
Pr9f. Dr. H. stoysn
Universltat ~rlangon·Nornborg
Instltut fOr Mathemetische Maschlnen
und Qatanverarbeltung (Informatlk Vlll)

Am WelcMelgerten 9
91058 Erlangen

PRELJMINARY GUIDE TO

THE LISP EDITOR

P. Deutsch

University of California, Berkeley

Document No. W-21

Issued April 18, 1967

Contract No. SD-185

Office of Secretary of Defense

Advanced Reserach Projects Agency

Washington 25, D. C.

W-2l
April 18, 1967

An On-Line LISP Editor

I. Motivation

LISP 1.5 (and local variants thereof) is being used increasingly

as an interactive language. Adaptations of the original LISP language

are available to users at teletype consoles in the Q-32, PDP-l (dedicated

system), and SDS 940 time-sharing systems [1,2,3]. In the course of composing

and running LISP programs in this kind of environment, certain needs arise

naturally for utility functions within the LISP system that are not necessary .

within batch processing systems such as the original LISP 1.5 for the IBM

7090 [4].

The principal use of interaction in LISP, as in most other languages

originally designed for operation on batch process machines, is to greatly

reduce the time required for program debugging. Thus two new classes of

software services are required: debugging aids, and tools for rapid modifica-

tion of already existing LISP programs within the LISP system. Packages of

the former kind exist in all three systems mentioned above and will not be

discussed further here (they are originally related to the TRACE facility of

7090 LISP). However, little has been written about editing facilities within

on-line LISP systems.

The editor described here is implemented within the PDP-l and SDS 940

time-sharing LISP sytems, but can be used with minor changes within any

LISP system which includes the capabilities of LISP 1.5 It was begun by the

author in 1965 and later extended by Bobrow and Teitelman at BBN. The object

has not been to produce an especially elegant editor (although the command

language is simple and the implementation fairly straightforward). In fact,

this editor is considered in the nature of a stopgap until a much more

W-2l
-2- April 18, 1967

elegant editor based on FLIP [5], a very general format-oriented language

embedded in LISP, has been completed. However, even the present crude

capabilities can cut the time required to make changes in LISP functions

dramatically compared to the time required to type the function in again

or even perform the emendation with SUBST.

II . Editor language structure

Let us take a concrete example of a list (not necessarily a function

definition) to be edited. Suppose we are editing the following incorrect

definition of the APPEND function:

(LAMBDA (X) Y (COND «NUL X) Z) (~ (CONS (CAR)

(APPEND (CDR X Y)))))).

At any given moment, the editor's attention is confined to a single list

(generally a subcomponent of the original list being edited), which it will

print vrhen given the connnand P. To avoid printing of confusing detail, sublists

of sUblists will be printed simply as &. Thus:

*p

(LAMBDA (X) Y (COND & &)).

Only the list on which attention is currently focused may be changed.

Commands thus fall naturally into four classes: moving around the list

structure; making changes in the current list; printing. parts of the list

being edited; and entering and leaving the editor.

Many commands use the convention that an integer designates a sublist

of the current lists. For example, if an integer alone is typed, attention

is focused on the designated sublist of the current list.

W-2l
-3- April 18, 1967

Thus:

*p

(x)

The converse command is the number ¢, which causes the current list to

revert to its former state. For example, starting again with the list at the

beginning of the section:

*3 p

y

*¢ P

(LAMBDA (X) Y (COND & &)).

Note the use of several commands on a single line. This is possible in the

three time-shared systems mentioned earlier but it may not be in others.

In the remaining examples, unless mentioned specifically, it is assumed

that the state of the edit is that which existed at the end of the previous

example. As above, lines typed by the user are prefixed with an asterisk.

III. Attention connnands

The two fundamental commands for moving around the structure have already

been mentioned: a positive integer ~, to examine the ~th sublist, and 0, to

revert to the superlist. If ~ is a positive integer, then -n examines the

~th sublist of the current list starting from the end and counting backwards,

i.e. -1 examines the last sublist of the current list.

A more drastic connnand is t, which clears the editor's memory of descent

through the structure and reestablishes the top level of the entire list

W-21
-4- April 18, 1967

structure being edited as current. Thus:

*4 2 It p

(LAMBDA (X) Y (COND & &)).

A command similar to .!! is (NTH.!!) which caused the list starting with the

nth sublist of the current list to become current. Thus:

*(NTH 3)

*p

(Y (COND & &)).

*¢ P

(LAMBDA (X) Y (COND & &)).

