(o T)

C-MU LISP

Crispin S. Perdue
and a host of others
2 September 1979

Carncgie-Mcllon University
Department of Computer Science

The work resulting in the LISP system described in this manual and in the manual itself were
funded in part by the Defense Advanced Research Projects Agency under contract No.
F44620-73-C-0074.

X4

Table of Contents

1. LISP-PROPER

1.1 ELEMENTARY
1.1.1 OVERVIEW
1.1.2 NUMBER -
1.1.2.1 INUM
1.1.2.2 FIXNUM
1.1.2.3 FLONUM

1.1.3 (QUOTE "E") [FSUBR]

1.1.4 NIL [VALUE]

1.1.5 T [VALUE]

1.1.6 (HELP "wordl1" ... "wordn") [FSUBR]
1.1.6.1 (HELPFILTER word attribules) [FSUBR]
1.1.6.2 LASTHELP [VALUE]

1.2 EVAL-S-EXP

1.2.1 EVAL

1.2.2 APPLY

1.2.3 (APPLY# FN ARGS) [SUBR]

1.2.4 FUNARG

1.25 BCP

1.2.6 (+FUNCTION "FN") [FSUBR]

1.3 LAMBDA-EXP

1.3.1 LAMBDA

1.3.2 (FUNCTION "FN") [FSUBR]

1.3.3 FEXPR

1.3.4 LABEL

1.3.5 LEXPR

1.3.5.1 (ARG N) [SUBR]
1.3.5.2 (SETARG N V) [SUBR]
1.3.6 EXPR
1.3.7 MACRO)
1.3.7.1 (xEXPAND L FN) [SUBR]
1.4 DEFINITIONS

1.4.1 (DE "NAME" "ARGUMINT-LIST" "FORMI" ... "FORMn") [FSUBR]

1.4.2 (DV "atom™ "value™) [FSUBR]

1.4.3 (DEFPROP "[" "V" "P") [FSUBR]

1.4.4 (DEFLIST "L" {"defval"} "prop") [FSUBR]

1.4.5 (DEFSYNON “at1" "at2" "prop"”) [FSUBR]
1.5 CONTROL

1.5.1 CONDITIONALS

1.5.1.1 (COND Clausel Clause2 ...) [FSUBR]
1.5.1.2 (SELECTQ X "Y1" "Y2" .. "Yn" Z) [FSUBR]

1.5.2 MAPPING

15.2.1 (MAP FN L) [LSUBR]
1.5.2.2 (MAPPC FN L) [LSUBR]
1.5.2.3 (MAPCON FN ARG) [LSUBR]
1.5.2.4 (MAPCAN FN ARG) [LSUBR]
1.5.2.5 MAPCONC [L.SUBR]

1.5.2.6 (MAPLIST FN L) [LSUBR]
1.5.2.7 (MAPCAR FN L) [LSUER]
1.5.2.8 (MAPATOMS 1n) [SUBR]

WOEOWPWONNNNOOAOUIOOODSDWWWWWWWNRNN N

(FOR-EACH {MAPfn} "FORMAL" LIST "FORMI"

(SET-OF <var> <list> <predicate>) [MACRQ]
PROGRAMS
1.5.5.1 (PROG "VARLIST" "BODY") [FSUBR]

1.5.5.2 (GO "ID") [FSUBR]
1.5.5.3 (RETURN X) [SUBR]

15.5.4 (PROG2 X1 X2 ... Xn) [SUBR]
1555 (PROGL X1 X2 ... Xn) [SUBR]
1.5.5.6 (PROGN X1 X2 ... Xn) [FSUBR]

1.5.5.7 (SETQ "ID" V) [FSUBR]
1.5.5.8 (SET E V) [SUBR]
1.5.6 SIGNALS
1.5.6.1 (ERRSET E "F") [FSUBR]
" 1.5.6.2 (ERR E) [SUBR]

1.5.6.3 (CATCH "<expr>" {"<label>"}) [FSUBR]
1.5.6.4 (THROW value {"label"}) [FSUBR]

1.5.7 REPETITION

1.5.7.1 DO, FOR, UNTIL and WHILE [MACRO]

1.5.7.2 (EXPAND-DO form) [SUBR]

1.6 PREDICATES
1.6.1 S-EXP-PRED

1 (EQ X Y) [SUBR]
2 (NEQ X Y) [SUBR]
3 (EQUAL X Y) [SUBR]
4 (NULL L) [SUBR]
5 (MEMQ X Y) [SUBR]
6 MEMB [SUBR]
7 (MEMBER X Y) [SUBR]
8 (INP X Y) [SUBR]
9 (CONSP X) [SUBR]
10 (ATOM X) [SUBR]
11 (EQP X Y) [SUBR]
12 (LITATOM X) [SUBR]
13 (PATOM X) [SUBR]
14 (STRINGP X) [SUBR]
15 (TAILP X Y) [SUBR]
16 (BOUNDP X) [SUBR]

NTIFIERS

AL
1
.1
J.
.1,
.
1.
1
1.
1.
1.
1.
1L
R
1.
A
1.6.2 QUA
2.
2.
2.

.. "FORMn") [MACRO]

1 (SOME SOMEX SOMEFN] SOMEFN2) [SUBR]

2 (EVERY EVERYX EVERYFN! EVERYFN2) [SUBR]

3 (EXISTS <var> <list> <predicate> {<next>}) [MACRO]
6 2.4 (FORALL <var> <lisl> <predicate> {<tail-fn>}) [MACRO]

1.6.2.5 (NOTEVERY EVERYX EVERYFNI EVERYFN2) [SUBR]
1.6.2.6 (NOTANY SOMEX SOMEFN1 SOMEFN2) [SUBR]

1.6.3 NUMERICAL-PRED
1.6.3.1 (NUMBERP X) [SUBR]
1.6.3.2 (INUMP X) [SUBR]
1.6.3.3 (NUMTYPE X) [SUBR]
1.6.3.4 (ZEROP X) [SUBR]
1.6.35 (=0 X) [SUBR]
1.6.3.6 (ONEP X) [SUBR]
1.6.3.7 (MINUSP X) [SUBR]
1.6.3.8 (= X Y) [SUBR]

14
14
15
15
15
15
15
15
16
16
16
16

16

16
16
17
17
17
18
18
18
18
19
19
19

19

19
19
19
20
20
20
20
20
20

20
20
21
21
21
21
22
22

22

22
22

- 22

22
22

22

9 ((;RFMERP X1 X2 ..Xn) [LSUBR]
10 ¢ .. Xn) [LSUBR]

oy (xGRr/\T X Y) [SUBR]

12 (LESSP X] X2 .. Xn) [LSUBR]
303 (< X1 . Xn) [LSUBR]

1.6.3.14 (+1.E£SS X Y) [SUBR]

1.6.4 BOOLEAN-FRED

1.6.4.1 (NOT X) [SUBR]

1.6.4.2 (OR X1 X2 ... Xn) [FSUBR]
1.6.4.3 (AND X1 X2 ... Xn) [FSUBR]
1.6.4.4 (BOOLE N X1 X2 ... Xm) [LSUBR]

1.7 FUN-ON-S-EXP

TTING-COMPONENTS

.1 (CAR L) [SUBR]
(CADR s-exp) [SUBR]
(CDR L) [SUBR]
(LAST x) [SUBR]
(NTH X N) [SUBR]

3

CNNNNNMm

NM!\)NM'\)NN:'—"—"-'--'-

BUILD-NONDESTRUCTIVE

1 (CONS X Y) [SUBR]

2 (XCONS X Y) [SUBR)

3 (NCONS X) [SUBR]

4 (LIST X1 ... Xn) [FSUBR]

5 (QUOTE! "FORMI™ ... "FORMn") [FSUBR]

6 (+APPEND X Y) [SUBR]

7 (APPEND X1 X2 ..Xn) [LSUBR]

8 (COPY X) [SUBR]

9 (KWOTE X) [SUBR]

BUILD-DESTRUCTIVE

1 (NCONC X1 X2 ... Xn) [LSUBR]

2 (//NCONC L1 ... LN) [LSUBR]

3 (TCONC PTR X) [SUBR]

4 (//TCONC PTR X) [SUBR]

25 (LCONC PTR X) [SUBR]

2.6 (//LCONC PTR L) [SUBR]

2.7 *NCONC [SUBR]

.2.2.8 //+NCONC [SUBR)

.2.29 (NCONC] L X) [SUBR)

.2.2.10 (//NCONCI L X) [SUBR]

.2.2.11 (ATTACH X L) [SUBR)

.2.2.12 (/JATTACH X L) [SUBR]

.2.2.13 (MCRGE DATA! DATA2 COMPAREFN) [SUBR]
.2.2.14 (INSERT X L COMPAREFN NODUPS) [SUBR]
.2.2.15 (//INSERT X L COMPAREFN NODUPS) [SUBR]
"RANSFORM

.1 TRANSFORM-NONDESTRUCTIVE

1.1 (LENGTH L) [SUBR]

.1.2 (SUBST X Y §) [SUBR]

.1.3 (RUVERSE L) [SUBR]

1.4 (LDIFF X Y) [SUBR]
.15
1.6

.2
3
4
5
.D
.1
.1,
2.1.
.
.1
.
1.
1.
1
1.
2
2.
2.
2.
2.

2
.2.
2.
2.
2.
2.
2.
.2
2.
2.

(LSUBST X Y Z) [SUBR]
(SUBLIS ALST EXPR) [SUBR]

\I\J\J\J\l\l\l:U\l\l\l\l\l\l\l\J\J\I\I\J\l\l\l\l\l\l\l\l\l\l\l\l\l\l

CJ(.JO)(M(J(«)(J

22
23
23
23
23
23
23
23
23
23
23
24
24
24
24
24
24
25
25
25
25
25
25
25
25
26
26
26
26
26
26
26
26
27
27
28
28
28
28
28
28
28
28
28

29
29
29
29
29
29
30
30

1
1.8 (REMOVE X L) [SUBR]

.2 TRANSIORM-DESTRUCTIVE
.2.1 (RPLACA X Y) [SUBR]
3.2.2 (//RPLACA X Y) [SUBR]
7.3.2.3 (RPLACD X Y) [SUBR]
.7.3.2.4 (//RPLACD X Y) [SUBR]
1.7.3.2.5 (DREMOVE X L) [SUBR]
1.7.3.2.6 //DRCMOVE [SUBR)
1.7.3.2.7 (DSUBST X Y Z) [SUBR]
1.7.3.2.8 (//DSUBST X Y Z) [SUBR]
1.7.3.2.9 (DREVERSE L) [SUBR]
1.7.3.2.10 //DREVERSE [SUGR]

—— e e e

1.7.3.2.11 (SORT DATA COMPAREFN) [SUBR]

1.7.4 UNDOABLE-FNS

1.7.4.1 aUNDOSAVES

1.7.4.2 (UNDOERRSET "form") [FSUBR]
1.7.5 SEARCH

1.7.5.1 (ASSOC X L) [SUBR]

1.7.5.2 (ASSOC# X Y) [SUBR]

1.7.5.3 (SASSOC X L FN) [SUBR]

1.8 PROPERTY-LIST

1.8.1 (GET I P) [SUBR)

1.8.2 (GETL I L) [SUBR]

1.8.3 (PUTPROP 1 V P) [SUBR]
1.8.4 (//PUTPROP I V P) [SUBR]
1.8.5 (REMPROP I P) [SUBR]

8.6 (//REMPROP 1 P) [SUBR]
8.7 (PLIST x) [SUBR]

8.8 PNAME

1.
1.
L.
1.8.9 PROPERTIES

1.9 IDENTIFIERS

1.9.1 OBLIST
1.9.2 (INTERN 1) [SUBR]

1.9.3 (REMOB "X1" "X2 ... "Xn") [FSUBR]
1.9.4 (REMOBI "id") [SUBR]

1.9.5 (GENSYM) [SUBR]

1.9.6 (CSYM "I") [FSUBR]

1.10 IDENTIFIER-NAMES

1.10.1 (EXPLODE L) [SUBR]
1.10.2 (EXPLODEC L) [SUBR]
1.10.3 (FLATSIZE L) {SUER)
1.10.4 (FLATSIZEC L) [SUBR]
1.10.5 (MAKNAM L) [SUBR]
1.10.6 (READLIST L) [SUBR]
1.10.7 (LEXORDER X Y) [SUBR]
1.10.8 (SUBSTRING str m n) [SUBR]
1.10.9 (EQSTR at! at2) [SUBR]
1.10.10 (EQNAM X Y) [SUBR]
1.10.11 (NTHCHAR X N) [SUBR]
1.10.12 (CHRVAL X) [SUBR]
1.10.13 (ASCII N) [SUBR]
1.10.14 (BIGRATOM n) [SUBR]

7 (SUBPAIR OLD NEW EXPR) [SUBR]

30
30
30
31
31
31
31
31
31
31
32
32
32
32
32
32
32
33
33
33
33
33
34
34
34
34
34
34
35
35
35
35
35
36
36
36
36
36
36

37
37
37
37
37
38
38
38
38
38
39
39
39

e

1.11 ARITHMETIC

1.11.1 (ABS X) [SUBR]

1.11.2 (ADDI X) [SUBR]

1.11.3 (11 X) [SUBR]

1.11.4 (+DIF X Y) [SUBR] LoR

1.11.5 (DIFFERENCE X1 X2 ... Xn) [MACRO]

111.6 (- X1 .. Xn) [LSUBR]

1.11.7 (MINUS X) [SUBR]

1.11.8 (DIVIDE X Y) [SUBR]

1.11.9 (FIX X) [SUGR)

1.11.10 (GCD X Y) [SUBR]

1.11.11 (LSH X N) [SUBR]

1.11.12 (+MAX X Y) [SUBR]

1.11.13 (MAX X1 X2 ... Xn) [LSUBR]

1.11.14 (+MIN X Y)[SUBR]

1.11.15 (MIN X1 X2 ... Xn) [LSUBR]

111,16 (+PLUS X Y) [SUBR] , cume

1.11.17 (PLUS X1 X2 .. Xn) [NAERS]

11118 (+ X1 ... Xn) [LSUGR]

1.11.19 (+QUO X Y) [SUBR] rSUBR

1.11.20 (QUOTIENT X1 X2 ... Xn) [MAERO)]

1.11.21 (// X1 ... Xn) [LSUBR]

1.11.22 (REMAINDER X) [SUBR]

1.11.23 (SUBIL X) [SUBR)

1.11.24 (-1 X) [SUBR]

1.11.25 (+TIMES X Y) [SUBR] ;sua

1.11.26 (TIMES X1 X2 ... Xn) [m%]

1.11.27 (+ X1 .. Xn) [LSUBR]

1.11.28 SCIENTIFIC-SUBR

11.28.1 (SIN X) [SUBR] .

11.28.2 (COS x) [SUBR]

11.28.3 (ATAN x y) [SUBR]

11.28.4 (SQRT x) [SUBR] -

11.285 (LOG x) [SUBR]
1.11.28.6 (EXP x) [SUBR]

1.11.29 OVERFLOW

2
2
2
1.
1.
1.
1.
1.

1.12 (ARRAY "ID" TYPE (1 B2 .. Bn) [FSUBR]

1.12.1 (EXARRAY "ID" TYPE Bl B2 ... Bn) [FSUBR]
1.12.2 (STORE ("ID" i1 i2 ... in) value) [FSUBR]

1.13 MEASUREMENT

1.13.1 (METER "F1" ... "Fn") [FSUBR]

1.13.1.1 (UNMETER "F1" ... "Fn") [FSUBR]
13.1.2 7/MC1
13.1.3 BREAKIM [SUBR]
13.1.4 (METERS "FI1" ... "Fn") [FSUBR]
13.1.5 MCTEREDFNS [VALUE]
(COUNT "{n1" "in2" ...) [FSUBR]
13.2.1 (UNCOUNT "fn1" "n2" ...) [FSUBR]
1.13.2.2 COUNTEDFNS
1.13.2.3 (COUNT! fn) [SUBR]
1.13.2.4 (UNCOUNT ! fn) [SUBR]
1.13.2.5 (# <number> <expression>) [FSUBR]
1.13.2.6 «-ERROR

1.
1.
1.
1.
.13.2
1.

39
39
39
39
39
39
39
40
40
40
40
40

-40

40

- 40

40
40
41
41
41
41
41
4]
41

.41

a1
42
4?2
a2
42
a2
a2
a2
42
43
43
43
a4
a4
a4
aa
a5
a5
45
a5
a5
a5
a5
a6
a6
a6
a6
a6

Vi

1.13.3 (TIML) [SUBR]

1.13.4 (GCTIME) [SUBR]
1.13.5 (TIME-GCTIME) [SUBR]
1.13.6 (SPEAK) [SUBR]

2. INPUT-OUTPUT

2.1 SAVE-STATE
2.1.1 (DSKIN "LIST OF FILE-NAMES") [FSUBR]
2.1.2 (DSKOUTS "FILE]" ... "FILEn") [FSUBR]
2.1.3 (7READIN channel p| int) [SUBR]
2.1.4 (FILE "FILE") [FSUBR]
2.1.5 FILELST [VALUE]
2.1.6 (FILE-FNS FILE) [SUBR]
2.1.7 (CHANGES flag) [FSUBR]
2.1.8 (MARK!CHANGED F) [SUBR]
2.1.9 FILE-SEARCH
.9.1 (GETDEF "FILE" "I1" ... "In") [FSUBR]
.9.1.1 GETDEFPROPS [VALUE]
.9.1.2 GETDEFTABLE [VALUE]
.9.1.3 (GETDEFACT id prop exp) [SUBR]
.9.1.4 (GETDEFEVAL "ID" exp "PROP") [FSUBR]
9.2 (LIBRARY "file1" "file2" ..) [FSUBR]
.9.3 LIBRARIES [VALUE]
.9.4 (GETDEFNS fnl fn2 ...) [MACRO]
.9.5 (USERHELP word] word? ...) [FSUBR]
.9.6 (FINDFNS file-list name-list) [SUBR]
.9.7 (FINDFILES file-list name-list) [SUBR]
KOUT "FILE" "FORMI" ... "FORMn") [FSUBR]
.1 COMMENT [PROPERTY]
.1.1 (OC word {id} {(descriptorl descriptor2
[FSUBR]
.1.2 CEF-COMMENT [VALUE]
3 (DC-DEFINE name id attributes) [SUBR]
4 (DC-DSKIN name id attributes) [SUBR]
.5 (DC-HELP name id attributes) [SUBR]
6 (DC-1GNORE) [SUBR]
7
8
9

Ab—-o—-—-r—-h—-v—-’-—o—-)—-.—-r—-—

2.1.1 DS

mmommmwmmwmmmm-n

——

(DC-USERHELP name id attributes) [SUBR]
DSKIN-COMMENT [VALUE]
(x+* corament) [FSUBR]

10 (TRANSPRINT) [SUBR]

.2 (FILBAK FILE NEWEXT) [SUBR]

.3 +NOPOINTDSK [VALUE]

.4 LISTDEVS [VALUE]

L1
1.
.
A
.1
A
A
.

[oReNoNoNoReNoRoRo oo No OO

PDNNNDNONNONNDNNNON
l—-r——b—l—-o-—b——a—-l——-b—ﬂb—-—-n—o
’—D—-D—-i—bi—-b—-i-—‘—-b—‘t—'h—-h‘-‘

2.2 FILES

2.2.1 FILESPEC
2.2.1.1 (7DEVP X) [SUBR]
2.2.1.2 (7GETDEV filespec) [SUBR]
2.2.1.3 PPN
2.2.1.4 (MYPPN) [SUBR]

2.2.2 SAVE-JOB
2.2.2.1 (SAVE "FILE-SPEC" "EXCISE") [FSUBR]
2.2.2.2 (SETSYS file-spec) [FSUBR]
2.2.2.3 HISEG [VALUE]

.0} <text> <esc>

46
46
46
47

48

48
48
49
49
49
50
50
50
50
50
50
51
51
51
51
51
52
52
52
52
52
53
83
53

54
54
54
54
54
55
55
55
55
55
55
55
56
56
56
56
56
57
57
57
58
58

FE

vii

2.2.2.14 VERSION [SPECIAL VALUE]

2.2.3 (RECORDFILE "FILE") [FSUBR)

2.2.4 Uros
2.2.4.1 (UFDINP CHANNEL PPN) [SUBR]
2.2.4.2 (RDFILF) [SUBR]
2.2.4.3 (LOOKUP DEV FILNAM) [SUBR]
2.2.8.4 (LOOKUPFILE file) [SUBR] -
2.2.45 (FILELENGTH) [SUBR]

2.25 (TY "file1" "file2" ... "filen”) [FSUBR]

2.2.6 (DELETE "FILNAMI" "FILNAM2" ...) [FSUBR]

2.2.7 (DIRF {ppn} {filespec}) [FSUBR]

2.2.8 (DIR PPN) [SURBR]

2.2.9 (RENAME "FILNAML" "FILNAM2") [FSUBR]

2.2.10 (+RENAME FILESPEC1 FILESPEC?2) [SUBR]

2.3 PRETTY-PRINTING

2.3.1 (PP <al> {<a2>}...) [FSUBR]

2.3.2 (GRINDEF "F1" "F2" "F3" ... "FN") [FSUBR]

2.3.3 (PPx 11 12 ...) [FSUBR]

2.3.4 (SPRINT EXPR IND) [SUBR]

2.35 (PPL <varl> {<var2>} ...) [FSUBR]

2.3.6 (GRINL "F1" "F2" ... "FN") [FSUBR]

2.3.7 (PPL% 11 12 ...) [FSUBR]

2.3.8 PRETTYPROPS [VALUE]
2.3.8.1 (PP-VALUE atom value (Quote VALUE)) [SUBR]
2.3.8.2 (PP-FUNCTION atom function-defn fn-prop) [SUBR]
2.3.8.3 (PP-RMACS atom readmacro-defn (Quote READMACRQ)) [SUBR]
2.3.8.4 (PP-DCCOMMENT ID VAL PROP) [SUBR]

2.3.9 PRINTMACROQ
2.3.9.1 (PP-COMMENT exp) [SUBR]
2.3.9.2 (PP-FORMAT <e> <n> <flag>) [SUBR]
2.3.9.3 (PP-LABELS exp) [SUBR]
2.3.9.4 (PP-MISER exp) [SUBR]

2.3.10 PRETTY-PRINT-COMMANDS
2.3.10.1 PPCOM [PROPERTY]
2.3.10.2 (P: <props> <x1> {<x2>}...) [FSUBR]
2.3.10.3 (#+PGx) [SUBR]
2.3.10.4 (MBD: <fn> <x1> {<x2>}...) [FSUBR]
2.3.10.5 (FORMS: <x1> [<x2>}...) [FSUBR]
2.3.10.6 (E: <c1> {<c2>}...) [FSUBR]

2.3.11 PRETTYFLG [VALUE]

2.3.12 PPMAXLEN [VALUE]

2.4 INPUT-FNS

2.4.1 (READ) [SURR]
2.4.2 (RDNAM) [SUBR]
2.4.3 (READCH) [SUBR]
2.4.4 (TYD) [SUBR]

2.4.5 (LINFREAD) [SUBR]
2.4.6 (LINEREADP) [SUBR]
2.4.7 (PEEKC) [SUBR]
2.4.8 (UNTYI n) [SUBR]
2.4.9 (TYIO n) [SUBR]
2.4.10 (YESNO X) [SUBR]
2.4.11 (TTYESNO) [SUBR]

58
58
59
59
59
59
59
60
60
60
60
60
60
60
61
61
61
61
61
61
62
62
62
62
62
62
62
63
64.
64
64
64
64
65
65
65
65
65
65
66
66
66
66
66
66
66
67
67
67
67
67
68
68

2.5 OUTPUT-FNS

2.5.1 (PRINT S) [SUBR]
2.5.2 (PRINI S) [SUBR]
2.5.3 (PRINC S) [SUBR]
2.5.4 (TYO N) [SUBR]

2.5.5 (MSG <«il> {<«i2>}...) [FSUBR]

viii

25.6 (TTYMSG <i1> {<i2>} ...) [FSUBR]

2.5.7 (PRINA x {pos}) [LSUBR]

2.5.8 (PRINAC x {pos}) [LSUBR]
2.5.9 (SPACES n {ident}) [LSUBR]

2.5.10 (LINES n) [SUBR]
2.5.11 (PRINL <I>) [LSUBR]
2.5.12 (PRINLC <I>) [LSUBR]
2.5.13 (TERPRI X) [SUBR]
2.5.14 (TAB N) [SUBR)

2.5.15 (PRINTLEV EXPRESSION DEPTH) [SUBR]
2.5.16 (PRINLEV EXPRESSION DEPTH) [SUBR]

2.5.17 (PLEV exp) [SUBR]
2.5.18 7LOOKDPTH [VALUE]

2.6 1-O-CHANNELS
2.6.1 (INPUT "CHANNEL" . "FILENAME-LIST") [FSUBR]
2.6.2 (INC CHANNEL ACTION) [SUBR]

2.6.3 (OUTPUT "CHANNEL" . "FILENAME-LIST") [FSUBR]

2.6.4 (OUTC CHANNEL ACTION) [SUBR]

2.6.5 (INCH) [SUBR]
2.6.6 (OUTCH) [SUBR]

2.6.7 (TTYIN FORMI ... FORMn) [MACRO]

2.6.8 (TTYOUT FORMI ... FORMn) [MACRO]

2.6.9 (GETCHN) [SUBR]
2.6.10 (GIVCHN chan) [SUBR]
2.6.11 (EXCISE) [SUBR]

2.7 1-0-MODE

2.7.1 BASE [VALUE]
2.7.2 IBASE

2.7.3 +NOPOINT [VALUE]
2.7.4 OCTAL-POINT

2.7.5 INTERNSTR [VALUE]
2.7.6 (PGLINE) [SUBR]

2.8 CHARACTERS

2.8.1 COMMENT-CHAR
2.8.2 LETTER-QUOTE

2.8.3 (CHQUOTE n) [SUBR]
2.8.4 (MODCHR CH N) [SUBR]
2.85 (SETCHR CH N) [SUBR]
2.8.6 +DIGITS [VALUE]

2.8.7 +LETTERS [VALUE]
2.8.8 LOWER-CASE

2.9 TTY-CONTROL

2.9.1 (CLRBFI) [SUBR]

2.9.2 (DDTIN X) [SUBR]

2.9.3 (INITPROMPT N) [SUBR]
2.9.4 (PROMPT N) [SUBR]
2.9.5 (TTYECHO) [SUBR]

2.10

2.9.6 (READP) [SUIR]

2.9.7 (ERRCH N) [SUER)

2.9.3 (TALK) [SUBR]

LINE-CONTROL

2.10.1 (CURPOS) [SUBR]

2.10.2 (CHRCT) [SUBR]

2.10.3 (SETCURPOS N [SUBR]

2.10.4 (LINELENGTH N) [SUBR])

2.10.5 LPTLENGTH [VALUE]

READMACRO

1.1 (DRM "CHARACTER" "FUNCTION") [FSUBR]
1.2 (DSM "CHARACTER" "FUNCTION") [FSUBR]
1.3 (/DEREAD number lambda-exp type) [SUBR]
1.4 QUOTE-CHAR

1.5 EDRM [EXPR]

1.6 EVSM [EXPR]

1.7 (PPRM) [EXPR]

1

2.
2.
2.
2.
2.
2.
2.
2.11.8 (P1RM) [EXPR]

l
1
i
1
1
1
1
1

3. ERROR-RECOVERY

3.1 INTERRUPTS
3.2 BREAK-PACKAGE

3.2.1 (BREAK] BRKEXP BRKWHEN BRKFN BRKCOMS BRKTYPE) [SUBR]
3.2.1.1 LASTPQS [VALUE]
3.2.1.2 BRKEXP [VALUE]
3.2.1.3 BRKWHEN [VALUE]
3.2.1.4 BRKFN [VALUE]
3.2.1.5 BRKCOMS [VALUE]
3.2.1.6 BRKTYPE [VALUE]
3.2.1.7 (//BREAK]) [SUBR] .
3.2.1.8 NAMESCHANGED [PROPERTY]
3.2.1.9 BRKAPPLY [SUBR]
3.2.2 BREAK-COMMANDS
3.2.2.1 GO [BREAK COMMAND]
3.2.2.2 OK [BREAK COMMAND])
3.2.2.3 EVAL [BREAK COMMAND]
3.2.2.4 RETURN form [BREAK COMMAND]
3.2.2.5 ~ [BRCAK COMMAND]
3.2.2.6 *~ [BREAK COMMARND]
3.2.2.7 > expr [BREAK COMMAND]
3.2.2.8 FROM?= {form}; [BREAK COMMAND]
3.2.2.9 EX [BREAK COMMAND]
3.2.2.10 USE x FOR y [BREAK COMMAND]
3.2.2.11 F argl arg2 ... argN [BREAK COMMAND]
3.2.2.12 EDIT argl arg2 .. argN [BREAK COMMAND]
3.2.2.13 FIX argl arg2 .. [BREAK COMMAND]
3.2.2.14 ?= argl arg2 .. argN [BREAK COMMAND]
3.2.2.15 ARGS [BREAK COMMAND]
3.2.2.16 HELP [BREAK-COMMAND]
3.2.2.17 TL [BREAK-COMMAND]
3.2.2.18 DO form [BREAK-COMMAND]
3.2.2.19 BKE [BREAK-COMMAND]
3.2.2.20 BK [BREAK COMMAND]

77
77
77
78
78
78
78
78
78
78
79
79
79
79
80
80
80
80

31

81
82
83
83
84
84
84
84
84
84
84
85
85
85
85

85

85
85
85
86
86
87
87
87
88

88
89
89
89
89
90
90

3.2.2.21 BKF [BREAK COMMAND] : S0

3.3 BREAKING 4 90
3.3.1 (BREAK fn) fn2 ..) [FEXPR] 91
3.3.1.1 BROKENFNS [VALUE] 91
3.3.1.2 (UNBREAK x1 x2 ...) [FSUBR] 91
3.3.2 (BREAKIN function {where} {BRKWHEN} {BRKCOMS}) [FSUBR] 92
3.3.3 (TRACE x! x2 ..) [FSUBR] 93
3.3.3.1 #/INDENT [VALUE] ' 94
3.3.3.2 (UNTRACE x1 x2 ...) [FSUBR] : 94
3.3.3.3 TRACLEDFNS [VALUE] 94
3.3.4 (TRACEIN fn {{AROUND $1) (AROUND $2) ...}) [FSUBR] 94
3.3.4.1 (EVL-FIX exp {ype-of-fix) [SUBR] 95
3.3.4.2 (EVL-TRACE exp) [FSUBR] 96
3.3.5 BREAKMACROS [VALUE] 96
3.3.6 (BREAKO FN WHEN COMS) [SUBR] 97
3.4 SPOL 98
3.4.1 (SPOLPT) [SUBR] 98
3.4.2 (SPDLFT P) [SUBR] , 98
3.4.3 (SPDLRT P) [SUBR] 98
3.4.4 (STKPTR P) [SUBR] 98
3.4.5 (NEXTEV P) [SUBR] 99
3.4.6 (PREVEV P) [SUBR] 99
3.4.7 (STKCOUNT NAME P PEND) [SUBR] 99
3.4.8 {(STKNAME P) [SUBR] 99
3.4.9 (STKNTH N P) [SUBR] 99°
3.4.10 (STKSRCH NAME P FLAG) [SUBR] 99
3.4.11 (FNDBRKPT P) [SUER] 99
3.4.12 (OUTVAL P V) [SUBR] 100
3.4.13 (SPREDO P V) [SUBR] 100
3.4.14 (SPREVAL P V) [SUBR] ' 100
3.4.15 (EVALV A P) [SUBR] 100
3.4.16 (RETFROM FN VAL) [SUBR] 100
3.5 ERROR-OTHER : 100
3.5.1 (ERROR E) [SUBR] 100
3.5.2 (ERRORX x) [SUBR] . 100
3.5.3 7PRINFN [VALUE] 101
3.5.4 (BKTRC) [SUBR] 101
3.5.5 (+RSET flag) [SUBR] 101
3.5.6 ERXACTION [PROPERTY] 102
3.5.7 USERERRORX [VALUE] 102
4, THE-TOP-LEVEL 103
4.1 (TOP-LEVEL) [SUBR] 103
4.1.1 TOP-LEVEL-COMMANDS 103
4.1.1.1 RETURN <{form> [TOP-LEVEL COMMAND] 103
4.1.1.2 FIX <event-spec> [TOP-LEVEL COMMAND] 103
4,1.1.3 EDIT <event-spec> [TOP-LEVEL-COMMAND] 103
4.1.1.4 REDO <cvent-spec> [TOP-LEVEL COMMAND] 103
4.1.1.5 EVENT-SPEC 103
4.1.1.6 °~" [TOP-LEVEL COMMAND] 104
4.1.1.7 ?? <event-spec> [TOP-LEVEL COMMAND] 104
4.1.1.8 USE args FOR vars IN event-spec [TOP-LEVEL COMMAND] 104
4,1.1.9 SUBST args FOR vars IN event-spec [TOP-LEVEL COMMAND] 104

forel

Xi

4.1.1.10 UNDO <cvent-spec> [TOP-LEVEL COMMAND] 104
4.1.1.11 NAME <name> <event-spec> [TOP-LEVEL COMMAND] 104
4.1.1.12 RETRIEVE <name> [TOP-LEVEL COMMAND] 105
A.1.1.13 ATTER “name> [TOP-LEVEL-COMMAND] 105
4.1.1.14 BCFORE <name> [TOP-LEVEL-COMMAND] 105
4.1.1.1% FORGET <cvent-spec> [TOP-LEVEL COMMAND] 105

” 4.1.2 (VALUEOF "EVENT-SPECIFICATION") [FSUBR] 105
1.1.3 TOP-LEVELMACROS [VALUE] 105
4.1.4 (CHANGESLICE N) [SUBR] 105
4.1.5 LISPXHIST [VALLUE] 106
4.1.6 LISPXHISTORY [VALUE] 106
4.1.7 USERTOP [VALUE and SUBR] 106
4.1.8 (+xTOP=*x) [SUBR] 107
4.2 (INITFN FN) [SUBR] 107
5. EDITOR 108
5.1 EDIT-ATTN ‘ 108
5.1.1 CURRENT-EXPRESSION 108
5.12 ¢ 108
5.1.3 UP [EDIT-COMMAND] 109
5.1.4 10 [EDIT-COMMAND) 110
5.1.5 = [EDIT-COMMAND] ’ 110
5.1.6 NX [EDIT-COMMAND] 110
5.1.7 INX [EDIT-COMMAND] 110
5.1.8 BK [EDIT-COMMAND] 111
5.1.9 (NTH n) n>0 [EDIT-COMMAND] : ’ 111
5.1.10: : 112
5.1.11 (BELOW com x) [EDIT-COMMAND] 112
5.1.12 (NEX x) [EDIT-COMMAND] 112
5.1.13 EDIT-MATCH" 113
5.1.14 EDIT-SEARCH 114
5.1.14.1 F pattern [EDIT-COMMAND] 115
5.1.14.2 (SECOND . §) [EDIT-COMMAND] 116
5.1.14.3 (THIRD . §) [EDIT-COMMAND] : 116
5.1.14.4 (FS palternl ... patternn) [EDIT-COMMAND] 116
5.1.14.5 (F= expression x) [EDIT-COMMAND] 116
5.1.14.6 (ORF patternl ... patternn) [EDIT-COMMAND] 116
5.1.14.7 BF pattern [CDIT COMMAND] 117
5.1.14.8 MAXLEVEL [VALUE] 117
5.1.14.9 LOCATION-SPEC 117
5.1.14.9.1 § 118
5.1.14.9.2 (LC . 8) [CDIT-COMMAND] 118
5.1.14.9.3 (LCL . 8) [EDIT-COMMAND] 119
5.1.15 EDIT-CHAIN 119
5.1.15.1 MARKLST [VALUE] 119
5.1.15. 2 MARK [EDIT-COMMAND] 119
5.1.15.3 _ [EDIT-COMMAND] 119
5.1.15.4 __ [EDIT-COMMAND] * 120
5.1.15. 5 \ [EDIT-COMMAND] 120
5.1.15.6 \P [EDIT-COMMAND] 120

5.2 EDIT-PRINT 120
5.2.1 P [EDIT-COMMAND] 121

5.2.2 ? [EDIT-COMMAND] , 121

xii

5.2.3 PP [EDIT-COMMAND]

5.2.4 PP+

5.2.5 AUTOP [VALUE]

5.3 EDIT-MOD

5.3.1

5.3.2 INSERT-DELETE
5.3.2.1 (Nel .. em) [EDIT-COMMAND]
5.3.2.2 (A el .. em) [EDIT-COMMAND]
5.3.2.3 (B el .. em) [EDIT-COMMAND]
5.3.2.4 (: el ... em) [EDIT-COMMAND]
5.3.2.5 DELETE or {:) [EDIT-COMMAND]

5.3.2.6 (INSERT el ... em BEFORE . §) [EDIT-COMMAND]
5.3.2.7 (REPLACE S WITH el ... em) [EDIT-COMMAND]

5.3.2.8 (CHANGE § TO el ... em) [EDIT-COMMAND]
5.3.2.9 UPFINDFLG
5.3.3 EMBED-EXTRACT
5.3.3.1 (XTR . §) [EDIT-COMMAND]
5.3.3.2 (MBD x) [EDIT-COMMAND]
5.3.3.3 (EXTRACT S1 FROM §2) [EDIT-COMMAND]
5.3.3.4 (EMBED § IN . x) [EDIT-COMMAND]
5.3.4 MOVE-COPY
5.3.4.1 (MOVE S1 TO com . $2) [EDIT-COMMAND]
5.3.4.2 (MV com . §) [EDIT-COMMAND]
5.3.4.3 (COPY §1 TO com . $2) [EDIT-COMMAND]
5.3.4.4 (CP com . §) [EDIT-COMMAND]
5.3.5 MOVE-PARENS
5.3.5.1 (Bl n m) [EDIT-COMMAND]
5.3.5.2 (BO n) [EDIT-COMMAND]
5.3.5.3 (LI n) [EDIT-COMMAND]
5.3.5.4 (LO n) [EDIT-COMMAND]
5.3.5.5 (Rl n m) [EDIT-COMMAND]
5.3.5.6 (RO n) [EDIT-COMMAND]
5.3.6 (R x y) [EDIT-COMMAND]
5.3.7 (SW n m) [EDIT-COMMAND]
5.3.8 TO-THRU
5.3.8.1 TO
5.3.8.2 THRU
5.4 EDIT-UNDO
5.4.1 UNDO [EDIT-COMMAND]
5.4.2 'UNDO [EDIT-COMMAND)
5.4.3 UNDOLST [VALUE]
5.4.4 UNBLOCK [LDIT-COMMAND]
5.4.5 TEST [EDIT-COMMAND]
5.4.6 7? [EDIT-COMMAND]
5.5 EDIT-EVAL
5.5.1 E [EDIT-COMMAND]
55.2 (I ¢ x1 ... xn) [EDIT-COMMAND]
5.5.3 (## coml com2 ... comn) [FSUBR] -
5.5.4 (COMS x1 ... xn) [EDIT-COMMAND]
5.5.5 (COMSQ coml ... comn) [EDIT-COMMAND] -
5.6 EDIT-TEST
5.6.1 (IF x) [EDIT-COMMAND]
5.6.2 (LP . coms) [EDIT-COMMAND]

121
121
121
121
123
123
123
124
124
124
124
125
125
125
125
126
126
127
127
127
127
127
128
128
128
128
129
129
129
129.
130
130
130
131
131
131
131
132
132
133
133
1338
133
133
134
134
134
134
135
135
135
135
136

€

]

Xiii

5.6.3 (LPQ . Cors) [FDIT-COMMAND] 136

5.6.4 (ORR coms] ... Comsn) [EDIT-COMMAND] 136
5.6.5 MAXLOOP [VALUE] 136

5.7 EDIT-MACROS 136
5.7.1 (M ¢ . coms) [EDIT-COMMAND] 137
5.7.2 (BIND . coms) [EDIT-COMMAND] 138
5.7.3 USERMACROQS [VALUE] 138
5.7.4 EDITCOMSL [VALUE] 138

5.8 EDIT-MISC 138
5.8.1 OK [EDIT-COMMAND] 139
5.8.2 SAVE [EDIT-COMMAND] 139
5.8.3 NIL [EDIT-COMMAND] 139
5.8.4 TTY: [EDIT-COMMAND] 139
5.8.5 STOP [EDIT-COMMAND] 140
5.3.6 HELP [EDIT-COMMAND] 140
5.8.7 TL [EDIT-COMMAND] ' 140
5.8.8 REPACK [EDIT-COMMAND] 141
5.3.9 (MAKEFN form args n m) [EDIT-COMMAND] 141
5.8.10 EDITDEFAULT - 141
5.8.11 (EDITCOMS coms) [SUBR] 142
5.8.12 (EDITRACEFN com) [VALUE and EXPR] 142
5.8.13 (S var . $) [EDIT-COMMAND] 132

5.9 EDIT-FNS 142
5.9.1 (EDITF x) [FSUBR] 142
5.9.2 (EDITE expr coms atm) [SUBR] 143
5.9.3 (EDITV editvx) [FSUBR] 143
5.9.4 (EDITP x) [FSUBR] ' 143
5.9.5 (EDITL L coms alm marklst mess) [SUBR] 143
5.9.6 (EDITFNS x) [FSUBR] 144
5.9.7 (EDIT4E pat y) [SUBR] 144
5.9.8 (EDITFPAT pat fig) [SUBR] 145
5.9.9 (EDITFINDP x pat flg) [SUBR] 145

6. SYSTEM-STUFF 146
6.1 SYMBOL-TABLE 146
6.1.1 (*GETSYM S) [SUBR] . 146
6.1.2 (GETSYM "P" "S" "S2" ... "Sn") [FSUBR] 146
6.1.3 (xPUTSYM S V) [SUBR] 147
6.1.4 (PUTSYM "X1" "X2" .."Xn") [FSUBR] 147
6.1.5 (+RGETSYM X) [SUBR] 147
6.1.6 (RGETSYM P S1 S2 ..) [FSUBR] 147
6.1.7 (xRPUTSYM SYM VAL) [SUBR] 147
6.1.8 (RPUTSYM X1 X2 ...) [FSUBR] 147

6.2 LOAD 148
6.3 DDT 149
6.4 STORAGE-ALLOCATION 149
6.4.1 BPS 149
6.4.1.1 BPEND [VALUE] 149

6.1.1.2 BPORG [VALUE] 149

6.4.2 FREE-STG 149
6.4.3 FULL-WORD-SPACE 150
6.4.4 RPDL ’ 150

6.4.5 GARBAGE-COLLECTION 150

Xiv

6.4.5.1 (GC) [SUBR]
6.4.5.2 {GCGAG X) [SUBR]
6.4.5.3 (GCGOT) [SUGR]
6.4.5.4 FREE
6.4.5.5 (GCMIN nl n2) [SUBR]

6.4.6 (REALLOC fws bps rpdi spdl fs) [SUBR]

6.4.7 (EXPFWS n) [SUBR]

6.4.8 (EXPBPS n) [SUBR]

6.4.9 (EXPFS n) [SUBR]

6.4.10 (EXPRPDL n) [SUBR]

6.4.11 (EXPSPDL n) [SUBR]

6.4.12 (CORE N) [SUBR]

6.5 COMPILED-CODE
- 6.5.1 (DECLARE decll decl2 ...) [FSUBR]

6.5.1.1 (SPECIAL <varl> {<var2>}...) [DECLARATION]
6.5.1.2 (UNSPECIAL <varl> {<var2>} . ..) [DECLARATION]
6.5.1.3 (NOCALL <al> {<a2>}...) [DECLARATION]
6.5.1.4 (CALL <in1> {<(n2>}...) [DECLARATION]
6.5.1.5 (NOCOMPILE exp) [DECLARATION]

6.5.1.6 (GLOBALMACRO <mac1> {<mac2>}...) [DECLARATION]

6.5.1.7 (+SUBR <fnl> {<fn2>}...) [DECLARATION]
6.5.2 (COMPL filel file2 ...) [FSUBR]
6.5.3 (COMPLFNS LIST) [SUBR]
6.5.4 SYM
6.5.5 VALUE
6.5.6 SUBR
6.5.7 FSUBR
6.5.8 LSUBR
6.5.9 COMPILE-HINTS
6.5.10 COMPILE-CRRORS .
6.5.11 COMPILE-IN-LINE
6.5.12 TAG
6.5.13 LAP -
6.5.14 ACCUMULATORS
6.5.15 (DEF-EV-PROP "I" V "P") [FSUBR]
6.5.16 (GETSEGLISP) [SUBR]
6.5.17 (GETSEGLISPCO) [SUBR]
6.6 (DEPOSIT N V) [SUBR]
6.7 (EXAMINE N) [SUBR]
6.8 SYSTEM-BUILD
6.8.1 (HGHCOR X) [SUBR]
6.8.2 (HGHORG X) [SUBR]
6.8.3 (HGHEND) [SUBR]
6.8.4 (UNBOUND) [SUBR]
6.8.5 (SYSCLR) [SUBR]
6.8.6 (INITFL "FILELST") [FSUBR]
6.8.7 (GTBLK LENGTH GC) [SUBR]
6.8.8 (BLKLST LIST LENGTH) [SUBR]
6.8.9 LISPPN [VALUE]
6.8.10 (SETNAM name) [SUBR]
6.9 (NOUUOQ X) [SUBR]
6.10 SYSTEM-STUFF-MISC
6.10.1 (DEFSYM name number) [SUBR]

150
150
151
151
151
151
152
152
152
152
152
152
153
153
154
154
154
185
156
156
156
156
157
157
157
157
157
158
158
159
160
160
160
161
161
161
162
162
162
162
162
162
162
163
163
163
163
163
163
164
164
164
164

XV

6.10.2 (DUMPATOMS file) [FSUBR] 164

6.10.3 FIX1A 165
6.10.4 GVAL [SUBR) 165
6.10.5 GWD 165
6.10.6 INUMO 165
6.10.7 KLIST [VALUE] 165
6.10.8 LAPEVAL o 165
6.10.9 LAPKLST [VALUE) 165
6.10.10 LAPLST [VALUE] 165
6.10.11 LAPQLST [VALUE] 166
6.10.12 LAPSLST [VALUE] 166
6.10.13 (MAKNUM X TYPE) [SUBR] 166
6.10.14 (NUMVAL n) [SUBR] 166
6.10.15 (SIXBIT ATOM) [SUBR] 166
6.10.16 (SIXATM N) [SUBR] 166
6.10.17 QLIST [VALUE] 166
6.10.18 SPECBIND 167
6.10.19 (UUO UUO-TYPE) [SUBR] 167
6.10.20 (UUOPARM N UUO-TYPE) [SUBR] 167

7. MISC 168
7.1 DATES 168
7.1.1 (DATE) [SUBR] 168
7.1.2 (DATESTR) [SUBR] 168
7.1.3 (DATESTRX MSTIME DATE) [SUBR] 168
7.1.4 (MSTIME) [SUBR] 168

7.2 (EXIT flag) {SUBR] 168
7.3 FN-PROPS [VALUE] 168
7.4 LASTWORD [VALUE] 169
7.5 (NILL "X1" "X2" ... "Xn") [FSUBR] 169
7.6 PROBLEMS 169

Index ' 171

Preface

This manual was produced automatically from thion-line help database at Carnegie-Mellon
University. It is the best available source of reference information on the descendant of
Stanford LISP and UCI LISP that is in use at C-MU as of 2 September 1979, The formatting is
sometimes deficient, bu! considerations of formatting and presentation had to defer to the
goal of producing the best available reference information with minimum effort. Any pleasant
aspects of the appearance are probably due to the use of the SCRIBE document formatting
system, by Brian Reid.

In general, this document does not attempt to provide an explanation of the purposes of
the facilities provided. On the other hand, the manual has been carefully organized and this
may help the reader. Also, in certain cases some background information is included.

The maintainers of LISP will appreciale corrections and improvements especially if the
helpful user will sand text that can replace the currant database entries. At C-MU the database
is contained in the files INDEX.#[A311LI5P], where the extension is same as the first

alphabetic character in the name of the function, command, value, etc. described. Send
comments and reports on problems to LISP@CMU-10A.

This system and ils documentation is the result of many people’s work. Maintenance at
C-MU has been mainly done by Cris Perdue, who has made many miscellaneous imbr0vements
and wrote the system that produced this document. Don Cohen is responsibie for the
existence of the on-line help data and maintains it. The top level and numeroﬁs other
improvements were made by Mark Stickel. The pretty printer, the most recent edition of the
compiler, improved printing functions and other features came from the versiocn of UCI LISP
produced at Rutsers University by Rick LeFaivre. This is a descendant of UCI LISP, whose
authors are Robert J. Bobrow, Richard R. Burton, Jeffrey M. Jacobs, and Daryle Lewis. UCI
LISP is a descendant of Stanford LISP 1.6 by Lynn Quam, John Allen, and Whitfield Diffie.
LISP 1.6 in turn was originally an adaptation of an early version of MacLISP at MLT.1 The
top level and editor in particular are directly derived from facilities provided by INTERLISP,
and we owe a dcbt to Warren Teitelman and all the others responsible for that system. The
text of the documentation here is taken in part from the documentation of some version of
each of the sysliems mentioned with the possible exception of MacLISP.

1A MacLlISP manual of appropriate vintage slates thal the LISP described is a direct descendant of the first LISP
intarpreter written for the PDP-6, which was the first program ever written for the PDP-6.

1. LISP-PROPER

1.1 ELEMENTARY

The basic data types of LISP are numbers, strings, identifiers and S-expressions. Numbers
are typed as one would expect. Sirings are surrounded by double-quotes (). Identifiers are
also strings of characiers, but some characters (such as blank, comma, dot, parens) terminate
identifiers unless specially marked. Two special identifiers are T, which is interpreted as the
constant true, and NIL, which is trealed as the constant faise and is used as a list terminator.
S-expressions are defined as either objects of a basic data type or a dotted pair of
S-expressions, written (el . e2). The latter are created by the function CONS. A special case
of an S-expression is a "list” which is either NIL or (<S-expression> . <list>). Lists are written
without dots or their corresponding parentheses, e.g. (1 . (2 . (3 . NIL))} is written (1 2 3).
The interpreter expects function calls to be in the form of lists, e.g. (<function-name> <first

argument> <second argument> ..).

