
CARNEGIE-MELLON UNI'/ERSITY

DEPARTl\1ENT OF C()lVfPIJTRR SCIENCE

SPICE PRO.JECT

An Analysis of the Spice Lisp Instruction Set

Joseph R. Ginder

18 January 1983

Spice Document Sxxx

Keywords and index categories: PE Lisp

Location of machine-readable file: STAT.MSS.275 @ CMU-20C

Copyright © 1983 Carnegie-Mellon University

Supported by the Defense Advanced Research Projects "Agency, Department of Defense, ARPA Order

3597, monitored by the Air Force Avionics Laboratory under contract F33615-78-C-1551. The vtews and

conclusions contained in this document are those of the authors and should not be interpreted as representing

the official policies, either expressed or implted, of the Defense Advanced Research Projects Agency or the

U.S. Government.

AN ANALYSIS OF TIlE SPICE LISP INSTRUCTJO~ SET

Table of Contents

1. Introduction

2. Some Notes on Spice Lisp Architecture

2.1 The Execution Environment
2.2 Function Objects
2.3 Instruction Sct and Addrcssing Modes
2.4 Indicators
2.5 Design Philosophy

3. Statistical Results

4. Optimization of Operand Source Decoding

4.1 A-Field Re-Alignment
4.2 Two-Byte Offsets

5. Adding New Inst~ctions

5.1 Assembler Instructions With Implied Operands
5.1.1 Push Instructions
5.1.2 Push-Last Instructions
5.1.3 Call Instructions
5.1.4 Pop Instructions
5.1.5 Check Instructions
5.1.6 Ca1I-Maybe-Multiple Instructions
5.1.7 Cdr Instructions
5.1.8 Car Instructions
5.1.9 Cadr Instructions
5.1.10 = Instructions
5.1.11 Eq Instructions
5.1.12 Bind-Pop Instructions
5.1.13 Unbind Instructions
5.1.14 List Instructions
5.1.15 List* Instructions
5.1.16 Long-Escape Instructions
5.1.17 Specialized Instruction Summary

5.2 Converting Long instructions to Short Instructions
5.3 Non-Indicator Branch Instructions
5.4 Compiler Instructions to Replace Instruction Pairs
5.5 Summary of New Opcodes

6. Deleting Instructions

6.1 Illegal Non-Branch Short Instruction Opcodes
6.2 Little-Used Non-Branch Short Instruction Opcodes
6.3 Little-Used Branch Opcodes

2

6

6
6
6

8
8

9

13

13
14

16

16
16
18
20
21
22
23
24
24
26
27
27
29
29
30
30
32
33
33
34
34
36

37

37
38
40

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET

6.4 Converting Short Instructions to Long Instructions
6.5 Summary of Available Opcode Space

7. Conclusions

I. Current Instruction Set Summary

1.1 Introduction
1.2 Short Instructions
T 1 T A n Tn"trl1,..t;A "
A ~~££o A££~ ___ ~£~u~

II. Recommended Assembler Instruction Set

ILl Effective Address Specification
II.2 Short Instruction Descriptions
II.3 Long Instructions

III. Recommended Compiler Instruction Set

ii

42
43

45

47

47
48

60

60
61
74

78

AN ANALYSIS OFTHE SPICE LISP INSTRUCTION SET

List of Figures

Figure 5-1: Byte Configuration for Branch-JfArg-Supplied, Set-Nul/Pair

Fignre 5-2: Byte Layout for Set-Null-Unlcss-Arg-Supplied Instruction

iii

35
36

AN ANALYSIS OFTHE SPICE LISP INSTRUCTION SET iv

List of Tables

Table 3-1: Instruction Type Statistics 9

Table 3-2: Operand Frequencies 10

Table 3-3: Top 15 Instructions 10

Table 3-4: 15 Most Common Long Instructions 11

Table 3-5: 10 lvlost Common Instruction Pairs 12

Table 4-1: A-field Values 13

Table 4-2: Operand Frequencies 13

Table 4-3: New A-field Frequencies 14

Table 5-1: Push Statistics, part 1 17

Table 5-2: Push Statistics, part 2 18

Table 5-3: New Push Instructions 19

Table 5-4: Push-Last Statistics 20

Table 5-5: New Push-Last Instructions 20

Table 5-6: Call Statistics 21

Table 5-7: New Call Instructions 21

Table 5-8: Pop Statistics 22

Table 5-9: New Pop Instructions 22

Table 5-10: Check Statistics 23

Table 5-11: New Check Instructions 23

Table 5-12: Call-Maybe-Alultiple Statistics 24

Table 5-13: New Call-Maybe-Multiple Instructions 24

Table 5-14: Cdr Statistics 25

Table 5-15: New Cdr Instructions 25

Table 5-16: Car Statistics 25

Table 5-17: New Car Instructions 26

Table 5-18: Cadr Statistics 26

Table 5-19: New Cadr Instructions 27

Table 5-20: = Statistics 27

Table 5-21: New = Instructions 28

Table 5-22: Eq Statistics 28

Table 5-23: New Eq Instructions 28

Table 5-24: Bind-Pop Statistics 29

Table 5-25: New Bind-Pop Instructions 29

Table 5-26: Unbind Statistics 30

Table 5-27: New Unbind Instructions 30

Table 5-28: List Statistics 31

Table 5-29: New List Instructions 31

Table 5-30: List* Statistics 31

Table 5-31: New List* Instructions 32

Table 5-32: Mise Statistics 32

AN A~ALYSIS OF TIlE SPICE LISP INSTRUCTION SET

Table 5-33: New ll!isc Instnlctions
Table 5-34: New Short instnlctions from Old Long instructions
Table 5-35: Branch Instruction Pairs
Table 6-1: Illegal Instnlctions when A = 1
Table 6-2: Rarely Used Instructions and Operands
Table 6-3: Conversion of Short Branch Instnlctions to Long Branch Instructions
Table 6-4: Conversion of Short Instructions to Long Instructions
Table 7-1: Incremental Savings Per New Instruction
T~lble III-l: Compiler Instruction Fonnats

v

33
33
34
37
40
42
43
46
78

AN ANALYSIS OF THE SPICE LISP INSTRCCTION SET 1

Abstract

In order to increase program locality (thereby decreasing page swapping on computers with small physical

memory and increasing the cache hit-ratio on those computers which have caches) the size of object code

programs should be as small as possible. By introducing a distinction between the instruction set used by the

compiler and that generated by the assembler, it is possible to encode the instnlction set of the target machine

to reduce the size of object code programs without introducing added complexity into the compiler. Other

improvements in the assembler's instruction set require that the compiler instruction set be updated. The

micro-coded instnlction set for Spice Lisp on the Perq is amenable to this sort of optimization.

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 2

1. Introduction

This paper is an analysis of the instruction set for Spice Lisp based on static instnlction and operand

frequencies. Dynamic execution statistics are being collected to be used in an analysis similar to those

performed in [5] and [10]. The Spice Lisp instruction set was designed, for a single user, user microcodable

machine (currently the Perq).l

Most interesting computer programs require a large amount of virtual memory. On small, personal

computers a major bottleneck for system performance' is prinlary to secondary memory bandwidth.

Therefore, it is advantageous to have a working set that can fit in primary memory, incurring as little

swapping cost as possible. On those computers which have instruction caches, program size should be

minin1ized in order to increase the locality of programs so that the cache hit-ratio is improved, thereby

increasing performance. By refining the compiler to generate compact object programs, program runtime can

be reduced. In refining the compiler in this manner, it is important to remember that instructions should not

be designed so that many levels of instruction decoding are required by the microcode; this might actually

increase program runtime. The goal of this analysis is to determine ways to reduce Spice Lisp object program

size by adding optimizing instructions in a non-disruptive manner. Other optimizations have become

apparent in the analysis and are included in this paper. A similar analysis of the Mesa instruction set with

recommended improvements is described by Sweet and Sandman in [9].

From the compiler writer's point of view, a computer architecture should have a regularity of structure;·

orthogonality should not be violated; arbitrary composing of these regular, orthogonal notions should be

allowed [11], [1]. However, since all instructions and addressing modes are not used equally in practice,

certain optimizations are suggested. In order not to violate the above principles, one key criterion for any

optimization involving the addition of instructions should be kept in mind. Any instructions added for

optimization should provide a special case of some more general construction. [4] The main phase of the

compiler will generate the general instruction; the assembler will choose the most efficient specialized form of

that instruction. If no specialized form is available (presumably because it has not been warranted by analysis

lWhile designed fo; a personal machine [7], Spice Lisp adheres to the Common Lisp specification [2]; Common Lisp will be available
on multi-user machines.

AN ANALYSIS OF THE SPICE LISP II\STRUCTION SET 3

of instruction and operand frequencies) a general form is generated by the assembler2 •

This sort of optimization suggests a different sort of methodology to be used in designing the compiler and

assembler. In order to make the compiler writer's job easier, the compiler is designing to generate instructions

which are members of an idealized, general instruction set which is not limited by opcode space. The

assembler translates these idealized instnlctions into those actually available for execution by the machine. It

is important to note that these instruction sets are of approximately the same level of abstraction -- there is

little or no semantic gap between them. The salient difference between them is that the compiler instruction

set is designed for easy compilation -- the assembler instruction set for short object program size and fast

execution speed.3 In order to make room for new, specialized instructions, opcode space must be made

available. Elimination of rarely-used instnlctions from the instruction set generated by the assembler will

open up a substantial portion of the presently used opcodes for re-use. An instruction generated by the

compiler need not have a unique, corresponding opcode in the actual instruction set which lhe assembler

generates.

An argument against allocating opcodes in this fashion may be made by claiming that this places an undue

burden on the compiler by infringing upon the regularity of the instruction set (see [11]). However, if we

restrict the necessity for more complicated instruction selection to a particular, specialized phase· of

compilation (ie. assembly), the increase in object code compactness should more than offset the added

complexity of instruction assembly. For example, the Spice Lisp compiler may continue to assume that an

instruction such as Check4 with operand stack exists and generate something of the form (check stack) as

input to the assembler even if this instruction is not directly encoded. The assembler may then generate the

opcode for (pop ignore), which has the same effect The essence of this argument is that there need not be a

one-to-one correspondence between the instructions generated by the compiler and those opcodes generated

by the assembler. Perhaps a more appropriate way to view the above mapping of (check stack) and (pop

ignore) to one opcode is to see this as two instructions having the same assembled opcode. Another sort of

2 An interesting side issue given this sort of specialized instruction set is whether or not the general form of an instruction should
include those options available as specialized forms. From general information theory [6], it can be shown that to achieve greater
program entropy (where entropy is a measure of the average information content -- see the thesis by Sweet [8] for a discussion of program
entropy) the general form should be designed so that there is no redundancy with the specialized forms. For example, if one special form
of a Push instruction pushed the constant 0, then the range of constants available for the general form should be realigned so as not to
include O. However. this approach increases the complexity of the assembler and can significantly reduce regularity between the general
forms generated by the assembler. It should also be pointed out that once this approach is taken, all compilers must use the optimizing
assembler.

3 An additional advantage of this scheme is that the compiler will be much more portable. Only a new assembler need be written for
each new machine.

4See Appendix I for a description of the Spice Lisp instruction set

A':'. ANALYSIS OF "filE SPICE LISP INSTRCCTION SET 4

mapping that ~ould be possible is that which occurs when one sort of compiler instruction (eg. (Pop arg&local

N) maps to several different opcodes depending on the value ofN. It would also be possible for the compiler

to generate rarely-used instructions for which there was no corresponding opcode to be generated by the

assembler. In these instances, the assembler might substitute a 5h01t sequence of instructions which had the

same effect. In no case is the compiler writer forced to take these optimizations into account when writing the

main body of the compiler. Other optimization techniques (flow analysis or constant folding, for example)

are orthogonal to this technique.

Another argument against this sort of opcode allocation is that the compiler could generate better object

code if the compiler writer could make use of the knowledge that particular instructions were expressed in

fewer bytes. It may be possible to tune the compiler to generate more compact code by doing complicated

analysis of the number of references to particular operands, etc. This would make the compiler much more

complex. This problem can be avoided by using the appropriate methodology in designed and refining the

instruction set and compiler. The compiler should be made extremely regular -- for example, it should

allocate arguments and local variables to particular slots in the control stack in a uniform manner. (One fairly

simple approach to allocating slots on the control stack would be to allocate slots starting with the most

frequently referenced local variable or argument.) If the compiler is designed to build functions and stack

blocks in a uniform manner, patterns of reference into the vector of symbols and constants and into the

arguments and local variables of the control stack can be recognized through analysis (both static and

dynamic) of object code. Using these patterns, the instruction set may be modified and tuned to optimize the

number of bytes needed to represent the most common instructions and operands. All of these modifications

to the instruction set may be made so as to require changes only to the assembler. This process may be repeated

throughout the lifetime of the compiler and instruction set The aspect of this process which eliminates much

of the expected complexity in the compiler is that the specialized opcodes and many-to-one instruction to

opcode mappings are added only to the instruction set generated by the assembler after statistical analysis of

the instructions generated by the compiler. This statistical analysis can also be used to suggest new

instructions to be generated by the compiler (for an example, see 5.4). Similar methodologies have been used

to some success and are described in [9] and [4].

In some instruction sets, instruction opcodes may vary in length (eg. 1 byte and 2 byte instructions). One

or more of the short opcodes is interpreted as an escape code which indicates that another byte should be

fetched and used as the instruction op~ode. Another advantage to designing separate instruction sets for the

compiler and the assembler is that the compiler need not divide its instructions into the long instruction and

short instruction categories; this complication may be reserved for the assembler only.

After discussing those aspects of Spice Lisp architecture which are helpful in understanding the instruction

A~ ANALYSIS OF THE SPICE LISP INSTRUCnON SET 5

set, I will present statistics summarizing the findings of an analysis of static instnlction aild operand

frequencies (section 3). In section 4 I will describe changes to the instnlction set which will reduce decoding

time for the most common sort of operand. Following this will be a discussion of changes which will enable

the assembler to generate smaller object code programs. These changes fall into the following categories:

o allow some short instructions to imply a specific operand in the instruction opcode (section 5)

• convert heavily used long instluctions to short instructions (section 5)

• convert rarely-used short instructions to long instructions (section 6)

• eliminate illegal instruction-opcode combinations (section 6)

• collapse frequent instruction pairs into single instructions in both the compiler instruction set and

the assembler instruction set (section 5)

• collapse frequent instruction pairs into single instructions in only the assembler instruction set

(section 5)

• eliminate infrequently used instructions that are easily expressed as a sequence of two or more
other instructions (section 6)

Appendix I is an edited description of the instruction set of the current Spice Lisp architecture taken from

The Internal Design a/Spice Lisp [3]. Appendix II is a parallel version of these descriptions which is intended

as a description of the instruction set of a new assembler for Spice Lisp, including the recommended

optimizations. Appendix III is a description of the instruction set which should be generated by the main

phase of the compiler; it is these general instructions which the new assembler should translate into the

specialized instruction set of Appendix II.

AN AN ALYSIS OF TIlE SPICE LISP INSTRCCfION SET 6

2. Sonle Notes on Spice Lisp Architecture

2.1 The Execution Environnlent

The Spice Lisp implementation architecture is stack based. The control stack is used to stack function call

frames. Each frame contains pointers to the previously-active frame, the most recent open frame, and the

point to which the binding stack is to be popped upon function return. Each frame also contains storage

locations for the function's arguments and local variables. Spice Lisp instnlctions may specify an argument or

local variable as operand. Frames also include a slot for a pointer to the function object which contains the

compiled code for that function. A function frame on the control stack is arranged as follows:

o Header word.

1 Function object or EXPR for this call.

2 Closure List (or NIL if not a closure).

3 Pointer to previous active frame.

4 Pointer to previous open frame.

S Pointer to previous binding stack.

6 Saved PC of caller. (An integer address)

7 Arguments-and-Iocal-variablcs block starts here. (Entry 0)

N Frame Barrier. Push after the args and locals.

2.2 Function Objects

Each compiled function is represented in the machine as a Function Object. The function object contains a

vector of infonnation needed by the function-calling mechanism. This vector includes a pointer to the vector

that holds the actual code, the number of required and optional arguments, and a few other things. Following

this information is a vector of symbol pointers (for symbols that are used as special variables in the code) and

constants. One addressing mode for Spice Lisp instructions may access this vector. A constant is any Lisp

object that is used but not altered by the function. Integer constants in the range of -128 to + 127 can be

expressed as immediate operands, and so do not need to be represented here as full-word constants.

2.3 Instruction Set and Addressing Modes

The ·instruction set used for Spice Lisp is based on that used by the MIT Lisp Machine.5 However, while

5Since we have no locative pointers and no CDR codi~g in the current Spice Lisp. some of tJ:le instructions used on the Lisp Machine
have no counterparts in the Spice Lisp instruction set .

