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Abstract 

In order to increase program locality (thereby decreasing page swapping on computers with small physical 

memory and increasing the cache hit-ratio on those computers which have caches) the size of object code 

programs should be as small as possible. By introducing a distinction between the instruction set used by the 

compiler and that generated by the assembler, it is possible to encode the instnlction set of the target machine 

to reduce the size of object code programs without introducing added complexity into the compiler. Other 

improvements in the assembler's instruction set require that the compiler instruction set be updated. The 

micro-coded instnlction set for Spice Lisp on the Perq is amenable to this sort of optimization. 
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1. Introduction 

This paper is an analysis of the instruction set for Spice Lisp based on static instnlction and operand 

frequencies. Dynamic execution statistics are being collected to be used in an analysis similar to those 

performed in [5] and [10]. The Spice Lisp instruction set was designed, for a single user, user microcodable 

machine (currently the Perq).l 

Most interesting computer programs require a large amount of virtual memory. On small, personal 

computers a major bottleneck for system performance' is prinlary to secondary memory bandwidth. 

Therefore, it is advantageous to have a working set that can fit in primary memory, incurring as little 

swapping cost as possible. On those computers which have instruction caches, program size should be 

minin1ized in order to increase the locality of programs so that the cache hit-ratio is improved, thereby 

increasing performance. By refining the compiler to generate compact object programs, program runtime can 

be reduced. In refining the compiler in this manner, it is important to remember that instructions should not 

be designed so that many levels of instruction decoding are required by the microcode; this might actually 

increase program runtime. The goal of this analysis is to determine ways to reduce Spice Lisp object program 

size by adding optimizing instructions in a non-disruptive manner. Other optimizations have become 

apparent in the analysis and are included in this paper. A similar analysis of the Mesa instruction set with 

recommended improvements is described by Sweet and Sandman in [9]. 

From the compiler writer's point of view, a computer architecture should have a regularity of structure;· 

orthogonality should not be violated; arbitrary composing of these regular, orthogonal notions should be 

allowed [11], [1]. However, since all instructions and addressing modes are not used equally in practice, 

certain optimizations are suggested. In order not to violate the above principles, one key criterion for any 

optimization involving the addition of instructions should be kept in mind. Any instructions added for 

optimization should provide a special case of some more general construction. [4] The main phase of the 

compiler will generate the general instruction; the assembler will choose the most efficient specialized form of 

that instruction. If no specialized form is available (presumably because it has not been warranted by analysis 

lWhile designed fo; a personal machine [7], Spice Lisp adheres to the Common Lisp specification [2]; Common Lisp will be available 
on multi-user machines. 
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of instruction and operand frequencies) a general form is generated by the assembler2 • 

This sort of optimization suggests a different sort of methodology to be used in designing the compiler and 

assembler. In order to make the compiler writer's job easier, the compiler is designing to generate instructions 

which are members of an idealized, general instruction set which is not limited by opcode space. The 

assembler translates these idealized instnlctions into those actually available for execution by the machine. It 

is important to note that these instruction sets are of approximately the same level of abstraction -- there is 

little or no semantic gap between them. The salient difference between them is that the compiler instruction 

set is designed for easy compilation -- the assembler instruction set for short object program size and fast 

execution speed.3 In order to make room for new, specialized instructions, opcode space must be made 

available. Elimination of rarely-used instnlctions from the instruction set generated by the assembler will 

open up a substantial portion of the presently used opcodes for re-use. An instruction generated by the 

compiler need not have a unique, corresponding opcode in the actual instruction set which lhe assembler 

generates. 

An argument against allocating opcodes in this fashion may be made by claiming that this places an undue 

burden on the compiler by infringing upon the regularity of the instruction set (see [11]). However, if we 

restrict the necessity for more complicated instruction selection to a particular, specialized phase· of 

compilation (ie. assembly), the increase in object code compactness should more than offset the added 

complexity of instruction assembly. For example, the Spice Lisp compiler may continue to assume that an 

instruction such as Check4 with operand stack exists and generate something of the form (check stack) as 

input to the assembler even if this instruction is not directly encoded. The assembler may then generate the 

opcode for (pop ignore), which has the same effect The essence of this argument is that there need not be a 

one-to-one correspondence between the instructions generated by the compiler and those opcodes generated 

by the assembler. Perhaps a more appropriate way to view the above mapping of (check stack) and (pop 

ignore) to one opcode is to see this as two instructions having the same assembled opcode. Another sort of 

2 An interesting side issue given this sort of specialized instruction set is whether or not the general form of an instruction should 
include those options available as specialized forms. From general information theory [6], it can be shown that to achieve greater 
program entropy (where entropy is a measure of the average information content -- see the thesis by Sweet [8] for a discussion of program 
entropy) the general form should be designed so that there is no redundancy with the specialized forms. For example, if one special form 
of a Push instruction pushed the constant 0, then the range of constants available for the general form should be realigned so as not to 
include O. However. this approach increases the complexity of the assembler and can significantly reduce regularity between the general 
forms generated by the assembler. It should also be pointed out that once this approach is taken, all compilers must use the optimizing 
assembler. 

3 An additional advantage of this scheme is that the compiler will be much more portable. Only a new assembler need be written for 
each new machine. 

4See Appendix I for a description of the Spice Lisp instruction set 
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mapping that ~ould be possible is that which occurs when one sort of compiler instruction (eg. (Pop arg&local 

N) maps to several different opcodes depending on the value ofN. It would also be possible for the compiler 

to generate rarely-used instructions for which there was no corresponding opcode to be generated by the 

assembler. In these instances, the assembler might substitute a 5h01t sequence of instructions which had the 

same effect. In no case is the compiler writer forced to take these optimizations into account when writing the 

main body of the compiler. Other optimization techniques (flow analysis or constant folding, for example) 

are orthogonal to this technique. 

Another argument against this sort of opcode allocation is that the compiler could generate better object 

code if the compiler writer could make use of the knowledge that particular instructions were expressed in 

fewer bytes. It may be possible to tune the compiler to generate more compact code by doing complicated 

analysis of the number of references to particular operands, etc. This would make the compiler much more 

complex. This problem can be avoided by using the appropriate methodology in designed and refining the 

instruction set and compiler. The compiler should be made extremely regular -- for example, it should 

allocate arguments and local variables to particular slots in the control stack in a uniform manner. (One fairly 

simple approach to allocating slots on the control stack would be to allocate slots starting with the most 

frequently referenced local variable or argument.) If the compiler is designed to build functions and stack 

blocks in a uniform manner, patterns of reference into the vector of symbols and constants and into the 

arguments and local variables of the control stack can be recognized through analysis (both static and 

dynamic) of object code. Using these patterns, the instruction set may be modified and tuned to optimize the 

number of bytes needed to represent the most common instructions and operands. All of these modifications 

to the instruction set may be made so as to require changes only to the assembler. This process may be repeated 

throughout the lifetime of the compiler and instruction set The aspect of this process which eliminates much 

of the expected complexity in the compiler is that the specialized opcodes and many-to-one instruction to 

opcode mappings are added only to the instruction set generated by the assembler after statistical analysis of 

the instructions generated by the compiler. This statistical analysis can also be used to suggest new 

instructions to be generated by the compiler (for an example, see 5.4). Similar methodologies have been used 

to some success and are described in [9] and [4]. 

In some instruction sets, instruction opcodes may vary in length (eg. 1 byte and 2 byte instructions). One 

or more of the short opcodes is interpreted as an escape code which indicates that another byte should be 

fetched and used as the instruction op~ode. Another advantage to designing separate instruction sets for the 

compiler and the assembler is that the compiler need not divide its instructions into the long instruction and 

short instruction categories; this complication may be reserved for the assembler only. 

After discussing those aspects of Spice Lisp architecture which are helpful in understanding the instruction 
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set, I will present statistics summarizing the findings of an analysis of static instnlction aild operand 

frequencies (section 3). In section 4 I will describe changes to the instnlction set which will reduce decoding 

time for the most common sort of operand. Following this will be a discussion of changes which will enable 

the assembler to generate smaller object code programs. These changes fall into the following categories: 

o allow some short instructions to imply a specific operand in the instruction opcode (section 5) 

• convert heavily used long instluctions to short instructions (section 5) 

• convert rarely-used short instructions to long instructions (section 6) 

• eliminate illegal instruction-opcode combinations (section 6) 

• collapse frequent instruction pairs into single instructions in both the compiler instruction set and 

the assembler instruction set (section 5) 

• collapse frequent instruction pairs into single instructions in only the assembler instruction set 

(section 5) 

• eliminate infrequently used instructions that are easily expressed as a sequence of two or more 
other instructions (section 6) 

Appendix I is an edited description of the instruction set of the current Spice Lisp architecture taken from 

The Internal Design a/Spice Lisp [3]. Appendix II is a parallel version of these descriptions which is intended 

as a description of the instruction set of a new assembler for Spice Lisp, including the recommended 

optimizations. Appendix III is a description of the instruction set which should be generated by the main 

phase of the compiler; it is these general instructions which the new assembler should translate into the 

specialized instruction set of Appendix II. 
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2. Sonle Notes on Spice Lisp Architecture 

2.1 The Execution Environnlent 

The Spice Lisp implementation architecture is stack based. The control stack is used to stack function call 

frames. Each frame contains pointers to the previously-active frame, the most recent open frame, and the 

point to which the binding stack is to be popped upon function return. Each frame also contains storage 

locations for the function's arguments and local variables. Spice Lisp instnlctions may specify an argument or 

local variable as operand. Frames also include a slot for a pointer to the function object which contains the 

compiled code for that function. A function frame on the control stack is arranged as follows: 

o Header word. 

1 Function object or EXPR for this call. 

2 Closure List (or NIL if not a closure). 

3 Pointer to previous active frame. 

4 Pointer to previous open frame. 

S Pointer to previous binding stack. 

6 Saved PC of caller. (An integer address) 

7 Arguments-and-Iocal-variablcs block starts here. (Entry 0) 

N Frame Barrier. Push after the args and locals. 

2.2 Function Objects 

Each compiled function is represented in the machine as a Function Object. The function object contains a 

vector of infonnation needed by the function-calling mechanism. This vector includes a pointer to the vector 

that holds the actual code, the number of required and optional arguments, and a few other things. Following 

this information is a vector of symbol pointers (for symbols that are used as special variables in the code) and 

constants. One addressing mode for Spice Lisp instructions may access this vector. A constant is any Lisp 

object that is used but not altered by the function. Integer constants in the range of -128 to + 127 can be 

expressed as immediate operands, and so do not need to be represented here as full-word constants. 

2.3 Instruction Set and Addressing Modes 

The ·instruction set used for Spice Lisp is based on that used by the MIT Lisp Machine.5 However, while 

5Since we have no locative pointers and no CDR codi~g in the current Spice Lisp. some of tJ:le instructions used on the Lisp Machine 
have no counterparts in the Spice Lisp instruction set . 
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the Lisp 1\1achine instruction set was designed to fit into 16-bit words, there is a clear advantage to fitting 

Spice Lisp instructions into·S-bit bytes on the Perq and several other machines to which Spice Lisp may be 

ported, even if more bytes must usually be fetched for operands. Therefore Spice Lisp object programs are 

organized into a strcmTI of 8-bit bytes. Each instnlction (including operand specification fields) may vary 

from 1 byte to 5 bytes in length. Several operations have been added in order to correct weaknesses noticed in 

the MIT inSU1.lction set (eg. operations for accessing vectors and strings). Operands are of the following 

types: 

• top-of-stack 

• indirect through top-of-stack 

• immediate short constant 

• offset into the arguments and local variables of the active stack frame 

• offset into the vector of symbols and constants of the current function object 

• offset indirect through the vector of symbols and constants of the current function object 

Currently, the addressing mode of an instruction is specified by a 2-bit field, the A-field. While 2-bits do not 

carry enough infonnation to distinguish between all of the above addressing modes, ambiguity can be 

resolved by additional operand bytes. These addressing modes are tailored specifically to facilitate 

implementing Lisp; no attempt is made to address the general "primitives vs. solutions" problem expressed 

.by Wulf in [11]. Specific "solution" type instructions for implementing a Lisp system are implemented in 

microcode. In particular, addressing modes assume a certain stack frame layout 

There are two classes of instructions available for Spice Lisp. Those instructions specifiable in 1 byte 

(without operands) are designated short instructions. Four I-byte short instructions are escape codes that are 

interpreted to mean that a second byte should be fetched to specify an operation. These 2-byte instructions 

are designated long instructions. Long instructions nonnally are used in conjunction with arguments which 

are set up explicitly on the stack. For example, the Cons long instruction expects the two arguments for 

consing to be at the top of the stack. For more detailed infonnation, see [3]. 

Spice Lisp instructions may also be divided into to classes according to whether the instruction is a branch 

instruction or not. This distincpon· is conceptually orthogonal to the shorUlong distinction. 
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2.4 Indicators 

Conceptually, the result produced by each instruction is used to set a group of indicators, which can be 

tested by subsequent conditional-jump instructions. These indicators are NULL, ATOM, and ZERO. In the 

description of instructions below, if it is unclear what the natural "result" is, it will be stated explicitly what 

value goes into the indicators; in some cases, instructions leave the indicators unchanged. 

Under some conditions branching depending upon the setting of an indicator may require that instructions 

be generated for the sole purpose of setting the indicators; when this is the case, a branch architecture which 

does not use indicators would require fewer bytes of instnlctions. For example, (Check X) (Branch-Null N) 

might be expressed in a "no-indicator" architecture as (Branch-Null X N). The fonner requiring 4 bytes to 

express, the latter 3. However, when the quantity being tested for a conditional branch has .already (or would 

have already) set the indicators, an indicator architecture requires fewer bytes of instructions. For example, (> 

X) (Branch-Zero N) might be expressed in a no-indicator architecture as (> X) (Branch-Zero X N); the fonner 

requiring 4 bytes to express, the latter 5. Statistics collected for this evaluation show that having an indicator 

architecture is much more often an advantage than a disadvantage. However, the addition of several branch 

instructions which do not branch based on the indicators allows the compiler to generate indicator-using 

branches or non-indicator-using branches as the situation warrants. This possibility is explored in section 5.3. 

2.5 Design Philosophy 

This instruction set was designed so that there would be a direct mapping from the S-expression source to 

the instruction set Because of this direct mapping, no assembly code for Spice Lisp should ever be written by 

hand: it should only be generated by the compiler. Because only the compiler should generate these 

instructions, various specialized instructions may be added to the instruction set in order to reduce compiled 

program size with the only cost being a small amount of added complexity in the compiler (and, of course, 

opcode space.) 

The division of the original instruction set into short and long instructions was based on the designer's 

intuitions as to which instructions would be generated and executed most frequently. While this intuition is 

shown to be largely correct by the statistics collected to date, substantial improvement in code size may be 

achiev~d by rearranging the instructions and by optimizing operand specification based on a statistical 

analysis. 
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3. Statistical Results 

The code available for statistical analysis consisted entirely of Spice Lisp system implementation code. 

While this sample cannot be construed as representative of user code, the instmction frequencies found in this 

sample should be sufficient for a first pass at refining the Spice Lisp instruction set. 

Statistics were gathered by two Mac Lisp programs which scan compiled Spice Lisp code. One program 

counted occurrences of each instruction and kept counts of the types of operands used by each instruction. 

The other MacLisp program collected information about specific operand values for those instructions for 

which this detailed information was deemed useful. 

The object code programs analyzed in this study contained over 1 milli~n instructions. These object 

programs had been optimized by a peephole optimizer which typically achieves at least a 25% reduction in the 

number of instructions over unoptimized code. These 1,072,306 instructions occupied 2,022,694 bytes for an 

average of 1.89 bytes per instruction. Table 3-1 summarizes the statistical results collected by the first 

program. 

Instruction TYQe Number % of Instructions Bytes % of Bytes Bytes/Instruction 

Short Non-Branch 842,306 78.6 1,534,331 75.8 1.82 
Branch 133,595 12.5 276,752 13.6 2.07 
Long Non-Branch 96A05 9.0 211 1611 10.5 2.20 

Totals 1,072,306 2,022,694 1.89 

Table 3-1: Instruction Type Statistics 

Each instruction makes use of an operand as summarized in Table 3-2. The first part of the table summarizes 

operand frequencies for non-branch instructions. For each of these instructions an operand is specified from 

the group listed in the first part of the table. Some of these instructions implicitly make use of the top of the 

stack (particularly long instructions); these instances of implicit stack operands are not included in this table. 

The second portion of the table summarizes operand frequencies for branch instructions. Every branch 

instruction makes use of a PC-relative offset. One branch instruction (Branch-if-arg-supplied, see Appendix 

A) makes use of an additional argument. It is also possible for branch instructions to pop the stack. 

