
C-MU LISP
Crispin S. Perdue

and a h05t of others
2 September 1979

Carncgie-Mcll on University
Department of Computer Science

.:. The work resulting in the LISP system described in this manual and in the manual itself were
. :~l; funded in part by the Defense Advanced Research Projects Agency under contract No.

~ .:~ F44620-73-C-0074.

Tuble of Contents

21. LISP-PROPER

21.1 ELEMENTARY
21.1.1 OVERVIEW

1.1.2 NUMBER	 2

31.1.2.1 INUM

1.1.2.2 FIXrJUM	 3

1.1.2.3 FLONLJM	 3

1.1.3 (QUOTE "E") (FSU8R)	 3

1.1.4 NIL [VI\LUE]	 3

1.1.5 T [VALUE]	 3

1.1.6 (HELP "word 1" ... "wordo") [FSUBR]	 3

1.1.6.1 (HELPFILTER word attributes) [FSUBR]	 4

1.1.6.2 LASTHELP [VALUE] 4

1.2 EVAL-S-EXP 5

51.2.1	 EVAL
51.2.2 APPLY

1.2.3 (APPLYu FN ARGS) [SU8R)	 5

51.2.4	 FUNARG
61.2.5 BCP

1.2.6 (*FUNCTION "FN") [FSUBR]	 6

71.3 LAMBDA-EXP
71.3.1 LAMi3DA

1.3.2 (FUNCTION ''FN'') [FSUBR] 7

1.3.3 FEXPR 7

81.3.4 LI\BEL
81.3.5 LEXPR

1.3.5.1 (ARG N) [SUBR]	 8

1.3.5.2 (SETARG N V) [SUBR] 8

1.3.6 EXPR 8

91.3.7 MACRO

1.3.7.1 (*EXPAND L FN) [SLlBR]	 9

101.4 DEFINITIONS

1.4.1 (DE "NAME" "ARGUMeNT -LIST" "FORMl" ... "FORMn") [FSUBR]	 10

1.4.2 (OV "atom" "vClluc") [FSUGR]	 10

1.4.3 (OEFPROP ''I'' "V" "P") [FSUBR]	 10

1.4.4 (DEFLlST "L" {"defv~I"} "prop") [FSUBR]	 11

1.4.5 (DEFSYNON "at 1" '"at2" "prop") [FSUBR]	 11

111.5 CONTROL
111.5.1 CONDITIONALS

1.5.1.1 (COND Clausel Clause2 ..J [FSUBR]	 11

1.5.1.2 (SELECTQ X "Y I" "Y2" ... '"Yn" Z) [FSUBR] 11

12
1.5.2 MAPPING
1.5.2.1 (MAP FN L) [LSUBR) 12

13
\ 1.5.2.2 (MI\PC FN L) [LSUBR]
131.5.2.3 (Ml\PCQN FN ARG) [LSUBR]

1.5.2.4 (MAPCAN FN ARG) [LSU8RJ 13

13
1.5.2.5 MAPCONC [LSUBR]
14
1.5.2.6 (MI\PLIST FN L) [LSUBR]
14
1.5.2.7 (MAPCAR FN l) [LSUBR]
14
1.5.2.8 (MAPATOMS 1n) [SUBR]

ji

1.5.3 (FOR-EACH {MAPfn} "FORMAL" LIST "FORM1" ... "FORMn") [MACRO]
1.5.4 (SET -OF <Viir> <li~l> <prcdict1tc» (MACRO]
1.5.5 PROGRAMS

1.5.5.1 (PROG "VARLIST
II

"BODY") [FSUBR]
1.5.5.2 (GO "ID") [FSUBR]
1.5.5.3 (RETur~N X) [SUBR]
1.5.5.4 (PROG2 X] X2 Xn) [SLlBR]
1.5.5.5 (PROG 1 XI X2 Xn) [SUBR]

1.5.5.6 (PROGN X] X2 Xn) [FSU£3R)
1.5.5.7 (SETQ "10" V) [FSUBR]
1.5.5.8 (SET E V) [SUf3R]

1.5.6 SIGNALS
1.5.6.1 (ERRSET E "F II

) (FSU8R]
1.5.6.2 (ERR [) [SUL3R]
1.5.6.3 (CATCH "<expr>" {"<label>"}) [FSUBR]
1.5.6.4 (THROW value {"Iabe'''}) [FSUBR]

1.5.7 REPETITION
1.5.7.1 DO, FOR, UNTIL and WHILE [MACRO]
1.5.7.2 (EXPAND-DO (orm) [SUBR]

1.6 PREDICATES
1.6.1 S-EXP-PRF.D

1.6.1.1 (EQ X Y) [SUBR]
1.6.1.2 (NEQ X Y) [5UGR]
1.6.1.3 (EQUAL X Y) [SUBR]
1.6.l.4 (NULL L) [SUBR]
1.6.1.5 (ME"AQ X Y) [SUBR]
1.6.1.6 MEMB [SUBR]
1.6.1.7 (MEMBER X Y) [SUBR]
1.6.1.8 ONP X Y) [SUBR]
1.6.1.9 (CONSP X) [SUBR]
1.6.1.1 0 '(ATOM X) [SUGR]
1.6.1.11 (EQP X Y) [SLJOR]
1.6.1.12 (LITATOM X) [SUBR]
1.6.1.13 (PATOM X) [SLlBR]
1.6.1.14 (STRINGP X) [SUBR]
1.6.1.15 (1 AILP X Y) [SUBRJ
1.6.1.16 (BOUNDP X) [SUBR]

1.6.2 QUI\NTIFIERS
1.6.2.1 (SOME SOMEX SOMEFN1 SOMEFN2) [SUBR]
1.6.2.2 (EVERY EVERYX EVERYFNI EVERYFN2) [SUBR]
1.6.2.3 (EXISTS <var> <list> <predict\te> {<next>}) [MACRO)
1.6.2.4 (FORALL <var> <Ii~t> <predicate> {<tail-fn>}) [MACRO]
1.6.2.5 (NOTEVERY EVERYX EVERYFNJ EVERYFN2) [SUBR]
] .6.2.6 (NOTANY SOMEX SOMEFNI SOMEFN2) [SUBR]

1.6.3 NUMERICAL-PRED
1.6.3.1 (NLJM8ERP X) [SUBR]
1.6.3.2 (lNUMP X) [SUBR)
1.6.3.3 (NUMTYPE X) [SUBR]
1.6.3.4 (ZEROP X) [SUBR]
1.6.3.5 (='o X) [SUGR]
1.6.3.6 (ONEP X) [SUBR]
1.6.3.7 (MINUSP X) [SUBR)
1.6.3.8 (,." X Y) [SUBR]

14

14

15

15

15

15

15

15

16

16

16

16

16

16

16

17

17

17

18

18

18

18

19

19

19

19

'19
19

19

19

20

20

20

20

20

20

20

20

20

21

21

21

21

22

22

22

22

22

22

22

22

22

22

7

__--L, _

III

1.6.3.9 (Gr~EI\.TEI<P Xl X2 ...Xn) [LSU[3R] 22
1.6.3.10 (> X1 ... Xn) [LSUl3R] 23
1.6.3.11 (tGI~EAT X Y) [SlJf3R] 23
1.6.3.12 (lESSP Xl X2 ... Xn) [LSUBRJ 23
1.6.3.13 (<' Xl ... Xn) [lSUBR] 23
1.6.3.1'-1 (:tL [55 X Y) [SUf3R] 23

1.6.4 GOOLEI\N-r'RED 23
1.6.4.1 (NOT X) [SLJGri] 23
1.6.4.2 (OR Xl X2 ... Xn) [FSUGR] 23
1.6.11.3 (/\ND Xl X2 ... Xn) [FSUI3R] 23
1.6.11.4 (1300lE N Xl X2 ... Xm) [LSUBR] 23

1.7 FUN-ON-S-EXP 24
1.7.1 GETTING-COMPONENTS 24

1.7.1.1 (CAR l) (SUGR] 24
1.7.1.2 (CAOR s-cxp) [SUE3RJ 24
1.7.1.3 (CDR L) [SUBR] 24
1.7.1.4 (LAST x) [SUBR] 24
1.7.1.5 (NTH X N) [SUGR] 25

1.7.2 BUILD 25
1.7.2.1 BUILD-NONDESTRUCTIVE 25
1.7.2.1.1 (CONS X Y) [SUBR] 25
1.7.2.1.2 (XCONS X Y) [SUrJR] 25
1.7.2.1.3 (NCONS X) [SUBR] 25
1.7.2.1.4 (LIST Xl ... Xn) [FSUBR] 25
1.7.2.1.5 (QUOTE! "FORMl II "FORMn") [FSUBR] 25...

1.7.2.1.6 (:I-APPEND X Y) (SUBR] 26
1.7.2.1.7 (APPEND Xl X2 ...Xn) [LSUBR] 26
1.7.2.1.8 (COpy X) [SUBR] 26
1.7.2.1.9 (KWOTE X) [SUBR] 26
1.7.2.2 BUILD-DESTRUCTIVE 26
1.7.2.2.1 (NCONC Xl X2 ... Xn) [LSU8R] 26
1.7.2.2.2 (/ /NCONC L1 ... LN) (LSUBR] 26
1.7.2.2.3 (TeONC PTR X) [SUGR] 26
1.7.2.2.4 </ /TeONC P1R X) [SUBR] 27
1.7.2.2.5 (LeONC PTR X) [SUBR] 27
1.7.2.2.6 (f /LCONC PTR l) [SUBR] 28
1.7.2.2.7 *NCONC [SUBRJ 28
1.7.2.2.8 / /d'JCONC [5UBR] 28
1.7.2.2.'9 (NCONCl L X) [SUBR] 28
1.7.2.2.10 U/NCONCI L X) [SUBR] 28
1.7.2.2.11 (ATTACH X L) [SUE3RJ 28
1.7.2.2.12 U/ATTACH X l) [SUBR] 28
1.7.2.2.13 (M[RGE DATAl DATA2 COMPAREFN) [SUBR] 28
1.7.2.2.14 (INSERT X L COMPAREFN NODUPS) [SUBRJ 28
1.7.2.2.15 (/ /INSERT X L COMPAREFN NODUPS) [SUBR] 29

1.7.3 TRANSFORM 29
1.7.3.1 TRANSFORM-NONDESTRUCTIVE 29
1.7.3.1.1 (LENGTH L) [5UBR] 29
1.7.3.1.2 (SUE3ST X Y S) [SU8R] 29
1.7.3.1.3 (RCVERSE U [SUBR] 29
1.7.3.1.4 (LDIFF X Y) [SUBR] 29
1.7.3.1.5 (LSUBST X Y Z) [SUGR] 30
1.7.3.1.6 (SUBLIS ALST EXPR) [SUBR] 30

iv

1.7.3.1. 7 (SUQPAm OLD NEW EXPR) [5UBR] 30
1.7.3.1.8 (f?F.MOVF X l) [5UBR] 30
1.7.3.2 TRI\Nsror~M-DESTRUCTIVE 30
1.7.3.2.1 (I~rL/\CA X Y) [5UBR] 31
1.7.3.2.2 (/ /RPLACA X Y) [5Uf3R] 31
1.7.3.2.3 (r~PLACD X Y) [SUBR] 31
1.7.3.2.4 (/ /RPLt,CD X Y) [SUBR] 31
1.7.3.2.5 (DRCMOVE X U [SUBR] 31
1.7.3.2.6 / /DRCMOVE [SUBR] 31
1.7.3.2.7 (DSLJ8ST X Y Z) [SLJ8R] 31
1.7.3.2.8 (/ /DSUBST X Y Z) [SLJ8R] 32
1.7.3.2.9 (DREVERSE L) [SU8R] 32
1.7.3.2.10 / /OREVERSE [SUl1R] 32
1.7.3.2.11 (SOJ~T QATA COMPAREFN) [SUBR] 32

1.7.4 UNDOA8LE-FNS 32
1.7.4.1 ~UNDOSAVES 32
1.7.4.2 (UNDOERRSET "form") [FSUBR] 32

1.7.5 SEARCH 33
1.7.5.1 (ASSOC X L) [SLJBR] 33
1.7.5.2 (ASSOCu X Y) [SUBR] 33
1.7.5.3 (SASSOC X L FN) [SUBR] 33

1.8 PROPEHTY -LIST 33
1.8.1 (GET I P) [SUBR] 34
1.8.2 (GETL I U [SU8R] 34
1.8.3 (PUTPROP I V P) [SUBR] 34
1.8.4 <I/PUTPROP I V P) [SLJBR] 34
1.8.5 (REMPROP I P) [SUBR] 34
1.8.6 (//REMPROP I P) [SUBR] 34
1.8.7 (PUST x) [SUBR] 35
1.8.8 PNAME 35
1.8.9 PROPERTIES 35

1.9 IDENTIFIERS 35
1.9.1 OBLIST 35
1.9.2 (INTERN I) [SUBR] 36
1.9.3 (REMOE3 "X I" "X2 ... "Xn") [FSUBR] 36
1.9.4 (REMon! "id

lt

) [SUOR] 36
1.9.5 (GENSYM) [SUF3RJ 36
1.9.6 (CSYM ''1'') [FSLJBR] 36

1.10 IDENTIFIER-NAMES 36
1.10.1 (EXPLODE L) [SUOR] 37
1.10.2 (EXPLODFC L) [SUBR] 37
1.10.3 (FLATSIZE l) [5UBR] 37
1.10.4 (FLI\TSIZEC l) [SUBR] 37
1.10.5 (MAKNAM l) [SUBR] 37
1.10.6 (READLIST l) [SLJBR] 37
1.10.7 (LEXQRDER X Y) [SUBR] 38
1.10.8 (SUGSTRING str m n) [SUBR] 38
1.10.9 (EQSTR at 1 at 2) [SUBR] 38
1.10.10 ([QNAM X Y) [SUOR] 38
1.10.11 (NTHCHI\R X N) [SUBR] 38
1.10.12 (CHRVAL X) [SU8R] 39
1.10.13 (ASCII N) [SUBR] 39
1.10.14 (BIGRATOM n) [SUBR] 39

v

1.11 ARITllMEl Ie 39
1.11.1 (,1\[35 X) [SlH3H] 39
1.11.2 (/\001 X) [SUf3RJ 39
1.11.3 (~I X) [SUf3f~J 39
1.1 1.4 (:tOIF X Y) [SUf3R] :'5 .JS~ 39
1.11.5 (DlrFERENCE Xl X2 ... Xn) [MACRO] 39
1.11.6 (- Xl ... Xn) [LSUGR] 39
1.11.7 (MINUS X) [SU8RJ 40
1.11.8 (DIVIDE X Y) [SUBR] 40
1.11.9 (FIX X) [SUGR) 40
1.11.10 (GCD X Y) [SUGR] 40
1.11.1 1 (LSH X N) [SUGR] 40
1.11.12 <:tMAX X Y) [SUBRJ .40
1.11.13 (M/\X XI X2 ... Xn) [LSUGRJ 40
1.11.14 (*MIN X Y)[SUGR] 40
1.11.15 (MIN Xl X2 ... Xn) [LSUBR) 40
1.11.1 G (:tPLUS X Y) [SUBR] LSJ~~ 40
1.11.17 (PLUS XI X2 ... Xn) [~A€OO-] 41
1.11.18 (+ Xl ... Xn) [LSUGR] 41
1.11.19 (*QUO x Y) [SUBR) !. ~(:;e,,- 41
1.11.20 (QUOTIENT XI X2 ... Xn) [~~] 41
1.11.21 (/ / Xl ... Xn) [LSUBR] 41
1.11.22 (REMAINDER X Y) [SUBR] 41
1.1 1.23 (SUBI X) [SUBR) 41
1.11.24 (-1 X) [SU8R] .41
1.11.25 (*TIMES X Y) [SUBR] ~~v'B ~ 41
1.11.26 (TIMES Xl X2 ... Xn) t~] 42
1.11.27 (* Xl ... Xn) [LSUBR] 42
1.11.28 SCIENTIFIC-SUGR 42

1.11.28.1 (SIN X) [SUBR] 42
1.11.28.2 (COS x) [SUBR] 42
1.11.28.3 (AT AN x y) [SLJ8R] 42
1.11.28.'1 (SQRT x) [SUBR] 42
1.11.23.5 (LOG x) [SUBR] 42
1.11.28.6 (EXP x) [SUBRJ 43

1.11.29 OVEf{FLOW 43
1.12 (ARRJ\Y "JO" TyrE 81 B2 ... 8,,) [FSU8R] 43

1.12.1 (EXARRAY "10" TYPE 81 82 ... Bn) [FSUBR] 44
1.12.2 (STORE ("ID" i 1 i2 ... in) value) [FSUBR] 44

441.13 MEASUt?EMENT
1.13.1 (METER "F 1" ... "Fn") [FSU8R] 44

1.13.1.1 (UNMETER "F 1" ... "Fn") [FSUBR] 45
1.13.1.2 /'lMC 1 45
1.13.1.3 BHEAK1M [SUBR] 45
1.13.1.4 (METERS "F]" ... "Fnil) [FSUBR] 45
1.13.1.5 MCTER[DFNS [VALUE] 45

1.13.2 (COUNT "(nl" "fn2" ...) [FSUBR] 45
1.13.2.1 (UNCOUNT "fn 1" "(n2" ...) [FSUBR] 45

461.13.2.2 COUNTEDFNS
1.13.2.3 (COUNT 1 fn) [SUBRJ 46
1.13.2.4 (UNCOUNT J tn) [5UBR] 46
1.13.2.5 (tt <number> <expression» [FSUBR] 46

461.13.2.6 ~-ERROR

48

vi

1.13.3 (T IM[) [SUOR]	 46
1.13.4 (GCT IME) [SUBH]	 46
1.13.5 (lIME-GCTI~~E) [SUBR]	 46
1.13.6 (SPEAK) [SUBR]	 47

2. INPUT-OUTPUT

2.1 SAVE-STATE	 48
2.1.1 (DSKIN "LIST OF FILE-NAMES") [FSUBR]	 48
2.1.2 (DSKOUTS "FILEl" ... "FILEn") (FSUBR]	 49
2.1.3 (11~EADIN ch;mnel print) [SUBRJ	 49
2.1.4 (FILE "FILE") [FSUBR]	 49
2.1.5 FILELST [VALUE]	 50
2.1.6 (FILE-FNS FILE) [SlJBR]	 50
2.1.7 (CHANGES f1~g) [FSUBR)	 50
2.1.8 (M/\HK!C~ f/\NGED F) [SUBR]	 50
2.1.9 FILE-SEARCH	 50

2.1.9.1 (GETDEF "FILE" "11" .oo "In") [FSUBR]	 50
2.1.9.1.1 GETDEFPROPS [VALUE]	 51
2.1.9.1.2 GETDEFTABLE [VALUE]	 51
2.1.9.1.3 (GETDEFACT id prop exp) [SUBR)	 51
2.1.9.1.4 (GETDEFEVAL "10" exp "PROP") (FSUBR]	 51
2.1.9.2 (LIBRARY "file I" "file2" ...) [FSUBR]	 51
2.1.9.3 LH3R/\RIES [VALUE]	 52
2.1.9.4 (GETDEFNS fnl fn2 ...) [MACRO)	 52
2.1.9.5 (USERHELP word 1 word2 ...) [FSU8R]	 52
2.1.9.6 (FINDFNS file-lir.t name-list) [SUBR]	 52
2.1.9.7 (FINDFILES file-list name-li5t) [SUBR)	 52

2.1.10 (DSKOUT 'TILE" "FORMI" oo. "FORMn") [FSUBR]	 53
2.1.10.1 COMMENT [PROPERTY]	 53
2.1.10.1.1	 (DC word tid} {(descriptor 1 descriptor2 oo.)}) <text> <esc> 53

[FSUE3R]
2.1.10.1.2 CEF-COMMENT [VALUE) 54
2.1.] 0.1.3 (DC-DEFINE name id attributes) [SUBR] 54
2.1.10.1.4 (DC-DSKIN name id attributes) [SUBR]	 54
2.1.10.1.5 (DC-HELP name id attributes) [SUBR]	 54
2.1.10.1.6 (DC-IGNORE) [SUBR)	 54
2.1.10.1.7 (DC-LJSERHELP name id attributes) [SUBR]	 55
2.1.10.1.8 DSKIN-COMMENT [VALUE]	 55
2.1.10.1.9 (*** comment) [FSUBR]	 55
2.1.10.1.10 (TRANSPRINT) [SUBR)	 55
2.1.10.2 (FILBAK FILE NEWEXT) [SUBR]	 55
2.1.10.3 *NorOINTDSK [VALUE]	 55
2.1.10.4 LISTDEVS (VALUE]	 55,

2.2 FILES	 56
2.2.1 FILESPEC	 56

2.2.1.1 O'DEVP X) [SUBR)	 56 !

2.2.1.2 (7GETDEV filespec) [SUBR]	 56
2.2.1.3 PPN	 56
2.2.1.4 (MYPPN) [SU8R]	 57

2.2.2 SAVE-JOB	 57
2.2.2.1 (SAVE "FILE-SPEC" "EXCISE") [FSUBR]	 57
2.2.2.2 (SETSYS file-spec) [FSUBR]	 58
2.2.2.3 HISEG [VALUE]	 58

1

vii

2.2.2.~ VU?SION [SPECIAL VALUE] 58
2.2.3 (J~ECor([)FILE "F ILE") [F SUl3R] 58
2.2.4 uros 59

2.2.4.1 (UF OH'JP CHANNEL PPN) [SUBR] 59
2.2.4.2 (ROfILE) [SUBR] 59
2.2.4.3 (LOOKUP DEV FILNAM) [SUBR] 59
2.2.4.4 (LOOKUPFILE filC') [SUrJR] 59
2.2.4.5 (FILELENGTH) [SUBR] 60

2.2.5 (TY "file I" "filc2" ... "fjlcn") [FSUBR] 60
2.2.6 (DELETE "FlLNAMl" "FILNI\M2" ...) [FSUBR] 60
2.2.7 (DIRF {ppn} {filc~pcc}) [FSUGR] . 60
2.2.3 (DIn PPN) [5UI1R] 60
2.2.9 (RENAME "FIlNAMl" ''FILNAM2'') [FSUBR] 60
2.2.10 (i-RENAME FILESPEC1 FILESPEC2) [SUBR] 60

2.3 PRETTY-PRINTING 61
2.3.1 (PP ~al> {<a2>} ...) [FSU8R) 61
2.3.2 (GRINDEF "F I" "F2" "F3" ... ''FN'') [FSUBR) 61
2.3.3 (PP* 11 12 ...) [FSUBR) 61
2.3.4 (SPRINT EXPR IND) [SUBR] 61
2.3.5 (PPL <varl> {<var2>} ...) [FSUBR] 61
2.3.6 (GRINL "F I" "F2" ... "FN") [FSUBR] 62
2.3.7 (PPL* 11 12 ...) [FSLJBR] 62
2.3.8 PRETTYPROPS [VALUE] 62

2.3.8.1 (PP-VALUE atom value (Quote VALUE» [SUBR) 62
2.3.8.2 (PP-FUNCTION ntom funetion-defn fn-prop) [SUBR] 62
2.3.8.3 (PP-RMACS atom readmacro-defn (Quote READMACRO» [SUBR] 62
2.3.8.Ll (PP-DCCOMMENT 10 VAL PROP) [SUBR) 62

2.3.9 PRINTMACRO 63
2.3.9.1 (PP-COMMENT expL[SUBRJ 64·
2.3.9.2 (PP-FORMAT <e> <n> <flag» [SUBR] 64
2.3.9.3 (PP-LABELS cxp) [5UBR] 64
2.3.9.4 (PP-MISER cxp) [5U8R] 64

2.3.1 0 PRETTY-PRINT-COMMANDS 64
2.3.10.1 PPCOM [PROPERTY] 65
2.3.10.2 (P: <props> <x 1> {<x2>} ...) [FSUBR] 65
2.3.J 0.3 (*PG~) [SUBR) 65
2.3.10.4 (MBD: <fn> <xl> {<x2>}) [FSUBR) 65
2.3.10.5 (FORMS: <xl> {<x2>}) [F5UBR] 65
2.3.10.6 (E: <cl> {<c2>} .•.) (FSUBR] 65

2.3.11 PHETTYF LG [VALUE] 66
2.3.12 PPMAXLEN [VALUE] 66

2.4 INPUT-F NS 66
2.4.1 (READ) [SURR] 66
2.4.2 (RDNAM) [SUBR] 66
2.4.3 (READCH) [SUBR] 66
2.4.4 (TYl) [SUBR] 66
2.4.5 (LlNEREAO) (SUBR] 67
2.4.6 (LlNEREADP) [SUBR] 67
2.4.7 (PEEKC) [SUBR] 67
2.4.8 (UNTYI n) [SU£3R] 67
2.4.9 (lYlO n) [SUf3R] 67
2.4.10 (YESNO X) [SLJBR] 68
2.4.11 (TTYESNO) [5UBR] 68

viii

2.5 OUTPUT -FNS
2.5.1 (PRINT 5) [SLJGR]
2.5.2 (pr~IN 1 S) [SUBR]
2.5.3 (pr~INC S) [SLJl3r~]

2.5.4 (TYO N) [SUGR]
2.5.5 (MSG <i1> {<i2>} ...) [FSUBR]
2.5.6 (TTYMSG <j 1> {<i2>} ...) [FSUGR]
2.5.7 (PRINA)({po'j}) [LSU8R]
2.5.8 (PRINAC x {pos}) [LSUBR]
2.5.9 (SPACES n {idcnt}) [LSUBR)
2.5.10 (LINES n) [SUBR]
2.5.11 (PRINL <I» [LSUBR]
2.5.12 (PRINLC <I» [LSUOR]
2.5.13 (TERPRI X) [SUBR]
2.5.14 (TAB N) [SUBR]
2.5.15 (PRINTLEV EXPRESSION DEPTH) [SUBR]
2.5.16 (PRINLEV EXPRESSION DEPTH) [SUBR]
2.5.17 (PLEV cxp) [SUBR]
2.5.18 1LOOKDPTH [VALUE]

2.6 I-O-CHf\NNELS
2.6.1 (INPUT "CHANNEL" . "FILENAME-LIST") [FSUBR]
2.6.2 (INC CHANNEL ACTION) [SUBR]
2.6.3 (OlJl PUT "CHf\I'JNEL" . "FILENAME-LISr') [FSUBR]
2.6.4 (OUTC CIIf\NNEL ACTION) [SUBR]
2.6.5 (INCH) [SU[]R]
2.6.6 (OUTCH) [SUf3R]
2.6.7 (TTYIN FOHMI ... FORMn) [MACRO]
2.6.8 (TTYOUT FORMI ... FORMn) [MACRO]
2.6.9 (GETCHN) [SUBR]
2.6.10 (GIVCHN chr-m) [SUBR]
2.6.11 (EXCISE) [SUBR]

2.7 I -O-MODE
2.7.1 BASE [VALUE]
2.7.2 IBASE
2.7.3 *NOPOINT [VALUE)
2.7.4 OCTAL-POINT
2.7.5 INTERNSTR [VALUE)
2.7.6 (PGLlNE) [SUBR]

2.8 CHARACTERS
2.8.1 COMMENT-CHAR
2.8.2 LETTER-QUOTE
2.8.3 (CHQUOTE n) [SUBR]
2.8.4 (MODCHR CH N) (SUBR)
2.8.5 (SETCHR CH N) [SUBR]
2.8.6 *DIGITS [VALUE]
2.8.7 *l.ETTERS (VALUE]
2.8.8 LOWER-CASE

2.9 TTY-CONTROL
2.9.1 (CLRBFJ) [SUBR]
2.9.2 (DOTIN X) [SUBR]
2.9.3 (INITPROMPT N) [SU8R]
2.9.4 (PROMPT N) [SUBR]
2.9.5 (TTYECHO) [5LJBR]

68

68

68

68

68

68

69

69

69

69

69

70

70

70

70

70

70

71

71

71

. 71

71

72

72

72

72

72

73

73

73

73

73

73

74

74

74

74

74

74

74

75

75

75

75

75

75

76

76

76

76

77

77

77

IX

2.9.6 (READP) [SUr3f~] 77
2.9.7 (Ef<f<CH N) [SU!3r~] 77
2.9.8 (TALK) [SUOR] 77

2.10 LINE-CONTf~OL 78
2. J0.1 (CURPOS) [SUGR] 78
2.10.2 (CHRCT) [SLJBf~] 78
2:.1 0.3 (SETCUr~POs N) [SLJBR] 78
2.1 0.4 (LINELEr~GTH N) [5UGR) 78
2.10.5 LPTLENGTH [VALUE] 78

2.11 READMACRQ 78
2.11.1 (ORM "CHI\HACTER" "FUNCTION") [FSUBR] 79
2.11.2 (OSM "CHARACTER" "FUNCTION") [FSUBR] 79
2.11.3 (/DEREAD number larnbda-cxp type) [SUBR] 79
2.11.4 QUOTE-CHAR 79
2.11.5 EORM [EXf'R] 80
2.11.6 EVSM [EXPR] 80
2.11.7 (PPRM) [EXPR] 80
2.11.8 (P 1RM) [EXPR] 80

3. ERROR-RECOVERY 81

3.1 INTERRUPTS 81
3.2 BREAK-PACKAGE 82

3.2.1 (BREAK 1 r3HKEXP l3RKWHEN BRKFN BRKCOMS BRKTYPE) [SUBR] 83
3.2.1.1 LASTPOS [VALUE] 83
3.2.1.2 BRKEXP [VALUE] 84
3.2.1.3 BRKWHEN [VALUE] 84
3.2.1.4 BRKFN [VALUE] 84
3.2.1.5 8RKCOMS [VALUE) 84
3.2.1.6 BRKTYPE lVALUE] 84
3.2.1.7 .<1 /BREAK 1) [SUGR] 84
3.2.1.8' NAMESCHANGED [PROPERTY] 84
3.2.1.9 BRKAPPLY [SUBR] 85

3.2.2 BREAK -COMMANDS 85
3.2.2.1 GO [Br<EAK COMMAND] 85
3.2.2.2 OK [£3REAK COMMAND] 85
3.2.2.3 EVAL [HREAK COMMAND] 85
3.2.2.4 RETURN form [BREAK COMMAND] 85
3.2.2.5 [BRCAK COMMAND] 85A

3.2.2.6 .-." [RREAK COMMAND] 85
3.2.2.7 > e'X'pr [BREAK COMMAND] 86
3.2.2.8 FROM'?~ {form} [BREAK COMMAND] 86
3.2.2.9 EX [OREAK COMMAND] 87
3.2.2.10 USE x FOR y [BREAK COMMAND] 87
3.2.2.11 F ~rG 1 arg2 ... argN [BREAK COMMAND] 87
3.2.2.12 EDIT argl arg2 ... argN [BREAK COMMAND] 88
3.2.2.13 FIX ilrg 1 arg2 [BREAK COMMAND] 88
3.2.2.14 ?= ;:lrgl arg2 areN [BREAK COMMAND] 88
3.2.2.15 ARGS [BREAK COMMAND] 89
3.2.2.16 HELP [BREAK-COMMAND] 89
3.2.2.17 TL [BREAK-COMMAND] 89
3.2.2.13 DO form [BREAK-COMMAND] 89
3.2.2.19 BKE [BREAK-COMMAND) 90
3.2.2.20 BK [BREAK COMMAND] 90

x

3.2.2.21 BKF (GREAK COMMAND]
3.3 E3REAKlf~G

3.3.1	 (Bf~EAK f I'd fn2 ...) [FEXPR]
3.3.1.1 Br~OKENFNS [VALUE]
3.3.1.2 (UNBr~EAK x1 x2 ...) [FSU8R]

3.3.2 (8REAKIN function {where} {GRKWHEN} {BRKCOMS}) [FSUBR]
3..3.3 (TRACE x 1 x2 ...) [FSUGR]

3.3.3.1 ~t IlNDENT [VALUE]
3.3.3.2 (UNTRACE xl x2 ...) [FSU8R]
3.3.3.3 TRACCOFNS [VALUE]

3.3.~ {TRACEIN tn {(AHOUNO ~1) (AROUND 82) ... J) [FSUBR]
3.3.4.1 (EVL-FIX exp type-of-fix) [SUBR]
3.3.ll.2 (EVL-TRACE exp) [FSUBR]

3.3.5	 f3REAKMACROS [VALUE]
3.3.6	 (BREAKO FN WHEN CaMS) [SUBR]

3.4	 SPDL

3.ll.1 (SPDLPT) [SUBR]

3.~.2 (SPDLFT P) [SUBR]

3.4.3	 (SPDLRT P) [SUf3R]
3.4.4	 (STKPlR P) [SUBR]
3.4.5	 (NEXTEV P) [SUGR]
3.4.6 (PREVEV P) [SUBR]

3.~.7 (STKCOUNT NAME P PEND) [SUBR]

3.4.8 (STKNAME P) [SLJ8R]
3.4.9	 (STKNTH N P) [SUBR]
3.4.10 (STKSRCH NAME P FLAG) [SUBR]
3.4.11 (FNDBRKPT P) [SUBR]
3.4.12 (OUTVAL P V) [SUBR]
3.4.13 (SPREDO P V) [SUBR]
3.4.14 (SPREVAL P V) [SUf3R]
3.4.15 (EVALV A P) [SUBR]
3.4.16 (RETFROM FN V~L) (SUBR]

3.5 ERROR-OTHER
3.5.1	 (ERROR E) (SLJOR]
3.5.2	 (ERRORX x) [SUBR]
3.5.3 1PRINFN (VALUE]
3.5.4	 (BKTRC) [SUBR]
3.5.5	 (*RSET flag) [SUBR]
3.5.6 ERXACT10N [PROPERTY]
3.5.7	 USERERRORX [VALUE]

4. THE-TOP-LEVEL

4.1 (TOP-LEVEL) [SUBR]
4.1.1	 TOP-LEVEL-COMMANDS

4.1.1.1 RETURN <form> [TOP-LEVEL COMMAND]
4.1.1.2 FIX <E'vent -spec> [TOP-LEVEL COMMAND)
4.1.1.3 EDIT <event -$pec> [TOP-LEVEL-COMMAND]
4.1.1.4 REDO <event-spec> [TOP-LEVEL COMMAND]
4.1.1.5 EVENT-SPEC
4.1.1.6 "' ,. [TOP-LEVEL COMMAND]
4.1.1.7 ?? <event -$pec> [TOP-LEVEL COMMAND]
ll.1.1.8 USE arC5 FOR var5 IN event -spec (TOP-LEVEL COMMAND]
4.1.1.9 SUBST arBS FOR vars IN event-spec (TOP-LEVEL COMMAND]

90

90

91

91

91

92

93

94

94

94

94

95

96

96

97

98

98

98

98

98

99

99

99

99

99'
99

99

100

100

100

100

100

100

100

100

101

101

101

102

102

103

103

103

103

103

103

103

103

104

104

104

104

1

xi

4.1.1.10 UPJIJO <event -~,pcc> [TOP-LEVEL COMMJ\r\JD] 104
4.1.1.11 ~,JAMF.: <nrl/rtC> <event -!>pec> POP-LEVEL COMMAND] 104
'1.1.1.12 RETRIEVE <name> [TOP-LEVEL COMMAND] 105
'1.1.1.13 AFT [R <ni:llne> [TOP-LEVEL -COt-..1MJ\ND) 105
4.1.1.111 [3CFORE <n;l/))C> [TOP-LEVEL -COMMAND] 105
4.1.1.15 FOI?C;ET <event -~,pec> [TOP-LEVEL COMMAND] 105

4.1.2 (VALUEOF "EVENT -SPECIFICATION") [FSUBR] 105
4.1.3 TOP-LEVCUJ1ACROS [V/\LUE) 105
4.1.4 (CHANGESL ICE N) [SUBRJ 105
4.1.5 LISPXHIST [VALlJE] 106
4.1.6 LISPXHISTORY [VALUE] 106
4.1.7 USERTOP [VALUE and SUBR] 106
4.1.8 (~*TOP**) [SUl3R] 107

4.2 (INIT FN FN) [SUBR] 107

5. EDITOR 108

5.1 EDIT-ATTN 108
5.1.1 CUHRENT-EXPRESSION 108
5.1.2 ~t 108
5.1.3 UP [EDIT-COMMAND] 109
5.1.4 !O [EDIT -COMMAND] 110
5.1.5 ,.. [EDIT-COMMAND] 110
5.1.6 NX [EDIT -COMMAND] 110
5.1.7 !NX [EDIT-COMMAND] 110
5.1.8 BK [EDIT -COMMAND] 111
5.1.9 (NTH n) n>O [EDIT-COMMAND] 111
5.1.10 :: 112
5.1.11 (BELOW corn x) [EDIT-COMMAND] 112
5.1.12 (NEX x) [EDIT-COMMAND] 112
5.1.13 EDIT-MATCH' 113
5.1.14 EDIT-SEARCH 114

5.1.14.1 F pattern [EDIT-COMMAND] 1.15
5.1.14.2 (SECOND. S) (EDIT-COMMAND] 116
5.1.14.3 (THIRD. S) [EDIT-COMMAND] 116
5.1.14.4 (FS paltern1 ... pattcrnn) [EDIT-COMMAND] 116
5.1.14.5 (F:: expression x) (EDIT-COMMAND) 116
5.1.14.6 (Of<F pattern 1 ... pattcrnn) [EDIT-COMMAND] 116
5.1.14.7 or pat tern [EDIT-COMMAND] 117
5.1.14.8 MAXLEVEL [VALUE] 117
5.1.14.9 LOCATION-SPEC 117
5.1.1'1.9.1 S 118
5.1.14.9.2 (LC . S) [CDIT-COMMAND] 118
5.1.14.9.3 (tCl . S) [EDIT -COMMAND] 119

5.1.15 EDIT-CHAIN 119
5.1.15.1 MARKLST [VALUE] 119
5.1.15.2 MARK [EDIT -COMMAND] 119
5.1.15.3 _ [EDIT-COMMAND] 119
5.1.15,4 _ [EDIT-COMMAND] • 120
5.1.15.5 \ [EDIT -COMMAND] 120
5.1.15.6 \P [EDIT-COMMAND] 120

5.2 EDIT-PRINT 120
5.2.1 P [EDIT-COMMAND] 121

5.2.2? [EDIT -COMMAND] 121

xii

5.2.3 PP [EDIT -COMMAND]

5.2.'1 PPot.

5.2.5 AUTOP (VJ\LUE]

5.3 EDIT-MOD
5.3.1 #

5.3.2 INSERT-DELETE
5.3.2.1 (N c 1 em) [EDIT-COMMAND]
5.3.2.2 (A e 1 em) [EDIT -COMMAND]
5.3.2.3 (8 c 1 em) [EDIT-COMMAND]
5.3.2.4 (: e 1 em) [EDIT-COMMAND]
5.3.2.5 DELETE or (:) (EDIT-COMMAND]
5.3.2.6 (INSERT e 1 ... em BEFORE. S) [EDIT-COMMAND]
5.3.2.7 (f<EPLACE S WITH e 1 ... em) [EDIT-COMMAND]
5.3.2.8 (CHANGE S TO c 1 ... em) [EDIT-COMMAND]
5.3.2.9 UPFINDFLG

5.3.3 EMBED-EX'1 RACT
5.3.3.1 (Xl R . S) [EDIT-COMMAND]
5.3.3.2 (MOD x) [EDIT-COMMAND]
5.3.3.3 (EXTRACT 81 FROM 82) [EDIT-COMMAND]
5.3.3.4 (EMBED S IN . x) [EDIT-COMMAND]

5.3.4 MOVE-COpy
5.3.4.1 (MOVE S1 TO com. 82) [EDIT-COMMAND]
5.3.4.2 (MV com. S) (EDIT-COMMAND]
5.3.4.3 (COpy S1 TO COIll • 52) [EDIT-COMMAND]
5.3.4.4 (CP com. S) LEDIT-COMMAND]

5.3.5 MOVE-PARENS
5.3.5.1 (81 I' m) [EDIT-COMMAND]
5.3.5.2 (80 n) [EDIT -COMMAND]
5.3.5.3 (LJ n) [EDIT-COMMAND]
5.3.5.4 (LO n) [EDIT -COMMAND]
5.3.5.5 (RI n m) [EDIT-COMMAND]
5.3.5.6 (RO n) [EDIT-COMMAND)

5.3.6 (R x y) [EDIT-COMMAND]
5.3.7 (SW n m) [EDIT-COMMAND]
5.3.8 TO-1 HRU

5.3.8.1 TO
5.3.8.2 TI ~RU

5.4 EDIT-UI\JDO
5.4.1 UNDO [EDIT-COMMAND]
5.4.2 !UNDO [EDIT -COMMAND]
5.4.3 UNDOLST [VALUE]
5.4.4 UNBLOCK [COlT -COMMAND]
5.4.5 TEST [EDIT -COMMAND]

5.4.6?'! [EDIT -COMMAND]

5.5 EDIT-EVAL
5.5.1 E [EDIT -COMMAND]
5.5.2 (I c xl ... >en) [EDIT-COMMAND]
5.5.3 (un com! com2 ... co,.fln) [FSUBR] .
5.5.4 (COMS xl ... xn) [EDIT-COMMAND]
5.5.5 (COMSQ com 1 ... comn) [EDIT-COMMAND]

5.6 EDIT-TEST
5.6.1 (IF x) [EDIT-COMMAND]
5.6.2 (LP . com~) [EDIT-COMMAND]

121

121

121

121

123

123

123

124

124

124

124

125

125

125

125

126

126

127

127

127

127

127

128

128

128

128

129

129

129

129~

130

130

130

131

131

131

131

132

132

133

133

133

133

133

134

134

134

134

135

135

135

135

136

1

xiii

5.6.3 (LPQ . Corn",) [EDIT-COMMAND] 136
5.6.L1 (OF?R corn!",l ... Com~.n) [EDIT -COMM/\ND] 136
5.6.5 MAXLoor [VALUE] 136

5.7 EDIT -MI\CROS 136
5.7.1 (M c . (om~.) [EDIT-CO~v'1MAND] 137
5.7.2 (flIND. COIll~) [EDIT-COMMAND] 138
5.7.3 lJSEf?MACf<OS [VALUE] 138
5.7.4 EDITCOMSL [VALUE] 138

5.8 EDIT-MISC 138
5.8.1 OK [EDIT-COMMANI1] 139
5.8.2 SAVE [EDIT -COMMAND] 139
5.8.3 NIL [EDIT -CO~AMAND] 139
5.8.4 TTY: [EDIT -COMMAND] 139
5.8.5 S10P [EDIT -COMMAND] 140
5.3.6 HELP [EDIT -COMMAND] 140
5.8.7 TL [EDIT -COMMAND] 140
5.8.8 REPACK [EDIT -COMMAND] 141
5.3.9 (MAKEFN form ar8s n m) [EDIT-COMMAND] 141
5.8.10 EOITDEFI\ULT 141
5.8.11 (EDITCOMS coms) [SUBR] 142
5.8.12 (EDITRACEFN com) [VALUE ;lnd EXPR] 142
5.8.13 (S VRr • $) [EDIT -COMMAND] 142

5.9 EDIT-FNS 142
5.9.1 (EDITF x) [FSUBR] 142
5.9.2 (EOITE c'>Cpr (orn~ atrr"l) [SUBR] 143
5.9.3 (EOITV editvx) [FSUBR] 143
5.9.4 (EDITP x) [FSUBR] 143
5.9.5 (EDITL L coms aIm marklst mess) [SUBRJ 143
5.9.6 (EDITFNS x) [FSLJBR] 144
5.9.7 (EDIT4E pat y) [SUBR] 144
5.9.8 (EDITFPJ\T pat fig) [SUBR] 145
5.9.9 (EDITFINDP x pat fig) [SUBR] 145

1466. SYSTEM-STUFF

6.1 SYM!30L-TI\8LE 146
6.1.1 (*GETSYM S) [SU8R] 146
6.1.2 (GETSYM "P" "S I" "S2" ... "Sn") [FSUBR] 146
6.1.3 (tPUTSYM S V) [SUBR] 147
6.1.4 (PUTSYM "X I" "X2" ..."Xn") [FSUBR] 147
6.1.5 (~.RGETSYM X) [SU8RJ 147
6.1.6 (RGETSYM PSI S2 ..J [FSUBR] 147
6.1.7 (*RPUTSYM SYM VAL) [SUBR] 147
6.1.8 (RPUTSYM Xl X2 ...) [FSUE3R] 147

6.2 LOAD 148
1496.3 DDT

6.4 STORAGE-ALLOCATION 149
6.4.1 BPS 149

6.4.1.1 APENO [VALUE] 149
6.4.1.2 SPORG [VALUE] 149

6.4.2 FREE-STG 149
6.4.3 FULL-WORD-SPACE 150

1506.4.4 RPDL
1506.4.5 GARBAGE-COLLECTION

xiv

6.4.5.1 (GC) [5UBR]

6.'1.5.2 (GCGI\G X) [SlJf3RJ

6.4.5.3 (GCGOT) [SUGRJ
6.4.5.4 FREE
6.4.5.5 (GCMJN n1 n2) [5UBRJ

6.4.6 {REALLOC (W!'. bp~ rpdl spdl fs) [5UBR]
6.4.7 (EXPFWS n) [SUE3R]
6.4.8 (EXPBPS n) [5UHR]
6.4.9 (EXPFS 11) [SUBR]
6.4.10 (EXPRPDL n) [SUGR]
6.4.11 (EXPSPDL. n) [SLJBR]
6.4.12 (CORE N) [SU8R]

6.5 COMPILED-CODE
6.5.1 (DECLARE dedI dccl2 ...) [FSUBR]

6.5.1.1 (SPECIAL <var l> {<var2>}) [DECLARATION]
6.5.1.2 (UNSPECIAL <var 1> {<var2>}) [DECLARATION]
6.5.1.3 (NOCAlL <a 1> {<a2>} .. ,) [DECLARATION)
6.5.1.4 (CALL <fnl> {<fn2>} ...) [DECLARATION]
6.5.1.5 (NOCOMPILE cxp) [DECLARATION]
6.5.1.6 (GLOBALMACRO <mac 1> {<mac2>} .. .) [DECLARATION]
6.5.1.7 (*SUBR <fnl> {<fn2>} ...) [DECLARATION]

6.5.2 (COMPL file 1 filc2 ...) [FSU8R]
6.5.3 (COMPLFNS LIST) [SUBR]
6.5.4 SYM
6.5.5 VALUE
6.5.6 SUGR
6.5.7 FSUBR
6.5.8 LSUBR
6.5.9 COMPILE-fUNTS
6.5.10 COMPILE-[RRORS
6.5.11 COMPILE-IN-LINE
6.5.12 TAG
6.5.13 LAP
6.5.14 ACCUMULATORS
6.5.15 (DEF -EV-PROP "I" V "P") [FSUBR)
6.5.16 (GETSEGLISP) [SU8R]
6.5.1 7 (GETSEGLlSPCO) [SUBR]

6.6 (DEPOSIT N V) [SUBR]
6.7 (EXAMINE N) [SUI3R]
6.8 SYSTEM-BUILD

6.8.1 (HGIICOR X) [SUBR]
6.8.2 (HGHORG X) [SUF3R]
6.8.3 (HGHEND) [SUBR)

6.8,4 (UNBOUND) [SU8R]

6.8.5 (SYSCLR) rSUBRJ
6.8.6 (INJTFL "FILELSTn

) [FSUBR]
6.8.7 (GTBLK LENGTH GC) [SLl8R]
6.8.8 (BLKLST LIST LENGTH) [SUBRJ
6.8.9 LlSPPN [VALUE]
6.8.10 (SETNAM name) [SUBR]

6.9 (NOUUO X) [SU8R]
6.10 SYSTEM-STUFF-MISe

6.10.1 (DEFSYM name number) [SUBR]

150

150

151

151

151

151

152

152

152

152

152

152

153

153

154

154

154

155

156

156

156

156

157

157

157

157

157

158

158

159

160

160

160

161

161

161

162

162

162

162

162

162

162

163

163

163

163

163

163

164

164

164

164

1

xv

6.10.2 (DUMP/\TO~v1S file) [FSUUR]
6.10.3 FJXIA
6.10.4 GVI\L [SUnr~J

6.10.5 GWD
6.10.6 INUMO
6.10.7 KI. 1ST [VALUE]
6.10.8 LAPEVAL
6.10.9 U\PKLST [VALUE)
6.1 0.1 0 LAPLST [VALUE]
6.10.11 LAPQLST [VALUE]
6.10.12 LAPSLST [VALUE]
6.10.13 (MI\KNUM X TYPE) (SUI3R]
6.10.14 (NUMVJ\L n) (SU8R]
6.10.15 (SIXHIT ATOM) [SUFJRJ
6.10.16 (SIXATM N) [SUBR]
6.10.1 7 QUST [VALUE]
6.10.] 8 SPECOIND
6.10.19 (UUQ UUQ-TYPE) [SUBRJ
6.10.20 (UUOPARM N UUQ-TYPE) [SUBR)

7. MISe

7.1 DATES
7.1.1 (DA TE) [SUf3R]
7.1.2 (OA. TEST R) [5UGR]
7.1.3 (f)ATESTf<X MSTIME DAlE) [SUBR]
7.1.4 (MSTJME) [5UBR]

7.2 (EXIT fl~G) [SUGR]
7.3 FN-PROPS [VALUE]
7.4 LASTWORD [VALUE) _
7.5 (NILL "X 1" "X2" ... "Xn") [FSUBR]
7.6 PROBLEMS

Index'

164

165

165

165

165

165

165

165

165

166

166

166

166

166

166

166

167

167

167

168

168

168

168

168

168

168

168

169

169

169

171

Preface

This manual was produced C'lutomatically from the on-line help dC'ltabase at Carnegie-Mellon

University. It is the best aVC1ilable source of reference information on the descendant of

St anford LISP and UCI LISP that is in use at C-MU as of 2 September 1979. The formatting is

sometimes deficient, but c.onsiderations of formatting and presentation had to defer to the

goal of producing the best JVflilClble reference information with minimum effort. Any pleasant

aspects of the appearance arc probably due to the use of the SCRIBE document formatting

system, by Grian Reid.

In general, this document does not attempt to provide an explanation of the purposes of

the facilities provided. On the other hand, the manual has been carefully organized and this

may help the reader. Also, in certain cases some bacr,ground information is included.

The maintainers of LISP will appreciate corrections and improvements especially if 'the

helpful ~ will ~ond It'd that ~ rnpl~cp. tho curro"t datab~~e entries. At C-MU the database

is contained in the files JNDEX.*[A3J lL15P), where the extension is same as the first

alphabetic character in the name of the function, command, value, etc. described. Send

comments and reports on problems to LISP@CMU-l OA.

This system and its documentation is the result of many people's work. Maintenance at

C-MU has been mainly done by Cris Perdue, who has made many miscellaneous improvements

and wrote the system that produc.ed this document. Don Cohen is responsible for the

existence of the on-line help data and maintains it. The top level and numerous other

improvements were made by Mark Stickel. The pretty printer, the most recent edition o.f the

compiler, improved printing functions and other features came from the version of UCI LISP

produced at Rutecrs University by Rick LeFaivre. This is cl descendant of UCI LISP, whose

authors are Robert J. Bobrow, Richard R. Burton, Jeffrey M. Jacobs, and Daryle Lewis. UCI

LISP is a descendant of Stanford LISP 1.6 by Lynn Quam, John Allen, and Whitfield Diffie.

LISP 1.6 in turn was orieinally an adaptation of an early version of MacLlSP at M.I.T.. 1 The

top level and editor in particular are directly derived from facilities provided by INTERLISP,

and we owe a debt to Warren Teitelman and all the others responsible for that system. The

text of the documentation here is ta~,en in part from the documentation of some version of

each of the sys1ems mentioned with 1he possible exception of MacLISP.

1A MacLlSP manu~1 of approprii'to vinta~o sh.tos that the LISP described it a direct descendant of the fir.t LISP
interpreter writton for the PDP-G, which was the first proeram ever written for the POP-5.

2

1. LISP-PROPER

1.1 ELEMENTARY

Ihe basic dat a types of LISP are numbers, strings, identifiers and S-expre5sions. Numbers

arc typcd as one would expect. Strings are surrounded by double-quotes ("). Identifiers are

also strings of characters, but some characters (such as blank, comma. dot, parens) terminate

ident ifiers unless specially marked. Two special identifiers are T, which is interpreted as the

const ant true, and NIL, which is treated as the constant false and is used as a list terminator.

S-expressions are defined as either objects of a basic data type or a dotted pair of

S-expressions, written (e 1 . e2). The latter are created by the function CONS. A special case

of an S-expression is a "list" which is either NIL or «S-expression> . <list». Lists are written

without dots or their corre5ponding parentheses, e.g. (1 • (2 . (3 . NIL») is written (1 2 3).

The interpreter cxpects function calls to be in the form of lists, e.g. «function-name> <first

argument> <second argument> ...).

1.1.1 OVERVIEW

Most of the interac.tion between users and the LISP system is handled by three programs.

The three can be distinguished by their "prompts":

<n> or > is the prompt for the TOP-LEVEL, which reads what you type, executes it and

prints the result. N is just a counter.

: or n: ;s a prompt from the BREAK-PACKAGE. The BREAK-PACKAGE is LISP's debugger. It

is very similar to the top-level except that it understands special commands to recover from

errors. The brea~~-packi'ge counts the number of times it has been entered recursively.

or n# is an EDITOR prompt. like the break-package, the editor counts the number of

times it has been entered recursively. Unlir,c the other two, the editor understands only

editor commands, and will not evaluate whatever expression you type to it.