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 7

the Lisp 1\1achine instruction set was designed to fit into 16-bit words, there is a clear advantage to fitting

Spice Lisp instructions into·S-bit bytes on the Perq and several other machines to which Spice Lisp may be

ported, even if more bytes must usually be fetched for operands. Therefore Spice Lisp object programs are

organized into a strcmTI of 8-bit bytes. Each instnlction (including operand specification fields) may vary

from 1 byte to 5 bytes in length. Several operations have been added in order to correct weaknesses noticed in

the MIT inSU1.lction set (eg. operations for accessing vectors and strings). Operands are of the following

types:

• top-of-stack

• indirect through top-of-stack

• immediate short constant

• offset into the arguments and local variables of the active stack frame

• offset into the vector of symbols and constants of the current function object

• offset indirect through the vector of symbols and constants of the current function object

Currently, the addressing mode of an instruction is specified by a 2-bit field, the A-field. While 2-bits do not

carry enough infonnation to distinguish between all of the above addressing modes, ambiguity can be

resolved by additional operand bytes. These addressing modes are tailored specifically to facilitate

implementing Lisp; no attempt is made to address the general "primitives vs. solutions" problem expressed

.by Wulf in [11]. Specific "solution" type instructions for implementing a Lisp system are implemented in

microcode. In particular, addressing modes assume a certain stack frame layout

There are two classes of instructions available for Spice Lisp. Those instructions specifiable in 1 byte

(without operands) are designated short instructions. Four I-byte short instructions are escape codes that are

interpreted to mean that a second byte should be fetched to specify an operation. These 2-byte instructions

are designated long instructions. Long instructions nonnally are used in conjunction with arguments which

are set up explicitly on the stack. For example, the Cons long instruction expects the two arguments for

consing to be at the top of the stack. For more detailed infonnation, see [3].

Spice Lisp instructions may also be divided into to classes according to whether the instruction is a branch

instruction or not. This distincpon· is conceptually orthogonal to the shorUlong distinction.

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 8

2.4 Indicators

Conceptually, the result produced by each instruction is used to set a group of indicators, which can be

tested by subsequent conditional-jump instructions. These indicators are NULL, ATOM, and ZERO. In the

description of instructions below, if it is unclear what the natural "result" is, it will be stated explicitly what

value goes into the indicators; in some cases, instructions leave the indicators unchanged.

Under some conditions branching depending upon the setting of an indicator may require that instructions

be generated for the sole purpose of setting the indicators; when this is the case, a branch architecture which

does not use indicators would require fewer bytes of instnlctions. For example, (Check X) (Branch-Null N)

might be expressed in a "no-indicator" architecture as (Branch-Null X N). The fonner requiring 4 bytes to

express, the latter 3. However, when the quantity being tested for a conditional branch has .already (or would

have already) set the indicators, an indicator architecture requires fewer bytes of instructions. For example, (>

X) (Branch-Zero N) might be expressed in a no-indicator architecture as (> X) (Branch-Zero X N); the fonner

requiring 4 bytes to express, the latter 5. Statistics collected for this evaluation show that having an indicator

architecture is much more often an advantage than a disadvantage. However, the addition of several branch

instructions which do not branch based on the indicators allows the compiler to generate indicator-using

branches or non-indicator-using branches as the situation warrants. This possibility is explored in section 5.3.

2.5 Design Philosophy

This instruction set was designed so that there would be a direct mapping from the S-expression source to

the instruction set Because of this direct mapping, no assembly code for Spice Lisp should ever be written by

hand: it should only be generated by the compiler. Because only the compiler should generate these

instructions, various specialized instructions may be added to the instruction set in order to reduce compiled

program size with the only cost being a small amount of added complexity in the compiler (and, of course,

opcode space.)

The division of the original instruction set into short and long instructions was based on the designer's

intuitions as to which instructions would be generated and executed most frequently. While this intuition is

shown to be largely correct by the statistics collected to date, substantial improvement in code size may be

achiev~d by rearranging the instructions and by optimizing operand specification based on a statistical

analysis.

AN Al\'ALYSIS OF TI-IE SPICE LISP INSTRUCTION SET 9

3. Statistical Results

The code available for statistical analysis consisted entirely of Spice Lisp system implementation code.

While this sample cannot be construed as representative of user code, the instmction frequencies found in this

sample should be sufficient for a first pass at refining the Spice Lisp instruction set.

Statistics were gathered by two Mac Lisp programs which scan compiled Spice Lisp code. One program

counted occurrences of each instruction and kept counts of the types of operands used by each instruction.

The other MacLisp program collected information about specific operand values for those instructions for

which this detailed information was deemed useful.

The object code programs analyzed in this study contained over 1 milli~n instructions. These object

programs had been optimized by a peephole optimizer which typically achieves at least a 25% reduction in the

number of instructions over unoptimized code. These 1,072,306 instructions occupied 2,022,694 bytes for an

average of 1.89 bytes per instruction. Table 3-1 summarizes the statistical results collected by the first

program.

Instruction TYQe Number % of Instructions Bytes % of Bytes Bytes/Instruction

Short Non-Branch 842,306 78.6 1,534,331 75.8 1.82
Branch 133,595 12.5 276,752 13.6 2.07
Long Non-Branch 96A05 9.0 211 1611 10.5 2.20

Totals 1,072,306 2,022,694 1.89

Table 3-1: Instruction Type Statistics

Each instruction makes use of an operand as summarized in Table 3-2. The first part of the table summarizes

operand frequencies for non-branch instructions. For each of these instructions an operand is specified from

the group listed in the first part of the table. Some of these instructions implicitly make use of the top of the

stack (particularly long instructions); these instances of implicit stack operands are not included in this table.

The second portion of the table summarizes operand frequencies for branch instructions. Every branch

instruction makes use of a PC-relative offset. One branch instruction (Branch-if-arg-supplied, see Appendix

A) makes use of an additional argument. It is also possible for branch instructions to pop the stack.

Optimizations based on these statistics are suggested in section 4.

The 15 instructions which occur most frequently are listed in Table 3-3 along with operand statistics. It is

interesting to note that Push and Push-Last account for 389,187 instructions, or fully 36% of all instructions.

This translates into 758,217 bytes of code (1.95 bytes/instruction), or 38% of the bytes of object programs.

This implies that substantial saving may be possible if the average number of bytes per Push/Push-Last

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 10

Non-branch operand type

Stack

Number % of Total

Short constant

Ignore

Symbols & Constants

Arguments & Local Variables

Symbol Pointers

Total

Branch operand

PC-relative Offset

Arguments & Local Variables

Table 3-2:

175,964 18.7

115,530 12.3

52,871 5.6

154.822 16.5

402,873 42.9

36,651 --12.
~j~, 111 lUU.U

Number % of Branch Instnlctions Using

133,595 100.0

3954 3.0

Operand Frequencies

Short Constant! Symbols & Arguments & Symbol

Instruction Stack

Push 0

Pop 0

Push-Last 21,069

Call 1234

Return 37,468

= 1243

Set-Null 14,981

Car 257

V-Access (long) 13,476
Eq

Set-O

V-Store (long)

725

12,891

439

Branch Instruction

Branch

Branch-Not-Null

Branch-Null

Ignore. Constants Locals

61,959

21,969

1462

0

133

20,802

556

0

2915

103

0

17,924

63,652 177,803 .

0 55,778

9365 33,281

44,342 5543

I-byte offsets

38,163

36,906

36,856

1606

725

0

580

0

6001

0

0

7593

6169

5680

15,844

3078

10,912

5004

°
2-byte offsets

3909

4376

932

Table 3-3: Top 15 Instructions

Pointers

16,969

1846

3627

146

202

25

511

3213

0

655

72

0

Total

42,072

41,282

37,788

Total

320,383

79,593

68,804

51,265

47,002

28,964

21,728

19,894

19,469
18,396 -

17,967

17,733

instruction can be reduced. This possibility is explored in section 5. Branch instruction optimizations are

discussed in section 6.3. The 15 m9st frequent instructions account for 832,340 of the 1,072,306 total

instructions generated, or 77.6%. ·This translates into 1,565,532 bytes of code, or 77.4% of all the bytes of

object code.

It is also interesting to note that 400,177 instructions (or 779,096 bytes) were used for the purpose of

AN ANALYSIS OF TilE SPICE LISP INSTRUCTION SET 11

manipulating the stack6
. This means that 37.3% of all instructions, or 38.5% of all instnlction bytes, were for

stack manipulation. A useful experiment would be to compare the code generated for this stack architecture

with code generated for other non-stack architectures in order. to determine the relative overheads of the

competing architectures.

The 15 most frequently occurring long instructions are summarized in Table 3-4. Optimizations involving

these and other long instructions are described in section 5.2.

Symbols & Arguments & Symbol
Long Instruction Stack Ignore Constants Locals Pointers Total
V-Access 13,476 2915 0 3078 0 19,469
V-Store 439 17,294 0 0 0 17,733
Get-Definition 7871 0 0 656 0 8527
Type 4680 16 0 3644 0 8340
Cons 2510 0 0 1966 470 4946
Make-Immediate-Type 2907 0 0 717 7 3631
Logldb 2085 96 0 492 0 2673
Get-Vector-Subtype 1536 0 0 839 .0 2375
Get-Vector-Length 1012 0 0 1280 0 2292
Typed-V-Access 1582 36 0 402 0 2020
Negate 1307 0 0 684 19 2010
Typed-V-Store 38 1962 0 0 0 2000
Ldb 1427 174 0 283 ·0 1884
Rplacd 798 1019 0 60 0 1877
Get-Value 173 0 0 1452 0 1625

Table 3-4: 15 Most Common Long Instructions

The 15 most common long instructions account for 81,402 of the 96,405 long instruction occurrences. Thus 15

of the 77 long instructions (19.5%) account for 84.4% of the long instruction occurrences.

Another type of statistics collected was the frequency of occurrence of instruction pairs. The 10 most

common instruction pairs are listed in Table 3-5. Optimizations suggested by analysis of these instruction pair

frequencies are discussed in section 5.4.

6This includes the ~ush, Push-Under, and Pop instructions, but not the Push-Last instruction because Push-Last also serves to close a
stack frame and end the function call process.

AN ANALYSIS OF THE sprCE LISP INSTRUCTION SET

I nstruction Pair

Call, Call

Check, Branch-Not-Atom

Push,<

<, Branch-Null

List, Push

1+, Branch

Bind-Pop, Push

Push, Copy

Car, Pop

Push, 1+

Number of Occurrences

3683

3611

3425

3390

3338

3318

3308

3177
3147
3050

Table 3-5: 10 Most Common Instruction Pairs

12

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 13

4. Optinlization of Operand Source Decoding

4.1 A-Field Re-Alignment

In the current encoding of the A-field of non-branch instructions there is a significantly skewed frequency

of occurrence for the four A-field values (see Table 4-1).

A-Code Current OQemnd TYQe Percentage

0 stack 18.7
1 short constant, ignore 17.9
2 arguments and locals, 59.4

symbols and constants

3 symbol pointers 3.9

Table 4-1: A-field Values

By far the most frequent case is when A is 2, designating that the operand is either in the arguments and

local variables section of the current stack frame or in the symbols and constants vector of the code object.

Another byte is fetched to determine which of these areas is accessed. If the sign bit of this byte is 0, the

remaining 7 bits of the byte is an unsigned offset into the vector of symbols and constants. If the sign bit is 1,

then the remaining 7 bits of the byte is an unsigned offset into the arguments and local variables area of the

stack frame. In analyzing the operand type frequencies, we notice that the most frequent type of operand is

argument or local variable (see Table 4-2). By redefining the A-codes as in Figure 4-3, we may achieve a

savings of one level of decoding for the most frequent type of operand. In the microcoded implementation of

'Spice Lisp on the Perq instructions may take varying lengths of time to execute; therefore this savings can be

realized. An additional advantage of this scheme is that the range of arguments and local variables specifiable

in a one byte operand is doubled.

OQerand Type

stack

short constant

ignore

symbols and constants

arguments and locals

symbol pointers

Table 4·2: Operand Frequencies

Percentage

18.7
12.3

5.6
16.5
42.9

3.9

AN ANALYSIS OF THE spreE LISP [~STRCCTION SET

A-Code

o
1
2

3

4.2 Two-Byte Offsets

Revised Operand Tvpe

stack

short constant, ignore

arguments and locals

symbols and constants,

symbol pointers

Table 4-3: New A-field Frequencies

Percentage

18.7
17.9
42.9
20.4

14

Any time an instruction specifies an arguments and locals or symbols and constants operand (63.3% of all

instructions use these types of operands) the instruction decoding microcode must check for a two-byte offset.

While the option of having stack frames and vectors of symbols and constants which require more than one

byte of offset should be retained, there is no need to spend microcycles checking for this possibility when

decoding every instruction. Out of over 1 million instructions generated for the current Spice Lisp

implementation, only 475 make use of a two-byte offset (all of these are source operand offsets into the vector

of symbols and constants). In order to retain the use of two-byte offsets while eliminating the need to check

for them when decoding most instructions, one new short instructions and three new long instructions should

be added to the assembler's instruction set These are:

• Push-Long-AL

• Push-Long-SC (short instruction)

• Pop-Long-AL

• Pop-Long-Sp7

When the compiler generates instructions which require a two-byte offset, the assembler may simply

substitute the same instruction with the stack as operand either preceded or followed by one of the four new

instructions, as appropriate. For example, (+ (AL LONG-OFFSET}) may be replaced by (Push-Long-AL

LONG-OFFSET), (+ Stack). In the current instruction set, this action requires 4 bytes to express (one byte

for the opcode, one for the escape-to-long-offset code, and two for the long offset) ; in the recommended

instructions set, this action would require 5 bytes (two for the long opcode, two for the long offset, and one for

the stack-using instruction opcode). If the long-offset were a source offset into the vector of symbols and

constants, the replacement would only require four bytes because Push- Long-SC is a short instruction. The

7 Only pointers through the vector of symbols and constants may be written!

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 15

nct effect of this optimization is to savc one level of decoding for 63.3% of all instructions at no increase in

code size for the current sample.

AN ANALYSIS OF THE SPICE LISP I~STRCCTION SET 16

5. Adding Nc,v Instructions

5.1 Assembler Instructions With Implied Operands

In keeping with the concept of designing the instruction set of the compiler and assembler separately, it

should be made clear that the following instnlctions are intended to be added to the assembler's instruction

set -- not the compiler's.

Many of the most common instructions use particular operands frequently. In some instances, an

additional byte of object code is generated to specify the operand of these instructions; substantial savings in

code size may be obtained by adding new instructions to the instruction set which imply an operand without

need of an additional operand byte. These more specific forms of a general instruction may be generated by

an assembler with n~ added complexity in the main body of the compiler. It should be noted that this is a

savings only in the number of bytes of object code, not in the number of instructions of object code. The

optimizations discussed below, as a rule, include only those that would save at least 0.1% in code size per

opcode. These optimizations alone would require about 80 of the 256 8-bit short instruction opcodes (about

31 %). To save 0.1% in object code size, the addition of an opcode must save at least 2022 bytes if the

estimated savings is based on the current object code sample. In the following tables listing operand statistics

. for various instructions, detailed operand information is shown only for those types of operands which occur

frequently enough to allow effective optimization; other operand statistics are summarized.

5.1.1 Push Instructions

The push instruction occurs 320,383 times in 1,072,306 total instructions. These 320,383 instructions

account for 641,678 bytes of object code, an average of slightly over 2.0 bytes per Push instruction. Table

5-1 shows the operand usage of the push instruction. The frequency of occurrence for particular operands is

shown for short integer constants, symbols and constants, arguments and local variables, and special symbols.

These statistics are in the form of S. I. C.-number pairs where s.l.e. is an integer constant and number is the

number of times that integer appeared in the object code under study or ofJset-numberpairs where ofJset is an

index into whatever structure holds the type of operands being discussed and number is the number of

occurrences of that offset (For instance, offset 0 under the arguments and local variables section of the table

refers to the first entry in the block of arguments and local variables on the control stack. Offset 0 under the

symbols and constants section refers to the first entry in the vector of symbols and constants of the current

function object.)

Several specialized instructions are suggested by analysis of these statistics. The most obvious new

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 17

Short Integer Constants

S.LC. Number S.I.C. Number S.I.C. Number S.I.C. Number Total

-128 to -1 760

0 0 1 13,221 2 5970 3 7280 o to 3 26,471

4 5225 5 2600 6 1967 7 1771 4 to 7 11,563

8 2709 9 808 10 1006 11 1068 8 to 11 5591

12 792 13 576 14 480 15 630 12 to 15 2478

16 to 19 5548

20 to 23 3585

24 to 27 3752

28 to 97 2126

98 to 127 85
Total·: 61,959

Symbols and Constants

Offset Number Offset Number Offset Number Offset Number Total

0 2705 1 5121 2 9491 3 7670 o to 3 24,987

4 6164 5 4497 6 3492 7 2431 4 to 7 16,584

8 2077 9 2272 10 1571 11 1298 8 to 11 7218

12 1080 13 1352 14 907 15 686 12 to 15 4025

16 to 20 2872

21 to 26 2398

27 to 35 2326

36 to 88 2045

89 to 127 741

Total : 63,196

Table 5-1: Push Statistics, part 1

instruction is one which would push only arguments-and-Iocals 0 through 3. This instruction would have the

same sort of 6-bit opcode as the normal short instructions, but the 2-bit A field would be used to designate an

index into the arguments and local variables block of the control stack. This is the same as adding 4

instructions with 8-bit opcodes which imply the operand. It is desirable to conceptualize these additions as

8-bit opcodes because this allows the addition of some number of new Push instructions which is not a

multiple of four. Instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-3. The new push instructions are given names of the form Push-XX n where XX is a

mnemonic abbreviation for short integer constants (SIC), symbols and constants (SC), arguments and local

variables (AL), or Special Symbols (S). n is an integer offset The addition of these instructions will save

262,714 bytes reducing the average number of bytes per instruction from 2.0 to 1.2.