Optimizations based on these statistics are suggested in section 4. 

The 15 instructions which occur most frequently are listed in Table 3-3 along with operand statistics. It is 

interesting to note that Push and Push-Last account for 389,187 instructions, or fully 36% of all instructions. 

This translates into 758,217 bytes of code (1.95 bytes/instruction), or 38% of the bytes of object programs. 

This implies that substantial saving may be possible if the average number of bytes per Push/Push-Last 
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Non-branch operand type 

Stack 

Number % of Total 

Short constant 

Ignore 

Symbols & Constants 

Arguments & Local Variables 

Symbol Pointers 

Total 

Branch operand 

PC-relative Offset 

Arguments & Local Variables 

Table 3-2: 

175,964 18.7 

115,530 12.3 

52,871 5.6 

154.822 16.5 

402,873 42.9 

36,651 --12. 
~j~, 111 lUU.U 

Number % of Branch Instnlctions Using 

133,595 100.0 

3954 3.0 

Operand Frequencies 

Short Constant! Symbols & Arguments & Symbol 

Instruction Stack 

Push 0 

Pop 0 

Push-Last 21,069 

Call 1234 

Return 37,468 

= 1243 

Set-Null 14,981 

Car 257 

V-Access (long) 13,476 
Eq 

Set-O 

V-Store (long) 

725 

12,891 

439 

Branch Instruction 

Branch 

Branch-Not-Null 

Branch-Null 

Ignore. Constants Locals 

61,959 

21,969 

1462 

0 

133 

20,802 

556 

0 

2915 

103 

0 

17,924 

63,652 177,803 . 

0 55,778 

9365 33,281 

44,342 5543 

I-byte offsets 

38,163 

36,906 

36,856 

1606 

725 

0 

580 

0 

6001 

0 

0 

7593 

6169 

5680 

15,844 

3078 

10,912 

5004 

° 
2-byte offsets 

3909 

4376 

932 

Table 3-3: Top 15 Instructions 

Pointers 

16,969 

1846 

3627 

146 

202 

25 

511 

3213 

0 

655 

72 

0 

Total 

42,072 

41,282 

37,788 

Total 

320,383 

79,593 

68,804 

51,265 

47,002 

28,964 

21,728 

19,894 

19,469 
18,396 -

17,967 

17,733 

instruction can be reduced. This possibility is explored in section 5. Branch instruction optimizations are 

discussed in section 6.3. The 15 m9st frequent instructions account for 832,340 of the 1,072,306 total 

instructions generated, or 77.6%. ·This translates into 1,565,532 bytes of code, or 77.4% of all the bytes of 

object code. 

It is also interesting to note that 400,177 instructions (or 779,096 bytes) were used for the purpose of 
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manipulating the stack6
. This means that 37.3% of all instructions, or 38.5% of all instnlction bytes, were for 

stack manipulation. A useful experiment would be to compare the code generated for this stack architecture 

with code generated for other non-stack architectures in order. to determine the relative overheads of the 

competing architectures. 

The 15 most frequently occurring long instructions are summarized in Table 3-4. Optimizations involving 

these and other long instructions are described in section 5.2. 

Symbols & Arguments & Symbol 
Long Instruction Stack Ignore Constants Locals Pointers Total 
V-Access 13,476 2915 0 3078 0 19,469 
V-Store 439 17,294 0 0 0 17,733 
Get-Definition 7871 0 0 656 0 8527 
Type 4680 16 0 3644 0 8340 
Cons 2510 0 0 1966 470 4946 
Make-Immediate-Type 2907 0 0 717 7 3631 
Logldb 2085 96 0 492 0 2673 
Get-Vector-Subtype 1536 0 0 839 .0 2375 
Get-Vector-Length 1012 0 0 1280 0 2292 
Typed-V-Access 1582 36 0 402 0 2020 
Negate 1307 0 0 684 19 2010 
Typed-V-Store 38 1962 0 0 0 2000 
Ldb 1427 174 0 283 ·0 1884 
Rplacd 798 1019 0 60 0 1877 
Get-Value 173 0 0 1452 0 1625 

Table 3-4: 15 Most Common Long Instructions 

The 15 most common long instructions account for 81,402 of the 96,405 long instruction occurrences. Thus 15 

of the 77 long instructions (19.5%) account for 84.4% of the long instruction occurrences. 

Another type of statistics collected was the frequency of occurrence of instruction pairs. The 10 most 

common instruction pairs are listed in Table 3-5. Optimizations suggested by analysis of these instruction pair 

frequencies are discussed in section 5.4. 

6This includes the ~ush, Push-Under, and Pop instructions, but not the Push-Last instruction because Push-Last also serves to close a 
stack frame and end the function call process. 
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I nstruction Pair 

Call, Call 

Check, Branch-Not-Atom 

Push,< 

<, Branch-Null 

List, Push 

1+, Branch 

Bind-Pop, Push 

Push, Copy 

Car, Pop 

Push, 1+ 

Number of Occurrences 

3683 

3611 

3425 

3390 

3338 

3318 

3308 

3177 
3147 
3050 

Table 3-5: 10 Most Common Instruction Pairs 

12 
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4. Optinlization of Operand Source Decoding 

4.1 A-Field Re-Alignment 

In the current encoding of the A-field of non-branch instructions there is a significantly skewed frequency 

of occurrence for the four A-field values (see Table 4-1). 

A-Code Current OQemnd TYQe Percentage 

0 stack 18.7 
1 short constant, ignore 17.9 
2 arguments and locals, 59.4 

symbols and constants 

3 symbol pointers 3.9 

Table 4-1: A-field Values 

By far the most frequent case is when A is 2, designating that the operand is either in the arguments and 

local variables section of the current stack frame or in the symbols and constants vector of the code object. 

Another byte is fetched to determine which of these areas is accessed. If the sign bit of this byte is 0, the 

remaining 7 bits of the byte is an unsigned offset into the vector of symbols and constants. If the sign bit is 1, 

then the remaining 7 bits of the byte is an unsigned offset into the arguments and local variables area of the 

stack frame. In analyzing the operand type frequencies, we notice that the most frequent type of operand is 

argument or local variable (see Table 4-2). By redefining the A-codes as in Figure 4-3, we may achieve a 

savings of one level of decoding for the most frequent type of operand. In the microcoded implementation of 

'Spice Lisp on the Perq instructions may take varying lengths of time to execute; therefore this savings can be 

realized. An additional advantage of this scheme is that the range of arguments and local variables specifiable 

in a one byte operand is doubled. 

OQerand Type 

stack 

short constant 

ignore 

symbols and constants 

arguments and locals 

symbol pointers 

Table 4·2: Operand Frequencies 

Percentage 

18.7 
12.3 

5.6 
16.5 
42.9 

3.9 
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A-Code 

o 
1 
2 

3 

4.2 Two-Byte Offsets 

Revised Operand Tvpe 

stack 

short constant, ignore 

arguments and locals 

symbols and constants, 

symbol pointers 

Table 4-3: New A-field Frequencies 

Percentage 

18.7 
17.9 
42.9 
20.4 
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Any time an instruction specifies an arguments and locals or symbols and constants operand (63.3% of all 

instructions use these types of operands) the instruction decoding microcode must check for a two-byte offset. 

While the option of having stack frames and vectors of symbols and constants which require more than one 

byte of offset should be retained, there is no need to spend microcycles checking for this possibility when 

decoding every instruction. Out of over 1 million instructions generated for the current Spice Lisp 

implementation, only 475 make use of a two-byte offset (all of these are source operand offsets into the vector 

of symbols and constants). In order to retain the use of two-byte offsets while eliminating the need to check 

for them when decoding most instructions, one new short instructions and three new long instructions should 

be added to the assembler's instruction set These are: 

• Push-Long-AL 

• Push-Long-SC (short instruction) 

• Pop-Long-AL 

• Pop-Long-Sp7 

When the compiler generates instructions which require a two-byte offset, the assembler may simply 

substitute the same instruction with the stack as operand either preceded or followed by one of the four new 

instructions, as appropriate. For example, (+ (AL LONG-OFFSET}) may be replaced by (Push-Long-AL 

LONG-OFFSET), (+ Stack). In the current instruction set, this action requires 4 bytes to express (one byte 

for the opcode, one for the escape-to-long-offset code, and two for the long offset) ; in the recommended 

instructions set, this action would require 5 bytes (two for the long opcode, two for the long offset, and one for 

the stack-using instruction opcode). If the long-offset were a source offset into the vector of symbols and 

constants, the replacement would only require four bytes because Push- Long-SC is a short instruction. The 

7 Only pointers through the vector of symbols and constants may be written! 
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nct effect of this optimization is to savc one level of decoding for 63.3% of all instructions at no increase in 

code size for the current sample. 
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5. Adding Nc,v Instructions 

5.1 Assembler Instructions With Implied Operands 

In keeping with the concept of designing the instruction set of the compiler and assembler separately, it 

should be made clear that the following instnlctions are intended to be added to the assembler's instruction 

set -- not the compiler's. 

Many of the most common instructions use particular operands frequently. In some instances, an 

additional byte of object code is generated to specify the operand of these instructions; substantial savings in 

code size may be obtained by adding new instructions to the instruction set which imply an operand without 

need of an additional operand byte. These more specific forms of a general instruction may be generated by 

an assembler with n~ added complexity in the main body of the compiler. It should be noted that this is a 

savings only in the number of bytes of object code, not in the number of instructions of object code. The 

optimizations discussed below, as a rule, include only those that would save at least 0.1% in code size per 

opcode. These optimizations alone would require about 80 of the 256 8-bit short instruction opcodes (about 

31 %). To save 0.1% in object code size, the addition of an opcode must save at least 2022 bytes if the 

estimated savings is based on the current object code sample. In the following tables listing operand statistics 

. for various instructions, detailed operand information is shown only for those types of operands which occur 

frequently enough to allow effective optimization; other operand statistics are summarized. 

5.1.1 Push Instructions 

The push instruction occurs 320,383 times in 1,072,306 total instructions. These 320,383 instructions 

account for 641,678 bytes of object code, an average of slightly over 2.0 bytes per Push instruction. Table 

5-1 shows the operand usage of the push instruction. The frequency of occurrence for particular operands is 

shown for short integer constants, symbols and constants, arguments and local variables, and special symbols. 

These statistics are in the form of S. I. C.-number pairs where s.l.e. is an integer constant and number is the 

number of times that integer appeared in the object code under study or ofJset-numberpairs where ofJset is an 

index into whatever structure holds the type of operands being discussed and number is the number of 

occurrences of that offset (For instance, offset 0 under the arguments and local variables section of the table 

refers to the first entry in the block of arguments and local variables on the control stack. Offset 0 under the 

symbols and constants section refers to the first entry in the vector of symbols and constants of the current 

function object.) 

Several specialized instructions are suggested by analysis of these statistics. The most obvious new 
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Short Integer Constants 

S.LC. Number S.I.C. Number S.I.C. Number S.I.C. Number Total 

-128 to -1 760 

0 0 1 13,221 2 5970 3 7280 o to 3 26,471 

4 5225 5 2600 6 1967 7 1771 4 to 7 11,563 

8 2709 9 808 10 1006 11 1068 8 to 11 5591 

12 792 13 576 14 480 15 630 12 to 15 2478 

16 to 19 5548 

20 to 23 3585 

24 to 27 3752 

28 to 97 2126 

98 to 127 85 
Total·: 61,959 

Symbols and Constants 

Offset Number Offset Number Offset Number Offset Number Total 

0 2705 1 5121 2 9491 3 7670 o to 3 24,987 

4 6164 5 4497 6 3492 7 2431 4 to 7 16,584 

8 2077 9 2272 10 1571 11 1298 8 to 11 7218 

12 1080 13 1352 14 907 15 686 12 to 15 4025 

16 to 20 2872 

21 to 26 2398 

27 to 35 2326 

36 to 88 2045 

89 to 127 741 

Total : 63,196 

Table 5-1: Push Statistics, part 1 

instruction is one which would push only arguments-and-Iocals 0 through 3. This instruction would have the 

same sort of 6-bit opcode as the normal short instructions, but the 2-bit A field would be used to designate an 

index into the arguments and local variables block of the control stack. This is the same as adding 4 

instructions with 8-bit opcodes which imply the operand. It is desirable to conceptualize these additions as 

8-bit opcodes because this allows the addition of some number of new Push instructions which is not a 

multiple of four. Instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-3. The new push instructions are given names of the form Push-XX n where XX is a 

mnemonic abbreviation for short integer constants (SIC), symbols and constants (SC), arguments and local 

variables (AL), or Special Symbols (S). n is an integer offset The addition of these instructions will save 

262,714 bytes reducing the average number of bytes per instruction from 2.0 to 1.2. 
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Arguments and Local Variables 

Offset Number Offset Number Offset Number Offset Number Total 

0 33,456 1 34,567 2 24,278 3 18,269 o to 3 110,570 
4 13,110 5 9397 6 6196 7 5715 4 to 7 34,418 
8 6252 9 4853 10 4175 11 3432 8 to 11 18,712 

12 2225 13 1615 14 957 15 1120 12 to 15 5917 
16 1310 17 1304 18 652 19 662 16 to 19 JY2~ 

20 to 23 3946 
24 to 127 312 

Total: 177,803 

Specials 

Offset Number Offset Number Offset Number Offset Number Total 

° 4673 1 2829 2 1119 3 2176 ° to 3 10,797 
4 1647 5 862 6 523 7 526 4 to 7 3558 

8 to 20 2112 
21 to 127 502 

Total: 16,969 

Stack: 0 
Extended Symbols & Constants : 456 

Total Number of Push Instructions: 320,383 

Table 5-2: Push Statistics, part 2 

5.1.2 Push-Last Instructions 

The Push-Last instruction occurs 68,804 times in 1,072,306 total instructions accounting for 116,539 bytes 

of object code, an average of 1.7 bytes per Push-Last instruction. Table 5-4 shows the operand usage of the 

Push-Last instruction. 

Several specialized instructions are suggested upon analysis of these statistics. Instructions whose addition 

would save more than the threshold number of bytes (2022) are listed in Table 5-5. The new Push-Last 

instructions are given names of the fonn Push-Last-ALIZ where AL is a mnemonic abbreviation for arguments 

and local variables. IZ is an integer offset These specialized Push-Last instructions will reduce the number of 

bytes per instruction from 1.6 to 1.3. 
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New Instruction Number of Bvtes Eliminated % of Code Eliminated 

Push-SIC1 13,221 0.654 

Push-SIC3 7280 0.360 
Push-SIC2 5970 0.295 
Push-SIC4 5225 0.258 
Push-SIC8 2709 0.134 

Push-SIC5 2600 0.129 
Push-SIC18 2129 0.105 
Push-SIC19 2057 0.102 

Push-SC2 9491 0.469 
Push-SC3 7670 0.379 
Push-SC4 6164 0.305 
Push-SCI 5121 0.253 
Push-SC5 4497 0.222 
Push-SC6 3492 0.173 
Push-SCO 2705 0.134 
PUsh-SC7 2431 0.120 
Push-SC9 2272 0.112 
Push-SC8 2077 0.103 

Push-ALI 34,567 1.709 
Push-ALO 33,456 1.654 
Push-AL2 24,278 1.200 
Push-AL3 18,269 0.903 
Push-AL4 13,110 0.648 
Push-AL5 9397 0.465 
Push-AL8 6252 0.309 
Push-AL6 6196 0.306 
Push-AL7 5715 0.283 
Push-AL9 4853 0.240 
Push-AL10 4175 0.206 
Push-ALII 3432 0.170 

Push-AL12 2225 0.110 

Push-SO 4673 0.231 
Push-S1 2829 0.140 

Push-S3 2176 0.108 

Total Savings (34 opcodes) 262,714 12.987 

Table 5-3: New Push Instructions 
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Offset 

0 

4 

Number Offset 

15,042 

882 

New Instruction 

Push-Last-ALO 

Push-Last-AL1 

Push-Last-AL3 

Push-Last-AL2 

1 

5 

Number 

5743 

1001 

Total Savings (4 opcodes) 

Arguments and Local Variables 

Off.o;ct Number Off:~et Number Total 

2 2464 3 2701 o to 3 25,950 

6 1353 7 656 4 to 7 3892 

8 to 17 2217 

18 to 127 1222 

Total: 33,281 

Stack: 21,069 

Short Integer Constants: 1462 

Symbols & Constants : 9365 

Specials: 3627 

Total Number of Push- Last Instructions-: 68,804 

Table 5-4: Push-Last Statistics 

Number of Bvtes Eliminated 

15,042 

5743 

2701 

2464 

% of Code Eliminated 

0.744 

0.284 

0.134 

0.122 

25,950 l.283 

Table 5-5: New Push-Last Instructions 

5.1.3 Call Instructions 

. 20 

The Call instruction occurs 51,265 times in 1,072,306 total instructions accounting for 101,296 bytes of 

object code, for an average of 2.0 bytes per Call instruction. Table 5-6 shows the operand usage of the Call 

instruction. 