Fortunately, all three of these programs understand the HELP command. To gel help

related to almost any word that is meaningful to LISP, just type "HELP <word>". For example

"HELP TOP-LEVEL" or "HELP BREAK-PACKAGE". An outline of the entire lisp system is built

into the help messages. If you are not sure what word to ask about, type "HELP INDEX" and

get the outline's top level.

1.1.2 NUMBER

3

1.1.2.1 INUM

INUMs arc intceers of ab~,olutc Vl1\uc lc~)s th.1n 2.... 16. They are represented as pointers

out~idc of the normal LISP address space.

1.1.2.2 FIXNUM

FixNUMs are integers of abc:,olute value between 2"'16 and 2""36. The FIXNUM property is

used to store values of FIXNUMS.

1.1.2.3 FLONUM

FLONUMs arc floating point numbers. The FLONUM property is used to store values of

FLONUMs.

1.1.3	 (QUOTE "E··) [FSUBRJ

returns E without evaluating it.

1.1.4 NIL [VALUE]

. is a primitive constant of LISP used to terminate lists and to represent falsehood (as the

value of predicates). Woe be unto them that would change the value Of NIL (from NIL)! In

keepins with its char ae.ter as both an atom and the represent ation of the empty list, the atom

NIL has been modified 50 that its CAR and CDR are both NIL. One can now, for example, pick

up t he arguments to an FEXPR via a sequence_of CAR/CDR combinations, with missing

arguments automatically set to NIL. Note that NIL now has a usable IJroperty list, although it

is not stored as the CDR of NIL as with other atoms (GET, PUTPROP, etc. are all aware of its

actual location).

1.1.5 T [VALUE]

is	 the primitive constant that LISP uses for TRUE (as in the value of a predicate).

1.1.6 (HELP "wordl·· ... ··wordn tt
) [FSUBR]

The HELP function prints messaGes associated with the words given as its arguments. Any

word ending with '.(ri)'. will find all of the help for words that are the same up to the final @,

e.g. (HELP Xm» will explClin ClII that starts with X. In addition there is a semantic index to the

entire LISP system, in tree-lir,e form where the pointers are "index" help messages. Do (HELP

INDEX) for a list of top level topics in the help tree.

4

The HELP function now treats (HELP) as if it were (HELP OVERVIEW). In order to

under!'> t and HELP you arc ~tron8ly urged to see HELPFILTER.

1.1.6.1 (HELPFILTER word llttributes) (FSUBR]

decides whether or not# to print a comment (HELP message). The word is the one found by

. GETDEF and (with pcrmis!Oion) to be explained. If HELPFILTER returns NIL then the message

will not be printed. You can progrrlm your own help by writing a new HELPFILTER.

The attributes ur.cd by HELP arc GASIC, GENERAL, DETAIL, EXAMPLES, XREF (backward

pointers to SEE, UNDER and INDEX), SEE (for related topics), UNDER (where the explanation

REALLY is) and INDEX (list of sub-categories with explanations), and the attributes STANDARD,

EDIT-COMMAND, TOP-LEVEL-COMMAND and BREAK-COMMAND to indicate that this explanation

refers to the interpretation given to the word by the editor, top-level ~r break package (only

for words that are meaninaful to more than one). BASIC is the vanilla-flavored attribute for

most first or only entries of a name. The attribute LONG flags the messages that are longer

than one screenful. OBSOLETE entries are for words that are no longer meaningful, and the

entry points to the new features that replace the obsolete one. OLD flags ar~ for things

about to become obsolete and NEW flags are for features that are about to appear (or are on

an experimental LISP).

The default helpfilter sets LASTHELP to contain the current word after it decides what to

return. It uses LASTHELP to automatically print the first entry for any word and asks the

user whether or not to print the following entries, with the following exceptions: - SEE

ent!ies are always printed (and preceded by "See") since they are always short. - UNDER

entries are always printed (with a message) since they are always short. - XREF entries are

always pri·nted (;:tnd preceded by "Pointed to by") since they are (hopefully) always short. No

distinction is made between being pointed to from an INDEX, UNDER or SEE entry.

OBSOLETE entries are always printed as a message saying that the word is obsolete and you

should use <entry> instead. - First entries are not printed automatically if they are long.

First ent ries are not printed automatically if they have any of the flags STANDARD,

TOP-LEVEL-COMMAND, BREAK-COMMAND, EDIT-COMMAND since the user probably wanted

only one of these explan;:ttions. The new HELPFILTER asks for one letter responses to its

questions. The response is stored as part of LASTHELP.

1.1.6.2 LASTHELP [VALUE]

contains the last word that has been HELPed and the (ascii code of) the character that the

user typed in response to the question of what to do next. It is set and used by the default

5

HELPFILTER.

1.2 EVAL-S-EXP

1.2.1 EVAL

(* EVAL Ii) [SUBR]
(EVAL E) [LSUUR]

*EVAL and EVAL evaluate the S-cxprc~sion E.

Exampl e: (EvAL (LIST (QUOTE ADD1) 3» • 4

The difference is that EVAL (but not *EVAL) allows a second argument which is interpreted

as a Binding Context Pointer (Bep).

1.2.2 APPLY

(*APPLY FN ARGS) [SUBR)
(APPLY FN ARGS) [LSUBR]

APPLY evaluates ARGS and binds each s-expression of that result to the corresponding

argument of the function FN. The value of FN is then returned.

APPLY can also be given a third argument which will be interpreted as a BCP. *APPLY

does not take a third argument, and is used for compiled calls on APPLY which do not have

three arguments.

Example:

(APPLY (FUNCTION APPE:-\O) (QUOTE «A B) (C OJ») = (A BCD)

1.2.3 (APPLY. FN ARGS) [SUBR]

APPLYu is similar to APPLY except that FN may be a function of any type including MACRO.

Note that when either APPLY or APPLY. is given an EXPR as its first argument, the second

argument is evaluated by APPLY# or APPLY, but the elements of the resulting list are directly

bound to the lambda variables of the first argument, and are not evaluated again even though

it is an EXPR.

1.2.4 FUNARG

(To be ridiculously brief about it,) There are times when you would like to evaluate

6

cxp,.e~>~iol'5 in (ontcxt~ other than lhe one from which the request for evaluation is made. In

LISP the solution is to 5pccify the context as a pointer into the SPDL. These pointers are

called BCP5.

For related information see FEXPR and SPDL.

1.2.5 BCP

A "binding context pointer" (BCP) is a pointer into the SPECIAL PUSHDOWN LIST

designating a level in recursive variable binding. BCPs are now simply displacements from

the bottom of the SPDL. When EVAL and APPLY receive a Bep as their last argument, all

SPECIAL (VALUE) CELLS are restored to the values they had at the time the BCP was

generated. Thi5 then causes EVAL and APPLY to referenc.e these variables in the binding

context which existed at the time of BC? generation. This feature primarily is useful to

prevent variable name conflicts when using EVAL, APPLY, and functional arguments. As with

the A-LIST, when EVAL and APPLY exit, the previous bindings are restored. There are two

ways to generate a Bep: If an FEXPR is defined with two arguments, then the second

argument will be bound to the SPECIAL PUSHDOWN LIST level at the time the FEXPR is caHed.

The second way to generate a BCP is with *FUNCTION.

Example using the BCP feature:

NQTE This example wilt not work, because at present the values of the variables are

not restored into the stack: Therefore, when the current use of the BCP ends, the next

reference to that variable will return the old value.

(DF EXCHANGE (L SPliCPDL)

(PROG(Z) (SETQ Z(EVAL (CAR Ll SPECPDL»

(APPLY (FUNCTION SET)

(LIST (CAR L) (EVAL (CADR L) SPECPDL»

SPECPDL)

(APPLY (FU~CTION SET)

(LIST (CADR L) Z)

SPECPDL»)

In this example, the use of the extra argument SPECPDL has only one effect: to avoid

conflicts between internal and external variables with names Land SPECPDL.

(EXCHANGE L M) will cause the values of Land M to be exchanged. The variable L in

EXCHANGE is not referenced by the calls on SET.

1.2.6 (*FUNCTION "FN tt
) [FSUBR]

*FUNCTION returns a list of the following form:

7

CFm;ARG FN. <BCP»

where BCP is the SPECIAL PUSHDOWN LIST level at the time *FUNCTION is called. The BCP is

now ~irnply a di~,plil(ernent from the bottom of the SPDL. Whenever suc.h a functional form is

used in functional context, (lll SPECIAL bindin~5 (lre restored to the values they had at the

time *FUNCTION was evaluated. When th~ functional argument has been APPLYed, the

previous bindings are restored as with the A-LIST.

1.3 LAMBDA-EX?

1.3.1 LAMBDA

(LAMBDA "ARGUMENT-LIST" "BODY")

(Note: LAMGDA is not considered to be a function.) An expression of this form denotes the

function whose value «(lelion) on the given list of arguments is the result of evaluating the

body. Except for LEXPRs, the argument list is a list of identifiers. Lambda expressions with

more than five aq~uments can't be compiled.

Exa.mpl es: (LAMBDA NIL 1)

is the constant function (whose value is always one) of no arguments.

(LAMBDA (X) (TIMES X X»

is a function which returns the square of its argument if it is a number. Otherwise an error

will result.

1.3.2 (FUNCTION UFN") [FSUBR]

FUNCTION is the same as QUOTE in the interpreter. In the compiler, FUNCTION causes the

S-expression FN to be compiled as if it were another named function, whereas QUOTE

generates an S-expression constant.

1.3.3 FEXPR

A FEXPR is an identifier which has a LAMBDA expression of one dummy variable on its

property list with property name FEXPR. FEXPRs are evaluated by binding the actual

argument list to the dummy variable without evaluating any arguments. OF is useful for

defining FEXPRs. The compiled form of an FEXPR is an FSUSR. FEXPRs can be defined with

two arguments, in which case the second is interpreted as a SCPo

(DP LISTQ (L) L)
CLISTQ A (Bl C) = CA CE) C)
(LISTQ) =: NIL

8

1.3.4	 LABEL

(LAREL "ID" "LAMnOA-EXPR")

(Note: LAGEL is not considered to be a function.) LABEL creates a temporary name ID for

its LAMBDA exprer.sion by creClting a local variable of that name whose value is the LAMBDA

expression. This makes it po~,sible to con5truct r.ecursive functions with temporary na;es.

Example:

(DE REVERSB £,L)

«LABEL REVEVSEl

(LA.\1BDA (L M)
(CO~D «ATO~ L) M)

(T (REVERSB1 (CDR L) (CONS (CAR L) M»»»

L NI L»

1.3.5 LEXPR

An	 LEXPR is an EXPR whose LAMBDA expression has an atomic argument "list" of the form:

(LAMBDA "10" "FO~~")

LEXPRs may take an arbitrary number of actual arguments which are evaluated and referred

to by the special function ARG. 10 is bound to the number of arguments which are passed.

The compiled form of an LEXPR is an LSUBR. Example:

(DB MAX N
(PROG	 (M)

(SETQ M (ARG N»

L (SETQ N (SUBt N»

(COND «(ZEROP N) (RETURN M»

«GREATERP (ARG N) M) (SBTQ M (AR.G N»»

(GO L»)

CMAX 1 1.2 4 3 -SO) • 4

1.3.5.1	 (ARG N) [SUBR]

ARG returns the value of the Nth argument to an LEXPR.

1.3.5.2 (SETARG N V) [SUBR]

SETARG sets the value of the Nth argument of an LEXPR to V and returns V.

1.3.6	 EXPR

An EXPR is an identifier which has a LAMBDA expression on its property list with property

name EXPR. EXPRs are evaluated by binding fhevalues of the actual arguments to their

corresponding dummy variables. DE is useful for defining EXPRs. The compiled form of an

EXPR is a SUBR.

9

lOE SQUARE CO (T I MES X X))

(DE .~1AX ex Y) ((,0:\0 ((GREATERP X n X) (T Y»)

1.3.7 MACRO

A MACRO is an# identifier which has a LAMBDA expression of one dummy variable on its

property list with property name MACRO. MACROs are evaluated by binding the list

cont aining the macro name and the ~etual argument list to the dummy variable. The body in

the LAMOOA expression is evaluated and should result in another "expanded" form. In the

interpreter, the expanded form is evaluated. In the compiler, the expanded form is compiled.

DM is useful for defining MACROs.

HELP could be defined by:

(DM HELP (L) CCONSCQUOTE GETOEF) (CONS <~A.\lli OF HELP PI LB) (CDR L»»

FOR-EACH is defined by:

(DEFPROP FOR-EACH
(LAMBDA (L)

(CONS (COND (01F.'v1Q (CADR L)
(QUOTE (MAP MAPC MAPCAN MAPCAR MAPCON MAPCONC MAPLIST»)

(SETQ L (CDR Ll) (CAR L»
(T (QUOTE MAPC»)

(CONS (CONS (QUOTE FU~CTJON)

(NCONS
(CONS (QUOTE LAMBDA)

(COND «(ATO~ (CADR L» {CONS (NCONS (CADR L»
(CDOeR L»)

(T (CONS (CADR L) (NTH (CeDeR L)
(LENGTH (CADR L»

»))))))
(COND «ATO\1 (CADR L» (NCONS (CADDR L»)

(T (LDI FF (CDDR L) (NTH (CDDDR L) (LENGTH (CADR L»»)
))))

MACRO)

1.3.7.1 (*EXPAND L FN) [SUBR]

(* EXPANDl LPN) [SUBR)

*EXPAND and *EXPANDI t\re MACRO expanding functions formerly used by PLUS, TIMES,

etc. They are equivalent to:

(DE .EXPAND (L F~) (*EXPAND1 (REVERSE (CDR L» FN»
(DE -EXPAND1 (L FN)

(COND (NULL (CDR L» (CAR L»
CT (LIST FN (_EXPAND1 (CDR L) FN) (CAR L»»)

Wit h PLUS defined as

(OM PLUS (}.) (-EXPM:D L(QUOTE .PLUS))

(PLUS A 8 C D) expands to:

10

1.4 DEFINITIONS

1.4.1	 (DE UNAME" "ARGUMENT-LIST" "FORMI" ... "FORMn") (FSUBR]

DE, OF C\nd OM C\re used to define EXPRs, FEXPRs and MACROs. They place the form

(LAMBDA ARGUMENT-LIST FORMI ... FORMn) on the property list of NAME unda(-property

EXPR, FEXPR or MACRO. DE, OF, and DM will generate an error if there are fewer than three

arguments, the first argument is not a literal atom, or the second argument is not a list (or

literal atom for DE).

For related informC\tion see MARK!CHANGED, CHANGES, and //PUTPRQP.

If the function being defined was not previously defined, the function name will be

returned. Otherwi5e, a list consisting of the function name and "EQUAL" or "REDEFINED" will

be returned, depending on whether an EQUAL definition was already present. In the cases of

a new definition or a redefinition, MARK!CHANGED will be called to record the fact that the

function has been cha'''eed. The new definition will always be at the front of the property

list, insuring that it will be used as the definition of the function. DE, DF, and DM now call

/ /PUTPROP rather than PUTPRQP so they will b~ undoable.

1.4.2	 (DV "atom" "value") [FSUBR]

is equivalent to (SETQ atom (QUOTE value». DV is undoabJe.and calls .MARK!CHANGED.

1.4.3 (DEFPROP "I" "V" "p") [F5UBR]

DEFPROP is the same as PUTPROP except that it does not evaluate its arguments, and

DEFPROP returns I.

For related information see"/PUTPROP, MARK!CHANGED, CHANGES, and GRINPROPS.

DEFPROP has been modified to generate an error if it is called with other than three

arguments, its first argument is not a literal atom, its third argument is neither a literal atom

nor an INUM, or its first argument is T or NIL and its third argument is VALUE. If P is in

GRINPROPS (the list of property names "seen" by GRINDEF) and the new property value is

not EQUAL to the old one, MARK!CHANGED will be called to record the .fact that the definition

of I has been changed. DEFPROP now calls I/PUTPROP rather than PUTPROP so it will be

undoable. If the property defines a function, it will always be placed at the front of the

property list, insuring that it wilt be used as the definition.

11

1.4.4 (DEFLIST "L" {"dcfval"} "prop") (FSUBR)

DEFLIST is u~;efLJI for picKing n prorcrty on a number of fltomic symbols. L should be a list

of items, e~ch of which is either an atomic syrnbol A or a two-clement list (A val). Each A will

have a prop property pl;lccd on its property list, wilh a value of val if present, or defval if

only the ~tOn'llC symbol was given. Defval is optional, with a default value of T assumed.

DEFLIST is undoable and calls MARK!CHANGED. As an example of the use of DEFLIST, the

following will give TOM and BOB agcs of 15, and SAM an ~ge of 20 (i.e., the 20 overrides the

default value of 15):

(DEFLIST (TOM BOB (SAM 20» 15 AGE)

1.4.5 (DEFSYNON "aU" "at2" "prop") (FSUBR]

Places the <prop> property of <at2> onto <at 1>. DEFSYNON is undoable and calls

MARK!CHANGED. It may be used to give two synonymous names to a variable. If the

property defines a function, the property will always be placed at the front of the property

list, insuring th~t it will be u!,cd as the definition.

1.5 CONTROL

1.5.1 CONDITIONALS

1.5.1.1 (COND Clau501 Clau:;o2 ...) [FSUBR]

where Clausei i5 a list of expressions, (E<i,l> E<i,2> ... E<i,n».

The COND is evaluated by evaluating the E<i,l>s starting from i=l until one is found that

evaluates to samet hing ot her than NIL. Then the rest of the expressions in its list are

evaluated, the value of the la~.t being the value returned from the CONDo If all of the E<i,l>

evaluate to NIL the value of the COND is NIL.

Example!):

(DE ABS (X) (CONO (MINUSP X) (MH4US X) (T X»)
(Dli NOT (X) (COND (X NI L) (T))

1.5.1.2 (SElECTQ X "Y 1.. "Y2" ... "Yn" Z) (FSUBR]

This function is used t·) select a sequence of instructions based on the value of its first

argument X. Each of the Vi is a list of the form (Si E[I,i] E[2,i] .•. E[k,i]) where Si is the

"selection key".

12

If Si is an atom the value of X is te~ted to see if it is EQ to Si (which is not evaluated). If

so, the expresc;;ons E[l,i] ... E[k,i] are eVC1luoted in sequence, and the value of SElECTQ is the

value of the last expression evalu::lted, i:e. E[k,i]. If Si is a list, and if any element of Si is EQ

to tho value of X, then E[l,i] ... E[k,i] are evaluated in turn as above. If Yi is not selected in

one of the two ways dc!;cribcd then Y[i+l) is tested, etc. until all the Y's have been test~d. If

none is selected, the value of SELECTQ is the value of Z. Z must be present.

An example of the form of a SELECTQ is:

(SELECTQ (CAR 'tt')
(Q lPR INT FOO) (FI E \\'»
UA E IOU) (VO"'EL lrJ»
(COND (W (QUOTB STOP»»

which has two cases. Q and (A E lOU) and a default condition which is a CONDo

SElECTQ compiles open, and is therefore very fast; however, it ,will not work if the value

of X is a list, a laq~e integer, or floating point number, since it uses EQ. Compiled SELECTQs

bind the variable SELECTQ to the value computed as the selection key.

1.5.2 MAPPING

"Mapping" r.efers to a loop which is controlled by a list. Typically one wants to do

something for each element of a list. The FOR-EACH function makes direct use of the

mapping functions almost obsolete. However, the user must still understand what the

mapping functions do in order to get FOR-EACH to do it instead. Similarly, FORALl and

EXISTS are the reasonable ways to ll~e the lower level EVERY and SOME functions.

All of the map fundions have been extended to allow called functions which need more

than one argument. The function FN to be called is still the first argument. Arguments 2 thru

N (N < 6) are used as arguments 1 thru N-l for FN. If the arguments to the map functions

are of unequal length, the map function terminates when the shortest list becomes NIL. The

functions behave the same as the previous definitions of the functions when used with two

arguments.

Example: This will set the values of A, Band C to 1, 2 and 3, respectively.

CMAPC (FUNCTION SBT) (QUOTH (A B e» (QUOTH (1 2 J»)
NfL

1.5.2.1 (MAP FN L) [LSUBR]

MAP applies the fundion FN to list L and to successive CDRs (or "tails") of L until l is

reduced to NIL. The value of MAP is NIL.

13

Example: (MAP (FU~CTION PRIKT) (QUOTE (X Y 2») •
PR I NT: (X y Z)

PRINT: (Y 2)

PR I NT: (2)

RETURN: NIL

1.5.2.2··(MAPC FN L) [LSUBR]

MAPC is identical to MAP except that MAPC applies function FN to the CAR of the

remaining list at each step. I.e. Fn is applied to each element of the list L. The value of

MAPC is NIL.

Example: CMAPC (FUNCT ION PR INT)' (QUOTE (X Y Z») •
PRINT: X
PR INT: Y
PR 1NT: 2
RETURN: NIL

1.5.2.3 (MAPCON FN ARG) [LSUBR]

MAPCON applies the function FN to the list ARG. It then takes the CDR of ARG and applies

FN to it. It continues this until ARG is NIL. The value of MAPCON consists of all of the values

returned by FN NCONC'ed together. For a single list MAPCON is equivalent to:

(DE MAPCON (PN ARG)

(COND «NULL ARG) NIL)

(1 {NCONC (FN ARG)

(MAPCON FN (CDR ARG»»»

Example

. • (MAPCON (FUNCT I ON COpy) (QUOTE (1 2 3 .. »)
(1 2 3 .. 2 3 .. 3 .. 4)

1.5.2.4 (MAPCAN FN ARG) [LSUBR]

MAPCAN is similar to MAPCON except it calls FN with the CAR of successive CDRs of ARG

instead of the whole list. For example, a function to remove all of the vowels from a word

can be easily written as:

(READL 1ST (MAPCAN (FUNCT ION YOWELTEST) (EXPLODE WORD»)

where VOWELTEST is a procedure which takes one argument, LET, and returns NIL if LET is a

vowel, and (LIST LET) otherwise.

For related information see SET-OF.

1.5.2.5 MAPCONC [LSUBR]

is the same as MAPCAN

14

1.5.2.6 (MAPLlST FN L) [LSU8R)

MAPLIST applic~ the function FN to list L ar,d to successive CDRs of L until L is reduced to

NIL. The value of MAPLIST is the list of values returned by FN.

Exa.mpl cs: C\1APLI ST (FtrnCTI ON CAR) (QUOTE (A B C 0») • (A B C 0)
(MAPLIST (FU~CTIO~ REVERSH) (QUOTE (A BCD») •

«0 C B A) (0 C B) (0 C) (0»

1.5.2.7 (MAPCAR FN L) [LSUOR]

MAPCAR is identical to MAPLlST except that MAPCAR applies FN to the CAR of the

remaining list at each step.

Exampl es: (MAPCAR (FUNCTION XCONS) (QUOT! (A BCD») • «A) (B) (el (D»
(MAPCAR (FUNCTION ATOM) (QUOTE (eX) y (Z»» • (NIl. T NIL)

1.5.2.8 (MAPATOMS fn) [SUBR]

applies fn (a function of one aq~umcnt) to every atom in OaUST and returns NIL It

compiles in line.

1.5.3 (FOR-EACH {MAPfn} "FORMAL" LIST "FORMl" ..• "FORMn") [MACRO]

FOR-EACH is a MACRO that expands to a form which successively assigns to variable

FORMAL an element of LIST and evaluates FORM1._ FORMn with that variable value. The

generated form is (MAPC (FUNCTION (LAMBDA (FORMAL) FORMl _ FORMn» LIST). If the

optional argument, MAPfn, is included, then that mapping function is used instead of MAPC.

Multiple formals may be supplied in a list in which case there must be a LIST argument for

each. EXPAND-F~ is the function that expands FOR-EACH.

(FOR-EACH X '(1 2 3) (PRINT X» ;; prints 1, 2 and 3. (Returns nil.)
(POR-EACH M.I\PCAR X • n 2 31 (+ X X) ;; returns (2 .. 6).
(POR-EACHMAPCAN P PEOPLE

(COND ((FEMALE P) (NCO~S P»» ;; equivalent to
" (SET-OF P PEOPLE (FEMALE Pl)

(FOR-EACH MAPCAR ex y) '(12 3) '(3 2 1) (EQ X V»~ i; returns (NIL T NIL)

1.5.4 (SET-OF <va,.> <list> <predicate» [MACRO]

Although SET-OF is related to EXISTS and FORALL from the user~s point of view, it actually

expands into a call on MAPCAN. It returns a list of those elements of <list> satisfying

<predicate>. <var> is bound to the argument (members of <list» in <predicate>. SET-OF

always creates new cells at the top level of the list it returns.

Like other mapping functions, SET-OF can map along several lists at once if <var> is

specified as a list of variables and more than one list is given. However the value returned

15

will only include the tricrnber!> of tile first list for which the predicate was satisfied. Any

extra arGuments will be iBnorcd (only one form is u~cd).

(5 ET- 0 F X '(1 J 5 2 6) () X .. » .. (S 6)

(SET-OF ex Y Z) '(1 23) '(2 .. 6) '(345) (NEQ Y Z» :: (1 3)

1.5.5 PROGRAMS

1.5.5.1 (PROG "VARLlST" "BODY") [FSUBR]

PROG is a function which ta~,C5 as arguments VARLIST, a list of program variables which

are initialized to NIL when the PROG is entered, and a BODY which is a list of labels (which

are identifiers) and statements (which are non-atomic S-expressions). PROG evaluates its

statements in sequence until either a RETURN or GO is evaluated, or the list of statements is

exhausted. In the first case the prog exits with the value passed to the RETURN. In the

second case the execution continues at the label passed to the GO. In the last case the prog

exits with the value of NIL.

Note: 80th RETURN and GO should only occur either at the top level of a PROG, or in

composit ions of CONO, AND, OR, and NOT which are at the top level of a PROG.

(Unfortunately,) Prog and Go work at lower levels, and even from functions called in the

PROG, but this iSlIsually not intended and can mar.e for bugs that are very hard to find.

1.5.5.2 (GO "10") [FSUBR]

GO causes the sequenc.e of control within a PROG to be transferred to the next statement

following the label ID. In interpreted PROGs, if ID is non-atomic, it is repeatedly evaluated

until an atomic value i5 found. However, in compiled PROGs, ID is evaluated only once. GO

cannot I r ansfer into or out of a PROG.

1.5.5.3 (RETURN X) [SUBR]

RETURN causes the PROG containing it to be exited with the value X. RETURN should be

used at the top level of a PROG or at the top level of a CONO, AND, OR, and NOT which are

themselves At the top level of a PROG.

1.5.5.4 (PROG2 Xl X2 ... Xn) [SUBR]

(For n<6) PROG2 evaluates all expressions Xl X2 ... Xn, and returns the value of X2.

1.5.5.5 (PROG 1 Xl X2 ... Xn) [SUOR]

(For n<6) PROGl evaluates all expressions Xl X2 ... Xn and returns Xl as its value.

16

1.5.5.6 (PROGN Xl X2 ... Xn) [FSUBR]

PROGN cvaluatc~ all c)(pre~sion5 Xl X2 ... Xn and returns Xn as its value.

1.5.5.7 (SETQ "10" V) (FSUI3R]

SETQ changes the value of 10 to V and rerurns V. SETQ evaluates V, but does not evaluate

10.

1.5.5.8 (SET E V) [SUBR]

SET changcs the value of the identifier specified by the expression E to V and returns V.

Both arguments are evaluated.

Note: In compilcd functions, SET can be used only on globally bound and special variables.

1.5.6 SIGNALS

1.5.6.1 (ERRSET E "F") [FSUBRJ

ERRSET evaluates the S-cxprc5sion E and if no error occurs during its evaluation, ERRSET

returns a list whose only element is the value computed. If an error occurs, then if F == NIL

the error message is suppressed, the break pac~\age is not entered and ERRSET returns NIL.

If F = 0 (zero) then the error message is printed on the current output device. Otherwise

(including the case in -which F is not specified) the error message is .printed on the teletype.

-
1.5.6.2 (ERR E) [SU8R]

ERR returns the value of E to the most recent ERRSET, or to the top level if there is none.

There is now a ~~ccial case of ERR. If the value of E is ERRORX, then ERR will return to the

most recent ERRSET which has F=ERRORX. This allows two levels of user errors. If a

Control-G (or whatever character that has been changed to by ERRCH) is typed in by the

user it generates a (ERR (QUOTE ERRORX». This means that the user can now protect himself

against this type of input error.

1.5.6.3 (CATCH "<expr>" ("<Iabol>"}) [FSUBR]

(CATCH "<HXPR>" (("<11>" "<Hll>" ••• ») (("<12>" "<B2l>" ••• ») •••)
(THROW <VALUE> ("(LABEL)")) [FSUBR]

CATCH and THROW provide a more convenient method of programming transfers to a

higher level in the control hierarchy than ERRSETtERR, which (as the names imply) were

originally designed for error handling rather than planned (programmed) transfers. CATCH

17

simply cV;1luiltc!". <cxpr>, and if no THROW--, (Ire executed durine that evaluation, returns the

vClluc of <cxpr>. If a Tllf<OW is cVClluatcd and the CATCH has nO <label> then the CATCH is

immediately exited with <vtllue> r:l~ its v::llue (regardless of whether the THROW had a <label>

or not). An unlabeled C"lCH will thus catch a value thrown by any THROW. If the CATCH

has a <label>, it will catc.h values thrown only by a THROW with the same label; other THROWs

are pas!)cd on in 5etirc.h of a higher -level CATCH with a matching ICibel.

Finally, a sil"\~le CATCH can catch a variety of different THROWs via a SELECTQ-like

mechanism as shown above. Each <L> is either a <label> or a list of. c"'lahel>s; if a THROW

<label> rna1c.hes an <L> or a rracn"lber of an <L>, the corresponding <e>s are evaluated and the

value of the last one is returned a~ the value of the CATCH. If no labels matc.h, the THROW is

passed on in sc-"rch of a hieher level CATCH. Note that a missing THROW <label> is

equivalent to a </<1bel> of NIL, and may be caught as such. CATCH and THROW are compiled

in-line. The variable THROW is given the value of the first argument to THROW (the value

being thrown), and the variable CA.TCH is bound to the label (if any) specified by the throw.

1.5.6.4 (THROW valuQ {tllabel"}) [FSUBR]

returns to the next higher CATCH which recognizes its label. The full explanation may be

found under CAlCH.

1.5.7 REPETITION

1.5.7.1	 DO, FOR, UNTIL and WHILE [MACRO]

are all forms of the same iteration macro expanded by EXPAND-DO. The call is scanned for

keywords related to a for-loop variable. If the word FOR is found. the next word is taken to

be the name of a variable (which is bound in a prog so the other expressions can use it). If

one of the symbols {Gets, =, -' :=} is found, the next expression is taken to be the initial

value of the loop variable (if there is one). Otherwise it is initialized to the value 1. If one of

the symbols {Step, By} i!. found the next expression is taken as the increment. The default is

1. It'the word TO is found, the next expression is taken to be the limit. The default is no

limit (loop forever). The call expands into a Prog. First the loop variable is initial.ized, if

there is one. Then cOmes the body of the loop. Finally the variable is incremented, the new

value is tested against the lirflit (exiting the loop if it is greater - negative increments are not

understood), and the loop is restarted. The body of the loop consists of the elements of the

list that were not specially interpreted, with their order in the call preserved. The only

exc.eptions arc Do, While and Until. Do's are ignored entirely. When a While is found, the

next expression is treated as a te$t. If its value is NIL the loop is exited. Until works the

18

same way but the exit oc.c.ur!> if the test is non-NIL.

The limit cxprc~!::ion i~ reevaluated on every test. Any exit from the loop from a While

test, Until te!d or increment po:.t the limit rcsult~ in a valuo of NIL. It is possible to exit the

loop at any time and with any value by u~ing a RETURN. Fnt nil, step nil, To nil, Gets nil, and

their equivrllcnts (u!;in2 the other words) have the effed of supplying default values for the

various par Clmct-crs. For nil cau~cs the others to be igl1orc(l, since the resulting loop has no

loop variable. To nil cau!;cs the test against the limit to be skipped. The other two

parametcr~ default to 1.

(For i to 10 (print 1»;; print numbers from 1 to 10.
(Do (print 'hello»;; prInt hc]]o foreyer.
("'hl1c n11 (print 'hello»;; do nothing.
(00 (print 'hello) until n;; print hello once.
(For 1 by 5 until (= 1 11) (print 1);; print 1 and 6.
('For 1 by 5 (print 1) until (= 1 11»;i print 1, 6 and 11.
(Por 1 to (+1 1) (print 1» ;; print 1,2,3, ••• (forever).

1.5.7.2 (EXPAND-DO form) [5UBR]

is the program that cxpand5 the DO, FOR, UNTIL and WHILE macros.

1.6 PREDICATES

A predicate is a test, or a boolean function. Originally predicates were expected, to return

either T (for true) Or NIL (for ft:l15e), but since the functions that use the values of predicates

consider anything other tnan NIL to mean true, many predicates have been generalized to

return more useful values than T. Another useful tidbit is that predicates _have traditionally

been given names ending in P, ~uch as ZEROP. This convention is not universal, but when you

see a function whose name ends with p. chances are good that it's a predicate.

1.6.1 S-EXP-PRED

1.6.1.1 (EQ X Y) [SUBR]

The value of EO is T if X and Yare the same pointp.r, i.e., the same internal address.

Identifiers on the OBLIST have unique addresses and therefore EQ will be T if X and Yare

the same identifier. EO will al~o return T for equivalent INUMs, since they are represented as

addresses. However, EQ will not compare equivalent numbers of any other kind.

For related information see OBLIST.

19

E.xarnpl cs: (EO T T) e T
(EQ T ~ 11) :: 1\11.

(EO 'A I B) :: NIl.

(EQl1.0) = NIL

(EQ 1 1) = r

(EQ 1.0 1.0) :: NIL

1.6.1.2 (NEQ X Y) [SUBR]

returns T if X is not EQ to Y, otherwi~.e NIL.

1.6.1.3 (EQUAL X V) [SUI3R]

The value of EQUAL is T if X and Yare identical $-expressions. EQUAL can also test for

equality of numbers of mixed types. EQUAL is equivalent to:

CLA.'r1BDA (X Y) (COXD	 (CEQ X Yl T)

«A:\D (:-;(j~1BF.RP X) (i\UMBERP Y»

(ZEROP (.. 01 f X Y»)
(COR (PATOM X) (PATOM V»~ NIL)
«(EQUAL (CAR X) (CAR V»~

(EQUAL (COR Xl (CDR	 V»~»~)

1.6.1.4 (NULL L) [SUBR]

=T if L is NIL, otherwise NIL.

1.6.1.5 (MEMO X Y) [SUBR]

returns the first tail of Y whose CAR is EQ to X, NIL if there is none. I.e. it returns a

non-nil value if X is EQ to an element of Y.

1.6.1.6 MEMB [SU8R]

i!; the same a~ MEMQ

1.6.1.7 (MEMBER X Y) {SUBR]

retur ns the first tail of Y whose CAR is EQUAL to X, NIL if there is none. I.e. it returns a

non-nil value if X is equal to an element of Y.

1.6.1.8 (IN? X Y) [SUBR]

INP returns T if X is EQ to some subcxpression of Y, NIL otherwise. (The search stops at

atoms.)

1.6.1.9 (CONSP X)	 [SU8R]

Returns X if X i~ a (On5 cell. otherwise NIL

20

1.6.1.10	 (ATOM X) (SUl3I{]

The vClluc of /\TOM i~i T if X is either an identifier or a number; NIL otherwise.

1.6.1.1 1 (EQ? X Y)	 [SU£3R]

EQP returns T if X and Yare EQ or are EQUAL numbers, otherwise NIL.

1.6.1.12 (LITATOM X) [SUBR]

The value of LlTATOM is T if X is a literal atom, i.e., an atom but not a number, otherwise

NIL.

1.6.1.13 (?ATOM X) [SUBR]

The value of PATOM is T if X IS an atom or X is a pointer outside of free storage,

otherwise N1L.

1.6.1.14	 (STRING? X) [SUBR]

The value of STRINGP is T if X is a string, otherwise NIL.

1.6.1.1 5	 (TAILP X Y) [SUI3R]

The value of TAILP is X if X i.s a list and a tail of Y, Le., X is EQ to some number of CDRs

(including 0) of Y. The search stops when a CDR returns an atom or NIL. If X is not a tail of

Y, then TAILP returns NIL.

1.6.1.16 (SOUNDP X) [SUBR]

BOUNDP returns T if X is a literal atom with a value cell whose cdr is not UNBOUND, i.e., if

X is a bound variable (other than a local compiled variable), NIL otherwise.

1.6.2 QUANTIFIERS

The EXISTS and FORALL functions are convenient user interfaces to the lower level SOME

and EVERY functions. These are closely related in function to the SET-OF function and the

FOR-EACH function. Loo~. them up if the quantifiers don·t quite serve your purposes.

1.6.2.1 (SOME SOMEX SOMEFNI SOMEFN2) [SUBR]

SOME return~ th~ first tail of SOMEX for which SOMEFNl of its CAR returns a non-NIL

value. Otherwise nil is returned. Successive tails of SOMEX, whose first elements are tested

21

by SOMEFN1, MC computed 1)/ rc-pcilted Jppliciitions of SOMEFN2. Thus, the function

SOMEFNI is fir!.t ilpplicd to (CI\H SO~~EX), then to (CAR (SOMEFN2 SOMEX», then to (CAR

(SOMEFN2 (SOMErN2 SOMEX»), ele., until the rcmClinder of SOMEX is atomic or NIL. If

SOMEFN2 is NIL, then CDR is used.

"
1.6.2.2 (EVERY EVERYX EVERYFNI EVERYFN2) (SU8R]

EVERY returns T if the result of applying function EVERYFNl to each selected element of

list EVERYX is non-NIL, NIL otherwi5c. EVERYFN2 is used to compute successive fails of

EVERYX to who!:,e first clement::. EVERYFNI will be applied. Thus, the function EVERYFNI is

first applied to (CAR [VERYX), then to (CAR (EVERYFN2 EVERYX», then to (CAR (EVERYFN2

(EVERYFN2 EVERYX»), elc., until the remainder of EVERYX is atomic or NIL. If EVERYFN2 is NIL,

then CDR is used.

1.6.2.3	 (EXISTS <var> <list> <prcdicato> {<next>}) [MACRO)

This expands into a tall on SOME in much the way FOR-EACH expands into a mapping

function. The effect is that <var> expands into the formal parameter of a function whose

body is the predicate. which must be a single expression. <list> must return the list to be

searched. The opt ional <next> actually must return the "ext TAIL. If <next> is ommited, the

function CDR is assumed. <var> will be bound to its CAR. The value returned i"s the first tail

of <list> whose CAR sat isfics <predicate> (or NIL if there is none). Only one list and formal

parameter may be given. Anything after the optional last argument will be ignored.

(EXISTS I '(1 2 3 ~ 5) () I 3»)

This expanses to:

(SOME (QUOTE (1 2 J 4 5» (FU~CTION (LAMBDA (i) () I J») NfL)

and returns (4 5)

1.6.2.4 (FORALL <var> <Ii~t> <predicate> {<tail-fn>}) [MACRO]

returns T if every element of <list> satisfies <predicate> and NIL otherwise. In the

evaluation of <predicate> the element of <list> being tested is bound to <var>. Unlike other

maping functions only one list can be given. The optional last argument is a tail computing

function (itS in EVERY). If <tail-fn> is ommited then the function CDR is assumed. Anything

after that argument is ignored. FORALL expands into a call on EVERY in the same way as

EXISTS expands into a citll on SOME.

1.6.2.5	 (NOTEVERY EVERYX EVERYFNI EVERYFN2) [SUBR]

NOTEVERY is defined to be {NOT (EVERY EVERYX EVERYFNI EVERYFN2».

22

1.6.2.6	 (NOTANY SOMEX SOMEFNI SOMEFN2) [SUBR]

NOTANY i5 defined to"be (NOT (SOME SOMEX SOMEFNI SO~~EFN2».

1.6.3 NUMERICAL-PRED

1.6.3.1	 (NUMBER? X) [SUBR]

= T if X is a number of any type, Nil otherwise

1.6.3.2	 (INUMP X) [SUBR]

INUMP returns X if X is an INUM. It returns NIL otherwise.

1.6.3.3 (NUMTYPE X) [SUBR]

returns the type of the number X - FIXNUM (inc. INUM) or FLONUM.

1.6.3.4	 (ZERO? X) [SUBR]

= T if X is zero of any numerical type, error if X is a non-numerical quantity, NIL otherwise

1.6.3.5	 (=0 X) [SUBR]

(=0 X) is identical to (ZEROP X).

1.6.3.6	 (ONEP X) [SUBR]

ONEP returns T if X is EQUAL to 1, NIL otherwise.

1.6.3.7 (MINUS? X) [SUBR]

== T if X is a negative number of any type, error if X is a non-numerical quantity, NIL

otherwise

1.6.3.8	 (= X Y) [SUBR]

(= X Y) is identic.al to (EQP X V).

1.6.3.9 (GREATER? Xl X2 ...Xn) (LSUBR]

True if (*GREAT Xl X2) and (*GREAT X2 X3) and .•. (*GREAT Xn-l Xn). Error if any Xi is

non-numerical. NIL otherwise.

23

1.6.3.10	 (> X J ". Xn) [LSUBR]

> is identical to GREATERP.

1.6.3.11	 (*GREAT X Y) [SUGR]

Returns Y if X > Y, and NIL otherwise. Error if either X or Y is not a number.

1.6.3.12	 (LESS? XI X2 ... Xn) [LSUBR]

True if X1 to Xn are in strictly a~candin8 numerical order, otherwise NIL.

1.6.3.13	 « Xl ... Xn) [LSUBR]

< is identical to LESSP.

1.6.3.1 4 (*LESS X Y) (SUBR]

Ret urns Y if X < Y, and NIL otherwise. It gener ates an error if either X or Y is not a

number.

1.6.4 BOOLEAN-PRED

1.6.4.1	 (NOT X) [SUBR]

= T if X is NIL, NIL otherwise

1.6.4.2 (OR XI X2 ... Xn) [FSUBR]

== The first non-NIL argument or NIL if all Xi are NIL. OR only evaluates it arguments until

it finds one that i~ non-NIL.

1.6.4.3 (AND Xl X2 ... Xn) [FSUBR]

= Xn if all Xi are non-NIL, NIL otherwise. AND only evaluates its arguments up to the first

one that is NIL.

1.6.4.4 (BOOlE N Xl X2 ... Xm) [lSUBR]

BODLE causes a 36 bit Boolean operation to be performed on its arguments. The value of

N specifies which of 16 Boolean operations to perform. For m - 2, the ith bit in (BODLE N A

B) is defined: (-X is used as an abbreviation for (not X).)

24

N r~::;ult N result
0 0 8 -AI and -Bl
1 Al and Bl 9 Ai equiv 81
2 -Ai and 81 10 -A1
3 81 11 -Ai or Bl
4 Al and -8t 12 -81
5 At 13 Alar -81
6 Ai ncq 81 14 -Ai or -81
7 Ai or 81 15 1

For m > 2, 800LE is defined: (BOOLE N ... (BOGLE N (BOGLE N Xl X2) X3) ... Xm)

The method in this mildness (in case anyone cares): Let A be 5· (0101 binary) and B be 3

(0011). Then (GOOLE N A B) returns N in the last four bits (for N between 0 and 15).

1.7 FUN-ON-S-EXP

1.7.1 GETTING-COMPONENTS

1.7.1.1 (CAR L) (SUBR]

The CAR of a non-atomic S-expression is the first element of that dotted pair. CAR of NIL

is NIL. CAR of any other atom is undefined and tends to lead to an illegal memory reference.

1.7.1.2 (CADR s-exp) [SUBR]

(also CADDR, CDDAAR etc.) Ali of the compositions of CAR and CDR functions are available

up to four As and Os. e.g.

(CADR L) • (CAR (CDR L»
(CDAADR L) = (CDR (CAR (CAR (CDR L»»

1.7.1.3 (CDR L) [SUBR]

CDR of a non-atomic S-expression is the second (and last) element of that dotted pair. CDR

of NIL is NIL. CDR of any other atom is its property list. CDR of an INUM causes an iHegal

memory reference. CDR of any other number is the list structure representation of that

number.

1.7.1.4 (LAST x) [SUBR]

LAST returns the la5t part of a list according to the following definition:

(DB LAST (L)
(COND ((ATOM (CDR L» L)

(T (L-\ST (CDR L»»)
Examples: (LAST (QUOTB (A B C») = (C) = (C. NIL)

(LAST (QUOTB (A B • C») = CLC)

25

1.7. J.5 (NTH X N) [SUBR]

The value of NTH i~ the tail of X bc&inning with the Nth element, e.g. if N=2, the value is

(CDR X), if N~3, (CODR X), etc. If N= 1, the value is X, if N=O, for consistency, the value is

(CONS NIL X).

1.7.2 BUILD

1.7 .2.1 BUILD-NONDESTRUCTIVE

1.7 .2.1.1	 (CONS X V) [5UBR]

The value of CONS of two S-expressions is the dotted pair of those S-expressions.

For related information see FREE-STG, Ge, GCGAG, SPEAK, GCGOT, and METER.

Exampl cs: (CO~S (QUOTE A) (QUOTE B» = (A • B)
(CONS (QUOTE A) (QUOTE (C») = (A C)

1.7.2.1.2 (XCONS X Y) [SU13R]

•	 (CONS Y X)

1.7.2.1.3 (NCONS X) [SUBR)

•	 (CONS X NI L)

1.7.2.1.4	 (LIST Xl ... Xn) [FSUBR]

= (CONS X1 (CONS X2 .•.{CONS Xn NIL)...»List evaluate!. all of its arguments and returns a

list of their values.

Examp] es: (LIST) = NIL
(LIST
(LIST

(QUOTE A»
(QUOTE A)

= CA)
CQUOTE B» • (A B)

1..7.2.1.5 (QUOTE! "FORMI" ... "FORMn") [FSU8R]

QUOTE! is a complement of the LIST function. LIST forms a list by evaluating each form in

the argument list; evaluation is suppressed if the form is QUOTEd. In QUOTE!, each form is

implicitly QUOTEd. To be evaluated, a form must be preceded by of one of the evaluate

operators! and!!. ! FORM evaluates FORM and the value is inserted in the place of the call; !!

FORM evaluates FORM and the value is spliced into the place of the call. Use of the evaluate

operators can occur at any level in a form argument.

(QUOTE! CONS t (CONS 1 2) J) :' (CO~S (1 • 2) 3)
(QUOTEI 1 I I (LI ST 2 3 4) 5) == (1 2 J " S)
(QUOTEI TRY It (THIS ! O~E)) (TRY (THIS! OKE»

26

1.7 .2.1.6 (*APPEND X Y) [SUBR]

(DE .APPEND (X Y)

(COND «NULL X) Y)

(T (CONS (CAR X) (*APPEND (CDR X) Y»»)

1.7.2.1.7 (APPEND Xl X2 ...Xn) (LSUBR]

=(*APPEND Xl (*APPEND X2 ...(*APPEND Xn NIL)...»
Examples: (APPEND) = NIL

(APP END <QUOTE (A B» (QUOTE (C D)) (QUOTE (E») = (A BCD B)

1.7.2.1.8 (COpy X) [SUBR]

returns a copy of X. All of the list cells at all levels are copied. (COpy X) is equivalent to

(SUBST a a X).

1.7.2.1.9 (KWOTE X) [SUBR]

KWOTE is defined as (LIST (QUOTE QUOTE) X).

1.7 .2.2 BUILD-DESTRUCTIVE

1.7.2.2.1 (NCONC	 Xl X2 .~. Xn) [LSUBR]

NCONC is 5imilar in effect to APPEND, but NCONC does not copy list structures. NCONC

modifies list structures by replacing the last element of Xl by a pointer to X2, the last

element of X2by a pointer to X3, etc. The value of NCQNC is the modified list Xl, ~hich is

the concatenation of Xl, X2, ..., Xn.

EXl1mp] es:	 (NCONC) = NIL
(NCONC (QUOTE (A In) (QUOTE (C D») = (A BCD)

1.7.2.2.2 (//NCONC LI ... LN) [LSUBR)

//NCONC is the same as NCONC except it is undoable.

1.7.2.2.3 (TCONC PTR X) [SUBR]

TCONC i5 useful for building a list by adding elements one at a time at the end. This could

be done with NCONC. However, unlike NCONC. TCONC does not have to search to the end of

the list each time it is called. It does this by keeping a pointer to the end of the list being

assembled, and updating this pointer after each call. The savings can be considerable for

long lists. The co~t is the extra word required for storing both the list being assembled, and

the end of the 1i5t. PTR is that word: (CAR PTR) is the list being assembled, (CDR PTR) is

(LAST (CAR PTR». The value of TCONC is PTR, with the appropriate modifications to its CAR

27

and CDR. Note that TeONe i~ a destructive operation, using RPLACA and RPLACD•

• (MAPC (FIJ:\CTION O.A\-1BDA (X) (SETQ FOQ (TCONe FOQ Xn»
(QUOTE (S 4 J 2 1»)

.POO

(S 4 :1 2 1) 1)

TCONC can be initialized in two ways. If PTR is NIL, TCONC will make up iJ- ptr. In this

case, the program must set some variable to the value of the first call to TCONC. After that it

is unnecessary to reset ~ince TCONe physic ally changes PTR thus:

*(SETQ FOO (rCONC NIL	 1»
(('1) 1)
.. (MAPC (FIJ:\CT I ON (LAMBDA (X) CTCONe FOO X»)

(QUOTE (4 3 2 I»}
.FOQ.., ; «(1 4 J 2 1) 1)

i
." If PTR is initially (NIL), the value of TCONC is the same as for PTR=NIL, but TCONC changes

PTR, e.g.

• (SETQ FOQ (NCO~S NIL»

(NI L)

.. (MAPC (FU~CTION (LAMBDA (X) (TCONC FOQ X»)

(QUOTE (S 4 :1 2 1»)
.. Faa
«5 .. J 2 1) 1)

The laffer method allows the program to initialize, and then call TCONC without having to

perform SETQ on its value.

1.7.2.2.4 <//TCONC PTR X) [SUBR]

/ /lCONe is the same as TCONC except it is undoable. _

1.7.2.2.5 (LeONC PTR X) [SUBR]

Where lCONC is used	 to add elements at the end of a list, LeONC is used for building a list

by adding lists at the	 end. For example:

e(SETQ FOO (NCONS NIL»
(NI L)
e(LCONC FOO (LlST 1 2»
«(1 2) 2):.	
.(LCO~C FOO (LIST J 4 5»
«(1 2 J " 5) 5)
• (LCONC FDa Nt L)

«(1 2 J " 5) 5)

Note that LCONe uses the same pointer conventions as TeONC for efiminating searching to the

end of the list, ~o that the same pointer can be given to TCONe and LeONe interchangeably.

_(TeONC FOQ NIL)

«1 2 J " 5 NIL) NIL)

* (LCONC FOO (LIST j " 5»

«1 2 J " 5 NIL J 4 5) 5)

28

1.7 .2.2.6 (//LCONC PTR L) (SUBR]

/ /LCONC is the 5amc a5 LCONe except it is undoable.

1.7.2.2.7 *NCONC [SUBR]

is the same as NCONC but for only 2 arguments

1.7 .2.2.8	 //*NCONC [SUBR]

is the same as IINCONC but for only 2 arguments

1.7 .2.2.9 (NCONCI L X) [SUBR]

NCQNCI destructively adds the element X to the end of the list L. It is equivalent to

(NCONC L (LIST X». It generates an error if L is atomic.

1.7.2.2.10 (//NCONC 1 L X) [SUBRl

/INCONC 1 is the same as NCONC 1 except is is undoable.

1.7 .2.2.11 (ATTACH X L) [SUBR]

ATTACH destructively attaches element X to the beginning of list L. It generates an error

if L is atomic.

1.7 .2.2.1 2 <IIATTACH X L) (SUBR]

//ATTACH is the same as ATTACH except it is undoable.

1.7.2.2.13	 (MERGE DATA I OATA2 COMPAREFN) [SUBR]

MERGE returns the meq~ed list of the two input sorted lists DATAl and DATA2 using

binary comparison function COMPAREFN. (COMP.AREFN X Y) should return something non- NIL

if X can precede Y in sorled order, NIL if Y must precede X. If COMPAREFN is NIL, LEXQRDER

will be used. (COMPAREFN should be thought of as "less or equal".) MERGE changes both of

its dat a arguments.

For related information see LEXQRDER.

1.7.2.2.14 (INSERT X L COMPAREFN NODUPS) (SUBR]

INSERT destructively inserts element X into list L in sorted order using COMPAREFN as a

binary comparir.on function. (COMPAREFN X Y) should return something non- NIL if X can

29

precede y. in sorted order, NIL if Y must precede X. If COMPAREFN is NIL, LEXOROER will be

used. If NODUPS is non-NIL, an element will not be inserted if an equal element is already in

the list. INSERT does binary search to determine where to insert the new element.

1.7.2.2.1 5 (//INSERT X L COMPAREFN NOOUPS) [SUBR]

/ /INSERT is the same as INSERT except it is undoable.

