
CERN COMPUTER CENTRE

PROGRAM LIBRARY

LONG WRITE-UP

~.
January 1978

Language: IBM only

LISP'

,'. The version of LISP currer-tly offered at CERN is the Stanford LISp/360

'with the Utah modifications of 1975. It is offered only on the IBM

system. The present long write-up is the complete documentation,

.and consists of:

1. The Standford LISP/360 manual (pages i-vi and 1-58) and

2. The Utah appendix (pages Al-A16) which can be considered
as an update to the Stanford manual

LISP can be accessed directly at CERN as in the following examule: . ..
Ii JOB

liLISP EXEC
IlsTEPLIB DD
IILISPOUT DD
IILISPIN DD

LISP program

END;

1*
1/

PGM=LISP370
DSN=CR.PUB.LISPLOAD,DISP=8HR
SYSOUT=*

*

-1-

pmcjones
Sticky Note
Missing pages 32 and 57 of part III (the Stanford LISP/360 Reference Manual).

, /;,.

o

,

•

•
..

•

UTA~ COMPUTATIONAL PHYSICS GROUP
OPERATING NOTE NO. 20

Appendix -- Utah Modifications

January 1975

Stanford Lisp/3S9 Reference Manual, Fourth Edition

Al.

A2.

A3.

A4 •

AS.

A6.

A7.

AB •

AS.

by

Kevin R. Kay
Comput~tional Physics Group

University of Utah

Table of Contents, Utah Appendix

Comments on the Stanford Manual

LISP! Patches for ASMG, 360/91, and 3701

Textual Re-arrangements in code.

Bignums -- Arbitrary Precision Arithmetic

Garbage Col lector, GC*, CONDENSE, SETSIZE

New ChecKpoint Faci lities

New Partitioned Data Set input

Other changes -- ERRORSET, etc.

Summary of new functions, errors, and diagnostics

WorK supported ih part by the National Science Foundation under Grant
No. GJ-3218l and by the Advanced Research Projects Agency of the Office
of the Department of Defense under Contract No~ OAHC15-73-C-0383.

A-l

APPENDIX -- UTAH MODIFICATIONS

A1. Comments on the Stanford Manual

The fol lowing chapter-and-verse notes are intended as (a) clarifica
tions of certain statements in the existing manual, or (b) brief hints
of changes made at Utah, but not as a complete list of such changes.

Section
---~--~

2.1

2.1.1

2.2

3.1

3.1

3.1
3.1

3.1

3.1
3.1

3.2

4.

5.

6.1

G.1.1

Page

4

7

9

15

19

21
22

23

23
24

25

27

28

29

29

(continued)

Comment

Bits 4 and 5 denote BIGPOS and BIGNEG numbers, as the
SIGNUM extensions to fixed-point representations;
see section A4. .

Generated numeric values are not put on the object
list, but read-in numbers are currently (and thus they
are searched for before INTERNing).

Initial stacK length now is 3K words; this can
be altered by CONDENSE and SETSIZE, section AS.

EXPT(n1,n2) -~ n1 may be a BIGNUM (section A4), but
n2 may not unless n1 - B, +1, -1, +l.B, or -l.B •

OVOFF/OVON routines deleted, since overflows now are
handled by the BIGNUM pacKage, and these routines can
confuse it.

READCH returns the atom SEOFS if end-of-fi Ie seen.
REMPROP now checks every cel I on the property list,

instead ~f just the 1st, 3rd, 5th, etc.
RPLACA/D only replace the address portion of the eel I

pointed at (the lower 24 bits of the word), and Kee~
the old high-byte with its flag bits. Thus they are
not quite analogous to CONS (which worKs on 32 bits),
and probably unsuitable for manipulating ful Icel Is, etc.

SPEAK (and UNCOUNT) use 2 CONS to return a value.
TRACE and UN TRACE have additional capabi I ities, to affect

function tracing and error tracebacKs, section A8.
New atom GC* has an APVAL initially NIL, but can be

reset by user to affect garbage collections; see
section AS.

Fixed-point numbers may be of any magnitude internally
and any input/output length externally; section A4.

An initial check is made for LISPOUT and LISPIN; if not
provided as 00 statementsj error messages are given
and the run is terminated .(return code = 12); if
provided, LISPOUT wi I I use the JCL's BLOCKSIZ.

'B=B' now worKs; multiple PARM specifications now worK;
RESTORE affects the PDS length as wei I as the initial

PARMs; see section AS.
AI I fi Ie-input related functions can now handle certain

partitioned d~ta sets. See section A7 for detal Is
and the extended denotation of the ddname argument.

JCL-suppl ied LRECL and BLKSIZE are now used if given;
if not and if OPEN's second argument = NIL, say, then
the SYSFILE defaults are suppl led.

A-2

o

o

•

•

•

•

APPENDIX -- UTAH MODIFICATIONS

Section Page

S.l.l

S.1.2

6.1.3

6.1.4

6.1.5

6.1. 7

6.2

7.1.3

7.3.2

7.3.2

38

38

38

30

31

31

32

35

41

41

(continued)

Comment

SYSFI LE is now blocked (8B, 16B0); it was (133,665).
The DCB-address property is now cal led OPENFILE, to

distinguish it from APVALs or chance NIL references.
The value of the DCB OPENFILE is now a simple ful Icel I,

obt~inable by CAR {GET {ddname, 'OPENFILE», with the
compl ication of being negative for PDS DCB's.

Partitioned data sets are not really closed, unless the
user so requests e~pl icitly; see section A7.

If ASA is used in conjunction with an OTLL, the ASA
should precede the OTLL.

OTLL(n) permits a maximum n of 129, but the user should
restrict It to <- LRECL, of 60urse. For compactness,
al I datasets wi I I print up to their respective OTLL;

LISPOUT is permitted, however, to start a new I ine if
an atom prints to within 28 spaces of the selected
OTLL. To turn off this feature, do OTLL«n».

Note also that LISPOUT's linelength includes the ASA
control-character and the 4-space indentation, such
that the user-writable length is at most n-5.

WRS(LISPOUT) has the effect of ASA(T) and OTLL(120).
WRS(any-other-dataset) sets ASA{NIL) and OTLL(LRECL-8).
RDS{NIL) is equivalent to RDS(LISPIN).
RDS(any-dataset) sets input I inelength to LRECL-B.
The checkpoint faci I ities have been significantly

e~tended, but there are sii I I hazards; see section AS
for an e~haustive/e~hausting discussion.

AI I checKpoint-related 1/0 functions automatically OPEN
the data set as a SYSFILE (if the user omits doing
so), and also automatically CLOSE it (unless it is
a member of a partitioned data set; see section A7).

R1S (POL) may be used freely, e~cept when interacting.
with the *MOVE and *REMOVE processes of the campi ler,
which set up R15 as the local routine's stack;

R7 (PDS) should never be changed, except indirectly
by means of one of the stack macros of 7.1.4 •

BPSMOVE and BPSZ now zero the old evacuated BPS area
to avoid thwarting the garbage col lector of its prey.

BPSMOVE(n} can give an error "BAD ARG OR TOO BIG n if n
is not an integer or would involve shifting BPS away
from the end-of-BPS {mustn't clobber FCS}. For the
latter or to get more BPS, CONDENSE might be useful
{see section AS.2}.

BPSMOVE wi I I normally return the relocation done as a
logical-number, signifying how far the BPS base was
shifted in #-of-bytes; this will be 0 mod 8, in order
to maintain double-word al ignment within BPS.

EXCISE(p) wi I I only function as EXCISE{T}. because the
campi ler has been re-arranged with LAP360 first.

A-3

· -

APPENDIX -- UTAH MODIFICATIONS

Section Page

7.3.2 42

7.3.3 42

8. 44

10.4 50

10.5.2 51

10 .. 5.3 54

-la. 5. 3 55

Comment

OVOFF/OVON routines deleted, since overflo~s no~ are
handled by the SIGNUM pacKage, and these routines can
confuse it.

In addition to interpreter-assist routines showing up
as "SAL 2. nn (0, R12) ", the fo I low i ng common rou tines
have been open-coded for less LAP space and greater
execution speed: APPEND1. ATOM, CONS~ FlAGP, GET,
NCONC, NUMBERP, TERPRI, and t~o extra: NCONS, XCONS.

The garbage col lector has a user-variable (section AS)
to affect early job termination if space exhausted,
and an alternate CLEANing function has been added.

The register dump now prints a fe~ extra ~ord-contents,
but the average user needn't pay attention to these.

The "OVER- OR UNDERFLOW" message should never occur,
in principle. when using the SIGNUM pacKage ••• i.e.,
the system's arithmetic routines mentioned in section
A4. User-written lAP code is not protected.

The traceback can be selectively turned off by doing
a prior UNTRACE(T); see section AS.4.

A new error has been added to OPEN, such that:
Dl-FILE CANNOT BE OPENED - DO STATEMENT MISSING •

Errors 05 and 06 no longer exist, since SYSFILEs
wi I I be automatically OPENed.

Error message 07 has been updated to reflect the new
capabi lities discussed in section AS, and now reads:

"07: WRONG CHKPT FILE, OR NOT ENOUGH ROOM" •
Each such fi Ie {created by CHKPOINT, BPSCHKPT, WBlK}
has a TYPE and a DATE in its first record (as wei I as
some relocation information); the date is the lISP1
source edition or version date, e.g." 120174", and
is included as a precaution against users RESTOREing
old fi les subsequent to lISP1 being patched and rebui It.

The possible reasons for "NOT ENOUGH ROOM" are:
RESTORE - the fi Ie's FCS+BPS is longer than the in

core FCS:end-of-BPS;
BPSRESTR- the fi Ie's BPS is longer than the in-core

BPS bot:Jndaries;
RBLK - the fi Ie's overlay length is longer than

the in-core unused-BPS remaining.
Error RS now should apply only to long atom names,

since numbers may be any length (core permitting).

A-4

o

o

•

•

APPENDIX -- UTAH MODIFICATIONS

A2. LISP1 Patches for different Assemblers and Computers:

1) Many of the extende~ definitions of SCR instructions have been used
in the source code to enhance legibi lity, and the MACROs for these
have been included in the file. These are needed for users doing
the assembly with ASMF and should be retained as isby such users.
For users doing the assembly with ASMG. these MACROs are redundant
and must be deleted ••• the fotlowing cards wi I I do the tricK:

.1 N IB

.1 R 1B284B 1B327B
"I"t

"I"t

"1"(

,"(

FOR ASMG ASSEMBLY, THE EXTENDED-DEFINITIONS
·OF SCR-INSTRUCTIONS HAVE BEEN DELETED.

2) The modification above wi I I suffice on most 36B computers. However,
those models with "imprecise" interrupts (in particular, the 368/91)
wi I I need the fol lowing additional insertions:

.1 N
• I I

• I I

2
212B52
ClI
BH
CLI
BH

212718
BNER

.. ;

6(1),X'BF'
TRAPSCAR
S(1),X'ea'
TRAPSOVF

8

IMPRECISE NON-OVERFLOW?
YES.

IMPRECISE OVERFLOW?
YES.

NO-OP; PIPELINE DRAIN FOR 191.

3} The modifications above for the 36B/91 are reputedly sufficient for
the 378 series; however, the fol lowing alteration to CONS may be
used (instead of the "pipeline drain" card) if an expl icit test is
needed rather than relying on the "specification exception ll trap:

.1 N 2

.1 D 212858

.1 R 212558
CONSINST C FREE, FOUR
"I R 21278a 212718

CONS

CONSOK
· I I
CONSAV

C
BNL
STM

. SAL
LM
ST

212768
OS

LOW COMPARISON HERE, TO SIGNAL NEED TO Ge.
FREE,FOUR
CONSOK
7,5,CONSAV
14,CONS8
7,S,CONSAV REG 6 EQU "FREE", OF COURSE.
A,CAR(FREE}

15F

A-5

APPENDIX -- UTAH MODIFICATIONS

A3. Textua'i and Programming re-arrangements in LIS?1

1) Nul Is (X'BB') have been removed from the source code. so the ECHO
and ECHOKRK macros have been amended to supply nul Is in atom names.
In addition, ECHO wi I I handle names written as h~xadecimal and al low
names of any length, fol lowing a design by Owen Saxton of SLAC.

2) The arrangement of the functions is slightly shuffled but
hopefully handier and more commented for new programmers who have
to read the code. The sections of the fi Ie have been renumbered.

3) In line with the modifications to the checKpoint functions, the
treatment of type '40' eel Is (APVALs, SUBRs, BPS, etc.) is now more
comprehensive; the internal BPRELOCfunctions have been accordingly
deleted or amended.

4) Users who patch LISP1 with extra atoms or initial ization code
probably wi I I need to Increase the STACKSIZ. The present method of
assigning core assumes no user routines are LKED above the LISPl
assembly module, eo terminal-interaction code should be first.

5) Assemblies doing LIST and XREF may need more tracKs al located for
SYSUT2, SYSUT3, SYSPRINT. The LISP! source currently taKes sa tracks.

6) The codes returned from the LISP! module upon termination now have
some significance, and indicate the fol lowing conditions:

a - normal termination (e.g. after EOF on LISPIN);
4 - termination after non-fatal error, because EXITERR(T);
8 - termination after fatal error (e.g. FCS exhausted);

12 - termination after serious error whi Ie initial izing LISP.

7) N.B. Although the garbage-col lector now checKs the PDS for unboxed

•

numbers (e. g. the resu I t of CAAR 3), it st i II assumes {for speecH that •
arbitrary unboxed numbers are never stored as part of FCS structures.
They are safe on the stacK and can usually be passed safely as computed
arguments to SUBRs or FSUBRs, but should not be bound to atoms or
appear on the ALIST, etc. Otherwise, the next GC wi I I either complain
CAR TAKEN OF FULLCELL or abort with a eca system error.

Usually, if LISP blows up wi th a BeB and if no interrup·t message or
register-contents are printed, a GC was in progress (prior interrupt)
which suddenly found a spurious or unboxed number {non-ful Icel 11 and
was led astray.

A-6

••

•

APPENDIX -- UTAH MODIFICATIONS

A4. BIGNUMs -- Arbitrary Precision Arithmetic

A4.1 Effects to user

Lisp functions accepting a fixed-point number previously were limited
to integers in the range -<2t31>: <2t31>-1. With the current SIGNUM
code, this restriction is void; an integer may be of any magnitude •••
I imited only by the number of cel Is in FCS (@ roughly 9 decimal digits
per ce I I) •
Hence the fol lowing functions accept arbitrary integers with impunity:

ADD1, SUB1, MINUS, PLUS, TIMES, DIFFERENCE, QUOTIENT,
REMAINDER, MAX, MIN, ZEROP, MINUSP, LESSP, GREATERP,
EVENP, FIXP; EQUAL, RNUMB/MKATOM, READ, PRINT.

The fal lowing and their ilk (and perhaps some compi ler functions)
are sti I I restricted to the old range (for speed):

LENGTH, COUNT, SPEAK.
The fol lowing are partially restricted or special:

FIX(n) a large floating-point number does not become
an imprecise SIGNUM, but returns 0 as before.

FLOAT(n) a SIGNUM larger in magnitude than 4.3E68 or so
wi II give the error "BFLT OVFL".

BIGP(n) gives T if n is internally represented as a
BIGNUM (see below); gives NIL if anything else,
including an integer < 2t31 in magnitude.

EXPT(nl,n2) -- n1 may be a BIGNUM, but

A4.2 Implementation

n2 may not, unless n1 ~ 0,+1,-1,+1.O,-1.O, else
you'll get an "EXPT- BIGNUM EXPONENT" error.