AN A~AL YSIS OF TIlE SPICE LISP Ij\STRCCTION SET 18

Arguments and Local Variables

Offset Number Offset Number Offset Number Offset Number Total

0 33,456 1 34,567 2 24,278 3 18,269 o to 3 110,570
4 13,110 5 9397 6 6196 7 5715 4 to 7 34,418
8 6252 9 4853 10 4175 11 3432 8 to 11 18,712

12 2225 13 1615 14 957 15 1120 12 to 15 5917
16 1310 17 1304 18 652 19 662 16 to 19 JY2~

20 to 23 3946
24 to 127 312

Total: 177,803

Specials

Offset Number Offset Number Offset Number Offset Number Total

° 4673 1 2829 2 1119 3 2176 ° to 3 10,797
4 1647 5 862 6 523 7 526 4 to 7 3558

8 to 20 2112
21 to 127 502

Total: 16,969

Stack: 0
Extended Symbols & Constants : 456

Total Number of Push Instructions: 320,383

Table 5-2: Push Statistics, part 2

5.1.2 Push-Last Instructions

The Push-Last instruction occurs 68,804 times in 1,072,306 total instructions accounting for 116,539 bytes

of object code, an average of 1.7 bytes per Push-Last instruction. Table 5-4 shows the operand usage of the

Push-Last instruction.

Several specialized instructions are suggested upon analysis of these statistics. Instructions whose addition

would save more than the threshold number of bytes (2022) are listed in Table 5-5. The new Push-Last

instructions are given names of the fonn Push-Last-ALIZ where AL is a mnemonic abbreviation for arguments

and local variables. IZ is an integer offset These specialized Push-Last instructions will reduce the number of

bytes per instruction from 1.6 to 1.3.

AN ANALYSIS OF THE SPICE LISP INSTR CCTION SET 19

New Instruction Number of Bvtes Eliminated % of Code Eliminated

Push-SIC1 13,221 0.654

Push-SIC3 7280 0.360
Push-SIC2 5970 0.295
Push-SIC4 5225 0.258
Push-SIC8 2709 0.134

Push-SIC5 2600 0.129
Push-SIC18 2129 0.105
Push-SIC19 2057 0.102

Push-SC2 9491 0.469
Push-SC3 7670 0.379
Push-SC4 6164 0.305
Push-SCI 5121 0.253
Push-SC5 4497 0.222
Push-SC6 3492 0.173
Push-SCO 2705 0.134
PUsh-SC7 2431 0.120
Push-SC9 2272 0.112
Push-SC8 2077 0.103

Push-ALI 34,567 1.709
Push-ALO 33,456 1.654
Push-AL2 24,278 1.200
Push-AL3 18,269 0.903
Push-AL4 13,110 0.648
Push-AL5 9397 0.465
Push-AL8 6252 0.309
Push-AL6 6196 0.306
Push-AL7 5715 0.283
Push-AL9 4853 0.240
Push-AL10 4175 0.206
Push-ALII 3432 0.170

Push-AL12 2225 0.110

Push-SO 4673 0.231
Push-S1 2829 0.140

Push-S3 2176 0.108

Total Savings (34 opcodes) 262,714 12.987

Table 5-3: New Push Instructions

AN ANALYSIS OF THE SPICE LISP I:\STRUCTION SET

Offset

0

4

Number Offset

15,042

882

New Instruction

Push-Last-ALO

Push-Last-AL1

Push-Last-AL3

Push-Last-AL2

1

5

Number

5743

1001

Total Savings (4 opcodes)

Arguments and Local Variables

Off.o;ct Number Off:~et Number Total

2 2464 3 2701 o to 3 25,950

6 1353 7 656 4 to 7 3892

8 to 17 2217

18 to 127 1222

Total: 33,281

Stack: 21,069

Short Integer Constants: 1462

Symbols & Constants : 9365

Specials: 3627

Total Number of Push- Last Instructions-: 68,804

Table 5-4: Push-Last Statistics

Number of Bvtes Eliminated

15,042

5743

2701

2464

% of Code Eliminated

0.744

0.284

0.134

0.122

25,950 l.283

Table 5-5: New Push-Last Instructions

5.1.3 Call Instructions

. 20

The Call instruction occurs 51,265 times in 1,072,306 total instructions accounting for 101,296 bytes of

object code, for an average of 2.0 bytes per Call instruction. Table 5-6 shows the operand usage of the Call

instruction.

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-7. These new Call instructions are given names of the fonn Call-SCn where SC is a

mnem6nic abbreviation for symbols and constants. n is an integer offset. These specialized Call instructions

will reduce the number of bytes per instruction from 2.0 to l.3.

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET

Offset

0

4

8

Number Off:i\ct

10,442

4512

1608

New Instruction

Call-SCO

Call-SCI

Call-SC4

Call-SC3

CaU-SC2

Call-SC6

Call-SC7

Call-SC5

1

5

9

Number

5989

2166

1071

Total Savings (8 opcodes)

Symbols and Constants

Offset Number Off.i\et Numbcr Total

2 3097 3 3714 o to 3 23,242

6 2664 7 2191 4 to 7 11,533

10 575 11 866 8 to 11 4120

12 to 16 2384

17 to 26 2104

27 to 127 959
Total: 44,342

Stack: 1234

Short Integer Constants : 0
Arguments & Local Variables: 5543

Specials: 146

Total Number of Call Instructions: 51,265

Table 5-6: Call Statistics

Number of Bytes Eliminated

10,442

5989

4512

3714

3097

2664

2191

2166

% or"Code Eliminated

0.516

0.296
0.223

0.184

0.153

0.132

0.108

0.107

34,775 1.719

Table 5-7: New Call Instructions

5.1.4 Pop Instructions

21

The Pop instruction occurs 79,593 times in 1,072,306 total instructions accounting for 137,217 bytes of

object code, for an average of 1.7 bytes per Pop instruction. Table 5-8 shows the operand usage of the Pop

instruction. The frequency of occurrence for particular operands is shown only for arguments and local

variables.

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-9. These new Pop instruCtions are given names of the fonn Pop-ALn where AL is a

AN ANALYSIS OF TIlE SPICE LISP I~STRCCTION SET 22

Arguments and Local Variables

Offset Number Offset Number Off~et Number Offset Number Total

0 1248 1 7070 2 6696 3 7397 o to 3 22.411

4 5489 5 4301 6 3600 7 4005 4 to 7 17,395

8 2994 9 1915 10 1473 11 1390 8 to 11 7772

12 1117 11 976 14 759 15 714 12 to 15 3786

16 to 21 2662

22 to 127 1752

Total: 55,778

Stack: 0

Ignore: 21,969

Symbols & Constants : 0

Specials: 1846

Total Number of Pop Instructions: 79,593

Table 5-8: Pop Statistics

mnemonic abbreviation for arguments and local variables and n is an integer offset These specialized Pop

instructions will reduce the number of bytes per Pop instruction from 1.7 to 1.2.

New Instruction

Pop-AL3

Pop-ALI

Pop-AL2

Pop-AL4

Pop-AL5

Pop-AL7

Pop-AL6

Pop-AL8

Total Savings (8 opcodes)

5.1.5 Check Instructions

Number of Bytes Eliminated

7397

7070

6696

5489

4301

4005

3600

2994

41,552

Table 5-9: New Pop Instructions

% of Code Eliminated

0.366

0.349

0.331

0.271

0.213

0.198

0.178

0.148

2.054

The Check instruction occurs 17,128 times in 1,072,306 total instructions accounting for 34,256 bytes of

object code, for an average of 2.0 .bytes per Check instruction. Table 5-10 shows the operand usage of the

Check instruction. The frequency of oc~urrence for particular operands is shown for arguments and local

variables and special symbols.

AN ANALYSIS OF THE SPICE LISP INSTRCCTION SET 23

Arguments and Local Variables

Offset Number Offset Number Offset Number Offset Number Total

0 1893 1 1658 2 2470 3 1599 o to 3 7620

4 2087 5 1029 6 809 7 1579 4 to 7 5504

8 498 9 508 10 215 11 147 8 to 11 1368

12 to 127 764

Total: 15,256

Stack: 0
Short Integer Constants: 0

Symbols & Constants : 0
Specials: 1872

Total Number of Check Instructions': 17,l28

Table 5-10: Check Statistics

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-11. These new Check instructions are given names of the form Check-ALn where AL is a

mnemonic abbreviation for arguments and local variables and n is an integer offset These specialized Check

instructions will reduce the number of bytes per Check instruction from 2.0 to 1.7.

New Instruction

Check-AL2
Check-AL4

Total Savings (2 opcodes)

Number of Bytes Eliminated

2470
2087

4557

Table 5-11: New Check Instructions

5.1.6 Call-Maybe-Multiple Instructions

% of Code Eliminated

0.122

0.103

0.225

The Call-Maybe-l'rfultiple instruction occurs 16,257 times in 1,072,306 total instructions accounting for

32,114 bytes of object code, for an average of 2.0 bytes per Call-Maybe-Afultiple instruction. Table

5-12 shows the operand usage of the Call-Maybe-Afultiple instruction. The frequency of occurrence for

particular operands is shown only for symbols and constants.

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-13. These new Call-Maybe-Multiple instructions are given names of the form

Call-Maybe-Afult~ple-SCn where SC is a mnemonic abbreviation for arguments and local variables and n is an

integer offset These new Call-Maybe-Multiple instructions will reduce the number of bytes per

Call-Afaybe-Multipleinstruction from 2.0 to 1.3.

AN ANALYSIS OF 'I1IE SPICE LISP Il\STRUCTION SET 24

Symbols and Constants

Off.~et Number Off..:;ct Number Offsct Number Offsct Number Total

0 2672 1 5216 2 1062 3 2528 o to 3 11,478

4 1260 5 472 6 525 7 485 4 to 7 2742

8 to 127 1377

Total: 15,597

Stack: 400

Short Integer Constants: 0

Arguments & Local Variables: 235

Specials : 25

Total Number of Call-Maybe- Afulliple Instructions: 16,257

Table 5-12: Call-Alaybe-Mulliple Statistics

New lnstnlction Number of Bytes Eliminated % of Code Eliminated
Call-Maybe-Multiple-SC1 5216 0.258
Call-May be-M ultiple-SCO 2672 0.132
Call-Maybe-Multiple-SC3 2528 0.125

Total Savings (3 opcodes) 10,416 0.515

Table 5-13: New Call-A,faybe-Afultiple Instructions

5.1.7 Cdr Instructions

The Cdr instruction occurs 8758 times in 1,072,306 total instructions accounting for 16,234 bytes of object

code for an average of 1.9 bytes per Cdr instruction. Taple 5-14 shows the operand usage of the Cdr .

instruction. The frequency of occurrence for particular operands is shown only for arguments and local

variables.

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-15. These new Cdr instructions are given names of the fonn Cdr-ALn where AL is a

mnemonic abbreviation for arguments and local variables and n is an integer offset These specialized Cdr

instructions will reduce the number of bytes per Cdr instruction from 1.9 to 1.5.

5.1.8 Car Instructions

The Car instruction occurs 19,894 times in 1,072,306 total instructions accounting for 39,531 bytes of object

code, for an average of 2.0 bytes per Car instruction. Table 5-16 shows the operand usage of the Car

instruction. The frequency of occurrence for particular operands is shown only for arguments and local

variables.

AN A~ALYSIS OF THE SPICE LISP I~STRUCT]ON SET

Off.~et

0
4

Offset

0
4

Number Offset

2704
219

New Instruction

Cdr-ALO

1
5

Number

775
473

Total Savings (1 opcode)

Arguments and Local Variables .

Offset Number Offset Number Total

2 609 3 540 o to 3 4628
6 254 7 431 4 to 7 1377

8 to 127 856
Total : 6861

Stack: 1282
Short Integer Constants: 0

Symbols & Constants: 580
Specials·: 35

Total Number of Cdr Instructions: 8758

Table 5-14: Cdr Statistics

Number of Bytes Eliminated

2704

2704

% of Code Eliminated

0.134

0.134

Table 5-15: New Cdr Instructions

Arguments and Local Variables

Number Offset Number Offset Number Offset Number Total

3098 1 2714 2 3360 3 2035 Oto3 11,207
866 5 864 6 584 7 468 4 to 7 2782

8 to 127 1855
Total: 15,844

Stack: 257
Short Integer Constants: 0

Symbols & Constants: 580
Specials: 3213

Total Number of Car Instructions: 19,894

Table 5-16: Car Statistics

25

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-17. These n~w Car instruc~ons are given names of the form Car-ALn where AL is a

mnemonic abbreviation for arguments and local variables and n is an integer offset These new Car

instructions will reduce the number of bytes per Car instruction from 2.0 to 1.4.

AN AKALYSIS OF THE SPICE LISP INSTRUCTION SET

New Instnlction

Car-AL2

Car-ALO

Car-ALI

Car-AL3

Total Savings (4 opcodes)

5.1.9 Cadr Instructions

Number of Bytes Eliminated

3360

3098

2714

2035

11,207

Table 5-17: New Car Instnlctions

% of Code Eliminated

0.l66

0.l53

0.l34

0.l01

0.554

26

The Cadr instIuction occurs 9238 times in 1,072,306 total instructions accounting for 16,~56 bytes of object

code, for an average of 1.7 bytes per Cadr instruction. Table 5-18 shows the operand usage of the Cadr

instruction. The frequency of occurrence for particular operands is shown only for arguments and local

variables.

Arguments and Local Variables

Offset Number Offset Number Offset Number Offset Number Total

0 3508 1 109 2 476 3 153 o to 3 4246

4 122 5 0 6 50 7 0 4 to 7 172

8 to 127 25

Total : 4443

Stack: 2320

Short Integer Constants : 0

Symbols & Constants : 0

Specials: 2475

Total Number of Cadr Instructions: 9238

Table 5-18: Cadr Statistics

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-19. These new Cadr instructions are given names of the form Cad,...ALn where AL is a

mnemonic abbreviation for arguments and local variables and n is an integer offset These new Cadr

instructions will reduce the number of bytes per Cadr instruction from 1.7 to 1.4.

AN A~'\L YSIS OF THE SPICE USP INSTRCCTION SET

New Instruction

Cadr-ALO

Total Savings (1 opcode)

5.1.10 = Instructions

Number of Bytes Eliminated

3508

3508

Table 5-19: New Cadr Instructions

% of Code Eliminated

0.173

0.173

27

The = instruction occurs 28,964 times in 1,072,306 total instructions accounting for 56,723 bytes of object

code. for an average of 1.8 bytes per = instruction. Table 5-20 shows the operand usage of the = instruction.

Short Integer Constants

S.LC. Number S.I.C. Number S.Le. Number S.LC. Number Total

-128 to -1 34
0 1370 1 2101 2 3423 3 2545 o to 3 9439
4 2958 5 1606 6 532 7 2377 4 to 7 7473
8 269 9 1104 10 1032 11 1213 8 to 11 3618

12 to 127 238
Total: 20,802

Stack: 1243
Symbols & Constants: 706

Arguments & Local Variables: 6169
Extended Symbols & Constants: 19

Specials: 25
Total Number of = Instructions: 28.964

Table 5-20: = Statistics

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-21. These new = instructions are given names of the fonn =-SlCn where SIC is a

mnemonic abbreviation for short integer constant operands and n is a short integer constant. These new =
instructions will reduce the number of bytes per = instruction from 1.8 to 1.5.

5.1.11 Eq Instructions

The Eq instruction occurs 18,396 times in 1,072,306 total instructions accounting for 36,067 bytes of object

code, for an average of 2.0 bytes per Eq instruction. Table 5-22 shows the operand usage of the Eq

instruction. The frequency of occurrence for particular operands is shown only for arguments and local

variables.

AN A~ALYSIS OF "TI-IE SPICE LISP II'STRCCTION SET

Offset

0

New T nstnlction

=-SIC2

=-SIC4

=-SIC3

=-SIC7

=-SIC1

Total Savings (5 opcodes)

Number Offset Number

354 1 1162

Number of Bvtes Eliminated

3423

% of Code Eliminated

0.169

2958 0.146

2545 0.126

2377 0.118

2101 0.104

13,404 0.663

Table 5-21: New = Instructions

Arguments and Local Variables

Offset Number Offset Number

2 928 3 2943 o to 3

4 to 6

7 to 16

17 to 127

Total ;

Stack:

Short Integer Constants :

Symbols & Constants:

Specials:

Total Number of Eq Instructions:

Table 5-22: Eq Statistics

Total
5387 .

3319

2206

0

10,912

725

103

6001
655

18,396

28

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-23. These new Eq instructions are given names of the form Eq-ALn where AL is a

mnemonic abbreviation for arguments and local variables and n is an integer offset These new Eq

instructions will reduce the number of bytes per Eq instruction from 2.0 to 1.8.