1.7.3 TRANSFORM

1.7.3.1 TRANSFORM-NONDESTRUCTIVE

1.7.3.1.1 (LENGTH L) [SUBR]

LENGTH returns the number of top-level elements of the list L. LENGTH is equivalent to:

CDB LENGTH (L)

(COND «ATOM L) 0)

(T (ADDl (LENGTH (CDR L»»»

1.7.3.1.2 (SUBST X V S) [SUBR]

SUBST returns the result of substituting X for all EQUAL occurrences of Y in S-expression

S. SUBST is equivalent to:

(DB SUBST (X Y S)
(COND «EQUAL Y S) Xl

«PATOM S) S)
(T (CONS (SUBST X Y (CAR S»

(SUBST X Y (CDR S»»»
b ••pIe: (SUBST 5 (QUOTE PlVE) (QUOTE (PIVE PLUS PIV! IS TEN) j)

• (S PLUS SIS TEN)

For relal-ed information see DSUBST.

1.7.3.1.3 (REVERSE L) [SUBR]

REVERSE returns the reverse of the top level of list L REVERSE is equivalent to:

(DB REVERSE (L) CRBVERSEl L NIL»

(DB REVERSE1 (L Ml

(COND «Aro.\1 Ll M)

rr (RiVERSB1 (CDR L) (CONS (CAR L) M»»)

For related information see OREVERSE.

1.7.3.1.4 (LDIFF X V) [SUBR]

Y must be a tail of X, i.e. EQ to the result of applying some number of CORs to X. LDIFF

30

gives a list of all elements in X but not in Y, Le.;the list difference of X and Y. Thus (LDIFF X

(MEMB FOC X» gives all elements in X up to the first FDa. Note that the value of LDIFF is

always new list structure unless Y=NIL, in which case (LDIFF X NIL) is X itself. If Y is not a

tail of X, LDIFF generates an error. LDIFF terminates on a NULL check.

1.7.3.1.5 (LSUBST X V Z) [SUBR]

Like SUBST except X is substituted as a segment. Note that if X is NIL, LSUBST returns a

copy of Z with all Y"s deleted. For example:

(LSUBST (QUOTB (A B» (QUOTB Y) (QUOTB (X Y Z») • (X A B Z)

1.7.3.1.6 (SUBLIS ALST EXPR) [SUBR]

ALST is a list of pairs «Ul . V1) (U2. V2) ... (Un. Vn» with each Ui atomic. The value of

SUBLIS is the result of (simultaneously) substituting each V for the corresponding U in EXPR.

Example:

.. (SUBLI S (QUOTB «A • X) (C. Y») (QUOTB (A BCD»)
(X B Y D)

New structure is created only if needed, e.g. if there are no substitutions, value is EQ to

EXPR. Note: SUBLIS and SUBPAIR do not substitute copies of the appropriate expression,

but substitute the ide·ntical structure.

1.7.3.1.7 (SUBPAIR OLD NEW EXPR) [SUBR]

Similar to SUBLIS except that elements of NEW are substituted for corresponding atoms of

OLD in EXPR. Example:

.. (SUBPA IR (QUOTH (A C» (QUOTB (X Y» (QUOTB (A BCD»)
(X B Y D)

Note: SUBLIS and SUBPAIR do not substitute copies of the appropriate expression, but

substitute the identical structure.

1.7.3.1.8 (REMOVE X L) [SUBR]

Removes all top level occurrences of X from the list L, giving a COpy of L with all top level

elements EQUAL to X removed.

For related information see DREMOVE.

1.7.3.2 TRANSFORM-DESTRUCTIVE

31

1.7.3.2.1 (RPLI\CA X Y) [SUBR]

Rcplaccs the CAR of X by Y. The value of RPLACA isthe modified S-expression X.

Exa.ropl e: (RPLACA (QUOTE (A B C» (QUOTE (C D») = (C D) 8 C)

Note that this actually chanees X, as opposed to creating a new list.

1.7 .3.2.2 (/ /RPLACA X Y) [SUBR]

//RPLACA is the same as RPLACA except it is undoable.

1.7 .3.2.3 (RPLACD X Y) [SUBR]

RPLACD replaces the CDR of X by Y. The value of RPLACD is the modified S-expression X.

Note: this actually c.hanges X as opposed to creating a new list.

1.7.3.2.4 <! /RPLACD X Y) [SUBR]

//RPLACD is t he same c:lS RPLACD except it is undoable.

1.7.3.2.5 (DREMOVE X L) [SU8R]

Similar' to REMOVE, but uses EQ instead of EQUAL, and actually modifies the list L when

removing X, and thus docs not u~.e any additional storage. More efficient than REMOVE.

For related information see REMOVE.

NOTE: If X == (L ... U (i.e. a list of any length all of whose top level elements are EQ to L)

thcn the value returned by (DREMOVE X L) is NIL, but even after the destructive changes to X

there is still one CONS cell Icft in the modified list which cannot be deleted. Thus if X is a

variable and it is possible that the result of (DREMOVE X L) might be NIL the user must set

the value of the variable given to DREMQVE to the value returned by the function.

1.7.3.2.6 / /DREMOVE [SUBR]

the same as OREMQVE but undoable

1.7.3.2.7 (DSUBST X Y Z) [SUBR]

Similar to SUBST, but use~ EQ and does not copy Z, but changes the list structure Z itself.

DSUBST substitutes with a copy of X. More efficient than SUBST.

For related information see SUBST.

32

1.7.3.2.8 (//DSUBST X Y Z) (SUBR]

/ /DSUGST is the 5amc as OSUBST except it is undoable.

1.7 .3.2.9 (DREVERSE L) [SUBR]

The value of (DREVERSE L) is EQUAL to (HEVERSE L), but DREVERSE destroys the original

list L and thus docs not u~,e any additional storage. More efficient than REVERSE.

For related information sce REVERSE.

1.7.3.2.1 0 / /DREVERSE [SUBR]

/ /DREVERSE is the same as DREVERSE except it is undoablc.

1.7.3.2.11	 (SORT DATA COMPAREFN) [SUBR]

SORT destructively sorts the list DATA using CQMPAREFN as a binary comparison function.

(COMPAREFN X Y) should return something non-NIL if X can precede Y in sorted order, NIL if

Y must precede X. If COMPAREFN is NIL, LEXORDER will be used. Pointers to the head of

DATA will not 8enerally continue to do so after a SORT. The value returned is a pointer to

the new head of the list.

For related information see LEXQRDER.

1.7.4	 UNDOABLE-FNS

Several destructive list modification functions have undoable variants which work by calling

//RPLACA and / /RPLACO. These have the same effect as their (permanent) counterparts but

they remember the list that was to be discarded, and from where. Thus it becomes possible

to undo the effects of those functions (see the top level command UNDO and UNOOERRSET). It

should be recoBnized that this facility is not foolproof. For example you can get into trouble

by undoing thinGS in the wrong order.

1.7.4.1	 ttUNDOSAVES

#UNDOSAVES (initially -1) tan be reset to indicate when the user should be prompted

concerning !>8ving additional inverses of undoable changes. If it is less than 1 no inverses

will be saved.

1.7.4.2	 (UNDOERRSET "form") [FSUBR]

UNDOERRSET is like ERRSET with setond argument NIL since it evaluates form and does not

33

Gcncr;ttc a brcav, if an error occur!;. UNDO[Rf~SET locally records undoablc chan8es for the

/ / funetion~ (~.cc UNDO/\OL[-FNS) and undoe~ them if an error occurs. If no error occurs the

undoablc changes eire recorded with the event (as usual so they can be u:1done by the UNDO

commar1d in the top level) and a Ii~t who~.e only element is the result of ~valuating form is

retu!:.ned (just like ERRSET).

1.7.5 SEARCH

1.7.5.1 (ASSOC X L) [SUBR]

ASSOC searches the Ii~t of dotted pairs L for a pair whose CAR ;s EQ to X. If such a pair

is found it is returned a5 the value of ASSOC, otherwise NIL is returned.

ASSOC is equivalent to:

CDE	 ASSOC (X L)

(COND (C~ULL L) NIL)

«EQ X (CAAR L» (CAR L»

(T (ASSOC X (CDR L»»)

Hxampl e: (ASSOC 1 (Quor~ (0. ONli) (2. nt'O»» = O. ONE)

1.7.5.2 (ASSOC- X Y) [SUBR]

Simil ar to ASSOC, but uses EQUAL instead of EQ.

1.7.5.3 (SASSOC X L FN) [SUBR]

SASSOC searches the list of dotted pairs L for a pair whose CAR is EQ to X. If such a pair

is found it is r~turned as 'the value of ASSOC. otherwise the value of FN, a function of no

arguments, is returned.

(DB	 SASSOC ex L FN)
(COND ((NULL L) (FN»

«(EQ X eCAAR L)) (CAR L»
(T CSASSOC X (CDR L) FN»»

Exampl e: (SASSOC 0 (QUOTE (0. ONE) (2. T"'O»)
(FUNCTION (LAMBDA NIL (QUOTE LOSE»» = LOSH

1.8 PROPERTY-LIST

.Every atom in the OBLlST has a "property list" which is what you see if you ask for the

PLIST of the atom. (CDR happens to do the same thing except in the case of NIL which keeps

its property list elsewhere. U~e of CDR is more implementation-dependent.) The property list

is a list which alternates between property names and the corresponding property values.

See PROPERTIES for a list of properties used by the system.

34

1.8.1 (GET I P) [SU8R]

GET is a function whic.h scare hes the property list of the identifier I looking for the

property nilr,1C which i5 EQ to P. If such a property name i5 found, the value associated with

it is returned as the villue of GET, otherwise NIL is returned. Note that confusion exists if the

property is found, but its value is NIL. GET is equivalent to:

(DE GET (1 P) (CO~D «(l\Ul.l. (CDR J» :\1 L)

((EQ (CAUR l) P) (CADDR I)}

(T (GET (CDOR 1) P»»

1.8.2 (GETL I L) [SUBR]

GETL is another function which searches property lists. GETL searches the property list of

the identifier I looking for the first property which is a member (MEMQ) of the list L. GETL

returns the remaininc property list, including the property name if al:1Y such property was

found, NIL otherwi!',e. For non-nil I, GETL is equivalent to:

(DE GETL (I L) (COXO ((NULL (COR I) Nfl)

«MEMQ (CADR 1) l.} (CDR I»

(T (GETl (CDDR I) L»»

1.8.3 (PUTPROP I V P) [SUBR]

PUTPRQP is a function which enters the property namd P with property value V into the

property list of identifier I. If the property name P is already in the property list, the old

property value i~ replaced by the new one; Otherwise the new property name P and its' value

V are 'placed on the beginning of the property list. PUTPROP returns V.

1.8.4 <//PUTPROP I V P) [SUBR]

//PUTPRQP is the !iame a5 PUTPRQP except it is undoable.

1.8.5 (REMPROP I P) (SUBR]

REMPRQP removes the property P from the property list of identifier I. REMPROP returns T

if there was such a property, NIL otherwise.

1.8.6 (//REMPROP I P) [SUI3R]

/ /REMPROP is the same as REMPRQP except it is undoable.

35

1.8.7 (PLIST x) [SU8R]

returns the property li~>t of tho Cltom x (which is the CDR of x if x is not r~lL).

1.8.8 PNAME

PNAME is the name of the property under which print-names of atoms are stored.

For related information see OBLIST.

1.8.9 PROPERTIES

;; Th1s 1s 4 l1st of properUes used by the system. They
;; should therefore be avoided for purposes other than those
;;10r which the ~ystcm u~cs them. Many of these are described
;; el sea·here.

PNAME VALUE EXPR FEXPR
MACRO l~RXACTION BROrEN BROKEN-IN
SIDE UNUEP SUBR FSUBR
I.SUBR l.F.XPR ~AM'ED-E\'ENr BRJ::ARGS
ALIAS TRACED-Ii' TRACF.D 5YM
EDIT-SAVE l.A5TVAJ.lJE TRACE CHANGES
PRIl\TMACRO NA\1ESCHAi\GED PI'COM LOSTPROP
COMxlENT FIXT\UM Fl.O~UM EXTRAFNS
CALLS CO~SES MSEC
FUNTYPE READ~'ACRO \READIN BEFORE-SlOB

Properties are used by LISP to interpret everything. For example when you do an

assignment such ~~ (SETQ Xl), the atom X is given a VALUE property containing 1. When

you define a function called X the body of the function will be added as a different property

of X. Properties are stored in PROPERTY-LISTs.

For related information ~ee OBLIST.

1.9 IDENTIFIERS

1.9.1 08LIST

In order for atoms with the same print-names to be recognized a!: the same (EQ) LISP

keeps a symbol-t.,ble in the form of a special list called OBLIST. It is organized as a hash

table (a list of blJcket~) , each clement of which is a list of identifiers. Property lists are

stored as part of the identifiers.

For related information see PROPERTIES and PROPERTY-LIST.

36

1.9.2 (INTERN I) [SUBR]

INTERN puts the identifier I in the nppropriate buc~,et of OBLlST. If the identifier is aready

a member of the OGLlST, then INTERN returns a pointer to the identifier already there.

at herwi~,e, INTEHN returns 1.

Note: INTERN i~ only nccc!J5ary when an identifier which was created by RDNAM, GE~SYM,

MAKNAM, or ASCII needs to be uniquely ~torcd.

1.9.3 (RE~v108 "X 1" "X2 ... "Xn") [F5UBR]

and REMOB [VALUE]

REMOB removes all of the identifiers Xl, X2, ... , Xn from the OBLIST and returns NIL. None

of the Xi"s are evaluated. See NOCALL for explanation of the value.

1.9.4 (REMOBI "id") [SUBR]

is the same as REMOB but for only one argument.

1.9.5 (GENSYM) [SUBR]

GENSYM increments the generated symbol counter and returns a new identifier specified

by the counter. The GENSYM counter is initialized to the identifier GOOOO. Successive

executions of (GENSYM) will return G0001, G0002, G0003, ... Note: GENSYM does not INTERN

it s result.

1.9.6 (CSVM "I") [FSUBR]

CSYM initializes generated symbol counter to the identifier It and returns I. CSYM does not

evaluate its argument.

Exampl c: (CSYM ARYOO) :. ARYOO
(GEi\SYM) = ARYOt
(GENSYM) • ARY02

etc.

1.10 IDENTIFIER-NAtv1ES

37

1.10.1 (EXPLODE L) [SUBR]

EXPLODE transforms an S-expres~,ion into a list of single character identifiers identical to

the sequence of characters which would be produced by PRINl. These identifiers are always

symbols (literal atoms), Of-ver numbers.

For related information-see LOWER-CASE.

(EXPLODE' (OX 11- DY» e (/(D X I II II - I D Y I»
(EXPLODB 'F1) = <P 11)

1.10.2 (EXPLODEC L) [SUBR]

EXPLOOEC tr ansforms an S-expression into a list of single character identifiers identicaJ to

the sequence of characters which would be produced by PRINe. These identifiers are always

symbols (literal atoms), neyer ~umb~rs.

CEXPLODEC t (OX 11- DY» • (/(D X I 1/ - I D Y I»~

1.10.3 (FLATSIZE L) [SUBR]

• (LENGTH (EXPLODE Ll)

For related information see LOWER-CASE.

1.10.4 (FLATSIZEC L) [SUBR]

• (LENGTH (EXPLODEC L»

1.10.5 (MAKNAM L) [SUBR]

MAKNAM transforms a list of single character identifiers {actually takes the first character

of each identifier} into an S-expression identical to that which would be produced by READing

those characters. MAKNAM however does not INTERN any of the identifiers in the

S-expression it produces.

For related information see LOWER-CASE and RDNAM.

Examples: (MAKNAM (QUOTE (A P P L li») • APPLE
(MAINAM (QUOTE (II I»» • I)

1.10.6 (READLIST L) [SUBR)

READLIST is identical to MAKNAM except that REAOLIST INTERNs all identifiers in the

S-expression it produces. READLIST is the logical inverse of EXPLODE, Le.,

38

(PH.III.I'·!' (EXPLOIJIi L)) • L
{}i'(I'J.C,I": (READLI5T L» • L

For related information ~ce LOWER-CASE.

1.10] (LEXORDER X Y) [SU8R]

The value of LEXQRDER is T iff X is lexic.ally less than or equal to Y. Note: 80th arguments

must be atoms. Numeric ;1r&Umcnts arc all lexically less than symbolic atoms.

EXl1mpl cs:	 (tEXORUER (QUOTE ARC) (QUOTE CD» = T

(].EXORDER (QUOTB Bl (QUOTE A» = NIL

(LEXORDER 123999 (QUOTE A» == T

(LEXORDER (QUOTE B) (QUOTE B» = T

For related information see SORT and MERGE.

1.10.8 (SUBSTRING str m n) (SUBR]

Ret urns a new string consisting of c.haracters m through n of str. m and n may be positive

inteGers (count from left) or neGative integers (~ount from right>. If m is non-numeric a value

of 1 (first character) i5 ar,sumed, and if n is non-numeric -1 (last character) is assumed.

Although str will typically be a string, SUBSTRING will actually work with any argument; the

indicated (.har~etcrs arc 5imply extracted from the PRINe character string of str and formed

into a string.

1.10.9 (EQSTR -at! at2) [SUBR]

Compares the PNAME~. of .at 1 and at2, returning T if they are identic,,1 and NIL if they

differ. Useful for U5C with any uninterned atomic symbols (including, of course, strings).

1.10.10 (EQNAM X Y) [SUBR]

EQNAM is slower than EQSTR, but does more checks and is more general. Two quantities

are EQNAM if they arc EQP or if they are both LITATOM and EQSTR. This means that

quantitic:i are EQNAM if they are EQ, or they are EQUAL numbers, or they are atoms that

print out the same.

1.10.11 (NTHCHAR X N) (SUBR]

= (CAR (NTH CEXPLOOEC Ll N» if 1'>0
= (CAR (~TH (REVERSE (EXPLODEC Lll N)J if N<O

NIL if CABS ~) : 0 OT) (P1ATSIZEC 1)

39

1.10.12 (CHRVAL X) [SUGR]

CHRVAL rcturn5 the ASCII reprCt,cntation of the first character of the print name of X.

1.10.13	 (ASCII ~l (SUOR]

ASCII creates a sinsle c.haracter identifier whose ASCII print name equals N.

'Exampl e: (ASCI [65) is an identifier with print name wAw.

Note: ASCII docs not INTERN its result.

1.10.14 (BIGRATOM n) [SUBR]

returns the atom rt'lC'lde up of the input characters up to the first occurrence of the

charader Wh05C Cl5cii code is n. This is used for reading comments.

1.11 ARITHMETIC

1.11.1 (ABS X) [SUBR]

=	 absolute value of X

1.11.2 (ADOI X) [SUBR]

= X+l

1.11.3	 (+1 X) (SUBR]

(+1 X) is identical to (ADDl X).

1.11.4 (*DIF X Y) [SUBR]

•	 X - Y

f.sv'B~

1.11.5 (DIFFERENCE XI X2 ... Xn) [~~]

= Xl - X2 - .•. - Xn

1.11.6	 (- Xl ... Xn) [LSUBR]

- is identical to DIFFFERENCE.

40

1.11.7 (MINUS X) [SUBR]

= -x

1.11.8 (DIVIDE X Y) [SUBRJ

=	 (CONS (QUOTIENT X Y) (RB1i\INDER X Y))

1.11.9	 (FIX X) [SUBR]

returns the largest integer not greater than X (floor function).

1.11.10	 (GCD X V) (SUBR]

returns the greatest common divisor of integers X and Y.

1.11.11 (LSH X N) (SUBR]

LSH performs a logical left shift of N places on X. If n is negative, X will be shifted right.

In both cases, vacated bits are filled with zeros.

1.11.12	 (*MAX X V) [SUBRJ

Maximum of X and Y.

1.11.13	 (MAX XI X2 ... Xn) [LSUBR]

Maximum of Xl ... Xn.

1.11.14	 (*MIN X Y)(SUBR]

Minimum of X and Y.

1.11.15	 (MIN Xl X2 ... Xn) [LSUBR]

Minimum of Xl .•. Xn.

1.11.16 (*PLUS X Y) [SUBR]

11: X + Y

41

~~ ,IF~~

1.11.17 <PLUS Xl X2 ... Xn) (MACRO]

=	 Xl + X2 + ... +Xn

1.11.18 (+ Xl ... Xn) [LSUOR}

+	 is identical to PLUS.

1.1 1.1 9 (*QUO X Y) [5U£3R]

c	 X I Y

For integer arguments this returns the integer part of the answer.

is:.JB R.
1.11.20	 (QUOTIENT Xl X2 ... Xn) (~]

= Xl / X2 / ... / Xn For integer arguments this returns the integer part of the answer.

1.11.21	 (// Xl ... Xn) [LSUBR]

II is identical to QUOTIENT.

1.11.22 (REMAINDER X Y) [SUBR]

= X - ex I Y) • Y

It is NOT defined for non-integer arguments.

1.11.23 (SUB I X) [SUBR]

=	 X - 1

1.11.24	 (-I X) [SUBR]

(-1 X) is identical to (SU8! X).

1.11.25 (*TIMES X V) [SUBR]

• X • Y

42

1.11.26 (TIMES Xl X2 ... Xn) [MACRO]

:::	 Xl * X2 * ... * Xn

1.11.27 (* Xl ... Xn) [LSU8R]

* is identical to TIMES.

1.11.28	 SCIENTIFIC"SUBR

Scientific funetion$ helVe been sct up by Cris Perdue for use with LISP based on code

stolcn from MIT by Dan Hinsley. This is NOT the UCI-FORTRAN package. The functions

currently reside on ARITHMAC, ARITH.REL on [A311LI5P). This version contains a couple of

kludges and may be chilngcd when the cause of the kludges is fixed. Beware of copying

these files since the current versions may not work when things are fixed. These algorithms

are. available "as i~". All we did was interface them to our LISP. Use the LOAD function to

load them. Argumcnts out of range cau!.e normal LISP errors with messages appropriate to

eac.h fundion. It is conceivable that overflow or underflow may occur with theoretically

in-range arguments. This will cause a generic arithmetic overflow error from LISP.

1.11.28.1 (SIN X) [SUBR]

where x is in radians returRs the sin of x. This function is NOT built in but must be loaded

by the user.

1.11.28.2 (COS x) [SUBR]

returns the cosine of x. where x is in radians. 1t is NOT built in but must be loaded by the

user.

1.11.28.3 (ATAN x y) [SUBR]

is not built in but must be loaded by the user. ATAN returns the angle in radians of which

the tangent is y/x. The signs of y and x determine the quadrant of the 'result.

1.11.28.4	 (SQRT x) [SUBR]

returns the square root of x. It is NOT built in but must be loaded by the user.

1.11.28.5	 (LOG x) [SUBR]

returns the natural log of x. It is NOT built in but must be loaded by the user.

43

1.11.28.6 (EXP x) (5UBR]

return5 e r ~i~.cd to the	 power >c. It is NOT built in but must be loaded by the user.

1.1 1.29 OVERFLOW

An overflow me~,sage comes from arithmetic functions when they detect either fixed or

floating point overflows (Le. when they compute a result that does not fit into one machine

word).

1.12 (ARRAY "10" TYPE B1 82 •.• Sn) [FSUBR]

(For n<6) ARRAY is a function which declares an array with name 10, and places an array

referencing function on the property list of 10.

For related information see BPS.

TYPE determines the type of an array as follows:

TYPB INITIAL VALUE	 ARRAY ELE"1ENT
T NIL	 LISP S-expressions stored as

pointers;; 2 per ""0 rd.
NIL 0.0	 REAL numbers stored one per word in

;;PDP-6/10 floating po1nt re~resentatlon.
36.	 0 36 bit 2/s complement integers stored

; ; 1 per liord.

O<n<36.	 0 n bit positive integers packed

;; [36./0] per ...·ord.

B1 82 .•. 8n arc array subscript bounds which should evaluate to either positive integers Si,

or to dotted pairs of integers (U. un where Li .Ie. Ui, which specify lower and upper

subscript bounds as follows:

Bl LOWER BOUND	 UPPER BOUND LENGTH
S1 0	 S1 - 1 S1
(L1 • U1) LI	 U1 U1-L1 + 1

The etements of an array are referenced by: «array name> 11 12 ... In) where Lj .Ie. Ij < Uj.

Note: 80th ARRAY and EXARRAY consume Binary Program Space.

The ARRAY subscripts Ij must be integers. References to memory locations outside of the

area reserved for the array are prohibited and will cause an illegal memory reference

message. Array elements are stored in BINARY PROGRAM SPACE. Redecfaring arrays will

allocate new binary program space - the old space will not be reclaimed.

1) To declare a 1 dimensional array CHARS of 7 bit characters and with subscripts 1 to 50:

(ARRAY CHARS 7 (QUOTE (l .50») The first element of CHARS is referenced: (CHARS 1)

44

2) To declare a 2-dimcnsional array A of REAL numbers and with subscripts 0 .Ie. i < N, 0

.Ie. j < M: (ARRAY A NIL N M)

3) To declare a I-dimensional arr ay FOa of S-expressions and with subscripts -K .Ie. i .Ie.

K: (ARRAY Faa T (CONS (MINUS K) K»

1.12.1 (EXARRAY "10" TYPE B1 82 ... Bn) [F5UBR]

(For n<6) EXARRAY is identical to ARRAY except that array elements are stored in the body

of a subroutine loaded by the LOADER and exarray clements are not initialized. The array

referencing subroutine is r.tored in BINARY PROGRAM SPACE as with ARRAY. EXARRAY

searches symbol tables as docs GETSYM. Note: Both ARRAY and EXARRAY consume BINARY

PROGRAM SPACE. If there is insufficient room there the error message "BINARY PROGRAM

SPACE EXCEEDED" will result.

1.12.2 (STORE ("IOIt i 1 i2 ... in) value) [FSUBR]

STORE changes the value of the specified array element to value, and returns value. Note:

STORE evaluates its second argument first.

Examples: With the arrays declared previously:

(STORE (FOD 0) (QUOTE (A B»)

(STORE (FOD (BAZ L» 1)

(STORE (A I J) (A J l)

(STORE (CHARS 1) 17)

1.13 MEASUREMENT

"Measurement" htls to do with finding out how expensive your programs are to run.

Naturally, the most interesting measures of this are time and space. Metering tells you how

often functions are called, how much time they take and how much space they use (in terms

of the number of CQNSes they do). The timimg functions tell how much CPU time has been

used (or how much of it has been used garbage-collecting). Counting tells you how often

each branch of a program is executed. It is good for finding out which sections are used

often (and thus ought to be optimized) and which are used seldom (and thus may not be

debugged).

1.13.1 (METER "F 1" ... "Fn") [FSUBR]

METER sets up functions F1, ..., Fn for metering. Each function may be specified as an

45

atomic function n.1mc, (function nill1iC IN fundion name), or (function name, meter condition),

just as for BREAK.

1.13.1.1 (UNMETER "F 1" ... "Fn'") [FSU8R]

UNMETER ~tops rnctcrine- of functions FI, ..., Fn and prints their statistics. (UNMETER)

unmcters all the metered functions and (UNMETER T) unmeters the most recently metered

function, just as for UN8REAK and UNTRACE.

1. J 3.1.2 7. 7. MC I

'l'7.MCl (and 1.lMC2, 7-'7 MC3, 7.1.MC4) are constants which compensate for the overhead in

the METER pac.kage.

1.13.1.3	 BREAKl M [SUBR]

Performs the overhead when a function is metered

1.13.1.4 (METERS ..FI" ... "Fn") [FSUBR]

METERS prints the statistics for FI, ..., Fn without unmetering them. (METERS) prints the

statistics for all metered functions and (METERS T) prints the statistics for the most recently

metered function.

1.13.1.5	 METEREDFNS [VALUE]

is just a list of the functions currently being METERed.

1.13.2 (COUNT ttfnl" "ln2tt ...) [FSUBR]

modifies the definitions of the (interpreted) functions in the argument list to keep track of

the number of times each piece of code in the definition is evaluated. Every sub-expression

that is to be evaluated i~ replaced by (u 0 <sub-expression». To see how many times it has

been evaluated simply 1001'. at the function definition (via PP or DSKQUT). This facility 1S good

for finding the sections of code that are executed much more often than expected (and thus

should be optimized) or less often (and thus may contain bugs even though the program

works). UNCQUNT remove!> the counters.

1.13.2.1 (UNCOUNT "fn 1I. "fn2" ...) [F5UBR]

undoes the counting for the given functions. Like UNTRACE and UN8REAK, a null argument

causes CQUNTEDFNS to be used, and an argument of T causes the last counted function to be

used.

46

1.13.2.2	 COUNTEDFNS

COUNTEDFNS is a list of functions that are COUNTed.

1.13.2.3	 (COUNT 1 fn) [SUBR]

Does the same thing as COUNT but is a SUBR and takes only one function

1.13.2.4 (UNCOUNT 1 fn) [SUBR]

Does the 5ame thing as UNCOUNT but is a SUBR and takes only one function for an

argument.

1.13.2.5 (ta <number> <expro55ion» (FSUBR]

is used for counting (see COUNT). It merely increments the number and returns the result

of evaluating the expression.

1.13.2.6	 It-ERROR

When functions are UNCOUNTed (see COUNT, UNCOUNT, #) a few checks are made. If the

calion # (the counting function) is not of the right form then the user is warned and the

questionable portions arc not changcd. When this error occurs the offending functions should

be fixed (in the editor) and then UNCOUNTed again. To fix such a function look for calls to #

(via "F u" in the editor). Either the first argument is non-numeric or there are more thaM two

arguments. See .. for the correct form.

1.13.3 (TIME) [SUBR]

TIME returns the number of milliseconds your job has computed since you logged into the

system.

For related information see DATESTR and MSTIME.

1.13.4 (GCTIME) [SUBR]

GCTIME returns the number of milliseconds LISP has spent garbage collecting in this core

image.

1.13.5	 (TIME-GCTIME) (SUBR]

TIME-GCTIME returns the difference of run time and garbage collection time in milliseconds,

47

i.e., (*DIF (TIME) (GCTH-A[». Note thnt the difference in values of (TIME-GCTIME) (or two

occasions is the run time c)(cllJdin~ Garbage collection time for the intervening computation.

Run time cxcludine Gc1rbc1Gc collection time is often a more meaningful statistic than just run

time since garbaGe collection occurring at "random" times can invalidate run times, and

frequency oLgarbage collection is dependent on amount of free storage allocated as well as

the algorithm whose time is being measured.

1.13.6 (SPEAK) (SUBR]

SPEAK returns the total number of CONSes which have been executed in this LISP core

image.

48

2. INPUT-OUTPUT

2.1 SAVE-STATE

Users typic~lly define fur~ctions in lisp and then want to save them for the next session. If

you do (CHANGES), a list of the functions that are newly defined or changed will be printed.

When you type (DSKOUTS), the functions associated with files will be saved in the new

versions of tho~c files. In order to associate functions with files you can either add them to

the filefns list of an existing file or create a new file to hold them. This is done with the FILE

function. If you type (FILE NEW) the system will create a variable called NEWFNS. You may

add the names of the functions to go into that file to NEWFNS. After you do (CHANGES) the

functions which are in no other file are stored in the value of the atom CHANGES. To put

these all in the new file, (SETQ NEWFNS (APPEND NEWFNS CHANGES». Now if you do

(CHANGES), all of the ch;mged functions should be associated with files. In order to save the

changes on the files, do (DSKOUTS). All of the changed files (such as NEW) will be written.

To recover the new functions the next time you run LISP, do (DSKIN NEW).

(Only blank lines were deleted from this recording, comments are added)

<2>(de squa.re(x) (e x x» define & new function
SQUARE
<3) (changes)
FILE FUNCTIONS
<NO-FILE> SQUARE
T
<4> (f11 e new)
NEW
<5> (setq ne~fns (append ne~fns changes» add the functions whicb

;; are associated with no file to the new file, NEW

((QUOTE (VERSION 0 "19-JUL-78 15:30:59"» SQUARE) jj the value of NE~PNS

(6) (changes) ; ;

FILE FUNCTIONS ;;

NEW SQUARE ;;square Is now associated witb NEW

T j;

<7> (dSKoutS) ; ;

NEW ;; the file is written

NIL ;j

<S)(dskin new) ;f ~e now read it 1n

NEWFNS (VERSION 1 "19-JUL-78 15: 31: 43") (SQUARE EQUAL)

FILES-LOADED jj SQUARE 1s read In (same as before}

2.1.1 (DSKIN "LIST OF FILE-NAMES") [FSUBR]

READ-EVAL-PRINTs the contents of the given files. This is the function to use to read files

created by DSKOUT. DSKIN also declares the files that it reads (if a FILE-FNS list is defined

and the file is otherwise declc:tr able by FILE), so that changes to it can be recorded. DSKIN

[VALUE] determines how the expressions read are reported. If it is NIL then nothing will be

printed. If it is PRINT then the values are printed one per line, and if the value is T (the

default) the values are printed with new lines starting only when a value does not fit on the

49

current line.

Example:

(OSKIN (FUNes. LSP) DTAO: COATA. LSP»

Reads FUNCS.LSP from DSK: and DATA.LSP from DTAO:.
'r

(DSKIN (C410 HIlOO) roSKlOG.1SP))

Reads DSKLOG.LSP from the dislr. arca of [C410HBOO).

2.1.2	 (OS KOUTS nFILEl" ... ttFILEn") [FSUBR]

DSKOUTS applies DSKQUT to and prints the name of each 'FILEi (with no additional

arguments, assumin& filenarncFNS to be a list to be GRINLed) for which FILEi is either not in

FILELST (meaning it is a new file not previously declared by FILE or given as an argument to

DSKIN, DSKOUT, or DSKOUTS) oris in FILELST and has same recorded changes to definitions

of atoms in filenameFNS, as recorded by MARK!CHANGED and noted by CHANGES•. If FILE! ..•

FILEn is not specified, FJLELST will be used. This is the most common way of using DSKOUTS.

Typing (DSKOUTS) will save every file reported by (CHANGES) to have changed definitions.

For related information see GRINPROPS.

2.1.3 (1.READIN channal print) [SU8R]

executes a loop which reads from the specified channel, evaluates what was read and if the

second argument is nOI1-NIL prints the result. It terminates when the read generates an

error.

2.1.4	 (FILE "FILE") [FSUDR]

FILE declares its argument to be a file to be used for reporting and saving changes to

functions by adding the file nil\C to a list of files FILELST. It adds the file name to FILELST

only if the extension is not LAP, U3K, or Lnn (nn some integer). It also prevents you from

declaring a ,tile which would use the same FILEFNS list as a current LIBRARY file. FILE is

called for each file argument of OSKIN, OSKOUT, and OSKOUTS. If the user executes the FILE

function, the as!>ociated fileFNS Ii~t has a version number (initially 0) added to its beginning if

none exists. DSKOUT automatically increments this number. FILE understands devices and

ppns. H you declare a file which has the same name (excluding device, ppn and extension, Le.

the same filefns list) thcn the new declaration will supersede the old one. Thus, if you want

(FILE.EXT) to be put on TEMP when you do a OSKOUT, just redeclare it: (FILE TEMP:

50

(FILE.EXT»

2.1.5 FILELST [VALUE]

.is	 the list of files whose contents are (supposedly) contained in the current core image.

For related information see LIBRARIES.

2.1.6 (FILE-FNS FILE)	 [SUI3R]

FILE-FNS return~ the name of the fileFNS list for its file argument FILE.

2.1.7	 (CHANGES flag) [FSUBR]

CHANGES [PROPERTY] and CHANGES (VALUE)

Chan8es computes a list containing an entry for each file which defines atoms that have

been marked chan8cd. The cntry contains the file name and the changed atoms defined

therein. There is also a ~pccial entry for changes to atoms which are not defined in any

known file. (FILELST contains the "r.nown tt files.) If no flag is passed this result is printed in

human readable form and the value returned is T if there were any changes and NIL if not.

Otherwise nothing is printed and the computed list is returned. The global variable CHANGES

cont ains the atoms which are marked changed but not (yet) associated with any file. The

CHANGES function attempts to associate these names with files, and any that are not found

are considered to belong to no file. The CHANGES property is the means by which changed

functions are associated with files. When a file is read in or written out its CHANGES

property is removed.

2.1.8 (MARK!CHANGED F) [SUBR]

MARK!CHANGED recorcis the fad that the definition of F has been changed. It is

automatically called by DE, OF, DEFPROP, DM, DV, and the editor when a definition is altered.

2.1.9 FILE-SEARCH

2.1.9.1	 (GETDEF "FILE" "11" ... "In") [FSUBR]

GETDEF selectively executes definitions for atoms 11, •.., In from the specified file. Any of

the words to be defined which end with "fi'l" will be treated as patterns in which the

~ matches any suffix (ju~t like the editor). GETDEF is driven by GETDEFTABLE (and thus may

51

be proerJmmed). It looks for lines in the file that start with a word in the table. (The first

character must be a "(It or "[If followed by the word followed by a space, return or something

else that will not be con~idcred a~ part of the identifier by RDNAM - "(.. i unacceptable.)

When one is found the next word is read. If it matches one of the identifiers in the call to

GETDEF then the table entry is executed. The table entry is a function of the expression

sf artingin this line. Output from DSKOUT is in acceptable format for GETOEF. GETDEF

returns a Ii~t of the- words (whic.h match the ones it looked for) for which it found (but not

necessarily executed) definitions in the file.

2.1.9.1.1	 GETDEFPROPS [VALUE]

is u!,ed by the standard programs in GETDEFTABLE to decide whether an expression read

by GETDEF is to be executed. For example, DE's are executed if GETDEFPROPS contains EXPR

or is NIL. DC's are evaluated if GETDEFPROPS contains COMMENT or is NIL. DEFPROP"s enter

properties if they are in GETDEFPROPS or GETDEFPROPS is NIL. This is meant" to provide a

convenient way to program GETDEF. The initial value of GETDEFPROPS is (EXPR FEXPR

MACRO VALUE SUBR FSUBR LSUBR).

2. J.9.1.2 GET DEFTABLE (VALUE)

is the table that drives GETDEF. It is in the form of an association list. Each element is a

dotted pair consisting of the name of a functio~ for which GETDEF searches and a function of

one aq~ument to be executed when it is found.

2.1.9.1.3 (GETDEFACT id prop exp) [SUBR]

is used by GETO[F to do whnt PUTPROP does with the following bells and whistles added:

If an atom"s property wa~; not previously defined and is given a definjtion~ the atom,

property, and "DEFINED" will be printed. If the atom's property was previously defined, the

atom, property, and "EQUAL" or "***REDEFINED***" witl be printed, depending on whether the

new definition is EQUAL to the old definition. (LAP function definitions are not checked for

equality.) For each definition of one of the desired atoms defining a property not selected by

GETDEFPROPS, the atom, property, and "BYPASSED" will be printed.

2.1.9.1.4 (GETOEFEVAL "10" oxp "PROP") [FSUBR]

simply evaluates expo It is useful only because it is recognized by GETDEF, which only

executes the GETDEFEVAL if PROP is acceptable.

2.1.9.2 (LIBRARY	 "file 1" "file2" ...) (FSUBR)

LIBRARY declarc$ filC$ to be libraries. A library is a file that has not been read in {and

52

thus is not in FIL~LST), but its contents are it,nown. After a file is declared as a library, you

can get function definition~ and COmrr'lentr. from it (with USERHELP and GETDEFNS) without

hClvina to mention it by nnme. LIBRARY undcr~tand~ devices <lnd ppns jU5t like DSKIN. The

compiler will put into every LAP file a declaration of its source as a library. Thus if your

.~ompiled function FOa docs not work you Crtn find out what it does or get the interpreted

code with USERHELP or GETDEFNS. When a file is DSKIN"d its LIBRARY declaration

automatically goes away.

2.1.9.3 LIBRARIES (VALUE]

is the counterpart to FILELST. However the files in LIBRARIES have not been (officially)

read. To add a file to LIBRARIES use the LIBRARY function.

2.1.9.4 (GETDEFNS fnJ In2 ...) [MACRO]

tries to find the names in the arGument list (with FINDFILES using LIBRARIES and FILELST),

and does a GETDEF from those files of the words given. Note that if a word is defined in two

different files then they will both be read (in arbitrary order).

2.1.9.5 (USERHELP word! word2 ...) (FSUBR]

USERHELP i~ suppo~cd to be just Iihe HELP, but for getting user comments. Like HELP, it

accepts the "(0)" to mean "any suffix". It looks for comments in the files in FILELST and those

in LIBRARIES. Also lir,e HELP, it decides whether or not to show the comment by calling

HELPFILTER.·

2.1.9.6 (FINDFNS filo-Iist name-list) [SUBR]

returns a (sorted) list of names. Any name in name-list that does not end with "(ii)" will be

in the list. Those that do end with "(1'i)" match any name that can be made by replacing the

"(ri)" with a suffix. FINDFNS 1001'.5 for such names in the FILEFNS lists of the files in the

file-list, and in the functions marked as having been changed but as~ociated with no file.

Typically the file-list will be either FILELST or LIBRARIES.

2.1.9.7 (FINDFILES filo-lir.t namo-list) [SUBR]

returns those members of the file-list which contain names in the name-list. The name-list

may have words that end with "(0)" to mean any suffix. The file-list is normally either FILELST

or LIBRARIES. In order to determine whether a name is in a file, the file must at least have a

FILEFNS list. This function is used by GETDEFNS and USERHELP to decide which files to

search.

53

2.1.10 (DSKOUT "FILE" "FORM] II ... ttFORMn") [FSU13R)

DSKOUT is an extension of the UCI LISP DSKQUT function. If rORMl ... FORMn is specified,

each FORMi (or (GRINl FORMi) if FORMi is atomic) is evaluated Jlith all printing directed to

FILE. Any previous version of FILE will be renamed to haw: extension LBK, deleting a

previous LBK file if nece~~ary.

For related i,'formation sec GRINPROPS, DSKOUTS, GRINL, FILE, .lnd FILE-FNS.

If FORMI ... FORMn is not 5pecified, i.e., only a file argument is specified, DSKQUT assumes

the list named filenamcFNS (Le., the file nt:lme, excluding extension, concatenated with FNS)

cont ains a list of function names, etc., to be GRINLed. DSKOUT adds (if not already present)

as first element of filenrlrl"lcFNS a li5t containing a version number and creation time for the

file. The version number and creation time are updated each time the file is DSKOUTed (but

only when FORMl ... FORMn are nof specified). Any previous version of FILE will be renamed

to have extension Lnn where nn is the previous version number. Successive uses of DSKOUT

with only a file argument will create a sequence of files FILE.LOI, FILE.L02, ..•, FILE.Lnn, FILE,

leaving a history of chanGes to the file.

DSKOUT recognizes line printer device names LPT:, LPTO:, and LPTl: and suppresses the

attempts to delete old backup files and rename the current file to be a backup file (illegal

operations for the line printer). A file name must still be specified when DSKOUTing to the

line printer. The FILE function will not be called for files DSKOUTed to the line printer. Thus,

a file printed by DSKOUT on the line printer will still (if there are ~hanges) be written to the

disk by (DSKOUTS).

2.1.10.1	 COMMENT [PROPERTY)

is the name of the property in which comments are saved.

2.1. J0.1 .1 (DC word lid} {(doscriptor! descriptor2 ...)}) <text) (esc) [FSUBR]

DC defines comments. It is exceptional in that its behavior is very context dependent.

When DC is execlJted from DSKIN it simply records the fact that the comment exists. It is

expected that in interactive mode comments will be found via GETDEF (as in HELP) - this

allows laq~e comment!> which do not take up space in your LISP core image. When DC is

executed from the terminal it expects you to type a comment. DSKQUT will write out the

comments that you define and also copy the c.omments on the old version of the file, so that

the new version witt keep the old comments even thou8h they were never actually brought

into core. The opt ional id is a mechanism for distinguishing among several ~i!\1!'~n~

54

as~;ociated with the ~.ame word. It defaults to NIL. However if you define two comments with

the same id, the ~c(ond i~. considered to be a replacement for the first. The optional list of

attributes is mC<1nt to be pas~,cd (alone with the word being commented) to HELPFILTER in

order to decide whether or not to print the comment as HELP.

The behavior of DC is dercnnincd by the value of the global variable DEF-COMMENT.

OEF -COMMENT cont ains the name of a function that is run. Its arguments are the word, id

and attribute list. DEF-COMMENT is initirllly DC-DEFINE. Other functions rebind it to DC-HE~P,

DC-USERHELP, and the value of DSKIN-COtv1MENT.

The comment property o~ an Cltom is a list of entries, each representing one comment.

Atomic entries are assumed to be identifiers of comments on a file but not in core. In-core

comments are represented by a list of the id, the attribute list and the comment text. The

comment text is an unintcrncd atom. Comments may be deleted or reordered by editing the

comment property.

2.1.10.1.2	 OEF-COMMENT (VALUE)

names a function that will be called when a DC is done. It is initially DC-DEFINE, but is

rebound by various functions to DC-HELP, DC-USERHELP etc. depending on how comments are

to be treated at various times. Of course, this provides a handy way to program your own

treatment of comments too.

2.1.10.1.3	 (DC-DEFINE name id attributes) [SUBR]

is the- function thai defines c.omments. It reads a comment and puts it in the right place.

2.1.10.1.4 (DC-DSKIN name id attributes) [SUBR]

is the function that DC normally calls during a DSKIN. It simply records the existence of

the comment, without actually reading it in.

2.1.10.1.5 (DC-HELP name id attributes) [SUBR]

is the function that DC calls during a HELP. It simply decides whether to print the comment

(by calling HELPFILTER) and then either prints it or skips it.

2.1.10.1.6	 (DC-IGNORE) [SUBR]

is the function that DC-DSKIN calls to skip a comment.

55

2.J.J 0.1.7 (DC-USERHELP nome id attributes) (5UDR]

is the function thc1t DC w..es durin~ a USERHELP. It is like DC-HELP except that it does

some extra booy,y,ecpi"B 10 tell you 'Nhat may be wrong

2.1.10.1.8	 DSKIN-COMMENT (VALUE]

contilins the value give to DEF-COMMENT when DSKIN is called. It is initially DC-DSKIN.

2.1.1 0.1.9 <*** comment) [FSUBR]

is the dandard c.omment function. It returns NIL. It also has a special printmacro property

which blacY.-prints the comment. These comments are not normally printed unless

COMMENTFLG is non-NIL. PP* and PPU: force COMMENTFLG to T.

2.1.10.1.10 (TRANSPRINT) [SUBR)

simply reClds Clnd prints charaders (the same ones) until it reads an altmode, at which point

it returns NIL.

2.1.10.2 (FILBAK FILE NEWEXT) [SUBR)

, PI lB.AK [VALUE]

FILBAK is a SUBR thAt attempts to rename FILE with the extension of NEWEXT. FILE can be

either a FILNAM or a FILESPEC. FILBAK returns T if the r.anaming was successful and NIL if it

f ails. As a value FILBAK is the st andard extension (initially LBK) for backup Hies.

2.1.10.3	 *NOPOINTDSK [VALUE]

determines whether DSKOUT puts decimal and octal points after numbers. NIL means that

they will be added, T means they won'" This feature is meant to solve the compatibility

problems thC\t ari5e from r.aving a file in one base and reading it in another.

For related information see *NOPOINT, BASE, and lBASE.

2.1.10.4	 LISTDEVS [VALUE]

LISTDEVS is a list of out put devices that are not also storage. It is used by DSKOUT in

deciding whether changed definitions that have been written out are now "saved" and need

not show up as "changes" any more. LlSTDEVS is initially (LPT: LPTO: LPT1: TTY:).

56

2.2 FILES

In ;lddition 10 C'1rbitrary 1cxt filc~. (which require assigning and ~.cleeting I/O channels etc,),

there are three !~pccial tYrc~ of files that LISP supports. The RECORDFILE is simply a

transcript of your terminal ~.c~)~.ion. Core imaees may be saved with the SAVE function,

described under SAVE-JOB. Fini4l1y, there is an elaborate mechanism (described under

SAVE-STATE) for a5~.;j3nin8 your fund ionr., variables etc. to files which are pretty-printed and

can be read by DSKIN or searched by GETDEF.

2.2.1	 FILESPEC

FSUBRs that rcad filentlmes ecncrally accept an optional device (e.g. DSKC:) followed by

an optional PPN (e.g. (CillO HBOO» followed by a file name (e.g
7

FILE! or (FILEl . EXT».

(Whenever multiple files arc $pccified the device and ppn apply to all following files until

they are overridden.) However the explicit references to FILESPEC are for SUBRs, in which a

file must always be one aq~ument. In this case the argument is of the form (dev: filename),

where dev: is optionally absent or A PPN list and file names are the same format as before.

2.2.1.1	 (1.DEVP X) [SUBR]

1.DEVP is a previously undocumented UCI LISP function whose .value is non-NIL if X is a

device, NIL otherwise. X is a device if it is either atomic and ends in ":" or is a list whose cdr

is not atomic.

2.2.1.2	 (1.GETDEV file5poc) [SUBR]

1.GETDEV is the sf andard file5pec scanner used by many system functions. It returns

(CONS (LIST DEV PPN) TAIU, where TAIL begins with the first element of filespec which is not

a device or PPN. DEV is defaulted to DSK:. If no PPN is scanned over, the value returned is

(CONS (LIST DEV) TAIL).

2.2.1.3	 PPN

Project-Programmer Numbers for Disk I/O In all I/O functions (including INPUT and

OUTPUT), the use of a two element li5t (not a dotted pair) in place of or in addition to a

device will cause the fundion to usc the list as the project-programmer number. CMU PPNs

are specified in LISP as a «project> <prog name» list e.g. (A310 DNIO) for.A310DNlO. e.g.

(DSKIN (A310 ONIO) (APE. LSP» DEC PPNs are specified as a list of two numbers. e.g. (5551

601)

57

The function MYPPN will ~how your PPN in DEC format.

2.2.1.4 (MYPPN) [SUBR]

MYPPN returns the u~,cr's project proGr~mmer number in a form suitable for use by the

directory and I/O functions.

2.2.2 SAVE-JOB

2.2.2.1	 (SAVE "FILE..SPEC" "EXCISE") (FSUOR]

SAVE saves the present c.ore imal;e. If no device is specified, DSK: will be used. If EXCISE

is absent or non-NIL, (EXCISE) will be exccuted. Thi5 is gcnerally desirable since it releases

I/O buffers and cxp;mdcd core resulting in a smaller save file. Note that open channels

cannot be prescrved in a save file in any case, so loss of I/O buffers created by EXCISE is

irrelevant. (All ch~nnels (other th~n to the teletype) should be closed prior to doing SAVE.)

The SAVE function has been modified to work properly under the 6.02 monitor. It works

exactly as before, but for the tirne being it is unfortunately necessary for it to exit to the

monitor. The u~er must type SAVE or NSAVE (new type of save), then START to continue.

The save function allow!> the high segment not to be saved.

The saved core image will continue execution when RUN or STARTed exactly where the

saved program left off, i.e., the first thing the sav!?d core imClge will do is return the file name

for the successfully saved file. SAVE thus preserves the entire execution context, and can be

invo~,ed from inside the editor, the break pac.kage, or a user function, and control will be

returned to that location in both the running job and the saved core image.

Since the alloeat ion procedure i5 bypassed when RUNning or STARTing a core image saved

by the SAVE fundion (so that execution can continue where it left off in the saving program),

if the core image is run in more core than it was saved in, this excess core will be unavailable

to LISP (except as I/O buffcrs or expanded core) until the core image is exited and STARTed

again to enter the alloc.ation procedure (or the CORE function is used to make the extra core

available). (START only continues the program from where the saving program left off the

first time; later STARTs will enter the allocation procedure as usual.) SAVE uses the name to

rename to core image, and the PPN and' device (as well as name) are used to do a SETSYS.

Thus if you specify another PPN the hiseg will still go onto your area, but your .LOW file will

tell the monitor to look on the specified PPN for the hiseg. In order to save a core image and

have the saved core image allocate whatever core is available when it is RUN or STARTed and

go to the LISPX top level, (PROGN (SAVE filename) (CORE (CORE NIL») may be executed.

58

2.2.2.2 (SETSYS filo-sp£lc) [FSU8R]

SETSYS enables thc u~,cr to create his own sharable system. In order to create the

sy~>ten1, the w:,cr rr"llJst Control-C out and do an SSA <file>, then run the system. After this

procedure, the user has wri1e privelcecs and may load code in10 the sharable high segment.

(Note that the u!",cr need not u!",e this to save a low SC8mcnt only). This procedure .Ls not

necessary for gCl1eratina the sy~tcm. (SETSYS OLD: LISP) will cause a .SAV file made with

the old LISP to :;ct its high segment from OLD instead of SYS. No high segment need be

saved by the u~er. (The first time you can R OLD:LISP or ASSIGN OLD SYS before R LISP.)

The SAVE function does a SETSYS for you.

2.2.2.3 HISEG [VALUE]

cau!",cs the SAVE function to r.ave a high segment if it is not NIL. Normally HISEG is NIL,

and SAVE only save~ a low segment.

2.2.2.4 VERSION [SPECIAL VALUE]

VERSION is numeric and specifies a .SAV file version number 10 be made part of the name

of the next .SAV file written by SAVE.

