffer-

ing also apply.

If the characters comprising the atom
would normallv be interpreted as a
number by read, that number is also re-
turned by ratom. Note however that
ratom takes no special actiqn for "
whether or not it is a break charac-

ter, i.e. ratom never makes a string.

*Unless control[T] has been performed - pp. 14,.19-14,21.

14.7

The purpose of ratom, rstring, setbrk, and setsepr <is to allow

the user to write his own read program without having to resort to
reading character by character and then calling pack to make atoms.
The function uread (p. 14.10)is available if the user wants to
handle input as read does, i.e. same action on parentheses, double
quotes, square brackets, dot, spaces, and carriage return, but in
addition, to split atoms that contain special characters, as speci-
fied by setbrk and setsepr.

rstring([file] Reads in one string from file, termi-
nated by next break or separator
character. Control-A, control-Q, and

% have the same éffect as with ratom.

Note that the break or separator character that terminates a call
to ratom or rstring is not read by that call, but remains in the
buffer to become the first character seen by the next reading
funection that is called.

ratoms[a;file] Calls ratom repeatedly until the atom
a is read. Returns a list of atoms
read not including a.

setsepr(lst;flg] Set separator characters. Value is
NIL.
setbrk([lst;flqg] Set break characters. Value is NIL.

For both setsepr and setbrk, lst is a list of character codes. flg

determines the action of setsepr/setbrk as follows:

NIL clear out old tables and reset.

1) | clear out only those characters in lst -

i.e. this provides an unsetsepr and unsetbrk.

1 add characters in lst to corresponding
table.

‘Characters specified by setbrk will delimit atoms, and be returned
as separate atoms themselves by ratom.* Characters specified by
setsepr will be ignored and serve only to separate atoms. For
example, if $ was a break character and ! a separator character,
the input stream ABC!!DEFS$SGH!$$ would be read by 6 calls to ratom
returning respectively ABC, DEF, $, GH, §, §.

* but have no effect whatsoever on the action of reac.

14.8

W,

\
7N
)

¥

Note that the action of % is not affected by setsepr or setbrk.
To defeat the action of % use escapel].

The elements of lst may also be characters e.g. setbrk([(%(%))] has
the same effect as setbrk[(40 41)].Note however that the 'characters'
1,2...9,8 will be interpreted as character codes because they are
numbers.

getsepr/(] Value is a list of separator character
codes.

getbrk([] Value is a list of break character codes.

escape[flg] If flg=NIL, makes % act like every

other character. Normal setting is

escape|[T].

The value of escape is the previous
setting.

ratest[x] If x = T,ratest returns T if
a separator was encountered
immediately prior to the last

atom read by ratom, NIL otherwise.

If x = NIL,ratest returns T if
last atom read bv ratom was a

break character, NIL otherwise.

If x = lrratest returns T if last

atom read (by read or ratom) con-

tained a ¢ (as an escape character,
e.g., %[or %2A%B%C), NIL otherwise.

14.9

readc[file] Reads the next character, including !:)

%, ", etc. Value is the character.

Action of readc is subject to line-
buffering, i.e. readc will not return

a value until the line has been termi-

nated even if a character has been

typed (unless control[T] has been exe-
cuted, see pp. 14.19-14.21). '

peekc[file] Value is the next character, but does
not remove it from the buffer. Not
subject to line-buffering, i.e. returns

as soon as a character has been typed.

uread[file; flgl (for user recad). same as read
except uses separator and
break characters set by setsepr i:)
and setbrk. This function is useful
for reading in list structure in the
normal way, while splitting atoms con-
taining special characters. Thus with
space a separator character, and break
characters of () . and ' the input
stream (IT'S EASY.) is read by uread

as the list (IT ' S LASY %.)

Note that () [] and " must be includ-
ed in the break characters if uread

is to take special action on then,

i1.e. assemble lists and make strings.

flg=1 suppresses carriage return
normally typed followinyg a natching

right parentheses. See p. 14.7.

14.10

readp[file] Value is T if there is anything in

the input buffer of file, NIL other-
wise, (not particularly meaningful
for file other than T). Note that
because of line buffering, readp may
return T even though read may have

to wait.