A new numeric atom-type is defined, using bits 4 and 5 to denote
positive and negative BIGNUMs: BIGPOS (X'C8') and BIGNEG <X'CC') types
respectively. The arithmetic routines, and others (mentioned above) as
appropriate, make software or hardware checks for atom-type or overflow
and perform necessary conversions and arithmetic operations for those
integers requiring more than 32 bits to express (roughly 2 bi I I ion in
magnitude). The actual code is derived from that written for Lisp 1.6
(Stanford A.I. Lab's Lisp for the POP-Ie), with the necessary changes
for a 32-bit machine, different overflow mechanism, etc., etc.
The principal routines are almost exactly 1:1 in content, with the
exception of the BIG:FLOAT conversion which uses a hexadecimal
representation. The code therefore has the virtues and fai I ings of the
Lisp 1.6 rendition, which appears to be model led after Col I ins' SAC
system. At any rate, the intermediate scratch cel Is are generally
returned to the FREE list to'reduce GC frequency, and the 3 special
cases of ·the divide routine are handled a la Knuth.

A-I

APPENDIX -- UTAH MODIFICATIONS

AS. Garbage col lector, GCl't, CLEAN, CONDENSE, SETSIZE

AS.l Changes to the garbage col lector

AS .1.1 The g I oba I var i ab I e "GC'ltll may be set by the user to force a
terminating error when FeS runs low, instead of going on and on
co I lee t i ng a few ce II s at a time before dy i ng with "STORAGE EXHAUSTED":
The variable's APVAL is initially NIL, which means run to exhaustion
as previously; if set to some integer, say SBB, then the system wi I I
abort (error GC2) if a future GC fai Is to reclaim that many eel Is.

AS.l.2 A new function has been added as a more powerful alternative
to doing RECLAIM(} and should only be invoked at the top-level because
it clears the ALIST and al lather internal holding areas to ensure that
everything collectable is GC'd. The function is CLEAN{} and causes ~
pass 1 of the garbage col lector (marKing cel Is in use) to first make
an extra checK on user-introduced atoms: if they aren't pointed to
by some FCS eel I and do not have a property-list either, then they wi I I
be GC'd. If they do have some property, they are retained (presumably
for future reference). This checK/purge gets rid of numbers,
intermediate atom names from the campi ler, etc.

AS.l.3' The FREE list has its CARs cleared when collected, with a subtle
indirect intent of reducing those ece or car-of-ful Icel I errors which
occurred during GCe or tracebacKs (see also section A3.7).

AS.2 New functions affecting PDS and FCS sizes

AS.2.1 SETSIZE(nl,n2) will try to set the PDS length to n1 words and
~he FCS area to n2 cel Is, if the space exists. AI I Lisp space not iM
use, including high BPS, wi II be taKen as needed; hence equivalents
of "FCSMOVE" and BPSMOVE are done, but SETSIZE cannot reduce the
actual size of FCS ••• to do that, use CONDENSE below. ~
In detai I, SETSIZE relocates the FCS and BPS core blocKs and their
inter-block pointers to atoms and SUBRs; then resets al I system
worK eel Is to.e, the ALIST to NIL, the PDS to its origin, and does a
RECLAIM; finally exits to the top-level EVALQT and reads a new doublet.

AS.2.2 CONDENSE(n1,n21 wi I I compact FCS cel Is down in core towards
the POS, with the FREE list becom i ng I i near in high FCS; then i t uses
SETSIZE(nl,n2} being able to reduce FCS (up to the number reclaimed)
if so desired.
In detai I, the compacting method involves: marKing al I eel Is in use,
moving high eel Is down to the lowest un~sed FeS areas or niches,
updating FCS and BPS pointers 10 the moved atoms and cel Is (error-prone),
and completing the GC to rebui Id the FREE list (above the active area).

N.B. Because the compacting affects the locations of atomheaders,
some caution is needed if CONDENSE's are done in proximity with
checKpointing functions; see section AG.S for detai Is.

A-8

APPENDIX -- UTAH MODIFICATIONS

AS. New ChecKpoint Facilities

AS.l Old I imitations superseded

AS.l.l Reading BPS files was- essentially restricted to those fi les
derivin~ immediate ancestry from the Lisp core which generated the
most recent RESTORE. That is, the sequence

BPSCHKPT(Xl) , CHKPOINT(X)-, RESTORE(X), BPSRESTR(Xl)
worked in a bare Lisp, but the sequence

RESTORE (CMPL), BPSCHKPT(Y), 8PSRESTR(Y)
would blow up without warning.

AS.l.2 A BPSCHKPT from an EXCISEd Lisp (compiler and LAP360 deleted)
could eaf~ly be BPSRESTR'd only into a similarly EXCISEd Lisp, because

~ of the old relocation methods.

•

AS.l.3 Likewise, without some knowledgeable tinkering by the user~
a BPSCHKPT from a Lisp-with-compi ler could not be BPSRESTR'd into an
EXCISEd Lisp.

AS.2 General comments about Utah faci lities

With the present Utah system, the limitations of AS.l have been removed
and new features have been added, mainly the functions WBLK ,and RBLK
for creating and restoring partial-BPS overlay fi les. My c~mments in
paragraphs AS.3-5 are directed mostly to system bui Iders trying to
conserve core, and the fol lowing should suffice for,most users:

AS.2.1 A RESTORE wi I I reset the PDS length to whatever it was when
the fi Ie was CHKPOINT'd. Thereafter the length can be changed by doing
SETSIZE (section AS) without adversely affecting future BPSRESTRs. If
a CONDENSE were used instead, the caution below applies •

AS.2.2 Restores may be done without regard for the particular
sequence of ancestry (in the sense of AS.l.l). The only remaining
need for caution is if a CONDENSE is used in proximity with a BPS
fi Ie function.

AS.2.3 Re 6.1.2 and .3, BPSRESTRs wi I I restore the BPS properly, but
not the pointers in FCS; a RBLK wi I I do the trick correctly.

AS.2.4 BPSRESTR (and RBLK) wi I I now accept a fi Ie created by CHKPOINT
as wei I as by their output counterparts, and wi I I restore just the BPS
related portions from the fi Ie. A trivial example would be:

RESTORE (CMPL), use CMPL, EXCISE(T), other, BPSRESTR{CMPL).
which would retain the FCS structures bui It up but reset BPS with just
the campi lar routines.

A-9

APPENDIX -- UTAH MODIFICATIONS

AS.3 CONDENSE caution

As noted in section AS, a CONDENSE involves relocating atomheaders
(and other FCS eel Is) and updating in-core FCS and BPS pointers to
them accordingly; however, BPS code in a previously-output BPSCHKPT
fi Ie cannot be so updated and, if now BPRRESTR'd, might erroneously
and fatally reference some FCS addres6 whose contents were moved.
Two solutions around this inconvenience are:

AG.3.1 If the user's BPS code references only system atoms and
functions (and no numbers explicitly), CONDENSE can probably be used
safely since anything referenced in FCS is compacted already.

AG. 3. 2 .One genera I so I ut ion is to do a II CONDENSE's in the ancestra I
system prior to involved CHKPOINT's, BPSCHKPT's, or RBLK's. That is ~
bui Id your system, shrinK it using CONDENSE to the minimal size anyone
might want (want as a user after a RESTORE), and do the appropriate
checkpoint function(s) immediately.

AS.4 New functions

In the Stanford and Utah systems, BPSCHKPT and BPSRESTR are used to
write and re-read entire contents of BPS. Two new functions have been
implemented to handle the bookKeeping for segmenting BPS into indi
vidual overlay areas. Logical blocKs of code {presumably containing
logical blocKs of functions} m~y be arbitrari Iy relocated in BPS,
regardless of intervening BPSMOVE's and SETSIZE's, as long as the
blocKs and their storage territories either overlap completely or not
at al I. If this condition is met and the CONDENSE caution is heeded,
the W/RBLK pair wi I I handle relocations. and maintenance of BPS-FCS
I inKages. In addition, RBLK "remembers" where a block was read in
previously; if the block or another of its overlay "fami Iy" is read
to the same origin subsequently, the function is quite fast; a future 0
relocation taKes a bit more time, once~only for each fami Iy.

WBLK{ddname at n) this function performs liKe BPSCHKPT, except
that a range is specified by the second and
third arguments for the amount of BPS to be
written:

at= name of the very first F/SUBR campi led in
the blocK. You may get a "NOT FOUND" error.

n = the address of the end of this blocK; e.g.,
the numeric equivalent of (CAR BPS) just
after the last function was campi led.
Or, n may • NIL, in which case the current
value of BPS is used; i.e., write from at to
the end of active BPS.

The value WBlK returns is the end-of-blocK
address used.

A-10

•

•

APPENDIX -- UTAH MODIFICATIONS

RBLK(ddname at n) -- this fUnction performs like~PSRESTR, except
that the second and third arguments' specify
what blocK is being read and where to store:

at- name of the F/SUBR routine ~hich heads the
blocK when restored. It may be "NOT FOUND"
if no common ancestry exists.

n - the BPS address of the origin of the blocK
when read into core and stored; e.g., the
address portion of GET(at F/SUBR) as a number.
Or, n may"= NIL, in which case the current
value of BPS is used as the origin.

The value RBLK returns is the first free BPS
location above the blocK read. BPS's APVAL
is unchanged even if RBLK'd above active BPS •

AS.4.l Note that WBLK blocks can be fil led in by the campi ler in any
sequence and at arbitrary (non-overlapping) ranges in BPS. A fami Iy
of overlaye, later to be RBLK'd to some common origin point, need not
be bul It from that exact origin in the ancester's BPS; each member can
have a different origin when bui It, if that is more convenient to the
user, but if the bui Iding-grounds overlap at al I, they must have the
same origin.

AS.4.2 Moreover, once one member of a fami Iy is created or RBLK'd
with the same origin as another member, it is not as free to relocate
about in BPS as previously. Instead, the longest member of the fami Iy
must move first (be RBLK'd first at the new origin). If you have
trouble or want to Know why, paragraph AS.S.4 may help.

AS.4.3 Examples of this last proviso:
a) The X family has two members, Xl and X2, which were bui It

in and WBLK'd from two separate areas of the ancestral BPS. In the
user's Lisp, both are RBLK'd to origin Y; if later they are to come
in at origin Z, the longer of the two members should be RBLK'd first
there.

b) The Y fami Iy has two members, Yl and Y2, which were bui It·
at the same ancestral origin (at separate times). When first RBLK'd
into another Lisp (or into the same Lisp at another origin), the
longer of the two blocks should be read in there first.

c) The Z fami Iy also has two members which were bui It at the
same ancestral origin (at separate times) but, after these were
WBLK'd, sti I I more functions ABC were campi led at the same origin. If
later a Z member is RBLK'd over these, al J is wei I except ABC are not
recoverable. If the Z's were RBLK'd to some new origin not
overlapping ABC~ you might suppose ABC could sti I I be used. They
cannot, however, because their FCS addresses were relocated as if
part of the Z fami Iy.

d) ·Simi larly, if Xl were RBLK'd at one origin and X2 at
another, both could be safely referenced by other user code; but if
Vl were RBLK'd at one origin and then Y2 at another, only Y2 could be
cal led safely because Yl's addresses were relocated. Yl would have
to be re-RBLK'd somewhere before trying to cal I it, and so on.

APPENDIX -- UTAH MODIFICATIONS

e) You might asK now "In (d). if the longest of the Y'smust
be RBlK'd first at any new location, how could Yl be read here one
time and Y2 elsewhere the second? Shouldn't Yl be read there first,
and then Y2 on top of it?" This is true except if you use the
fol lowing trick: determine ahead of time (or over-estimate) the
longest member's length, add this to the effective origin of each
member, and set your third argument to their WBlK's accordingly.
Then. each member of the family wil I be the same length as far as
RBLK is concerned. and any can be read at an arbitrary new origin.

f) Notel If you are trying to shoehorn overlays into lower
BPS areas below other code, leave a small slop-over area above the
blocK because the fi les are read in Sa-byte chunKs.

AS.S Implementation detai Is

AS.S.l Perhaps a few detarls on compiled~code linKages wi I I bear
mentioning here for completeness, since these are not discussed in the
main manual. The initial linKs generated by the campi ler to cal led
functions really might be cal led "slowlinKs", as they search the
property-list of the function named for a F/EXPR or F/SUBR attribute,
and dispatch accordingly to the APPLY interpreter or to the BPS or
system-routine code. I"f a SUBR or FSUBR is linKed to, the address of
the actual function code (relative to NIL) is inserted in the slowl inK,
maKing it a "fasteal I".

Future use of this linKage no longer checKs the atom and its
property-I ist but just jumps directly between subroutines with minor
bookKeeping (adding the current NIL, etc.). This is faster, with less
ove,"'head, but a fastcell linKage can no longer be traced nor will it
re9pond to lambda re-deflnltions of the particular cal led function.
In the Stanford version of 3SB/Lisp, no means was provided to uncal 1
these I inKages bacK to slowlinKs. You can now use TRACE, however, to

•

perform desired uncalls (section AS.3); an UNTRACE can be done •
whenever you're ready to let LISP maKe it into a fastcal I again.

Be careful if you redefine system routines and campi Ie them,
since the lAP3S8 generator rei inKs any older code-definitions to the
new routines in BPS. Usually this is safe, but occasionally the code
for several system routines is intertwined such that the RELINK patch
could wipe out part of another routine. In such a case, you're better
off not trying to redefine although LAP3Sa can be tricKed.

AS.S.2 With that by l-k3y of history, you wi II see that fastcalls in a
WBlK would not worK when RBlK'd into a different lisp (or a BPSMOVEd
lisp). Therefore WBlK uncal Is any fastcalls within the blocK it's
worKing on (i.e., any cal Is outward from the blocK or between functions
within the blocK). liKewise, if a blocK is read in by RBlK to a new
fami Iy origin than previously, al I fastcal Is from the rest of BPS to
this fam\ Iy are uncal I~d. On subgequent RBlK's to the same origin,
there is no need to uncal It and al I linkages rem~in speedy.
RBlK can also read fi les made by CHKPOINT or BPSCHKPT, if you have a
need to, but remember that the latter fi les aren't internally uncal led.

A-12

•

•

APPENDIX -- UTAH MODIFICATIONS

A6.S.3 This mechanism handles the most general cases, subject to the
rules of AS.4, to eliminate this uncal ling altogether would, however,
place too many (more) restrictions upon the user. Granted the first

.RBLK of a fami Iy wastes time checking the·compi ler if it hasn't been
EXCISEd, but subsequent RBLK's pay no overhead and instead (hopefully)
enjoy the greater generality.

AG.S.4 Finally, a brief discussion of how FCS relocation is handled
may aid the perplexed user and explain the need for the AS.4 provisos
concerning block origin and movement.

Each logical block of functions has in' its WBLK fi Ie a few
figures about length and position, if only so RBLK can decide if room
is avai lable. Strictly, a WBlK doesn't know which FCS atoms point to
its campi led functions Mar what quoted' atoms it references, any more
than a BPSCHKPT does; only the ancestral FCS remembers this (or
retains this information in a CHKPOINT). Compiled functions in core
(and in CHKPOINT and BPSCHKPT files) can have SYS or FCS or BPS
addresses relative to NIL's atomheader, but a WBLK fi Ie wi I I have
just relative FCS addresses because the rest are specially uncal led.
Therefore, when RBLK'd to some origin, aome FCS addresses (type '48'
eel Is) must be relocated appropriately to again reference the block.
Namely, only those address-eel Is refering to this fami Iy and by the
amount the new origin differs from the previoUs or ancestra~ origin.
This delta is easi Iy calculated from RBLK's second argument, but to
shift al I fami Iy references (sharing its old origin) requires the
longest most-inclusive member to move first •

A-13

APPENDIX -- UTAH MODIFICATIONS

A7. New partitioned data set faci lities

A7.1 POS fi lee can now be read, though not written, with blocKing of
(8B,16BB); this is also the standard blocking for the various SYSFILE
functions (RESTORE, RBLK, etc). However, because only one 16BB byte
buffer is used in this implementation, a few provisos:

A7.1.1 Text and checkpoint fi les apparently should not be members in
the same POS as LISP(LISP). The latter would require an unformatted
buffer of 7289 bytes, which didn't seem necessary for this version.