2.2.3	 (RECQRDFILE "FILE") [FSUBR]

and RECORDFILE [VALUE] RECORDFILE controls the writing of. a file which records all the

input from and output to the teletype (with a few exceptions, cited below). If a record file is

currently open when RECORDFILE is executed, it will be closed. _If a file name is specified, a

new record file with that name will be opened. A message ("RECORD FILE file OPENED" or

"RECORD FILE file CLOSED") will be printed when a file is opened or closed. An improper

specificalion of a file nilme to RECORDFILE will result in no record file being opened and the

absence of t he OPENED message. Use (RECORDFILE) to stop recording. The value of the atom

RECORDFILE is the name of the recording file.

Everything read or written by the standard LISP input/output functions (READ, PRINT, etc.)

will be copied to the record file. Certain LISP messages are stored in SIXBIT and printed by

UUOs and are not copied by the record file facility. These are the error messages

("UNDEFINED FUNCTION", "UNBOUND VARIABLE", etc.) and garbage collection messages. Note

that, (or example, all user interaction with the top level, editor, or break package is copied to

the record file.

Some things can be done in or to LISP to cause the record file to be lost. If the user exits

the core image and executes the monitor START command, a RESET UUO will be performed by

59

LISP, relca~ing the channel on which the record file was being written without closing the file.

The CORE function, when LJ~.ed to (icquirc more core or to reall~cate excised storage, has

nearly the same effect nS exiting the core irnClge and doing a START. This condition is

checked for, and if the allocation procedure is to be entered (whenever the argument to

CORE is great er them or equal to the current size of the low segment), the currently open

record file (if any) is closcd. Exccuting EXCISE, running out of push down list, and possibly

some other severe LISP errors of this type may also cause loss of the record file. If LISP

expects to be writing a record file, and finds it is no loneer open because of one of these

events, it prints the mC$~a2c "RECORD FILE file NO LONGER OPEN" and ceases outputting to

the record file. The nO lon8er open record file may sometimes be recovered by executing

the monitor CLOSE con"lmand.

2.2.4 UFOS

2.2.4.1	 (UFDINP CHANNEL PPN) [SUBR]

UFDINP is analogous to the function INPUT in that it opens a file on a specified channel.

The channel mu~t be zclected via INC in order to be read. The file is opened in binary image

mode and should not be read by the normal LISP read functions. UFDINP opens the directory

of PPN on CHANNEL. It returns the value of CHANNEL as its result. PPN is either of the form

(PROJ PROG) or NIL. If PPN is NIL the user's directory is assumed.

2.2.4.2 (RDFILE) [SUBR]

RDFILE return~ the next file in the directory that is open on the current input channel. It

return a file which iz either an atom or an atomic dotted pair. It does an (ERR SEOFS) when it

reaches the end of file.

For related information see DIR.

2.2.4.3	 (LOOKUP DEV FILNAM) [SUBR]

LOOKUP is a SU8R that determines whether the file DEV FILNAM exists or not. LOOKUP

returns NIL if it can~t find the file and (LIST DEV FILNAM) if the file does exist. If OEV is NIL,

DSK: is assumed and (LIST FILNAM) is returned.

2.2.4.4 (LOOKUPFILE file) [SU8R]

LOOKUPFILE is a SU8R that tAkes as its argument a FILESPEC and returns a non-NIL value

if there is a file of thai description that can be looked up. (In fact LOOKUPFILE performs a

LOOKUP monitor. call.) In many cases LOOKUPFILE is more convenient than the LOOKUP

60

f unc tion. It is also more cener al.

2.2.4.5 (FILELENGTH) [5U£3R]

returns a number whose riGht half contains the number of words in the last file for which a

LOOKUP or LOOKUPFILE wos done.

2.2.5 (TV "file I " "file2" ... -"fiIan") [F5UBR]

TY imitates thC' monitor type command by reading (and typing) the specified files in a TYI

TYQ loop. The loop may be terminated by typing any character while it is in progress (you

don~t have to type "'c . "'0 is ineffective.. Try a space.).

2.2.6 (DELETE "FILNAMI II "FILNAM2" ...) [FSUBR]

DELETE is an FSUBR that deletes the files in the list. The DEV·s are optional, and a DEV is

effective over the following FILNAM~s until a new DEV is encountered. DELETE always

returns NIL. The user·s disk area is assumed if no DEV has been specified.

2.2.7 (DIRF {ppn} {filespec}) [FSUBR]

prints a list of files in the specified directory (defaults to (MYPPN» which "match" filespec.

Filespec is a file name cxcept that either half may be replaced with an .asterisk (*> to match

anything. The default filespec is (*.*).

Example: (DIRF (C410 HBOO) (t • LSP))

2.2.8 (DIR PPN) [SUBR]

DIR returns a li5t of files from 1he directory of PPN. If PPN is NIL, the user·s directory is

assumed.

For related information see PPN.

2.2.9 (RENAME "FILNAM J" ·'FILNAM2") [FSUBR]

RENAME is an FSU8R that renames FILNAMI to FILNAM2. RENAME returns T if the

renaming is succ.essful and NIL if it fails.

2.2.1 0	 (*RENAME FILESPEC1 FILESPEC2) [SUBR]

*RENAME is a SUBR that renames FILESPECl to FILESPEC2. It returns T if the rename is

61

~uccc~sflli nnd NIL if it f ilils. If a device jfi !".pccificd in FILESPECl and no device is specified

in FILESPEC2 the device ~.pccified in FILESPECl is cC1rricd Over to FILESPEC2

2.3 PRETTY-PRINTING

2.3.1	 (PP <a 1> {<a2>} ...) [FSUBR]

For each <a> in the arGument Ii~t: If <a> is Cltomic, each property of <a> which appears on

the list PRETTYPROPS is printed in reC1dClble format. (If no such properties appear a message

to that effect is printed - thi!i mcs!.age may be suppressed by setting NOPRETTYPROPS to

NIL). Each non-atomic <a> is simply printed via SPRINT unless its CAR is defined as a

"prettyprint command", in which case the expression is evaluated. <a> may also be a list

consistin8 of a LAP expression followed by a sequence of LAP code; such a list will be printed

in standard LAP format.

2.3.2	 (GRINDEF "r I" "F2" '"F3" ... "FN") [FSUBR]

GRINDEF is the same as PP.

2.3.3	 (PP* 11 12 ...) [FSUBR]

is like PP but it forces CQMMENTFLG to T so all comme-nts are shown.

2.3.4	 (SPRINT EXPR IND) [SUBR]

SPRINT is the function which does the "pretty printing" of GRINDEF. EXPR is printed in a

human readable form, with the levels of list structure shown by indentation along the line.

This is useful for printing large complicated structures or function definitions. The initial

indentation of the top level li!»t i!» IND-l spaces. In normal use, IND should be given as 1.

2.3.5 (PPL	 <var 1> {<var2>} ...) [FSUBR]

Each <var> should be an atomic symbol which is bound to a prettyprint list to be passed on

to PP. This prettyprint list may contain atomic symbols whose properties are to be printed,

prettyprint command e)(pre~sion!;, and other expressions which are to be SPRINTed. Each

<var> which is not already a member of its ,Prettyprint list will be printed so that if dumping

to a file its value will be restored when the file is subsequently loaded. The prettyprint list

will disappear when the file is compiled, however (Le., it will not appear in the LAP file).

62

2.3.6 (GRINL flF I" "F2" ... "FN OI

) (FSU8R]

GRINL is the r,ame as PPL.

2.3.7	 (PPL* J1 12 ...) (FSUBR]

is like PPL but it forces COMMENTFLG to T, causing all comments to be shown.

2.3.8	 PRETTYPROPS [VALUE]

In its simplest form, PRETTYPROPS (or GRINPROPS) is a list of atomic symbols which gives

the properties which PP is to print. Each atomic argument to PP which has a property on

PRETTYPROPS wiil be printed as a DEFPROP expression. Occasionally, however, it is desirable

to print certain properties in something other than DEFPROP format. This may be

accomplished by putting a cOI1r.ed pair of the (orm «prop> . <fn» onto PRETTYPROPS; when

an atom with a <prop> property is encountered, PP simply prints a carriage return and calls

<fn>. <fn> will be pas5cd thrce ClrBumenh;: the atom currently being PPed, the value stored

under the property <prop>, and the atom <prop> itself. The function can then print anything

it wishes before returning to PP, at which time another carriage return will be printed. For

example, the functions PP-VALUE and PP-RMACS are provided by the prettyprint package to

print VALUE and READMACRO properties in special form.

2.3.8.1 (PP-VALUE atom value (Quote VALUE» [SUBR]

is	 the default pretty-printing function for values

2.3.8.2 (PP-FUNCTION atom function-defn fn-prop) (SUBR]

is	 the function used to pretty-print EXPR, FEXPR and MACRO properties by PP.

2.3.8.3	 (PP-RMACS atom rcadmacro-dofn (Quote READMACRO» (SUBR]

is the default pretty-printing function used for readmacros.

2.3.8.4	 (PP-DCCOMMENT 10 VAL PROP) [SUBR]

PP-DCCOMMENT is the !;tandard function for printing DC-style comments. Comments are

frequently stored only in a file, of course, so' PP-DCCOMMENT is more complex than most

prettyprint functions. When PP-DCCOMMENT is called from DSKOUTt the variables it uses for

communications are approprj~tely set up by DSKOUT. The system is initialized so that when

it is called directly from PP, no printing will be done.

63

PP-DCCOMMENT only attempts to print the DC-s1yle COmments (referred to henceforth as

comments) if the vClri.,ble PRINT -COMMENT is true. PRINT-COMMENT is initially NIL. If the

variable COMMENT -COF is hound and not NIL, the comments will be searched. for on the file

and c.hannel specified. The format of COMMENT-CDF is exactly the format of an argument list

to INPUT, and it mu~t includr~ a c.hannel. An INPUT must already have been .performed on the

channel, but PP-DCCOMMENT will ~.cleet the channel as needed. COMMENT-CDF is initially

unbound. If the vari;tble FILUPDATFLG is true, comments that are stored in primary memory

will be deleted so the ~)pa(P. can be reclaimed. The deletion is undoable -- if DSKOUT should

abort for !".ome rCil~)on, the operation can ordinarily be undone and the comments will be

restored. FILUPDATFLG is initially NIL, and should stay that way for most user applications.

If COMMENT-CDF (CDF = ChanDevFile) is true and a comment is searched for without

success, the user will be asr,ed to help in finding the comment unless COMMENT-CDF is

unbound. A file spec will be reque5ted from the user and searched for the comment. If the

first item on the line 'containing the file spec is the atom "DEFAULT:" and COMMENT-CDF is

bound (though pO!>5ibly NIL), COMMENT-CDF will be set up so that subsequent calls to

PP-DCCOMMENT will 5carch the new file aulon"latically rather than the old one. The idea here

is that if PP is called directly, the variable will ordinarily be unbound, and the user will not

want to set up a GLOBAL default file to search for comments.

The variable tt1L1NECTR is used by the sy&tcm routines that search the COMMENT-CDF file

for comments. It keeps track of the "place" that LISP is in searching the file. When a

COMMENT-CDF is set up by the user, #1LINECTR should be initialized to 1.

2.3.9	 PRINTMACRQ

SPRINT normally operat~~ by formatting the expression being printed using indentation to

produce "pretty" output. It i5 occasionally desirable to have certain subexpressions printed

in some special format for increa5ed readability. Such a capability is provided via the use of

printmacros. Any function may be flagged as a printmacro by placing the macro definition on

the property list of the atom under the indicator PRINTMACRO. Whenever an atom with such

a property appears as the first element in a list being ~rettyprinted, SPRINT takes special

action, such action depending on the value of the PRINTMACRO property:

(1) If the value i~ a string the string is simply PRINCed and the CADR of the original

expression (if present) is SPRINTed. This serves as an inverse for READMACROs of the "<e>

-> (QUOTE <e» type. Of the expression has a non-NIL cddr then the printmacro will be

ignored.) (2) If the vAlue is the special atomic symbol BRACKETS then the expression is

printed by SPRINT in the norm~1 way, except that each top-level non-atomic argument will be

64

printcd with bracy,cts [...] in~lc(ld of the usual parentheses (...). This gives the user one more

met hod of producing more readable output. COND, SELECTQ, AND, OR, and CATCH are

initialized as printmacro~. of this type. To di~.(1ble the use of brac~\ets for these functions

simply REMPROP the PRINTMACRQ property from their property lists. (3) If the value of the

~..RINTMACRO property is neither a string nor the atomic symbol BRACKETS it is assumed to

be a true print macro function (or, more typicalfy , the name of a function). This function will

be passed the expression being printed as its only argument, and may print it in any format it

wishes.

The QUOTE print macro (which is already in the system) could be defined either by:

(DEFPROP QUOTE ..,.. PRINTMACRO) or

(DEFPROP QUOTE

(LAMBDA CE) (PRING '''''') (SPRINT (CADR E) (CURPOS»)

PRINTMACRO)

2.3.9.1 (PP-COMMENT exp) [SUBR]

is the printmacro that block-prints :t** comments.

2.3.9.2 (PP-FORMAT <e> <n> <flag» [SUBR]

Prints the expression <e> with the first <n>+ 1 elements (the function name and <n>

arguments) printed on one line. <flag> specifies how the remaining arguments are to be

printed: if <flag>=NIL btandard format), all remaining arguments are printed under the first

argument; if «lag>="'MISER, the remaining arguments are placed under the function name; if

<flag>=LABELS, all non-atomic arguments are printed under the first argument, with atoms

placed to the left as labels.

2.3.9.3 (PP-LABELS exp) [SUBR]

is used by the pretty-printer to print PROG expre~sions. It is equivalent to (PP-FORMAT

exp 1 'LABELS).

2.3.9.4 (PP-MISER exp) [SUBR]

is equivalent to (PP-FORMAT exp 1 'MISER). It is the default printmacro for LAMBDA and

DEFPROP.

2.3.10 PRETTY-PRINT-COMMANDS

Prettyprint command!. may be u5ed as arguments to PP or in PPL prettyprint lists to

perform a variety of special formatting tasks. A prettyprint command is simply an expression

65

whose CAR is a function nrlme wilh a non-NIL PPCOM property. Such expressions are

evaluated when encountered by PP, thus providing a mcchrtnism for "grabbing control" during

the prcttyprint proce~s. The user may define his own pretty print comman&;, or may use the

following funetionr. supplied by the sy~.tem. Note that in addition to appearing as prettyprint

commands in PPL lists, the~.e expressions may be used in other contC?_xts as well.

2.3.1 0.1 PPCOM [PROPERTY]

PPCOM is the property thelt identifies an atom as a pretty-print command. If the value of

the property is not T thcn it ~hould be the name of a function which when applied to a calf

on the pretty-print command will give the words whose definitions are to be printed by the

call on the pret typrint command. For example, the PPCOM property of P: is CDDR. (P: (value

expr) x y z) would print definitions of the words x, y and z. This is used to help keep track

of what functions are defined in which files so that the CHANGES computation will work right.

2.3.10.2 (P: <props> <x 1> {<x2>} ...) [FSUBR]

PRETTYPROPS is 5el to <props>, the <x>s are pas5ed on to PP, and PRETTYPRQPS is

restored.

2.3.1 0.3 C*PG*) (SUBRl

prints a page-eject r'u. It is u~cful as a PRETTY-PRINT -COMMAND.

2.3.10.4	 (MBO: <1n) <xl> {<x2>} ...) [FSUBRl

Passes the <)(>s on to PP in such a way that they will be prettyprinted inside of an

expression starting with <fn>. For example, to prettyprint Fl and F2 inside of a PROGN

expression (perhaps sO they will not be compiled) one could do:

~1BD: PROGN FI F2)

2.3.10.5 (FORMS: <xl> {<x2>} ...) [F5U8R]

Each <x> is p':155Cd directly to SPRINT - may be used to print atoms and prettyprint

command expressions which would normally be handled specially by PP.

2.3.10.6 (E: <8 I > {<e2>} ...) [F5UBR]

The <e>s are simply evaluated. For example, the inclusion of the following in a prettyprint

list could be used to change the base in the middle of a print:

(E: CSlirQ BASE 10.»

66

2.3.11 PRETTYFLG [VALUE]

determines whether SPRINT prints the nice readable things we all know and love (when the

value is T which is tha dcl ;lult) or a fast, compact (and not very readable) symbolic dump

(when the value is NIL)..

2.3.12 PPMAXLEN [VALUE]

is a general limit on the number of characters (after initial spacing) that the prettyprinter

will put on a linc.

2.4 INPUT-FNS

2.4.1 (READ) [SUBR)

READ causes the next S-expre5sion to be read from the selected input device, and returns

the internal repre.scntation of the S-exprc5sion. READ uses INTERN to guarantee that

ref~rences to the same identifier are EQ. READ has been altered so that (except when

processing a rec:ld macro), reading from the teletype flushes all input on the same line after

the thing is read. Thus, inputs to successive reads cannot be placed on the same line.

For related inform~tion see INTERNSTR and LOWER-CASE.

2.4.2 (RDNAM) [SUBR)

RDNAM functions in the sarna manner as READ except that it does not INTERN the atoms

that it reads. Thus an atom read by RDNAM and an atom read by READ are **NQT** EQ.

For related information see MAKNAM.

2.4.3 (READCH) [SUBR]

READCH causes the next character to be read from the selected input device and returns

the corresponding single character identifier. READCH also uses INTERN.

For related information see LOWER-CASE.

2.4.4 (TYI) [SU£3R]

TVI causes the next character to be read from the selected input device and returns the

67

ASCII code for that c.har ad er.

2.4.5 (LINEREAD) (SUBR]

LINEREAD rcads a line, returning it as a list. If some expression takes more than one line
"

or a line terminates in a comma or tab, then LINEREAD c.ontinues reading until an expression

ends at the end of a line. This is the function u5cd by the EDITOR and BREAK Package

supervisors to rC<1d in commands, and may be useful for other supervisor-type functions.

Note that a blank no 10118cr forces LINEREAD to continue reading. This allows LINEREAD to

read things created by functions ~.uc.h as PRINT.

For related information see LOWER-CASE.

2.4.6	 (LINEREADP) [SUBR]

LINEREADP is just like LINEREAD, but if the input buffer contains a CRLF before any

interesting characters are read it will return NIL instead of waiting for a list to be read. This

is convenient for def aulting input. Warning: Not all input commands read to the end of the

line..For example if you type "ABC" followed by a crlt and then do 3 TYls there will still be a

crlf in the input stream. This would cause LINEREADP to return NIL ,even before the next line

was typed. In 8eneral LINEREADP should only be used after LINEREAD or another

LINEREADP.

2.4.7 (PEEKC) [SUBR}

PEEKC returns the ASCII code for the next character in the input buffer without actually

reading it.

2.4.8 (UNTYI n) [SUBR]

UNTYI unreads t he char acter whose ascii c.ode is n (puts it in the front of the input stream)

and returns n. This only works for one character (the size of the buffer). UNTYI is really

only guaranteed not to I05e characters when it is called immediately after a TY!.

2.4.9 (TYIO n) [SUBR]

copies from the input channel to the output channel until the character whose ascii code is

n appears a5 input.

68

2.4.10 (YESNO X) (SUGR]

YESNO returns T if X is T, Y, or YES, returns NIL if X is NIL, N, or NO, and returns X

otherwise. It is useful for interpreting yeslno answers typed by the user.

2.4.11 '(TTYESNO) [SUl3R]

reads from the tty. If the read generates an error the value is NIL, otherwise the input is

passed to YESNO.

2.5 QUTPUT-FNS

2.5.1	 (PRINT S) [SUBR]

= (PROG2 (TERPRI)
(PRIN1 5)

(PRINe (QUOTH I »)

For related information see LOWER-CASE.

2.5.2 (PRINI S) [SUBR]

PRINI caU5CS thc S-cxpres5ion S to be printed on the selected output device with nO

preceding or following 5paces. PRINl also inserts slashes ("I") before any characters in

identifiers which would be syntactically incorrect otherwise. Double quotes around strings

are printed. It is called by PRINT.

For related information see LOWER-CASE.

2.5.3 (PRINe S) [SUBR)

PRINe is the same as PRINl except that no slashes are inserted and double quotes around

strings are not printed.

2.5.4	 (TYO N) [SU8R]

Tya prints the character whose ASCII value is N, and returns N.

2.5.5	 (MSG <i 1> {<i2>} ...) [F5UBR)

MSG provide!> a general mes5agc-printing facility for LISP. Each <i> is an instruction which

69

provides a specific. formatting capability:

"<string>" Print <string> using PRINAC

+<numucT> Space <number> spaces

(T I.n» T~b to position <n>

T Move to nc,* line

- <number) Print <number> blank lines

(E <cxpr» Efl]uate <expr>

other Eva] and print using PRINA

Note that MSG print5 the desired message on the currently selected output device. MSG is

compiled in-line.

(MSG T "X = " 5 X T)

is equivalent to:

(PROGN	 (TERPR I)

(PRI NA.C '''X • It)

(SPACES 5)

CrRI NA X)

(TERPRI))

2.5.6 (TTVMSG <i 1> {<i2>} ...) [FSUBR]

TTYMSG is identical to MSG, except printed output is directed to the terminal instead of the

currently s.elected output device. To insure that the messaae will appear on the terminal

even if0 ha5 been 5truc~" a TALK is performed before printing. TTYMSG is compiled in-line.

2.5.7 (PRINA x {pos}) [LSUBR]

Like PRINl, except if an atom won't fit on the line, a tab to position pos on the next line is

performed before printine re5umes. Pos is optional, with a value of 1 assumed if omitted.

2.5.8 (PRINAC x {pos}) [LSUBR]

is the same as PRINA but PRINC is used to print atoms instead of PRINl.

2.5.9 (SPACES n {ident}) (LSUBR]

Spaces over <n> space~, using tab characters. when possible. If <n> spaces won't fit on the

current line. SPACES performs a TERPRI instead. If ident is specified then SPACES indents

this amount after the TER?RI.

2.5.10	 (LINES n) [SUBR]

Prints	 <n> blank lines. Note that the next print position will always be at the start of a

70

•

'.

.~

line, ~o (LINES 0) may be used as a "conditional TERPRI" which outputs a carriage return if

not already at the ~l"rt of a line.

2.5.11 (PRINL <I» (LSUBR]

Prints the list <I> without the outermost parentheses, Le., prints the elements of <I>

separated by !".paces. Each clement is printed using PRINA, with a <pos> of 1.

2.5.12	 (PRINLC <I» [LSU8RJ

Identical to PRINL, except uses PRINAC instead of PRINA to print the list elements.

2.5.13 (TERPRI X) [SUBR]

TERPRI prints a carringe-return and line-feed and returns the value of X. X may be omitted

if the value of TERPRI is not used.

Exampl e: CPRINC(TERPRI Xl)

is the same as

(l'ROG2 (TERPRI) (PRIKC X)

~.5.14 (TAB N) [SUBR]

TAS tabs to position N on the output line doing a TERPRI if the current position is already

past N. Note that TAB outputs spaces only when necessary and outputs tab characters

otherwise.

2.5.15	 (PRINTLEV EXPRESSION DEPTH) [SUBR]

PRINTLEV is a printing routine similar to PRINT. PRINTLEV, however, only prints to a depth

of DEPTH. In ~ddition, PRINTLEV recognizes lists which are circular down the CDR and closes

these with ' ...J' instead of 'r. The combination of these two features allows PRINTLEV to print

any circular list without an infinite loop. The value of PRINTLEV is the value of EXPRESSION.

This means that PRINTLEV should not be used at the top level if EXPRESSION is a circular list

structure, since the LISP executive would then attempt to print the circular structure which is

returned as the value. (Instead say (NULL (PRINTLEV ...».)

2.5.16	 (PRINLEV EXPRESSION DEPTH) [SUBR]

PRINLEV is the same as PRINTLEV but no preceeding (TERPRl) is done and no trailing blank

71

is added.

2.5.17 (PLEV oxp) [SUBR]

does (PRINLEV exp ~LCOKOPTH). PLEV is the default value of %PRINFN (used by the break

pacy,age).

2.5.18 1.LOOKDPTH (VALUE]

This is the variable that determine the depth to which PLEV goes. It is rebound in a few

plac.es by the break pac.Y.aee.

2.6 I -O-CHANNELS

2.6.1 (INPUT "CHANNEL" . "FILENAME-LIST") (FSUBR)

IN'PUT relea$es any file previout,ly initialized on the channel, and initializes for input the

first file specified by the filer'\amc-list. INPUT returns the channel if one was specified, T

otherwise. INPUT docs not evaluate its arguments. Note that INPUT does NOT SELECT the

channel for input. This is done by INC.

2.6.2 (INC CHANNEL ACTION) (SUBR]

- INC selects the ~pecified channel for input. The channel NIL selects the teletype. If

ACTION = NIL then the prcviou!ily !ieleded input file is not released, but only deselected. If

ACTION = T then that file is rclca!icd, making the previously selected channel available. At the

top level, ACTION need not be specified.

The input functions receive input from the selected input channel. When a file on the

selected channel i~ exhau!:.ted, thel) the next file in the filename-list for the channel is

initialized and input, until the filename-list is exhausted. Then the teletype is automatically

selected for input and (ERR (QUOTE SEOFS» is called. The use of ERRSET around any

functions which accept input therefore makes it possible to detect end of file. If no ERRSET

is used, control returns 10 the top level of LISP. INC evaluates its arguments, and returns the

previously selected channel name.

In order to READ from multiple input sources, separate channels should be initialized by

INPUT, and INC can then !:.clcct the appropriate channel to READ from.

A crude approximation to the TY function (for typing a file) is (PROG NIL (INC {INPUT XYZ

,.

72

FILE) NIL) L: (TYQ (TYI)) (GO L:)).

2.6.3 (OUTPUT "CHANNEL" . "FILENAME-LIST") (FSUBR]

OUTPUT initializes for output on the specified channel the single file specified by the

filename-list. OUTPUT does not evaluate its arguments, and returns the channel name if

. specified, T otherwi!>c. Nole that OUTPUT does NOT SELECT that channel for output. This is

done by OUTC.

2.6.4 (OUTC CHANNEL ACTION) [SUBR]

OUTC seleds the !.pecificd channel for output. The channel NIL selects the teletype. The

output functions transfer output to the selected output channel. If ACTION = NIL, then the

previously selected output file is not closed, but only deselected. If ACTION = T then that file

is closed, Le., an end of file is written. OUTe evaluates its arguments and returns the

previously selected channel name. At the top level, ACTION need not be specified.

Examples: At the top level:

(OUTC (OUTPUT LPT:) T) ;; now all output goes to LPT:NIL
(OUTC NIL T) ;; now output comes .to TTY: and LPT:NIL 1s closed
(OUTPUT FOO DSK: BAZl ;; output still on Try: but FOO 1s declared
(OUTC (QUOTE FOOl NIL) ;; no~ the channel FOO 1s selected. Thus

;; output goes to DSJ(: BAZ. The preVious file (TTY:) 1s not
;;closed. (Actua.lly TTY: is always opened when nothing else 1s.)

2.6.5 (INCH) [SUBR]

returns the name of the currently !;clected input channel.

2.6.6 (DUTCH) [SUBR]

returns the name of the currently !;cleeted output channel.

2.6.7 (TTYIN FORMI ... FORMn) [MACRO]

TTYIN is a MACRO that produces code that evaluates FORMI through FORMn with the

currently selected input device forced to be the teletype. The value of FORMn is returned as

the value of TTYIN. For this to be u!;eful, some of FORMI ... FORMn should do some reading.

Note that no error protection is provided. If an error occurs, TTYIN will lose control and

f ail to re~et the input chrlnncl to it~ previous value. For this reason, TTYIN should be used

only to surround the expressions which actually do the input, and ERRSET should generally be

73

u~cd to prot~et il~,ilin~.t the uscr typing control-G so that control is retained by TTYIN.

GcncrCllly, the function ~,hould be (ilnd is most useful when) used as in, for example, (TTYIN

(ERRSET (READ) EI~HORX».

2.6.& (TTYOUT tORMI ... FORMn) [MACRO)

TTYOUT is a MACRO that produces code that evaluates FORMI through FORMn with the

currently !>cleeted output device forred to be the teletype. The value of FORMn is returned

.as the value of TTYOUT. For this to be useful, sOrtIe of FORMI through FORMn should do

some writing.

Note that no error protection is provided. If an error occurs, TTYOUT will lose control and

fail to re~;et the output channel 10 its previous value. For this reason, TTYOUT should be

u~,cd only to surround the expre~sions which actually do the output. Generally, the function

should be (and is most useful when) used as in, for example, (TTYOUT (PRINT X».

2.6.9	 (GETCHN) [SUBR)

allocates an I/O channel. It returns the channel it got (a number).

2.6.10	 (GIVCHN chan) [SUBR]

deal locates an 1/0 channel. The argument should be the number of an allocated channel.

2.6.1 I	 (EXCISE) [SUBR]

EXCISE contraet~ rare to its length after ALLOCATION or the last START. This removes I/O

buffers, and all RELOC programs. It also closes all files and releases all devices. The usual

reasons for expanding core are I) using I/O channels, 2) using the loader and 3) getting more

Binary Program Space.

For related information $ee BPS, CORE, LOAD, aJ,d SAVE.

2.7 I-O-MODE

2.7.1 BASE [VALUE]

BASE specifics the output radix for integers (initially 10 (decimal». Warning: the default

used to be 8 (oct al). If BASE is negative then negative numbers will be printed as unsigned

36 bit numbers (where th~ radix is -BASE), i.e. 777777777777Q instead of -lQ.

74

2.7.2 IBASE

IBASE dctermincslhe input r Cldix for integers not followed by a decimal point or octal

point. The default vCllue is 10 (dccimClI).Warning - IBASE w:,ed to default to 8 (octal).

2.7.3 *NOPOINT [VALUE]

This variable detcrmi~cs whether decimal points will be printed after decimal numbers and

oct al points after octal numbers - T means they won't.

For related inforrniltion ~cc *NQPOINTDSK.

2.7.4 OCTAL-POINT

The octal point "Q" is printed after octal numbers (if *NOPOINT is NIL) to distinguish them

from numbers in other bases, just as the decimal point is used in base 10.

For related information see *NQPOINTDSK.

"Why 'Q'?", you as".. "Why not?", we reply.

2.7.5 INTERNSTR (VALUE]

determines whether strines will be INTERNed by READ. The default value is NIL meaning

they are not. This flag is turned on by LAP.

2.7.6	 (PGLINE) [SUBR]

When reading an input file, it is sometimes desirable to know the page and line being read

from. PGLINE returns the dotted pair (page number. line number) for the selected input file.

The page number is applicable only to STOPGAP files. If the file has no line numbers, PGLINE

will always return (1 . 0).

2.8 CHARACTERS

2.8.1 COMMENT-CHAR

Note: For commenting code you should see the explanations of *** and COMMENT. The

features described here are not good for that purpose. Comments are useful for allowing

descriptive text in files which will be COMPLETELY IGNORED WHEN READ. (Since lisp doesn't

75

~ce thi~ text it can'\ r:.avc it in 1he rcvi~.ed file.> Comments alr:.o mahe it po~sible to extend

atoms (identificr~, ~trine!". cmd numbers) across line boundaries without any of the characters

in the comment bccomjn~ part of the atom. When the comment character is seen by LISP the

rest of the input linc is iGnored. The comment character is ?4 in 50S or "z (control Z).

2.8.2 LETTER-QUOTE

Identifiers are normally ~tring of characters beginning with a letter and followed by letters

and digits. It is r,ometimes convenient to create identifiers which cant ain delimiters or begin

with digits. The lise of the delimiter "/" (slash) causes the following character be taken

literally, and the sla~h itself is not part of the identifier. Thus, lAB is the same as AB is the

same as / A/B. One can change the LETTER-QUOTE character by using the CHQUOTE function.

2.8.3 (CHQUOTE n) [SUBR]

(CHQUOTE n) changes to quoting (slashifying) character to character number n. (CHQUOTE

NIL) returns the current quoting character.

2.8.4	 (MODCHR CH N) [SUBR]

The value of MODCHR is the old read-table entry for CH. If N is non-NIL it must be a

number which represents a valid t~ble entry. The entry for CH is changed to N. If N is NIL,

no cOm~e is made, ·e.g. to make H." a letter (so it will behave like the letter HAlf) execute

(MODCHR 46 (MODCHR 65 NIL».

.. 2.8.5 (SETCHR CH N) [SUBR]

SETCHR is similar to MODCHR except that it only modifies the portion of the entry

associated with read macr05.

For related information see READMACRQ.

2.8.6	 *DIGITS (VALUE]

is simply a list of the digits 0-9 (a~ characters, not numbers).

2.8.7	 *LETTERS (VALUE]

is just a list of the letters A-Z.

16

2.8.8 LQV/ER-CASE

READ and LJNEf~EAD now m~p lower ca~(~ It:.tfers inlo upper case letters in~ide identifiers.

Letters in strings are not milpped. Lower-(.'o:.e letters in identifiers other than strings are

slashificd on output by PRINT or PRINl. READCH map~ lower case to upper case, but the

mapping cannot be turned off by changing the read tables. To di~able this feature, redefine

READCH to ~)e (INTERN (ASCII (TYO}). rYI is unaffecled by the mapping, distinguishing upper

and lower case as be fore.

Pro8rams LJ~>i,,& no lowcr-c Cl~e identifierr. and not using TYI will notice no difference except

that input from a file or the keyboard may now be in lower case. If there are lower case

identifiers (or string~), Ihe change will affect the actions of EXPLODE, FLATSIZE, MAKNAM, and

READLIST. EXPLODEC and FLATSIZEC are unaffec1ed because, like PRINe, they ignore any

possible slashification. NTHCHAR is also unaffected.

To read in existing files containing lower case identifiers, the lower case letters may be

sla5hificd with TEeD before being input to LISP. Alternatively, LISP can be modified by a

method like the one for removing the lower case mapping feature. Remove the lower case

mapping feature, but record the results of the MODCHRs performed on the lower case

characters. Read in the file. Do MODCHRs restoring the original table values, then write the

file out again. This will cause the lower case identifiers to be slashified.

To remOve the lower case mapping, do the following:

(PROG () T)

(SETQ IT (CHRVAL tAl)

LOOP (COND ((NOT () IT (CHRVAL'Z»)

CMOOCIIR (+ IT 32) (MODCHR IT NIL» (SETQ IT (+1 IT» (GO LOOP)]

2.9 TTY-CONTROL

2.9.1 (CLRBFI) [SUOR]

CLRBFJ clears the Teletype input buffer.

2.9.2 (DOTIN X) [SUBR]

DDTIN is a function which selects teletype input mode. With (DOTIN NIL), and typing to .

READ, READCH, or TYI, a rubout will delete the last character typed, and control U (.....U) will

delete the entire last line typed. Input is not seen by LISP until either altmode or carriage

return is typed. With (DDTIN T) and typing to READ, a rubout will delete the ~ntire

77

S-cxprcsr,jon bcine rOrld "nd r,tart reading (l~ain.

Note: (DDTIN T) 1s not Tccornm~nd~d ~hcn the time-sharing system 1s

swappinG, ~in(e the proGram is reactivated (and hence ~wappcd into core) after every

char ader typed.

2.9.3 (lNITPROMPT N) (SUBR]

Whenever LISP i~ forced back to the top level (e.g. by an error ,or Control-G), the prompt

ChClrr:lrtcr is rc~,et. INITPROMPT is similar to PROMPT except that it sets the top level prompt

charader. (lNITPROMPT NIL) returns the ASCII value of the top level prompt character

without changing it.

2.9.4	 (PROMPT N) [SUBR]

The LISP READ routines type out a "prompt character" for the user when they expect to

read from the teletype. For example the top level prints ">" and the editor prints "#".

PROMPT re~cts thi~ prompt character. N is the ASCII representation of the new prompt

character. The ASCII representation of the old prompt character is returned as the value of

PROMPT. (PROMPT NIL) return~ the current prompt character without changing it.

2.9.5 (TTYECHO) [SUBR]

TTYECHQ complements the Teletype echo switch. The value of TTYECHO is T if the echo is

being turned on, and NIL if it is being turned off.

2.9.6 (READ?) [SUBR]

READP returns T if a ch('trader can be input and NIL otherwise. READP does not input a

character.

2.9.7	 (ERRCH N) [SUBR)

ERRCH chances the bell char~eter that causes an (ERR (QUOTE ERRORX». N is the ASCII

representation of the chf\radcr. ERRCH returns the ASCII repre5entation of the old character.

Note that if the new charficter is not a brea~, character to the monitor, it will not be

processed until it is read in the normal course of reading.

2.9.8 (TALK) [SUBR)

78

Undoes the effect of ;} previous AO. May be used to insure that a messaee will appear on

the terminal (sec TTYMSG). Note that a TALK is automatically performed whenever an error

condition is encountered, including an end of file on any input device.

2.10 LINE-CONTROL

2.1 0.1 (CURPOS) (SU£3R]

CURPOS returns the current position on the output line of the currently selected channel;

this is computed by (ADDI (*DIF (LINELENGTH NIL) (CHRCT»).

2.10.2	 (CHRCT) [SUBR]

CHRCT returns the number of char acter positions remaining on the output line of the

selected output channel. When characters are output, if CHRCT is made negative, an ASCII

176 followed by a carriage-return and a line-feed are output. The~e characters are

completely ignored on input.

2.10.3 (SETCURPOS N) [SUBR]

Immediately following (SETCURPOS N), (CURPOS) will return N. This allows the user to send

characters that do not print or that do cursor positioning, and inform PRINT and friends· of

where one really is on the line.

2.10.4	 (lINElENGTH N) [SUBR]

LINELENGTH is used to examine or change the maximum output linelength on the selected

output channel. If N == NIL then the current linelength is returned 'unchanged, otherwise the

linelength is changed to the value of N which is returned and must be an integer.

2.10.5 LPTLENGTH [VALUE]

(or DSKLENGTH) is supposed to tell the system how many characters it can put in a line in

a DSKQUT. There are some known pathological cases in which it is worth changing.

2.11 READMACRO

Read Macros Clilow the user to !>pecify a function to be executed each time a selected

character is read during input of his data or programs. This function is generally used to

79

produce one or more clctncnts of thc input list which are built up in some way from later

characters of the input ~>trinf.;. There are two types of Read Macros; Normal Read Macros

Wh05C rC5ult i5 lJ5cd as tm clel"/)cnf of the input list in the position whcre the macro character

occurred, and Splice Milcros who~e result (must be a list which) is spliced sequentially into

the input list.

Exampl es: (DRM. {LAMBDA 0 (NCONS (READ»»

If	 the expression (A B *C D) is read the apparent input is (A B (C) D).

(ORM = (Lt\~\BDA. 0 (REVERSE (READ»»

If the expression (A B = (C 0 E) F G) is read the apparent input is (A B (E D C) F G).

(DSM: (LAMBDA 0 (CONS Nt L (READ»»

If the expression (A [1 :C) is read the apparent input is (A B NIL. C).

Splice macros place the result of the fundion evaluation into the input stream minus the

outermost set of parentheses.

WARNING: Read macro characters wiH not be recognized if they occur inside of an atom

name unless the character is first defined to be equivalent to a break or separator character

(e.g. space or comma) using MODCHR. Read macros are defined by DRM. (normal) and DSM

(splice).

2.11.1	 (ORM ;'CHARA,CTER" "FUNCTION") [FSUBR]

CHARACTER is defined as a Normal Read Macro with "FUNCTION" being a function name or

a LAMBDA expre!ision of no arguments which will be evaluated each time CHARACTER is

detected as a macro during input. FUNCTION is put on the property list of CHARACTER under

the property READMACRO. The value of DRM is CHARACTER.

2.11.2	 (DSM "CHARACTER" "FUNCTION") [FSUBR]

DSM is exactly like DRM except that CHARACTER is defined as a Splice Macro.

2.11.3 (1.DEREAD number lambda-exp type) [SUBR]

defines the character with the given number as a readmacro (if type is 10) or a

splicemacro (if type is 11).{Normal value is 21.)

2.11.4 QUOTE-CHAR

80

The character ..~ .. is a rC.1dmacro that will translate into the QUOTE function. So, '(A 8 C) is

the ~ame as (QUOTE (A Be».

2.1 1.5 EDRM [EXPR]

This is the edit read mac.ro. I.e. if you type (ORM S EDRM) then typing S <fn name> will

cause the editor to be called for the given function.

2.11.6 EVSM [EXPR]

This is the eval splice macro. I.e. if you type (DSM _ EVSM) (and (SETQ EVSM 95» then

whenever you type _ <exp> the expression will be evaluated (and the value printed) and

spliced into the input. Whenever you type _ <exp> the expression Will. be' evaluated and the

value will be printed but with no change to the apparent input.

2.11.7 (PPRM) [EXPR]

is the GRINDEF read macrO. I.e. if you do (ORM # PPRM) then # <fn name> will cause fn to

be pretty-printed.

2.11.8	 (PiRM) [EXPR]

is the PROGl read macro. I.e. if you type (DRM ; PIRM) then whenever you type ;<exp>. .
the expression will be evaluated but NIL will be returned.

81

3. ERROR-RECOVERY

3.1 INTERRUPTS

In ca!:;e you want to interactively ~top a computation for any of several purposes, LISP has

an interrupt-handling facility. This provides two flavors of entry to the debugger and about

four flavors of aborting of the computation, five perhaps depending on how you count.

The interrupt routine is entered by striking a single ""C (Control-C) if awaiting terminal

input, or two con!:.ccutiveCts if computing. The interrupt routine types:

; ; I nt errup t (? =he1p) :

and awaits an interrupt character from the user. Typing ..?" will produce the following fist

of choices:

CR = C~nt1nup. (Ignore AC)

AD Rctur~ to Top Level

AX = Exit to Monitor via (EXIT T)

"'H uTcakNcxt Fn Cd11

AB = Back Up and Break Last Fn Call

"'G = (ERR ERRORX)

"'E = (ERR Nt Ll

AR c Restore System OBLISr

1. Control-H: This will cause the computation to continue, but a break wilt occur the next

time a function is called (except for a compiled function called by a compiled fundion). A

message of the (arm (-- BROKEN) is typed and the user is in BREAK. WARNING: It is possible

to get into an infinite loop. that does not include calls to functions other than compiled

functions called by compiled functions. These will continue to run. (In such cases, try one of

the other control e:haraders).

2. Control-8: This will cause the sY!itcm to back up to the last expression to be evaluated

and cause a break (puttine the user in BREAK! with all the power of BREAKl· at the user"s

command. This does not inc.lude CitUS to compiled functions by other compiled functions.

3. Control-G: This causes an (ERR ERRQRX) which returns to the last (ERRSET ERRORX).

This enables the uscr to Control-C out of the Break package or the Editor, reenter and return

to the appropriate command level. (i.e. if the user were several levels deep in the Editor for

example, Control-G will return him to the correct command level of the Editor).

4. Control-E: Thi!. docs an (ERR NIL), which return NIL to the last ERRSET. (See section

on changes to ERR and ERRSET).

5. Control-R: This restores the normal system OBUST (as the value of the atom Q8LIST).

Another of the above control characters must be typed after this character is typed. This

82

will often recover c1ftcr a GAR8AGED OBLlST mcssa~e.

6. Carriage return CClU~.Cs LISP to continue doing whatever it was doing when the·C was

typed.

7. ""0 causes an immediate return to the top level of LISP __

8......X causes an exit to the monitor (see EXIT). A subsequent CONTINUE or START at

monitor level will cause LISP to continue where it left off.

Any other charader causes a user interrupt (a feature that is not implemented and just

cau~es an error). The sY5tem is fully protected against aC interrupt occuring at the wrong

time; for example, ifC is typed during a garbage colleetionthe garbage collection is

completed before the interrupt is recognized. Note that a REENTER at monitor level is

equivalent to a START if LISP was exited normally (via "cX or EXIT). If LISP was somehow

exited without going through the normal e)(it procedure, REENTER will cause theC interrupt

routine to be entered.

3.2 BREAK-PACKAGE

Whenever LISP types a message of the form (-- BROKEN) or (Error from --) followed by

or n: the user is then "(alking to" the function BREAKl. and he is "in a break." BREAK! allows

the user to interrogate the state of the world and affect the course of the computation. It

uses the prompt character : to indicate it is ready to accept input(s) for evaluation, in the

same way as the top level of LISP uses >. The n before the: is the level number which

indicates how many levels of BREAK 1 are currently open. The user may type in an

expression for evaluation and the value will be printed out, followed by another:. Or the

user can type in one of the commandz specifically recognized by BREAK1 (a break command).

Since the user can type in arbitrary expressions to be evaluated he has all of the power of

LISP at his command. For example he can call the standard top level by typing (TOP-LEVEL),

although the 5imple TL command is shorter. He can define new functions or edit existing

ones, set breaks, or trace functions. The user may evaluate an expression, see that the value

was incorrect, call the editor. change a function, and evaluate the expression again, all

without leaving the break.

It is important to emphasize that once a break occurs, the user is in complete control of

the flow of the computation, and the computation will not proceed without specific instruction

from him. Only if the u~er gives one of the commands that exits from the break (GO, OK,

RETURN, FROM?=. EX) will the computation continue. If the user wants to abort the

83

comput at ion, thi~ ;llso can be done (ul',ing or "'''').A

3.2.1 (BREAK 1 BRKEXP BRKWHEN BRKFN BRKCQMS BRKTYPE) [SUBR]

The heart of the debuGging pac:kaae is a function called BREAK 1. BREAK and TRACE

redefine your functiol15 in terms of BREAK 1. When an error occurs control is passed to

BREAK!.

Note that BREAK! is just another LISP fundion, not a special system feature like the

interpreter or the ~arba~e collE:clor. It has arguments and returns a value, the same as any

other function. The arguments to BREAK! are: BRKWHEN is a LISP function which is

evaluated to determine if a break will occur. If BRKWHEN returns NIL, BRKEXP is evaluated

and returned as the value of the BREAKl. Otherwise a break occurs. BRKFN is the name of

the func. tion being broken and is u:;ed to print an identifying message. BRKCOMS is a list of

command lines (as ret urn~d by READLINE) which are executed as if they had been typed in

from the teletype. The command lines on BRKCOMS are executed before c:ommands are

accepted from the teletype, so that if one of the commands on BRKCOMS causes a return, a

break occurs without the need for teletype interaction. BRKTYPE identifies the type of the

break. It is used by the error p~ckage and in all cases the user can use NIL for this

argument.

The value returned by BREAK! is called "the value of the break." The user can specify this

value explicit~y by using the RETURN command described below. In most cases, however, the

value of the break is given implicitly, via a GO or OK command, and is the result of evaluating

'the break expres5ion," BRKEXP.

BRKEXP is, in general, an expression equivalent to the computation that would have taken

place had no break occurred. In other words, one can think of BREAKl as a fancy EVAL,

which permits interaction before and after evaluation. The break expression then

corresponds to the argument to EVAL. For BREAK and TRACE, BRKEXP is a form equivalent to

that of the fundion beinr; trac.ed or broken. For error5, BRKEXP is the form which caused the

error. For DDT brcar,s, BRKEXP is the next form to be evaluated.

For related information see BREAK, BREAKIN, TRACE, BREAKO, and BREAKMACROS.

3.2.1.1 LASTPOS [VALUE]

All information pertaining to the evaluation of forms in LISP is kept on the special push

down stack. Whenever a form is evaluated, that form is placed On the special push down

stack. Whenever a variClble is bound, the old binding is saved on the special push down

84

staer.. The context (the bindings of free variilblcs) of a function is deiel mined by its position

in the ~t ack. When a bre(~"\ occurs, it is often useful to explore the contexts of other

functions on the f,t~c:k. B:~EI\Kl ;:\/lo\'/s this by mc;:\ns of a context pointer, LASTPOS, which is

a pointer into th-::.- special push down stack. 8REAKI contain~ commands to move the context

pointer cll1d to evaluate atorns or expres~.ions as of its position in th!: stack. For the

purposes of this document, when moving through the stack, "backward" is considered to be

toward the top level or, equivalently, towards the older function calls on the stack.

3.2.1.2	 BRKEXP [VALUE]

The argument passed to BREAK1 which is evaluated (and returned as the value of the

break) when you type GO or OK. It should be equivalent to the expression which caused the

break.

3.2.1.3 BRKWHEN[VALUE]

The argument to BREAKl which is evaluated to determine whether a break will occur. If

the value is NIL then BRKEXP is evaluated and returned, otherwise a break occurs.

3.2.1.4	 BRKFN [VALUE]

The argument pa5sed to BREAK1 u5ed to tell the user what function was broken.

3.2.1.5 BRKCOMS [VALUE)

The list of commands that is pased as a paramet.~r to BREAK! to execute when a break is

entered.

3.2.1.6 BRKTYPE [VALUE]

The argument to BREAK 1 identifying the type of the break. The user can use NIL for this

argument when calling GREAKl.

3.2.1.7	 (f /BREAKl) [SUBR]

//BREAKl is .the function that BREAKl calls to do all the work.

3.2.1.8 NAMESCHANGED [PROPERTY]

When you break (or trace) (tn 1 in fn2) then tn 1 is added to the NAMESCHANGED property

of fn2.

85

3.2.1.9 BRKAPPLY [SUER]

(~aroc t=i~ apply but uc:,cd by the brear,packagc)

3.2.2 BREAK-COMMANDS

3.2.2.1 GO [BREAK COMMAND]

Relear.C5 thc break and illlow5 the comput ation to proceed. BREAK1 .evaluates BRKEXP, its

first argument. print~ the value, and returns it as the value of the break. BRKEXP is the

exprcssion $ct up by the function that called OREAKl. For BREAK or TRACE, BRKEXP is

equivalent to the body of the definition of the broi',en function. For the error package J

BRKEXP is the ey.pre~sion in which the error occurred. For DDT breaks, it is the next form to

be evaluated.

3.2.2.2	 OK [BREAK COMMAND]

Same as GO except 'Ihat the value of 8RKEXP is not printed.

3.2.2.3	 EVAL [BREAK COMMAND]

-Causes BRKEXP to be evaluated. The break is maintained and the value of the evaluation is

printed and boun<.J on the variable !VALUE. (The evaluation is done in an errset whose value

is bound to FULUVALUE.) Typing GO or OK will no! cause reevaluation of BRKEXP following

EVAL but another EV~L will. EVAL is a useful command when the user is not sure whether or

not the brea~, will produce the correct value and ~ishes to be able to do something about it

if it is wrong.

3.2.2.4 RETURN form [BREAK COMMAND]

The form is evaluated and its value is returned as the value of the break. For exampleJ one

might use the EVAL command and follow this with

RETURN (REVERSE !VALUE)

3.2.2.5	 ,.. [BREAK COMMAND]

Calls ERR and Clborts the break. This is a useful way to unwind to a higher level break. All

other errors, including those encountered while executing the GO, OK, EVAL, and RETURN

commands, maintain the break.

3.2.2.6 ,..'" [BREAK COMMAND]

86

This returns control directly to the top level of LISP.

3.2.2.7 > cxpr [BREAK COMMAND]

For usc either with UNGOUND ATOM error or UNDEFINED FUNCTION error. Replaces the

expression containing the error with cxpr (not the value of cxpr) e.g.,

FOOl

U~DEFI~ED FUNCTION

(FOOl BROKEN)

1:) FOO

changes FOOl to Faa and continues the computation. Expr need not be atomic, e.g.,

FOQ
UNBOUND ATOM
(FOQ BROKEN)
1:) (QUOTE FOO)

For UNDEFINED FUNCTiON breaks, the user can specify a function and its first argument,

e.g.,

MEMBERX
UNDEFINED FUNCTION
(MEMBERX BROKEN)
1:) MEMBER X

Note that in the 50me c.ases the form containing the offendin?, atom will not be on the stack

(notably, after call!» to APPLY) and in these c~ses the function definition will not be changed.

In most cases, however, > will correct the function definition.

> has been altered to interface bettcr to the standard USERTOP function. The problem is

that if you type "mumble foo" to top-level, the standard usertop will, tf there is no such

function as mumble, assume it to be an EXPR. It will accordingly change foo to (QUOTE foo),

ending up with (mumble 'foo). Occ'asionally one mistypes the name of an FSUBR or FEXPR

such as "hlp foo". If you get an error and type "> HELP", you do not want the arguments

quoted. The new version of > unquotes the arguments that are quoted if brkexp is the form

typed to top-level in the last event.

3.2.2.8 FROM?= {form} [BREAK COMMAND]

FROM?= exits from the break by undoing the special push down stack back to LASTPOS. If

FORM is NIL or missing, re-evaluation continues with the form on the push down stack at

LASTPOS. If FORM is not NIL, the function call on the push down stack at LASTPOS is replaced

by FORM and evaluation continues with FOR.M FORM is evaluated in the context of LASTPOS.

There is no way of recovering the break because the push down stack has been undone.

FROM?= allows the U5cr :0, among other things, return a particular value as the value of any

function calion the stack. To return 1 a5 the value of the previous call to FOO:

37

: F fOD
: FROM'?::

Since form is evaluated afler it is placed on the slack, a vJlue of NIL can be returned by

using (QUOTE NIL).

For related information sec LASTPOS and SPDL.

3.2.2.9 EX [BREAK COMMAND]

EX exits from the brcC1r. nnd rc-cvaluatcs the form at LASTPOS. EX is equivalent to FROM?=

NIL.

3.2.2.10 USE x FOR y (BREAK COMMAND]

Causes all occurrences of y in the form on the stack at LASTPOS (for Error breaks, unless

a F command has been used, this form is the one in which the error occurred.) to be replaced

(RPLACA"cd) by x. Note: This is a destrudive change to the s-expression involved and will,

for example, permanently change the definition of a function and make an edit step

unnecessary.