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-7. These new Call instructions are given names of the fonn Call-SCn where SC is a 

mnem6nic abbreviation for symbols and constants. n is an integer offset. These specialized Call instructions 

will reduce the number of bytes per instruction from 2.0 to l.3. 
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Offset 

0 

4 

8 

Number Off:i\ct 

10,442 

4512 

1608 

New Instruction 

Call-SCO 

Call-SCI 

Call-SC4 

Call-SC3 

CaU-SC2 

Call-SC6 

Call-SC7 

Call-SC5 

1 

5 

9 

Number 

5989 

2166 

1071 

Total Savings (8 opcodes) 

Symbols and Constants 

Offset Number Off.i\et Numbcr Total 

2 3097 3 3714 o to 3 23,242 

6 2664 7 2191 4 to 7 11,533 

10 575 11 866 8 to 11 4120 

12 to 16 2384 

17 to 26 2104 

27 to 127 959 
Total: 44,342 

Stack: 1234 

Short Integer Constants : 0 
Arguments & Local Variables: 5543 

Specials: 146 

Total Number of Call Instructions: 51,265 

Table 5-6: Call Statistics 

Number of Bytes Eliminated 

10,442 

5989 

4512 

3714 

3097 

2664 

2191 

2166 

% or"Code Eliminated 

0.516 

0.296 
0.223 

0.184 

0.153 

0.132 

0.108 

0.107 

34,775 1.719 

Table 5-7: New Call Instructions 

5.1.4 Pop Instructions 

21 

The Pop instruction occurs 79,593 times in 1,072,306 total instructions accounting for 137,217 bytes of 

object code, for an average of 1.7 bytes per Pop instruction. Table 5-8 shows the operand usage of the Pop 

instruction. The frequency of occurrence for particular operands is shown only for arguments and local 

variables. 

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-9. These new Pop instruCtions are given names of the fonn Pop-ALn where AL is a 
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Arguments and Local Variables 

Offset Number Offset Number Off~et Number Offset Number Total 

0 1248 1 7070 2 6696 3 7397 o to 3 22.411 

4 5489 5 4301 6 3600 7 4005 4 to 7 17,395 

8 2994 9 1915 10 1473 11 1390 8 to 11 7772 

12 1117 11 976 14 759 15 714 12 to 15 3786 

16 to 21 2662 

22 to 127 1752 

Total: 55,778 

Stack: 0 

Ignore: 21,969 

Symbols & Constants : 0 

Specials: 1846 

Total Number of Pop Instructions: 79,593 

Table 5-8: Pop Statistics 

mnemonic abbreviation for arguments and local variables and n is an integer offset These specialized Pop 

instructions will reduce the number of bytes per Pop instruction from 1.7 to 1.2. 

New Instruction 

Pop-AL3 

Pop-ALI 

Pop-AL2 

Pop-AL4 

Pop-AL5 

Pop-AL7 

Pop-AL6 

Pop-AL8 

Total Savings (8 opcodes) 

5.1.5 Check Instructions 

Number of Bytes Eliminated 

7397 

7070 

6696 

5489 

4301 

4005 

3600 

2994 

41,552 

Table 5-9: New Pop Instructions 

% of Code Eliminated 

0.366 

0.349 

0.331 

0.271 

0.213 

0.198 

0.178 

0.148 

2.054 

The Check instruction occurs 17,128 times in 1,072,306 total instructions accounting for 34,256 bytes of 

object code, for an average of 2.0 .bytes per Check instruction. Table 5-10 shows the operand usage of the 

Check instruction. The frequency of oc~urrence for particular operands is shown for arguments and local 

variables and special symbols. 
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Arguments and Local Variables 

Offset Number Offset Number Offset Number Offset Number Total 

0 1893 1 1658 2 2470 3 1599 o to 3 7620 

4 2087 5 1029 6 809 7 1579 4 to 7 5504 

8 498 9 508 10 215 11 147 8 to 11 1368 

12 to 127 764 

Total: 15,256 

Stack: 0 
Short Integer Constants: 0 

Symbols & Constants : 0 
Specials: 1872 

Total Number of Check Instructions': 17,l28 

Table 5-10: Check Statistics 

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-11. These new Check instructions are given names of the form Check-ALn where AL is a 

mnemonic abbreviation for arguments and local variables and n is an integer offset These specialized Check 

instructions will reduce the number of bytes per Check instruction from 2.0 to 1.7. 

New Instruction 

Check-AL2 
Check-AL4 

Total Savings (2 opcodes) 

Number of Bytes Eliminated 

2470 
2087 

4557 

Table 5-11: New Check Instructions 

5.1.6 Call-Maybe-Multiple Instructions 

% of Code Eliminated 

0.122 

0.103 

0.225 

The Call-Maybe-l'rfultiple instruction occurs 16,257 times in 1,072,306 total instructions accounting for 

32,114 bytes of object code, for an average of 2.0 bytes per Call-Maybe-Afultiple instruction. Table 

5-12 shows the operand usage of the Call-Maybe-Afultiple instruction. The frequency of occurrence for 

particular operands is shown only for symbols and constants. 

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-13. These new Call-Maybe-Multiple instructions are given names of the form 

Call-Maybe-Afult~ple-SCn where SC is a mnemonic abbreviation for arguments and local variables and n is an 

integer offset These new Call-Maybe-Multiple instructions will reduce the number of bytes per 

Call-Afaybe-Multipleinstruction from 2.0 to 1.3. 
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Symbols and Constants 

Off.~et Number Off..:;ct Number Offsct Number Offsct Number Total 

0 2672 1 5216 2 1062 3 2528 o to 3 11,478 

4 1260 5 472 6 525 7 485 4 to 7 2742 

8 to 127 1377 

Total: 15,597 

Stack: 400 

Short Integer Constants: 0 

Arguments & Local Variables: 235 

Specials : 25 

Total Number of Call-Maybe- Afulliple Instructions: 16,257 

Table 5-12: Call-Alaybe-Mulliple Statistics 

New lnstnlction Number of Bytes Eliminated % of Code Eliminated 
Call-Maybe-Multiple-SC1 5216 0.258 
Call-May be-M ultiple-SCO 2672 0.132 
Call-Maybe-Multiple-SC3 2528 0.125 

Total Savings (3 opcodes) 10,416 0.515 

Table 5-13: New Call-A,faybe-Afultiple Instructions 

5.1.7 Cdr Instructions 

The Cdr instruction occurs 8758 times in 1,072,306 total instructions accounting for 16,234 bytes of object 

code for an average of 1.9 bytes per Cdr instruction. Taple 5-14 shows the operand usage of the Cdr . 

instruction. The frequency of occurrence for particular operands is shown only for arguments and local 

variables. 

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-15. These new Cdr instructions are given names of the fonn Cdr-ALn where AL is a 

mnemonic abbreviation for arguments and local variables and n is an integer offset These specialized Cdr 

instructions will reduce the number of bytes per Cdr instruction from 1.9 to 1.5. 

5.1.8 Car Instructions 

The Car instruction occurs 19,894 times in 1,072,306 total instructions accounting for 39,531 bytes of object 

code, for an average of 2.0 bytes per Car instruction. Table 5-16 shows the operand usage of the Car 

instruction. The frequency of occurrence for particular operands is shown only for arguments and local 

variables. 
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Off.~et 

0 
4 

Offset 

0 
4 

Number Offset 

2704 
219 

New Instruction 

Cdr-ALO 

1 
5 

Number 

775 
473 

Total Savings (1 opcode) 

Arguments and Local Variables . 

Offset Number Offset Number Total 

2 609 3 540 o to 3 4628 
6 254 7 431 4 to 7 1377 

8 to 127 856 
Total : 6861 

Stack: 1282 
Short Integer Constants: 0 

Symbols & Constants: 580 
Specials·: 35 

Total Number of Cdr Instructions: 8758 

Table 5-14: Cdr Statistics 

Number of Bytes Eliminated 

2704 

2704 

% of Code Eliminated 

0.134 

0.134 

Table 5-15: New Cdr Instructions 

Arguments and Local Variables 

Number Offset Number Offset Number Offset Number Total 

3098 1 2714 2 3360 3 2035 Oto3 11,207 
866 5 864 6 584 7 468 4 to 7 2782 

8 to 127 1855 
Total: 15,844 

Stack: 257 
Short Integer Constants: 0 

Symbols & Constants: 580 
Specials: 3213 

Total Number of Car Instructions: 19,894 

Table 5-16: Car Statistics 
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Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-17. These n~w Car instruc~ons are given names of the form Car-ALn where AL is a 

mnemonic abbreviation for arguments and local variables and n is an integer offset These new Car 

instructions will reduce the number of bytes per Car instruction from 2.0 to 1.4. 
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New Instnlction 

Car-AL2 

Car-ALO 

Car-ALI 

Car-AL3 

Total Savings (4 opcodes) 

5.1.9 Cadr Instructions 

Number of Bytes Eliminated 

3360 

3098 

2714 

2035 

11,207 

Table 5-17: New Car Instnlctions 

% of Code Eliminated 

0.l66 

0.l53 

0.l34 

0.l01 

0.554 
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The Cadr instIuction occurs 9238 times in 1,072,306 total instructions accounting for 16,~56 bytes of object 

code, for an average of 1.7 bytes per Cadr instruction. Table 5-18 shows the operand usage of the Cadr 

instruction. The frequency of occurrence for particular operands is shown only for arguments and local 

variables. 

Arguments and Local Variables 

Offset Number Offset Number Offset Number Offset Number Total 

0 3508 1 109 2 476 3 153 o to 3 4246 

4 122 5 0 6 50 7 0 4 to 7 172 

8 to 127 25 

Total : 4443 

Stack: 2320 

Short Integer Constants : 0 

Symbols & Constants : 0 

Specials: 2475 

Total Number of Cadr Instructions: 9238 

Table 5-18: Cadr Statistics 

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-19. These new Cadr instructions are given names of the form Cad,...ALn where AL is a 

mnemonic abbreviation for arguments and local variables and n is an integer offset These new Cadr 

instructions will reduce the number of bytes per Cadr instruction from 1.7 to 1.4. 
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New Instruction 

Cadr-ALO 

Total Savings (1 opcode) 

5.1.10 = Instructions 

Number of Bytes Eliminated 

3508 

3508 

Table 5-19: New Cadr Instructions 

% of Code Eliminated 

0.173 

0.173 
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The = instruction occurs 28,964 times in 1,072,306 total instructions accounting for 56,723 bytes of object 

code. for an average of 1.8 bytes per = instruction. Table 5-20 shows the operand usage of the = instruction. 

Short Integer Constants 

S.LC. Number S.I.C. Number S.Le. Number S.LC. Number Total 

-128 to -1 34 
0 1370 1 2101 2 3423 3 2545 o to 3 9439 
4 2958 5 1606 6 532 7 2377 4 to 7 7473 
8 269 9 1104 10 1032 11 1213 8 to 11 3618 

12 to 127 238 
Total: 20,802 

Stack: 1243 
Symbols & Constants: 706 

Arguments & Local Variables: 6169 
Extended Symbols & Constants: 19 

Specials: 25 
Total Number of = Instructions: 28.964 

Table 5-20: = Statistics 

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-21. These new = instructions are given names of the fonn =-SlCn where SIC is a 

mnemonic abbreviation for short integer constant operands and n is a short integer constant. These new = 
instructions will reduce the number of bytes per = instruction from 1.8 to 1.5. 

5.1.11 Eq Instructions 

The Eq instruction occurs 18,396 times in 1,072,306 total instructions accounting for 36,067 bytes of object 

code, for an average of 2.0 bytes per Eq instruction. Table 5-22 shows the operand usage of the Eq 

instruction. The frequency of occurrence for particular operands is shown only for arguments and local 

variables. 
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Offset 

0 

New T nstnlction 

=-SIC2 

=-SIC4 

=-SIC3 

=-SIC7 

=-SIC1 

Total Savings (5 opcodes) 

Number Offset Number 

354 1 1162 

Number of Bvtes Eliminated 

3423 

% of Code Eliminated 

0.169 

2958 0.146 

2545 0.126 

2377 0.118 

2101 0.104 

13,404 0.663 

Table 5-21: New = Instructions 

Arguments and Local Variables 

Offset Number Offset Number 

2 928 3 2943 o to 3 

4 to 6 

7 to 16 

17 to 127 

Total ; 

Stack: 

Short Integer Constants : 

Symbols & Constants: 

Specials: 

Total Number of Eq Instructions: 

Table 5-22: Eq Statistics 

Total 
5387 . 

3319 

2206 

0 

10,912 

725 

103 

6001 
655 

18,396 
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Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-23. These new Eq instructions are given names of the form Eq-ALn where AL is a 

mnemonic abbreviation for arguments and local variables and n is an integer offset These new Eq 

instructions will reduce the number of bytes per Eq instruction from 2.0 to 1.8. 

New Instruction 

Eq-AL3 

Total Savings (1 opcode) 

Number of Bytes Eliminated 

2943 

2943 

Table 5-23: New Eq Instructions 

% of Code Eliminated 

0.145 

0.145 



AN ANALYSIS OF THE SPICE LISP INSTRUCfION SET 29 

5.1.12 Bind-Pop Instructions 

rn1e Bind-Pop instnlction occurs 6178 thnes in 1,072,306 total instructions accounting for 12,156 bytes of 

object code, for an average of 2.0 bytes per Bind- Pop instnlction. Table 5-24 shows the operand usage of the 

Bind-Pop instnlction. 

Symbols and Constants 

Offset Number Offset Number Offset Number Offset Number Total 
0 2684 1 932 2 497 3 444 o to 3 4557 
4 441 5 255 6 158 7 61 4 to 7 915 

8 to 127 431 
Total: 5903 

Stack: 200 
Short Integer Constants : 0 

Arguments & Local Variables: 75 
Specials: 0 

Total Number of Bind-Pop Instructions : 6178 

Table 5-24: Bind-Pop Statistics 

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-25. These new Bind-Pop instructions will reduce the number of bytes per Bind-Pop 

instruction from 2.0 to 1.5. 

New Instruction 
Bind-Pop-SCO 

Total Savings (1 opcode) 

5.1.13 Unbind Instructions 

Number of Bytes Eliminated 
2684 

2684 

Table 5-25: New Bind-Pop Instructions 

% of Code Eliminated 
0.133 

0.133 

The Unbind instruction occurs 3732 times in 1,072,306 total instructions accounting for 7464 bytes of object 

code, for an average of 2.0 bytes per Unbind instruction. Table 5-26 shows the operand usage of the Unbind 

instruction. 

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-27. These new Unbind instructions will reduce the number of bytes per Unbind instruction 

from 2.0 to 1.1. 
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Short Integer Constants 

wS.T.C. Number S.LC. Number S.I.C. Number S.LC. Number Total 

o 
4 

o 
25 

New Instruction 

Unbind-SIC1 

1 
5 

3424 

o 

Total Savings (1 opcode) 

2 
6 

174 

o 
3 
7 

58 

o 

-128 to-1 0 

o to 3 3656 

4 to 7 25 

8 to 127 26 

Total: 3707 

Stack: 0 

Symbols & Constants: 0 

Arguments & Local Variables: 25 

Specials: 0 

Total Number of Unbind Instructions: 3732 

Table 5-26: Unbind Statistics 

Number of Bytes Eliminated 

3424 

3424 

% of Code Eliminated 

0.169 

0.169 

Table 5-27: New Unbind Instructions 

5.1.14 List Instructions 
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The List instruction occurs 12,979 times in 1,072,306 total instructions accounting for 25,780 bytes of object 

'code, for an average of 2.0 bytes per List instruction. Table 5-28 shows the operand usage of the List 

instruction. 

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-29. These new List instructions will reduce the number of bytes per List instruction from 2.0 

to 1.1. 

5.1.15 List* Instructions 

The List* instruction occurs 4242 times in 1,072.306 total instructions accounting for 8484 bytes of object 

code, for an average of 2.0 bytes per List* instruction. Table 5-30 shows the operand usage of the List* 

instruction. 