A7.1.2 RDS's of text-POS members should be closed or de-selected
before doing any restore-type function involving a second POS member.
Otherwise the single buffer wi II be pre-empted and a subsequent read
of the ROS fi Ie wi I I get a software-forced EOF.

A7.1.3 Note: whenever a member is ROS'd, reading always restarts at
its beglnning, and not at the point reached when last read; this is
mostly for bookkeeping ease and avoids confusing the buffer.

A7.2 To invoKe just one specific member ofa POS, use the current
method of a specific DO statement.

A7.3 To invoKe a general POS fi Ie for subsequent input of any member,
supply a 00 statement for the file itself; then within Lisp, refer .
to the desired member name wherever you'd currently use an atomic
ddname, as the dotted-pair: (ddname. membername).

The output functions (WRS,CHKPOINT,BPSCHKPT,WBLK) w1 I I give.a
non-fatal ERROR message if you try to output to a general POS fi Ie.

The input functions wi I I likewise protest, e.g., if you try to
read a member which isn't in the fi Ie.

A7.4 Note: the buffer is only allocated once and each· general POS
fi Ie is really opened only once and never closed, for speed in
processing subsequent member requests in the same general POSe

The OPEN function (sti I I only explicitly needed for a RDS or WRS}
has the form: OPEN«ddname.member) SYSFILE INPUT>, where the member
name is optional for commenting. OPEN wi I I protest however if you try
opening the same ddname as both a simple and a PDS fi letype.

CLOSE((ddname.member» is ignored as a commenting cal I. To
expl icitly close the POS itself, do CLOSE(ddname».

A-14

•

•

•

•

APPENDIX -- UTAH MODIFICATIONS

AB. Other Changes

AB.l ERRORSET(e,at) provides a means, as in other Lisps, to evaluate
an expression within an environment protected against ERRORs. Fatal
orrore wi I I terminate the job or return to the top-level EVALQT as
before (according to EXITERR), but other errors, diagnostics, and user
cal Is to ERROR are caught and contained within the current innermost
ERRORSET. If none is active, the stack unwinds to the top.

As far as the user is concerned,· he cal Is ERRORSET with an expression e
and a flag at. If EVAL of e produces no errors, LIST(e) is returned:
i.e., a non-atomic value.
If the user invokes ERROR(at2) during the EVAL, the PDS and ALIST are
restored. and the ERRORSET returns at2. LiKewise. if an internal error
occurs, NIL is returned. If the user's flag at -NIL, the error message
and back trace printciut wi I I be omitted; if nonNIL, they wi I I be printed
as usua I.

AB.2 POSN() returns the current cursor position of the PRINT functions;
e.g. returning 1 after a TERPRI(}. Heavy use of this function wi I I
cause more frequent GC's, as with any arithmetic routine, since each
integer returned requires 2 CONS's to construct.

AB.3 TRACE (x) has been extended in the fol lowing ways:
TRACE(llst) - in addition to flagging each function's atomheader to

signal LISP to trace it when cal led, in-core BPS is
searched and any fastcal Is to these functions are now
uncal led to permit tracing compi ~ed code (see section
AS.S.l). However. for simplicity, fastcal Is to RELINKed
functions are only uncal led if they address the latest
re-compi lation of the function; older references a"ren't
checked for presently, and are therefore sti I I untraced.

TRACE(T) - enables tracing of any previously-specified functions;
TRACE(I ist} automatically sets TRACE(T) for you .

TRACE(NIL} - temporari Iy disables tracing in general unti·' another
TRACE(T) is given, but retains al I passivated functions.

AB.4 UN TRACE (x) , if given an atomic argument rather than a I ist, wi I I
affect the printing of tracebacks (after errors) in the fol lowing way:
UNTRACE(T) - turns off the traceback, though not the error message;
UNTRACE(NIL} - turns on the traceback printing (the initial state).

AB.S Two auxi liary CONS functions have been added. and are also open
codcd dur i ng camp i I at ions:
NCONS{x} - performs CONS(x,NIL);
XCONS{xl,x2) - performs CONS(x2,xl).

A8.S nun $(p), the ABEND function, now takes one argument to specify
an immediate dump (if T) or a deferred dump (if NIL); if deferred,' the
dump is taKen for return codes >= 4, but not for a normal termination.

A-15

APPENDIX -- UTAH MODIFICATIONS

AS. Summary of New Functions, Errors, and Diagnostics

AS.1 New functions in Utah Lisp/360 are:
CONDENSE, SETSIZE, W8lK, R8LK,
BIGP, POSN, NCONS, XCONS, CLEAN

AS.2 New system atoms are:
GC,·t

A9.3 New fatal error messages are:
LISPOUT DO STATEMENT MISSING - RUN ENDED
LISPIN DO STATEMENT MISSING - RUN ENDED

AS.4 New non-fatal error messages are:
Di-FILE CANNOT BE OPENED - DO STATEMENT MISSING
07: WRONG CHKPT FILE. OR NOT ENOUGH ROOM
8PSMOVE - BAD ARG OR TOO BIG
UNCALL FAILED TO FIND ATOM FOR THIS ADOR
~/W8LK -- FIRSTFUN F/SUBR NOT FOUND
BFLT OVFL
EXPT- BIGNUM EXPONENT
ZERO DIVISOR
OPEN: PDS NOT SYSIN OR SYSFILE (80,1680)
POS ODNAME/ARG INCORRECT
PDS MEMBER NOT FOUND OR I/O FAULT
POS NOT SELECTABLE FOR OUTPUT
POS BUG - SYSFILE HIT EOOAO

AS.S New diagnostic messages are:
SOFTWARE EOF FORCED ON RDS

A-16

'.

•

"

,

LISP/360 REFERENCE MANUAL
•

•

SCiP
• stanford center for illfoo r kltion processing • stanford university

PR Et'ACE

This manual is intended to provi~e tha LISP 1.5 user
with d reference'manual for the LISP 1.5 interpreter.
as~embler, and compiler on the SCIP 360/67. It assumes
th~t the reader has a workinq kno~ledqe of LISP 1.5 as
d~scribed in the kI~~_l~~_e~l~~[by Clark Weissman, and
th~t the reader ha~ a qeneral knowledqe of the operating
onvironment of OS 360.

n:!::tirlninq users of LISP will find the sections tb.~
Lt§~{JqQ_~I§I~m, QIq~~i~~~~QU_Qf_~t2r~g~, [~n~t1Qn§,
~t§~_J~b_~gt=uU, and ~I~ll12Q_~{§t~m_~~§§~g~§ most
helpful in obtdininq a basic understanding of the LISP
SYStP.l. other sections of the manual dre intended for
users desirinq a more extensive knowledqe of LISP.

rh~ particular lmplementation to which this reference
manual is directed vas started by ~r. J. Kent while he
W!S ~t th~ University of waterloo. It is modeled after
hiq impl~mer.tation of LISP 1.5 for the CD~ 3600.

I~cludej in this edition is inforaation on the use of
the ~ime-shared LISP system available on the 360/67
.,hi:ll W!s i mplemen ted by Mr. Rohert Berns of the
S:IP Systems Software staff.

ii

•

.'

•

•

TABLE OF CONTENTS

section Page

PREFACE . ii

TABLE OF CONTENTS • • • • • • • • • • • • • • • • • • iii

1 • THE LISP/360 SYSTE~ · 1

2. ORGAN IZATIOR OF STORAGE • • • · • • · • • · • · · 3

2. 1 Free Cell storage (PCS) · • · • • • • • • · • • · 3

2. 1. 1 Atoms • • • · .. • • · · · • • • • • • • · 5

2. 1.2 Bumbers • • • • • • · · • • • • • • • • · 8

2. 1.3 Object List · • · · · • • · · • • • • · · 9

2.2 Push-down stack (PDS) • · · · · · · • • • · · • • 9

2.3 Syste. Punctions • • • • • • • • • • • • • • • • 9

2.4 Binary Program Space (BPS) • • • • • • · • · • • 9

2.5 Inpu t/Output Buffers • • · • • • • • • · • · · · ~

3. FUNCTIONS, PREDEFINED ATOftS ANDCHAR1CTER-OBJECTS • • 10

3.1 LISP Functions • • • • • • • • • • · • · · · · · 10

3.2 Atoms with Initial Values • • • • • • • • • • • • 25

3.3 Character-objects • • • • • • • • • • • • • • • • 26

4. SPECIAL DIPFERENCES IN L~SP/360 • • • • • • • • • •• 27

5.

6.

LISP JOB SET-UP
DATA MANAGEftENT II LISP/360 ·
6.1 Data "anagement Functions • • • • • • · . .

29

29

6.1.1 OPEl (ddnalle,list,at) •• ". • • • • • • • • 29

iii

"

6. 1.2 CLOSE (ddname) · • • • • · · · · · · · • 30

6. 1.3 ISA (p) • · · .. · · · · • • · · · · · • 30

6.1.4 OTLL (n) • • • • • • • · • · · • • · · · 30
I

6. 1.5 iRS (ddname) • • • • • • • • • • • • • • • 30

6.1.6 INLL (0) • • • • • • • • · · • · • • • · 31

6. 1.7 RDS (ddname) · • • · ' . • • • • • • · • · 31

6.2 Checkpoint Facilities in LISP/360 · • • • · · • 32

6. 2. 1 CHKPOINT (ddname) · · • · · • · · 32

6. 2.2 RESTORE (ddname) • • · • • · · • • • · • 32

6.2.3 BPSCHKPT (ddname) • • • • • • • • • · 32 • 6. 2.4 BPSRESTR (ddnalDe) • • • • · • · · · • 32

7. THE LISP ASSEMBLER AND COftPILER • • • · • • • · • · · 33

7.1 LISP Assembly program (LAP) • • • • • • • • · • • 33

7.1.1 Differences Between LAP and OS
AssEmbler Language • • • • • • · · • 33

7.1.2 Passing Arquments To and Prom LAP
Routines • • • • • • • • • • • • • • • • 34

1. 1.3 Register Usage • • · • · • • · • • • • · 35

7.1.4 l'1acros . · • • • • · · • · · • • • · · • 36

1.1.14.1 User Defined r!acros • • • • 36 • 7.1.4.2 System Macros • • • • • • • · • 36

7. 1.5 Sample LAP pro,gram • • · · · · • · · · • 38

7.2 Binary Programming Space • • · · · · • • • • · 39

7.2.1 The Atom BPS • • • • • • • • • • · • • • 39

7.3 The LISP Compiler • • • · · · · · · • • · 40

7.3.1 LISP Job SP.t-up for the Compiler • · • · 40

1. 3.2 Auxiliary Routines · · · · · 41

iv

7.3.3 Examining the Compiled Code 42

7.3.4 Names of Compiler and Assembler Routinbs. 43

8. THE GARBAGE COLLECTOR 44

9. TI~E-SHARED LISP AT STANFORD . . . · · . . 45

9.1 Example of a Terminal Session · · . . 47

10. LISP/360 SYSTEM MESSAGES . . . -. . · · . . 49

10.1 EVALQUOTE ftessages · 49

10.2 Tracing in LISP/360 · 49

• 10.3 Garbage Collector PJessage • • • • • • • • • • • 49

10.4 Interruption PJessaqe • • • • • • • . . . 49

10.5 Error Diagnostics • • • • • • • • • • • • • • • 50

10.5.1 Syntax Errors 5v

10.5.2 Ezecution Errors
I • • • • • • • • • • • 51

10.5.3 Error Codes and Messages 53

APPENDIX: THE LISP INTERPRETER • • • • • • • • • • • 56

REFERENCES • 58

•

v

LIST OF ILLUSTRATIONS

Figure 1: In itial Organization of LISP System Memory · · · 2-

Figure 2: LISP Cell • • • • • • • • · • • • • • · • • · · · 3

Figure J: Full Cell . · · · • · · · • · · · · · · · · · 3

Figure 4: Binary ftarkers • • • • • • • · -. • · • • • • · • 4

Figure 5: LISP Atom With An Empty Property List • · • · · · 5

Figure 6: LISP Atom with Associated property List · · · · · 6

Figure 7: Object List • • • • • • • · • · · · · · • • · • • 9

Figure 8: The Atom BPS · • · · · · • · · · · · 39
0

o

vi

•

•

LISP 360 operates under the IBM System/360 Operating System (O~).
The operation of the LISP executive is best described as foliows:

1. Bead a function and list of arguments.

2. Start the timer.

3. Pass the function and list of arguments to the func~1on
EVALQUOTE for evaluation.

4. print the execution time and the value of the fun~1on.

5. Start again at step 1.

The LISP system initially consists of a large body of predef1ned
functions and provides the facility to add additional function
definitions. statements in the LISP languag~ are ~valuat6d
interpretivel~ by the function EVALQUOTE to determine their value,
although some functions (such as COMPILE) are evaluated more for
their effect than for their value. A compiler and an as~~bler

"are also available.

During execution, LISP data structures (including LISP funct~on
definitions) are constructed in Free Cell Storage (FCS). The
Push-down Stack (PDS) is used to store program parameters
dynamically during recursion.

Other system areas are allocated as Binary Program Space (BPS) to
contain the machine code for all ccmpil9d functions and as I/O
Buffers to be used by as. The general organization of system
memory is given in Figure 1 •

1

6,000

Words

Free Cell

Storage

(FCS)

(

~

5 ystem Programs

(LIS P Interpreter

And A II Predefined

Functions)

Push-Down Stack

(PDS)

Oblist

Remainder of

Free Cell Storage

Binary Program

Space

(BPS)

Given Back to OS

for I/O Buffers

Figure 1: Initial Organization of LISP System ftemory

2

•

•

•

•

within the LISP system, comput~r mamory is subdivided into s~v~ral
functional areas. The largest portion of system memory is devoted
to·Free Cell Storaqe (PCS), the area used to contain all ~ork~ng dat~
structures. The remaining parts of memory are used for thE Push-down
Stack (PDS), Binary Program Space (BPS), Input/Output Bufters, and
system. functions.

A large portion of LISP memory is devoted to the storage of working
data structures in Free Cell Storage. Each word of FeS (called a LISP
cell) is a system/360 doublevord (64 bits) consisting of an upper word
(32 bits) and a lover word (32 bits). LISP cells, depending on their
use, may contain four fields as shown in Figure 2.

< 64 ~ ~8 ~~ .24 ~-E- 8 ~~ 24
I I
• ,
I ,

Used for
, Used for ,

Markers .First Address Positton Markers Second Address Position

• : I

0 7 8 31 32 39 40 63

Figure 2: LISP Cell

Initially, all available words in pes are in a free cell list. As
LISP cells are used to create data structures,. they are removed from
the free cell list until removal of the last word forces the system
to perform a garbage collection in an attempt to restore words to the
free cell list.

A LISP cell is normally considered to contain pointers to other LISP
cells in both its upper and lower words, but a special type of LISP
cell is defined in which the upper word contains information other
than a pointer. This ~ISP cell is called a full cell and its format
is illustrated in Figure 3.

32

This word .. , contain -
J. four EBCDIC chlracters fr~ a

print n •••

Z. A 32-b1t n~r.
J. The address of I binary LISP routine.

T
I

•
1

24

Second Address Position

Figure 3: Pull Cell

3

...

since the Ip.oqth of the LISP c~ll is 64 hits dod only 24 bit!.> are
needed to express an address, the first H bits in the upp~r wo~d dnd
the first 8 bits in the lo~er word are availdble tor oth~r uses.
Figure 4 indicates the uses for some of these bits as expla~ued below.

I II,IIIIII~~;~IIII IIII~;~~J
'-__ .&.. __ L... __ L----1.L--.... _ ______ -.... :o~~tt~n_ _ P~~~i:~

o 1 2 3 4 5 6 7 , r 32 33 34 35 36 37 38 39 1
1 f f 1 TrIce Marker r t Fu~ 1 Cell Contents Indicator

Logical Marker I Full Cell Marker
Floating-point Marker Garbage Collector Marker If this cell

Number Harker If this cell is an atomhead.
Atomhead Ha,rker 'is an Itomhead. this address

this address points to the

Bit 0

points to the property list.
full cell lht.