3.2.2.11 F arg 1 arg2 ... argN [BREAK COMMAND]

& arg 1 arg2 ... argN [BREAK-COMMAND]

Resets the variable LA.STPOS, which establishes a context for the commands ?=, USE, EX

and FROM?=, and the backtrace c.ommands described below. LASTPOS is the position of a

function calion the special push down list. It is initialized to the function just before the call

to BREAK 1. F tar,es the rest of the teletype line as its list of arguments. F first resets

LASTPOS to the function call jU!.Jt before the call to BREAKl, and then for each atomic

argument, F. searches backward for a call to that atom. The following atoms are treated

specially: F, &, numbers, _

For related information see LASTPOS and SPDL.

When "F'" or "S/' is used as the first argument LASTPOS is not reset to above BREAK! but

continues 5earchine from the previous position of LASTPOS.

When the arguments are numbers, they are added to lastpos. Thus positive numbers move

toward the last error while negative numbers move toward the top-level.

_ causes the search to chAnge direction.

If the special pU5h-down stack looks like

--------------------_._------------_._--------

88

BREAKI (1J)

FOO (12)

SETQ (11)

eOND (10)
PROG (9)

FIE (8)

eO~JD (7)

FIE (6)

CO~D (5)
FIE (4)
co~m (3)
PROG (2)
FUM (1)

then F FIE COND will !:;et LASTPOS to to (7) F & COND will then set LASTPOS to (5) F FUM _

FIE will stop at (4) F & 2 will then move LASTPOS to (6) F will reset LASTPOS to (12)

If F cannot succc~sfully cornplcte a search, for argN or if argN is a number and F cannot

mOve the number of functions asked, "argN?" is typed. In either case, LASTPOS is restored to

its value before the F command was entered. Note: It is possible to move past BRKEXP (Le.

into the break packa8e functions) when searching or moving forwards. When F finishes, it

types the name of the function at LASTPOS. F can be used on BRKCOMS. In which case, the

remainder of the list i~ treated as the lis~ of arguments. (i.e. (F FOO FIE FOO)

3.2.2.12 EDIT arg 1 arg2 ... argN [BREAK COMMAND]

EDIT U5CS it5 arguments to reset LASTPQS in the same manner as the F command. The form

at LASTPOS is then given to the LISP Editor. This commands can often times save the user

from the trouble of calling EDITF and the finding the expression that he needs to edit.

For related information see LASTPOS.

3.2.2.13 FIX argl arg2 ... (BREAK COMMAND]

is equivalent to EDIT followed by FROM?=. The edited expression will immediately be

evaluated when the editor is exited.

3.2.2.14 ?= argl arg2 ... argN [BREAK COMMAND]

This is a multi-purpose command. Its most common use is to interrogate the value(s) of the

arguments of the bro~,cn function, (ARGS is also useful for this purpose.) e.g. if FOO has three

argument$ (X Y Z), then typing ?= to a break of FOO, will produce:

; ; n: '7.
;; X • value of X
;; Y = value of Y
i; Z = value of Z

?= takes the rest of the teletype line as its arguments. If the argument list to ?= is NIL, as

89

in the above ca$C, it pri"t!'. all of the arguments of the function at LASTPOS. If the user types

? X (CAR Y)

he will sec the value of X, and the value of (CAR V). The difference between using ?= and

typing X and (CAR Y) directly into BREAK1 is that ?= evaluates its inputs as of LASTPOS. This

provides a way of examining variables or forms as of a particular point on the stack.

F (FOO FOO),= X

will allow the u<:>er to examine the value of X in an earlier call to FOO. ?- also recognizes

numbers as referring to the correspondingly numbered argument. Thus

: F FIE
:? = 2

will print the name and value of the second argument of FIE (providing FIE is not compiled).

?= can also be used on ORKCOMS, in which case the remainder of the list on BRKCQMS is

treated as the list of arguments. For example, if 8RKCOM~ is «EVAL) (1- X (CAR Y» GO»,

BRKEXP will be evaluated, the values of X and (CAR Y) printed, and then the function exited

with its value being printed.

For related information see LASTPQS.

3.2.2.15 ARGS (BREAK COMMAND]

Prints the names and the current values of the arguments of BRKFN. In most cases, these

are the arguments of the broken function.

3.2.2.16 HELP [BREAK-COMMAND]

is a break command that calls the HELP function and uses the .remainder of the command

line as the argument list for HELP.

3.2.2.17 TL (BREAK-COMMAND]

TL calls (TOP-LEVEL). To return to 'the break package just use the RETURN top-level

command.

3.2.2.18 DO form (BREAK-COMMAND]

resets the I/O channels and prompt to what they were before the error, evaluates the

expression given as an argument, returns to the break I/O status and shows the value

computed. This is worth while if you want to find out where in the file you were reading.

Just "do (read)".

90

3.2.2.19	 GKE [BREAK-COMMAND]

prints a bacldracc of fundion (;'\lls that arc pending. BKE may be followed by a number

which will limit the number of entrie~ that are printed. GKEV (or BKEV number) will also print

the values of the variables.

For related information see ERX~CTION_and BKTRC.

3.2.2.20	 BK (BREAK COMMAND]

prints a baddr~(e of expre5~ionf, being executed. BK may be followed by a number which

will limit the number of entries that are printed. 8KV (or SKV number) will also print the

values of the var;(1bles.

For related inforniation !.ee ERXACTION and BKTRC.

3.2.2.21	 BKF [BREAK COMMAND]

prints a bacldrace of the names of the functions that are pending. BKF may be followed by

a number which will limit the number of entries printed. BKFV (or BKFV number) will also

print the values of the variables.

For related information see ERXACTION and BKTRC.

3.3 BREAKING

"8reakin~" is what you do to functions to get them to stop in the middle so that you can

see whars 80il18 on. It is also what happens to you when an error occurs and you get a

message that something is broken. To see how to continue, recover from errors etc. see

ERROR-RECOVERY.

The function BREAK is lI~.Unl\y used to set a break on all calls on some function. BREAK

(and TRACE) u!>e a fundion BREAKO to do the actual modification of function definitions.

When BREAKO brcaY,s a SUBR or an FSUBR, it prints a message of the form «NAME>

ARGUMENT LIST?). The u~er should respond with a list of arguments for the function being

broy,en. (FSUE3R~f, take only one argument and BREAKO checks for this.) The arguments on

this list are actually bound during the calls to the broken function and care should be taken

to insure that they do not conflict with free variables. These arguments are remembered as !

the value of the BRKARGS property of the broken function. If the function being broken or

traced already has a BRKARGS property, its value is used as the argument list. The case of a

null argument list must be treated separately: the value T indicates no arguments. For

91

LSUE3lrs, the ;ltom N'! i~ LJ5cd a~ thc arGur(lcnt. It is possible to GRINDEF and edit functions

that are tr;lc.cd or broY,cn. I3ROKENFNS is a list of the functions currently broken.

TRACEDFNS i$ a Ii$t of the functions currently traced.

3.3.1 (BREAK fnl fn2 ...) (FEXPRJ

GREAK is an FEXPR. For each atomic argument, it breaks the function named each time it is

called. For each list in the (orm (fn1 IN (n2), it breaks only those 'occurrences of FNI which

appear in FN2.

Thi~ feature is very u5cful for breaking a function that is called from many places, but

where one is only interc5ted in the call from a specific function, e.g. (RPLACA IN FOO),

(PRINT IN FIE), etc. For cach list not in Jhis form, it assumes that the CAR is a function to be

broken; the CADR is the brcc:\~. condition; (When the function is called, the break condition is

evaluated. If it returns a non-NIL valuc, the break occurs. Otherwise, the computation

continues wit hout a breilk.) and the COOR is a list of command lines to be performed before

an internc.tivc break is ni;\de.

(BREAK FOOl (F002 CGREATERP N 5) (ARGS»)

will break all C iliis to FOO 1 and all calls on F002 when N is greater than 5 after first

printing the arguments of F002.

(BREAK «F004 IN FOOS) CMINUSP X»)

will brca~ all calls to FOQLl made from F005 when X is negative.

For related information see BRKWHEN, BRKCOMS, and BREAK!.

3.3.1.1	 BROKENFNS [VALUE]

a list of the functions currently broken.

For related information see BREAKING.

3.3.1.2	 (UNBREAK xl x2 ...) (FSUBR]

UNBREAK is an FSUBR. It taY,es a list of functions modHied by BREAK or BREAKIN and

restores them to their orieinal state. Irs value is the list of functions that were "unbrOken".

(UNBREAK T) will unbrcak the function most recently broken. (UNBREAK) will unbreak all of

the functions currently broken (i.e. all those on BROKENFNS). If one of the functions is not

broken, UNBREAK has a value of (fn NOT BROKEN) for that function and no changes are made·

to fn. If UNBREAK refuses to work try BREAKing and UNBREAKing it again.

92

For rc I<1t cd inform.1tion ~cc lJREAKJN.

3.3.2 (BREAKIN function {whoro} {8RKWHEN} {BRKCOMS}) [FSUBR]

inserts a BREAK in the function at the place specified as (8~!ORE loc), (AFTER loc) or

(AROUND loc) where loc is an editor location specification (def aults to (AROUND TTY:). The

optional aq~ument~, GRKWHEN (def<lult is T) and BI~KCOMS (default is NIL) are the same as for

BREAK1.

For related informal ion see BREAK 1.

BREAKIN enables the user to insert a break, i.e., a call to BREAKl, at a specified location in

an interpreted function. For example, if FOO calls FIE, inserting a break in FOa before the

call to FIE is similrtr to brea~,ing FIE. However, BREAKIN can be used to insert breaks before

or after prog labels, particular SETQ expresr.ions, or even the evaluation of a variable. This

is because BREAKIN operates by calling the editor and actually inserting a call to BREAKl at a

specified point inside of the function.

The user specifics where the break is to be inserted by a sequence of editor commands.

These commands are preceded by BEFORE, AFTER, or AROUND, which BREAKIN uses to

determine what to do once the editor has found the specified point, Le., put the call to

BREAK 1 BEFORE that point, AFTER that point, or AROUND that point. For example, (BEFORE

COND) will insert a break before the first o~currence of COND, (AFTER COND 2 1) will insert a

break after the predicate in the first COND clause, (AFTER SF (SETQ X F» after the last place

X is set. Note that (BEFORE TTY:), (AROUNQ TTY:) or (AFTER TTY:) permit the user to type in

commands to the cdilor, locate the correct point, and verify it for himself using the P

command, if he desires. Upon exit from the editor with OK, the break is inserted. (A STOP

command typed to TTY: produces the same effect as an unsuccessful edit command in the

original ~pecification, e.{i., (BEFORE CONDD). In both cases, the editor aborts, and BREAKIN

types (NOT FOUND).)

For BREAKIN BEFORE or l\FTER, the break expression is NIL, sinc.e the value of the break is

usually not of interest. For BREAKIN AROUND, the break expression will be the indicate<t

form. When in the break, the user can use the EVAL command to evaluate that form, and see

its value, before allowinG the computation to proceed. For example, if the user inserted a

break after a CQND predicate, e.g., (AFTER (EQUAL X Y», he would be powerless to alter the

flow of computation if the predicate were not true, since the break would not be reached.

However, by brea~,ing (AROUND (EQUAL X Y», he can evaluate the break expression, Le.,

(EQUAL X V), see its value and evaluate something else if he wished.

93

The mc~sa8c typed for a £3REAKIN brear, idcntifie~ the :ocation of the break as well as the

function, e.g., «FOO (I\FTER COND 2 1» BROKEN).

BREAKIN is an FEXPR whic.h has a rflaximUln of (our arguments. The first argument is the

function to be brolt,cn in. The ~.C'cond aq~umcnt i5 a list of editor commands, preceded by

BEFORE, AFTER, or I\ROUND, which specific5 the location inside the function at which to break.

If there is no Gecond argument, a value of (8Ef6RE'~'~"'" TTY:) is assumed. (See earlier discussion.)

The third and fourth aq~urnents are the break condition and the list of commands to be

pcrforrncd before the interactive break occurs, (BRKWHEN and BRKCOMS for BREAKl)

respectively. If there is no third argument, a value of T is assumed for BRKWHEN which

causes a brear, each time the GREAKIN break is executed. If the fourth argument is missing, a

value of NIL is assumed. For example,

CBREAKIN FOO (AROUND COND»

inserts a break around the first call to COND in FOO.

It is possible to inc.-.ert multiple break points, with a single call to BREAKIN by using a list of

the form «BEFORE ...).oo (AROUND ...»as the second argument. It is also possible to BREAK

or TRACE a function which has been modified by 8REAKIN, and conversely to BREAKIN a

function which is broken or traccd. UNOREAK restores functions which have been broken in.

GRINDEF makes nO a1:lempt to correct the modification of BREAKIN so functions should be

unbroken before they are stored on disk.

CBREAJUN FOD (AROUND TTY:) T ('7=: MN) «ePLUS X Y»)

(BREAKIN F002 (BEFORE SETQ) (EQ X V»~

3.3.3 (TRACE xl x2 ...) [FSUBR]

TRACE is an FEXPR. For each atomic. argument, it traces the function named each time it is

called. For each list in the form {fn! IN (n2), it traces only those calls to FNI that occur

within Fhl2. For e'lch list argument not in this form, the CAR is the function to be traced, and

the CDR is a list of variables (or forms) the u!:er wishes to see in the trace.

For example, {TRACE (FOOl Y) (SETQ IN FOO3» will cause both FOOl and SETQ IN F003· to

be traced. SETQ"s argument will be printed and the value of Y will be printed for FOOL

Further example5:

(TRACE FOO)

(TRACE eriMES (SELECTQ IN DOlT»

(TRACE CEVAL IN FOO»

(TRACE (TRY MN X (ePLUS N M»)

Trace gives the traced function a TRACE property indicating where the actual code for the

94

fundion is to be found. The ori8inill function is replaced by a call to that new function

(who~c nC1me is Bcner C1ted by ccnljym) embedded in a call to BREAK. TRACE Uf.es the global

variC1ble u71NDENT to !',ccp its po~ilion on the line. The printing of output by TRACE is

printed u~ing lPRINFN. TRACE can therefore be pretty printed by:

(SETQ ~PR[~FN (QUOTE PRETPRIN»

(DE PRETPRIN (FORM)

(SPRINT FORM (iPLUS 10 '\INDE~T»)

TRACE lDREAK-CO~1AND]

Docs the wor!'. of tr;lcine. Tr f1cing is equivalent to BREAKing a function with BRKCOMS

containing the sina1c command TRACE. Thus you can make a normal BREAK aet like a TRACE

by simply typing this command (No guarantees if the thing broken is not a function). Similarly

you can use the TRACE command to c.tluse conditional tracing. (The default that you get with

the TRACE function is always to trace.)

3.3.3,1 u1.INDENT (VALUE]

is used by the break (trace) pacl'_age. It is the number of columns to indent before

printing. (Notice that in a trace tha indenting shows the level of function nesting.)

3.3.3.2 (UNTRACE xl x2 ...) [FSUBR]

UNTRACE is an FSUBR. It tClkes a list of functions modified by TRACE and restores them to

their orieinal state, It'~ value is the list of functions ihat were "untraced", It also undoes

TRACEINs. (UNTRACE T) will unbrcak the function most_ recently traced. (UNTRACE) will

untrace all of the func.tion~ currently traced (i.e. all those on TRACEDFNS). If one of the

functions is not traced, UNTRACE hilS a value of (fn NOT BROKEN) for that function and no

changes are mRdc to fn. If UNTRACE refuses to work try TRACEing and UNTRACEing it again.

For related information see TRACEIN.

3.3.3.3 TRACEDFNS [VALUE]

is a list of the functions currently traced

3.3.4 (TRACEIN fn {(AROUND S1) (AROUND S2) ...}) [FSUBR]

where fn is a function name and Si, 82 etc. are editor location specifications. (If no

(AROUND ...) argUnlt'?nt5 are given the u~er is put in the editor to find the desired expression.

When it j5 the c.urrent cxpra!;sion type OK (to exit) and that expra5sion will be traced.)

TRACEIN is undone by UI\lTRACE. TRACEIN is the ultimate tracing facility in that it shows

95

everything th<lt 1';;ppCI'~. in the execution of the specified code. This is done by using the

editor to ~lter the function definition to trace the evaluation of the located expressions and

all of their subexprc~sions.

Exampl cs: (TRACE [N PI (AROUND TYO) CAROUND CO:-.1D J»

(TRACEIN F2) (then find the desired subexpression in the editor)

WARNING: TRACEIN ac,sumes that the expressions it is given are "well-formed" in the sense

that they arc to be exec.tlted as a unit. Thus it is all right to TRACEIN (Cond «Null x) T», but

you will gct into trouble if you try to TRACEIN just the conditional clause «Null x) T). This is

because it will be interpreted a~ a function call where the function is the result of (Null x)

and the argument is T. The correct way to do this is to TRACEIN the two expressions

separately (the way thcy will be evaluated).

3.3.4.1 (EVL-FIX cxp typo-of-fix) [SUBR]

and EVL-FIX [PROPERTY] EVL -FIX ac ccpts an expression as its argument and modifies it for

exprcs5ion tracing or counting (depending on the second argument). The second argument is

a list of item!> to be placed nondestruetively in front of the form in the embedding process.

EVL-FIX is a utility for COUNT and TRACEIN that may find other uses.

For related information see COUNT.

The EVL-FJX property enables the user to explain his FEXPRs and MACROs to EVL...FI.X and

thus to TRACEIN and COUNT. The EVL-FJX property is a pattern to be applied to the tail of

the function call to determine which arguments will EVENTUALLY be evaluated and so should

be embedded in EVL-TRACE (or ff 0). If an element of the pattern is T, the expression in that

position will be embedded by EVL-FIX. If it is NIL, it will not. If an element is a list, that
•

expression will not be embedded, but its !>ubexpressions will have that list applied to them as

a pattern.

If the pattern element is TAIL, the pattern element following it is applied to the current

expres'sion, if any, and any exprcssions following it.

If TEST or EVAL is thc CAR of a pattern, the pattern is treated specially:

TEST uses the pat tern element following it as a condition to determine whether that

expression should or should not be embedded.

EVAL is similar to TEST, but the value returned is treated not as a boolean, but as a

pattern to be used in place of the pattern whose CAR is EVAL.

96

Thc v;tlue of the free vrlriahle EXP is the function ellil the p~ttern will apply to. Also, if

before rctlJrninc the p~ttcr", the free vilriilblc NOEMBED is set to T, the function call ITSELF

will not be crnbcdcJcd. This felllurc i~ not generally needed.

The pattern for COND would be (TAIL (TAIL T». The clauses of the CQND would not be

" embedded, but their elements would be.

The pattern for SETQ would be (NIL T).

To	 create a paltern by arbitrary processing, use the pattern (EVAL <whatever>).

3.3.4.2 (EVL-TRACE GXp) [FSUBR]

EVL-TRACE evaluates and traces its (expression) argument. EVL-TRACEs are automatically

inserted by EVL-FIX, and may also be inserted by the user.

3.3.5	 BREAKMACROS [VALUE]

is a list of elements of the form: (atom args ttyline 1 ... ttylinen)

Whenever an atomic corMf,and is encountered by BREAKl that it does not recognize, either

via BRKCOMS or the teletype, it searches (using ASSOC) the list BREAKMACROS to see if the

atom has been defined as a brealc. macro. The form of BREAKMACRQS definitions is (... (atom

args ttyline 1 ... ttylineN) ...). ATOM is the command name. ARGS is the argument(s) for the

macro. !"he arguments of a breakme-c.ro are assigned values from the remainder of the

command line in which the macro is called. If ARGS is atomic, it is assigned the remainder of

the command line c:!!> its v~lue. If ARGS is a list, the elements of the rest of the command line

are assigned to the variables, in order. If there are more variables in ARGS then items in the

rest of t he command linc, a value of NIL is filled in. Extra items on the command line are

ignored. The 'TTYLINE$ are the body of the breakmacro definition and are lists of break

commands or forms to be evaluated. If the atom is defined as a macro, (Le. is found on

BREAKMACRQS) BREAK 1 ~$sicn~ values to the variables in ARGS, substitutes these values for

all occ.urrenc.es of the variables in TTYLlNEs and iippends the TTYLINEs to the front of

BRKCOMS. When BREAK 1 is ready to accept another command, if BRKCQMS is non-NIL it

takes the first clement of BRKCOMS and processes it exactly as if it had been a line input

from the teletype. This means that a macro name can be defined to expand to any arbitrary

collection of expressions th'lt the user could type in. If the command is not contained in

BREAKMACROS, it is treated as a function or variable as before.

Example: a command PARGS to print the arguments of the function at LASTPOS could be

97

defined by CVClluiltinc;:

n~CONC BREAk1t1ACROS (QUOTE «PARGS ~lL (1=»»)

A command FP which find~. a plnee on the sro ~tad', and prinls the form there can be defined

by:

(r\COr\C nREAK~MCROS (QUOTE (FP X (F. X) «PRINT CSPDLRT

LASTPOS»»»

3.3.6 (BREAKO FN WHEN COMS) [SU8R]

For related infor malian sec BREAK1 and BROKENFNS.

BREAKO is a SUOR. It sets up a break on the function FN by redefining FN as a call to

BREAKl with GRKCXP a form equivalent to the definition of FN, and WHEN, FN and COMS as

BRKWHEN, BRKFN, and BRKCOMS, respectively.

BREAKO also adds FN to the front of the list BROKENFNS. It's value is FN. If FN is

non-atol'nic. and of the form (fn 1 IN fn2), BREAKO first calls a fundion which changes the name

of fn 1 wherever it appears inside of fn2 to that of a new function, fnl-IN-fn2, which is

initially defined rt!; fnl. Then [3REAKO proceeds to break on fnl-IN-fn2 exactly as described

above. This procedure is u~.eful for breaking on a function that is called from many places,

but where one is only interested in the call from a specific function, e.g. (RPLACA IN FOO),

(PRINT IN FIE), etc. This only works in interpreted functions. If fnl is not found in fn2,

BREAKO return~ the value (fnl NOT FOUND IN fn2). If FN is non-atomic and not of the above

form, BREAKO is c;tlled for e~ch member of FN using thc same values for WHEN and COMS

specified in this call to l3REAKO. This distributivity permits the user to specify complicated

break conditions without cxcc5!'.ive retyping. If FN is non-atomic, the value of BREAKO is a

list of the individu;ll values.

(BREAKO (QUOTE (FOOl (CPRrr;T PRINl)lN(F002 F003»»

(QUOTE (EQ X T»

(QUOTE «EVAL) (? = Y Z) OK»)

will break on FOOl, PHJNT-IN-F002, PRINT-IN-F003, PRINI-IN-F002, and PRINI-IN-F003.

BREAKO can be uscd to trace the changing of particular values by SfTQ in the following

manner:

) (SETQ VARLIST (QUOTH (X Y FOOl»

)(BREAKO (QUOTE SETQ) (QUOTE (ME~Q (CAR XXXX) VARLIST»

) (QUOTE (TRACE) (1 =) CUNTRACE»»

(SErQ AR~1E~TS?»(XXXX)

(Note: the I~$t line is a question followed by an answer.)

SETQ will be traced whenevcr CAR of its argument (SETQ is an FSUBR) is a member of

98

VARLIST.

3.4 SPDL

The Spcci~1 Pu~.hDown List i!:. u~cd for saving (orms to be evaluated in the form of an

"cval-blip" which i~ u~.cd for bacr,lraccs. An eval-blip contains NIL In the left half (spdlft) and

the form in the riGht half (spdlrt). The SPDL is alr.o used for saving variable bindings. The

left hillf of such an entry point!:. to the special cell and the right side to the value. Finally,

the interpreter uses the SPDL to hold things which always contain something other than NIL

in the left half. LASTPOS and (SPDLPT) indicate a distance from the bottom of the SPDl.· In

the u~)er·s progr ams, c:.t ack pointers arc always represented as INUMs. This. allows the

program to casily modify them with the standard arithmetic functions so that a program can

step either up (toward the most recent Eval-Blip) or down (toward the top level of the

interpreter) of the stac~, at will. All of the functions in this group take INU~s for the pointer

arguments. The actual pointer to the stack element requires an offset from the beginning of

the stack. For the user to obtain a true LISP pointer he must call the function STKPTR (with

an INUM f'lq~ument al~;o). (Le. if the user wishes to do an RPlACA or RPlACD on an element

of the stilck, he mU5t get a pointer via STKPTR.)

The SPDl i5 irnplemC'ntcd via PDPIO stack instructions. The stack pointer is kept in

register 15 (17 octal) - the right half pointr. to the top of the stack and the left half contains

the negative of the number of words available.

3.4.1	 (SPDLPT) [SUBR]

The value of SPDLPT i~ a stae", pointer to the current top of the stack. (Returns an INUM).

3.4.2	 (SPDLFT P) [SUBR]

The value of SPDLFT is the left side of the stack item pointed to by the stack pointer P.

3.4.3	 (SPDLRT P) [SUOR]

The value of SPDlRT is the right side of the stack item pointed to by the stack pointer P.

3.4.4	 (STKPTR P) [SU8R]

The value of STKPTR is n true LISP pointer to a stack item.

99

3.4.5 (NEXTEV P) (SUBRJ

If the stacr. pointer P is a pointer 10 an Eval-Blip, the value of NEXTEV is P. Otherwise,

NEXTEV ~carche$ down the ~.ta("" ~.tartin8 from P, and returns a stack pointer to the first

Eval-Blip it finds. If NEXTEV can not find an Eval-Blip it returns NIL.

3.4.6 (PREVEV P) (SUBR]

PREVEV is similar to NEXTEV except that it moves up the stack instead of down it.

3.4.7 (STKCOUNT NAME P PEND) [SUBR]

The valuc of STKCOUNT is the number of Eval-Blips with a STKNAME of NAME occurring

between stack positions P-l and PEND, where PEND < P.

3.4.8 (STKNAME P) [SUBR]

If position P is not an Eval-Blip, the value of STKNAME is NIL. If position P is an Eval-Blip

and the form is atomic, then the value of STKNAME is that atom. If the form is non-atomic,

STKNAME returns the CAR for the form, Le. the name of the function..

3.4.9 (STKNTH N P) [SUOR]

The value of STKNTH is a stack pointer to the Nth Eval-Blip starting at position P. If N is

positive, STKNTH mOvcs up the stack, and if N is negative, STKNTH moves down the stack.

3.4.1 0	 (STKSRCH NAME P FLAG) [SUBR]

The value of STKSRCH is a $tacY, pointer to the first Eval-Blip with a STKNAME of NAME.

The direction of the searc.h is c.ontrolled by FLAG. If FLAG=NIL, STKSRCH moves down the

stack. Otherwise STKSRCH mOves up the stack. STKSRCH never returns P for its value, Le. it

steps once before checking for NAME.

3.4.11	 (FNDBRKPT P) [SUBR]

The value of FNDBRKPT is a staclr. pointer to the beginning of the Eval-Block that P is in.

The beginning of a Eval-Block is defined as an Eval-Blip which does not contain the next

higher Eval-Blip within it. This function is used by the backtrace functions.

100

3.4.12	 (OUTVAL P V) [SU13R)

OUTVAL i\dju~ts P 10 iln Eval-Glip and returns from that position with V.

3.4.13	 (SPREDO P V) [SUf3R]

SPREDO adjU':;ts P to an Eval-Blip and re-cvaluates from that point.

3.4.14 (SPREVAL P V) [SUBR]

SPREVI\L evaluales it~ aq:;urncnt v in j!$ local context to get a form, and then it returns to

the context specified by P and evaluates the form in that context, returning from that context

with the value. This i5 very similnr to SPREDO except that the EVAL-blip on th~ stack is

changed.

3.4.1 5 (EVALV A P) [SUBR]

The value of EVALV is the value of the atom A evaluated as of position P. If A is not an

atom then it must be the special cell of an atom. By using 'the special cell instead of the

atom, special variables can be handled properly. EVALV is similar to EVAL with two

arguments, but is more efficient.

3.4.16	 (RETFROM FN VAL) [SUBR]

RETFROM returns VAL from the most recent call to the function FN with the value VAL. For

RETFROM to wor~" there must be an Eval-Blip for FN. The only way to be sure to get an

Eval-Blip in compiled code is to call the function with no arguments inside of an ERRSET, e.g.

(ERRSET (FUNC».

3.5 ERROR-OTHER

3.5.1 (ERROR E) [SUBR]

ERROR generates a real LISP error. E is evaluated and printed (unless error messages are

suppressed) and then a break occurs just as for any other LISP error.

3.5.2	 (ERRORX x) [SUOR]

ERRORX is called when an error occurs. Its argument signifies whether the error is

101

considered ~,criou~ (T) or rccovcr;,ble (tJIU. ERRORX first does (USERERRORX x) (if there is a

usercrrorx) and if that rcturn~ a non-nil villuc it is used. Otherwise it calls / /BREAK 1 (the

break pacy,C1ec) and continues the c.omput;llion with whatever is returned from there (if

anything).

Unfdttunatcly the argurf,cnt to ERRORX is not much help in recovering from errors. Almost

all errors are con·>idcrcd 5erious (the messap,r.'s can not be suppressed). The e'Aceptions are:

UNDEFINED FUNCTI0~ U~BOU~D VARIABLE - BVAL
NOr\-:\U~F.RIC ARGUMENT TOO ~ANY Ap.GUME~rs SUPPLIED - APPLY
UNDEFINED FUNCTION - APPLY roo FE~ ARGUME~TS SUPPLIED - APPLY
UNDEFINED PROG TAG - GO CAN'T EXTER FILE
NO INPUT - INC :\0 OUTPUT - OUTe
CAN'T FIND FILE - INPUT CAN'T EXPAND CORE

For related information see ERRSET.

3.5.3 1.PRINFN [VALUE]

Nearly all printine from the errOr package is done by calling ('7..PRINFN expr). l..PRINFN is

an atom (not a function) which should evaluate to the name at a printing function of one

argument. 7..PRINFN is initial.ized to use PLEV because it can print circular lists, which

sometimes result from errors. There has been some small effort to protect against errors

that occur in 1prinfn, but for the mo!.t part, if your 1prinfn isn~t debugged you are asking for

trouble. It is $uggcstcd that even if you use another '7printn, it should use PLEV, because (a)

you might get c.ircular lists you didn~t want, and (b) some of the break package functions

rebind '7100kdpth sO as to act more appropriately when PLEV is used.

3.5.4 (BKTRC) [SUBR]

BKTRC prints a backtrace of compiled functions. This information is not available from the

break-package backtrace commands which only show the interpreted forms on the stack. The

format is a list of pairs of functions. one of which called the other.

For related information see SK, BKV, BKE, BKEV, BKF, and BKFV.

3.5.5 (*RSET flag) [SUBR]

sets the flag that determines whether errors will cause the break package to be entered

(the default, T) or whether they will just cause a return to the top level (NIL). *RSET returns

the old value of the flaB. The value of ERRORX is also allowed. It will supress the printing of

error message!>, but othcrwi5c acts lir,c T.

102

3.5.6 ERXACTION (PROPERTY]

is a property Given to function5 in the break package 50 that they will not appear in

bac.ktraces, which would confuse the u~er (~ince the bre~k package is supposed to be

transparent to the user).

"- The ERXACTION property is a list of length four. The default (if the atom of interest has

no such property) is (T T T T). If the firr.t elemcnt is NIL then SKY, BKEV and SKFV act like

SK, SKE and BKF rC5pcctively for the atom with this property. If the second is NIL then SK

and BKV act like E3KE and f3KEV. If the third is NIL then BKE and BKEV act like BKF and BKFV.

If the last one is NIL then BKF and BKFV do not mention this atom at all. Any combination of

NILs and Ts is meaningful.

3.5.7 USERERRORX [VALUE]

may be set to the n~me of a function of one argument which will ,be called before the error·

package is entered. If it returns NIL then the error package will be called as usual.

Otherwise its value wiJl be used as if it were the value of the break. The argument signifies

whether the error is considered to be serious (T) or recoverable (NIL).

CDE USERERRORX (FLAG) (PROG (BAD-FORM)
(SETQ BAD-FORM (SPDLRT (NEXTEV (SUB1 (STKSRCH I ERRORX (SPDLPT) NIL»») .
(•• * - IF I CA~ FIGURf: OUT "'HAT THE At\S.,ER SHOULD HAVE BEEN RETURN IT)
(*** - OTHER~ISE (IF 1 RETURN NIL)

THE BREAK PACKAGE .,ILL BE ENTERED»)

CDV USERERRORX USERERROX)

.."

103

4. THE-TOP-LEVEL

The "top level" is the function which rC;ld!; what you type at your terminal and decides

what to do with it (u5ually eVC'lluC'lte it C'lnd print the result). The default top level function is

called TOP-LEVEL. It prompts you for input with numbers in angle brackets (like "<1>").

4.1 (TOP-LEVEL) [SU8R]

TOP-LEVEL i5 the LISP top I~vel function. As well as being the top level function with

which the U5cr interacts, it can be called recursively by the user or any function. Thus, the

top level can be invo",cd from in5ide the editor, break package, or a user function to make its

commands available to the user.

The USP top-level u~e!l LINEREAD rather than READ. The difference will not usually be

noticeablc. The principal thing to be careful about is that input to the function or system

being called cannot appCClr on thc samc line as the top-level call. For example, typing (EDITF

FOO) P on one line will edit Faa and evaluate p. not edit FDa and execute the P command in

the editor. In order to understand how input lines are interpreted, reading the explanation of

USERTOP is st rongly recommended.

4.1.1 TOP-LEVEL-COMMANDS

4.1.1.1	 RETURN <form> [TOP-LEVEL COMMAND]

returns the result of evaluating form as the value of TOP-LEVEL.

4.1.1.2 FIX <event-spec) [TOP-LEVEL COMMAND]

call!> the editor for each of the spec.ified events and then executes them. The event-spec

may be optionally followed by editor commands in which case the editor commands will be

applied to the events and the uspr will not be asked to edit them.

4.1.1.3	 EDIT <evant-spec> [TOP-LEVEL-COMMAND]

is the same as the FIX top-level command but it does not execute the fixed events.

4.1 .1.4	 REDO <event-$pec) [TOP-LEVEL COMMAND]

(re-)exccutes the events specified.

4.1.1.5	 EVENT-SPEC

All of the top-level' commands that use event-specifications (?1, FIX, EDIT, USE, SUBST,

104

REDO, UNDO, NAME, FORGET) usc the ~ame syntax and conventions to specify events on the

hif.tory list. An event address identifies one event on the history list. It consists of a

sequence of commands for moving an imaGinary cursor up or down the list. The cursor

position at the end of the li!.t of commands points to the event specified. If any command

{aih; the history cornr(l~nd i~ i1bortcd.

<NUMBER> ;;moves for.nrd (back.ard if neg) that many events
> ;; > <atom> searches vilcK\&'ard for an cycnt ..'hose function is atom.
<PAT> ;;scarches bnckwnrd for an event matching the (editor) pattern pat.

;;changes the dircction of motion for thc ncxt command
;;= <pat) 5ame as <pat> but matches the values of the events

TO ;; <cvent1> TO <cvent2> specifics thc sequcnce of events starting
;;~ith cvcnt1 nnd going up to (not including) event2.

THRU ;; (cvcnt1> TfIRU <cvent2> specifies thc sequence of events starting
i;with event1 and golng up to and including evcnt2.

(cmpty> ;;]cavlng out an event-spec lets it default to -1.
AND ;; <event-spec1> AND <event-spc(2) joins two]1sts of events.
@ ;; @ <name> specifies the cvcnts namcd by the name.

4.1.1.6 """""" [TOP-LEVEL COMMAND]

changes the default lop level (lNITFN) to the old LISP 1.6 top level and exits from

TOP-LEVEL.

4.1.1.7 11 <event-spoc> [TOP-LEVEL COMMAND]

prints the specified events.

4.1.1.8 USE args FOR vars IN event-spec [TOP-L.EVEL COMMAND]

substitutes argurne.nts {OI variables in the specified events. The events are then executed.

The number of arguments must be a multiple of the number of variables. For example,

<J > (FAC 0)
1
<4>USB 1 2 3 FOR 0 IN FAC
1
2
6

4.1.1.9 SUBST args FOR vars IN evont-spoc [TOP-LEVEL COMMAND]

is like USE but it does nol execute the results.

4.1.1.1 0 UNDO <event-spec> [TOP-LEVEL COMMAND]

undoe5 the recorded (undoable) side effects of the events specified.

4.1.1.11 NAME (namo) <ovent-spoc> [TOP-LEVEL COMMAND]

saves the specified events on the NAMED-EVENTS property of name. This allows those

105

evcnt~ (and their villucs and side eff0et~) to be referenced (by that name) even after they

Clre deleted from the hir>tory li~>t (when they are no longer recent).

4.1.1.1 2 RETRIEVE <namo) (TOP-LEVEL COMMAND]

adds the events specified by the name (via the NAME command) to the history list (at the

end).

4.1.1.] 3 AFTER (name) [TOP-LEVEL-COMMAND)

adjusts the (undo;lble) side effects to reflect the situation after the events named by name

(via the NAME command) are executed.

4.1.1.14 BEFORE (name) (TOP-LEVEL-COMMAND]

Adjusts the <ur.donble) side effects to reflect the situation before the events named by

name (via the NAME command) were executed.

4.1.1.15 FORGET (ovenl-5pcc> (TOP-LEVEL COMMAND]

deletes the information which allows the undoable side effects of the specified events to

be undone. (Thus they are no lonser undoable.) This is useful for conserving space (if you

never want to undo those events).

4.1 ..2 (VALUEOF "EVENT-SPECIfICATION") [FSUBR)

VALUEOF returns tha villue(s) of the event(s} specified by EVENT-SPECIFICATION. If a

single event is specified, its value will be returned. If more than one event is specified, or an

event has more than one suhevent (as for REDO, etc.). a list of values will be returned.

4.1.3 TOP-LEVELMACROS (VALUE]

provides a (.rude n1;:lcro facility for the top level. The value of TOP-LEVELMACROS is a list

of elements of the form (MACRONAME FORMALS TTYLINEl •.. TTYLINEN). This list is used just

lir.e BREAKMACROS. TTYLINEi must be formated as if it is a list returned by LINEREAD. That

is, TTYLINEi must be a list whose clements are one line of input typed at TOP-LEVEL.

4.1.4 (CHANGESLICE N) [SUBR]

CHANGESLlCE sets to N the maximum number of events that will be retained On the history

list. The maximum number of events in the history list is initially set to 30.

106

4.1.5 LISPXHl ST	 [VALUE]

cont ains the '1ame of the atortl (LISPXHISTORY) COl ~aining history, current event number,

max event number and history ~Iice size information.

4.1.6 LISPXHISTORY [VALUE]

. Unless LISPXHIST is changed, LISPXHISTORY contains history and state information for the

LISP top level. It is a list contilining four elements. The first element is the actual history.

The second is the current number for the numeric prompts. The third is the number of

events being remembered. The fourth is the maximum number the prompts may reach (which

must be more than the third element).

4.1.7 USERTOP [VALUE and SUBR]

USERTOP gives the user a chance to pre-process the input to TOP-LEVEL. If the value of

USERTOP is non-NIL then the function USERTQP is called with the line just read by LINEREAD

as a parameter. The result is used as if it had been the result of LlNEREAD. TOP-LEVEL

expects a li$t of lines, ca<.h C0I1~.i5tin8 of a list of expressions to be evaluated. In this respect

USERTOP is like TOP-LEVELMACROS. The default USERTOP attempts to allow the user to

leave out the outermost set of parentheses.

The default USERTOP does nothing H the input starts with a left parenthesis or a

top-Ievel-c.ommand. If the input is a single atom, it will normally be left alone. (The

exceptions are atoms which are functions but have no values, and some special cases such as

CHANGES where one norma1ly wants to call the function rather than see the value. To see

the value of CHANGES type "eval changes".) Otherwise the atom is treated as a function and

any other expressions on the line are treated as its arguments. If the function is an fexpr,

fsubr or macro then the line is simply enclosed in parentheses. Otherwise its arguments are

QUOTE'd before enc.losing 1he linc in parentheses. Exceptions to this rule are T, NIL and

numbers which are not quoted. The quoting may be prevented by preceding an argument

with the atom! (as in QUOTE!).

help help i3 interrrcted as (help help) - help is an fsubT
p11st pl1st is interpreted as (p11st 'plist) - pl1st is a subr
+ a b	 i~ interpreted as (+ 'a 'b) - not what you me~n

+ ! &! b	 is interpreted as (+ a b)
+	 ! a ! b 1s in1r.rprctr.d as (+ '!a '!b) - the! must be separated

;;by spaces so as not to look lite part of another &tom
+ 2 3 is interprctr.d as (+ 2 j) - numbers are not quoted
setq x y is interprcted as (setq x y) - probably ~hat you meant
cha.nges is interprcted as (changes) - an exception
fix 3 1s interpreted as itself - fix 1s a top-Jevel-command
oblist is lntcrprctr.d as itself - even if there Is a function

;; ",1 th that name

L07

simply return!". to the top-level. It is c.alled when you type

4.2 (INITFN FN) [5UBR]

INITFN selects the fundion of no arguments FN as an initialization function which is

evaluated after a LISP error return to the top level has occurred or whenever a BELL (.....G) is

typed. INITFN returns the previou!;ly selected initialization function. Initialization functions

are useful when it is der.irable to change the top level of LISP. For instance,

(INJTFN (FUNCTION EVA1QUOTE»

causes the top level to become EVALQUOTE instead of EVAL.

108

5. EDITOR

The most frequent u~.e of the editor is to change function definitions (see EDITF), values

(EDITV), propert ies (EDITP), and expre~.ion (EOITE). The beginner is advised to st art with

the following (very basic) comm;tnds: OK, UNDO, P, ** (under which are explained two different

basic commands whic.h start with numbers) and F.

5.1 EDIT-ATTN

Attention-chan~in8 cOtr\m~nd$ (in the editor) do not nctually chanee the thing being edited,

but r at her allow you to look at a different p.ad of it. The sub-structure upon which the

editor·s attention is centered is calJed "the current expression". Thus "changing" the current

expression means !>hifting attention and not actually modifying any structure.

5.1.1 CURRENT-EXPRESSION

At any given moment, the cditor·s attention is centered on some substructure of the

expression being edited. This substructure is called the current expression, and it is what the

user sees when he gives the editor the command P, for print. Initially, the current expression

is the top level one, i.e., the entire expression being edited.

5.1.2 •

n (n>O) [EDIT~COMMAND] Adds the ~th element of the current expression to the front of

the edit chain, thereby making i1 be the new current expression. Sets LASTAIL for use by UP.

Generates an error if the current expression is not a list that contains at least n elements.

-n (n>O) Adds the nth clement from the end of the current expression to the front of the

edit chain, thereby making it be the new current expression. Sets LASTAIL for use by UP.

Generates an error if the current expression is not a list that contains at least n elements.

o

Sets edit chain to CDR of edit chain, thereby making the next higher expression be the new

correct expression. Generates an error if there is no higher expression, Le., CDR of edit chain

is NIL. Note that 0 usually corresponds to going back to the next higher left parenthesis, but
:

not always. For example, if the current expression is (A BCD E F G), and the user does

,. UP P
••• C D E F G)

#3 UP P

• •• E F G)

#0 P

• •• C D E F G)

109

If the intention is to 80 back to the next higher left parenthesis, regardless of any

intervening tails, the command !O can be used. (!O is pronounced bang-zero.)

5.1.3 UP [EDIT-COMMAND]

(1) If a P command would caurae the editor to type _. before typing the current expression,

i.e., the current expression ;s a tail of the next higher expression, UP has no effect; otherwise

(2) UP modifies the edit chain so that the old current expression (Le.,the one at the time UP

was called) is the first element in the new current expression. (If the current expression is

the first element in the next higher expression UP simply does a O. Otherwise UP adds the

corresponding tail to the edit chain.

The current expression in each case is (CONO ({NULL X) (RETURN Y»).

1. '1 P
COND

'UP P

(COND (4 ,»
2. '-1 P
«NULL X) (RBTURN Y»

'UP P

• •• «NULL Xl (RBTURN Y»)
,up P
• • • «(NULL X) (RETURN Y»)
J. IP NULL P

(NULL Xl

,up P
(NULL X) . (RBTURN Y»
,UP P
• • • «NULL X) (RETURN Y»)

The execution of UP is straightforward, except in those cases where the current

expression appears more than once in tho next higher expression. For example, if the current

expression is (A NIL B NIL C NIL) and the user performs 4 followed by UP, the current

expression should then be .•• NIL C NIL). UP can determine which tail is the correct one

because the commands that descend save the last tail on an internal editor variable, LASTAIL

Thus after the 4 command is executed, LASTAIL is (NIL C NIL). When UP is called, it first

determines if the current expression is a tail of the next higher expression. If it is, UP is

finished. Othe.rwise, UP computes (MEMB current-expression next-higher-expression) to

obtain a tail beginning with the current expression. (The current expression should always be

either a tail or an element of the next higher expression. If it is neither, for example the user

has directly (and incorrectly) manipulated the edit chain, UP generates an error.) If there are

no other instances of the current-expression in the next higher expression, this tail is the

correct one. Otherwise UP uses LASTAIL to select the correct tail. (Occasionally the user can

get the edit chain into a state where LASTAIL cannot resolve the ambiguity, for example if

there were two non-atomic structures in the same expression that were EO, and the user

110

descended more fhrtn one level into one of them and then tried to come back out using UP. In

this C;lSC, UP ~Jclce.t~) the first tilil and prints LOCAnON UNCERTAIN to warn the user. Of

cour~>c, we could have ~;olvcd thiz problem completely in our implementation by saving at
each dc!'>cent both cler....enls (lnd tails. However, this would be a costly solution to a situation

that ari~es infrequently, and when it docs, ha5 no detrimental ef.{eets. The LASTAIL solution is

cheap and resolves 997. of the ambieuities.

5.1.4 !O [EDIT -COMMAND]

Docs repeated O's until it reaches a point where the current expression is not a tail of the

next higher expression, i.e., always goes bac~\ to the next higher left parenthesis.

5.1.5 [EDIT-COMMAND]

Sets edit chain to LAST of edit chain, thereby making the top level expression be the

current exprcs~>ion. Never generates an error.

5.1.6 NX [EDIT-COMMAND]

Effectively docs an UP followed by a 2, thereby making the current expression be the next

expression. Both NX and BK operate by performing a !O followed by an appropriate number,

i.e. there won~t be an extra tail above Jhe new current expression, as there would be if NX

operated by performing an UP followed by a 2. An error is generated if the current

expression is the last one in a list. (However, '!NX 'will handle this case.)

(NX n) Equivrllent to n NX commands, except if an error occurs, the edit chain is not

changed. (NX -·n) i!i the 5ame a!i (BK n).

5.1.7 !NX [EDIT-COMMAND]

Makes current expression be the next expression at a higher level, i.e., goes through any

number of right parenthe~es to get to the next expression.

III

KPP
(PROG CUP)
(SETQ UP L)

LP (CO~D ((NULL rSETQ 1. (GDR L») (ERR NIL»

«(:\UJ.L (CDR (ME\t1Q' (CAR L) (CAUR L.l»)
(GO LP)))
(EDITCO~ (QUOTE NX»
(SETQ U~PI~D UP)
(RETUP.~ 1»
IF CDR P
(CDP. L)
INX
NX 1
I!NX P
(ERR NIL)
#rNX P
((NULL &) (GO LI'»
#!~l p
(EDITCOM (QUOTE NX»

!NX operates by doing 0"5 until it reaches a stage where the current expression is not the

last expression in the next higher expression, and then does a NX. Thus !NX always goes

through at least one unmatched right parenthesis, and the new current expression is always

on a different level, Le., !NX and NX always produce different results.

5.1.8 BK [EDIT-COMMAND]

Makes the current expre-:,sion l)e the previous expression in the next higher expression.

Generates an error if the current expression is the first expression in a list. (8K n)

Equivalent to n BK commi1nds J exc.ept if an error occurs, the edit chain is not changea. Note:

(NX -n) is equivalent to (BK n), and vice versa.

5.1.9 (NTH n) ">0 [ED1T-COMMAND]

Equivalent to n followed by UP, Le., causes the list starting with the nth element of the

current expression. «NTH 1) is a NOP.) Causes an error if current expression does not have

at least n elements

(NTH S) - Generalized NTH command. Effectively performs (LCL . S), Followed by (BELOW \),

followed by UP. In other words, NTH locates 8, using a search restricted to the current

expression, and then bac.~,s up to the current level, where the new current expression is the

tail whose first clement c.ontains, however deeply, the expression that was the terminus of

the location operation. For example:

tP
(PROG (~ ~) 1P (COND , ~) (EDITCOM~) (SBTQ U:-.1FIND UP) (RETURN L»
, (NTH UF)
IP

(SETQ UNF I ND UP) (RETURN L))

112

If the ~.c0rch is un~.ucces':.ful, NTH Generates an error and the edit chain is not chan~ed. Note

that (NTH n) i~ just a ~pecial ca'Je of (NTH 8), and in fact, no special check is made for S a

number; both commands are executed identically.

5.1 .10 ::

(pattern :: . S) [EDIT -COMMAND] E.g., (COND :: RETURN). Finds a CONO that cont ains a

RETURN, at any depth. [quivalent to (F pattern N), (LCL . S) f,ollowed by (_ pattern). For

example, if the current cxpres~ion i!. (PROG NIL (COND «NULL l) (CONO (FLG (RETURN L»»)

--), then (COND:: RETURN) will make {CONO {FLG (RETURN l») be the current expression.·

Note that it is the innerrno!:.t GOND that is found, because this is the first COND encountered

when ascending from the RETURN. In other words, (pattern :: S) is not equivalent to (F'pattern

N), followed by (LCL . S) followed by \. Note that S is a location specification, not just a

pattern. Thu~ (RETURN :: COND 2 3) can be used to find the RETURN which contains a COND

who~e first c.lau5e contains (at least) three elements. Note also that since S permits any edit

command, the uc:;er can write commands of the form (COND :: (RETURN :: COND», which will

locate the first COND thiit cont iiins a RETURN that contains n CONDo

5.1.11 (BELOW com ~) [EDIT-COMMAND]

Ascends t he edit chain 100l',in8 for a link specified by COM, and stops x links below that, Le.

BELOW Y.eeps doing O~s until it Bets to a specified point, and then ~acks off N D's. (X is

evaluated, e.g., (BELOW com (*PLUS X Y») (BELOW com) Same as (BELOW com 1) For example,

(BELOW COND) will cause the COND cliiuse containing the current expr_ession to become the

new current expression. The BELOW command is useful for localing a substructure by

specifying something it contains. For example, suppose the user is editing a list of lists, and

wants to find a 5ublist that contains a FOO (at any depth). He simply executes F FOa (BELOW

\).

BELOW operates by evaluating X and then executing COM, or (_ com) if COM is not a

recognized edit command, and measuring the length of the edit chain at that point. If that

length is M and the length of the current edit chain is N, then BELOW ascends n-m-y links

where Y is the value of X. Generates an error if COM causes an error, i.e., it can't find the

higher link, or if n-m-y is negative.

5.1.12 (NEX x) [EDIT-COMMAND]

Same as (BELOW x) followed by NX. For example, if the user is deep inside of a SELECTQ

clause, he can advance to the next claw>e with (NEX SELECTQ).

NEX

113

Same as (NEX _). The ntornie form of NEX is u~cful if the user will be performing repeated

executions of (NEX x). By sir(lply MARKing the ch~in correspondinu to X, he can use NEX to

step IhrouGh lhe ~lJbli~t5•

.5.1.13 EDIT-MJ\TCH

All of the editor commands that search use the same pattern matching routine. (This routine

is available to the u!>cr as EDIT4E).

A pattern PAT matches with X if

; ; 1. PAT is EQ to X.

; ; 2. PAT 1s 4.

; ; J. PAT 1S 11 numhr.r lind EQUAl. to X.

;; 4. If tCAR PAT) 1s the atom tA~Yt, (CDR PAT) 1s &

list of patterns, lind PAT m~tches X 1f and only
if one of the patterns on (CDR PAT) m~tches X.
5. If PAT 1s a literal atom or string, and (NTHCHAR

pat -1) 1s E, then PAT matches 'tUh any literal

atom or string .hleh has the same initial

characters a5 PAT, c.g. Vr.R~ matches ~ith

VERYLO:\GATO\1, as \l'~ll as "VERY10:\GSTRIXG".

·

6. [f (CAR PAT) is the atolll --, PAT matches X if
, ; A. (COR pllt)~NIL, i.e. PAT=(--),
; ; e. g., (A --) matches CA) (A R C) a.nd (A. B)
; ; In other ~ords, -- can match any tall of ·., , a Ii st.
;; B. (CDR PAT) ma.tches wl th some ta11 of X, ·. e. g. (A -- (&» \.-1 l] mn. tch ,.·1th (A B
; ;, C (D», but not (A BCD), or (A B C ·, ., CO) E). HO"'c\'cr, note that' (A -- (~)
; ; --) ",111 match with CA B C CD) B).·., , I n otherords, -- \\'111 ma. tch any
;; interior Sef~mp.nt of a l1st. ·, , . 7. If (CAR PAn i5 the atom ~=, PAT matches X if
; ; and only 1f (CUR PAT) is EQ to X. (This pattern
i ; 1s fOT USC by programs that call the editor as a
; ; subroutine, since I1ny non-atomic expression in a
; ; command typed In by the user obviously cannot be
; ; EQ to existing structure.)
; ; 8. Otherwise 1f X 15 11 list, PAT matches X if (CAR
, , PAT) matches (CAR X), and (CDR PAT) matches (CDR
; ; X).

