
c 

c 

c 

CARNEGI}~·MELLON UNIVf~RSIrrY 

DEPARTMENT OF COMPUTER SCIENCE 

SPICE PROJECT 

Revised I nlernal Design of Spice Lisp 

SkefWholey 
Scott F.. F ahlman 

Joseph Ginder 

20 December 1983 

DRAFT 

Spice Document S026 [Revised] 

Keywords and index categories: Lisp 

Location of machine-readable file: eM UC: :<Wholey.Australia) Revguts.Mss 

Copyright @ 1983 Carnegie-Mellon University 

Supported by the Defense Advanced Research Projects Agency. Department of Defense. ARPA Order 
3597. monitored by the Air Force Avionics Laboratory under contract F33615-78-C-1551. The views and 
conclusions contained in this document are those of the authors and should °not be interpreted as representing 
the official policies. either expressed or implied, of the Defense Advanced Research Projects Agency or the 
U.S. Government 

l&liiiiIIiilWij!iiiJiMmiil!liiiM_WiP.Ii"'@lMfl!J§lM1bUliJHJ liL [TiIffffl'V7HIM,ffi¥+F· ~,.." 



.w ......... ',/,' ±Wr6%H U["'* 'elL 

REVISED INTERNAL DESIGN OF SPICE LISP 

C Table of Contents 
1. Introduction 2 

1.1. Scope and Purpose 2 
1.2. Notationa1 Conventions 2 

2. Data Types ,and Object Formats 3 
2.1. I jsp Objects 3 
2.2. Table of Type Codes 3 
2.3~ Table of Space Codes 4 
2.4. Immediate Data Type Descriptions 4 
2.5. Pointer-Type Objects and Spaces 5 
2.6. Forwarding Pointers 8 
2.7. System and Stack Spaces 8 
2.8. Vectors and Arrays 9 

2.8.1. General Vectors 9 
2.8.2. lntegcr Vectors 10 
2.8.3. Arrays 12 

2.9. Symbols Known to the Microcode 13 
3. Runtime Enyironment 14 

3.1. Control Registers 14 
3.2. Function Object Fonnat 15 
3.3. Control-Stack Fonnat 16 

C 3.3.1. Call Frames 16 
3.3.2. Catch Frames 17 

3.4. Binding-Stack Format 17 
4. Storage Management 18 

4.1. ""c Transporter 18 
4.2. The Scavenger 19 
4.3. Purification 19 

5. l\1acro Instruction Set 21 
5.1. Macro-Instruction Fonnats 21 
5.2. Instructions 22 

5.2.1. Allocation 23 
5.2.2. Stack Manipulation 25 
5.2.3. List I\.1anipulation 26 
5.2.4. Symbol Manipulation 28 
5.2.5. Array Manipulation 29 
5.2.6. Type Predicates 33 
5.2.7. Arithmetic and Logic 35 
5.1.8. Branching and Dispatching 39 
5.1.9. Function Call and Return 40 
5.1.10. \1 iSCC!1~F-JCOUS 41 
5.1.11. Sysicm HJ·:king 43 

6. Cont rol Com entions 46 

0 
6.1. Fu nction Cans 46 



c 

c 

c 

REVISED INTERNAL DESIGN OF SPICE USP 

6.1.1. Starting a Function Call 
6.1.2. Finishing a Function Can 
6.1.3. Returning from a Function Call 
6.1.4. Returning Multiple-Values 

6.2. Non-Local Exits 
6.3. Escaping to Macrocode 
6.4. Errors 
6.S. Trapping to the Accent Kernel 
6.6. Interrupts 

Appendix I. Fasload File Format 

1.1. General 
1.2. Strategy 
1.3. Fasload Language 

Appendix II. The Opcode Definition File 
Index 

ii 

46 
47 
48 
48 
49 
Sl 
53 
57 
57 
59 
S9 
60 
61 
69 
81 

SS&LE£WjL'[iiil!9.-"--ILKWlfIHJr]---"'UEG~_,J,5L,,'_j' j'i'J'ifitJi"_4jf __ j1. 9r ,F HlY? 



c 

C"" \ 
I 

c 

RFVISFIlINTFRNt\1. I>FSI(iN OF SPI(,E I.ISP 

Acknowledgments 

The following people have been contributors to this and earlier versions of the design of the Spice I -isp 

instruction set: Guy L. Steele Jr .. Gail E. Kaiser. Walter van Roggen. Neal Feinberg. Jim I.arge. and Rob 

Macl.achlan. The original instruction set was loosely based on the MIT I.isp Machine instruction set 

The FASt tile format was designed by.Guy L. Steele Jr. and Walter van Roggen. and the appendix on this 

subject is their document with very few modifications. 



c 

o 

c 

RFVISFIlINIVRNAI lWSl(iN OFSPI(,F liSP 2 

1. Introduction 

I.t. Scope and Purpose 

NOTE: This dlx:ulnent descrihes a new implementation of Spice Lisp as it is to he implcmcntcd on tJle 

PERQ .. running the Spice operating system. Accent. This n'cw design is undergoing rapid changc •. and for the 

present is not guaranteed to accurately describe any past present. or fUll1re implementation of Spice Lisp. All 

questions and comments on this material should be directed to Skcf Who Icy (Wholcy«tCM U-CS-C). 

This d(~tlmcnt specifics the instruction set and virtual memory architecture of the PERQ Spice Lis~ 

system. This is a working document. and it-will change frequently as the system is dcvcloped and maintained. 

Ifsome detail of the system docs not agree with what is specified here. it is to be considered a bug. 

Spice Lisp will be implemented on other microcodable machines. and implementations of Common Lisp 

based on Spice Lisp exist for conventional machines with fixed instructions sets. These other 

implementations are very different internally and are described in other documents. 

1.2. Notational Conventions 

Spice Lisp objects are 32 bits long. The low-order bit of each word is numbered 0: the high-order bit is 

numbered 31. I f a word is hroken into smaller units. these are packed into the word from right to left. For 

example. if we break a word into bytes. byte 0 would occupy bits 0-7. byte 1 would occupy 8-15. byte 2 would 

occupy 16-23. and hyte 3 would occupy 24-31. In these conventions we follow the conventions of the VAX; 

the PDP-IO family follows the opposite convention. packing and numbering left to right. 

All Spice Lisp documentation uses decimal as the default radix: other radices will be indicated by a 

subscript (as in 77
8
) or by a clear statement of what radix is in usc. 

iiMHiiiilMNhiliJilli&iiL'liIlihitGUhllffiWRfLUd1!iihil'WlL\TIP;:qili,Ji' f~AjLi1;Q(, j __ '-' d . -, •• 



RFVISFD INTFR~AI IlFSI(jN OFSPI('F I.ISP 3 

C 2. Data Types and Object Formats 

c 

o 

2.1. Lisp Objects 

I.isp objects arc 32 bits long. They come in 32 basic types. divided into three classes: immediate data lypes. 

pointer types. and forwarding pointer types. The storage t()rmats arc as follows: 

InUllcdhlte Iluta Types: 
31 27 26 o 

I Type Code (5) J Immediate Data (27) 

Pointer and Forwarding Types: 
31 27 26 25 24 1 o 

I Type Code (5) I Space Code (2) I Pointer (24) I Unused (1) I 

2.2. Table of Type Codes 

Code 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13-15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26-31 

Type 

Misc 
Bit-Vector 
Integer-Vector 
String 
Bignum 
Long-Float 
Complex 
Ratio 
General-Vector 
Function 
Array 
Symbol 
List 
Unused 
+ Fixnum 
- Fixnum 
+ Short-Float 
- Short-Float 
Character 
Values-Marker 
Call-Header 
Catch-Header 
Catch-All 
GC-Forward 
Unused 

Class 

Immediate 
Pointer 
Pointer 
Pointer 
Pointer 
Pointer 
Pointer 
Pointer 
Pointer· 
Pointer 
Pointer 
Pointer 
Pointer 

Immediate 
Immediate 
Immediate 
Immediate 
Imm·edi ate 
Immediate 
Immediate 
Immediate 
Immediate 
Forward 

Explanation 

Trap object. stacks. system tables 
Vector of bits 
Vector of integers 
Character string 
Bignum 
Long float 
Complex number 
Ratio 
Vector of Lisp objects 
Compiled function header 
Array header 
Symbol 
Cons cell 

Fixnum >= 0 
Fixnum < 0 
Short float >= 0 
Sho.rt float < 0 
Character object 
Multiple values marker 
Control stack call frame header 
Control stack catch frame header 
Catch-All object 
Object in newspace of same type 

IhMUhliilili\Wll!ifi&ii&liQii!!QIIIiM!1J1"HtJi!IP.lUffitt'iRl'i6!fl1Q!@;f'l{I,Mbtf.L&, !11.JGl,~ H 



c 

R FV ISFIlI NTJiR NA \. I lFSIU N OF SPIt'F \.1St» 4 

2.3. Table of Space Codes 

Code 

o 
1 
2 
3 

Space 

Dynamic-O 
[)ynamic-l 
Static, 
Read-Only 

Explanation 

Storage normally garbage collected. space O. 
Storage normally garbage collected. space 1. 
Permanent objects. never moved or reclaimed. 
Objects never moved. reclaimed. or altered. 

2.4. Immediate Data Type Descriptions -, 

Mise 

Fixnum 

Short-Float 

Reserved for asso,rted internal values. Bits 25-26 specify a sub-type code. 

o Trap l11egal object trap. I f you fetch one of these. it's an error except under 
very specialized conditions. Note that a word of all I.eros is of this type, 
so this is useful for trapping references to uninitialized memory. This 
value also is used in symbo' ':, to flag an undefined value or definition. 

1 Control-Stack-Pointer 
The low 25 bits are a pointer into the control stack. This is a word 
pointer that points to the proper virtual memory address. Pointers of 
this form are returned by certain system routines for use by debugging 
programs. 

2 Binding-Stack-Pointer 
The low 25 bile; are a pointer into the binding stack. 'mis is a word 
pointer that points to the proper virtual memory address. Pointers of 
this form are returned by certain system routines for use by debugging 
programs. 

3 System-Table-Pointer 
The low 25 bits are a pointer into an area of memory used for system 
tables. This is a word pointer into ~n area of the address space reserved 
for data sent and received in Accent messages. 

i\ 28-bit two's complement integer. The sign bit is stored as part of the type code. 

As with fixnums. the sign bit is stored as pan of the type code. The fonnat of short floating 
point number can be viewed as follows: 

31 28 27 26 19 18 o 

I Type code (4) I Sign (1) I Expt (8) Mantissa (19) 
---------------------------~--------------------------------

The sign of the mantissa is moved to the left so that these flonums can be compared just 
like fixnuins. The exponent is the binary two's complement exponent of the number. plus 
128: then. if the mantissa is negative, the bits of the exponent field are inverted. The 
mantissa is a 21-bit two's compl~ment number with the sign moved to bit 27 and the 



c 

o 

o 

R I:Y IS"'\) I NTFR NA I I>FSIGN 01" SPIt'1-' 1.ISP 5 

Character 

leading significant hit (which is always the complement of thc sign bit and hence carries no 
infonnation) stripped off. The short tlonum reprcsenting 0.0 has 0\ in hits 0 - 27. It is 
illegal for the sign hit to be 1 with all the other hits equal to O. This encoding givcs a range 
of about 10-3R to 10 + J8 and about () digiL"I of ,iccllracy. Note that long-Ilonums are 
available for those wanting more accuracy, but they are less efficient to use becausc they 
gencrate garbagc that must be collCl:lCd later. 

" chHnlctcr object holding a'character code. control bits. and font in the following fonnat: 

31 27 26 24 23 16 15 8 7 o 

I Type code (5) I Unused (3) I Font (8) I Bits (8) I Code (8) I 

Values-Markcr Used to mark the presence of multiple values on the stack. The low 16 bits indicate how 
many values are being returned. Note then. that only 65535 values can be returned from a 
multiple-values producing form. These are pushed in order. then the Values-Marker is 
pushed. 

Call-Header Marks the start of each call frame on the control stack. The low-order 27 bits are used as a 
place to stash information for certain special kinds of calls. 

Catch-Header 

Catch-An 

For a normal function call. as created by the CALL or CALL-O instruction. the low 27 bits 
are always O. 

Bit 22, if 1. indicates an "escape to macro" call frame, created when a macro-instruction 
cannot be completed entirely within the microcode. In this casc. bits 16-17 indicate where 
the result is supposed to go (see section 6.3). 

Bit 21, ifl. indicates a call frame that will accept multiple values to be returned. Such 
frames are,created by Call-Multiple, and cause Return to take certain special actions. See 
scction 6.1.3 fur details. 

Bits 22 and'21 are mutually exclusive. It is undefined, what happens when both of these are 
on at once. 

Marks a catch frame on the control stack. If bit 21 is on. this indicates that the catching 
fonn will accept multiple values. See section 6.2 for details. 

Object used as the catch tag for unwind-protects. Special things happen when a catch 
frame with this as its tag is encountered during a throw. Sec section 6.2 for details. 

2.S. Pointer-Type Objects and Spaces 

. Each of th~ pointer-type lisp objects po!nts into a different space in virtual memory. There are separate 

spaces for Bit .. Vectors. Symbols, Lists. and so on. The 5-bit type-code provides the high-order virtual address 

bits for the objcc~ followed by the 2-bit space code. followed by the 25-bit pointer address. This gives a 31-bit 



c' 

C~\ '\ I 

o 

RFVISFD INTFRNAI I)FSI(iN OFSPICF I.ISP 6 

virtu,,1 address to a 32-bit word: since tile PERQ is a word-addressed machine. the low-order bit will be O. and 

under Accent. the high order bit will be 0 (because the operating system lives in the upper half of the address 

space). This leaves us with a JO-bit virtual address. In eftect we have carved a 30-bit space into a fixed set of 

24-bit subspaces. not all of which arc used. 

