
.. 

CARNEGIE-MELLON UNIVERSITY 

DEPARTMENT OF COMPUTER SCIENCE 

User's Guide for CMU Common Lisp on the IBM RT PC under Mach 

Edited by David Il. McDonald 

16 October 1986 

Companion to Common Lisp: The Language 

Copyright © 1986 Carnegie-Mellon University 

Supported by the Defense Advanced Research Projects Agency. Department of Defense, ARPA Order 
3597, monitored by the Air Force Avionics Laboratory under contract F33615-81-K-1539. The views and 
conclusions contained in this document are those of the authors and should not be interpreted as representing 
the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the 
U.S. Government 



TABLE Of-CONTENTS 

Table of Contents 

1. Introduction 
1.1. Obtaining and Running Mach RT PC Common Lisp 

2. Implementation Dependent Design Choices 
2.1. Numbers 
2.2. Characters 
2.3. Vector Initialization 
2.4. Packages 
2.5. The Editor 
2.6. Time Functions 
2.7. Garbage Collection 
2.8. Describe 
2.9. Modules 
2.10. Saving a Core Image 
2.11. Interrupts 
2.12. Search Lists 

3. Debugging Tools 
3.1. Function Tracing 

3.1.1. Encapsulation Functions 
3.2. The Single Stepper 
3.3. The Debugger 

3.3.1. Movement Commands 
3.3.2. Inspection Commands 
3.3.3. Other Commands 

3.4. Break Loop 
3.4.1. Cleaning Up 

4. The Compiler 
4.1. Calling the Compiler 
4.2. Open and Closed Coding · 
4.3. Compiler Switches 
4.4. Declare switches 

5. Efficiency 
5.1. Compile Your Code 
5.2. Avoid Unnecessary Consing 
5.3. Do. Don't Map 
5.4. Think Before You Use a List 

5.4.1. Use Vectors 
5.4.2. Use Structures 
5.4.3. Use Hashtables 
5.4.4. Use Ilit-Vectors 

5.5. Simple Vs Complex Arrays 

2 
2 

4 
4 
4 
4 
4 
5 
5 
5 
5 
7 
7 
7 
8 

9 
9 

10 
11 
12 
12 
13 
13 
15 
15 

17 
17 
17 
18 
19 

20 
20 
20 
21 
21 
21 
22 
22 
23 
23 



TADI.EOl7CONTENTS ti 

5.6. To Call or Not To Call 23 
5.7. Keywords and the Rest 24 
5.8. Numbers 24 
5.9. Timing 25 

6. The Alien Facility 26 
6.1. What t11e Alien Facility Is 26 
6.2. Alien Values 26 
6.3. Alien Types 26 
6.4. Alien Primitives 27 
6.5. Alien Variables 29 
6.6. Alien Stacks 29 
6. 7. Alien Operators 29 
6.8. Examples 30 

·-' 

Index 33 

Index 34 



A ckno w I edgen1 en ts 

This manual is a modified version of Spice Lisp User's Guide edited by Scott E. Fahlman and Monica 
J. Cellio. It has been updated tu reflect differences between the Common lisp implementation on the Pcrq 
and the IIlM RT PC. 



Chapter 1 

Introduction 

CMU Common Lisp is the implementation of Common Lisp for the IIlM RT PC running the Mach 
operating system. It is adapted from Spice Lisp, a_Common Lisp implementation developed by CMU's 
Computer Science Department for the Perq Workstation. All the code for CMU Common Lisp is in the 
public domain. 

The central document for users of any Common Lisp implementation is Common Lisp: The Language, by 
Guy L. Steele Jr. All implementations of Common Lisp must conform to this standard. However, a number 
of design choices are left up to the implementor, and implementations arc free to add to the basic Common 
Lisp facilities. This document covers those choices and features that are specific to the CMU Common Lisp 
implementation on the IDM PC RT for the Mach operating system. Common Lisp: The Language and User's 
Guide for CMU Common Lisp on the IBA! RT PC under Mach, taken together, should provide everything 
that the user of Mach RT PC Common Lisp needs to know. 

For now, a n1_1mber of documents describing useful library modules that run in CMU Common Lisp are 
included here. Once there are enough of these, the documents will be moved into a separate document on the 
Common Lisp Program Library. 

Mach RT PC Common Lisp is currently undergoing intensive tuning and development. For the next year 
or so, at least. new releases will be appearing frequently. This document will be modified for each major 
release, so that it is always up to date. Users of CM U Common Lisp at CM U should watch the Mach, Unix, 
and CUSP bulletin boards for release announcements, pointers to updated documentation files, and other 
information of interest to the user community. 

1.1. Obtaining and Running Mach RT PC Common Lisp 

In order to run Mach RT PC Common Lisp, you must have an IBM RT PC with at least 4 megabytes of 
memory and a floating point accelerator card. To use Hemlock, you currently also need an IBM AED 
(Viking), IBM 6155 (APA16), or InM 6153 (APAS) display. At CMU, there is a misc collection named 
rt lisp which should be updated on your machine regularly by normal mechanisms. For those outside of 
CMU, there are two files: lisp and lisp.core that need to be installed. Lisp is a small C program that loads 
lisp.core into memory. Lisp should be put in any bin directory that is nonnally in your search path. Lisp 
currently expects to find lisp.core in the directory /usr/misc/.lisp/lib. 

To run Lisp, just type: 

-2-



INTRQl)L'CTION 3 

lisp 
This will start up Lisp with the default core image (/usr/misc/.lisp/lib/lisp.core) after several seconds. 
Currently Lisp accepts the following flags: 

-c Immediately following this flag should be the name of a core file. Rather than using the 
default core file, the core file specified is loaded. 

The Hemlock spelling dictionary is kept in file s pe 11 di ct. 



, 

Chapter 2 

In1plen1entation Dependent Design Choices 

Several design choices in Common Lisp are left to the individual implementation. This chapter contains a 
partial list of these topics and the choices that are implemented in CMU Common Lisp on the IBM RT PC 
for Mach. 

2.1. Numbers 

Currently, short-floats and single-floats are the same, and long-floats and double-floats arc i:he same. Short 
floats use an immediate (non·consing) representation with 8 bits of exponent and a 21 ·bit mantissa. Long 
floats arc 64-bit consed objects, with 12 bits of exponent and 53 bits of mantissa. All of these figures include 
the sign bit and, for the mantissa, the "hidden bit". The long-float representation conforms to the 64-bit 
IEEE standard, except that we do not support all the exceptions, negative 0, illfinities, and Llie like. 

Fixnums are stored as 28-bit two's complement integers, including the sign biL The most pcsitive fixnum is 
227 -1, and the most negative fixnum is-227. An integer outside of this range is a bignum. 

2.2. Characters 

CMU Common Lisp characters have 8 bits of code, 8 bits of font, and 8 control bits. The four 
least-significant bits are named Control, Meta, Super, and Hyper, as described in the CO\1;\,fON LISP 

manual. Characters read from a normal file or terminal stream always have zero font and bits, but programs 
can use them internally. 

2.3. Vector Initialization 

If no : in it i a 1-v a 1 ue is specified, vectors of Lisp objects are initialized to nil, and vectors of inte;;ers 
are initialized to 0. 

2.4. Packages 

Common Lisp requires four built-in packages: 1 i sp, user, keyword, and sys tern. Tn addbon :o these, 

CMU Common Lisp has separate packages hemlock and hemlock-internals (for the editor), 

compiler and debug, as well as a large number ofp~ckagcs.created for matchmaker interfaces. 