Figure 4: Binary "arkers

- indicates that this cell is an atollhE:ad ,(1.e.,
the first cell in an atom).

Bits 1, 2 and 3 - refer to a full cell list associated with an
atom. Bits 1,2 and 3 are used as follows:

Bit 1 - Number !arker
Bit, 2 - Floating-point "arker
Bit 3 - Loqical "arker

•

For an atomhead (bit 0 is set to one), one of tt
the, following bi t pat terns will be used to
describe the full cell list assoc~ated with

Bit 1

Bit 32

the atom:

&!!_Q bOt 1 _1 __ - bit_~ bit J

1 0 0 0 EBCDIC Charac~ers , , 0 0 Fixed-point Number , 1 1 0 Ploatin9-po~nt Number
1 1 0 , Logical Number

- indicates .that a function is to b~ traced.

- is used by the garbage coll~ctor to mark active
cells.

4

•

•

Bit 33

Bit 34

2.1.1 !to!.§

- indicates that this is a full cell.

- is used in a full cell to indicate t.hat the first
word (first 32 bits) contains EBCDIC chdr.:lcter-s
or a number. Bit 34 is not set in a full colI
when the first word contains an address.

An atom bpgins with a LISP cell (called an atomhead) that contd1DS in
its first address position a pointer to a full cell list associated
with that atom. The full cell list contains either the printname
of the atom (in the case of a literal atom) or the binary valu~ of
the atom (in the case cf a number).

The second addre£.s position contains a pointer to the list of
properties associa ted with that a tom -- if it exists (num bers
never have properties). The first bit of the first word (bit 0)
is set to one to indicate that this cell represents the start of
an atom.

Figure 5 illustrates the atom EIAftPLE and its full cell list. The
property list is empty •

• 1 I

bit 0

•
•

E I A MOll: P L E

Figure 5:' LISP Atom With An Empty Property List

Note: A pointer to the atom NIL is represented by a diagonal line
in the address portion of a LISP cell.

Figure 6 illustrates the atom FF and its property list. The property
list includgs all of the attributes associated with that atom. In
this example, the atom FF is a function, namely an EIPB, Wb1Ch starts
(LAMBDA •••)

5

, , T

V • , • • . , • , I
I

I • , • I
I · I

ti
I I • •

I · ,
1 · --

I

blt 0

f

, ,blts 32·34 It

atOlft EXPR •
I

F 1\/
011 ~ • - --

I
I

,
LAMBOA

Figure 6: LISP Atom With Associated ~roperty L1St

Attributes of the atom are designated by flags or indicators on the
property list. Flags are atoms which by themselves indicate that
the atom (on whose property list the flag occurs) has some attribute
(e.g., CO"MON). Indicators are atoms which identify the atom (on
",hose prope rty list the indicator occurs) as ha ving a special value
which is found as the next item on the property list (e.g_, SPECIAL,
APVAL). Indicators used by the LISP system include:

APVAL -- The atom is a constant whose value is the following
item in the property list.

EXPR The atom is a function name. The lambda expression
defining the, function is the following item in the
property list.

•

FEXPR -- The atom is a special function name. The lambda •
expression d'ef ining the function is the following
item in the property list. An FEXPR differ3 from
EXPR in that th~ FEXPR i's defined with precisely two
arguments and may be call~d with an indefinite number
of arguments. When an FEXPR is call€d, the 11st ot
arguments and the current association list are bound to
the lambda variables defined in the FEXPR expression, so
that the arguments are not evaluated before the function
is called.

SUBR The atom is a compiled EXPB or a built-in function.
The entry address of the subroutine is the follow1ng
item in the property list.

6

FSUBR -- The atom is a compiled FEXPR. The entry address of the
subroutine is the following item in the property list.

Atoms arp created in LISP in several ways. READ, GENS!"1, dnd MKATOM
dll cr~ate literal atoms. READ creates atoms trom th~ in~t text and
places them on the obiect list. GENS!"' creates an atom but do~~ not
place it on the object list. "KATO" creates an atom on the object
list using the buffer filled by the function RLli.

;

Numeric atoms· are created by every numeric function. Thus, the same
number may be different atoms. These riumeric atoms are not placed on
the object list •

••

•

7

There are three kinds of nQmbers:

1 • Pixed-point (integers)
2. Floating-point
3. Logical (hexadecimal)

All numbers are stored as 32 bit binary numbers with the help or a
full cell and must be converted from EBCDIC characters on input and
to EBCDIC characters· on o~tput. (The EBCDIC representation of a
number is not stored.) The first word of a numeric atomhead po~nts to
this full cell; the second word is NIL.

A fixed-point number is a signed or unsigned integer (written without
a decimal poin~) in the range -2**31 ~ number S 2**31-1. For example:

o
91
-91
173
-2147483647.

A floating-point number is a signed or unsigned string of decimal
digits with a decimal point. The string of decimal digits mdY be
followed by a decimal exponent. Ploating-point numbers may have
absolute values in the range 10**-75 ~ Dumber ~ 10**75, including
zero. For example:

7.
-3.4
2.5E+07
-3.2E-4
2.6E7

•

A logical number consists of from 1 to 8 hexadecimal digits
(U,l,2, ••• ,9,A,B,C,D,E,F) which may be followed ty the letter 'X'.
If t.he number begins with one of the letters ·A through F, it· must •
be preceded by a zero to avoid ambiguity with character atoms.
Logical numbers need not be followed by 'X' if they contain any
of the digits A through F. All numeric functions treat logical
numbers as integers. For example:

14X
-31S1
OAI
OFFFFFFPCX

. 14 AFS

8·

•

•

Pointers·to LISP atoms ar~ chained together on a list call~d the
'object list'. The system'searcbes this list in order to find atoms
referenced by,the LISP program. The format of the object 1~5t is
shown in Figure 7. As literal atoms are added to the syst~m, their
pointers are added to the front of the object list, immediately
following the pointer to the atom NIL except for literal atoms
created by GENSYM1, which are not added to the object list. The
predefined atom OBLIST has an APVAL on its property list which
~oint5 to the object list.· To print the object list, the follow~ng
statement can be used: EVAL(OBLIST NIL).

I

I
I
I
I
•

It

atom NIL

• E4
I
I

I
I
I ,
1

.. ,. ,
I
I
I
I
I
1

64
I

I
I

!

,
2nd atom

Figure 7: Objeqt List

2.2 Push-dow~~1A£~ (PP~l

~ 64 · • I , I

I I ,
I

I ! ·

3rd atom

The PDS is used to save active data structures and addresses during
program recursion. The size of the PDS is fixed at 6K words (32
bits/word), and it can only be changed by regenerating the LISP
system •

The system function area contains the contrel p~ogram, the EVAL~UOTE
interpreter, predefined system functions, the garbage collector, and
the error handler.

This area contains all compiled code not part of the standard LISP
system (including LAP and the compiler) •

This is dn area of 8K bytes (8 bits/byte) ~eturned to OS for u~e as
input/output stor~ge. The 9tze of the ar8a can be changed any time
LISP is loaded by using appropriate EXEC parameters.

9

,.
.. -

This section gives the definitions of the functioris available in
LISP/360. The letters that precede the function names are not part
of the function name. They are used to explain the functions as
follows:

C - This function is contained in the compiler.

I - This function is contained in the compiler and is for ~nternal
compiler usage.

N - lhis function is not available in time-shared LISP.

T - This function is available in time~shared LISP but not in
standard LISP.

The symbols used for function arguments are defined as follows:

alst
at
ch
ddname
e
fn
ind
list
n·
p
x

ADDl (n)

- association list
- atom
- character-object
- ddname
- valid LISP form
- function
- indicator
- list
- number
- predicate
- s-expression

ADD1 takes a number as its argument and

•

returns that number·plus 1. If n is a •
fixed-point number, the result is a f~xed
point number. If n is a floating-point
number, the result is floating-point.

AND(p1,p2, ••• ,pn)

APPEND(list1*list2)

ABO evaluates its arguments from left to
right until one is NIL or the end of the
list is reached. It returns NIL or T,
respectively.

APPEND takes twa lists as its arguments.
Its value is a list of the elements of list 1,
followed by the elements of list2.

APPEND (fl B C) (D E F») = (A BCD r; F)

10

•

•

APPEND' (list,x)

APPLY(fn,list,alst)

N AS1(p)

ATOM (x)

ATTRIB (Ii st 1,list 2)

N BPSCHKPT (ddname)

N BPSLEPT ()

N BPSftOVE(n)

N BPSRESTR(ddnaae)

C BPSUSED (p)

N B PSWIPE (fn)

N BPSZ ()

BREAKP(ch)

APPEND1 causes the element x to be add~d
onto the end of 'list "; the val ue is the
lIlodified list.

APPEND1 «A B C) D) :: (A BCD)

APPLY causes the function, fn, to be appli0d
to the arguments in the list; alst is used
as the association list.

(see section 6.1.3)

ATO" returns T if x is an atom (either
numeric or literal); otherwise it returns
NIL.

ATTRIB modifi€s list1 by tacking on list2 at
the end. The value is list2. ATTRIB has
the same effect as NeONe althouyh th~ Vdlue
is diff~rent. Note th~t if 11stl is ari
atom, list2 is added to the end of thE
property list of list1.

(see Section 6.2.3)

(see section 7.3.2)

(see Section' 7.3.2)

(see Section 6.2.4)

(see Section 7.3.2)

(see section 7.3.2)

BPSZ takes no arguments. BPSZ deletes all
binary program space and adds that storage
to Free Cell storage. Jobs not using
the compiler, LAP, or -any user compiled
functions should call EPSZ for maximum
s tor age. (Se e Se ct io n 7. 3 • 2)

BREAKP is a predicate. If its argument is
one of these character-objects:

blank
left parenthesis (
right parenthesis)
comma ,
period •

its value is'T; otherwise its value ~s NIL.

11

CAAAR(x)
CAAOR (x)
CAAR (x)
CADAR (x)
CADDR (x)
CADR (x)
CAR (x)
CDAAR (x)
COADS (x)
CDIR (x)
CDDAB (x)
CODOR(x)
CODa (x)
CDR (x)

N C HKPOINT (ddna me)

N CLOSE (ddname)

C COrl1'10N(list)

C COrlPILE (list)

C COrl1 (xl,x2,x3)

C CONC(xl,x2, ••• ,xn)

CONS (xl, x2)

N COUNT (n)

Thes~ functions represent all poss~bl~
nestinqs of CAR and CDR up to three levels.

(see Section 6.2.1)

(see Section 6. 1. 2)

(see section 7.3. 2) •
(see Section 7.3)

COrll is a function used by the compiler.

CONC is a function used by the compiler.

CONS obtains a new doublevord from the tree
storage list (see Section 2.1) and
places its tvo arguments in the first and
second words, respectively. It does not
check to see if the arguments are valid list
structures. The value of CONS is a pointer
to the word that was just created. It the
fre9 storage list has been exhaus~ed, CONS
calls the qarbag~ collector to make a new
free storage list and then performs the
CONS operation. •

The argument n must be an integer. COUNT
turns on a counter which automatically causes
a trap when CONS has been done more than 'n'
times. Any CONS performed by syst~m
functions are also counted. The counter
is turned off by UNCQUNT(NIL). The
counter is turned on and reset each time
CQUNT(n) is executed. The counter can
be turned on so as to continue counting
from the state it vas in when last turned
off by executing COU6T(NIL). ThE
function SPEAK() gives the current value
of the counter. which is decrement~d each
time a CONS occurs.

12

•

•

,

CSET (a t, xl

CSETQ (a t, x)

N DEBUG(p)

DEFINE (list)

DEFLIST (list, at)

DIFFERENCE(n1,n2)

DIGP (ch)

EJECT ()

CSET is used to create a constant by putting
the indicator APVAL and a value on th~
property list of the atom. The valu~
stored in the property list of the atom
is CONS(x,NIL). The value of CSET ~$ its
first argument. It 'at' already had an
APVAL, the old value is removed.

CSETQ is like CSET, except that the tirst
argument is guoted instead of being evaluated.

currently, this function has no effect.

The argument 'list' of DEFINE is a list of
pairs

((u 1 v 1) (u2 v 2) ••• (un vo»

where· each u is a name and each v is a
lambda-expression for a function. For each
pair, DEFINE puts an EXPB on the property
list for u pointing to v. DEFINE puts
things on at the front of the property list.
The value of DEFIHE is a list of the u's.

DEFLIST is a more general defining tunction
than DEPINE. Its first argument is a list of
pairs as for DEFINE. Its second argument is
the indicator that is to be usea. The
second'argument should be a literal
atom. After DEPLIST has been executed
with (u v) as its first argument, the
property list of u will begin with the
indicator, at, followed by v.

DEPINE («PH (LAl!BDA (X) (CAB X»») =
DEFLIST («FH (L AM BDl (X) (CA R X»» EX PR)

Both arguments of DIFFERENCE must be
numbers. The value is n1 minus n2.
If either argument is a floating-point
number, the result is floating-point.

DIGP is a predicate. If its argument is one
of these character-objects: 0, 1, 2, ••• , 9
its value is T; otherwise its value is NIL.

EJECT takes no arguments. It causes a line
to be written with a 'new-page' control
character in the first byte (skip to new
page) •

13

EO (x 1, x2)

EQUAL (x 1, x2)

ERROR (x)

EVAL (e,alst)

EVCON(list,alst)

EVENP(n)

EVLIS(list,alst)

C EXCISE (p)

EXIT ERR (p)

EQ is a predicate which tests if its "two
arguments point to the same locat~on in
storage. Litecal atoms are stored uniquely,
so that if x1 is an atom, EQ(x1,x2) will be
true if x2 is the same atom. List structures
and numbers are not stored uniquely, however,
and thus it is possible for two equivalent
list structures not to be EQ. EQ returns
T if its arguments are the same, otherwise
it returns NIL.

EQUAL is a predicate. It returns T if its
two arqum~nts are equivalent list structures ..
EQUAL is recursive, using EQ to test li~eral
atoms. Two numbers are assumed to be
EQUAL if they differ by less than 10*.-6.

ERROR is one vay for a user to cause d LISP
error. The message '.*. a1 - CALL TO ERROR'
and the value of x will be printed, followtt
by a trace-back as described in Section
10.5. ERROR does not return and so ~t
has no value.

The first argument e must be a valid LISP
expression. It is evaluated using alst as
an association list for values ot var1ables.

The argument is a list of the form
«p1 el) (p2 e2) (p3 e3) ••• (pn an»

where the piS and e's are val~d LISP
expressions. The piS are evaluated ~u
order until a non-NIL value is obtain~d.
Then the corresponding e is ev~luated
~nd its value is returned as the value
of EveON. For each of these evaluations,
alst is used as the association list •

EVENP returns T if the fixed-point numb~r
I n' is even; otherwise it returns NIL.

The first argument is a list of valid LISP
expressions. They are evaluated in order
using alst as the association list. The
list of the values is returned.

(see Section 7.3.2)

EXITERR(T) causes' the run to terminat~
after th~ occurrence of any ~croc that
is generated in the execution of the
program. EXITERR (NIL), the default,
turns off this feature.

14

•

EXPLODE (at)

EXPT (n 1, n2)

FIX (n)

F lIP (x)

FLAG (li st, at)

•
FLAGP (at 1, at2)

FLOAT (n)

FL01TP (x)

• FUNCTION (fn)

EXPLODE takes an atom as an argument and
has as its value a list of th~ characters
in the printname of the atom.

EXPT takes two nUlDbers as its arguments.
The second argument must be a fixed
point numb~r. It returns n1 to the o2th
pover. The value is floating-point if n1
is floating-point or if n2 is negative.

FIX takes a floating-peint numb€r as ~ts
argument. The argument is truncated to
an integer.

PIX P re t urns T if xis a fix ed - po in t
number, otherwise it returns NIL.

FLAG puts the flag 'at' on th~ property
list of every atomic symbol in the list •
Bote that 'list I' must be a list of atoms.
No atom ever r~ceives a duplicate flag.
The value of FLAG is NIL.