'Ille space code divides each of the type spaces into four'sub-spac'es. as shown in the ~1ble above. At any 

given time. one of the dynamic spaces is considered newspace. while the other is oldspace. The garbage' 

collector continuously moves accessible objects from oldspace into newspace. When oldspace contains, no 

more accessible objects it is considered empty. A ·'tlip" can men be done. turning the old newspace into the 

new oldspacc. All type-spaces arc flipped at once. Allocation of new dynamic objects always occurs in 

newspace. 

Optionally, the user (or system functions) may allocate objects in static or read-only space. Such objects are 

never reclaimed once they arc allocated -- they occupy the space in which they were initially allocated for the 

lifetime of the Lisp process. ''Inc advantage of static allocation is that the GC never has to move these objccts. 

thereby saving a significant amount of work, especially if the objects are large. Objects in read-only space are 

static. in that they are never moved or reclaimed; in addition. they cannot be altered once they are set, up. 

Pointers in read-only space may only point to read-only or static space. never to dynamic space. lnis saves 

even more work, since read-only space docs not need to be scavenged. and pages of read-only material do not 

need to be written Qack onto the disk during paging. 

Objects in a: particular type-space will contain either pointers to garbage-collectable objects or words of raw 

non-garbage-collectable bits. but not both. Similarly. a space will contain either fixed-length objects or 

variable-length object~, but not both. A variable-length object always contains a 24-bit length field right

justified in the first word. with the fixnum type-code in the high-order four bits. The remaining four bits can 

be used for sub-type information. 'Inc length field gives the size of the object in 32-bit words. including the 

header word. The garbage conector needs this information when the object is moved. and it is also useful for 

bounds checking. 

The format of objccts in each space arc as follows: 

Symbol Each symbol is represented as a fixed-length block of boxed Lisp cells. The number of 
cells per symbol is 5. in the following order: 

o Value cell for shallow binding. 
1 Definition cell: a function or list. 
2 Property list: a list of attr;b~te-value pairs. 
3 Print name: a string. 
4 Package:, the obarray holding this symbol. 



o 

RFVISFD INTFR NAI. DFSI(iN OF SPICF liSP 7 

I jst !\ fixed-length block of two boxed I -isp cells. the CA R and the CDR. 

Gencml-Vector Vector of lisp objects. any length. Thc first word is a fixnum giving the number of words 
allocated tbr the vector (up to 24 biL'i). The highest legal index is this number minus 2. 
The second word is vector entry O. and additional entries are allocated contiguously in 
virtual memory. General vectors are sometimes called G-VecLOrs. (See section 2.8 for 
further del1lils.) 

Integer-Vector Vector of integers. any length. The 24 low bit') of the first word give the allocated length in 
32-hit words. The low-order 28 bits of the second word gives the length of the vector in 
entries. whatever the length of the individual entries may be. The high-order 4 bit') of the 
second word contain access-type information that yields. among other things, the number 
of bit') per entry. Entry 0 is right-justified in the third word of the vector. Bits per entry 
will nOlmally be powers of 2. so they will fit neatly into 32-bit words. but if necessary some 
empty space may be left at the high-order end of each word. Integer vectors are sometimes 
called I-Vectors. (See section 2.8 for details.) 

Bit-Vector Vector of bits. any length. Bit-Vectors are represented in a form identical to I-Vectors. but 
live in a different space for efficiency reasons. 

Bignum 

Ratio 

Complex 

Array 

String 

Bignums are infinite-precision integers. represented in a format identical to I-Vectors. 
Each bignum is stored as a series of 8-bit bytes, with the low-order byte stored first. The 
representation is two's complemenl but the sign of the number is redundantly encoded in 
the subtype field of the bignum: positive bignums are sub-type O. negative bignums sub
type 1. The access-type cude is always 8-Bit 

I,ong floats are.stored as two consecutive words of bits. in the following format: 

31 30 20 19 o 
----------------------~----------------------------------------
I Sign (1) Exponent (11) Fraction (20) 
---------------------------------------------------------------
I Fraction (32) 

The exponent is biased by 1023. Exponents of 0 and 2047 are reserved. The most 
significant bit of the fraction is stripped off since it is always the complement of the sign 
bil and carries no information. 

Ratios arc stored as two consecutive words of Lisp objects. which should both be integers. 

Complex numbers arc stored as two consecutive words of Lisp objects. which should both 
be numbers. 

'This is actually a header which -holds the accessing in formation and other information 
about the array. The actual array contents are held in a vector (either an I-Vector or. 
G-Vector) pointed to by an entry in the header .. The header is identical in format to a 
G-Vector. For details on what the array header contains. see section 2.8.3. 

A vector of bytes. Identical in form to I-Vectors with the access type always 8-Bit 

ZW&l\L,li*iKHtiLRUJ5!!!lffitG ]i\1!hJ&'iil;.xda, L _.' 



o 
RFVISFIlIN'IVR~AI IWSltiN OFSPI('F liSP 8 

Function 

However. instead of accepting and returning fixnums. string accesses accept and return 
character objects. Only the 8-bit 'code Held is actually stored. and the returned cl14lracter 
ohject always has bit and font values ofO. 

t\ compiled Spice I -isp function consists of hoth lisp objects and raw bits for the code. The 
l.isp objects are stored in the Fum.:tion space in a format identical to that L1sed tl)r general 
vectors. with a 14-hil length lield in the first word. This object contains ~ssorted 
parameters needed by the calling machinery. a pointer to an 8-bit I-Vector containing the 
compiled byte codes. a number of pointers to symbols llsed as special variables within the 
runction. and a number of lisp ohjects llsed as constants hy the function. For details of the 
code fonnat and definitions of the byte codes. see section 5.1. 

2.6. Forwarding Pointers 

GC-Forward When a data structure is transported into newspace. a GC-Forward pointer is left behind in 
the first word of the oldspace object. This points to the same type-space in which it is 
found. For example. a GC-Forward in G-Vector space points to a structure in the G
Vector newspace. GC-Forward pointers are only found in oldspace. 

2 •. 7. System and Stack Spaces 

c~ The virtual addresses below 0800000016 are not occupied by Lisp objects. since Lisp objects with type code 

o are immediate objects. Some of this space is used for other purposes by Lisp. The current allocations are as 

follows: 

o 

Address (base 16) 

OOOOOOITO - 01FFFFFF 
02000000 - 03FFFFFF 
04000000 - 05FFFFFF 
06000000 - 07FFFFFF 

Use 

Microcode tables 
Control ,Stack 
Binding Stack 
System tables 

Microcode tables for a given process are never accessed by l.isp-Ievel code from that process (the SAVE 

function looks at the allocation table of another Lisp process). These tables contain allocation infonnation for 

the various spaces and pointers to functions that are called when escapes to macrocode are done. There are 

currently two microcode tables: . 

Address (base 16) 

00010000 - 00010100 
00020000 - 00020100 

Use 

Allocation table 
Escape function table 

The fonnat of the allocation table is described in chapter 4. and the format of the escape function table is 

described in section 6.3. 

The control stack grows upward (toward higher qddresses) in memory. and is a framed stack. It contains 



c 

( \ 

./ 

RFVISFD INTFRNAI.IWSIGN OFSPI('F I.lSP 9 

only general I -isp objects (with some random things encoded as fixnums or Misc codes), I"':very object pointed 

to by an entry on this stack is kept alive, The frame for a function call contains an area for the function's 

arguments. an area for local variables. a pointer to the caller's frame. and a pointer into the binding stack. The 

frame for a Catch fonn contains similar infonnation. The precise sUlck fonnat can be found in chapter 3. 

The special binding stack also grows upward. This stack is used to hold previilus values of special variables 

that have been bound. It grows and shrinks with the depth of tJ1e binding environment. as reflected in the . 

control stack. This sUlek contains symbol-value pairs. with only boxed I -isp objects present 

System table space is used to interface Lisp to the operating system. This is the only part of the address 

space that contains invalid memory, so all Accent messages received will appear in tbis space. Since files arc 

sent and received in messages. all files will be mapped into tbis space. Data in system table space may be 

accessed and altered by the instructions described in section S.2.11. 

There are significant performance advantages to be gained by aligning all objects on the PERQ's "quad

word" (64-bit) boundaries. This happens automatically for conses. long-floats. complex numbers •. and ratios. 

which are all two Lisp-words long. For all other pointer-type objects. tbe allocator makes sure that the object 

starts on a quad-word boundary. wasting a word with a Misc-Trap code if necessary. Thus, every pointer 

(except possibly for stack and system area pointers) will have its two low-order bits O. User-level code should 

never have to notice this distinction. 

2.8. Vectors and Arrays 

Common l.isp arrays can be represented in a few different ways in Spice Lisp -- different representations 

have different performance advantages. Simple general v~ctors. simple vectors of integers. and simple strings 

are basic Spice Lisp data types. and access to these structures is quicker than access to non-simple (or 

"complex") arrays. However, all multi-dimensional arrays in Spice Lisp are complex arrays. so references to 

these is always through a header structure. 

2.8.1. General Vectors 

G-Vectors contain Lisp objects. The fonna~ is as follows: 

I· Fixnum code (4) 1 Subtype (4) 1 Allocated length (24) I 

------------------------------------------------------------------
1 Vector entry 0 (Additional entries in subsequent words) I 

------------------------------------------------------------------

Note that the subtype field overlaps the type field -- this means that the subtype can change the sign bit of 

H.iMl&JWiIlMi'!liIMiWii_Li!GI;J3ild@'UhhM11IlJ1It~ _ -



o 

RFVISFD INTFRNAl.llFSI(iN OFSPlt'F I.ISP 10 

the fixnum. '1l1e first word of the vector is a header indicating its length: the remaining words hold the boxed 

entries of the vector. one entry per 32-bit word. The header word is of type fixnum. It contains a 3-bit 

subtype field. which is lIsed to indicate several spedal types of general vectors. At present. the following 

subtype codes are defined: 

o Normal. Used t<)r assorted things. 

Named structure created by DEFSTRUCT. with type name in entry O. 

2 EO Hash Table. last rehashed in dynamic-O space. 

3 EQ Hash Table. last rehashed in dynamic-l space. 

4 EQ Hash Table. must be rehashed. 

Following the subtype is a 24-bit field indicating how many 32-bit words are allocated for this vector. 

including the header word. Legal indices into the. vector range from zero to the number in the allocated 

length field ·minus 2. inclusive. The index is checked on every access to the vector. Entry 0 is stored in the 

second word of the vector. and subsequent entries follow contiguously in vinual memory. 

Once a vector has been allocated, it is possible to reduce its length by using the Shrink-Vector instruction, 

but never to increase its length. even back to the original size. since the space freed by the reduction may have 

been reclaimed. This reduction simply stores a new smaller value in the length field of the header word. 

It is not an error to create a vector oflength O. though it wi11 always be an out-of-bounds error to access such 

an object. The maxim·urn possible length for a general vector is 224_2 entries. and that is only possible if no 

other general vectors arc present in the space. 

Objects of type runction and Array are identical in fonnat to general vectors. though they have their own 

spaces. In both cases. only 0 is currently used in the sub-type field of the header word. 

2.8.2. Integer Vectors 

J-Vectors contain un boxed items of data. and their format is more complex. The data items come in a 

variety of lengths. but are of constant length within a given vector. Data .going to and from an I-Vector are 

passed as Fixnurns. right justified. In~ernal1y these integers are stored in packed form. filling 32-bit words 

without any type-codes or other overhead. The format is as follows: 



( , 
,,~., 

c 

o 

RFVISFIlINTFR NAt IlFSI(iN OF SPI( 'F I ISf> 11 

I Fixnum code (4) I Subtype (4) I Al'located length (24) 

I Access type (4) I Number of entries (28) 

Entry 0 right justified I 

Note that the subtype field overlaps the type tield -- this means that the sUbtype can change the sign bit of 

the fixnum. The first word of an I-Vector contains the Fixnum type-code in the top 4 bits. a 4-bit sUbtype 

code in the next four bits. and the LOla I allocated length of the vector (in 32-bit words) in the low-order 24 

bits. At present. the following subtype codes are defined: 

o Nonnal. Used for assorted things. 

1 Code. This is the code-vector for a function object 

The second word of the vector is the one that is looked at every time the vector is accessed. The low-order 

28 bits of this word contain the number of valid entries in the vector. regardless of how long each entry is. 

The lowest legal index into the vector is always 0: the highest legal index is one less than this number-of

entries field from the second word. These bounds are checked on every access. Once a vector is allocated. it 

can he reduced in size but not increased. lbe Shrink-Vector instruction changes both the allocated length 

field and the number-of-entries field of an integer vector. 

'Tne high-order 4 bits of the second word contain an access-type code which indicates how many bits are 

occupied by each item (and therefore how many items are packed into a 32-bit word). The encoding is as 

follows: 

0 I-Bit 8 Unused 
. 1 2-Bit 9 Unused 
2 4-Bit 10 Unused 
3 a-Bit 11 Unused 
4 16-Bit 12 Unused 
5 Unused 13 Unused 
6 Unused 14 Unused 
7 Unused 15 Unused 

In I-Vectors. the data items are packed into the third and subsequent words of the vector. Item 0 is right 

justified in the third word. item 1 is to its lett and so on until the allocated number of items has been 

accommodated. All of the currently-defined access types happen to pack neatly into 32-bit words. but if this 

should not be the case, some unused bits would remain at the left side of each word. No attempt will be made 

to split items between words to use up these odd bits. When allocated. an I-Vector is initialized to allO's. 



! L 1\ 

o 

RFVISFD INTFRNAI IWSIUN OJo'SPI('F liSP 12 

As with G-Vectors. it is not an error to create an I-Vector of length O. but it will always be an error to access 

sllch a vector. The maximum possible length of an I-Vector is 228 _1 entries or 224-3 words. whichever is 

smallec 

Ohjecl" of type String are identical in format to I-Vectors. though they have their own space. Strings always 

have subtype 0 and access-type 3 (8-I~it). Strings differ from nonnal I-Vectors in that the accessing 

instructions accept and return objects of type Character rather than Fixnum. 