New Instruction

Eq-AL3

Total Savings (1 opcode)

Number of Bytes Eliminated

2943

2943

Table 5-23: New Eq Instructions

% of Code Eliminated

0.145

0.145

AN ANALYSIS OF THE SPICE LISP INSTRUCfION SET 29

5.1.12 Bind-Pop Instructions

rn1e Bind-Pop instnlction occurs 6178 thnes in 1,072,306 total instructions accounting for 12,156 bytes of

object code, for an average of 2.0 bytes per Bind- Pop instnlction. Table 5-24 shows the operand usage of the

Bind-Pop instnlction.

Symbols and Constants

Offset Number Offset Number Offset Number Offset Number Total
0 2684 1 932 2 497 3 444 o to 3 4557
4 441 5 255 6 158 7 61 4 to 7 915

8 to 127 431
Total: 5903

Stack: 200
Short Integer Constants : 0

Arguments & Local Variables: 75
Specials: 0

Total Number of Bind-Pop Instructions : 6178

Table 5-24: Bind-Pop Statistics

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-25. These new Bind-Pop instructions will reduce the number of bytes per Bind-Pop

instruction from 2.0 to 1.5.

New Instruction
Bind-Pop-SCO

Total Savings (1 opcode)

5.1.13 Unbind Instructions

Number of Bytes Eliminated
2684

2684

Table 5-25: New Bind-Pop Instructions

% of Code Eliminated
0.133

0.133

The Unbind instruction occurs 3732 times in 1,072,306 total instructions accounting for 7464 bytes of object

code, for an average of 2.0 bytes per Unbind instruction. Table 5-26 shows the operand usage of the Unbind

instruction.

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-27. These new Unbind instructions will reduce the number of bytes per Unbind instruction

from 2.0 to 1.1.

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET

Short Integer Constants

wS.T.C. Number S.LC. Number S.I.C. Number S.LC. Number Total

o
4

o
25

New Instruction

Unbind-SIC1

1
5

3424

o

Total Savings (1 opcode)

2
6

174

o
3
7

58

o

-128 to-1 0

o to 3 3656

4 to 7 25

8 to 127 26

Total: 3707

Stack: 0

Symbols & Constants: 0

Arguments & Local Variables: 25

Specials: 0

Total Number of Unbind Instructions: 3732

Table 5-26: Unbind Statistics

Number of Bytes Eliminated

3424

3424

% of Code Eliminated

0.169

0.169

Table 5-27: New Unbind Instructions

5.1.14 List Instructions

30

The List instruction occurs 12,979 times in 1,072,306 total instructions accounting for 25,780 bytes of object

'code, for an average of 2.0 bytes per List instruction. Table 5-28 shows the operand usage of the List

instruction.

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-29. These new List instructions will reduce the number of bytes per List instruction from 2.0

to 1.1.

5.1.15 List* Instructions

The List* instruction occurs 4242 times in 1,072.306 total instructions accounting for 8484 bytes of object

code, for an average of 2.0 bytes per List* instruction. Table 5-30 shows the operand usage of the List*

instruction.

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-31. These new List* instructions will reduce the number of bytes per List* instruction from

2.0 to 104.

AN A~AL YSIS OF THE SPICE LISP INSTRUCTION SET

S.LC. Number S.LC. Number

o 0 1 3335

4 1249 5 600

New Instruction

List-SIC2

List-SICI

List-SIC3

Total Savings (3 opcodes)

Short Integer Constants

S.LC. Number S.LC. Number Total

-128 to -1 0

2 4880 3 2707 o to 3 10,922

6 0 7 2 4 to 7 1851

8 to 127 28

Total: 12,801

Stack: 178
Symbols & Constants: 0

Arguments & Local Variables: 0

Specials: 0

Total Number of List Instructions": 12,979

Table 5-28: List Statistics

Number of Bytes Eliminated

4880

3335

2707

10,922

% of Code Eliminated

·0.241

0.165

0.134

0.54

Table 5-29: New List Instructions

Short Integer Constants

S.LC. Number S.LC. Number S.LC. Number S.I.C. Number Total

-128 to-l 0

0 0 1 1157 2 2376 3 476 o to 3 4009

4 80 5 70 6 55 7 2 4 to 7 207

8 to 127 26

Total : 4242

Stack: 0

Symbols & Constants : 0

Arguments & Local Variables: ·0

Specials: 0

Total Number of List* Instructions: 4242

Table 5-30: List1/: Statistics

31

AN ANALYSIS OF THE SPICE LISP I!'\STRUCnON SET

New Instruction

List*-SIC2

Total Sa\'ings (1 opcode)

5.1.16 Long-Escape Instructions

Number of Bytes Eliminated

.2376

2376

Table 5-31: New Lis/* Instructions

% of Code Eliminated

0.117

0.117

32

The Long-Escape instnlction occurs 96,405 times in 1,072,306 total instructions accounting for 211,611

bytes of object code, for an average of 2.2 bytes per Long-Escape instruction. Table 5-32 shows the operand

usage of the Long-Escape instruction. The frequency of occurrence for particular operands is shown only for

.arguments and local variables.

Arguments and Local Variables

Offset Number Offset Number Offset Number Offset Number Total

° 42 1 1625 2 3118 3 3472 o to 3 8257

4 3060 5 1836 6 1095 7 720 4 t07 6711

8 493 9 723 10 442 11 458 8 to 11 2116

12 to 127 1164

Total: 18,248

Stack: 50,583

Ignore: 27,021

Symbols & Constants : ° Specials: 553

Total Number of Jorfisc Instructions: 96,405

Table 5-32: M isc Statistics

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are

listed in Table 5-33. These new Long-Escape instructions are given names of the fonn Long-Escape-ALn

where AL is a mnemonic abbreviation for arguments and local variables and n is an integer offset. These new

Long-Escape instructions will reduce the number of bytes per Long-Escape instruction from 2.2 to 2.1.

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET

New Instnlction

Misc-AL3

Misc-AL2

Misc-AL4

Total Savings (3 opcodes)

Number of Bytes Eliminated

3472

3118

3060

9650

Table 5-33: New Alisc Instructions

5.1.17 Specialized Instruction Summary

% of Code Eliminated

0.172

0.154

0.151

0.477

33

In the preceding sections, we have seen how object code size may be reduced by adding 80 specialized

instructions. These specialized instructions eliminate 442,786 bytes of code. The instructions in the preceding

sections accounted for 1,493,306 bytes of code in 762,216 occurrences for an average of 2.0 bytes per

instruction. Eliminating 442,786 bytes brings this average for the optimized instructions down to 1.4. Thus

the addition of these '80 specialized instructions reduces code size by 21.9%.

5.2 Converting Long instructions to Short Instructions

Several of the instructions which were originally defined to be long instructions occur frequently enough to

warrant their inclusion as short instructions in the new assembler instruction set This re-alignment will result

in a I-byte saving per occurrence of a converted long instruction. The long instructions which should be

converted are listed in Table 5-34. It is interesting to note that these 11 long instructions account for 62,263

(64.6) out of 96,405 total long instruction occurrences. Thus less than 36% of the existing long instructions

·occurrences will remain once these are converted to short instructions.

Long Instruction Number of Bytes Eliminated % of Code Eliminated

(V-Store Ignore) 17,294 0.855

(V- Access Stack) 13,476 0.666

(Get-Definition Stack) 7871 0.389

(Type Stack) 4680 0.231
(TypeA&L) 3644 0.180

(V- Access A&L) 3078 0.152

(V- Access Ignore) 2915 0.144

(Make-Immediate-Type Stack) 2907 0.144

(Cons Stack) 2510 0.124

(Cons A&L) 1966 0.097

(Typed- V-Store Ignore) 1922 0.095

Total (11 opcodes) 62,263 3.078

Table 5-34: New Short instructions from Old Long instructions

A~ ANALYSIS OF THE SPICE LISP Ii\STRlJCflON SET 34

5.3 Non-Indicator Branch Instructions

The addition of a branch instruction which branches based upon the value of an operand specified by the

branch instruction itself rather tl'lan an indicator setting can reduce code size by a significant amount. Table

5-35 shows pairs of instructions generated by the current compiler in which the first instruction does nothing

but set the indicators for a branch, which is specified by the second instmction of the pair.

Instruction Pair

Check, Branch-Not-Atom

<, Branch-Null

<, Branch-Not-Null

>, Branch-Null

Check, Branch -A tom

Number of Occurrences

3611
3390
2425
2163
1636

13,225

Table 5-35: Branch Instruction Pairs

However, only one new branch instruction is justified based upon these instruction pair occurrences. These

instruction pair occurrences are misleading because they do not specify where the operand for the first

instruction comes from. In reality, each instruction of the pairs in this table represent four opcodes.8 In order

to calculate the expected savings for a new branch instruction, we must detennine what proportion of each

instruction' occurrences use a particular operand source. For example, using the Check, Branch-Not-Atom

pair, 89% of Check instructions use an argument or local variable operand. 98.5% of Branch-Not-Atom

instructions are short and do not pop the stack. Therefore, (3611 * .89 * .985) = 3166 (0.157%) is the expected

savings due to adding an NI-Branch-Not-Atom-AL instruction. The addition of no other branch instruction

saves greater than 0.1% in code size.

5.4 Compiler Instructions to Replace Instruction Pairs

New instructions are suggested if particular instruction pairs occurred frequently (ie. combine the two into

one instruction). It should be noted that these optimizations are of a different character than those which add

specialized instructions with implied operands. These optimizations would most conveniently be added by

changing the main body of the compiler such that these were generated under the appropriate circumstances

rather than contorting the assembler to reduce some instruction pairs to one instruction.

One instruction pair that might be combined into a single instruction is Branch-IfArg-Supplied, Set-Null.

8Four 8-bit oPcode~ are represented by the first to account for the A-code which specifies the operand source: four 8-bit opcodes are
represented by the branch to account for the short-long, pop-nopop options. .

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 35

By combining these two instructions to arrive at a new ins~ction, code size may be reduced. A diagram of

the byte layout for this instruction pair is presented in Figure 5-1.

7 o

I Branch·lf·Arg-Supplied Opcode A = 0

Offset into A & L block

PC-relative branch offset

7 o

I Set-Null Opcode A = 2
.--_.-. _ .. -- _ .. -- _.- -... _-
I Offset into A & L block

Figure 5-1: Byte Configuration for Branch-IfArg-Supplied, Set-Nul/Pair

Notice that the operand of the Set-Null instruction is always an offset into the arguments and local

variables block (A = 2); and the Branch-If-Arg-SuppUed Instructi9n is always takes a short (1 byte) PC

relative offset and never pops the stack (A = 0). For more detailed information about these instructions, see

Appendix 1.

The following optimizations are possible:

1. One byte per occurrence of this instruction pair could be saved by simply adding a new I-byte

opcode that used all the same operands as the instruction pair because one of the two opcode
bytes could be eliminated. This would eliminate (1 * 1782) = 1782 bytes for a .088% reduction in
code size. It is not necessary to introduce four I-byte opcodes to correspond to the 4 possible
Set-Null opcodes; only one of the A-code values is in use in this pairing -- the arguments and

locals variables combination. Therefore the cost of this optimization is only one opcode.

2. Further savings would result from eliminating one operand byte altogether. This is possible
because the Set-Null instruction of the pair certainly refers to the same argument as the

Branch-If A rg-Supplied instruction in the arguments and local variables part of the stack frame in
order to initialize it. We need only specify one offset for both references. So, (2 * 1782) = 3564

bytes could be eliminated from existing compiled code by adding a new instruction

Set-Null-Unless-Arg-Suppliedwere added to the instru~tion set This is a .176% reduction in code

size.

3. Further savings may be possible here. Depending upon how the compiler generates code for

initializing unsupplied arguments, even- the branch PC-relative offset may be eliminated. If the

branch is used only to bypass the Set-Null instruction. then no branching is needed wh:n the new

AN ANALYSIS OF THE SPICE LISP INSTRCCfION SET

instruction is used. This would eliminate (3 * 1782) = 5346 bytes resulting a 0.264% reduction in

code size.

36

It would seem that the most reasonable choice is number 3 above; the resulting byte layout for the new

instruction would be as in Figure 5-2.

7 o

I Set·Null-Unless·Arg-Supplied Opcode A = 2

Offset into A & L block

Figure 5-2: Byte Layout for Set-Null-Unless-Arg-Supplied Instruction

Another instruction pair which is easily converted into a single instruction is Branch-Null. Return. The new

instruction resulting from combining this pair would be (Return-Unless-Null Stack. Return Stack accounts

for 79.7% of all Return occurrences, and this pair occurs 5722 times; so this would result in a savings of (5722

* .797) = 4561 bytes of code, a 0.225% reduction in code size. Adding other operand sources for this

instruction do not save the minimum 0.1% in code size required.

Another instruction pair that may be converted to a single instruction is the pair Car. Scdr. From the

nature of these instructions we may assume that both use the same operand. The new instruction resulting

from this pair would be (Push-C a,.. Sed,.. ALI). Arguments and local variables are used as the operand in

88.7% of all Scdr instructions. This pair occurs 3670 times; so the expected savings is (3670 * .887) = 3255

bytes, a 0.161% reduction in code size.

5.5 Summary of New Opcodes

From the preceding sections we see that with the addition of 95 opcodes to the assembler's instruction set, a

25.8% savings in object code size may be obtained. This is a reduction from 2,022,694 bytes of object code to

1,501,277 bytes, a savings of 521,417 bytes. These new instructions will reduce the average number of bytes

per instruction from 1.9 to 1.4.

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 37

6. Deleting Instructio-ns

In order to add the specialized instructions recommended in other sections of this paper, opcode space

must be available in the instruction set of the assembler. In this section we explore options for making opcode

space for short instnlctions available. These options include:

• converting some short instructions to long instructions

• eliminating illegal instruction-operand combinations from the opcode space

• eliminating some rarely-used instructions by replacing them with sequences of more common

instructions

In no case does any change intended to open up opcode space affect any code generation except that done by

the assembler (ie. the compiler is unchanged).

6.1 Illegal Non-Branch Short Instruction Opcodes

56 non-branch short instructions are presently defined, accounting for 224 opcodes. Of these 224 opcodes

20 are illegal and can never be generated by the assembler. These 20 re-claimable opcodes are described in

Table 6-1. The name of the instruction is listed following its 6-bit instruction opcode. This 6-bit opcode,

concatenated with the 2-bit A-field (which describes the operand source), make up a unique 8-bit opcode

which fills the first byte of every object-code instruction. All of these illegal opcodes occur when A is 1.

When A is 1 and the operand is used only as a source, then the operand is a short integer constant taken from

the next byte of object code. If the operand is used as a destination, the result is ignored when A is 1

(however, it is used to set the indicators). For a description of these instructions, see Appendix I.

6-Bit OQcode Instruction 6-bit OQcode Instruction

1 Call 21 Caar

2 Call-O 22 Sedr

3 Call-Multiple 23 Seddr

4 Call-¥aybe-Mulliple 37 1+
16 Car 38 1-

17 Cdr 39 Bind-Null

18 Cadr 40 Bind-T

19 Cddr 41 Bind-Pop

20 Cdar 50 Set-Lpush

51 Set-Lpop 54 Spread

Table 6-1: Illegal Instructions when A = 1

AN ANALYSIS OF TIlE SPICE LISP INSTRUCTION SET 38

6.2 Little-Used Non-Branch Short Instruction Opcodes

Many of the legal short instructions have not been generated by the current Spice Lisp compiler. While

this might be attributed to a poor selection of instructions by the compiler, it seems more likely (after analysis

of the unused instructions) that they are simply not useful. In this section, it is proposed that many of these

opcodes be re-allocated to more useful instructions.

Several opcodes which should be considered for re-use arc described below. With each description is

included the instruction or sequence of instructions which could be generated by the assembler to replace the

instruction being descIibed.

2 Call-O, A = 0 or 3

8 Push, A = 0

No function of 0 arguments has yet been called using the stack or a special symbol as the

source of the function in existing code. While these combinations may certainly occur in
future code, there is no need to allocate two opcodes to them. They may be handled in the

assembler by generating a Call and a Push-Last. »»>NOTE: Slguts is unclear about this.

Push-Last must not try to cross control stack boundaries if this is checked for. It should

simply start the call without munging the stack when given stack as argument.««<

This is a no-op unless it is being used to set the indicators. Several instructions perform

this same operation; they should be mapped onto the same opcode. These instructions

include Pop with A = 0 and Copy with A = 1. Moreover, none of these combinations has

yet occurred; therefore, this might economically be converted a long instruction.

10 Push-Under, A = 1-3

Push-Under has never been generated by with these operands using the current compiler.

These combinations may be eliminated both from the set of possible instructions generated

by the compiler and from the opcode set generated by the assembler.

11 Check, A = 0 This instruction has the same effect as Pop with A = 1 in the current instruction set This

is not intuitive. In the revised instruction set this combination should not pop the stack; it

should have the same effect as Push with A = 0 as above.

12 Pop, A = 0 See Push above.

13 Copy, A = 1 See Push above for a description of the effect of this instruction in the current instruction

set However, this is simply an unintuitive and redundant combination -- the compiler

should never generate it.

50 Set-Lpush, A = 0,2,3

AN ANALYSIS OF THE SPICE LISP INSTRUCfION SET 39

This instruction has never been generated. It may be replaced by (Push x). (Cons Slack)9,

(Pop x) . . TIle Push and Pop instructions would have the same operand as the original

Set- Lpush would have had. While intended for use when compiling Spice Lisp DO's, this

instruction is not used and does not seem an economical use of the opcode space -- consing

will dominate the cost of the instruction fetch here anyway. If not totally eliminated from

the instruction set, this should at least become a long instruction.