FLAGP searches the proFerty l~st of the atom
at1 (CDR at1) for an occurrence of an item
EQ to at2. If such an item is found, the
value of FLAGP is the rest of the list
beginning with that item. otherwisE, the
value is NIL.

PLOAT takes a fixed-point number as its
argument. It returns that Dumber
converted to floating-point.

FLOATP returns T if its argument is a
floating-point number; otherw~se it
returns NIL •

FUNCTION is a special form. Its 'argument'
must be the name of a function or a ldmbda
expression. FUNCTION is used to pass
functional arguments to other functions.
When the form

(FUNCTION (LAftBDA (X) ••• »

is evaluated in interpreted LISP, FUNCTION
returns the special form

(FORARG (LAMBDA (X) ••• » alst)

where alstis the current association list.
Then the PUNARG form is interpret~d by

15

C GENSYM ()

GENS!! 1 (a t):

GET (at 1 ,at2)

GO (a t)

GREATERP (n 1 ,n2)

N INLL (n)

C LAP360(list,alst)

APPLY as a function, with the associdtion
list taken ·from alst instead of taking the
association list at the time APPLY is
called. Thus, FUNCTION, in effect, saves
the current association list along with
Ifni, so that later calls will use current
variable bindings.

GENSYM is a function used by th~ compiler.

GENSyftl creates a new atom whose printname
consists of the first four characters of
the atom which is passed as its argument,
followed by four digits. The atoms that
GENSY"' creates are NOT on the object list,
,unlike other atoms in the system. Thus,

GENSYI11(ALPHA) = ALPH0502

Even if there already exists an a tom whose.
name is ALPH0502, the result of GENSYM1
will be unique.

GET searches the property list (CDR) of its
first argument for an indicator EQ to its
second argument. GET then returns tne item
following the indicator in. the property
list. If no element of CDR (at1) is EQ
to at2, GET returns NIL.

GO is a special form. Its one argument
must be a label in the·PROG in which GO
appears. Its argument is not evaluated.
GO cause~ PROG to branch to the label
specified. I n compiled LISP, GO c.annot
appear except as a statement in a PROG,
or in the top level of a COND which is
a statement in a PROG. Specifically, GO •
cannot appear within a PROG2 within a
COND.

GREATEBP is a predicate which takes tvo
numbers as its arguments. The value is
T if the first argument is numerically.
greater than th~ second, and NIL it they
are equal or the first is less than the
second.

(see Section 6.1.6)

(see section 7)

16

LAST (list)

LEFT SHIFT (n 1, n2)

• LENGTH (list)

LESSP (n 1, n2)

LETP (ch)

LIST(x1,x2, ••• ,xn)

• L ITP (ch)

LOGAND(n1,n2, ••• ,nk)

LOGOB(nl,n2 f ···,nk)

LOGP (x)

The argument is a list. LAST rEturns the
tail end of list which contains only the
last element:

LAST «A BCD» = (D)

(This is the list of the last element, not
just the last element) •

LEFTSHIFT takes two numbers as its
arguments. The second argument must ba
a fixed-point number. The word (32 bits)
which contains the number given by the
first argument is shifted left the
number of places specified by the stcond
argument. If the second -argument i~
negative, the first argument 15 Sh1ft8d
right. The value is a logical numbel •

LENGTH returns the number of top-level
elements contained in the list given as
its argument.

LENGTH («A B C) D (E. F») = 3

LESSP is a predicate which takes tva
numbers as its arguments. The value is T
if the first argument is numerically less
than the second; otherwise it is NIL.

LETP is a predicate. Ii its argument is
one of the letters in the range A, 5, ••• ,
z, its value is T; otherwise ~ts value is
NIL.

LIST takes an indefinite number of
arguments, and returns a list of
those values •

= NOT(OR(BREAKP(cb),DIGP(ch»).

LOGAND takes an indefinite number of
arguments. LOGAND performs a b~t-Oy-b1t
logical AND on its arguments and returns
the logical number thus produced.

LOGOR is similar to LOGAND, except thdt it
computes the bit-by-bit logicdl ON ot ~ts
arguaents.

It returns T if its argument 15 a lo~icdl
number, and NIL otherwis~.

11

LOGXOR(n1,n2, •••• nk)

C MAP(x1,x2)

MAPCAH (list,fn)

C M APeON (x 1, x 2)

MAPLIST (list, fn)

MAX(nl.n2.~ ••• nk)

M EM B ER (x, 1 i st)

!IN(n1,n2, ••• ,nk)

MINUS (n)

MINUSP (n)

! KATO!! ()

LOGXOR is similar to LOGAND and LO~OR,
except that it computes the logical
exclusive OR of its arguments.

MAP is a function used by the comp~l~~.

"APCAR takes two arguments: the til~l is d
list and the s€cond is a function of one
acqument. MAPCAR applies the g~vell tunction
first to the CAR of list, then to the CADR
of list, and successively to each el~ment of
list until the end of the list is ~eached.
"APClR returns a list whose kth element is
the value of the fUDcticn applied to the kth
element of the list given as an argument.

ftAPCON is a function used by the compiler.

ftAPLIST takes two arguments: the tLrst is •
a list and the second is a functional
argument. ftAPLIST applies the given
function first to list, then to CDR list,
and successively to each 'tail tnd' ot list,
until the end of the list is reached.
rtAPLIST returns the list of the values
of those function evaluations.

MAX takes an indefinite number ot
arguments. "AX returns the largest of its
arguments. If any of the arguments are
floating-point numbers, the result will
be floating-point.

"E"BEB searches the list for an occurrence
of an element EQUAL to x. If such an
element is found, !EftBER returns T;
otherwise it returns NIL.

MIN takes an indefinite number of
arguments, and returns the smallest of •
them. If any of the arguments are floatinq
point numbers, the result will be a
floating-point number.

MINUS takes a number for its argument,
and returns the negative of that numbtr.

MINUSP takes a number for its argument;
it returns T if that number is less than
zero and NIL otherwise.

"KATOrt· is a function with no ae guments.
It is used to make atoms out of .the
information put into the internal

18

•

•

NeONe (list, x)

NOT (x)

NULL (x)

NUl!BERP (x)

N OPEN (ddname,list,at)

C OPTIMIZE (p)

OB(p1,p2, ••• ,pn)

ORDEBP (at 1, at 2)

N OTLL (n)

C OVOFF ()

C OVON ()

PAIR (1 ist 1, list2)

character buffer by RLIT or BNUMB.
~KATOM returns the atom created.

The first argument must be a list. NCONC
changes the end of 'list' to point to x.
In effect, NCOHe is like APPEND ~xcept
that it actually changes its first
argument instead of copying it. NeONC
returns the modified first ar9um~nt.

NOT returns T if its argument is NIL and
NIL otherwise. It is the same as EQ(x,NIL) •

NULL is the same as NOT (x) •

'NUr1BERP is a predicate which returns T
if its argument is a number (logical,
fixed-point or floating-point); otherwis o

it returns NIL •

(see Section 6.1.1)

(see Section 7.3.2)

OB takes an indefinite ~umber ot arguments.
The arguments are evaluated from left
to right until one is reached whose value
is not NIL, or the end of the list is
r~ached. OR returns T or NIL respect~velr.

OBDERP imposes an arbitrary canonical order
on literal atoms. For character-oojects
that order is alphabetic; for all other
atoms, the order depends on the actual
location in storage of the atomhcdd.
ORDERP returns T if the two arguments a~e
EO or the first c~mes before the stcond in
this canonical order, and NIL if the first
argument comes after the second.

(see Section 6.1.4)

(see Section 7.3.2)

(sep Section 7.3.2)

PAIR is a function used internally by th~
LISP system to build association iists.
PAIR takes two lists as its arguments. The
lists must be of equal length; othtrwise
an error will occur. PAIR matches tn~
~lements of the first argument Wl.th tilt::
el~ments of the second argument dnd [~turns

19

C PAIRMAP(xl,x2,x3.x41

N PLANT(x1,x2)
N PL ANTDC (x 1, x2)
N PLANTSQ(x1,x2)
N PLANT1 (xl.x2)

PLUS(nl,n2, ••• ,nk)

PRBUFFER (p)

C PBINLAP (p)

PRINT (x)

PRIN 1 (at)

a list of dotted pairs; the CARs ot the
pairs are the elements cf the first list
and the CDRs of the pairs are the elements
of the second list. The list of dotted
pairs is in the reverse order ot the input
lists.

P A I R ((A B C) (D E F» =
((C • P) (B • E) (A • D»

PAIR ((A B) (C D E» ----> ••• 12 - TOO KANY ARGU~ENTS - EXPR

PAIBKAP is a function used by the compiler.

These functions are used by the comp~ler
to insert code into BPS (Binary Program
Space).

PLUS takes an indefinite number of
arguments. PLUS computes the algebraic
sum of its arguments and returns that
number. If any of the arguments are
floating-point numbers, the result will be
floating-point. PLUS() = O.

PRBOFFER takes T or NIL as an argument.
PRBUFFER(T) will cause READ and READCH to
print the input buffer every ti~ a ~ew
record is moved into it. A '=)' in the
margin of a line indicates that the line
is a buffer printout. PBBOPFEB(NI~) will
stop the printing of the input buffer.
PRBUFFER is used when it is necessary to
show exactly what was given as input to
LISP.

(see Section 7.3.2)

PRINT takes an arbitrary S-expression for

•

•
its argument. PRINT causes tbat s-expression
to be written on the output device currently
write selected (default LISPOUT).

The argument of PBIN1 must be an atom
(numeric or literal). PRINl translates
its argument into output format and
places it in the output buffer e· PHIN 1
does not terminate the line, however,
and sucessive calls to PRIN1 will place
the values immediately following each
other in the output line.

20

•

•

PBOG(list,e1,e2 •••• ,en) PROG is a special form. It provides

PROG2 (xl, x2)

QUOTIENT(nl,n2)

N RDS (ddname)

READ ()

R EADC\i (p)

the capability to perform iteration
by allowing looping and the use of
temporary variables. The list contains
the variables of the PROG required
by the statements el,e2, •••• en. PROG
variables are initially NIL; they Cdn
be reset with the functions SET or ~ETQ.
The "statements" el,e2, ••• ,en must b~
either expressions or literal atoms.
The literal atoms are used as statement
labels. PROG evaluates the statements
el through en in sequence, unless 1t
comes to the special forms GO or RETURN.
When a GO is evaluated. PROG continues
evaluation at the statement immed1ately
following the label given in the GO. When
a RETUBN is evaluated, the expression
given in BETUBN is returned by PROG. If
no RETURN is rEached before the last
statement, PROG returns NIL.

PROG2 takes tvo arguments and returns
the second as its value.

Both arguments of QUOTIENT must be numbers.
N1 is divided by 02 and the quot1ent is
returned. IF both nl and n2 are fixed
point numbers, the value is truncat~d to
an integer; otherwise the result is a
floating-point number.

(see Section 6.1.7)

The execution of READ causes one
S-expression to be read from the current
~nput file (a~ defined by RDS). The value
of REID is the s-expression •

If the argument is NIL, READCH vill read
the next character from t~e input buffer
and return with the corresponding
character-object as a value. READCH(T)
causes a simulated backspace. The value
of READCH(NIL) afte~ a READCH(T) has b~en
executed will be the same as thdt retuluAd
by the previous READCH(NIL). Th~ value of
RE1DCH(T) is the same as that retul."nea by
the next to last READCB(NIL). RiADCH(T)
should only be executed once before
calling READCH(NIL).

21

RECIP (n)

RECLAI" ()

c RELINK(x1,x2)

R E~A INDER (n 1, n2)

R EMFLAG (list, at)

R EftO B (at)

REMPBOP (a t, ind)

N RESTORE(ddname)

RETURN (x)

N REVERSE (list)

RLIT (ch)

For floating-pcint numbers, the value is
the reciprocal of n. For fixed-po~nt
numbers the value is o.

RECLAI~ causes a garbage collection to
occur. The value is NIL.

RELINK is a function used by the compiler.

The value of the function is th~ r~md~nder
given vhen d~vidin9 n1 ty n2.

This function removes all occurrences of the
flag 'at' (a literal atom used as a fla~
on atomic property lists) from the property
list of each atomic symbol in the list.
,When the flag is found, the pointer in the
preceding ele.ent of the property list is
modified to delete the flag from the list. tt
The value of REftFL1G is NIL.

This function removes the atom 'at' trom
the OBLIST. It causes the syabol and all
its properties to be lost unless the
symbol is referred to by an active list
structure. When an atcmic symbol has been
removed, subsequent reading of its namE
from input vill create a different atomic
symbol.

REftPROP searches the plcperty list of
'at' looking for all occurrences ot the
atomic symbol lind'. If the atomic symbol
is found, it is removed from the list
along with the succeeding element.
R9moval is accomplish~d as described ~n
REftFLAG. The value of REftPBOP is NIL •

(see S~ction 6.2.2) •
This function is used in the PROG ieature.
RETURN is the normal end of a program. Thp
argument of RETURN is evaluated and this is
the value cf the program. No further
statem@nts are executed.

REVERSE causes the top level of list to be
reversed. Thus, aEVERSE ((A (B • C») ::
((B • C) A).

RLIT takes a character-object as an
argument and puts the corresponding
character into an internal character buffer.

22

R NUM B (cb)

• RPLACA (x1 ,x2)

RPL1CD (xl ,x2)

SASSOC(x,alst,fn)

Executinq RLIT sequentially viII cause a
string of characters to be constructed in
the character buffer. MKATOft can then be
called to make a literal atom out of it.

RNUftB takes one of these charact~r-objects
a~ an argument: +, -, E, 0, 1, 2, ••• , 9.
RNU~B will construct a partially transldt~rl
number in the internal character buffer.
Remember that the character-objects 0, 1,
2, ••• , 9 are different from th~ numbers 0,
1, 2, ••• , 9. The sequence of character
objects presented to RNU~B, one at a time,
must represent a meaningful integel: or
floating-point number. KKATO! can then
be called to make a numeric atom out of
the information in the character butfer.

RPLACA replaces the CAR of the LISP cell xl
with x2. This provides a method of
changing list structures without using
CONS, and thus creating no new LISP cells.
The value is the new x which can be
described as CONS(x2 (CDR(xl».

BPLACD replaces the CDR of the LISP cell
x1 with x2, as described in BPLACA. The
value is th~ new x which can be described
by CONS «CAR x 1) x2).

SASSOC search~s alst, which is a l1st of
dotted pairs, for the pair WhOSE f~rst
element is equal to x. If such a pair is
found, the value of the function is this
pair. otherwise the value is the function
of no arguments, fn.

tt C SELECT(q, (ql x1), ••• , This function is used internally by the
(gn xn) , x) compiler.

SET(x1,x2)

C SETC(x1,x2,x3)

S ETQ (xl, x2)

N SPEAK()

The value of x1 is bound to the value of
x2 on the current association list. The.
value is the value of x2.

This function is used internally by the
compiler.

SETQ is like SET except that the first
argument is quoted ,(not evaluated).

SPEAK gives the number of CONS tunction
calls since the CONS counter vas last reset.

23

C SPECIAL (list)

508L1s (alst, x)

C' SUBST(xl,x2,x3).

SUBl (0)

TERPRI ()

TIKES(n1, ••• ,nn)

TRACE (list)

I

T TREAD (x)

TTAB (n)

C UNCOKftON(list)

N UNCOUNT()

C UNSPFCIAL(list)

UNTRACE (list)

V ERBOS (p)

N was (ddname)

(see section 7.2.3)

lIst is a list of dotted pairs,
«ul.vl) (u2.v2) ••• (un.vn». The value
of SOBLIS is the result of substituting
each v1 for the corresponding u1 in x.

The value of SUBST is the result of
substituting xl for all occurrences of
the S-expression x2 in the S-expression x3.

The value of SUBl is n-1.

This function terminates the print line.

The value of TIMES is the product of the
arguments.