Bignllms are also identical in format and operation to I-Vectors. though they may also be operated on 

directly by microcoded routines. For details of the currently-defined sub-types and their access-codes. see 

section 2.5. 

2.8.3. Arrays 

I\n array header is identical in fonn to a G-Vector. Like anyG-Vector. its first word contains a fixnum 

type-code. a 4-bit SUbtype code. and a 24-bit total length field (this is the length of the array header. not of the 

vector that holds the data). At present. the subtype code is always O. The entries in the header-vector are 

interpreted as follows: 

o Data Vector This is a pointer to the I-Vector. G-Vector. or string that contains the actual data of the 
array. In a multi-dimensional array. the supplied indices are converted into a single 1-D 
index which is used to access the data vector in the usual way. 

1 Number of Elements 
This is a fixnum indicating the number of clements for which there is space in the data 
vector. 

2 Fill Pointer This is a fixnum indicating how many clements of the data vector arc actually considered to 
be in usc. Normally this is initiali'cd to the same value as the Number of Elements field. 
but in some array applications it will be given a smaller value. Any access beyond the fill 
pointer is illegal. 

3 Displacement This fixnum value is added to the final code-vector index after the index arithmetic is done 
but before the access occurs. Used for mapping a portion of one array into another. For 
most arrays. this is O. 

4 Range of First Index 
This is the number of index values along the first dimension. or one greater than the largest 
legal value of this index (since the arrays are always zero-based), A fixnum in the range 0 
to 224-1. If any of the indices has a range of 0, the array is l~gal but will contain no data 
and accesses to it will always be out of range. In a O-dimension array. this entry will not be 
present. 

5 - .N Ranges of Subsequent Dimensions. 



( ') 
./ 

o 

RFVISFll INTFR~"l.l)Io'SI(jN OI;SPICF LISP 13 

The number of dimensions of an array can be determined by look ing at the length of the array header. The 

rank will be this number minus 6. The maximum array rank is 65535 - 6, or 65529. 

The ranges of all indices arc checked on every access, during the conversion to a single data-vector index. 

In this conven;ion. each index is added to the accumulating total. then the total is multiplied hy the range of 

the following dimension. the next index is added in. and so on. In other words. if the data vector is scanned 

linearly. the last array index is the one that varies most rapidly, then the index before it. and so on. 

2.9. Symbols Known to the ~licrocode 

A large number of symbols will be pre-defined when a Spice I -isp system is fired lip. A few of these are so 

fundamental to the operation of the system that their addresses have to be assembled into the microcode. 

These symbols are listed here. All of these symbols are in static space. so they will not be moving around. 

NIL 

T 

5COOOOO016 The value of NIL is always NIL: it is an error to alter it. NIL is unique among 
symbols in that you can take its CA R and CDR. yielding N II. in either case. 

5COOOOOC 16 The value ofT is always T: it is an error to alter it. 

%SP-Internal-Apply 
5COOOOl816 The function stored in the definition cell of this symbol is called by the 
microcode whenever compiled code calls an interpreted function. Sec section 6.1.2 for 
details. 

%S P-I n te rnal-Error 
5COO0024 16 The function stored in the definition cel1 of this symbol is called whenever an 
error is detected during the execution of a byte instruction. See section 6.4 for details. 

%SP-Software-Interrupt-Handlcr 
5C000030

16 
The function stored in the definition cell of this symbol is called whenever a 

. software interrupt occurs. See section 6.6 for details. 

%SP-InternaFThrow-Tag 
5COO003C16 This symbol is bound to the tag being thrown when a Catch-All frame is 
encountered on the·stack. Sec section 6.2 for details. 



o 

o 

RFVISFIl INTFRNAI DFS\(iN OFSPI(,F IISP 14 

3. Runtime Environment 

3.1. Control l{cgisters 

To describe the instructions in ch"pter 5 and the complicated control conventions in chapter 6 requires that 

we wlk abuuta number of ··machine registers:' All of these registers wiil be treated as if they contain 32-bit 

l.isp objects. 

Control-Stack-Pointer 

TOS 

The stack pointer for the control stack, an object of type Misc-Control-Stack-Pointer. 
Points to the first unused word in Control-Stack space: this upward growing stack uses a 
write-incrementldecrement-read discipline. 

The top entry of the control stack. which is kept in a register for efficiency. References to 
local variables are fa'iter if they can assume that the local in question is on the stack in main 
memory and that it has not popped up into the TOS register. To ensure this. the compiler 
adds an extra local variable to each function. so that none of the locals that are actually 
used ~an ever pop into TOS. 

Binding-Stack-Pointer 

Acti ve- Frame 

Open-Frame 

"ctive-Catch 

The stack pointer for the special variable binding stack. an object of type Misc-Binding
Stack-Pointer. The binding stack follows the same write-incrementldccrement-read 
discipline as the control stack. 

An object of type Misc-Control-Stack-Pointer which points to the first word of the call 
frame for the currently executing function. The virtual address of the start of the 
arguments and locals area of the active frame is this pointer plus a constant (see section 
3.3). 

An object of type Misc-Control-Stack-Pointer which points to the first word of the call 
frame currently being built (Le. whose arguments are being evaluated). 

An object of type Misc-Control-Stack-Pointer which points to the first word of the most 
recent catch frame built. 

Active-Function The compiled function object for the function that is currently being executed. The virtual 
address of the start of the symbols and constants area of the current function is this pointer 
plus a constant (sec section 3.2). 

Active-Code 

PC 

The I-Vector of instructions for the currently executing function. 

A pointer into I-Vector space that indicates the next quadword from which the instruction 
buffer will be filled. This and the hardware BPC detennine the next instruction to be 
executed. When a PC is pushed on the stack by a Call or Catch insquction. it is stored in 
the form of a 16-bit offsc·t from the base of the Active-Code vector and the BPC: 



c 

o 

o 

RI'VISFJ) INTFR NA', I )Jo'SI(jN OF SPI( 'F ,.1St> 15 

31 27 26 20 19 16 15 o 

I Trap type code (5) I Unused (7) I BPC (4) I Offset (16) 

3.2. Function Ohject Format 

Each compiled function is represented in the machine as a Function Object. This is identical in form to a 

G-Vector of lisp objects. and is treated as such by the garbage collector. but it exists in a special function 

space. (There is no particular reason for this distinction. We may decide 1ater to store these things in 

G- Vector space, if we become short on spaces or have some reason to believe that this would improve paging 

behavior.) Usually. the function objects and code vectors will be kept in read-only space. but nothing should 

depend on this: some applications may create. compile, and destroy functioi,s often enough to make dynamic 

allocation of function objects worthwhile. 

The function object contains a vector of header information needed by the function-calling mechanism: a 

pointer to the I-Vector that holds the actual code. Following this is the so-called ··symbols and constants" , 

area. 'Ibe first few entries in this area arc tlxnums that give the offsets into the code vector for various· 

numbers of supplied arguments. Following this begin the true symbols and constants used by the function. 

Any symbol used by the code as a special variable or the name of another function will appear here. Fixnum 

constants in the range of -256 to + 255 can be generated within the byte code. and so do not need to be stored 

in the constants area as full-word constants. 

After the one-word G-Vector header. the entries of the function object are as fol1ows: 

o A fixnum with bit fields as follows: 
o - 14: Number of symbols/constants in this fn object (0 to 32K-l). 

This number includes the optional-arg offsets. 
15 - 26: Not used. ' 
27: 0 => All args evaled. 1 => This is a FEXPR. 

1 Pointer to the unboxed Code vector holding the macro-instructions. 
2 A fixnum with bit fields as follows: 

O. - 7: The minimum legal number of args (0 to 255). 
8 - 15: The maximum number of args, not counting &rest (0 to 255). 
16 - 26: Number of local variables allocated on stack (0 to 2047). 
27: 0 => No &rest argo 1 => One &rest argo 

3 Name of this function (a symbol). 
4 Vector of argument names, in order, for debugging use. 
5 The symbols and constants area starts here. 

This word is entry 0 of the symbol/constant area. 
The first f~w entries in this area are fixnums representing 

the code-vector entry points for various numbers of 
optional arguments. See section 6.1.2. 



c 

RFVISFD INTFI~N"I I>FSI(iN OFSPICF I.ISP 16 

3.3. Control-Stack Format 

The Spice I.isp control sUlck is a framed stack. Call frames. which hold information for function calls. are 

intennixed with catch frames. which hold information used for non-local exits. In addition. the control stack 

is lIscd 41S a St:raLchpad for random compuUllions. 

3.3.1. Call Frames 

At any given time. the machine contains pointers to the current top of the control stack. the start of the 

current active frame (in which the current function is.executing). and the SUlrt of the most recent open frame. 

I n addition. there is a pointer to the current top of the special binding stack. An open frame is one which has 

been partially built. but which is still having arguments for it computed. When all the arguments have been 

computed and saved on the frame, the function is then started. This means that the call frame is completed. 

becomes the current active frame. and the function is executed. At this time. special variables may be bound 

and the old values are saved on the binding stack. Upon return. the active frame is popped away and the 

result is either sent as an argument to some previously opened frame or goes to some other destination. The 

binding stack is popped and old values are restored. 

The active frame contains pointers to the previously-active frame. to the most recent ope~ frame. and to the 

point to which the binding stack will be popped on exit. among other things. Fol1owing this is a vector of 

storage locations for the function's argum'ents and local variables. Space is allocated for the maximum 

number of arguments that the function can take. regardless of how many are actually supplied . 

. In an 'open frame. the structure is built up to the point where the arguments are stored. Thus. as arguments . 

are computed. they can simply be pushed on the stack. When the function is finally started. the remainder of 

the frame is built A call frame looks like this: 

o Header word. Type Call-Frame-Header. 
1 Function object or EXPR for this call. 
2 Pointer to previous active frame. Type Misc-Control-Stack-Ptr. 
3 Pointer to previous open frame. Type Misc-Control-Stack~Ptr. 
4 Pointer to previou~ bi~ding stack. Type ·Misc-Binding-Stack-Ptr. 
5 Saved PC of caller. A fixnum. 
6 Args-and-locals area starts here. This is entry O. 

The first slot is pointed to by the Active-Frame register if this frame is c.urrently active. and by the Open

Frame register if this frame is the currently opened frame. 



o 

I{ FV ISFD IN IVR NA I DFS\<.i N OF SPI( 'F I IS., 17 

3.3.2. Catch Frames 

Catch frames contain much of the same in formation that call frames do, and have a very similar format. A 

<.:at<.:h frame holds the function ohject for the current function, a sWck pointer to the current a<.:tive and open 

frames. a pointer to the current top of the binding sUlck. and a pointer to the previous catch frame. When a 

'I11rOW occurs, an operation equiv.llent lO returning from this catch frame (as if it were a call frame) is 

perfOlmed. and the stacks are unwound to the proper place for continued execution in the current function. 

A catch frame looks like this: 

o Header word. Type Catch-Frame-Header. 
1 Function object for this call. 
2 Pointer to current active frame. 
3 Pointer to current open frame. 
4 Pointer to current binding stack. 
5 Destination PC for a Throw. 
6 Tag caught by this catch frame. 
7 Pointer to previous catch" frame. 

The conventions used to manipulate call and catch frames are described in chapter 6. 

3.4. Binding-Stack Format 

Each entry of the binding-stack consistc; of two boxed (32-bit) words. Pushed first is a pointer to the symbol 

being bound. Pushed second is the symbol's old value (any boxed item) that is to be restored when the 

. binding is popped. 



c 

R FV lSED I NTFR NA 1 IlFSl( j N OF SPI{,F l.ISP 18 

4. Storage Management 
New objects are allocated from the lowest unused addresses within the specified space. Each allocation call 

specifies how many words are wanted. and a Free-Storage pointer is incremented 'by that amount. There is 

one of these Free-Storage pointers for each space. and it points to the lowest free address in the space. There 

is also a Clcan-Space pointer associatcd with c(lch space that is LISCO during garbage collection. These pointers 

are stored in a tabt"e in the microcode tahle area which is indexed by type and space code. The address of the 

Free-Storage pointer for a given space is 

( + all 0 c - tab 1 e - bas e (1 s h type 4) (1 s h s P ace 2)) '. 

The address of the Clean-Space pointer is 

(+ alloc-table-base (lsh type 4) (lsh space 2) 2). 

PERQ Spice Lisp uses a stop-and-copy garbage collector ({) reclaim storage. The Collect-Garbage 

instruction performs a full GC. The algorithm used is a degenerate form of Baker's incremental garbage 

collection scheme. When the Collect-Garbage instruction is executed. the following happens: 

1. The current newspace becomes oldspace. and the current oldspace becomes newspace. 

2. The newspace Free-Storage and Clean-Space pointers are initialized to point to the beginning of 
their spaces. 

3. The contents of the "registers inside the barrier" are transported. There are only three such 
registers: Active-Function. Active-Code. and TOS. Howcver. the PC is stored intcrnally as an 
absolute address. so it must be recomputed if the code vector in Active-Code is transported. This 
is easily done by subtracting Active-Code from PC before it is transported. and adding it back in 
afterwards. Because the Active-Code vector will be transported from a quadword boundary to a 
quadword boundary. the PERQ's internal BPC needn't be modified. 

4. The control stack and binding stack are scavenged. 

5. E-=ach static pointer space is scavenged. 

6. Each new dynamic space is scavenged. The scavenging of the dynamic spaces is done until an 
entire pass through all of them does not result in anything being transported. At this point. every 
live object is in newspace. 

A Lisp-level GC function must return the oldspace pages to Accent 

4.1. The Transporter 

Thetranspo.rter moves objects from oldspace to newspace. It is given an address A. which contains the 

object to be transportecl. B. If B is an immediate ObjCC4 a pointer into static space. a pointer into read-only 

space, or a pointer into newspace, the transporter does nothing. 



c 

c 

c 

ri J I" ... 