The command (F ~), where ~ is any S-expression, searches for an instance

of e in the current list, and then acts like NTH, so that-for example:

*(F Y)

*p

(y (C OND & &)).

A more thorough (and time-consuming) search is provided by (F ~ T)

which searches through the entire structure. Thus:

* t (F Z T)

*p

(Z)

*¢ p

«NUL X) Z)

*¢ p

(COND (& Z) (T &))

*¢ P

(LAMBDA (X) Y (COND & &)).

W-21
-5- April 18, 1967

The argument ~ or the F commands need not be a literal S-expression.

The symbol & will match any element of a list; the symbol -- as the last element

"of a list to be searched for will match any list. Thus:

* t (F (NUL &) T)

*p

(NUL X)

* t (F (CDR --) T)

*p

(CDR X Y)

* t (F (CDR &) T)

?

The question mark which followed the last command is the editor's all-

purpose error comment: it simply means something ~vas wrong with the last

command. The commands are simple enough that it is rarely difficult to

ascertain the nature o£ the error. A problem may arise if several

commands were stacked on a single line, since no indication is given of which

one caused the error: in this case"the state of the edit can always be dis-

covered by using P.

One more facility is available for changing the attention of the editor.

At any stage in the edit, a mark can be made and later returned to. The

commands are MARK, which marks the current state for future reference; ~ ,

vThich returns to the last mark vTithout destroying it; and ~ , which returns

to the last mark and forgets it. For example:

* t 4 2 P

«NUL X) z)

W-21
-6- '.1?ril 18,. 1967

*MARK t (F CONS· T)

*p

(CONS (CAR) (APPEND &))

* t P

«NUL X) Z)

* ~ P

«NUL X) z)

*~P

?

This last example demonstrates another facet of the error .recovery

mechanism: to avoid further confusion when an error occurs, all commands.

on the line beyond the one vThich caused the error are forgotten.

IV. Modification commands

Just as most general text editors contain INSERT, REPLACE, and APPEND

commands, the LISP editor provides fac~lities for these three basic operations.

To insert the S-expressions~l ... ~ before sublist ~ of the current list, one

simply gives the command (-n el •.• e), thus:
- - -nl

* l' (F CAR T)

*.P

(CAR)

*(-1 CRR)

P

(CRR CAR).

To replace the ~th sublist with ~l ••. ~' one gives the command (~~l ••• ~)'

for example:

W-21
-1- April 18, 1967

* t (F NUL T)

*p

(NUL X)

*(1 NULL IS)

*p

(NULL IS X).

And to append at the end of the current list, one writes (N ~1 ..• ~)' thus:

*(N THIS LIST)

*p

(NULL" IS X THIS LIST).

Deletions may be accomplished by using the replace operation with no ne~

S-expressions specified: to restore the list we have just created to the

state in which 'YTe ,presumably want it, we can say:

*p

(NULL X).

Deletions should generally be made from back to front, since otherwise the

indices of later sublists will change as earlier ones are deleted, e.g. the

above sequence of commands given in front to back order would have been

W-21
-8- April 18, 1967

A more rarely useful, but occasionally convenient, facility is provided

by (I .!! ~), which is equivalent to (.!! ~l) where el =eva1[e]. For example,

if the current value of J is (A Be), theri we have the following result:

* t 4 2 P

«NUL X) z)

*(I 1 J)

*p

«A B C) Z).

v . Structure changing commands

The commands presented in the last section do not allow convenient

alteration of the list structure itself, as opposed to components thereof.

Consider, for exareple, the list (A B (C DE) F G). We can remove the

parenthesis around (C D E), which is the third sublist, by (LO 3) (this stands

for take Left paren Out). This produces the list (A BCD E F G). Conversely,

if we want to take the partial list beginning at B and subordinate it one level,

making (A (B (c D E) F G», we can say (LI 2), i.e. put a Left parenthesis in

before sublist 2 (and a matching right parenthesis-at the end of the list).

Two other operations of this sort are also possible. If we wanted to

bring only the D and E up to the level of the A B F G, and leave (C) as a sublis~

we can use (RI 1 3), namely move the Right paren on the end of " sub list 3 In

to after sublist 1 (of sublist 3). This vTill produce (A B e.C) D E F G).

A related operation is (RO 3), which means move the Right parenthesis of

sublist 3 Out to the end of the list, producing (A B (C D E F G». Finally, .
if it is desired to move a right parenthesis only partway out, for example

W-2l
-9- April 18, 1967

to produce (A B (C D E F) G), this CaJ.'l be accomplished by (RO 3) f'ollowed by

(RI 4 3).