When searching, the pattern m;\tching routine is called only to match with elements in the

structure, unless the patlern begins with :::, in which case CDR of the pattern is matched

against tails in the struc.ture. (In this case, the tail does not have to be a proper tail, e.g. (:::

A --) will match with the element (A 8 C) as well as with CDR of (X A 8 C), since (A 8 C) is a

tail of (A 8 C).) Thus if the current expressiion is (A B C (8 cn,

114

~F (B --)
#P
(B C)
NO F (::: B - -)
,p
• •• B C (B C))
,F (::: B --)
IP
(B C)

5.1.1 4 EDIT-SEARCH

Search Comm~nds - All of the commands below sat LASTAJL for use by UP, set UNFIND for

usc by \ , and do not chan8c the cdit chain or perform any CQNSes if they are unsuccessful

or aborted.

Editor Searching begins with the current expression and proceeds in print order.

Searching usually means find the next instance of this pattern, and consequently a match is

not attempted that would IC<-lve the edit c.hain unchanged. (Note, there is a version of the find

command which cnn succced and leave the current expression unchanged.) At each step, the

pattern is matched against the next element in the expression currently being searched,

unless the pattern begins with ::: in which case it is matched against the corresponding tail of

the expression. (EQ pattern t ail-of -expression)::T also indicates a successful match, so that a

search for FOc will find the Faa in (FIE. FaD). The only exception to this occurs when

PATTERN=NIL, e.g., F NIL. In this case, the pattern will not match with a null tail (since most

lists end in NIL) but will match with a NIL element.

If the match is not successful, the search operation is recursive first in the CAR direction

and then in the CDR direction, Le., if the element under examination is a list, the search

descends into that list before attt:'mpting to match with other elements (or tails) at the same

level. (There is <-llso a version of the find command which only attempts matches at the top

level of the current cxprc55ion, Le., does not descend into elements, or ascend to higher

expressions.)

However, at no point is the total recursive depth of the search (sum of number of CARs

and CDRs descended into) allowed to exceed the value of the variable MAXLEVEL. At that

point, the search of that clement or tail is abandoned, exactly as though' the element or tail

had bcen completcly !,carched without finding a match, and the search continues with the

next element or tail for which the recursive depth is below MAXLEVEL. This feature is

designed to enable the user to search circular list structures (by setting MAXLEVEL small), as

well as protecting him from <-lccidentrilly encountering a circular list structure in the course of

normal editing. MAXLEVEL is initially set to 192. If a successful match is not found in the

current expression, the scarc.h automatic.ally ascends to the next higher expression, and

115

continuC's ~carching there on the next expression after the expression it just finished

searching. If there is none. it ascend':. again, etc. This process continues until the ct"ltire edit

chain has been ~.ear(hcd, itt which point the search fails, and an error is generated. If the

search (ail~ the edit eh;)in is not ch;)nacd (nor are any CONSes performed.)

If the $carch i$ $u('('c'3sful, Le., an expression is found that the pattern matches, the edit

chain is set to the value it would have had had the user reached that expression via a

sequerlce of inteGer commands.

If the expre5~,ion that matchqd was a list. it ytill be the final link in the edit chain, Le., the

new current cxprc~sion. If the cxpression that matched is not a Jist, e.g., is an atom, the

current expression will be the tail beginning with that atom, (Except for situations where

match is with Y in (X . V), Y atomic and not NIL. In this case, .the current expression will be (X

• Y).) Le., that atom will be the first element in the new current expression. In other words,

the search effectively dOi\s rln UP. (Unless UPFiNDFLG=NJL (initially set to T).

5.1.14.1	 F pattern [EDIT-COMMAND]

i.e., two commands: the F informs the editor that the next command is to be interpreted as

a pattern. If no pattern is given on the same line as the F then the last pattern is used. If an

F or SF has been done in this call to the ~ditor, the variable FINDARG is bound in the editor

to the pattern. This is the most common and useful form of the find command. If successful,

the edit chain always changes, Le., F pattern means find the next instance of PATTERN.

If (MEMB pattern current-expression) is true, F does not proceed with a full recursi~e

search. If the value of the MEMG is NIL, F invo~\es the search algorithm described in

EDIT-SEARCH. Thus if the current expression were (PROG NIL LP (COND (--(GO LP 1») ... LP1

••.), F LP1 would find the prog label, not the LPI inside of the GO expression, even though the

latter appears fi:,~t (in print order) in the current expression. Note that 1 (making the atom

PROG be the curre"t expression), followed by F LP1 would find the first lP 1.

(F	 pattern N)

Same as F pattern, Le., finds the next instance of pattern, except the MEMB check of F

pattern is not performed.

(F	 pattern T)

Similar to F pattern, except may succeed without changing edit chain, and does not perform

the MEM8 check. Thus if the current expre~sion is (COND ..), F COND will look for the next

COND, but (F COND T) will ·stay here·.

116

(F pattern n) 11>0

Find~ the nth plilCC thilt pat tern mCltchc5. Equivalent to (F pattern T) followed by (F pattern

N) repeated n-1 tirne~. Each t irne PATTERN ~.ucces~fully matches, n is decremented by 1, and

the 5earch continue':>, until n reaches O. Note that the pattern does not have to match with n

identical c~pref,!.>ion~;; it ju~t ha5 to r...atch N times. Thus if the current expression is (FOOl

F002 F003), (F FOO·@ 3) will find F003. If the pattern does not match successfully N times, an

error is gcncrated and the edit chain is unchanged (even if the PATTERN matched n-l times).

(F pattern) or (F pattern NIL)

Only matches with clements at the top level of the current expression, Le., the search will

not descend into the current expression, nor will it go outside of the current expression. May

succeed without changing edit chain. For example, if the current expression is

(PROG NI L (SETQ X (COND & &» (CO~D 4) •••)

F (COND --) will find the COND inside the SETQ, whereas (F (COND --» will find the top level

COND, i.e., the second one.

5.1.14.2 (SECOND. $) [EDIT-COMMAND]

Same as (LC . 8) Followed by another (LC . S) Except that if the first succeeds and second

fails, no change is made to the edit chain.

5.1.1 4.3 (THIRD. S) [EDIT-COMMAND]

Similar to SECOND.

5.1.14.4 (FS patternl ... pattornn) [EDIT-COMMAND]

Equivalent to F pattern! followed by F pattern2 ... followed by F pattern n, so that if F

pattern m fails, edit chain is left at place pattern m-l matched.

5.1.14.5 (F= expression x) [EDIT-COMMAND]

is equivalent to (F (:::= . expression) x), Le., searches for a structure eq to expression.

5.1.14.6 (ORF pattern 1 ... pattornn) [EDIT-COMMAND]

Equivalent to (F (*ANY* pattern 1 ... patternn) N), i.e., searches for an expression that is

matched by either pattern! or ... p3tternn.

117

5.1.14.7 SF pattern [EDIT-COMMAND]

BaCy,Wflrds Find. SC'flrchcs in rever~c print order, beginning with expression immediately

before the current exprc!">sion (unle~5 the current expression is the top level ex'pression, in

which case BF r.earc.hcs the entire cxpre~,~ion, in reverse order.) SF uses the same pattern

match routine as F, and MAXLEVEL and UPFINDFLG have the same' effect, but the searching

begins at the end of c~ch list, and descends into each element before attempting to match

that element. If un5ucce"~s(ul, the sc;trthcontinues with the next previous element, etc., until

the front of the list is reached, at whic.h point SF ascends and backs up, etc. For example, if

the current expression is

(PROG NIL (SETQ X (SETQ Y (LIST Z») (COND «SETQ 'rtf --) --» --)
F LIST followed by SF SETQ will leave the current expression as {SETQ Y (LIST Z», as will F

CONO followed by SF SETQ

(SF pattern T)

Search always includes current expression, i.e., starts at end of current expression and

works bacy,ward, then i\~,c('nds and bachs up, etc. Thus in the previous example, where F

COND followed by SF SETQ found (SETQ Y (LIST Z», F COND followed by (SF SETQ T) would

find the (SETQ W --) expre~5ion.

(SF pattern) is the same as BF pattern. (BF pattern NIL) is the same as SF pattern.

5.1.14.8 MAXLEVEL [VALUE]

is the maximum depth for editor searches

5.1.1 4.9 LOCATION-SPEC

Many of the more sophi~ti(.ated editor commands u!:.e a more general method of specifying

position called a LOCATION SPECIFICATION. A LOCATION SPECIFICATION is a fist of edit

commands that are executed in the normal fashion with two exceptions. First, all commands

not recognizcd by the cditor arc interpreted as though they had been preceded by F.

(Normally such commands would cause errors.) For example, the location specHication (COND 2

3) specifies the 3rd element in the first dause of the ne)(t CONDo (Note that the user could

always write (F COND 2 3) for (COND 2 3) if he were not sure whether or not COND was the

name of an atomic command.) Secondly, if an error occurs while evaluating one of the

commands in the location specification, and the edit chain had been changed, Le., was not the

same as it wa$ at the beginning of that execution of the location specification, the locafion

operation will continue. In other word~, the location operation keeps going unless it reaches a

118

st ate where it deteet~ that it is ~Iooping'. at which point it gives up. Thus, if (COND 2 3) is

being located. and the fir5t clnu~,c of the next COND contained only two elements, the

execution of the cornmf1nd 3 would CCluc:.e an error. The ~,earc.h would then continue by looking

for the next CorJD. However, if a point were reached where there were no further CONDs,

then the first cornm;md, CONO. would cause the error; the edit c.hain would not have been

changed, and so the entire location operation would fail, and cause an error.

The IF command and the Uti function provide a way of using in location specifications

arbitrary predicates applied to elements in the current expression.

The meta-symbol S i5 used to denote a location specification. Thus S is a list of commands

interpreted as, described above. S Can also be atomic, in which case it is interpreted as (LIST

S).

In INSERT, DELETE, REPLACE and CHANGE if S is NIL (empty), the corre~ponding operation

is performed here (on the current edit chain), e.g., (REPLACE WITH (CAR X}) is equivalent to

(:(CAR X». For added readability, HERE is also permitted, e.g., (INSERT (PRINT X) BEFORE

HERE) will insert (PRINT X) before the current expression (but not change the edit chain).

Note also that S doe!:' not have to ~,pecify a location WITHIN the current expression, Le., it is

perfectly legal to ascend to INSERT, REPLACE, or' DELETE. For example (INSERT (RETURN)

AFTER'" PROG -1) will go to the top, find 'the first PROG, and insert a (RETURN) at its end, and

not change the current edit chain.

Finally, the A, B, and : commands, (and consequently INSERT, REPLACE, and CHANGE), all
make special checks in El thru Ern for expressions of the form (u# . corns). In this case, the

expression used for inserting or replacing i~ a copy of the current expression after executing

coms, a list of edit commctnds. (The execution of coms does not change the current edit chain.)

For example, (INSERT (uu F COND -1 -1) AFTER3) [not {INSERT F COND -1 (## -1") AFTER 3),

which inserts four elements after the third element, namely F, COND, -1, and a copy of the

last element in the current expression] will make a copy of the last form in the last clause of

t he next CONO, and insert it after the third element of the current expression.

5.1.14.9.1	 S

In descriptions of the editor, the meta-symbol S is used to denote a location specification.

Thus S is a list of cOI....mands interpreted as described under LOCATION-SPEC. S Can also be

atomic, in which case it is interpreted as (LIST S).

5.1.14.9.2	 (LC. S) [EDIT-COMMAND]

Provides a way of explicitly invoking the location operation, e.g. (LC COND 2 3) will perform

119

the search dc~..crjbcd under cdit-~>earch.

5.1.14.9.3 (LCL. S) (EDIT-COMMAND]

Same as LC except ~earch is confined to current expression, i.e., the edit chain is rebound

during the search ~o it looJt,~ as if the editor were called on just the current expre~sion. For

example, to find a COND c.ontaining a RETURN, one might use the location specification (COND

(LCL RETURN) \) where the \ would reverse the effects of the LCL command, and make the

final current expression be the CONDo

5.1.15	 EDIT-CHAIN

The edit-chait' (the vCllue of whic.h is kept in the variable L) is a list of which the first

element (CAR) is the currcnt-expre!;sion (the one you are now editing), the next element is

what would become the current-expression if you were to do a 0 (the edit command) (which

is the next hieher level cxpres~.ion of which this is an element) etc. until the last element

which is the expression that was pClssed to the editor.

5.1.15.1 MARKLST [VALUE]

is an internal variable used by the editor to save and later retrieve intermediate copies of

the edit chain.

5.1.15.2 MARK [EDIT-COMMAND]

Adds the current edit chain to the front of the list MARKLST.

5.1.15.3 _ [EDIT-COMMAND]

Ma~,es the new edit chain be (CAR MARKLST). Generates an error if MARKLST is NIL, Le., no

MARKS have been performed, or all have been erased.

(_ pattern) [EDIT -COMMAND] Ascends the edit chain looking for a link which matches

PATTERN. in other word~, it keeps doing O's until it gets to a specified point. If PATTERN is

atomic, it is matched with the first element of each link, otherwise with the entire link. (If

pattern is of the form (IF expression), EXPRESSION is evaluated at each link, and if its value is

NIL, or the evaluation causes an error, the ascent continuec;.) For example:

120

#PP

(PROG NIL

(COND ((~:UJ.L (SETQ L (CDR].»)

(CO~D (FLG (RETURN L»»

((~ULL (CDR (ME~B (CAR L (CADR L)))

(GO LP))))

#F CADR

It (_ CONO)

IP

(CONO (& &) (~ &»

It

Note that this {omrr'land differs from SF in that it does not search inside of each link, it simply

ascends. Thus in the above eXilrnple, F CADR followed by BF CONO would find (CQND (FLG

(RETURN L»), not the hi8her CONDo If no match is found, an error is generated and the edit

chain is unchanecd.

5.1.1 5.4 _ [EDIT-COMMAND]

Similar to _ but c:\lso erar.es the MARK, Le., performs (SETQ MARKLST (CDR MARKLST».

5.1.15.5 \ [EDIT-COMMAND]

Makes the edit chain be the valuc of UNFIND. Generates an error if UNFINO=NIL. UNFIND is

set to t he current edit chain by each command that makes a "big jump", Le., a command that

usually performr. more than a single ascent or descent, namely, --' --J !NX, all commands that

involve a r.earch, e.g., F, LC, ::, BELOW, et al and \ and \P themselves. (Except that UNFIND is

not reset when the current edit chain js the top level expression, since this could always be

returned to via the " command.) For example, if the user types F CONO, and then F CAR, \

would take him back to the CONDo Another \ would take him back to the CAR, etc.

5.1.15.6 \P [EDIT-COMMAND]

Restores the edit chain to its !'.tate as of the last print operation, Le., P, ?, or PP. If the edit

chain has not changed since the last printing, \P restores it to its state as of the printing

before that one, Le., two ch~ins are always saved. For example, if the user types P followed

by 3 2 1 P, \P will return to the first P, i.e., would be equivalent to 0 0 O. (Note that if the

user had typed P followed by F CONO, he could ur.e either \ or \P to return to the P, Le., the

action of \ and \P are indcpendent.) Another \P would then take him back to the second P,

Le., the user could ur.e \P to flip bacl', and forth between the two edit chains.

5.2 EDIT-PRINT

121

5.2.1 P [EDIT-COI~MAND]

Prints current ~ xprc~!".ion a~. thouGh PRINTLEV were given a depth of 2. (P m) Prints mth

element of current expre~.r~ion as thouGh PRINTLEV were given a depth of 2. (P 0): Same as

P (P m n) Prints mth clen'lcnt of current cxpression as though PRINTLEV were given a depth

of N. (P 0 n) Prints current cxpre~5ion as though PRINTLEV were given a deeth of N. ? is

the same as (P 0 100). 130th (P m) and (P m n) use the general NTH command to obtain the

corresponding clement, 50 that m does not have to be a number, e.g. (P COND 3) will work.

All printing functions print to the teletype, regardless of the primary output file. No printing

function ever chc:mges the edit chain. All record the current edit chain for use by \P.

5.2.2? [EDIT-COMMAND]

same as (P 0 100), Le. prints the current expression as though PRINTLEV were given a

depth of 100.

5.2.3	 pp [EDIT-COMMAND]

pretty-prints the current expression.

5.2.4 pp*

is	 like PP, but forces commcnts to be shown.

5.2.5	 AUTOP [VALUE]

After each line of editor comrnrmds is successfully executed, the current expression is

automatically printed. Control of this facility is by the global variable AUTOP. Setting AUTOP

to NIL supprc~~c~ automatic printing, settin& AUTOP to an integer c~uses that integer to be

u5ed as the printing depth limit. AUTOP is initially 2. The printing will be suppressed if the

last command executed WClS itsclf a printing command (P, 1, PP), one of several commands

which do not affect the edited expression (such as E, M), or NIL. Appending NIL to a

sequence of c:ommands is the st andard way of suppressing automatic printout without turning

the facility off. AUTOP is a nop which forces automatic type-out if executed last.

5.3	 EDIT-MOD

Implementation of Structure Modification Commands

122

~,JotC': Since all (omrn~I''I(j!) that in~.crt, replilce, delete or attac.h structure use the same low

level editor functions, the remJrks made here are valid for all structure changing commands.

For all replacement, in~.ertion, and att aching at the end of a list, unless the command was

typed in directly to the editor, copies of the corresponding structure are used, because of

the possibility that the cxact same command, (i.e. same list structure) might be used again.

(Some editor (ornmand5 takc as Jreuments a list of edit commands, e.g. (LP F Faa (l (CAR

FOO»). In this case, the cornmJ.nd (1 (CAR FOO» is not considered to have been "typed in"

even though the LP command itself may have bee,n typed in. Similarly, commands originating

from macro~., or commands given to the editor as arguments to EDITF, EDITV, et ai, e.g. (EDITF

Faa F COND (N --» are not considered typed in.) Thus if the program constructs the command

(1 (A 8 C» via (LIST 1 Faa), c:lnd give$ this comrnc:lnd to the editor, th~ (A B C) used for the

replac.ement will NOT be EQ to Faa. (The user can circumvent this by using the I command,

which compute!; the structure to be used. In the above example, the form of the command

would be (l 1 FOO), which would replace the first element with the value of Faa itself. See

The re~t of this section i~ included for applications wherein the editor is used to modify a

data structure, and pointers into that data structure are stored elsewhere. In these ,cases, the

actual mechanics of structure modification must be known in order to predict the effect that

various commands may have on these outside pointers. For example, if the value of Faa is

CDR of the current expression, what will the commands (2), (3), (2 X Y Z), (-2 X Y Z), etc., do

to FOO?

Deleti.on of the' first element in the curre+nt expression is performed by replacing it with

the second element and deleting the second element DY patching around it. Deletion of any

other element is done by patching around it;i.e., the previous tail is altered. Thus if FOO is EQ

to the current expression which is (A 8 C D), and FIE is CDR of FOO, after executing the

command (1), FOO will be (8 C D) (which is EQUAL but not EQ to FIE). However, under the

same initial condition~, after executing (2) FIE will be unchanged, Le., FIE will still be (B C D)

even though the current expre$!;ion and FDa are now (A C D). (A general solution of the

problem just isn't possible, a~it would require being able to make two lists EQ to each other

that were originc:llly different. Thus if FIE is CDR of the current expression, and FUM is CDOR

of the current exprcsr.ion, performing(2) would have to make FIE be EQ to FUM if all

subsequent operations were to update both FIE and FUM corree'tly. Think about it.) Both

replacement and in~ertion arc accomplished by smashing both CAR and COR of the

corresponding tail. Thus, if FOO were EQ to the current expression, (A 8 C D), after (1 X Y Z),

FOO would be (X Y Z BCD). Similarly, if Faa were EQ to the current expression, (A BCD),

then after (-1 X Y Z), Faa would be (X Y Z ABC D). The N command is accomplished by

smashing the last CDR of the current expression a la NCONC. Thus, if Faa were EQ to any tail

123

of t he current cxprc~sion, ilf·{er executing an N command, the corre~ponding expres~ions

would alc:;o appear at the end of FOO.

In summary, the only ~ituf\tion in which an edit operation will not change an external

pointer occur~ wt1cn the cxtcrnril pointer is to a proper tail of the data struct.ure, Le., to CDR

of ~omc node in the structure, and the operation is deletion. If all external pointers are to

elements of the 5trueture, i.e., to CAR of SOme node, or if only insertions, replacements, or

att achments are performed, the edit operation will always have the same effect on an

external pointer as it does on the current expression.

5.3.1 It

(n) [EDIT-COMMAND] n> 1 deletes the corresponding element from the current expression.

(n e 1 ... em) l1,m> 1 repl~c.es the nth element in the current expression with e 1 ... em.

(-n el ... em) n,m>} in!:.crts el ... em before the n clement in the current expression.

(N e 1 ... em) (the letter "N" for "next" or "nconc", not a number) m>} attaches e 1 ... em at

the end of the current expression.

All structure modificaton done by the editor is destructive, i.e., the editor uses RPLACA and

RPLACD to physically change the structure it was given. However, all structure modification

is undoable, see UNDO.

All of the above cOmmiH'lda gonerate errors if the cu-rrent expression is not a list, or in the

case of the first three command5, if the list contains fewer than n elements. In addition, the

command (1), i.e., delete the fir5t element, will cause an error if there is only one element,

since deleting the first element must be done by replacing it with the second element, and

then deleting the second element. Or, to look at it another way, deleting the first element

when there is only one clement would require changing a list to an atom (Le. to NIL) which

cannot be done. (However, the command DELETE will work even if there is only one element

in the current expression, since it will ascend to a point where it can do the deletion.)

5.3.2 INSERT-DELETE

5.3.2.1 (N e 1 ... em) [EDIT-COMMAND]

m> 1 aft aches ~ 1 ... em at the end of the current expression. This is needed because

commands like (-2 ...) can~t add to the end of the list.

124

5.3.2.2	 (A 01 ... em) [EDIT-COMMAND]

Inserts e 1 ..• em ~fter the current exprc~sion (or after its first element if it is a tail).

Equivalent to UP followed by (-2 e 1 ... ero) or (N e 1 ... em) or (N e 1 ..• em) whichever is

appropriate.

5.3.2.3 (B 01 ... em) [EDIT-COMMAND]

Inserts e 1 ... em before the current expres!:'ion. Equivalent to UP followed by (-1 e 1 ... em).

(If the current ('xpres~;ion is ;t filii then inr>ert before the first element.) For example, to insert

FO'O before the l«1st clement in the (urrent expression, perform -1 and then (8 FOO).

5.3.2.4 (: e 1 ... em) (EDJT-COMMAND]

Replaces the current expression by e 1 ... em. Equivalent to UP followed by (l e 1 ... em). ·If

the current expression is a tail then replace its first element. (:) is equivalent to DELETE.

5.3.2.5 DELETE or (:) [EDIT-COMMAND]

Deletes the current f!xpre~.sion, or if the current expression is a tail, deletes its first

element.

(DELETE. $)

Does a (LC . S) followed by DELETE. Current edit chain is not changed (Unless the current

~ expression is no longer a part of the expression being edited, e.g., if the current expression

is .•• C> and the user performs (DELETE 1), the tail, (e), will have been cut off. Similarly, if the

- current expression is (CDR Y) and the user performs (REPLACE WITH (CAR X».), but UNFIND is

set to the edit c.hain after the DELETE was performed.

DELETE first tries to delete the current expression by performing an UP and then a (1).

This worY,s in most ca~cs. However, if after performing UP, the new current expression

cont ains only one element, the comm(lnd (l} will not work. Therefore DELETE starts over and

performs a BK, followed by UP, followed by (2). For example, if the current expression is

(COND «MEMB X Y» (T V»~, and the u",er performs -1, and then DELETE, the BK-UP-(2) method

is u~ed, and the t,ew c.urrent expression will be ... «MEMB X Y»> However, if the next higher

expression cont ;lins only one clement, BK will not work. So in this case, DELETE performs UP,

followed by (: NIL), i.e., it REPLACES the higher expression by NIL. For example, if the current

expression is (COND «MEMG X Y» (T V»~ and the user performs F MEMB and then DELETE, the

new current expression will be ... NIL (T Y» and the original expression would now be (COND

NIL (T Y». The ralionale b~hind this is that deleting (MEMB X Y) from «MEMB X Y» changes a

list of one element to a li5t of no elements, i.e., 0 or NIL. Note that 2 followed by DEL.ETE

125

would DELETE «MEMO X V») NOT replace it by NIL.

For rcl;ltcd inforrl'\;ltion r.cc FILESPEC.

5.3.2.6 (INSERT el ... em BEFORE. $) [EDIT-COMMAND]

Similar to (LC. !» followed by (8 e 1 ... em).

IP
(PROG (1J Y X) (SELECTQ ATM & NIL) (OR ~ 4) (PRIN1 4»)

~(INSERT LABEL BEfORE PRINt)

IP

(PROG ('" Y X) (SEI.F.CTQ ArM & NIL) (OR & ~) LABEL (PRINl 4»

Current edit chain i~ not changed, but UNFIND is set to the edit chain after the B was

performed, Le., \ will make the edit thain be that chain where the insertion was performed.

(INSERT e 1 ... em AFTER. S) Similar to INSERT BEFORE except uses A instead of 8. (INSERT

e 1 ... em FOR. S) Similar to INSERT BEFORE except uses: for B.

For related information see !!INSERT.

5.3.2.7 (REPLACE S WITH 01 ... em) [EDIT-COMMAND]

Here S is the r.egmcnt of the (ommClnd between REPLACE and WITH. Same as (INSERT e 1 ...

em FOR. S). (BY can be u~ed for WITH.)

Example: (REPLACE COND -1 "'ITH (T (RETURN L»)

5.3.2.8 (CHANGE 8 TO e 1' ... em) [EDIT-COMMAND]

Same as REPLACE WITH

For related information see UP and EDIT-SEARCH.

5.3.2.9 UPFINDFLG

Form Oriented Editinr, and the Role of UP The UP that is performed before A, 8, and :

'commands (and therefore in INSERT, CHANGE, REPLACE, and DELETE commands after the

location portion of the operation has been performed'>, makes these operations

form-oriented. For example, if the user types F SETQ, and tlien DELETE, or simply (DELETE

SETQ), he will cJalete the entire SETQ expression, whereas (DELETE X) if X is a variable,

deletes just the variahle X. In both C85es, the operation is performed on the corresponding

FORM and in both cases is probably what the user intended. Similarly, if the user types

(INSERT (RETURN Y) [)[FORE 5ETQ), he means before the 5ETQ expression, not before the

atom SETQ. There is some ambiguity in (INSERT expr AFTER functionname), as the user might

mean mal',e expr be the fundion'!:, first argurnent. Similarly, the user cannot write (REPLACE

SETQQ WITH SETQ) to mean chanee the name of the function. The user must in these cases

126

write (INSERT cxpr AFTEI~ fundionname 1), c1nd (REPLACE SETQQ 1 WITH SETQ). A

con~cqLlcnt of thi!. procedure i~ that a pc1ttern of the form (SETQ Y --) can be viewed as

simply eln cl;,boriltion ilnd further refinement of the pattern SETQ. ThU!; (INSERT (RETURN Y)

BEFORE SETQ) and (INSERT (RETUr~N Y) BEFORE (SETQ Y --» perform the same operation

(Assuming the next SETQ is of the form (SETQ Y-».} and, in fact, this is one of the motivations

behind makin3 the current exprc~.~)ion after F SETQ, and F (SETQ Y --) be the same.

Occasionally, howevcr, a u~er may have a data structure in whic.h no special significance or

mcanin8 is att;Jchcd to thc po~ition of an atom in a list, as LISP attrlches to atoms that appear

as CAR of a list, ver~u~ tho~e appearing elsewhere in a list. In general, the user may not

even know whethcr a p(lrticular atom is at the hec1d of a list or not. Thus, when he writes

(INSERT expression AFTER FOO), he mCtlns after the atom FOO, whether or not it is CAR of a

list. By setting the variclble UPFINDFLG to NIL (Initially, and usually, set to T.) the user can

suppress the irnplicit UP thrlt follows scarches for atoms, and thus ac.hieve the desired effect.

With UPFINDFLG = NIl., nftcr F FOO, for example, the current expression will be the atom FOO.

In this case, the A, £3, and: operations will operate with respect to the atom FOO. If the user

intends the operation to refer to the list which FOa heads, he simply uses instead the pattern

(FDa --).

5.3.3	 EMBED-EXTRACT

EXTRACT is an editor command which replaces the current expression with one of its

5ubexpressions (from any depth). EMBED replaces the current expression with a new

expression which c.ontains it as a subexpression.

5.3.3.1	 (XTR. $) [EDIT-COMMAND]

Replaces the original current expression with the expression th~t is current after

performing (LCL. S). For example, if the current expression is (COND «NULL X) (PRINT Y»),

(XTR PRINT), or (XTR 2 2) will replace the COND by the PRINT. If the current expression

after (LCL . $) is a tail of a higher expression, its first element is used. For example, if the

current exprer.sion is (COND «NULL X) Y) (T Z», then (XTR Y) will replace the COND with Y. If

the extracted expre~.$ion is a list, then after XTR has finished, the current expression will be

that list. Thus, in the first example, the current expression after the XTR would be (PRINT V).

If the extracted expre~.5ion is not a list, the new current expression will be a tail whose first

element is that non-list. 'Thus, in th~ second example, the current expression after the XTR
.:

would be ... Y followed by whatever followed CONDo If the current expression initially is a

tail, extraction worr,s exactly the same as though the current expression were the first

element in that tail. Thus is the current expression is (XTR PRINT) will replace the COND by

the PRINT, leavine (PRINT Y) as the current expression.

127

5.3.3.2 (M8D x) (EDIT-COMMAND]

X is a list, :.ub~titut('~. (a la SUBST, i.e., a fresh copy is u~,cd (or ci.1ch 5ubstitution) the

current expre~,:"ion for <111 in~.t..:4n(cf. of the atom * in x, and replr1ces the current expression

with the re~ult of that ~.llb~titution. (MOD e 1 ... em): Equivalent to (MBD (e 1 ... em *». (MBD

.~): X atomic, ~Clrne as (MOD (x *». All three forms of MBD Icave the edit chain so that the

larger expression is the new current expre~.5ion. If the current expression initially is a tail,

embedding works cXCldly the SClme (lS though the current expression were the first element

in that tail.

Ex.u'1ple: If the current exprc!.sion is (PRINT V), (MBD {COND {(NULL X) *) ({NULL (CAR Y» *
(GO LP») would replace (PRINT Y) with (COND«NUlL X) (PRINT Y» «NULL (CAR Y» (PRINT Y)

(GO LP»).

5.3.3.3 (EXTRACT $1 FROM S2) [EDIT-COMMAND]

(81 is the segment between EXTRACT and FROM.) Performs (LC . S2) And then (XTR. Sl).

Current edit chain is not ch.mged, but UNFIND is set to the edit chain after the XTR was

performed. EXMmple: If the current expression is (PRINT (COND «NULL X) Y) (T Z»> then

followi"8 (EXTFV\CT Y FROM COND), the current expression will be (PRINT V). (EXTRACT 2 -1

FROM COND), (EXTRACT Y FROM 2), (EXTRACT 2 -1 FROM 2) will all produce the same result.

5.3.3.4	 (EMBED S IN . x) [EDIT-COMMAND]

(S is the segment between EMBED ;md IN.) Docs (lC . S) and then (MBD. x). Edit chain is

not changed, but UNFIND i~ set to the edit chain after the MBD was performed. Example:

'(EMBED PRINT IN SETQ X), (EMBED 3 2 IN RETURN), (EMBED COND 3 1 IN (OR * (NULL X»).

WITI1 c.an be llsed for IN, and SURROUND can be used for EMBED, e.g., (SURROUND NUMBERP

WITH (AND * (MINUSP X»).

5.3.4 MOVE-COPY

5.3.4.1 (MOVE $1 TO com. $2) [EDIT-COMMAND]

(Sl is the scgment between MOVE and TO.) Where COM is BEFORE, AFTER, or the name of a

list command, e.g., :, N, etc. rerforms(LC . S1), Obtains the current expression there (or its

first element, if it is a tail), let us c~1J this expr; MOVE then goes back to original edit chain,

performs (LC . 82), Pe(orms (com cxpr), then goes back to 81 and deletes expr. Edit chain is

not chanGed. UNFIND is r.ct to cdit chain after (com expr) was performed.

If	 S2 is NIL, or (HERE), the current pO$ition specifies where the op=:ration is to take place.

128

In this ca~e, UNFIND i~ '.. pt to where the expre~.r.ion that was moved was originally located,

i.e., 51. Finally, if S1 i!. NIL, the MOVE cornme:tnd e:tllow5 the u~·er to ~pccify ~ome place the

current expre~.5ion i~. to hE' Il10vcd to. In thi!> (C1~.e, the edit chain is changed, and is the chain

where the current expr('r,r.ion WCl5 movod to; UNFIND is 501 to where it was.

For cxample, if thc current exprc~,5ion is (A 8 0 C), (MOVE 2 TO AFTER 4) will make the

new current expression be (A C D (3). Note that 4 was executed as of the original edit chain,

and that the sccond clcmant had not yet been removed.

#1
(PROG (1) (EOLOC (CDOR C» (RETUR:\ (CAR L»)
,(MOVE J TO : CAR)
(PROG (L) (RETURN (EDLOe (eDDR C»»
IP
• •• (SEI.ECTQ OBJPR 4 &) (RETUR~ &) l.P2 (CONO 4 & »

I (MOVE 2 TO N 1)

(SELECTQ OfiJPR &&&) LP2 (CO:\O &&»

,p

(OR CEQ X LASTA IL) (r-;or &) (A:\U & & &»

, (MOVE 4 TO AFTER (BELO',' COXO»

(OR (EQ X LASTA IL) O,Or,»

'\ P
••• (& 4> (AND & & &) (T & &»
#P
(TENEX)
, (!w10VE F APPLY TO N HERE)A

(TENEX (APPLY &&»
IP
(SELECTQ ORJPR (&) (PROGN & &)J
(MOVE TO BEFORE LOOP)
••• (SElECTQ OBJPR , &> LOOP (RPLACA DFPRP &> (RPLACD DFPRP &»

5.3.4.2 (MV com. S) [EDIT-COMMAND]

is the same a~ (MOVE HERE TO com. S)

5.3.4.3 (COpy S1 TO com. $2) [EDIT-COMMAND]

is like MOVE except that the ~ource exprC5sion is not dt'leted.

For related informi\tion ~C'c SLiBST.

5.3.4.4 (CP com. S) [EDIT-COMMAND]

is like MV except that the 50urce expression is not deleted.

5.3.5 MOVE-PARENS

Commands That ·'Move Parenthesc5'· The commands presented in this section permit

modification of the list ~lructure il5elf, as oPPo5ed to modifying components thereof. Their

129

effect Ci1n be described i1S in~.ertiI13 or removing a ~.inGle left or ric;ht pc1renthesis, or pair of

left and right parc"thcse~. Of course, there will always be the $ame number of left

parenthc~c~ C\!:) right p(1rcnthc':",c~. in ,my li!:.f ~frucfurc, ~.ince the parentheses are just a

not ;:\tional Guide to the f.trueture provided by pr~INT. Thus, no command can insert or remove

j41"t one parcnthcr,is, but this is !,lIgr.e~.tivc of whrlt actually happens. In all six commands, n

and marc ur.cd to specify an clement of a list, usually of the current expression. In practice,

nand mare lI!".ually p05itivc or negative integers with the obvious interpretation. However,

all six command~, u~e the generalized NTH command to find their elemcnt(s), so that nth

element means the first element of the fail found by performing (NTH n). In other words, if

the current expre ~sion is (LIST (CAR X) (SETQ Y (CONS W Z»), then (81 2 CONS), (81 X -1), and

(BI X Z) all specify thc exact same operation. All six commands generate an error if the

element is not found, Le., the NTH fails. All are undoable.

5.3.5.1 (BI n m) [EDIT-COMMAND]

80th in. In~erls parentheses before Ihe nth element and after the mth element in the

current expre!.sion. Gen'?rates an error if the mth element is not contained in the nth tail, Le.,

the mth element must be "to the right" of the nth element. Example: If the current expression

is (A B (C 0 E) F G), then (81 2 4) will modify it to be (A (B (C 0 E) F) G). (81 n): Same as (BI

n n). Example: If the current expression is (A 8 (C D E) F G), then (81 -2) 'N.ill modify it to be

(A B (C 0 E) (F) G).

5.3.5.2 (80 n) [EDIT-COMMAND]

80th out. Removes both parentheses from the nth element. Generates an error if nth

element is not a list. Ex;tmple: If the current expression is (A 8 (C D E) F G), then (80 D) will

modify it to be (A BCD E F G).

5.3.5.3	 (lI n) [EDIT-COMMAND]

Left in. Inscrts a Icft prlrenthesis before the nth element (and a matching right parenthesis

at the end o.f the current expression), Le., equivalent to (Sl n -1).. Example: If the current

expression is (A 8 (C 0 E) F G), then (LI 2) will modify it to be (A (8 (C 0 E) F G».

5.3.5.4	 (lO n) [EDIT-COMMAND]

Left out. Removes a left parenthesis from the nth element. All elements following the nth

element are deleted. Generates an error if nth element is not a list. Example: If the current

expre~sion is (A 8 (C D E) F G), thcn (LO 3) will modify it to be (A BCD E).

130

5.3.5.5 (RI n m) [EDIT-COMMAND]

Right in. Inserts a rieht pMenl he~.i!; after the rnth clement of the nth clement. The rcst of

the ntl~ clement it; broucht up to the level of the current expression. Example: If the current

expression is (A (B C 0 E) F G), (HI 2 2) will modify it to be (A (8 C) D E F G). Another way of

thiny,ing about RI i~ to rCi1d it as "move the ri~~t parenthesis at the end of the nth element IN

to after the mth clement:'

5.3.5.6 (RO n) [EDIT-CO~wiMAND]

Ri8ht out. Removes the richt parenthesis from the nth element, moving it to· the end of the

current exprc!",r.ioI1. All clements following the nth element are moved inside of the nth

element. GCl"lcrt1tcs t111 error if nth element is not a list. Example: If the current expression is

(A 8 (C 0 E) F G), (RQ 3) will modify it to be (A B (C 0 E F G». Another way of thinking about

RO is to read it as "move the right parenthesis at the end of the nth element OUT to the end

of the current expres5ion."

5.3.6 (R x y) [EDIT -COMMAND]

Replaces all in!,trmces of x by y in the current expression, e.g., (R CAADR CADAR).

Generates an error if there is not at least One instance.

R operates by performing a DSU8ST. The current expression is the third argument to

DSUBST, Le., the expression being substituted into, and y is the first argument to DSUBST, Le.,

the expression b~in& substituted. R computes the second argument to DSUBST, the

expression to be substituted for, by performing (F x T). The second argument is then the

current cxpressio'1 at that point, or if that curr.ent expression is a list and x is atomic, then

the first element of that current expression. Thus x can be the S-expression (or atom) to be

substituted for, or can be a pattern which specifies that S-expression (or atom). For

example, if the current expression is (LIST FUNNYATOMI FUNNYATOM2 (CAR FUNNYATOMl»,

then (R FUNIfi) FUNNYA10M3) will substitute FUNNYATOM3 for FUNNYATOMl throughout the

current e}(pre~sion. Note that FUNNYATOM2, even though it would have matched with the

pattern FUNI@, is NOT replaced. Similarly, if (LIST{CAR X) (CAR Y» is the first expression

matched by (LIST --), then (R (LIST --) (LIST (CAR Y) (CAR Z») is equivalent to (R (LIST

(CARX) (CARY» {LIST (CAR Y) (CAR Z»), Le., both will replace all instances of (LIST (CAR X)

(CAR Y» by (LIST (CAR Y) (CAR Z». Note that other forms beginning with LIST will not be ~

replac.ed, even though they would hAve matched with (LIST --). To change all expressions of

the form (LIST --) to (LIST (CAR Y) (CAR Z}), the uscr should perform (LP (REPLACE (LIST --)

WITH (LIST (CAR Y) (CAR]. UNFIND is 5et to the edit chain following the find command so that

, 131

\ will m3ke the current cxpre~r he the place ""here the first substitution occurred... f"11

5.3.7 (SW n m) (EDIT-COMMAND]

Switchc~ the nth and rnth clements of the current .expression. For example, if the current

exprc5sion is (LIST (CONS (CAR X) (CAR Y» (CONS (CDR Y»), (SW, 2 3) will modify it to be

(LIST (CONS (CDR X) (CDR V»~ (CONS (CAR X) (CAR Y»). The relative order of nand m is not

important, ie, (SW 3 2) and (SW 2 3) are equivalent. SW uses the generalized NTH command

to find the nth and mth element~, a la the 81-80 commands. Thus in the previous example,

(SW CAR CDR) would produce the same result.

5.3.8	 TO-THRU

TO and THRU EXTRACT, EMBED, DELETE, REPLACE, and MOVE can be made to operate on

sever al conti~uOllC; elements, Le., a segment of a list, by using the TO or THRU command in

their respective location specifications. THRU and TO are not very useful commands by

themselves, and are not intended to be u~ed "solo", but in conjunction with EXTRACT," EMBED,

DELETE, REPLACE, and MOVE. After THRU and TO have operated, they set an internal editor

flag informing the above commands that the element they are operating on is actually a

segment, and that the extra pair of parentheses should be' removed when the operation is

complete. TO and THRU can also be used directly with XTR (which takes a location

specification), as in (XTR (2 THRU 4» (from the current expression).

5.3.8.1 TO

($1 TO $2) [EDI T-cmt\1ANDl

Same as THRU except last element not included.

($1 TO)

Same as (81 THRU -1)

5.3.8.2 THRU

($1 THRU $2) [1iDJT-CO~AND]

Does a (LC . SO, Followed by an UP, and then a (81 1 82), thereby grouping the segment"
"',

into a single element, and finally docs a 1, making the final current expression be that

element. For ex arftplc, if the current expression is (A {8 (C D) (E) (F G 1-1) 1) J K), following (C

THRU G), the current expression will be «e D) (E) (F G H}). If both SI and S2 are numbers,

and 82 is greater than SI, then S2 counts from the beginning of the current expression, the

same as S1. In other words, if the current expression is (A 8 C 0 E F G), (3 THRU 4) means (C

132

THRU D), not (C THRU F). In this case, the corresponding 81 command is (Bl 1 82-81 +1).

(S 1 THRll)

~Clme a~ (51 THRU -1)

#P
(PROG NIL (SETQ A &) (RPLACA & &) (PRINT &) (RP1ACO ~ &»
,. (MOVE (3 nlRU ..) TO REFORIi S) P
(PROG NIL (PRINT &) (SF-TQ A &) (RP1ACA ~ &) (RP1ACO & &»

Note that when ~pecifin8 S2 in the MOVE, 5 was used instead of 6. This is because the S2

is located aftcr Sl is. Thc THRU location groups items together and thus changes the numeric

location of the following items.

IP
(PROG NIL (PRINl &) (PRINt &) (SETQ INO &) (SETQ VAL &) (PRINT &»
#(MOVE (S THRU 7) TO BHFORE 3)
(PROG NIL (SETQ INO" (SETQ VAL 4) (PRINT &) (PRINl &) (PRINt 4»
#(DELETE (SETQ THRU PRIll)
= PRINT
(PROG NIL (PRIN1 4) (PRINt &»
IP
• •• LP (SELECTQ & & &) (SETQ Y &) OUT (SETQ FLG &) (RETURN Y»
#(MOVE (1 TO oun TO N IlERE)
••• OUT (SETQ Fl.G &) (RETURN Y) lP (SELECTQ & 4 &) (SErQ Y &»

5.4 EDIT-UNDO

Each command that causes structure modification automatically adds an entry to the front

of UNDOLST containing the information required to restore all pointers that were changed by

the command. The UNDO commi'nd undoes the last, Le., most recent such command. Whenever

the user continues an editing 5ession as {1escribed under SAVE, the undo information of the

previow:; 5cssion{s) is protected by inserting a special blip, called ah undo-block on the front

of UNDOLST. This undo-block will terminate the operation of a !UNDO, thereby confining its

effect to the current 5e5sion, and will similarly prevent an UNDO command from operating on

commands executed in the previous session. Thus,if the user enters the editor continuing a

session, and immediately executes an UNDO or !UNDO, UNDO and !UNDO will type BLOCKED,

instead of NOTHING SAVED. Similarly, if the user executes several commands and then

undoes them all, either via 5everal UNDO commands or a !UNDO command, another UNDO or

!UNDO will also tYre BLOCKED.

:
5.4.1 UNDO [EDIT-COMMAND]

Each c.ommand that c.auses structure modification automatically adds an entry to the front

of UNDOLST containin8 the information required to restore all pointers that were changed by

the command. The UNDO command undoes the last, i.e., most recent, structure modification

command that has not yet been undone, and prints the name of that command, e.g., MBD

133

UNDONE. (Since UNDO ;md !UNDO causes ~truetLJrc modification, they also add an entry to

UNDOLST. However, UNDO and !UNDO entries are skipped by UNDO, e.g., if the user performs

an INSERT, .md then JI1 M8D, the fir!.t UNDO will undo the MUD, tind the second will undo the

INSERT. However, the ll~·cr (;'In itl!.O ~,recify prC'ck.ely which command he wants undone. In
this case, he can undO an UNDO (oI11mClnd, C'.~., by typing UNDO UNDO, or undo a command

ot her t han that most reccntly pcrformed.) The edit chain is then exactly what it was before

the ·undonc· cOrM'1and had been performed. If there are no commands to undo, UNDO types

NOTHING SAVED.

5.4.2 !UNDO [EDIT-COMMAND]

Undoes all modifications performed during this editing session, Le., this call to the editor. As

eac.h command is undone, its name is printed a la UNDO. If there is nothing to be undone,

!UNDO prints NOTHING SAVED.

5.4.3 UNDOLST [VALUE]

Each editor command that causes structure modification automatically adds an entry to the

front of UNDOLST cont aining the information required to restore all pointers that were

changed by the command.

5.4.4 UNBLqCK [EDIT-COMMAND]

Removes an undo-block. If executed at a non-blocked state, i.e., if' UNDO or !UNDO could

operate, types NOT BLOCKED.

5.4.5 TEST [EDIT-COMMAND]

Adds an undo-block at the front of UNDOLST. Note that TEST together with !UNDO provide

a 'tent ative' mode for editing, Le., the user can perform a number of changes, and then undo

all of them with a single !UNDO command.

5.4.6 11 [EDIT-COMMAND]

Prints the entries on UNDOLST. The entries are listed in the reverse order of their

execution, i.e., the most recent entry first. For example:

IP
(CONS (T 4) (, &»
(1 COND) (S~' 2 J) P
(COND (& &) (T &»

SW (1 --) '"

134

5.5 EDIT-EVAL

5.5.1	 E [EDIT -CO..,u.AAr Hi]

Only when typed in, {i.e., (INSERT 0 BEFORE E) will treat E as a pattern) causes the editor

to c.all the LISP interpreter giving it the next input as argument. For example,

IE (LENGTH (CAR L))

will print the length of the current expression (recall that L is the edit-chain and its CAR is

the current cxprc5$io,,).

(E x) Evaluates X, i.e., performs (EVAL x), and prints the result on the teletype. (E x T)

Same as(E x) but docs not print.. The (E x) and (E x T) commands are mainly intended for use

by MACROS and 5ubrout ine cails to the editor; the user would probably type in a form for

evaluation using the more convenient format of the (atomic) E command.

5.5.2	 (I c xl ... xn) [EDIT-COMt.AAND]

Same a5 (c y 1 ... yn) where yi=(EVAL xi). Example: (J 3 (CDR FOO» will replace the 3rd

element of the current expression with the CDR of the value of FOO. (The I command sets an

internal flag to indicate to H'!e structure modification commands not to copy expression(s)

when inserting, replacing, or att~ching.) (I N FOO (C.AR FIE» will attach the value of FDa and

CAR' of the value of FIE to the end of the current expression. (I F= FOO T) will search for an

expression EQ to the v~ILJe of FOO. If c is not an atom, it is evaluated as well. Example: (I

(COND «NULL FLG) (QUOTE -I)} (T 1» FOO), if FLG is NIL, inserts the value of FQO before the

first element of the current expression, otherwise replaces the first element by the value of

FOC.

5.5.3	 (au comI com2 ... comn) [FSUBR]

is an FSU8R (not a command). Its value is what the current expression would be after

executing the edit command::; comi ... comn starting from the present edit chain. Generates an

error if any of comi thru comn cause errors. The current edit chain is never changed. (Recall

that A,8,:,INSERT, REPLACE, and CHANGE make special checks for Uti forms in the expressions

used for inserting or replacing, and use a copy of uu form instead. Thus, (iNSERT (## 3 '2)

!

AFTER 1) is equivalent to (I INSERT (COpy (~u* 3 2 »(QUOTE AFTER) 1).) Example: (l R (QUOTE

X) (## (CONS ..Z») replaces all X~s in the current expression by the first CONS containing a Z.

135

5.5.4 (COMS xl ... xn) [EDIT-COMMAND)

Each xi is eV81uated and it!; value executpd a~ a command. The I command is not very

convenient (or computing em entire edit command for execution, since it computes the

con"'lm;md name and its ar(;umcnts separately. 1\1':,0, the I command cannot be used to compute

an atomic command. The COMS and COMSQ commands prov.ide more general ways of

compul inB commilnd5. For CXC1lftplc, (COMS (COND (X (LIST 1 X»» will replace the first

element of the current expression with the value of X if non-NIL, otherwise do nothing. (NIL

as a command is a NO?.)

For related information see EDITL.

5.5.5 (COMSQ corn 1 ... comn) [EDIT-COMMAND]

Executes com! ... comn. COMSQ is mainly useful in conjunction with the COMS command.

For exampre, suppose the user wishes to compute an entire list of, commands for evaluation,

as opposed to computing e~ch command one at a time as does the CaMS command. He would

then write (COMS (CONS (QUOTE COMSQ) x» where x computed the fist of commands, e.g.,

(COMS (CONS (QUOTE COMSQ) (GET FDa (QUOTE COMMANDS»».

5.6 EDIT-TEST

5.6.1	 (IF x) [EDIT-COMMAND]

Generates an error unless the value ot(EVAL x) is non-NIL, Le., if (EVAL x) causes an error

or (EVAL x)=NIL, IF will cause an error. (IF x coO's! coms2) If (EVAL x) is non-NIL, execute

coms!; if (EVAL x) caU5C5 an error or is equal to NIL, execute coms2. (IF x comst) If (EVAL x)

is non-NIL, execute com~.l; ot herwk.e generate an error. For some editor commands, the

occurrence of an error h(\s a well defined meaning, i.e., they use errors to branch on as COND

uses NIL and non-NIL. For example, an error condition in a location specification may simply

mean "not this one, try the next." Thus the location specification

Cit PLUS (E (OR CNUMBERP U' 3» (ERR Nt L» T»

specifies the first *PLUS whose second argument is a number. The IF command, by equating

NIL to error, provides A more natural way o(accomplishing the same result. Thus, an

equivalent location specification is (*PLUS {IF (NUMBER? (## 3»». For example, the command

(IF (NULL A) NIL (P» will print the current expression provided A=NIL.

136

5.6.2 (LP. com!» [EDIT-CO~AMANDJ

Repcatcdly executes corns, a li~,t of con",rnands, until an error occurs. For example, (LP F

PRINT (N T» will c,ttach a T at the end of every PRINT cxpre5~ion. {LP F PRINT OF (n# 3) NIL

«N T»» will attach a T at the end of each print expression which does not already have a

second argument. (i.e. The form (1tU 3) will calJ~.e an error if the edit command 3 causes an

error, thereby selcctin~ ({N T» as the list of commands to be executed. The IF could also be

written as (IF (CDDR (~tt» NIL «N T»)).) When an error occurs, LP prints n OCCURRENCES,

where n is the number of times COMS was successfully executed. The edit chain is left as of

the last complete succc~sful execution of COMS: In order to prevent non-terminating loops,

both LP and LPQ terminate when the number of iterations reaches MAXLOOP, initially set to

30.

5.6.3 (LPQ. Coms) (EDIT-COMMAND]

Same as LP but docs not print n OCCURRENCES.

5.6.4	 (ORR comsl ... Comsn) [EDIT-COMMAND]

ORR beeins by executing corns 1, a list of commands. If no error occurs, ORR is finished.

Otherwise, ORR rC5torc5 the edit chain to its original value, and continues by executing

com52, etc. If nonc of the command lists execute without errors, Le., the ORR "drops off the

end", ORR gencrates an error. Otherwise, the edit chain is left as of the completion of the.

first command Ih;t which executes without error. '(NIL as a command list is perfectly legal, and

will always execute sllccessfully. Thus, making the last ·argument· to ORR be NIL will insure

that the ORR never call~,es an error. Any other atom is treated as (atom), Le., the example

given below could be written as

(ORR NX !NX NIL).)

For example, (ORR (NX) (!NX) NIL) will perform a NX, if possible, otherwise a INX, if possible,

otherwi5e do nothing. Similarly, DELETE could be written as (ORR (UP (1» (BK UP (2» (UP (:

NIL»).