RFVlSFD INTFRNAI lWSIUN OFSI'ICF LISP 19 

If Il is a pointer into oldspace. the ohject it points to must be moved. It may. however. already have been 

moved. Fetch the first word of Il. and call it C. If C is a GC-forwarding pointer. we fOim a new pointer with 

the type code of /J and the low 27 bits or ('. Write this into A. 

If (' is not a GC-forwarding pointer. we must copy the ohject the 11 points to. Allocate a new ohject of the 

same size in newspace. and copy the contents. Replace C with a GC-forwarding pointer to the new stnlcture. 

and write the address of the new structure back into A. 

Hash tables mainwined with an P.Q relation need special treatment by the transporter. Whenever a 

G-Vector with SUbtype 2 or 3 is transported to newspace. its subtype code is changed to 4. The Lisp-level 

hash-table functions will see tl,at the subtype code has changed. and re-hash the entries before any access is 

made. 

4.2. The Scavenger 

The scavenger looks through an area of pointers for pointers into oldspace. transporting the objects they 

point to into newspace. The stacks and static spaces need to be scavenged once. but the new dynamic spaces 

need to be scavenged repeatedly. since new objects will be allocated while garbage collection is in progress. 

To keep track of how much a dynamic space has been scavenged. a Clean-Space pointer is maintained. The 

Clean-Space pointer poinL~ to the next word to be scavenged. Each call to the scavenger scavenges the area 

between the Clean-Space pointer and tlle Free-Storage pointer. The Clean-Space pointer is then set to the 

Free-Storage pointer. When all Clean-Space pointers are equal to their Free-Storage pointers. GC is 

complete. 

To maintain (and create) locality of list structures. list space is treated specially. Two separate Clean-Space 

pointers are maintained for list space: one for cars and 'one for cdrs. The scavenger· works on the Clean~Cdr 

pointer unless it is at the Free-Storage pointer. in which case it works on the Clean-Car pointer. When 

Oean-Car. Clean-Cdr. and the Free-Storage pointer for list space coincide. list space has been completely 

scavenged. 

4.3. Purification 

Garbage is created when the files that make up a Spice Lisp system are loaded. Many functions are needed 

only for initialization and bootstrapping (e.g. the "one-shot" functions produced by the compiled for random 

fonns between function definition). and these can be thrown away once a full system is built Most of the 

functions in the system. however. will be ~sed after initialization. Rather than bend over· backwards to make 

the compiler dump some functions in read-only.space and others in dynamic space (which involves dumping 



o 

c 

HFVISFD INTJlRNt\1 I>FSIUN OF SPI('II I.ISP 20 

their constant" in the proper spaces. also}. we will dll~p everything into dynamic space. and use the following 

storage allocation feature to move what we need after initialization into rcad-only and static space. 

The Set-Newspace-For-Typc instruction lets us set the free pointer of the next newspace to dynamic or 

read-only space instead of the corresponding dynamic space. When the next GC happens. objects in 

newspace will be transported to this other space (static or read-only) instead of dynamic space. Care must be 

taken. of course. to ensure that objects in read-only space point only to static or read-only space. Probably the 

following should be used for ··purifying" a system: 
(set-newspace-for-type 1 2) 
(set-newspace-for-type 2 2) 
(set-newspace-for-type 3 2) 
(set-newspace-for-type 4 2) 
(set-newspace-for-type 5 2) 
(set-newspace-for-type 6 3) 
(set-newspace-for-type 7 3) 
(set-newspace-for-type 8 2) 
(set-newspace-for-type 9 3) 
(set-newspace-for-type 10 3) 
(set-newspace-for-type 11 2) 
(set-newspace-for-type 12 2) 

bit-vectors to static 
likewise for i-vectors 
and strings 
and bignums 
and long-floats 
complexes can be read-only 
as can ratios 
g-vectors should be static 
functions should be read-only 
arrays can be, also 
symbols should be static 
as should conses. 



Jll.i~'IUi.!.e:.,j,.,M.!!!!IH+hJ!,UJl'b' h'l' [II'K1 II!' , 'I 

(~) 
j 

c 

R (iV ISF!) I NTFR N A I I>FSIG N OF SPI(,F USP 21 

5. Macro Instruction Set 
The intent is that this instructiun set should he a very direct mapping from the S-expression sOllrce it is 

derived from. There should therefore never be any temptation fllr users tu write macrocode by hand: all of 

the system that is not in microcode should he written in l.isp. Since the compiler will run hoth in Spice l.isp 

and in Madisp. we need not hand-code things even for hootstrapping. 

5.1. Macro-Instruction Formats 

There are three ways in which instructiuns fetch their arguments and store their results. 

l. Most instructions pop an of their operands off of the stack and push a result hack onto the stack. 
behaving like little I jsp functions. There are some instructions that will take their last operand 
from a place other than the stack (an immediate constant. a local variable. etc). 

2. Some instructions modify a value in place. This value is sometimes the top of the stack, but could 
be a local variable. argument. or special variable. In the dcscriptions of thc instructions below, 
these instructions operate on a pseudo-operand E. the effcctive address. which.is specified as part 
of the opcode. 

3. Finally, a fcw instructions pop the top of the stack but leave no result The Pop. Branch. and 
Dispatch instructions do this. 

An non-branching Spicc Lisp instructions are made up of 1 or 2 opcode bytes. that contain an implicit 

cffective address. and 0 to 2 bytes following the opcode that are used as pan of the cffective address. 

Branching instructions have 1 or 2 bytes of opcode followed by a 1 or 2 byte branch offset The possible 

effective addresses (and their use of additional effective address bytes) arc these: 

Stack Thc operand is taken from the stack. Then the operation takes place. in some cases 
pushing a result onto the stack. No effective address bytes are fetched. The names of 
instnlctions that take all stack operands arc not suffixcd with an effective address specifier, 
as others arc. These instructions arc called "basic" instructions: I n most cases, the 
compiler-writer need concern himself with only these forms of an instruction. The 
pecpholc optimizer will replacc sequences of stack refercncing instructions with 
instruction~ with differercnt addressing,modes if the resulting sequence is faster. 

Positive Short Integer Constant 
1\ byte is fetched and is converted to a positive fixnum in the rangc 0 to 255. This is used 
as the operand. The "·PSIC" suffix on an instruction name is used for instructions with 
positivc shon integer constant operands. Some instructions imply a particular short integer 
without a second byte. These are suffixcd with "-PSICn" wherc n is the short integer. A 

o 0 shon integer constant may never be used as a result cOffective address, of course. 

Negative Short Integer Constant 
A bytc is fctched and is converted to a negative fixnum in the range -1 to -256. This is used 
as the operand. The "-NSIC" suffix on an instruction name is used for instructions with 



c 

c 

c 

RIo'VISFIl INTFI~ NAt J)FSI(jN 01,' SPICF liSP 22 

negative short integer constant operands. 

Arguments & l.ocals 

Constants 

Symbols 

Ignore 

In most cases. one byte is fetched and used as an unsigned offset (0 - 255) into the 
arguments and local variables area of the clIrrenLiy active <.:,111 frame ("-AI:' suffix). The 
contents of this cell are used as the oper'lIld. For a lew instructions. two bytes are fctched 
to fhrm a 16-hil offset (0 - (5535). In Ict<.:hing this douhle offset. the low-order byte comes 
in first ("-I.ongl\ I ... · suffix). Some instructions imply a p~lrticular offset without the need 
tt)r another otTset byte. These instructions are those that are suffixed with "-1\1.,," where Il 
is an integer which denotes the implied off.~et. When lIsed as a result effective address. the 
result is stored in the specified slot of the can frame. 

In most cases. one byte is fetched and lIsed as an unsigned offset (0 - 255) into the vector of 
symbols and constants .in the code object of the current function. The constant in this cell 
is used directly ("-C" suffix). For a few instructions. the next two bytes are fetched to form 
a 16-bit unsigned offset (0 -65535) ("-Longe" suffix). In fetching this double offset. the 
low-order byte comes in first. Sometimes an instruction implies an offset into the symbols 
and constants vector without the need of another byte for the offset. I n these instances 
when the off.liet is implied. the instruction will have the suffix "-Cn" where n is an integer 
denoting the offset. Constants may not be used as a result effective address. 

In most cases. one byte is fetched and used as an unsigned offset (0 - 255) into the vector of 
symbols and constants in the code object of the current function. The constant in this cell 
is supposed to be a symbol pointer. and the operand is fetched from its value cell ("-S" 
suffix). If the value is Misc-Trap, an unbound variable error is signalled. For some 
instructions, the next two bytes are fetched to form a 16-bit off.~et ("-f .ongS" suffix). In 
fetching this double offset. the low-order byte comes in first. Sometimes an instruction 
implies an offset into the symbols and constants vector without the need of another byte 
for the offset In these instances when the offset is implied, the instruction will have the 
suffix ··-Sn" where n is an integer denoting the offset Whe·n a symbol is used as a result 
effective address, its value cell is set to the result 

Specified with a ··-Ignore·· suffix. This may be used only as a result effective address. 

In the following listing, the effective address is called .• ,:. .... and its contents are called .. Ct ... ·. The opcodes for 

these instructions are defined in a file read by the microassembler. compiler. error system. and disassembler. 

'This file lives on CMU-CS-C as PRVA:<Sl isp.Compiler.New-And-Improved>Instrdefs.Sl isp 

and CMU- Aadger as >S 1 is p> Ins tr def s . Lis p. It is included in this document as an appendix. 

5.2. Instructions 

There are 11 classes of instructions: allocation, stack manipulation, list manipulation, symbol manipulation, 

array manipulation. type .predicate, arithmetic and logical. branching and dispatching, function call and 

return, miscellaneous. and system hacking. A number of the instructions below combine the effect of two or 

more simpler instructions. and are part of the instruction set for efficiency reasons. It is envisioned that the 



c 

c 

c 

RFVISPI) INTFRNAI I )FSKiN OF SPIC'F I.lSI' 23 

compiler will generate code lIsing the stack fonns of ,most instructions. with lots of Push lind Pop instnlctiuns 

to get operands and store results. I\n optimizing assembler will then collapse sequences of these simple 

instructions into the faster. more compact complex instructions. Each basic instruction is nagged with an 

asterisk (-). 

5.2.1. Allocation 

1\1) non-immediate objects are allocated in the "current allocation space." which is dynamic space. static 

space. or read-only space. The current allocation space is initially dynamic space. but can be chunged by 

lIsing the Set-Allocation-Space instruction below. The current allocation space can be determined by using 

the Get-Allocation-Space instruction. One usually wants to change the allocation space around some section 

of code: an unwind protect should be used to insure that the allocation space is restored to some safe value. 

Get-Allocation-Space 0 pushes O. 2. or 3 if the current allocation space is dynamic. static, or read-only 

respectively. 

Get-Allocation-Space • 

Set-Allocation-Space (X) sets the current allocation space to dynamic. static. or read-only if X is O. 2. or 3 

respectively. Pushes X. 

Set-Allocation-Space • 

Alloc-Bit-Vector (Length) pushes a new bit-vector Length bits long, which is allocated in the current 

allocation space. /'englh must be a positive fixnum. 

Alloc- Bit-Vector· 

Alloc-I-Vector ([.ength A) pushes a new I-Vector Length bytes long. with the access code specified by A. 

[.ength and A rnust be positive fixnums. 

Alloc- I -Vector· 

AlIoc-String (Length) pushes a new string I-ength characters long. IJength must be a fixnum. 

AUoc-String • 

Alloc-Bignum (Length) pushes a new bignum Length 8-bit bytes long. Length must be a fixnum. 

Alloc- Bignum • 

Make-Complex (Rea/part Imagpart) pushes a new complex number with the specified Rea/part and 

Imagpart. Rea/part and Imagpart should be the same type of non-complex number . 

Make-Complex • 



u...ilM *, 5.1,1.'1 II'!!'Y UrI' b'I"A"I' iLlY" I. I'! 'I!.t, d b Jd' f ... "rL', 'I "1' 'j 

o 

o 

RFVISFD INTFRNAI. DFSKiN OF SPICF I.lSP 24 

Make-Ratio (Numerator Denominalor) pushes a new ratio with the specified Numeralor and De1lominator. 

Numeratur and Denominalur should be integers. 

Make-Ratio· 

Al1oc-G-Vector (I.englh II1Uial-Flement) pushes a new G-Vcctor with I.('nglh clement~ initialized to 

/l1itia/- FI('ment. I.engtli should be a fixnum. 

A II oc-G -V ector· 

Vector (Fllo Hili ... FII/,mgth _ I 1.(,lIgllt) pushes a new G- Vector .containing the specified I.('I/gllt clements. 

I.englh should be a fixnum. 

Vector -
Vector-PSIC 

Alloc-Function (Length) pushes a new function with Length elements. Length should be a fixnum. 
. . 

Alloc-Function 

Alloc-Array (Length) pushes a new array with Length clements. Length should be a fixnum . 

Alloc-Array • 

Alloc-Symbol (Print-Name) pushes a new symbol with the print-name as Prim- Name. The value is initi~lly 

Mise-Trap. the definition is Mise-Trap. the property list and the package arc initially N II.. The symbol is not 

interned by this operation -- that is done in macrocode. Print- Name should be a simple-string . 

A11oc-Symbol • 

Cons (Caredr) pushes a new cons with the specified Car and Cdr. 

Cons· 

Set-LPush (Car E) pushes a new cons with the specified Car and CE as the cdr. and stores the cons back 

into E. 

Set-LPush-AL 
Set-LPush-S' 

List (Elto Ell, ... EltCE _ , Length) pushes a new list containing the Length elements. Length should be 

tixnum. 

List
List-PSIC 



c 

c 

0 ",' 
,\, 

Ui(· l·""T "luz,L' -b i + "Ld q;".l! Mi""']"" u r !" " .. "I! 

RFVISFD INTFI~NAI.I)FSI(jN OFSPIC'F I.lSt> 25 

l-ist* (Hllo HIt J ••• HIICH . J l.ellglh) pushes a list* formed by the CH clements onto the stack. f.eflglh should 

be a tixnum . 