-4-



J:\iPI.E\iENTATION nl:PENDEl'rr DESIGN CIIOICES 5 

2.5. The Editor 

Theed function will invoke the Hemlock Editor. Hemlock is described in The Hemlock User's Manual and 
The Hemlock Command Implementors Manual; like CMU Common Lisp, it contains easily accessible internal 
documentation. 

2.6. Time Functions 

'lbe standard COMMON LISP time functions are available in CMU Common Lisp, but no additional 
facilities such as time parsing and printing arc available. 

time form . [Macro] 
The ti me macro evaluates its single form ,!rgument, prints the total elapsed time for the evaluation 
to *trace-output*. and returns-the value which form returns. 

internal-time-units-per-second • [Constant] 
The internal time unit is one microsecond. 

2.7. Garbage Collection 

The following two variables control the behavior of garbage collection. 

* gc-tr i gge r- th re sho l d* [Variable] • 
CMU Common Lisp automatically does a GC whenever the amount of memory allocated to 
dynamic object exceeds the value of the variable *gc-trigger-threshold* (in bytes), unless 
garbage collection is inhibited. The default value is 4000000. 

• gc- reclaim-goal* [Variable] 
If *gc-reclaim-goal* bytes are not reclaimed, then *gc-trigger-threshold* is 
increased by the difference between *gc-recl aim-goal* and what was reclaimed. The default 
value is 4000000. 

Note that a garbage collection will not happen at exactly * g c- trigger- threshold* bytes. The system 
periodically checks whe¢er * g c - tr i g g er - thresh o l d • has been exceeded, and only then does a garbage 
collection. Automatic garbage collection can be turned off using the gc-off function. and turned back on 
using the gc-on function. • 

2.8. Describe 

In addition to the basic function described below, there are a number of switches and other things that can 
be used to control describe 's behavior. 



,· 

lMPLE'.\IENTATll"''J DEPENDENT DESIGN CHOICES 6 

describe object &optional stream [F!Jnc1io11J 
The describe function prints useful infonnation about object on stream. which defaults to 
*standard-output*. For any object. describe will print out the type. Then it prints other 
infonnation based on the type of object. The types which arc presently handled are: 

hash-table 

function 

fixnum 

symbol 

describe prints the number of entries currently in the hash table and the 
number of buckets currently allocated. 

describe prints a list of the function's name (if any) and its formal 
parameters. If the name has documentation. then the documentation string will 
be printed. If the function is compiled then the file where it is defined will be 
printed as well. 

describe prints whether the integer is prime or not 

The symbol's value. properties. and documentation are all printed. If the 
symbol has a function definition, then the function is-described. 

If there is anything interesting to be· said about some component of the object, describe will invoke 
itself recursively to describe that obj_ect. The level of recursion is indicated by indented output. 

*describe-level* (Variable] 
The maximum level of recursive description allowed. Initially two. 

*describe-indentation* (Variable] 
The number of spaces to indent for each level of recursive description, initially three. 

*describe-verbose* [Variable] 
If true, more infonnation will be printed than usually would be. Initially n i 1. 

*describe-print-1 evel * [Variable] 
* des er i be-pr in t-1 ength * [Variable} 

The values of *print -1 eve 1 * and *pr i n t -1 en gt h * during description. Initially two and 
five. 

* des er i be- imp 1 ementa ti on-de ta i 1 s * [Variable] 
If true describe will print out everything there is, otherwise information which is internal to the 
implementation is not printed. This currently controls display of various propenies. 

defdescribe function-name type lambda-list {jonn}* [Macro] 
This macro is used to tell describe about new types. It creates a function ealled function-name with 
the specified forms and lambda-list which is called with the object when describe is asked to 
describe an object of the specified type. Output should be ~irected to *standard-outpuP. 
The code may call describe, in which case it will do the right thing. Users are encouraged to 
observe the values of *describe-verbose* and 
*des er i be-implementation-de ta i 1 s * where appropriate . 

. If type is symbol, then the second and third values returned by the body are interpreted as lists of 
property names and kinds of documentation effectively used up by the defdescribe method. 



IMPLEMENTATION DEPFNDENT DESIGN CIIOICES 1 

Returning these values inhibits the default action of displaying the specified documcnta_tion or 
prope1ty. 

2.9. l\-1odules 

111c CMU Common -Lisp implementation of modules operate as described in the Common Lisp manual. 
In addition, the following things arc also true. 

When the user requires a module, the system initially looks in the file named in *slisp-modulcs-file* 
(slisp-modulcs.slisp, by default) on the current path. This file should contain an a-list mapping module 
names to lists of files which should be loaded when those modules are required. This a-list is put on the 
variable *module-file-translations* when it is read. and once this variable has a useful value the file is not read 
anymore. If this list of files cannot be found, either in the file or the a-list. then the file whose name is the 
same as that of the module is loaded. 

If *require-verbose* is non-nil (the default) require prints out the name of each file that it looks at and tells 
whether it loaded said file or not. 

2.10. Saving a Core Image 

A mechanism has been provided to save a running Lisp core image and to latter restore it. This is 
convcr.ient if you don't want to load several files into a Lisp when you first start it up. 

save file &opt ion al (checksum I) [Functio1.:] 
The save function saves the state of the currently running lisp core image in file. Currently the 
checksum argument is ignored. 

To resume a saved file, type: 
lisp -c file 

2.11. Interrupts 

Under Mach, an interrupt capability is enabled. CMU Common Lisp responds to various Unix signals in a 
non-standard way: 

SIGINT 

SIGQUIT 

causes Lisp to enter a break loop. This puts you into the debugger which allows you to 
look around at the current state·of the computation. If you proceed from the break loop, 
the computation will be restarted where it was interrupted. This signal can be generated 
from the keyboard by typing control-B or function key Fl. While in Hemlock, only Fl has 
this meaning. • 

causes Lisp to do a throw to the top-level. This causes the current comnutation to be 
aborted, and control returned to the top-level read-eval-print loop. This· signal can be 
generated from the keyboard by typing control-G or function key F2. While in Hemlock, 
only F2 has this meaning. 



'. 
IMPLEMENTATION DEPENDENT DESIGN CHOICES 8 

SIGTSTP causes Lisp to suspend execution and return to the Unix shell. If control is returned to 
Lisp. the computation will proceed from where it was interrupted. This signal" can be 
generated from the keyboard by type control-Z or function key F3. While in Hemlock, 
only F3 has this meaning. 

When a signal is generated from the keyboard, there may be some delay before it is processed since Lisp 
cannot be interrupted safely in an arbitrary place. 171c computation will continue until a safe point is reached 
and then the interrupt will be processed. 

Other Unix signals that correspond to program errors cause the Lisp error system to obtain control. Under 
normal circumstances this should not happen, but if it docs and you have important work, you should 
immediately try to save iL 

2.12. Search Lists 

Search lists make it possible to refer to files using abbreviated names. The general form of a search list 
definition is: 

(setf (search-list "name:") '(directory1 directory 2 ... )) 

Where name is the name of the search list. and directory. arc strings that specify Unix directories. For 
I 

example, it is possible to define the search list code: as follows: 
(setf (search-list "code:") '("/usr/lisp/code/")) 

It is now possible to use code: as an abbreviation for the directory /usr/lisp/c:Jde/ in all file operations. For 
example, you can now specify code:eval.slisp to refer to the file /usr/lisp/co·ie/eval.slisp. 

To obtain the value of a search-list name, use the function search-list as follows: 
(search-list "name:") 

Where name is the name of a search list If name is not defined as a search-list NIL is returned. For example, 
calling search-list on code: as follows: 

(search-list "code:") 
returns the list ("/usr/lisp/code/"). 