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-31. These new List* instructions will reduce the number of bytes per List* instruction from 

2.0 to 104. 
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S.LC. Number S.LC. Number 

o 0 1 3335 

4 1249 5 600 

New Instruction 

List-SIC2 

List-SICI 

List-SIC3 

Total Savings (3 opcodes) 

Short Integer Constants 

S.LC. Number S.LC. Number Total 

-128 to -1 0 

2 4880 3 2707 o to 3 10,922 

6 0 7 2 4 to 7 1851 

8 to 127 28 

Total: 12,801 

Stack: 178 
Symbols & Constants: 0 

Arguments & Local Variables: 0 

Specials: 0 

Total Number of List Instructions": 12,979 

Table 5-28: List Statistics 

Number of Bytes Eliminated 

4880 

3335 

2707 

10,922 

% of Code Eliminated 

·0.241 

0.165 

0.134 

0.54 

Table 5-29: New List Instructions 

Short Integer Constants 

S.LC. Number S.LC. Number S.LC. Number S.I.C. Number Total 

-128 to-l 0 

0 0 1 1157 2 2376 3 476 o to 3 4009 

4 80 5 70 6 55 7 2 4 to 7 207 

8 to 127 26 

Total : 4242 

Stack: 0 

Symbols & Constants : 0 

Arguments & Local Variables: ·0 

Specials: 0 

Total Number of List* Instructions: 4242 

Table 5-30: List1/: Statistics 

31 
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New Instruction 

List*-SIC2 

Total Sa\'ings (1 opcode) 

5.1.16 Long-Escape Instructions 

Number of Bytes Eliminated 

.2376 

2376 

Table 5-31: New Lis/* Instructions 

% of Code Eliminated 

0.117 

0.117 
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The Long-Escape instnlction occurs 96,405 times in 1,072,306 total instructions accounting for 211,611 

bytes of object code, for an average of 2.2 bytes per Long-Escape instruction. Table 5-32 shows the operand 

usage of the Long-Escape instruction. The frequency of occurrence for particular operands is shown only for 

.arguments and local variables. 

Arguments and Local Variables 

Offset Number Offset Number Offset Number Offset Number Total 

° 42 1 1625 2 3118 3 3472 o to 3 8257 

4 3060 5 1836 6 1095 7 720 4 t07 6711 

8 493 9 723 10 442 11 458 8 to 11 2116 

12 to 127 1164 

Total: 18,248 

Stack: 50,583 

Ignore: 27,021 

Symbols & Constants : ° Specials: 553 

Total Number of Jorfisc Instructions: 96,405 

Table 5-32: M isc Statistics 

Specialized instructions whose addition would save more than the threshold number of bytes (2022) are 

listed in Table 5-33. These new Long-Escape instructions are given names of the fonn Long-Escape-ALn 

where AL is a mnemonic abbreviation for arguments and local variables and n is an integer offset. These new 

Long-Escape instructions will reduce the number of bytes per Long-Escape instruction from 2.2 to 2.1. 
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New Instnlction 

Misc-AL3 

Misc-AL2 

Misc-AL4 

Total Savings (3 opcodes) 

Number of Bytes Eliminated 

3472 

3118 

3060 

9650 

Table 5-33: New Alisc Instructions 

5.1.17 Specialized Instruction Summary 

% of Code Eliminated 

0.172 

0.154 

0.151 

0.477 
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In the preceding sections, we have seen how object code size may be reduced by adding 80 specialized 

instructions. These specialized instructions eliminate 442,786 bytes of code. The instructions in the preceding 

sections accounted for 1,493,306 bytes of code in 762,216 occurrences for an average of 2.0 bytes per 

instruction. Eliminating 442,786 bytes brings this average for the optimized instructions down to 1.4. Thus 

the addition of these '80 specialized instructions reduces code size by 21.9%. 

5.2 Converting Long instructions to Short Instructions 

Several of the instructions which were originally defined to be long instructions occur frequently enough to 

warrant their inclusion as short instructions in the new assembler instruction set This re-alignment will result 

in a I-byte saving per occurrence of a converted long instruction. The long instructions which should be 

converted are listed in Table 5-34. It is interesting to note that these 11 long instructions account for 62,263 

(64.6) out of 96,405 total long instruction occurrences. Thus less than 36% of the existing long instructions 

·occurrences will remain once these are converted to short instructions. 

Long Instruction Number of Bytes Eliminated % of Code Eliminated 

(V-Store Ignore) 17,294 0.855 

(V- Access Stack) 13,476 0.666 

(Get-Definition Stack) 7871 0.389 

(Type Stack) 4680 0.231 
(TypeA&L) 3644 0.180 

(V- Access A&L) 3078 0.152 

(V- Access Ignore) 2915 0.144 

(Make-Immediate-Type Stack) 2907 0.144 

(Cons Stack) 2510 0.124 

(Cons A&L) 1966 0.097 

(Typed- V-Store Ignore) 1922 0.095 

Total (11 opcodes) 62,263 3.078 

Table 5-34: New Short instructions from Old Long instructions 
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5.3 Non-Indicator Branch Instructions 

The addition of a branch instruction which branches based upon the value of an operand specified by the 

branch instruction itself rather tl'lan an indicator setting can reduce code size by a significant amount. Table 

5-35 shows pairs of instructions generated by the current compiler in which the first instruction does nothing 

but set the indicators for a branch, which is specified by the second instmction of the pair. 

Instruction Pair 

Check, Branch-Not-Atom 

<, Branch-Null 

<, Branch-Not-Null 

>, Branch-Null 

Check, Branch -A tom 

Number of Occurrences 

3611 
3390 
2425 
2163 
1636 

13,225 

Table 5-35: Branch Instruction Pairs 

However, only one new branch instruction is justified based upon these instruction pair occurrences. These 

instruction pair occurrences are misleading because they do not specify where the operand for the first 

instruction comes from. In reality, each instruction of the pairs in this table represent four opcodes.8 In order 

to calculate the expected savings for a new branch instruction, we must detennine what proportion of each 

instruction' occurrences use a particular operand source. For example, using the Check, Branch-Not-Atom 

pair, 89% of Check instructions use an argument or local variable operand. 98.5% of Branch-Not-Atom 

instructions are short and do not pop the stack. Therefore, (3611 * .89 * .985) = 3166 (0.157%) is the expected 

savings due to adding an NI-Branch-Not-Atom-AL instruction. The addition of no other branch instruction 

saves greater than 0.1% in code size. 

5.4 Compiler Instructions to Replace Instruction Pairs 

New instructions are suggested if particular instruction pairs occurred frequently (ie. combine the two into 

one instruction). It should be noted that these optimizations are of a different character than those which add 

specialized instructions with implied operands. These optimizations would most conveniently be added by 

changing the main body of the compiler such that these were generated under the appropriate circumstances 

rather than contorting the assembler to reduce some instruction pairs to one instruction. 

One instruction pair that might be combined into a single instruction is Branch-IfArg-Supplied, Set-Null. 

8Four 8-bit oPcode~ are represented by the first to account for the A-code which specifies the operand source: four 8-bit opcodes are 
represented by the branch to account for the short-long, pop-nopop options. . 
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By combining these two instructions to arrive at a new ins~ction, code size may be reduced. A diagram of 

the byte layout for this instruction pair is presented in Figure 5-1. 

7 o 

I Branch·lf·Arg-Supplied Opcode A = 0 

Offset into A & L block 

PC-relative branch offset 

7 o 

I Set-Null Opcode A = 2 
_._--_.-. _ .. -- ......... _ .. -- _.- ..... -... _-
I Offset into A & L block 

Figure 5-1: Byte Configuration for Branch-IfArg-Supplied, Set-Nul/Pair 

Notice that the operand of the Set-Null instruction is always an offset into the arguments and local 

variables block (A = 2); and the Branch-If-Arg-SuppUed Instructi9n is always takes a short (1 byte) PC

relative offset and never pops the stack (A = 0). For more detailed information about these instructions, see 

Appendix 1. 

The following optimizations are possible: 

1. One byte per occurrence of this instruction pair could be saved by simply adding a new I-byte 

opcode that used all the same operands as the instruction pair because one of the two opcode 
bytes could be eliminated. This would eliminate (1 * 1782) = 1782 bytes for a .088% reduction in 
code size. It is not necessary to introduce four I-byte opcodes to correspond to the 4 possible 
Set-Null opcodes; only one of the A-code values is in use in this pairing -- the arguments and 

locals variables combination. Therefore the cost of this optimization is only one opcode. 

2. Further savings would result from eliminating one operand byte altogether. This is possible 
because the Set-Null instruction of the pair certainly refers to the same argument as the 

Branch-If A rg-Supplied instruction in the arguments and local variables part of the stack frame in 
order to initialize it. We need only specify one offset for both references. So, (2 * 1782) = 3564 

bytes could be eliminated from existing compiled code by adding a new instruction 

Set-Null-Unless-Arg-Suppliedwere added to the instru~tion set This is a .176% reduction in code 

size. 

3. Further savings may be possible here. Depending upon how the compiler generates code for 

initializing unsupplied arguments, even- the branch PC-relative offset may be eliminated. If the 

branch is used only to bypass the Set-Null instruction. then no branching is needed wh:n the new 
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instruction is used. This would eliminate (3 * 1782) = 5346 bytes resulting a 0.264% reduction in 

code size. 

36 

It would seem that the most reasonable choice is number 3 above; the resulting byte layout for the new 

instruction would be as in Figure 5-2. 

7 o 

I Set·Null-Unless·Arg-Supplied Opcode A = 2 

Offset into A & L block 

Figure 5-2: Byte Layout for Set-Null-Unless-Arg-Supplied Instruction 

Another instruction pair which is easily converted into a single instruction is Branch-Null. Return. The new 

instruction resulting from combining this pair would be (Return-Unless-Null Stack. Return Stack accounts 

for 79.7% of all Return occurrences, and this pair occurs 5722 times; so this would result in a savings of (5722 

* .797) = 4561 bytes of code, a 0.225% reduction in code size. Adding other operand sources for this 

instruction do not save the minimum 0.1% in code size required. 

Another instruction pair that may be converted to a single instruction is the pair Car. Scdr. From the 

nature of these instructions we may assume that both use the same operand. The new instruction resulting 

from this pair would be (Push-C a,.. Sed,.. ALI). Arguments and local variables are used as the operand in 

88.7% of all Scdr instructions. This pair occurs 3670 times; so the expected savings is (3670 * .887) = 3255 

bytes, a 0.161% reduction in code size. 

5.5 Summary of New Opcodes 

From the preceding sections we see that with the addition of 95 opcodes to the assembler's instruction set, a 

25.8% savings in object code size may be obtained. This is a reduction from 2,022,694 bytes of object code to 

1,501,277 bytes, a savings of 521,417 bytes. These new instructions will reduce the average number of bytes 

per instruction from 1.9 to 1.4. 
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6. Deleting Instructio-ns 

In order to add the specialized instructions recommended in other sections of this paper, opcode space 

must be available in the instruction set of the assembler. In this section we explore options for making opcode 

space for short instnlctions available. These options include: 

• converting some short instructions to long instructions 

• eliminating illegal instruction-operand combinations from the opcode space 

• eliminating some rarely-used instructions by replacing them with sequences of more common 

instructions 

In no case does any change intended to open up opcode space affect any code generation except that done by 

the assembler (ie. the compiler is unchanged). 

6.1 Illegal Non-Branch Short Instruction Opcodes 

56 non-branch short instructions are presently defined, accounting for 224 opcodes. Of these 224 opcodes 

20 are illegal and can never be generated by the assembler. These 20 re-claimable opcodes are described in 

Table 6-1. The name of the instruction is listed following its 6-bit instruction opcode. This 6-bit opcode, 

concatenated with the 2-bit A-field (which describes the operand source), make up a unique 8-bit opcode 

which fills the first byte of every object-code instruction. All of these illegal opcodes occur when A is 1. 

When A is 1 and the operand is used only as a source, then the operand is a short integer constant taken from 

the next byte of object code. If the operand is used as a destination, the result is ignored when A is 1 

(however, it is used to set the indicators). For a description of these instructions, see Appendix I. 

6-Bit OQcode Instruction 6-bit OQcode Instruction 

1 Call 21 Caar 

2 Call-O 22 Sedr 

3 Call-Multiple 23 Seddr 

4 Call-¥aybe-Mulliple 37 1+ 
16 Car 38 1-

17 Cdr 39 Bind-Null 

18 Cadr 40 Bind-T 

19 Cddr 41 Bind-Pop 

20 Cdar 50 Set-Lpush 

51 Set-Lpop 54 Spread 

Table 6-1: Illegal Instructions when A = 1 
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6.2 Little-Used Non-Branch Short Instruction Opcodes 

Many of the legal short instructions have not been generated by the current Spice Lisp compiler. While 

this might be attributed to a poor selection of instructions by the compiler, it seems more likely (after analysis 

of the unused instructions) that they are simply not useful. In this section, it is proposed that many of these 

opcodes be re-allocated to more useful instructions. 

Several opcodes which should be considered for re-use arc described below. With each description is 

included the instruction or sequence of instructions which could be generated by the assembler to replace the 

instruction being descIibed. 

2 Call-O, A = 0 or 3 

8 Push, A = 0 

No function of 0 arguments has yet been called using the stack or a special symbol as the 

source of the function in existing code. While these combinations may certainly occur in 
future code, there is no need to allocate two opcodes to them. They may be handled in the 

assembler by generating a Call and a Push-Last. »»>NOTE: Slguts is unclear about this. 

Push-Last must not try to cross control stack boundaries if this is checked for. It should 

simply start the call without munging the stack when given stack as argument.««< 

This is a no-op unless it is being used to set the indicators. Several instructions perform 

this same operation; they should be mapped onto the same opcode. These instructions 

include Pop with A = 0 and Copy with A = 1. Moreover, none of these combinations has 

yet occurred; therefore, this might economically be converted a long instruction. 

10 Push-Under, A = 1-3 

Push-Under has never been generated by with these operands using the current compiler. 

These combinations may be eliminated both from the set of possible instructions generated 

by the compiler and from the opcode set generated by the assembler. 

11 Check, A = 0 This instruction has the same effect as Pop with A = 1 in the current instruction set This 

is not intuitive. In the revised instruction set this combination should not pop the stack; it 

should have the same effect as Push with A = 0 as above. 

12 Pop, A = 0 See Push above. 

13 Copy, A = 1 See Push above for a description of the effect of this instruction in the current instruction 

set However, this is simply an unintuitive and redundant combination -- the compiler 

should never generate it. 

50 Set-Lpush, A = 0,2,3 
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This instruction has never been generated. It may be replaced by (Push x). (Cons Slack)9, 

(Pop x) . . TIle Push and Pop instructions would have the same operand as the original 

Set- Lpush would have had. While intended for use when compiling Spice Lisp DO's, this 

instruction is not used and does not seem an economical use of the opcode space -- consing 

will dominate the cost of the instruction fetch here anyway. If not totally eliminated from 

the instruction set, this should at least become a long instruction. 

51 Set-Lpop, A = 0,2,3 

This instruction has not been used. It may be deleted in much the same way as Set-Lpush 
above (in either the assembler or both the compiler and assembler). It would be replaced 

by (Car x), (Cdr x), (Pop x). This instruction was intended to be used when compiling 

Spice Lisp DO's; however, this instruction might be used if the compiler were smarter 

about compiling DO's; therefore, this instruction should be retained. 

From above, we see that 12 opcodes may be re-claimed with no apparent cost. If the Set- Lpush instruction 

is retained as a long instruction, the cost is only three long instruction opcodes. 

While several opcodes would be freed by the preceding suggestions, many more could be eliminated at 

little cost in added code size to the current sample. These eliminations are all of the same sort. All of the 

instructions in the existing instruction set are encoded to use operands from any of four sources (therefore 4 

8-bit opcodes). Many of these instructions are never used in conjunction with one or more of the possible 

operand sources for which opcode space is used. It would be a simple matter for the assembler to translate 

these instructions so as to use the stack as operand. It would generate a Push instruction to precede each of 

these instructions when an uncommon source operand was specified by the compiler. When an uncommon 

"destination operand was specified, a Pop instruction would follow the original instructions. If this were done, 

these rarely used opcodes could be re-assigned to frequently occurring, specialized instructions. The likely 

candidates for this re-assignment are listed in Table 6-2. Each of these would cost one byte of increased code 

size per occurrence to eliminate. These instructions account for 53 opcodes (out of256 possible in 1 byte) and 

occur only 4688 times (out of 1,072,306 total instructions). Thus they take up 20.7% of the available opcode 

space but account for only 0.44% of the instructions present in the current sample. 23 of the opcodes in table 

6-2 do not appear in the code sample and may thus be eliminated with no resulting increase in code size. 

Eliminating all 53 of these opcodes would increase code size by 0.23%. 