. *. 1.lst 
l.ist*-PSIC 

5.2.2. Stack Munipuiation 

Push (h) pushes CH onto the stack. 

Push- PS IC· 
Push -PS I CO 
Push-PSICI 
Push-PSIC2 
Push-PSIC3 
Psuh-NSIC· 
Push-AI... • 
Push-ALO 
Push-ALI 
Push-AL2 
Push-AL3 
Push-AlA 
Push-AL5 
Push-AL6 
Push-AL7 
Push-LongAL 
Push-C· 

• Push-LongC 
Push-S· 
Push-l.ongS • 

• 

Pop (h) pops the stack into E . 

~op-AL • 
Pop-ALO 
Pop-ALI 
Pop-AL2 
Pop-AL3 
Pop-AL4 
Pop-AL5 
Pop-AL6 
Pop-AL7 
Pop-LongAL 

• Pop-S 
• Pop-LongS 
• Pop-Ignore' 

• 

Exchange 0 exchanges the top two elements of the stack. 



c 

c 

o 

RFVISFO IN IVRNAI. I>I'"SI<.iN OF SPI( 'F IISP 

. . 
Exchange 

Copy (h) copies the tup of stack to H. 

Copy -
Copy-AI. 

NPop (M. If N is pusitive. N items are popped off of the stack. If N is negative. N II. is pushed onto the 

stack -N times. N must be a tixnum . 

NPop-Stack • 

NPop-PSIC 
NPop-NSIC 

Bind-Null (I;;') pushes C E (which must be a symbol) and its current value onto the binding stack. and sets 

the value cell of CE to NIL. 

Bind-Null
Bind-N ull-C 

Bind (Value Symbol) pushes Symbol (which must be a symbol) and its current value onto the binding stack. 

and sets the value cell of Symbol to Value. 

Bind
Bind-C 

Unbind (N) undoes the top N bindings on the binqing stack . 

• Unbind 
Unbind-PSIC 

5.2.3. List Manipulation 
Cxxr (L). 'The cxxr of L is pushed onto the stack. L should be a list or NIL. 

Car
Car-AL 
Cdr-
Cdr-AL 
Cadr· 
Cadr-AL 
Cddr • 

Cddr-AL 
Cdar· 
Cdar-AL 
Caar· 



c 

c 

o 

RFVISFD INTFRNAI. IWSI(iN OF SPIl'F I.ISP 

Caar-AL 

Set-C-xxr (!~). The cxxr of ('H is stored in H. ('/:' should be either a list or Nil .. 

Set-Cdr-AI. 
Sct-Cdr-S 
Sct-Cddr-A I. 
Set-Cddr-S 

27 

Set-l.pop (I~). The car of CH is pushed onto the stack: the cdr of CH is stored in H. CF should be a list or 

NIL. 

Set-J .pop-A J • 
Set-I.pop-S 

Spread (l~) pushes the clements of the list C E onto the stack in left-to-right order . 

Spread • 
Spread-AL 

Replace-CXT (List Value) sets the CXT of the List to Value and pushes Value on the stack. 

Rep lace-Car· 
Replace-Car-AL 
Replace-Cdr • 

Replace-Cdr-AI 

Endp (X) pushes T if X is NIL. or NIL if X is a cons. Otherwise an error is signalled . 

Endp • 
Endp-AL 

Assoc (I.istltem).pushes the first cons in the association-list !.ist whose car is r.QL to Item. If the = part of 

the EQL comparison bugs out (and it can if the numbers are too complicated). a Lisp-level Assoc function is 

called with the current cdr of the List. Assq pushes the first cons in the association-list List whose car is EO to 

Item. 
• Assoc 

• Assq 

Member (List Item) pushes the first cons in the list List whose car is EQL to Item. If the = part of the EQL 

comparison bugs out, a Lisp-level Member function is called with the current cdr of the List. Memq pushes 

the first cons in List whose car is EQto the Item . 

Member • 



c 

o 

o 

RFVISFIlINTFRNAI I>FSI(jN OFSPI(,F \.1st> 28 

• Memq 

GetF (I.ist Indicator Dejault) searches for the Indicator in the list I.ist. cddring down as the Common l-isp 

fhrm Get"" would. I f Indicator is found. its associated valuc is pushed. otherwise lJejilull is pushed. 

GetF-

5.2.4. Symbol Manipulation 

Get-Valuc (.\'ymbol) pushes u:)e value of Symbul (which must be a symbol) onto the sUlck. An error is 

signalled if CF is unbound. 

Get-Value • 

Set-Value ( .. ')'ymbul Value) sets the value cell of the symbol Symbul to Value. Value is left on the top of the 

stack. 

Set-Value • 

Get-Definition (Symbol) pushes the definition of the symbol Symbol onto the stack. If Symbol is 

undefined. an error is signalled. 

Get- Definition· 
Get- Definition-C 

Set-Definition (Symbol Definition) sets the dcfinition of the symbol Symbol to Definition. Definitiun is left 

on the top of the stack. 

- * Set- Definition 
Set-Defi nition-C 

Gct-Plist ( .. S;ymbol) pushes the property list of the symbol Symbol onto the stack. 

Get-Plist* 
Get-Plist-C 

Set-Plist (Symbol Plist) sets the propeny list of the symbol Symbol to Plist. Plist is left on the top of the 

stack. 

Set-Plist * 
Set-Plist-C 

Get-Pname (Symbol) pushes the print name of the symbol Symbol onto the stack. 

Get-Pname* 



c 

o 

l I 

RFVISFIlINTFI~NAI IWSIUN OFSPI(,F liSP 29 

G~t-Package C)'ymbo!) pushes the package cell of tl~e symbol Symbol onto the stack. 

Get-Package • 

Set-Package (Symbol /)ackage) selC; the package cell of the symbol .)'ymbol to Package. Package is left on 

the top of the stack. 
* Set-Pac kage . 

Boundp (.\'ymbo!) pushes T if the symbol Symbul is bound: N II. otherwise. 

Boundp * 

Boundp-C 

FBoundp (Symbol) pushes T if the symbol Symbol is defined: N II. otherwise. 

FBoundp· 
FBoundp-C 

5.2.5. Array Manipulation 
Common Lisp arrays have many manifestations in Spice Lisp. The Spice Lisp data types Bit-Vector, 

I nteger-Vector. String. General-Vector, and Array are used to implement the collection of data types the 

Common I jsp manual calls "arrays." 

In the following instruction descriptions, "simple-array" means an array implemented in Spice I.isp as a 

Bit-Vector. I-Vector, String. or G-Vector. "Complex-array" means an array implemented as a Spice Lisp 

Array object. . "Complex-bit-vector" means a bit-ve~tor implemented as a Spice Lisp array: similar remarks 

apply for "complex-string" and so forth. 

Vector-Length (Vector) pushes the length of the one-dimensional Common I.isp array Vecwr, G-Vector

Length. Simple-String-Length. and Simple-Bit-V ector-Length push the lengths .of G-Vectors. Spice Lisp 

strings. and Spicc Lisp Bit-Vectors respectively. Vector should be a vector of the appropriatc type .. 

• V ector-Length 
• G-V ector-Length 

Simple-String-Length • 
• Simple-Bit-V ector-Length 

Get-Vector-Subtype (Vector) pushes me subtype field of the vector Vector as an integer. Vector should be a 

vector of some sort. 
. . 

Get-Vector-Subtype 



c 

o 

RFVISFD INTFRNAI. DFSl(jN OF ~PI(,F I.ISP 30 

Set-Vector-Subtype (Vee/or A) set'i the subtype field of the vector Vee lOr to A. which must be an flxnum. 

Set- Vector-Subtype· 

Get-Vector-Access-Code (Vec/or) pushes the access code of the I-Vector (or Bit-Vector) Vector as an 

integer. 

Get- V ector-Access-Code· . 

Shrink-Vector ( Vector I.eng/h) seL~ the length field and the number-or-entries field of the vector Vector to 
_. 

I.eng/h. If the vector contains Lisp objects. entries beyond the new end are set to Mise-Trap. Pushes the 

shortened vector. l.el1g/h should be a ftxnum. One cannot shrink array headers or function headers. 
. . 

ShrInk-Vector 

Typed-Vref (A Vector f) pushes the fth clement' of the I-Vector Vector by indexing into it as if its 

access-code were A. A and / should be flxnums. 
. . 
fypcd-Vref 

Typed-Vset (A Vector / Value) sets the rth element of the I-Vector Vector to Value indexing into Vector as 

if its access-code were A. A, /, and Value should be flxnums. Value is pushed onto the stack. 
. . 
fyped-Vset 

Header-Length (Object) pushes the number of Lisp objects in the header of the function or array Object. 

This is used to find the number of dimensions of an array or the number of constants in a function . 

Header-Length • 

Header-Ref(Objec/ f) pushes the rth clement of the function or array header Object. I must be a flxnum. 

Header-Ret 

Header-Set (Object I Value) sets the tth clement of the function of array header Object to Value. and 

pushes Value. / must be a tixnum. 

H eader-Set • 

The names' of the instructions used to reference and set elements of arrays are somewhat based on the 

Common Lisp function names. The SVref, Snit. and SChar instructions perform the same'operation as their 

Common Lisp namesakes -- referencing elements of simple-vectors, simple-bit-vectors, and simple-strings 

respectively. Arefl references any kind of one dimensional array_ The names of setting functions are derived 

by replacing "ref' with "set", "char" with "charset", and "bit" with "bitse~" 



c 

C'" 
I 

/ 

, 

c 

RFVISFD INTFRNAI. I>FSIGN OFSPf('F I.ISP 31 

Aref1 (Array f) pushes the rth clement of the one-dimensional array Array. SVref pushes an clement of a 

G- Vector: SChar an clement of a string~ Sbit an clement of a Bit- Vector. I should be a tixnum. 

Aren* 
Are f1 -t\ I. 
SVrer* 
SYref .. PSIC 

. SYref-AL 
SYrcf-PSICO 
SYrcf-PSICl 
SVref-PSIC2 
SYref-PSIC3 
SYref-PSIC4 
SYref-PSIC5 
SChar* 
SChar-AL 
SBit-

Asetl (Array I Value) sets the fth clement of the one-dimensional array Array to Value. SYset sets an 

clement of a G-Yector: SCharset an clement of a string: S Bitset an clement of a Bit-Vector. I should be a 

fixnum and Value is pushed on the stack. 

Asetl* 
Asetl-AL 
SVset* 
SYset-AL 
SCharset* 
SCharsct-AL 
SBitset-

SYset* (Array Value I) sets the fth clement of the G-Yector Array to Value. 'Ine operands to the 

instruction are arranged so that the index can be specified as part of the effcctive address. This could not be 

done in general. of course. because order of evaluation must be preserved. but for constant indices (as used in 

structure accesses) this problem docs not come up. 

SVset*-PSIC 
SVset*-PSICO 
SYset* .. PSICl 
SYsct*-PSIC2 
SYset*-PSIC3 
SYset* .. PSIC4 
SYset* .. PSIC5 

CAref2 (Array II 12) pushes the elct:ricnt (fl, 12) ofthc two-dimensional array Array onto the stack. II and 

12 should be fixnums. CArctJ pushcs thc'clement (II, 12. /3). 



'Ir 

c 

c 

c 

41\1·...;·\,··** .. \ jH!1 IitbtflL6'bJI" :&1"'"1'[ 

I{FVISFD INTFRN"I IWSI(iN OFSPICF J.ISI) 

CArefl 
CAref3 

32 

CAset2 (Array /I 12 Value) set" the clement (II. 12) of the two-dimensional array Array to Value and 

pushcs Value on dlC swck. II and 12 should bc fixnul11s. C"set] sels lhe clcment (II. 12. 13). 

C"set2 
CAset] 

Bit-Bash (VI V2 V30p). VI. V2. and V3 should bc bit-vcctors and Op should be a fixnum. Thc clements 

of the bit vector V3 are filled with the rcsult of Op'ing thc corrcsponding clements of V I and V2. (Jp should 

bc a Hoole-stylc number (sce dlC Boole instruction in section 5.2.7). 

Bit-Rash • 

The rcst of the instructions in this section implement special cases of sequence or string operations. Where 

an operand is referred to as a string. it may actually be an 8-bit I-Vector or system area pointer. 

Byte-BLT (Src-String Src-Start Dst-String Dst-L~'tart f)st-HIld) moves bytes from Src-Strillg into DSI-String 

between f)st-Starr (inclusive) and Dst-End (exclusive). Dst-Start - Dst-F.ndbytcs are moved. If the substrings 

specified overlap. "the ,right thing happens;' i.e. all the characters are moved to the right place. This 

instruction corresponds to the Common Lisp function REPLACE when the sequenccs are simple-strings. 

Byte-BI;r* 

Find-Character (String Start f:nd Character) searches String for the Character from Slart to End. If the 

character is found. the corresponding index into' String is returned. otherwise NIL is returned. This 

instruction corresponds to the Common Lisp function FIND when the sequence is a simple-string. 

Find-Character· 

Find-Character-With-Attribute (SIring Start End Table Mask) The codes of the characters of String from 

Start to End are used as indices into the Table. which is an I-Vector of8-bit bytes. When the number picked 

up from thc table bitwise ANDcd with Mask is non-zcro. the current index into the String is returned . 

Find -Charactcr-With-Attribute • 

SXHash-Simple-String (SIring Length) Computes the hash code of the first Length characters of Siring and 

pushes it on the stack. This corresponds to the Common Lisp function SXHASH when the object is a 

simple-string. The Length operand can be Nil, in which case the length of the string is calculated in 

microcode. 
. . 

SXHash-Simpie-Stnng 



\I • 

o 

c 

o 

RFVISFD INTFRNAI. DFSIGN OF SPICE LISP 

5.2.6. Type Predicates 
Bit- Vector-P (Object) pushes T if Object is a Common I jsp bit-vector or N II. if it is not. 

Bit- Vector-P· 

Simple- Bit-Vector-P «()~i('ct) pushes T if ()l~i('ct is a Spice l,isp hit-vector or Nil # if it is not. 