1.1.1 OVERVIEW

Most of the interaction between users and the LISP system is handled by three programs.
The three can be distinguished by their "prompts™: '

<n> or > is the prompt for the TOP-LEVEL, which reads what you type, executes it and
prints the result. Nis just a counter. '

:or n:is a prompt from the BREAK-PACKAGE. The BREAK-PACKAGE is LISP’s debugger. It
. is very similar to the top-level except that it understands special commands to recover from
errors. The break-package counts the number of times it has been entered recursively.

‘ # or n# is an EDITOR prompt. Like the break-package, the editor counts the number of
times it has been cnlered recursively. Unlike the other two, the editor understands only
editor commands, and will not evaluate whalever expression you type to it. '

Fortunately, all three of these programs understand the HELP command. To get help
related to almost any word that is meaningful to LISP, just type "HELP <word>". For example
"HELP TOP-LEVEL" or "HELP BREAK-PACKAGE". An outline of the entire lisp system is built
into the help messages. If you are not sure what word to ask about, type "HELP INDEX" and

get the outline’s top level.

1.1.2 NUMBER

1.1.2.1 INUM

INUMs are integers of absolute value less than 2716. They are represented as pointers
outside of the normal LISP address space.

1.1.2.2 FIXNUM

FIXNUMs are infegers of absolute value between 2*16 and 2°36. The FIXNUM property is
used to store values of FIXNUMS.

1.1.2.3 FLONUM

FLONUMSs are floating point numbers. The FLONUM property is used to store values of
FLONUMSs.

1.1.3 (QUOTE "E") [FSUBR]

returns E without evaluating il.

1.1.4 NIL [VALUE]

.is a primitive constant of LISP used to terminate lists and to represent falsehood (as the
value of predicates). Woe be unlo them that would change the value of NIL (from NIL}! In
keeping with its character as both an atom and the representation of the empty list, the atom
NIL has been modified so that its CAR and CDR are’both NIL. One can now, for example, pick
up the arguments to an FEXPR via a sequence of CAR/CDR combinations, with missing
arguments automalically set to NiL. Note that NIL now has a usable property list, although it
is not stored as the COR of NIL as with other atoms (GET, PUTPROP, etc. are all aware of its

actual location).

1.1.5 T [VALUE]

is the primitive constant that LISP uses for TRUE (as in the value of a predicate).

1.1.6 (HELP "wordl"” ... "wordn") [FSUBR]

The HELP function prints messages associated with the words given as its arguments. Any
word ending with "®" will find all of the help for words that are the same up to the final ®,
e.g. (HELP X®) will explain all that starts with X. In addition there is a semantic index to the
entire LISP system, in tree-like form where the pointers are "index" help messages. Do (HELP
INDEX) for a list of top level topics in the help tree.

The HELP funclion now treals (HELP) as if it were (HELP OVERVIEW). In order to
understand HELP you are strongly urged to see HELPFILTER.

1.1.6.1 (HELPFILTER word attributes) [FSUBR]

decides whether or not-to print a comment (HELP message). The word is the one found by
- GETDEF and (with permission) to be explained. If HELPFILTER returns NIL then the message
will not be printed. You can program your own help by writing a new HELPFILTER,

The attributes used by HELP are BASIC, GENERAL, DETAIL, EXAMPLES, XREF (backward
pointers to SEE, UNDER and INDEX), SEE (for related topics), UNDER (where the explanation
REALLY is) and INDEX (list of sub-calegories with explanations), and the attributes STANDARD,
EDIT-COMMAND, TOP-LEVEL-COMMAND and BREAK-COMMAND to indicate that this explanation
refers to the interpretation given to the word by the editor, top-level or break package (only
for words that are meaningful to more than one). BASIC is the vanilla-flavored attribute for
most first or only entries of a name. The atiribute LONG flags the messages that are longer
than one screenful. OBSOLETE enlries are for words that are no longer meaningful, and the
entry points to the new features that replace the obsolete one. OLD flags are for things
about to become obsolete and NEW flags are for features that are about to appear (or are on
an experimental LISP).

The default helpfilter sets LASTHELP to contain the current word after it decides what to
return. It uses LASTHELP to automatically print the first entry for any word and asks the
use}' whether or not to print the following entries, with the following exceptions: - SEE
entries are always printed (and preceded by "See") since they are always short. - UNDER
entries are always prinled (with a message) since they are always short. - XREF entries are
always printed (and preceded by "Pointed to by") since they are (hopefully) always short. No
distinction is made between being pointed to from an INDEX, UNDER or SEE entry. -
OBSOLETE entries are always printed as a message saying that the word is obsolete and you
should use <entry> instead. - First entries are not printed aulomatically if they are long. -
First entries are not printed automatically if they have any of the flags STANDARD,
TOP-LEVEL-COMMAND, BREAK-COMMAND, EDIT-COMMAND since the user probably wanted
. only one of these explanations. The new HELPFILTER asks for one letter responses to its
questions. The response is stored as part of LASTHELP.

1.1.6.2 LASTHELP [VALUE]

contains the last word that has been HELPed and the (ascii code of) the character that the
user typed in response to the question of what to do next. It is set and used by the default

HELPFILTER.

1.2 EVAL-S-EXP

1.2.1 EVAL

(+EVAL E) (SUBR) -
(EVAL E) [LSUBR]

*EVAL and EVAL evaluale the S-expression E.

Example: (EVAL (LIST (QUOTE ADDI) 3)) = 4

The difference is that EVAL (but not *EVAL) allows a second argument which is interpreted
as a Binding Context Pointer (BCP).

1.2.2 APPLY

(2« APPLY FN ARGS) [SUBR]
(APPLY FN ARGS) [LSUBR)

APPLY evaluates ARGS and binds each s-expression of that result to the corresponding

argument of the function FN. The value of FN is then returned.

APPLY can also be given a third argument which will be interpreted as a BCP. *APPLY
does not take a third argument, and is used for compiled calls on APPLY which do not have
three arguments.) ‘

Example:

(APPLY (PUNCTION APPEND) (QUOTE ((A B) (CD)))) = (ABCD

1.2.3 (APPLY# FN ARGS) [SUBR]
APPLY# is similar to APPLY except that FN may be a function of any type including MACROQ.
Note that when cither APPLY or APPLY# is given an EXPR as its first argument, the second
argument is evaluated by APPLY# or APPLY, but the elements of the resulting list are directly

bound to the lambda variables of the first argument, and are not evaluated again even though
it is an EXPR.

1.2.4 FUNARG

(To be ridiculously brief about it,) There are times when you would like to evaluate

expressions in contexts other than the one from which the request for evaluation is made. In
LISP the solution is fo specify the context as a pointer into the SPDL. These pointers are
~ called BCPs.

For related information see FEXPR and SPDL.

1.2.5 BCP
A "binding context pointer® (BCP) is a pointer into the SPECIAL PUSHDOWN LIST

designating a level in recursive variable binding. BCPs are now simply displacements from
the bottom of the SPDL. When EVAL and APPLY receive a BCP as their last argument, all
SPECIAL (VALUE) CELLS are restored to the values they had at the time the BCP was
generated. This then causes EVAL and APPLY to reference these variables in the binding
context which cxisted at the time of BCP generation. This feature primarily is useful to
prevent variable name conflicts when using EVAL, APPLY, and functional arguments. As with
the A-LIST, when EVAL and APPLY exit, the previous bindings are restored. There are two
ways to generate a BCP: If an FEXPR is defined with two arguments, then the second
argument will be bound to the SPECIAL PUSHDOWN LIST level at the time the FEXPR is called.
The second way to generate a.BCP is with *FUNCTION.

Example using the BCP feature:

xxxNOTEx++ This example will not work, because at present the values of the variables are
not restored into the stack. Therefore, when the current use of the BCP ends, the next

reference to that variable will return the old value.

(DF EXCHANGE (L SPECPDL)
(PROG(Z) (SETQ Z(EVAL (CAR L) SPECPDL))

(APPLY (FUNCTION SET)
(LIST (CAR L) (EVAL (CADR L) SPECPDL))
SPECPDL)

(APPLY (FUNCTION SET)
(LIST (CADR 1) 2)
SPECPDL)))

In this example, the use of the extra argument SPECPDL has only one effect: to avoid
conflicts between internal and external variables with names L and SPECPDL.

(EXCHANGE L M) will cause the Values of L and M to be exchanged. The variable L in
EXCHANGE is not referenced by the calls on SET.

1.26 (*FUNCTION “FN") [FSUBR]
*FUNCTION returns a list of the following form:

(FUNARG FN . «BCP»)

where BCP is the SPECIAL PUSHDOWN LIST level at the time +FUNCTION is called. The BCP is
now simply a displacement from the botlom of the SPDL. Whenever such a functional form is
used in functional context, all SPECIAL bindings are restored to the values they had at the
time *FUNCTION was evaluated. When the funcltional argument has been APPLYed, the
previous bindings are restored as with the A-LIST.

1.3 LAMBDA-EXP

1.3.1 LAMBDA

(LAMBDA "ARGUMENT-LIST" "BODY")

(Note: LAMBDA is not considered 1o be a function.) An expression of this form denotes the
function whose value (action) on the given list of arguments is the result of evaluating the
body. Except for LEXPRs, the argument list is a list of identifiers. Lambda expressions with
more than five arguments can’t be compiled.

Examples: (LAMBDA NIL 1)
is the constant function (whose value is always one) of no arguments.
(LAMBDA (X) (TIMES X X))

~ is a function which returns the square of its argument if it is a number. Otherwise an error
will result.

1.3.2 (FUNCTION "FN") [FSUBR)

FUNCTION is the same as QUOTE in the interpreter. In the compiler, FUNCTION causes the
S-expression FN to be compiled as if it were another named function, whereas QUOTE
generates an S-expression constant.

1.3.3 FEXPR

A FEXPR is an identifier which has a LAMBDA expression of one dummy variable on its
property list with property name FEXPR. FEXPRs are evaluated by binding the actual
argument list to the dummy variable without evaluating any arguments. DF is useful for
defining FEXPRs. The compiled form of an FEXPR is an FSUBR. FEXPRs can be defined with
two arguments, in which case the second is interpreted as a BCP.

(DF LISTQ (L) L)
(LISTQ A (BY ©) = (A (B) O)
(LISTQ) = NIL

1.3.4 LABEL

(LABEL "I1D"™ "LAMBDA-EXPR")

(Note: LABEL is not considered to be a function.) LABEL creates a temporary name ID for
its LAMBDA expression by creating a local variable of that name who se value is the LAMBDA
expression. This makes it possible to construct recursive functlons with temporary names.

Example:

(DE REVERSE (L)
((LABEL REVEVSE1
(LAMBDA (L M)
(COND ((ATOM L) M)
(T (REVERSEl (CDR L) (CONS (CAR L) M))))))
L NIL))

1.3.5 LEXPR
An LEXPR is an EXPR whose LAMBDA expression has an atomic argument "list" of the form:

(LAMBDA "1D" "FORM")
LEXPRs may take an arbitrary number of actual arguments which are evaluated and referred
to by the special function ARG. ID is bound to the number of arguments which are passed.
The compiled form of an LEXPR is an LSUBR. Example:

(DE MAX N
(PROG M)
(SETQ M (ARG N))
L (SETQ N (SUB1 N)) -
(COND ((ZERCP N) (RETURN M))
((GREATERP (ARG N) M) (SETQ M (ARG N

(GO 1))) -

MAX 1 1.2 4 3 -50) = 4

1.3.5.1 (ARG N) [SUBR]
ARG returns the value of the Nth argument to an LEXPR.

1.3.5.2 (SETARG N V) [SUBR]
SETARG sets the value of the Nth argument of an LEXPR to V and returns V.

1.3.6 EXPR 7

An EXPR is an identifier which has a LAMBDA expression on its property list with property
name EXPR. EXPRs are evaluated by binding the values of the actual arguments to their
corresponding dummy variables. DE is useful for defining EXPRs. The compiled form of an
EXPR is a SUBR.

(DE SQUARE (X) (TIMES X X))
(BE #MAX (X Y) (COND ((GREATERP X Y) X) (T)))

1.3.7 MACRO

A MACRO is an-identifier which has a LAMBDA expression of one dummy variable on its
property list with property name MACRO. MACROs are evaluated by binding the list
containing the macro name and the actual argument list to the dummy variable. The body in
the LAMBDA cxpression is evaluated and should result in another "expanded” form. In the
interpreter, the expanded form is evaluated. In the compiler, the expanded form is compiled.
DM is useful for defining MACROs.

HELP could be defined by:
(DM HELP (L) (CONS (QUOTE GETDEF) (CONS <NAME OF HELP FILE» (CDR L))))
FOR-EACH is defincd by:

(DEFPROP FOR-EACH
(LAMBDA (L)
(CONS (COND ((MEVMQ (CADR L)
(QUOTE (MAP MAPC MAPCAN MAPCAR MAPCON MAPCONC MAPLIST)))
(SETQ L (CDR L)) (CAR L))
(T (QUOTE MAPC)))
(CONS (CONS (QUOTE FUNCTION)
(NCONS
- (CONS (QUOTE LAMBDA)
(COND ((ATOM (CADR 1)) (CONS (NCONS (CADR L))
(CDDDR L)))
(T (CONS (CADR L) (NTH (CDDDR L)
(LENGTH (CADR 1))
1310)))
(COND ((ATOM (CADR L)) (NCONS (CADDR 1)))
(T (LDIFF (CDDR L) (NTH (CDDDR L) (LENGTH (CADR L))))})
Ny
MACRO)

1.3.7.1 (xEXPAND L FN) [SUBR]

(#EXPAND1 L FN) [SUBR]

+EXPAND and *EXPAND] are MACRO expanding functions formerly used by PLUS, TIMES,
etc. They are equivalent to:
(DE #EXPAND (L FN) (»EXPAND1 (REVERSE (CDR L)) FN))
(DE =EXPAND1 (L FN)
(COND ((NULL (CDR L)) (CAR 1))
(T (LIST FN (=EXPAND1 (CDR L) FN) (CAR L)))))
With PLUS defined as
(DM PLUS (L) (#EXPAND L(QUOTE «PLUS)))
(PLUS A B C D) expands to:

(«PLUS («PLUS («PLUS A B) C) D)

10

1.4 DEFINITIONS

1.4.1 (DE "NAME" "ARGUMENT=-LIST" "FORMI" ... "FORMn") [FSUBR]

DE, DF and DM are uscd to define EXPRs, FEXPRs and MACROs. They place the form
(LAMBDA ARGUMENT-LIST FORMI .. FORMNn) on the property list of NAME under.’property
EXPR, FEXPR or MACRO. DE, DF, and DM will generate an error if there are fewer than three
arguments, the first argument is not a literal atom, or the second argument is not a list (or
literal atom for DE).

For related information see MARK!CHANGED, CHANGES, and //PUTPROP.

If the function being dcfined was not previously defined, the function name will be
returned. Otherwise, a list consisting of the function name and "EQUAL" or "REDEFINED" will
be returned, depending on whether an EQUAL definition was already present. In the cases of
a new definition or a redefiniiion, MARK!ICHANGED will be called to record the fact that the
function has been changed. The new definition will always be at the front of the property
list, insuring that it will be used as the definition of the function. DE, DF, and DM now call
//PUTPROP rather than PUTPROP so they will be undoable.

1.4.2 (DV "atom” "value™) [FSUBR]
ié equivalent to (SETQ atom (QUOTE value)). DV is undoabfe,and calls MARK!CHANGED.

1.4.3 (DEFPROP "I" “V" “P") [FSUBR]

DEFPROP is the same as PUTPROP except that it does not evaluate its arguments, and
DEFPROP returns I

For related information see //PUTPROP, MARK!CHANGED, CHANGES, and GRINPROPS.

DEFPROP bhas been modified to generate an error if it is called with other than three
arguments, its first argument is not a literal atom, its third argument is neither a literal atom
nor an INUM, or its first argument is T or NIL and its third argument is VALUE. If P is in
GRINPRQOPS (the list of property names "seen" by GRINDEF) and the new property value is
not EQUAL to the old one, MARK!CHANGED will be called to record the fact that the definition
of I has been changed. DEFPROP now calls //PUTPROP rather than PUTPROP so it will be
undoable. If the property defines a function, it will always be placed at the front of the
property list, insuring that it will be used as the definition.

11

1.4.4 (DEFLIST "L" {"defval"} "prop™) [FSUBR]

DEFLIST is useful for placing a property on a number of atomic symbols. L should be a list
of items, each of which is cither an atomic symbol A or a two-element list (A val). Each A will
have a prop properly placed on its property list, with a value of val if present, or defval if
only the atomic symbol was given. Defval is optional, with a default value of T assumed.
DEFLIST is undoable and calls MARK!ICHANGED. As an example of the use of DEFLIST, the
following will give TOM and BOB ages of 15, and SAM an age of 20 (i.e., the 20 overrides the
default value of 15)

(DEFLIST (TOM BOB (SAM 20)) 15 AGE)

1.4.5 (DEFSYNON "atl" "at2" "prop") [FSUBR]

Places the <prop> property of <at2> onto <atl> DEFSYNON is undoable and calls
MARK!ICHANGED. It may be used to give two synonymous names to a variable. If the
property defines a function, the property will always be placed at the front of the property
list, insuring that it will be used as the definition. '

1.5 CONTROL

1.5.1 CONDITIONALS

1.5.1.1 (COND Clausel Clause2 ..) [FSUBR]

where Clausei is a list of expressions, (E<i,1> E<i,2> ... E<i,n>).

The COND is evaluated by evalualing the E<i,1>s starling from i=1 until one is found that
evaluates to something other than NIL. Then the rest of the expressions in its list are
evaluated, the value of the last being the value returned from the COND. If all of the E<i, 1>
evaluate to NIL the value of the COND is NIL.

Examples:

(DE ABS (X) (COND ((MINUSP X) (MINUS X)) (T X)))
(DE NOT (X) (COND (X NIL) (T)))

1.5.1.2 (SELECTQ X "YI™ "Y2" .. "Yn" Z) [FSUBR]

This function is used ta selecl a sequence of instructions based on the value of its first
argument X. Each of the Yi is a list of the form (Si E[1,i] E[2,i] .. E[k,i]) where Si is the

"selection key™.

12

If Gi is an atom the value of X is fested to see if it is EQ to Si (which is not evaluated). If
so, the expressions E[1,i] .. E[k,i] are evaluated in sequence, and the value of SELECTQ is the
value of the last expression evaluated, i:e. E[k,i]. If Siis a list, and if any element of Si is EQ
to the value of X, then E[1,i] .. E[k,i] are evaluated in turn as above. If Yi is not selected in
one of the two ways described then Y[i+1]) is tested, etc. until all the Y’s have been tested. If
none is sclected, the value of SELECTQ is the value of Z. Z must be present.

An example of the form of a SELECTQ is:

(SELECTQ (CAR W)
(Q (FRINT FOQ) (FIE W)
((AETOU) (VOWEL W))
(COND (W (QUOTE STOP))))

which has two cases, Q and (A E 1 O U) and a default condition which is a COND.

SELECTQ compiles open, and is therefore very fast; however, it will not work if the value
of X is a list, a large inleger, or floating point number, since it uses EQ. Compiled SELECTQs
bind the variable SELECTQ to the value computed as the selection key. .

1.5.2 MAPPING

"Mapping" refers to a loop which is controlled by a list. Typically one wants to do
something for each element of a list. The FOR-EACH function makes direct use of the
mapping functions almost obsolete. However, the user must still understand what the
mapping functions do in order to get FOR-EACH to do it instead. Similarly, FORALL and
EXISTS are the reasonable ways to use the lower level EVERY and SOME functions.

All of the map functions have been extended to allow called functions which need more
than one argument. The function FN to be called is still the first argument. Arguments 2 thru
N (N < 6) are used as arguments | thru N-1 for FN. If the arguments to the map functions
are of unequal length, the map function terminates when the shortest list becomes NIL. The
functions behave the same as the previous definitions of the functions when used with two
arguments.

Example: This will set the values of A, B and C to 1, 2 and 3, respectively.
(MAPC (FUNCTION SET) (QUOTE (A B C)) (QUOTE (1 2 3)))
NIL
1.5.2.1 (MAP FN L) [LSUBR]

MAP applies the function FN to list L and to successive CDRs (or "tails") of L until L is
reduced to NIL. The value of MAP is NIL.

13

Example: (MAP (FUNCTION PRINT) (QUOTE (X Y 2))) =
PRINT: XY 2)
PRINT: Y 2)
PRINT: (2)
RETURN: NIL

1.5.2.2"(MAPC FN L) [LSUBR]

MAPC is identical to MAP except that MAPC applies function FN to the CAR of the
remaining list at each step. le. Fn is applied to each element of the list L. The value of
MAPC is NIL. '

Example: (MAPC (FUNCTION PRINT) (QUOTE (X Y 2))) =
: PRINT: X
PRINT: Y
PRINT: Z
RETURN: NIL

1.5.2.3 (MAPCON FN ARG) [LSUBR]

MAPCON applies the function FN to the list ARG. It then takes the CDR of ARG and applies
FN to it. It continues this untii ARG is NIL. The value of MAPCON consists of all of the values
returned by FN NCONC’ed together. For a single list MAPCON is equivalent to:

(DE MAPCON (FN ARG)
(COND ((NULL ARG) NIL)
(T (NCONC (FN ARG)
(MAPCON FN (CDR ARG))))))
Example

.« (MAPCON (FUNCTION COPY) (QUOTE (1 2 3 4)))
(12342343424%)
1.5.2.’4 (MAPCAN FN ARG) [LSUBR]
MAPCAN is similar to MAPCON except it calls FN with the CAR of successive CDRs of ARG

instead of the whole list. For example, a function to remove all of the vowels from a word
can be easily written as:
(READLIST (MAPCAN (FUNCTION YOWELTEST) (EXPLODE WORD)))

where VOWELTEST is a procedure which takes one argument, LET, and returns NIL if LET is a
vowel, and (LIST LET) otherwise.

For related information see SET-OF.

1.5.2.5 MAPCONC [LSUBR]
is the same as MAPCAN

14

1.5.2.6 (MAPLIST FN L) [LSUBR]

MAPLIST applies the function FN to list L and to successive CORs of L until L is reduced to
NIL. The value of MAPLIST is the list of values returncd by FN.

Examples: (MAPLIST (FUNCTION CAR) (QUOTE (ABCD))) = (ABCD
(MAPLIST (FUNCTION REVERSE) (QUOTE (A BC D))) =
- ((DCBA) (DCB (DC) (D))

1.5.2.7 (MAPCAR FN L) [LSUBR]
) MAPCAR is identical 1o MAPLIST except that MAPCAR applies FN to the CAR of the

remaining list at each step.

Examples: (MAPCAR (FUNCTION NCONS) (QUOTE (A B C D))) = ((A) (B) (C) (D))
(MAPCAR (FUNCTION ATOM) (QUOTE ((X) Y (2)))) = (NIL T NIL)

1.5.2.8 (MAPATOMS fn) [SUBR]

applies fn (a function of one argument) to every atom in OBLIST and returns NIL. It

compiles in line.

1.5.3 (FOR-EACH {MAPfn} "FORMAL" LIST "FORMI" ... “"FORMn") [MACRO]

FOR-EACH is a MACRO that expands to a form which successively assigns to variable
- FORMAL an element of LIST and evaluates FORM1 .. FORMn with that variable value. The
generated form is (MAPC (FUNCTION (LAMBDA (FORMAL) FORML .. FORMn)) LIST). If the
optional argument, MAPfn, is included, then that mapping function is used instead of MAPC.
Multiple formals may be supplied in a list in which case there must be a LIST argument for
each. EXPAND-Ft is the function that expands FOR-EACH.

(FOR-EACH X '"(1 2 3) (PRINT X)) ;; prints 1, 2 and 3. (Returns nil.)
(FOR-EACH MAPCAR X '(1 2 3) (+ X X)) ;3 returns (2 4 6).
(FOR-EACH ‘MAPCAN P PEOPLE .
(COND ((FEMALE P) (NCONS P))}) ;; equivalent to
;; (SET-OF P PEOPLE (FEMALE P)))
(FOR-EACH MAPCAR (X Y) (1 23) '(321) (EQ X Y)) ;; returns (NIL T Nil)

1.5.4 (SET-OF <var> <list> <predicate>) [MACRO]

Although SET-OF is related to EXISTS and FORALL from the user’s point of view, it actually
expands into a call on MAPCAN. It returns a list of those elements of <list> satisfying
<predicate>. <var> is bound to the argument (members of <list>) in <predicate> SET-OF
always creates new celis at the top level of the list it returns.

Like other mapping functions, SET-OF can map along several lists at once if <var> is
specified as a list of variables and more than one list is given. However the value returned

15

will only include the members of the first list for which the predicate was satisfied. Any

extra arpuments will be ignored (only one form is used).

(SET-OF X '(1 35 26) (O X 4)) = (56)
(SET-OF (X Y 2) '(1 23) '(246) '345) NEQY D)) = (1)

1.5.5 PROGRAMS

1.5.5.) (PROG "VARLIST" "BODY") [FSUBR]

PROG is a function which takes as arguments VARLIST, a list of program variables which -
are initialized to NIL when the PROG is entered, and a BODY which is a list of labels (which
are identifiers) and statements (which are non-atomic S-expressions). PROG evaluates its
statements in sequence until either a RETURN or GO is evaluated, or the list of statements is
exhausted. In the first case the prog exils with the value passed to the RETURN. In the
second case the execution continues at the label passed to the GO. In the last case the prog
exits with the value of NIL.

Note: Both RETURN and GO should only occur either at the top level of a PROG, or in
composilions of COND, AND, OR, and NOT which are at the top level of a PROG.
(Unfortunalely,) Prog and Go work at lower levels, and even from functions called in the
PROG, but this is usually not intended and can make for bugs that are very hard to find.

1.5.5.2 (GO "ID") [FSUBR] .

GO causes the sequence of control within a PROG to be transferred to the next statement
following the label ID. In interpreted PROGs, if ID is non-atomic, it is repeatedly evaluated
until an atomic value is found. However, in compiled PROGs, ID is evaluated only once. GO
cannot transfer into or out of a PROG.

1.5.5.3 (RETURN X) [SUBR]

RETURN causes the PROG conlaining it to be exited with the value X. RETURN should be
used at the top level of a PROG or at the top level of a COND, AND, OR, and NOT which are
themselves at the top level of a PROG.

1.5.5.4 (PROG2 X1 X2 ... Xn) [SUBR]

(For n<6) PROG?2 evaluates all expressions X1 X2 ... Xn, and returns the value of X2.

1.5.5.5 (PROGI X1 X2 .. Xn) [SUBR]

(For n<6) PROGI evaluates all expressions X1 X2 .. Xn and returns X1 as its value.

16

1.5.5.6 (PROGN X1 X2 .. Xn) [FSUBR]

PROGN cvaluates all expressions X1 X2 ... Xn and returns Xn as its value.

1.5.5.7 (SETQ "ID" V) [FSUBR]

SETQ changes the value of ID to V and retUrns V. SETQ evaluates V, but does not evaluate
ID.

1.5.5.8 (SET E V) [SUBR]

SET changes the value of the identifier specified by the expression E to V and returns V.

Both arguments are evaluated.

Note: In compiled functions, SET can be used only on glabally bound and special variables.

1.5.6 SIGNALS

1.5.6.1 (ERRSET E "F") [FSUBR)

ERRSET evaluates the S-expression E and if no error occurs during its evaluation, ERRSET
returns a list whose only element is the value computed. If an error occurs, then if F = NIL
the error message is suppressed, the break package is not entered and ERRSET returns NIL.
If F = O (zero) then the error message is printed on the current output device. Otherwise
(including the case in which F is not specified) the error message is printed on the teletype.

1.56.2 (ERR E) [SUBR]

ERR returns the value of E to the most recent ERRSET, or to the top levei if there is none.
There is now a snecial case of ERR. If the value of E is ERRORX, then ERR will return to the
most recent ERRSET which has F=ERRORX. This allows two levels of user errors. If a
Control-G (or whatever character that has been changed to by ERRCH) is typed in by the
user it generates a (ERR (QUOTE ERRORX)). This means that the user can now protect himself
against this type of input error. :

1.5.6.3 (CATCH "<expr>" {"<labeh>"}) [FSUBR]
(CATCH " ¢EXPRO™ (("<LD>" "«EI1D»" . . .)) (("2r»" "<EB2DP" . . .)) . . .)
(THROW «VALUBE> ("<LABEL»")) [FSUBR]

CATCH and THROW provide a more convenient method of programming transfers to a
higher level in the control hierarchy than ERRSET/ERR, which (as the names imply) were
originally designed for error handling rather than planned (programmed) transfers. CATCH

17

simply evaluates <expr>, and if no THROW- are execuled during that evaluation, returns the
value of <expr> If a THROW is evaluated and the CATCH has no <label> then the CATCH is
immediately exited with <value> as ils value {regardless of whether the THROW had a <label>
or not). An unlabeled CATCH will thus catch a value thrown by any THROW. If the CATCH
has a <label>, it will calch values thrown only by a THROW with the same label; other THROWSs
are passed on in search of a higher-level CATCH with a matching label,

Finally, a single CATCH can calch a variety of different THROWs via a SELECTQ-like
mechanism as shown above. Each <L> is either a <label> or a list of <lahel>s; if a THROW
<label> malches an <L> or a member of an <L>, the corresponding <e>s are evaluated and the
- value of the last one is returned as the value of the CATCH. If no labels malch, the THROW is
passed on in se>rch of a higher level CATCH. Nole that a missing THROW <label> is
equivalent to a <label> of NIL, and may be caught as such. CATCH and THROW are compiled
in-line. The variable THROW is given the value of the first argument o THROW (the value
being thrown), and the variable CATCH is bound to the label (if any) specified by the throw.

1.56.4 (THROW valua {"label"}) [FSUBR]

returns o the next higher CATCH which recognizes its label. The full explanation may be
found under CATCH.

1.5.7 REPETITION

1.5.7.1 DO, FOR, UNTIL and WHILE [MACRO]

are all forms of the same iteration macro expanded by EXPAND-DO. The call is scanned for
keywords related to a for-loop variable. If the word FOR is found, the next word is taken to
be the name of a variable (which is bound in a prog so the other expressions can use it). If
one of the symbols {Gets, =, _, :=} is found, the next expression is taken to be the initial
value of the loop variable (if there is one). Otherwise it is initialized to the value 1. If one of
the symbols {Step, By} is found the next expression is taken as the increment. The default is
1. I the word TO is found, the next expression is taken to be the limit. The default is no
limit (loop forever). The call expands into a Prog. First the loop variable is initialized, if
there is one. Then comes the body of the loop. Finally the variable is incremented, the new
value is tested against the limit (exiting the loop if it is greater - negative increments are not
understood), and the loop is restarted. The body of the loop consists of the elements of the
list that were not specially interpreted, with their order in the call preserved. The only
exceptions are Do, While and Until. Do’s are ignored entirely. When a While is found, the
next expression is treated as a test. If its value is NIL the loop is exited. Until works the

18

same way but the exit occurs if the test is non-NIL.

The limit expression is recvaluated on every test. Any exit from the loop from a While
test, Unlil test or increment past the limit results in a value of NIL. It is possible to exit the
loop at any time and with any value by using a RETURN. Fey nil, Step nil, To nil, Gets nii, and
their equivalents (using the other words) have the effect of supplying default values for the
various parameters. For nil causes the others fo be ignored, since the résulting loop has no

loop variable. To nil causes the test against the limit to be skipped. The other two
parameters default to 1.

(For { to 10 (print {)) ;; print nuobers from {1 to 10.

(Do (print 'hecllo)) ;; print hello forever.

(While nil {(print 'helle)) ;; do nothing.

(Do (print 'hello) until T) ;; print hello once.

(For 1 by 5 until (= { 11} (print 1)) ;; print 1 and 6.
(For 1 by S (print i) until (=1 11)) ;; print 1, 6 and 11.
(For 1 1o (+1 1) (print 1)) ;; print 1,2,3, ... (forever).

1.5.7.2 (EXPAND-DO form) [SUBR]
is the program that expands the BO, FOR, UNTIL and WHILE macros.

1.6 PREDICATES

A predicate is a tesl, dr a boolecan function. Originally predicates were expected to return
either T (for true) or NIL (for false), but since the functions that use the values of predicates
consider anything other than NIL to mean true, many predicates have beén generalized to
return more useful values than T. Another useful tidbit is that predicates have traditionally
been given names cnding in P, such as ZEROP. This convention is not universal, but when you
see a function whose name ends with P, chances are good that it’s a predicate.

1.6.1 S-EXP-PRED

1.6.1.1 (EQ X Y) [SUBR]

The value of EQ is T if X and Y are the same pointer, i.e.,, the same internal address.
Identifiers on the OBLIST have unique addresses and therefore EQ will be T if X and Y are
the same identifier. EQ will also return T for equivalent INUMs, since they are represented as
addresses. However, EQ will nol compare equivalent numbers of any other kind.

For related information see OBLIST.

Examples: (FQ T T s T
(EQ T NIL) = NI
{FQ 'A 'B) = N1L
(EQ 1 1.0) = NIL
(FQ 1 1 =T
(EQ 1.0 1.0) = NIL

1.6.1.2 (NEQ X Y) [SUBR]

returns T if X is not EQ to Y, otherwise NIL.

1.6.1.3 (EQUAL X Y) [SUBR]

The value of EQUAL is T if X and Y are identical S-expressions. EQUAL can also test for
equality of numbers of mixed types. EQUAL is equivalent to:

(LAMBDA(X Y) (COND ((EQ X V) T)
((AND (NUMBERP X) (NUMBERP Y))
(ZEROP («DIF X Y)))
((OR (PATOM X) (PATOM Y)) NIL)
((EQUAL (CAR X) (CAR Y))
(EQUAL (CDR X) (CDR YI))))
1.6.1.4 (NULL L) [SUBR)

= T if L is NIL, otherwise NIL.

1.6.1.5 (MEMQ X Y) [SUBR]

returns the first tail of Y whose CAR is EQ to X, NIL if there is none. le. it returns a
non-nil value if X is EQ to an element of Y.

1.6.1.6 MEMB [SUBR]
is the same as MEMQ

1.6.1.7 (MEMBER X Y) [SUBR]

returns the first tail of Y whose CAR is EQUAL to X, NIL if there is none. le. it returns a
non-nil value if X is equal to an element of Y.

1.6.1.8 (INP X Y) [SUBR]

INP returns T it X is EQ to some subexpression of Y, NIL otherwise. (The search stops at
atoms.)

1.6.1.9 (CONSP X) [SUBR]

Returns X if X is a cons cell, otherwise NIL

20

1.6.1.10 (ATOM X) [SUBR]

The value of ATOM is T if X is cither an identifier or a number; NIL otherwise.

1.6.1.11 (EQP X Y) [SUBR]
EQP returns T if X and Y are EQ or are EQUAL numbers, otherwise NIL.

16.1.12 (LITATOM X) [SUBR]

The value of LITATOM is T if X is a literal alom, i.e.,, an atom but not a number, otherwise
NIL.

1.6.1.13 (PATOM X) [SUBR]

The value of PATOM is T if X is an atom or X is a poinler outside of free storage,

otherwise NIL.

1.6.1.14 (STRINGP X) [SUBR]
The value of STRINGP is T if X is a string, otherwise NIL.

16.1.15 (TAILP X Y) [SUBR]

The val‘ue of TAILP is X if X is a list and a tail of Y, i.e,, X is EQ to some number of CDRs
(including 0) of Y. The search stops when a CDR returns an atom or NIL. If X is not a tail of
Y, then TAILP returns NIL.

1.6.1.16 (BOUNDP X) [SUBR]

BOUNDP returns T if X is a literal atom with a vaiue cell whose cdr is not UNBOUND, i.e., if
X is a bound variable (other than a local compiled variable), NIL otherwise.

1.6.2 QUANTIFIERS

The EXISTS and FORALL functions are convenient user interfaces to the lower level SOME
and EVERY functions. These are closely related in function to the SET-OF function and the
FOR-EACH function. Look them up if the quantifiers don’t quite serve your purposes.

1.6.2.1 (SOME SOMEX SOMEFNI SOMEFN2) [SUBR]
SOME returns the first tail of SOMEX for which SOMEFN1 of its CAR returns a non-NIL

value. Otherwise nil is returned. Successive tails of SOMEX, whose first elements are tested

21

by SOMELFNI, are computed |, (cpnated applications of SOMEFN2. Thus, the function
SOMEFNI is first applicd to (CAR SOMEX), then 1o (CAR (SOMEFN2 SOMEX)), then to (CAR
(SOMEFN2 (SOMEFN2 SOMEX)), etc., until the remainder of SOMEX is atomic or NIL. If
SOMEFN2 is NIL, then CDR is used.

1.6.2.2 (EVERY EVERYX EVERYFNI EVERYFN2) [SUBR]

EVERY returns T if the result of applying function EVERYFNL to each selected element of
list EVERYX is non-NIL, NIL otherwise. EVERYFN2 is used to compute successive tails of
EVERYX to whose first elemenls EVERYFNL will be applied. Thus, the function EVERYFNI is
first applied to (CAR EVERYX), then to (CAR (EVERYFN2 EVERYX)), then to (CAR (EVERYFN2
(EVERYFN2 EVERYX))), elc., unlil the remainder of EVERYX is atomic or NIL. If EVERYFN2 is NIL,
then CDR is used.

1.6.2.3 (EXISTS <var> <list> <predicalo> {<nexi>}) [MACRO]

This expands into a call on SOME in much the way FOR-EACH expands inlo a mapping
function. The cffect is that <var> expands into the formal parameter of a function whose
body is the predicatle, which must be a single expression. <list> must return the list to be

searched. The optional <next> actually must return the rext TAIL. If <next> is ommited, the
~ function CDR is assumed. <var> will be bound to its CAR. The value returned is the first tail
of <list> whose CAR satisfies <predicate> (or NIL if there is none). Only one list and formal
parameter may be given. Anything after the optional last argument will be ignored.

(EXISTS 1 '(1 23 45) O 1 3N

This expanses to:
(SOME (QUOTE (1 2 3 4 5)) (FUNCTION (LAMBDA (MO 1)) NI

and returns (4 5)

1.6.2.4 (FORALL <var> clist> <predicate> {<tail-fn>}) [MACRO]

refurns T if every clement of <list> satisfies <predicate> and NIL otherwise. In the
evaluation of <predicate> the element of <list> being tested is bound to <var> Unlike other
maping functions only one list can be given. The optional last argument is a tail computing
function (as in EVERY). If <tail-fn> is ommited then the function CDR is assumed. Anything
after that ar‘gument is ignored. FORALL expands into a call on EVERY in the same way as
EXISTS expands into a call on SOME.

1.6.2.5 (NOTEVERY EVERYX EVERYFN] EVERYFN2) [SUBR]
NOTEVERY is defined to be (NOT (EVERY EVERYX EVERYFNI EVERYFN2)).

22

1.6.2.6 (NOTANY SOMEX SOMEFN] SOMEFN2) [SUBR]
NOTANY is defined 1o be (NOT (SOME SOMEX SOMEFN1 SOMEFN2)).

1.6.3 NUMERICAL-PRED

1.6.3.1 (NUMBERP X) [SUBR]

=T if X is a number of any type, Nil otherwise

1.6.3.2 (INUMP X) [SUBR]
INUMP refurns X if X is an INUM. It returns NIL otherwise.

1.6.3.3 (NUMTYPE X) [SUBR]
returns the type of the number X - FIXNUM (inc. INUM) or FLONUM.

1.6.3.4 (ZEROP X) [SUBR]

=T if X is zero of any numerical type, error if X is a non-numerical quantity, NIL otherwise

1.6.3.5 (=0 X) [SUBR]
(=0 X) is identical to (ZEROP X).

1.6.3.6 (ONEP X) [SUBR]
ONEP returns T if X is EQUAL to 1, NIL otherwise.

1.6.3.7 (MINUSP X) [SUBR]

= T if X is a negative number of any type, error if X is a non-numerical quantity, NIL
otherwise

1.6.3.8 (= X Y) [SUBR]
(= X Y) is identical to (EQP X Y).

1.6.3.9 (GREATERP X1 X2 ..Xn) [LSUBR]
True if (*xGREAT X1 X2) and (*GREAT X2 X3) and .. (*GREAT Xn-1 Xn). Error if any Xi is

non-numerical. NIL otherwise.

23

1.6.3.10 (O XI ... Xn) [LSUBR]
> is identical to GREATERP.

1.6.3.11 (*GREAT X Y) [SUBR]

Returns Y if X > Y, and NIL otherwise. Error if either X or Y is not a number,

1.6.3.12 (LESSP X1 X2 .. Xn) [LSUBR]

True if X1 to Xn are in strictly ascending numerical order, otherwise NIL.

1.6.3.13 (¢ X1 ... Xn) [LSUBR]
< is identical to LESSP.

1.6.3.14 (xLESS X Y) [SUBR]

Returns Y if X < Y, and NIL otherwise. It generates an error if either X or Y is not a

number.

1.6.4 BOOLEAN-PRED

1.6.4.1 (NOT X) [SUBR]
= T if X is NIL, NIL otherwise

1.6.4.2 (OR X! X2 .. Xn) [FSUBR]

= The first non-NIL argument or NIL if all Xi are NiL. OR only evaluates it arguments untii

it finds one that is non-NIL.

1.6.43 (AND X1 X2 ... Xn) [FSUBR]

= Xn if all Xi are non-NIL, NIL otherwise. AND only evaluates its arguments up to the first
one that is NIL.

1.6.4.4 (BOOLE N X1 X2 ... Xm) [LSUBR]

BOOLE causes a 36 bit Boolean operation to be performed on its arguments. The value of
N specifies which of 16 Boolean operations to perform. For m = 2, the ith bit in (BOOLE N A
B) is defined: (-X is used as an abbreviation for (not X).)

24

N result N result

0 0 8 -Al and -Bt
1 Al and Bi 9 Al equiv Bi
2 -Ai and Bi 10 -Al

K Bi 11 -Af or Bi

4 Al and -Bi 12 -Bi

5 Al 13 Al or -Bi

6 Ai neq Bi 14 -Af{ or -Bi

7 * Al or Bi 15 i ”

For m > 2, BOOLE is defined: (BOOLE N .. (BOOLE N (BOOLE N X1 X2) X3) ... Xm) .

The method in this madness (in case anyone cares): Let A be 5 (0101 binary) and B be 3
(O011). Then (BOOLE N A B) returns N in the last four bits (for N between 0 and 15).

1.7 FUN-ON-S-EXP

1.7.1 GETTING-COMPONENTS

1.7.1.1 (CAR L) [SUBR])

The CAR of a non-atomic S-expression is the first element of that dotted pair. CAR of NIL
is NIL. CAR of any other atom is undefined and tends to lead to an illegal memory reference.

1.7.1.2 (CADR s-exp) [SUBR]

(also CADDR, CDDAAR etc.) Ali of the compositions of CAR and CDR functions are available
up to four As and Ds. e.g.

(CADR L) = (CAR (CDR L))
(CDAADR L) = (CDR (CAR (CAR (CIR L))))

1.7.1.3 (COR L) {SUBR]

CDR of a non-atomic S-expression is the second (and last) element of that dotted pair. CDR
of NIL is NIL. CDR of any other alom is its property list. CDR of an INUM causes an illegal
memory reference. CDR of any other number is the list structure representation of that

number.

1.7.1.4 (LAST x) [SUBR]
LAST returns the last part of a list according to the following definition:

(DE LAST (L)
(COND ((ATOM (CDR L)) L)
(T (LAST (CDR L)))))
Examples: (LAST (QUOTE (A B ©))) = (C) = (C.NIL)
(LAST (QUOTE (A B. C))) = (B.C)

25

1.7.1.5 (NTH X N) [SUBR]

The value of NTH is the tail of X beginning with the Nth element, e.g. if N=2, the value is
(CDR X), if N=3, (CDDR X), etc. If N=1, the value is X, if N=0, for consistency, the value is
(CONS NIL X).

1.7.2 BUILD
1.7.2.1 BUILD-NONDESTRUCTIVE

1.7.2.1.1 (CONS X Y) [SUBR]

The value of CONS of two S-expressions is the dotted pair of those S-expressions.

For related information see FREE-STG, GC, GCGAG, SPEAK, GCGOT, and METER.

Examples: (CONS (QUOTE A) (QUOTE B)) = (A . B)
(CONS (QUOTE A) (QUOTE (C))) = (A ©)

1.7.2.1.2 (XCONS X Y) [SUBR]

= (CONS Y X)

1.7.2.1.3 (NCONS X) [SUBR]

= (CONS X NIL)

1.7.2.1.4 (LIST X1 ... Xn) [FSUBR]

= (CONS X1 (CONS X2 ..(CONS Xn NIL)..)) List evaluatec all of its arguments and returns a
list of their values.

Examples: (LIST) = NIL
(LIST (QUOTE A)) = (A)
(LIST (QUOTE A) (QUOTE B)) = (A B)

1.7.2.1.5 (QUOTE! "FORM1" ... "FORMn") [FSUBR]

QUOTE! is a complement of the LIST function. LIST forms a list by evaluating each form in
the argument list; evaluation is suppressed if the form is QUOTEd. In QUOTE!, each form is
implicitly QUOTEd. To be evaluated, a form must be preceded by of one of the evaluate
operators ! and !. ! FORM evaluates FORM and the value is inserted in the place of the call; !
FORM evaluates FORM and the value is spliced into the place of the call. Use of the evaluate

operators can occur at any level in a form argument.

(QUOTE! CONS'! (CON5S 1 2) 3) = (CONS (1. 2) 3)
(QUOTE! 1 !! (LIST 23 4) 5) = (12345) ’
(QUOTE! TRY ! '(THIS ! ONE)) = (TRY (THIS ! ONE))

26

1.7.2.1.6 (*APPEND X Y) [SUBR]

(DE #APPEND (X Y)
(COND ((NULL X))
(T (CONS (CAR X) (*APPEND (CDR X) Y)))))

1.7.2.1.7 (APPEND X1 X2 ..Xn) [LSUBR]
=(+APPEND X1 (*APPEND X2 ..(*APPEND Xn NIL)...))
Examples: (APPEND) = NIL
(APPEND (QUOTE (A B)) (QUOTE (C D)) (QUOTE (E))) = ABCD B

1.7.2.1.8 (COPY X) [SUBR]

returns a copy of X. All of the list cells al all levels are copied. (COPY X) is equivalent to
(SUBST 0 0 X).

1.7.2.1.9 (KWOTE X) [SUBR]
KWQOTE is defined as (LIST (QUOTE QUOTE) X).

1.7.2.2 BUILD-DESTRUCTIVE

1.7.2.2.1 (NCONC X! X2 ... Xn) [LSUBR]

NCONC is similar in effect to APPEND, but NCONC does not copy list structures. NCONC
modifies list structures by replacing the last element of X1 by a pointer to X2, the last
element of X2 by a pointer to X3, elc. The value of NCONC is the modified list X1, which is
the concatenation of X1, X2, ..., Xn.

Examples: (NCONC) = NIL
(NCONC (QUOTE (A B)) (QUOTE (C D)) = ABCD

1.7.2.2.2 (//NCONC L1 ... LN) [LSUBR]
//NCONC is the same as NCONC except it is undoable.

1.7.2.23 (TCONC PTR X) [SUBR]

TCONC is useful for building a list by adding elements one at a time at the end. This could
be done with NCONC. However, unlike NCONC, TCONC does not have to search to the end of
the list each time it is called. It does this by keeping a pointer to the end of the list being
assembled, and updating this pointer after each cail. The savings can be considerable for
long lists. The cost is the extra word required for storing both the list being assembled, and
the end of the list. PTR is that word: (CAR PTR) is the list being assembled, (CDR PTR) is
(LAST (CAR PTR)). The value of TCONC is PTR, with the appropriate modifications to its CAR

27

and CDR. Note that TCONC is a destructive operation, using RPLACA and RPLACD.

* (MAPC. (FUNCTION (LAMBDA (X) (SETQ FOO (TCONC FOO X))))
(QUOTE (5 4 3 2 1))

+ FOO

(43201

TCONC can be initialized in two ways. If PTR is NIL, TCONC will make up a ptr. In this
case, the program must set some variable o the value of the first call to TCONC. After that it
is unnecessary fo reset since TCONC physically changes PTR thus:

= (SETQ FOO (TCONC NIL 1))

((n 1

* (MAPC (FUNCTION (LAMBDA (X) (TCONC FOO X)))
(QUOTE (4 3 2 1))) ’

*FOO

(1432000

If PTR is initially (NIL), the value of TCONC is the same as for PTR=NIL, but TCONC changes
PTR, e.g. '

¢+ (SETQ FOO (NCONS NIL))

(NIL)

» (MAPC (FUNCTION (LAMBDA (X} (TCONC FOO X)))
(QUOTE (5 4 3 2 D))

*FOO

(432D 10D

The latter method allows the program to initialize, and then call TCONC without having to
perform SETQ on ifs value.

1.7.2.2.4 (//TCONC PTR X) [SUBR]
//TCONC is the same as TCONC except it is undoable. _

1.7.2.25 (LCONC PTR X) [SUBR]

Where TCONC is used o add elements at the end of a list, LCONC is used for building a list
by adding lists at the end. For example:

* (SETQ FOO (NCONS NIL))
(NIL)

» (LCONC FOO (LIST 1 2))
(12 2

» (LCONC FOO (LIST 3 4 5))
(1 2345 9

+ (LCONC FOO NIL)

(1 2343 %

Note that LCONC uses the same pointer conventions as TCONC for eliminating searching to the
end of the list, so that the same pointer can be given to TCONC and LCONC interchangeably.

+ (TCONC FOO NIL)

((1 23 4 5 NIL) NIL)

= (LCONC FOO (LIST 3 4 5))
((1 23 45NIL3 4SS

28

1.7.2.2.6 (//LCONC PTR L) [SUBR]
//LCONC is the same as LCONC except it is undoable.

1.7.2.2.7 *NCONC [SUBR]

is the same as NCONC but for only 2 arguments

1.7.2.2.8 //*NCONC [SUBR]

is the same as //NCONC but for only 2 arguments

1.7.2.2.9 (NCONCI L X) [SUBR)

NCONC1 destructively adds the element X to the end of the list L. It is equivalent to
(NCONC L (LIST X)). It generates an error if L is atomic.