3.1. Function Tracing 

Chapter 3 

Debu00in° Tools bb b 

By Jim Large and Steve Handerson 

The tracer causes selected functions to print their arguments and their results whenever they are called. 
Options allow conditional printing of the trace information and conditional breakpoints on function entry. 

trace &rest specs [Macro] 
Invokes tracing on the specified functions.1 and pushes their names onto the global list in 
•tra_ce d-func t ion-1 is t *. Each specis either the name of a function, or the form 

(fanction-name 
trace-option-name value 
trace-option-name value 
... ) 

If no specs are given, then trace will return the list of all currently traced functions, 
•traced-function-list*. 

If a function is traced with no options, then each time it is called. a single line containing the name 
of the function. the arguments to the call, and the depth of the call will be printed on the stream 
*trace-output*. After it returns, another line will be printed which contains the depth of the 
call and all of the return values. The lines are indented to highlight the depth of the calls. 

Trace options can cause the normal printout to be suppressed. or cause extra information to be 
printed. Each traced function carries its own set of options which is independent of the options 
given for any other function. Every time a function is specified in a call to trace, all of the old 
options are discarded. TI1e available options are: 

: condition A fonn to eval before before each call to the function. Trace printout will be 
suppressed whenever the form returns n i 1. 

:break A form to eval before each call to the function. If the form returns non nil, 
then a breakpoint loop will be entered immediately before the function call. 

:break-after Like :break, but the form is evalcd and the break loop invok~d after the 

1r race does not work on macros or special forms yet 

-9-



DEBUGGING TOOLS 

: break-al 1 

10 

function can. 

A fonn which should be used as both the : break and the : break -after 
args. 

:wherein A function name or a list of function names. Trace printout for the traced 
function will only occur when it is called from within a call to one of the 
: wherein functions. 

: print A list of forms which will be evaluated and printed whenever the function is 
called. ·n1e values arc printed one per line. and indented to match the other 
trace output. This printout will be suppressed whenever the nonnal trace 
printout is suppressed. 

:print-after Like :print except that the values of the fonns arc printed whenever the 
function exits. 

: print-all This is used as the combination of: print and : print-after. 

untrace &rest function-names [Macro] 
Turns off tracing for the Specified functions, and removes their names from 
•traced-function-list•. If no function-names arc given, then all functions named in 
•traced-funct i on-1 i st• will be untraced. 

•traced-function-list• [Variable] 
A list of function names which is maintained and used by trace. untrace, and untrace-al 1. 
This list should contain the names of all functions which are currently being traced. 

•trace-print-level* 
. •trace-print-length* 

_[Variable] 
[Variable] 

•print-level* and *print-length* are bound to *trace-print-level* and 
•trace-print-length* when printing trace output. The fo1ms printed by the :print 
options are also affected. *Trace-pr in t-1 eve 1 * and *trace-pr in t-1 ength * are initially 
set ton i1. 

•max-tr ace- i nden tat ion• [ Variable] 
The maximum number of spaces which should be used to indent trace printout This variable is 
initially set to some reasonable value. 

3.1.1. Encapsulation Functions 

The encapsulation functions provide a clean mechanism for intercepting the arguments and results of a 
function. 2 Enc a p s u 1 ate changes the function definition of a symbol, and saves it so that it can be restored 
later. The new definition nonnally calls the original definition. 

The original definition of the symbol can be restored at any time by the u n enc a p s u l ate function. 
Encapsulate and unencapsul ate allow a symbol to be multiply encapsulated in such a way that 

2Enc.apsulation does not work for macros or special forms yeL 



DEBUGGING TOOLS 11 

different encapsulations can be completely transparent to each other. 

f ... ach encapsulation has a type which may be an arbitrary lisp object. If a symbol has several encapsulations 
of different types, then- any one of them can be removed without affecting more recent ones. A symbol may 
have more than one encapsulation of the same type, but only the most recent one can be undone. 

encapsulate symbol type body [Function] 
Saves the current definition of symbol. and replaces it with a function which returns the result of 
evaluating the form, body. Type is an arbitrary lisp object which is the type of encapsulation. 

When the new function is called, the following variables will be bound for the evaluation of body: 

argument-list 
A list of the arguments to tl_lc function. 

basic-definition 
The unencapsulated definition of the function. 

The unencapsulated definition may.be called with the original arguments by including the form 
(apply basic-definition argument-list} 

Enc a p s u l ate always returns symbol. 

unencapsul ate symbol type [Function] 
Undoes symbofs most recent encapsulation of type type. Type is compared with eq. 
Encapsulations of other types are left in place. 

encapsul ated-p symbol type [Function] 
Returns t if symbol has an encapsulation of type type. Returns n i l otherwise. Type is compared 
with eq. 

3.2. The Single Stepper 

step fonn [Function] 
Evaluates form with single stepping enabled or if Jann is T, enables stepping on until explicitly 
disabled. Stepping can be disabled by quitting to the lisp top level, or by evaluating the form 
( step () }. 

While stepping is enabled, every call to eval will prompt the user for a single character command. 
The prompt is the form which is about to be evaled. It is printed with *print-level• and 
*print-length* bound to •step-print-level* and *step-print-lengt~•. All 
interaction is done through the stream *query - i o •. 

The commands are: 

n (next) 

s (skip) 

q (quit) 

Evaluate the expression with stepping still enabled. 

Evaluate the expression with stepping disabled. 

Evaluate the expression, but disable all further stepping inside the current call to 
step. 



DEilCGGING TOOLS 

p (print) 

b (break) 

e (eval) 

? (help) 

r (return) 

g 

12 

Print current form. (docs not use •step-print-leve_l* or 
•step-print-length•J 

Enter break loop, and then prompt for the command again when the break loop 
returns. 

Prompt for and evaluate an arbitrary expression. The expression is evaluated 
with stepping disabled. 

Prints a bricflist of the commands. 

Prompt for an arbitrary value to return as result of the current call to eval. 

TI1row to top level. 

•step-pr i nt-1 eve l * (Variable] 
*s tep-pri nt-1 ength * [ Variable] 

•print-level* and *print-l~ngth* are bound to these values when the current form is 
printed. *Step-print-level* and *step-print-length* arc initially bound to some 
small value. 

•max-step-in dent at ion* (Variable] 
Step indents the prompts to highlight the nesting of the evaluation. This variable contains the 
maximum number of spaces to use for indenting. Initially set to some reasonable number. 

3.3. The Debugger 

The debugger is an interactive command loop which allows a user to examine the active call frames on the 
Lisp function call stack. If it is invoked from an error breakpoint, it can show the function calls which led up 
to the error. 

Inside the debugger, most commands. refer to the current stack framehne debugger assigns numbers to the 
frames on the stack. staning with zero as the most recent and increasing deeper into the stack. The debug 
prompt includes the number of the current frame as its main feature. 

Most expressions typed to debug are simply evaluated as they would have been had you not entered debug. 
This includes the special debugger functions to be described, which are meaningful only inside the debugger. 
The biggest exception is the debugger commands. which arc either one or two letters. These may display 
information about the current frame or change the current frame. but they generally do not affect the 
evaluation history(*,**, and friends). 

3.3.1. Movement Commands 

These commands move to a new stack frame. and print out the name of the function and the values of its 
arguments in the style of a lisp function call. Frames which are not active arc marked with a "*". and the 
reconstructed can consists of what arguments are present on the stack. *Debug-print -1 eve l * and 
*debug- print-length* affect the style of the printing. 

line debugging functions may refer to oµier frames by number. This will be described shonly. 