9The (Cons A B) long instruction expects A and 1! to be on the stack. A would already be on the stack (see the definition of Set-Lpush 
in I). 
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1 nstrllction and Operand 

(Call- A4uill})ie A&L) 

(Call-Alaybe-ll1uitipie A&L) 

(Return Ignore) 

(Throw Short-Constant) 

(Throw A& L) 

(Throw S&'C -- Special) 
/~, ,_,...., 6 r'" _J ___ .. \ 

(l-flt:<':K ,JIlUrt-\.., UIl.llUlll/ 

(AI ake-Predicate A&L) 

(AI ake-Predicate S&C -- Special) 

(Not-Predicate A&L) 

(Cadr A&L) 

(Cddr S&C -- Special) 

(CdarA&L) 

(Cdar S&C -- Special) 

(Caar S&C -- Special) 

(Trunc S&C -- Special) 

(+ S&C -- Special) 

(- S&C -- Special) 

(* S&C -- Special) 

(/ Short-Constant) 

(/ S&C -- Special) 

(Bit- And Short-Constant) 

(Bit-And A&L) 

(Bit-Xor A&L) 

(Bit-XorS&C -- Special) 

(Bit-Or Short-Constant) 

(Bit-Or A&L) 

Occurrences 

4 
235 

133 
o 

122 

368 
(\ 

v 

141 
o 

99 
o 
o 
o 
o 

105 
16 

277 
321 
305 
206 
14 

316 
307 

151 
o 
o 

247 

Instnlction and Operand 

(Bit-Or S&'C -- Special) 

(Eqi Short-Constant) 

(Eqi A&L) 

(Eqi S&C -- Special) 

() S&C -- Special) 

(Eq Short-Constant) 
/, • ~ () /"' C" ___ :_1\ 
(~ T ..... u,'-' - - ..... ,pCI..,H.lI/ 

(1- S&C -- Special) 

(Not-Predicate S&C -- Special) 

(Bind-Null A&L) 

(Bind-T A&L) 

(Bind- T S&C -- Special) 

(Bind-Pop A&L) 

(Set-O Ignore) 

(Set-O S&C -- Special) 

(Set-T S&C -- Special) 

(NpopA&L) 

(Npop S&C -- Special) 

(Unbind A&L) 

(Unbind S&C -- Special) 

(Set- Lpop S&C -- Special) 

(List A&L) 

(List S&C -- Special) 

(List* A&L) 

(List * S&C -- Special) 

(Spread S&C --Special) 

Total (53 Opcodes) 

Table 6-2: Rarely Used Instructions and Operands 

6.3 Little-Used Branch Opcodes 

40 

Occu rrences 

28 

o 
76 

o 
217 
103 
')0"'7 
.JUI 

o 
o 

25 
o 

12 
75 
o 

72 

229 

o 
o 

25 

o 
o 
o 
o 
o 
o 

---11. 
4688 

Several of the branch instruction opcodes are never or rarely used. These may be eliminated in order to 

open up opcode space for more frequently occurring operations. Existing branch instructions have a format 

similar to that of existing non-branch short instructions. A 6-bit opcode is used to denote what sort of branch 

is to be executed. A 2-bit A-field is used to represent whether the branch is short or long and whether to pop 

the stack or not if the branch is taken. For a complete description of existing branch instructions, see 

Appendix I. Many of the 8-bit combinations possible in the present encoding are unneeded in the 

assembler's instruction set. All of the short branches (I-byte PC-relative offset) which do not pop the stack 

are used enough to warrant their inclusion. Those which may be eliminated are described below. Rather 
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than introduce the confusing A-code encoding of the pop -- no-pop and short -- long offset possibilities, the 

instructions below will be described in the following form: (branch-mnemonic X Y) where .X is either long or 

short and Y is either pop or nopop. 

• (Branch X Pop) 

• (Branch-If- Arg-Supp/ied X Pop) 

• (Branch-Atom X Pop) 

• (Branch-Not-Atom X Pop) 

• (Branch-Zero X Pop) 

Few branches with a pop if the branch is not taken have been generated. 10 opcodes may be freed 

if we eliminate all but the 6 most frequent types of branch instructions which pop if the branch is 

not taken. Those eliminated may be replaced by the same sort of branch instruction followed by 

an explicit Pop; thus the stack would be popped only if the branch was not taken, as specified for 

the compiler instruction set This will not increase the current object code size. 

• (Branch-If- Arg-Supp/ied long nopop) 

This combination has never occurred. It may be eliminated or converted to a long instruction 

with no increase in current object code size. While elimination of this long offset form of the 

Branch-If Arg-Supp/ied instruction might restrict the compiler when it is generating code to 

handle optional arguments in Spice Lisp, it seems doubtful that more bytes of code than can be 
specified in one byte of offset will ever be needed to initialize an unsupplied argument. 

Nevertheless, since plenty of opcode space is available for long instructions, the extended fonn 

should be retained as a long instruction -- just in case! 

• (Branch-Null Long Pop) 

• (Branch-Not-Null Long Pop) 

• (Branch- Atom Long NoPop) 

• (Branch-Not-Atom Long NoPop) 

• (Branch-Zero Long NoPop) 

• (Bran~h-Not-Zero Long NoPop) 

These branch instructions occur so seldom that they could be eliminated or converted to long 

instructions. Since the two instructions in this group which pop the stack if the branch is not 
-

taken may be easily simulated by the assembler with an instruction sequence requiring no more 
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bytes to express than a long instruction which would have the same effect, they may be eliminated 

entirely. The other three instructions should be retained for flexibility, but 'converted to long 

instructions if changed at all. The cost of converting these to be long instnlctions (ie. use an 

escape code) is given in table 6-3 in section 6.4. 

Instruction and Operand Number of Occurrences 

(Branch- If Arg-Supplied Long NoPop) 0 
Cost in Bvtes 

o 
(J];-u;ich /'/;,;!! LC;ig Pc;) 1.93 193 
(Branch-iVai-Null Long Pop) 18 18 
(Branch- Atom Long NoPop) 231 231 
(Branch-Not-Atom Long NoPop) 66 66 

(Branch-Zero Long NoPop) 48 48 
(Branch-Not-Zero Long NoPop) ~ --.n 
Total (7 Opcodes) 556 556 

Table 6-3: Conversion of Short Branch Instructions to Long Branch Instructions 

6.4 Converting Short Instructions to Long Instructions 

42 

Several other opcodes may be reclaimed by converting them to long instructions. These are listed in Table 

6-4. These are in addition to the long instructions added above. Calculating the cost of converting some of 

these instructions to long instructions is not straightforward. If we convert only these to long instructions and 

eliminate none of the above instructions (see section {unused-macrops}) which depend on the presence of a 

similar instruction with stack as operand, then the cost is simply one byte per occurrence of the converted 

instruction. However, if we both delete those above instructions and convert these to long instructions, then 

.we must also add one byte per occurrence of the deleted instruction above. This total cost is listed in the third 

column of the table. 

These instructions account for 17 opcodes (out of 256 possible in 1 byte) and occur 1470 times (out of 

1,072,306 total instructions). Thus they take up 9.0% of the available opcode space but account for only 0.14% 

of the instructions present in the current sample. Five of the opcodes in this table do not appear in the code 

sample and may thus be converted with no resulting increase in code size. All 17 may be converted at the cost 

of a 0.22% increase (2366 bytes) in code size; this cost estimate assumes that the relevant instructions from 

table 6-2 are being eliminated (otherwise the cost of converting these to long instructions would be lower). 
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I nstruction and OQcrand Number of Occurrences Cost in Total Bytes 

(Throw Stack) 0 490 
(Push- Under Stack) 201 201 
(Check Stack) 0 0 
(Copy Stack) 0 0 
{Car Stack) 257 257 
(Caar Stack) 120 225 
(Scdr Stack) 0 0 
(Scddr Slack) 0 0 
(Trunc Stack) 93 109 
(Eql Stack) 118 194 
(Bind-Null Stack) 150 175 
(Bind- T Stack) 25 37 
(Bind-Pop Slack) 200 275 
(Unbind Stack) 0 25 
(List Stack) 178 178 
(List* Stack) 0 0 
(Spread Stack) 128 200 
Total (17 Opcodcs) 1470 2366 

Table 6-4: Conversion of Short Instructions to Long Instructions 

6.5 Summary of Available Opcode Space 

A large portion of the opcode space for I-byte opcodes is available for re-assignment if the above changes 

are made. 16 opcodes are presently unassigned. lO From section 6.1 we see that 20 opcodes are assigned but 

illegal. From section 6.2 we see that 65 opcodes may be reclaimed: 35 opcodes at no cost and 30 at the cost of 

4688 bytes of extra code. From section 6.3 we see that 17 opcodes may be reclaimed: 10 opcodes at no cost, 2 

at the cost of 2 long instructions, and 5 at the cost of 3 long instructions and 556 bytes of additional object 

code. From section 6.4 we see that 17 opcodes may be reclaimed: 7 at the cost of 7 long instructions, and 10 at 

the cost of 2366 bytes of extra code and 10 long instructions.ll The total number of opcodes which may be 

saved is 135 out of 256, or 52.7%. The cost of saving all 135 of these is 22 long instructions and 7610 bytes of 

additional code. This cost amounts to 2.1% of the long instruction opcode space (1024 long opcodes) and a 

0.38% increase in object code size. However, only 95 new opcodes are needed for the new short instructions 

recommended in sections 5 and 4. We see from the preceding sections on deleting instructions that 81 

106-bit opcodes 0 and 45-47 are unused; each has a 2-bit A-field. 

llThe above figure~ imply that 90 opcodes, 81 of which are assigned, have never been generated! These 81 opcodes make up 33.7% of 
the 240 assigned opcodes. 35.2% of the opcode space (90 out of 256) has been essentially unused. 
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opcodes are available at no cost in additional long instructions or added object code length. Of course, the 

compiler could generate instructions in the future which would require extra code bytes to express even if 

only these 81 were reclaimed. The additional 14 opcodes should be reclaimed in such a way as to incur as 

little cost as possible. We note that 9 more opcodes may be reclaimed at the cost of adding 9 Long 

instructions to the instruction set. but incur no increase in object code size (given the current sample). The 

other 5 may be reclaimed at the cost of 1 long instruction and a 64 byte increase in object code size. The 

remaining 40 may be reclaimed upon further analysis as necessary. 

To summarize, the 95 needed opcodes may be reclaimed at the cost of 10 additional long instructions and 

64 bytes of additional object codel2, 

12From 2,022,694 to 2,022,758 bytes before optimization! 
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7. Conclusions 

A re-alignment of the "operand source field is described in Section 4. This re-alignment should save one 

level of decoding for each occurrence of an argument and local variables operand. 

In Section 5 it is shown that 25.8% of existing code may be eliminated with the addition of 95 ne~ 

instructions to the instruction set generated by the assembler. This is accomplished, by adding only those 

opcodes which would save at least 0.1% of existing code. We see from Section 6 that 81 opcodes are available 

at no cost (given the current code sample) and 135"are available at minimal cost. Reusing only 96 of these 135 

opcodes leaves 40 open for future use. Some of these might be allocated for use as additional escape codes for 

long instructions. The 95 new instructions are listed in Table 7-1 in order of the savings expected due to their 

inclusion in the instruction set After all changes to the instruction set are made, the object code size is 

reduced from 2,022,~94 to 1,501,341; a 25.8% decrease. 

The new assembler instruction set is described in Appendix II. Only those instructions whose elimination 

would cost nothing have been deleted. No short instructions have been converted to long instructions; 

although this is a prime area for future optimization. The new compiler instruction set is described in 

Appendix III. 
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Bytes Percent Bvtes Percent 
New Instruction Saved Savings New Instruction .saved Savings 
Push-ALI 34,567 1.709 Unbind-SIC I 3424 0.169 
Push-ALa 33,456 1.654 Car-AL2 3360 0.166 
Push-AL2 .24,278 1.200 List-SICI 3335 0.165 
Push-AL3 18,269 0.903 Push-Car-Scdr- ALI 3255 0.161 
V-S tore-Ignore 17,294 0.855 N 1- Branch-Not- Atom-AL 3166 0.157 
Push- Last- A La 15.042 0.744 ~fisc-AL2 3118 0.154 
V- Access-Stack 13,476 0.666 Call-SC2 3097 0.153 
Pusiz-SiCi 13,221 n. r l" A ,., _ __ • T rI . ')(\00 0.153 V.UJ~ \..;UI-.I1.LV ..JV~U 

Push-AL4 13,110 0.648 V- A ccess-A L 3078 0.152 
Call-SCa 10,442 0.516 Nfisc-AL4 3060 0.151 
Push-SC2 9491 0.469 Pop-AL8 2994 0.148 
Push-AL5 9397 0.465 =-SIC4 2958 0.146 
Get- Definition-Stack 7871 0.389 Eq-AL3 2943 0.145 
Push-SC3 7670 0.379 A-fake-Immediate-Type-Stack 2907 0.144 
Pop-AL3 7397 0.366 V- Access-Ignore 2915 0.144 
Push-SIC3 7280 0.360 Push-Sl .2829 0.140 
Pop-ALI 7070 0.349 Push-SIC8 2709 0.134 
Pop-AL2 6696 0.331 Push-sca 2705 0.134 
Push-AL8 6252 0.309 Push-Last-AL3 2701 0.134 
Push-AL6 6196 0.306 Car-ALI 2714 0.134 
Push-SC4 6164 0.305 Cdr-ALa 2704 0.134 
Call-SCI 5989 0.296 List-SIC3 2707 0.134 
Push-SIC2 5970 0.295 Bind-pop-sca . 2684 0.133 
Push-Last-ALl 5743 0.284 Call-SC6 2664 0.132 
Push-AL7 5715 0.283 Call-Afaybe-Nfullip/e-SCa 2672 0.132 
Pop-AL4 5489 0.271 Push-SIC5 2600 0.129 
Set-Null-Unless-Arg-Supp/ied-AL 5346 0.264 =-SIC3 2545 0.126 
Call-Maybe-Multiple-SCI 5216 0.258 C all-Maybe- M ulliple-SC 3 2528 0.125 
Push-SIC4 5225 0.258 Cons-Stack 2510 0.124 
Push-SCI 5121 0.253 Push- Last-AL2 2464 0.122 
Lisl-SIC2 4880 0.241 Check-AL2 2470 0.122 
Push-AL9 4853 0.240 Push-SC7 2431 0.120 
Type-Stack 4680 0.231 =-SIC7 2377 0.118 
push-Sa 4673 0.231 List*-SIC2 2376 0.117 
Return-Unless-Null-Stack 4561 0.225 Push-SC9 2272 0.112 
Call-SC4 4512 0.223 Push-AL12 2225 0.110 
Push-SC5 4497 0.222 Call-SC7 2191 0.108 
Pop-AL5 4301 0.213 Push-S3 2176 0.108 
Push-ALIO 4175 0.206 Call-SC5 2166 0.107 
Pop-AL7 . 4005 0.198 Push-SICI8 2129 0.105 
Call-SC3 3714 0.184 =-SICI 2101 0.104 
Type-AL 3644 0.180 Push-SC8 2077 0.103 
Pop-AL6 3600 0.178 'Check-AL4 2087 0.103 
Push-SC6 3492 0.173 Push-SICI9 2057 0.102 
Cadr-ALa 3508 0.173 Car-AL3 2035 0.101 
Misc-AL3 3472 0.172 Cons-AL 1966 0.097 
Push-ALII 3432 0.170 Typed- V-Store- Ignore 1922 0.095 
==-SIC2 3423 0.169 Total: (95 opcodes) 521,417 25.778 

Table 7-1: Incremental Savings Per New Instruction 
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I. Current Instruction Set Sunlmary 

1.1 Introduction 

The majority of the macro-instructions in the current (June, 1982) Spice Lisp set are of the following form: 

7 o 

Instruction byte: OP (6) A (2) 

Next byte (optional): B (8) 

Most instructions read from or write to an "effective address", and possibly also push or pop 32-bit words 

on the stack. When the OP field indicates that an effective address is to be read from, it is computed from the 

A field and (sometimes) from the subsequent byte B as follows: 

A =0 

A = 1 

A=2 

A=3 

The operand is popped off the stack. Then the operation takes place, in some cases 

popping a second (distinct) argument off the stack and/or pushing something onto the 

stack. No B byte is fetched. 

The next byte is fetched and is converted (with sign extension) to a signed fixnum in the 

range -128 to + 127. This is used as the operand. 

The next byte is fetched. If its sign bit is 0, the remaining 7 bits are used as an unsigned 

offset (0 - 127) into the vector of symbols and constants in the code object of the current 

function. If the sign bit is 1, the other 7 bits are used instead as an unsigned offset (0 - 126) 

into the arguments and local variables area of· the currently-active stack frame. The 

contents of this cell are used as the operand. If the fetched byte is all ones (377 octal), the 

next two bytes are fetched to fonn a 16-bit offset The sign bit of this extended offset 

controls where the operand comes from, as in the 8-bit offsets. In fetching this double 

offset, the low-order byte comes in first. . 