1.7.2.2.10 (//NCONCI L X) [SUBR]
J/NCONCI1 is the same as NCONC1 except is is undoable.

1.7.22.11 (ATTACH X L) [SUBR]

ATTACH destructively attaches element X to the beginhing of list L. It generates an error
if L is alomic.

1.7.2.2.12 (//ATTACH X L) [SUBR]
//ATTACH is the same as ATTACH except it is undoable.

1.7.2.2.13 (MERGE DATA] DATA2 COMPAREFN) [SUBR]

MERGE returns the merged list of the two input sorted lists DATAl and DATA2 using
binary comparison function COMPAREFN. (COMPAREFN X Y) should return something non- NIL
if X can precede Y in sorled order, NIL if Y must precede X. 1f COMPAREFN is NIL, LEXORDER
will be used. (COMPAREFN should be thought of as "less or equal™.) MERGE changes both of

its data arguments.

For related information see LEXORDER.

1.7.2.2.14 (INSERT X L COMPAREFN NODUPS) [SUBR]

INSERT destructively inserts element X into list L in sorted order using COMPAREFN as a
binary comparison function. (COMPAREFN X Y) should return something non- NIL if X can

29

precede Y in sorted order, NIL if Y must precede X. If COMPAREFN is NIL, LEXORDER will be
used. If NODUPS is non-NIL, an element will not be inserted if an equal element is aiready in
the list. INSERT does binary search to determine where to insert the new element.

1.7.2.2.15 (//INSERT X L COMPAREFN NODUPS) [SUBR]
J//INSERT is the same as INSERT except it is undoable.

1.7.3 TRANSFORM
1.7.3.1 TRANSFORM=-NONDESTRUCTIVE

1.7.3.1.1 (LENGTH L) [SUBR]

LENGTH returns the number of top-level elements of the list L. LENGTH is equivalent to:

(DE LENGTH (L)
(COND ((ATOM L) 0)
(T (ADD1 (LENGTH (CDR L))))))

1.7.3.1.2 (SUBST X Y S) [SUBR]

SUBST returns the result of substituting X for all EQUAL occurrences of Y in S-expression
S. SUBST is equivalent to:
(DB SUBST (X Y S)
(COND ((EQUAL Y S) X)
((PATOM S) S)
(T (CONS (SUBST X Y (CAR 3))
(SUBST X Y (CDR 5))))))

Example: (SUBST 5 (QUOTE FIVE) (QUOTE (FIVE PLUS FIVE IS TEN)))
= (5 PLUS 5 IS TEN) ‘

For related information see DSUBST.

1.7.3.1.3 (REVERSE L) [SUBR]
REVERSE returns the reverse of the top level of list L. REVERSE is equivalent to:

(DB REVERSE (L) (REVERSE1 L NIL))
(DB REVERSE1 (L W)
(COND ((ATOM L) M)
(T (REVERSE1 (CDR L) (CONS (CAR L) M)))))

For related information see DREVERSE.

1.7.3.1.4 (LDIFF X Y) [SUBR]
Y must be a tail of X, i.e. EQ to the result of applying some number of CORs to X. LDIFF

30

gives a list of all elements in X but not in Y, i.e,, the list difference of X and Y. Thus (LDIFF X
(MEMB FOO X)) gives all elements in X up to the first FOO. Note that the value of LDIFF is
always new list structure unless Y=NIL, in which case (LDIFF X NIL) is X itself. If Y is not a
tail of X, LDIFF generates an error. LDIFF terminates on a NULL check.

1.7.3.1.5 (LSUBST X Y Z) [SUBR]

Like SUBST except X is substituted as a segment. Note that if X is NIL, LSUBST returns a
copy of Z with all Y’s deleted. For example:

(LSUBST (QUOTE (A B)) (QUOTE Y) (QUOTE (X Y 2))) = X A B 2)

1.7.3.16 (SUBLIS ALST EXPR) [SUBR]

ALST is a list of pairs (Ul . V1) (U2. V2).. (Un. Vn)) with each Ui atomic. The value of
SUBLIS is the result of (simultaneously) substituting each V for the corresponding U in EXPR.
Example:

(SUBLIS (QUOTE ((A . X) (C. Y))) (QUOTE (A B C D)))
XBYD

New structure is created only if needed, e.g. if there are no substitutions, value is EQ to
EXPR. Note: SUBLIS and SUBPAIR do not substitute copies of the appropriate expression,
but substitute the identical structure.

1.7.3.1.7 (SUBPAIR OLD NEW EXPR) [SUBR]

~ Similar to SUBLIS except that elements of NEW are substituted for corresponding atoms of
OLD in EXPR. Example:

« (SUBPAIR (QUOTE (A C)) (QUOTE (X Y)) (QUOTE (A B C D))
XBYD

Note: SUBLIS and SUBPAIR do not substitute copies of the appropriate expression, but
substitute the identical structure.

1.7.3.1.8 (REMOVE X L) [SUBR]

Removes all top level occurrences of X from the list L, giving a COPY of L with all top level
elements EQUAL to X removed. ‘

For related information see DREMOVE.

1.7.3.2 TRANSFORM-DESTRUCTIVE

31

1.7.3.2.1 (RPLACA X Y) [SUBR]
Replaces the CAR of X by Y. The value of RPLACA is the modified S-expression X,

Example: (RPLACA (QUOTE (A B C)) (QUOTE (C D))) = ((C D) B C)

Note that this actually changes X, as opposed {o creating a new list.

1.7.3.2.2 (//RPLACA X Y) [SUBR]
//RPLACA is the same as RPLACA except it is undoable.

1.7.3.2.3 (RPLACD X Y) {SUBR]
RPLACD replaces the CDR of X by Y. The value of RPLACD is the modified S-expression X.

. Note: this actually changes X as opposed to creating a new list.

1.7.3.2.4 (//RPLACD X Y) [SUBR]
J//RPLACD is the same as RPLACD except it is undoable.

1.7.3.2.5 (DREMOVE X L) [SUBR)

Similar- to REMOVE, but uses EQ instead of EQUAL, and actually modifies the list L when
removing X, and thus docs not use any additional storage. More efficient than REMOVE. '

For related information see REMOVE.

NOTE: If X = (L ... L) (i.e. a list of any length all of whose top Ievellelementsare EQ to L)
then the value returned by (DREMOVE X L) is NIL, but even after the destruclive changes to X
there is slill one CONS cell left in the modified list which cannot be deleted. Thus if X is a
variable and it is possible that the result of (DREMOVE X L)} might be NIL the user must set
the value of the variable given to DREMOVE to the value returned by the function.

1.7.3.2.6 //DREMOVE [SUBR]
the same as DREMOVE but undoable

1.7.3.27 (DSUBST X Y 2) [SUBR]

Similar to SUBST, but uses EQ and does not copy Z, but changes the list structure Z itself.
DSUBST substitutes with a copy of X. More efficient than SUBST.

For related information see SUBST.

32

1.7.3.2.8 (//DSUBST X Y Z) [SUBR]
//OSUBST is the same as DSUBST except it is undoable.

1.7.3.2.9 (DREVERSE L) [SUBR]
The value of (DREVERSE L) is EQUAL to (REVERSE L), but DREVERSE destroys the original

list L and thus does not use any additional storage. More efficient than REVERSE,

For related information see REVERSE.

1.7.3.2.10 //DREVERSE [SUBR]
//DREVERSE is the same as DREVERSE except it is undoable.

1.7.3.2.11 (SORT DATA COMPAREFN) [SUBR]

SORT destructively sorts the list DATA using COMPAREFN as a binary tomparison function.
(COMPAREFN X Y) should return something non-NIL if X can precede Y in sorted order, NIL if
'Y must precede X. If COMPAREFN is NIL, LEXORDER will be used. Pointers o the head of
DATA will not generally continue to do so after a SORT. The value returned is a pointer to
the new head of the list.

For related information see LEXORDER.

1.7.4 UNDOABLE=-FNS

Several destructive list modification functions have undoable variants which work by calling
//RPLACA and //RPLACD. These have the same effect as their (permanent) counterparts but
they remember the list that was to be discarded, and from where. Thus it becomes possible
to undo the effects of those functions (see the top level command UNDO and UNDOERRSET). It
should be recognized that this facility is not foolproof. For example you can get into trouble
by undoing things in the wrong order.

1.7.4.1 sUNDOSAVES

#UNDQSAVES (initially -1) can be reset {o indicate when the user should be prompted
concerning saving addilional inverses of undoable changes. If it is less than 1 no inverses

will be saved.

1.7.4.2 (UNDOERRSET "form") [FSUBR]
UNDOQERRSET is like ERRSET with second argument NIL since it evaluates form and does not

a

33

pencrate a break if an crror accurs. UNDOERRSET locally records undoable changes for the
// functions (see UNDOABLE-FNS) and undoes them if an error occurs. If no error occurs the
undoable changes are recorded with the event (as usual so they can be undone by the UNDQ
command in the top level) and a list whose only element is the result of evaluating form is
returned (just like ERRSET).

1.7.5 SEARCH

1.7.5.1 (ASSOC X L) [SUBR]

ASSOC searches the list of dotted pairs L for a pair whose CAR is EQ to X. If such a pair
is found it is returncd as the value of ASSOC, otherwise NIL is returned.

ASSOC is equivalent to:

(DE ASS0C (X L)
(COND ((NULL L) NIL)
((EQ X (CAAR L)) (CAR L))
(T (ASS0C X (CDR L)))))

BExample: (ASS0C 1 (QUOTE ((1.0NBE) (2.7Tw0)))) = (1.0NH)

1.7.5.2 (ASSOC# X Y) [SUBR]
Similar to ASSOC, but uses EQUAL instead of EQ.

1.7.5.3 (SASSOC X L FN) [SUBR]

SASSOC scarches the list of dotted pairs L for a pair whose CAR is EQ to X. If such a pair
is found it is returned as the value of ASSOC, otherwise the value of FN, a function of no

arguments, is returned.

(DE SASS0OC (X L FN)
(COND ((NULL L) (FN))
((EQ X (CAAR L)) (CAR L))
(T (SASS0C X (CDR L) FN))J)
Example: (SASSOC 0 (QUOTE ((1.0NE) (2.TW0)))
(FUNCTION (LAMBDA NIL (QUOTE LOSE)))) = LOSE

1.8 PROPERTY-LIST

Every atom in the OBLIST has a "property list" which is what you see if you ask for the
PLIST of the atom. (CDR happens to do the same thing except in the case of NIL which keeps
its property list elsewhere. Use of CDR is more implementation-dependent.) The property list
is a list which alternatcs between property names and the corresponding property values.
See PROPERTIES for a list of properties used by the system.

34

1.8.1 (GET I P) [SUBR]

GET is a function which searches the property list of the identifier 1 looking for the
. property name which is EQ lo P. If such a property name is found, the value associated with
it is returned as the value of GET, otherwise NIL is returned. Nole that confusion exists if the

property is found, but its value is NIL. GET is equivalent {o:

(DE GET (1 P) (COND ((NULL (CDR 1)) NIL)
((EQ (CADR) P) (CADDR 1))
(T (GET (CDDR 1) P))))

1.8.2 (GETL I L) [SUBR]

GETL is another function which searches property lists. GETL searches the property list of
the identifier 1 looking for the first praoperty which is a member (MEMQ) of the list L. GETL
returns the remaining property list, including the prOperty. name if any such property was
found, NIL otherwise. For non-nil I, GETL is equivalent to:

(DE GETL (I L) (COND ((NULL (CDR I)) NIL)
((MEMQ (CADR 1) L) (CDR 1))
(T (GETL (CDDR 1) L))))

1.8.3 (PUTPROP I V P) [SUBR]

PUTPROP is a funclion which enters the property name P with property value V into the
property list of identifier I If the property name P is already in the property list, the old
property value is replaced by the new one; otherwise the new property name P and its value
V are placed on the beginning of the property list. PUTPROP returns V.

1.8.4 (//PUTPROP 1V P) [SUBR]
//PUTPROP is the same as PUTPROP except it is undoable.

1.8.5 (REMPROP 1 P) [SUBR]
REMPROP removes the property P from the property list of identifier I. REMPROP returns T

if there was such a property, NIL otherwise.

1.8.6 {//REMPROP I P) [SUBR]
//REMPROP is the same as REMPROP except it is undoable.

35

1.8.7 (PLIST x) [SUBR]

returns the property list of the atom x {(which is the COR of x if x is not NIL).

1.8.3 PNAME

-

PNAME is the name of the property under which print-names of atoms are stored.

For related information sece OBLIST.

1.8.9 PROPERTIES

+3 This is a 115t of properties used by the system. They

;3 should therefore be avolded for purposes other than those

;s for which the system uscs them. Many of these are described
33 elsewhere.

PNAME VALUE EXPR FEXPR
MACRO ERXACTION BROKEN - BROKEN-IN
SIDE UNDEF SUBR FSUBR
LSUBR LEXPR NAMED-EVENT BRKARGS
ALIAS TRACED-IN TRACED ST™
EDIT-SAVE LASTVALUE TRACE CHANGES
PRINTMACRO NAMESCHANGED PICOM LOSTPROP
COVMENT FIXNUM FLONUM EXTRAFNS
CALLS CONSES MSEC

FUNTYPE READMACRO LREADIN BEFORE-SIDE

Properties are used by LISP lo inlerpret everything. For example when you do an
assignment such as (SETQ X 1), the atom X is given a VALUE property containing 1. When
you define a funclion called X the body of the function will be added as a different property
of X. Properlies are stored in PROPERTY-LISTs.

For related information see OBLIST.

1.9 IDENTIFIERS

1.9.1 OBLIST

In order for atoms with the same print-names {o be recognized ac the same (EQ) LISP
keeps a symbol-{able in the form of a special list called OBLIST. It is organized as a hash
table (a list of buckets) . each element of which is a list of identifiers. Property lists are

stored as part of the identifiers.

For related informatioMOPERTlES and PROPERTY-LIST.

36

1.9.2 (INTERN 1) [SUBR]

INTERN puts the identifier [in the appropriate bucket of OBLIST. If the identifier is aready
a member of the OBLIST, then INTERN returns a pointer to the identifier already there.
Otherwise, INTERN returns 1.

Note: INTERN is only necessary when an identifier which was created by RDNAM, GENSYM,
MAKNAM, or ASCI] needs 1o be uniquely stored.

1.9.3 (REMOB "X1" "X2 ... "Xn") [FSUBR]
and REMOB [VALUE]

REMOB removes all of the identifiers X1, X2, ... , Xn from the OBLIST and returns NIL. None
of the Xi’s are evaluated. See NOCALL for explanation of the value.

1.9.4 (REMOBI1 "id") [SUBR]

is the same as REMOB bul for only one argument.

1.9.5 (GENSYM) [SUBR]

GENSYM increments the generated symbol counter and returns a new identifier specified
by the counter. The GENSYM counter is initialized to the identifier GO00O. Successive
executions of (GENSYM) will return GO0OO], GO002, GOOO3, ... Note: GENSYM does not INTERN

its resuilt.

1.9.6 (CSYM "I") [FSUBR]

CSYM initializes generated symbol counter to the identifier I, and returns I. CSYM does not

evaluate its argument.

Example: (CSYM ARY0O0) = ARYQO
(GENSYM) = ARYO!
(GENSYM) = ARYO02

etc.

1.10 IDENTIFIER-NAMES

37

1.10.1 (EXPLODE L) [SUBR]

EXPLODE transforms an S-expression into a list of single character identifiers identical to
the sequence of characters which would be produced by PRIN1. These identifiers are always
symbols (literal atoms), never numbers. ‘

For relaled information-see LOWER-CASE.

(EXPLODE ' (DX //- DY)) = (J(D X/ // // -/ DY)
(EXPLODE 'F1) = (F /1)

1.10.2 (EXPLODEC L) [SUBR]

EXPLODEC transforms an S-expression into a list of single character identifiers identical to
the sequence of characters which would be produced by PRINC. These identifiers are always
symbols (literal atoms), never numbers.

(EXPLODEC '(DX //- DY)) = (/(D X/ // -/DY/))

1.10.3 (FLATSIZE L) [SUBR]

= (LENGTH (EXPLODE L))
For related information see LOWER-CASE.

1.10.4 (FLATSIZEC L) [SUBR]

= (LENGTH (EXPLODEC L)) , 7 ' -

1.10.5 (MAKNAM L) [SUBR]

MAKNAM transforms a list of single character identifiers {actually takes the first character
of each identifier) into an S-expression identical to that which would be produced by READing

‘those characters. MAKNAM however does not INTERN any of the identifiers in the

S-expression it produces.

‘For related information sce LOWER-CASE and RDNAM.

Bxamples: (MAXNAM (QUOTE (A P P L E))) = APPLE
(MAKNAM (QUOTE (// /)))) = /)

1.10.6 (READLIST L) [SUBR]

READLIST is identical to MAKNAM except that READLIST INTERNs all identifiers in the
S-expression it produces. READLIST is the logical inverse of EXPLODE, i.e.,

(ALY (EXPLODE L)) o g,
(EXPLOE: (READLIST L)) = 1

For related information see LOWER-CASE.

1.10.7 (LEXORDER X Y) [SUBR]
The value of LEXORDER is T iff X is lexically less than or equal to Y. Note: Both arguments

must be atoms. Numeric arguments arc all lexically less than symbolic atoms.

Exanples: (LEXORDER (QUOTE ARG) (QUOTE CD)) =T
, (LEXORDER (QUOTE B) (QUOTE A)) = NIL

(LEXORDER 123999 (QUOTE A)) =T

(LEXORDER (QUOTE B) (QUOTE B)) s T

For related information see SORT and MERGE.

1.10.8 (SUBSTRING str m n) [SUBR]

Returns a new siring consisting of characters m through n of str. m and n may be positive
integers (count from left) or negative integers (_count from right). If m is non-numeric a value
of 1 (first character) is assumed, and if n is non-numeric -1 (last character) is assumed.
Although str will typically be a string, SUBSTRING will actually work with any argument; the
indicated characters are simply extracted from the PRINC character string of str and formed

into a string.

1.10.9 (EQSTR atl at2) [SUBR]

Compares the PNAMEs of _afl and at2, returning T if they are identical and NIL if they
differ. Useful for use wilh any uninterned atamic symbols (including, of course, strings).

1.10.10 (EQNAM X Y) [SUBR]

EQNAM is slower than EQSTR, but does more checks and is more general. Two quantities
are EQNAM if they are EQP or if they are both LITATOM and EQSTR. This means that
quantitics are EQNAM if they are EQ, or they are EQUAL numbers, or they are atoms that

print out the same.

1.10.11 (NTHCHAR X N) [SUBR]

= (CAR (NTH (EXPLODEC 1) N)) if N»O
= (CAR (NTH (REVERSE (EXPLODEC L)) N)) if N0
= NIL if (ABS N) = 0 or » (FLATSIZEC L)

7

39

1.10.12 (CHRVAL X) [SUBR]

CHRVAL returns the ASCII representation of the first character of the print name of X.

1.10.13 (ASCII N) [SUBR]
ASCII creates a single character identifier whose ASCII print name equals N.

Example: (ASCII 65) is an idcntifier with print name "A".
Note: ASCII does not INTERN its result.

1.10.14 (BIGRATOM n) [SUBR]

returns the atom made up of the input characters up to the first occurrence of the
character whose ascii code is n. This is used for reading comments.

1.11 ARITHMETIC

1.11.1 (ABS X) [SUBR]

= absolute value of X

1.11.2 (ADDI1 X) [SUBR]

= X+1

1.11.3 (+1 X) [SUBR]
(+1 X) is identical to (ADD] X).

1.11.4 (%DIF X Y) [SUBR]
=X - Y

JsuBR
1.11.5 (DIFFERENCE X1 X2 ... Xn) [MATRO]

=Xl -X2 -..-Xn

1.11.6 (- X1 ... Xn) [LSUBR]
- is identical to DIFFFERENCE.

40

—

11.7 (MINUS X) [SUBR]

= =X

1.11.8 (DIVIDE X Y) [SUBR]

(CONS (QUOTIENT X Y) (REMAINDER X Y))

1.11.9 (FIX X) [SUBR]

returns the largest integer not greater than X (floor function).

1.11.10 (GCD X Y) [SUBR]

returns the greatest common divisor of integers X and Y.

1.11.11 (LSH X N) [SUBR]

LSH performs a logical left shift of N places on X. If n is negative, X will be shifted right.
In both cases, vacaled bits are filled with zeros.

1.11.12 (xMAX X Y) [SUBR]

Maximum of X and Y.

1.11.13 (MAX X1 X2 .. Xn) [LSUBR)

Maximum of X1 ... Xn.

1.11.14 (xMIN X Y)[SUBR]

Minimum of X and Y.

1.11.15 (MIN X1 X2 ... Xn) [LSUBR]

Minimum of X1 ... Xn.

1.11.16 (%xPLUS X Y) [SUBR]

=X+Y

1

1

=

1

e

41

LS UERR

11.17 (PLUS X1 X2 .. Xn) [MACRO]
=X] + X2 + ..+ Xn

J1.18 (¢ X1 ... Xn) [LSUBR)
+ is identical to PLUS.

11.19 (%QUO X Y) [SUBR]

X/ Y

For integer arguments this returns the integer part of the answer.

LSVBR
.11.20 (QUOTIENT X1 X2 ... Xn) [MASRO]

= X1 /X2 [../ Xn For inleger arguments this returns the integer part of the answer.

11.21 (/] X1 ... Xn) [LSUBR]
// is identical to QUOTIENT.

.11.22 (REMAINDER X Y) [SUBR]

X-X/1 =Y

It is NOT defined for non-integer arguments.

.11.23 (SUBI X) [SUBR]

X-1

.11.24 (-1 X) [SUBR]
(-1 X) is identical to (SUBL X).

.11.25 (xTIMES X Y) [SUBR]

Xeo Y

42

'\SLE)R

1.11.26 (TIMES X1 X2 .. Xn) [MACROQ]
= X1 * X2 % ... % Xn

1.11.27 (x X1 .. Xn) [LSUBR]
* is identical to TIMES.

1.11.28 SCIENTIFIC-SUBR

Scicntific functions have been set up by Cris Perdue for use with LISP based on code
slolen from MIT by Dan Hinsley. This is NOT the UCI-FORTRAN package. The functions
currently reside on ARITHMAC, ARITH.REL on [A311LISP]. This version contains a couple of
kludges and may be changed when the cause of the kludges is fixed. Beware of copying
these files since the current versions may not work when things are fixed. These algorithms
are, available "as is", All we did was interface them to our LISP. Use the LOAD function to
load them. Arguments out of range cause normal LISP errors with messages appropriate to
each function. It is conccivable that overflow or underflow may occur with theoretically

in-range arguments. This will cause a generic arithmetic overflow error from LISP,

1.11.28.1 (SIN X) [SUBR]

where x is in radians returns the sin of x. This function is NOT built in but must be loaded

by the user.

1.11.28.2 (COS x) [SUBR]

returns the cosine of x. where x is in radians. It is NOT built in but raust be loaded by the

user.

1.11.28.3 (ATAN x y) [SUBR]

is not built in but must be loaded by the user. ATAN returns the angle in radians of which
the tangent is y/x. The signs of y and x determine the quadrant of the result.

1.11.28.4 (SQRT x) [SUBR]

returns the square root of x. It is NOT built in but must be loaded by the user.

1.11.28.5 (LOG x) [SUBR]

returns the natural log of x. It is NOT buiit in but must be loaded by the user.

43

1.11.28.6 (EXP x) [SUBR]

returns e raised to the power x. It is NOT built in but must be ioaded by the user.

1.11.29 OVERFLOW

An overflow message comes from arithmetic functions when they detect either fixed or
floating point overflows (i.e. when they compute a result that does not fit into one machine

word).

1.12 (ARRAY "ID" TYPE B1 B2 ... Bn) [FSUBR]

(For n<6) ARRAY is a function which declares an array with name ID, and places an array

referencing function on the property list of ID.
For related information see BPS,

TYPE determines the type of an array as follows:

TYPE INITIAL VALUE ARRAY ELEMENT
T

NIL LISP S-expressions stored as
pointers;; 2 per word.
NIL 0.0 REAL numbers stored one per word in
33 PDP-6/10 floating point representation.
36. 0 36 bit 2/s5 complement integers stored
331 per word.
O<nc36. 0 n bit positive integers packed

33 [36. /0] per word.
Bl B2 ... Bn are array subscript bounds which should evaluale to either positive integers Si,
or to dotted pairs of integers (Li . Ui) where Li .le. Ui, which specify lower and upper

subscript bounds as follows:

B{ LOWER BOUND UPPER BOUND LENGTH
Si 0 St -1 St
i . U L4 Ui Ui-11 + 1

The elements of an array are referenced by: (<array name> 11 12 .. In) where Lj .le. Ij < Uj.
Note: Both ARRAY and EXARRAY consume Binary Program Space .

The ARRAY subscripts [j must be integers. References to memory locations outside of the
area reserved for the array are prohibited and will cause an illegal memory reference
message. Array elements are stored in BINARY PROGRAM SPACE. Redeclaring arrays will

allocate new binary program space - the old space will not be reclaimed.

1) To declare a | dimensional array CHARS of 7 bit characlers and with subscripts 1 to 50:
(ARRAY CHARS 7 (QUOTE (1 . 500 The first element of CHARS is referenced: (CHARS 1)

aq

2) To declare a 2-dimensional array A of REAL numbers and with subscripts O .le. i <N, O
Je. j < M: (ARRAY A NIL N M)

3) To declare a l-dimensional array FOO of S-expressions and with subscripts -K .le. i .le.
K: (ARRAY FOO T (CONS (MINUS K) K))

1.12.1 (EXARRAY "ID" TYPE Bl B2 .. Bn) [FSUBR]
(For n<6) EXARRAY is identical 1o ARRAY except that array elements are stored in the body

of a subroutine loaded by the LOADER and exarray elements are not initialized. The array
referencing subroutine is stored in BINARY PROGRAM SPACE as with ARRAY. EXARRAY
searches symbol tables as does GETSYM . Note: Both ARRAY and EXARRAY consume BINARY
PROGRAM SPACE. If there is insufficient room there the error message "BINARY PROGRAM
SPACE EXCEEDED" will resuit.

1.12.2 (STORE ("ID" il i2 ... in) value) [FSUBR]

STORE changes the value of the specified array element to value, and returns value. Note:

STORE evaluales its second argument first.

Examples: With the arrays declared previously:

(STORE (FOO 0) (QUOTE (A B)))
(STORE (FOO (BAZ L)) 1)
(STORE (A1 J) (AJ D))
(STORE (CHARS 1) 17)

1.13 MEASUREMENT

"Measurement” has lo do with finding out how expensive your programs are to run.
Naturally, the most intercsling measures of this are time and space. Metering tells you how
often functions are called, how much time they take and how much space they use (in terms
of the number of CONSes they do). The timimg functions tell how much CPU time has been
used (or how much of it has been used garbage-collecting). Counting tells you how often
each branch of a program is executed. It is good for finding out which sections are used
often (and thus ought to be optimized) and which are used seldom {(and thus may not be
debugged). '

1.13.1 (METER "F1" .. "Fn") [FSUBR]

METER sets up functions Fl, .., Fn for metering. Each function may be specified as an

ia

45

atomic function name, (function name IN function name), or (function name » meter condition),
just as for BREAK,

1.13.1.1 (UNMETER "F1" ... "Fn") [FSUBR]

UNMETER stops metering of functions F1, .., Fn and prints their statistics. (UNMETER)
unmeters all the metercd functions and (UNMETER T) unmeters the most recently metered -
function, just as for UNBREAK and UNTRACE.

1.13.1.2 77MCI

ZIMC1 (and 7ZZMC2, 77MC3, 77MC4) are constants which compensate for the overhead in
the METER package.

1.13.1.3 BREAKIM [SUBR]

Performs the overhead when a function is melered

1.13.1.4 (METERS "F1" ... "Fn") [FSUBR]

METERS prints the statistics for Fl, .., Fn without unmetering them. (METERS) prints the
statistics for all metered functions and (METERS T) prints the statistics for the most recently
metered function.

1.13.1.5 METEREDFNS [VALUE)

is just a list of the functions currently being METERed.

1.13.2 (COUNT "fnl1" “fn2" ..) [FSUBR]

modifies the definitions of the (interpreted) functions in the argument list to keep track of
the number of times each piece of code in the definition is evaluated. Every sub-expression
that is to be evaluated is replaced by (# O <sub-expression>). To see how many times it has
been evaluated simply Jook at the function definition (via PP or DSKQUT). This facility is good
for finding the sections of code that are executed much more often than expected (and thus
should be optimized) or less often (and thus may contain bugs even though the program
works). UNCOUNT removes the counters.

1.13.2.1 (UNCOUNT "fnl" "fn2" ..) [FSUBR]

undoes the counling for the given functions. Like UNTRACE and UNBREAK, a null argument
causes COUNTEDFNS to be used, and an argument of T causes the last counted function to be
used.

46

1.13.2.2 COUNTEDFNS
COUNTEDFNS is a list of functions that are COUNTed.

1.13.2.3 (COUNTI fn) [SUBR]

Does the same thing as COUNT but is a SUBR and takes only one function

1.13.2.4 (UNCOUNTI fn) [SUBR]

Does the same thing as UNCOUNT but is a SUBR and takes only one function for an

argument,

1.13.2.5 (# <number> <expression>) [FSUBR]

is used for counting (sce COUNT). It merely increments the number and returns the result
of evaluating the expression.

1.13.2.6 #-ERROR

When functions are UNCOUNTed (see COUNT, UNCOUNT, #) a few checks are made. If the
call on # (the counting function) is not of the right form then the user is warned and the
questionable portions are not changed. When this error occurs the offending functions should
be fixed (in the editor) and then UNCOUNTed again. To fix such a function look for calls to #
(via "F #" in the editor). Either the first argument is non-numeric or there are more than two
arguments. See # for the correct form.

1.13.3 (TIME) [SUBR]

TIME returns the number of milliseconds your job has computed since you logged into the
system.

For related information see DATESTR and MSTIME.

1.13.4 (GCTIME) [SUBR]

GCTIME returns the number of milliseconds LISP has spent garbage collecting in this core

image.

1.13.5 (TIME-GCTIME) [SUBR]

TIME-GCTIME returns the difference of run time and garbage collection time in milliseconds,

47

i.e., (#DIF (TIME) (GCTIML)). Mote that the difference in values of (TIME-GCTIME) for two
occasions is the run time excluding garbage collection time for the intervening computation.
Run time excluding garbage collection time is often a more meaningful stalistic than just run
time since garbage coliection occurring at "random" times can invalidate run times, and
frequency of garbage collection is dependent on amount of free storage allocated as well as

the algorithm whose time is being measured.

1.13.6 (SPEAK) [SUBR]

SPEAK returns the total number of CONSes which have been executed in this LISP core
image.

43

2. INPUT-OUTPUT

2.1 SAVE-STATE

Users typically define functions in lisp and then want to save them for the next session. If
you do (CHANGES), a list of the functions that are newly defined or changed will be printed.
When you type (DSKOUTS), the functions associated with files will be saved in the new
versions of those files. In order lo associate functions with files you can either add them to
the filefns list of an cxisting file or create a new file to hold them. This is done with the FILE
function. If you type (FILE NEW) the system will create a variable called NEWFNS. You may
add the names of the functions to go into that file to NEWFNS. After you do (CHANGES) the
functions which are in no other file are stored in the value of the atom CHANGES. To put
these all in the new file, (SETQ NEWFNS (APPEND NEWFNS CHANGES)). Now if you do
(CHANGES), all of the changed functions should be associated with files. In order to save the
changes on the files, do (DSKOUTS). All of the changed files (such as NEW) will be written.
To recover the new functions the next time you run LISP, do (DSKIN NEW).

(Only blank lines were deleted from this recording, comments are added)

«2>(de square(x) (s« x X)) . y3 define a new function

SQUARE H

<3> {changes) H

FILE FUNCTIONS H

<NO-FILE> SQUARE HH

T HH

<4>(file new) HH

NEW HH

<5> (setq newfns (append newfns changes)) ;> add the functions which
3 are associated with no file to the new file, NEW

((QUOTE (VERSION 0 "19-JUL-78 15:30:59")) SQUARE) ;3 the value of NEWPNS

<6> (changes) HH

FILE FUNCTIONS H

NEW SQUARE 53 square is now associated with NEW

T]

¢7> (dskouts) HH

NEW 33 the file is written

NIL HH

<8> (dskin new) ;; we now read it in

NEWFNS (VERSION 1 "19-JUL-78 15:31:43") (SQUARE EQUAL)

FILES-LOADED 33 SQUARE is read in (same as before)

2.1.1 (DSKIN "LIST OF FILE-NAMES") [FSUBR]

READ-EVAL-PRINTs the contents of the given files. This is the function to use to read files
created by DSKOUT. DSKIN also declares the files that it reads (if a FILE-FNS list is defined
and the file is otherwise declarable by FILE), so that changes to it can be recorded. DSKIN
[VALUE] determines how the expressions read are reported. If it is NIL then nothing will be
printed. If it is PRINT then the values are printed one per line, and if the value is T (the

default) the values are printed with new lines starting only when a value does not fit on the

49

current line.

Example:
(DSKIN (FUNCS.LSP) DTAO: (DATA.LSP))
Reads FUNCS.L§P from DSK: and DATA.LSP from DTAO:.

(DSKIN (C410 HBOO) (DSKLOG.LSP))

Reads DSKLOG.LSP from the disk area of [C410HBOO].

2.1.2 (DSKOUTS "FILEL1™ .. "FILEn") [FSUBR]

DSKOUTS applies DSKOUT to and prints the name of each FILEi (with no additional
arguments, assuming filenameFNS to be a list to be GRINLed) for which FILEi is either not in
FILELST (meaning it is a new file not previously declared by FILE or given as an argument to
DSKIN, DSKOUT, or DSKOUTS) or is in FILELST and has some recorded changes to definitions
of atoms in filenameFNS, as recorded by MARK!ICHANGED and noted by CHANGES. If FILEL ...
FILEn is not specified, FILELST will be used. This is the most common way of using DSKOUTS.
Typing (DSKOUTS) will save every file reported by (CHANGES) to have changed definitions.

For related information see GRINPROPS.

2.1.3 (ZREADIN channel print) [SUBR]

executes a loop which reads from the specified channel, evaluates what was read and if the
second argument is non-NIL prints the result. It terminates when the read generates an

error,

2.1.4 (FILE "FILE") [FSUBR]

FILE declares its argument {o be a file to be used for reporting and saving changes to
functions by adding the file name to a list of files FILELST. It adds the file name to FILELST
only if the exiension is not LAP, LBK, or Lnn (nn some integer). It also prevents you from
declaring a file which would use the same FILEFNS list as a current LIBRARY file. FILE is
called for each file argument of DSKIN, DSKOUT, and DSKOUTS. If the user executes the FILE
function, the associated fileFNS list has a version number (initially 0) added to its beginning if
none exists. DSKOUT automatically increments this number. FILE understands devices and
ppns. If you declare a file which has the same name (excluding device, ppn and extension, i.e.
the same filefns list) then the new declaration will supersede the old one. Thus, if you want
(FILE.LEXT) to be put on TEMP when you do a DSKOUT, just redeclare it: (FILE TEMP:

50

(FILE.EXT))

2.1.5 FILELST [VALUE]

.s the list of files whose contents are (supposedly) contained in the current core image.

For related information see LIBRARIES.

2.1.6 (FILE-FNS FILE) [SUBR]
FILE-FNS returns the name of the fileFNS list for its file argument FILE.

2.1.7 (CHANGES flag) [FSUBR]
CHANGES [PROPERTY] and CHANGES [VALUE]

Changes computes a list conlaining an entry for each file which defines atoms that have
been marked changed. The entry contains the file name and the changed atoms defined
therein. There is also a special entry for changes to atoms which are not defined in any
known file. (FILELST contains the "known" files.) If no flag is passed this result is printed in
human readable form and the value returned is T if there were any changés and NIL if not.
Otherwise nothing is printed and the computed list is returned. The global variable CHANGES
contains the atoms which are marked changed but not (yet) associated with any file. The
CHANGES function attempts to associate these names with files, and any that are not found
are considered to belong to no file. The CHANGES property is the means by which changed
funclions are associaled with files. When a file is read in or written out its CHANGES
property is removed.

2.1.8 (MARKICHANGED F) [SUBR]

MARK!ICHANGED recoruas the facl that the definition of F has been changed. 1t is
automatically callcd by DE, DF, DEFPROP, DM, DV, and the editor when a definition is altered.

2.1.9 FILE-SEARCH

2.1.9.1 (GETDEF "FILE" "11" .. "In") [FSUBR]

GETDEF selectively executes definitions for atoms [1, .., In from the specified file. Any of
the words to be defined which end with "®" will be treated as patterns in which the
® matches any suffix (just like the editor). GETDEF is driven by GETDEFTABLE (and thus may

51

be programmed). It looks for lines in the file that start with a word in the table. (The first
character must be a "(" or "[" followed by the word followed by a space, return or something
else that will not be considered as part of the identifier by RDNAM - "(" i unacceptable.)
When one is found the next word is read. If it matches one of the identifiers in the call to
GETDEF then the table entry is executed. The table entry is a function of the expression
starting in this line. Output from DSKOUT is in acceptable format for GETDEF. GETDEF
returns a list of the words (which match the ones it looked for) for which it found (but not
" necessarily executed) definitions in the file.

2.1.9.1.1 GETDEFPROPS [VALUE]

is used by the standard programs in GETDEFTABLE to decide whether an expression read
by GETDEF is to be executed. For example, DE’s are executed if GETDEFPROPS contains EXPR
or is NIL. DC’s are evaluated if GETDEFPROPS contains COMMENT or is NIL. DEFPROP’s enter
properties if they are in GETDEFPROPS or GETDEFPROPS is NIL. This is meant to provide a
convenient way to program GETDEF. The initial value of GETDEFPROPS is (EXPR FEXPR
MACRO VALUE SUBR FSUBR LSUBR).

- 2.1.9.1.2 GETDEFTABLE [VALUE]

is the table that drives GETDEF. It is in the form of an association list. Each element is a
dotted pair consisting of the name of a function for which GETDEF searches and a function of
one argument to be executed when it is found,

2.1.9.1.3 (GETDEFACT id prop exp) [SUBR]

is used by GETDCF to do what PUTPROP does with the following bells and whistles added:
if an atom’s property was not previously defined and is given a definition, the atom,
property, and "DEFINED" will be printed. If the atom’s property was previously defined, the
atom, property, and "EQUAL" or "s+*REDEFINED##+" will be printed, depending on whether the
new definition is EQUAL to the old definition. (LAP function definitions are not checked for
equality.) For each definition of one of the desired atoms defining a property not selected by
GETDEFPROPS, the atom, property, and "BYPASSED" will be printed.

2.1.9.1.4 (GETDEFEVAL "ID" exp "PROP") [FSUBR]

simply evaluates exp. It is useful only because it is recognized by GETDEF, which only
executes the GETDEFEVAL if PROP is accepiable .

2.1.9.2 (LIBRARY "filel™ "file2" ...) [FSUBR]
LIBRARY declares files to be libraries. A library is a file that has not been read in (and

52

thus is not in FILZLST), but ifs contents are known. After a file is declared as a library, you
can get function definitions and coraments from it (with USERHELP and GETDEFNS) without
having to mention it by name. LIBRARY understands devices and ppns just like DSKIN. The
compiler will put into every LAP file a declaration of its source as a library. Thus if your
cornpiled function FOO does not work you can find out what it does or get the interpreted
code with USERHELP or GETDEFNS. When a file is DSKIN'd its LIBRARY declaration

automatically goes away.

2.1.9.3 LIBRARIES (VALUE]

is the counterpart to FILELST. However the files in LIBRARIES have not been (officially)
read. To add a file to LIBRARIES use the LIBRARY function,

2.1.9.4 (GETDEFNS {nl fn2 ..) [MACRO]

tries to find the names in the argument list (with FINDFILES using LIBRARIES and FILELST),
and does a GETDEF from those files of the words given. Note that if a word is defined in two
different files then they will both be read (in arbitrary order).

2.1.9.5 (USERHELP wordl word2 ...) [FSUBR]
USERHELP is supposcd to be just like HELP, but for getting user comments. Like HELP, it

accepts the "@" to mean "any suffix”. It looks for comments in the files in FILELST and those
in LIBRARIES. Also like HELP, it decides whether or not to show the comment by calling

HELPFILTER.

2.1.9.6 (FINDFNS file-list name-list) [SUBR]

returns a (sorted) list of names. Any name in name-list that does not end with "®" will be
in the list. Those that do end with "®" match any name that can be made by replacing the
"®@" with a suffix., FINDFNS looks for such names in the FILEFNS lists of the files in the
file-list, and in the funclions marked as having been changed but associated with no file.
Typically the file-list will be either FILELST or LIBRARIES.

2.1.9.7 (FINDFILES file-list name-list) [SUBR]

returns those members of the file-list which contain names in the name-list. The name-list
may have words that end with "®" to mean any suffix. The file-list is normally either FILELST
or LIBRARIES. In order to determine whether a name is in a file, the file must at least have a
- FILEFNS list. This function is used by GETDEFNS and USERHELP to decide which files to

search.

53
2.1.10 (DSKOUT "FILE" "FORMI" ... "FORMn™) [FSUBR]

DSKOUT is an exiension of the UCI LISP pgkouT function. If FORMI .. FORMnN is specified,
each FORMi (or (GRINL FORMiI) if FORMi is atomic) is evaluated with all printing directed to

FILE. Any previous version of FILE will be renamed to have oxtension LBK, deleting a
previous LBK file if necessary.

For rclated information see GRINPROPS, DSKOUTS, GRINL, FILE, and FILE-FNS.

If FORM1 .. FORMn is not specified, i.e., only a file argument is specified, DSKOUT assumes
the list named filenameFNS (i.e., the file name, excluding extension, concatenated with FNS)
contains a list of function names, ete., to be GRINLed. DSKOUT adds (if not already present)
as first element of filenameFNS a list containing a version number and creation time for the
file. The version number and creation time are updated each time the file is DSKQUTed (bﬁt
only when FORMI .. FORMn are not specified). Any previous version of FILE will be renamed
to have extension Lnn where nn is the previous version number. Successive uses of DSKOUT

with only a file argument will create a sequence of files FILE.LOL, FILE.LOZ2, ..., FILE.Lnn, FILE,
leaving a history of changes to the file,

DSKOUT recognizes line printer device names LPT: LPTO:, and LPT1: and suppresses the
attempts to delete old backup files and rename the current file to be a backup file (illegal
operations for the line printer). A file name must still be specified when DSKOUTing to the
line printer. The FILE function will not be called for tiles DSKOUTed to the line printer. Thus,
a file printed by DSKOUT on the line printer will still (if there are changes) be written to the
disk by (DSKOUTS).

2.1.10.1 COMMENT [PROPERTY]

is the name of the property in which comments are saved.

2.1.10.1.1 (DC word {id} {(descriptor] descriptor2 ..)}) <text> <esc> [FSUBR]

DC defines comments. It is exceptional in that its behavior is very context dependent.
When DC is executed from DSKIN it simply records the fact that the comment exists. It is
expected that in interactive mode comments will be found via GETDEF (as in HELP) - this
allows large comments which do not take up space in your LISP core image. When DC is
executed from the terminal it expects you to type a comment. DSKOUT will write out the
comments that you define and also copy the comments on the old version of the file, so that
the new version will keep the old comments even though they were never actually brought

into core. The optional id is a mechanism for distinguishing among several comments

54

associated with the same word. It defaults to NIL. However if you define two comments with
the same id, the second is considered to be a replacement for the first. The optional list of
attributes is meant to be passed {along with the word being commented) to HELPFILTER in

order to decide whether or not to print the comment as HELP,

The behavior of DC is determined by the value of the global variable DEF-COMMENT.
DEF-COMMENT contains the name of a function that is run. Its arguments are the word, id
and attribute list. DEF-COMMENT is initially DC-DEFINE. Other functions rebind it to DC-HELP,
DC-USERHELP, and the value of DSKIN-COMMENT.

The comment property of an atom is a list of entries, each representing one comment.
Atomic entries are assumed to be identifiers of comments on a file but not in core. In-core
comments are represented by a list of the id, the attribute list and the comment text. The
comment text is an uninterned atom. Comments may be deleted or reordered by ed‘iting the

comment property.

2.1.10.1.2 DEF-COMMENT [VALUE]

names a function thal will be called when a DC is done. It is initially DC-DEFINE, but is
rebound by various functions to DC-HELP, DC-USERHELP etc. depending on how comments are
to be treated at various times. Of course, this provides a handy way to program your own

treatment of comments too.

2.1.10.1.3 (DC-DEFINE name id attributes) [SUBR]

is the function that defines comments. It reads a comment and puts it in the right place.

2.1.10.1.4 (DC-DSKIN name id attributes) [SUBR]

is the function that DC normally calls during a DSKIN. It simply records the existence of
the comment, without actually _reading it in.

2.1.10.1.5 (DC-HELP name id attributes) [SUBR]

is the function that DC calls during a HELP. It simply decides whether to print the comment
(by calling HELPFILTER) and then either prints it or skips it.

2.1.10.1.6 (DC-IGNORE) [SUBR]
is the function that DC-DSKIN calls to skip a comment.

55

2.1.10.1.7 (DC-USERHELP name id attributes) [SUBR]
is the function that DC uses during a USERHELP. It is like DC-HELP except that it does

some exira bookheeping to tell you what may be wrong

2.1.10.1.8 DSKIN-COMMENT [VALUE] -
contains the value give to DEF-COMMENT when DSKIN is called. It is initially DC-DSKIN.

2.1.10.1.9 (#%x comment) [FSUBR]

is the standard comment function. It returns NIL. It also has a special printmacro property
which Dblock-prints the comment. These comments are not normally printed unless
COMMENTFLG is non-NIL. PPs and PPL% force COMMENTFLG to T.

2.1.10.1.10 (TRANSPRINT) [SUBR]

simply reads and prints characters (the same ones) until it reads an altmode, at which point
it returns NIL.

2.1.10.2 (FILBAK FILE NEWEXT) [SUBR]

, FILBAX ([VALUE]
FILBAK is a SUBR that attempts {o rename FILE with the extension of NEWEXT. FILE can be
either a FILNAM or a FILESPEC. FILBAK returns T if the renaming was successful and NIL if it
fails. As a value FILBAK is the standard extension (initially LBK) for backup files.

2.1.10.3 *NOPOINTDSK [VALUE]

determines whether DSKOUT puts decimal and octal points after numbers. NIL means that
they will be added, T means they won't. This feature is meant to solve the compatibility
problems that arise from saving a file in one base and reading it in another.

For related information sce *NOPOINT, BASE, and IBASE.

2.1.10.4 LISTDEVS [VALUE]

LISTDEVS is a list of output devices that are not also storage. It is used by DSKOQUT in
deciding whether changed deflinitions that have been written out are now "saved"” and need
not show up as "changes” any more. LISTDEVS is initially (LPT: LPTO: LPT1: TTY:).

56

2.2 FILES

In addition lo arbitrary text files {(which require assigning and selecting 1/0 channels ete.),
there are three special types of files that LISP supports. The RECORDFILE is simply a
transcript of your ferminal seession. Core images may be saved with the SAVE function,
described under SAVE-JOB. Finally, there is an elaborate mechanism (described under
SAVE-STATE) for assigning your functions, variables elc. to files which are pretfy-printed and
can be read by DSKIN or searched by GETDEF.

2.2.1 FILESPEC

FSUBRs that read filenames generally accept an optional device (e.g. DSKC:) followed by
an optional PPN (e.g. (CA10 HBOO)) followed by a file name (e.g. FILEl or (FILEl . EXT)).
(Whenever multiple files are specified the device and ppn apply .to all following files until
they are overridden.) However the explicit references to FILESPEC are for SUBRs, in which a
file musl always be one argument. In this case the argument is of the form (dev: filename),

where dev: is optionally absent or a PPN list and file names are the same format as before.

2.2.1.1 (ZDEVP X) [SUBR]

7DEVP is a previously undocumented UCI LISP function whose value is non-NIL if X is a
device, NIL otherwise. X is a device if it is either atomic and ends in ":" or is a list whose cdr

is not atomic.

2.2.1.2 (ZGETDEV filespec) [SUBR]

7GETDEV is the standard filespec scanner used by many system functions. It returns
~ (CONS (LIST DEV PPN) TAIL), where TAIL begins with the first element of filespec which is not
a device or PPN. DEV is defaulted to DSK:. If no PPN is scanned over, the value returned is
(CONS (LIST DEV) TAIL).

2.2.1.3 PPN

Project-Programmer Numbers for Disk 1/0 In all 1/O functions (including INPUT and
OUTPUT), the use of a two element list (not a dotted pair) in place of or in addition to a
device will cause the function to use the list as the project-programmer number. CMU PPNs
are specified in LISP as a (<project> <prog name>) list e.g. (A310 DN10) for-A310DN1O. e.g.
(DSKIN (A310 DN10) (APE . LSP)) DEC PPNs are specified as a list of two numbers. e.g. (5551
601)

57
The function MYPPN will show your PPN in DEC format.

2.2.1.4 (MYPPN) [SUBR]

MYPPN returns the user’s project programmer number in a form suitable for use by the
directory and I/0O functions. -

2.2.2 SAVE-JOB

2.2.2.1 (SAVE "FILE-SPEC" "EXCISE") [FSUBR]

SAVE saves the present core image. If no device is specified, DSK: will be used. If EXCISE
is absent or non-NIL, (EXCISE) will be execuled. This is generally desirable since it releases
1/0 buffers and cxpanded core resulting in a smaller save file. Note that open channels
cannot be prescrved in a save file in any case, so loss of 1/0 buffers created by EXCISE is
irrelevant. (All channels (other than {o the leletype) should be closed prior to doing SAVE.)
The SAVE function has been modified to work properly under the 6.02 monitor. It works
exactly as before, but for the time being it is unfcrtunately necessary for it to exit to the
monitor. The user must type SAVE or NSAVE (new type of save), then START to continue.
The save function allows the high segment not to be saved.

The saved core image will continue execution when RUN or STARTed exactly where the
saved program left off, i.e,, the first thing the saved core image will do is return the file name
for the successfully saved file. SAVE thus preserves the entire execution context, and can be
invoked from inside the editor, the break package, or a user function, and control will be
returned to that location in both the running job and the saved core image.