Simple- Bit-Vector-P • 

Simple-Integer-Vector-P (Object) pushes T if Object is a Spice Lisp I-Vector or NIL if it is not. 

Simple-I nteger-Vector-P· 

StringP (Object) pushes T if Object is a Common Lisp string or NIL if it is not. 
. . 

StrmgP 

Simp\e-String-P (Object) pushes T if Object is a Spice I jsp string or NIL if it is not . 

Simple-String-P • 

BignumP (Object) pushes T if Object is a bignum or NIL if it is not. 

Bignump· 

Long-Float-P (Object) pushes T if Object is a 19n9-float or NIL if it is not. 

I.ong- float-P· 

ComplexP (Object) pushes T if Object is a complex number or NIL if it is not . 

ComplexP • 

RatioP (Object) pushes T if Object is a ratio or NIL if it is not. 

RatioP· 

IntegerP (Object) pushes T if Object is a fixnum Of bignum Of NIL if it is not 

IntegcrP • 

RationalP (Object) pushes T if Object is a fixnum. bignum. or rado. 

RationalP* 

FloatP (Object) pushes T if Object is a short-float or long-float 

FloatP* 

33 



RFVISFD INTFRNAI. DI'~SI(jN OFSPICF I.IS., 34 

NumberP (Object) pushes T if O~iect is a number or NIL ifit is not. 

Numberp· 

General-Vector-P (O~ie('t) pushes T if ()~ie('1 is a Common Lisp general vector or NIL if it is nut. 

General-Vector-P· 

Simple-Vecwr-P «()~ie('t) pushes T if Object is a Spice Lisp G-Vcctor or NIL if it is not. 

Simple-Vector-P· 

Compiled-Functiun-P (Object) pushes T if Object is a compiled function or Nil. if it is not. 

Compiled-Function-P • 

ArrayP (Objec/) pushes T if Object is a Common Lisp array or NIL if it is not. 

ArrayP • 

VectorP (Object) pushes T,if Object is a Common Lisp vector of NIL if it is not. 

Vectorp· 

o Complex-Array-P (Object) pushes T if Object is a Spice Lisp array or NIL if it is not. 

Complex-Array-P • 

SymbolP (Object) pushes T if Object is a symbol or NIl. ifit is not . 

SymbolP • 

ListP (Object) pushes T if Object is a cons or NIL or NIL if it is not. 

ListP· 

ConsP (Object) pushes T if Object is a cons or NIL ifit is not. 

ConsP· 

FixnumP (Object) pushes T if Object is a fixnum or NIL if it is not. 

FixnumP· 

Short-Float-P (Object) pushes T if Object is a short-float or NIL if it is not. 
. . 

Short-Float-P 

o CharacterP (Object) pushes T if Object is a character or NIL if it is not. 



c 

c 

c 

jL',U'd""LI,'HjJ.lj+,"jl""l"lplli p:" dTk,'". jLP:"[' "'["]['N' "' 't'IIYIl U"''P" " '"' -

RFYISFD INTFRNAI IWSIUN OFSPICF LISP 35 

CharacterP • 

5.2.7. Arithmetic and Logic 

I nteger-I.ength «()~;eC:/) pushes the integer-length (as defined in the Common I -isp manual) of the integer 

()~;('('I onto the smck. 

1t1lcger-l.ength • 
I nteger- Length-A I. 

Float-Short (()~;e('l) pushes a short-float corresponding to the number Object. 

Float-Shon • 

1-1oat-Long (Number) pushes a long float formed by coercing Number to a long float. This corresponds to 

the Common I jsp function Float when given a long float as its second argument. 

rloat-Long • 

Realpan (Number) pushes the realpart of the Number . 

Realpart • 

Imagpart (Number) pushes the imagpart of the Number . 

Imagpart • 

Numerator (Number) pushes the numerator of the rational Number. 

Numerator • 

Denominator (Number) pushes the denominator of the rational Number . 
• Denominator 

Decode-Float (Number) performs the Common Lisp Decode-Float function. leaving 3 values and a Values

Marker on the stack . 

Decode-Aoat • 

Scale-Float (Number X) performs the Common Lisp Scale-Float function. pushing the result on the stack. 

Scale-Float • 

= (X Y) pushes T if X and Yare numencally equal. or NIL if they are not. If an integer is compared with a 

flonum, the integer is floated first: if a short flonum is compared with a long tlonum, the short one is first' 

extended. Flonums must be exactly identical (after conversion) for a non-null comparison. < and> are 



.hllI*,w ..... wVrli#1' "' .. t l" "dUM"!!'! Y'Il"! J IJIi" t·" +'..u;UI';·'"J.,ii!.,'"Ut 4Lu,.lli!JI':';ILj"+¥I4I!!I'IWj[fl"l""'H orlld"'J"lCItnJgu onltll!, 

c 

o 

c 

R FV ISF!) I NTFR NA I I >FSIG N OF SPI(,F US., 

simi1ar. 

* = 
=-AI. 
=-PSIC 
(* 

(-AI. 
(-PSIC 
>* 
>-A I. 
>-PSIC 

Truncate (N X) performs the Common I jsp TRUNCATE operation. There are 3 cases depending on X: 

• If X is fixnum 1. push three items: a fixnum or bignum representing the integer part of N 
(rounded toward 0). then either 0 if N was already an integer or the fractional part of N 
represented as a tlonum or ratio with the same type as N. then Values-Marker 2 to mimic a 
multiple return of two values. 

• If X and N are both fixnums or bignums and X is not 1. divide N by X. Push three items: the 
integer quotient (a fixnum or bignum). the integer remainder. and Values-Marker 2. 

• If either X or N is a tlonum or ratio, push a fixnum or bignum quotient (the true quotient rounded 
toward 0). then a tlonum or ratio remainder. then push Values-Marker 2. The type of the . 
remainder is determined by the same type-coercion rules as for +. The value of the remainder is 
equal to N - X * Quotient. 

36 

If Truncate uses the escape-to-macro mechanism (see section 6.3). it builds a multiple-value frame header 

rather than an escape header. 

Truncate-
Tru ncate-AI.. 
'rruncatc-PSIC 

+ (N X) pushes N + X. -. *. and I are similar. 

* + 
+-AL 
+-PSIC 
+-PSICI 
• 

--AL 
--PSIC 
--PSICI .* 
*-AL 
*-PSIC 
1* 
I-AL 



o 

c 

o 

, I 41 ..lj,T'.Jri,:.JL'r! ,"ILL jl"llijLh.l""'"!U"N.LlH!!J'I! [II"! 'r-'·· 

RFVISFD INTERNAl DFSIGN OF SIlI( 'F I ,1St> 

/-PSIC 

1+ (I-.) stores Ch' + 1 into H. 

1+-AI. 

1- (h) stores CH - 1 into H. 

l--AI. 

-Negate (N) pushes -N. 

Negate • 

Negate-AI. 

Abs (N) pushes INf. 

Abs -
Abs~AL 

Logand (N X) pushes the bitwise and of the integers Nand X. I.ogior and Logxor are analagous. 

Logand -
Logior-
Logxor • 

J .ognot (N) pushes the bitwise complement of N. 

Lognot • 

37 

13oo1e (Op X y) perfomis the Common Lisp Boole operation Op on X. and Y. The Roole constants for 

Spice 1 jsp are these: 

boole-clr 
boole-set 
boole-1 
boole-2 
boole-c1 
boole-c2 
boole-and 
boole-;or 
boole-xor 

. boole-eqv 
boole-nand 
boole-nor 
boole-andcl 
boole-andc2 
boole-orc1 
boole-orc2 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 



o 

0 ,\ 
'" c,··1 

RFVISFD INTFRNAI IlFSI(jN OFSPI<'F liSP 38 

Boole • 

Ash (N J) perfonns.the Common Lisp ASH operation on Nand X • 

• Ash 
Ash-PSIC 

I.db (.\' P N). All args are integers: .~' and P are non-negative. Performs the Common l.isp I.DB operation. 

with Sand P being the size and position of the byte specifier . 

Ldb • 

Mask-Field (S P N) performs the Common I -isp Mask-Field operation with Sand P being the size and 

position of the byte specifier. 

Mask-Field· 

Opb ( V S P N) performs the Common Lisp lJPB operation with Sand P being the size and position of the 

byte speci fier . 

Dpb • 

Deposit-Field (V S P N) performs the. Common Lisp Deposit-Field operation with Sand P as the size and 

position of the byte specifier . 

Deposit-Field • 

I.sh (N X) pushes a fixnum that is N shifted left by. X bits. with O's shifted in on the right. If X is negative. N 

is shifted to the right with O's coming in on the left. Roth N and X should be fixnums . 

Lsh • 

Lsh-PSrC 

Logldb (S P N). An args are fixnums. Sand P specify a "byte" or bit-field of any length within N. This is 

extracted and is pushed right-justified as a fixnum. S is the length of the field in bits; P is the number of bits 

from the right of N to the beginning of the specified field. P = 0 means that the field stans at bit 0 of N, and 

so on. It is an error if the specified field is not entirely within the 28 bits of N 

Logldb • 

Logdpb (V S P N). All args are fixnums. Pushes a number equal to N. but with the field specified by P and 

S replaced by the S low-order bits of V. It is an error if the field docs not fit into the 28 bits of N. 

Logdpb • 



c 
R FV ISFD I NTFR NA I , DFSIG N OF SPICF I.ISP 39 

5.2.8. Branching and Dispatching 

Branch instructions add or subtract a 1 or 2 byte a relative offset to the PC after the branch instruction and 

the offset bytes have been fetched. The opcode determines the direction of the branch and the number of 

off.l\et bytes to be fetched. 

Branch-Forward (Offset) adds the 1 byte Offset to the PC. I.ong-Branch-Forward adds a 2 byte Offset. 

Branch-Backward and I.ong-Branch-Backward subtract 1 or 2 byte Offsets. 

Branch-Forward-
I.ong- Branch-Forward -
Branch-Backward-
I.ong-Branch-Backward -

Branch-Null (Offset) pops the top item off the stack and branches ifit is NIL; Branch-Nat-Null branches if 

it is not null. 

Branch-NuB-Forward
I.ong- Branch -N un-Forward
Branch-Not-Nul1-Forward~ 
Long-Branch-Not-Nul1-Forward 

. -Branch-Nul1-Backward 
. . 

Long- Branch-N ulI- Backward 
Branch- Not- N ull-Backward-

• 

Long- Branch-Not-N un- Backward • 

Branch-Save-Not-Null (Offset) looks at the value in TOS. ·Ifit is Nil. the stack it is popped off the stack and 

we fall through. Otherwise the stack is left as is and we take the branch. 

Branch-Save-Not-Null-Forward
I.ong-Branch-Save-Not- Null-Forward
Branch-Save-N(}t-Null- Ilackward-
Long-Branch-Save-Not- N ull- Ilackward -

Dispatch O. The top of stack (rOS) is used as an index into a dispatch table located in the current code 

vector. The next byte in the instruction is a limit If TOS is not' a fixnum. a fixnum less than 0, or a fixnum 

greater than or equal to the limit, no branch happens and we fall through. continuing with the next 

instruction. If TOS is within the specified bounds. however. it is added to a 16-bit number fonned by 

fetching the next 1 or 2 bytes from the instruction stream. This result is used as an index into the code vector, 

and a 16-bit word is fetched from that memory location. The offset into the current code vector is set to this 

word. The stack is popped whether or not we branch. 

. . 
Dispatch 

. -Long-DIspatch 



c 
R FVISFIlINTFR NAI I>FSI(j N OF SPICE I.ISP 40 

5.2.9. Function Call and Return 

Call (I.). F must be some son of executable function: a function object. a lambda-expression. or a symbol 

with onc of thcse stored in iL'i function cell. ;\ call frame flu- this function is opened. This is explained in 

more dewil in the next chapter. 

Call· 
Call-C 
Call-AI.. 

Call-O ("). F must he an executahle function, as above. but is a function of 0 arguments. Thus. there is no 

need to collect arguments. The call frame is opened and activated in a single instruction. 

Call-O· 
Call-O-C 
Call-O-AL 

Can-Multiple (f). Just like a Call instruction. but it sets bit 21 of the frame header ~ord to indicate that 

multiple values wil1 be accepted. See section 6.1.4. 

Call-Multiple -
Call-Multiple-C 
Call-MultipJe-AL 

Start-Call 0 closes the currently <)pen can frame, and initiates a function call. See section 6.1.2 for details. 

Start-Call-

Push-Last (X) pushes X as an argument. closes the currently open call frame, and initiates a function call. 

See section 6.1.2 for details. 

Push-Last-AL 
Push-Last-C 
Push-Last-S 
Push- Last-PSIC 

Return (X). Return from the current function call. After the current frame is popped ofT the stack. X is 

pushed as the result being returned. Sec section 6.1.3 for more details. 

Return
Returri-C 
Return-AL 

o Escape-Return (X). If the current call frame has an escape frame header. this works like a normal return, 

but the value X is put in the· destination indicated in the header rather than just being returned on the stack. 



. , 

c 

c 

RFYISFD INTFR NAI I>I'"SKiN OF SPIC'F liSP 41 

I f the current frame is not an escape frame. just retll~n the single value on the swck as a ,(}rmal return would. 

Esca pe-R etu rn * 

Break-Return O. I f the header of the current call frame indicates a break frame. do a Return. but push no 

return value on the stack. If the current frame is not an escape frame, return NIl.. 

Break-Return • 

Catch 0 builds a'catch frame. The top of sUlek should hold the tageaught by this catch frame. and the next 

entry on the stack should be a saved-format PC (which wilt come from the constants vector of the function). 

See section 6.2 for details. 

Catch * 

Catch-Multiple 0 builds a multiple-value catch frame. The top of stack should hold the tag caught by this 

catch frame, and the next entry on the stack should be a savedeformat PC. See section 6.2 for details. 

Catch-Multiple -

Catch-All 0 builds a catch frame whose tag is the special Catch·An object. The top of stack should hold the 

saved-format PC, which is the address to branch to if this frame is thrown through. See section 6.2 for details. 