51 Set-Lpop, A = 0,2,3

This instruction has not been used. It may be deleted in much the same way as Set-Lpush
above (in either the assembler or both the compiler and assembler). It would be replaced

by (Car x), (Cdr x), (Pop x). This instruction was intended to be used when compiling

Spice Lisp DO's; however, this instruction might be used if the compiler were smarter

about compiling DO's; therefore, this instruction should be retained.

From above, we see that 12 opcodes may be re-claimed with no apparent cost. If the Set- Lpush instruction

is retained as a long instruction, the cost is only three long instruction opcodes.

While several opcodes would be freed by the preceding suggestions, many more could be eliminated at

little cost in added code size to the current sample. These eliminations are all of the same sort. All of the

instructions in the existing instruction set are encoded to use operands from any of four sources (therefore 4

8-bit opcodes). Many of these instructions are never used in conjunction with one or more of the possible

operand sources for which opcode space is used. It would be a simple matter for the assembler to translate

these instructions so as to use the stack as operand. It would generate a Push instruction to precede each of

these instructions when an uncommon source operand was specified by the compiler. When an uncommon

"destination operand was specified, a Pop instruction would follow the original instructions. If this were done,

these rarely used opcodes could be re-assigned to frequently occurring, specialized instructions. The likely

candidates for this re-assignment are listed in Table 6-2. Each of these would cost one byte of increased code

size per occurrence to eliminate. These instructions account for 53 opcodes (out of256 possible in 1 byte) and

occur only 4688 times (out of 1,072,306 total instructions). Thus they take up 20.7% of the available opcode

space but account for only 0.44% of the instructions present in the current sample. 23 of the opcodes in table

6-2 do not appear in the code sample and may thus be eliminated with no resulting increase in code size.

Eliminating all 53 of these opcodes would increase code size by 0.23%.

9The (Cons A B) long instruction expects A and 1! to be on the stack. A would already be on the stack (see the definition of Set-Lpush
in I).

AN ANALYSIS OF THE SPICE US? INSTRCCTION SET

1 nstrllction and Operand

(Call- A4uill})ie A&L)

(Call-Alaybe-ll1uitipie A&L)

(Return Ignore)

(Throw Short-Constant)

(Throw A& L)

(Throw S&'C -- Special)
/~, ,_,...., 6 r'" _J ___ .. \

(l-flt:<':K ,JIlUrt-\.., UIl.llUlll/

(AI ake-Predicate A&L)

(AI ake-Predicate S&C -- Special)

(Not-Predicate A&L)

(Cadr A&L)

(Cddr S&C -- Special)

(CdarA&L)

(Cdar S&C -- Special)

(Caar S&C -- Special)

(Trunc S&C -- Special)

(+ S&C -- Special)

(- S&C -- Special)

(* S&C -- Special)

(/ Short-Constant)

(/ S&C -- Special)

(Bit- And Short-Constant)

(Bit-And A&L)

(Bit-Xor A&L)

(Bit-XorS&C -- Special)

(Bit-Or Short-Constant)

(Bit-Or A&L)

Occurrences

4
235

133
o

122

368
(\

v

141
o

99
o
o
o
o

105
16

277
321
305
206
14

316
307

151
o
o

247

Instnlction and Operand

(Bit-Or S&'C -- Special)

(Eqi Short-Constant)

(Eqi A&L)

(Eqi S&C -- Special)

() S&C -- Special)

(Eq Short-Constant)
/, • ~ () /"' C" ___ :_1\
(~ T u,'-' - - ,pCI..,H.lI/

(1- S&C -- Special)

(Not-Predicate S&C -- Special)

(Bind-Null A&L)

(Bind-T A&L)

(Bind- T S&C -- Special)

(Bind-Pop A&L)

(Set-O Ignore)

(Set-O S&C -- Special)

(Set-T S&C -- Special)

(NpopA&L)

(Npop S&C -- Special)

(Unbind A&L)

(Unbind S&C -- Special)

(Set- Lpop S&C -- Special)

(List A&L)

(List S&C -- Special)

(List* A&L)

(List * S&C -- Special)

(Spread S&C --Special)

Total (53 Opcodes)

Table 6-2: Rarely Used Instructions and Operands

6.3 Little-Used Branch Opcodes

40

Occu rrences

28

o
76

o
217
103
')0"'7
.JUI

o
o

25
o

12
75
o

72

229

o
o

25

o
o
o
o
o
o

---11.
4688

Several of the branch instruction opcodes are never or rarely used. These may be eliminated in order to

open up opcode space for more frequently occurring operations. Existing branch instructions have a format

similar to that of existing non-branch short instructions. A 6-bit opcode is used to denote what sort of branch

is to be executed. A 2-bit A-field is used to represent whether the branch is short or long and whether to pop

the stack or not if the branch is taken. For a complete description of existing branch instructions, see

Appendix I. Many of the 8-bit combinations possible in the present encoding are unneeded in the

assembler's instruction set. All of the short branches (I-byte PC-relative offset) which do not pop the stack

are used enough to warrant their inclusion. Those which may be eliminated are described below. Rather

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 41

than introduce the confusing A-code encoding of the pop -- no-pop and short -- long offset possibilities, the

instructions below will be described in the following form: (branch-mnemonic X Y) where .X is either long or

short and Y is either pop or nopop.

• (Branch X Pop)

• (Branch-If- Arg-Supp/ied X Pop)

• (Branch-Atom X Pop)

• (Branch-Not-Atom X Pop)

• (Branch-Zero X Pop)

Few branches with a pop if the branch is not taken have been generated. 10 opcodes may be freed

if we eliminate all but the 6 most frequent types of branch instructions which pop if the branch is

not taken. Those eliminated may be replaced by the same sort of branch instruction followed by

an explicit Pop; thus the stack would be popped only if the branch was not taken, as specified for

the compiler instruction set This will not increase the current object code size.

• (Branch-If- Arg-Supp/ied long nopop)

This combination has never occurred. It may be eliminated or converted to a long instruction

with no increase in current object code size. While elimination of this long offset form of the

Branch-If Arg-Supp/ied instruction might restrict the compiler when it is generating code to

handle optional arguments in Spice Lisp, it seems doubtful that more bytes of code than can be
specified in one byte of offset will ever be needed to initialize an unsupplied argument.

Nevertheless, since plenty of opcode space is available for long instructions, the extended fonn

should be retained as a long instruction -- just in case!

• (Branch-Null Long Pop)

• (Branch-Not-Null Long Pop)

• (Branch- Atom Long NoPop)

• (Branch-Not-Atom Long NoPop)

• (Branch-Zero Long NoPop)

• (Bran~h-Not-Zero Long NoPop)

These branch instructions occur so seldom that they could be eliminated or converted to long

instructions. Since the two instructions in this group which pop the stack if the branch is not
-

taken may be easily simulated by the assembler with an instruction sequence requiring no more

AN ANALYSIS OF THE SPICE LISP INSTRUCfION SET

bytes to express than a long instruction which would have the same effect, they may be eliminated

entirely. The other three instructions should be retained for flexibility, but 'converted to long

instructions if changed at all. The cost of converting these to be long instnlctions (ie. use an

escape code) is given in table 6-3 in section 6.4.

Instruction and Operand Number of Occurrences

(Branch- If Arg-Supplied Long NoPop) 0
Cost in Bvtes

o
(J];-u;ich /'/;,;!! LC;ig Pc;) 1.93 193
(Branch-iVai-Null Long Pop) 18 18
(Branch- Atom Long NoPop) 231 231
(Branch-Not-Atom Long NoPop) 66 66

(Branch-Zero Long NoPop) 48 48
(Branch-Not-Zero Long NoPop) ~ --.n
Total (7 Opcodes) 556 556

Table 6-3: Conversion of Short Branch Instructions to Long Branch Instructions

6.4 Converting Short Instructions to Long Instructions

42

Several other opcodes may be reclaimed by converting them to long instructions. These are listed in Table

6-4. These are in addition to the long instructions added above. Calculating the cost of converting some of

these instructions to long instructions is not straightforward. If we convert only these to long instructions and

eliminate none of the above instructions (see section {unused-macrops}) which depend on the presence of a

similar instruction with stack as operand, then the cost is simply one byte per occurrence of the converted

instruction. However, if we both delete those above instructions and convert these to long instructions, then

.we must also add one byte per occurrence of the deleted instruction above. This total cost is listed in the third

column of the table.

These instructions account for 17 opcodes (out of 256 possible in 1 byte) and occur 1470 times (out of

1,072,306 total instructions). Thus they take up 9.0% of the available opcode space but account for only 0.14%

of the instructions present in the current sample. Five of the opcodes in this table do not appear in the code

sample and may thus be converted with no resulting increase in code size. All 17 may be converted at the cost

of a 0.22% increase (2366 bytes) in code size; this cost estimate assumes that the relevant instructions from

table 6-2 are being eliminated (otherwise the cost of converting these to long instructions would be lower).

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 43

I nstruction and OQcrand Number of Occurrences Cost in Total Bytes

(Throw Stack) 0 490
(Push- Under Stack) 201 201
(Check Stack) 0 0
(Copy Stack) 0 0
{Car Stack) 257 257
(Caar Stack) 120 225
(Scdr Stack) 0 0
(Scddr Slack) 0 0
(Trunc Stack) 93 109
(Eql Stack) 118 194
(Bind-Null Stack) 150 175
(Bind- T Stack) 25 37
(Bind-Pop Slack) 200 275
(Unbind Stack) 0 25
(List Stack) 178 178
(List* Stack) 0 0
(Spread Stack) 128 200
Total (17 Opcodcs) 1470 2366

Table 6-4: Conversion of Short Instructions to Long Instructions

6.5 Summary of Available Opcode Space

A large portion of the opcode space for I-byte opcodes is available for re-assignment if the above changes

are made. 16 opcodes are presently unassigned. lO From section 6.1 we see that 20 opcodes are assigned but

illegal. From section 6.2 we see that 65 opcodes may be reclaimed: 35 opcodes at no cost and 30 at the cost of

4688 bytes of extra code. From section 6.3 we see that 17 opcodes may be reclaimed: 10 opcodes at no cost, 2

at the cost of 2 long instructions, and 5 at the cost of 3 long instructions and 556 bytes of additional object

code. From section 6.4 we see that 17 opcodes may be reclaimed: 7 at the cost of 7 long instructions, and 10 at

the cost of 2366 bytes of extra code and 10 long instructions.ll The total number of opcodes which may be

saved is 135 out of 256, or 52.7%. The cost of saving all 135 of these is 22 long instructions and 7610 bytes of

additional code. This cost amounts to 2.1% of the long instruction opcode space (1024 long opcodes) and a

0.38% increase in object code size. However, only 95 new opcodes are needed for the new short instructions

recommended in sections 5 and 4. We see from the preceding sections on deleting instructions that 81

106-bit opcodes 0 and 45-47 are unused; each has a 2-bit A-field.

llThe above figure~ imply that 90 opcodes, 81 of which are assigned, have never been generated! These 81 opcodes make up 33.7% of
the 240 assigned opcodes. 35.2% of the opcode space (90 out of 256) has been essentially unused.

AN ANALYSIS OF THE SPICE LISP INSTRUCfION SET 44

opcodes are available at no cost in additional long instructions or added object code length. Of course, the

compiler could generate instructions in the future which would require extra code bytes to express even if

only these 81 were reclaimed. The additional 14 opcodes should be reclaimed in such a way as to incur as

little cost as possible. We note that 9 more opcodes may be reclaimed at the cost of adding 9 Long

instructions to the instruction set. but incur no increase in object code size (given the current sample). The

other 5 may be reclaimed at the cost of 1 long instruction and a 64 byte increase in object code size. The

remaining 40 may be reclaimed upon further analysis as necessary.

To summarize, the 95 needed opcodes may be reclaimed at the cost of 10 additional long instructions and

64 bytes of additional object codel2,

12From 2,022,694 to 2,022,758 bytes before optimization!

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SEf 45

7. Conclusions

A re-alignment of the "operand source field is described in Section 4. This re-alignment should save one

level of decoding for each occurrence of an argument and local variables operand.

In Section 5 it is shown that 25.8% of existing code may be eliminated with the addition of 95 ne~

instructions to the instruction set generated by the assembler. This is accomplished, by adding only those

opcodes which would save at least 0.1% of existing code. We see from Section 6 that 81 opcodes are available

at no cost (given the current code sample) and 135"are available at minimal cost. Reusing only 96 of these 135

opcodes leaves 40 open for future use. Some of these might be allocated for use as additional escape codes for

long instructions. The 95 new instructions are listed in Table 7-1 in order of the savings expected due to their

inclusion in the instruction set After all changes to the instruction set are made, the object code size is

reduced from 2,022,~94 to 1,501,341; a 25.8% decrease.

The new assembler instruction set is described in Appendix II. Only those instructions whose elimination

would cost nothing have been deleted. No short instructions have been converted to long instructions;

although this is a prime area for future optimization. The new compiler instruction set is described in

Appendix III.

AN ANALYSIS OF THE SPICE LISP INSTRCCfION SEf 46

Bytes Percent Bvtes Percent
New Instruction Saved Savings New Instruction .saved Savings
Push-ALI 34,567 1.709 Unbind-SIC I 3424 0.169
Push-ALa 33,456 1.654 Car-AL2 3360 0.166
Push-AL2 .24,278 1.200 List-SICI 3335 0.165
Push-AL3 18,269 0.903 Push-Car-Scdr- ALI 3255 0.161
V-S tore-Ignore 17,294 0.855 N 1- Branch-Not- Atom-AL 3166 0.157
Push- Last- A La 15.042 0.744 ~fisc-AL2 3118 0.154
V- Access-Stack 13,476 0.666 Call-SC2 3097 0.153
Pusiz-SiCi 13,221 n. r l" A ,., _ __ • T rI . ')(\00 0.153 V.UJ~ \..;UI-.I1.LV ..JV~U

Push-AL4 13,110 0.648 V- A ccess-A L 3078 0.152
Call-SCa 10,442 0.516 Nfisc-AL4 3060 0.151
Push-SC2 9491 0.469 Pop-AL8 2994 0.148
Push-AL5 9397 0.465 =-SIC4 2958 0.146
Get- Definition-Stack 7871 0.389 Eq-AL3 2943 0.145
Push-SC3 7670 0.379 A-fake-Immediate-Type-Stack 2907 0.144
Pop-AL3 7397 0.366 V- Access-Ignore 2915 0.144
Push-SIC3 7280 0.360 Push-Sl .2829 0.140
Pop-ALI 7070 0.349 Push-SIC8 2709 0.134
Pop-AL2 6696 0.331 Push-sca 2705 0.134
Push-AL8 6252 0.309 Push-Last-AL3 2701 0.134
Push-AL6 6196 0.306 Car-ALI 2714 0.134
Push-SC4 6164 0.305 Cdr-ALa 2704 0.134
Call-SCI 5989 0.296 List-SIC3 2707 0.134
Push-SIC2 5970 0.295 Bind-pop-sca . 2684 0.133
Push-Last-ALl 5743 0.284 Call-SC6 2664 0.132
Push-AL7 5715 0.283 Call-Afaybe-Nfullip/e-SCa 2672 0.132
Pop-AL4 5489 0.271 Push-SIC5 2600 0.129
Set-Null-Unless-Arg-Supp/ied-AL 5346 0.264 =-SIC3 2545 0.126
Call-Maybe-Multiple-SCI 5216 0.258 C all-Maybe- M ulliple-SC 3 2528 0.125
Push-SIC4 5225 0.258 Cons-Stack 2510 0.124
Push-SCI 5121 0.253 Push- Last-AL2 2464 0.122
Lisl-SIC2 4880 0.241 Check-AL2 2470 0.122
Push-AL9 4853 0.240 Push-SC7 2431 0.120
Type-Stack 4680 0.231 =-SIC7 2377 0.118
push-Sa 4673 0.231 List*-SIC2 2376 0.117
Return-Unless-Null-Stack 4561 0.225 Push-SC9 2272 0.112
Call-SC4 4512 0.223 Push-AL12 2225 0.110
Push-SC5 4497 0.222 Call-SC7 2191 0.108
Pop-AL5 4301 0.213 Push-S3 2176 0.108
Push-ALIO 4175 0.206 Call-SC5 2166 0.107
Pop-AL7 . 4005 0.198 Push-SICI8 2129 0.105
Call-SC3 3714 0.184 =-SICI 2101 0.104
Type-AL 3644 0.180 Push-SC8 2077 0.103
Pop-AL6 3600 0.178 'Check-AL4 2087 0.103
Push-SC6 3492 0.173 Push-SICI9 2057 0.102
Cadr-ALa 3508 0.173 Car-AL3 2035 0.101
Misc-AL3 3472 0.172 Cons-AL 1966 0.097
Push-ALII 3432 0.170 Typed- V-Store- Ignore 1922 0.095
==-SIC2 3423 0.169 Total: (95 opcodes) 521,417 25.778

Table 7-1: Incremental Savings Per New Instruction

AN ANALYSIS OF THE SPICE LISP I~STRUCTION SET 47

I. Current Instruction Set Sunlmary

1.1 Introduction

The majority of the macro-instructions in the current (June, 1982) Spice Lisp set are of the following form:

7 o

Instruction byte: OP (6) A (2)

Next byte (optional): B (8)

Most instructions read from or write to an "effective address", and possibly also push or pop 32-bit words

on the stack. When the OP field indicates that an effective address is to be read from, it is computed from the

A field and (sometimes) from the subsequent byte B as follows:

A =0

A = 1

A=2

A=3

The operand is popped off the stack. Then the operation takes place, in some cases

popping a second (distinct) argument off the stack and/or pushing something onto the

stack. No B byte is fetched.