.. 
DEBUGGING TOOLS 13 

Visible frames arc those which have not been hidden by lhe clcbug-hiclc function which is described below. 
The special variable *debug-i gnored-funct i ans• contains a list of function names which arc11idden 
by default. 

u 

d 

t 

b 

f 

Move up to lhc next'higher visible frame. More recent function calls arc considered to be 
higher on the stack. 

Move down to the next lower visible frame. 

Move to the highest visible frame. 

Move to the lowest visible frame. 

Move to a given frame, visible or not. Prompts for lhe number. 

3.3.2. Inspection Commands 
These commands print information about the current frame and the current function. 

? 

a 

p 

pp 

Describe 's the current function. 

Lists the arguments to the current function. The values of the arguments are printed along 
with lhe argument names. 

Lists the local variables in the current function. The values of the locals arc printed, but 
their names are no longer available. 

Redisplays the current function call as it would be displayed by moving to this frame. 

Redisplays the current function call using •pr in t-1 eve 1 • and •pr in t-1 en g th* 
instead of* debug-pr i nt-1 eve l * and *debug-pr i nt-1 en gth *. 

·(debug-value symbol [frame]) 
Returns the value of symbol, considered as a special variable, in the binding context of 
either the current frame, or the numbered frame, if specified. 

(debug-local n [Frame]) 
Returns the value of the nth local variable in the current or specified frame. 

(debug·arg n [frame]) 
Returns the nth argument of the frame. 

(debug-pc [frameD Returns the next instruction to be executed in the specified (active) frame. Can be used 
with Disassemble. 

3.3.3. Other Commands 

h 

q 

Prints a brief but comprehensive list of commands on the terminal. 

Causes debug to return n i 1. 



DEBUGGING TOOLS 14 

(debug-return expression (frameD 
Forces the current function to return zero or more values. If the function was not called 
for multiple values, only the first value will be returned. 

(backtracc} Prints· a history of function calls. The printing is controlled by *debug - print -1 eve 1 • 
and *debug-print-length*. Only those frames which arc considered visible by the 
frame movement commands will be shown. 

(debug-hide op1ion [arg(s)]) 
Makes the described stack frames invisible to the frame movement commands. The 
second argument is evaluated and may be a symbol or a list: the function returns the 
hidden members of the category. With no arguments. returns the current filter (hidden 
frames). option is a subcommand which may be one of: 

package ( s) Calls to hidden packages are visible, but calls within them arc not 

function ( s) Calls to the named functions will not be visible. 

type ( s) Hides miscellaneous frame and function types, any of: 

open 

active 

catch 

comp i 1 e d Calls to compiled functions will not be visible. 

in te rp reted Calls to interpreted functions will not be visible. 

1 ambdas Calls to lambda expressions will not be visible. 

Open frames will not be visible. 

Active frames will not be visible. 

Catch frames will not be visible. 

(debug-show options arg or args} 

debug 

Cancels the effect of the corresponding debug-hide. Note that a frame may be hidden in a 
variety of other ways, though. 

[Function] 
Invokes the debugger. debug always returns n i 1. 

• debug-pr in t-1 eve 1 • {Variable] 
• debug-pr in t-1 ength • [Variable] 

•pr in t-1 eve 1 • and •pr in t-1 ength * are bound to these values during the execution of some 
debug commands. When evaluating arbitrary expressions in the debugger, the nonnal 
•pri nt-1 evel * and *pr i nt-1 ength* are in effect These variables are initially set to some 
small number. 



.. 
DEBUGGING TOOLS 15 

*debug- i gnored-f unctions* [Variable} 
A list of functions which arc hidden by default. These functions can be made visible ~ith the 
debug command show. 

3.4. Break Loop 

TI1e break loop is a rcad-eval-print loop which is similar to the normal lisp top level. It can be called from 
any lisp function to allow the user to interact with the lisp system. When the user gives the command to exit 
the break loop. he may choose an arbitrary value for it to return. 

When a lisp expression is typed in at the break loop's prompt, it is usually evaluated and printed. However, 
there arc three special expressions which are recognized as break loop commands, and which are not 
evaluated. 0 

$G 

$P 

(debug) 

Typing this symbol causes a throw to the lisp top level: The current computation is 
aborted, and ali bindings are unwound. 

Typing this symbol causes the break loop to return n i l . 

Enter the debugger. This can be done anywhere, but it is usually done from a break loop. 

The dollar sign character in the symbols $P and $G is intended to be the (escape) character -- ascii 27. For 
compatibility with the VAX VMS operating system, real dollar signs will be recognized also. 

When the break loop is called, it tries to make sure that terminal interaction will be possible. All of the 
standard input output streams, *standard-input•, •standard-output•, •error-output*, 
*query-io•, and *trace-output• are bound to *terminal-io• for the duration of the break 
loop; and the state of the single stepper is bound to "off'. 

break tag &opt ion al condition . [Macro] 
The break macro returns a form which prints the message "Breakpoint tag" to *term i n al - i o • 
and then invokes the break loop. If condi1ion is present. then the form evaluates it and tests the 
result If the result is nil, then the form returns nil ; otherwise, the form prints the tag and 
invokes the break loop. Tag is never evaluated. 

3.4.1. Cleaning Up 

The break loop is called by the system error handlers. Since errors can happen unexpectedly, the break 
loop provides a mechanism for cleaning up any unusual state that a program may have caused. 

•error-c 1 ean up-forms• [Variable] 
A list oflisp forms which will be evaluated for side effects when a break loop is invoked. Whenever 
a break loop is entered, *error-cleanup-forms* will be bound to nil, and then the forms 
which were its previous value will be cvalcd for side effects. There is no way to have the side effects 
undone when the break loop returns. and if any of the cleanup forms causes an error, the result can 
not be guaranteed. 

As an example, a progr~ that puts the terminal in an unusual mode might want to do something 



DEBUGGING TOOLS 

like this. 
(le~ ((*error-cleanup-forms• 

( cons ' ( progn <code to restore terminal>) 
•error-cleanup-forms*))) 

<code to mess up tenninal> 

. ) 

16 



,· 

Chapter 4 

The Con1piler 

4.1. Calling the Compiler 

Functions may be compiled using comp i 1 e, comp i1 e-f i1 e, or comp i 1 e-f rom-s tream. Comp i 1 e 
operates exactly as documented in the Common Lisp Reference Manual. 

comp i 1 e-f i1 e &opt ion al input-pathname &key : output-f i1 e : error-file [Function] 
:lap-file :errors-to-terminal :load 

This function is an expanded version of that described in the Common Lisp Reference Manual. If 
input-pathname is not provided compile-file prompts for it. Output-file and 
Error- f i l e default to T, producing a fasl file and a compilation log with extensions .sfasl and 
.err. Lap-file defaults ton i l, indicating that the lap code should not be stored in a file. Any of 
these options may be t, nil, or the string name of a file to write to. Errors-to-tenninal defaults to 
T; if specified and nil the compilation log goes only to the .err file. If load is specified and 
non-nil the compiled file is loaded after the compilation. 

comp il e-f rom-s tr e am in put- s tr earn [Function] 
This function takes a stream as an input and reads lisp code from that stream until end of file is 
reached. The code is compiled and loaded into the current environment. No output files are 
produced. 

4.2. Open and Closed Coding 

When a function call is "open coded," inline code whose effect is equivalent to the function call is 
substituted for that function call. When a function call is "closed coded", it is usually left as is, although it 
might be turned into a call to a different function with different arguments. As an example, if nthcdr were 
to be "open coded" then 

(nthcdr 4 foobar) 

might turn into 

(cdr (cdr (cdr (cdr foobar)))) 

or even 

(do ((i O (1+ i)) 
(list foobar (cdr foobar))) 

(("' i 4) list)}. 