Catch-AlI-

Throw (X). X is the throwetag, normally a symbol.. The value to be returned. either single or mUltiple, is on 

the top of the stack. See section 6.2 for a description of how this instruction works. 

Throw
Throw-C 

5.2.10. Miscellaneous 

Eq (X Y) pushes T if X and' Yare the same object. NIL otherwise. 

Eq

Eq-AL 
Eq-C 

Eql (X Y) pushes T if X and Yare the same object or if X and Yare numbers of the same type with the 

same value, NIL otherwise. 

Eql
Eql-AL 



R FV ISFD 1 NTFR NA I. DFSIG N OF SPIC'F I.lSP 

Eql-C 

Set- Null (h) set<; ('H to Nil.,. 

Set-Nun· 
Set-Null-AI, 

Set-T (h) sets CH to T. 

Set-T· 
Set-T-AL 

Set-O (h) sets C H to O. 

Set-O· 
Set-O-AL 

Make-Predicate (X) pushes NIL if Xis NIL orT ifit is not~ 

Make-Predicate • 
Make-Predicate-AL 

Not-Predicate (X) pushes T if Xis NIL or NIL if it is not. 

Not-Predicate • 
Not-Predicate-AL 

42 

Values-To-N (V). V must be a Values-Marker. Returns the number of values indicated in the low 24 bits of 

Vas a fixnum. 

Values-To-N 

N-To-Values (N). N is a flxnum. Returns a Values-Marker with the same low-order 24 bits as N. 

N-To-Values 

Force-Values o. If the top of the stack is a Values-Marker, do nothing; if not, push Values-Marker 1. 

F orce-Values 

Flush-Values O. If the top of the stack is a Values-Marker, remove this marker; if not, do nothing. 

Flush-Values 

c 



ell 
,'I 

o 

o 

,k'6"" jl,lijljlfb8H ,w;U,I,L;:';W!"fttNn' TPm OJ]! P' "J 'Ii !&liItIJdid.DJf' WIll"' ,,"!II!- :u.W!W U'W \llfi"!!" [f!lf[ !!PO W . E""[" "!'!"! II II !l1E'!N III Ulnn!]! PHil W![!l' PH " .. nUll!! 'pg"'. 

RFVISFD INTERNAl. DFSIGN OJo'SPIC'E LISP 

5.2.11. System Ilacking 

GCl-Typc (Object) pushcs thc fivc typc bits of thc Object as a fixnum. 

Gct-'I'ype • 
Gct-Type-t\ L 

Gct-Space (()~iec!) pushes the two space bits of O~iecl as a tixnum. 

Get-Space * 

Make-Immediale-Type (X""A) pushes an object whosc typc bits arc thc integcr A and whosc other bits come 

from the immediate object or pointer X. A should be an immediate type code. 

Make-Immediate-Type * 

8bit-System-Ref(X n. If X is an I-Vector. pushes the fth byte of X, indexing into X as an 8-bit I-Vector. If 

X is a system area pointer, pushes the fth byte beyond X as a fixnum. I must be a fixnum. 

8bit-System-Ref 

8bit-System-Set (X I V). If X is an I-Vector, sets the 1th clement of X to V, indexing into X as an 8-bit 

I-Vector. If X is a system area pointer, sets the fth byte beyond Xto V. 

8bit-System-Set 

16bit-System-Ref (X n. If X is an I-Vector. pushes the fth 16-bit word of X, indexing into X as a 16-bit 

I-Vector. If X is a system area pointer, pushes the fth word beyond X as a fixnum. I must be a fixnum. 

16bit-System-Ref 

16bit-System-Set (X I V). [f X is an I-Vector, sets the fth clement of X to V, indexing into X as a 16-bit 

I-Vector. If X is a system area pointer, sets the fth w,ord beyond X to V. 

16bit-System-Set 

Collect-Garbage 0 causes a stop-and-copy GC to be performed. 

Collcct-Garbage 

Newspace-Bit 0 pushes 0 ifnewspace is currently space 0 or 1 ifit is l. 

Newspace-Bit 

SetaNewspace-For-Type (type space) sets the next newspace free pointer for the type corresponding to the 

type number to the space corresponding to the space number. There is about one useful thing that you can do 

with this instruction; see section 4.3. There are a number of not-so-useful but very fun things that you can do 



-----~ ~ ... ----~.-.~ .. - .. ~---.--.~-... 

RFYISFD INTFRNAI. DFSI(iN OF SPIC'F I.lSP 44 

with this instruction that arc not documented here. 

Set-Newspace-For-'rype 

Kerncl-Tr.ap (Argb/ock Code) is for communication with the "ccent Kernel. Code is the type of trap 

desired (a fixnum). and Argb/ock is an I-Vector containing assorted argument information. See section 6.S fhr 

details. 

Kernel-' rrap 

Halt 0 stops the execution of I -isp. I f continued. T is pushed on the stack. 

Halt 

"rg-In-Frame (N "). N is a fixnum, F is a control stack pointer as returned by the Active-CalI-Frame and 

Open-Can-Frame instructions. Pushes the item in slot N of the args-and-Iocals area of call frame F. 

Arg- In-Frame 

Active-Call-Frame () pushes a control-stack pointer to the start of the currently active can frame. This will 

be of type Misc-Control-Stack-Pointer. 

Active-CaIl-Frame 

Active-Catch-Frame () pushes the control-stack pointer to the start of the currently active catch frame. ~is 

is Nil if there is no active catch. 

Acti ve-Catch -Frame 

Set-CalI-Frame (P). P must be a control stack pointer. This becomes the current active ca11 frame pointer. 

Set-Call-Frame 

Current-Open-Frame () pushes a control-stack pointer to the start of the currently open call frame. This 

will be of type Misc-Control-Stack-Pointer. 

Current-Open-Frame 

Set-Open-Frame (P). P must be a control stack pointer. This becomes the current open frame pointer. 

Set-Open-Frame 

Current-Stack-Pointer 0 pushes the Misc-Control-Stack-Pointer that points to the current top of the stack 

(before the result of this operation is pushed). Note: by definition, this points to the first unused word of the 

stack, not to the last thing pushed. The stack manipulation instructions make it appear as if the stack is all in 

contiguous virtual memory. despite the fact that the TOS register will be holding the top word of the stack. l~ .. ~ .. ·.'\ I', 

,)/ 



c 

C\ 
/ 

/ 

c 

.. ';.d...j 'di dHi+ 14tL+"d .'! 

RFVISFD INTFRNAI. DFSIGN OFSPICF I.ISP 45 

Current-Stack-Pointer 

Current-Binding-Pointer () pushes a Misc-Binding-Stack-Pointcr that points to the first word above the 

current top of the binding stack. 

Cll rren t- Bi nd i ng-Poi nter 

Read-Control-Stack (I'). F must be a control stack pointer. Pushes the I -isp object that resides at this· 

location. I f the addressed object is totally outside the current stack. this is an error. 

Read-Control-Stack 

Write-Control-Stack (F V). F is a stack pointer. V is any Lisp object. Writes V into the location addressed. 

If the addressed cell is totally outside the current stack. this is an error. Obviously. this should only be used 

by carefully written and debugged system code. since you can destroy the world by using this instruction. 

Write-Control-Stack 

Read-Binding-Stack (B). B must be a binding stack pointer. Reads and returns the Lisp object at this 

location. An error if the location specified is outside the current binding stack. 

Read- Hi nding-Stack 

Write-Rinding-Stack (B V). B must be a binding stack pointer. Writes V into the specified location. An 

error if the location specified is outside the current binding stack. 

Write-Binding-Stack 

- l:? 



RFVISFD INTERNAl .. DESIGN OF SPICE I.lSP 46 

6. Control Conventions 

6.1. Function Calls 

6.1.1. Starting a Function Call 

The Call and Call-Multiple instructions open a call frame on the control sUlck. but do not transfer control to 

the called function. The arguments for the function are then evaluated and pushed on the stack. and the call 

is started by a Push-I.ast instruction. Call-Multiple set~ bit 21. the multiple-values-accepted bit. of the call 

frame to indicate that it will accept multiple-values. Call-O opens the cal1 frame and does the equivalent of a 

Start-Call instruction (see below) to start the called function. All these instructions take the function to be 

called as CEo 

If CE is a symbol. we fetch the contents of the symbol's definition cell. If it is a Mise-Trap or another 

symbol, we signal an error. Otherwise, we go on with this definition as the function. We do not allow chains 

of symbols defined as other symbols. If CE is a compiled function, we perform the following steps: 

1. Note the current value of the Control-Stack-Pointer register. 

2. Push a Call-Frame-Header on control stack (with bit 21 set if this is a Call-Multiple). 

3. Push C E (the function being called). 

4. Push the Active-Frame register. 

5. Push the Open-Frame register. 

6. Push Binding-Stack-Pointer. 

7. Push Fixnum -lor some other easy-to-generate value. This will later be filled with caller's PC. 

8. Open-Frame < = = Stack frame pointer saved in step 1. 

The open frame is now ready to have arguments pushed. 

If CE is a list. it is probably a lambda-expression or interpreted lexical closure. The call proceeds as above, 

with the list stored in the function slot of the new frame. '{be arguments are pushed normally, and %SP

Internal-Apply will be called when the Push-Last is executed. %SP-Internal-Apply verifies that this function 

is a lambda or lexical closure. 

If C E is anything else, an Illegal-Function error is signalled. 

-----_ .. _---------------------_ .. _-------- --------------~ 

o 



Jj,ii' ' , ... ..w, d~!.M til' 'tI,l WA++ "'JI \Ml/+h', .. Ibm \'1'1 I,H 'IWN'Jlh\!lrlldlld' " ,{ i- kl" "'"11 "1l1+""lll"lliQi,rw:" f!lI[-Jrl!!T'I(U'I'lJ)'mll! [['T""' !IIf' ",..J'BrM'" 

o 

o 

o 

RFYISFD INTFRNAI. IWSIGN OF SPICE I.ISP 47 

6.1.2. Finishing a Function Call 

Push-I,ast pushes a final argument X and starts the function responsible for the current open frame. 

SUlrt-Call just St4lrts the function. Call-O opens the frame and performs the equivalent of a Start-Call 

immediately, since there are no arguments to push. 

We look at the function entry of the current open frame. If this contains a compiled function object. 

proceed as follows: 

1. Insert the current PC (points to the NEXT instruction of the caller's code vector) in the PC slot of 
the open frame. 

2. Active-Function < = = Called function (from slot 1 of open frame). 

3. Active-Code < = = Code vector for new active function. 

4. Active-Frame <= = Open-Frame 

5. Note number of args pushed by caller. Let this be K. We must now compute the proper entry 
point in the called function's code vector as a function of K and the number of args the called 
function wants. 

a. Ifnumber ofargs < minimum. signal an error. 

b. If number of args > maximum and no &REST arg is allowed, signal an error. 

c. I f number of args > maximum and a &REST arg is present, pop excess args into a list, push 
this list back on stack as the &REST argo and start at offset O. 

d. If number of args is between min and max (inclusive), get the starting offset from the 
appropriate slot of the called function's runctionobject. This is stored as a fixnum in slot K 
- MIN + 6 of the function object. 

6. Set up the new" PC to point at the right place in the code vector and return to the macro-code 
execution loop to run the new function. This involves setting up PC, the BPC. and refilling the 
instruction buffer. 

If the object in the function entry is a list instead of a function object. we must call %SP- Internal-Apply to 

interpret the function with the given arguments. We proceed as follows: 

1. Note the number of args pushed in the current open frame (call this N) and the frame pointer for 
this frame (call it F). Also remember the lambda-expression in this frame (call it L). 

2. Perform steps 1 - 4 of the sequence above for a normal Start-Call. 

3. Perform the equivalent of a Call-Multiple instruction with the symbol %SP-Inte"mal-Apply as CEo 
(This symbol is in a fixed location known to the microcode. See section 2.9.) 



RFVISFD INTFRNAI, IWSIGN OF SPiel' I.lSP 48 

4. Push L N. and F in that order as the three arguments to %SP-Internal-Apply. 

5. Perform the equivalent of a Push-Last-Stack to start the call. 

%SP-Internal-Apply, a function of three arguments. now evaluates the call to the lamhda-cxpression or 

interpreted lexical closure I., obtaining theargumcnts from the frame pointed to by F. Thesc argumcnts are 

obtained using the Arg-In-Frame instruction. Prior to returning %SP-Internal-Apply set~the AClive-Frame 

register to F. so that it rew rns from frame F. 

6.1.3. Returning from a Function Call 

Return returns from the current function. popping the stack frame and pushing some number of returned 

values. If CH is a Values-Marker but bit 21 is not on in the current call frame. only one value is returned. If 

bit 21 is on. either multiple values or a single value will be returned. The steps are as follows: 

1. Pop binding stack back to value saved in slot 5 of the active control frame. For each symbol/value 
pair popped off the binding stack, restore that v~lue for the symbol. 

2. Temp < = = Previous active frame from slot 3 of current frame. 

3. Open-Frame < = = Saved value in current frame. 

4. PC < = = Saved value in current frame. This requires setting up the internal PC, the BPC, and 
the instruction buffer. 

5. Active-Function < = = Saved value from previous frame. A pointer to this frame is in Temp. 

6. Active-Code <= = Code Vector obtained from entry in restored Active-Function object. 

7. Pop current frame off stack: 

Control-Stack-Pointer < = = Active- Frame. 
Active-Frame <= = Temp. 
Pop top of stack into TOS register. Since the active frame is inside 

the barrier, make sure the new top frame has been scavenged. or do it now. 