The next byte is fetched and is converted (with sign extension) to a signed fixnum in the

range -128 to + 127. This is used as the operand.

The next byte is fetched. If its sign bit is 0, the remaining 7 bits are used as an unsigned

offset (0 - 127) into the vector of symbols and constants in the code object of the current

function. If the sign bit is 1, the other 7 bits are used instead as an unsigned offset (0 - 126)

into the arguments and local variables area of· the currently-active stack frame. The

contents of this cell are used as the operand. If the fetched byte is all ones (377 octal), the

next two bytes are fetched to fonn a 16-bit offset The sign bit of this extended offset

controls where the operand comes from, as in the 8-bit offsets. In fetching this double

offset, the low-order byte comes in first. .

The next byte (or set of bytes) is fetched and is used as an offset into the code object, as

above; this will never be used with an offset into the stack frame. Instead of being used

directly, the constant addressed is supposed to be a symbol pointer, and the operand is

fetched from its value cell. If the value is Misc-Trap, an UNBOUND error is signalled.

If the effective address is being used as a place to write, the following descriptions apply:

A = 0 The r~sult is pushed on the stack.

A = 1 The result sets the indicators, then is thrown away.

AN ANALYSIS OF THE SPICE LISP I~STRUcrION SET 48

A=2

A=3

If the offset indicates a stack frame destination, the result is put there; if it points into the

code object, this destination is illegal, since the code object should not be altered.

This writes into the value cell of the symbol pointed to, forwarding the write through an

EVC-Forward pointer if one is present in the value cell.

In the following listing, the effective address is called "E" and its contents are called "CEil.

1.2 Short Instructions

Note: In the following descriptions, the number in the left margin is the 6-bit opcode, in decimal notation.

° Unused

1 Call

2 Call-O

CE must be some sort of executable function: a code object, a lambda-expression in list

space, a closure, or a symbol with one of these stored in its function cell. A call block for

this function is opened, and computation proceeds to gather the arguments into the call

block. The state of the indicators after CALL is undefined.

CE must be an executable function, as above, but is a function of 0 arguments. Thus, there

is no need to collect arguments. The call block is opened and activated in a single

operation. The indicators are left in an undefined state.

3 Call-Multiple Just like a Call instruction, except that the function being called should return multiple

values.

'4 Call-Maybe-Multiple

5 Return

6 Throw

7 Unused.

8 Push

9 Push-Last

If the function being called returns multiple values, this is identical to Call-Multiple. If

not, this is identical to Call.

Return from the current function call. After the current function's frame is popped off the

stack, CE is pushed as the result being returned. CE also sets the indicators.

CE is the throw-tag, normally a symbol. The value to be returned, either single or

multiple, is on the top of the stack.

CE is pushed onto the stack and sets the indicators. If A = 0, this is a NOOP, except that

the indicators are set according to the value of the item on top of the stack.

CE is pushed onto the stack as the last operand for the most recent currently-open call

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 49

block. The call is then activated: the call block is finished and becomes the current

stack-frame .. If A = 0, the effect of this operation is just to start the call. The indicators are

undefined at the start of the called function; they are set by the returned value when

execution resumes in the calling function.

10 Push-Under CE is pushed onto the stack as the second item and sets the indicators; the top item of the

stack is unchanged. If A = 0, this swaps the top two items on the stack. Push-Under

causes an error if the stack is empty or if A = () and the stack contains only one item.

11 Check

12 Pop

13 Copy

CE is used to set the indicators, but is not put anywhere. If A = 0, the net effect is to pop

the stack by one word, setting indicators.

Pop the top item off the stack and store it in E, setting the indicators.

Copy the item on top of the stack into E, setting the indicators, without popping the stack.

14 Make-Predicate

If the NULL indicator is on, put NIL in E. Else, put TinE. The NIL or T also sets the

indicators.

15 Not-Predicate If the NULL indicator is not on, put NIL in E. Else, put T in E. The NIL or T also sets the

indicators.

16 Car

17 Cdr

18 Cadr

19 Cddr

20 Cdar

21 Caar

22 Scdr

23 Scddr

24 Trunc

CE had better be either a pointer to a list or NIL. Its Car is pushed on the stack and sets

the indicators.

The Cdr of CE is pushed on the stack and sets the indicators.

The Cadr of CE is pushed on the stack and sets the indicators.

The Cddr of CE is pushed on .the stack and sets the indicators.

The Cdar of CE is pushed on the stack and sets the indicators.

The Caar of CE is pushed on the stack and sets the indicators.

Get the Cdr ofCE and store it in E and the indicators. Useful for Cdr'ing down lists. CE

must be a list cell or NIL.

Get the Cddr of CE and store it in E and the indicators. Useful for Cddr'ing down

property lists. CE must be a list cell or NIL.

Performs the equivalent of the TR UNC function as described in the Spice Lisp Manual.

AN ANALYSIS OF 11-IE SPICE LISP INSTRUCTION SET 50

25 +

26 -

27 *

28/

29 Bit-And

30 Bit-Xor

31 Bit-Or

32Eql

33 =

34)

35<

36EQ

371+

381-

39 Bind-Null

40 Bind-T

After obtaining CE, take one value ofT the top of the stack to determine what is to be

returned setting the indicators.

CE is added to the value popped off the stack. The result ·is pushed back onto the stack

and sets the indicators.

Analogous, but CE is subtracted from TOS.

Analogous, CE is multiplied by TOS.

The TOS is divided by CE; the quotient goes back to TOS.

Bitwise boolean AND of CE and top of stack. The result goes onto the stack and sets the

indicators. The operands must be fixnums or bignums.

Bitwise XOR.

Bitwise OR.

CE is compared to the value popped off the stack .. If these arguments are EQ or if they are

both numbers of identical type and value, T sets the indicators; if not, NIL sets the

indicators. Nothing is pushed back onto the stack.

CE is compared arithmetically to the value popped off the stack. If they are equal, T sets

the indicators; if not, NIL sets the indicators. Nothing is pushed back onto the stack. This

works for mixed number-types: if an integer is compared with a flonum, the integer is

floated first; if a short flonum is compared with a long flonum, the short one is first

extended. Flonums must be exactly identical (after conversion) for a non-null comparison.

Analogous, but non-null ifTOS) CEo

Analogous, but non-null if TOS < CEo

CE is compared to the value popped off the stack. If these objects are identical 32-bit Lisp

objects. T sets the indicators; if not, NIL sets the indicators.

Add 1 to CE, store result back into E.

Subtract 1 from CE, store result back into E.

CE must be a symbol. This is rebound and set to NIL. The NULL indicator is set

CE must be a symbol. This is rebound and set to T, which also sets the indicators.

AN ANALYSIS OF nrE spreE LISP INSTRUCTION SET 51

41 Bind-Pop

42 Set-Null

43 Set-O

44 Set-T

45 - 47 Unused.

48 NPop

49 Unbind

50 Set-Lpush

51 Set-Lpop

52 List

53 List*

54 Spread

CE must be a symbol. This is rebound and is set to a value popped off the stack. This

value also sets the indicators.

Store NIL in E.

Store fixnum 0 in E.

Store TinE.

CE is a fixnum N. IfN is non-negative, N items are popped off the stack. IfN is negative,

NIL is pushed onto the stack INI times. The indicators are unchanged.

CE is a non-negative fixnum indicating how many bindings are to be popped off the

binding stack and restored to their previous values. Used in exiting open-coded PROGs

and LAMBDAs. The indicators are unchanged by this instruction.

Pop TOS, cons it onto CE (in the space indicated by the value of the symbol

ALLOCATION-SPACE), store result back into E. The new CE sets the indicators.

CAR of CE is pushed onto the stack and sets the indicators; CDR of CE is stored back into

E.

CE is a non-negative fixnum N. Beginning with a list of NIL, N items are popped off the

stack and CON Sed onto this list, so that the last item popped ends up as the CAR of the

list. The consing is done in the space specified by the value of ALLOCATION-SPACE.

The resulting list is pushed on the stack and sets the indicators.

CE is a non-negative fixnum N. One item is popped off the stack, to begin the list L. Then

N other items are popped and CONSed onto the front of L in succession, so that the last

item popped becomes the CAR of L. The consing is done in the space specified by the

value of ALLOCATION-SPACE. The resulting list is pushed onto the stack and sets the

indicators.

CE is a list Its elements are pushed onto the stack in left-to-right order. The last item

pushed sets the indicators.

55 Long-Escape This is used for calling a large number of microcoded functions. The next byte in the

instruction streain is fetched, and this is used to indicate which of 256 long instructions is to

be called. This operation w~ll in general pop some arguments off the stack, compute a

single result, then place this result in the location indicated by the effective address E,

computed as usual from the A field of the first byte. Note that if one or more offset bytes

AN ANALYSIS OF TIlE SPICE LISP INSTRUCTION SET 52

56 Branch

are needed for q1e effective address computation, these bytes are fetched after the byte

telling which instruction is to be called. For more infOlmation about the long instructions,

see [slguts] under "Misc instructions". (Many fewer than 256 long instructions are

defined.)

Unconditional branch relative to the current byte-PC (which has been incremented to

point past the current instruction). The next byte or two bytes is fetched. This, treated as a

signed integer, is added to the PC. The indicators are unchanged. For all of the branch

instructions, the bits of the A field are in terp reted as follows:

Bit 0 = 0 Fetch one byte for branches of -128 to + 127 bytes.

Bit 0 = 1 Fetch two bytes for longer branches. The low-order byte comes in first.

Bit 1 = 0 Do not pop stack.

Bit 1 = 1 Pop stack if the (conditional) branch is not taken.

57 Branch-If-Arg-Supplied

This is a special conditional branch that is used by the machinery that computes default

values for optional function arguments that were not supplied by the caller. The next byte
is read from the instruction stream and is taken as an offset (range 0 - 255) into the

args-and-Iocals area of the stack frame. If the stack frame entry in question contains

Misc-Unsupplied-Arg, do not branch; otherwise, take the branch. The branch is executed

normally, using the A-field of the instruction to control the usual branch options. The

branch offset byte(s) will follow the argument offset byte in the instruction stream.

58 Branch-Null Branch if the NULL indicator is on. Does not alter indicators (nor do any of the other

branches).

59 Branch-Not-Null

Branch if the NULL indicator is not on.

60 Branch-Atom Branch if the ATOM indicator is on.

61 Branch-Nat-Atom

Branch if the ATOM indicator is not on.

62 Branch-Zero Branch if the ZERO indicator is on.

63 Branch-Nat-Zero

Branch if the ZERO indicator is not on.

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 53

1.3 Long Instructions

The following instnlctions are long fonnat instructions. Each of these expects a fixed number of arguments

to have been pushed on the stack in the order indicated (leftmost arg pushed first). These arguments are

popped and a single return value is generated. This sets the indicators and goes to the E location of the long

instruction. The numbers in the left margin are the 8-bit codes corresponding to each instruction, in decimal

format. These descriptions are intended only to give the reader some idea of what instructions are available;

they are not intended to be a manual.

o Cons (X Y) Conses up a list cell with X as CAR and Y as CDR.

1 Alloc-Symbol (N)

Allocates one symbol and returns a pointer to it. The symbol is not interned by this
operation -- that is done in macrocode.

2 Alloc-B-Vector (N I)

Allocates a B-Vector of N entries and returns a pointer to it. I is the initial value with

which the vector is filled.

3 Alloc-U-Vector (N A)

Allocate a local U-Vector with access-code A and a length of N items, and return a pointer

to it. All entries are initialized to O.

4 Alloc-Remote-Vector (N A P)

Allocate a remote U-Vector with N entries and access-code A, returning a pointer to it. Pis

the pointer to the data area in system-table space.

5 Alloc-String (N) Allocate a string of length N, initialized to all O's, and return a pointer to it.

6 Alloc-Function (N)

Allocate a function object (like a B-Vector) of length N, not counting the I-word header.

7 Alloc-Array (N) Allocate an array-header for an array of N dimensions. Returns a pointer to the array

header.

8 Alloc-Xnum (N X)

Allocate an xnum N bytes in length, with sub-type code X. N and X must be fixnums. All

entries of the XNUM vector are initialized to O.

9 Alloc-Y num (N X)

Allocate a Ynum N lisp-objects in length, with sub-type code X. N and X must be fixnums.

All entries of the YNUM vector are initialized to Misc-Trap codes.

AN ANALYSIS OF 11-1E SPICE LISP INSTRUCTION SET 54

10 Nlisc-Subtype (X)

X must be of type MISC. Returns the sUbtype field (bits 24-27)' of X right-justified in a

fixnum. '

11 Type (X) Returns the 4-bit type-code of X as a fixnum.

12 Make-Immediate-Type (OBl TYPE)

OBi can be any iisp object, TYPE is a fixnum in the rang<: v - 2, wiIidl <.:urn,:spullu LU illt:

type-codes of immediate objects. Returns an object whose type-code bits are TYPE, but

whose other bits are those ofOlll.

13 Get-Vector-Subtype (V)

Returns the 4-bit subtype field ofa vector-like object V (ll-vector, U-Vector, Array, Xnum,

String, Function). Returned as a fixnum.

14 Set-Vector-Subtype (V X)

Stores the low order 4 bits of fixnum X as the subtype code of vector-like thing V. Returns

V.

15 Get-Vector-Length (V)

V is any vector-like thing. Returns the length of this vector.

16 Get-Value (S) Gets the contents of the value cell of the symbol S.

17 Set-Value (S V)

Set the value cell of symbol S to V. Returns V.

18 Get-Definition (S)

Returns the contents of the functional definition cell of symbol S.

19 Set-Definition (S D)

Puts D into the functional definition cell of symbol S. Returns D.

20 Get-PHst (S) Returns the property list of symbol S.

21 Set-PHst (S P) Sets the property list of symbol S to P. P should be NIL or a List object. Returns P.

22 Get-Pname (S) Returns the pname of symbol S.

23 Set-Pname (S P)

Sets the pname of symbol ~ t~ P. P should be a string. Returns P.

24 Get-Package (S)

Gets the contents of the package cell of symbol S.

AN ANALYSIS OF TIlE SPICE LISP INSTRUCTION SET 55

25 Set-Package (S P)

Sets the pac1~.agc of symbol S to P. Returns P.

26 Get-Hash (S) Gets the contents of the hash cell of tlie symbol S.

27 Set-Hash (S H) Set the hash cell of symbol S to H. Returns H.

28 Boundp (S) S must be a symbol. Boundp returns T if the value cell of the symbol contains a value, NIL

otherwise.

29 Fboundp (S) S must be a symbol. Fboundp returns T if the definition cell of the symbol contains a

definition, NIL otherwise.

30 Rplaca (L X) Replaces car ofL with X, returning the modified L.

31 Rplacd (L X) Replaces cdr ofL with X, returning the modified L.

32 Unused.

33 S-Float (X) Turns any number X into a short flonum.

34 L-Float (X) Turns any number X into a long flonum.

35 Negate (X) For any number X, return the negative.

36 Lsh (N B) Both args are fixnums. Returns a fixnum that is N shifted left by B bits, with D's shifted in

on the right. If B is negative, N is shifted to the right with D's coming in on the left.

37 Get-Vector-Access-Type (V)

38 Logldb (S P N)

V must be a U-Vector. Returns its access-type code.

All args are fixnums. Sand P specify a "byte" or bit-field of any length within N. This is

extracted and is returned right-justified in a fixnum. S is the length of the field in bits; P is
the number of bits from the right ofN to the beginning of the specified field. P = 0 means

that the field starts at bit 0 ofN, and so on.

39 Logdpb (V S P N)

40 Abs (N)

All args are fixnums. Returns a number equal to N, but with the field specified by P and S

replaced by the S low-order bits ofV.

. N is any kind of number. Returns the absolute value ofN.

AN ANALYSIS OF THE spreE LISP I:\STRUCfION SET 56

41 Subspace (X) X is any lisp object. Returns the 2-bit allocation space code as a fixnum. Returns NIL if

the object is immediate.

42 Close-Over (L) L is a list of symbols. Creates and returns a closure-list for these symbols in the current

environment.

43 Activate-Closure (C)

C must be a closure list, as returned by the (jose-Over operation. ACLivaLe-Ciusur<;:

restores the environment in which the closure list was created for the symbols closed over.

Returns C unchanged.

44 Typed-V -Access (A V I)

A and I are fixnums, V points to a U-Vector or Xnum. This returns entry I of the V as a

fixnum. but uses the low-order three bits of A as the access-type code instead of whatever

code is stored in the vector itself. This is illegal if V is a string.

45 Typed-V-Store (A V I X)

46 Unused.

47 Freeze 0

Like a V-Store, but stores X in entry I of V using A as the low-order 3 bits of the access

type code, as above. Returns X. Illegal for strings.