Note: read, ratom, ratoms, peekec, reade, and uread all wait for
input if there is none. If reading from a file and an end
of file is encountered, they all close the file and generate
an error.

readline(]* reads a line, returning it as a list.

If readp[T] is NIL, readline returns
NIL. Otherwise it reads, using read,
up to the end of the line, as indi-
cated by one of three'conditions:

(1) a carriage return, e.q.
ABCQ

and readline returns (A B C)

(2) a list, in which case the list is
included in the value of readline,
A B (C D)
and readline returns (A B (C D))

(3) an unmatched right parentheses
or right square bracket, which
is not included in the value of
readline, e.qg.

A B C]
and readline returns (A B C)

*Readline actually has two arguments for use by the syvstem, but

14.11

Output Functions

TN
Most of the functions described below have an (optional) argument J
1le which specifies the name of the file on which the operation
1s to take place. If that argument is NIL, the primary output file -
will be used.

Note: 1in all LISP symbolic files, end-of-line is indicated by

the characters carriage-return and line-feed in that order. Unless
otherwise stated, carriage-return appearing in the description of
an output function means carriage-return and line-feed. '

prinl(x;file] prints x on file,

prin2[x;filel] prints x on file with %'s and "'s
inserted where required for it to

read Sack in properly Ly read.

Both prinl and prin2 print lists as well as atoms and strings;

neither print a carriage return upon termination; both have

value x. prinl is usually used only for explicitly printing

formatting characters, e.g. (PRIN1 (QUOTE %[)) might be used to :)
print a left square bracket (the % would not be printed by prinl). h
prin2 is used for printing S-expressions which can then be read

back into LISP with EEEQ i.e. regular LISP fcrmatting characters

in atoms will be preceded by %'s, e.g. the atom '()' is printed as

% (%) by prin2. If radix=8, prin2 prints a Q after integers but

prinl does not (but both print the integer in octal).

prin3[x;file] Prints x with %'s and "'s inserted
where required for it to read back
in properly by uread, i.e. uses
separator and break characters
specified by setbrk and setsepr to
determine when to insert %'s.

print(x;file] Prints the S-expression X using

prin2; followed by a carriage-return
linefeed. Its value is x. j:)

14.12

PN

-

For all printing functions, pointers other than lists, strings,
atoms, or numbers, are printed as #N, where N is the octal repre-
sentation of the address of the pointer (regardless of radix).
Note that this will not read back in correctly, i.e., it will
read in as the atom '#N'.

spaces[n;file] Prints n spaces; its value is NIL.

terpri(file] Prints a carriage return; its value
is NIL.

Printlevel

The print functions print, prinl, prin2, and prin3 are all

affected by a level parameter set by

printlevel [n] Sets print level to n, value is old
setting. Initial value is 1000.

printlevel([] gives current setting.

The variable n controls the number of unpaired left parentheses

which will be printed. Below that level, all lists will be printed

as & .

(A (BC (D (EF) G) H) K)

Suppose x

Then if n = 2, print[x] would print
(A (B C & H) K)

and if n = 3,
(A (BC (D & G) H) K)

and if n = 0, Jjust
&

If printlevel is negative, the action is similar except that a

carriage return is inserted between all occurrences of right paren

followed by left paren.

The printlevel setting can be changed dynamically, i.e. while

LISP is printing, by typing control-P followed by
a number, i.e. a string of digits, followed by a period or

14.13

exclamation point.* The printlevel will immediately be set to
this number.** If the print routine is currently deeper than the
new level, all unfinished lists above that level will be termi-
nated by "=-=)". Thus, if a circular or long list of atoms, is
being printed out, typing control-P@. will cause the list to be
terminated.

If a period is used to terminate the printlevel setting, the
printlevel will be returned to its previous setting after this
printout. If an exclamation point is used, the printlevel is not
restored, i.e. the change is permanent (until it is changed again).

Note: printlevel only affects teletype output. Output to all
' other files acts as though level is infinite.

* As soon as control-P is typed, LISP clears and saves the input
buffer, clears the output buffer, rings the bell indicating it
has seen the control-P, and then waits for input which is ter-
minated by any non-number. The input “uffer is then restored

and the program continues. If the input was terminated by other
than a period or an exclamation point, it is ignored and nrinting
will continue, except that characters cleared from the outnut
buffer will have been lost.