Since the allocalion procedure is bypassed when RUNning or STARTing a core image saved
by the SAVE function (so that execution can continue where it left off in the saving program),
if the core image is run in more core than it was saved in, this excess core will be unavailable
to LISP (except as 1/0 bufters or expanded core) until the core image is exited and STARTed
again to enter the allocation procedure (or the CORE function is used to make the extra core
available). (START only continues the program from where the séving program left off the
first time; later STARTs will enter the allocation procedure as usual.) SAVE uses the name to
rename to core image, and {he PPN and device (as well as name) are used to do a SETSYS.
Thus if you specify another PPN the hiseg will still go onto your area, but your .LOW file will
tell the monitor to look on the specified PPN for the hiseg. In order to save a core image and
have the saved core image allocate whatever core is available when it is RUN or STARTed and
go to the LISPX top level, (PROGN (SAVE filename) (CORE (CORE NIL))) may be executed.

58

2.2.2.2 (SETSYS file-spec) [FSUBR]

SETSYS enables the user to creale his own sharable system. In order to create the
system, the user must Control-C out and do an SSA <file>, then run the system. After this
procedure, the user has write priveleges and may load code into the sharable high segment.
(Note that the user nced not use this {o save a low segment only). This procedure is not
‘ necessary for generating the system. (SETSYS OLD: LISP) will cause a .SAV file made with
the old LISP to get its high segment from OLD instead of SYS. No high segment need be
saved by the user. (The first time you can R OLD:LISP or ASSIGN OLD SYS before R LISP.)
The SAVE function does a SETSYS for you.

2.2.2.3 HISEG [VALUE]

causes the SAVE function to save a high segment if it is not NIL. Normally HISEG is NIL,
and SAVE only saves a low segment.

2.2.2.4 VERSION [SPECIAL VALUE]

VERSION is numeric and specifies a .SAV file version number to be made part of the name
of the next .SAV file written by SAVE.

2.2.3 (RECORDFILE "FILE") [FSUBR]
and RECORDFILE [VALUE] RECORDFILE controls the writing of a file which records all the

input from and oulput to the teletype (with a few exceptions, cited below). If a record file is
currently open when RECORDFILE is executed, it will be closed. _If a file name is specified, a
new record file with that name will be opened. A message ("RECORD FILE file OPENED" or
"RECORD FILE file CLOSED"™) will be printed when a file is opened or closed. An improper
specificalion of a file name to RECORDFILE will result in no record file being opened and the
absence of the OPENED message. Use (RECORDFILE) to stop recording. The value of the atom
RECORDFILE is the name of the recording file. '

Everything read or written by the standard LISP input/output functions (READ, PRINT, etc.)
will be copied to the record file. Certain LISP messages are stored in SIXBIT and printed by
UUOs and are not copied by the record file facility. These are the error messages
("UNDEFINED FUNCTION", "UNBOUND VARIABLE", etc.) and garbage collection messages. Note
that, for example, all user interaction with the top level, editor, or break package is copied to

the record file.

Some things can be done in or to LISP to cause the record file to be lost. If the user exits
the core image and exccutes the monitor START command, a RESET UUO will be performed by

59

LISP, releasing the channel on which the record file was being written without closing the file.
The CORE function, when used to acquire more core or to reallocate excised storage, has
nearly the same effect as exiting the core image and doing a éTART. This condition is
checked for, and if the allocalion procedure is fo be enlered (whenever the argument to
CORE is greater than or equal to the current size of the low segment), the currently open
record file (if any) is closed. Executing EXCISE, running out of push down list, and possibly
some other severe LISP errors of this type may also cause loss of the record file. If LISP
expecis to be writing a record file, and finds it is no longer open because of one of these
events, it prints the message "RECORD FILE file NO LONGER OPEN" and ceases outputting to
the record file. The no longer open record file may sometimes be recovered by executing
the monitor CLOSE command.

2.2.4 UFDS

2.2.4.1 (UFDINP CHANNEL PPN) [SUBR]

UFDINP is analogous to the function INPUT in that it opens a file on a specified channel.
The channel must be selected via INC in order to be read. The file is opened in binary image
mode and should not be read by the normal LISP read functions. UFDINP opens the directory
of PPN on CHANNEL. It returns the value of CHANNEL as its result. PPN is either of the form
(PROJ PROG) or NIL. If PPN is NIL the user’s directory is assumed.

2.2.42 (RDFILE) [SUBR]

ROFILE returns the next file in the directory that is open on the current input channel. It
return a file which is either an atom or an atomic dotted pair. It does an (ERR EOF) when it

reaches the end of file.

Fbr related information see DIR.

2.2.4.3 (LOOKUP DEV FILNAM) [SUBR]

LOOKUP is a SUBR thal determines whether the file DEV FILNAM exists or not. LOOKUP
returns NIL if it can’t find the file and (LIST DEV FILNAM) if the file does exist. If DEV is NIL,
DSK: is assumed and (LIST FILNAM) is returned.

2.2.4.4 (LOOKUPFILE file) [SUBR]

LOOKUPFILE is a SUBR that takes as its argument a FILESPEC and returns a non-NIL value
. if there is a file of thal description that can be looked up. (In fact LOOKUPFILE performs a
LOOKUP monitor. call.) In many cases LOOKUPFILE is more convenient than the LOOKUP

60
function. It is also more general,

2.2.4.5 (FILELENGTH) [SUBR]

returns a number whose right half contains the number of words in the last file for which a
LOOKUP or LOOKUPFILE was done. -

2.2.5 (TY "filel" "file2" ... "filen") [FSUBR]

TY imitates the monitor type command by reading (and typing) the specified files in a TYI -
TYO loop. The loop may be terminated by typing any character while it is in progress (you
don’t have to type °C. 70 is ineffective. Try a space.).

2.2.6 (DELETE "FILNAMI" "FILNAM2" ..) [FSUBR]

DELETE is an FSUBR that delctes the files in the list. The DEV’s are optional, and a DEV is
effective over the following FILNAM's until a new DEV is encountered. DELETE always
returns NIL. The user’s disk area is assumed if no DEV has been specified.

2.2.7 (DIRF {ppn} {filespec}) [FSUBR]

prints a list of files in the spccified directory (defaults to (MYPPN)) which "match” filespec.
Filespec is a file name cxcepl that either half may be replaced with an asterisk (*) to match
anything. The default filespec is (+.%).

Example: (DIRF (C410 HBOO) (» . LSP)) -

2.2.8 (DIR PPN) [SUBR]
DIR returns a list of files from the directory of PPN. If PPN is NIL, the user’s directory is

assumed.

For related information see PPN,

2.2.9 (RENAME "FILNAMI™ "FILNAM2") [FSUBR]

RENAME is an FSUBR that renémes FILNAM] to FILNAM2. RENAME returns T if the
renaming is successful and NIL if it fails.

2.2.10 (x*RENAME FILESPEC!] FILESPECZ2) [SUBR]
+RENAME is a SUBR that renames FILESPECI to FILESPEC2. It returMejeereils

61

successful and NIL if it fails. If a device is specified in FILESPEC] and no device is specified
in FILESPEC? the device «pecified in FILESPEC! is carried over to FILESPEC2

2.3 PRETTY-PRINTING

2.3.1 (PP <al> {<a2>} ...) [FSUBR]

For cach <a> in the argumenl list: If <a> is alomic, each property of <a> which appears on
" the list PRETTYPROPS is printed in readable format. (If no such properties appear a message
to that effect is printed - this mescage may be suppressed by setting NOPRETTYPROPS to
NIL). Each non-atomic <a> is simply printed via SPRINT uniess its CAR is defined as a
"prettyprint command”, in which case the expression is evaluated. <a> may also be a list
consisting of a LAP expression followed by a sequence of LAP code; such a list will be printed
in standard LAP format.

2.3.2 (GRINDEF "FI" "F2" “F3" .. "FN") [FSUBR]
GRINDEF is the same as PP.

2.3.3 (PPx 112 ..) [FSUBR]
is like PP but it forces COMMENTFLG to T so all comments are shown.

2.3.4 (SPRINT EXPR IND) [SUBR]
SPRINT is the function which does the “pretty printing™ of GRINDEF. EXPR is printed in a

human readable form, with the levels of list structure shown by indentation along the line.
This is useful for printing large complicated structures or function definitions. The initial
indentation of the top level list is IND-1 spaces. In normal use, IND should be given as 1.

2.3.5 (PPL <varl> {<var2>} . ..) [FSUBR]

Each <var> should be an atomic symbol which is bound to a prettyprint list to be passed on
to PP. This prettyprint list may contain atomic symbols whose properties are to be printed,
prettyprint command expressions, and other expressions which are to be SPRINTed. Each
<var> which is not already a member of its prettyprint list will be printed so that if dumping
to a file its value will be restored when the file is subsequently loaded. The prettyprint list

will disappear when the file is compiled, however (i.e., it will not appear in the LAP file).

62

2.3.6 (GRINL "FI" "F2" .. "FN") [FSUBR]
GRINL is the same as PPL.

2.3.7 (PPLx 1112 ..) [FSUBR]
is like PPL but it forces COMMENTFLG to T, causing all comments to be shown.

2.3.8 PRETTYPROPS [VALUE]

In its simplest form, PRETTYPROPS (or GRINPROPS) is a list of atomic symbols which gives
the properties which PP is to print. Each atomic argument to PP which has a property on
PRETTYPROPS wiil be printed as a DEFPROP expression. Occasionally, however, it is desirable
to print certain properties in something other than DEFPROP format. This may be
accomplished by putting a consed pair of the form (<prop> . <fn>$ onto PRETTYPROPS; when
an atom with a <prop> property is encountered, PP simply prints a carriage return and calls
<fn> <fn> will be passed three arguments: the atom currently being PPed, the value stored
under the property <prop>, and the atom <prop> itself. The function can then print anything
it wishes before returning to PP, at which time another carriage return will be printed. For
example, the functions PP-VALUE and PP-RMACS are provided by the prettyprint package to
print VALUE and READMACRO properties in special form.

2.3.8.1 (PP-VALUE alom value (Quote YALUE)) [SUBR]

is the defaull pretty-printing function for values

2.3.8.2 (PP-FUNCTION atom function-dafn fn-prop) [SUBR]
is the function used to pretty-print EXPR, FEXPR and MACRO properties by PP.

2.3.8.3 (PP-RMACS atom readmacro-defn (Quote READMACROQ)) [SUBR]

is the default pretty-printing function used for readmacros.

2.3.8.4 (PP-DCCOMMENT 1D VAL PROP) [SUBR]

PP-DCCOMMENT is the standard function for printing DC-style comments. Comments are
frequently slored only in a file, of course, so PP-DCCOMMENT is more complex than most
prettyprint functions. When PP-DCCOMMENT is called from DSKOUT, the variables it uses for
communications are appropriately set up by DSKOUT. The system is initialized so that when
it is called directly from PP, no printing will be done.

63

PP-DCCOMMENT only attempts to print the DC-style comments (referred to henceforth as
comments) if the variable PRINT-COMMENT is true. PRINT-COMMENT is initially NIL. If the
variable COMMENT-CDF is baound and not NIL, the comments will be searched for on the file
and channel specified. The format of COMMENT-CDF is exactly the format of an argument list
to INPUT, and it must include a channel. An INPUT must already have been performed on the
channel, bul PP-DCCOMMENT will select the channel as needed. COMMENT-CDF is initially
unbound. If the variable FILUPDATFLG is frue, comments that are stored in primary memory
will be deleted so the space can be reclaimed. The deletion is undoable -- if DSKOUT should
abort for some recason, the operation can ordinarily be undone and the comments will be

restored. FILUPDATFLG is initially NIL, and should stay that way for most user applications.

If COMMENT-CDF (CDF = ChanDevFile) is true and a comment is searched for without
success, the user will be asked to help in finding the comment unless COMMENT-CDF is
unbound. A file spec will be requested from the user and searched for the comment. If the
first item on the line containing the file spec is the atom "DEFAULT:" and COMMENT-CDF is
bound (though possibly NIL), COMMENT-CDF will be set up so that subsequent calis to
PP-DCCOMMENT will search the new file automatically rather than the old one. The idea here
is that if PP is called directly, the variable will ordinarily be unbound, and the user will not
want to set up a GLOBAL default file to search for comments.

The variable #7LINECTR is used by the system routines that search the COMMENT-CDF file
for comments. It keeps track of the "place™ that LISP is in searching the file, When a
COMMENT-CDF is sect up by the user, #7LINECTR should be initialized to 1.

- 2.3.9 PRINTMACRO

SPRINT normally operates by formatling the expression being printed using indentation to
produce “pretty” output. It is occasionally desirable to have certain subexpressions printed
in some special format for increased readability. Such a capability is provided via the use of
printmacros. Any function may be flagged as a printmacro by placing the macro definition on
the property list of the atom under the indicator PRINTMACRO. Whenever an alom with such
a property appears as the first element in a list being prettyprinted, SPRINT takes special
action, such action depending on the value of the PRINTMACRO property:

(1) If the value is a siring the siring is simply PRINCed and the CADR of the original
expression (if present) is SPRINTed. This serves as an inverse for READMACROs of the <e>
-> (QUOTE <e>) type. (If the expression has a non-NIL cddr then the printmacro will be
ignored.) (2) If the value is the special atomic symbol BRACKETS then the expression is
printed by SPRINT in the normal way, except that each lop-level non-atomic argument will be

64

prinfed with brachkets [...] insicad of the usual parentheses (..). This gives the user one more
method of producing more rcadable output. COND, SELECTQ, AND, OR, and CATCH are
initialized as prinimacros of this type. To dicable the use of brackets for these functions
simply REMPROP the PRINTMACRQ property from their property lists. (3) If the value of the
PRINTMACRO property is neither a string nor the atomic symbol BRACKETS it is assumed to
be a true printmacro function (or, more typically, the name of a function). This function will
be passed the expression being printed as its only argument, and may print it in any format it

wishes.
The QUOTE printmacro (which is already in the system) could be defined either by:
(DEFPROP QUOTE ™" PRINTMACRO) or

(DEFPROP QUOTE
(LAMBDA (E) (PRINC '"'"™) (SPRINT (CADR E) (CURPOS)))
PRINTMACRO) :
2.3.9.1 (PP-COMMENT exp) [SUBR]

is the printmacro that block-prints +xx comments.

2.3.9.2 (PP-FORMAT <e> <n> <flag>) [SUBR]

Prints the expression <e> with the first <n>+] elements (the function name and <n>
arguments) printed on one line. <fiag> specifies how the remaining arguments are to be
printed: if <flag>=NIL (standard format), all remaining arguments are printed under the first
argument; if <flag>=MISER, the remaining arguments are placed under the function name; if
<flag>=LABELS, all non-atomic arguments are printed under the first argument, with atoms

placed to the left as labels.

2.3.9.3 (PP-LABELS exp) [SUBR)

is used by the pretty-printer to print PROG expressions. 1t is equivalent to (PP-FORMAT
exp 1 'LABELS).

2.3.9.4 (PP-MISER exp) [SUBR]

is equivalent to (PP-FORMAT exp 1 "MISER). It is the default printmacro for LAMBDA and
DEFPROP.

2.3.10 PRETTY-PRINT-COMMANDS

Prettyprint commands may be used as arguments to PP or in PPL prettyprint lists to
perform a variety of special formatting tasks. A prettyprint command is simply an expression

65

whose CAR is a funcltion name with a non-NIL PPCOM property. Such expressions are
cvaluated when encountered by PP, thus providing a mechanism for "grabbing control” during
the prettyprint process. The user may define his own prettyprint commands, or may use the
following functions supplied by the system. Note that in addition to appearing as prettyprint
commands in PPL lists, these expressions may be used in other contexts as well.

2.3.10.1 PPCOM [PROPERTY])

PPCOM is the property that identifies an atom as a pretty-print command. If the value of
the property is not T then it should be the name of a function which when applied to a call
on the pretty-print command will give the words whose definitions are to be printed by the
call on the preltyprint command. For example, the PPCOM property of P: is CDDR. (P: (value
expr) x y z) would print definitions of the words x, y and z. This is used to help keep track
of what functions are defined in which files so that the CHANGES computation will work right.

2.3.10.2 (P: <props> <x1> {<x2>}...) [FSUBR]

PRETTYPROPS is sel to <props>, the <x>s are passed on to PP, and PRETTYPROPS is
"~ restored.

2.3.10.3 (xPGx) [SUBR]
prints a page-eject ("L). It is useful as a PRETTY-PRINT-COMMAND.

2.3.10.4 (MBD: <fn> <x1> {<x2>} .. .) [FSUBR]

Passes the <x>s on {o PP in such a way that they will be prettyprinted inside of an
expression starting with <fn> For example, to prettyprint F1 and F2 inside of a PROGN
expression (perhaps so they will not be compiled) one could do:

(MBD: PROGN F1 F2)

2.3.10.5 (FORMS: <x1> {<x2>}...) [FSUBR]

Each <x> is passed directly to SPRINT - may be used to print atoms and prettyprint
command expressions which would normally be handled specially by PP.

2.3.10.6 (E: <el> {<e2>}...) [FSUBR]

The <e>s are simply evaluated. For example, the inclusion‘of the following in a prettyprint
list could be used to change the base in the middle of a print: .

(E: (SETQ BASE 10.))

66

2.3.11 PRETTYFLG [VALUE]

determines whether SPRINT prints the nice readable things we all know and love (when the

value is T which is the defauit) or a fast, compact (and not very readable) symbolic dump
(when the value is NIL).

2.3.12 PPMAXLEN [VALUE]

is a general limit on the number of characters (after initial spacing) that the prettyprinter
will put on a line.

2.4 INPUT-FNS

2.4.1 (READ) [SUBR]

READ causes the next S-expression to be read from the selected input device, and returns
the internal representation of the S-expression. READ uses INTERN to guaraniee that
references to the same identifier are EQ. READ has been altered so that (except when
processing a read macro), reading from the leletype flushes all input on the same line after
the thing is read. Thus, inputs to successive reads cannot be placed on the same line.

For related information see INTERNSTR and LOWER-CASE.

2.4.2 (RDNAM) [SUBR]

RDNAM functions in the same manner as READ except {hat it does not INTERN the atoms
that it reads. Thus an atom read by RDNAM and an atom read by READ are #xNOT*x EQ.

For related information sce MAKNAM,

2.4.3 (READCH) [SUBR]

READCH causes the next character to be read from the selected input device and returns
the corresponding single character identifier. READCH aiso uses INTERN.

For related information see LOWER-CASE.

"~ 2.4.4 (TYI) [SUBR]

TYI causes the next character to be read from the selected input device and returns the

67

ASCII code for that characler.

2.45 (LINEREAD) [SUBR]

LINEREAD reads a line, returning it as a list. If some expression takes more than one line
or a line terminates in a comma or tab, the; LINEREAD continues reading until an expression
ends at the end of a line. This is the function used by the EDITOR and BREAK Package
supervisors to read in commands, and may be useful for other supervisor-type functions.
Note that a blank no longer forces LINEREAD to continue reading. This allows LINEREAD to
read things created by functions such as PRINT.

For related information see LOWER-CASE.

2.46 (LINEREADP) [SUBR]

LINEREADP is just like LINEREAD, but if the input buffer contains a CRLF before any
interesting characlers are read it will return NIL instead of waiting for a list to be read. This
is convenient for defaulting input. Warning: Not all input commands read to the end of the
line. For example if you type "ABC" followed by a crif and then do 3 TYIs there will still be a
crif in the input stream. This would cause LINEREADP to return NIL even before the next line
was typed. In general LINEREADP should only be used after LINEREAD or another
LINEREADP.

2.4.7 (PEEKC) [SUBR]
PEEKC returns the ASCII code for the next character in the input buffer without actually

reading it.

2.4.8 (UNTYI n) [SUBR]

UNTYI unreads the character whose ascii code is n (puts it in the front of the input stream)
and returns n. This only works for one character (the size of the buffer). UNTYI is really
only guaranteed not to lose characters when it is called immediately after a TYL

2.4.9 (TYIO n) [SUBR]

copies from the input channel to the output channel until the character whose ascii code is

n appears as input.

68

2.4.10 (YESNO X) [SUBR]
YESNO returns T if X is T, Y, or YES, rcturns NIL if X is NIL, N, or NO, and returns X

otherwise. It is useful for interpreting yes/no answers typed by the user.

2.4.11 (TTYESNO) [SUBR)

reads from the tty. If the read gencrates an error the value is NIL, otherwise the input is
passed to YESNO.

2.5 OUTPUT-FNS

2.5.1 (PRINT S) [SUBR]

= (PROG2 (TERPRI)
(PRIN1 §5)
(PRINC (QUOTE /)))

For related information see LOWER-CASE.

2.5.2 (PRINI S) [SUBR]

PRIN1 causes the S-expression S to be printed on the selected output device with no
preceding or following spaces. PRINL also inserts slashes ("/") before any characters in
identifiers which would be syntactically incorrect otherwise . Double quotes around strings
are printed. It is calied by PRINT.

For related information see LOWER-CASE.

2.5.3 (PRINC S) [SUBR]

PRINC is the same as PRIN] except that no slashes are inserted and double quotes around
strings are not printed.

2.5.4 (TYO N) [SUBR]

TYOQ prints the character whose ASCII value is N, and returns N.

2.5.5 (MSG <il> {<i2>} ...) [FSUBR]

MSG provides a general message-printing facility for LISP. Each <i> is an instruction which

69

provides a specific formatting capability:

"¢string»” Print «<string>» using PRINAC

+cnunber) Space <number> spaces

(T «n») Tab to position «m»

T Move to new line

-<¢number) Print <number> blank lines
. (E <expry) Evaluate cexpr>

other Eval and print using PRINA

Note that MSG prints the desired message on the currently selected output device. MSG is
compiled in-line.

MSET"C="5XT

is equivalent to:
(PROGN (TERPRI)
(PRINAC ""X = ")
(SPACES 5

(PRINA X}
(TERPRI))

2.5.6 (TTYMSG <il> {<i2>} . ..) [FSUBR]

TTYMSG is identical to MSG, except printed output is directed to the terminal instead of the
currently selected output device. To insure that the message will appear on the terminal
even if 7O has been struck, a TALK is performed before printing. TTYMSG is compiled in-line.

2.5.7 (PRINA x {pos}) [LSUBR]

Like PRINI, except if an atom won’t fit on the line, a tab to position pos on the next line is

performed before printing resumes. Pos is optional, with a value of | assumed if omitted.

2.5.8 (PRINAC x {pos}) [LSUBR]
is the same as PRINA but PRINC is used to print atoms instead of PRINI.

2.5.9 (SPACES n {ident}) [LSUBR]

Spaces over <n> spaces, using tab characters when possible. If <n> spaces won't fit on the
current line, SPACES performs a TERPRI instead. If ident is specified then SPACES indents
this amount after the TERPRI

2.5.10 (LINES n) [SUBR]

Prints <n> blank lines. Note that the next print position will always be at the start of a

70

line, so (LINES O) may be used as a "conditional TERPRI"™ which outputs a carriage return if
not already at the start of a line.)

2.5.11 (PRINL <I>) [LSUBR]

Prints the list <I> without the outermost parentheses, i.e., prints the elements of <I>

separated by spaces. Each element is printed using PRINA, with a <pos> of 1.

2.5.12 (PRINLC <i>) [LSUBR]
Identical to PRINL, except uses PRINAC instead of PRINA to print the list elements.

2.5.13 (TERPRI X) [SUBR]

TERPRI prints a carriage-return and line-feed and returns the value of X. X may be omitted
if the value of TERPRI is not used.
Example: (PRINC(TERPRI X))

is the same as

(PROG2 (TERPRI) (PRINC X))

2.5.14 (TAB N) [SUBR]

TAB tabs to position N on the output line doing a TERPRI if the current position is already
past N. Note that TAB outputs spaces only when necessary and outputs tab characters

- otherwise.

2.5.15 (PRINTLEV EXPRESSION DEPTH) [SUBR]

PRINTLEV is a printing routine similar to PRINT. PRINTLEV, however, only prints to a depth
of DEPTH. In addition, PRINTLEV recognizes lists which are circular down the CDR and closes
these with °..T instead of °)". The combination of these two features allows PRINTLEV to print
any circular list without an infinile loop. The value of PRINTLEV is the value of EXPRESSION.
This means that PRINTLEV should not be used at the top level if EXPRESSION is a circular list
structure, since the LISP executive would then attempt to print the circular structure which is
returned as the value. (Instead say (NULL (PRINTLEV ..)}.)

2.5.16 (PRINLEV EXPRESSION DEPTH) {SUBR]
PRINLEV is the same as PRINTLEV but no preceeding (TERPRI) is done and no trailing blank

71

is added.

2.5.17 (PLEV exp) [SUBR]

does (PRINLEV exp 7LCOKDPTH). PLEV is the default value of ZPRINFN {used by the break
package).

2.5.18 7ZLOOKDPTH [VALUE]

This is the variable that determine the depth to which PLEV goes. It is rebound in a few
places by the break package.

2.6 I-O-CHANNELS

2.6.1 (INPUT "CHANNEL" . "FILENAME-LIST") [FSUBR]

INPUT releases any file previously initialized on the channel, and initializes for input the
first file specified by the filename-list. INPUT returns the channel if one was specified, T
otherwise. INPUT does not evaluate its arguments. Note that INPUT does NOT SELECT the
channel for input. This is done by INC.

2.6.2 (INC CHANNEL ACTION) [SUBR]

INC selects the specified channel for input. The channel NIL selects the teletype. If
ACTION = NIL then the previously selected input file is not released, but only deselected. If
ACTION = T then that file is relcased, making the previously selected channel available. At the
top level, ACTION need nol be specified.

The input functions receive input from the selected input chaﬁnel. When a file on the
selected channel is exhausted, then the next file in the filename-list for the channel is
initialized and input, until the filename-list is exhausted. Then the teletype is automatically
selected for input and (ERR (QUOTE SEOFS)) is called. The use of ERRSET around any
functions which accept input therefore makes it possible to detect end of file. If no ERRSET
is used, control returns to the top level of LISP. INC evaluates its arguments, and returns the
previously selected channel name.

In order to READ from multiple input sources, separate channels should be initialized by
INPUT, and INC can then select the appropriate channel to READ from.

A crude approximation to the TY function (for typing a file) is (PROG NIL (INC (INPUT XYZ

72

FILE) NIL) L: (TYO (TYD) (GO L.:)).

2.6.3 (OUTPUT "CHANNEL" . "FILENAME-LIST") [FSUBR]

OUTPUT initializes for output on the specified channel the single file specified by the
filename-list. OQUTPUT does not evaluate ils arguments, and returns the channel name if
‘specified, T otherwise. Nole that QUTPUT does NOT SELECT that channel for output. This is
done by QUTC.

2.6.4 (OUTC CHANNEL ACTION) [SUBR]

OUTC selecls the specified channel for output. The channel NIL selects the teletype. The
output functions transfer oulput lo the selected output channel. If ACTION = NIL, then the
previously selecled outpul file is not closed, but only deselected. If ACTION = T then that file
is closed, i.e., an end of file is written. OUTC evaluates its arguments and returns the

previously selected channel name. At the top level, ACTION need not be specified.

Examples: At the top level:
(OUTC (OUTPUT LPT:) T) ;; now all output goes to LPT:NIL
(OUTC NIL T) ;; now output comes .to TTY: and LPT:NIL is closed
(OUTPUT FOO DSK: BAZ) ;; output still on TTY: but FOO is declared
(OUTC (QUOTE FOO) NIL) ;; now the channel FOO is selected. Thus

;;output goes to DSK:BAZ. The previous file (TTY:) {s not
;s closed. (Actually TTY: {s always opencd when nothing else {s.)

2.6.5 (INCH) [SUBR]

returns the name of the currently selecled input channel.

2.6.6 (OUTCH) [SUBR]

returns the name of the currently selected output channel.

2.6.7 (TTYIN FORMI ... FORMn) [MACRO]

TTYIN is a MACRO that produces code that evaluates FORMI through FORMN with the
currently selected input device forced to be the teletype. The value of FORMn is returned as
the value of TTYIN. For this {o be useful, some of FORMI ... FORMn should do some reading.

Note that no error protection is provided. If an error occurs, TTYIN will lose control and
fail to reset the input channel to its previous value. For this reason, TTYIN should be used
only to surround the expressions which actually do the input, and ERRSET should generally be

73

used to protect against the user typing control-G so that control is retained by TTYIN.
Generally, the function should be (and is most useful when) used as in, for example, (TTYIN
(ERRSET (READ) ERRORX)).

2.6.8 (TTYOUT FORMI ... FORMn) [MACRO]

TTYOUT is a MACRO that produces code that evaluates FORMI1 through FORMR with the
currently selected output device forced o be the teletype. The value of FORMn is returned
‘as the value of TTYOUT. For this o be useful, some of FORMI through FORMn should do

some writing.

Note that no error prolection is provided. If an error occurs, TTYOUT will lose control and
fail to reset the output channel to ils previous value. For this reason, TTYOUT should be ’
used only to surround the cxpressions which actually do the output. Generally, the function
should be (and is most useful when) used as in, for example, (TTYOUT (PRINT X)).

2.6.9 (GETCHN) [SUBR]

allocates an 1/0 channel. It returns the channel it got (a number).

2.6.10 (GIVCHN chan) [SUBR]

deallocates an 1/0 channel. The argument should be the number of an allocaled channel.

2.6.11 (EXCISE) [SUBR]

EXCISE conliracts core to its length after ALLOCATION or the last START. This removes [/O
buffers, and all RELOC programs. It also closes all files and releases all devices. The usual
reasons for expanding core are 1) using 1/O channels, 2) using the loader and 3) getting more

Binary Program Space.

For relaled information see BPS, CORE, LOAD, and SAVE.
2.7 1-0-MODE

2.7.1 BASE [VALUE]

BASE specifies the oulput radix for integers (initially 10 (decimal)). Warning: the default
used to be 8 (octal). If BASE is necgative then negalive numbers will be printed as unsigned
36 bit numbers (where the radix is -BASE), i.e. 777777777777Q instead of -1Q.

74

2.7.2 IBASE

IBASE determines lhe inputl radix for integers not followed by a decimal point or octal
point. The default value is 10 (decimal). Warning - IBASE used to default to 8 (octal).

2.7.3 *NOPOINT [VALUE]

This variable determines whether decimal points will be printed after decimal numbers and
octal points after octal numbers - T means they won't.

For rclated information see *NOPQINTDSK.

2.7.4 OCTAL-POINT
The octal point "Q" is printed after octal numbers (if *NOPOINT is NIL) to distinguish them
" from numbers in other bases, just as the decimal point is used in base 10.

For related information see *NOPOINTDSK.

"Why *Q?", you ask. "Why not?", we reply.

2.7.5 INTERNSTR [VALUE]

determines whether strings will be INTERNed by READ. The default value is NIL meani;\g
they are not. This flag is turned on by LAP.

2.7.6 (PGLINE) [SUBR]

When reading an input file, it is sometimes desirable to know the page and line being read
from. PGLINE returns the dotted pair (page number . line number) for the selected input file.
The page number is applicable only to STOPGAP files. If the file has no line numbers, PGLINE

will always return (1 . O).

2.8 CHARACTERS

2.8.1 COMMENT-CHAR

Note: For commenting code you should see the explanations of x#x and COMMENT. The
features described here are not good for that purpose. Comments are useful for allowing
descriptive text in files which will be COMPLETELY IGNORED WHEN READ. (Since lisp doesn’t

Ty

75

sce this lext it can’l save it in the revised file.) Comments also make it possible to extend
atoms (identificrs, strings and numbers) across line boundaries without any of the characters
in the comment becoming parl of the atorn, When the comment character is seen by LISP the

rest of the input line is ignored. The comment character is ?4 in SOS or ~Z (control Z).
2.8.2 LETTER-QUOTE

Identifiers are normally string of characters beginning with a letter and followed by letters
and digits. It is somelimes convenient o create identifiers which contain delimiters or begin
with digits. The use of the delimiter /" (slash) causes the following character be taken
literally, and the slash itself is not part of the identifier. Thus, /AB is the same as AB is the
same as /A/B. One can change the LETTER-QUOTE character by using the CHQUOTE function.

2.8.3 (CHQUOTE n) [SUBR]

(CHQUOTE n) changes to quoting (slashifying) character to character number n. (CHQUOTE
NIL) returns the current quoting character.

2.8.4 (MODCHR CH N) [SUBR]

The value of MODCHR is the old read-table entry for CH. If N is non-NIL it must be a
number which represents a valid table entry. The entry for CH is changed to N. If N is NIL,

no c&mge is made, .e.g. to make a letter (so it will behave like the letter "A") execute

(MODCHR 46 (MODCHR 65 NIL)).

2.8.5 (SETCHR CH N) [SUBR]
SETCHR is similar to MODCHR except that it only modifies the portion of the entry

associated with read macros.

For related information see READMACRO.

2.8.6 xDIGITS [VALUE]

is simply a list of the digits 0-9 (as characters, not numbers).

2.8.7 *LETTERS [VALUE]

is just a list of the letters A-Z.

76

2.8.8 LOWER-CASE

READ and LINEREAD now map lower case |ntters inlo upper case letters inside identifiers.
Letters in strings are not mapped. Lower-c.ce letters in identifiers other than strings are
slashified on outpul by PRINT or PRINI. READCH maps lower case to upper case, but the
mapping cannot be turned off by changing the read tables. To disable this feature, redefine
READCH to be (INTERN (ASCII (TYID). TY1 is unaffected by the mapping, distinguishing upper
and lower case as before.

Programs using no lower-case identifiers and not using TYI will natice no difference except
that input from a file of the keyboard may now be in lower case. If there are lower case
identifiers (or sirings), the change will affect the actions of EXPLODE, FLATSIZE, MAKNAM, and
READLIST. EXPLODEC and FLATSIZEC are unaffected because, like PRINC, they ignore any
possible slashification, NTHCHAR is also unaffected.

To read in existing files containing lower case identifiers, the lower case letters may be
slashified with TECO before being input to LISP. Alternatively, LISP can be modified by a
method like the one for removing the lower case mapping feature. Remove the lower case
mapping feature, but record the results of the MODCHRs performed on the lower case
characters. Read in the file. Do MODCHRs restoring the original table values, then write the

file out again. This will cause the lower case identifiers to be slashified.

To remove the lower case mapping, do the following:

(PROG (IT) .
(SETQ IT (CHRVAL 'A))
LOOP (COND C(NOT (> IT (CHRVAL'2)))
(MODCHR (+ IT 32) (MODCHR IT NIL)) (SETQ IT (+1 1T)) (GO LOOP)]

2.9 TTY-CONTROL

2.9.1 (CLRBFI) [SUBR]
CLRBFI clears the Teletype input buffer.

2.9.2 (DOTIN X) [SUBR]

DDTIN is a function which selects teletype input mode. With (DDTIN NIL), and typing to
READ, READCH, or TY], a rubout will delete the last character typed, and control U ("U) will
delete the entire last line typed. Input is not seen by LISP until either altmode or carriage
return is typed. With (DDTIN T) and typing to READ, a rubout will delete the entire

77

S-expression being read and start reading again.
Note: (DDTIN T) {s not rccommended when the time-sharing system s

swapping, since the program is reactivaled (and hence swapped into core) after every
character typed.

2.9.3 (INITPROMPT N) [SUBR]

Whenever LISP is forced back to the top level (e.g. by an error or Control-G), the prompt
character is resel. INITPROMPT is similar to PROMPT except that it sets the top level prompt
character. (INITPROMPT NIL) returns the ASCIl value of the top level prompt character

without changing it.

2.9.4 (PROMPT N) [SUBR]

The LISP READ routines type out a "prompt character” for the user when they expect to

read from the teletype. For example the top level prints ">" and the edilor prints “a".
PROMPT resets this prompt characler. N is the ASCII representation of the new prompt
character. The ASCII representation of the old prompt character is returned as the value of
PROMPT. (PROMPT NIL) returns the current prompt characler without changing it.

2.9.5 (TTYECHO) [SUBR]

TTYECHO complements the Teletype echo switch. The value of TTYECHO is T if the echo is
being turned on, and NIL if it is being turned off.

2.9.6 (READP) [SUBR]
READP returns T if a character can be input and NIL otherwise. READP does not input a

character.

2.9.7 (ERRCH N) [SUBR]}

ERRCH changes the bell character that causes an (ERR (QUOTE ERRORX)). N is the ASCII
represcntation of the character. ERRCH returns the ASCII representation of the old character.
Note that if the new character is not a break character to the monitor, it will not be

processed unfil it is read in the normal course of reading.

2.9.8 (TALK) [SUBR]

78

Undoes the effect of a previous "0. May be used to insure that a message will appear on
the terminal (see TTYMSG). Note that a TALK is automatically performed whenever an error

condilion is encountered, including an end of file on any input device.

2.10 LINE-CONTROL

2.10.1 (CURPOS) [SUBR]

CURPOS returns the current pasition on the output line of the currently selected channel;
this is computed by (ADDI («DIF (LINELENGTH NIL) (CHRCT))).

2.10.2 (CHRCT) [SUBR]

CHRCT returns the number of character positions remaining on the output line of the
selected output channel. When characlers are output, if CHRCT is made negative, an ASCII
176 followed by a carriage-return and a line-feed are output. These characters are

completely ignored on input.

2.10.3 (SETCURPOS N) [SUBR]

Immediately following (SETCURPQOS N), (CURPOS) will return N. This allows the user to send
characters that do not print or that do cursor positioning, and inform PRINT and friends of

where one really is on the line. -

2.10.4 (LINELENGTH N) [SUBR]

LINELENGTH is used to examine or change the maximum output linelength on the selected
output channel. If N = NIL then the current linelength is returned unchanged, otherwise the

linelength is changed to the value of N which is returned and must be an integer.

2.10.5 LPTLENGTH [VALUE]

(or DSKLENGTH) is supposed to tell the system how many characters it can put in a line in
a DSKOUT. There are some known pathological cases in which it is worth changing.

2.11 READMACRO

Read Macros allow the user to specify a function to be executed each time a selected
character is read during input of his data or programs. This function is generally used to

79

produce one or more clements of the input list which are built up in some way from later
characlers of the input string. There are two types of Read Macros; Normal Read Macros
whose result is used as an clement of the input list in the position where the macro character
occurred, and Splice Macros whose result (must be a list which) is spliced sequentially into

the input list.

Examples: (DRM = (LAMBDA () (NCONS (READ))))

If the expression (A B *C D) is read the apparent input is (A B (C) D).
(DRM = (LAMBDA (0 (REVERSE (READ))))
If the expression (A B =(C DE)F G) is read the apparent input is (A B(E D C) F G).
(DSM : (LAMBDA () (CONS NIL (READ))))
If the expression (A B3 :C) is read the apparent input is (A B NIL . C).

Splice macros place the result of the function evaluation into the input stream minus the

outermost set of parentheses.

WARNING: Recad macro characters will not be recognized if they occur inside of an atom
name unless the character is first defined to be equivalent to a break or separator character
{e.e. space or comma) using MODCHR. Read macros are defined by DRM {normal) and DSM
(splice). ' :

2.11.1 (DRM ;CHARACTER" "FUNCTION") [FSUBR]

CHARACTER is defined as a Normal Read Macro with "FUNCTION" being a function name or
a LAMBDA expression of no arguments which will be evaluated each time CHARACTER is
detected as a macro during input. FUNCTION is put on the property list of CHARACTER under
the property READMACRO. The value of DRM is CHARACTER.

2.11.2 (DSM "CHARACTER" "FUNCTION") [FSUBR]
DSM is exactly like DRM except that CHARACTER is defined as a Splice Macro.

2.11.3 (7DEREAD number lambda-exp type) [SUBR]

defines the character with the given number as a readmacro (if type is 10) or a
splicemacro (if type is 11).(Normal value is 21.)

2.11.4 QUOTE-CHAR

&0

The character ™" is a rcadmacro that will translate into the QUOTE function. So, (A B C) is
the same as (QUOTE (A B C)).

2.11.5 EDRM [EXPR]

This is the edit read macro. Le. if you type (DRM § EDRM) then typing $§ <fn name> will
cause the cditor to be called for the given function.

2.11.6 EVSM [EXPR]
This is the eval splice macro. lLe. if you type (DSM _ EVSM) (and (SETQ EVSM 95)) then

whenever you type __ <exp> the expression will be evaluated (and the value printed) and
spliced into the input. Whenever you type _ <exp> the expression will be evaluated and the

value will be prinied but with no change to the apparent input.

2.11.7 (PPRM) [EXPR]

is the GRINDEF read macro. le. if you do (DRM # PPRM) then # <fn ﬁame> will cause fn to
be pretty-printed.

2.11.8 (P1RM) [EXPR]

is the PROGI read macro. le. if you type (DRM ; PIRM) then whenever you type ;<exp>
the expression will be evaluated but NIL will be returned.

31

3. ERROR-RECOVERY

3.1 INTERRUPTS

In case you want to interaclively stop a computation for any of several purposes, LISP has
an interrupt-handling facility. This provides two flavors of entry to the debugger and about
four flavors of aborting of the computation, five perhaps depending on how you count.

The interrupt routine is entered by striking a single “C (Control-C) if awaiting terminal

input, or fwo consccutive “C’s if computing. The interrupt routine types:

HH Interrupt (?=help):

and awaits an interrupt character from the user. Typing "?" will produce the following list
of choices:

CR
~D

Continve (lgnore ~C)
Return to Top level
Exit to Monitor via (EXIT T)

H =

HY) =

HE ~X =

HH ~H = break Next Fn Call,

HH ~B = Back Up and Break Last Fn Call
3 ~G = (ERR ERRORX)

HH ~E = (ERR NIL)

HH “R =

Restore System OBLIST

1. Control-H: This will cause the computation to continue, but a break will occur th’e next
time a funclion is called (except for a compiled function called by a compiled function). A
message of the form (-- BROKEN) is typed and the user is in BREAK. WARNING: It is possible
to get into an infinite loop that does not include calls to functions other than compiled
functions called by compiled functions. These will continue to run. (In such cases, try one of
the other control characters).

2. Control-B: This will cause the system to back up to the last expression to be evaluated
and cause a break (pulting the user in BREAK]1 with all the power of BREAK1 at the user’s
command. This does not include calls to compiled functions by other compiled functions.

3. Control-G: This causes an (ERR ERRORX) which returns to the last (ERRSET ERRORX).
This enables the user to Control-C out of the Break package or the Editor, reenter and return
to the appropriale command level. (i.e. if the user were several levels deep in the Editor for
example, Control-G will return him to the correct command level of the Editor).

4. Control-E: This does an (ERR NIL), which return NIL to the last ERRSET. (See section
on changes to ERR and ERRSET). ‘

5. Control-R: This restores the normal system OBLIST (as the value of the atom OBLIST).
Another of the above control characters must be typed after this character is typed. This

. ~.-|."-f ’

32

will often recover after a GARBAGED OBLIST message.

6. Carriage refurn causes LISP to continue doing whatever it was doing when the “C was

typed.
7. °D causes an immediate return fo the top level of LISP ..

8. X causes an exit to the mqnitor (see EXIT). A subsequent CONTINUE or START at
monitor level will cause LISP to continue where it left off.

Any other character causes a user interrupt (a feature that is not implemented and just
causes an error). The system is fully protected against a “C interrupt occuring at the wrong
time; for example, if “C is typed during a garbage collection the garbage collection is
completed before the interrupt is recognized. Note that a REENTER at monitor level is
equivalent to a START if LISP was exited normally (via “C "X or EXIT). If LISP was somehow
exited without going through the normal exit procedure, REENTER will cause the “C interrupt
routine to be entered.

3.2 BREAK-PACKAGE

Whenever LISP types a message of the form (-- BROKEN) or (Error from --) followed by :
or n: the user is then "lalking to" the function BREAKI, and he is "in a break.” BREAK1 allows
the user to interrogate the state of the world and affect the course of the computation. It
uses the prompt character : to indigate it is ready to accept input(s) for evaluation, in the
same way as the top level of LISP uses > The n before the : is the level number which
indicates how many levels of BRE‘AKI are currently open. The user may type in an
expression for cvalualion and the value will be printed out, followed by another :. Or the

user can fype in one of the commands specifically recognized by BREAKI (a break command).

Since the user can type in arbitrary expressions to be evaluated he has all of the power of
LISP at his command. For example he can call the standard top level by typing (TOP-LEVEL),
although the simple TL command is shorter. He can define new functions or edit existing
ones, set breaks, or trace functions. The user may evaluate an expression, see that the vaiue
was incorrect, call the editor, change a function, and evaluate the expression again, all

without leaving the break.

It is important to emphasize that once a break occurs, the user is in complete control of
the flow of the computalion, and the computation will not proceed without specific instruction
from him. Only if the user gives one of the commands that exits from the break (GO, OK,
RETURN, FROM?=, EX) will the computation continue. 1f the user wants to abort the

33

computation, this also can be done (using =~ or °7).

3.2.1 (BREAK] BRKEXP BRKWHEN BRKFN BRKCOMS BRKTYPE) [SUBR]

The heart of the debugging package is a function called BREAK!. BREAK and TRACE
redefine your functions in terms of BREAKI. When an error occurs control is passed to
BREAK].

Note that BREAK1 is just another LISP funclion, not a special system fecature like the
interpreter or the garbage collector. 1t has arguments and relurns a value, the same as any
other function. The argu‘menls to BREAKI are: BRKWHEN is a LISP function which is
evaluated to determine if a break will occur. If BRKWHEN returns NIL, BRKEXP is evaluated
and returned as the value of the BREAKL. Otherwise a break occurs. BRKFN is the name of
the function being broken and is used to print an identifying message. BRKCOMS is a list of
command lines (as returned by READLINE) which are executed as if they had been typed in
from the telelype. The command lines on BRKCOMS are executed before commands are
acceplted from the teletype, so that if one of the commands on BRKCOMS causes a return, a
break occurs without the need for teletype interaction. BRKTYPE identifies the type of the
break. It is used by the error package and in all cases the user can use NIL for this

argument.

The value returned by BREAK] is called the value of the break.” The user can specify this
value explici’(l_y by using the RETURN command destribed below. In most cases, however, the
value of the break is given implicitly, via a GO or OK command, and is the result of evaluating
the break expression,” BRKEXP. -

BRKEXP is, in gencral, an expression equivalent to the computation that would have taken
place had no break occurred. In other words, one can think of BREAK] as a fancy EVAL,
which permits interaction before and after evaluation. The break expression then
corresponds to the argument to EVAL., For BREAK and TRACE, BRKEXP is a form equivalent to
that of the function being traced or broken. For errors, BRKEXP is the form which caused the
error. For DOT breaks, BRKEXP is the next form to be evaluated.

For related information see BREAK, BREAKIN, TRACE, BREAKO, and BREAKMACROS.

3.2.1.1 LASTPOS [VALUE]

All information pertaining to the evaluation of forms in LISP is kept on the special push
down stack. Whenever a form is evaluated, that form is placed on the special push down
stack. Whenever a variable is bound, the old binding is saved on the special push down

&4

stack. The context (the bindings of free variables) of a funclion is deiesmined by its position
in the stack. When a break occurs, it is often useful to explore the contexts of other
functions on the stack. BREAK] allows this by means of a context pointer, LASTPOS, which is
a pointer inta the special push down stack. BREAK! containe commands {o move the context
pointer and to cvaluate atoms or expressions as of its position in the stack. For the
purposes of this document, when moving through the stack, "backward” is’ considered to be

loward the top level or, equivalently, lowards the older function calls on the stack.

3.2.1.2 BRKEXP [VALUE)

The argument passed fo BREAK] which is evaluated (and returned as the value of the
break) when you type GO or OK. It should be equivalent to the expression which caused the
break. '

3.2.1.3 BRKWHEN [VALUE]

The argument {o BREAK] which is evaluated to determine whether a break will occur. If
the value is NIL then BRKEXP is evaluated and returned, otherwise a break occurs.

3.2.1.4 BRKFN [VALUE]

The argument passed to BREAK] used to tell the user what function was broken.

3.2.1.5 BRKCOMS [VALUE] ’

The list of commands that is pased as a parameter to BREAK] to execute when a break is

entered.

3.2.1.6 BRKTYPE [VALUE]

The argument to BREAK! identifying the type of the break. The user can use NIL for this
argument when calling BREAKL.

3.2.1.7 (//BREAK!) [SUBR]
//BREAK1 is the funclion that BREAK] calls to do all the work.

3.2.1.8 NAMESCHANGED [PROPERTY]

When you break (or trace) (fnl in fn2) then fnl is added to the NAMESCHANGED property
of fn2.

3.2.1.9 BRKAPPLY [SUBR]

(same as apply but uscd by the breakpackage)

3.2.2 BREAK-COMMANDS

3.2.2.1 GO [BREAK COMMAND]

Releases the break and allows the computation to proceed. BREAK! ‘evaluates BRKEXP, its
first argument, prints the value, and returns it as the value of the break. BRKEXP is the
expression set up by the function that called BREAKL. For BREAK or TRACE, BRKEXP is
equivalent to the body of the definition of the broken function, For the error package,
BRKEXP is the expression in which the error occurred. For DDT breaks, it is the next form to

be evaluated.

3.2.2.2 OK [BREAK COMMAND]

Same as GO except that the value of BRKEXP is not printed.

3.2.2.3 EVAL [BREAK COMMAND]

Causes BRKEXP to be evaluated. The break is maintained and the value of the evaluation is
printed and bound on the variable IVALUE. (The evaluation is done in an errset whose value
is bound to FULL!VALUE.) Typing GO or OK will not cause reevaluation of BRKEXP following
EVAL but another EVAL will. EVAL is a useful comm;nd when the user is not sure whether or
not the break will produce the correct value and wishes to be able to do something about it
if it is wrong.

3.2.2.4 RETURN form [BREAK COMMAND]

The form is evaluated and its value is returned as the value of th'e break. For example, one
might use the EVAL command and follow this with

RETURN (REVERSE ! VALUE)

3.2.25 " [BREAK COMMAND]

Calls ERR and aborts the break. This is a useful way to unwind to a higher level break. All
other errors, including those encountered while executing the GO, OK, EVAL, and RETURN

commands, maintain the break.

3.2.26 "~ [BREAK COMMAND]

This returns control directly to the top level of LISP.