-17 -



11 IE COMPILER 18 

If nth is "closed coded" 

(nth x 1) 
might stay the same, or tum into something like: 

(car (nthcdr x 1)). 

4.3. Compiler Switches 

Several compiler switches arc available which arc not documented in the Common Lisp Manual. Each is a 
global special. These arc described below. 

•peep-enable*lfthis switch is non-nil. the compiler runs the peephole optimizer. The optimizer makes 
the compiled code faster. but the compilation itself is slower. •peep-en ab l e * defaults 
tot. 

.-· 
•peep-statistics• 

If this switch is non-nil. the effectiveness of the peephole optimizer (number of bytes 
before and after optimization) will be reponed as each function is compiled. . . 
•peep-statistics• defaults tot. 

*inl ine-enable* 
If this switch is non-nil. then functions which arc declared to be inline are expanded inline. 
It is sometimes useful to turn this switch off when debugging. *inl ine-enable* 
defaults to t. 

•open-code-sequence-functions• 
If this switch is non-nil, the compiler tries to translate calls to sequence functions into do 
loops. which arc more efficient It defaults to t. 

•optimize-let-bindings* 
If this is t, optimize some let bindings, such as those generated by lambda expansions and 
setf based operations. If it is :all, optimize all lets. If it is nil, don't optimize any. It takes 
significant time to do all. The optimization involves replacing instances of variables that 
are bound to other variables with the other variables. Defaults to t. 

*examine-environment-function-information* 
If this is non-NIL, look in the compiler environment for function argument counts and 
types (macro, function, or special form) if you don't get the information from declarations. 
Defaults to t. • 

•complain-about-inefficiency• 
If this switch is non-nil, the compiler will print a message when certain things must be 
done in an inefficient manner because of lack of declarations or other problems of which 
the user might be unaware. This defaults to n i l. 

•el imi nate-t·a i1 -recurs ion• 
If this switch is non-nil, the compiler attempts to turn tail recursive calls (from a function to 
itself) into iteration. This defaults to t. 

*all-rest-args-are-lists• 
If non-nil. this has the effect of declaring every &rest arg to be of type list (They all start 
that way, but the usrr could alter them.) It defaults to n i 1. 



.. 

• 

TIIE COMPILER 19 

•verbose* If this switch is n i 1, only true error messages and warnings go to the error stream. If 
non-nil, the compiler prints a message as each function is compiled. lt defaults to t. 

*check-keywords-at-runtime• 
If non-nil, compiled code with &key arguments will check at runtime for unknown 
keywords. This is usually left on and defaults to t. 

4.4. Declare switches 

Not all switches for declare are processed by the compiler. The ftype and function declarations are 
currently ignored. 

The opt i mi z e declaration controls some of the abov.e switches: 

•*peep-enable* is on unless cs peed is greater than speed and space. 

• * in 1 ine-enab 1 e * is on unless space is greater than speed. 

• • *open-code-s eque n ce-func ti on s * is on unless space is greater than speed. 

• *e 1 i mi na te-ta i 1-recurs ion* is on if speed is greater than space . 



• . 

.. 

Chapter 5 

Efficiency 

By Rob l\1aclachlan 

In CMU Common Lisp, as is any language on any computer, the way to get efficient code is to use good 
algorithms and sensible programming techniques, but to get the last bit of speed it is helpful to know some 
things about the language and its implementation. This chapter is a summary of various hidden costs in the 
implementation and ways to get around them. 

5.1. Compile Your Code 

In CMU Common Lisp, compiled code typically runs at least 100 times faster than interpreted code. 
Another benefit of compiling is that it catches many typos and other minor programming errors. Many Lisp 
programmers find that the best way to debug a program is to compile the program to catch simple errors, then 
debug the code interpreted, only actually using the compiled code once the program is debugged. 

Another be11efit of compilation is ~at compiled (sfas[) files load significantly faster, so it is worthwhile 
compiling files which are loaded many times even if the speed of the functions in the file is unimportant 

Do Not be concerned about the performance of your program until you see its speed compiled-some 
techniques that make compiled code run faster make interpreted code run slower. 

5.2. Avoid Unnecessary Consing 

Consing is the Lispy name for allocation of storage, as done by the cons function. hence its name. cons is 
by no means the only function which conses-so docs make-array and many other functions. Even worse, the 
Lisp system may decide to cons furiously when you do some apparently innocuous thing. 

Consing hurts performance in the following ways: 

• Consing reduces your program's memory access locality, increasing paging activity. 

• Consing takes time just like anything else. 

- 20--



EFFICIENCY 21 

• Any space allocated eventually needs to be reclaimed, either by garbage collection or kiliing your 
lli~ • 

Of course you have to cons sometimes, and the Lisp implementors have gone to considerable trouble to 
make consing and the subsequent garbage collection as efficient as possible. In some cases strategic consing 
can improve speed. It would certainly save time to allocate a vector to store intermediate results which are 
used hundreds of times. 

5.3. Do, Don't Map 

One of the programming styles encouraged by Lisp is a highly applicative one, involving the use of 
mapping functions and many lists to store intermediate results. To compute the sum of the square-roots of a 
list of numbers, one might say: 

(apply #'+ (mapcar #'sqrt list-of.:numbers)) 

This programming style is clear and elcgan_t, but unfortunately results in slow code. There are two reasons 
why: 

• The creation oflists of intermediate results causes much consing (see 5.2). 

• Each level of application requires another scan down the list Thus, disregarding other effects, the 
above code would probably take twice as long as a straightforward iterative version. 

An example of an iterative version of th!! r.ame code: 
(do ((num list-of-numbers (cdr num)) 

(sum O (+ (sqrt {car num)) sum))) 
( (null num) sum)) 

Once you feel in you heart of hearts that iterative Lisp is beautiful then you can join the ranks of the Lisp 
efficiency fiends. 

5.4. Think Before You Use a List 

Although Lisp's creator seemed to think that it was for LISt Processing, the astute observer may have 
noticed that the chapter on list manipulation makes up less that ten percent of the COMMON LISP manual. 
The language has grown since Lisp 1.5, and now has other data structures which may be better suited to tasks 
where lists might have been used before. 

5.4.1. Use Vectors 

Use Vectors and use them often. Lists are often used to represent sequences, but for this purpose vectors 
have the following advantages: 

• A vector takes up less space than a list holding the same number of clements. The advantage may 
vary from a factor of two for a general vector to a factor of sixty-four for a bit-vector. Less space 
means less consing (see 5.2). 

• Vectors allow constant time random-access. You can get any element out of a vector as fast as you 
can get the first oµt of a list if you make the right declarations. 



EFFICIENCY 22 

The only advantage that lists have over vectors for representing sequences is that it is easy to change the 
length of a list. add to it and remove items from it. Likely signs of archaic, slow lisp codr arc nlh and 
nthcdr-if you arc using these function you should probably be using a vector. 

5.4.2. Use Structures 

Another thing that lists have been used for is the representation of record structures. Often the structure of 
the list is never explicitly stated and accessing macros arc not used, resulting in impenetrable code such as: 

(rplaca (caddr (cadddr x)) (caddr y)) 

The use of def st r u ct structures can result in much clearer code, one might write instead: 
(setf (beverage-flavor (astronaut-beverage x)) (beverage-flavor y)) 

Great! But what does this have to do with efficiency? Since structures arc based on vectors, the defstruct 
version would likewise take up less space and be fast~rto access. Don't be tempted to try and gain speed by 
trying to use vectors directly, since the compiler knows how to compile faster accesses to structures than you 
could easily do yourself. Note that the structure definition should be compiled before any uses of accessors so 
that the compiler will know about them. 