** Another way of "turning off"” output is to tvpe control-0,
which simply clears the output buffer, thereby effectivelv
skipping the next (up to) 64 characters.

14.14

N

Addressable Files

For most applications, files are read starting at their beginning
and proceeding sequentially, i.e. the next character read is the
one immediately following the last character read. Similarly,

files are written sequentially. A program need not be aware of

the fact that there is a file pointer associated with each file
that points to the location where the next character is to be read
from or written to, and that this file pointer is automatically
advanced after each input or output operation. This section des-
cribes a function which can be used to reposition the file pointer,
thereby allowing a program to treat a file as a large block of
auxiliary storage which can be accessed randomly.* For example,

one application might involve writing an expression at the beginning
of the file, and then reading an expression from a specified point
in its middle.**

A file used in this fashion is much 1like an array in that it has
a certain number of addressable locations that characters can be
put into or taken from. However, unlike arrays, files can be
enlarged. For example, if the file pointer is positioned at the
end of a file open for output, and anything is written, the file
"grows." It is also possible to position the file pointer beyond
the end of file and then to write.*** 1In this case, the file is

enlarged, and a "hole" is created, which can later be written

*Random access means that any location is as duickly accessible
as any other. For example, an array is randomly accessible, but
a list is not, since in order to get to the nth element you have
to sequence through the first n-1l.

**This particular example requires the file be open for foth input
and output. This can be achieved via the function iofilec described
below. However, random file input or output can be performed on
files that have been opened in the usual way by infile or outfile.

***]f the program attempts to read beyond the end of file, an error
occurs.

14.15

into. Note that this enlargement only takes place at the end

of a file; it is not possible to make more room in the middle of
a file. 1In other words, if expression A begins at position 1000,
and expression B at 1100, and the program attempts to overwrite
A with expression C, which is 200 characters long, part of B will
be clobbered.

iofile[file] Opens file for both input and output.
Value is file. Does not change
either primary input or primary
output. If no version number is
given, default is same as for infile,
i.e. highest version number.

sfptr[file;address] Sets file pointer for file to
address.* Value is o0ld setting.
address=~1 corresponds to the end
of file. sfptr[file] i.e.
address=NIL, returns current value of

file pointer without changing it.

filepos([x;file;start;end;skip;tail] Searches file for x a la
strpos. (p. 10.7) Search begins

at start or current position of file

pointer, and goes to end or end of
file. Value is address of start

of match, or NIL if not found.

skip can be used to specifv a
;g;;écter which matches any character
in the file. If tail is T, value if
successful is the position of the
first character after the sequence

of characters corresponding to x, not
the starting position of the sequence.

* TENEX uses bhvte addressing: the address of a character (bvte)
is the number of characters (hbvtes) that nrecede it in the file,
i.e., # is the address of the beginning of the file. Yowever,
the user should he careful ahout computing tie svace needed for
an expression, since end-of--line is represented as two characters
in a file, but nchars only counts it as one.

14.1¢

T
v i
\

Input/Output Control Functions

clearbuf[file;flg] Clears the input buffer for file.
If file is T and flg is T, contents

of LISP's line buffer and the system
buffer are saved (internally).

#hen either control-D,

control-F, control-H, control-P, or
control-S is typed, LISP automatically
does a clearbuf[T;T]. (For control-P
and control-S, LISP restores the
buffer after the interaction. See

Appendix 3).

linbuf[flg] if flg=T, value is LISP's line buffer
(as a string) that was saved at last
clearbuf [T;T]. If flg=NIL, clears this
internal buffer.

sysbuf[flg] a la linbuf.

The internal buffers associated wit i & 7
ith linbuf and svshuf are not

changed by a clearbuf[T;T] if both LISP's line buffer and the
system buffer are empty.

bklinbuf [x] X is a string. bklinbuf sets LISP's

line buffer to X. If greater than

160 characters, first 160 taken.

bksysbpf[x] X is a string. bksysbuf sets system
buffer to x. If greater than 63
characters, first 63 are taken. The
effect is the same as though the user
tvped x.