VI. Printing connnands

We have already encountered the command P, which prints the current

list showing only one level of'nesting. To print a selected sublist in the

same way without changing the state of' the edit, (p n) is used: for example,

* t P

(LAMBDA (X) Y (COND & &»

*(p 2).

(X).

Furthermore, one m~ examine the ~th sublist (or, if ~=O, the current list)

to ~ levels of nesting by using (p ~ ~). The convention is that ~=3 yields

the usual format:· several illustrations are given below.

*(p ¢ 1)

&

*(p ¢ 2)

(LAMBDA & Y &)

*(p ¢ 3)

(LAMBDA (X) Y (COND & &»

*(p 4 2)

(COND & &)

*(p 4 :4)

(COND «NUL X) z) (T (CONS & &»).

Another command which is available for examining the environment during

editing is (E ~), which simply prints the value of e without disturbing the

W-21
-10- April 18, 1967

state of the edit. This is "done under ERRORSET, so that one can actually

try to run the function which one is editing. It should be mentioned that

changes are made as soon as they are typed in, so that the state of the

definition of a function (which is what is usually being edited) is always

exactly what one expects.

VII. Using the editor

As presently interfaced to the outside world, the editor consists of

a basic function for editing S-expressions, EDITE, and three special

functions for editing values, definitions, and property lists, respectively

EDITV', EDITF, and EDITP. Thus,

*EDITF(APPEND)

EDIT

would be used to begin the edit which has been used as the example. When

editing is complete, NIL will cause EDITE to exit with the edited list as

value. The three interface functions a11 return as value the atom being

edited. A complete example, starting with the erroneous definition given at

the beginning of section 2 and ending with the correct definition of APPEND,

is given below.

*EDITF(APPEND)

EDIT

*(p ¢ l¢¢)
(LAMBDA (X) Y (COND «NUL X) Z)(T (CONS (CAR) (APPEND (CDR X Y»»»

*(3)

*(2 (X Y»

*p

(LAMBDA (X Y) (COND & :.,~»

*3 2 P

«NUL X) z)

*1 (1 NULL)

*¢ (2 Y)

*p

«NULL X) Y)

* t (F CAR T)

*(N X)

* t (F CONS T)

*3 (RI 2 2)

*p

(APPEND (CDR X) Y)

* t (p ¢ l¢¢)

-11-

(LAMBDA (X Y) (COND «NULL X) Y) (T (CONS (CAR X) (APPEND

(CDR X) Y»»)

*NIL

APPEND.

W···2l

April 18, 1961

In all fairness, it should be admitted that in this particular instance it

probably would have been faster to type the fUnction in again. However,

LISP functions are typically three times as big as APPEND and have only one

or two errors. It has been found, after over a year of use .at BBN and Berkeley,

that the editor just described does materially decrease the amount of time

required to produce working LISP programs.

W-2l
-12- April 18, 1967

VII. Summary

A siniple LISP editor has been found to be of substantial value in an

interactive environment. It does not require more than an hour's training to

learn to use enough of the editor for its use to be profitable. With the

aid of the listings in the appendix to this paper, a competent LISP

programmer should be able to adapt it for any LISP 1.5-based LISP system in

less than a week.

It is the. feeling of the author that there is a point of investment in

support software '(such as editors and debuggers) beyond which further work

within the same executive system (LISP 1.5 in this case) does not pay

sufficiently to justify the expenditure of effort. The FLIP editor wil~ be

worthwhile because it will have required relatively little effort to implement

vTithin the FLIP executive (FLIP itself is a gigantic piece of YTork). Large

amounts of further work on the simple editor described here do not seem to

be justified.

W-21
April 18, 1967

References

1. Weissman, Clark, ~ Self-Tutor for ~ LISP ~ System Development

Corporation technical memorandum TM-2337/0l0/00 (June 1965).

2. Bobrow, Daniel, et al., The.BBN-LISP System.

3. Deutsch, L. Peter, Reference Manual 930 LISP, Project GENIE (ARPA)

document R-9, University of California at Berkeley (in preparation).

4. McCarthy, John, et al., LISP 1.5 Programmer's Manual. ,

	Deutsch-W-210001_a
	Deutsch-W-210002_a
	Deutsch-W-210003_a
	Deutsch-W-210004_a
	Deutsch-W-210005_a
	Deutsch-W-210006_a
	Deutsch-W-210007_a
	Deutsch-W-210008_a
	Deutsch-W-210009_a
	Deutsch-W-210010_a
	Deutsch-W-210011_a
	Deutsch-W-210012_a
	Deutsch-W-210013_a
	Deutsch-W-210014_a