3.2.2.7 > expr [BREAK COMMAND]

For use either with UNBOUND ATOM error or UNDEFINED FUNCTION error. Replaces the
expression containing the error wilth expr (not the value of expr) e.g,,

FOO1

UNDEFINED FUNCTION
(FOO1 BROKEN)

1:>» FOO

changes FOO1 to FOO and continues the computation. Expr need not be atomic, é.g.,

FOO

UNBOUND ATOM
(FOO BROKEN)
1:> (QUOTE FOO)

For UNDEFINED FUNCTION breaks, the user can specify a function and its first argument,
- eg.

MEMBERX

UNDEFINED FUNCTION
(MEMBERX BROKEN)
1: > MEMBER X

Note that in the some cases the form containing the offending atom will not be on the stack
(notably, after calls to APPLY) and in these cases the function definition will not be changed.
In most cases, however, > will correct the function definition.

-

> has been altercd to interface better to the standard USERTOP function. The problem is
that if you type "mumble foo" to top-level, the standard usertop will, i there is no such
function as mumble, assume it to be an EXPR. It will accordingly change foo to (QUOTE foo),
ending up with (mumble ’foo). Occasionally one mistypes the name of an FSUBR or FEXPR
such as "hlp foo". If you get an error and type "> HELP", you do not want the arguments
quoted. The new version of > unquotes the arguments that are quoted if brkexp is the form
typed to top-level in the last event.

3.2.2.8 FROM?= {form} [BREAK COMMAND]

FROM?= exits from the break by undoing the special push down stack back to LASTPOS. If
FORM is NIL or missing, re-evaluation continues with the form on the push down stack at
LASTPOS. If FORM is not NIL, the function call on the push down stack at LASTPOS is replaced
by FORM and evaluation continues with FORM. FORM is evaluated in the context of LASTPOS.
There is no way of recovering the break because the push down stack has been undone.
FROM?= allows the user io, among other things, return a particular value as the value of any

function call on tho stack. To return 1 as the value of the previous call to FOO:

87

:F FOO
: FROM?= 1

Since form is cvalualed after it is placed on the stack, a value of NIL can be returned by
using (QUOTE NIL).

For related information see LASTPQS and SPDL. -

3.2.2.9 EX [BREAK COMMAND]

EX exits from the break and re-cvaluates the form at LASTPOS. EX is equivalent to FROM?=
NIL.

3.2.2.10 USE x FOR y [BREAK COMMAND]

Causes all occurrences of y in the farm on the stack at LASTPQOS (for Error breaks, unless
a F command has been used, this form is the one in which the error occurred.) to be replaced
(RPLACA’ed) by x. Note: This is a destructive change to the s-expression involved and will,
for example, permanently change the definition of a function and make an edit step

unnecessary.

3.2.2.11 F argl arg2 .. argN [BREAK COMMAND]
& argl arg2 .. argN [BREAK-COMMAND]

Resets the variable LASTPOS, which establishes a conlext for the commands ?=, USE, EX
and FROM?=, and the backirace cormands described below. LASTPOS is the position of a
function call on {he special push down list. It is initialized to the function just before the call
to BREAKL. F takes the rest of the teletype line as its list of arguments. F first resets
LASTPOS to the function call just before the call to BREAK], and then for each atomic
argument, F_searches backward for a call to that atom. The following atoms are treated

specially: F, &, numbers, _
For related information see LASTPOS and SPOL.

When "F" or "&" is used as the first argument LASTPOS is not reset to above BREAK1 but
continues searching from the previous position of LASTPQS.

When the arguments are numbers, they are added to lastpos. Thus positive numbers move
toward the last error while negative nurmbers move toward the top-level.

__ causes the search to change direction.

If the special push-down stack looks like

£3

BREAK1 (13)
FOO (12)
SETQ (11)
COND (10)
PROG (9)
FIE (8)
COND (7)
FIE (6)
COND (5)
FIE (4)
COND (3)
PRDG (2)
FuM (1)

then F FIE COND will set LASTPOS to fo (7) F & COND will then set LASTPOS to (5) F FUM _

FIE will stop at (4) F & 2 will then move LASTPQS to (6) F will reset LASTPOS to (12)

If F cannot successfully complete a search, for argN or if argN is a number and F cannot
move the number of functions asked, "argN?" is typed. In either case, LASTPOS is restored to
its value before the F command was entered. Note: It is possible to move past BRKEXP (i.e.
into the break package functions) when searching or moving forwards. When F finishes, it
types the name of the function at LASTPOS. F can be used on BRKCOMS. In which case, the
remainder of the list is treated as the list of arguments. (i.e. (F FOO FIE FOO)

3.2.2.12 EDIT argl arg2 .. argN [BREAK COMMAND]

EDIT uses its arguments to reset LASTPOS in the same manner as the F command. The form
at LASTPOS is then given to the LISP Editor. This commands can often times save the user
from the trouble of calling EDITF and the finding the expression that he needs to edit.

For related information sce LASTPOS.

3.2.2.13 FIX argl arg2 .. [BREAK COMMAND]

is equivalent to EDIT followed by FROM?=. The edited expression will immediately be
evaluated when the editor is exiled.

3.2.2.14 7= argl arg2 .. argN [BREAK COMMAND]

This is a multi-purpose command. I{s most common use is to interrogate the value(s) of the
arguments of the broken function, (ARGS is also useful for this purpose.) e.g. if FOO has three
arguments (X Y Z), then lyping 7= to a break of FOO, will produce:

n: 7=

H X = value of X
Y = value of Y
Z = value of 2

we we v

7= takes the rest of the teletype line as its arguments. If the argument list to ?= is NIL, as

in the above case, it prints all of the arguments of the function at LASTPOS. If the user types
7= X (CARY)

he will see the value of X, and the value of (CAR Y). The difference between using ?= and
typing X and (CAR Y) directly into BREAKI is that 7= evaluates its inputs as of LASTPOS. This

~ provides a way of examining variables or forms as of a particular point on the stack.
F (FOO FO0O0)
1= X

will allow the user to examine the value of X in an earlier call to FOO. ?= also recognizes

numbers as referring to the correspondingly numbered argument. Thus

:F FIE
27= 2

will print the name and value of the second argument of FIE (providing FIE is not compiled).
?= can also be used on BRKCOMS, in which case the remainder of the list on BRKCOMS is
treated as the list of arguments. For example, if BRKCOMS is ((EVAL) (?= X (CAR Y)) GO)),
BRKEXP will be evaluated, the values of X and (CAR Y) printed, and then the function exited
with its value being printed. '

For related information see LASTPQS.

3.2.2.15 ARGS [BREAK COMMAND]

Prints the names and the current values of the arguments of BRKFN. In most cases, these
are the arguments of the broken function.

3.2.2.16 HELP [BREAK-COMMAND]

is a break command that calls the HELP function and uses the remainder of the command

line as the argument list for HELP.

3.2.2.17 TL [BREAK-COMMAND]
TL calls (TOP-LEVEL). To return to the break package just use the RETURN top-level

command.

3.2.2.18 DO form [BREAK-COMMAND]

resets the 1/0 channcls and prompt to what they were before the error, evaluates the
expression given as an argument, returns to the break I/O status and shows the value

computed. This is worth while if you want to find out where in the file you were reading.
Just "do (read)".

90

3.2.2.19 BKE [BREAK-COMMAND]

prints a backlirace of funclion calls thal are pending. BKE may be followed by a number
which will limit the number of entries that are printed. BKEV (or BKEV number) will also print

the values of the variables.

For related information see ERXACTION.and BKTRC.

3.2.2.20 BK [BREAK COMMAND]

prints a backirace of expressions being executed. BK may be followed by a number which
will limit the number of entries that are printed. BKV (or BKV number) will aiso print the

values of the variables.

For related information see ERXACTION and BKTRC.

3.2.2.21 BKF [BREAK COMMAND]

prints a backlrace of the names of lhe functions that are pending. BKF may be followed by
a number which will limit the number of entries printed. BKFV (or BKFV number) will also
print the values of the variables.

For related information sce ERXACTION and BKTRC.

3.3 BREAKING

"Breaking" is what you do to functions to get them to stop in the middle so that you can
see what’s going on. It is also what happens to you when an error occurs and you get a
message that something is broken. To see how to continue, recover from errors etc. see
ERROR-RECOVERY.

The function BREAK is usually used to set a break on all calls on some function. BREAK
(and TRACE) use a function BREAKO to do the actual modification of function definitions.
When BREAKO breaks a SUBR or an FSUBR, it prints a message of the form (<NAME>
ARGUMENT LIST?). The user should respond with a list of arguments for the function being
broken. (FSUBR's take only one argument and BREAKO checks for this.) The arguments on
this list are aclually bound during the calls to the broken function and care should be taken
to insure that they do not conflict with free variables. These arguments are remembered as
the value of the BRKARGS property of the broken function. If the function being broken or
traced already has a BRKARGS property, its value is used as the argument list. The case of a
null argument list must be treated separately: the value T indicates no arguments. For

91

LSUBR’s, the atom N? is used as the argument. It is possible to GRINDEF and edit functions
that are firaced or broken. BROKENFNS is a list of the funclions currently broken.
TRACEDFNS is a list of the functions currently traced.

3.3.1 (BREAK {nl fn2 ..) [FEXPR]

BREAK is an FEXPR. For each atomic argument, it breaks the function named each time it is
called. For each list in the form (fnl IN fn2), it breaks only those ‘occurrences of FN1 which
appear in FN2.

This feature is very useful for breaking a function that is called from many places, but
where one is only inleresled in the call from a specific function, e.g. (RPLACA IN FOO),
(PRINT IN FIE), etc. For cach list not in this form, it assumes that the CAR is a function to be
broken; the CADR is the break condition; (When the function is called, the break condition is
evaluated. If it returns a non-NIL value, the break occurs. Otherwise, the computation
continues without a break.) and the CDDR is a list of command lines to be performed before

an inleractive break is made.

(BREAK FOO1 (F0O02 (GREATERP N 5) (ARGS)))

will break all calls to FOOl and all calls on FOO2 when N is greater than 5 after first
printing the arguments of FOO2.

(BREAK ((FOO4 IN FOO5) (MINUSP X)))

will break all calls to FOO4 made from FOO5 when X is negative.

For related information see BRKWHEN, BRKCOMS, and BREAK].

3.3.1.1 BROKENFNS [VALUE]

a list of the functions currently broken.

For related information see BREAKING.

3.3.1.2 (UNBREAK xI x2 ..) [FSUBR]

UNBREAK is an FSUBR. It takes a list of functions modified by BREAK or BREAKIN and
restores them to their original state. It's value is the list of functions that were "unbroken”.
(UNBREAK T) will unbreak the function most recently broken. - (UNBREAK) will unbreak all of
the functions currently broken (i.e. all those on BROKENFNS). If one of the functions is not
broken, UNBRCAK has a value of {(fn NOT BROKEN) for that function and no changes are made
to fn. If UNBREAK refuses to work {ry BREAKing and UNBREAKing it again.

92

For related information seec BREAKIN.

3.3.2 (BREAKIN funclion {where} {BRKWHEN} {BRKCOMS}) [FSUBR]

inserts a BREAK in the function at the place specified as (BEFORE loc), (AFTER loc) or
(AROUND loc) where loc is an editor location specification (defaults to (AROUND TTY:). The
optional arguments BRKWHEN (default is T) and BRKCOMS (default is NIL) are the same as for
BREAK]1.

For related informalion see BREAK].

BREAKIN enables the user to inscrt a break, i.e., a call to BREAK], at a specified location in
an interpreted function. For example, if FOO calls FIE, inserting a break in FOO before the
call to FIE is similar to brecaking FIE. However, BREAKIN can be used to insert breaks before
or after prog labels, particular SETQ expressions, or even the evaluation of a variable. This
is because BREAKIN operates by calling the editor and actually inserting a call to BREAK1 at a
specified point inside of the function,

The user specifies where the break is to be inserted by a sequence of editor commands.
These commands are preceded by BEFORE, AFTER, or AROUND, which BREAKIN uses to
determine what to do once the editor has found the specified point, i.e., put the call to
BREAK1 BEFORE that point, AFTER that point, or ARQOUND that point. For example, (BEFORE
COND) will insert a break before the first occurrence of COND, (AFTER COND 2 1) will insert a
break after the prediéate in the first COND clause, (AFTER BF (SETQ X F)) after the last place
X is set. Note that (BEFORE TTY:), (AROUND TTY:) or (AFTER TTY:) permit the user to type in
commands to the edilor, locate the correct point, and verify it for himself using the P
command, if he desires. Upon exit from the editor with OK, the bljeak is inserted. (A STOP
command typed to TTY: produces the same effect as an unsuccessful edit command in the
original specification, e.g.,, (BEFORE CONDD). In both cases, the editor aborts, and BREAKIN
types (NOT FOUND).) '

For BREAKIN BEFORE or AFTER, the break expression is NIL, since the value of the break is
usually not of interest. For BREAKIN AROCUND, the break expression will be the indicated.
form. When in the break, the user can use the EVAL command to evaluate that form, and see
its value, before allowing the computation to proceed. For example, if the user inserted a
break after a COND predicate; e.g., (AFTER (EQUAL X Y)), he would be powerless to alter the
flow of computation if the predicate were not true, since the break would not be reached.
However, by brecaking (AROUND (EQUAL X Y)), he can evaluate the break expression, ie.,
(EQUAL X Y), see its value and evaluate something else if he wished.

93

The message typed for a BREAKIN break identifies the localion of the break as well as the
function, e.g., ((FOO (AFTER COND 2 1)) BRCKEN).

BREAKIN is an FEXPR which has a maximum of four arguments. The first argument is the
function lo be broken in. The second argument is a list of editor commands, preceded by
BEFORE, AFTER, or AROUND, which specifies }Eﬁvldocation inside the function at which to break.
If there is no second argument, a value of (BEFSRE TTY:) is assumed. (See earlier discussion.)
The third and fourth arguments are the break condition and the list of commands to be
performed before the interactive break occurs, (BRKWHEN and BRKCOMS for BREAK1)
respectively. If there is no third argumen!, a value of T is assumed for BRKWHEN which
causes a break cach time the BREAKIN break is executed. If the fourth argument is missing, a

value of NIL is assumed. For example,

(BREAKIN FOO (AROUND COND)}

inserts a break around the first call to COND in FOO.

It is possible 1o incert nulliple break points, with a single call to BREAKIN by using a list of
the form ((BEFORE ..) .. (AROUND ..)) as the second argument. It is also possible to BREAK
or TRACE a function which has been modified by BREAKIN, and conversely to BREAKIN a
function which is broken or traced. UNBREAK restores functions which have been broken in.
GRINDEF makes no atlempt to correct the modification of BREAKIN so functions should be
unbroken before they are stored on disk. '

(BREAKIN FOO (AROUND TTY:) T (7= M N) ((«PLUS X Y)))
(BREAKIN F002 (BEFORE SETQ) (EQ X Y))

3.3.3 (TRACE xI x2 ..) [FSUBR]

TRACE is an FEXPR. For ecach atomic argument, it traces the function named each time it is
called. For each list in the form (fnl IN {n2), it traces only those calls to FN1 that occur
within FN2. For each list argument not in this form, the CAR is the function to be traced, and

the CDR is a list of variables (or forms) the user wishes to see in the trace.

For example, (TRACE (FOO1 Y) (SETQ IN FOO3)) will cause both FOO1 and SETQ IN FOO3- to
be traced. SETQ’s argument will be printed and the value of Y will be printed for FOOL.

Further examples:

(TRACE FOO)

(TRACE #TIMES (SELECTQ IN DOIT))
(TRACE (EVAL IX FOO0))

(TRACE (TRY M N X (2PLUS N M)))

Trace gives the traced function a TRACE property indicating where the actual code for the

94

function is to be found. The original function is replaced by a call to that new function
(whose name is gencrated by gensyrm) erabedded in a call to BREAK. TRACE uses the global
variable #7INDENT to keep its posilion on the line. The printing of output by TRACE is
printed using 7ZPRINFN . TRACE can therefore be pretty printed by:

(SETQ %*PRINFN (QUOTE PRETPRIN)) -
(DE PRETPRIN (FORM)
(SPRINT FORM (2PLUS 10 #3INDENT)))

TRACE [BREAK-COMMAND)

Does the work of tracing. Tracing is equivalent to BREAKing a function with BRKCOMS
containing the single cornmand TRACE. Thus you can make a normal BREAK act like a TRACE
by simply typing this command (No guarantees if the thing broken is not a fuhction). Similarly
you can use the TRACE command fo cause conditional tracing. (The default that you get with
the TRACE function is always to trace.)

3.3.3.1 #7ZINDENT [VALUE]

is used by the break (irace) package. It is the number of columns to indent before
printing. (Notice that in a trace the indenting shows the lcvel of function nesting.)

3.3.3.2 (UNTRACE x] x2 ..) [FSUBR]
UNTRACE is an FSUBR. It takes a list of functions modified by TRACE and restores them to

their original state. It’s value is the list of functions that were "untraced”. It also undoes
TRACEINs. (UNTRACE T) will unbreak the function most recently traced. (UNTRACE) will
untrace ail of the functions currently traced (i.e. all those on TRACEDFNS). If one of the
functions is not traced, UNTRACE has a value of (fn NOT BROKEN) for that function and no
changes are made to fn. 1f UNTRACE refuses o work try TRACEing and UNTRACEing it again.

For related information see TRACEIN.

3.3.3.3 TRACEDFNS [VALUE]

is a list of the functions currently {raced

3.3.4 (TRACEIN fn {(AROUND $1) (AROUND §2) ..}) [FSUBR]

where fn is a funclion name and §1, §2 etc. are edilor location specifications. (If no
(AROUND ...) arguments are given the user is put in the editor to find the desired expression.
When it is the current expression type OK (to exit) and that expression will be traced.)
TRACEIN is undone by UNTRACE. TRACEIN is the ultimate tracing facility in that it shows

95

everything that happens in the execution of the specified code. This is done by using the
editor to alter the funclion definition o trace the cvaluation of the located expressions and
all of their subexpressions,

Examples: (TRACEIN F1 (AROUND TYO)} (AROUND COND 3))

(TRACEIN F2) (then find the desired subexpression in the editor)

WARNING: TRACEIN assumes that the expressions it is given are "well-formed"” in the sense
that they are to be exccuted as a unit. Thus it is all right to TRACEIN (Cond ((Null x) T)), but
you will get into trouble if you try to TRACEIN just the conditional clause ((Null x) T). This is
because it will be inlerpreted as a function call where the function is the result of (Null x)
and the argument is T. The correct way to do this is to TRACEIN the two expressions
separately (the way they will be evaluated).

3.3.4.1 (EVL-FIX exp type-of-fix) [SUBR]
and EVL-FIX [PROPERTY] EVL-FIX accepts an expression as its argument and modifies it for

expression tracing or counting (depending on the second argument). The second argument is
a list of items to be placed nondestructively in front of the form in the embedding process.
EVL-FIX is a ulility for COUNT and TRACEIN that may find other uses.

For related information see COUNT.

The EVL-FIX property enables the user to explain his FEXPRs and MACROs to EVL-FIX and
thus to TRACEIN and COUNT. The EVL-FIX property is a pattern to be applied to the tail of
the function call to determine which arguments will EVENTUALLY be evaluated and so should
be embedded in EVL-TRACE (or # 0). If an element of the pattern is T, the expression in that
position will be embedded by EVL-FIX. If it is NIL, it will not. If an element is a list, that
expression will not be embhedded, but its subexpressions will have that list applied to tl;em as

a pattern.

If the patlern element is TAIL, the pattern element following it is applied to the current

expression, if any, and any expressions following it.
If TEST or EVAL is the CAR of a pattern, the paltern is treated specially:

TEST uses the patlern element following it as a condition to determine whether that

expression should or should not be embedded.

EVAL is similar to TEST, but the value returned is treated not as a boolean, but as a
pattern to be uscd in place of the patlern whose CAR is EVAL.

96

The value of the free variable EXP is the funclion call the patlern will apply to. Also, if
before returning the pattern, the free variable NOEMBED is set lo T, the function call ITSELF

will not be embedded. This feature is not generally needed.

The pattern for COND would be (TAIL (TAIL T)). The clauses of the COND would not be

“embedded, but their elements would be.
The pattern for SETQ would be (NIL T).

To create a pallern by arbilrary processing, use the pattern (EVAL <whatever>).

3.3.4.2 (EVL-TRACE exp) [FSUBR]

EVL-TRACE evaluates and traces its (expression) argument. EVL-TRACEs are automatically
inserted by EVL-FIX, and may aiso be inserted by the user.

3.3.5 BREAKMACROS [VALUE]

is a list of elements of the form: (atom args ttylinel ... ttylinen)

Whenecver an alomic command is encountered by BREAK1 that it does not recognize, either
via BRKCOMS or the teletype, it searches (using ASSOC) the list BREAKMACROS to see if the
atom has been defined as a break macro. The form of BREAKMACRQS definitions is {(... (atom
args ttylinel .. ttylineN) ..). ATOM is the command name. ARGS is the argument(s) for the
macro. The arguments of a breakmacro are assigned values from the remainder of the
command line in which the macro is called. If ARGS is atomic, it is assigned the remainder of
the command line as its value. If ARGS is a list, the elements of the rest of the command line
are assigned to the variables, in order. If there are more variables in ARGS then items in the
rest of the command line, a value of NIL is filled in. Extra items on the command line are
ignored. The ‘TTYLINEs are the body of the breakmacro definition and are lists of break
commands or forms to be evaluated. If the atom is defined as a macro, (i.e. is found on
BREAKMACROS) BREAK] assigns values to the variables in ARGS, substitutes these values for
all occurrences of the variables in TTYLINEs and appends the TTYLINEs to the front of
BRKCOMS. When BREAK! is ready to accept another command, if BRKCOMS is non-NIL it
takes the first clement of BRKCOMS and processes it exactly as if it had been a line input
from the teletype. This means that a macro name can be defined to expand to any arbitrary
collection of expressions that the user could type in. If the command is not contained in
BREAKMACROS, it is trealed as a funclion or variable as before.

Example: a command PARGS to print fhe arguments of the function at LASTPOS could be

97

defined by evalualing:
(NCONC BREAKMACROS (QUOTE ((PARGS NIL (7:)))))

A command FP which finds a place on the SPD stack and prinls the form there can be defined
by:

{NCONC BREAKMACROS (QUOTE (FP X (F . X) ((PRINT (SPDLRT
LASTPOS}})N)

3.3.6 (BREAKO FN WHEN COMS) [SUBR]
For related information sce BREAK] and BROKENFNS.

BREAKO is a SUBR. It sets up a break on the function FN by redefining FN as a call to
BREAK1 with BRKLCXP a form equivalent 1o the definition of FN, and WHEN, FN and COMS as
BRKWHEN, BRKFN, and BRKCOMS, respectively .

BREAKO also adds FN to the front of the list BROKENFNS. Ii’s value is FN. If FN is
non-atomic and of the form (fnl IN fn2), BREAKO first calls a function which changes the name
of fnl wherever it appears inside of fn2 1o that of a new function, fnl-IN-fn2, which is
inilially defined as fnl. Then BREAKO proceeds to break on fnl-IN-fn2 exactly as described
above. This procedure is useful for breaking on a function that is called from many places,
but where one is only interested in the call from a specific function, e.g. (RPLACA IN f—'OO),
(PRINT IN FIE), ete. This only works in interpreted functions. If fnl is not found in fn2,
BREAKO returns the value (fnl NOT FOUND IN fn2). If FN is non-alomic and not of the above
* form, BREAKO is called for cach member of FN using the same values for WHEN and COMS
specified in this call to BREAKO. This distributivity permits the user to specify complicated
break condilions without excessive retyping. If FN is non-alomic, the value of BREAKO is a
list of the individual values.

(BREAKO (QUOTE (F0O1 ((PRINT PRINI)IN (FOO2 FO03))))
(QUOTE (EQ X T))
(QUOTE ((EVAL) (7= Y Z) 0K)))

will break on FOO1, PRINT-IN-FOQZ2, PRINT-IN-FOO3, PRIN1-IN-FOOZ2, and PRIN1-IN-FOO3.

BREAKO can be used to trace the changing of particular values by SETQ in the following

manner:
> (SETQ VARLIST (QUOTE (X Y FOO)))
> (BREAKO (QUOTE SETQ) (QUOTE (MEMQ (CAR XXXX) VARLIST))
> (QUOTE ((TRACE) (7=) (UNTRACE))))
(SETQ ARGMENTS?))> (XXXX)

(Note: the last line is a question followed by an answer.)

SETQ will be traced whenever CAR of its argument (SETQ is an FSUBR) is a member of

98

VARLIST.

3.4 SPDL

The Special PushDown List is used for saving forms to be evaluated in the form of an
"eval-blip" which is uscd for backiraces. An eval-blip contains NIL in the left haif (spdlft) and
the form in the right half (spdirt). The SPDL is also used for saving variable bindings. The
left half of such an entry poinls to the special cell and the right side to the value. Finally,
the interpretler uses the SPDL to hold things which always contain something other than NIL
in the left half. LASTPOS and (SPDLPT) indicate a distance from the bottom of the SPDL. In
the user’s programs, stack poiniers are always represented as INUMs, This allows the
program lo easily modify them with the standard arithmetic functions so that a program can
step either up (toward the most recent Eval-Blip) or down (toward the top level of the
inferpreler) of the stack al will. All of the funclions in this group take INUM’s for the pointer
argumenis. The actual poinler to the stack element requires an ofiset from the beginning of
the stack. For the user to obtain a true LISP pointer he must call the function STKPTR (with
an INUM argument also). (i.e. if the user wishes to do an RPLACA or RPLACD on an element
of the stack, he must ge! a pointer via STKPTR.)

The SPDL is implemented via PDP10 stack instructions. The stack pointer is kept in
register 15 (17 octal) - the right half points to the top of the stack and the left half contains

the negative of the number of words available.

3.4.1 (SPDLPT) [SUBR]
The value of SPDLPT is a stack pointer to the current top of the stack. (Returns an INUM).

3.4.2 (SPDLFT P) [SUBR]
Thé value of SPDLFT is the left side of the stack item pointed to by the stack pointer P.

3.4.3 (SPDLRT P) [SUBR]
The value of SPDLRT is the right side of the stack item pointed to by the stack pointer P.

3.4.4 (STKPTR P) [SUBR]
The value of STKPTR is a true LISP pointer to a stack item.

99

3.45 (NEXTEV P) [SURR)

If the stack pointer P is a pointer to an Eval-Blip, the value of NEXTEV is P. Otherwise,
NEXTEV scarches down the stack, starting from P, and returns a stack pointer to the first
Eval-Blip it finds. If NEXTEV can not find an Eval-Blip it returns NIL.

.-

3.4.6 (PREVEV P) [SUBR]

PREVEYV is similar to NEXTEV except that it moves up the stack instead of down it.

3.4.7 (STKCOUNT NAME P PEND) [SUBR]

The value of STKCOUNT is the number of Eval-Blips with a STKNAME of NAME occurring
between stack positions P-1 and PEND, where PEND < P.

3.4.8 (STKNAME P) [SUBR]

If position P is not an Eval-Blip, the value of STKNAME is NIL. If position P is an Eval-Blip
and the form is atomic, then the value of STKNAME is that atom. If the form is non-atomic,
STKNAME returns the CAR for the form, i.e. the name of the function. .

3.4.9 (STKNTH N P) [SUBR]

The value of STKNTH is a stack pointer to the Nih Eval-Blip starting at position P. If N is
positive, STKNTH moves up the stack, and if N is negative, STKNTH moves down the stack.

3.4.10 (STKSRCH NAME P FLAG) [SUBR]

The value of STKSRCH is a stack pointer to the first Eval-Blip with a STKNAME of NAME.
The direction of the search is controlied by FLAG. If FLAG=NIL, STKSRCH moves down the
stack. Otherwise STKSRCH moves up the stack. STKSRCH never returns P for its value, i.e. it
steps once before checking for NAME,

3.4.11 (FNDBRKPT P) [SUBR]

The value of FNDBRKPT is a stack pointer to the beginning of the Eval-Block that P is in.
The beginning of a Eval-Block is defined as an Eval-Blip which does not contain the next
higher Eval-Blip within it. This function is used by the backtrace functions.

100

3.4.12 (OUTYAL P V) [SUBR]
OUTVAL adjusts P lo an Eval-Blip and returns from that position with V.

3.4.13 (SPREDO P V) [SUBR]

SPREDO adjusts P to an Eval-Blip and re-evaluates from that point.

3.4.14 (SPREVAL P V) [SUBR]

SPREVAL evaluales ils argument v in ils local context to get a form, and then it returns to
the context specified by P and evaluates the form in that conlext, returning from that context
with the value. This is very similar to SPREDO except that the EVAL-blip on the stack is
~ changed.

3.4.15 (EVALV A P) [SUBR]

The value of EVALV is the value of the atom A evaluated as of position P. If A is not an
atom then it must be the special cell of an atom. By using the special cell instead of the
atom, special variables can be handled properly. EVALV is similar to EVAL with two

arguments, but is more efficient.

3.4. 16 (RETFROM FN VAL) [SUBR]

RETFROM returns VAL from the most recent call to the function FN with the value VAL. For
RETFROM to work, there must be an Eval-Blip for FN. The only way to be sure to get an
Eval-Blip in compiled code is to call the function with no arguments inside of an ERRSET, e.g.
(ERRSET (FUNC)).

3.5 ERROR-OTHER

3.5.1 (ERROR E) [SUBR]

ERROR generates a real LISP error. E is evaluated and printed (unless error messages are
suppresscd) and then a break occurs just as for any other LISP error.

3.5.2 (ERRORX x) [SUBR]

ERRORX is called when an error occurs. Its argument signifies whether the error is

i0l

considered serious (T) or recoverable (NIL). ERRORX first does (USERERRORX x) (if there is a
userecrrorx) and if that returns a non-nil value it is used. Otherwise it calls //BREAK] (the
break package) and continues the computation with whalever is returned from there (if
anything).

Unfottunately the argument to ERRORX is not much help in recovering from errors. Almost

all errors are considered serious (the messapes can not be suppressed). The exceptions are:

UNDEFINED FUNCTIGN UNBOUND VARIABLE - EVAL
NON~NUMERIC ARGUMENT TOO MANY ARGUMENTS SUPPLIED - APPLY
UNDEFINED FUNCTION - APPLY TOO FEW ARGUMENTS SUPPLIED - APPLY
UNDEFINED PROG TAG - GO CAN'T ENTER FILE

NO INPUT -~ INC NO OUTPUT - OUTC

CAN'T FIND FILE - INPUT CAN'T EXPAND CORE

For related information see ERRSET,

3.5.3 ZPRINFN [VALUE]

Nearly all printing from the error package is done by calling (ZPRINFN expr). 7ZPRINFN is
an atom (not a function) which should evaluate te the name of a printing function of one
argument. 7ZPRINFN is initialized to use PLEV because it can print circular lists, which
saometimes result from crrors. There has been some small effort to protect against errors
that occur in 7prinfn, but for the most part, if your 7prinfn isn’t debugged you are asking for
trouble. It is suggested that cven if you use another 7prinfn, it should use PLEV, because (a)
you might get circular lisls you didn’t want, and (b) some of the break package functions
rebind 7Zlookdpth so as 1o act more appropriately when PLEV is used.

3.5.4 (BKTRC) [SUBR]

BKTRC prints a backtrace of compiled functions. This information is not available from the
break-package backlrace commands which only show the interpreted forms on the stack. The
format is a list of pairs of functions, one of which called the other.

For related information see BK, BKV, BKE, BKEV, BKF, and BKFV.

3.5.5 (%xRSET flag) [SUBR]

sets the flag that determines whether errors will cause the break package to be entered
(the default, T) or whether they will just cause a return to the top level (NIL). *RSET returns
the old value of the flag. The value of ERRORX is also allowed. It wili supress the printing of

error messages, but otherwise acts like T.

102

3.5.6 ERXACTION [PROPERTY]

is a property given to functions in the break package so that they will not appeaf in
backiraces, which would confuse the user (cince the break package is supposed to be

transparent to the user).

“ The ERXACTION property is a list of length four. The default (if the atom of interest has
no such property) is (T T T T). If the first element is NIL then BKV, BKEV and BKFV act like
BK, BKE and BKF respectively for the atom with this property. If the second is NIL then BK
and BKV act like BKE and BKEV. If the third is NIL then BKE and BKEV act like BKF and BKFV,
If the last one is NIL then BKF and BKFV do not mention this atom at all. Any combination of
NILs and Ts is meaningful.

3.5.7 USERERRORX [VALUE]

may be set to the name of a function of one argument which will be called before the error
package is cntered. If it returns NIL then the error package will be called as usual
Otherwise its value will be used as if it were the value of the break. The argument signifies

whether the error is considered to be serious (T) or recoverable (NIL).

(DE USERERRORX (FLAG) (PROG (BAD-FORM)
(SETQ BAD-FORM (SPDLRT (NEXTEV (SUB1 (STKSRCH 'ERRORX (SPDLPT) NIL))))) .
(¢2» - IF I CAN FIGURE OUT WHAT THE ANSWER SHOULD HAVE BEEN RETURN IT)
(+2+ - OTHERWISE (IF 1 RETURN NIL)

THE BREAK PACKAGE WILL BE ENTERED)))
{DV USERERRORX USERERROX)

103

4. THE-TOP-LEVEL

The ™op level” is the function which reads what you type at your terminal and decides
what to do with it (usually evaluate it and print the resuit). The default top level function is
called TOP-LEVEL. It prompts you for input with numbers in angle brackets (like "<1>").

4.1 (TOP-LEVEL) [SUBR]

TOP-LEVEL is the LISP top level function. As well as being the top level function with
which the user intecracls, it can be called recursively by the user or any function. Thus, the
top level can be invoked from inside the editor, break package, or a user funclion to make its
commands available to the user.

The LISP top-level uses LINEREAD rather than READ. The difference will not usually be
noticeable. The principal thing to be careful about is that input to the function or system
being called cannot appear on the same line as the top-level call. For example, typing (EDITF
FOQ) P on one line will edit FOO and evaluate P, not edit FOO and execute the P command in
the editor. In order to understand how input lines are interpreted, reading the explanation of
USERTOP is strongly recommended.

4.1.1 TOP-LEVEL-COMMANDS

4.1.1.1 RETURN <form> [TOP-LEVEL COMMAND]

returns the result of evaluating form as the value of TOP-LEVEL.

4.1.1.2 FIX <event-spec> [TOP-LEVEL COMMAND]

calls the editor for each of the specified evenls and then executes them. The event-spec
may be optionally followed by editor commands in which case the editor commands will be
applied 1o the events and the user will not be asked to edit them.

4.1.1.3 EDIT <event-spec> [TOP-LEVEL-COMMAND]

is the same as the FIX top-level command but it does not execute the fixed events.

4.1.1.4 REDO <event-spec> [TOP-LEVEL COMMAND]

(re-)exccutes the events specified.

4.1.1.5 EVENT-SPEC
All of the top-level commands that use event-specifications (??, FIX, EDIT, USE, SUBST,

104

REDO, UNDO, NAME, FORGET) use the same syntax and conventions to specify events on the
history list. An evenl address identifies one event on the history list. It consists of a
sequence of commands for moving an imaginary cursor up or down the list. The cursor
position at the end of the list of commands points to the event specified. If any command

fails the history command is aborted.)
«(NUMBER)» ;;moves forward (backward if neg) that many events

> 53> ¢atom» searches backward for an event whose function is atom.
<PAT> ;3 searches backward for an event matching the (editor) pattern pat.
- s;changes the direction of motion for the next command

= ;3= <pat> same as «pat> but matches the values of the events

TO ;3 <ceventl> TO <event2y specifies the sequence of events starting

;;with eventl and going up to (not including) event2.
THRU 35 <cventl> THRU «<event2y specifies the scquence of events starting

;;with eventl and going up to and including event2.
cempty> ;;leaving out an event-spec lets it default to -1,
AND ;; cevent-specly AND cevent-spec2» joins two 1ists of events.
[;3 @ <name) specifies the events named by the name.

4.1.1.6 ~"" [TOP-LEVEL COMMAND]

changes the default fop level (INITFN) to the old LISP 1.6 top level and exits from
TOP-LEVEL.

4.1.1.7 77 <event-speoc> [TOP-LEVEL COMMAND]

prints the specitied events.

4.1.1.8 USE args FOR vars IN event-spec [TOP-LEVEL COMMAND]

substitutes arguments for variables in the specified events. The events are then executed.
The number of argumenls must be a multiple of the number of variables. For example,

<3> (FAC 0)

1

<4>USE 1 2 3 FOR 0 IN FAC
1

2

6

4.1.1.9 SUBST args FOR vars IN event-spec [TOP-LEVEL COMMAND]

is like USE but it does not execute the results.

4.1.1.10 UNDO <event-spec> [TOP-LEVEL COMMAND]

undoes the recorded (undoable) side effects of the events specified.

4.1.1.11 NAME <name> <event-spec> [TOP-LEVEL COMMAND]

saves the specified events on the NAMED-EVENTS property of name. This allows those

L]

105

events (and their values and side effects) to be referenced (by that name) even after they

are deleted from the history list (when they are no longer recent).

4.1.1.12 RETRIEVE <name> [TOP-LEVEL COMMAND]

adds the events specified by the name (via the NAME command) to the history list (at the
end).

4.1.1.13 AFTER <name> [TOP-LEVEL-COMMAND]

adjusts the (undoable) side effects to reflect the situation afler the events named by name
(via the NAME command) are executed.

4.1.1.14 BEFORE <name> [TOP-LEVEL-COMMAND]

Adjusts the {undoable) side effects to reflect the situalion before the events named by
name (via the NAME command) were executed.

4.1.1.15 FORGET <event-spec> [TOP-LEVEL COMMAND]

deletes the information which allows the undoable side effects of the specified events to
be undone. (Thus they are no longer undoable.) This is useful for conserving space (if you

never want to undo those events).

4.1.2 (VALUEOF "EVENT-SPECIFICATION") [FSUBR]

VALUEOF returns the value(s) of the event(s) specified by EVENT-SPECIFICATION. If a
single event is specified, its value will be returned. 1f more than one event is specified, or an
event has more than onc subevent (as for REDO, etc.), a list of values will be returned.

4.1.3 TOP-LEVELMACROS [VALUE]

provides a crude macro facility for the top level. The value of TOP-LEVELMACROS is a list
of elements of the form (MACRONAME FORMALS TTYLINEL ... TTYLINEN). This list is used just
lihe BREAKMACROS. TTYLINEI must be formated as if it is a list returned by LINEREAD. That
is, TTYLINEI must be a list whose elements are one line of input typed at TOP-LEVEL.

4.1.4 (CHANGESLICE N) [SUBR]
CHANGESLICE scts to N the maximum number of events that will be retained on the history

list. The maximum number of events in the history list is initiaily set to 30.

106

4.1.5 LISPXHIST [VALUE]

contains the name of the atom (LISPXHISTORY) COi taining history, current event number,
max event number and history slice size information.

4.1.6 LISPXHISTORY [VALUE] -

"Unless LISPXHIST is changed, LISPXHISTORY contains history and state information for the
LISP top level. It is a list containing four elements. The first element is the actual history.
The second is the current number for the numeric prompts. The third is the number of
events being remembered. The fourth is the maximum number the prompts may reach (which
must be more than the third element).

4.1.7 USERTOP [VALUE and SUBR]

USERTOP gives the user a chance to pre-process the input to TOP-LEVEL. If the value of
USERTOP is non-NIL then the function USERTOP is called with the line just read by LINEREAD
as a parameter. The result is used as if it had been the result of LINEREAD. TOP-LEVEL
expects a list of lines, each consisting of a list of expressions to be evaluated. In this respect
USERTOP is like TOP-LEVELMACROS. The default USERTOP attempts to allow the user to
leave out the outermost set of parentheses. ,

The defaull USERTOP does nothing if the input starts with a left parenthesis or a
top-level-command. 1f the input is a single atom, it will normally be left alone. (The
exceptions are atoms which are functions but have no values, and some special cases such as
CHANGES where one normally wants to call the funclion rather than sce the value. To see
the value of CHANGES type "eval changes") Otherwise the atom is treated as a function and
any other expressions on the line are treated as its arguments. If the function is an fexpr,
fsubr or macro then the line is simply enclosed in parentheses. Otherwise its arguments are
QUOTE’d before enclosing the line in parentheses. Exceptions to this rule are T, NIL and
numbers which are not quoted. The quoting may be prevented by preceding an argument
with the atom ! (as in QUOTE?).

help help i3 interrreted as (help help) - help is an fsubr

plist plist is interpreted as (plist 'plist) - plist is a subr

+ab {5 interpreted as (+ 'a 'b) - not what you mean

+!1 alb is interpreted as (+ a b)

+!'alb is interpreted as (+ '!'a ''b) - the ! must be separated
;s by spaces so as not to look like part of another atom

+ 23 is interpreied as (+ 2 3) - numbers are not quoted

setq x ¥y is interpreted as (setq x y) - probably what you meant

changes is interpreted as (changes) - an exception

fix 3 is interpreted as itself - fix is a top-level-command

oblist is interprctied as itself - even {f there {s a function

;sywith that name

107

4.1.8 (xxTOPx*x) [SUBR]

~

simply returns 1o the top-level. It is called when you type =%

4.2 (INITFN FN) [SUBR]

INITFN selects the funclion of no arguments FN as an initialization function which is
evaluated after a LISP error return to the top level has occurred or whenever a BELL ("G) is
typed. INITFN returns the previously selected initialization function. Initialization functions
are useful when it is desirable to change the top level of LISP. For instance,

(INITFN (FUNCTION EVALQUOTE))
causes the top level to become EVALQUOTE instead of EVAL.

108

5. EDITOR

The most frequent use of the editor is to change function definitions (sce EDITF), values
(EDITV), properties (EDITP), and expressions (EDITE). The beginner is advised to start with
- the following (very basic) commands: OK, UNDOQ, P, # (under which are explained two different

basic commands which start with numbers) and F. -

5.1 EDIT-ATTN

Attention-changing comrmands (in the editor) do not actually change the thing being edited,
but rather allow you to look at a different part of il. The sub-structure upon which the
editor’s attention is cenlered is called "the current expression”. Thus "changing” the current

expression means shifling attention and not actually modifying any structure.

5.1.1 CURRENT-EXPRESSION

At any given moment, the editor’s attention is cenlered on some substructure of the
expression being edited. This substructure is called the current expression, and it is what the
user sees when he gives the cditor the command P, for print. Initially, the current expression

is the top level one, i.e, the entire expression being edited.

512

-

n (n>0) [EDIT-COMMAND] Adds the nth element of the current expression to the front of
the edit chain, thereby making it be the new current expression. Sets LASTAIL for use by UP.

Generates an error if the current expression is not a list that contains at least n elements.

-n (n>0) Adds the nth clement from the end of the current expression to the front of the
edit chain, thereby making it be the new current expression. Sets LASTAIL for use by UP.
Generates an error if the current expression is not a list that contains at least n elements.

0

Sets edit chain to CDR of edit chain, thereby making the next higher expression be the new
correct expression. Generates an error if there is no higher expression, i.e., CDR of edit chain
is NIL. Note that O usually corresponds to going back to the next higher left parenthesis, but
not always. For example, if the current expression is (A B C D E F G), and the user does

#UPP

... CDEFG
#3 UP P

... EF G
#0 P
.CDEFQG

109

If the intention is to go back to the next higher left parenthesis, regardiess of any
intervening tails, the command !0 can be used. (!0 is pranounced bang-zero.)

5.1.3 UP [EDIT-COMMAND]

(1) If a P command would cause the editor to type .. before typing the current expression,
i.e., the current expression is a tail of the next higher expression, UP has no effect; otherwise
(2) UP modifies the edit chain so that the old current expression (i.e., the one at the time UP
was called) is the first element in the new current expression. (If the current expression is
the first element in the next higher expression UP simply does a 0. Otherwise UP adds the
corresponding tail to the edit chain.

The current expression in each case is (COND ((NULL X) (RETURN Y))).

1. #l P

COND

#UP P

(COND (& &)

2. #-1 P

((NULL X) (RETURN Y))

#UP P

... ((NULL X) (RETURN Y)))

#UP P

eeo ((NULL X) (RETURN Y)))

3. #P NULL P

(NULL X)

#UP P '

((NULL X) (RETURN Y)) ‘
#UP P -
eee ((NULL X) (RETURN Y)))

The execution of UP is straightforward, except in those cases where the current
expression appears more than once in the next higher expression. For example, if the current
expression is (A NIL B NIL C NIL) and the user performs 4 followed by UP, the current
expression should then be .. NIL C NIL). UP can determine which tail is the correct one
because the commands that descend save the last tail on an internal editor variable, LASTAIL.
Thus after the 4 command is executed, LASTAIL is (NIL C NIL). When UP is called, it first
determines if the current expression is a tail of the next higher expression. If it is, UP is
finished. Otherwise, UP computes (MEMB current-expression next-higher-expression) to
obtain a tail beginning with the current expression. (The current expression should always be
either a tail or an element of the next higher expression. If it is neither, for example the user
has directly (and incorrectly) manipulated the edit chain, UP generates an error.) If there are
no other instances of the current-expression in the next higher expression, this tail is the
correct one. Otherwise UP uses LASTAIL to select the correct tail. (Occasionally the user can
get the edit chain into a state where LASTAIL cannot resoive the ambiguity, for example if
there were two non-atomic structures in the same expression that were EQ, and the user

110

descended more than one level into one of them and then tried to come back out using UP. In
this case, UP sclecls the first tail and prints LOCATION UNCERTAIN to warn the user. Of
course, we could have solved this problem completely in our implementation by saving at
each descent both eletents and tails. However, this would be a costly solution to a situation
that arises infrequently, and when it does, has no detrimental effects. The LASTAIL solution is

cheap and resolves 997 of the ambiguities.

5.1.4 10 [EDIT-COMMAND]

Does repeated 0's until it reaches a point where the current expression is not a tail of the

next higher cxpression, i.e., always goes back to the next higher left parenthesis.

5.1.5 ~ [EDIT-COMMAND]

Sets edit chain to LAST of edit chain, therecby making the top level expression be the
current expression. Never generates an error.

5.1.6 NX [EDIT-COMMAND]

Effectively docs an UP followed by a 2, thereby making the current expression be the next
expression. Both NX and BK operate by performing a !0 followed by an appropriate number,
i.e. there won't be an exira tail above the new current expression, as there would be if NX
operated by performing an UP followed by a 2. An error is generated if the current
expression is the last one in a list. (However, NX will handie this case.)

(NX n) Equivalent to n NX commands, except if an error occurs, the edit chain is not
changed. (NX -n) is the same as (BK n).

5.1.7 INX [EDIT-COMMAND]

Makes current expression be the next expression at a higher level, i.e., goes through any
number of right parentheses to get to the next expression.

111

#PP

(PROG (UF)

(SETQ UF L)

LP (COND (INULL (SETQ L (CDR L))) (ERR NIL))
((NULL (CDR (MEMQ# (CAR L) (CADR L))))
(GO LP)))

(EDITCOM (QUOTE NX))

(SETQ UNFIND UPF)

(RETURN L))

#F CDR P

(Che L)

#NX

NX ?

#NX P

(ERR NIL)

#INX P

({NULL §) (GO LP))

#INX P

(EDITCOM (QUOTE NX))

INX operates by doing 0’s until it reaches a stage where the current expression is not the
last expression in the next higher expression, and then does a NX. Thus !INX always goes
through at least one unmatched right parenthesis, and the new current expression is always
on a different level, i.e., INX and NX always produce different results.

5.1.8 BK [EDIT-COMMAND]

Makes the current expression be the previous expression in the next higher expression.
Generates an error if the current expression is the first expression in a list. (BK n)
Equivalent to n BK comrmands, except if an error occurs, the edit chain is not changed. Note:
(NX -n) is equivalent to (BK n), and vice versa.

5.1.9 (NTH n) n>0 [EDIT-COMMAND]

Equivalent to n followed by UP, ie., causes the list starting with the nth element of the
current expression. ((NTH 1) is a NOP.) Causes an error if current expression does not have

at least n elements

(NTH S) - Generalized NTH command. Effeclively performs (LCL . $), Followed by (BELOW \),
followed by UP. In other words, NTH locales §, using a search restricted to the current
expression, and then backs up fo the current level, where the new current expression is the
tail whose first element contains, however deeply, the expression that was the terminus of
the location operation. For example:

#p

(PROG (§ §) LP (COND § &) (EDITCOM &) (SETQ UNFIND UF) (RETURN 1))
(NTH UF)

#P

.++ (SETQ UNFIND UF) (RETURN L))

#

112

If the scarch is unsuccessful, NTH generates an error and the edit chain is not changed. Note
that (NTH n) is just a spccial case of (NTH $), and in fact, no special check is made for $ a

number; both commands are excculed identically,

5.1.10 :: -

(pattern :: . §) [EDIT-COMMAND] E.g., (COND :: RETURN). Finds a COND that contains a
RETURN, at any depth. Cquivalent to (F pattern N), (LCL . §) followed by (_ pattern). For
example, if the current cxpression is (PROG NIL (COND ((NULL L) (COND (FLG (RETURN L))
--), then (COND :: RETURN) will make (COND (FLG (RETURN L))) be the current expre‘ssion.’
Note that it is the innermost COND that is found, because this is the first COND encountered
when ascending from the RETURN. In other words, (pattern :: 8) is not equivalent to (F-pattern
- N), followed by (LCL . §) followed by \. Note that $ is a location specification, not just a
pattern. Thus (RETURN :: COND 2 3) can be used to find the RETURN which contains a COND
whose first clause conlains (at least) three elements. Note also that since $ permits any edit
command, the user can wrile commands of the form (COND :: (RETURN :: COND)), which will
locate the first COND that contains a RETURN that contains a COND.

5.1.11 (BELOW com x) [EDIT-COMMAND]

Ascends the edit chain looking for a link specified by COM, and stops x links below that, i.e.
BELOW keeps doing 0’s unlil it gels to a specified point, and then backs off N O's. (X is
evaluated, e.g., (BELOW com (*PLUS X Y))) (BELOW com) Same as (BELOW com 1) For example,
(BELOW COND) will cause the COND clause containing the current expr;ession to become the
new current expression. The BELOW command is useful for locating a substructure by
specifying something it contains. For example, suppose the user is editing a list of lists, and
wanlis to find a sublist thal contains a FOO (at any depth). He simply executes F FOO (BELOW

\).