Note that bklinbuf, kksvshuf, linbuf, and sysbhuf provide a way of

'undoing' a clearbuf. Thus if the user wants to “peek"” at various
characters in the buffer, he could perform clearhuf [7:7], examine

the bhuffers via linbuf and syshuf, and then put them back.

14,17

radix(n] Resets output radix*to |n| with sign
indicator the sign of n. For example,
-9 will print as shown with the

following radices

radix printing
10 -9
-10 68719476727
i.e. (23%-9)
8 -11Q
-8 777777777767Q

Value of radix is last setting.
radix[] gives current setting without

changing it. 1Initial setting is 10.

linelength(n] Sets the leng'h of the print line !:)
for all files. Valuc is the former
setting of the line length. Whenever
printing an atom would go beyond the
length of the line, a carriage return

is automatically inserted first.

linelength[] gives current setting.

Initial setting is 72,

position([file] Gives the column number the next
character will be read from or printed
to, e.g. after a carriage return, '
position=@. Note that position[file]
is not the same as sfptr([file] which
gives the position in the file, not

on the line.

R J

¥ Cnryentl +*ere is no innat radix.

14.18

5

N

Control[] (Normal State)

In LISP's normal state, characters typed on the teletype (this
section does not apply in any way to input from a file) are
transferred to a line-bhuffer. Characters are transmitted from
the line buffer to whatever input function initiated the

carriage return is typed. ©Until this time, the user can delete
characters one at a time from the input buffer hv tveing
control-A. The characters are echoed preceded hy a \. Or, the
user can delete the entire line bhuffer hack to the last carriage
return by typing control-(, in which case LISP echoes ##. (If

no characters are in the buffer and either control-z or control-o

is typed, LISP echoes #¥.)

Note that this line editing is not performed by read or ratom

but by LISP, i.e. it does not matter (nor is it necessarily
known) which function will ultimately process the characters,
only that they are still in the LISP input buffer. Note also
that it is the function that is currently requesting input that
determines whether parentheses counting is observed, e.g. if
the user executes (PROGN (RATOM) (READ)) and types in A (B C D)
he will have to type in the carriage return following the right
parenthesis bhefore any action is taken, whereas if he types
(PROGN (READ) (READ)) he would not. However, once a carriage
return has been typed, the entire line is 'available' even if

not all of it is processed by the function initiating the request

* peekc is an exception, it returns the character immediatelv.

*x rs mentioned earlier, for calls from gpgg or ureac, the charac-
ters are also transmitted whenever the parentheses count reaches
0. 1In this case, if the second argument to read or uread is NIL,

LISI also outputs a carriage-return line-feed.

14.19

for input, i.e. if any characters are 'left over' they will be \:>
returned immediately on the next request for input. For example,

(PROGN (RATOM) (READC)) followed by A B carriage return will

perform both operations.

Control[T]

The function control is available to defeat this line buffering.
After control([T], characters are returned to the calling function
without line-buffering as described below. The function that

initiates the request for input determines how the line is treated:

1. read/uread

if the expression being typed is a list, the effect is the same
as though control were NIL, i.e. line buffering until carriage

return or matching parentheses. If the expression being typed

U

is not a list, it is returned as soon as a break or separator
character is encountered,*e.g. (READ) followed by ABC space will
immediately return ABC. Control-A and control-Q editing are
available on those characters still in the buffer. Thus, if a
program is performing several reads under control[T] and the

user types NOW IS THE TIME followed by control-Q’he will delete
only TIME since the rest of the line has already been transmitted

to read and processed.

* An exception to the above occurs when the break or separator charac-
ter is a (,', or [,since returning at this point would leave the line
buffer in a "funny" state. Thus if control is T and (READ) is fol-

lowed by 'ABC(', the ABC will not be read until a carriage return

or matching parentheses is encountered. In this case the user -
could control-Q the entire line, since all of the characters are ;)
still in the buffer.

14.20

——
P .
3

pe ‘L\‘

2. ratom

characters are returned as soon as a break or separator character
is encountered. Before then, control-A and control-Q may be used
as with read, e.g. (RATOM) followed by ABCcontrol-Aspace will
return AB. (RATOil) followed by (control-A will return (and

type ## indicating that control-A was attempted with nothing in
the buffer, since the (is a break character and would therefore
already have been read.