5.4.3. Use Hashtables 

Defore using an association list (alist) or a symbol property, you should consider whether a hash-table would 
do the job better. There are two arguments: efficiency and style. 

Since as soc is implemer;tP.i directly in assembler code when the· test argument is eq or eql, it is fairly fast 
when there are only a few elements, but the time goes up in proportion with the number of clements. In 
contrast, the hash-table lookup has a somcwh:1.t higher overhead. since a function call is involved, but the 
speed is largely unaffected by the number of entries in the table. The following table shows the number of 
microseconds it takes to do a failing lookup in a eq hash-table and an alist, where n is the number of entries: 

n 
10 
100 
1000 

hashtable 
490 
520 
520 

alist 
281 
2141 
22870 

As you can see, the break-even point is between ten and twenty. For an equal hash-table or alist, hash
tables have an even greater advantage, since the test is more expensive and the alist lookup is not done in 
assembler code. Whatever you do, be sure to use the most restrictive test function possible. 

The style argument observes that although hash-tables and alists overlap in function, they do not do all 
things equally well. 

• Alists are good for maintaining scoped environments. They were originally invented to 
implement scoping in the Lisp interpreter, and are still used for this in CMU Common Lisp. 
With an alist one can non-destructively change an association simply by consing a new element on 
the front. This is something that cannot be done with hash-tables. 

• Hashtables arc good for maintaining a global association. The value associated with ai1 c::•..rv can 
easily be changed by doing a setf. With an alist. one has to do go through contortions. ,;ither 
rp 1 acd'ing the cons if the entry exists, or pushing a new one if it doesn't. The side-effecting 

, nature of hash-table operations is an advantage here. 



EFFICIENCY 23 

Experienced Lisp programmers will notice that I am suggesting that hash-tables be used for things which 

symbol properties arc often used for. There arc a number of reasons to use hash-tables instead of prop·crtics: 

• Hash-tables can be more efficient if the average propeny list length is sufficiently large. 

• A hash-table is inherently anonymous. while a property is usually a symbol. A new set of 
associations can be created simply by making a new hash-table. A similar effect could be obtained 
by using gcnsyms as property names. but this is apt to cause nausea. 

• A hash-table is one object rather than a bunch of stuff scattered across dozens of property lists. 
l11is means that modularity is improved and bugs find it harder to propagate. 

5.4.4. Use Bit-Vectors 
Another thing that lists have been used for is set manipulation. In some applications where there is a 

known, reasonably small universe of items bit-vectors could be used to improve perfonnance. This is much 
less convenient than using lists. because instead of symbols. each clement in the universe must be assigned a 
numeric index into the bit vector. Using a bit-vector will nearly always be faster. and can be tremendously 
faster if the number of clements in the set i's not small. The logical operations on simple bit vectors are 
implemented in assembler code. 

5.5. Simple Vs Complex Arrays 

If an array is as imp l e-s tr i ng, s imp la-vector ors imp le-bit-vector, more efficient code if the 
'compiler is told the type. Declare,Your Vector Variables-If you don't the compiler will be forced to make 
worst-case assumptions. Example: 

(defun iota (n) 
(let ((res (make-array n))) 

{declare (simple-vector n)) 
(dotimes (i n) 

(setf (aref res i) i)) 
res)) 

Arrays with more than two dimensions are accessed by Lisp code, thus accessing any such array is many 
times slower than accessing a vector or two-dimensional array. 

5.6. To Call or Not To Call 

The usual Lisp style involves small functions and many function calls: for this reason Lisp implementations 
strive to make function calling as inexpensive as possible. CMU Common Lisp on the IBM RT PC for Mach 
is fairly successful in this respect. However, function calling does take time, and thus is not the kind of thing 
you want going on in the inner loops of your program. 

Where removing function calling is desirable you can use the following techniques: 

Write the code in-line 
This is not a very good idea, since it results in obscure code. and spreads the code for a 
single logical function out everywhere, making changes difficult. 



•. 
EFFICIENCY 

Use macros 

24 

A macro can be used to achieve the effect of a function call without the function-call 
overhead. but the extreme generality of the macro mechanism makes them tricky td use. If 
macros arc used in this fashion without some care, obscure bugs can result 

Use inline functions 
This often the best way to remove function call overhead in CO.'v1MON !..ISP. A function 
may be written, and then declared inline if it is found that function call overhead is 
excessive. Writing functions is easier that writing macros. and it is easier to declare a 
function inline than to convert it to a macro. Note that the compiler must process first the 
in line declaration. then the definition. and finally any calls which arc to be open coded for 
the inline expansion to take place. 

Any of the above techniques can result in bloated code, since they have the effect of duplicating the same 
instructions many places. If code becomes very large, paging may increase. resulting in a significant 
slowdown. Inlinc expansion should only be used where it is needed. Note that the same function may be 
called normally in some places and expanded in line in other places. 

5.7. Keywords and the Rest 

COMMON LISP has very powerful argument passing mechanisms. Unfortunately, two of the most powerful 
mechanisms. rest arguments and keyword arguments. have a serious perfonnance penalty in Gv1U Common 
Lisp. The main problem with rest args is that the assembler code must cons a list to hold the arguments. If a 
function is called many times or with many arguments. large amounts of consing will occur. Keyword 
arguments are built on top of the rest arg mechanism, and so have all the above problems plus th.: problem 
that a significant amount of time is spent parsing the list of keywords and values on each function call. 
Neither problem is serious unless thousands of calls arc being made to the function in question, so the use of 
argument keywords and rest args is encouraged in user interface functions. 

A way to avoid keyword and rest-arg overhead is to use a macro instead of a function. since the rest-arg and 
keyword overhead happens at compile time. If the macro-expanded form contains no keyword or rest 
arguments, then it is perfectly acceptable to use keywords and rest-args in macros which appear in inner 
loops. 

Note: the compiler open-codes most heavily-used system functions which have keyword or rest arguments, 
so that no run-time overhead is involved. 

5.8. Numbers 

·cMU Common Lisp provides six types of numbers for your enjoyment: fixnums, bignums, ratios, shon
floats, long-floats and complexes. Only short-floats and fixnums have an immediate representation: the rest 
must be conscd and garbage-collected later. In code where speed is important. you should use only fixnums 
and shore-floats unless you have a real need for something else. Ratio and complex arithmetic are 
implemented in Lisp rather than assembler; this rcsults·in orders of magnitude slower execution. 



EFFICIENCY 25 

5.9. Timing 

·111e first step in improving a program's performance is to make extensive timings to find code which is 
time-critical. 'The ti me macro is the best way currently available to do timings. For things which execute 
fairly quickly it may be wise to time more than once, since there may be paging overhead in the first timing. 
The times that ti me gets arc only accurate to a certain number of decimal places. so for small pieces of code 
it may be a good idea to write a compiled driver function which calls the function to be tested a few hundred 
times. If one finds the time and divides by the number of iterations, then fairly accurate statistics can be 
collected. Be very careful when using get-internal-run-time, since it takes a substantial amount of 
time to execute. 



Chapter 6 

The Alien Facility 

By Rob Ma_clachlan 

6.1. \Vhat the Alien Facility Is 

Aliens provide a mechanism in Lisp for manipulating objects which are sent and received in Accent IPC 
messages. Normally Aliens are used to implement a Matchmaker remote procedure call message interface. 
In order to produce a Lisp message interface, Matchmaker ar:alyzes the shared definitions file and produces 
Lisp code writte71 primarily in te1ms of the functions, macros and special forms defined by the Alien facility. 