BELOW operates by evaluating X and then executing COM, or (_ com) if COM is not a
recognized edit command, and mecasuring the length of the edit chain at that point. If that
length is M and the length of the current edit chain is N, then BELOW ascends n-m-y links
where Y is the value of X. Generates an error if COM causes an error, i.e, it can’t find the

higher link, or if n-m-y is negative.

5.1.12 (NEX x) [EDIT-COMMAND)

Same as (BELOW x) followed by NX. For example, if the user is deep inside of a SELECTQ
clause, he can advance to the nex! clause with (NEX SELECTQ).

NEX

113

Same as (NEX _). The atomic form of NEX is useful if the user will be performing repeated
executions of (NEX x). By simply MARKing the chain corresponding to X, he can use NEX tfo
step through the sublists.

5.1.13 EDIT-MATCH

All of the editor commands that search use the same pattern matching routine. (This routine

is available to the uscr as EDITAE).

A pattern PAT matches with X if

1. PAT is EQ to X.
2. PAT is §.
3. PAT is a number and EQUAL to X.
4. 11 (CAR PAT) i{s the atom 2ANYs, (CDR PAT) is a
1ist of patterns, and PAT matches X if and only
if one of the patterns on (CDR PAT) matches X.
S. If PAT is a literal atom or string, and (NTHCHAR
pat -1) is €, then PAT matches with any literal
atom or string which has the same initial
characters as PAT, nr.g. VERS matches with
VERYLONGATOV, as werll as "VERYLONGSTRING".
6. If (CAR PAT) is the atom --, PAT matches X {f
A. (CDR pat)=NIL, {.e. PAT=(--),

e.g8., (A --) matches (A) (A B C) and (A. B
In other words, -- can match any tail of

a list.

B. (CDR PAT) matches with some tail of X,

e.g. (A -- (§)) will] match with (A B

C (D)), but not (ABCD), or (ABC

(D) E). However, note that (A -~ (§)

--) will match with (A B C (D) E).
In other words, -- will match any

interior segment of a list.
7. If (CAR PAT) {5 the atom =-, PAT matches X {{f
and only if (CUR PAT) is EQ to X. (This pattern
is for usec by programs that call the cditor as a
subroutine, since any non-atomic expression in a
command typed in by the user obviously cannot be
EQ to existing siructure.)
8. Otherwise if X is a 1ist, PAT matches X if (CAR
PAT) watches (CAR X), and (CDR PAT) matches (CDR
X).

WO W WY VI Ve W W W WS WS WO I WS VI VS Ve WE WO WO WS W WS WO VP WP WS WE WO W WO WE We
W5 NE Ve WE WE WO WO WS WS WS WS WS WP WE WS WE WO W WO W WO VP WA WS VD WO WL WS W We W W

When searching, the pattern matching routine is called only to match with elements in the
structure, unless the patlern begins with i, in which case CDR of the pattern is matched
against tails in the structure. (In this case, the tail does not have to be a proper tail, e.g. (i
A --) will malch with the element (A B C) as well as with CDR of (X A B C), since (ABC)is a
tail of (A B C).) Thus if the current expressiionis (ABC (BC)),

114

#F (B --)

#P

(B C)

#0 F (:: B --)
#P

... BC (B Q)
#F (G:: B --)
#P

(B C)

5.1.14 EDIT-SEARCH

Search Commands - All of the commands below set LASTAIL for use by UP, set UNFIND for
use by \, and do not change the edit chain or perform any CONSes if they are unsuccessful
or aborted.

Editor Searching begins with the current expression and proceeds in print order.
Searching usually means find the next instance of this pattern, and consequently a match is
not attempted that would leave the edit chain unchanged. (Note, there is a version of the find
command which can succeed and leave the current expression unchanged.) At each step, the
pattern is malched against the nex! element in the expression currently being searched,
unless the pattern begins wilh i in which case it is matched against the corresponding tail of
the expression. (EQ patlern tail-of-expression)=T also indicates a successful match, so that a
search for FOO will find the FOO in (FIE . FOOQ). Thé only exception to this occurs when
PATTERN=NIL, e.g., F NIL. In this case, the pattern will not match with a null tail (since most
lists end in NIL) but will match with a NIL element.

If the match is not successful, the search operation is recursive first in the CAR direction
and then in the CDR direction, ie, if the element under examination is a list, the search
descends into that list before atiempting to match with other elements (or tails) at the same
level. (There is also a version of the find command which only attempts matches at the top
level of the current expression, ie., does not descend into elements, or ascend to higher

expressions.)

However, at no point is the total recursive depth of the search (sum of number of CARs
and CDRs descended into) allowed to exceed the value of the variable MAXLEVEL. At that
point, the search of that element or tail is abandoned, exactly as though the element or tail
had been completely scarched without finding a match, and the search continues with the
next element or tail for which the recursive depth is beiow MAXLEVEL. This feature is
designed to enable the user to search circular list structures (by setting MAXLEVEL small), as
well as protecting him from accidentally encountering a circular list structure in the course of
normal editing. MAXLEVEL is initially set to 192. If a successful match is not found in the
current expression, the search automatically ascends to the next higher expression, and

115

continues searching there on the next expression after the expression it just finished
searching. If there is none, it ascends again, etc. This process continues until the entire edit
chain has been <carched, at which point the search fails, and an error is generated. If the

search fails the edit chain is not changed (nor are any CONSes performed.)

If the search is successful, i.e, an expression is found that the pattern matches, the edit
chain is set to the value it would have had had the user reached that expression via a
sequence of integer commands.

If the expression that matchgd was a list, it will be the final link in the edit chain, i.e, the
new current expression. If the expression that matched is not a list, e.g., is an atom, the
current expression will be the lail beginning with that atom, (Except for situations where
maich is with Y in (X . Y), Y atomic and not NIL. In this case, the current expression will be (X

Y).) i.e., that atom will be the first element in the new current expression. In other words,
the search effectively does an UP. (Unless UPFINDFLG=NIL (initially set to T).

5.1.14.1 F pattern [EDIT-COMMAND]

i.e, two commands: the F informs the editor that the next command is to be interpreted as
a pattern. If no pattern is given on the same line as the F then the last pattern is used. If an
F or BF has been done in this call to the edilor, the variable FINDARG is bound in the editor
to the pattern. This is the most common and useful form of the find command. If successful,
the edit chain always changes, i.e., F pattern means find the next instance of PATTERN. -

If (MEMB pattern current-expression) is true, F does not proceed with a full recursive
search. If the value of the MEMB is NIL, F invokes the search aigorithm described in
EDIT-SEARCH. Thus if the current expression were (PROG NIL LP (COND (--(GO LP1))) ... LP1
.., F LP1 would find the prog label, not the LP1 inside of the GO expression, even though the
latter appears first (in print order) in the current expression. Note that 1 (making the atom
PROG be the current expression), followed by F LP1 would find the first LP1.

(F pattern N)

Same as F pattern, ie., finds the next instance of pattern, except the MEMB check of F

pattern is not performed.
(F patlern T)

Similar to F pattern, except may succeed without changing edit chain, and does not perform
the MEMB check. Thus if the current expression is (COND ..), F COND will look for the next
COND, but (F COND T) will *stay here’.

116

(F pattern n) n>0

Finds the nth place that pattern matches. Equivalent to (F pattern T) followed by (F pattern
N) repeated n-1 times. Each time PATTERN successfully matches, n is decremented by 1, and
the search continues, until n reaches 0. Note that the pattern does not have to match with n
identical expressions; it just has to match N times. Thus if the current expression is (FOOL
FOO2 FOO3), (F FOO® 3) will find FOO3. If the pattern does not match successfully N times, an

error is generated and the edit chain is unchanged (even if the PATTERN matched n-1 times).
(F pattern) or (F pattern NIL)

Only matches with elerents at the top level of the current expression, i.e., the search will
not descend into the current expression, nor will it go outside of the current expression. May

succeed without changing edit chain. For example, if the current expression is
(PROG NIL (SETQ X (COND § §)) (COND &) ...)

F (COND --) will find the COND inside the SETQ, whereas (F (COND --)) will find the top level
COND, i.e., the second one.

5.1.14.2 (SECOND . §) [EDIT-COMMAND]

Same as (LC . $) Followed by another (LC . 8) Except that if the first succeeds and second
fails, no change is made to the edit chain.

5.1.14.3 (THIRD . §) [EDIT-COMMAND]
Similar to SECOND.

5.1.14.4 (FS pattern] ... patternn) [EDIT-COMMAND]

Equivalent to F patternl followed by F pattern2 .. followed by F pattern n, so that if F
pattern m fails, edit chain is left at place pattern m-1 matched. ‘

5.1.14.5 (F= expression x) [EDIT-COMMAND]

is equivalent to (F (== . expression) x), i.e., searches for a structure eq to expression.

5.1.14.6 (ORF patternl ... patlernn) [EDIT-COMMAND]

Equivalent to (F (+ANYx patlernl .. patternn) N), i.e,, searches for an expression that is
matched by either patternl or ... patternn.

117

5.1.14.7 BF pallern [EDIT-COMMAND]

Backwards Find. Scarches in reverse print order, beginning with expression immediately
before the current expression (uniess the current expression is the top level expression, in
which case BF searches the entire expression, in reverse order.) BF uses the same pattern
match routine as F, and MAXLEVEL and UPFINDFLG have the same effect, but the searching
begins at the end of each list, and descends into each element before attempting to match
that element. If unsuccessful, the search conlinues with the next previous element, etc., until
the front of the list is recached, at which point BF ascends and backs up, etc. For example, if

the current expression is
(PROG NIL (SETQ X (SETQ Y (LIST Z))) (COND ((SETQ W --) --})) --)

F LIST followed by BF SETQ will leave the current expression as (SETQ Y (LIST Z)), as will F
COND followed by BF SETQ

(BF pattern T)

Search always includes current expression, i.e., starts at end of current expression and
works backward, then ascends and backs up, etc. Thus in the previous example, where F
COND followed by BF SETQ found (SETQ Y (LIST Z)), F COND followed by (BF SETQ T) would
find the (SETQ W --) expression.

(BF pattern) is the same as BF paltern. (BF pattern NIL) is the same as BF pattern.

5.1.14.8 MAXLEVEL [VALUE]

is the maximum depth for edilor searches -

5.1.14.9 LOCATION-SPEC

Many of the mare sophisticated editor commands use a more general method of specifying
position called a LOCATION SPECIFICATION. A LOCATION SPECIFICATION is a list of edit
commands that are executed in the normal fashion with two exceptions. First, all commands
not recognized by the edilor are interpreted as though they had been preceded by F.
(Normally such commands would cause errors.) For example, the location specification (COND 2
3) specifies the 3rd element in the first clause of the next COND. (Note that the user could
always write (F COND 2 3) for (COND 2 3) if he were not sure whether or not COND was the
name of an atomic command.) Secondly, if an error occurs while evaluating one of the
commands in the location specification, and the edit chain had been changed, i.e., was not the
same as it was at the beginning of that execution of the location specification, the location
operation will continue. In other words, the location operation keeps going unless it reaches a

118

state where it detects that it is "looping’, at which point it gives up. Thus, ii (COND 2 3) is
being localed, and the first clause of the next COND contained only two elements, the
execution of the command 3 would cause an error. The search would then continue by looking
for the next COND. However, if a point were reached where there were no further CONDs,
then the first command, COND, would cause the error; the edit chain would not have been

changed, and so the entire location operation would fail, and cause an error.

The IF command and the ## funclion provide a way of using in location specifications

arbitrary predicates applied to elements in the current expression.

The meta-symbol 8 is used to denole a location specification, Thus 8§ is a list of commands
interpreled as-described above. § Can also be atomic, in which case it is interpreted as (LIST
8).

In INSERT, DELETE, REPLACE and CHANGE if § is NIL (empty), the corresponding operation
is performed here (on the current edit chain), e.g., (REPLACE WITH (CAR X)) is equivalent to
(:(CAR X)). For added readability, HERE is ailso permitted, e.g., (INSERT (PRINT X) BEFORE
HERE) will insert (PRINT X) before the current expression (but not change the edit chain).
Note also that § does not have lo specify a localion WITHIN the current expression, i.e., it is
perfectly legal to ascend to INSERT, REPLACE, or DELETE. For example (INSERT (RETURN)
AFTER ~ PROG -1) will go to the top, find the first PROG, and insert a (RETURN) at its end, and
not change the current edit chain.

Finally, the A, B, and : commands, (and consequently INSERT, REPLACE, and CHANGE), all
make special checks in E1 thru Em for .expressions of the form (## . coms). In this case, the
expression used for inserling or replacing is a copy of the current expression after execuli—ng
coms, a list of edit commands. (The execulion of coms does not change the current edit chain.)
For example, (INSERT (u## F COND -1 -1) AFTER3) [not (INSERT F COND -1 (## -1-) AFTER 3),
which inserts four elements after the third element, namely F, COND, -1, and a copy of the
last element in the current expression] will make a copy of the last form in the last clause of

the next COND, and insert it after the third element of the current expression.

5.1.149.1 §

In descriptions of the edilor, the meta-symbol § is used to denote a location specification.
Thus § is a list of commands interpreted as described under LOCATION-SPEC. § Can also be
atomic, in which case it is interpreted as (LIST §).

5.1.149.2 (LC . $) [EDIT-COMMAND]

Provides a way of explicitly invoking the location operation, e.g. (LC COND 2 3) will perform

119
the search described under edit-<carch.

5.1.14.9.3 (LCL . §) [EDIT-COMMAND)]

Samc as LC cxcept scarch is confined to current expression, i.e., the edit chain is rebound
during the search so il looks as if the editor were called on just the current expression. For
example, 1o find a COND containing a RETURN, one might use the location specification (COND
(LCL RETURN) \) where the \ would reverse the effects of the LCL command, and make the
final current expression be the COND.

5.1.15 EDIT-CHAIN

The edit-chain (the value of which is kept in the variable L) is a list of which the first
element (CAR) is the current-expression {the one you are now ediling), the next element is
what would become the current-expression if you were to do a 0 (the edit command) {which
is the next higher level expression of which this is an element) etc. until the last element
which is the expression that was passed {o the editor. '

5.1.15.1 MARKLST [VALUE]

is an internal variable used by the editor to save and later retrieve intermediate copies of
the edit chain.

5.1.15.2 MARK [EDIT-COMMAND]
Adds the éurrcnt edit chain to the front of the list MARKLST.

~ 5.1.15.3 _ [EDIT-COMMAND]

Makes the new edit chain be (CAR MARKLST). Generates an error if MARKLST is NIL, i.e., no
MARKS have been performed, or all have been erased.

(_ pattern) [EDIT-COMMAND] Ascends the edit chain looking for a link which matches
PATTERN. in other words, it kecps doing 0’s until it gets to a specified point. If PATTERN is
ato;'nic, it is maiched with the first element of each link, otherwise with the entire link. (If
pattern is of the form (IF expression), EXPRESSION is evaluated at each link, and if its value is
NIL, or the evaluation causes an error, the ascent continues.) For exampie:

120

#PP
(PROG NIL
(COND ({(NULL (SETQ L (CDR 13))
(COND (FLG (RETURN 1))))
((NJLL (CDR (MEMB (CAR L (CADR L)))))
(GO LP))))
#F CADR
#(_ COND) .
#P e

(COND (& &) (& &)
#

Note that this command differs from BF in that it does not search inside of each link, it simply
ascends, Thus in the above example, F CADR followed by BF COND would find (COND (FLG
(RETURN L)), not the higher COND. If no malch is found, an error is generated and the edit

chain is unchanged.

5.1.15.4 ___ [EDIT-COMMAND]
Similar to _ but also erases the MARK, i.e,, performs (SETQ MARKLST (CDR MARKLST)).

5.1.15.5 \ [EDIT-COMMAND]
Makes the edit chain be the value of UNFIND. Generates af\ error if UNFIND=NIL. UNFIND is

set to the current edit chain by each command that makes a "big jump”, i.e., a command that
usually performs more than a single ascent or descent, namely %, _, _ , INX, all commands that
involve a search, e.g., F, LC, ::;, BELOW, et al and \ and \P themselves. (Except that UNFIND is
not reset when the current edit chain js the top level expression, since this could always be
returned to via the = command.) For example, if the user types F COND, and then F CAR, \
would take him back to the COND. Another \ would take him back to the CAR, etc.

5.1.15.6 \P [EDIT-COMMAND]

Resiores the edil chain to its state as of the last print operation, i.e., P, ?, or PP. If the edit
chain has not changed since the last prinling, \P restores it to its state as of the printing
before that one, i.e., two chains are always saved. For example, if the user types P followed
" by 3 21 P, \P will return to the first P, i.e,, would be equivalent to 0 O 0. (Note that if the
user had typed P followed by F COND, he could use either \ or \P to return to the P, i.e, the
action of \ and \P are independent.) Another \P wouid then take him back to the second P,
i.e., the user could use \P to flip back and forth between the two edit chains.

5.2 EDIT-PRINT

121

5.2.1 P [EDIT-COIAMAND]

Prints current cxpression as though PRINTLEV were given a depth of 2. (P m) Prints mth
element of current expreasion as though PRINTLEV were given a depth of 2. (P 0) : Same as
P (P m n) Prints mth clement of current expression as though PRINTLEV were given a depth
of N. (P O n) Prints current expression as though PRINTLEV were given a depth of N. ? is
the same as (P 0 100). Both (P m) and (P m n) use the general NTH command to obtain the
corresponding elemenl, so that m does not have to be a number, e.g. (P COND 3) will work.
All printing functions print to the teletype, regardless of the primary output file. No printing
function ever changes the edit chain. All record the current edit chain for use by \P.

5.2.2 7 [EDIT-COMMAND]

same as (P O 100), ie. prints the current expression as though PRINTLEV were given a
depth of 100.

5.2.3 PP [EDIT-COMMAND]

pretty-prints the current expression.

5.2.4 PPx

is like PP, but forces comments to be shown.

5.2.5 AUTOP [VALUE]

After each line of editor commands is successfully executed, the current expression is
automatically printed. Control of lhis facility is by the global variable AUTOP. Setting AUTOP
to NIL suppresses automalic printing, setting AUTOP to an integer causes that integer to be
used as the prinling depth limit. AUTOP is initially 2. The printing will be suppressed if the
last command executed was itself a printing command (P, ?, PP), one of several commands
which do not affect the ediled expression (such as E, M), or NIL. Appending NIL to a
sequence of commands is the standard way of suppressing automatic printout without turning
the facility off. AUTOP is a nop which forces automatic type-out if executed last.

5.3 EDIT-MOD

Implementation of Structure Modification Commands

122

Note: Since all commands that insert, replace, delete or attach structure use the same low

level editor functions, the remarks made here are valid for all structure changing commands.

For all replacement, insertion, and attaching at the end of a list, unless the command was
typed in directly to the editor, copies of the corresponding structure are used, because of
the possibility that the exact same command, (i.e. same list structire) might be used again.
(Some editor commands lake as arguments a list of edit commands, e.g. (LP F FOO (1 (CAR
FOON). In this case, the command (1 (CAR FOO)) is not considered to have been "typed in"
even though the LP command ilsclf may have b'eein typed in. Similarly, commands originating
from macros, or commands given to the editor as arguments to EDITF, EDITV, et al, e.g. (EDITF
FOO F COND (N --)) are not considered typed in.) Thus if the program constructs the command
(1 (A B C)) via (LIST 1 FOO), and gives this command to the editor, the (A B C) used for the
replacement will NOT be EQ to FOO. (The user can circumvent this by using the I command,
which computes the structure to be used. In the above example, the form of the command
would be (I 1 FOO), which would replace the first element wilh the value of FOO itself. See
The rest of this seclion is included for applications wherein the editor is used to modify a
data structure, and poinlers info tha!l data structure are stored elsewhere. In these cases, the
actual mechanics of struclure modification must be known in order to predict the effect that
various commands may have on these outside pointers. For example, if the value of FOO is
CDR of the current expression, what will the commands (2), (3), (2 X Y Z), (-2 X Y Z), etc., do
to FOO?

Delelion of the first element in the current expression is performed by replacing it with
the second element and deleting the second element by palching around it. Deletion of any
other element is done by patching around i, i.e., the previous tail is altered. Thus if FOO is EQ
to the current expression which is (A B C D), and FIE is COR of FOO, after executing the
command (1), FOO will be (B C D) (which is EQUAL but not EQ to FIE). However, under the
same initial conditions, afler executing (2) FIE will be unchanged, i.e., FIE will still be (B C D)
even though the current expression and FOO are now (A C D). (A general solution of the
problem just isn’t possible, as it would require being able to make two lists EQ to each other
that were originally different. Thus if FIE is CDR of the current expression, and FUM is CDDR
of the current expression, performing(2) would have to make FIE be EQ to FUM if all
subsequent operations were to update both FIE and FUM correctly. Think about it.) Both
replacement and inserlion are accomplished by smashing both CAR and CDR of the
corresponding tail. Thus, if FOO were EQ to the current expression, (A B C D), after (1 X Y Z),
FOO would be (X Y Z B C D). Similarly, if FOO were EQ to the current expression, (A B C D),
then after (-1 X Y Z), FOO would be (XY Z A BC D). The N command is accomplished by
smashing the last COR of the current expression a la NCONC. Thus, if FOO were EQ to any tail

123

of the current expression, aller cxecuting an N command, the corresponding expressions
would also appear at the end of FOO.

In summary, the only situation in which an edit operation will not change an external
pointer occurs when the external pointer is to a proper tail of the data structure, ie., to CDR
of some node in the structure, and the operation is deletion. If all external pointer; are to
elements of the structure, i.e, to CAR of some node, or if only insertions, replacements, or
attachments are performed, the edit operation will always have the same effect on an
external pointer as it does on the current expression.

53.1 #

(n) [EDIT-COMMAND] n>1 deletes the corresponding element from the current expression.
(n el .. em) nm>] replaces the nth element in the current expression with el ... em.
(-nel .. em) nm>] inserls el ... em before the n element in the current expression.

(N el ... em) (the letter "N" for "next" or "nconc”, not a number) m>1 attaches el .. em at
the end of the current expression.

All structure modificaton done by the editor is destructive, i.e., the editor uses RPLACA and

RPLACD to physically change the structure it was given. However, all structure modification
is undoable, see UNDQ.

Al of the above commands generate errors if the current expression is not a list, or in the
case of the first three commands, if the list contains fewer than n elements. In addition, the
command (1), i.e., delete the first element, will cause an error if there is only one element,
since deleting the first element must be done by replacing it with the second element, and
then deleting the second element. Or, to look at it another way, deleting the first element
when there is only one element would require changing a list to an atom (i.e. to NIL) which
cannot be done. (However, the command DELETE will work even if there is only one element
in the current expression, since it will ascend to a point where it can do the deletion.)

5.3.2 INSERT-DELETE

5.3.2.1 (N el .. em) [EDIT-COMMAND]

m>1 attaches el .. em at the end of the current expression. This is needed because
commands like (-2 ...) can’t add to the end of the list.

124

5.3.2.2 (A ol .. em) [EDIT-COMMAND]

Inserts el .. em after the current expression (or after its first element if it is a tail).
Equivalent to UP followed by (-2 el .. em) or (N el .. em) or (N el .. em) whichever is
appropriate.

-

53.23 (B el .. em) [EDIT-COMMAND]

Inserts el .. cm before the current expression. Equivalent to UP followed by (-1 el ... em).
(If the current expression is a tail then insert before the first element.) For example, to insert

FOO before the last element in the current expression, perform -1 and then (B FOO).

5.3.2.4 (: el .. em) [EDIT-COMMAND]

Replaces the current expression by el .. em. Equivalent to UP followed by (1 el .. em). If
the current expression is a tail then replace its first element. (:) is equivalent to DELETE.

5.3.2.5 DELETE or (:) [EDIT-COMMAND]

Deletes the current expression, or if the current expression is a tail, deletes its first
element.

(DELETE . §)

Does a (LC . 8) followed by DELETE. Current edit chain is not changed (Unless thé current
expression is no longer a part of the expression being edited, e.g., if the current expression
is ... C) and the user performs (DELETE 1), the tail, (C), will have been cut off. Similarly, if the
current expression is (COR Y) and the user performs (REPLACE WITH (CAR X)).), but UNFIND is
set to the edit chain afier the DELETE was performed.

DELETE first trics {o delete the current expression by performing an UP and then a (1).
This works in most cases. However, if after performing UP, the new current expression
contains only one element, the command (1) will not work. Therefore DELETE starts over and
performs a BK, followed by UP, followed by (2). For example, if the current expression is
(COND ({(MEMB X Y)) (T Y)), and the user performs -1, and then DELETE, the BK-UP-(2) method
is used, and the new current expression will be ... (MEMB X Y))) However, if the next higher
expression conlains only one element, BK will not work. So in this case, DELETE performs UP,
followed by (: NIL), i.e., it REPLACES the higher expression by NIL. For example, if the current
expression is (COND ((MEMB X Y)) (T Y)) and the user performs F MEMB and then DELETE,V the
new current expression will be ... NIL (T Y)) and the original expression would now be (COND
NIL (T Y)). The ralionale behind this is that deleting (MEMB X Y) from ((MEMB X Y)) changes a
list of one element to a list of no elements, ie., () or NIL. Note that 2 followed by DELETE

125

would DELETE ((MEMB X Y)) NOT replace it by NIL.

For related information see FILESPEC.

5.3.2.6 (INSERT el .. em BEFORE . §) (EDIT-COMMAND]
Simitar to (LC. %) followed by (B el .. em).

#P

(PROG (W Y X) (SELECTQ ATM § NIL) (OR §& &) (PRIN1 &))

(INSERT LABEL BEFORE PRIND)

#P

(PROG (W Y X) (SELECTQ ATM & NIL} (OR § §) LABEL (PRIN1 §))

Current edit chain is not changed, but UNFIND is set to the edit chain after the B was
performed, i.e., \ will make the edit chain be that chain where the insertion was performed.
(INSERT el .. em AFTER . §) Similar to INSERT BEFORE except uses A instead of B. (INSERT
el ... em FOR . 8) Similar to INSERT BEFORE except uses : for B.

" For related information see //INSERT.

5.3.2.7 (REPLACE § WITH el ... em) [EDIT-COMMAND]

Here $ is the segment of the command between REPLACE and WITH. Same as (INSERT el ..
em FOR . §). (BY can be used for WITH) :

Example: (REPLACE COND -1 WITH (T (RETURN L)))

5.3.2.8 (CHANGE § TO el’... em) [EDIT-COMMAND]
Same as REPLACE WITH

For related information see UP and EDIT-SEARCH.

5.3.2.9 UPFINDFLG
Form Orienled Editing and the Roie of UP The UP that is performed before A, B, and :

‘commands (and therefore in INSERT, CHANGE, REPLACE, and DELETE commands after the

location portion of the operation has been performed.), makes these operations
form-oriented. For example, if the user types F SETQ, and then DELETE, or simply (DELETE
SETQ), he will delete the entire SETQ expression, whereas (DELETE X) if X is a variable,
deleles just the variable X. In both cases, the operation is performed on the corresponding
FORM and in both cases is probably what the user intended. Similarly, if the user types
(INSERT (RETURN Y) BLCFORE SETQ), he means before the SETQ expression, not before the
atom SETQ. There is some ambiguily in (INSERT expr AFTER funciionname), as the user might
mean make expr be the function’s first argument. Similarly, the user cannot write (REPLACE
SETQQ WITH SETQ) to mean change the name of the function. The user must in these cases

126

write (INSERT expr AFTER functionname 1), and (REPLACE SETQQ 1 WITH SETQ). A
conscquent of this procedure is that a pattern of the form (SETQ Y --) can be viewed as
simply an elaboralion and furlher refinernent of the paltern SETQ. Thus (INSERT (RETURN Y)
BEFORE SETQ) and (INSERT (RETURN Y) BEFORE (SETQ Y --)) perform the same operation
(Assuming the next SETQ is of the form (SETQ Y-)).) and, in fact, this is one of the motivations
behind making the current expression afler F SETQ, and F (SETQ Y --) be the same.
Occasionally, however, a user may have a data structure in which no special significance or
meaning is attached to the position of an atom in a list, as LISP attaches to atoms that appear
as CAR of a list, versus those appearing clsewhere in a list. In general, the user may not
~even know whether a parlicular atom is at the head of a list or not. Thus, when he writes
(INSERT cxpression AFTER FOQ), he means after the atom FOQ, whether or not it is CAR of a
list. By setting the variable UPFINDFLG to NIL (Initially, and usually, set to T.) the user can
suppress the implicit UP that follows scarches for atoms, and thus achieve the desired effect.
With UPFINDFLG = NIL., after F FQOO, for example, the current expression will be the atom FQO.
In this case, the A, B, and : operations will operate with respect to the atom FOO. If the user
intends the operation to refer to the list which FOO heads, he simply uses instead the pattern
(FOO --). '

5.3.3 EMBED-EXTRACT

EXTRACT is an edilor command which replaces the curreml expression with one of its
subexpressions (from any depth). EMBED replaces the current expression with a new

expression which contains it as a subexpression.

5.3.3.1 (XTR.$) [EDIT-COMMAND]

Replaces the original current cxpression with the expression that is current after
performing (LCL . 8). For example, if the current expression is (COND ((NULL X) (PRINT Y))),
(XTR PRINT), or (XTR 2 2) will replace the COND by the PRINT. If the current expression
after (LCL . 8) is a tail of a higher expression, its first element is used. For example, if the
current expression is (COND ((NULL X) Y) (T 2)), then (XTR Y) will replace the COND with Y. If
the extracted expression is a list, then after XTR has finished, the current expression will be
that list. Thus, in the first example, the current expression after the XTR would be (PRINT Y).
If the extracted expression is not a list, the new current expression will be a tail whose first
element is thal non-list. -Thus, in the second example, the current expression after the XTR
would be ... Y followed by whalever followed COND. If the current expression initially is a
tail, extraction works exactly the same as though the current expression were the first
element in that tail. Thus is the current expression is (XTR PRINT) will replace the COND by
the PRINT, leaving (PRINT Y) as the current expression.

127

5.3.3.2 (MBD x) [EDIT-CCMMAND]

X is a list, substitutes (a la SUBST, ie., a fresh copy is used for cach subslitution) the
current expression for all instances of the alom £ in x, and replaces the current expression
with the resull of that substitution. (MBD el ... em) : Equivalent to (MBD (el .. em *x)). (MBD

x) : X atomic, same as (MBD (x #)). All thrce forms of MBD leave the edit chain so that the

larger expression is the new currenl expression. If the current expression initially is a tail,
embedding works exactly the same as though the current expression were the first element

in that tail.

Example: If the current expression is (PRINT Y), (MBD (COND ((NULL X)) ((NULL (CAR Y)) %
(GO LP))) would replace (PRINT Y) with (COND((NULL X) (PRINT Y)) ((NULL (CAR Y)) (PRINT Y)
(GO LP)).

5.3.3.3 (EXTRACT §! FROM §2) [EDIT-COMMAND]

(81 is the segment between EXTRACT and FROM.) Performs (LC . §2) And then (XTR . $1).
Current edit chain is not changed, but UNFIND is set to the edit chain after the XTR was
performed. Example: If the current expression is (PRINT (COND ((NULL X) Y) (T 2))) then
following (EXTRACT Y FROM COND), the current expression will be (PRINT Y). (EXTRACT 2 -1
FROM COND), (EXTRACT Y FROM 2), (EXTRACT 2 -1 FROM 2) will all produce the same resuit.

5.3.3.4 (EMBED § IN . x) [EDIT-COMMAND]

(8 is the segment beliween EMBED and IN.) Does (LC . 8) and then (MBD . x). Edit chain is
not changed, but UNFIND is set to the edit chain after the MBD was performed. Example:

(EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN), (EMBED COND 3 1 IN (OR # (NULL X))).

WITH can be used for IN, and SURROUND can be used for EMBED, e.g., (SURROUND NUMBERP
WITH (AND * (MINUSP X).

" 5.3.4 MOVE-COPY

5.3.4.1 (MOVE $1 TO com . $2) [EDIT-COMMAND]

(81 is the segment between MOVE and TQ.) Where COM is BEFORE, AFTER, or the name of a
list command, e.g., :, N, elc. Performs (LC . §1), Obtains the current expression there (or its
first element, if it is a lail), let us call this expr; MOVE then goes back to original edit chain,
performs (LC . §2), Peforms (com expr), then goes back to 81 and deletes expr. Edit chain is
not changed. UNFIND is sct to edit chain after (com expr) was performed.

If $2 is NIL, or (HERE), the current position specifies where the opcration is to take place.

128

In this case, UNFIND is ~et to where the expression that was moved was originally located,
i.e., $1. Finally, if 81 is NIL, the MOVE command allows the user to specify some place the
current expression is 10 be moved to. In this case, the edit chain is changed, and is the chain

where the current expresaion was moved fo; UNFIND is set to where it was.

For example, if the current expression is (A B D C), (MOVE 2 TO AFTER 4) will make the
new current expression be (A C D B). Note that 4 was executed as of the original edit chain,

and that the second element had not yet been removed.

*?

(PROG (L) (EDLOC (CDDR C)) (RETURN (CAR 1)))
#(MOVE 3 TO : CAR)

(PROG (L) (RETURN (EDLOC (CDDR C})))

#P :
... (SELECTQ ORJPR § §) (RETURN §) LP2 (COND & §))
#(MOVE 2 TON 1)

... (SELECTQ ORJPR & § §) LP2 (COND & &)

#P
(OR (EQ X LASTAIL) (NOT & (AND & & §))
(MOVE 4 TO AFTER (BELOW COXD))
(OR (EQ X LASTAIL) (NOT &))
#\ P
(6 §) (AND & & &) (T & &)
+P
(TENEX)
(MDVE ~ F APPLY TO N HERE)
(TENEX (APPLY & &))
#P
(SELECTQ OBRJPR (§) (PROGN & &))
(MOVE TO BEFORE LOOP)
... (SELECTQ OBJPR & §) LOOP (RPLACA DFPRP &) (RPLACD DFPRP §))

5.3.4.2 (MV com . §) [EDIT-COMMAND]
is the same as (MOVE HERE TO com . §)

5.3.4.3 (COPY $1 TO com . $2) [EDIT-COMMAND]
is like MOVE except that the source expression is not deleted.

For related informalion sec SUBST.

5.3.4.4 (CP com . §) [EDIT-COMMAND]

is like MV except that the source expression is not deleted.

5.3.5 MOVE-PARENS

Commands That "Move Parentheses” The commands presented in this section permit
modification of the list siructure itself, as opposed to modifying components thereof. Their

129

effect can be described as inserting or removing a <ingle left or right parenthesis, or pair of
left and right parcntheses. Of course, there will always Le the same number of left
parentheses as right parentheses in any list structure, since the parentheses are just a
notational guide to the structure provided by PRINT. Thus, no command can insert or remove
just one parenthesis, but this is suggestive of what actually happens. In all six commands, n
and m are used to specify an clement of a list, usually of the current expression. In practice,
n and m are usually positive or necgalive integérs with the obvious interpretation. However,
all six commands use the gencralized NTH command to find their element(s), so that nth
element means the first element of the tail found by performing (NTH n). In other words, if
the current expression is (LIST (CAR X) (SETQ Y (CONS W Z))), then (Bl 2 CONS), (BI X -1), and
(BI X 2) all specify the exact same opcration. All six commands generate an error if the
element is not found, i.e., the NTH fails. All are undoable.

5.3.5.1 (BI n m) [EDIT-COMMAND]

Both in. Inserls parentheses before the nth element and after the mth element in the
current expression. Generales an error if the mth element is not contained in the nth tail, i.e.,
the mth element must be "o the right” of the nth element. Example: If the current expression
is (A B(C DE)F G), then (Bl 2 4) will modify it to be (A(B(CDE)F)G). (Bln): Same as (BI
n n). Example: If the current expression is (A B (C D E) F G), then (Bl -2) will modify it to be
(A B(CDE)(F)G).

5.3.5.2 (BO n) [EDIT-COMMAND]

Both out. Removes both parentheses from the nth element. Generates an error if nth
element is not a list. Example: If the current expression is (A B (C D E) F G), then (BO D) will
modify it to be (ABCDEF G).

5.3.5.3 (LI n) [EDIT-COMMAND)]

Left in. Inserts a left parenthesis before the nth element (and a matching right parenthesis
at the end of the current expression), i.e., equivalent to (Bl n -1). Example: If the current
expression is (A B (C D E) F G), then (LI 2) will modify it to be (A (B (C D E) F G)).

5.3.5.4 (LO n) [EDIT-COMMAND]

Left out. Removes a left parenthesis from the nth element. All elements following the nth
element are deleted. Generates an error if nth element is not a list. Example: If the current
expression is (A B (C D E) F G), then (LO 3) will modify it to be (A B C D E).

130

5.3.5.5 (Rl n m) [EDIT-COMMAND]

Right in. Inserts a right parenthesis after the mth element of the nth element. The rest of
the nth element is brought up to the level of the current expression. Example: If the current
expression is (A (B C D E) F G), (RI 2 2) will modify it fo be (A (B C) D E F G). Another way of
thinking about Rl is to read it as "move the right parenthesis at the end of the nth element IN

to after the mth element.”

5.3.5.6 (RO n) [EDIT-COMMAND]

Right out. Removes the right parenthesis from the nth element, moving it to the end of the
current expression. All clements following the nth element are moved inside of the nth
element. Generates an error if nth element is not a list. Example: If the current expression is
(A B(CDE)F G), (RO 3) will modify it to be (A B(C D E F G)). Another way of thinking about
RO is to read it as "move the right parenthesis at the end of the nth element OUT to the end

of the current expression.”

5.3.6 (R x y) [EDIT-COMMAND]

Replaces all instances of x by y in the current expression, e.g, (R CAADR CADAR).

Generates an error if there is not at least one instance.

R operates by performing a DSUBST. The current expression is the third argument to
DSUBST, i.e., the expression being substituted into, and y is the first argument to DSUBST, i.e,,
the expression being substiluted. R computes the second argument to DSUBST, the
expression to be substituled for, by performing (F x T). The second argument is then the
current expression at that point, or if thal current expression is a list and x is atomic, then
the first element of that current expression. Thus x can be the S-expression (or atom) to be
substituted for, or can be a pattern which specifies that S-expression (or atom). For
example, if the current expression is (LIST FUNNYATOM]1 FUNNYATOM2 (CAR FUNNYATOM1)),
then (R FUN® FUNNYATOM3) will substitute FUNNYATOM3 for FUNNYATOMI1 throughout the
current expression. Note that FUNNYATOMZ2, even though it would have matched with the
pattern FUN®, is NOT replaced. Similarly, if (LIST(CAR X) (CAR Y)) is the first expression
matched by (LIST --), then (R (LIST --) (LIST (CAR Y) (CAR 12))) is equivalent to (R (LIST
(CARX) (CARY)) (LIST (CAR Y) (CAR Z))), i.e., both will replace all instances of (LIST (CAR X)
(CAR Y)) by (LIST (CAR Y) (CAR 2)). Note that other forms beginning with LIST will not be
replaced, even though they would have matched with (LIST --). To change all expressions of
the form (LIST --) to (LIST (CAR Y) (CAR 2)), the user should perform (LP (REPLACE (LIST --)
WITH (LIST (CAR Y) (CAR]. UNFIND is set to the edit chain following the find command so that

T 131

\ will make the current cxpressi, 1,4 the place where the first substitution occurred.

5.3.7 (SW n m) (EDIT-COMMAND]

Switches the nth and mth clements of the current expression. For example, if the current
expression is (LIST (CONS (CAR X) (CAR Y)) (CONS (CDR Y))), (SW 2 3) will modify it to be
(LIST (CONS (CDR X) (CDR Y)) (CONS (CAR X) {CAR Y))). The relative order of n and m is not
important, ie, (SW 3 2) and (SW 2 3) are equivalent. SW uses the generalized NTH command
to find the nth and mth elements, a la the BI-BO commands. Thus in the previous example,
(SW CAR CDR) would produce the same resuit,

5.3.8 TO-THRU

TO and THRU EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made to operate on
several contiguous elements, i.e., a scgment of a list, by using the TO or THRU command in
their respective location specifications, THRU and TO are not very useful commands by
themselves, and are not intended to be used "solo", but in conjunction with EXTRACT,.EMBED,
DELETE, REPLACE, and MOVE. After THRU and TO have operated, they set an internal editor
flag informing the above commands that the element they are operating on is actually a
segment, and that the exira pair of parentheses should be removed when the operation is
complete. TO and THRU can also be used directly with XTR (which takes a location
specification), as in (XTR (2 THRU 48)) {from the current expression). ’

53.8.1 TO

($1 TO $2) {EDIT-COMMAND]
Same as THRU except last element not included.

($1 TO)
Same as (81 THRU -1)

5.3.8.2 THRU

($1 THRU $2) (EDIT-COMMAND]

Does a (LC . $1), Followed by an UP, and then a (Bl 1 82), thereby grouping the segment
into a single element, and finally docs a 1, making the final current expression be that
element. For exarnple, if the current expression is (A (B (C D) (E) (F G H) I) J K), following (C
THRU G), the current expression will be ((C D) (E) (F G H)). If both 81 and $2 are numbers,
and 82 is grealer than Sl, then 82 counts from the beginning of the current expression, the
same as $1. In other words, if the current expressionis (ABC D E F G), (3 THRU 4) means (C

132

THRU D), not (C THRU F). In this case, the corresponding BI command is (BI 1 $§2-8$1+1).
($1 THRU)
same as (§1 THRU -1)

#P

(PROG NIL (SETQ A §) (RPLACA § &) (PRINT &) (RPLACD § §))
MOVE (3 THRU 4) TO BEFORE 5) P

(PROG NIL (PRINT §) (SETQ A &) (RPLACA § &) (RPLACD § §))

Note that when specifing 82 in the MOVE, 5 was used instead of 6. This is because the $2
is located afier S$1 is. The THRU location groups items together and thus changes the numeric

location of the following ilems.

#P

(PROG NIL (PRIN1 §) (PRIN1 §) (SETQ IND §) (SETQ VAL §) (PRINT §))
(MOVE (5 THRU 7) TO BEFORE 3)

(PROG NIL (SETQ IND & (SETQ VAL § (PRINT §& (PRIN1 § (PRINI §)
(DELETE (SETQ THRU PRI€))

= PRINT

(PROG NIL (PRINI §) (PRIN1 §))

#P

... LP (SELECTQ & § § (SETQ Y §) OUT (SETQ FLG §) (RETURN Y))
#(MOVE (1 TO OUT) TO N HERE)

... OUT (SETQ FLG §) (RETURN Y) LP (SELECTQ § § & (SETQ Y §))

5.4 EDIT-UNDO

Each command that causes structure modification aulomatically adds an entry to the front
of UNDOLST containing the information required to restore all pointers that were changed by
the command. The UNDO command undoes the last, i.e., most recent such command. Whenever
the user continues an editing session as described under SAVE, the undo information of the
previous session(s) is protected by inserting a special blip, called an undo-block on the front
of UNDOLST. This undo-block will terminate the operation of a IUNDQ, thereby confining its
effect to the current session, and will similarly prevent an UNDO command from operating on
commands executed in the previous session. Thus, if the user enters the editor continuing a
session, and immediately executes an UNDO or 'UNDQO, UNDO and WNDO will type BLOCKED,
instead of NOTHING SAVED. Similarly, if the user executes several commands and then
undoes them all, either via several UNDO commands or a 'UNDO command, another UNDO or
IUNDO will also type BLOCKED.

5.4.1 UNDO [EDIT-COMMAND]

Each command that causes structure modification automatically adds an entry to the front
of UNDOLST containing the information required to restore all pointers that were changed by
the command. The UNDO command undoes lhe last, i.e., most recent, structure modification

command that has not yet been undone, and prints the name of that command, e.g.,, MBD

133

UNDONE. (Since UNDO and 'UNDO causes structure modification, they also add an eniry to
UNDOLST. However, UNDO and IUNDO entries are skipped by UNDO, e.g., if the user performs
an INSERT, and then an MBD, the firel UNDO will undo the MBD, and the sccond will undo the
INSERT. However, the user can aluo specify precisely which command he wants undone. In
this case, he can undo an UNDQ command, e.g., by typing UNDO UNDQO, or undo a command
other than that most recently performed.) The cdit chain is then exactly what it was before
the ‘undone’ command had been performed. If there are no commands to undo, UNDO types
NOTHING SAVED.

5.4.2 UNDO [EDIT-COMMAND]

Undoes all modifications performed during this editing session, i.e., this call to the editor. As

. each command is undone, its name is printed a la UNDQ. If there is nothing to be undone,

IUNDO prints NOTHING SAVED.

5.4.3 UNDOLST [VALUE]

Each editor command that causes structure maodification automatically adds an entry to the
front of UNDOLST containing the information required to restore all pointers that were

changed by the command.

5.4.4 UNBLOCK [EDIT-COMMAND]

Removes an undo-biock. If execuled at a non-blocked state, te, if UNDO or !'UNDO could
operate, types NOT BLOCKED.

5.45 TEST [EDIT-COMMAND]

Adds an undo-block at the front of UNDOLST. Note that TEST together with 'UNDO provide
a 'tentative® mode for editing, i.e, the user can perform a number of changes, and then undo
all of them with a single 'UNDO command.

5.46 7? [EDIT-COMMAND]

Prints the entries on UNDOLST. The entries are listed in the reverse order of their

execution, i.e., the most recent entry first. For example:

#P

(CONS (T &) (& §))
#(1 COND) (SW 2 1) P
(COND (§ &) (T &)
*#7?

SW (1 --)

134

5.5 EDIT-EVAL

§5.1 E [EDIT-COMMALID]

Anly when typed in, (i.e., (INSERT D BEFORE) will treat E as a pattern) causes the editor

to call the LISP interpreter giving it the next input as argument. For example,
#E (LENGTH (CAR L))

will print the length of the current expression (recail that L is the edit-chain and its CAR is

- the current expression).

(E x) Evaluates X, i.e., performs (EVAL x), and prints the result on the teletype. (E x T)
Same as (E x) but does not print. The (E x) and (E x T) commands are mainly intended for use
by MACROS and subroutine calls to the editor; the user would probably type in a form for
evaluation using the more convenient format of the (atomic) E command.

552 (I¢ xl ..xn) [EDIT-COMMAND]

Same as (¢ yl .. yn) where yi=(EVAL xi). Example: (I 3 (COR FOO)) will replace the 3rd
element of the current cxpression with the COR of the value of FOO. (The I command sets an
internal flag to indicate 1o the structure modification commands not to copy expression(s)
when inserting, replacing, or attaching.) (I N FOO (CAR FIE)) will attach the value of FOO and
CAR of the value of FIE to the end of the current expression. (I F= FOO T) will search for an
expression EQ to the value of FOO. If ¢ is not an atom, it is evaluated as wellj Example: (I
(COND ((NULL FLG) (QUOTE -1) (T 1)) FOO), if FLG is NIL, inserts the value of FOO before the
first element of the current expression, otherwise replaces the first element by- the value of
FOO.

5.5.3 (## coml com2 ... comn) [FSUBR]

is an FSUBR (not a command). lis value is what the current expression would be after
executing the edit cormmands coml ... comn starting from the present edit chain. Generates an
. error if any of coml thru comn cause errors. The current edit chain is never changed. (Recall
that A,B,;,INSERT, REPLACE, and CHANGE make special checks for ## forms in the expressions
used for inserling or repiacing, and use a copy of ## form instead. Thus, (INSERT (s## 3 '2)
AFTER 1) is equivalent to (I INSERT (COPY (s## 3 2)) (QUOTE AFTER) 1).) Example: (I R (QUOTE
X) (## (CONS ..2))) replaces all Xs in the current expression by the first CONS containing a Z.

135

5.5.4 (COMS x! .. xn) [EDIT-COMMAND]

Each xi is evalualed and its value execuled as a command. The I command is not very
convenient for computing an entire edit command for execution, since it computes the
command name and its arguments separately. Also, the | command cannot be used to compute
an atomic command. The COMS and COMSQ commands provide more general ways of
compuling commands. For example, (COMS (COND (X (LIST 1 X)))) will replace the first
element of the current expression with the value of X if non-NIL, otherwise do nothing. (NIL
as a command is a NOP.)

For related information see EDITL.

5.5.5 (COMSQ coml ... comn) [EDIT-COMMAND]

Execules coml .. comn. COMSQ is mainly useful in conjunction with the COMS command.
For example, suppose the user wishes 1o compute an entire list of commands for evaluation,
as opposed to computing each command one at a time as does the COMS command. He would
then write (COMS (CONS (QUOTE COMSQ) x)) where x computed the list of commands, e.g.,
(COMS (CONS (QUOTE COMSQ) (GET FOO (QUOTE COMMANDS)).

5.6 EDIT-TEST

5.6.1 (IF x) [EDIT-COMMAND]

Generates an error unless the value of (EVAL x) is non-NIL, i.e., if (EVAL x) causes an error
or (EVAL x)=NIL, IF will cause an error. (IF x comsl coms2) If (EVAL x) is non-NIL, execute
comsl; if (EVAL x) causes an error or is equal to NIL, execute coms2. (IF x comsl) If (EVAL x)
is non-NIL, execute comsl; otherwise generate an error. For some editor commands, the
occurrence of an error has a well defined meaning, i.e., they use errors to branch on as COND
uses NIL and non-NIL. For example, an error condition in a location specification may simply
mean "not this one, try the next.” Thus the location specification

(#PLUS (E (OR (NUMBERP (## 1)) (ERR NIL}) T))

specifies the first +PLUS whose second argument is a number. The IF command, by equating
NIL to error, provides a more natural way of accomplishing the same result. Thus, an
equivalent location specification is (+PLUS (IF (NUMBERP («## 3)))). For example, the command
(IF (NULL A) NIL (P)) will print the current expression provided A=NIL.

136

5.6.2 (LP . coms) [EDIT-COMMAND]

Repeatedly executes coms, a list of commands, unlil an error occurs. For examgle, (LP F
PRINT (N T)) will attach a T al the end of cvery PRINT expression. (LP F PRINT (IF (s 3) NIL
(N TH)) will attach a T at the end of cach print expression which does not already have a
second argument. (i.e. The form (s 3) will cause an error if the edit command 3 causes an
error, thereby selecting ((N T)) as the list of commands to be executed. The IF could also be
written as (IF (CDODR (##)) NIL ((N T))).) When an error occurs, LP prints n OCCURRENCES,
where n is the number of times COMS was successfully execuled. The edit chain is left as of
the last complete successful execution of COMS. In order to prevent non-terminating loops,
both LP and LPQ terminale when the number df iterations reaches MAXLOOP, initially set to
30.