Freezes all read-only spaces by moving the FREEZE pointers up to meet the FREE

STORAGE pointers. Returns NIL.

48 New-Pure-Page (X)

X can be an item of any non-immediate data type. The type of X is examined. and the

current read-only page for that type of storage is closed. Returns X.

49 Shrink-Vector (V N)

V is any B-Vector, U-Vector, String. Function object, or Array header. N is the new

number of entries, a fixnum, which must be less than or equal to the current number of

entries. Returns V, the vector which has been shortened.

50 Call-Break (F) Just like the Call operation, but starts the new frame in such a way that when the called

function ultimately returns, no return value is left on the stack. Returns NIL, though this

will nonnally be called with destination IGNORE.

51 Values-To-N (V)

V must be a Misc-Values-Marker. Returns the number of values indicated in the low 24

bits of V as a fixnum.

52 N-To-Values (N)

N is a fixnum. Returns a Misc-Values-Marker with the same low-order 24 bits as N.

AN ANALYSIS OF THE SPICE USP INSTRUCTION SET 57

53 Arg-In-Frame (N F)

N is a fixnum, F is a control stack pointer as returned by the CURRENT-STACK

FRAME and CURRENT-OPEN-FRAME operators. Returns the item in slot N of the

args-and-Iocals area of stack frame F.

54 Current-Stack-Frame 0
Returns a control-stack pointer to the start of the currently active stack frame.

55 Set-Stack-Frame (P)

P must be a control stack pointer. This becomes the current active frame pointer. Returns

NIL.

56 Current-Open-Frame 0
Returns a control-stack pointer to the start of the currently open stack frame.

57 Set-Open-Frame (P)

P must be a control stack pointer. This becomes the current open frame pointer. Returns

NIL.

58 Current-Stack-Pointer 0
Returns the control stack pointer that points to the current top of the stack (before the

result of this operation is pushed). Note: by definition, this points to the first unused word

of the stack, not to the last thing pushed.

59 Current-Binding-Pointer 0
Returns a pointer to the first word above the current top of the. binding stack.

60 Read-Control-Stack (F)

F must be a control stack pointer. Returns the lisp object that resides at this location.

61 Write-Control-Stack (F V)

F is a stack pointer, V is any Lisp object. Writes· V into the location addressed. Returns V.

62 Read-Binding-Stack (B)

B must be a binding stack pointer. Reads and returns the lisp object at this location.

63 Write-Binding-Stack (B V)

B must be a binding stack pointer. Writes V into the specified location. Returns V.

64 Ldb (S P N) All args are fixriums or bignums; Sand P are non-negative. Sand P specify a "byte" or

bit-field of any length with~n N. This· is extracted and is returned right-justified as a

positive.integer. S is the length of the field in bits; P is the number of bits from the right of

N to the beginning of the specified field. P = 0 means that the field starts at bit 0 of N,

and so on.

AN ANALYSIS OF TIlE SPICE LISP INSTRUCTION SET 58

65 lvlask-Ficld (S P N)

Like LDB, e.xcept that the extracted field is returned in the same position it occupies in N,

not moved to the right. The result is a positive fixnum or bignum with 0 in all positions

except that specified by the S-P field.

66 Dpb (V S P N) All args are fixnums or bignums; P and S are non-negative. Returns a number equal to N,

and with the same sign as N, but with the field specified by P and S replaced by the S

low-order bits ofV.

67 Deposit-Field (V S P N)

Like DPB, except that the bits to be put in N are extracted from the corresponding field of

V, not from the rightmost S bits of V.

68 Ash (N C) Nand Care fixnums or bignums. Shift N left C places, shifting in zeros.on the right. IfC

is negative, shift N right -C places, preserving the sign ofN.

69 Haulong (N) N is a fixnum or bignum. Returns the number of significant bits ofN.

70 V-Access (V 1) V is any vector or vector-like object (B-Vector, U-Vector, String,. Xnuni, Array, or

Function Object). I is a Fixnum. Returns entry IofV.

71 V-Store (V I X)

72 -79

80 Force-Values 0

81 Flush-Values 0

V is any vector or vector-like object. I is a fixnum. X is the value to be stored into slot I of

vector V. X is returned.

Unused. Reserved for I/O operators.

If the top of the stack is a multiple-value marker, do nothing; if not, push a multiple-value

marker indicating 1 value. Returns NIL.

If the top of the stack is a multiple-value marker, remove this marker; if not, do nothing.

Returns NIL.

82 Mark-Catch-Frame 0
Mark the header word of the current open frame, indicating that this is a catch-tag frame.

Returns NIL.

83 Get-Newspace-Bit 0
Returns a fixnum 0 or 1, indicating whetl}er the current newspace is Dynamic-O or

. Dynamic-l.

AN ANALYSIS OF THE SPICE LISP INSTRUCnON SET 59

Other long instructions are still to be defined.

AN ANALYSIS OF TIlE SPICE LISP INSTRUCTION SET 60

II. Recommended Assembler Instruction Set

11.1 Effective Address Specification

Most instructions read from or write to an "effective address", and possibly also push or pop 32-bit words

address for these instructions. The item in parentheses after the operand source name is the suffix which is

appended to instruction names to signify the sort of operand.

Stack (Stack) The operand is taken from the stack; usually the stack is popped (if not, the instruction

description explicitly states what happens). Then the operation takes place, in some cases

popping a second (distinct) argument off the stack and/or pushing something onto the

stack. No operand bytes are fetched.

Short Integer Constant (SIC)

A byte is fetched and is converted (with sign extension) to a signed fixnum in the range

-128 to + 127. This is used as the operand.

Arguments & Locals (AL, ALn)

In most cases, one byte is fetched and used as an unsigned offset (0 - 254) into the

arguments and local variables area of the currently active stack frame. The contents of this

cell are used as the operand. For several instructions, two bytes are fetched to form a

16-bit offset In fetching this double offset, the low-order byte comes in first Some

instructions imply a particular offset without the need for another offset byte. These

instructions are those that are suffixed with ALn where n is an integer which denoted the

implied offset

Symbols & Constants (SC SCn Sn)

In most cases, one byte is fetched (SC). The low order 7 bits are used as an unsigned offset

into the vector of symbols and constants in the code object of the current function. If the

sign bit is 0, the the constant is used directly. If the sign bit is 1, instead of being used

directly, the constant addressed is supposed to be a symbol pointer, and the operand is

fetched from its value cell. If the value is Mise-Trap, an UNBOUND error is signalled.

For some instructions, the next two bytes are fetched to form a 16-bit offset The sign bit

of this extended offset controls the interpretation of the operand, as in the 8-bit offsets. In

fetching this double offset, the low-order byte comes in first. (Note: When using a one

byte offset for symbol pointers (sign bit is 1), the offset nee no longer be restricted to the

range 0 - 126 (it·may be 0 - 127) to avoid an alII's byte since long offsets are now implicitly

specified.) Sometimes an instruction implies an offset into the symbols and constants

without the need of another 'byte for the offset In those instances when the symbol or

constant is to be used directly, the instruction will have the suffix SCn where n is an integer

AN ANALYSIS OF TIlE SPICE LISP INSTRUCTION SET 61

denoting the offset. If the symbol or constant accessed is to be used as a symbol pointer

(indirectly), then the suffix is Sn.

If the effective address is being used as a place to write, the following descriptions apply:

Stack (Stack) The result is pushed on the stack.

Ignore (Ignore) The result sets the indicators, then is thrown away.

Arguments and Locals (AL ALn)

The result is written into the appropriate cell of the arguments and local variables area of

the currently active stack frame, as specified above.

Symbols (S Sn) Offset bytes are fetched and interpreted as a symbol pointer. The resuJt written into the

value cell of the symbol pointed to. Note that this can not be an offset directly into the

vector of symbols and constants ofa code object -- the code object should not be altered.

11.2 Short Instruction Descriptions

Many of the macro-in~tructions in the assembler instruction set are of the following fonn:

7 o

Instruction byte: OP (8)

Next byte (optional): B (8)

The OP field of the following instructions indicates what sort of effective address is to be read from or

written to according to the descriptions above. In the following descriptions, the effective address is called

"E" and its contents are called "eE". Instruction names are given a suffix which is a mnemonic abbreviation

for this address. For example, XXX-AL denotes that the instruction's operand is an argument or local

variable. A B;.byte should be fetched which gives an offset into the block of arguments and locals on the

control stack. If the instruction name is of the form XXX-AL3, then E is the third argument or local variable.

(No offset byte is fetched - the offset is implied by the opcode). The legal suffixes are listed alongside the

descriptions in Section ILL

Some short instructions expect a fixed number of arguments to have been pushed on the stack. The

arguments for these instructions are listed beside the instruction in the order in which they are expected

(leftmost arg pushed first). These arguments are popped when the instruction is executed.

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 62

Note: In the following descriptions, the opcode listed [or each instruction is an 8-bit opcode, in decimal

notation.

Call

Call-O

Call-Multiple

CE must be some sort of executable function: a code object, a lambda-expression in list

space, a closure, or a symbol with one of these stored in its function cell. A call block for

this function is opened, and computation proceeds to gather the arguments into the call .

block. TIle state of the indicators after CALL is undefined. The following Call
instructions are implemented:

0 Call-Stack 6 Call-SC3

1 Call-AL 7 Call-SC4

2 Call-SC 8 Call-SC5

3 Call-SCO 9 Call-SC6

4 Call-SCI 10 Call-SC7

5 Call-SC2

CE must be an executable function, as above, but is a function of 0 arguments. Thus, there
is no need to collect arguments. The call block is opened and activated in a single

operation. The indicators are left in an undefined state. Only one Call-O instruction is

mplemented :

11 Call-O-SC

Just like a Call instruction, except that the function being called should return multiple

values. See also the long format version of Call-Multiple.

12 Call-Multiple-Stack

13 Call-Multiple-SC

Cal1~Maybe-Multiple

Return

If the function being called returns multiple values, this is identical to Call-Multiple. If

not, this is identical to Call. Five Call-Alaybe-Multiple instructions are implemented:

14 Call-Maybe-Multiple-Stack 17 Call-Maybe-Multiple-SCO

15 Call-Maybe-Multiple-AL 18 Call-:NIaybe-Multiple-SCI

16 Call-Maybe-Multiple-SC 19 Call-Maybe-Multiple-SC3

Return from the current function call. After the current function's frame is popped off the

stack, CE is pushed as the result being returned. CE also sets the indicators.

20 Return-Stack

21 Return-SIC

22 Retum-AL

23 Return-SC

A~ ANALYSIS OF THE SPICE LISP INSTRUCTION SET 63

Return -Unless-Null

Throw

Push

Push-Last

Return from the current function call unless the Null indicator "is set. If the Return is

successful; the current function's frame is popped off the stack, CE is pushed as the result

being returned. CE also sets the indicators.

24 Return-Unless-Null-Stack

CE is the throw-tag, normally a symbol. The value to be returned, either single or

multiple, is on the top of the stack. Currently, only one throw instruction is implemented

which must use the Stack as E.

25 Throw-Stack

26 Throw-SC

27 Throw-AL

CE is pushed onto the stack and sets the indicators. For Push-Long-SC. a two byte offset

into the vector of symbols and constants is used to specify CEo See also the long fonnat

Push instruction for two-byte offsets into the arguments and local variables. (Note: Push
Stack is not a legal combination. To set the indicators according to TOS, Check Stack
should be used.) Many push instructions are available:

28 Push-SIC 47 Push-AL9
29 Push-SICI 48 Push-ALIO

30 Push-SIC2 49 Push-ALII

31 Push-SIC3 50 Push-AL12

32 Push-SIC4 51 Push-SC

33 Push-SIC5 52 Push-Long-SC

34 Push-SIC8 53 Push-SCO

35 Push-SIC18 54 Push-SCI

36 Push-SIC19 55 Push-SC2

37 Push-AL 56 Push-SC3

38 Push-ALO 57 Push-SC4

39 Push-ALI 58 Push-SC5

40 Push-AL2 59 Push-SC6

41 . Push-AL3 60 Push-SC7

42 Push-AL4 61 Push-SC8

43 Push-AL5 62 Push-SC9

44 Push-AL6 63 Push-SO

45 Push-AL7 64 Push-Sl

46 Push-A~8 65 Push-S3

CE is pushed onto the stack· as the last" operand for the most recent currently-open call

block. The call is then activated: the call block is finished and becomes the current

AN ANALYSIS OF THE SPICE LISP I~STR(JCTION SET 64

Push-Under

Check

Pop

Copy

stack-framc. If E is the stack, the effect of this operation is just to start the 'call. The

indicators ar,e undcfined at the start of the called function; they are set by the returned

value when execution resumes in the calling function. Several Push-Last instructions are

supplied:

66 Push-Last-Stack 70 Push-Last-ALI

67 Push-Last-SIC 71 Push-Last-AL2

68 Push-Last-AL '72 Push-Last-AL3

69 Push-Last-ALO 73 Push-Last-SC

CE is pushed onto the stack as the second item and sets the indicators; the top item of the

stack is unchanged. If A = 0, this swaps the top two items on the stack. Push-Under

causes an error if the stack is empty or if A = 0 and the stack contains only one item.

74 Push-Under-Stack

CE is used to set the indicators, but is not put anywhere. If E is the stack, the indicators are

set; the stack is unchangcd.13 This is the operation one should use rather than Pop Stack,

Push Stack or Copy Ignore. See also the long format Check instruction.

75 Check-AL

76 Check-AL2

77 Check-AlA

78 Check-SC

Pop the top item off the stack and store it in E, setting the indicators. Pop stack is not

useful. It would set the indicators leaving the stack unchanged if it existed. Check Slack is

the proper instruction for this action. See also the long format Pop instructions which

allow two-byte operand offsets.

79 Pop-Ignore 85 Pop-AL5

80 Pop-AL 86 Pop-AL6

81 Pop-ALI 87 Pop-AL7

82 Pop-AL2 88 Pop-AL8

83 Pop-AL3 89 Pop-SC

84 Pop-AL4

Copy the item on top of the stack into E, setting the indicators, without popping the stack.

Copy Ignore is not a useful instruction; Check Slack should be used if this effect is desired.

See also the long fo'rmat version of Copy.

13This is different from the semantics of the current (Check Stack) instruction!

AN ANALYSIS OF TIlE SPICE LISP INSTRVCTION SET 65

90 Copy-AL

91 Copy-S

Make-Predicate If the NULL indicator is on, put NIL in E. Else, put T in E. The NIL or T also sets the
indicators.

Not-Predicate

Car

Cdr

Cadr

Cddr

92 Make-Predicate-Stack
93 Make-Predicate-Ignore

94 Make-Predicate-AL

If the NULL indicator is not on, put NIL in E. Else, put T in E. The NIL or T also sets the
indicators.

95 Not-Predicate-Stack

96 Not-Predicate-Ignore
97 Not-Predicate-AL

CE had better be either a pointer to a list or NIL. Its Car is pushed on the stack and sets
the indicators.

98 Car-Stack 102· Car-AL2

99 Car-AL 103 Car-AL3
100 Car-ALO 104 Car-SC
101 Car-ALI

The Cdr of CE is pushed on the stack and sets the indicators.

105 Cdr-Stack
. 106 Cdr-AL

107 Cdr-ALO
108 Cdr-SC

The Cadr of CE is pushed on the stack and sets the indicators.

109 Cadr-Stack
110 Cadr-AL

III Cadr-ALO

112 Cadr-SC

The Cddr of CE is pushed on the stack and sets the indicators.

113 Cddr-Stack

114 Cddr-AL

AN ANALYSIS OF TIlE SPICE LISP INSTRUCTION SET 66

Cdar

Caar

Scdr

The Cdar of CE is pushed on the stack and sets the indicators.

115 Cdar-Stack

The Caar of CE is pushed on the stack and sets the indicators.

11 h r:l:lr-St1Jck

117 Caar-AL
118 Caar-SC

Get the Cdr of CE and store it in E and "the indicators. Useful for Cdr'ing down lists. CE
must be a list cell or NIL. See also the long version of this instruction.

119 Scdr-AL
120 Scdr-SC

Push-Car-Scdr Push the Car of CE on the stack and store the Cdr of CE in E and the indicators. Useful
for Cdr'ing down lists. CE must be a list cell or NIL.

Scddr

Trunc

+

121 Push-Car-Scdr-AL

Get the Cddr of CE and store it in E and the indicators. Useful for Cddr'ing down
property lists. CE must be a list cell or NIL. See also the long version of this instruction.

122 Scddr-AL
123 Scddr-SC

Performs the equivalent of the TR UNC function as described in the Spice Lisp Manual.
After obtaining CE, take one value off the top of the stack to determine what is to be
returned setting the indicators. See also the long format Trune instruction.

124 Trunc-Stack
125 Trunc-Ignore
126 Trunc-AL

CE is added to the value popped off the stack. The result is pushed back onto the stack
and sets the indicators.

127 + Stack
128 +SIC
129 +AL
130 +SC

Analogous, but CE is subtracted from TOS.

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 67

*

/

Bit-And

Bit-Xor

Bit-Or

Eql

131 -Stack

132 -SIC;

133 -AL

134 -SC.

Analogous, CE is lnultiplicd by TOS.

135 *Stack

136 *SIC

137 *AL

138 *SC

The TOS is divided by CE; the quotient goes back to TOS. See also the long fonnat /

instruction. See also the long fonnat / instruction for symbols and constants.