The argument of TRACE is a list of functiO ••
After TRACE bas been executed, the argumen
and ~alues of these fUDctions are printed
each time the function is entered. The
value of TRACE is NIL.

(see Section 9)

TTIB moves the current output cwcsor to
the nth p,0sition in thE output tuffer.
Whatever is PRINTed next vill appear
starting at the given cclumn.

· (see Section 7.3.2)

UNCOUNT turns off the CONS counter.

(see Section 7.3.2)

This function remove$ TR1CEing from all
functions in the list. The value of
UNTRACE is NIL.

VERBOS controls the printing of garbage
collection messages. VERBOS(HIL) ~urns
off the messages and VERBOs(T) turns the
messages on. The value of VERBOS is NIL.

(see Section 6. 1. 5)

24

•

•

•

XTAB(n)

ZEROP (0)

XTA~ moves the current output cULsor 'n'
characters to the right. The argument
must be a positive integer. Whatever is
PRINTed next viII appear starting 'n'
columns to the right of the end of
whatever vas last printed (usin9 PRIN1) •

ZEROP takes a number for its argument.
It returns T if the absolute value of
its argument is less than 10**-6, and
NIL otherwise.

S~veral atoms have predefined values (APVALS) in LISP/360. These
~toms and their corresponding values are as follows:

ALIST
Bl.ANK
BPS

COM"'
DASH
DOLLAR
EQSIGN
F
LPAR
NIL
OBLIST
PERIOD
PLUSS
RPAR
SLASH
STAR
T

association list
tlank
start and end of binary program spac~
(see SEct ion 7.2)
•
s
=
NIL
(
NIL
object list

+
)

/
*
T

25

3.3 ~hA£~£te~obj~£!§

The following character-objects are defined in the system.

blank (! X 4

A + $ y 5

B * Z 6

c &) unprintable 7

D J '. S • ,

E K -. ~ 9

F L · ·
G l'I I > •
H N S 7 ~

I 0 T 0

~ p U 1 =

Q V 2 It

< R V 3

The 'unprin.table' character has no graphic symbel on the printer.
Its punched card code is 12-11. READCH viII translate anyone of the
256 characters available on the 18ft System/360 into one of the aoove
mentioned 64 character-objects. Lover-case letters are translated
into upper-case letters. Note that READ does not perform this
translation.

•

•

26

•

•

In LISP/360 there exist special differences of which the user
should be aware.

s~veral difterences pertain to numbers:

1. Fixed-point numbers may have absolute values up to
2**31.

2. Floating-point numbers may have absolute values
between 10**75 and 10**(-75), including O.

3. Floating-point significanc~ on input is 6 digits.

4. Numbers are considered equal if th~ absolute value
of their difference is less than 10**(-6).

5. Signs are ignored in reading logical numbers •

Some other differences refer to atoms, control cards, and
several functions:

1. Alphanumeric atoms in LISP/360 may have up to 80
characters.

2. CAR of an atom is not junk as in LISP 1.5, but the
address of the full cell list of that atom.

3. No control cards of any type exist in LISP/360.

4. If a PRINT is executed after PRIN1, th~ list gen~rated
by PRINT follows the data output by PRIM1.

5. GO can only be given atomic labels.

6. . READ ignores extra right parentheses •

27

LISP statements can b~written with a free-field format in columns
1-72. The following control statements are necessary to run the LISP
program:

II JOB Statement
1* KEY Statement (omit for remote jobs)
I/stepname EXEC PG"=LISP
//LISPOUT DO SYSQUT=A
//LISPIN DD *

•
LISP Program

1*

Additionally, DD statements for using the compiler may b~ includ~d. •
An example of, these statements is given in Secticn 7.3.1.

The user may also specify 'the percentages for allocation ot core
between free cell storage and binary program space (BPS) in the PAR~
field of the execute statement. The fcllowing statement

will cause 66 percent of the core -available for the run to be
allocated to frea cell storaqe and 34 percent of the core to be
allocated to BPS. The statement

I/stepname EXEC PGft=LISP,PARft='B=34'

will cause the same allocations to be made. If the user specities
both paramet3rs, the 'B' parameter viII take precedence. The d~fault
vdlu~s are F=66 (B=34). Thus, if a user is running interpreted LISP
only and is not using the compiler, '8=0' will give the user
considerably more: core than the default values. •

If the user RESTORE's from any file (including the compil~r), the
values specified in the PARM field are ~verridden by the values
specified when that file vas created. In this case, the F and B
options of the PAR" field are meaningless.

One additional PABM field entry may be made to indicate the amount of
core to be reserved by the system for opening and closing files. The
statement

/Istepname EXEC PG"=LISP,P1H~='R=8K'

vill cause 8*1024 bytes to be reservpd for OS OPEN's and CLOSE's.
This para~eter mdY also be specified without the 'K'. For example,
H~7000 will reserve 7000 bytes. The default value for 'H' is BK.

28

LISP/360 caD read or write data s~ts on anyOS/360 supported d~vicp
with the aid of the functions OPEN, CLOSE, WRS, and RDS. Tht
handling of its buffers can be modified by the functions ASA, INLL,
and OTLL. It is assumed in the following paragraphs that the reader
has a working knowledge of 05/360 Data Management.

All data sets must be 'opened' by the function OPEN before they are
used. A DD statement is used to define the data set and OPEN u~es the
ddname in the statement to refer to the data set. The ddname is the
argument of OPEN. The record length (LRECL), blocksize (BLKSIZ~) and
whether or not the record's tirst character is a control character (A)

•
can be specified in the second argument of OPEN. The tnira argumtnt -
of OPEN specifies whether the data set is to be used for input (INPUT)
or output (OUTPUT).

The following is an example of the opening of the data set def1ned by
the DO statement named DATA:

OPEN (DATA «LRECL • 100) (BLK5IZE • 1000) (A» OUTPUT)

The s~cond and third arguments of this OPEN indicate that the aata
set has a r~cord length of 100 bytes, a block size of 1000 bytes, that
the first character in each record is a control charact~r, and that
the data set is to be used for output. The record length and
the blocksize can be given in the DO statement instead of in OPEN.
All other DeB parameters are fixed by OPEN and they cannot be changed
by the LISP user. The record format is set to fixed blocked (FB),
and the ~rror option (EROPT) is 'accept' (ACC) on input and 'skip'
(SKP) on output.

tt The three ddnames LISPIN, LISPOUT, and LI5PUNCH are given sptcial
significance in OPEN. LISPIN and LISPOUT are opened automat1cally by
the interpreter and therefore need not be OPENed. The second d~d third
arguments are implied by LISPUHCH, and are th~refore ignoLed when OPEN
is given LISPUNCH as its first argument. LISPUNCH implies a record
length of 80 bytes, a blocksize of 80 bytes, that the t~rst character
1n each record is data and not a control character, and that ~he data
set is to be used for output.

One of the atoms SYSIN, SYSOUT, SYSPUNCH and SYSFILE may be us~d a;>
the second argument of OPEN.

~YSIN implies a record length of 80 bytes, a blocksize of 80 bytes,
and that the data set w~ll be used for input.

29

SYSOUT i~pli8s a record length of 133 bytes, a block~ize of 665
bytes, that the first character in each record is a control
character, and that the data set will be used for output.

SYSPUNCH implies a record length of 80 bytes, a blocksize at 80
bytes, and that the data set will be used for output.

SYSFILE implies a record length of 80 bytes and a blocksize of
1600 bytes. SYSFILE should be specified for all data sets used
by CHKPOINT or RESTORE.

OPEN puts an APVAL on the atom which is the filename, with a pointer
to the DCB for that file.

All data sets should be 'closed' by the function CLOSE aft~r use.
CLOSE takes as its arguaent the ddnaae in thp. DO statement that tt
defines the data set. The tvo ddnames LISPIN and LISPOUT refer to
data sets that remain open throughout a LISP job. LISPIN and LISPOUT
cannot be closed by CLOSE. They are, however, closed automatically
~t the end of a LISP job.

6.1.3 !~!jEl

A control character is normally prefixed to all output records
produced by LISP/360. Executing ASA(NIL) stops the prefix~ng of
control chdracters. This is useful when LISP/360 is used to produce
output that will be input to LISP/36~ later on. Executing ASA(T)
will cause LISP/360 to start prefixing control characters again.

6.1.4 Q.I~bJ!ll

For 'n' in the range 0 < n < 120, OTLL (out-line-length) sp~cif1as
how many character positions LISP/360 can use in each output record.
Aft~r OTLL(n) has been evaluated, LISP/360 will fill in exactly 'n'
positions in each output record. Whenever necessary, atoms will be
split across two output records so that precisely 'n' positions are
filled in each output record. This is useful when LISP/3bO 1S used
to produce output that will be input to LISP/360 later on. In a few
Cdses, OTLL is called automatically by-WRS.

WHS (w~ite-select) is an output directing function that takes as its
arqument the ddname from the DO statement that defines th€ deS1r~d
output data set. All output from LISP/360 will go to the aata set
associated with the ddname after was (ddname) has been eXecuted. The
two ddnames LISPOUT and LIS PUNCH are given special significa~c~ in

)0

tt

•

•

WRS. In addition to directing the output to LISPOUT, executing
WHS(LISPOUT) will have an effect similar to executing ASA(X) and
OTLL(100). Similarly, in addition to directiDg the output to
LISPUNCH, executing WRS(LISPUNCH) viII have an effect similar to
executing ASA(NIL) and OTLL(72). For all other files, thE user must
call OTLL explicitly - it does not occur automatically. WRS will
open LISPUNCH if it is not already opened. A data set producea by
PRINT when LISPUNCH vas vrite selected (i.e., WRS(LISPUNC~) 15 in
SYSIN format.

6.1.6 !!1b1nt

INLL (in-line-Iength) specifies how many character pOSitions LISP/360
should scan in each input record. This is useful when LI5P/360 is
required to read data sets that are not in SYSIN format •

RDS (rtad-select) is an inpot selecting function that takes as 1ts
argument tha ddname from the DD statement that defines the desired
input data set. All inpot to LISP/360 will ba taken from the data
set associated with the ddname after RDS(ddname) bas been executed.
'The ddname LISPIN is given special significance in RDS. In addition
to selecting input from LISPIN, executing RDS(LISPIN) will have an
effect similar to executing INLL(72). For all other files, the
user must call INLL explicitly •

31

•

Use of the LISP assembler (LAP) and compiler can decrease the runninq
time 0 f a LIS P program (f o-rmerly run in terpreti ve ly) by a tactor of
t roDi eight to t weI ve depending on the pa rticular applica t ion-. How
ev~r, the theoretical diff~rences betwEen compilers and interprEters
impose certain restrictions on what can be compiled. These r€str~c
tions are easily bypassed and are mentioned in the following text
so that the.us~r vill be aware of them as they arise.

The compiler itsAlf calls.the LISP assembler so that once a tunct~on
is compiled it is immediately available for execution. LAP was
wri tten to resemble closely the OS assembler language on the IBM
System/360, with certain modifications. It should be remembered that
LAP is not only used by the compiler, but may be used independently by
the LISP user.

of the instructions available in the OS assembler langua9~ the
following have heen omitted from LAP:

Set program ~ask (SP")
Te st I/O (T 10)
Test and Set (TS)
Read Direct (RDD)
Set Storage Key (SSK)
Supervisor Call (SVC)

Set System Mask (SSK)
Start I/0 (SIO)
Test Channel (TCH)
write Oirect (WRD)
Insert storage Key (ISK)

Whil@ these instructions ar~ not directly available, they still may
be generated by use of the 'Define Constant' (DC) instruction. Also,
no extended mnemonics are available. All sixteen of the registers
are available in LAP, but they must te referenced with an H pretix,
i.e., RO, R1, ••• , R14, R15. In addition, the user may refer to
registers H8, R9, and Rl0 as A, Q, and ", respectively; R5 a£ NILR;
R4 as K4; R15 as PDL; and R7 as PDS. These aliases will become
clear as LAP is described.

The major difference between LAP and OS assembler languagE i~ th~
dvailability of QUOTE cells and SPECIAL cells. These c~lls are
assembled as pointers to the particular quantities they represent.
Carp must be taken in using QUOTE and SPECIAL cells. Exampl~s are
includ~d in this section that illustrate the use of these cell&.
Also, macros have been prepared to aid in their use.

'Define Constant' and 'Address Const~nt' are defined in LAP in a
limited form. They may appear as (DC -logical number-) or
(Ae -s-expression-). No duplication factors or variations are
allowed. AC is assembled as the address of the atom minus the

33

- -----~--- -----

address of NIL. As th€ garbage collector has no way of know~ng
about internals of compiled functions, the expression must be au
dtom on the OBLIST to prevent it from b~ing collected.

DC's and AC'S must be on fullvord boundaries and this is
done in LAP by assembling a NO-OP in front of the constants, if
necessary. If the user desires other instructions on fullword
boundaries, he may specify (CNOP) which inserts a halfword NO-OP
instruction (BeR RO aO), if necessary, to put the next instruction on
a fullword boundary. Also, a reference to an 'immediate' tield, such
as an "VI. can only bea logical (hexadecimal) number. For example,
(MVI 4 (R1), OBI).

There is no indirect referencing in LAP. The use of * or *.q, etc.,
(e.g., LA *+4 or LA NA~.4) is not allowed. All locations referenced
must be labeled at the point of reference.

LAP is invoked by calling the routine LAP360. It takes two arguments.
The first is a list of LAP instructions, the second is a list of
dotted pairs representing an initial symbol table or NIL (usually tt
NIL). The first member of the first argument is a list ofthr~e
elements -- first, the name of the routine being defined; second, the
type of function (either SUER or FSUBR); and the third, the number
of arguments. After this member comes the rest of the instructions,
aach enclosed in parentheses.

Any technique can be used for passing arguments between two user
defined routines. Hov~ver, since it is sometimes necessary to
communicate with the interpreter routines, the following scheme is
preferred as it is the method used by the interpreter. As tor the
actual call to another routine (once the arguments are established),
this is done by the macro *LINK which will be descrited later.

If there is only one argument, it is passed in register A (a~ias for .
Ha). If there are two arguments, they are passed in A and Q (dlidses.
for R8 and R9). If there are more than two arguments (up to a maximu
of twenty-two), there is a reserved ar€a in core twenty words long
called lRGS in which the user can place the third, fourth, ~tc.,
arguments. IRGS may not be referenced directly, but its address is
perllanentlylocated at eight bytes past R12. Therefore, to store the
contents of ao as the third argument. code

(L " 8 (RO R 12)) (ST RO O(RO ft»

The value of a function i~ always returned in register A.

34

••

•

Although all registers have been defined as usable, care must be taken
in the use of some of the.~ The following describes those of special
interest:

&3

RS . (N.ILR)

R15

RB, &9 (I,Q)

R10 (ft)

R4 (K4)

R7 (PDS)

&6

- is used as a base register to cover the extent of
the LAP routine.

- contains NIL and should never·be altered from that
value.' It may be used to store NIL in locations
or' to load other registers with NIL.

- is the temporary pointer to the push-dowD list
for co.piled code.

- as mentioned above, are used for passing
arguments. These registers may be used treely
in routines and need not be restored •

- is completely free for any general use.

- contains the number 4. It may be used locally but
must be restored outside the scope of the
i.mEdiate routine.

- has meaning only for the compiler and aay
be used freely in LAP. It II ust be restored
if it is used in conjunction with the
co.piler.

- points to the next available free cell. It
should never be changed.

&11, 812, Rll - are used as base re9iste~s for the interpreter.
They must be restored.

RO, Rl, B2, R14- are completely free for general use •

It should never be assumed that any free register vill be saved when
calling another function, even between two LAP defined user routines.