5.6.3 (LPQ . Coms) [EDIT-COMMAND]
Same as LP but does not print n OCCURRENCES.

5.6.4 (ORR comsl .. Comsn) [EDIT-COMMAND]

ORR begins by executing comsl, a list of commands. If no error occurs, ORR is finished.
Otherwise, ORR restores the edit chain to its original value, and continues by executing
coms?2, etc. If none of the command lists execute without errors, i.e.,, the ORR “"drops off the
end”, ORR generates an error. Otherwise, the edit chain is left as of the completion of the
first command list which executes without error.”(NIL as a command list is perfectly legal, and
will always execute successfully. Thus, making the last *argument’ to ORR be NIL will insure
that the ORR never causes an error. Any other atom is treated as (atom), i.e., the example

given below could be written as
(ORR NX ! NX NIL).)

For example, (ORR (NX) (INX) NIL) will perform a NX, if possible, otherwise a INX, if possible,
otherwise do nothing. Similarly, DELETE could be written as (ORR (UP (1)) (BK UP (2)) (UP (:
NIL))). ' '

5.6.5 MAXLOOP [VALUE]

is the maximum number of ileralions for an edilor LP or LPQ command.

5.7 EDIT-MACROS

137

Many of the more sophisticaled branching commands in the editor, such as ORR, IF, etc., are
most often used in conjunction with edit macros. The macro feature permits the user to define
new commands and thereby expand the editor’s repertoire. (However, built in commands
always take precedence over macros, ie, the editor’s repertoire can be expanded, but not

modified.) Macros are defined by using the M command.

5.7.1 (Mc . coms) [EDIT-COMMAND]

For ¢ an alom, M defines ¢ as an atomic command. (If a macro is redefined, its new
definition replaces its old.) Execuling ¢ is then the same as executing the list of commands
COMS. Macros can also define list commands, i.e,, commands that take arguments. (M (c)
(arg[1] ... arg[n]) . coms) C an alom. M defines ¢ as a list command. Executing (c el ... en) is
then performed by substituting el for arg{l), .. en for arg[n] throughout COMS, and then
executing COMS. A list command can be defined via a macro so as to take a fixed or
indefinite number of "arguments’. The form given above specified a macro with a fixed number
of arguments, as indicated by its argument list. If the *argument list’ is atomic, the command
takes an indefinite number of arguments. (M (c) args . coms) C, args both atoms, defines ¢ as
a list command. Exccuting (c el ... en)is performed by substiluting (el ... en), i.e.,, CDR of the
command, for args throughout coms, and then executing coms.

For example, (M BP BK UP P) will define BP as an atomic command which does three things,
a BK, an UP, and a P. Note thal macros can use commands defined by macros as well as built
in commands in their definitions. For 'example, suppose Z is defined by (M Z -1 (IF (NULL
(s2)) NIL (P))), i.e. Z does a -1, and then if the current expression is not NIL, a P. Now we can
define ZZ by (M ZZ -1 Z), and ZZZ by (M ZZZ -1 -1 Z) or (M ZZZ -1 1Z). We could define a
more general BP by (M (BP) (N) (BK N) UP P). Thus, (BP 3) would perform (BK 3), followed by
an UP, followed by a P. The command SECOND can be defined as a macro by

M (2ND) X (ORR ((LC. X) (C. X)))).

Note that for all editor commands, 'buill in’ commands as well as commands defined by
macros, atomic definitions and list definitions are completely independent. In other words, the
existence of an atomic definition for ¢ in no way affects the treatment of ¢ when it appears
as CAR of a list command, and the existence of a list definition for ¢ in no way affects the
treatment of ¢ when it appears as an alom. in particular, ¢ can be used as the name of either
an atomic command, or a list command, or both. In the latter case, two entirely different
definitions can be used. Note also thal once ¢ is defined as an atomic command via a macro
definition, it will not be searched for when used in a location specification, unless ¢ is
preceded by an F. Thus (INSERT -~ BEFORE BP) would not search for BP, but instead perform
a BK, an UP, and a P, and then do the inserlion. The corresponding also holds true for list

138

commands.

5.7.2 (BIND . coms) [EDIT-COMMAND]

BIND is an edit command which is useful mainly in macros. It binds three dummy variables
#]l, #2, 43, (initialized to NIL), and then executes the edit commands COMS. Note that-’these
bindings are only in effect while the commands are being executed, and that BIND can be
used recursively; it will rebind #1, 42, and #3 each time it is invoked. (BIND is implemented
by (PROG (#]1 #2 13) (EDITCOMS (COR COM))) where COM corresponds to the BIND command,
and EDITCOMS is an internal edilor function which executes a list of commands.)

SW couid be defined as

M (SW) (N M) (NTH N) (S FOO 1) MARK 0 (NTH M) (S FIE 1)
1 FOO) __ (I 1 FIE))

(A more eclegant definition would be
™M (SW) (NM) (NTHN) MARK O (NTHM) (S FIE 1) (I 1 (#¢ _ 1)) _ (I 1 FIE))

but this would still use one free variable.) Since SW sets FOO and FIE, using SW may have
undesirable side effects, especially when the editor was called from deep in a computation.
Thus we must always be careful to make up unique names for dummy variables used in edit
macros, which'is bothersome. Furthermore, it would be impossible to define a command that
called itself recursively while setting free variables. The BIND command solves both problenﬁs.
Thus we could now write SW safely as ‘

™ (SW) (N M} (BIND (NTH N) (S #1 1) MARK 0 (NTH M) (S #2 1)
(11 a1)__ (11 a2)) B

5.7.3 USERMACROS [VALUE]

This variable contains the users editing macros . Thus if you want to save your macros
then you should save USERMACROS. You should probably also save EDITCOMSL.

5.7.4 EDITCOMSL [VALUE)

EDITCOMSL is the list of "list commands" recognized by the editor. (These are.the ones of
the form (command argl arg2 ..).)

5.8 EDIT-MISC

139

5.8.1 OK [EDIT-COMMAND]

exits from the editor,

5.8.2 SAVE [EDIT-COMMAND]

Exits from the edilor and saves the ’state of the edit’ on the property list of the
function/variable heing edited under the property EDIT-SAVE. If the editor is called again on
the same structure, the editing is effectively "continued,” i.e., the edit chain, mark list, vaiue of
UNFIND and UNDOLST are restored.

#P

(NULL X)

#F COND P

(COND (§ &) (T §))
#SAVE

FOO

» (EDITF FOO)

BDIT

#P

(COND (§ &) (T &)
MNP

(NULL X)

SAVE is necessary only if the user is editing many different expressions; an exit from the
editor via OK always saves the state of the edit of that call to the editor. (On the property
list of the atom EDIT, under the property name LASTVALUE. OK also remprops EDIT-SAVE
from the property list of the function/variable being edited.) Whenever the editor is entered,
it checks to see if it is editing the same expression as the last one edited. In this casé, it
restores the mark list, the undolst, and sets UNFIND to be the edit chain as of the previous
exit from the editor. The user can always continue editing, including undoing changes from a
previous editing session, if (1) No other expressions have been edited since that session; -
{since saving takes place at exit time, intervening cails that were exited via STOP will not
affect the editor’s memory of this last session.) or (2) It was ended with a SAVE command.

5.8.3 NIL [EDIT-COMMAND]
Uniess preceded by F or BF, is always a NOP.

5.8.4 TTY: [EDIT-COMMAND]

Calls the editor recursively. The user can then type in commands, and have them executed.

140

The TTY: command is completed when the user exits from the lower editor (with OK or
STOP). The TTY: command is extremely useful. 1t enables the usecr to set up a complex
operation, and perform interaclive attention-changing commands part way through it. For
example the command (MOVE 3 TO AFTER COND 3 P TTY:) allows the user to interact, in

effect, within the MOVE command. Thus he can verify for himself that the correct location has_

been found, or complete the specification "by hand". In effect, TTY: says "I'll tell you what
you should do when you get there."

The TTY: command operates by printing TTY: and then calling the editor. The initial edit
chain in the lower editor is the one thal existed in the higher editor at the time the TTY:

command was entered. Until the user exits from the lower editor, any attention changing’

~ commands he executes only affect the lower editor’s edit chain. (Of course, if the user
performs any structure modification commands while under a TTY: command, these will modify
the structure in both editors, since it is the same structure.) When the TTY: command finishes,

the lower editor’s edit chain becomes the edit chain of the higher editor.

5.8.5 STOP [EDIT-COMMAND]

Exits from the editor with an error. Mainly for use in conjunction with TTY: commands that
the user wanis to abort. Since all of the commands in the editor are ERRSET protected, the
user must exit from the cdilor via a command. STOP provides a way of distinguishing
between a successful and unsuccessful (from the user’s standpoint) editing session. For
example, if the user is executing (MOVE 3 TO AFTER COND TTY?), and he exits from the lower
editor with an OK, the MOVE command will then complete its operation. If the user wants to
abort the MOVE command, he must make the TTY: command generateman error. He does this
by exiting from the lower editor with a STOP command. In this case, the higher editor’s edit
chain will not be changed by the TTY: command.

5.8.6 HELP [EDIT-COMMAND]
HELP is both an atomic and list-type edit command. Both forms call the help function. The

atomic form takes the entire remainder of the command line as the arguments to help, the list
form takes only the tail of its list. Thus to obtain help on DATE and move back one
s-expression wilh a single line of edit-commands, do: (help date) bk

5.8.7 TL [EDIT-COMMAND]
TL calls (TOP-LEVEL). To return to the editor just use the RETURN top-level command.

141

5.8.8 REPACK [EDIT-COMMAND]
Permits the ‘cditing’ of an atom or string. For example:

¥p

. "THIS IS A LOGN STRING")

#REPACK

EDIT

14P

" THI1S/I1S/A/LOGN/STRING/"
1#(5W G N)

1#0K

"THIS IS A LONG STRING"

REPACK operates by calling the editor recursively on UNPACK of the current expression, or if
it is a list, on UNPACK of its first element. If the lower editor is exited successfully, i.e. via OK
as opposed to STOP, the list of atoms is made into a single atom or string, which replaces the
atom or string being ‘repacked.” The new atom or string is always printed.

(REPACK §)
Does {LC . $) followed by REPACK, e.g. (REPACK THIS®).

5.8.9 (MAKEFN form args n m) [EDIT-COMMAND]

Makes (CAR form) an EXPR with the nth through mth elements of the current expression
with each occurance of an element of (CDR form) replaced by the corresponding element of
args. The nth through mth elements are replaced by form. For example:

P

... (SETQ A NIL) (SETQ B T) (CONS C D))
#(MAKEFN (SETUP C D) (WX} 1 3) P

... (SETUP C D))

#E (GRINDEF SETUP)

(DEFPROP SETUP

(LAMBDA (W X) (SETQ A NIL) (SETQ B T) (CONS W X))
EXPR)

#

(MAKEFN form args n)

Same as (MAKEFN form args n n).

5.8.10 EDITDEFAULT

Whenever a command is not recognized, i.e., is not “built in® or defined as a macro, the
editor calls an internal function, EDITDEFAULT to determine what action to take. If a location
specification is being executed, an internal flag informs EDITDEFAULT to treat the command as
though it had been preceded by an F. If the command is atomic and typed in directly, the
procedure followed is as given below. 1) If the command is one of the list commands, i.e., a

142

member of EDITCOMSL, and lthere is additional input on the same teletype line, treat the
entire line as a single list command. (Uses LINEREAD. Thus the line can be terminated by
carriage return, right parenthesis or square bracket, or a list.) Thus, the user may omit
parentheses for any list command typed in at the top level (which is not also an atomic
command, e.g., NX, BK). If the command is on the list EDITCOMSL but no addilional input is on
the teletype line, an error is gencrated. 2) If the last characler in the command is P, and the
first n-1 characlers comprise the command __, _, UP, NX, BK, INX, UNDO, or REDO, assume that

the user intended two cormands. 3) Otherwise, generate an error.

5.8.11 (EDITCOMS coms) [SUBR]

is an internal edgitor function which execules a list of edit commands.

5.8.12 (EDITRACEFN com) [VALUE and EXPR]

Is available to help the user debug complex edit macros, or subroutine calls to the editor.
EDITRACEFN is to be defined by the user. Whenever the value of EDITRACEFN is non-NIL, the
editor calls the function EDITRACEFN before executing cach command (at any level), giving it
that command as its argument. EDITRACEFN is :ni{ially equal to NIL, and undefined.

For example, defining EDITRACEFN as

(LAMBDA (C) (PRINT C) (PRINT (CAR 1)))
will print each command and the corresponding current expression.
(LAMBDA (C) (BREAK1 T T NIL NIL NIL))

will cause a break before execuling each command.

5.8.13 (S var . $) [EDIT-COMMAND]

Sels var (using SETQ) to the current expression after performing (LC . $). Edit chain is not
changed. Thus (S FOO) will set FOO to the current expression, (S FOO -1 1) will set FOO to
the first element in the last element of the current expression.

5.9 EDIT-FNS

5.9.1 (EDITF x) [FSUBR]
FSUBR function for ediling a function. (CAR x) is the name of the function, (CDR x) an

optional list of commands.

143

For the rest of the discussion, fn is (CAR x), and coms is (CDR x). If x is NIL, fn is set to
- the value of LASTWORD, coms is set 1o NIL, and the value of LASTWORD is printed. The value
of EDITF is fn. (1) In the most common case, fn is an non-compiled function, and EDITF
performs (EDITE (CADR (GETL fn (QUOTE (FEXPR EXPR MACRO)))) coms fn) and sets
LASTWORD to fn. If the editor detects that the function has been changed by the edit, EDITF
moves the definition fo the front of the property list, insuring that the interpreted definition
will be used in preference fo a compiled definition. (2) If fn is not an editable function, but
has a value,- EDITF assumes the user meant to call EDITV, prints =EDITV, calls EDITV and
returns. Otherwise, EDITF generates an fn NOT EDITABLE error.

5.9.2 (EDITE expr coms atm) [SUBR]

Edits an expression. lts value is the last element of (EDITL (LIST exbr) coms atm NIL NIL).

Generates an error if expr-is not a list.

5.9.3 (EDITV editvx) [FSUBR]

FSUBR function, similar to EDITF, for editing values. (CAR editvx) specifies the value, (COR
editvx) is an optional list of commands. If editvx is NIL, it is set to the value of (NCONS
LASTWORD) and the value of LASTWORD is prinied. 1f (CAR editvx) is a list, it is evaluated
and its value given to EDITE, e.g. (EDITV (CDR (ASSOC (QUOTE FOQ) DICTIONARY))). In this
case, lhe value of EDITV is T. However, in most cases, (CAR editvx) is a variable, e.g. (EDITV
FOQ); and EDITV calls EDITE on the value of the variable. If the value of (CAR editvx) is
atomic then EDITV prints a NOT EDITABLE error message. When (if) EDITE returns, EDITV
sets the variable to the value returned, and sets LASTWORD to the name of the variable. The
value of EDITV is the name of the variable whose value was edited.

5.9.4 (EDITP x) [FSUBR]

Similar to EDITF for ediling property lists. Like EDITF, LASTWORD is used if x is NIL. EDITP
calls EDITE on the property list of (CAR x). When (if) EDITE returns, EDITP RPLACD’s (CAR x)
with the value returned, and sets LASTWORD to (CAR x). The value of EDITP is the atom
whose property list was edited. '

5.9.5 (EDITL L coms alm markist mess) [SUBR]
EDITL is the cditor.

Its first argument is the edit chain, and its vaiue is an edit chain, namely the value of L at

144

the time EDITL is exiled. (L is a special variable, and so can be examined or set by edit
commands. For example, ~ is equivalent to (E (SETQ L(LAST L)) T).) Coms is an optional list of
comrmands. For interaclive editing, coms is NI, In this case, EDITL types EDIT and then waits
for input from the teletype. (If mess is not Ml EDITL types it instead of EDIT. For example,
the TTY: command is essentially (SETQ L (EDITL L NIL NIL NIL (QUOTE TTY:))).) Exit occurs only
via an OK, STOP, or SAVE command. If coms is NOT NIL, no message is typed, and each
member of coms is trealed as a command and exccuted. If an error occurs in the execution of
one of the commands, no error message is printed , the rest of the commands are ignored,
and EDITL exits with an error, ie, the effect is the same as though a STOP command had
been executed. If all commands exccule successfully, EDITL returns the current value of L.
Marklst is the list of marks. On calls from EDITF, Atm is the name of the function being
edited; on calls from EDITV, the name of the variable, and calls from EDITP, the atom of which
some property of ils prcperty list is being edited. The property list of atm is used by the
SAVE command for saving the stale of the edit. Thus SAVE will not save anything if atm=NIL
i.e., when editing arbitrary expressions via EDITE or EDITL directly.

5.9.6 (EDITFNS x) [FSUBR]

FSUBR funclion, used to perform the same ediling operations on several functions. {CAR x)
is evaluated to obtain a list of funclions. (COR x) is a list of edit commands. EDITFNS maps
down the list of functions, prints the name of each function, and calls the editor (via EDITF)

on that function.

For example, (EDITFNS FOOFNS (R FIE FUM)) will change every FIE to FUM in each of the
functions on FOOFNS.

The call to the edilor is ERRSET protected, so that if the editing of one function causes an
error, EDITFNS will procced to the next function. Thus in the above example, if one of the
functions did not contain a FIE, the R command would cause an error, but editing would
conlinue with the next function. The value of EDITFNS is NIL.

5.9.7 (EDITA4E pat y) [SUBR]
Is the pattern match routine. Its value is T if pat matches y. See EDIT-MATCH For definition

of 'match’.

Note: before each search operation in the editor begins, the entire pattern is scanned for
atoms or strings that end in at-signs. These are replaced by patterns of the form (CONS
(QUOTE /@) (EXPLODEC atom)). Thus from the standpoint of EDITAE, pattern type 5, atoms or

strings ending in at-signs, is really "If car[pal] is the atom ® (at-sign), PAT will match with

145

any literal atom or string whose initial character codes (up to the @) are the same as those in

cdr[pat]”

If the user wishes to call EDITAE directly, he must therefore canvert any patterns which
contain atoms or strings ending in at-signs to the form recgnized by EDIT4E. This can be
done via the function EDITFPAT.

5.9.8 (EDITFPAT pat flg) [SUBR]

Makes a copy of pat with all patterns of type 5 (see EDIT-MATCH) converted to the form
expected by EDITAE. Flg should be passed as NIL (flg=T is for inlernal use by the edilor).

5.9.9 (EDITFINDP x pat flg) [SUBR]

Allows a program {o usc the edit find command as a pure predicate from outside the editor.
X is an expression, pat a paltern. The value of EDITFINDP is T if the command F pat would
succeed, NIL otherwise. EDITFINDP calls EDITFPAT to convert pat to the form expecied by
EDITAE, unless flg=T. Thus, if the program is applying EDITFINDP to several different
expressions using the same pattern, it will be more efficient to call EDITFPAT once, and then
call EDITFINDP with the converted patlern and fig=T.

146

6. SYSTEM-STUFF

SYSTEM-STUFF includes technical details, special hacks, and other things the typical user
will have no use for or may not understand without prior arcane or non-LISP knowledge.

6.1 SYMBOL-TABLE

A large number of symbols defined in the MACRO-10 source for the basic LISP system are
retained on disk to be loaded into core by the loader interface (see LOAD). When loaded into
core, the symbf::i table serves three agencies: DDT, the loader, and the LISP symbol-table
communication functions. DDT and the loader were designed to use this type of symbol table.
They have not becn modified al all in this respect. DDT uses the table to communicate with
DDT users through symbolic names rather than addresses. Many .REL files must refer fo the
MACRO-10 symbols defined for LISP. These files cannot be properly loaded without the
symbol table, which is the loader’s only way to load .REL files that refer to things not defined

within the file itsclf.

The LISP symbol table communicalion funclions allow the LISP user to define arbitrary
symboals for the loader to use. They also allow him to reference symbols created by the
loader while loading .REL files. They provide the only way for a LISP user to make use of
subroutines loaded by the loader. '

6.1.1 (*GETSYM S) [SUBR]

*GETSYM searches the DDT symbol table for the symbol S and if found returns its value,
otherwise it returns NIL.

6.1.2 (GETSYM “P" "S1" "S2" .. "Sn") [FSUBR]

GETSYM searches the DDT symbol table for each of the symbols Si and places the value on
the property list of Si under property P. For example, (GETSYM SUBR DDT) causes DDT to be
defined as a SUBR located at the value of the symbol DDT.

Note: In order to load the symbol {able, either /S or /D must be typed to the loader.
Symbols which are declared INTERNAL are always in the symbol table without the /Sor /D.In
the case of mulliply defined symbols, i.e., a symbol used in more than one RELOC program, a
symbol declared INTERNAL takes precedence, the last symbol otherwise.

For related information sec LOAD.

o

147

6.1.3 (*PUTSYM S V) [SUBR]

*PUTSYM enters the symbol S into the DOT symbol table with value V.

6.1.4 (PUTSYM "X1" "X2" .."Xn") [FSUBR]

PUTSYM is uscd to place symbols in the DDT .;ymbol table. If Xi is an atom then the
symbol Xi is placed in the symbol table with its value pointing to the atom Xi. If Xi is a list,
the symbol in (CAR Xi) is placed in the wymbol table with its value (EVAL (CADR Xi)). PUTSYM
is useful for making LISP atoms, functions, and variables available to RELOC programs.
Symbols must be defined with PUTSYM before the LOADER is used.

For related information see LOAD.

Examples: - (PUTSYM BPORG (VBPORG (GET (QUOTE BPORG) (QUOTE YALUE))))

defines the identifier BPORG and its value cell VBPORG. A RELOC program can reference

the value of BPORG by:
MOVE X, VBPORG .
{(PUTSYM (MAPLST (QUOTE MAPLST)) (NUMBRP (QUOTE NUMBERP)))
(PUTSYM (MEMQ (GET (QUOTE MEMQ) (QUOTE SUBR))))
A RELOC program would call these functions as follows:
CALL 2, MAPLST

CALL 1, NUMBRP
PUSHJ P,MEMQ OR CALL 2,MEMQ

6.1.5 (xRGETSYM X) [SUBR]_

gets the value of the symbol X, adds on the relocation and returns the cell pointed to as

the value.

6.1.6 (RGETSYM P S S2 ...} [FSUBR]

searches the symbol table for Si and places the relocated value on the property list of Si

with property P.

6.1.7 (xRPUTSYM SYM VAL) [SUBR]
puts VAL - relocation in the symbol table under SYM.

6.1.8 (RPUTSYM X1 X2 ..) [FSUBR]

143

similar to GETSYM) IF Xi is an atom the Xi is placed in the symbol table with Xi less the
relocation as its value. Olherwise (EVAL (CADR Xi)) is placed in the symbol table as the value
of (CAR Xi),

6.2 LOAD i -

THE LOADER
A modified version of the standard PDP-6/10 MACRO-FAIL-FORTRAN loader is available for

use in LISP. One can call the loader into a LISP core image at any time by executing:
(LOAD X) (SUBR]

When a * is lyped, you are in the (LOAD X) loader, and the loader command strings are
expected. As soon as an altmode is typed, the loader finishes and exits back to LISP. The
loader is placed in expanded core. If X = NIL then loaded programs are placed in expanded
core, otherwise (if X non-NIL) they are placed in BINARY PROGRAM SPACE. The loader
removes itself and contracts core when it is finished. In other explanations a "RELOC" -
program will refer to any program which is suitable for loading with the loader. The output
of FORTRAN, MACRO or FAIL is a RELOC program. The loader is very primitive. For example,
it only understands UPPER CASE, and it doesn’t understand C-MU PPNs.

Suppose you have copied CNTLSP.REL from A311LISP (the PTY controller).

> (LOAD T) -

#sCNTLSP. REL/S (The S means include the symbol table)
*<esc> _

LOADER 1 K CORE for some such msg)

» (GETSYM SUBR PTYGO REFTY)
(tells you where the subrs are)
» (PTYGO)

The LISP loader interface appcars to have the following problems:

>In case of insufficient binary program space, symbols are defined although the code is not

actually loaded.

>There is no notification as lo whelher BPS was sufficient or not, so BPORG must be
checked before and after loading when using BPS.

>Allocating more core through LISP destroys the existing symbol table.

-CPO1 2/4/77

—

149

6.3 DDT

DDT is a DEC «upplied debugging package. It may be used in LISP by:
(LOAD) 55 or (LDAD T)
/D«esc> 75 D must be upper case, <esc> i3 the escape char.

(GETSYM SUBR DBIT)

Then DDT will be defined as a SUBR that calls DDT. To return to LISP just type "POPJ
14,<esc>X".

6.4 STORAGE-ALLOCATION

Lisp partitions memory into seven areas which can independently vary in size. These

areas and their uses are:

BINARY PROGRAM SPACE(BPS) ;;for compiled functions and arrays

FREE STORAGE ;3 for LISP nodes (cons cells)

FULL WORD SPACE ;3 for print nawes and numbers

BIT TABLES ;;for the garbage collector

REGULAR PUSH-DOWN LIST(RPDLY ;;for all function calls and
;;non-special variables in compiled functions

SPECIAL PUSH-DOWN LIST(SPDL) ;3 Tor interpreted variables and
;3 special varjables

EXPANDED CORE ;s for 1/0 buffers, LOADER, and any loaded programs

6.4.1 BPS

Binary Program Space BPS is used for compiled code and arrays. Note: re-declaring arrays
does not reclaim the old BPS. BPS is not garbage collected. Also the garbage collector does
not collect structures pointed to by pointers in BPS (other than arrays of lists).

6.4.1.1 BPEND [VALUE]
BPEND contains the address of the end of Binary Program Space.

6.4.1.2 BPORG [VALUE]

BPORG contains the adress of the beginning of unused Binary Program Space.

6.4.2 FREE-STG

Frce Storage is the arca of memory in which cons-cells (the result of doing a CONS) are
stored. Each cons-celi conlains two pointers corresponding to the CAR and COR. The cells
that are known nct to be used (pointed to by anything the user can name) are stored as a list
called the FREE-LIST. The CONS function takes the first cell off of the free-list, fills it with
the required pointers and returns it as the value of the CONS. When the free-list runs out,

150

the garbage collector is run to add to it any cells that are no longer reachable.

The free list is stored in register 13 (15 octal). Thus one can get the length of the free

list by (length (numval 13)).

6.4.3 FULL-WORD-SPACE

Full word space is the area of memory used for the storage of character strings and
numbers (except for INUMS). It is used and recreated (by the garbage collector) in the same
way as free storage (see FREE-STG). The list of full words is kept in register 14 (16 octal).

6.4.4 RPDL

The Regular PushDown List is a stack that lisp uses for saving temporary values. It is also
used in the garbage coilector. ‘The stack is implemented by PDP10 stack instructions. The
stack pointer is kept in register 11 (13 octal). The right half contains the pointer to the top
of the stack and the left half contains minus the number of words still available.

6.4.5 GARBAGE-COLLECTION

The garbage collector analyzes the state of list structures pointed fo by the OBLIST, the
REG. PDL, the SPCC. PDL, list arrays, and a few other special cells. By recursively marking all
words on free and full word spaces which are pointed to in this manner, it is possible to
determine which words are not pointed to and are therefore garbage. Such words are

collected together on their respective free slorage lists.

6.4.5.1 (GC) [SUBR]

GC causes a garbage collection 1o occur and returns NIL. Normally, a garbage collection
occurs only when either free or full word space has been exhausted. It is possible to
determine the length of the free siorage list by:

(LENGTH (NUMVAL 13)) = length of free storage 1ist

sxxthis feature may disappear or reappear often in the near futurex*t The system requested
garbage collections (as well as user calls on GC) will be affected if the user redefines GC.
Thus you can cause your own program to be called after each garbage collection Aby
redefining GC to first call the system suppliéd GC and then your own program.

6.4.5.2 (GCGAG X) [SUBR]
flag = T initially. GCGAG sets a special flag in the interpreter to the value of X, and

i51

returns the previous setting of the flag. When any garbage collection occurs, if the flag .ne.
NIL, then the following is printed:

either FREE STORAGE EXHAUSTED

or FULL WORD SPACE EXHAUSTED

or " nothing
followed LY x FREE STORAGE, y FULL WORDS AVAILABLE

where x and y arc numbers.

6.4.5.3 (GCGOT) [SUBR]

returns a dotted pair, the CAR of which is the number of free words and the CDR of which

is the number of full words made available by the last garbage collection.

6.4.5.4 FREE

£+ 0t WARNING#2+#+#: The f{ollowing two functions can catastrophically " destroy the
garbage collector by creating a circle in the free list if they are used to return to the free
list any words which are still in use. Do not use these functions unless you are certain what
you are doing. (They are only useful in rare cases where a small amount of working storage

is needed by a routine which is called quite often.)

(FREE X) [SUBR]

FREE returns the word X lo the free storage list and returns NIL.

(FREELIST X) [SUBR]

FREELIST returns all of the words on the top level of the list X to the free storage list and
returns NIL. FREELIST terminates on a NULL check.

6.45.5 (GCMIN nl n2) [SUBR]

where nl and n2 are numbers resels the lower bounds for storage to be reclaimed by the
garbage collector for free and full-word space respectively, and returns (as a dotted pair)
the old values. If a garbage collection fails to find the minimum space then garbage-collection

messages are turned on.

6.4.6 (REALLOC fws bps rpdl spd! fs) [SUBR]

REALLOC’s arguments specify increments (in words) to be added to each of the five major
allocation areas: fullword space, binary program space, the regular pushdown list, the special
pushdown list, ard free storage (i.e. list space). After expanding core as necessary and
reallocating storase, REALLOC returns control directly to the top level of LISP. As with CORE

there is no way fo save the state of the computation through a reallocation of space

152

‘ 6.4.7 (EXPFWS n) [SUBR]
is the same as (REALLOC n 0 0 0 Q)

6.4.8 (EXPBPS n) [SUBR]
is the same as (REALLOC O n 00 0)

6.4.9 (EXPFS n) [SUBR]
is the same as (REALLOC O 000 n)

6.4.10 (EXPRPDL n) [SUBR]
is the same as (REALLOC OO n 0 0)

6.4.11 (EXPSPDL n) [SUBR]
is the same as (REALLOC 000 n 0)

6.4.12 (CORE N) [SUBR]

Note - The CORE function is still reasonable for finding out how much core you are using,
but the allocation functior. is better handled by the REALLOC function and its relatives.

If Nis in the range [current size of low segment in words , 192K], CORE expands the low
segment to thal size and poes into the initialization procedure which will ask the user how he
wants any newly available core allocated. If N is the current size of the low segment, the
initialization procedure may slill ask the user how he wants additional core allocated even
though no additional core was obtained from the operating system. In this case, it is
allocating space from what was expanded core, probably formerly used for 1/O buffers for
files now closed. (To allocale whatever space is available, evaluate (CORE (CORE NIL)).) When
the initialization procedure is invoked, control is returned to the LISP top level. There is at
present no way of allocating additional space and continuing where you left off. CORE closes
all I/O channels when new core is allocated. If N is not numeric, or is not in the range
indicated above, CORE returns the current size of the low segment. |

The aliocation procedure begins when LISP types "ALLOC?". You then type either Y or N
(not followed by a carriage return). If you type Y then LISP will ask how many additional
~ machine words should be allocated to each area by typing things like:

153
FULL WORDS=

There are three responses to cach of these questions: 1) A space will cause the default
value to be used. 2) An *OCTAL# number ended by a space causes the number to be used.
3) A carriage-return will cause the defaultl value to be used for this and all following
questions (which will not be asked). Note: if you use the reallocation procedure after having
expanded core for any purpose, it will reallocate this additional core for its own purposes,

thus destroying the contents of expanded core.

For related information sce CXCISE.

6.5 COMPILED-CODE

To use the LISP compiler type "R LISPCO”" to the monitor. In much the same way as you
might normally type "(DSKIN filel file2 ...)" you can type (COMPL filel file2 ... The compiler
will read these files and produce .LAP files containing LAP code for the functions defined in
those files. These may be read into LISP with DSKIN, but the compiled functions will be put
in BPS.

The compiler is just another lisp program which has been compiled and loaded inte the high
segment to creale another core image, called LISPCO. Therefore-you can run LISPCO instead
of LISP if you occasionally want to compile things. The LISPCO high segment is larger than
the normal LISP high segment (since it contains the compiler), but LISPCO has been hacked to
use the standard LISP high segment whenever it can. When you compile something the
LISPCO high segment will be temporarily retrieved. Actually, the compiler requires some data
that is not used by the normal LISP system, so the low segment is also larger than the

standard one.

6.5.1 (DECLARE decll decl2 ..) [FSUBR]

allows declarations to be made to the compiler. Declarations are ignored by the
interpreter. In the compiler each argument of DECLARE is evaluated.

Typical uses are
(DECLARE (SPECIAL X Y 2))

(foliowed by code which uses x, y and z as special variables foliowed by) (DECLARE
(UNSPECIAL X Y Z)),

and (DECLARE («FSUBR MUMBLE)) before the first call to mumble

in a file before the FEXPR mumble (to be compiled) is defined.

154

6.5.1.1 (SPECIAL ¢varl> {<var2>} ...) [DECLARATION]

Declares cach <var> as a special variable, i.e., a variable which appears {ree in a function.
Note that free variables in in-line LAMBDA expressions and LAMBDA expressions used as
arguments to most syster functions (e.g., the MAP funclions) need not be declared SPECIAL,
as such functions are compiled in-line. In éddition ERRSETs are now compiled in-line, so
variables in ERRSET expressions no longer have to be declared SPECIAL. All undeclared free
variables in a file may be found by compiling the file and examining the error messages; for

convenicnce, the compiler places all newly-discovered special variables on the list SPECIALS.
For related information see LAPLST and SPECBIND.

Special Variables In compiled functions, any variable which is bound in a LAMBDA or PROG

and has a free occurrence elsewhere must be declared SPECIAL. Example:

(LAMBDA (A B)
(MAPCAR (FUNCTION (LAMBDA (X) (CONS A X))) B))

The variable A which has a free occurrence must be declared SPECIAL if the outer LAMBDA
expression is to be compiled. All variables in interpreted functions, and SPECIAL variables in
compiled functions store their values in SPECIAL (or VALUE) cells. These variables are bound
at the entry to a LAMBDA or PROG by saving their previous values on the SPECIAL pushdown
list and storing their new values in the SPECIAL cells. All references to these variables are
directly to their SPECIAL cells. When the LAMBDA or PROG is exitéd, the old values are
restored from the SPECIAL pushdown list. In compiled funclions, all variables not declared
SPECIAL are stored on the REGULAR pushdown list, and the SPECIAL cells (if they exist) are

not referenced.

6.5.1.2 (UNSPECIAL <varl> {<var2>}...) [DECLARATION]

This declaration may be used to inform the compiler that certain variables are no longer

considered special, and should be compiled as normal local variables in subsequent functions.

6.5.1.3 (NOCALL <al> {<a2>} ...) [DECLARATION]

Each <a> should be either the name of a function to be compiled or a special variable.
These functions and variables are assumed to be local to the file being compiled and will thus
never be traced, called or referenced from functions not in this file, or used as entry points
or top-level values. The compiler can compile references TO such functions as direct jumps,
and the atoms may be REMOBed when the file is loaded (see DUMPATOMS).

NOCALL [VALUE]
If NOCALL is T when a function is being LOADED (read in from a LAP file) then all of the

155

function calls CONTAINED IN the code {except the calis to fi. -tions which were declared CALL
during compilation) will be converted to direct jumps.

Removing Excess Entry Points - NOCALL Feature If, duri.g compilation, a function has a
non-NIL NOCALL property, all calls to that function are cr..piled as direct PUSHJ's to the
entry point of thal funclion with no reference to the atom iteelf. After loading, all functions
used in this manner will be left as a list on the variable REMOB. This means that many
functions which are not major entry points can often times be REMOBed to save storage. The
user may use (NOCALL FOO1 FOO2 .. FQOOn) [FSUBR] fo make several NOCALL declarations.

Like SPECIAL ana DECLARE, when NOCALL is used outside of tie compiler, it acts the same as
NILL.

Warning: If a function, F, is compiled without the NOCALL property and a function, G, which
calls F is compiled while F does have the NOCALL property, then the code for G will not be
able to resolve its reference to F because of the lack of a SYM property on F (in spite of the
fact that the SUBR property could be translated into the answer).

The NOCALL property does not affect the ability to call the function in the usual ways, but
it does allow the atom (F) to be REMOBed after which it would still be accessible to the
functions that were compiled (G) when its (F's) NOCALL property was non-NIL (whereas other
functions (and the user) will no longer be able to call it). The safe and reasonable thing to do

is to keep the NOCALL properties of all of the compiled functions the same throughout the
compilation of all of the functions, -

6.5.1.4 (CALL <Inl> {<fn2>} ...} [DECLARATION] -

Specifies that each <fn> should always be called via the function-calling mechanism and not
changed to direct jumps. Necessary in rare cases when the NOCALL=T feature is being used.
For example, any function which is undefined at compile time must be declared NOCALL unless
it is to be loaded from another LAP file.

FUNCTION CALLING UUQs To allow ease in linking, debugging, and modifying of compiled
functions, all compiled functions call other functions with special opcodes called UUOs.
Several categories of function calls are distinguished: 1) Calls of the form (RETURN (FOO X))
are called terminal calls and essentially "jump” to FOQ. 2) Calls of the form (F X) where F is a

computed function name or functional argument is called a functional call. The function calling
UUOS are:

non-terminal terminal

non-functional CALL n,f JCALL n,f
functional CALLF n, { JCALLF n, f

where f is either the address of a compiled function or a pointer to ihe identifier for the

|

156

function, and n specifies the type of function being called as follows:

n =015 specifics a SUBR call with n arguments
n =16 specifies a LSUBR call
n =17 specifies a FSUBR call.

The function calling UUOs are defined in MACRO by:

OPDEF CALL (34B3]

OPDEF JCALL [35B3)
OPDEF CALLF [16B8)
OPDEF JCALLF [37B8]

6.5.1.5 (NOCOMPILE exp) [DECLARATION]

Causes the compiler not to compile exp but to just transfer it to the output file. In

interpretive mode exp is evaluated.

6.5.1.6 (GLOBALMACRO <macl> {<mac2>}...) [DECLARATION]

Macro definitions are normally assumed to be used only by functions in the file in which
they appear, and hence are not necessary after the file is compiled. Occassionally, however,
it is desirable to keep the macro definitions afler compilation by having them copied into the
LAP file (PLUS is such a macro for example). The GLOBALMACRO declaration specifies that
each <mac> is such a global macro and should be saved. '

6.5.1.7 (*SUBR <inl> {<fn2>} .. .) [DECLARATION]

(*FSUBR <fnl> {<fn2>} . . .) [DECLARATION] (*LSUBR <fnl> {<fn2>} . . .) [DECLARATION]
FSUBRs and LSUBRs which are referenced before they are compiled must be declared (via
£+FSUBR and #LSUBR) so that the compiler can compile function references correctly. *SUBR
declarations may also be made, although they are not necessary since all undefined functions
are assumed to be SUBRs. =*EXPR, *FEXPR, and *LEXPR may be used in place of *SUBR,
+FSUBR, and «LSUBR if desired.

6.5.2 (COMPL filel file2 ...) [FSUBR]

is only in the compiler core image which is run by typing "R LISPCO" to the monitor. The
compiler now prints the name of each function before its compilation has begun. If an error
occurs, the last name prinled is the function in error. Note also that the value returned by
LAP (and thus printed by DSKIN) is now a list consisting of the name of the function loaded
followed by the number of words of binary program space required for the compiled code.
Recall that strings are normally not inlerned by the READ routine so that they ;will be
garbage collected when no longer referenced. Strings appearing in compiled code will always
be referenced, however, so LAP has been modified to intern them (by setting INTERNSTR to

157

T). Tiee. has the advantag. that funclions which are compiled may reference the same string

a number of times without f,nnaity - only one copy will be stored.

6.5.3 (COMPLFNS LIST) [SUBR]

‘.

Available only in the LISPCO core image, LIST is to be a list of atoms, each of which is
compiied and loaded into core by COMPLFNS. A scratch file, STEMPS.LAP, is produced and
deleted during this process. Should the compilation abort, this file can be deleted through
the LISP DELETE function. It is not possibie to give declarations in the function list, but they

may be made in advance.

6.5.4 SYM

SYM : Symbol definitions for LAP are stored on the SYM property. These include opcodes,
registers and NOCALL function locations.

6.5.5 VALUE

VALUE is the name of the property under which values of atoms (variables) are stored.
IMPORTANT: 1t is a bad idca to change the value of an atom by simply replacing its VALUE
property. In order to make compiled code more efficient, the value property of an atom is
assumed to always point to the same list cell (so the address can be compiled into the code).
The cdr of this cell points to the value. Thus if you must change the value property it should
be done by RPLACD of the VALUE property.

6.5.6 SUBR
A SUBR is the compiled form of an EXPR

SUBR LINKAGE

SUBRs are compiled EXPRs which are the most common type of function. Consequently,
considerable effort has been made to make linkage to SUBRs efficient. Arguments to SUBRs
are supplied in accumulators 1 through n, the first argument in 1. There is a maximum of 5
arguments to SUBRs. To call a SUBR from compiled code, use call n,FUNC, where n is the
number of arguments, and call is the appropriate UUO. (See CALL) The result from a SUBR is

returned in A (=1).

6.5.7 FSUBR
An FSUBR is the compiied form of an FEXPR

158

FSUBR LIXNKAGE
FSUBRs receive one argument in A and return their result in A. FSUBRs which use the A-LIST
feature call:

PUSHJ P, sAMAKE

which generates in B a numbet encoding the state of the special pushdown pointer. To call a
FSUBR, use call 17, FUNC, where call is the appropriale UUO.

For rclated information see CALL and FEXPR.

6.5.8 LSUBR
LSUBR - the compiled form of an LEXPR

LSUBR LINKAGE

LSUBRs are similar to SUBRs cxcept that they allow an arbitrary number of arguments to be
passed. To call a LSUBR, the following sequence is used:

PUSH P, [ret) ;mtufn address
PUSH P, argl ; 1st argument

PUSH P, argn ynth and Jast argument

MOVNT T,n ;minus number of arguments
call 16, func ; the appropriate UUO (See CALL)
ret: s the LSUBR returns here

When a I:SUBR is enfered, it executes:
JSP 3, «LCALL

which initializes the LSUBR. A will contain n. The ith argument can be referenced by: MOVE
A, -i-1(P) Exit from an LSUBR with POPJ P, which returns to *LCALL to restore the stack.

6.5.9 COMPILE-HINTS

--- If you use the compiler you should be aware of the following --= - Subrs may have no
more than 5 arguments. - Macros are expanded at compile time (the expansion is compiled).
- Certain declarations are needed - see the help for DECLARE. - See help for NOUUO,
NOCALL, DUMPATOMS

Note that when loading LAP files with NOCALL=T all functions are assumed to be either
already defined when the files are loaded (e.g., syslem functions), or defined in the file. If
any existing compiled functions (such as system functions) are to be redefined, they must
either be defined before they are referenced or must have their SUBR, FSUBR, or LSUBR
properties removed before loading. A warning will be printed if this is not done.

159

6.5.10 COMPILE-ERRORS

Explanations of LISPCO error messages (from Diffie at Stanford) User Errors These are

errors in source code which cause the compiler to halt.

ARGNO-P1CONS CONS has the wrong number of arguments.
ARGNOERR-BOOLEQL Wrong number of agruments to EQ. -
ARGNOERR-COMPDEP "DEFPROP® has the wrong number of arguments.
ARGNDERR-INTERNALLAMBDA Differing numbers of variables and arguments.
ARGNOERR-P2CARCIIR Wrong number of argumcnts to CAR, CDR, CADR etec.
ATOMICVARLIST-PIBIND An atom where a variable list was expected.
CONSTFUN-P1 Attempt to call a constant(number, T or NIL)

73 as a function.
EXTRAARGS-P1SUBRARGS EXTR or SUBR called with too many argumcnts.
;3 (More than the maximum for & SUBR)

EXTRAARGS-PASSI Attcmpt 1o define a SUBR or BEXPR with too many args.
NOTINPROG-P1GO GO occurring outside of PROG.

NOTINPROG-PIRETURN RETURN occurring outside of PROG.
NOTVARIABLE-PIRBRIND A constant or non-atom in variable context.
NOTVARIABLE-PISETQ Attempt to SETQ a constant or non-atom.
PROGTOOSHORT-P1PROG FROG must at least have a variable 1ist.
READERR-FLUSHLAP Read error while reading LAP in source file.

TOFEWARGS-P2PROG2

User Warnings These messages indicale thal the compiler thinks there might have been an
error. They do nol inlerrupt conipilation, but indicate conditions which can be expected to
. produce errors in objecl code.

REPEATED VARIABLE Variable name repeated in a variable 1list.
MULTIPLY DEFINED TAG Two PROG tags with same name.

UNUSED PROG VARIABLE Some PROG variable not referenced.
UNDECLARED FREE VARIABLES Variables found free in source code.
UNDEFINED TAG Undefined PROG tag.

Other Compiler Messages

PSUBR USED AS SUBR A function previously called and presumed to be a SUBR
N ;s has been defined to be an FSUBR.
LSUBR USED AS SUBR A function previously called and presumecd to
;3 be a SUBR has been defined to be an LSUBR.
MACRO USED AS SUBR A function previously called and presumed to be
;3 @& SUBR has been defined to be an MACRO.
(name . flag) USED AS SUBR Sawe as above, except that the function has

. ;3 been defined by LAP in source file.
var LOCAL AND SPECIAL A variable compiled as local {n an earlier function
;3 Is found free or declared special. The compiler {s
;3 worried that they might be the same variable.

Compiler Errors These are errors in the compiler itself. It halts and goes into a read eval
print loop without unbinding the variables to facilitate debugging.

ATOM-NTHCDR COUNTSDISAGREE-COMPFUNC FUKNNYVAR-BINDVARS
LDLSTLEFT-PASS2 LOSTVAR-I1LOC1 NEGNUM-NTHCDR NIL-RST

NOAC-RESTORE NOTAC-GETSLOT NOTLAMBDA-GENFUN NOTONPDL-GETSLOT
NOTSLOT-GETSLOT NULLLOC-MARKVAL PDLSHORT-RESTORE PDLTOOLONG-LSUBRCALL
SOMETHINGELSE-P2ELSE

160

6.5.11 COMPILE-IN-LINE

A number of system functions are compiled in-line by the compiler, cither because they
generate only a few words of code or because they are FEXPRs which evaluate one or more
arguments (if calls to such functions were not compiled in-line, the uncompiled arguments
would be passed to the interpreter, slowing down execution considerably). Functions
currenity compiled in-line include: ERRSET, CATCH, THROW, RPTQ, COND, AND, OR, SELECTQ,
PROG!, PROG2, PROGN PROG, RETURN, GO, SETQ, MSG, TTYMSG, EVERY, SOME, NOTANY,
NOTEVERY, All Map Funclions, APPEND (as *APPENDs), NCONC (as tNCONCs), LIST (as CONSes),
CAR, CDR, RPLACA, RPLACD, EQ, NEQ, NULL (and NOT), ZEROP, ARG, SETARG, STORE, EVAL (as
*EVAL or a direct call if peossible), APPLY (as *APPLY or a direct call if possible), and APPLY#
(as a direct call if possible).

6.5.12 TAG
LAP code contains labels which consist of the letters T A G followed by digits. LAP

remembers these labels and when il finishes loading a function it REMOBs them. (They are
used to record information needed in the loading.) This means that if you load compiled code
you should avoid naming your variables TAG16 (or any other tag), since they are likely to
vanish out from under you.

6.5.13 LAP

THE LI1SP ASSEMBLER -~ LAP
LAP is a primitive assembler designed to load the output of the compiler. Normélly, it is
not necessary to use LAP for any other purpose. LAP is self loading. The format of a
compiled function in LAP is: (LAP name type) [LAP is an FSUBR] <sequence of LAP
instructions>
NIL
where name is the name of the function, and type is either SUBR, LSUBR, or FSUBR. A LAP

instruction is either:

161

1. A label which {5 a non-NIL identifier.
2. A list of the form

(OPCODE AC ADDR INDEX)

a. The index field 15 optional,

b. The opcode i3 eithrr a PDP-6/10 instruction
which {s defined 1o LAP and optionally suffixed
by & which designates {ndirrct addressing, or
a number which specifies a numerical opcode.

c. The AC-and INDEX fields should contain a number
from 0 to 17, or P which designates register 14,

d. The ADDR field may bLe a number, a label, or a
1ist of onc of the following forms:

(QUOTE S-expression) to reference 1ist structure,

(SPECIAL x) 1o refercence the value of
identifier x.
(E D to reference the function f.

WO W WS NI WS Ve W Ve WS WO WS WS WO W we W wa
WO W W W N Ve W W W WS WS WE W W We W el

(C OPCODE AC ADDR INDEX)

to reference a literal constant.

6.5.14 ACCUMULATORS

ACCUMULATOR USAGE TABLE-

s means "sacred" to the interpreler p means "protected” during garbage collection

NIL =0 S, P Header for the atom NIlL.

A = 1 p Results from functions, 1st arg to
33 functions

B = 2 p 2nd arg

Cc =3 p 3rd arg

ARl = 4 p 4th arg

AR2A = 5 p Sth arg

T = 6 p used for LSUBR linkage

T = 7 P

Ti0O = 10 p rarely used in the interpreter

5 = 11 rarely used in the interpreter

D = 12

R = 13

P = 14 S, P regular pushdown li1st pointer

F = 15 S, P free storage list pointer

FF = 16 S, p full word list pointer

SP = 17 S, P special pushdown list pointer.

6.5.15 (DEF-EV-PROP "I" V "P") [FSUBR]

DEF-EV-PROP is used by GETDEF to retrieve the names and properties (SUBR, etc.) of
functions internal to the LISP sysiem from the file SYS:REMOB.LSP. DEF-EV-PROP evaluates

only its second argument.

For related information see NOCALL.

6.5.16 (GETSEGLISP) [SUBR]

gels the standard lisp high segment. This is used by the compiling functions when they

162

finish, so that the high segment of the lisp compiler need not be used when it is not needed.