5.6.5 MAXLOOP (VALUE]

i5 the maximum number of iterations for an editor LP or LPQ command.

5.7 EDIT-MACROS

137

Ma"y of the rnore :.ophi$ticatcd branching comrrlands in the editor, such as ORR, IF, etc., are

most often u!:.cd in conjunction with edit m(lcro~. The macro feature permits the user to define

new command,; and thereby cxp,lI,d the editor's repertoire. (However, built in commands

always take precedenc e over macros, Le., the editor's repertoire can be expanded, but not

modified.) Macro5 Clrc defined by using the M command.

5.7.1 (M e . com~) (EDIT..COMMAND]

For c an t'tom, M defines c as an atomic command. (If a macro is redefined, its new

definition replaces its old.) Executing c is then the same as executing the list of commands

COMS. Macros can ah:,o define list commands, i.e., commands that take arguments. (M (c)

(arg[1] ... arg[nJ) . (om~) C an alom. M defines c as a list command. Executing (c e 1 ..• en) is

then performed by substituting e1 for arg[l), .•. en for arg[n] throughout COMS, and then

executing COMS. A list command can be defined via a macro SO as to take a fixed or

indefinite number of "arguments". The form Biven above specified a macro with a fixed number

of arguments, a~ indicated by its areument list. If the 'argument list' is atomic, the command

takes an indefinite number of arguments. (M (c) args . corns) C, args both atoms, defines c as

a list corr"lmand. Exec.uting (c e 1 ... en) is performed by substituting (el ... en), i.e., CDR of the

command, for args throughout coms, and then executing coms.

For example, (M BP BK UP P) will define BP as an atomic command which. does three things,

a SK, an UP, and a P. Note that macros can use commands defined by macros as welt as' built

in commands in their dc~initions. For example, suppose Z is defined by (M Z -1 (IF (NULL

(*Ut» NIL (P»), i.e. Z docs a -1, and the~ if the current expression is not NIL, a P. Now we can

define ZZ by (M ZZ -1 Z), and ZZZ by (M ZZZ -1 -1 Z) or (M ZZZ -1 ZZ). We could define a

more general BP by (M <BP) (N) <SK N) UP P). Thus, (BP 3) would perform (BK 3), followed by

an UP, followed by a P. The command SECOND can be defined as a macro by

eM (2ND) X (ORR «LC. X) (LC. X»)).

Note that for all editor commands, 'built in' c.ommands as well as commands defined by

macros, atomic definitions and list definitions are completely independent. In other words, the

existence of an atomic. definition for c in no way affects the treatment of c when it appears

as CAR of a list c.ommand, and the existence of a list definition for c in no way affects the

treatment of c when it appears as an alom. in particular, c can be used as the name of either

an atomic command, or a list r.ommand, or both. In the latter case, two entirely different

definitions can be used. Note 1'150 that once c is defined as an atomic command via a macro

definition, it will not be searched for when used in a location specification, unless c is

preceded by an F. Thus (INSERT -- BEFORE BP) would not search for BP, but instead perform

a SK, an UP, and a P, and then do the insertion. The corresponding also holds true for list

l38

con"lrnand$.

5.7.2 (8IND. coms) (EDIT-COMMAND)

BIND is an edit c.ommrtnd whic.h is useful mainly in macros. It binds three dummy variables- .
u 1, u2, «3, (initialized to NIL), rtnd then executes the edit commands COMS. Note that these

bindins!; are only in effect while the commands arc being executed, and that BIND can be

used recursively; it will rebind u 1, tt2, and u3 celch time it is invoked. (BIND is implemented

by (PROG (u 1 u2 u3) (EDITCOMS (CDR COM») where COM corresponds to the BIND command.

and EDITCOMS is an internal editor function which executes a list of commands.)

SW could be defined as

eM (S"') CN M) (NTH N) (S FOQ 1) MARK 0 (NTH M) (S FIE 1) (I
1 FOO) _ (I 1 PIE»

{A more elegant definition would be

eM (5\rJ) (N M) (NTH N) MARK 0 UIiTH M) (5 FIE 1) (I 1 (II _ 1» _ (I 1 FtE»

but this would !itill usc one free variable.) Since SW !.cts FOO and FIE, using SW may have

undesirable side effects, especially when the editor was called from deep in a computation.

Thus we must always be careful to make up unique names for dummy variables used in edit

macros, which' is bothen'>ome. Furthermore, it would be impossible to define a command that

called itself recursively while settin8 free variables. The BIND command solves both problems.

Thus we could now write SW safely as

eM (SW) (N M) (BIND (NTH N) (S #1 1) MARK 0 (NTH M) (S #2 1)

(I 1 # 1) _ (I 1 ~t2»).

5.7.3 USERMACROS [VALUE]

This variable contains the u!,ers cditing macros. Thus if you want to save your macros

then you should $(we USERMACROS. You should probably also save EDITCOMSL.

5.7.4 EDITCQMSL [VALUE]

EDITCOMSL is the list of "list commands" recognized by the editor. (These are the ones of

the form (command arg 1 arg2 ...).) r

5.8 EDIT-MISe

139

5.8.1 OK (EDIT-COMMAND]

exits from the editor.

5.8.2 SAVE (EDIT-COMMAND]

Exits from the editor and saves the 'state of the edit' on the property list of the

function/variable being edited under the property EDIT-SAVE. If the editor is caUed again on

the same structure, the editing is effectively "continued," i.e., the edit ch'ain, mark list, value of

UNFIND and UNDOLST are restored.

,p
(NULL Xl
'1' CONO P
(COND (4 4) (T 4) l
'SAVE
FOO

* (ED [TF POOl

BDCT

,p
(COND (4 4) (T,,)
'\ p

(NULL X)

SAVE is necessary only if the user is editing many different expressions; an exit from the

editor via OK always saves the state of the edit of that call to the editor. (On the property

list of the atom EDIT, under the property name LASTVALUE. OK also remprops EDIT-SAVE

from the property list of the function/variable being edited.) Whenever the editor is entered,

it checks to see if it is editing the same expression as the last one edited. In this case, it

restores the mark list, the undolst. and sets UNFIND to be the edit chain as of the previous

exit from the editor. The user can always continue editin~, including undoing changes from a

previous editing session, if (1) No other e)Cpressions have been edited since that session;

(since saving takes plac(! at exit time, intervening calls that were exited via STOP will not

affect the editor's memory of this last session.) or (2) It was ended with a SAVE command.

5.8.3 NIL [EDIT-COMMAND]

Unless preceded by F or SF, is always a NOP.

5.8.4 TTY: [EDIT-COMMAND]

Calls the editor recursively. The user can then type in commands, and have them executed.

140

The TTY: comrnrtnd i5 (o,.,.,plcfcd when the user exits from the lower editor (with OK or

STOP). The TTY: comm,lnd i5 cxtrerncly urjcful. It cnJblcs the u!>cr to set up a complex

operation, and perform inter<letive attention-changing commands P<lrt way through it. For

example the comrn~nd (MOVE 3 TO AFTER COND 3 P TTY:) allows the user to interact, in

effect, within the MOVE command. Thus he can verify for him$elf that the correct location ha~~

been found, or corl'lplete the specification "by hand". In effect, TTY: Sc:lys "I'll tell you what

you should do when you get there."

The TTY: command operates by printing TTY: and then calling the editor. The initial edit

chain in the lower editor is the one that exi~,ted in the higher editor at the time the TTY:

command was entered. Until the user exits from the lower editor, any attention changing'

commands he executes only affect t he lower editor's edit chain. (Of course, if the user

performs any structure modification commands while under a TTY: command, these will modify

the structure in both editors, since it is the same structure.) When the TTY: command finishes,

the lower editor's edit chain becomes the edit chain of the higher editor.

5.8.5	 STOP [EDIT-COMMAND]

Exits from the editor with an error. Mainly for use in conjunction with TTY: commands that

the U5er wants to l'Ibort. Since all of the commands in the editor are ERRSET protected, the

user must exit from the editor via a command. STOP provides a way of distinguishing

between a successful and unsuccessful (from the user"sstandpoint) editing session. For

example, if the user is executing (MOVE 3 TO AFTER COND TTY:), and he exits from the lower

editor with an OK, the MOVE command will then complete its operation. If the user wants to

abort the MOVE command, he mllst make the TTY: command generate an error. He does this

by exiting from the lower editor with a STOP command. In this case, the higher editor's edit

chain will not be changed by the TTY: command.

5.8.6	 HELP [EDIT-COMMAND)

HELP is both an atomic and list -type edit command. Both forms call the help function. The

atomic form tar,cs the entire rCn1Clinder of the command line as the arguments to hel p, the list

form takes only the tail of it5 list. Thus to obtain help on DATE and move back one

s-expression wit h a single line of edit -commands, do: (help date) bk
I

5.8.7	 rL [EDIT-COMMAND]

TL calls (TOP-LEVEL). To return to the editor just use the RETURN top-level command.

141

5.8.8 REPACK [EDIT-COt.H.1AND)

Permits the ·cditing· of an atom or ~tring. For example:

_P

••• "THIS IS A LOGN STRING")

#REPACK

EDIT

liP

(/" T HIS I I S I A I LOG N 1ST R I N G I")

l' (s~r G N)

1#0)(
"THIS IS A LONG STRING"

REPACK operates by calling the editor recursively on UNPACK of the current expression, or if

it is a list, on UNPACK of its first clement. If the lower editor is exited successfully, i.e. via OK

as opposed to STOP, the list of atoms is made into a single atom or string, which replaces the

atom or string being ·repacked.' The new atom or string is always printed.

(REPACJ: $)

Does (LC . S) followed by REPACK, e.g. (REPACK THISIfi».

5.8.9 (MAKEFN form args n m) (EDIT-COtv1MAND]

May,es (CAR form) an EXPR with the nth through mth elements of the current expression

with each occur ance of an element of (CDR form) replaced by the corresponding element of

args. The nth through mth elements are replaced by form. For example:

,p

••• (SETQ A NIL) (SETQ B T) (CONS C 0))

II (MAKEFN (SETUP C D) (\,' Xl 1 J) P

~ •• (SETUP C D)

~B (GRINDEP SETUP)

(DEFPROP SETUP

(LAMBDA (\' X) (SErQ A NI L) (SETQ B T) (CONS W X»

EXPR)

/I

(MAKEFN form arBS n)'

Same as (MAKErN form args n n).

5.8.10 EDITDEFAULT

Whenever a comm;tnd is not rocognized, i.e•• is not 'built in' or defined as a macro, the

editor cal15 an internal function, EDITDEFAUlT to determine what action to take. If a location

spccificat ion i!; being executed, an internal flag informs EDITDEFAULT to treat the command as

though it had been preceded by an F. If the command is atomic and typed in directly, the

procedure followed is as given below. 1) If the command is one of the list commands, Le., a

142

member of EDITCOMSL, Clno there i~ additional input on the same teletype linc, treat the

entire line as a ':.inClc li~jt cornrni,nd. (Uses LINEREAD. Thus the line can be terminated by

carriaGe return, right p(lrenthc~.i!; or squ<lrc bracket, or a list.) Thus, the uscr may omit

parentheses for any li!.t command typed in at the top level (which is not also an atomic

command, e.g., NX, BK). If Ihe comm.md is 011 the li~t EDITCOMSL but no additional input is on

the teletype line, ;In error is (;cncratcd. 2) If the last charCletcr in the command is P, and the

first n-1 characters comprif.e the cor(lmand ---J -J UP, NX, BK, !NX, UNDO, or REDO, assume that

the user intended two commands. 3) Otherwise, generate an error.

5.8.1 1 (EDITCOM5 coms) rSUBR]

is	 an internal editor"function which executes a list of edit commands.

5.8.12 (EDITRACEFN com) [VALUE and EXPR]

Is available to help the uscr debug complex edit macros, or subroutine calls to the editor.

EDITRACEFN is to be defin<?d by the lJ~er. Whenever the value of EDITRACEFN is non-NIL, the

editor calls t he function EDITRACEFN before executing each command (at any level), giving it .

that command as its argument. EDITRACEFN is initially equal to NIL, and undefined.

For example, defining EDITRACEFN as

(LAMBDA (C) (PRINT C) (PRINT (CAR L))

will print each command and the corresponding current expression.

(LAMBDA (e) (BREAK 1 T T NI L NI L NI L»

will cause a break before exec.uting each command.

5.8.13	 (5 var . $) [EDIT-COMMAND]

Sets var (using SETQ) to Ihe current expression after performing (LC. S). Edit chain is not

changed. Thu5 (5 FOO) will set FDa to the current expression, (5 FOO -1 1) will set FDa to

the first element in the last element of the current expression.

5.9 EDIT-FNS

5.9.1 (EDITF x) [FSUBR]

FSUBR function for editing a function. (CAR x) is the name of the function, (CDR x) an

opt ional list of commands.

143

For the rc~.t of the di~,cu~,c:.ion, fn i~ (CAR x), Cind cams is (CDR x). If)(is NIL, fn is set to

the valuc of LASTWORD, cOIns i!i ~.et 10 NIL, and the value of lASTWORD is printed. The value

of EDITF i~ fn. (l) In the most common ca5e, fn is an non-compiled function, and EDITF

perform~ (EDITE (CI\OR (GETL fn (QUOTE (FEXPR EXPR MACRO»» cams fn) and sets

LASTWor~D to (n. If the editor detects that the function has been c.hanged by the edit, EDITF

moves the definition to the front of the property list, insuring that the interpreted definition

will be u5cd in preference to a compiled definition. (2) If fn is not an editable function. but

has a value, EDITF il!,~UmC5 the lI~er meant t~ call EDITV, prints =EDITV, calls EDITV and

returns. Othcrwi5c, EDITF gcncrates an fn NOT EDITABLE error.

5.9.2 (EDITE expr coms atm) [SUBR]

Edits an cxprC55ion.)15 vallie is the last element of (EDITL (LIST expr) coms atm NIL NIL).

Generates an error if cxpr i5 not a li5t.

5.9.3	 (EDITV oditvx) [FSU8R]

FSUBR function, ~imilC\r to EDITF, for editing values. (CAR editvx) specifies the value, (CDR

editvx) is an optional li~,t of c.ommand!i. If editvx is NIL, it is set to the value of (NCONS

LASTWORD) and t he value of LASTWORD is printed. If (CAR editvx) is a list, it is evaluated

and its value given to EOITE, e.g. (EDITV (CDR (ASSOC (QUOTE FOO) DICTIONARY»». In this

case, the value of EDITV is T. However. in most cases, (CAR editvx) is a variable, e.g. (EDITV

FOO); and EDITV calls EDITE on the value of the variable. If the value of (CAR editvx) is

atomic then EDITV prints a NOT EDITABLE error message. When (if) EDITE returns, EDITV

sets the variable to the value returned, and sets LASTWORD to the name of the variable. The

value of EDITV i~ the name of the vClriable whose value was edited.

5.9.4	 (EDITP x) [FSUBR]

Similar to EDITF for editing properly lists. like EDITF, LASTWQRD is used if x is NIL. EDITP

calls EDITE on the property li!;t of (CAR x). When (if) EDITE returns, EDITP RPlACD"s (CAR x)

with the value returned, and 5et~ lASTWORD to (CAR xi. The value of EDITP is the atom

whose property li5t was edited.

5.9.5	 (EDITL L com!; aim marklst mos~) [SUBR]

EDITl is the cditor.

Its first argument is the edit chain, and its value i5 an edit chain, namely the value of L at

144

the time EDIll is C'xited. (L is a ~·r(\cial varirtble, imd so can be cXilmincd or set by edit

cornmands. For cXClJnplc, ... i!; cquivillcnt to (E (SETQ L(LAST L) T).) Coms is an optional list of

commands. For interac.tive editinG, cOms i~ NIl.. In this Cil~e, EDITl types EDIT and then waits

for input fron) the teletype. (If mess i!> not r·JJL EDITl types it instead of EDIT. For example,

the TTY: cornrfland is e!';~entjillly (SETQ l (EDlll l NIL NIL NIL (QUOTE TTY:»).) Exit occurs only

via an OK, STOP, or SAVE command. If COm~ is NOT NIL, no 'mes~age is typed, and each

member of coms i~. treated as a command and executed. If an error occurs in the execution of

one of the commands, no error mesr,ace is printed, the rest of the commc:lnds are ignored,

and EDITl exits with c:lrl error, i.e., the effect is the ~ame as thou8h a STOP command had

been executed. If c:lll c.ommands execute successfully, EDITl returns the current value of L.

Marklst is the list of mark!>. On cellls from EDITF, Aim is the name of the function being

edited; on call!> from EDITV, the name of the variable, and calls from EDITP, the atom of which

some property of its prcperty list is being edited. The property list of atm is used by the

SAVE command fo:" saving the ~,t ate of the edit. Thus SAVE will not save anything if atm=NIL

i.e., when editing arbitrary e)(pre~sions via EDITE or EDITl directly.

5.9.6	 (EDITFNS x) [FSUBR]

FSUBR fundion, used to perform the !>ame editing operations on !>everal functions. (CAR x)

is evaluated to obtain a list of functions. (CDR x) is a list of edit commands. EDITFNS maps

down the 1i5t of flJnetions, prints the name of each function, and calls the editor (via EDITF)

on that f unet ion.

For example, (EDITFNS FOQFNS (R FIE FUM» will change every FIE to FUM in each of the

functions on FOOFNS.

The call to the editor i~ ERRSET protected, 50 that jf the editing of one function causes an

error, EDITFNS will proceed to the next function. Thus in the above example, if one of the

functions did not cont ain a FIE, the R command would cause an error, but editing would

continue with the next fundion. The value of EDITFNS is NIL.

5.9.7	 (EDIT4E pat y) [5UBR]

Is the pattern m~tch routine. Its value is T if pat matches y. See EDIT-MATCH For definition
:of	 "match".

Note: before pach serlrc.h operation in the editor begins, the entire pattern is scanned for

atoms or string!> that end in at-signs. These are replaced by patterns of the form (CONS

(QUOTE /rro) (EXPlODEC ;'Itom». Thu!:i from the standpoint of EDIT 4E, pattern type 5, atoms or

strings endin8 in at-siB"!>, is rcally ''If car[pat] is the atom fn) (at-sign), PAT will match with

145

any literi'll atom or ~.. trinG who~c inifirll c.hMCletcr codes (up to the (1i) are the same as those in

cdr [pat J."

If the u~,er wir.,hes to c.all EDITI1E directly, he mll~t therefore c.onvert any patterns which

contain atoms or ~,tring$ ending in at-sj~ns to the form req~nized by EDIT4E. This can be

.• done via the function EDITFPAT.

5.9.8 (EDITFPAT pat n~) [SUBR]

Makes a copy of pat with all patterns of type 5 (see EDIT-MATCH) converted to the form

expected by EDITilE. Fig ~;hould be pas!.ed as NIL (flg:T is for intcrnal use by the editor).

5.9.9	 (EDITFINDP x pat flg) [SUBR]

Allows a progrnm to lJ5e the edit find command as a pure predicate from outside the editor.

X is an exprcs!:;ion, pat a pattern. The value of EDlTFINDP is T if the command F pat would

Sllcceed, NIL othcrwic:>c. EDiTFINDP c.alls EDITfPAT to convert pat to the form expected by

EDIT4E, unless f1e:::T. ThllS, if the program is applying EDITFINDP to several different

cxprct.sions u~.inB the !.ilIHC pattern, it will be more efficient to call EDITFPAT once, and then

call EDITFINDP with the converted pattern and flg=T.

146

6. SYSTEM-STUFF

SYSTEM-STUFF includes technical details, special hacks, and other things the typical user

will have nO u~c for or n1ily not under!itill1cl without prior arcane or non-LISP knowledge.

6.1 SYMBOL-TABLE

A laq~e number of $ymbol~ d0.fined in the MACRO-IO source for the basic LISP system are

ret (lined on di5r, to be loaded into core by the loader interface (see LOAD). When loaded into

core, the symbol t<1blc ~crvcs thrce C1ecncics: DDT, the loader, and the LISP symbol-table

communication function5. DDT and the loader were dcsianed to use this type of symbol table.

They have not been modified at l-!IJ in this respect. DDT uses the table to communicate with

DDT users throuGh symbolic narncos rather than addresses. Many .REL files must refer 10 the

MACRO-IO symbols defined for LISP. These files cannot be properly loaded without the

symbol t able, which is the loader·s only way to load .REL files that refer to things not defined

within the file itself.

The USP symbol table communication functions allow the LISP user to define arbitrary

symbols for the loader to use. They al50 allow· him to reference symbols created by the

loader while loadin8 .REL files. They provide the only way for a LISP user to f!'ake use of

subroutines loaded by the loader.

6.1.1 <*GETSYM S) [SUBR]

*GETSYM searches the DDT symbol table for the symbol S and if found returns its value,

otherwi!.e it returns NIL.

6.1.2	 (GETSYM "P" ..s1" "52" ... "Snit) [FSUBR]

GETSYM r.earches the DDT symbol tClble for eClch of the symbols Si and places the value on

the property list of Si under property P. For example, (GETSYM SUBR DOT) causes DDT to be

defined as a SUBR located at th() value of the symbol DDT.

Note: In order to load the symbol table, either /S or /D must be typed to the loader.

Symbols which are declared INTERNAL are always in the symbol table without the /S or /0. In 1

the case of multiply defined symbols, Le., a symbol used in more than one RELOC program, a

symbol declared INTERNAL takes precedence, the last symbol otherwise.

For related information sec LOAD.

147

6.1.3	 <*PUTSYM S V) [SLJ8R]

*PUTSYM cntcr~ the 5yrnbol S into the DOT sy,nbol table with value V.

6.1.4 (PUTSYM "X I II "X2" ..."Xn") [FSUBR]
'p

PUTSYM is 1I5cd to place 5ymbol~ in the DOT symbol table. If Xi is an atom then the

symbof Xi i~ placed in the 5ymbol table with its value pointine to the atom Xi. If Xi is a list,

the symbol in (CAR Xi) is placed tn the !.ymbol table with its value (EVAL (CADR Xi». PUTSYM

is useful for malt,ing LISP atoms. functions. and variables available to RELOC programs.

Symbols must be defined with PUTSYM before the LOADER is used.

For related information see LOAD.

Extlmplcs: (PUTSYM DPORG (VnpORG (GET (QUOTE BPORG) (QUOTE VALUE}»)

defines the identifier OPORG and ·its value cell VBPORG. A RELOC program can reference

the value of BPORG by:

MOVE X, \'BPORG
(rUTSYM ()1APLST (QUOTE M;\Pl.ST»· (NUMBRP (QUOTE NID1BERP»)
(PurSYM (ME~Q (GET (QUOTE MH1Q) (QUOTE SUBR»»

A RELOC program would call these functions as follows:

CALL 2, MArl,ST

CALL 1,NU~BRP

PUSIIJ P,MEMQ OR CALL 2,MEMQ

6.1.5 (*RGETSYM X) [SUBR]_

gets fhe value of t he symbol X, adds on the relocation and returns the cell pointed to as

the value.

6.1.6 (RGET5YM PSI 52 ...) [FSUBR]

searches the ::.ymbol table for Si and places the relocated value on the property list of Si

wit h property P.

6.1.7	 (*RPUTSYM SYM VAL) [SUBR]

puts VAL - relocation in the symbol table under SYM.

6.1.8 (RPUTSYM Xl X2 ...) [FSUBR]

148

(~imililr to GE rSYM) IF Xi i~ an iltom the Xi is placed in the symbol table with Xi less the

rc loc at ion a~ it~ value. at herwir.e (EVAL (CADR Xi}) is placed in the symbol t able as the value

of (CAR Xi).

6.2 LOAD

THE LOADER

A modified ver~ion of the 5tandard rOP-6/10 MACRO-FAIL-FORTRAN loader is available for

use in LISP. One can call the loader into a LISP core image at any time by executing:

(l.OAD X) [SUBR]

When a t is typed, you are in the (LOAD X) loader, and the loader command strings are

expected. As 500n as an altmodc is typed, the loader fini5hcs and exits back to LISP. The

loader is placed in expanded core. If X = NIL then loaded programs are placed in expanded

core, othcfwi5c (if X non-NIL) they are placed in BINARY PROGRAM SPACE. The loader

removes itself and cOl1traets core when it is finished. In other explanations a "RELOC"

program will rcfer to any program which is suitable for loading with the loader. The output

of FORTRAN, MACRO or FAIL is a RELOC program. The loader is very primitive. For example,

it only understands UPPER CASE, and it doesn't understand C-MU PPNs.

Suppose you have copied CNTLSP.REL from A311 LI5P (the PTY controlled.

) (LOAD T)

*CNTLSP.REL/S (The S means include the symbol table)

LOADER 1 K CORE (or some such msg)
> (GETSYM SUBR PTYGO REPTY)

(tells you ~here the subrs are)
) (PTYGO)

The LISP loader interf ace appears to have the following problems:

>In case of insufficient binary program space, symbols are defined although the code is not

actually loaded.

>There is nO notification 215 to whether BPS was sufficient or not, so BPQRG must be
)checked before and after loading when using BPS.

>Allocating more core through LISP destroys the existing symbol table.

-CPOl 2/4/77

149

6.3 DDT

DDT i5 a DEC ~.upplicd debugging pac~\a&e. It may be used in LISP by:

(l.OAD) ;; or (LOAD T)

/D<esc) J, D mU5t be upper cLl:>e, <esc) 1~ the escape chllr.

(GETSYM SUBR DDT)

Then DOT wilt be dc(tncd a5 a SUBR that calls DDT. To return to LISP just type "POPJ

14,<esc>X".

6.4 STORAGE-ALLOCATION

lisp partition~ mcrnory into seven areas which can independently vary in size. These

areas and their U~C5 arc:

BINARY PROGRAM SPACEcnrSl ;;for compiled functions and arrays

FREE STORAGE ;;for LISP nodes (cons cells)

FULL ~ORO SPACE ;;lor print names and numbers

BIT TABLES ;;for the &nrhagc collector

REGULAR PUSII-rJOIt.'N].IST(RPDLl ;; for Ill1 function clllls and

;;non-5pcclnl variables in compiled functions

SPECI Al PUSIf-DO\l.'N J. (ST (SPDL) ; ; {or interpreted yar lab] es and

;;special variables

EXPANDED CORE ;;for I/O buffers, LOADER, and any loaded programs

6.4.1 BPS

Binary Program Space BPS is used for compiled code and arrays. Note: re-declaring arrays

does not reclaim the old BPS. BPS is not garbaue cOllected. Also the garbage collector does

not collod structures pointed to by pointers in BPS (other than arrays of lists).

6.4.1.1 8PEND [VALUE]

BPEND contain~ the addre5s of tho end of Binary Program Space.

6.4.1.2 BPORG [VALUE]

BPORG contains the adress of the beginning of unused Binary Program Space.

6.4.2 FREE-STG

Free Storage is the area of memory in which cons-cells (the result of doing a CONS) are

stored. Each cons-cell c~ntain5 two pointers corresponding to the CAR and COR. The cells

that are known not to be used (pointed to by anything the uscr can name) are stored as a list

called the FREE-LIST. The CONS function takes the first cell off of the free-list, fills it with

the required pointers and returns it a5 the value of the CONS. When the free-list runs out,

150

the Barbagt? collee tor is run to add to it any cells that are no lonacr reachable.

The free li~.t if. ~.tored in rc[;i~.tcr 13 (15 octal). Thus one can get the length of the free

list by (Ieneth (nurnval 13».

6.4.3	 FULL-WORD-SPACE

Full word space is the area of memory used for the storage of character strings and

numbers (exccpt for INUMS). It is w~ed and recreated (by the gClrbage collector) in the same

way as free stor<lGe (~ec FREE-STG). The list of full words is kept in register 14 (16 octal).

6.4.4	 RPDL

The Regular PushDown List is a ~.tClck that lisp uses for saving temporary values. It is also

used in the garbaGe collector. The stack is implemented by PDP10 stack instructions. The

stack pointer is hept in reGister 11 03 octal). The right half contains the pointer to the top

of the stack and the left half contains minus the number of words still available.

6.4.5	 GARBAGE-COLLECTION

The garbage collector analyzes the state of list structures pointed to by the OBLIST, the

REG. POL, the SPCC. POL, list arrays, and a few other special cells. By recursively marking all

words on free and full word spaces which are pointed to in this manner, it is possible to

determine which word5 are not pointed to and are therefore garbage. Such words are

collected together on their respective free storage lists.

6.4.5.1	 (GC) [SUBR]

GC causes a garba~e collection to occur and returns NIL. Normally, a garbage collection

occurs only when either free or full word space has been exhausted. It is possible to

determine the length of the free storaee list by:

(LE~GTH (NUMVAL 13) • length of free storage list

this feature ,nay di5appear or reClppear often in the near future The system requested

gar bagc collcction~ (Cl5 well as U5er cails on GC) will be affected if the user redefines Ge.
Thus you can caU5e your own program to be called after each garbage collection by)

redefining GC to first tall the system supplied GC and then your own program.

6.4.5.2 (GCGAG X) [SUOR]

flag ., T initially. GCGAG sets a special flag in the interpreter to the value of X.' and

151

ret urn~ t he previous ~ct tine of the fla8. When any garbage collection occurs, if the flag .ne.

NIL, ther, the following it. printed:

p.ither FRIm STORAGE EXHAUSTED

or FULl. "'ORO SPACE EXIIAUSTED

or . nothing

folloed by J FREE STORAGE, Y FULL .'ORDS Al'A I LABLE

where x and y arc numbers.

6.4.5.3 (GCGOT) [SUBR]

returns a dotted pair, the CAR of which is the number of free words and the CDR of which

is the number of full words made available by the last garbage collection.

6.4.5.4 FREE

*:f:****WARNING:u~'***: The following two functions can catastrophically' destroy the

garbaBe collector by creating a circle in the free list if they are used to return to the free

list any words which cue ~till in u~,e. Do not U5.e these functions unless you are certain what

you are doing. (They arc only u~cful in rare cases where a small amount of working storage

is needed by a routine which is called quite often.)

(FRF.B X) [SUAR]

. FREE returns the word X to the free storage list and returns NIL.

(FREELI ST X) [SUBR]

FREELlST return~ all of the words on the top level of the list X to the free storage list and

returns NIL. FREELIST terminate!> on a NULL check.

6.4.5.5 (GCMIN nl n2) [SU~R]

where n1 and n2 ilre numbers resets the lower bounds for storage to be reclaimed by the

garbage collector for free and full-word !ipace re$peetivcly, and returns (as a dotted pair)

the old values. If a garbage collection fails to find the minimum space then garbage-collection

messages are turned on.

6.4.6 (REALLOC fws bps rpdl spdl fs) [SUBR]

REALlOC"s arguments specify inc.rements (in words) to be added to each of the five major

allocation area~: fullword space, binary program space, the regular pushdown list, the special

pushdown list, arId free storage (i.e., list space). After expanding core as necessary and

reallocating storCl~e, REALLOC returns control directly to the top level of LISP. As with CORE

there is no way to save the state of the computation through a reallocation of space

l

152

6.4.7 (EXPFWS n) [SUfJR]

is the ~r1me a~ (REALLOC n 0 0 0 0)

6.4.8 (EXPBPS n) [SUBR]

is the ~ame i!!) (REALLOC 0 n 0 0 0)

6.4.9 (EXPFS n) [SUBR]

is the 5ame as (REALLOC 0 0 0 0 n)

6.4.10 (EXPRPDL n) [5UBR]

is the same as (REALLOC 0 0 n 0 0)

6.4.1 1 (EXPSPDL n) [SUI3R]

is the same a~. (REALLOC 0 0 0 n 0)

6.4.12 (CORE N) [SUBR]

Note - The CORE function is still reasonable for finding out how much core you are using,

but the alloc.ation fundior. is better handled ~y the REALLOC function and· ib relatives.

If N is in the range [current size of low se&mcnt in words, 192K), GORE expands the low

segment to that size and goes into the initialization procedure which will ask the user how he

wants any newly available core allocated. If N is the current size of the low segment, the

initialization procedure may still ask the user ~ow he wants additional core allocated even

though no additional core was obtained from the operating system. In this case, it is

allocating space from what was expanded core, probably formerly used for I/O buffers for

files now closed. (To allocate whatever space is available, evaluate (CORE (CORE NIL».) When

the initialization procedure is invoked, control is returned to the LISP top level. There is at

present no way of allocating additional space and continuing where you left off. CORE closes

all I/O channels when new core is allocated. If N is not numeric, or is not in the range
)indicated above, CORE returns the c.urrent size of the low segment.

The allocat ion procedure begins when LISP types "ALLOC?". You then type either Y or N

(not followed by a carriage return). If you type Y then LISP will ask how many additional

machine words should be allocated to each area by typing things like:

153

FULL ,,'ORDS=

There are three rc~pon~c~ to c('tch of thc~e questions: 1) A space will cause the default

valuc to be uscd. 2) An ~:OCTAL* number ended by a space cau~es the number to be used.

3) A carriage-return will cau~,c the default value to be u5ed for this and all following

question!i (which will not be a5hed). Note: if you use the reallocation procedure after having

expanded core for any purpose, it will rCClllocate this additional core for its own purposes,

thus destroyine the c.ontents of expanded core.

For related information see EXCISE.

6.5 COMPILED-CODE

To use the USP cor(lpiler type "R LISpeQ" to the monitor. In much the same way as you

might normally type "(DSKIN file 1 fi.lc2 ...)" you can type (COMPL file 1 file2 ...). The compiler

will rcad thC5C files and produce .LAP files containing LAP code for the functions defined in

those files. These may be rcad into LISP with DSKIN, but the compiled functions will be put

in BPS.

The compiler is just rmother lisp prograrJ1 which has been compiled and loaded into the high

segment to creale another core image, called LISPCQ. Therefore- you can run LISPCO instead

of LISP if you occasionally want to compile things. The LISPCQ high segment is larger than

the normal LISP high segment (since it contains the compiler), but LISPCQ has been hacked to

use the standard LISP high segment whenever it can. When you compile something the

LISPCO high segment will be temporarily'retrieved. Actually, the compiler requires some data

that is not used by the normal LISP system, so the low segment is also larger than the

sf andard one.

6.5.1 (DECLARE doer 1 decl2 ...) [FSUBR]

allows declarations to be made to the compiler. Declarations are ignored by the

interpreter. In the compiler ea<.h araument of DECLARE is evaluated.

Typical uses are

(DECLARE (SPBCIAL X Y Z»

(followed by code which uses x, y and z as special variables followed by) (DECLARE

(UNSPECIAL X Y Z»,

a.nd (DECLARE (-PSUBR MUMBLE» before the first call to mumble

in a file before the FEXPR mumble (to be compiled) is defined.

154

6.5.1.1	 (SPECIAL <var I> {<var2>} ...) [DECLARATION]

Declare!) eilch <var> (l~ a !:,pccial variable, i.e., a variable which appears free in a function.

Note that free variable~ in in-line LAMBDA expressions and LAMBDA expre!)sions used as

arguments to most system functions (e.g., the MAP functions) need not be declared SPECIAL,

as suc.h functioll~ ~rQ (ornrilcd i1,-li"e. In addition ERRSETs arc now compiled in-line, so

variables in ERRSET cxprc~sion$· 1"10 lonaer have to be declared SPECIAL. All undeclared free

variables in a file milY be found by compiling the file and examining the error messages; for

convenience, the compiler plilCCS all ncwly-di!Jcovered special variables on the list SPECIALS.

For related information see LAPLST and SPECBIND.

Special Variables In cornpilC'?d functions, any variable which is bound in a LAMBDA or PROG

and has a free occ.urrence ek,ewhcrc must be declared SPECIAL. Example:

(LAMBDA	 (A B)

(MAPCAR (FUNCTION (LAMBDA (X) (CONS A X») B»

The variable A which has a free occurrence must be declared SPECIAL if the outer LAMBDA

expression is to be compiled. All varirlbles in interpreted functions, and SPECIAL variables in

compiled functions store their values in SPECIAL (or VALUE) cells. These variables are bound

at the entry to a LAMBDA or PROG by saving their previous values on the SPECIAL pushdown

list and storing their new values in the SPECIAL cells. All references to these variables are

directly to their SPECIAL cells. When the LAMBDA or PROG is exited, the old values are

restored from the SPECIAL pushdown list. In compiled functions, all variables not declared

SPECIAL are stored on the REGULAR pushdown list, and the SPECIAL cells (if they exist) are

not referenced.

6.5.1.2	 (UNSPECIAL <varl> {<var2>} ...) [DECLARATION]

This declaratio.n may be used to inform the compiler that certain variables are no longer

considered special, and should be compiled as normal local variables in subsequent funct·ions.

6.5.1.3	 (NOCALL <a 1> {<a2>} ...) [DECLARATION]

Each <a> should be either the name of a function to be compiled or a special variable.

These functions and vClrirlbles are a5sumed to be local to the file being compiled and will thus

never be traced, called or referenced from functions not in this file, or used as entry points
)or top-level values. The compiler can compile references TO such functions as direct jumps,

and the atoms may be REMOBcd when the file is loaded (see DUMPATOMS).

NOCALL [VALUE]

If NOCALL is T when a function is being LOADED (read in from a LAP file) then all of the

155

function c ails CONTAINED IN the code (cxccpt the calls to f,;. : tions which were declared CALL

durina compilation) will be converted to direct jumps.

Removina Exce5~ Entry Points - NOCALL Feature If, dur;'"I~ compilation, a function has a

non-NIL NOCALL property, all call~ to that function are CI"rlpiled as direct PUSHJ's to the

entry point of that fUl1ction with no reference to the atom it~.clf. After loading, all functions

u~cd in this manner will be left (15 (I list on the variable REMOB. This means that many

functions which are not major entry points can often times be REMOBcd to save storage. The

uscr may use (NOCALL FOOl F002 ... FOOn) [FSUBR] to ma~.e several NOCALL declarations.

Like SPECIAL ana DECLARE, when NOCALL is used outside of the compiler, it acts the same as

NILL.

Warning: If a function, F, is compiled without the NOCALL property and a function, G, which

calls F is compiled while F does have the NOCALL property. then the code for G will not be

able to resolve its reference to F be(~use of the lack pf a SYM property on F (in spite of the

f act that the SU8R property could be translated into the answer).

The NOCALL property docs not affect the ability to call the fundion in the usual ways, but

it does allow the atom (F) to be REMOBed after which it would still be accessible to the

functions that were compiled (G) when its (F"s) NOCALL property was non-NIL (whereas other

functions (and the user) will no longer be able to call it). The safe and reasonable thing to do

is to keep the NOCALL properties of all of the compiled functions the same throughout the

compilation of all of the functions.

6.5.1.4 (CALL <lnl >{<fn2>} ...) [DECLARATION]

Specifies that each <fn> should always be called via the function-calling mechanism and not

changed to direct jumps. Necessary in rare cases when the NOCALL-T feature is being used.

For example, ~ny function which is undefined at compile time must be declared NOCALL unless

it is to be loaded from another LAP file.

FUNCTION CALLING UUOs To allOW ease in linking. debugging, and modifying of compiled

functions, all compiled functions call other functions with special opcodes called UUOs.

Several categorie$ of function calls are distinguished: 1) Calls of the form (RETURN (FOO X»

are called terminal cal\~ and essentially "jump" to FOO. 2) Calls of the form (F X) where F is a

computed function name or functional argument is called a functional call. The function calling

UUOS are:

non-terminal terminal
non-functiona.l CALL ntf JCALL n,f

iunctional CALLF n,f JCALLF n,f

where f IS either the address of a compiled function or a pointer to the identifier for the

156

function, and n ~,pccific5 the type of function being called as follows:

n = 0 to 5 $p~cifies a SUER call with n ar&um~nts

n 16 specifics a LSUBR call

n 17 specifies a FSUBR call.

The function calling UUOs are defined in MACRO by:

OPDRP CALL [J4RR]

OPDEF JCALL [35B8]

OPDEF CALLF [368&]

OPDEP JCALLP [37B8]

6.5.1.5 (NOCOMPILE exp) [DECLARAnON]

Causes the compiler not to compile exp but to just transfer it to the output file. In

interpretive mode exp is evaluated.

6.5.1.6 (GLOBALMACRO <mac 1>{<rnac2>} , . ,) [DECLARATION]

Macro definitions arc normally assumed to be used only by functions in the file in which

they appear, and hence are not neces~.ary after the file is compiled. Occassionally, however,

it is desirable to ~\eep the macro definitions after compilation by having them copied into the

LAP file (PLUS is such a macro for example). The GL08ALMACRO declaration specifies that

each <mac> is such a global macro and should be saved.

6.5.1.7 (*SUBR <fn I> {<fn2>} ...) (DECLARATION]

(*FSUGR <tn1> {<tn2>} .. .) [DECLARATION] (:tLSU8R <fn1> {<fn2>} .. .) [DECLARATION]

FSUBRs and LSUBRs which are referenced before they are compiled must be declared (via

*FSUBR and *LSU8R) so that the compiler can compile function references correctly. *SUBR

declarations may also br.' made, although they are not necessary since all undefined functions

are assumed to be SU8Rs. *EXPR, *FEXPR, and *LEXPR may be used in place of*SUBR.

*FSUBR, and *LSUBR if desired.

6.5.2 (CQMPL fila 1 filo2 ...) [FSUBR]

is only in the compiler core image which is run by typing "R LISPCO" to the monitor. The

compiler now prints the name of each fundion before its compilation has begun. If an error
j

occurs, the last name printed is the function in error. Note also that the value returned by

LAP (and thus printed by DSKIN) is now a list consisting of the name of the function loaded

followed by the number of words of binary program space required for the compiled code.

Recall that strings are normally not interned by the READ routine so that they will be

garbaGe collected when no longer referenced. Strings appearing in compiled code will always

be referenced, however, !>o LAP has been modified to intern them (by setting INTERNSTR to

157

T}. 011,,'. ha~ the ;Hlv;lOt;'\(2lo 'hilt func\ion~ which Me compiled may reference the same string

a number of times without I,ronaity - only one copy will be stored.

6.5.3	 (C(JMPLFNS LIST) [SUOR)

Avail"ble only in the LlSPCO core imar.~. LIST is to be a list of atoms, each of which is

cOlnpilcd and loaded into core by CQMPLFNS.. A scratch file, STEMPS.LAP, is produced and

deleted during this process. Should the cOI1"lJ"liiation abort, this file can be deleted through

the LISP DELETE function. It is not po~.5ible to aive declarations in the fundion list, but they

may be m~de in advanc.e.

6.5.4 SYM

SYM : Symbol definitions for LAP are stored on the SYM property. These include opcodes,

reoisters and NOCALL functiOn locations.
~

6.5.5	 VALUE

VALUE is the name of the property under which values of atoms (variables) are stored.

IMPORTA~T: It is a bad idea to change the value of an atom by simply replacing its VALUE

property. In order to m~".e compiled code more. efficient, the value property of an atom is

assumed to always point to the $;)rne list cell (so the address can be compiled into the code).

The cdr of this cell points to the value. Thus if you must change the value property it should

be done by RPLACD of the VALUE property.

6.5.6	 SUBR

A SUBR j!; the compiled form of an EXPR

SUBR LINKAGE

SUBRs are compiled EXPRs which are the most common type of function. Consequently,

considerable effort has been made to mal'.e linkage to SUBRs effici~nt. Arguments to SU8Rs

are supplied in acc.umulrttors 1 through n, the first argument in 1. There is a maximum of 5

arguments to SU8Rs. To call a SUBR from compiled code, use call n,FUNC, where n is the

number of areumcnt5, and call is the appropriate UUQ. (See CALL) The result from a SU8R is

returned in A (=1).

6.5.7	 FSUBR

An FSUBR i!; the compiled form of an FEXPR

158

FSlJBR LI~~AGE

FSU8Rs r('(eivc one aq~ul"lcnt in A .,nd return their result in A. FSU8Rs which u~e the A-LIST

feature cOllI:

PUSHJ P, ~AMI\)::li

which generates in 8 a numbeY encoding the state of the special pushdown pointer. To call a

FSUBR, ur,e call 17, FUNC, where call i5 the appropriate UUQ.

For related information see CALL and FEXPR.

6.5.8 LSUE3R

LSUBR - the compiled form of lln LEXPR

LSUBR Ll:\KAGE

LSUBRs arc similar to SU£3R5 except that they allow an arbitrary number of arguments to be

passed. To call a LSUBR, the following sequence is used:

PUSH P, [T~t) ; ret urn address

PUSH P, argl ; 1st argument

PUSH P, Ilrgn ;nth and Jast argument
MOV~I T,n ;mlnus number of arguments
e.all 16, fune. ithe appropriate UUO (See CALL)

ret: ;the LSUBR returns here

When a LSUBR is entered, it executes:

JSP 3,*LCALL

which initializes the LSUBR. A will contain n. The ith argument can be referenced by: MOVE

A, -i-HP) Exit from an LSUBR with POPJ P, which returns to *LCALL to r~store the stack.

6.5.9 COMPILE-HINTS

--- If you use the compiler you should be aware of the following -_..: - Subrs may have no

more than 5 argumcnt$. - Macros are expanded at compile time (the expansion is compiled).

- Certain declarations are needed - see the help for DECLARE. - See help for NOUUQ,

NOCALL, DUMPATOMS

j

Note that when loading LAP files with NOCALL=T all functions are assumed to be either

already defined when the files are loaded (e.g., system functions), or defined in the file. If

any existing compiled functions (such as system functions) are to be redefined, they must

either be defined before they are referenced or must have their SUBR, FSUBR, or LSUBR

properties removed before IO;lding. A warning will be printed if this is not done.

159

6,5.10 COMPILE-ERRORS

Explaniltion5 of LISPCO	 error me~~Cl&CS (from Diffie at Stanford) U~er Errors These are

error5 in r.ource code which CClu~e the compiler to halt.

ARG~O-PICONS CONS hns the ~Tong number of argumcnts.
ARG~OERR-B001EQl Wrong number of agrumcnts to EQ. _
ARG~OERR-Cn!-.1rnEP .. DEH1ROP" hils the .'rong number of argumcnts.
ARG~OERR- INTER~~/\l.LA~BDA Diffcr 1ng numbers 01 va rtabl es and arguments.
ARGr\O~RR-P2CARCnR "'rong number of Ilrguml~nts to CAR, CDR, CADR etc.
ATOMICVARLIST-PIBIND An atom ~hcre a YaTi4~le list ~4S expected.
CONSTFUN-Pl Attempt to call a constant (number, T or NIL)

;; as a function.
EXTRAARGS-P1SURRARGS ExrR or SUBR callcd ~lth too many arguments.

;; eMore thnn the milxi mum for & SUBR)
EXTRAARGS-PASS1 Attcmpt to define 4 SUBR or EXPR with too many ar8s.
NOTI;\PROG-P1GO GO occurring outside of PROG.
NOTINrROG-P1RETUR~ RETUR~ occurring outside of PROG.
~OTVARIABLE-P1B[~n A constant or non-atom in variable context.
NOTVARIABLE-PlSETQ Attempt to SETQ a constant or non-atom.
PROGTOOSHORT-PlrROG TROG must at least have a variable list.
READERR-FLUSHLAP Rend error ~hl1c reading L~P in source file.
TOFE~ARGS-p].rROG~

User Warnings These messages indicate that the compiler think.s there might have been an

error. They do not interrupt compilation, but indic.ate conditions which can be expected to

produce errors in object (ode.

REPEATED VARIABLE Variable name repeated in a variable list.

MULTIPLY DEFINED TAG T~o PROG tags ~1th same name.

U~USED PROG VARIABLE Some PROG .ariable not referenced.

UNDECLARED FREE VARIARLES Variables found free In source code.

UNDEFINED TAG Undefined PROG tag.

Other Compiler Messages

FSUBR USED AS SUBR A function previously called and presumed to be a SUBR
;i hns be~n defined to be an FSUBR.

LSUBR USED AS SUBR A function prcyiously called and presumed to
;; be a SUBR has been defln~d to be an LSUDR.

MACRO USED AS SURR A function prcviously called and presumed to be
; i a SlJaR ha s been deft ncd to be an MACRO.

(name. flag) USED AS SUBR Same as above, except that the function has
;; becn defined by LAP in source file.

var LOCAL AND SPECIAL	 A variable complIed as 10c4l In an earlier function
;; 1s found free or declared special. The compiler is
;; worried that they might be the same variable.

Compiler Errors The!";e are errors in the compiler itself. It halts and goes into a read eval

print loop without unbindinG the vari;tbles to facilitate debugging.

ATOM-NTIfCDR COUl'\TSor SI\GREE-COMPFU:\C FUXXYYAR-BINDYARS

I.Dl.STLF.FT-PASS2 1.OSTVAR-ll.OCl NEGXUM-NTUCDR Nt L-RST

NOAC-RESTORB NOTAC-GETSLOT NOTLA~nDA-GE~FUN NOTONPOL-GETSLOT

NOTSLOT-GF.TSJ.OT NULLLOC-~1ARK\'AL PDLSHORT-RESTORli PDLTOOLONG-LSUBRCALL

SOMETHINGELSE-P2E1SE

---------------~.--

160

6.5.] 1 COMPILE-IN-LlNE

A nun'\bcr of ~y~tcm funetion~ arc cOt"lipiled in-line by the compiler, either because they

generate only a few wordr. of code or beCrlU5C they arc FEXPRs which cVClluatc one or more

aq;umcnts (if calls to ~>lJch functions were not compiled in-line, the uncompiled arguments

would be pa~.~;cd to the interpreter, slowing .9own execution considerably). Functions

currcnlly compiled in-line include: ERRSET, CATCH, THROW, RPTQ, CONO, AND, OR, SELECTQ,

PROG 1, PHOG2, PROGN PROG, RETURN, GO, SETQ, MSG, TTYMSG, EVERY, SOME, NOTANY,

NOTEVERY, All MClP Functions, APPEND (as *APPENDs), NCONC (as *NCONCs), LIST (as CONSes),

CAR, CDR, RPLI\CA, RPU\CO, EQ,- NEQ, NULL (and NOT), ZEROP, ARG, SETARG, STORE, EVAL (as

*EVAL or a direct call if possible), APPLY (as *APPLY or a direct call if possible), and APPLY#

(as a direct call if possible).

6.5.12 TAG

LAP code contains label~ which consist of the letters TAG followed by digits. LAP

remembers the!>e labels and when it fini~hes loading a function it REMOBs them. (They are

used to record information needed in the loading.) This means that if you load compiled code

you should avoid naming your variables TAG16 (or any other tag), since they are likely to

vanish out from under you.

6.5.13 LAP

THE LISP ASSE~BLER - LAP

LAP is a primitive assembler desiened to load the output of the compiler. Normally, it is

not necessary to use LAP for any other purpo~e. LAP is self loading. The format of a

compiled function in LAP i5: (LAP name type) [LAP is an FSUBR] <sequence of LAP

instructions>

NIl.

where name is the nelmo of the function, and type is either SUBR, lSUBR, or FSUBR. A LAP

instruction is either:

161

1. A) libel which 15 11 non-~;Il identifier.i ;
2. A list of 1l1~ form

(OPCODE AC ADOR l~nEX)

~. The index field 15 opt1on~].

b. The opcodc 1s cith~T 11 PUP-6/10 ln~truction

which 15 defined to LAP nnd option~]ly suffixed
by e ,,'hleh dC5ignates 1nd1rrct nrldrcssing, or
a number ~hlch spccifle~ a numerical opcode.

, , c. The A~and I~nHX ft~]ds should contn1n 11 number
, , from 0 to 17, OT P '\'hich dc:.1gnl1tes register 14.
; ; d. The ADOR field m~y b~ 11 number, a label, or 4
; ; list of one of the fol10winR forms: ., ., (QUOTE S-cxpressionl to reference list structure•
; ; (SPECIAL x) to reference the value of
; ; identifier x.
; ; <6 f) to reference the funct10n f.
; ; (C OPCODE AC ADDR I~DEX)

to reference a literClI con!.tant.

6.5.14 ACCUMULATORS

ACCUMULATOR USAGE TABLE·

s means "sacred" to the interpreter p means "protected" during garbage collection

NIL = 0 s,p Header for the atom NIL.

A = 1 p Results from functions, 1st arg to

;; functions

B p 2nd arg
• 2
C 3 p 3rd arg=
ARI = 4 p 4th arg

AR2A 5 p 5th arg
=
T = 6 p used for LSUBR linkage
TT = 7 p

TIO = 10 p rarely used In the interpreter

5 = 11 rarely used in the interpreter

D = 12

R := 13

p = 14 s,p regular pushdown list pointer

F 15 s,p free storage list pointer
II:

FF = 16 s,p full ~ord l1st pointer

SP s,p special pushdown list pointer.
• 17

6.5.15 (DEF-EV-PROP ItI" V "pit) [FSUBRJ

DEF-EV-PROP 15 L1sed by GETDEF to retrieve the names and proper1ies (SUBR, etc.) of

function~ internal to the LISP !Oystcm from the file SYS:REMOB.LSP. DEF-EV-PROP evaluates

only its second argument.

For related information see NOCALL.

6.5.16 (GETSEGLISP) [SUBR]

get5 the r.t~ndard li~p hiGh ~cgmcnt. This i~ w~ed by the compiling functions when they

162

fini~h, !:,o that the hiGh !:>cGment of the li~,p compiler need not be used when it is not needed.

6.5.17 (GETSEGLISPCO) [SUBR]

8ets the hiGh ~.c8ment of the lir,p compiler (LISPCO). This is used by the compiling

function!> (whic,h need the LISPCO hiBh segrnent).