3. readc/peekc
the character is returned immediatelv; no line editing 1is
possible. In particular, (RFADC) followed by control-7 will

read the control-2, (RFADC) followed by % will read the ©.

control [u] u=T eliminates LISP's normal line-
buffering.
u=NIL restores line buffering (normal).
u=0 eliminates echo of character being
deleted by control-A.
u=1 restores echo (normal).

14,21

Special Functions

sysout[file]

Saves the user's private memory on
file. Also saves the stacks,

so that if a program performs a
sysout, the subsequent sysin will

continue from that point, e.q.

(PROGN (SYSOUT (QUOTE FOO))
(PRINT (QUOTE HELLO)))

will cause HELLO to be printed after
(SYSIN (QUOTE FOO)) The value of

sysout is file (full name). A value

of NIL indicates the sysout was

unsuccessful, i.e., either disk or

computer error, or user's directory

was full.

Sysout does not save the state of any open files.

Whenever the LISP system is reassembled and/or reloaded, old
sysout files are not compatible.

sysin[file]

~

restores the state of LISP from a
sysout file. Value is T. 1If sysin
returns NIL, there was a problem in
reading the file. If the file was
not compatible (see sysout above),
generates an error.

Since sysin continues immediately where sysout left off, the only

way for a program to determine whether it i1s just coming back from

a sysin or from a sysout is to test the value of sysout, e.g.

(COND ((EQ (SYSOUT (QUOTE FOO)) T) (PRINT (QUOTE HELLO)))) will
cause HELLO to le printed following the sysin but not when the

sysout was performed.

14,22

J

Symbolic File Input

load[file;dfnflg;printflg]

readfile(file]

Reads successive S-expressions from
file and evaluatés each as it is
read, until it reads either NIL, or
the single atom STOP. Value is

file (full name).

If printflg=T, load prints the value
of each S-expression; otherwise it
does not. dfnflg=NIL or T affects
the operation of gggiggg‘expressions
as described on p. 8.7. However, if
iL;;Zad, the function definitions are
stored on the property lists under
the property EXPR.

Reads successive S-expressions from
file using read until the sinqgle atom
STOP is read, or an end of file en-
countered. Value is a list of these

S-expressions.

14,23

Symbolic File Output

writefile[x;file;dateflqg]

pPp [’x}

¥rites successive S—-expressions from
x onto file. If x is atomic, its
value is used. If file is not open,

it is opened. If the first expres-
sion on x is the type produced by
printdate, or if dateflg is T, the
current date is written. If file

is a list, car([file] is used and the
file is left opened. Otherwise, when
x is finished, a STOP is printed on

file and it is closed. Value is file.

nlambda, nospread function that per-

forms output[T] and then calls

nrettyprint:

PP FOO is equivalent to PRETTYPRINT((FOO)ii)
PP (FOO FIE) or (PP FOO FIE) is equiva- |
lent to PRETTYPRINT ((FOO FIE))

Primarv outpnut file if restored after

printina.

K

14.24

TN

prettyprint[x]* X is a list of functions (if atomic,
its value is used). The definitions
of the functions are printed in a

pretty format on the primary output file.

- Example:

(FACTORIAL
[LLAMBDAL (N)
(COND
((ZEROP N)
1)
(T (ITIMES N (FACTORIAL (SUB1 NJ])

Note: prettyprint will operate correctly on functions that are

broken, broken-in, advised, or have been compiled with their

definitions saved on their property lists - it prints the
original, pristine definition, but does not change the cur-
rent state of the function.

Comment Feature

A facility for annotating LISP functions is provided in prettyprint.

Any S-expression beginning with * is interpreted as a comment and
printed in the right margin. Example:

(FACTOFRIAL

TLAMBNL (N) (* COMPUTES N!)
(COND
((ZEROP N) (* Pt=1)
1)
(7 (* RECURSIVE DEFINITION:
NI=N#N-11)

{ITIMES ¥ (PACTORIEZL (SUB1 NJ)

*prettyprint has a second argument that is T when called from .
prettydef. In this case, whenever prettyprint starts a new functicr,

it prints (on the teletype) the name of that function if mara +han 20
seconds (real time) have elapsed since the last time it printed the

name of a function.