6.2. Alien Values 

Objects in messages are manipulated via typed pointers to the data involved. These typed pointers ate called 
Alien values. An Alien value is a Lisp object which consists of three components: 

address The address of the object pointed to. This is a word address, which may in general be a 
ratio, since objects need not be word aligned. 

size 

type 

The size in bits of the object pointed to. This information is used to make sure that 
accesses to the object fall within it 

The Alien type of the object pointed to. Since Alien values have a type, functions that use 
them can check that their arguments are of the correct type. 

6.3. Alien Types 

Alien types are tags attached to Alien values that may be checked to assure that they are not used 
inappropriately. When types are compared the comparison is done with the Lisp equal function. Types are 
typically represented by symbols or lists of symbols such as the following: 

string 
(directory-entry type-file) 
(signed-byte 7) 
string-char 

- 26-



TIIE ALIEN FACIL!n· 27 

A convention which is encouraged. but not enfo(ced, is that an ordinary type is represented by a symbol. and 
a type with some subtype information, such as a discriminated union is represented as a list of the main type 
and the subtype information. 

6.4. Alien Primitives 

This section describes the defined Alien primitives. Some of these primitives arc intended to be used only 
in code generated by matchmaker. while others might be used by mere mortals. 

make-alien type size &optional address [Function] 
Make an Alien object of type type that is size bits long. address may be either a number, : static 
or: dynamic. If address is a number, then tl_lat becomes the returned alien's address. If address is 
: static or : dynamic then storage is allocated to hold the data. Aliens that arc allocated 
statically are packed as many as will fit on a page, resulting in increased storage efficiency, but 
disallowing the deallocation of the storage. Since static aliens arc allocated contiguously, the save 
function can arrange to save their contents. permitting initialization of such Aliens to be done only 
once. Dynamic Aliens are allocated on page boundaries. and may be deallocated using 
dispose-alien. 

alien-type alien 
al i en - s i z e alien 
alien-address alien 

These functions rerurn the type, size and address of alien, respectively. 

[Function] 
[Function] 
[Funct:011] 

alien-sap alien [Function] 
This function rerurns the address of alien as a system-area-pointer. If the address is not an integer, 
an error will be signaled. since it cannot be represented as a system-area-pointer. 

copy-alien alien [Function] 
Copy the storage pointed to by alien and rerurn a new Alien value that describes it. 

alien-assign to-alien from-alien [Function] 
Copies the bits in from-alien into to-alien. The alien values must be of the same size and typ_e. 

dispose-a 1 i en alien [Function] 
Release any storage associated with alien. Any reference to alien afterward may lose horribly. 

alien-access alien &opt ion al /isp-lype [F:;nction] 
al i en-access returns the object described by alien as a Lisp object of type lisp-type. An error is 
signalled if the type of alien cannot be convened to the given lisp-type. For most lisp-types the 
corresponding Alien type is identical. If the Lisp type is uniquely determined by the type of the 
alien then lisp-type need not be supplied. 

lisp-type must be one of the following types: 



.. 

TIIE ALIEN FACILITY 28 

(unsigned-byte n) 
An unsigned integer 11 bits wide, as in COMMON LISP. 

(signed-byte n) 
A signed integer n bits wide. 

boolean A one bit value, represented in Lisp as t or n i 1. 

( enumeration name) 
Access a value of the enumeration name. Enumerations arc defined by the 
macro def enumeration (page 28). 

string-char An eight-bit ASCII character. 

s imp 1 e - st r in gThc corresponding Alien type is per q - st r i n g which is a Perq Pascal string. 

port An Accent IPC port 

short-float long-float 
There is only one Alien type accepted by these, ieee-single which is a 
floating point number in pseudo IEEE single fonnat. as used by Perq Pascal. 
Both lisp-types a_re allowed so that one may choose whether to cons long-floats 
or lose precision. Note however. that no floating-point type is implemented-·· 
the purpose of this entry is solely to confuse anyone who has read this far. 

system-area-pointer 
Return as a system-area-pointer the long-word described by alien. It is an error 
for the address not to be in the system area. This lisp type may also be used with 
the a 1 i en alien type. 

If alien-access is set with setf then the inverse type conversion is dune, and the alien set to 
the new value. When setting, an additional type is available: 

(pointer type) type may be any unboxed Lisp type such as simple-string, 
s imp 1 e-bit-vector and (simple-array (unsigned-byte 8) ). 
When an object of such a type is stored the address of the first data. word is 
stored in the corresponding location. 

( a 1 i en type[size]) 
This lisp type is used to access a pointer as an alien value. When read, an alien 
value created out of the pointer, type and size is returned. When set. the address 
of the alien values is written. When read, the size must be specified, when set it 
is ignored. 

defenumera ti on name {{elemenl} + I {( elemenl value)}+}* [Macro] 
Define an enumeration type for use with a 1 i en - access. The enumeration may be used with the 
enumeration Alien type by specifying its name. Each successive element is assigned a numeric 
value, starting at zero. Each element must be a keyword symbol. Example: 

(defenumeration era :stone-age :medieval :now :space-age) 

(alien-store (language-era (alien-value pascal)) 
(enumeration era) 
:stone-age) 

The numeric value for an clement may be specified by using a list of the keyword and ti~c numeric 

value. If the value is specified for any clement then it must be specified for all. Each value must be 



THE Al.IEN FACILITY 29 

an integer. 

(defenumeration silly (:a -32) (:b 15) (:c 1000000)) 

6.5. Alien Variables 

An Alien variable is a symbol that has had an Alien value associated with it. J\n Alien variable is not a Lisp 
variable -- in order to obtain the value of an Alien variable. the special form al i en-value must be used. 
The reason for using Alien variables as opposed to Lisp variables is that various additional information can be 
associated with the Alien variable which may permit code which refers to it to be compiled more efficiently. 

alien-value name (Special form] 
Return the value of the Alien variable name. 

al i en-bind ( { ( name value type [aligned])}*) {fonn}* (Special form] 
al i en-bind defines a local Alien variable name having the specified Alien value. Bindings are 
done serially, as by 1 et•. If aligned is supplied and true. then the value is asserted to be word 
aligned. Hopefully this feature will be replaced with something less silly. 

def alien name type size [address] [Macro] 
Defines name as an Alien variable. creating a value from type, size and address as for make- a 1 i en 
(page 27). name and type are not evaluated. Since the :ilien-value for a dcfalicn created variable is 
kept in the value cell of the symbol it is not necessary (but legal) to use a 1 i en-val u e to obtain 
the value. 

6.6. Alien Stacks 

For some purposes it is useful to have stack allocation of Alien values. Alien stacks arc used by 
Matchmaker to receive messages into, since a software interrupt may cause an interface to be entered 

recursively. 

define-alien-stack name type· size [Macro] 
Defines a stack of static Aliens having the specified type and size. The stack has no maximum size, 
since new Aliens arc allocated whenever they are needed. 

with-stack-alien (var name) {fonn}* [Specialfom1] 
Binds the Alien variable var to an Alien value from the Alien stack with the specified name during 
the evaluation of the forms. 

6.7. Alien Operators 

An Alien operator is a function which returns an Alien value. When an Alien operator is detined via the 

defoperator macro, the type of the result and all of the Alien valued arguments is specified. If an 

argument to an Alien operator is not the of the correct type an error is signalled. Because of the way an Alien 



,· 

THE ALIEN FACILITY 30 

operator is specified, it can be compiled much more efficiently than a function that docs the same thin~. 

defoperator ( name result-type) ( { { arg arg-type) I arg}*) [doc-string] body [J\-Iacro] 
This macro defines name as an Alien operator returning a value of type result-type. doc-string, if 

supplied, becomes the function documentation for tl1c function created. 