The next byte (or set of bytes) is fetched and is used as an offset into the code object, as 

above; this will never be used with an offset into the stack frame. Instead of being used 

directly, the constant addressed is supposed to be a symbol pointer, and the operand is 

fetched from its value cell. If the value is Misc-Trap, an UNBOUND error is signalled. 

If the effective address is being used as a place to write, the following descriptions apply: 

A = 0 The r~sult is pushed on the stack. 

A = 1 The result sets the indicators, then is thrown away. 
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A=2 

A=3 

If the offset indicates a stack frame destination, the result is put there; if it points into the 

code object, this destination is illegal, since the code object should not be altered. 

This writes into the value cell of the symbol pointed to, forwarding the write through an 

EVC-Forward pointer if one is present in the value cell. 

In the following listing, the effective address is called "E" and its contents are called "CEil. 

1.2 Short Instructions 

Note: In the following descriptions, the number in the left margin is the 6-bit opcode, in decimal notation. 

° Unused 

1 Call 

2 Call-O 

CE must be some sort of executable function: a code object, a lambda-expression in list 

space, a closure, or a symbol with one of these stored in its function cell. A call block for 

this function is opened, and computation proceeds to gather the arguments into the call 

block. The state of the indicators after CALL is undefined. 

CE must be an executable function, as above, but is a function of 0 arguments. Thus, there 

is no need to collect arguments. The call block is opened and activated in a single 

operation. The indicators are left in an undefined state. 

3 Call-Multiple Just like a Call instruction, except that the function being called should return multiple 

values. 

'4 Call-Maybe-Multiple 

5 Return 

6 Throw 

7 Unused. 

8 Push 

9 Push-Last 

If the function being called returns multiple values, this is identical to Call-Multiple. If 

not, this is identical to Call. 

Return from the current function call. After the current function's frame is popped off the 

stack, CE is pushed as the result being returned. CE also sets the indicators. 

CE is the throw-tag, normally a symbol. The value to be returned, either single or 

multiple, is on the top of the stack. 

CE is pushed onto the stack and sets the indicators. If A = 0, this is a NOOP, except that 

the indicators are set according to the value of the item on top of the stack. 

CE is pushed onto the stack as the last operand for the most recent currently-open call 
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block. The call is then activated: the call block is finished and becomes the current 

stack-frame .. If A = 0, the effect of this operation is just to start the call. The indicators are 

undefined at the start of the called function; they are set by the returned value when 

execution resumes in the calling function. 

10 Push-Under CE is pushed onto the stack as the second item and sets the indicators; the top item of the 

stack is unchanged. If A = 0, this swaps the top two items on the stack. Push-Under 

causes an error if the stack is empty or if A = () and the stack contains only one item. 

11 Check 

12 Pop 

13 Copy 

CE is used to set the indicators, but is not put anywhere. If A = 0, the net effect is to pop 

the stack by one word, setting indicators. 

Pop the top item off the stack and store it in E, setting the indicators. 

Copy the item on top of the stack into E, setting the indicators, without popping the stack. 

14 Make-Predicate 

If the NULL indicator is on, put NIL in E. Else, put TinE. The NIL or T also sets the 

indicators. 

15 Not-Predicate If the NULL indicator is not on, put NIL in E. Else, put T in E. The NIL or T also sets the 

indicators. 

16 Car 

17 Cdr 

18 Cadr 

19 Cddr 

20 Cdar 

21 Caar 

22 Scdr 

23 Scddr 

24 Trunc 

CE had better be either a pointer to a list or NIL. Its Car is pushed on the stack and sets 

the indicators. 

The Cdr of CE is pushed on the stack and sets the indicators. 

The Cadr of CE is pushed on the stack and sets the indicators. 

The Cddr of CE is pushed on .the stack and sets the indicators. 

The Cdar of CE is pushed on the stack and sets the indicators. 

The Caar of CE is pushed on the stack and sets the indicators. 

Get the Cdr ofCE and store it in E and the indicators. Useful for Cdr'ing down lists. CE 

must be a list cell or NIL. 

Get the Cddr of CE and store it in E and the indicators. Useful for Cddr'ing down 

property lists. CE must be a list cell or NIL. 

Performs the equivalent of the TR UNC function as described in the Spice Lisp Manual. 
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25 + 

26 -

27 * 

28/ 

29 Bit-And 

30 Bit-Xor 

31 Bit-Or 

32Eql 

33 = 

34) 

35< 

36EQ 

371+ 

381-

39 Bind-Null 

40 Bind-T 

After obtaining CE, take one value ofT the top of the stack to determine what is to be 

returned setting the indicators. 

CE is added to the value popped off the stack. The result ·is pushed back onto the stack 

and sets the indicators. 

Analogous, but CE is subtracted from TOS. 

Analogous, CE is multiplied by TOS. 

The TOS is divided by CE; the quotient goes back to TOS. 

Bitwise boolean AND of CE and top of stack. The result goes onto the stack and sets the 

indicators. The operands must be fixnums or bignums. 

Bitwise XOR. 

Bitwise OR. 

CE is compared to the value popped off the stack .. If these arguments are EQ or if they are 

both numbers of identical type and value, T sets the indicators; if not, NIL sets the 

indicators. Nothing is pushed back onto the stack. 

CE is compared arithmetically to the value popped off the stack. If they are equal, T sets 

the indicators; if not, NIL sets the indicators. Nothing is pushed back onto the stack. This 

works for mixed number-types: if an integer is compared with a flonum, the integer is 

floated first; if a short flonum is compared with a long flonum, the short one is first 

extended. Flonums must be exactly identical (after conversion) for a non-null comparison. 

Analogous, but non-null ifTOS) CEo 

Analogous, but non-null if TOS < CEo 

CE is compared to the value popped off the stack. If these objects are identical 32-bit Lisp 

objects. T sets the indicators; if not, NIL sets the indicators. 

Add 1 to CE, store result back into E. 

Subtract 1 from CE, store result back into E. 

CE must be a symbol. This is rebound and set to NIL. The NULL indicator is set 

CE must be a symbol. This is rebound and set to T, which also sets the indicators. 
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41 Bind-Pop 

42 Set-Null 

43 Set-O 

44 Set-T 

45 - 47 Unused. 

48 NPop 

49 Unbind 

50 Set-Lpush 

51 Set-Lpop 

52 List 

53 List* 

54 Spread 

CE must be a symbol. This is rebound and is set to a value popped off the stack. This 

value also sets the indicators. 

Store NIL in E. 

Store fixnum 0 in E. 

Store TinE. 

CE is a fixnum N. IfN is non-negative, N items are popped off the stack. IfN is negative, 

NIL is pushed onto the stack INI times. The indicators are unchanged. 

CE is a non-negative fixnum indicating how many bindings are to be popped off the 

binding stack and restored to their previous values. Used in exiting open-coded PROGs 

and LAMBDAs. The indicators are unchanged by this instruction. 

Pop TOS, cons it onto CE (in the space indicated by the value of the symbol 

ALLOCATION-SPACE), store result back into E. The new CE sets the indicators. 

CAR of CE is pushed onto the stack and sets the indicators; CDR of CE is stored back into 

E. 

CE is a non-negative fixnum N. Beginning with a list of NIL, N items are popped off the 

stack and CON Sed onto this list, so that the last item popped ends up as the CAR of the 

list. The consing is done in the space specified by the value of ALLOCATION-SPACE. 

The resulting list is pushed on the stack and sets the indicators. 

CE is a non-negative fixnum N. One item is popped off the stack, to begin the list L. Then 

N other items are popped and CONSed onto the front of L in succession, so that the last 

item popped becomes the CAR of L. The consing is done in the space specified by the 

value of ALLOCATION-SPACE. The resulting list is pushed onto the stack and sets the 

indicators. 

CE is a list Its elements are pushed onto the stack in left-to-right order. The last item 

pushed sets the indicators. 

55 Long-Escape This is used for calling a large number of microcoded functions. The next byte in the 

instruction streain is fetched, and this is used to indicate which of 256 long instructions is to 

be called. This operation w~ll in general pop some arguments off the stack, compute a 

single result, then place this result in the location indicated by the effective address E, 

computed as usual from the A field of the first byte. Note that if one or more offset bytes 
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56 Branch 

are needed for q1e effective address computation, these bytes are fetched after the byte 

telling which instruction is to be called. For more infOlmation about the long instructions, 

see [slguts] under "Misc instructions". (Many fewer than 256 long instructions are 

defined.) 

Unconditional branch relative to the current byte-PC (which has been incremented to 

point past the current instruction). The next byte or two bytes is fetched. This, treated as a 

signed integer, is added to the PC. The indicators are unchanged. For all of the branch 

instructions, the bits of the A field are in terp reted as follows: 

Bit 0 = 0 Fetch one byte for branches of -128 to + 127 bytes. 

Bit 0 = 1 Fetch two bytes for longer branches. The low-order byte comes in first. 

Bit 1 = 0 Do not pop stack. 

Bit 1 = 1 Pop stack if the (conditional) branch is not taken. 

57 Branch-If-Arg-Supplied 

This is a special conditional branch that is used by the machinery that computes default 

values for optional function arguments that were not supplied by the caller. The next byte 
is read from the instruction stream and is taken as an offset (range 0 - 255) into the 

args-and-Iocals area of the stack frame. If the stack frame entry in question contains 

Misc-Unsupplied-Arg, do not branch; otherwise, take the branch. The branch is executed 

normally, using the A-field of the instruction to control the usual branch options. The 

branch offset byte(s) will follow the argument offset byte in the instruction stream. 

58 Branch-Null Branch if the NULL indicator is on. Does not alter indicators (nor do any of the other 

branches). 

59 Branch-Not-Null 

Branch if the NULL indicator is not on. 

60 Branch-Atom Branch if the ATOM indicator is on. 

61 Branch-Nat-Atom 

Branch if the ATOM indicator is not on. 

62 Branch-Zero Branch if the ZERO indicator is on. 

63 Branch-Nat-Zero 

Branch if the ZERO indicator is not on. 
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1.3 Long Instructions 

The following instnlctions are long fonnat instructions. Each of these expects a fixed number of arguments 

to have been pushed on the stack in the order indicated (leftmost arg pushed first). These arguments are 

popped and a single return value is generated. This sets the indicators and goes to the E location of the long 

instruction. The numbers in the left margin are the 8-bit codes corresponding to each instruction, in decimal 

format. These descriptions are intended only to give the reader some idea of what instructions are available; 

they are not intended to be a manual. 

o Cons (X Y) Conses up a list cell with X as CAR and Y as CDR. 

1 Alloc-Symbol (N) 

Allocates one symbol and returns a pointer to it. The symbol is not interned by this 
operation -- that is done in macrocode. 

2 Alloc-B-Vector (N I) 

Allocates a B-Vector of N entries and returns a pointer to it. I is the initial value with 

which the vector is filled. 

3 Alloc-U-Vector (N A) 

Allocate a local U-Vector with access-code A and a length of N items, and return a pointer 

to it. All entries are initialized to O. 

4 Alloc-Remote-Vector (N A P) 

Allocate a remote U-Vector with N entries and access-code A, returning a pointer to it. Pis 

the pointer to the data area in system-table space. 

5 Alloc-String (N) Allocate a string of length N, initialized to all O's, and return a pointer to it. 

6 Alloc-Function (N) 

Allocate a function object (like a B-Vector) of length N, not counting the I-word header. 

7 Alloc-Array (N) Allocate an array-header for an array of N dimensions. Returns a pointer to the array 

header. 

8 Alloc-Xnum (N X) 

Allocate an xnum N bytes in length, with sub-type code X. N and X must be fixnums. All 

entries of the XNUM vector are initialized to O. 

9 Alloc-Y num (N X) 

Allocate a Ynum N lisp-objects in length, with sub-type code X. N and X must be fixnums. 

All entries of the YNUM vector are initialized to Misc-Trap codes. 
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10 Nlisc-Subtype (X) 

X must be of type MISC. Returns the sUbtype field (bits 24-27)' of X right-justified in a 

fixnum. ' 

11 Type (X) Returns the 4-bit type-code of X as a fixnum. 

12 Make-Immediate-Type (OBl TYPE) 

OBi can be any iisp object, TYPE is a fixnum in the rang<: v - 2, wiIidl <.:urn,:spullu LU illt: 

type-codes of immediate objects. Returns an object whose type-code bits are TYPE, but 

whose other bits are those ofOlll. 

13 Get-Vector-Subtype (V) 

Returns the 4-bit subtype field ofa vector-like object V (ll-vector, U-Vector, Array, Xnum, 

String, Function). Returned as a fixnum. 

14 Set-Vector-Subtype (V X) 

Stores the low order 4 bits of fixnum X as the subtype code of vector-like thing V. Returns 

V. 

15 Get-Vector-Length (V) 

V is any vector-like thing. Returns the length of this vector. 

16 Get-Value (S) Gets the contents of the value cell of the symbol S. 

17 Set-Value (S V) 

Set the value cell of symbol S to V. Returns V. 

18 Get-Definition (S) 

Returns the contents of the functional definition cell of symbol S. 

19 Set-Definition (S D) 

Puts D into the functional definition cell of symbol S. Returns D. 

20 Get-PHst (S) Returns the property list of symbol S. 

21 Set-PHst (S P) Sets the property list of symbol S to P. P should be NIL or a List object. Returns P. 

22 Get-Pname (S) Returns the pname of symbol S. 

23 Set-Pname (S P) 

Sets the pname of symbol ~ t~ P. P should be a string. Returns P. 

24 Get-Package (S) 

Gets the contents of the package cell of symbol S. 
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25 Set-Package (S P) 

Sets the pac1~.agc of symbol S to P. Returns P. 

26 Get-Hash (S) Gets the contents of the hash cell of tlie symbol S. 

27 Set-Hash (S H) Set the hash cell of symbol S to H. Returns H. 

28 Boundp (S) S must be a symbol. Boundp returns T if the value cell of the symbol contains a value, NIL 

otherwise. 

29 Fboundp (S) S must be a symbol. Fboundp returns T if the definition cell of the symbol contains a 

definition, NIL otherwise. 

30 Rplaca (L X) Replaces car ofL with X, returning the modified L. 

31 Rplacd (L X) Replaces cdr ofL with X, returning the modified L. 

32 Unused. 

33 S-Float (X) Turns any number X into a short flonum. 

34 L-Float (X) Turns any number X into a long flonum. 

35 Negate (X) For any number X, return the negative. 

36 Lsh (N B) Both args are fixnums. Returns a fixnum that is N shifted left by B bits, with D's shifted in 

on the right. If B is negative, N is shifted to the right with D's coming in on the left. 

37 Get-Vector-Access-Type (V) 

38 Logldb (S P N) 

V must be a U-Vector. Returns its access-type code. 

All args are fixnums. Sand P specify a "byte" or bit-field of any length within N. This is 

extracted and is returned right-justified in a fixnum. S is the length of the field in bits; P is 
the number of bits from the right ofN to the beginning of the specified field. P = 0 means 

that the field starts at bit 0 ofN, and so on. 

39 Logdpb (V S P N) 

40 Abs (N) 

All args are fixnums. Returns a number equal to N, but with the field specified by P and S 

replaced by the S low-order bits ofV. 

. N is any kind of number. Returns the absolute value ofN. 
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41 Subspace (X) X is any lisp object. Returns the 2-bit allocation space code as a fixnum. Returns NIL if 

the object is immediate. 

42 Close-Over (L) L is a list of symbols. Creates and returns a closure-list for these symbols in the current 

environment. 

43 Activate-Closure (C) 

C must be a closure list, as returned by the (jose-Over operation. ACLivaLe-Ciusur<;: 

restores the environment in which the closure list was created for the symbols closed over. 

Returns C unchanged. 

44 Typed-V -Access (A V I) 

A and I are fixnums, V points to a U-Vector or Xnum. This returns entry I of the V as a 

fixnum. but uses the low-order three bits of A as the access-type code instead of whatever 

code is stored in the vector itself. This is illegal if V is a string. 

45 Typed-V-Store (A V I X) 

46 Unused. 

47 Freeze 0 

Like a V-Store, but stores X in entry I of V using A as the low-order 3 bits of the access

type code, as above. Returns X. Illegal for strings. 

Freezes all read-only spaces by moving the FREEZE pointers up to meet the FREE

STORAGE pointers. Returns NIL. 

48 New-Pure-Page (X) 

X can be an item of any non-immediate data type. The type of X is examined. and the 

current read-only page for that type of storage is closed. Returns X. 