14.25

These comments actually form a part of the function definition. |
Accordingly, * is defined as an NLAMBDA NOSPREAD function that

returns its argument, i.e. it is equivalent to quote. When run-

ning an interpreted function, * is entered the same as any other

LISP function. Therefore, comments should only be placed where

they will not harm the computation i.e. where a quoted expression
could be placed. For example, writing

(ITIMES N (FACTORIAL (SUBl N)) (* RECURSIVE DEFINITION)) in the

above function would cause an error when ITIMES attempted to
multiply N, N-1!, and RECURSIVE.

For compilation purposes, * is defined as a macro which compiles

into no instructions. Thus, if you compile a function with com-

ments, and load the compiled definition into another system, the
extra atom and list structures storage required by the comments
will be eliminated. This is the way the comment feature is in-

tended to be used. For more options, see end of this section. ;D

Comments are designed mainly for docurenting Zistings. Thus

when prettyprinting to the teletype, comments are supvressed and
printed as the atom **COMMENT**,

14.26

prettydef

prettvdef [prettyfns;prettvfile;nrettycoms] Used to make symbolic
files that are suitable for loading
which contain function definitions,
variahle settings, property lists,
et al, in a prettvprint format.

The arguments are interpreted as follows:

prettyfns Is a list of function names. The

(first argument) functions on the list are prettyprinted
surrounded by a (DEFINEQ ...) so that
they can be loaded with load. If

prettyfns is atomic, its top level
value is used as the list of function
names, and an rpaqq* will also be
written which will set that atom to
the list of functions when the file is
loaded. A print expression will also
be written which informs the user of
the named atom or list of functions
when the file is subsequently loaded.

prettyfile is the name of the file on which the
(second argument) output is to be written. The follow-
ing options exist:
prettyfile=NIL

The primary output file is

used.

prettyfile atomic
The file is opened if

not already open, and becomes
the primarv output file.
File is closed at end of

prettydef and primary out-
put file restored.

* rpaga is like setqa excepmt it sets the top level value. Its name

comes from rplaca quote quote, since it is an MLAMPDA version of
rplaca with both arquments considered as quoted.

14.27

prettycoms
(third argument)

prettyfile a list

Car of the list is assumed
to be the file name and is

opened if not already open.
The file is left open at

end of prettydef.

Is a list of commands interpreted as
described below. If prettycoms is

atomic, its top level value is used and
an rpaqq is written which will set that
atom to the list of commands when the
file is loaded. A'Erint is written which
informs the user of the named atom or

list of commands when the file is subse-

quently loaded, exactly as with ;;)
prettyfns.

These commands are used to save on the output file top level bind-

ings of variables, property lists of atoms, miscellaneous LISP

forms to be evaluated upon loading, arrays, and advised functions.

It also provides for evaluation of forms at output time.

The interpretation of each command in the command list is as

follows:

1. if atomic, an rpagq is written which will restore the top level

value of this atom wien the file is loaded.

2. (PROP propname atom

«es atom)
n

an appropriate deflist will be written which will restore the

value of propname for each atomi when the file is loaded. If

14.28

propname=ALL, the values of all user properties (on the
property list of each atom,) are saved.* If propname is a
list, deflist's will be written for each property on that list.

3. (ARRAY atom1 coe atomn), each atom following ARRAY should have
an array as its value. An appropriate expression will be
written which will set the atom to an array of exactly the

same size, type, and contents upon loading.

4, (P ...), each S-expression following P will be printed on the

output file, and consequently evaluated when the file is loaded.

5. (E ...), each form following E will be evaluated at output time,

i.e., when prettvdef reaches this command.
retiyaer

6. (FNS fn; ...fnm),, a defineq is written with the definitions
of fnl .o fnm exactly as though (fn1 coe fnm) where the
first argument to prettydef, e.g. suppose, the user wanted to
set some variables or perform some computations in a file
before defining functions, he would then write the definitions

using the FNS command instead of the first argument to

prettydef.

7. (VARS var; «.. Varn)' for each var,, an expression will be
written which will set its top level value when the - file is

loaded. 1If var, is atomic,vyar,