6.6 (DEPOSIT N V) [SUBR]

DEPOSIT stores the inter,cr V in memory location N and returns V.

6.7	 (EXAMINE N) [5UBR]

EXAMINE return!', as an integer the contents of memory location N.

6.8 SYSTEM-BUILD

Building your own (or, how this one was built): Contents of LISP source files are described

in LISP.DIR[a311Ii5p). Aside from compilation of .COM files as necessary, and creation of

LISPS.REL by means of LISPS.eTL, the LISP system was created last by LSPSYS.CTL and

BATCH. I hope that formula will still work, ienoring the use of the MOVE cusp.

6.8.1	 (HGHCQR X) [SU8R]

(for creating your own system) If X=NIL the "read-only" flag is turned on (it is initially on)

and HGHCOR rcturn$ T. Otherwir,e X i$ the amount of space needed for compiled code. The

space is then allocated (expanding core if necessary), the "read-only" flag is turned off and

HGHCQR returns T.

6.8.2	 (HGHORG X) [SUBR]

(for creating your own system) If X~NIL the address of the first unused location is

returned as the value of HGHORG. Otherwise the address of the first unused location is set

to X and the old value of the high seg. origin is returned.
1
)

6.8.3 (HGHEND) [SUBR]

(for creating your own r..ystem) The value of HGHEND is the address of the last unused

location in the high seg.

163

6.8.4 (UNBOUND) [SU8R]

UNOOUNO ret urns the un-inl erncd atom UNBOUND which the system places in the CDR of an

atom"s SPECII\L (VALUE) cell to indicate that the atom currently has no assigned value even

though it has a SPECIAL (VALUE) cell on its property list.

6.8.5 (SYSCLR) [SUOR]

Rc-initializC5 LISP to read the user·s LISP.INI file when it returns to the top level, e.g. by a

Cont rol-G or a START, or a REENTER. SYSCLR also resets the garbage collection time

indicator to 0 and the CQN$es performed indicator to O. It also performs an EXCISE.

6.8.6 (INITFL nFILELSTn) [fSUBRl

INITFL i5 an FSU£3R that sets up the file list for the user's INIT file. FILELST may consist of

more than one file. However, if there is more than one file in the list, the files following the

first one must be found or an error wilJ be generated. The first file in the list is optional.

The INIT file is initially LlSP.1Nl. IN1TFL returns the old file list as its result.

• (lNITF1 (lNITl • LSP) (MYFI1E. LSP) FOO)

«(LISP. 1r\1»

6.8.7 (GTBLK LENGTH GC) [SUBR]

returns a zeroed blocI'. of LENGTH words. If GC is NIL the contents of the BLOCK are

ignored by the gnrb~ge collector. Otherwise Ihe contents are treated as pointers and the

cells pointed to will nol be collected.

6.8.8 (BLKLST LIST LENGTH) [SUBR]

returns a pointer type BLOCK of leneth words. It chains the words in the block so that the

CDR of each word i~ the succeeding word. The lop level of LIST is then mapped into the

CAR5 of the block. If lenGth i~. NIL then the length of the list is used. If (LENGTH LIST) is

less than LENGTH, then the CARs of the remitinder of the block are set to NIL. If (LENGTH

LIST) is greater .than LENGTH the list is truncated.

6.8.9 LISPPN [VALUE]

is the PPN (as returned by MYPPN) where the system expects to find the greeting files, the

system init files and the help files.

164

6.8.10 (SETNAM namo) [SU8R]

chanBcs thc n<lmc of the runninB c.ore in1ilse to n<lme. This is displayed byT and systat.

It is ClI~o used by SAVE.

6.9 (NQUUQ X) [SUBR]

fJag = T initiAlly

NQUUQ sots a special flilG in the compiled function calling mechanism to the value of X and

returns the previous setting of the flag. (Actually any non-NIL value is treated as T,

returning T when rc;,oL) Compiled functions initially call other functions with function calling

UUQs which "trap" into the UUO mechanism of the interpreter. Ordinarily, such function calls

involve searc.hinB the property list of the function being called for the functional property,

and then (depending on whether the function is compiled or an S-expression) the function is

called. If the NQUUO flag is set to NIL, then the overhead in calling a compiled function from

a compiled function can be eliminated by replacing the CALL by PUSHJ and JCALL by JRST.

CALLF and JCALLF are never changed. However, there are several dangers and restrictions

when using (NQUUQ NIL). Once the UUO·s have been replac.ed by PUSHJ's then it is not

possible to redefine or TRACE the function being called. It is therefore recommended that

compiled functions be debugged .with (NOUUO T).

6.10 SYSTEM-STUFF-MISe

6.1 0.1 (DEFSVM namo numbor) [SUBR]

(the number is converted to ~n address) DEFSYM puts a SYM property on an atom, and if

LAP has left some information about its uSrl3e before it was defined then some cleaning up is

done. The atom is also CONSed onto the value of REMOB.

For re lated informat ion see LAP, SYM. and REMOB.

6.1 0.2 (DUMPATOMS filo) [FSUBR]

Note - this function i!> in RUTLIB.LSP[A311 Ll5P]. After loading a set of files which contain

NOCALL declarations, DLJMPATOMS may be called to REMOB all NOCALL atoms after first

creating a file <file> which, when subsequently loaded, will restore the SUBR, FSUBR, LSUBR,

VALUE, and SYM properties of eac.h NOCALL atom. One can thus use DUMPATOMS to REMOB

all NQCALL atoms (to save space), and if it is later discovered that one of the functions or

165

speciClI vC\ri~blC'~ i~ ne(\dcd "Ocr ;111, DSKIN the DUMPATOMS file to rcstore things to their

previous ~,t ;de. If <file> is mi~.~.jne, (REMOOJ SP) is a~sLJmod.

6.10.3 FIXl A

To convert the number in machine repre~cntation in A (in compiled functions) to its LISP

integer repre~.cntation u-:.e

PUSHJ P,FIX1A

6.10.4	 GVAL [SUBR]

is an internal LAP function.

6.10.5	 GWO

GWD (SUBR) is an internal LAP function.

6.10.6	 INUMO

The SYM properly of INUMO is the magic constant for translating between INUMs and

addresses. The .Iddresr. of the code of a SUBR in the high segment is (+ (GET <id> 'SU8R)

(GET 'INUMO 'SYM».

6.10.7 KLIST [VALUE)

contains di5criptivc information about LAP constants and is used by LAP to keep full word

const ants in unique localion5 in OPS.

6.10.8	 LAPEVAL

LAPEVAL (SUBR) is an internal LAP function.

6.10.9	 LAPKLST [VALUE]

is a list of c:onstnnts that have been used by LAP code. This enables LAP code to share

con~tRnts (thlJ~ srwing sp;,\ce). However it does take up list space, so it is normally set to NIL

after system generation. When you read in LAP code you will start growing it again.

6.10.10 LAPLST [VALUE)

166

cont.lil1s the nan-Ie (lnd r.pecial cell of special variC1ble5 to illlow the printine of variable

bindings in bC1ddrllces. Special variables are added to LAPLST iff the variable SPECIAL is

non-NIL (initially T).

6.10.11 LAPQlST (VALUE)

is a list of list -cells which are acccs~.ed by compiled code. Its purpose is to protect these

cells from the 8arbC1ee collector. If you delete its members you are asking for trouble!

6.10.12	 LAPSLST [VALUE]

is a list of ~.pCCiC11 cells of NOCALLed special variables that are accessed by LAP code. Its

purpose is to protect thc~e cells from the garbage collector. If you delete its members you

are asking for trouble!

6.1 0.13 (MAKNUM X TYPE) [SUBR]

considers X to be a number of the type specified (TYPE should be either FIXNUM or

FLONUM) in machine representation and returns the LISP representation of the number.

MJ\KNUM is a SUBR.

6.1 0.14 (NUMVAL n) [SUBR)

NUMVAL accepts a LISP number and returns the machine representation of that number. It

is a SUBR.

6.1 0.15 (SIXBIT ATOM) [SUBRJ

SIXBIT returns an integer whose bit pattern is the SIXBIT representation of its (atomic)

argument. Lower ca~c is converted to upper case as required. No error is given if

characters not in the SIXBIT character set are present. Up to the first six characters of the

PNAME of the atom are used.

6.10.16 (SIXATM N) [SUBR)

SIXATM returns the atom whose PNAME contains the characters from the ASCII set that

correspond to the sixbit characters presumably contained in the bit pattern of the integer N.

6.1 0.17 QLIST [VALUE]

167

is a li!:it ,of ~II S··cxprc!:i~ion c.on~)t;)nts referenced by compiled code. Their presence on

QLIST protce.t5 them from Bi1rbi1ac collection.

6.10.18 SPEC8IND

Sp'ecial vari;4blcs in compiled functions arc bound to special cells by:

; ; PUSHJ P, SPECBIND.., , o n1, "ar1

; ; o n2, var2

; ;

; ; staft of function code.

SPECOIND ~aVC5 Ihe prcviou5 values of vari on the special pU$hdown list and binds the

contents of accumulator ni to each vari. The vari must be pointers to special cells of

identifiers. Any ni""O causes the vari to be bound to NIL. Special variables are restored to

their previous values by:

PUSUJ P,SPECSTR

which stores the value~, previously saved on the r.pecial pushdown list in the appropriate

special cells.

6.1 0.19 (UUO UUQ-TYPE) [SUBR]

(UUQ UUQ-TYPE) performs (UUQPARM 0 UUO-TYPE).

6.10.20 (UUOPARM N UUO-TYPE) [SUBR]

UUOPARM executes the CALLI 1, UUO-TYPE monitor call with the value of N loaded into

register 1. The value returned by the UUO in register 1 is made into an integer and returned

as the value of UUQPARM. The global variable !SKIP! is set tq T if the UUO skipped, NIL

otherwise.

158

7. Mise

7.1 DATES

7.1.1 (DATE) (SUBR]

DATE docs (UUO 12) to return the DEC-style date, a number resembling the number of

days sinc.e the st:\rt of 1964.

7.1.2 (DATESTR) [SUBR]

is equivalent to (datcstrx (mstime) (date». which returns a string with the current date and

time.

7.1.3 (DATESTRX MSTIME DATE) [SUBR]

DATESTRX returns a ~.trin& containing the date and time computed from MSTIME and DATE

(typically comruted by the MSTIME and DATE functions respectively).. Note that PRINe will

print the string without the quote marks.

-7.1.4 (MSTIME) [SUBR]

MSTIME does (UUO 19) to return the time of day in milliseconds.

7.2 (EXIT flag) [S~BR]

LISP may be exited via the EXIT function. Flag specifies whether LISP's sharable -high

segment should be deleted (flag::.:NIL) or retained (flag=T) before exiting. There is normally

no reason to retain the high ~.egment, as it is automatically loaded when LISP is STARTed or

CONTinued. By deleting the hi~h segment, EXIT allows the user to exit from LISP and save

the low ~e8ment as a runnable SAY file - when the file is later RUN, LISP's sharable high

seement will be loaded nufomC\tically. (Note that an EXCISE or SYSCLR should be performed

before exiting if the low segment is to be saved.) (EXIT T) is necessary only after SETSYS has

bcen used to creafe a new sharable system, when both the low and high segments must be

saved. At the top level, (EXIT) equivalent to (EXIT NIL).

7.3 FN-PROPS (VALUE]

is just a list of the function properties that LISP knows about. These are EXPR, FEXPR,

MACRO, SUBR. FSUBR and LSUBR.

169

7.4 LASTWORO [VALUE]

is meant to contain the last word you defined to LISP. It is set by DE, OF, OM, the editor,

DEFPr~op (if the property was in GRINPROrs) and perhaps a few others that I've missed.

This is w:,ed when, for cy.ilrnpl~, you type (EDlTF) (lS the name of the fundion to edit.

7.5 (NILL"X I" "X2" ••• "Xn") [FSUBR]

NILL always returns NIL. This function allows the user to stick S-Exprcssions in the middle

of a function definition (e.a. ar. a PROG clement) without having them evaluated or otherwise

noticed. NILL is also useful for giving a dummy definition to a function which has not yet

been defined.

7.6 PROBLEMS

This r.ection de~.cribes the undesirable features of our lisp system. Anyone who is

interested in fixing any of them is invited to send mail to LISP(NCMUA. Users are also invited

to send in new entries.

Surely the worst feature of our system is that storage allocation can not be done without

losing the state of the computation. The problems include relocating the stacks and their

contents and moving]0 buffers. It is c.onjeetured that it would be safe to treat everything in

the stacks as a pointer. Moving 10 buffers involves communicating with the monitor. It is- .
suggested that the buffer headers not be moved since this can not be done in earlier

versions ot the monitor. It woultJ probably be more difficult to fix this problem than to

convert all of the nice fcc;tures of our lisp into MACLISP, which does not have this problem.

The SAVE function doc~, not actually save your job. It just sets things up so that the right

thing will be done when you type SAVE to the monitor. The reason is that the eMU special

UUO for saving a job was not brought over to the new monitor.

The loader is ancient and crufty. It does not understand lower case. It does not

under!.t and PPN~. Anyone who wants to fix it is welcome to try.

Binary Program Space is not garbage collected. It is therefore a bad idea to write

programs that will frequently dccltire local arrays. It is possible to reclaim BPS by hand (by

resetting BPORG and BPEND), but if you are using BPS for anything other than arrays this will

require a good understanding of LAP.

People who Bet used to the nice features of the top level become frustrated by their

170

C'br.cnce in the break packaGe. It would be nice if the break package could remember events

and preproce5s inputs throur,h u~,crtor>. Any volunteers?

There is no known rncthod for correctly dealing with un-planned-for unbinding of the pdls

past functions that are trying to ~,e0p track of multiple I/O channels. The usual problem is

that an error caU5CS a break at ~.ome random time. If the user exits the break by partially

unbinding the stack, the I/O functions cannot restore I/O channels. and AA are handledA

correctly because the~,e commands u~.e information saved by the break package to restore

I/O channels as ,of the invocation of the break pack:-lge at the appropriate level. The

proposed fix for this is a general mechanism for causing things to happen during unbinding.

There would be !.omc partic.ular identifier which, when unbound would be EVAL'd. This could

reset the 10 channels and anything else which a program wanted to be sure about when

control returned to it. This mechanism would hopefully be used mostly through higher level

facilities. What we REALLY need is to be able to simply rebind 10 channel~.

There are some propo!,als for chcckpointing in the LISP mail file. They are .blocked by

inadequate 10 f acilit ic!>, ~uch a~ not being able to open a file for appending. In addition to

this, it would be nice to be able to do random ae·cess file 10. For example, the HELP program

might be made to run much faster if it did not have to search for words but could go right to

them. ,

At t he· moment there i5 no rea50nable way to try to automatically recover from errors. For

example, t he. error message is printed before usererrorx is called and then usererrorx has no

access to it. All of the errors in the lisp system ought to set a global variable to contain as

much info (in a standard form) as the error message, and usererrorx should be called before

the message is printed. Erronc should evaluate (usererrorx inside an errset, and if a

non-~tom is returned it should do ;\n outval of the car. (This is instead of simply returning as

it doe!> now.) It would be cven better if usererrorx did a dispatch on the type of the error to

a function named by a variable (sounding like the type of error) so that error-handling could

be done by rebinding variables - this would allow programs that knew how to handle certain

kinds of errors to do so easily.

171

Index

'0 [EDIT-COMMAND] 110

INX [EDIT -COMtviI\ND] 110

'SKIP' 167
!UNDO [EDIT-COMMAND] 133

'VALUE 5

(a <numb~,> <~)lp,~ssion» [FSUBR] 46
• 108, 123
(•• coml com2 '" comn) [rSUBR} 134
- 71NDENT [VALUE] 94
-1lINECTR 63
a-ERROR "6
-I 138
-2 138
-3 138
.UNDOSAV£S 32

S 118

7.7MCI 45
11MC2 45
7.7MC3 45
17MC" 45
(7DEREAD numhor t::tmbd"-exp type) [SUBR] 79
(1DEVP Xl [SUBR] 56
(1GETDEV filcspEtc) [SUBR] S6
7l00KOPTH [VALUE] 71
'7PRINFN [VALUE] 101
(lRE' ADIN ch;tnnol print) [SUOR] 49

" 114

(. XI ... Xn) [LSlmR] 42
(... comment) (FSUBR] 55
(•• TOP ••) [S110R] 107
.AMAKE 158
.ANY. 114
(:APPEND X Y) [SUOR] 26
.APPlV 5
(.DIF X Y) [SUBR] 39
•DIGITS [VALUE] 75
.EVAL 5
(.EXPAND L FN) [SUBR] 9
.EXPAND] 9
.EXPR 156
.FEXPR IS6
.FSUBR 156
(.FUNCTION 'TN") [fSUBR] 6
(.GETSYM S) [SUBR] 146
(. GREAT X V) [SUOR] 23
.LCAll 158
(.lESS X V) rsuRRl 23
.LETTERS [VALUE] 75
.LEXPR 156
.LSUI3R 156
(.MAX X V) [SURR] 40
(.MIN X V>[SUBR] 110
•NCONC [SUBR] 28
.NOPOJNT [VAlUr) 74
.NOPOINTDSK [VALUE] 55
(.PG,) [SUOR] GS
(.PLUS X V) [SUBR] 40
(.PUTSVM S V) (SLJORl 147

172

(-QlIO X V) [SlJIIR} 11 1
(d~ENIUA[FJLESP[C':l FILESprC2) [SUBR] 60
(d<r,[lSVM X) ISIJnRl 147
(.RPUTSYM SYM VAl) [SU£3R] 147
(.RSET fli1lt) [SUr~R] 101
(.SU8R dnl> {dn2>} .. .> [DECLARATION] 156
(.TIMES X V) [SlJ!3R] 41

(+ Xl ... Xn) [LSUBR] 41
(. I X) [SUBR] 39

(- XI ... Xn) [LSUBR] 39
-- 114
(-I X) [SUBR) III

(// Xl ... Xn) [LSlJOR] III
II· NCONC [SUBR] 28
(//ATlACH X U [SU8R) 28
<IIBREAK 1) [SUf3R] 84
/IOREMOVE [SUHRl 31
IIDREVEI<SE [SUBR] 32
<lIDSUBST X V Z) [SUER] 32
<//lNSERT)(L COMP/\REFN NOOUPS) [SUBR] 29
(f/LCONC PTR l) [SU8R] 28
(I/NCONC II ... IN) [lSUBR] 26
C/INCONC 1 L X) [SUBR] 28
<lIPUl PROP 1 V P) [SUBR} 34
<IIREMPROP I P) rSUBR] 34
(I/RPlACA X V) (5UI1R] 31
(/IRPLACD X V) [SUBR] 31
(1IlCONC PTR X) [SUBR] 27
IBREAK! 83

(:el ... em) [EDIT-COMMAND] 124
:: 112
::: 114

« XI ... Xn) [LSU£3R] 23

(. X Y) [SUBR] 22
(·0 X) [SUBR] 22
•• 114

(> Xl ... Xn) [lSUOR] 23
> 8xpr[BREAK COMMAND] 86

? [EDIT-COMMAND] 121
? ar~ 1 "r~2 .. artN [RRFAK COMMAND] 88
?? <evcnt-spttc> [TOP-LEVEL COMMAND) 104
?? [EDIT-COMMAND] 133

(A e 1 .. em) [E DIT-COMMAND] 124
(AI3S X) [SUBR) 39
ACCUMULATORS 161
(ADD 1 X) [SUBR] 39
AFTER <namo> [TOP-LEVEL-COMMAND] lOS
AllOe 153
ALLOe? J53
(AND)(1)(2 ... Xn) [FSUI3R] 23
(APPEND XI X2 ...Xn) [LSUI3R] 26
APPLV 5
CAPPLV. FN ARGS) [SUI3R] 5
(ARG N) rSUI3R] 8
ARGS [BREAK COMMAND] 89
(ARRAV "10" TVPE 81 82 ... 8n) [FSU8R] 43

173

(ASCII N) [!\LJUR] 39
(ASSOC X U [SUnR] 33
(ASSOC. X V) [!;UnR] 33
(ATAN x y) [SUBR] 42
ATM 1t1J1
(ATOM X) [SUBR] 20
(A1TACH X l> [SlHlR) 28
AUTOP [VALUE] 121

<B 01 .. om) [EDIT -COMMAND] 124
BASE [VALUE] 73
BCP 0
BEFORE <n~m(!> (TOP~LEVn-COMMAND] 105
mELOW com x) [EDIT-COMMAND] 112
SF' pattn," (fDiT -:-COMMAND] J 17
<BJ n m) [EDIT ·CO~.1MANO) 129
(BIGRA10M n) [SUBR] 39
mJND ,com~) [lOIT -COMMAND] 138
BK [BREAK COMMAND] gO
OK [[DIT -COMMMJD] III
BKE [BREAK-COMMAND] 90
BKEV 90
BKF [BREAK COMMAND] 90
BKFV 90
<BKT RC) [SUBR] 101
BKV 111
(BLKLST LIST lENGTIO [SUBRJ 103
(BO n) lEDIT ~COMMAND} 129
<OOOlE N Xl X2 ., Xm) [LSlJBR) 23
mOUNDP X) {SLJRR] 20
BPUJO [VAlll(} l"Q
apORG [VALUE] 149
BPS 1119
BRACKETS 64
WR[AK 1nJ 1n2,,) [f[XPR} 91
BREAK-PACKAGE 82
<BREAKO FN WHEN COMS) [SU£3R] 97
<SREAK} 8'RKEXP BRKWHEN 8RKFN BRKCOMS BRKTVPE) [SUBR] 83
BREAK1M 45
BREAK 1M [SUBR] 45
(BREAK1N,undion lwhore} {BRKWHEN} {BRKCOMS}) [FSUBR} 92
BREAKING 90
BREAKMACROS [VALUE] 96
BRKAPPlV [SLH3R] 85
BRKARGS 91
BR~~COMS 83
BRKCOMS [VALUE] 84
BRKEXP R3
BRKEXP [VALUE] 84
BRKrN 133
BRKFN [VALUE) 84
BRKTVPE R3
BRKTVPE [VALUE] 84
BRKWHEN 83
BRKWHEN [VALUE] 84
BROKEN 82
BROKENFNS [VALUEl 91

CAAAAR 24
CAAAOR 24
CAAAR 24
CAAOAR 24
CAADDR 24
CAAOR 24
CAAR 24

174

CADI\AR 24

CI\OADR 24

CADJ\R 24

CI\DDI\R 24

CI\DDOR 24

CI\DDR 24

<CADR 9-0l'p) [SUOR] 24

(CALL dnl> idn2>} ...) [DECLARATION] 155

CALLF 156

(CAR l) [SUBR] 24

(CATCH "~o)(pr>" '''<I<lbol>''}) [FSU£JR] 16

COI\I\I\R 24
CDAADR 24
CDAAR 24
CDADAR 24
CDADDR 24
CDAOR 24
COAl< 24
CDDAAR 24
CODADR 24
CDDAR 24
CDDOAR 24
COOOOR 24
eOODR 24
COOR 24
(CDR L) [SUBR] 24
<CHANGE $ TO .1 ... em) [EDIT.COMMAND] 125
(CHANGES f1;\~) (FSU8R) 50
<CHANGESl ICE N) [SUBR] 105
(CHQLJOTE n) [5UOR) 75
(CHRCT> [SUBR] 78
(CHRVAL X) [5U8R] 39
(CLRBFI) [SUBR] 76
COMMENT [PROPERTY] 53
COMMENT -CDF 63
COMMENT ·CHAR 74
COMPILE-ERRORS 159
COMPILE-HINTS 158
COMPILE-IN-LINE 160
COMPILED.CODE 153
(COMPL filf?1 file? "J [FSUOR] 156
(COMPlFNS LIST) [SUBR] 157
(COMS xl ... xn) [EDIT-COMMAND) 135
(COMSO com 1 ... comn) CEDIT-COMMAND] 135
<COND CI;lUse 1 CI"use2 ...) [FSUBR] 11
(CONS X V) [SLJ8R] 25
(CONSP X) [SUI3R] 19
<COpy X) [SUBR] 26
(COPV S1 TO ce-m . $2) [EDIT-COMMAND] 128
<CORE N) [SU8R] 152
<COS x) [SUBR] 42
(COUNT "(n I" "(n2" ..) [FSUI3R] 45
(COUNT 1 fn) [5UI3R1 46
COUNTEDFNS 46
<CP com. $) [EDIT -COMMAND] 128
(CSVM "I") [VSUOR] 36
(CURPOS) [SUBR] 78
CURRENT-EXPRESSION 108

<DATE) [SLJfJR] 16R
<DAIESTR) {SU8R] 168
(DATESTRX MSTlME DATE) [SUBR) 168
<DC word iidl (do!]cri,.,torl d{,9criptor2 ...)l) <toxt> <esc> [FSUBR] 53
<DC-DEFINE ""me id attribut..,s) [SUBR] 54
(OC-DSKIN name id aHributl's) {SUE3R] 54

175

mC-HEL? nMl1~ ;0 altributt's} {SUUR] 54
<DC- JGNORF:} [SlJBR] 511
<DC-USE RHELP n,,",~ id attributos) [SUBR] 55
DDT 1~9

<DDT IN X) [SUBR] 76
(DE "NAM[" "ARGUM(NT-LIST" "rORM1" ... "FORMn") [FSUBR] 10
<DECLARE ut'c1J dn cl2 .. .> (rSUBR] 153
OfF -COMMrNT [VAlliE] 54
<DEr·EV-PROP "I" V >:P") [F5UBR] 161
(OEFLIST "l" ("d~(val"} "prop") {FSUBRl 11
(OEFr~Op "J" "V" "P") [FSLJ£3R] 10
<DEFSYM Mme "umbor) {SUBR] 164
(OEFSYNON "ttl I" "ttI2" "prop") lFSUBR] 11
<DELETE "FILNAMl" "FILNf\M2· ...) [FSUBR] 60
DEl ErE or (:) {EDIT.COMMAND] 124
(DEPOSIT N V) [SUaR] 162
OF 10 ':'::"'e~
<DIFFERENCE X J X2 .. Xn) [/V!~] 39
(OIR PPN) [SlIBR] 60·
(OIRF (ppnl {fil(tt\p~c}) {FSUBR] 60
(DIVIDE X Y) [SUBR] 110
OM 10
DO, FOR, UNTIL and WHJLE (MACRO] 17
DO fClrm [BREAK.COMMANO] 89
<DREMOVE X l) [SUBR] 31
(OREVERSf U [SUBR] 32
(ORM "CHARACTER" "FUNCTION") (fSUBR] 79
COSKIN 'liST or r II [.NAMES") [FSUORJ 48
OSKIN.COMMENT [VALUE] 55
OSKlENGTU 78
<DSKOUT 'T IlE" "FORM I" ... "FORMn") [FSUBRl 53
<DSKOUTS 'TH.U" ... "rJLEn") [FSUBR] 49
CDSM "CHARACTER" "FUNCTION") [F'SUBR] 79
<DSUnST x v 2) lSllRR] 31
<DUMPA10MS fi!{') [FSUBR] 164
(OV "atom" "value") [F'SUBR) 10

E [EDIT-COMMAND] 134
(E: <81> ~<o2>} .. .) lFSUBR] 65
EDIT are 1 are2 ... ar~N [BREAK COMMAND] 88
EDIT <:t'v~n'-sp~c> ITOP·LEVEL·COMMAND] 103
EDIT-ATTN 108
EDIT-C\lAIN 119
EDIT-MACROS 136
EDIT.MATCH J 13
EDIT-MOD 121
EDIT-SAVE 139
EDIT-SEARCH 114
EDIT -lINDO 1~2

<EDIT 4£ Pllt y) {SLJ8R] 144
(foJTCOMS corns) [SUfJR] 142
EoITCOMSL [VALUE) 138
EDITOEFALJLT 141
(EOITE fl>-pr coms ;..Im) [SUOR) 143
<EOITF x) [FSUOR) 142
CEDITFlf\4iJP x ptlt fl~) [SUBR] 1"5
<EOITFNS x) [FSUBR] 144
(EDnrPAl pat fl~) [SUGR] 1115
(EDITL L coms aim mArk)sl mess) [SUBR] 143
EDITOR 108
(EDITP x) [F'SUBR] 143
(EOn RACEFN com) [VALUE and EXPR] 142
(EOITV ~djtv'C) [FSUBR] 143
EORM [EXPR] 80
ELEMENTARY 2

176

([Mnrn $ IN . x) I[DIT -COMMAND] 127

EMBED-EXTRI\CT 126

(EQ X Y) [SlJnR] 18

(EOr.JI\M X V) [SU8RJ 38

([Qr X V) {5UnR] 20

(E"OSTR ~t 1 il12) [SU!3R] 38

(EQUAL X V) [SUflR] 19

(ERR E) [SUf3RJ 1G

(ERRCH N) {SIJRR] }:,
(ERROR E> [SUURJ 100

(ERRORX x) [SLJUR] 100

(f.RRSEl £ "F") [FSUBRJ 1G

ERXACTlON [PROPERTY] 102

[VAL 5

EVAL [BREAK COM~,,1AND] 85

(EVALV A P) [SUfJR] 100

EVENT-SPEC 103

(EVERV rVERYX EVERVfNl EVERVFN2) {SUBR] 21

(EVL·tIX Clxp tvp()-of.fix) [SUBR] 95

(EVL.TRI\CE f'lXp) [fSIJBRJ 96

EVSM [EXPR] 80

EX [RR[AK COMM/\t~D] 87

(EXAMINE N) [SUBR] 162

(EXARRAY "10" TVPE B 1 B2 ... Bn) [FSUBR] 44

(EXCISE) [SUBR] 73

(EXISTS <var> ·-::Iist> <predicale> «nexb}) [MACRO] 21
(EXIT f1il~) [SU8R) J 68 .
(EXP)I;) [SUBR] iJ3
(EXPANO··DO form) [SUf3R] 18

EXPAND-EX 21

EXPAND-FE 14

EXPAND-SET-OF J 5

(EXPBPS n) [SUl1R) 152

(EXPFS n) [SUBR] 152

(EXPFWS n) [SU8R] 152

(EXPLODE l) [SUBR] 37

(EXPIODEC l) (SLJ8R] 3]

EXPR 8

(EXPRPDl n) [SUBR] 152

(EXPSPDl n) [SUBR] 152

(EXTRACT $1 FROM $2) [EDIT-COMMAND] 127

F 8rt: 1 arg2 '" aq~N [BREAK COMMAND] 87

F prtti",n [EDIT.COMMAND] J 1S

(F. t'~pression)() [EDIT-COMMAND] 1 J6
FEXPR 7
(FIlBAK FILE NEWEXn [SUBRl 5S
(FILE 'TilE") [fSLHJR] 49
(FIlE.FNS FILE) [SUBR] 50
(FII.ElENGTH) [SURR) 60
FILElST 49
FIlElST [VALUE] 50
FILES ~G

FILESPEC S6
FIlUPDATHG 63
FINDARG 88
(FINDrILES fito-list name-list> [SUBR] S2
(FlNDFNS file-list nAme-list) [SUBR] 52
(FIX X) (SLJBR] 110
FIX aq~ 1 art2 .,. {BREAK COMMAND} 88
FIX <event-spoc> [TOP-LEVEL COMMAND] 103
FIX 1" JG5
FIXNUM 3
(FlATSrZE l) [SlJIJR] 37
(FlATSIZEC L) [SUnRl 37

177

FlONUM 3
FN·PROrs [VALlJE] 168
(FNOBP.~~PT P) [SLJuR] 99
FOR 89
<FOR-lACH (MArrni 'TORMAl" LIST "FORMl" ... 'TORMn") [MACRO) 14
(FORALL ",var> ",list> <pr('dicolfe> (<fail-fn>i> [MACRO] 21
FORGET <ovonl- 5r~C> [10P·LEVEL COMMAND] 105
(FORMS ",x1> {",x2>} ...) [FSU£3R] 65
FREE 151
FREE-STG J119
FREEL 1ST 151
FROM? {form} [BREAK COMMAND] 86
(FS pOllINn! .. pattornn) [EDIT-COMMAND) 116
FSU8R 157
FUlllVAlUE 5
FULl·VlORD-SPACE 150
FUNARG 5
(FUNCTION "FN") [FSUBR] 7

GARBAGE.COllECTION 150

(Ge) [SUBR] 1SO

(GCD X V) [SlmR] '\0

(GCGAG X) [SUBR] 150

(GCGOl> (SU£3R] 151

(GCMIN nl n2) [SUBR] 151

(GCT IME> [SUBR] IlG

(GENSVM) [SUBR] 36
(GET I P) [SUBRJ 34
(GET CHN) [SlJOR] 73

(GETDEr "FILE" "II" .. "In") [FSU8R] SO

(GElDEF ACT id rr"p oxp) [SUBR) 51

(GE1DEFEVAl "10" Oxp "PROP") [FSUBR) 51

(GElOEFNS (n 1 fn2 ...) [MACRO] 52

GETDEFPROPS [VALUE] 51

GfTDEF~ ARLE [VAl UE] 51

WElL I U ISUBP] 34

CGETSrGllSP) {5lJBR] 1G1

•	 (GETSEGllSPCO) [SUBRJ 162
(GETSVM "P" "SI" "52" .., "Sn") [FSUBR] 146
(GIVCHN chan) [SUBR] 73

- <GlOBAL MACRO <macl> [<mflc2>} .. .) [DECLARATION] 156
(GO "10") [FSUBR] 15
GO [BREAK COMMAND] 85
(GREJ\TE RP Xl X2 .. Xn) [LSUnR] 22
(GR1NDEF "F I" "F2" 'T3" .. 'TN") [FSUBR] 61
(GRINL "F I" "F2" ... "FN") [fSUBR} 62
GR1NPROPS 62
<GTBLK LENGTH Ge) (SUBR) 163
GVAL (SUBR) 165
GWD 165

(flEl P "word 1". "wordn") [FSUBRJ 3
HELP [BREAK-COMMAND] 89

Hfl P [EDIT-COMMAND] 140

(HELPFlL'rER word attributos) [FSUBR] 4

(HGIfCOR X) [5UnR) 162

(HGHEND) ISUBR] 162

(HGUORG X) (SUB~ J 162

HISEG [VALUE] S8

<I c xl ... xn) [EDIT-COMMAND] J34

lBASE 74

<IF x) [EDIT.COMMAND) 135

ILL 24, 44

ONC CHANNEL ACT ION) [SUBR] 71

178

(J NCH) [SlJf3R] 72
(JNITrL "FIL[LST") (FSUBR] IG3
<INITFN FN) ISLJHR] 107
(lNI1PROMPT N) lSUnR] 77
<INP X Y) (SU8R] 19
<INPUT "CIlANNfl" . "FILENAME-LIST") (FSl1flR] 71
(INSERT X L COMPAREFN NODUPS) [SUBR] 28
(INSERT., 1 ... om BEFORE. S) [EDIT-COMMMJD} J25
<INTERN 1> [SUBR] 36
INTERNSTR [VALUE] 74
INTERRUPTS 81
INUM 3

INUMO 165

(lNUMP X) [SllBR] 22

JCALL 156

JCALLF 156

KLIST [VALUE] 165
(KWOTE X) [SU8R] 26

L 119
lAOEl 8
LABElS 64
LAMBDA 7
LAP J60
LAPEVAL 16S
lAPKlST [VALUE] 165
LAPlST [VALUE] 165
lAPOLST [VALUE] 166
lAPSLST [VALUE]) 66
(LAST x) [SUBR] 24
LASTAIL 110
lASTHEtP [VALUE] 4
LASTPOS [VALUE] 83
lASTVAlLJE 139
LASTWORD [VALUE] 169
(LC . $) [EDIT -COMMAND] 118
(LCl . $) [EDIT-COMMAND] 119
(LCONC PTR X) [SUBR] 27
(lDIFF X Y) [SU£3R] 29
(LENGTH L) [SUBR] 29
CLESSP Xl X2 ... Xn) [lSU8R] 23
LETTER-QlJOTE 7S
(LEXOROER X V) [SUBR] 38
LEXPR 8
(LI n) [EDIT-COMMAND] 129
LIBRARIES [VALUE] 52
CUORARY "fifo I" "r;102" ..,) [FSUBR] 51
(LINElENGTH N) [SU8R] 78
(UNEREAD) lSUm~} 67
(LINEREADP) [SUBR] 67
(LINES n) lSUI3R] 69
LISPPN [VALUE} 163
LISPXHIST [VALUE] 106
LISPXHISTORY [VALUE] lOG
(LIST X I .. Xn) {FSU8R] 25
LISTDEVS [VALUE] 55
(LITATOM X) [SLHlR] 20
(LO n) [EDIT -COMMAND] 129
LOAD 148
LOCATION-SPEC 117
(LOG x) [SUBR] 42
(LOOKUP DEV fIlNAM) [SU£lR] 59
(lOOKUPtILE file) [SUBR] 59

179

LOWER-CASE 76
(LP . C~'m!l) [EDJT .COMMAND]
(lPO Com5) {EDIT-COMMAND]
LPTLrNGl H [VALUE] 78
(l SH X N) [5UBR] 40
LSU!3R 1lj8
(LSUBST X Y Z) {SUGRJ 30

(M c . coms) [EDIT-COMMAND)
MJ\Cf.)O 9

136
J36

137

(MAKE FN form are n n m) {EDIT-COMMAND] 141
(MflKNAM L> [SIJBR] 37
{MM~NLJM X TYPU [SU8R] 166
(MAP FN L) (t SUB!?] 12
(MAPATOMS (n) [SUOR] 14
(MAPC FN l> [lSUBR] J3
(MAPGAN FN ARG) [lSUBR] J3
(MAPCAR FN L> [lSU8R] 14
(MAPCON FN ARG) [lSUl3R] 13
MAPCONC [lSUBR] J3
(MAPLlST FN l) [LSUBR] 14
MArrING 12
MARK ([DIT -COMMAND] 119
(MI\RKICHANGEO F) [SURR) 50
MARKlST [VAlUr] 11 9
(MAX Xl X2 '" Xn) [lSUBR] 40
MAXl. [VEL I I 5
MI\XlEVEl (Vl\lUE] 117
MAXIOOP 135
MAXlOOP [VAL UE] 136
(MOD x) [[on -COMMAND]
(MBO d n> -:x 1> :<)(2)} .. .>
MEASUREMENT 'l'l
MEMB [SUOR] 19
(ME MrlER X Y) [5U8R] 19
(MEMO X Y) [SlIBR] J9

J 27
[FSUBR] 65

(MERGE DATAl DI\TA2 COMPAREFN)
(METER "F 1" .., 'Tn") [FSUOR] 44
MEl EREDFNS {VALUE] 45
(MEl [RS "F 1" .. ''Fn'') [rSUBRJ 45
(MIN XI X2 ... Xn) [LSUBR] 40
(MH~LJS X) [SllRR] 40
CMINUSP X) [SUBR] 22
MISER 64
(MODCHR CH N) [SUBR] 75

{SUBR] 28

(MOVE S1 TO co", . $2) [EDIT-COMMAND] 127
MOVE-PARENS) 28
(MSG <i 1> J <it»} .. .) [FSUBR] 68
(MSTIME> [SUOR] 168
(MV com. $) [EDIT-COMMAND] 128
(MYPPN) [SU8RJ 57

(Nf'I ... om) [Eon· COMMAND] 123
NAME ~nam~> «!Vent-spec> {TOP-LEVEL COMMAND] 104
NAMED-EVENTS 105
NAMESCHANGEO {PROPERTY] 84

((NCONC Xl X2 . Xn) [LSUrJRl 26
(NCONC 1 L X) [SUORJ 28
(NCONS X) [SlJnRl 7.5
CNEO X V) [SUIJR] 19
(NEX x) IEDlT-COMMAND] 112
(NEXTEV P) (SUOI(] 99
NIL [VALUE] 3
NIL [EulT-COMMAND]) 39
(NILL "X I" "X2" ... "Xn") [FSUBR) 169

180

<NOCI\LL <,,1> :<:\2>1,.) [DEClARATION] 154
<NOCOMPILE C)(p} [DECLARI\ TION] 156
NOrMBED 96
NOPRETTYPROPS 121
(NOT X) [SUBR] 7.3
(NOT I\NY SOMEX SOMEFN 1 SOMEFN7.) [SLH3R] 22
(NOTEVERY EV£RYX EVERYFNI EVERVFN2) lSUBR] 21
(NOUUO X) [SLJBR] 164
(NT H X N) [SUBR] 25
(NTH n) n>O (EOIl-COMMAND] 111
(NTHCHAR X N> [SUBR] 38
(NULL l) [SUBR] J9
(NUMBERP X) [SUl3R] 22
(NUMTYPE X) [SIJBR] 22
<NUMVI\L n) [SUnRJ 1G6
NX [EDIT -COMMAND] J JO

OBLlST 35
OCTAL-POINT 74
OK [BREAK COMMAND] 85
OK {EDIT-COMMJ\NO] J39
<ONEP XI [SUBR] 22
(OR Xl X2 ... Xn) (FSLJBR] 23
(ORF pilttornl '" patlernn) [EDIT-COMMAND] 116
(ORR coms I ... COlllnn) [EDIT-COMMAND] 136
<OUTC CHANNEL ACTION) [SUBR] 72
(OUTCH) [SLJRR] 72
<OUTPUT "CHI\NNEl" . "FILENf\ME-llST") (FSU8R] 72
(Our VAL P V) [SLJ8R} 100
OVERFLOW 43
OVERVIEW 2

P [EDIT-COMMAND] 121
(P 1RM) [EXPR) 80
(P; <prop!;> <x 1:> r<x2>} .. .) {FSUBR] 65
(PATOM X) (SUBR] 20
POL 149
(PEEKC) [SURR) 67
(PGllNE) [SU8R] 74
(PLEV pxp) {SLJBR] 71
(PUST x) [SU8R] 35 L.;-UBP,

(PLUS Xl X2 .. Xn) [~] \ 41
PNAME 35
(PP<:al>f<a2>1 ...) [FSUBR] 61
PP [EDIT-COMMAND} 121
(PP. 11 12.) [FSLJ8R} G1
pp. 121
(PP-COMMENT ellCp) [SUOR] 64
(PP-OCCOMMENT 10 VAL PROP) [SUBR] 62
(PP-FOr~MAT <e> <n> <flaR» [SUBR] 64
(PP-FUNCTION ~tnnl fundion-dt'fn fn-prop) [SUBR] 62
(PP-LABELS cxp) [SU8R] 64
CPP-MISER ~)(p) [SUORJ 64
(PP-RMI\CS atom rcadmacro-defn (Ouote READMACRO» (SUBR] 62
CPP-VALUE Atom valu,. (Ouot., VALUE» [SUBR] 62
PPCOM [PROPERTY] 65
(PPL <Vl'rl > {<v~,2>l ...) [FSUBR] 61
(PPL. 11 12 .. J [F5UBR] 62
PPMAXLEN [VALUE] 66
PPN 56
(PPRM) [EXPR] 80
PREDICATES J 8
PRETTY-PRINT-COMMANDS 64
PRETTYFLG [VALUE] 66
PRETTYPROPS [VALUE] 62

(

181

(PRrV(v P) [:'IJl1P.] 99
(PRIN J 5) lSUllR] GS
(PP.ItJA)(tr0!;n [lSlJI1R] 69
(PRINI\C x !p('nD (lSUl3R] 69
<PRINC S) [SUI1R] 68
(PRINl ~I» [LSUf3R] 70
(PRINI C <I» [lSUBR] 70
(PRINI.[V [XPRf.SSJON OlPTH> (SUOR] 70
(PRINT S) [SLJBR} 68
PRINT -COMMfNT 63
(PRINTLEV EXPRCSSION DEPTH> (SUBR) 70
PRINTMACRO G3
PROOlEMS J69
(P~OG "VARlISr" "RODY") (FSLJ8R) 15
(PROG 1 XI X2 ... Xn) (SUBR] IS
(PROG7 Xl X2. Xn) l5UBR) IS
<PROGN Xl X2 ... Xn) lFSLJI1Rl 1G
(PROMPT N) [SU£3R] 77
PROPERTIES 3S
PROPERTY-LIST 33
PUSHDOWN 11\9
<PUT PROP I V P) [SUBR] 34
(PUTSYM ..xI" "X2"Xn..) [FSLJOR) 147

Ql 1ST (VALUE) 166
QUANTIFIERS 20
(QUOTE "[") [FSlJOR) 3
<oUOTE' "FORt~ll" ... "FORMn") [FSUOR) 25
QUOT(-CIIAR 79 :~l.i.llFt
(QUOTIENT Xl X2 ... Xn) [MJ\C~] 4J

(R x y) [EDIT -COMMI\ND] 130
(RDFIl f) (SUBR] 59
(RONAM) [SUBR] G6
(READ) (SUBR] 66
(READCm [SllEJR] G6
(READUST l) [SUBR} 37
REAOMACRO 78
(READP) [SUBR] 77
(REALlOC fws bp~ rpdl spdl fs) [SU8R] 151
CRECORDFILE "FILE") [FSUI3R] 58
REDO <~vr.nt-srf'lC:> (lOr-LEVEL COMMAND) 103
RElOC 148
(REMAINDCR)(Y) lSUBR) 41
(REMO£3 ..xI" "X2 ... "Xn") lFSUBR] 36
(REMOB 1 ltidlt) (SUI1R] 36
(REMOVE Xl) [SUBR] 30
(REMrROP 1 P) [SUBR} 34
(R(NAME "FIlNI\Ml" "FIlNAM2") [FSUI3R] 60
REPACK [EDIT -COIAMI\ND} 141
(REPLI\CL S WITIt f' 1 ," t>m) [EDIT-COMMAND] 125
(RETn'!O~.~ FN VAl) [SUBR] 100
RETRIEVE <nam"> {TOP-U VEL COMMAND] 105
(RETURN X) [SURR] t 5
RET URN form [UP.EAK COMMAND] 85
RETURN dorm> [TOP-LEVEl COMMAND] 103
(REVeRSE l) [SUBR] 29

(RGETSYM PSI S2 ..J [FSUBR] 147

(RI n m) [EDIT-COMMAND] 130

(RO n) [EDIT-COMMAND) 130

RPDl 150

(RPLI\CA X Y) [SUBR] 31

(RPLACD X V) [SUBR] 31

(RPU1SYM Xl X2 ..J [FSUBR] 147

132

(S 1,;;1,.. S) l(DIT-Cm.~Mf\Nf)) 1'l2
(S/\SSOC X L FN) ISIJlJRj 33

(SAVE 'or II E·SrrC" "[XCISE") [FSlJOR] 57

SAVE [tOIT -COMMAND] 139

SAVE·STA1E '18
SCIEN rIF IC-SLJ£JR 1\2
<SECOND $) [EDIT -COI.AMMJD] J 16

<SElECIQ X "V I" "V2" ." "Vn" Z) [FSUBRl 11

(SET E V) [SUBR] 16

(SET -OF <V:lr> .-1I"t> .-:prNltcait») [MACRO) "14
(SET I\RG N V) [SlJ£JR] 8

(SETCUR CH N> [~'ilmRJ 75

(SETCURPOS N) [SUORJ 78

(SfTNAM Mmn) (SIJnRJ 164

(Sf TO "JO" V) [FSUURJ 1G ,
 <SEl SYS fl/~. -:!'OC) [f StJ8R] 58

(SIN X) [SUBR] 42

, (SIXATM N) ISLJRR] 166

(SIXBI1 ATOM) [SUBR] J6G
(SOME SOMrx SOMI: FN1 SOMFFN2) {SU8R] 20

(SORT DA1A COMPAREFN) [SUBR] 32

(SPACES n I idp.nt p [LSUBR] 69

SPOt 98

(SPDLFT P) [SUBR] 98

<SPDlPT) lSU(H~] 98

(SPDlRT P) [SUBR] 98

(SPEAK) LSUBR] 47

SPECBINO 167

(SPECIAL <v~r 1> {<vltr2>} . ,.) (DECLARATION] 154

SPECIALS 154

SP[CSTR 167

<SPREOO P V) [SUBRj 100

<SPP.[VAl P V) [SIJBR] 100

(SPRINT EXPR IND) [SUBR] 61

(SORT x) [SUBR] 42

(STKCOllNl NAME. P PEND} [SUBR] 99

(STKNAME P) [SlII3R] 99

(STKNTII N P) {5U£lR] 99

(STKPTR P) [SUBRT 98

(STKSRCH NAME P flAG) [SLJBR] .99

STOP [EDIT-COMMAND] 140

STORAGE-AllOCAnON 1119

(STORE ("10" d i2 ,.. In) \tillvo) [FSUBR] 044
<STRINGP X) [SUnR] 20

(SUB 1 X) [SUBR] 4 J
(SUI111S AI 51 E.XrR) [SU8R] 30

(SUBPAlR OLD NEW EXPR) [SUBR] 30

SUBR 157

(SUBST X V S) [SUBR] 29

SURST ..r~c; fOR Vi\r!l IN ~""nt-spQC [TOP-LEVEL COMMAND] 104

(SUBSl RING gh "' n) [SllOR] 38

(SW n m) [EDIT-COMMAND] 131

SVM J57
SYM80l-TABLE 146

(SVSCLR) [SLJBR] J63
SYSTEM-BUILD 162

SVSTEM.S1UFF 146 j

T [VALUE] 3

<TAB N) [SUORJ 70

TAG 160

(TAILP X V) [SUOR] 20

(TALK) [SLJORj 77

(lCONe PTR X) [SUBR] 26

(lERPRI X) [SUOR) 70

183

TEsr [EDIT -COMMMJD] 133

THE-l OP-I (VEl 103

(THIRD. $) [EDil-COI.1MANDJ J16

(TIlROW vrilue t"lribe'''j) [rSUGR] 17

THRU 131

(TIME> lSURR] 46

<T IME-GCTIME> (SllBR) 46 i.S,.i~R.
(TIMES XI X2 ... Xn) [MACPO] 42

TL [BREAK-COMtI.I\NO] 89

TL [[DIT -COMMI\ND) 140

TO 131

TO- THRU 131

<TOP-l [VEL> [SUrJR] 103

TOP-lEVElMI\CROS [VAlUE] 105

(TRACE)(1 x2 ..) (fSlIIJR] 93

TRACEOFNS [VAlUE] £14
(TRJ\CCIN fn {<J\ROliNO Sl) <AROUND $2) .. }) (FSUORJ 94

(lRJ\NSPRINT> {SLJOR] S5
TTV: [EDIT-COMMAND]

(TTVECHO) [SUBR] 77

(TTVESNO) [SUBR} 68

(TTVIN FORM] ... FORM,,)

(lTVMSG «:i J> f<i2> I ...)

<TrVOUT FORMI FORMn)

<TV "file I" "file2" "filen")

(lYI> [SUUR) 66

<TYIO n) [SUBR] 67

(Tya N) [SUnR] 68

139

[MACRO] 72

[F'SU8R} 69

[MACRO] 73·

[FSUBRl 60

(lJrOINP CHANNrL PPN) {Sl/RR} 59

UNBLOCK [EDIT -COMMI\ND] 133

(UNBOUND) [SUBR] 163

CUNBRE AK xl x2 .,) [FSU£lR) 91

(UNCOlJNT "fnl" "(1'12" .) [F'SUBR] 4S

(UNCOUNll (1'1) [SUBRJ 46

UNDO <pvrnt-H~l"O (TOP-LEVEL COMMAND] 104

UNDO [EDIT-COMMAND] 132

UNDOJ\8lE~FNS 32

(UNDOERRSET "form") [FSUBR] 32

UNDOlST (VALUE] 133

UNrIND 120

(UNMElER "F 1n ••• "Fn") [FSUBR] 45

(UNSprCIAL <v"rt> r<v"r2> 1...) [DECLARATION] 154

UNTIL 89

(UNTRACE)(1)(2 ..) [F'SLJI3R] 94

(UNlYl 1'1) [SUHR) 67

UP [fDIT-COMMI\ND} 109

UPFINDrLG J25

USE)(rOR y [BRfI\K COMMAND] 87

USE at<::r. rOR VMG IN ovon'-~poc {TOP-LEVEL COMMAND] 104

USEP.E~RORX [VI\LUE] 102

(US£RllrlP w~rdl w{lrd2.J [FSUGR] 52

USERMJ\CROS [VALUE] J38

USERTOP [VALUE and SLJRR] 106

(UUO UUO-TVPE) [SUBR] 167

(UUOPl\R~~1 N UUO- TYPE> (SUi1R] 167
 c
VALUE 157

(VJ\lUEOF "EVENT-SPECIfICATION") [FSUBR] 105

VERSION [SPECIAl VALUE] 58

WHERE 98

WlHlE 89

(XCONS X V) [SUl1R] 25

184

(XTR S) {EDIT-COMMAND] 126

(VESr~O X) [SLJI3R] 68

(ZEROP X) rsu8Rl 22

\ [EDIT -COMMAtJD]
\P [EDIT -COMMJ\ND]

120
120

... [BREAK COMMM~D) 85
A [EDIT •. COMMANOJ 110
... ~ [I3RrAK COMMAND] 85
... ,. ... [TOP-LEVEL COMMAND] 104

_
_

[EOn-COMMAND]
[EDIT-COMMAND]

119
120

J

	Table of Contents
	Preface
	1. Lisp Proper
	2. Input-Output
	3. Error Recovery
	4. The Top Level
	5. Editor
	6. System Stuff
	7. Misc
	Index