139 IStack

140 ISIC

141 IAL

Bitwise boolean AND of CE and top of stack. The result goes onto the stack and sets the

indicators. The operands must be fixnums or bignums.

142 Bit-And-Stack

143 Bit-And-SIC

144 Bit-And-AL

145 Bit-And-SC

Bitwise XOR.

146 Bit-Xor-Stack
147 - Bit-Xor-SIC

148 Bit-Xor-AL

Bitwise OR.

149 Bit-Or-Stack

150 Bit-Or-AL

151 Bit-Or-SC

CE is compared to the value popped off the stack. If these arguments are EQ or if they are

both numbers of identical type and value, T sets the indicators; if not, NIL sets the

indicators. Nothing is pushed back onto the stack.

152 Eql-Stack

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 68

=

>

<

EQ

1+

1-

153 Eql-AL

CE is compared arithmetically to the value popped off the stack. If they arc equal, T sets

the indicators; if not, NIL sets the indicators. Nothing is pushed back onto the stack. This

works for mixed number-types: if an integer is' compared with a flonum, the integer is

floated first~ if a short flonum is compared with a long -flonum, the short one is first

extended. Flonums must be exactly identical (after conversion) for a non-null comparison.

154 = Stack 159 =SIC4

155 =SIC 160 =SIC7

156 =SICI 161 =AL

157· =SIC2 162 =SC

158 =SIC3

Analogous, but non-null ifTOS > CEo

163)Stack

164)SIC

165)AL

166)SC

Analogous, but non-null if TOS < CEo

167 <Stack

168 <SIC

169 <AL

170 <SC

CE is compared to the value popped off the stack. If these objects are identical 32-bit Lisp

objects, T sets the indicators; if not, NIL sets the indicators.

171 Eq-Stack 174 Eq-AL3

172 Eq-SIC 175 Eq-SC

173 Eq-AL

Add 1 to CE, store result back into E.

176 1+ Stack

177 I+AL

178 I+SC

Subtract 1 from CE, store result back into E.

179 I-Stack

AN ANALYSIS OFTHE SPICE USP INSTRUCTION SET 69

Bind-Nun

Bind-T

Bind-Pop

Set-Null

180 l-AL

CE must be a symbol. This is rebound and set to NIL. The NULL indicator is· set See

also the long format Bind-Null instruction.

181 Bind-Null-Stack

182 Bind-Null-AL

183 Bind-Null-SC

CE must be a symbol. This is rebound and set to T, which also sets the indicators.

184 Bind-T-Stack

CE must be a symbol. This is rebound and is set to a value popped off the stack. This

value also sets the indicators.

185 Bind-Pop-Stack

186 Bind-Pop-AL

187 Bind-Pop-Se

188 Bind-Pop-SeO

Store NIL in E.

189 Set-Null-Stack

190 Set-Null-Ignore

191 Set-Null-AL

192 Set-Null-SC

Set-Null-Unless-Arg-Supplied

Set-O

Set-T

This is a special conditional instruction that is used by the machinery that computes default

values for optional function arguments that were not supplied by the caller. The next byte

is read from the instruction stream and is taken as an offset (range 0 - 255) into the

args-and-Iocals area of the stack frame. If the stack frame entry in question contains

Misc-Unsupplied-Arg, set the entry to NIL; otherwise, do nothing.

193 Set-Null-Unless-Arg-Supplied-AL

Store fixnum 0 in E.

194 Set-O-Stack

195 Set-O-AL

196 Set-O-SC

Store TinE.

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 70

NPop

Unbind

Set-Lpop

List

List*

197 Set-T-Stack

198 Set-T-Ignore

199 Set-T-AL

200 Set-T~SC

CE is a fixnum N. IfN is non-negative, N items are popped off the stack. IfN is negative,

NIL is pushed onto the stack INI times. The indicators are unchanged.

201 NPop-Stack

202 NPop-SIC

CE is a non-negative fixnum indicating how many bindings are to be popped off the

binding stack and restored to their previous values. Used in exiting open-coded PROGs

and LAMBDAs. The indicators are unchanged by this instruction. See also the long

format Unbind instruction.

203 Unbind-SIC

204 Unbind-SIC1

205 Unbind-AL

CAR of CE is pushed onto the stack and sets the indicators; CDR of CE is stored back into

E. See also the long format instruction Set-Lpush.

206 Set-Lpop-Stack

207 Set-Lpop-AL

208 Set-Lpop-SC

CE is a non-negative fixnum N. Beginning with a list of NIL, N items are popped ofT the

stack and CON Sed onto this list, so that the last item popped ends up as the CAR of the

list The consing is done in the space specified by the value of ALLOCATION-SPACE.

The resulting list is pushed on the stack and sets the indicators.

209 List-Stack 212 List-SIC2

210 List-SIC 213 List-SIC3
211 List-SICI

CE is a non-negative fixnum N. One item is popped off the stack, to begin the list L. Then

N other items are popped and CONSed onto the front of L in succession, so that the last

item popped becomes the CAR of L. The consing is done in the space specified by the

value of ALLOCATION-SPACE. The resulting list is pushed onto the stack and sets the

indicators. See also the long format List* instruction.

214 List*SIC

215 List*SIC2

Ar-; ANALYSIS OF "ruE SPICE LISP INSTRUqION SEf 72

231 Gct-Definition-Stack

Typed-V-Store (A V I X)

Like a V-Store, but stores X in entry I of V using A as the low-order 3 bits of the access

type code, as above. Returns X. Illegal for strings. See also the long format version of this

instruction.

232 Typed-V-Store-Ignore

v -Access (V TOS)

V-Store

V is any vector or vector-like object (B-Vector, U-Vector, String, Xnum,Array, or

Function Object). TOS is a Fixnum. Stores entry TOS of V in E. See also the long format

version of V-Access.

233 V-Access-Stack

234 V -Access-Ignore

235 V-Access-AL

(V I TOS)

V is any vector or vector-like object. I is a fixnum. TOS is the value to be stored into slot I

of vector V. TOS is stored in E. V-Store is also available in a long format version.

235 V -Store-Ignore

When a branch instruction is recognized, either one or two bytes are fetched and used as a PC-relative

offset for branching, depending on whether the branch is short or long. Some conditional branch instructions

may plOp the stack if the branch is not taken. Branch instruction names are suffixed by either -short or -long;

they may be suffixed by pop if the stack is to be popped when the branch is not taken.

Branc Unconditional branch relative to the current byte-PC (which has been incremented to

point past the current instruction). The next byte or two bytes is fetched. This, treated as a
signed integer, is added to the PC. The indicators are unchanged. For all of the branch

instructions, the bits of the A field are interpreted as follows:

236 Branch-Short

237 Branch-Long

Branc -If-Arg-Supplied

This is a special conditional branch that is used by the machinery that computes default

values for optional function arguments that were not supplied by the caller. The next byte

is read from the instruction' stream and is taken as an offset (range 0 - 255) into the

args-and-locals area of the stack frame. If the stack frame entry in question contains

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 73

Branch-Null

Misc-Unsupplied-Arg, do not branch; otherwise, take the branch. The branch is executed

nonnally, u~ing the A-~eld of the instruction to control the usual branch options. The

branch offset bytc(s) will follow the argument offset byte in the instruction stream. See

also the long fonnat of this instruction.

238 Branch-If-Arg-Supplied-Short

Branch if the NULL indicator is on. Does not alter indicators (nor do any of the other

branches).

240 Branch-Null-Short
241 Branch-Null-Long

242 Branch-Null-Short-Pop

243 Branch-Null-Long-Pop

Branch-Not-Null Branch if the NULL indicator is not on.

244 Branch-Not-Null-Short

245 Branch-Not-Null-Short-Pop

Branch-Atom Branch if the ATOM indicator is on.

246 Branch-Atom-Short
247 Branch-Atom-Long

Branch-Not-Atom

Branch if the ATOM indicator is not on.

248 Branch-Not-Atom-Short

249 Branch-Not-Atom-Long

Branch-Zero Branch if the ZERO indicator is on.

250 Branch-Zero-Short
251 Branch-Zero-Long

Branch-Not-Zero Branch if the ZERO indicator is not on.

252 Branch-Not-Zero-Short

NI-Branch-Not-Atom-AL

This is a special conditional branch that does not use the indicators. The next byte is re d

from the instruction stream and is taken as an offset (range 0 - 255) into the args-and-Ioc Is

. area of the stack frame. If the stack frame entry in question would set the Atom indicator if

given to the Check instruction, do not branch; otherwise, take the branch. The branch is

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 74

executed without popping the stack and may only be used with a short offset. The branch

offset byte will fonow the argument offset byte in the instruction stream.

253 NI-I3ranch-Not-Atom-AL-Short

11.3 Long Instructions

Each long instruction expects a fixed number of arguments to have been pushed on the stack in the order

indicated (leftmost arg pushed first). These arguments are popped and a single return value is generated.

This sets the indicators and goes to the Elocation of the long instruction. The long instnlctions of the

assembler's instruction set are similar to those of the existing set exc~pt that some of the old long instructions

are available are short instructions; and some previously short instructions are now available only as long

instructions. For example, (Cons X Y) with E either the stack or the block of arguments and locals is available

as a short instruction. However, to Cons something where E is indirect through the symbols and constants

vector of the current function object, the long instruction must be used. Other long instructions which are

similar to a short instruction are used in the same manner. Those long instructions which have been changed

or added for the recommended assembler instruction set are described below, numbered starting with opcode

200 (decimal) to avoid conflicts with existing long instructions. For a description of other long instructions,

see section 1.3 of appendix 1.

Push-Long

Pop-Long

Cons (X TOS)

Trun

CE is pushed onto the stack setting the indicators. Offsets for specifying CE are two bytes

long.

200 Push-Long-AL

Pop the item off the stack and store it in E, setting the indicators. Offsets for specifying CE

are two bytes long.

201 Pop-Long-AL

202 Pop-Long-SP

Conses up a list cell with X as CAR and TOS as CDR. X should be pushed first, then the

second argument is pushed to become TOS; both are popped and used as arguments to

Cons. The new cons is stored in E. See also the short fOIDlat Cons instruction.

203 Cons-Ignore

204 Cons-AL

205 Cons-SC

Perfonns the equivalent o(the TRUNC function as described in the Spice Lisp Manual.

After obtaining CE, take one value off the top of the stack to detennine what is to be

returned setting the indicators. See also the short format Trune instruction.

AN ANALYSIS OF TIlE SPICE LISP INSTRUCTION SET 75

206 Tnmc-SC

Branch-If-Arg-Supplied

Type (TOS)

rThis is a special conditional branch that is used by the machinery that computes default

values for optional function arguments that were not supplied by the caller. The next byte

is read from the instruction stream and is taken as an offset (range 0 - 255) into the

args-and-locals area of the stack frame. If the stack frame enu)' in question contains

Misc-Unsupplied-Arg, do not branch; otherwise, take the branch. The branch is executed

normally, using the A-field of the instruction to control the usual branch options. The

branch offset byte(s) will follow the argument offset byte in the instruction stream. See

also the short format of this instruction.

207 Branch-If-Arg-Supplied-Long

Stpres the 4-bit type-code of whatever it pops from the TOS in E as a fixnum. See also the

short fonnat Type instruction.

208 Type-Ignore

209 Type-SC

Make-Immediate-Type (0 BJ TYPE)

OBJ can be any lisp object, TYPE is a fixnum in the range 0 - 2, which correspond to the

type-codes of immediate objects; these arguments are taken from the stack. Returns an

object whose type-code bits are TYPE, but whose other bits are those ofOBJ. See also the

short fonnat version of Make-Immediate-Type.

210 Make-Immediate-Type-Ignore

211 Make-Immediate-Type-AL

212 Make-Immediate-Type-SC

Get-Definition (TOS)

The TOS had better be a symbol. This is popped and Get-Definition stores the contents of

its functional definition cell in E. See also the short format version of Get-Definition.

213 Get-Definition-Ignore

214 Get-Definition-AL
215 ·Get-Definition-SC

Rplacd (L TOS) Replaces cdr of L with TOS; stores the modified LinE. L should be pushed before e

second argument. Rplacd is also available in a short format.

216 Rplacd-Stack

217 Rplacd-AL

AN ANALYSIS OF TIlE SP[CE LISP INSTRUCTION SET 76

V-Access (V TOS)

V-Store

Check

Copy

Scdr

Scddr

218 Rplacd-SC

V is any vector or vector-like object (B-Vector, U-Vector, String, Xnum, Array, or

Function Object). TOS is a FixnUlTI. Stores entry TOS of V in E. See also the short format

version of V-Access.

219

(V I TOS)

V is any vector or vector-like object. I is a fixnum. TOS is the value to be stored into slot I

of vector V. TOS is stored in E. V-Store is also available in a short format version.

220 V -Store-Stack

221 V-Store-AL

222 V-Store-SC

CE is used to set the indicators, but is not put anywhere. If E is the stack, the indicators are

set; the stack is unchangcd.14 This is the operation one should use rather than Pop Slack,

Push Stack or Copy Ignore. See also the short format version of Check. -

223 - Check-Stack

Copy the item on top of the stack into E, setting the indicators, without popping the stack.

Copy Ignore is not a useful instruction; Check Stack should be used if this effect is desired.

See also the short format Copy instruction.

224 Copy-Stack

Get the Cdr of CE and store it in E and the indicators. Useful for Cdr'ing down lists. CE

must be a list cell or NIL. See also the short format Scdr instruction.

225 Scdr-Stack

Get the Cddr of CE and 'store it in E and the indicators. Useful for Cddr'ing down

property lists. CE must be a list cell or NIL. See also the short format of this instruction.

226 Scddr-Stack

CE is a non-negative fixnum indicating how many bindings are to be popped off the

binding stack and restored to their previous values. Used in exiting open-coded PROGs

and LAMBDAs. The indicators are unchanged by this instruction. See also the short

format Unbind instruction.

14 I
is is different from the semantics of the current (Check Slack) instruction!

AN ANALYSIS OF THE SPICE LISP INSTRL"CfION SET 77

List*

227 Unbind-Stack

CE is a non-negative fixnum N. One item is popped off the stack, to begin the list L. Then

N other items are popped and CONSed onto the front of L in succession, so that the last

item popped becomes the CAR of L. The consing is done in the space specified by the

value of ALLOCATION-SPACE. The resulting list is pushed onto the stack and sets the

indicators. See also the short fonnat List* instruction.

228 List*Stack

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 78

III. Recommended COll1piler Instruction Set

Instnlctions generated by the compiler as input to the assembler are of the fonn (instruction-name

operand-source N) where N is optional. The possible fonns are listed in Table III-l below. These operand

sources are described in section I.1 of appendix 1.

(instruction-name Slack)

(instruction-name SIC N)

(instruction-name Ignore)

(instruction-name A&L N)

(instruction-name S&C N)

(instruction-name S N)

Table III-I: Compiler Instruction Formats

The instruction set generated by the compiler is like that described in appendix I, except that no distinction

is made between long instructions and short instructions and several additional instructions are included as

specified in sections 5.3 and 5.4 to incorporate a new type of branch instruction and replace commonly

occurring instruction pairs. Sever:al of the legal compiler instructions have no counterpart in the assembler's

instruction set For instance, (Cadr S&C) is translated into (Push S&C) followed by (Cadr Stack). These

translations, however, are transparent to the compiler. The compiler instruction set is designed to be

. extremely regular and complete in order to make the compiler as easy to write as possible.

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET

References

[1] Gerrit A. Blaauw and Frederick P. Brooks, Jr.

Computer Architecture.

, 1982, to be published.

[2] Guy L. Steele Jr.

Common Lisp Alanual

Carnegie-Mellon University, Department of Computer Science, to be published.

[3] Scott E. Fahlman, Guy L. Steele Jr., Gail E. Kaiser, Walter van Roggen.
Internal Design of Spice Lisp

5-23-82 edition, Carnegie-Mellon University, Department of Computer Science, 1982.

[4] Stephen C. Johnson.

A 32-Bit Processor Design.

Computer Science Technical Report 80, Bell Laboratories, April, 1979.

[5] Gene McDaniel.

An Analysis of a Mesa Instruction Set Using Dynamic Instruction Frequencies.

Proceedings of the Symposium on Architectural Support for Programming Languages and Operating

Systems, 1982.

[6] C. E. Shannon.

[7]

A Mathematical Theory of Communication.

Bell System Technical 10urna127, 1948.

Proposal for a Joint Effort in Personal Scientific Computing.

Carnegie-Mellon University, Department of Computer Science.

[8] Richard E. Sweet

Empirical Estimates of Program Entropy. _

Technical Report CSL-78-3, Xerox Palo Alto Research Center, September, 1978.

[9] Richard E. Sweet and James G. Sandman, Jr.

Empirical Analysis of the Mesa Instruction Set

Proceedings of the Symposium on Architectural Support for Programming Languages and Operating

Systems, 1982.

[10] Cheryl A. Wiecek.

A Case Study of Vax-II Instruction Set Usage for Compiler Execution.

Proceedings of the Symposium on Architectural Support for Programming Languages and Operating

System~ , 1982.

79

AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET

[11] William A. Wulf.

Compilers and Computer Architecture.

Computer, July, 1981.

80