35

7. 1.4. 1 y§~~tli!!eg_~!.Q§

Macros may be defined for LAP by doing a DEFLIST of a LAMBDA
.~finition with the property MC. The LA"BDA definition must have
one argument which will become a list of the arguments to the
macro. The value of the macro should be a list of instructions to
be inserted. For example:

DEFLIST («*SAVE (LAftBDA(x) (LIST (CONS (QUOTE 51) (CONS (CAR X)
(QUOTE (0 (R7»») (QUOTE (BXH R7 K4 0 (R12»»»)MC)

Then the instruction (*SAVE R15) beccmes

(5 T' R 15 0 (R 7))
(BXH R7 K4 0 (R12»

Macros may be given any name that the user desires, except, of course,
it cannot be the same as a valid instruction mnemonic. The system tt,
defined macros all begin witb '*' for ease of recognition.

(*SAVE Rx)

(*UNSA ~ Ry)

- saves register x on an internal push
down stack. It should be used with
care.

- pops up the top item on the stack and
stores it in register y.

(*SAVE Bx) and (*UNSAVE By) are used principally in recursiv~ functions.

(*LOAD Rx (QUOTE ••• »

(*L01D Hx (SPECIAL Z»

(*STORE Rx (SPECIAL Z»

- is used to load QUOTE cells. QUOTE
cells are in core relative to NIL.
Therefore, this macro expands to

(L Rx (QUOTE ••• »
(AB Bx NILR)

- is used for loading SPECIAL cells.
The macro expands to

(L Rx (SPECIAL Z»
(L Rx 0 (NILB Rx»

- is used for storing SPECIAL cells.
The macro expands to

(L 11 (SPECIAL Z»
(ST Rx 0 (NILD !»

36

tt

•

•

(*BETURN NIL)

(*LINK FN i)

Note: M is changed when using this
macro.

- is used to exit a LAP routine. This
macro tranches to a particulac place
in the interpreter. It expands to

(Be 15 48 (RO R12»

Note: *RETURN is the only way to
end a LAP routine. 'Falling thcough
the ~nd' of a routine is incorcect.

- is us€d to call function FN with Ii'
argument s.

Two other macros, *ftOVE and *REftOVE are used principally by the
compiler and will be described in that section •

31

7.1.5

Define SETC such that (SETC X «A,l) (X,2) (Y,L»), 7) modifl.es the
second argument to «1,1) (X,7) (Y,L», i.e., if the second argument
is the ALIST, we arechanqing the bi.ndinq of variable X.

LAP360 « (SETC SUBR 3)

Explanation:

(L [It 8(RO 812»
(L' ROO (R 0 ft»
(S.T BO TEftP)
(ST MILD O(RO M»
(*LINK SlSSOC 3)
(L RO TEf'P)
(ST RO q (BO A»
(*RETURN NIL)

TE~P (DC OX)
) NIL)

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.

1. Defines SETC as a SOBR with 3 arguments.

2. picks up the address of ARGS to find the 3rd argument.

J. Puts 3rd argument in RO.

4. stores RO in temporary location.

5. sets lrd argument to NIL.

6. Calls SASSOC which has the same first tvc arguments as dOElS

SETC, hence they remain in A and Q and SASSOC's third
argument remains in NIL for this case. SlSSOC will return a
pointer to the dotted pair whose CAR contains the first
argument.

•

7. Picks up the saved value in BO (this was SETC's 3rd argument).

8. and stores it in CDR of the dotted pair.

9. Returns from the functions. Note that SETC's value ~s the
dotted pair since that is wbat is in A.

10. Definition of the temporary location.

1'. Closes the routine with NIL in the symbol table.

It should be pointed out here that the value of LAP360 ~s th~
tinal symbol table of local labels relative to the beginning at
the routine in bytes -- hence, in the above example, LAP360 returns
((TEMP.24X» ~- assume that *LINK takes 8 bytes.

38

•

•

1

An area is set aside for binary programs ,produced by LAP. The
size of this 'area is set when LISP/'360 is assembled. However, tilt::
area may be eliminated by ~alling the fqnction BPSZ which incr~d~~s
free cell storage. Th~ atom BPS has two pointers indicating how much
binary program space is available at any given mcment.

The atem BPS mentioned abov~ is slightly different from most utom5a~
is indicated in Figure 8.

. ' . I . . · , I . I • , , • I , . , , . ,
I , . , I 7 I

1 I , I : . I · .1- i

'bi t 0

~ {bits 32·34
~ ~

i L \[2: APVAL I

B P S
011 1 I

I ,
I

ADORl AOOR2

, Figure 8: The Atem BPS

ADDR1 and ADDR2 are pointers to the beginning and the end of b~nary
program space, respectively.

39

The function CO"PILE takes as its argument a list of function names
which are EXPR's or FEXPR's. It co.piles code in BPS for those
functions and replaces the EXPR or FEXPR with an appropriate SUBR or
FSUBR property. It returns the list of function names. Functions
to be compiled are· restricted as follows:

1. GO statements within PROG2's are not allowed.

2~ GO statements within COND's which are within COND's are
not allowed.

3. Free variables must be declared SPECIAL cefore compilat~on.
A function called SPECIAL (~efined in Section 7.3.2) can
be used for this purpose.

4. Variables used which communicate with the interprete~
must be declar~d COMMON before compilation. A fUDction
called COMMON (defined in Section 7.3.2) can be used
for this purpose.

Once compiled, the function is called exactly as it would have bean
called before compilation.

The following control statements should bg used to.access the
compiler:

II JOB Statement
. 1* KEY State.ent (omit for remote jobs)
Iistepname EXEC PG~=LISP
I/LISPOUT, DD 5YSOUT=1
//CMPL DD DSN=SYS3.LISPCMPL,DISP=OLD
//LISPIN DD *
. OPEN (CftPL SYSFILf INPUT)

RESTOR E (CKPL)
CLOSE (CftPL)

•
LISP Program

1*

40

•

•

•

•

BPSLEFT ()

BPSftOVE (n)

BPSUSED (p)

BPS WIP E (fn)

tlPSZ ()

COMMON (list)
UNCOMftON(list)

EXCISE(p)

- returns as its value an integer indicating tht::
number of words remaining in BPS.

- provides the ability to move the current UPS to
within tnt words of the end of all BPS. Th~ ~pac~
vacated is returned to free cell storage. 'n'
must be greater than six and less than the current
amount of binary program space left.

- takes one argument. If p is true, LAF and the
compiler vill print the size of the program
compil~d. BPSUSED(NIL) turns off this mes5ay~.

- takes as its argument the name of an FSUBR ~r
SUBR previously compiled using the COdPILE func
tion. For example, BPSWIPE(ARGNAME) would cause
all functions which have been compiled 51nce
ARGNAftE and including ARGNAftE to be eras~d from
BPS. The next function compiled after BPSwIPE
has h~en called will be located in BPS in the
same space in which ARGNA~E had been compiled and
future compiled functions will follow it.

The use of this function is two-fold. f~rst, it
can be used for functions vhose use is short
lived enabling them to b~ erased after some point
in the rUD. Secondly, it can be used l.n conjunc
tion with the routine BPSCHKPT to create multiple
BPS files. Since these BPSCHKPT files may come
into use at various times in the run, the SUB~
pointers are never destroyed. Therefore, the user
must be sure that the function he calls do€~
exist in °his current BPS. If not, erroneous
r9sults will occur.

takes no arguments. Returns all BPS to fre~ cell
storage (for jobs requiring a lot of free cell
storage and not ne~ding the compiler or LAP).

- takes a list of variables as arguments and gives
or takes away the pro;?erty 'common' tor t:ach of
them.

- takes one argument. If the argument i~ NIL, thE
compiler is EXCISED and the ~pace ddd~d to tree
cell storage. If the argument is tLue, the
compiler and LAP are EXClSED. The UStr may call
EXCISE twice. For example,

EXCISE (NIL) EXCISE (7)

41

OPTI"I ZE (p)

OVOFP()

OVON ()

PRI NLAP (p)

SPECIAL (list)
UN SPECIAL (list)

takes on~ argument. If the argument ~s T,
th~ function causes optimization of com~~~~d
code. However, it does slow down the comp~lation
process. OPTIMIZE (NIL) is the defaul t.

- takes no arguments. -In compiling, a tYPb-8
overflow or underflow error may occur frequently.
This is not an error, but OVOFP vill sto~ the
message from printing.

- takes no arguments. This function restores the
overflow message.

- takes one argument. If the argument 1s true,
the LAP produced by the compiler will be printed.

- takes a list of variables as arguments and gives
or takes away the property 'special' tor each of
them. . •

If the user wishes to see the code produced by a compiled function h~
can do this by saying PRINLAP(T) before the compilation. Two
compiler macros *"OVE and *RE"OVE vill be noticeable in all compil~d
routines. These macros set up and restore the push-down list upon
entering and lea ving the routines. The user will also notice many
BAL's to a number of bytes past B12. This area contains interpreter
defined routines to handle SPECIAL, CO~ftON and FUNCTIONAL ar9u~€n~s •

•

42

•

•

7.3.4 !g~~_~{~~£i12~gng_!§§~~~!g!-BQ~lin~§

The following table isa list of the names of the routines us~d by
the compiler and a~semblE?r. Care should he taken in using I:outiues
with the same names as th~se, for if they are redefined by the user,
the compil~r will call the wrong routine. Where indicated, th8
'*_' and ,**. are part of the atom's name.

COMMON *_ASSEMBLE * _PAL Art
COMPILE *_ATTACH *_PASSONE
COM 1 *_CALL *_PAl
CONC *_CEQ *_PA2
MAP *_CHCOMP *_PAJ
"APCON *_COPl2 *_PA4
OPTIMIZE *_COMBOOL * _P"A5
ovopp *_COPICOND * PA6
OVON *_CO"LI5 *_PA7
SELECT *_COl!P * PAB - , SPECIAL *_CO"PACT * PA9
UNCOft~ON *_COftPLY *_PA11
UNSPECIAL *_COMPROG *_PA12
**CALL *_COftVAL *_PA14
**COMCOND *_DELETEL *_PHASE2
**COrIPLY *_lABLEB *_Pll
**COl!PROG *_LAC *_PROGITER
**PAFORrtl *_LAP360 *_P12
**PAl *_LOCAL *_P13
**PHASE2 * LOCATE *_QSET
**5 PECIAL *_LONG *_QTCL
**UNSPECIAL * LOCK *_REGSET -*_OPTFN *_SPCL

*_PAPORl! *_STOBE
* PAFOR!!1 -
*_PAIRrIAP

4]

Garbage collection refers to the process by which currently unused
LISP cells in pes are returned to the free cell list. The process
is initiated whenever the free cell list is empty.

The first phase invclves marking within the confines of the txee
cell storage area all LISP cells which are in use as part of some
list structure. The group of pointers in the LISP syst~m which
reference all active ~ata structures are referred to as base
pointers. For each base pointer, the system starts with the LISP
cell pointed to by the 'base pointer and ·marks all LISP cells
reached by chaining through the CAB part or the CDR part ~oth
recursively). All c~lls having an address within the free cell
storage area are marked by turning on bit 0 of the CDR part ot
the cell. Fullword cells are detected and only their CDR parts
are chained through. Cells on common sublists which have already
been marked are chained through only once.

The second phase consists of collecting all unused cells and •
placing th~m on the free word list. The free dell storage is now
traversed linearly. Bach cell which is marked has its mdrk bit
turned off. Each cell which is unmarked is placed OD the free
cell storage list, and the number of cells thus collected is
coun.ted.

•

44

•

To use the ORV¥L version of LISP, the user must te familia~ with thp
stanford time-sharing system and with th~ WYLBUR text-edit10q
fac iIi ties.

Once the user has logged on, typing the word LISP in respons~ to a
COMMAND? prompt viII cause the message 'ENTERING STANFORD/LISP' to be
typed. The user is then ready to start a LISP session. The commands
which are available are the following:

1. DO <range)

2. GO

3. SET LONG
SHORT
NONE

This command causes the <range) indicated to b~
executed~ <range) can be any valid WILBUR rang~

(e.g., DO ALL, DO 10/LAST, DO 5, etc.). The
progra~ to be executed must reside in the WYLBUR
working data set.

This command causes execution to be continued atter
an interrupt which was caused by hitting the
attention key •

When executing a function, LISP viII pr~nt th~
following if LONG is in effect:

ARGS

VAL

<name of function)
<list of arguments)

<resulting value ~f functioo)

If the SHORT option is in effect, only th~ re£ulting
value of the function will be printed.

If NONE is in effEct, none of the above will ba
printed and the only output to the term~nal will b~
from a user call to the PBINT function.

SET LONG is the default option •

• 4. EVQ This command provides an immediate mode of
execution. For examfle, if thE user ~ypes

,

~). EXIT

EVe CAR«A B» CDR«(B e»
these two functions will be evaluated imwediat~ly
as opposed to being ex~cuted by a DO command and
~xistinq in the WYLBUR data set.

This command t~rminates the LISP session.

45

To. facilitat~ I/O to the terruinal, d tunction call~d TR~AU is
availablE: to permit dynamic reading of dat.a fx:oDt th4::! tErmiudl"
TREAD is defin~d as follows:

TR EAD (N IL)

TREAD (T)

TREAD (0)

will prompt an '!' and read one S-€Xpre~S1on tLum
the terminal. This S -expression will bccow ~ t h~~
value of the TREAD function.

assumes that the user has pr~viously ~XE~ut€a th~
function PRIN1. The argument of PRINl will th~n
become the prompt in place of the 'I'.

is a dummy cal~ to TREAD which initializes th~
input buffer-so that th~ next TREAD will r~aa
from a nevly prompted line~

As is impli!?cl abov'-', moce :than ont::: S-~=)xpl:Ession mCiY be ty~~d on dh

iniJu t prompted line and success i v E:l US~"I of TREAD will r~ad these •
(~xp['essions con!=;ecutively (unle~)s tbHt't? is an intermitt~llt THEAll (0».

The time-shared version of LISP has
checkpoint and r~store facilitips.
pertaining to these features do not
version. This also applies for the
cArtain other functions which would
time-sha['ed environwAnt.

no file I/O capabilit~&s or
Therefore, all funct~ons
exist in the time-shar=d
compiler, as well as tor
have no meaning in thE

One additional feature is the use of ~h~ chaLacter~object ,>, to
indicd~e 'put enough right parentheses to balance the lett par~nthases
up to thi~ point'. Por example,

CAR«({X Y»»)

may be written as

CAR««(X Y> • To use ')' fo~ other purpo~as, use S$$)$.

46

•

•

'J'h~l foJ,low:illg i.'-; dll c!xdmplp of Q Silll~d,(; LISP proqIdm usiny tiH~ rllU"'~
~harefl 1.1SP SySt.f~lIl a",ailabl'2 on th~](,0/(,., a.t St.anford~ ThE plo<.)Ldnl

t 1 n d !:; t It r:; 1 a s t (~ 1 (:~ In f': n t. 0 f ali st. or ext t. y p.:~ din d 11 up p \:? 1." Cd:::> ~ 1. {; t t (. I. : •
j,:i(li(:.'t::lt~:!:J S}'~t~t11 I't:~~ponses dnd prompts. I,owt>£ CdSP lett€1.~ huVt~ bt.:' Ii

used to indicate information typed hy the U.::5er.