49 Shrink-Vector (V N) 

V is any B-Vector, U-Vector, String. Function object, or Array header. N is the new 

number of entries, a fixnum, which must be less than or equal to the current number of 

entries. Returns V, the vector which has been shortened. 

50 Call-Break (F) Just like the Call operation, but starts the new frame in such a way that when the called 

function ultimately returns, no return value is left on the stack. Returns NIL, though this 

will nonnally be called with destination IGNORE. 

51 Values-To-N (V) 

V must be a Misc-Values-Marker. Returns the number of values indicated in the low 24 

bits of V as a fixnum. 

52 N-To-Values (N) 

N is a fixnum. Returns a Misc-Values-Marker with the same low-order 24 bits as N. 
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53 Arg-In-Frame (N F) 

N is a fixnum, F is a control stack pointer as returned by the CURRENT-STACK

FRAME and CURRENT-OPEN-FRAME operators. Returns the item in slot N of the 

args-and-Iocals area of stack frame F. 

54 Current-Stack-Frame 0 
Returns a control-stack pointer to the start of the currently active stack frame. 

55 Set-Stack-Frame (P) 

P must be a control stack pointer. This becomes the current active frame pointer. Returns 

NIL. 

56 Current-Open-Frame 0 
Returns a control-stack pointer to the start of the currently open stack frame. 

57 Set-Open-Frame (P) 

P must be a control stack pointer. This becomes the current open frame pointer. Returns 

NIL. 

58 Current-Stack-Pointer 0 
Returns the control stack pointer that points to the current top of the stack (before the 

result of this operation is pushed). Note: by definition, this points to the first unused word 

of the stack, not to the last thing pushed. 

59 Current-Binding-Pointer 0 
Returns a pointer to the first word above the current top of the. binding stack. 

60 Read-Control-Stack (F) 

F must be a control stack pointer. Returns the lisp object that resides at this location. 

61 Write-Control-Stack (F V) 

F is a stack pointer, V is any Lisp object. Writes· V into the location addressed. Returns V. 

62 Read-Binding-Stack (B) 

B must be a binding stack pointer. Reads and returns the lisp object at this location. 

63 Write-Binding-Stack (B V) 

B must be a binding stack pointer. Writes V into the specified location. Returns V. 

64 Ldb (S P N) All args are fixriums or bignums; Sand P are non-negative. Sand P specify a "byte" or 

bit-field of any length with~n N. This· is extracted and is returned right-justified as a 

positive.integer. S is the length of the field in bits; P is the number of bits from the right of 

N to the beginning of the specified field. P = 0 means that the field starts at bit 0 of N, 

and so on. 
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65 lvlask-Ficld (S P N) 

Like LDB, e.xcept that the extracted field is returned in the same position it occupies in N, 

not moved to the right. The result is a positive fixnum or bignum with 0 in all positions 

except that specified by the S-P field. 

66 Dpb (V S P N) All args are fixnums or bignums; P and S are non-negative. Returns a number equal to N, 

and with the same sign as N, but with the field specified by P and S replaced by the S 

low-order bits ofV. 

67 Deposit-Field (V S P N) 

Like DPB, except that the bits to be put in N are extracted from the corresponding field of 

V, not from the rightmost S bits of V. 

68 Ash (N C) Nand Care fixnums or bignums. Shift N left C places, shifting in zeros.on the right. IfC 

is negative, shift N right -C places, preserving the sign ofN. 

69 Haulong (N) N is a fixnum or bignum. Returns the number of significant bits ofN. 

70 V-Access (V 1) V is any vector or vector-like object (B-Vector, U-Vector, String,. Xnuni, Array, or 

Function Object). I is a Fixnum. Returns entry IofV. 

71 V-Store (V I X) 

72 -79 

80 Force-Values 0 

81 Flush-Values 0 

V is any vector or vector-like object. I is a fixnum. X is the value to be stored into slot I of 

vector V. X is returned. 

Unused. Reserved for I/O operators. 

If the top of the stack is a multiple-value marker, do nothing; if not, push a multiple-value 

marker indicating 1 value. Returns NIL. 

If the top of the stack is a multiple-value marker, remove this marker; if not, do nothing. 

Returns NIL. 

82 Mark-Catch-Frame 0 
Mark the header word of the current open frame, indicating that this is a catch-tag frame. 

Returns NIL. 

83 Get-Newspace-Bit 0 
Returns a fixnum 0 or 1, indicating whetl}er the current newspace is Dynamic-O or 

. Dynamic-l. 
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Other long instructions are still to be defined. 
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II. Recommended Assembler Instruction Set 

11.1 Effective Address Specification 

Most instructions read from or write to an "effective address", and possibly also push or pop 32-bit words 

address for these instructions. The item in parentheses after the operand source name is the suffix which is 

appended to instruction names to signify the sort of operand. 

Stack (Stack) The operand is taken from the stack; usually the stack is popped (if not, the instruction 

description explicitly states what happens). Then the operation takes place, in some cases 

popping a second (distinct) argument off the stack and/or pushing something onto the 

stack. No operand bytes are fetched. 

Short Integer Constant (SIC) 

A byte is fetched and is converted (with sign extension) to a signed fixnum in the range 

-128 to + 127. This is used as the operand. 

Arguments & Locals (AL, ALn) 

In most cases, one byte is fetched and used as an unsigned offset (0 - 254) into the 

arguments and local variables area of the currently active stack frame. The contents of this 

cell are used as the operand. For several instructions, two bytes are fetched to form a 

16-bit offset In fetching this double offset, the low-order byte comes in first Some 

instructions imply a particular offset without the need for another offset byte. These 

instructions are those that are suffixed with ALn where n is an integer which denoted the 

implied offset 

Symbols & Constants (SC SCn Sn) 

In most cases, one byte is fetched (SC). The low order 7 bits are used as an unsigned offset 

into the vector of symbols and constants in the code object of the current function. If the 

sign bit is 0, the the constant is used directly. If the sign bit is 1, instead of being used 

directly, the constant addressed is supposed to be a symbol pointer, and the operand is 

fetched from its value cell. If the value is Mise-Trap, an UNBOUND error is signalled. 

For some instructions, the next two bytes are fetched to form a 16-bit offset The sign bit 

of this extended offset controls the interpretation of the operand, as in the 8-bit offsets. In 

fetching this double offset, the low-order byte comes in first. (Note: When using a one 

byte offset for symbol pointers (sign bit is 1), the offset nee no longer be restricted to the 

range 0 - 126 (it·may be 0 - 127) to avoid an alII's byte since long offsets are now implicitly 

specified.) Sometimes an instruction implies an offset into the symbols and constants 

without the need of another 'byte for the offset In those instances when the symbol or 

constant is to be used directly, the instruction will have the suffix SCn where n is an integer 
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denoting the offset. If the symbol or constant accessed is to be used as a symbol pointer 

(indirectly), then the suffix is Sn. 

If the effective address is being used as a place to write, the following descriptions apply: 

Stack (Stack) The result is pushed on the stack. 

Ignore (Ignore) The result sets the indicators, then is thrown away. 

Arguments and Locals (AL ALn) 

The result is written into the appropriate cell of the arguments and local variables area of 

the currently active stack frame, as specified above. 

Symbols (S Sn) Offset bytes are fetched and interpreted as a symbol pointer. The resuJt written into the 

value cell of the symbol pointed to. Note that this can not be an offset directly into the 

vector of symbols and constants ofa code object -- the code object should not be altered. 

11.2 Short Instruction Descriptions 

Many of the macro-in~tructions in the assembler instruction set are of the following fonn: 

7 o 

Instruction byte: OP (8) 

Next byte (optional): B (8) 

The OP field of the following instructions indicates what sort of effective address is to be read from or 

written to according to the descriptions above. In the following descriptions, the effective address is called 

"E" and its contents are called "eE". Instruction names are given a suffix which is a mnemonic abbreviation 

for this address. For example, XXX-AL denotes that the instruction's operand is an argument or local 

variable. A B;.byte should be fetched which gives an offset into the block of arguments and locals on the 

control stack. If the instruction name is of the form XXX-AL3, then E is the third argument or local variable. 

(No offset byte is fetched - the offset is implied by the opcode). The legal suffixes are listed alongside the 

descriptions in Section ILL 

Some short instructions expect a fixed number of arguments to have been pushed on the stack. The 

arguments for these instructions are listed beside the instruction in the order in which they are expected 

(leftmost arg pushed first). These arguments are popped when the instruction is executed. 
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Note: In the following descriptions, the opcode listed [or each instruction is an 8-bit opcode, in decimal 

notation. 

Call 

Call-O 

Call-Multiple 

CE must be some sort of executable function: a code object, a lambda-expression in list 

space, a closure, or a symbol with one of these stored in its function cell. A call block for 

this function is opened, and computation proceeds to gather the arguments into the call . 

block. TIle state of the indicators after CALL is undefined. The following Call 
instructions are implemented: 

0 Call-Stack 6 Call-SC3 

1 Call-AL 7 Call-SC4 

2 Call-SC 8 Call-SC5 

3 Call-SCO 9 Call-SC6 

4 Call-SCI 10 Call-SC7 

5 Call-SC2 

CE must be an executable function, as above, but is a function of 0 arguments. Thus, there 
is no need to collect arguments. The call block is opened and activated in a single 

operation. The indicators are left in an undefined state. Only one Call-O instruction is 

mplemented : 

11 Call-O-SC 

Just like a Call instruction, except that the function being called should return multiple 

values. See also the long format version of Call-Multiple. 

12 Call-Multiple-Stack 

13 Call-Multiple-SC 

Cal1~Maybe-Multiple 

Return 

If the function being called returns multiple values, this is identical to Call-Multiple. If 

not, this is identical to Call. Five Call-Alaybe-Multiple instructions are implemented: 

14 Call-Maybe-Multiple-Stack 17 Call-Maybe-Multiple-SCO 

15 Call-Maybe-Multiple-AL 18 Call-:NIaybe-Multiple-SCI 

16 Call-Maybe-Multiple-SC 19 Call-Maybe-Multiple-SC3 

Return from the current function call. After the current function's frame is popped off the 

stack, CE is pushed as the result being returned. CE also sets the indicators. 

20 Return-Stack 

21 Return-SIC 

22 Retum-AL 

23 Return-SC 
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Return -Unless-Null 

Throw 

Push 

Push-Last 

Return from the current function call unless the Null indicator "is set. If the Return is 

successful; the current function's frame is popped off the stack, CE is pushed as the result 

being returned. CE also sets the indicators. 

24 Return-Unless-Null-Stack 

CE is the throw-tag, normally a symbol. The value to be returned, either single or 

multiple, is on the top of the stack. Currently, only one throw instruction is implemented 

which must use the Stack as E. 

25 Throw-Stack 

26 Throw-SC 

27 Throw-AL 

CE is pushed onto the stack and sets the indicators. For Push-Long-SC. a two byte offset 

into the vector of symbols and constants is used to specify CEo See also the long fonnat 

Push instruction for two-byte offsets into the arguments and local variables. (Note: Push 
Stack is not a legal combination. To set the indicators according to TOS, Check Stack 
should be used.) Many push instructions are available: 

28 Push-SIC 47 Push-AL9 
29 Push-SICI 48 Push-ALIO 

30 Push-SIC2 49 Push-ALII 

31 Push-SIC3 50 Push-AL12 

32 Push-SIC4 51 Push-SC 

33 Push-SIC5 52 Push-Long-SC 

34 Push-SIC8 53 Push-SCO 

35 Push-SIC18 54 Push-SCI 

36 Push-SIC19 55 Push-SC2 

37 Push-AL 56 Push-SC3 

38 Push-ALO 57 Push-SC4 

39 Push-ALI 58 Push-SC5 

40 Push-AL2 59 Push-SC6 

41 . Push-AL3 60 Push-SC7 

42 Push-AL4 61 Push-SC8 

43 Push-AL5 62 Push-SC9 

44 Push-AL6 63 Push-SO 

45 Push-AL7 64 Push-Sl 

46 Push-A~8 65 Push-S3 

CE is pushed onto the stack· as the last" operand for the most recent currently-open call 

block. The call is then activated: the call block is finished and becomes the current 
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Push-Under 

Check 

Pop 

Copy 

stack-framc. If E is the stack, the effect of this operation is just to start the 'call. The 

indicators ar,e undcfined at the start of the called function; they are set by the returned 

value when execution resumes in the calling function. Several Push-Last instructions are 

supplied: 

66 Push-Last-Stack 70 Push-Last-ALI 

67 Push-Last-SIC 71 Push-Last-AL2 

68 Push-Last-AL '72 Push-Last-AL3 

69 Push-Last-ALO 73 Push-Last-SC 

CE is pushed onto the stack as the second item and sets the indicators; the top item of the 

stack is unchanged. If A = 0, this swaps the top two items on the stack. Push-Under 

causes an error if the stack is empty or if A = 0 and the stack contains only one item. 

74 Push-Under-Stack 

CE is used to set the indicators, but is not put anywhere. If E is the stack, the indicators are 

set; the stack is unchangcd.13 This is the operation one should use rather than Pop Stack, 

Push Stack or Copy Ignore. See also the long format Check instruction. 

75 Check-AL 

76 Check-AL2 

77 Check-AlA 

78 Check-SC 

Pop the top item off the stack and store it in E, setting the indicators. Pop stack is not 

useful. It would set the indicators leaving the stack unchanged if it existed. Check Slack is 

the proper instruction for this action. See also the long format Pop instructions which 

allow two-byte operand offsets. 

79 Pop-Ignore 85 Pop-AL5 

80 Pop-AL 86 Pop-AL6 

81 Pop-ALI 87 Pop-AL7 

82 Pop-AL2 88 Pop-AL8 

83 Pop-AL3 89 Pop-SC 

84 Pop-AL4 

Copy the item on top of the stack into E, setting the indicators, without popping the stack. 

Copy Ignore is not a useful instruction; Check Slack should be used if this effect is desired. 

See also the long fo'rmat version of Copy. 

13This is different from the semantics of the current (Check Stack) instruction! 
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90 Copy-AL 

91 Copy-S 

Make-Predicate If the NULL indicator is on, put NIL in E. Else, put T in E. The NIL or T also sets the 
indicators. 

Not-Predicate 

Car 

Cdr 

Cadr 

Cddr 

92 Make-Predicate-Stack 
93 Make-Predicate-Ignore 

94 Make-Predicate-AL 

If the NULL indicator is not on, put NIL in E. Else, put T in E. The NIL or T also sets the 
indicators. 

95 Not-Predicate-Stack 

96 Not-Predicate-Ignore 
97 Not-Predicate-AL 

CE had better be either a pointer to a list or NIL. Its Car is pushed on the stack and sets 
the indicators. 

98 Car-Stack 102· Car-AL2 

99 Car-AL 103 Car-AL3 
100 Car-ALO 104 Car-SC 
101 Car-ALI 

The Cdr of CE is pushed on the stack and sets the indicators. 

105 Cdr-Stack 
. 106 Cdr-AL 

107 Cdr-ALO 
108 Cdr-SC 

The Cadr of CE is pushed on the stack and sets the indicators. 

109 Cadr-Stack 
110 Cadr-AL 

III Cadr-ALO 

112 Cadr-SC 

The Cddr of CE is pushed on the stack and sets the indicators. 

113 Cddr-Stack 

114 Cddr-AL 



AN ANALYSIS OF TIlE SPICE LISP INSTRUCTION SET 66 

Cdar 

Caar 

Scdr 

The Cdar of CE is pushed on the stack and sets the indicators. 

115 Cdar-Stack 

The Caar of CE is pushed on the stack and sets the indicators. 

11 h r:l:lr-St1Jck 

117 Caar-AL 
118 Caar-SC 

Get the Cdr of CE and store it in E and "the indicators. Useful for Cdr'ing down lists. CE 
must be a list cell or NIL. See also the long version of this instruction. 

119 Scdr-AL 
120 Scdr-SC 

Push-Car-Scdr Push the Car of CE on the stack and store the Cdr of CE in E and the indicators. Useful 
for Cdr'ing down lists. CE must be a list cell or NIL. 

Scddr 

Trunc 

+ 

121 Push-Car-Scdr-AL 

Get the Cddr of CE and store it in E and the indicators. Useful for Cddr'ing down 
property lists. CE must be a list cell or NIL. See also the long version of this instruction. 

122 Scddr-AL 
123 Scddr-SC 

Performs the equivalent of the TR UNC function as described in the Spice Lisp Manual. 
After obtaining CE, take one value off the top of the stack to determine what is to be 
returned setting the indicators. See also the long format Trune instruction. 