The args to the operator arc similar to the binding specifiers to al i en-bind (page 29). If the 
type of the argument is specified. then the argument must be an Alien value of the specified type, 
otherwise it may be any Lisp value. 

defoperator is similar to the complex form of def set f or defmacro in that the body is 
evaluated at compile time, the result of the evaluation being the desired code. When the body is 
evaluated. Lisp variables having the arguments' names are bound to markers which must appear in 
the resulting code where a reference to that argument is desired. Nonnally the fonn which results 
from the evaluation of the body consists solely of combinations of al i en-index and 
al i en- i n di rec t on arguments and simple numeric functions thereof. 

a 1 i en-index alien offset size [Function} 
This function indexes into alien by offset bits and returns an Alien value size bits long. It is an error 
for the field so selected not to fit inside alien. Normally this function is used only within the 
definition of an Alien operator, so the type of the resulting value is n i 1 to indicate that it has no 
panicular type 

a 1 i en - i n d i rec t alien size [Function] 
This function takes two words at the place described by alien and treats them as a pointer. returning 
a new Alien value which describes the piece of memory pointed to by that pointer which is size bits 
long. It is an error for alien not to describe a piece of storage suitable for use as a pointer. Like 
al i en-index, this is normally only used within the definition of an Alien operator, and its result 
type is nil. 

long-words n [Function} 
[Function} 
[Function] 
[Function] 

words n 
bytes n 
bits n 

These functions are equivalent to multiplication by thirty-two, sixteen, eight and one respectively. 
They also assert their argument to be an integer. Use of these function in the definition of Alien 
operators can make the definition clearer, and give additional infonnation that can be used to 
produce better compiled code. 

6.8. Examples 

This Pascal declaration might be translated into the following Alien operator definitions: 

Foo= RECORD 
A: Integer; 
B: AArray [0 .. 99] OF AFoo; 

END; 



TIIE ALIEN FACILITY 

VAR 

... ... ... 

... 
• • • . . . 
• • • 

F: Foo; 

This operator selects the A field from a Foo. The type of the 
resulting Alien is (signed-byte 16), which is what a Perq Pascal 
integer is. • It takes one argument called Foo which is an Alien value 
of type Foo. Since A is the first field in the record, we index into 
the Alien by zero bits. The size of the result is sixteen bits, or one 
word. Alien-Value must be used on the parameter, since it is an 
Alien variable . 

(defoperator (foo-a (signed-byte 16)) ((foo foo)) 
'(alien-index (alien-value ,foo) O (werds 1))) 

••• ... 
... 
• • • . . . 

This operator extracts the B·field from a Foo. The result type is 
(ref (array (ref foo) 100)), indicating that it is a pointer to an 
array of pointers to foos. Note the use of list Alien types to 
indicate subtype information, but remember that this is merely a 
convention. ihe 8 field is one word into the record, and since it is a 
pointer, it is thirty-two bits, or one long-word long . 

(defoperator (foo-b (ref (array (ref foo) 100))) ((foo foo)) 
'(alien-index (alien-value ,foo) (words 1) (long-words 1))) 

... ... 
• • • 

This operator dereferences a pointer to an (array (ref foe) 100). The 
size of the resulting Alien is one hundred long-words, since the array 
contains one hundred thirty-two bit pointers 

(defoperator (deref-array-ref-foo-100 (array (ref foo) 100)) 
((ra (ref (array (ref foo) 100)))) 

'(alien-indirect (alien-v_alue ,ra) (long-words 100))) 

• • • 

Index into an (array (ref foo) 100). Here we have a non-alien-valued 
parameter I, which is the index into the array . 

(defoperator (index-array-ref-foo-100 (ref foo)) 
((a (array (ref foo) 100)) i) 

'(alien-index (alien-value ,a) (long-words ,i) (long-words 1))) 

;; ; Dereference a pointer to a foo. A foo is three words long . 
. . . . . . 
(defoperator (deref-foo foo) ((rfoo (ref foo))) 

'(alien-indirect (alien-value ,rfoo) (words 3))) 

. . . . . . 
Define Fas an Alien variable, whose type is· foo and is three words 
long. Storage to hold the foo will be allocated . 

(defalien f foo (words 3)) 

With this definition, the following Pascal expression could be translated in this way: 



THE ALIEN FACILITY 

F.8"[7]".A 

(alien-access 
(foo-a (deref-foo (index-array-ref-foo-100 

(deref-array-ref-foo-100 (foo-b (alien-value f))) 
7) ) ) ) 

32 

If instead of getting the A out of the seventh foo, we wanted a vector containing the first F.A foos in the 
array F.Bt, we could do this: 

;; Find how many foos to use by getting the A field. 
(let• ({num {alien-access (foo-a (alien-value f)))) 

'' 

(result (make-array num))) 

Bind the Alien value for the array so we don't have to keep 
recomputing it. 

{alien~bind ((a (deref-array-~ef-foo-100 (foo-b {alien-value f)))) 
(array (ref foo) 100)) 

0 I 

Loop over the first N elements and stash them in the result vector. 
(dotimes {i num) 

(setf (svref result i) 
(deref-foo (index-array-ref-foo-100 (alien-value a) i)))) 

result)) 



I' 

alien-access function 27 
alien-address function 27 
alien-assign function 27 
alien-bind special fonn - 29, 30 
al i en - i n de x function 30 
alien-indirect function 30 
alien-sap function 27 
alien-size function 27 
alien-type function 27 
alien-value spccialfonn 29 

bits function 
break macro 
bytes function 

30 
15 

30 

compile-file function 17 
compile-from-stream function 17 
copy-al i en function 27 

debug function 14 
*debug-ignored-functions• variable 15 
*debug-print-length• variable 14 
*debug-print-level• variable 14 
def alien macro 29 
defdescribc • . ..aero 6 
defenumerat10n macro 28, 28 
define-alien-stack macro 29 
defoperator macro 30 
describe function 6 
*describe- imp l ementat ion-details• variable 6 
*des er i be-indentation• variable 6 
*describe-level• variable 6 
*des er i be-pr i nt-1 eng th• variable 6 
*describe-print-level• variable 6 
*describe-verbose• variable 6 
dispose-alien function 27 

encapsulate function 11 
encapsulated-p function 11 
•error-cleanup-forms• variable 15 
: error-file keyword 

for compile-file 17 
: errors-to-termi na 1 keyword 

for compile-file 17 

•gc-rec la im-goa l • variable S 
•gc-trigger-threshold* variable S 

internal-time-units-per-second constant 5 

: 1 ap-fi 1 e keyword 
for compile-file 17 

: 1 oad keyword 
for compile-file 17 

long-words function 30 

Index 

make-alien function 27,29 
•max-step-indentation• variable 12 
•max-trace-indentation• variable 10 

-34-

: ou tpu t-f i le keyword 
for compile-file 17 

save function 7 
step function 11 
•step-print-length* variable 12 
•step-print-level• variable 12 

time macro 
trace macro 

5 
9 

•trace-print-length* variable 10 
•trace-pr i nt-1 eve 1 • ,·ariable 10 
•traced-function-1 ist• variable 10 

unencapsulate function 11 
untrace macro 10 

with-stack-alien special fonn 29 
words function 30 


	Contents
	Acknowleldgements
	1 Introduction
	2 Implementation Independent Design Choices
	3 Debugging Tools
	4 The Compiler
	5 Efficiency
	6 The Alien Facility
	Index