::>'l'ANFORD '1] 'IO/1S/"!1 12:06: 14
NAME? 'w. woodp€cker'
ACCOUNT? IUIHB
:\EYWOHD? 11111
TrpMI~A1? t>OO
C () t'1 1\] AND? s ~: t t (~ l' S t=:'

: 1 is I'
; ~ U l' E it r N I; S'11 A N FOR D I LIS P

.? ,·.u11 t' ct 'to by 1U
10. " (I ~t in ~~ (((1 d S t. (1 d 11 hd d (1)
20 .. "! (co nd ((fln]1 1) roil)
30 .. ";

40. 'f

') O. "!)) })

{ (nuJ 1 c.-Il' 1») (car 1))
(t (last (cdr 1) '))

60. l AT'i'N*·~

do Ct.ll

AHGS
iJ E.F IN 1":

((LAST (LIiMR!Ji\ (L) (CONI> «NULl. L) NIL) «NULL CDl{ L» (CAR L»
('f (LAST (cn~ L)}))

VAL
(,f.,'i S'.l')

.I ~.~ V q .1. as t « .j t: '.. d .~ -i h j k 1 ill n· p q r ;~»)

AHGS
LAST
((A B C- D E G J-J J K 1. M N P Q H S))

... ** AH-tINDEFINED 'i AU 1 All 1 fo;

* ClJB

'" ((L A B C 1) E G H J K L M 14 P Q R S))

*** rrHACE-UACK .FULLOWS

* NIL

* { (L A H C D E G H J K L l'1 N P Q R S))

* (CUH L)
:1C NULL .. ((L A B C 1) E G H J K L tl N P I' R S)) " * ((L A U C D E G H J K L M N P Q R S))
* «(NULL CDR L)) (CAR L»
* «((NULL L) NIL) ((NU iL CDR L)) (CAR L))

47

? mod 30
30. ((NULL CDR L» (CAR L))

ALTERS 7 i (
30. ((NULL (CDR L» (CAR L))

ALTERS ? cr

? do all

ARGS
DEFINE
((LAST (LAMBDA (L) (COND «NULL L) NIL) «NULL (CDR L» (CAR L»
(T (LAST (CDR L»»»»

VAL
(LAST)

? evq last«a bed e 9 h j kIm n p q r 5»
ARGS

LAST
{(ABeD E G H J K L M N P Q R S»

VAL
S

? set short
1 evq last«z y x w v u t s r q d a»

A

'I logoff
EDITING TIME = 0.06 SECONOS
COMPUTE TIME = 2.06 SECONDS
MEMORY USAGE = 92.14 PAGE-SECONDS
I/O "ACTIVITY = 0 UNITS
~LAPSED TIME = 00:04:36
END OF SESSION

48

•

•

•

•

The me~sage 'ARGUMENTS FOB EVALQUOTE ••• 1 and the two s-expr~ss10ns it'
th~ last doublet are always printed before entering EVALQUOTE.

If no errois occur ~uring the evaluation of the doublet, the message
ITI~E xxxxMS, VALUE IS •••• and the value of EVALQUOTE for this
doublet are printed upon return from EVALQOOTE. The time 1ndicdted in
the above message gives the time spent in EVALQUOTE not including time
spent in garbage collection. The time is in milliseconds.

Tracing is controlled by the pseudo-function TRACE, whose ar9um~nt is
a list of functions to be traced. Aft~r TRACE has been executed,
tLacing will occur whenever these functions are entqred. However,
b2cause of the nature of the linkage between comFiled functLons,
once a call by a compiled function to a com~iled function has
b2En executed untraced, it can never be traced again.

The trace-handler prints out the name of a function and a list of its
drquments when it is entered, and its name and value when ~t is
tinished unless that function is a FEXPR or a FSUER. When
tLdcing of certa1n functions is no longer desired. it can b~
terminated by the pseudo-function UNTRACE whose argument lS d
list of functions that are no longer to be tcaced.

The message 'COLLECTED xxxxx CELLS AND STACK HAS xxxx UNIT~ LEFTI is
pLinttd after every garbage collection. The message gives an
indication of the amount of free cell storage freed, and the Slze
of the push-down stack at each garbage collection. The printing
of this message can be controlled by the function VERBOSe

An interrupt supervisor takes care of all program interruptions in
• LISP/360. Se~ the IBM mdnual ~Y2te~L1~~_Prin~1£1€2_Q!_Q£~£~~io~ for

information about system/360 interruptions. The program status word
(PSW), the contents of registers 0-15 and th~ message ·.**ERHOH: CAR

TAKEN OF FUILCELL' are printed if the interruption cod~ is 1 to 7.
A trace-back is thon given of the same type as described ~u S~ction
10.5.2. This typ~ of interruption is usually caused by inaiscr1mindte
use of CAR and CDR past the atomic level. The eXEcution ot th~ doublet

49

that caused, the interruption is halted and a new doublet is read in for
evaluation. Note that .any functions (EQUAL, etc.) which chain
through the CDR of lists do not check for the full cell mark. Thus,
if these functions are appli~d to the CAR of an atom or a prop~~ty
list which contains an FSUBR or SUBR, this type of interruption can
occur. Additionally, this type of interruption can occur durifig
tne trace-back of anothe~ error.

An interruption code of A to F means
occurred. This type ot interruption
UNDERFLOW OF TYPE xx' to be printed.
Execution of the function that caused
,resumed after the interrup~ion.

that an overflow or underflow
causes the message ·*.*OVER- OR

xx is the interruption code.
the overflew' cr underflow is

•
If the scanner finds syntactical ~rrors in an S-expression, it ins9rts
special atoms at appropriate places in the S-ex~ression. These
special atoms are used as fellows:

ERRB

DOTEFR1

DOTERR2

A '.' (dot) 9ncountered as the first non-bl.dllk
character after a '('.

The second s-expression in a dotted pair is not
followed by a right parenthesis.

A '.' or ,)i encountered as the first non-blank
character after a dot.

The message • •• *R1-SYNTAX ERROR' precp.des the printing of
S-expression with the ~rror. A doublet containirg one or
syntactical errors causes the following message to appear
ENCOUNTERED WHILE READING. CONTINUING WITH NEXT DOUBLET'
evaluation of the doublet is skipped.

the
more
, ***ERRORS
and

50

•

•

•

..

When an error occurs during execution, the following type ot error
diagnos"tic is printed:

***error 'code-error message
S-expression 1
s-expression 2

.**TRAC!-BACK FOLLOWS
S-expression 3

s-expressions 1 and 2 are related to the type of error ancount~red
dnd are described below with the error messages. The trace-back
includes the lists bound on the stack at the time the error occurred.

The most recently used list in the stack (the list on top) is ~rinted
first. Therefore, the first few lists viII usually give a good
indication of what caused the error.

As an example, assume that none of the functions being interpr~t~d are
using the PROG-feature and that TRACE bas not been ex€cuteQ. Und~r

these conditions, the lists bound on the stack will be alternately
function calls and association lists. When reading the stacK,
the user should keep in mind that the innermost functions ar~
evaluated first, even though the functions are interpreted trom the
outside in. Therefore, the calIon the function being evaluated when
the error occurred will be near the top of the stack, if the call to
that function is being interpreted.

If TRACE is executed within a LISP job, the name of dn BXER thdt was
called will be found on the stack betw€€n the d~tinition ot the EXPL
and the corresponding association list. If a function uS1ng th~ PROG
feature was called, it will cause the fcllovinq lists to "appear ill the
stack printout:

Tbe association list.

The GO-list.

A list of the unint~rpreted statements in the function starting
with the one to be evaluated when the error occurred.

The complete argument of FROG (omitting the name of the
funct ion) •

51

The following is an example of the error that might occur when using
the PROG definition shown. After the function has been d~f1ned and
cdlled, the error messages given below would be printed. Note thdt
the four items after the trace-back message are the ones d~scr~bed
above.

DEFINE(«TEST2 (LAr.BDA (X) (PROG (Y)
(SETQ Y (C AR X»
(SETQ Y (CONS X Y))
(SETQ Y (CAR Y»
(SETQ Z (CAR Y» »»»

TEST2«A Be»

After execution has started, the following will appear:

***A5-SET VARIABLE UNDEF (see Section 10.5.3)
* Z * «Y A B C) (X A B C» •

•• *TRACE-BACK FOLLOWS
• ((Y A B C) (X A B C»
* NIL
• «SETQ Z (<:AR I»)
• {(I) (SETQ Y (CAR X» (SETQ y. (CONS X Y» (SETQ Y (CAH Y» (SETtJ

Z (C AR Y»)

•

52

•

•

A1-CALL TO ERROR
This message IS given if a LISP program calls ERROR. The drqumpnt
(if any) of ENSOR is printed (S-expression 1). The trdce-bacK is
not given with this message.

A2-FUNCTION NOT PEFINED
This mes~age occurs when an atom given as the first ar9umen~ ot
APPLY does not have a function definition either on its property
list or on the association list.

s-~xpression 1 is the atom in question.
s-expression 2 is the association list.

AJ-NO ARGS OF COND TRUE
None of the prepositions following COND are true •

s-~xpression 1 is the list of the arguments given COND.
S-expression 2 is the as~ociation list.

AS-SET VARIABLE UNDEF
The function SET or SETQ was given an undefined program variabl~.

s-expression 1 is the program variable.
s-expression 2 is the association list.

A6-UNDEF LABEL IN GO
The 1 a b ~ 1 9 i van as the a r gum e n t 0 f GO has not be end ~ f in t d •

S-exFress~on 1 is th~ label.
S-expression 2 is the list of the labeled statements.

A7-MORE THAN 22 ARGS
More than 22 argum~nts were given to an EXPR cr a SUBR.

s-expression 1 is th~ list of arguments to the function •

A8-UNDE~INED VARIABLE
A variable is not bound on the association list, nor does it bav~
an APVAL. This error occurs in EVAL.

s-expression 1 is the variable in question.
s-expression 2 is the association list.

A9-FUNCTION NOT DEFINED
The form given as the fir~t argument to RVAL hdS as ~ts t~[~t
01ement an atom with no function definition either on 1ts
property list or on the association list~

S-expre~sion 1 is the atom in qUEstion.
s-expre$sion 2 is th~ association list.

53

D2-FILE CANNOT BE OPENED - NO STORAGE AVLBL
OPEN vas asked to open d data set (file) when there ~as no storagd
available in which to put the DeB for that data set. CLOSE
releases the space taken up by the DCB of the data set that ~t
is closing.

S-expression 1 is the ddname given aa the first argument to OPEN.

D3-RDS FILE NOT OPENED
D4-WRS FILE NOT OPENED

A data set (file) must be opened by OPEN before LISP/360 can write
or read froll it.

S-expression 1 is the ddnamegiven as the argument to RDS or WHS.

D5-CHKPOINT FILE NOT OPENED
u6-RESTORE FILE NOT OPENED

A data set (file) must' be opened by OPEN be·fore CHKPulN'r or REST0&ia
can use it. •

S-expression 1 is the ddname given as the argument to CHKPOINT or
RESTORE.

D7-RESTORE GIVEN FILE INCO!PATIBLE WITH SYSTE! SPECIFIED

F2-TOO MANY ARGUMENTS-EXPR
F3-TOO FEW ARGUMENTS-EXPR

The wr,onq number of arguments has be-en given to a definad tUliction.

S-~xpression 1 is the list of th~ function variables.
s-expression 2 is the list of supplied arguments.

F2-TOO MARY ARGU~EN!S-SUBR

f3-TOO FEW ARGU"ENTS-SUBR
The wrong number of arquments has been given to an SUBR.

S-expression 1 is the function.
S-expression 2 is the list of arguments.

G2-PUSHDOWN STACK OVERFLOW
•

Recursion is very deep. Non-terminating recursion will Cduse this
error. S-expressions 1 and 2 will, if given,odepend on where in
tb~ interpreter thA st~ck was last used. The trace-back ~s not
given on this error. The message' lIN THE GAREAGECOLLECTOR' may
foilow immediately after this messag€. This means that thcr~ was
not Enough stack left tor the gdrbag~ collector to work witt. WhE:H
the garbage collector vas called. This is a fatal errOL a~d
LISP/300 gives up control to os.

54

•

•

GC2-STORAGE EXHAUSTED
ThE garbage collector is unable to find any unused cells in lr~~
c~ll storage. S-expressions 1 and 2 are the arguments of CONS.
The trace-back is not given on this error. This is d latal ~rLor
and LISP/360 gives up control to as.

IJ-BAD ARITHftETIC ARGU!ENT
An arithmetic routine vas given a non-arithmEtic argument.
S-expressions 1 and 2 will depend on which arithmetic routiue
found the error.

15-ATTEftPT TO RAISE 0 TO 0
This error is caused by trying to execute either EXPT(O,O) or
EXPT(O.O,O).

16-ATTEMPT TO RAISE 0 TO NEGATIVE POWER
This error is caused by trying to execute either EXPf(O,n) or
EXPT(O.O.n), where n is negative •

18-EXPT CANNOT TAKE REAL EXPONE~T
This error occurs when the second argument of lXPT is a floating
point number.

Rl-SYNTAX ERROR
A syntax error bas o~curred while reading an s-expression.
s-expression 1 is' the s-expre~sion in question. The trace-L~ck is
not given on this error. '

R2-BAD BRACKET 'COUNT
An end-ot-file was reacbed while reading an s-express1on.
S-expression 1 is the list as read with need~d brackets (i.~ •• r1ght
parentheses or terminating character in the '$$' notat10n) ~enerated.
The trace-back is not given on this error. This is a tatdl ~rror
and LISP/360 gives up control to OS.

H)-BAD BBACKET COUNT ON USER FILE
An end-of-file vas r~ach€d while reading an S-expression trow d

data set other than IISPIN. S-expression 1 is the list as r~ad
with ne€ded brackets generated. The trace-back is Dot ~iven on
th1s error. The error causes LISP to start reading from LLSPIN.

R5-NAME OR NU"BER TOO LONG
An EBCDIC p~intname or a number is longer than that acc~ptea by the

• interpreter~ Truncation occurs on the right. ODly the messag~
appears for this error.

55

APPENDIX

THE LISP INTERPRETER

~~lg~Q!~[fn;args] = [get[fn;FEXPR] V qet[fri;FSUBR] ~)

eval[cons[fn;args];NIL]

T -> apply[fn;args;NIL]]

~££!y[fn;args;a] = [

nUll[tn] -) NIL;

atom[fn] -) [get[fn;EXPR] -) apply[expr;largs;a];

. {spread(args]; 3

get[fn;SUBB] -> ALIST:=a; ;

BAL SUh!."l

T -> ap~ly[cdr[sassoc[fn;a; [[];error[A2]]]];args;a];

..

•
~I q(carr tn] ;LABEL] -> apply[caddr[fn]; args; cons(cons(cadr(f n J; c add rl f n]]; a

eg(car(fn];FUNARG] -) apply[eadr[fn);args;eaddr[fn]];

e -j(carr fn]; LAM BD A] -> eval[caddr[fn]; neone(pair[cadr[tn]; a rg s J; d J J;

'r - > a p ply [e val [f n ; a]; a r 9 s : a)]

~y~![form;a] = [

null(form] -) NIL;

numberp[form] -) form;

atom[form] -) [get[form;APVAL] -) car[apval 1];

T -) cdr(sassoc[form;a; ([];error(A8]]]]]:

nq(car[form);QOUTE] -) cadr[form1;2

f:~ q [car [for m]; FUN CT ION] -) 1 i 5 t [FUN A R G ; cad r [for m] ; a]; z

.... q(car(form 1;COND] -> evcon[cdr[tormJ;al:

t'q[carl form];PROGJ -) proq[~dr[form J;a]; 2

56

•

REFERENCES

1. LI~_l~_f!!~ER. Clark Weissman, Dickenson Publishing Comp4uy

2. lh~_1!QgI~!ing_~ngygg~1!~g1--1~~_9~e~atiQn-5D~!~~li£~'t~2~§,
~erkeley, E. C. and Bobr~v, D. G., editors, ".I.T. Press-

4. f£~g~~~ing~1§~2_~ng_1gngY~~2' Bosen, S., editor, MCG~dw
Hill Publishing Company, pp. 455-490

5. j~-1!!~Od~~t~on_12_11~£, Griffith, A. K., University of Floridatt

6. Th~_~~!=~~f-dY~!' Bobrow, D. G., Murphy, D. L., and
Teitelman, W., Bolt Beranek and Newman, Inc.

7. §.l!llW-.LISP 1.:...2.-!l~!!~1, Quam, L. H., Stanford Artificial
Intelligence projEct"

r

8. Lf2.~!!-1:llf_!!~ing_!JlLQ~!L~!1£_.E.€!Q~!!iQ.!L.tl!Ig!2f:g_QI~!!_!!Hi_l~QL§I,
BerDs, R~ I., (soon to be publist.ed)

,.

58

	CERN Writeup, January 1978
	Utah Modifications, January 1975
	Stanford LISP/360 Reference Manual, fourth edition (March 1972)