124 Trunc-Stack 
125 Trunc-Ignore 
126 Trunc-AL 

CE is added to the value popped off the stack. The result is pushed back onto the stack 
and sets the indicators. 

127 + Stack 
128 +SIC 
129 +AL 
130 +SC 

Analogous, but CE is subtracted from TOS. 
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* 

/ 

Bit-And 

Bit-Xor 

Bit-Or 

Eql 

131 -Stack 

132 -SIC; 

133 -AL 

134 -SC. 

Analogous, CE is lnultiplicd by TOS. 

135 *Stack 

136 *SIC 

137 *AL 

138 *SC 

The TOS is divided by CE; the quotient goes back to TOS. See also the long fonnat / 

instruction. See also the long fonnat / instruction for symbols and constants. 

139 IStack 

140 ISIC 

141 IAL 

Bitwise boolean AND of CE and top of stack. The result goes onto the stack and sets the 

indicators. The operands must be fixnums or bignums. 

142 Bit-And-Stack 

143 Bit-And-SIC 

144 Bit-And-AL 

145 Bit-And-SC 

Bitwise XOR. 

146 Bit-Xor-Stack 
147 - Bit-Xor-SIC 

148 Bit-Xor-AL 

Bitwise OR. 

149 Bit-Or-Stack 

150 Bit-Or-AL 

151 Bit-Or-SC 

CE is compared to the value popped off the stack. If these arguments are EQ or if they are 

both numbers of identical type and value, T sets the indicators; if not, NIL sets the 

indicators. Nothing is pushed back onto the stack. 

152 Eql-Stack 
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= 

> 

< 

EQ 

1+ 

1-

153 Eql-AL 

CE is compared arithmetically to the value popped off the stack. If they arc equal, T sets 

the indicators; if not, NIL sets the indicators. Nothing is pushed back onto the stack. This 

works for mixed number-types: if an integer is' compared with a flonum, the integer is 

floated first~ if a short flonum is compared with a long -flonum, the short one is first 

extended. Flonums must be exactly identical (after conversion) for a non-null comparison. 

154 = Stack 159 =SIC4 

155 =SIC 160 =SIC7 

156 =SICI 161 =AL 

157· =SIC2 162 =SC 

158 =SIC3 

Analogous, but non-null ifTOS > CEo 

163 )Stack 

164 )SIC 

165 )AL 

166 )SC 

Analogous, but non-null if TOS < CEo 

167 <Stack 

168 <SIC 

169 <AL 

170 <SC 

CE is compared to the value popped off the stack. If these objects are identical 32-bit Lisp 

objects, T sets the indicators; if not, NIL sets the indicators. 

171 Eq-Stack 174 Eq-AL3 

172 Eq-SIC 175 Eq-SC 

173 Eq-AL 

Add 1 to CE, store result back into E. 

176 1+ Stack 

177 I+AL 

178 I+SC 

Subtract 1 from CE, store result back into E. 

179 I-Stack 
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Bind-Nun 

Bind-T 

Bind-Pop 

Set-Null 

180 l-AL 

CE must be a symbol. This is rebound and set to NIL. The NULL indicator is· set See 

also the long format Bind-Null instruction. 

181 Bind-Null-Stack 

182 Bind-Null-AL 

183 Bind-Null-SC 

CE must be a symbol. This is rebound and set to T, which also sets the indicators. 

184 Bind-T-Stack 

CE must be a symbol. This is rebound and is set to a value popped off the stack. This 

value also sets the indicators. 

185 Bind-Pop-Stack 

186 Bind-Pop-AL 

187 Bind-Pop-Se 

188 Bind-Pop-SeO 

Store NIL in E. 

189 Set-Null-Stack 

190 Set-Null-Ignore 

191 Set-Null-AL 

192 Set-Null-SC 

Set-Null-Unless-Arg-Supplied 

Set-O 

Set-T 

This is a special conditional instruction that is used by the machinery that computes default 

values for optional function arguments that were not supplied by the caller. The next byte 

is read from the instruction stream and is taken as an offset (range 0 - 255) into the 

args-and-Iocals area of the stack frame. If the stack frame entry in question contains 

Misc-Unsupplied-Arg, set the entry to NIL; otherwise, do nothing. 

193 Set-Null-Unless-Arg-Supplied-AL 

Store fixnum 0 in E. 

194 Set-O-Stack 

195 Set-O-AL 

196 Set-O-SC 

Store TinE. 
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NPop 

Unbind 

Set-Lpop 

List 

List* 

197 Set-T-Stack 

198 Set-T-Ignore 

199 Set-T-AL 

200 Set-T~SC 

CE is a fixnum N. IfN is non-negative, N items are popped off the stack. IfN is negative, 

NIL is pushed onto the stack INI times. The indicators are unchanged. 

201 NPop-Stack 

202 NPop-SIC 

CE is a non-negative fixnum indicating how many bindings are to be popped off the 

binding stack and restored to their previous values. Used in exiting open-coded PROGs 

and LAMBDAs. The indicators are unchanged by this instruction. See also the long 

format Unbind instruction. 

203 Unbind-SIC 

204 Unbind-SIC1 

205 Unbind-AL 

CAR of CE is pushed onto the stack and sets the indicators; CDR of CE is stored back into 

E. See also the long format instruction Set-Lpush. 

206 Set-Lpop-Stack 

207 Set-Lpop-AL 

208 Set-Lpop-SC 

CE is a non-negative fixnum N. Beginning with a list of NIL, N items are popped ofT the 

stack and CON Sed onto this list, so that the last item popped ends up as the CAR of the 

list The consing is done in the space specified by the value of ALLOCATION-SPACE. 

The resulting list is pushed on the stack and sets the indicators. 

209 List-Stack 212 List-SIC2 

210 List-SIC 213 List-SIC3 
211 List-SICI 

CE is a non-negative fixnum N. One item is popped off the stack, to begin the list L. Then 

N other items are popped and CONSed onto the front of L in succession, so that the last 

item popped becomes the CAR of L. The consing is done in the space specified by the 

value of ALLOCATION-SPACE. The resulting list is pushed onto the stack and sets the 

indicators. See also the long format List* instruction. 

214 List*SIC 

215 List*SIC2 
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231 Gct-Definition-Stack 

Typed-V-Store (A V I X) 

Like a V-Store, but stores X in entry I of V using A as the low-order 3 bits of the access

type code, as above. Returns X. Illegal for strings. See also the long format version of this 

instruction. 

232 Typed-V-Store-Ignore 

v -Access (V TOS) 

V-Store 

V is any vector or vector-like object (B-Vector, U-Vector, String, Xnum,Array, or 

Function Object). TOS is a Fixnum. Stores entry TOS of V in E. See also the long format 

version of V-Access. 

233 V-Access-Stack 

234 V -Access-Ignore 

235 V-Access-AL 

(V I TOS) 

V is any vector or vector-like object. I is a fixnum. TOS is the value to be stored into slot I 

of vector V. TOS is stored in E. V-Store is also available in a long format version. 

235 V -Store-Ignore 

When a branch instruction is recognized, either one or two bytes are fetched and used as a PC-relative 

offset for branching, depending on whether the branch is short or long. Some conditional branch instructions 

may plOp the stack if the branch is not taken. Branch instruction names are suffixed by either -short or -long; 

they may be suffixed by pop if the stack is to be popped when the branch is not taken. 

Branc Unconditional branch relative to the current byte-PC (which has been incremented to 

point past the current instruction). The next byte or two bytes is fetched. This, treated as a 
signed integer, is added to the PC. The indicators are unchanged. For all of the branch 

instructions, the bits of the A field are interpreted as follows: 

236 Branch-Short 

237 Branch-Long 

Branc -If-Arg-Supplied 

This is a special conditional branch that is used by the machinery that computes default 

values for optional function arguments that were not supplied by the caller. The next byte 

is read from the instruction' stream and is taken as an offset (range 0 - 255) into the 

args-and-locals area of the stack frame. If the stack frame entry in question contains 
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Branch-Null 

Misc-Unsupplied-Arg, do not branch; otherwise, take the branch. The branch is executed 

nonnally, u~ing the A-~eld of the instruction to control the usual branch options. The 

branch offset bytc(s) will follow the argument offset byte in the instruction stream. See 

also the long fonnat of this instruction. 

238 Branch-If-Arg-Supplied-Short 

Branch if the NULL indicator is on. Does not alter indicators (nor do any of the other 

branches). 

240 Branch-Null-Short 
241 Branch-Null-Long 

242 Branch-Null-Short-Pop 

243 Branch-Null-Long-Pop 

Branch-Not-Null Branch if the NULL indicator is not on. 

244 Branch-Not-Null-Short 

245 Branch-Not-Null-Short-Pop 

Branch-Atom Branch if the ATOM indicator is on. 

246 Branch-Atom-Short 
247 Branch-Atom-Long 

Branch-Not-Atom 

Branch if the ATOM indicator is not on. 

248 Branch-Not-Atom-Short 

249 Branch-Not-Atom-Long 

Branch-Zero Branch if the ZERO indicator is on. 

250 Branch-Zero-Short 
251 Branch-Zero-Long 

Branch-Not-Zero Branch if the ZERO indicator is not on. 

252 Branch-Not-Zero-Short 

NI-Branch-Not-Atom-AL 

This is a special conditional branch that does not use the indicators. The next byte is re d 

from the instruction stream and is taken as an offset (range 0 - 255) into the args-and-Ioc Is 

. area of the stack frame. If the stack frame entry in question would set the Atom indicator if 

given to the Check instruction, do not branch; otherwise, take the branch. The branch is 
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executed without popping the stack and may only be used with a short offset. The branch 

offset byte will fonow the argument offset byte in the instruction stream. 

253 NI-I3ranch-Not-Atom-AL-Short 

11.3 Long Instructions 

Each long instruction expects a fixed number of arguments to have been pushed on the stack in the order 

indicated (leftmost arg pushed first). These arguments are popped and a single return value is generated. 

This sets the indicators and goes to the Elocation of the long instruction. The long instnlctions of the 

assembler's instruction set are similar to those of the existing set exc~pt that some of the old long instructions 

are available are short instructions; and some previously short instructions are now available only as long 

instructions. For example, (Cons X Y) with E either the stack or the block of arguments and locals is available 

as a short instruction. However, to Cons something where E is indirect through the symbols and constants 

vector of the current function object, the long instruction must be used. Other long instructions which are 

similar to a short instruction are used in the same manner. Those long instructions which have been changed 

or added for the recommended assembler instruction set are described below, numbered starting with opcode 

200 (decimal) to avoid conflicts with existing long instructions. For a description of other long instructions, 

see section 1.3 of appendix 1. 

Push-Long 

Pop-Long 

Cons (X TOS) 

Trun 

CE is pushed onto the stack setting the indicators. Offsets for specifying CE are two bytes 

long. 

200 Push-Long-AL 

Pop the item off the stack and store it in E, setting the indicators. Offsets for specifying CE 

are two bytes long. 

201 Pop-Long-AL 

202 Pop-Long-SP 

Conses up a list cell with X as CAR and TOS as CDR. X should be pushed first, then the 

second argument is pushed to become TOS; both are popped and used as arguments to 

Cons. The new cons is stored in E. See also the short fOIDlat Cons instruction. 

203 Cons-Ignore 

204 Cons-AL 

205 Cons-SC 

Perfonns the equivalent o( the TRUNC function as described in the Spice Lisp Manual. 

After obtaining CE, take one value off the top of the stack to detennine what is to be 

returned setting the indicators. See also the short format Trune instruction. 
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206 Tnmc-SC 

Branch-If-Arg-Supplied 

Type (TOS) 

rThis is a special conditional branch that is used by the machinery that computes default 

values for optional function arguments that were not supplied by the caller. The next byte 

is read from the instruction stream and is taken as an offset (range 0 - 255) into the 

args-and-locals area of the stack frame. If the stack frame enu)' in question contains 

Misc-Unsupplied-Arg, do not branch; otherwise, take the branch. The branch is executed 

normally, using the A-field of the instruction to control the usual branch options. The 

branch offset byte(s) will follow the argument offset byte in the instruction stream. See 

also the short format of this instruction. 

207 Branch-If-Arg-Supplied-Long 

Stpres the 4-bit type-code of whatever it pops from the TOS in E as a fixnum. See also the 

short fonnat Type instruction. 

208 Type-Ignore 

209 Type-SC 

Make-Immediate-Type (0 BJ TYPE) 

OBJ can be any lisp object, TYPE is a fixnum in the range 0 - 2, which correspond to the 

type-codes of immediate objects; these arguments are taken from the stack. Returns an 

object whose type-code bits are TYPE, but whose other bits are those ofOBJ. See also the 

short fonnat version of Make-Immediate-Type. 

210 Make-Immediate-Type-Ignore 

211 Make-Immediate-Type-AL 

212 Make-Immediate-Type-SC 

Get-Definition (TOS) 

The TOS had better be a symbol. This is popped and Get-Definition stores the contents of 

its functional definition cell in E. See also the short format version of Get-Definition. 

213 Get-Definition-Ignore 

214 Get-Definition-AL 
215 ·Get-Definition-SC 

Rplacd (L TOS) Replaces cdr of L with TOS; stores the modified LinE. L should be pushed before e 

second argument. Rplacd is also available in a short format. 

216 Rplacd-Stack 

217 Rplacd-AL 



AN ANALYSIS OF TIlE SP[CE LISP INSTRUCTION SET 76 

V-Access (V TOS) 

V-Store 

Check 

Copy 

Scdr 

Scddr 

218 Rplacd-SC 

V is any vector or vector-like object (B-Vector, U-Vector, String, Xnum, Array, or 

Function Object). TOS is a FixnUlTI. Stores entry TOS of V in E. See also the short format 

version of V-Access. 

219 

(V I TOS) 

V is any vector or vector-like object. I is a fixnum. TOS is the value to be stored into slot I 

of vector V. TOS is stored in E. V-Store is also available in a short format version. 

220 V -Store-Stack 

221 V-Store-AL 

222 V-Store-SC 

CE is used to set the indicators, but is not put anywhere. If E is the stack, the indicators are 

set; the stack is unchangcd.14 This is the operation one should use rather than Pop Slack, 

Push Stack or Copy Ignore. See also the short format version of Check. -

223 - Check-Stack 

Copy the item on top of the stack into E, setting the indicators, without popping the stack. 

Copy Ignore is not a useful instruction; Check Stack should be used if this effect is desired. 

See also the short format Copy instruction. 

224 Copy-Stack 

Get the Cdr of CE and store it in E and the indicators. Useful for Cdr'ing down lists. CE 

must be a list cell or NIL. See also the short format Scdr instruction. 

225 Scdr-Stack 

Get the Cddr of CE and 'store it in E and the indicators. Useful for Cddr'ing down 

property lists. CE must be a list cell or NIL. See also the short format of this instruction. 

226 Scddr-Stack 

CE is a non-negative fixnum indicating how many bindings are to be popped off the 

binding stack and restored to their previous values. Used in exiting open-coded PROGs 

and LAMBDAs. The indicators are unchanged by this instruction. See also the short 

format Unbind instruction. 

14 I 
is is different from the semantics of the current (Check Slack) instruction! 
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List* 

227 Unbind-Stack 

CE is a non-negative fixnum N. One item is popped off the stack, to begin the list L. Then 

N other items are popped and CONSed onto the front of L in succession, so that the last 

item popped becomes the CAR of L. The consing is done in the space specified by the 

value of ALLOCATION-SPACE. The resulting list is pushed onto the stack and sets the 

indicators. See also the short fonnat List* instruction. 

228 List*Stack 



AN ANALYSIS OF THE SPICE LISP INSTRUCTION SET 78 

III. Recommended COll1piler Instruction Set 

Instnlctions generated by the compiler as input to the assembler are of the fonn (instruction-name 

operand-source N) where N is optional. The possible fonns are listed in Table III-l below. These operand 

sources are described in section I.1 of appendix 1. 

(instruction-name Slack) 

(instruction-name SIC N) 

(instruction-name Ignore) 

(instruction-name A&L N) 

(instruction-name S&C N) 

(instruction-name S N) 

Table III-I: Compiler Instruction Formats 

The instruction set generated by the compiler is like that described in appendix I, except that no distinction 

is made between long instructions and short instructions and several additional instructions are included as 

specified in sections 5.3 and 5.4 to incorporate a new type of branch instruction and replace commonly 

occurring instruction pairs. Sever:al of the legal compiler instructions have no counterpart in the assembler's 

instruction set For instance, (Cadr S&C) is translated into (Push S&C) followed by (Cadr Stack). These 

translations, however, are transparent to the compiler. The compiler instruction set is designed to be 

. extremely regular and complete in order to make the compiler as easy to write as possible. 
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