6.5.17 (GETSEGLISPCO) [SUBR]

gets the high segment of the lisp compiler (LISPCO). This is used by the compiling
functions (which need the LISPCO high segment). N

6.6 (DEPOSIT N V) [SUBR]

DEPQOSIT stores the integer V in memory location N and returns V.

6.7 (EXAMINE N) [SUBR]

EXAMINE returns as an integer the contents of memory location N.

6.8 SYSTEM-BUILD

Building your own (or, how this on'e was built): Contents of LISP source files are described
in LISP.DIR[a3111i5p]). Aside from compilation of .COM files as necessary, and creation of
LISPS.REL by means of LISPS.CTL, the LISP system was created last by LSPSYS.CTL and
BATCH. I hope that formula will still work, ignoring the use of the MOVE cusp.

6.8.1 (HGHCOR X) [SUBR]

(for creating your own system) If X=NIL the "read-only” flag is turned on (it is initially on)
and HGHCOR returns T. Otherwise X is the amount of space needed for compiled code. The
space is then allocated (expanding core if necessary), the "read-only” flag is turned off and
HGHCOR returns T.

6.8.2 (HGHORG X) [SUBR]

(for creating your own system) If X=NIL the address of the first unused location is
returned as the value of HGHORG. Otherwise the address cf the first unused location is set
to X and the old value of the high seg. origin is refurned.

6.8.3 (HGHEND) [SUBR)

(for creating your own system) The value of HGHEND is the address of the last unused
location in the high seg.

A

163

6.8.4 (UNBOUND) [SUBR]

UNBOUND refurns the un-interned atorn UNBOUND which the system places in the CDR of an
atom’s SPECIAL (VALUE) ccll lo indicate that the atom currently has no assigned value even
though it has a SPECIAL (VALUE) cell on its property list.

.o

6.8.5 (SYSCLR) [SUBR]

Re-initializes LISP to rcad the user’s LISP.INI file when it returns to the top level, e.g. by a
Control-G or a START, or a REENTER. SYSCLR also resets the garbage collection time
indicator to 0 and the CONSes performed indicator to 0. It also performs an EXCISE.

6.8.6 (INITFL "FILELST") [FSUBR]
INITFL is an FSUBR that sets up the file list for the user’s INIT file. FILELST may consist of

more than one file. However, if there is more than one file in the list, the files following the
first one must be found or an error will be generated. The first file in the list is optional.
The INIT file is initially LISP.INL INITFL returns the old file list as its result.

» (INITFL (INIT: . LSP) (MYFILE . LSP) FOO)
((LISP . IND))

6.8.7 (GTBLK LENGTH GC) [SUBR]

returns a zeroed block of LENGTH words. If GC is NIL the contents of the BLOCK are
ignored by the garbage collector. Otherwise the contenis are treated as pointers and the
cells pointed to will not be collected.

6.8.8 (BLKLST LIST LENGTH) [SUBR]

returns a pointer {ype BLOCK of length words. It chains the words in the block so that the
CDOR of each word is the succeeding word. The top level of LIST is then mapped into the
CARs of the block. If lenglh is NIL then the length of the list is used. If (LENGTH LIST) is
less than LENGTH, then the CARs of the remainder of the block are set to NIL. If (LENGTH
LIST) is grealer than LENGTH the list is truncated.

6.8.9 LISPPN [VALUE]
is the PPN (as returned by MYPPN) where the system expects to find the greeting files, the

system init files and the heip files.

6.8.10 (SETNAM name) [SUBR]

changes the name of the running core image o name. This is displayed by “T and systat.
It is also used by SAVE.

6.9 (NOUUO X) [SUBR] .

flag = T initially

NOUUQ sets a special flag in the compiled function calling mechanism to the value of X and
returns the previous selling of the flag. (Actually any non-NIL value is treated as T,
returning T when resel.) Compiled functions initially call other lunction‘s with function calling
UUOs which "trap” into the UUO mechanism of the interpreter. Ordinarily, such function calls
involve searching the property list of the function being called for the functional property,
and then (depending on whether the function is compiled or an S-expression) the function is
called. If the NOUUQ flag is set to NIL, then the overhead in calling a compiled function from
a compiled function can be climinated by replacing the CALL by PUSHJ and JCALL by JRST.
CALLF and JCALLF are ncver changed. However, there are several dangers and restrictions
when using (NOUUO NIL). Once the UUO’s have been replaced by PUSHJs then it is not
possible to redefine or TRACE the function being called. It is therefore recommended that
compiled functions be debugged.with (NOUUO T).

6.10 SYSTEM-STUFF-MISC | -

6.10.1 (DEFSYM name number) [SUBR]

(the number is converted to an address) DEFSYM puts a SYM property on an atom, and if
LAP has left some information about its usage before it was defined then some cleaning up is
done. The atom is also CONSed onto the value of REMOB.

For related information see LAP, SYM, and REMOB.

6.10.2 (DUMPATOMS filo) [FSUBR]

Note - this function is in RUTLIB.LSP[A311LI5P]. After loading a set of files which contain
NOCALL declarations, DUMPATOMS may be called to REMOB all NOCALL atoms after first
crealing a file <file> which, when subsequently loaded, will restore the SUBR, FSUBR, LSUBR,
VALUE, and SYM properties of each NOCALL atom. One can thus use DUMPATOMS to REMOB
all NOCALL atoms (to save space), and if it is later discovered that one of the functions or

165

special variables is necded after all, DSKIN the DUMPATOMS file to restore things to their

previous stale. If <file> is missing, (REMOB.L 5P) is assumed.

6.103 FIX1A

To convert the number in machine representation in A (in compiled functions) to its LISP
integer representation use

PUSHJ P, FIX1A

6.10.4 GVAL [SUBR]

is an internal LAP function.

6.105 GWD
GWD (SUBR) is an internal LAP function.

. 6.10.6 INUMO

The SYM property of INUMO is the magic constant for translating between INUMs and
addresses. The address of the code of a SUBR in the high segment is (+ (GET <id> *SUBR)
(GET "INUMO *SYM)).

6.10.7 KLIST [VALUE] -

contains discriptive information about LAP constants and is used by LAP to keep full word
constants in unique locations in BPS.

6.10.8 LAPEVAL
LAPEVAL (SUBR) is an internal LAP function.

6.10.9 LAPKLST [VALUE]

is a list of constants that have been used by LAP code. This enables LAP code to share
constants (thus saving space). However it does take up list space, so it is normally set to NIL

after sysiem generation. When you read in LAP code you will start growing it again.

6.10.10 LAPLST [VALUE]

o

166

contains the name and ~pecial cell of special variables o allow the printing of variable
bindings in backiraces. Spccial variables are added to LAPLST iff the variable SPECIAL is
non-NIL (initially T).

6.10.11 LAPQLST [VALUE]

is a list of list-cells which are accessed by compiled code. Its purpose is to protect these

cells from the garbage collector. If you delete its members you are asking for trouble!

6.10.12 LAPSLST [VALUE]

is a list of special cells of NOCALLed special variables that are accessed by LAP code. lIts
purpose is {o protect these cells from the garbage collcctor. If you delete its members you
are asking for trouble!

6.10.13 (MAKNUM X TYPE) [SUBR]

considers X 1o be a number of the type specified (TYPE should be either FIXNUM or
FLONUM) in machine representation and returns the LISP representation of the number.
MAKNUM is a SUBR.

6.10.14 (NUMVAL n) [SUBR] -

NUMVAL accepts a LISP number and returns the machine representation of that number. It
is a SUBR.

6.16.15 (SIXBIT ATOM) [SUBR]

SIXBIT returns an integer whose bit pattern is the SIXBIT representation of its (atomic)
argument. Lower case is converied to upper case as required. No error is given if
characters not in the SIXBIT character sel are present. Up to the first six characters of the
PNAME of the atom are used.

6.10.16 (SIXATM N) [SUBR]

SIXATM returns the atom whose PNAME contains the characters from the ASCII set that
correspond to the sixbit characters presumably contained in the bit pattern of the integer N.

6.10.17 QLIST [VALUE]

e

167

is a list of all S-expression constants referenced by compiled code. Their presence on

QLIST protects them from garbage colleclion,

6.10.18 SPECBIND

e

Special variables in compiled functions are bound lo special cells by:

PUSHJ P, SPECBIND
0 ni, varl
0 n2, var2

we we we we we
e we wr we we

start of function code.

SPECBIND saves the previous values of vari on the special pushdown list and binds the
contents of accumulator ni to each vari. The vari must be pointers to special cells of
identifiers. Any ni=0 causes the vari 1o be bound lo NIL. Special variables are restored to
their previous values by:

PUSHJ P, SPECSTR

which stores the values previously saved on the cpecial pushdown list in the appropriate

special cells,

6.10.19 (UUO UUO-TYPE) [SUBR]
(UUO UUO-TYPE) performs (UUOPARM 0 UUO-TYPE).

6.10.20 (UUOPARM N UUO-TYPE) [SUBR]
UUOPARM executes the CALLI 1, UUO-TYPE monitor call with the value of N loaded into

register 1. The value returned by the UUO in register 1 is made into an integer and returned
as the value of UUOPARM. The global variable !SKIP! is set to T if the UUO skipped, NIL

otherwise.

168

7. MISC

7.1 DATES

-

7.1.1 (DATE) [SUBR]

DATE does (UUO 12) {o return the DEC-style date, a number resembling the number of
 days since the stait of 1964,

7.1.2 (DATESTR) [SUBR]

is equivalent to (datestrx (mstime) (date)), which returns a string with the current date and

time.

7.1.3 (DATESTRX MSTIME DATE) [SUBR] ‘

DATESTRX returns a string containing the date and time computed from MSTIME and DATE
(typically computed by the MSTIME and DATE functions respectively). . Note that PRINC will

print the string without the quote marks.

-7.1.4 (MSTIME) [SUBR]
MSTIME does (UUO 19) fo return the time of day in milliseconds.

7.2 (EXIT flag) [SUBR]

LISP may be exited via the EXIT function. Flag specifies whether LISP’s sharable -high
segment should be deleted (flag=NIL) or refaincd (flag=T) before exiting. There is normally
no reason lo retain the high segment, as it is automatically loaded when LISP is STARTed or
CONTinued. By deleting the high segment, EXIT allows the user to exit from LISP and save
the low segment as a runnable SAV file - when the file is later RUN, LISP’s sharable high
segment will be loaded automatically. (Note that an EXCISE or SYSCLR should be performed
before exiting if the low segment is to be saved.) (EXIT T) is necessary only after SETSYS has
been uscd to create a ncw sharable system, when both the low and high segments must be
saved. At the top level, (EXIT) equivalent to (EXIT NiL).

-

7.3 FN-PROPS [VALUE]

is just a list of the function properties that LISP knows about. These are EXPR, FEXPR,
MACRO, SUBR, FSUBR and LSUBR.

169

7.4 LASTWORD [VALUE]

is meant to contain the last word you defined to LISP. It is set by DE, DF, DM, the editor,
DEFPROP (if the property was in GRINPROPS) and perhaps a few others that I've missed.
This is used when, for example, you type (EDITF) as the name of the function to edit.

7.5 (NILL "X1" "X2" ... "Xn") [FSUBR]

NILL always returns NIL. This function allows the user lo slick S-Expressions in the middle
of a function definition (e.p. as a PROG element) without having them evaluated or otherwise
noticed. NILL is also useful for giving a dummy definition to a function which has not yet
been defined.

7.6 PROBLEMS

This seclion describes the undesirable features of our lisp system. Anyone who is
interested in fixing any of them is invited {0 send mail to LISPRCMUA. Users are also invited

to send in new entries.

Surely the worst fcature of our system is that storage allocation can not be done without
losing the state of the computation. The problems include relocating the stacks and their
contents and moving 10 buffers. It is conjectured that it would be safe to treat everything in
the stacks as a pointer. Moving IO buffers involves communicating with the monitor. 1t is
suggested ;hat the buffer headers not be'moved since this can not be done in earlier
versions of the monitor. It would probably be more difficult to fix this problem than to
convert ail of the nice features of our lisp into MACLISP, which does not have this problem.

The SAVE function does not aclually save your job. It just sets things up so that the right
’ thing will be done when you type SAVE to the monitor. The reason is that the CMU special
UUO for saving a job was not brought over to the new monitor.

The loader is ancient and crufty. It does not understand lower case. It does not
understand PPNs. Anyonc who wanls to fix it is welcome to try.

Binary Program Space is not garbage collected. It is therefore a bad idea to write
programs that will frequently declare local arrays. It is possible to reclaim BPS by hand (by
resetting BPORG and BPEND), but if you are using BPS for anything other than arrays this will
require a good undersianding of LAP.

People who get used to the nice features of the top level become frustrated by their

170

absence in the break package. It would be nice if the break package could remember events

and preprocess inputs through usertop. Any volunteers?

There is no known mcthod for correctly dealing with un-planned-for unbinding of the pdls
past functions that are trying to keep track of multiple 1/O channels. The usual problem is
that an error causes a break at come randor time. If the user exits the break by partially

~

unbinding the stack, the 1/0 funclions cannot restore 1/0 channels. = and ~* are handled
- correctly because these commands use information saved by the break package to restore
1/0 channels as of the invocation of the break package at the appropriate level. The
proposed fix for this is a general mechanism for causing things to happen during unbinding.
There would be some particular identifier which, when unbound wo.uld be EVAL'd. This could
reset the IO channels and anything else which a program wanted to be sure about when
control returned to it. This mechanism would hopefully be used mostly through higher level

facilities. What we REALLY need is to be able to simply rebind 10 channels.

There are some proposals for checkpointing in the LISP mail file. They are blocked by
inadequate 10 facilities, such as not being able to open a file for appending. In addition to
this, it would be nice to be able to do random access file 10. For example, the HELP program
might be made to run much faster if it did not have to search for words but could go right to

them. .

At the moment there is no reasonabie way to try to automatically recover from errors. For
éxample, the- error message is prinled before usererrorx is called and then usererrorx has no
access to it. All of the errors in the lisp system ought to set a global variable to contain as
much info (in a standard form) as the error message, and usererrorx should be called before
the message is printed. Errorx should evaluate (usererrorx inside an errset, and if a
non-atom is returned it should do an outval of the car. (This is instead of simply returning as
it does now.) It would be even betler if usererrorx did a dispatch on the type of the error to
a function named by a variable (sounding like the type of error) so that error-handling could
be done by rebinding variables - this would allow programs that knew how to handle certain
kinds of errors to do so easily.

Index

171

'0 [EDIT-COMMAND] 110
INX [EDIT-COMMAND] 110
ISKIPt 167

\WUNDO [EDIT-COMMAND] 133
WALUE 5

(# <number> <expression>) [FSUBR] 46
s 08, 123

(n» coml com2 .. comn) ([FSUBR] 134
a7INDENT [VALUE] 94

s7LINECTR 63

«-ERROR A6

=] 138

=2 138

«3 138

»UNDOSAVES 32

$ 118

77MC1 45

77MC2 45

Z7MC3 4as

77MCA 4%

(7DEREAD number lambda-exp type) [SUBR]
(7DEVP X) [SUBR] 56

(7GETDEV filespec) [SUBR] 56

7LOOKDPTH [VALUE] 71

7PRINFN [VALUE] 10}

(ZREADIN channel print) [SUBR] 49

& 114

(« X1 . Xn) [LSUBR] 42
(+es comment) [FSUBR] 55
(««TOP..) [SUBR] 107
+AMAKE 158

ANY. 114
(+APPEND X Y) [SUBR] 26
+JAPPLY 5

(.DIF X V) [SUBR} 39
«DIGITS [VALUE] 75
+sEVAL &

GEXPAND L FN) [SUBR] 9
+EXPAND1 9

«EXPR 156

+«FEXPR 156

‘FSUBR 156

(+FUNCTION "FN™ [FSUBR] &
(.GETSYM S) [SUBR] 146
(-GREAT X V) [SUBR] 23
LCALL 158

(.LESS X Y) [SURR] 23
+{LETTERS [VALUE] 75
+LEXPR 156

+LSUBR 156

(«+MAX X Y) [SUBR] 40
(+MIN X Y)[SUBR] 40
+NCONC [SUBR] 28
+NOPOINT [VALUL) 74
«NOPOINTDSK [VALUE] 55
(.PG.) [SUBR} 65
(+PLUS X Y) [SUBR] 40
(-PUTSYM S V) [SUBR] 147

79

172

(-QUO X V) [SURR] 41

(+RENAME FILESPECI FILESPEC2) [SUBR] 60
(\RGELISYM X) [SUBR] 147

(\RPUTSYM SYM VAL) [SUBR] 147

(+\RSET flag) [SUBR] 101

(:SUBR «fnl> {<fn2>}..) [DECLARATION] 156
(-TIMES X Y) [SUBR] 41

(+ X1 .. Xn) [LSUBR] 41
(+I X) [SUBR] 39

(- X1 .. Xn) [LSUBR] 39
- 114
(-1 %) [SUBR] 41

(/] X1 .. Xn) [LSUBR] 41
//+NCONC [SUBR] 28
(//ATTACH X L) [SUBR] 28
(//BREAKI) [SUBR] 84
//DREMOVE [SURR] 31
//DREVERSE [SUBR] 32
(//DSUBST X ¥ 2) [SUBR] 32
(//INSERT X L COMPAREFN NODUPS) [SUBR] 29
(//LCONC PTR L) [SUBR] 28
(//NCONC L1 .. LN) [LSUBR] 26
(J/INCONC1 L X) [SUBR] 28
(//PUTPROP 1V P) [SUBR] 34
(//REMPROP I Py [SUBR] 34
(//RPLACA X Y) [SUBR] 3I
(//RPLACD X Y) [SUBR] 3!
(//TCONC PTR X) [SUBR] 27

/BREAKI 83
(:el .. em) [EDIT-COMMAND] 124
s 112

114

(< X1 ..Xn) [LSUBR) 23

(= XVY) [SUBR}] 22
(=0 X) [SUBR] 22
- 114

(> X1 .. Xn) [LSUBR] 23
> expr [BREAK COMMAND] 86

? [EDIT-COMMAND] 121}

?= argl arg2 . argN [BREAK COMMAND] 88
?? <event-spec> [TOP-LEVEL COMMAND] 104
7?7 [EDIT-COMMAND] 133

(Ael .. em) [EDIT-COMMAND] 124

(ABS X) [SUBR] 39

ACCUMULATORS 161

(ADD1 X) [SUBR) 39

AFTER <name> [TOP-LEVEL-COMMAND] 105
ALLOC 153

ALLOC? 153

(AND X1 X2 .. Xn) [FSUBR] 23

(APPEND X1 X2 .Xn) [LSUBR] 26

APPLY 5

(APPLYs FN ARGS) [SUBR] 5

(ARG N) [SUBR] 8

ARGS [BREAK COMMAND] 89

(ARRAY "ID" TYPE B1 B2 .. Bn) [FSUBR] 43

173

(ASCII N [SUBR] 29

(ASSOC X L) [SUBR} 33
(ASS0Ca X ¥) [SUBR] 33

(ATAN x y) [SUBR] 42

ATM 144

(ATOM X) [SUBR] 20

(ATTACH X L) [SUBR} 28

AUTOP [VALUE] 121

(B ol .. em) [EDIT-COMMAND] 124
BASE [VALUE) 73

BCP 6

BEFORE <name> [TOP-LEVEL-COMMAND] 10%
(BELOW com x) [EDIT-COMMAND] 112
BF patlern [EDIT-COMMAND] 117
(Bl nm) [[DIT-COMMAND]} 129
(BIGRATOM n) [SUBR] 39

(BIND . coms) [LDIT-COMMAND] 138
BK [BREAK COMMAND] 90

BK [CDIT-COMMAND] 111

BKE [BREAK-COMMAND] 90

BKLV 90

BKF [BREAK COMMAND] 90

BKFVY 90

(BKTRC) [SUBR]) 10!

BKV 111

(BLKLST LIST LENGTH) [SUBR) 163
(BO n) [EDIT-COMMAND] 129
(BOOLE N X1 X2 .. Xm) [LSUBR) 23
(BOUNDP X) [SURR} 20

BPLND [VALUL) 149

BPORG [VALUE] 149

BPS 149

BRACKETS 64

(BREAK nl {n2) [FEXPR} 91
RREAK-PACKAGE 82

(BREAKO FN WHEN COMS) [SUBR] 97
(BREAK] BRKEXP BRKWHEN BRKFN BRKCOMS BRKTYPE) [SUBR] 83
BREAKIM 45

BREAKIM [SUBR] 45
(BREAKINTunction jwheore} {BRKWHEN} {BRKCOMS)) [FSUBR] 82
BREAKING 90

BREAKMACROS [VALUE] 96
BRKAPPLY [SUBR) 85

BRKARGS 91

BRKCOMS 83

BRKCOMS [VALUE] 84

BRKEXP 83

BRKEXP [VALUE] 84
BRKFN 833

BRKFN [VALUE] 84
BRKTYPE 83

BRKTYPE [VALUE] 84
BRKWHEN 83
BRKWHEN [VALUE] 84
BROKEN 82

BROKENFNS [VALUE] 91

CAAAAR 24
CAAADR 24
CAAAR 24
CAADAR 24
CAADDR 24
CAADR 24
CAAR 24

174

CADAAR 24

CADADR 24

CADAR 24

CADDAR 24

CADDDR 24

CADDR 24

(CADR s-oxp) [SUBR) 24

(CALL «fnl> {<fn2>}...) [DECLARATION] 155
CALLF 156

(CAR L) [SUBR] 24

(CATCH "<oxpr>" ("<labol>"}) [FSUBR] 16
CDAAAR 24

CDAADR 24

CDAAR 24

CDADAR 24

CDADDR 24

CDADR 24

CDAR 24

CDDAAR 24

CODADR 24

CDDAR 24

CODDAR 24

CDDDDR 24

CODDR 24

CODR 24

(COR L) [SUBR] 24

(CHANGE § TO el . em) [EDIT-COMMAND] 125
(CHANGES flag) [FSUBR} 50
(CHANGESLICE N) [SUBR] 105
(CHQUOTE n) [SUBR] 75

(CHRCT) [SUBR} 78

(CHRVAL X) [SUBR} 39

(CLRBFI) [SUBR} 76

COMMENT ([PROPERTY] 53
COMMENT-CDF 63

COMMENT-CHAR 74
COMPILE-ERRORS 159
COMPILE-HINTS 158
COMPILE-IN-LINE 160
COMPILED-CODE 153

(COMPL filel file? ..) [FSUBR] 156
(COMPLFNS LIST) [SUBR] 157

(COMS x1 . xn) [EDIT-COMMAND) 135
(COMSQ coml .. comn) [EDIT-COMMAND] 135
(COND Clausel Clause2 ..) [FSUBR] 11
(CONS X Y) [SUBR] 25

(CONSP X) [SUBR} 19

(COPY X) [SUBR] 26

(COPY §1 TO com . §2) [EDIT-COMMAND] 128
(CORE N) [SUBR] 152

(COS x) [SUBR] 42

(COUNT "fn1" "fn2") [FSUBR]) 45
(COUNTI fn) [SUBR] 46

COUNTEDFNS 46

(CP com . §) [EDIT-COMMAND] 128
(CSYM “I") [FSUBR] 36

(CURPOS) [SUBR] 78 .
CURRENT-EXPRESSION 108

(DATE) [SUBR] 168

(DATESTR) {SUBR]) 168

(DATESTRX MSTIME DATE) [SUBR] 168

(DC word §{id} {{descriptor] descriptor2 ..)}) <texi> <esc> [FSUBR] 53
(DC-DEFINE name id atiribules) [SUBR]) 54

{DC-DSKIN name id atiributes) [SUBR] 54

st

175

(DC-HELP name id attributes) [SUBR] 54
(DC-IGNORE) [SUBR] 54

(DC-USERHELP name id attributes) [SUBR] 55
DDT 148

(DDTIN X) [SUBR] 76

(DE "NAML" "ARGUMINT-LIST" "TORML" .. "FORMn") [FSUBR]
(DECLARE docl) dnci2) [FSUBR] 153
DEF-COMMUNT [VALLE] 54

(DEF-EV-PROP 1" Vv *P") [FSUBR] 161
(DEFLIST "L" {"defval"} "prop”) [FSUBR] 11
(DEFPROP "I" "V" "P") [FSUGR] 10

(DEFSYM name number) [SUBR] 164
(DEFSYNON "ail" "at2" "prop”) [FSUBR] 11
(DELETE "FILNAMI™ "FILNAM2®) [FSUBR] 60
DELETE or () [EDIT-COMMAND] 124
(DEPOSIT N V) [SUBR] 162

DF 10 Lycem
(DIFFERENCE X1 X2 .. Xn) [MAGRD] 39

(DIR PI'N) [SUIBR] 60

(DIRF [ppn} [filespec)) [FSUBR] 60

(DIVIDE X Y) [SUBR] 40

DM 10

DO, FOR, UNTIL and WHILE [MACRO] 17

DO form [BREAK-COMMAND] 89

(DREMOVE X L) [SUBR] 3t

(DREVERSE L) [SUBR] 32

(DRM "CHARACTER" "FUNCTION") [FSUBR] 79
(DSKIN “LIST OF FIIE-NAMES") [FSUBR] 48
DSKIN-COMMENT [VALUE] 55

DSKLENGTH 78

(DSKOUT “FILE" "FORMI1" .. "FORMa"™) [FSUBR] 53
(DSKOUTS "TILEL" .. "TILCn") [FSUBR) 49
(DSM "CHARACTER" "FUNCTION™) [FSUBR] 79
(DSUBST X Y 2) [SUBR} 31

(DUMPATOMS file) {FSUBR] 164

(DV "atom" “value") [FSUBR] 10

E [EDIT-COMMAND] 134

(E: {<02>}...) (FSUBR] 65

EDIT argl arg?2 .. argN [BREAK COMMAND] 88
EDIT <event-spoc> [TOP-LEVEL-COMMAND] 103
EDIT-ATTN 108

EDIT-CHAIN 119

EDIT-MACROS 136

EDIT-MATCH 113

EDIT-MOD 121

EDIT-SAVE 139

EDIT-SEARCH 114

EDIT-UUNDO 132

(EDITAE pat y) [SUBR] 144

(EDITCOMS coms) [SUBR] 142

EDITCOMSL [VALUE] 138

EDITDEFAULT 14}

(EDITE expr coms aim) [SUBR] 143

(EDITF x) [FSUBR) 142

(EDITFINULP x pat fig) [SUBR] 145

(EDITFNS x) [FSUBR] 144

(EDITFPAT pat fig) [SUBR] 145

(EDITL L coms aim markist mess) [SUBR] 143
EDITOR 108

(EDITP x) [FSUBR] 143

(EDITRACEFN com) [VALUE and EXPR] 142
(EDITV editvx) [FSUBR] 143

EDRM [CXPR) 80

ELEMENTARY 2

10

176

(CMBED § IN . x) [CDIT-COMMAND] 127
EMBED-EXTRACT 126

(EQ X Y) [SURR) 18

(EQNAM X V) [SUBR} 38

(EQP X Y) [SUBR) 20

(EQOSTR atl at2) (SUBR] 38

(EQUAL X V) [SURR) 19

(ERR EY [SUBR} 16

(ERRCH N) [SURR) 727

(ERROR E) [SUBR} 100

(ERRORX x) [SUBR]) 100

(ERRSEY E "F") [FSUBR) 16

ERXACTION [PROPERTY] 102

EVAL 5

EVAL [BREAK COMMAND] 85

(EVALV A P) [SUBR] 100

EVENT-SPEC 103

(EVERY EVERYX EVERYFN1 EVIRYFN2) [SUBR] 21
(EVL-FIX oxp 1ype-of-fix) [SUBR] 95
(EVL-TRACE axp) [FSLIBR] 96

EVSM [EXPR] 80

EX [BREAK COMMAND] 87

(EXAMINE N) {SUBR] 162

(EXARRAY "ID" TYPE B1 B2 .. Bn) [FSUBR] 44
(EXCISE) [SUBR] 73

(EXISTS <var> <list> <predicate> {<next>}) [MACRO] 21
(EXIT flag) ([SUBR] 168

(EXP ») [SUBR] 43

(EXPAND-DO form) [SUBR] 18
EXPAND-EX 21

EXPAND-FE 14

EXPAND-SET-OF 15

(EXPBPS n) [SUBR) 152

(EXPFS n) [SUBR] 152

(EXPFWS n) [SUBR} 152

(EXPLODE L) [SUBR] 37

(EXPLODEC L) [SUBR] 37

EXPR 8 '

(EXPRPDL n) [SUIBR]) 152

(EXPSPDL n) ([SUBR] 152

(EXTRACT §1 FROM $2) [EDIT-COMMAND] 127

Fargl arg2 .. argN [BREAK COMMAND] 87
F patiern [EDIT-COMMAND] 115

(F= expression x) [EDIT-COMMAND] 116
FEXPR 7

(FILBAK FILE NEWEXT) [SUBR] 55
(FILE "FILE™) [FSUBR] a9

(FILE-FNS FILE) [SUBR] 50
(FILELENGTH) [SUBR} 60

FILELST a9

FILELST [VALUE] S0

FILES &4

FILESPEC 656

FILUPDATFLG 63

FINDARG 88

(FINDFILES filo-list name-list) [SUBR] 52
(FINDENS file-list name-list) [SUBR] 52
(FIX X) {SUBR] 40

FIX argl arg2 . [BREAK COMMAND] 88
FIX <eveni-spoc> [TOP-LEVEL COMMAND] 103
FIXIA 165

FIXNUM 3

(FLATSIZE L) [SUBR] 37

(FLATSIZEC L) [SUBR} 37

1

177

FLONUM 3

FN-PROPS [VALUE] 168

(FNDBREPT P) [SUSR] 99

FOR 89

(FOR-EACH {MAPfn} "FORMAL" LIST "FORMI" .. "FORMn"™) [MACRO] 14
(FORALL <var> <list> <predicate> {<tail-fn>}) [MACRO] 21
FORGET <event-spec> [TOP-LEVEL COMMAND] 105
(FORMS «x1> [«x2>}...) [FSUBR] 65

FREE 151 -

FREE-STG 149

FRCELIST 151

FROM?« {form} [BREAK COMMAND] 86

(FS patiernl .. patlernn) [EDIT-COMMAND] 116

FSUBR 157

FULLWALUE 5

FULL-WORD-SPACE 150

FUNARG 5

(FUNCTION "FN") [FSUBR] 7

GARBAGE-COLLECTION 150

(GC) [SUBR]) 150

(GCD X Y) [SUBR] 40

(GCGAG X) [SUBR] 150

(GCGO1) [SUBR} 151

(GCMIN ni n2) [SUBR] 151

(GCTIME) [SUBR]) 46

(GENSYM) [SUBR] 36

(GET 1 Py [SUBR] 34

(GETCHN) [SUBR] 73

(GETDEF "FILE" "11" . "In"™) [FSUBR] 50
(GETDEFACT id prop exp) [SUBR] 51
(GETDEFEVAL "ID" axp "PROP") [FSUBR] 5l
(GETDEFNS fnl fn2) [MACRO] 52
GETDEFPROPS [VALUE] 51I
GETDEFIARBLE [VALUE] 5t

(GETL T L) [SUBR] 34

(GETSIGLISPY {SURR] 161
(GETSEGLISPCO) [SUBR] 162

(GETSYM "P" "S1" "S2" .. “Sn") [FSUBR] 146
(GIVCHN chan) [SUBR] 73
(GLOBALMACRO «<macl> [<mac2>}...) [DECLARATION] 156
(GO "ID") [FSUBR] 15

GO [BREAK COMMAND] 85

(GREATERP X1 X2 .Xn) [LSUBR] 22
(GRINDEF "F1" "F2" "F3" .. "FN") [FSUBR] 61
(GRINL "F1" "F2" .. "FN™) [FSUBR} 62
GRINPROPS 62

(GTBLK LENGTH GC) [SUBR] 163

GVAL [SUBR] 165

GWD 165

(HELP "wordl" . “"wardn") [FSUBR] 3
HELP [BREAK-COMMAND] 89

HELP [EDIT-COMMAND] 140
(HELPFILTER word atiributos) [FSUBR] 4
(HGHCOR X) [SUBR] 162

(HGHEND) [SUBR] 162

(HGHORG X) [SUBR] 162

HISEG [VALUE] 58

(I ¢ x1 .. xn) [EDIT-COMMAND] 134
IBASE 74

(IF x) [EDIT-COMMAND] 135

ILL 24,44

(INC CHANNEL ACTION) [SUBR) 71

178

(INCH) [SUBR) 72
(INITFL "FILELST™) [FSUBR] 163

(INITFN FN) [SUBR] 107

(INITPROMPT N) [SUBR] 77

(INP X Y) [SUBR] 19

(INPUT "CHANNEL" . "FILENAME-LIST") [FSUBR] 71
(INSERT X L COMPAREFN NODUPS) [SUBR) 28
(INSERT o1 .. om BEFORL . §) [EDIT-COMMAND] 125
(INTERN D [SUBR] 36

INTERNSTR [VALUE] 74

INTERRUPTS 81

INUM 3

INUMO 165

(INUMP X) [SUBR] 22

JCALL 156
JCALLF 156

KLIST [VALUE] 165
(KWOTE X) [SUBR] 26

L 119
LABEL 8

LABELS 64

LAMBDA 7

LAP 160

LAPEVAL 165

LAPKLST [VALUE] 165
LAPLST [VALUE] 165
LAPQLST [VALUE) 166
LAPSLST [VALUE] 166

(LAST x) [SUBR] 24

LASTAIL 110

LASTHELP [VALUE] 4
LASTPOS [VALUE] 83
LASTVALUE 139

LASTWORD [VALUE] 169

(LC .) [EDIT-COMMAND] 118
(LCL . §) [EDIT-COMMAND] 118
(LCONC PTR X) [SUBR] 27
(LDIFF X V) [SUBR]) 29
(LENGTH L) [SUBR] 29

(LESSP X1 X2 .. Xn) [LSUBR] 23
LETTER-QUOTE 75
(LEXORDER X Y) [SUBR] 38
LEXPR 8

(L1 n) [EDIT-COMMAND] 129
LIBRARIES [VALUE] 52
(LIBRARY “filo1" "filo2" ..) [FSUBR] &
(LINELENGTH N) [SUBR] 78 _
(LINLREAD) [SUBR] 67
(LINEREADP) [SUBR] 67
(LINES n) [SUBR] 69

LISPPN [VALUE] 163
LISPXHIST [VALUE] 106
LISPXHISTORY [VALUE] 106
(LIST X1 . Xn) [FSUBR] 25
LISTDEVS [VALUE] 55
(LITATOM X) [SUBR] 20

(LO n) [EDIT-COMMAND] 128
LOAD 148

LOCATION-SPEC 117

(LOG x) [SUBR] 42

(LOOKUP DEV FILNAM) [SUBR] 59
(LOOKUPFILE file) [SUBR) 59

oy

179

LOWELR-CASE 76

(LP . ¢coma) [EDIT-COMMAND] 136
(LPQ Coms) (EDIT-COMMAND] 136
LPTLINGTH [VALUE] 78

(LSH X N) [SUBR] 40

LSUBR 158

(LSUBST X Y 2) [SUBR] 30

(M ¢ . coms) [EDIT-COMMAND] 137
MACRO 9

(MAKEFN form arga n m) [EDIT-COMMAND] 141
(MAKNAM L) [SUBR] 37

(MAKNUM X TYPL) [SURR] 166
(MAP FN L) [LSUBR] 12
(MAPATOMS fn) [SUBR] 14

(MAPC FN L) [LSUBR] 13
(MAPCAN FN ARG) [LSUBR] 13
(MAPCAR FN L) [LSUBR] 14
(MAPCON FN ARG) [LSUBR] 13
MAPCONC (LSUBR] 13

(MAPLIST FN L) [LSUBR]) 14
MAPPING 12

MARK ([CDIT-COMMAND] 119
(MARKICHANGED F) [SUBR] 50
MARKLST [VALUE] 119

(MAX X1 X2 .. Xn) [LSUBR] 40
MAXILEVEL 1156

MAXLEVEL [VALUE) 117
MAXLIO0P 135

MAXLOOP [VALUE] 136

(MBD x) [EDIT-COMMAND] 127
(MBD «fn> «xl> {<x2>}...) [FSUBR] 65
MEASLIREMENT 44

MEMB [SUBR] 19

(MEMBER X Y) [SUBR] 19
(MEMQ X Y) [SURR]) 19

(MERGE DATA] DATA2 COMPAREFN) [SUBR] 28
(METER "F1" . "Fn") [FSUBR] 44
METEREDFNS [VALUE] 45
(METERS "FI" . "Fn") [FSUBR] 45
(MIN X1 X2 .. Xn) [LSUBR] 40
(MINUS X) [SUBR] 40

(MINUSP X) [SUBR] 22

MISER 64

(MODCHR CH N) [SUBR] 75

(MOVE §1 70 com . §2) [EDIT-COMMAND]} 127
MOVE-PARENS 128

(MSG <il> [<i?>} ..) [FSUBR] 68
(MSTIME) [SUBR) 168

(MV com . §) [EDIT-COMMAND] 128
(MYPPN) {SUBR) &7

(Nel ..om) [EDIT-COMMAND] 123
NAME «<name> <aveni-spec> [TOP-LEVEL COMMAND] 104
NAMED-EVENTS 105
NAMESCHANGED [PROPERTY] 84
(NCONC X1 X2 . Xn) [LSUBR] 26
(NCONC1 L X) [SUBR] 28

(NCONS X) [SUBR] 25

(NEQ X Y) [SUBR] 19

(NEX x)} [EDIT-COMMAND] 112
(NEXTEV P) [SUBK] 99

NIL [VALUE] 3

NIL [EDUIT-COMMAND] 139

(NILL "X1" "X2" .. “Xn") [FSUBR} 168

(NOCALL <al> |<a2>} ..) [DECIARATION] 154
(NOCOMPILE cxp) [DECLARATION] 156
NOTMBED 96

NOPRETTYPROPS 121

(NOT X) [SUBR] 23

(NOTANY SOMCX SOMEFN1 SOMEFN2) [SUBR) 22
(NOTEVERY EVERYX EVERYFNI EVERYFN2) [SUBR) 21
(NOUUO X) [SUBR] 164

(NTH X N) [SUBR} 25

(NTH n) n>0 [EDIT-COMMAND] 111

(NTHCHAR X N) [SUBR] 38

(NULL L) [SUBR] 19

(NUMBERP X) [SUBR] 22

(NUMTYPE X) [SUBR]) 22

(NUMVAL n) [SUBR] 166

NX [EDIT-COMMAND] 110

OBLIST 35

OCTAL-POINT 74

OK [BREAK COMMAND] 8S

OK [EDIT-COMMAND] 139

(ONEP X, [SUBR] 22

(OR X1 X2 .. Xn) [FSUBR] 23

(ORF patlerni .. patlernn) [EDIT-COMMAND] 116
(ORR comsl .. Comsn) [EDIT-COMMAND] 136
(OUTC CHANNEL ACTION) [SUBR] 72

(OUTCH) [SUBR) 72

(OUTPUT "CHANNEL" . "FILENAME-LIST") [FSUBR] 72
(OUTVAL P V) (SUBR} 100

OVERFLOW 43

OVERVIEW 2

P [EDIT-COMMAND] 121

(PIRM) [EXPR] 80

(P: <props> <x15> [<x2>}...) [FSUBR] 65
(PATOM X) [SUBR] 20

PDL 149

(PEEKC) [SUBR] 67

(PGLINE) [SUBR] 74

(PLEV exp) [SUBR] 71

(PLIST x) [SUBR] 35 . upp

(PLUS X1 X2 .. Xn) [MACR®] " 41

PNAME 35

(PP <al> {<a2>}...) [FSUBR] 61

PP [EDIT-COMMAND] 121

(PP+ 1112) [FSUBR] Gl

PP. 121

(PP-COMMENT oxp) [SUBR] 64
(PP-DCCOMMENT 1D VAL PROP) [SUBR] 62
(PP-FORMAT <e> <n> <flag>) [SUBR] 64
(PP-FUNCTION atom function-defn fn-prop) [SUBR] 62
(PP-LABELS exp) [SUBR] 64

(PP-MISER exp) [SUBR] 64

(PP-RMACS atom readmacro-defn (Ouote READMACRO)) [SUBR)
(PP-VALUL atom valur (Ounte VALUE)) [SUBR] 62
PPCOM [PROPERTY] 65

(PPL <varl> {<var2>}..) [FSUBR] 61
(PPL. 11 12 ..) [FSUBR] 62

PPMAXLEN [VALUEL] 66

PPN 56

(PPRM) [EXPR] 80

PREDICATES 18
PRETTY-PRINT-COMMANDS 64
PRETTYFLG [VALUE] 66

PRETTYPROPS [VALUE] 62

62

181

(PREVLV P) [SUBR] 99

(PRINI S) [SUBR} 68

(PRINA x {pos}) [LSURR] 69
(PRINAC x {pos)) [LSUBR} 69
(PRINC S) [SUBR) 68

(PRINL <I>) [LSUBR] 70

(PRINLC <i>) [LSUBR} 70

(PRINLEV EXPRESSION DEPTH) [SUBR] 70
(PRINT S) [SUBR) 68
PRINT-COMMENT 63

(PRINTLEV EXPRCSSION DCPTH) [SUBR} 70
PRINTMACRO 63

PROBLEMS 169

(PROG “VARLIST" "RODY") [FSUBR]} 15
(PROGI X1 X2 .. Xn) [SUBR} 15
(PROGZ X1 X2 .. Xn) [SUBR] 15
(PROGN X1 X2 .. Xn) [FSUBR] 16
(PROMPT N) [SUBR] 77

PROPERTILS 35

PROPERTY-LIST 33

PUSHDOWN 149

(PUTPROP I V P) [SUBR] 34

(PUTSYM "X1" “X2" ."Xn") [FSUBR] 147

QUIST [VALUE] 166

QUANTIFIERS 20

(QUOTE “E") [FSUBR] 3

(QUOTE! "FORMI" .. "FORMn") [FSUBR] 25
QUOTL-CHAR 79 ‘suaR
(QUOTIENT X1 X2 .. Xn) [MAGRO] 41

(R x y) [EDIT-COMMAND] 130

(RDFILE) [SUBR] 59

(RDNAM) [SUBR] 66

(READ) [SUBR] 66

(READCH) [SUBR] 66

(READLIST L) [SUBR} 37

READMACRO 78

(READP) [SUBR] 77

(REALLOC fws bps rpd! spdl fs) [SUBR] 151
(RECORDFILE "FILE™) [FSUBR] 58

REDO <event-spec> [TOP-LEVEL COMMAND]} 103
RELOC 148

(REMAINDLR X YV [SUBR] 41

(REMOB “X1" "X2 .. "Xn") [FSUBR] 36
(REMOB1I "id") [SUBR] 36

(REMOVE X 1) [SUBR] 30

(REMMROP 1 P) [SLIBR] 34

(RENAME “FILNAMI" "FILNAM2") [FSUBR] 60
REPACK [EDIT-COMMAND] 141

(REPLACE § WITH o1 . em) [EDIT-COMMAND] 125
(RETFRO* FN VAL) [SUBR] 100

RETRIEVE <name> [TOP-LLVEL COMMAND] 105
(RETURN X) [SUBR] 15

RETURN form [BRLAK COMMAND] 8S
RETURN <form> [TOP-LEVEL COMMAND] 103
(REVERSE L) {SUBR] 29

(RGETSYM P S1 S2) [FSUBR] 147

(Rl n m) [EDIT-COMMAND] 130

(RO n) [EDIT-COMMAND] 130

RPDL 150

(RPLACA X V) [SUBR] 31

(RPLACD X Y) [SUBR] 31

(RPUTSYM X1 X2 .) [FSUBR] 147

—
o
nN

(S var . §) [EDIT-COMMAND] 142
(SASSOC X L FN) [SUBR) 33

(SAVE "TIHE-SPIC" "IXCISE™) [FSUBR) 97
SAVE [EDIT-COMMAND]) 138
SAVE-STATE 48

SCIENTIFIC-SUBR 42

(SECOND §) [EDIT-COMMAND]} 116
(SELECTQ X "YI" "Y2" .. "Yn" 2) [FSUBR] 11
(SET E V) [SUBR] 16

(SET-OF <var> <hal> «predicates) [MACRO] ‘14
(SETARG N V) [SUIBR] 8

(SETCHR CH N) (SUBR] 75

(SETCURPOS N) [SUBR) 78

(SETNAM namn) [GLIRR] 164

(SETQ "ID" V) [FSUBR] 16

(SE1SYS filr-rpnc) {FSUBR] 58

(SIN X) [SUBR] 42

(SIXATM N) [SURR] 166

(SIXBIT ATOM) [SUBR) 166

(SOME SOMEX SOMEFNI SOMEFN2) [SUBR] 20
(SORT DATA COMPAREFN) [SUBR] 32
(SPACES n {ident}) [LSUBR} 69

SPDL 98

(SPDLFT P) [SUBR} 98

(SPOLPT) [SUBR] 98

(SPDLRT P) [SUBR] 98

(SPEAK) |SUBR]Y 47

SPECBIND 167

(SPECIAL <varl> {<var2>} . .) [DECLARATION] 154
SPECIALS 154

SPICSTR 167

(SPREDO P V) [SUBR] 100

(SPREVAL P V) [SUBR] 100

(SPRINT EXFR IND) [SUBR] 61

(SORT x) [SUBR] 42

(STKCOUNT NAML P PEND) [SUBR] 99
(STKNAME P) [SUBR] 99

(STKNTH N P) [SUBR] 99

(STKPTR P) [SUBRT 98

(STKSRCH NAML P FLAG) [SUBR] 98
STOP [EDIT-COMMAND] 140
STORAGE-ALLOCATION 149

(STORE ("ID" 11 i2 ..) value) [FSUBR] 44
(STRINGP X) [SUBR} 20

(SUB1 X) [SUBR] 4]

(SUBLIS AIST EXPR) [SUBR] 30
(SUBPAIR OLD NEW EXPR) [SUBR] 30
SUBR 157

(SUBST X ¥ S) [SUBR] 29

SURST args FOR vars IN eveni-spec [TOP-LEVEL COMMAND)
(SUBSTRING str m n) [SUBR] 38
(SW n m) [EDIT-COMMAND] 131

SYM 157

SYMBOL-TABLE 146

(SYSCLR) [SUBR) 163

SYSTEM-BUILD 162

SYSTEM-STUFF 146

T [VALUE] 3

(TAB N) [SUBR} 70

TAG 160

(TAILP X V) [SUBR] 20
(TALK) (SUBR] 77
(TCONC PTR X) [SUBR] 26
(TERPRI X) [SUBR] 70

104

vt

—
-

1~

Ve

183

TEST [EDIT-COMMAND] 133
THE-TOP-1EVEL 103

(THIRD . §) [EDIT-COMMAND] 116
(THROW value {"label"}) [FSUBR] 17
THRU 131

(TIME) [SUBR] 46

(TIME-GCTIME) [SUBR] 46, <028
(TIMES X1 X2 .. Xn) [MACPD] 42

TL [BREAK-COMIAAND] 89 -
TL [EDIT-COMMAND] 140

T0 13!

TO-THRU 13l

(TOP-LCVEL) [SUBR] 103
TOP-LEVELMACROS [VALUE] 105
(TRACE x1 x2 .) [FSUBR] 83
TRACEDFNS [VALUE} 04

(TRACLCIN fn {(ARQUND §1) (AROLIND §2) ..}) [FSUBR] 94
(TRANSPRINT) {SUBR)} %5

TTY: ([EDIT-COMMAND] 139
(TTYECHO) [SUBR] 77

(TTYESNO) [SUBR]} 68

(TTYIN FORM]} .. FORMn) [MACRO] 72
(TTYMSG «il> {<i2>}...) [FSUBR] 69
(TTYOUT FORMI .. FORMn) [MACRO] 73.
(TY "filel" "file2" .. “filen") [FSUBR] 60
(TYD [SUBR) 66

(TYIO n) [SUBR} 67

(TYO N) [SUBR] 68

(UFDINP CHANNEL PPN [SUBR) 59

UNBLOCK [EDIT-COMMAND] 133

(UNBOUND) [SUBR] 163

(UNBREAK x1 x2 .) [FSUBR]) 91

(UNCOUNT “fnl" "fn2") [FSUBR]) 45
(UNCOUNT1 fn) [SUBR] A6

UNDO <event-specs {TOP-LEVEL COMMAND] 104
UNDO [EDIT-COMMAND]} 132

UNDOABLE-FNS 32

(UNDOERRSET “form™) [FSUBR] 32

UNDOLST [VALUE] 133

UNFIND 120

(UNMETER "F1" .. "Fn") [FSUBR] 45
(UNSPECIAL <varl> {<var2>}...) [DECLARATION] 154
UNTIL 89

(UNTRACE x1 x2.) [FSUBR] 94

(UNTY] n) [SUBR} 67

UP [EDIT-COMMAND] 109

UPFINDILG 125

USE x FOR y [BREAK COMMAND] 87

USE args FOR vars IN event-spac [TOP-LEVEL COMMAND] 104
USERERRORX [VALUE] 102

(USERHELP word] word?) [FSUBR] 52
USERMACROS [VALUE] 138

USERTOP [VALUL and SUBR] 106

(UUO UUO-TYPE) [SUBR] 167

(UUOPARNY N LUUO-TYPE) [SUBR} 167

VALUE 157
(VALUEOF "EVENT-SPECIFICATION") [FSUBR} 10%

 VERSION [SPECIAL VALUE] 58

WHERE 98
WHILE 89

(XCONS X V) [SUBR] 25

(XTR §) [EDIT-COMMAND] 126
(YESNO %) [SUBR] 68
(ZEROP X) [SUBR] 22

\ [EDIT-COMMAND] 120
\P [EDIT-COMMAND] 120

~ [BREAK COMMAND} 85
~ [EDIT-COMMAND] 110
~~ " [BRFAK COMMAND] 85
~+~"[TOP-LEVEL COMMAND] 104

_ [EDIT-COMMAND] 119
~ [EDIT-COMMAND] 120

~

LESR 3V §

	Table of Contents

	Preface

	1. Lisp Proper

	2. Input-Output

	3. Error
Recovery
	4. The Top Level

	5. Editor

	6. System Stuff

	7. Misc

	Index