8. Push the return value onto the stack. 

9. Resume execution of function popped to. 

6.1.4~ Returning Multiple-Values 

Ifbit 21 is on in the current frame and a Values-Marker indicating N values is on the top of the stack, we 

proceed as follows: 

1. Note the value of the current stack pointer (after CE is popped off if it came from the stack) as 
OLDSP. . 

2. Perform steps 1 - 7 of the Return procedure described above.· 

. , 



w++lc LH6 ",-'Ll."u.:4,""\"j4.jj'¥\Jlz'u .u;:LU.\J"" Wd 1dlL" "['"[11 [0" 'TC! '''WT!i[!!!! pTrIP[[)"!'U'!" "!!"WI'"" In!l'flH'J"[['H1!l 

REVISPD INTFRNAlllFSIGN OFSPICF I.ISP 49 

0
'1 3. Do a block transfer loop pushing the N words starting at (OI.DSP) - N onto the stack as return 
/ values. Then push the original CF. which is Values-Marker N. 

o 

c 

4. Resume execution of the caller. 

To do (MUL.TTPL E-VALUE-L 1ST (FOO A B». we could usc this sequence of instructions: 
(CALL-MULTIPLE (CONSTANT [FOO]» 
(PUSH [A]) 
(PUSH-LAST [B]) 
(FORCE-VALUES) 
(VALUES-TO-N STACK) 
(LIST STACK) ;Pop N from stack i then listify N things. 

To do (MUL TI PLE -VALUE -SETQ (X Y Z) (FDa A B», we could usc this code: 
(CALL-MULTIPLE (CONSTANT [FDa]» 
(PUSH [A]) 
(PUSH-LAST [B]) 
(FORCE-VALUES) 
(VALUES-TO-N STACK) 
(- (CONSTANT [3]» 
(NPOP STACK) 
(POP [Z]) 
(POP [V]) 
(POP [X]) 

;Get number offered - number wanted. 
;Flush surplus returns or push NILs. 
;Now put the three values wherever they 
; are supposed to go. 

In tail recursive situations. such as in the last form of a PROGN. one function, FOa, may want to call 

another function, Bt\R. and return "whatever Bt\R returns." Call-Multiple is used in this case. If BAR 

returns multiple values. they will all he passed to FOO. If Faa's caller wants mUltiple values, the values will 

be returned. If not. FOO's Return instruction will see that there are multiple values on the s~1ck, but that 

mUltiple values will not be accepted by FOO's caller. So Return will return only the first value. 

6.2. Non-Local Exits 

The Catch and Unwind-Protect special forms are implemented using catch frames. Unwind-Protect builds 

a catch frame whose tag is the Catch-All object. The Catch instruction creates a catch frame for a given tag 

and PC to branch to in the current instruction. The Throw instruction looks up the stack by following the 

chain of catch frames until it finds a frame with a matching tag or a frame with the Catch-All object as its tag. 

If it finds a frame.with a matching tag, that frame is "returned from," and that function is resumed. If it finds 

a frame with the Catch-All object as its tag, that frame is "returned from," and in addition, %SP-Internal

Throw-Tag is set to the tag being searched for. So that interrupted cleanup forms behave correctly, %SP

Internal-Throw-Tag should be bound to the Catch-All object before the Catch-All frame is built The 

protected fonns are then executed, and ~f %SP-Internal-Throw-Tag is not the Catch-All objec~· its value is 

thrown to. Exactly what we do is this: 



RFVISFI> INTFRNAI.IWSIGN OF SPICE LISP 

1. Put the contents of the Active-Catch register in~o a register, A. Put N II. in to another register, B. 

2. If A is Nil .• the tag we seek isn't on the stack. Signal anUnseen-Throw-'i'ag error. 

3. Look at the tag for the catch frame in register A. I fit's the t4lg we're looking for, go to step 4. Ifit's 
the Catch-A II object and B is N II., copy A to B. Set A to the previolls catch frame and go back to 
step 2. 

4. If B is non-N I L. we need to execute some cleanup forms. Return into B's frame and bind 
%SP-Internal-Throw-Tag to the tag we're searching for. When the cleanup forms are finished 
executing, they'll throw to this tag again. 

5. If B is NIL. return into this frame, pushing the return value (or BLTing the mUltiple values if this 
frame has bit 21 set and there are multiple values). 

50 

If no form inside of a Catch results in a Throw, the catch frame needs to be removed from the stack before 

execution of the function containing the throw is resumed. For now, the value produced by the forms inside 

the Catch form are thrown to the tag. Some sort of specialized instruction could be used for this, but right 

now we'll just go with the throw. The branch PC specified by a Catch instruction is part of the constants area 

of the function object, much like the function's entry points. To do 
(catch 'foo 

(baz) 
(bar» 

we could use this code: 

To do 

(PUSH (CONSTANT [PC-FOR-TAG-l]» 
(PUSH (CONSTANT [FOO]» 
(CATCH STACK) 
(CALL-O (CONSTANT [BAl]» 
(POP IGNORE) 
(CALL-O (CONSTANT [BAR]» 
(PUSH (CONSTANT [FOO]» 
(THROW STACK) 
TAG-l 

(unwind-protect 
(baz) 
(bar» 

we could use this code: 

o 

o 



c 

c 

c.:: 
, , 

I I !. d Llj#H b"irlriS Jhrl,,;,]J;;r{ il¥"" "UW"'iLiri4Irl&6" '"["' 'ljTH;'l"l.I[T 1'""!\Irli!UI"lb In"mp i 1"r"' IP"!!DJ""'Q'"'Wi' It""I'a" 

R FY ISFD I NTFR N A I. I >FSIG N OF SPICE I.ISP 51 

(PUSH (SYMBOL %CATCH-ALL-OBJECT» 
(PUSH (CONSTANT %SP-INTERNAL-THROW~TAG» 
(BIND STACK) 
(PUSH (CONSTANT [PC-FOR-TAG-l]» 
(CATCH-ALL STACK) 
(CALL-O (CONSTANT [BAZ]» 
(PUSH (SYMBOL %CATCH-ALL-OBJECT» 
(THROW STACK) 
TAG-l 
(CALL-O (CONSTANT [BAR]» 
(POP IGNORE) 
(PUSH (SYMBOL %CATCH-ALL-OBJECT» 
(EQ (SYMBOL %SP-INTERNAL-THROW-TAG» 
(BRANCH-NOT-NULL TAG-2) 
(PUSH (SYMBOL %SP-INTERNAL-THROW-TAG» 
(THROW STACK) 
TAG-2 

6.3. Escaping to Macrocode 

Some instructions can be complex (e.g. * given a long-float and a bignum), and with limited microstore 

(and microprogrammer time) on the PERQ. we would like to handle these in I jsp code. "Such cases could be 

handled by a full-scale microcode-to-macrocode subroutine call. which upon a return comes back to the 

designated return address in the microcode and restores any micro-state that may have been clobbered. This 

may ultimately be needed if we ever implement a micro-compiler for lisp. but for now we can get by with a 

simpler scheme. If the microcode for any macro-instruction decides that it has a case too difficult to handle. it 

can call a macrocoded function that does whatever the original macro-instruction was supposed to do. It does 

this by opening an escape-type frame on the control stack. pushing an appropriate set of arguments. and then 

starting the call as though a push-last had been done in macrocode. 

When the macrocoded escape function returns (the Escape-Return instruction must be used for this return) 

the single returned value goes wherever the original macro-instruction was supposed to place its result:.. and 

the original instruction stream continues on as if the macrocode instruction had exited normally without an 

escape. 

Instructions can place their return values in any of several destinations. The escape call must set up the 

frame header word to indicate which of these locations is to get the value returned by the macro-coded escape 

function. An appropriate effective-address code is stored in bits 16-17: 

o Stack 

lAL 

The result is pushed onto the stack. 

The result is put into the arguments/locals area of the current call frame. Bits 0-15 contain 
a 16-bit offset. 



RFVISFD INTI:RNAI. DFSIGN OF SPI(,F I JSP 52 

2 Symbol The result is put into the value cell of a symbol in the symbols and constants area of the 
current function object. BiL" 0-15 contain a 16-bit offset. 

3 Ignore The result is thrown away. 

Given this infol1nation in the frame header, Hscape-Return will do the right thing to make it appear that the 

original instruction had exited normally. 

Some instructions. notably Truncate. may want to return multiple values from an escape function. These 

values will always be returned on the stack. In this case, the escape mechanism builds a multiple-value can 

frame rather than an escape call frame, then escapes in the usual way. The escape routine for Truncate is 

exited using a normal Return instruction. 

A table of pointers to the Lisp-level escape functions is stored in a fixed location in virtual memory, and the 

address of the start of this table is known to the microcode. This means that microcode routines can select the 

desired function by means of a table index, and it is not necessary to assemble the addresses of all these 

functions into the microcode. 

The escape mechanism is implemented by a micro-subroutine named ESCAPE. which can be called (or 

rather, jumped to, since ESCAPE never returns to the caBer) by any microcode that wants to escape to 

macrocode. ESCAPE is passed the index of the macro-function to be called and from 0 to 4 lisp objects as 

arguments on the PERQ E-Stack. ESCAPE then performs the following steps: 

l. It is determined where the currently executing instruction is going to place its result, and an 
appropriate escape-type call header word is generated. 

2. A pointer to the desired function object is fetched from the table of escape functions. as 
determined by the index that was passed to ESCAPE~ 

3. The equivalent of a Call instruction is executed for this function object, but the header word 
determined in step 1 is used instead of the normal header word. 

4. The specified arguments, if any, are pushed onto the control stack. The new function is then 
started by executing the equivalent ofa Push-Last instruction. 

A second entry point. ESCAPE-MULTIPLE. does the same thing as ESCAPE but creates a multiple-value 

frame header instead of an escape frame header. 

c 

c 



o 

o 

o 

··.r6d-JIi,,;,wLli. ..... ;,..+L+1fnpr"mr· Jr''''" .. ","" '[iqrnfllnUK"!!Wf'''''"M''"fWY'i1'''1I!i 

I~FVISFn INTFRNL\I. DFSIGN OF SPICF I.ISP 53 

6.4. Errors 

When an error occurs during the execution of an instruction. a call to %SP-Internal-Error is perfOimed. 

This call is a break-type calt. so if the error is proceeded (with a Hreak-Return instruction). no value will be 

pushed on the stack. 

%SP-Internal-Error is passed a fixllum error code as its first argument. The second argument is a fixnum 

off.'iet into the current code vector that points to the location immediately following the instruction that 

encountered the trouble. From this offset. the l.isp-Ievel error handler can reconstruct the PC of the losing 

instruction. which is not readily available in the micro-machine. Following the offset. there may be 0 - 2 

additional arguments that provide information of possible usc to the error handler. For example. an 

unbound-symbol error will pass the symbol in question as the third argo 

A Lisp-I.evel error handler may want to provide a result for the instruction. It can find the losing 

instruction in the way described above. and look at it's opcode to find the destination. The error handler 

could then store the user-supplied result in the specified place and proceed executing the errorful function at 

the instruction after the losing instruction. 

The following error codes are currently defined. Unless otherwise specified. only the error code and the 

code-vector offset are passed as arguments. 

The following table is pretty bogus. After the microcode is written~ and I know ,,-hat errors are really 

generated. I'll make a newer table. 

1 Control Stack Overflow 
The control stack has exceeded the allowable size. currently 224 words. 

2 Control Stack Underflow 
Can only result from a compiler bug or misuse of an instruction. 

3 Binding Stack Overflow 
The binding stack has exceeded the allowable size. currently 224 words. 

4 Binding Stack Underflow 
Can only result from a compi1er bug or misuse of an instruction. 

5 Virtual Memory Overflow 
Some data space has exceeded the maximum size of its segment in virtual memory. 

6 Unbound Symbol 
Attempted access to the special value of an unbound symbol. Passes the symbol as the 
third argument to %Sp-Internal-Error. 



RFVISFD INTERNAL DFSIGN OF SPICF I.ISP 54 

7 Undefined Symbol 
Attempted access to the definition cell of an undefined symhol. Passes the symbol as the 
third argument to %Sp-Internal-Error. 

8 Unused. 

9 Altering T or NIL 
Attempt to bind or setq the special value ofT or NH ,. 

10 Unused. 

11 Write Into Read-Only Space 
Sel f-explanatory. 

12 Object Not Character 
The object is passed as the third argument. 

13 Object Not System Area Pointer 
The object is passed as the third argument. 

-14 Ohject Not Control Stack Pointer 
The object is passed as the third argument. 

15 Objot Binding Stack Pointer 
The object is passed as the third argument. 

16 Object Not Values Marker 
The object is passed as the third argument. 

17 Object Not Fixnum 
The object is passed as the third argument. 

18 Object Not Vector-Like 
The object is passed as the third argument. 

19 Object Not I nteger-Vector 
The object is passed as the third argument. 

20 Object Not Symbol 
The object is passed as the third argument 

21 Object Not List 
The object is passed as the third argument 

22 Object Not List or Nil 
The object is passed as the third argument 

o 

c 



\1 "Hde! 6bhtidlhnd, "llhw+-nllljt4.LiUf.ri •• """+";;;41;:,!!U"!dtf!LLUTWIYU"'"i"""P WP'III!II¥I"UI! WI! 

c 

c 

c 

RFYISFD INTFRNAI I>FSIUN OF SPIC'F I.ISP 

23 Object Not String 
The object is passed as lhe third argument. 

24 Object Not Number 
The object is passed as the third argument. 

25 Ohjcct Not M isc Type 
The object is passed as the third argument. 

26 Unused. 

27 Illegal Allocation Space Value 
Self explanatory. 

28 megal Vector Size 

55 

Attempt to allocate a vector with negative size or size too large for vectors of this type. 
Passes the requested size as the third argument. 

29 Illegal Immediate Type Code. 
Passes the code as the third argument. 

30 Illegal Control Stack Pointer 
Passes the illegal pointer as the third argument. 

31 Illegal Binding Stack Pointer 
Passes the illegal pointer as the third argument. 

32 megal Instruction 

33 Unused. 

Must be due to a compiler error or·to using obsolete code that docs not match the current 
microcode. No additional args. 

34 megal Divisor The divisor is integer or floating O. Returns the divisor and dividend as the third and 
fourth args. 

35 Illegal Vector Access Type 
The specified access type is returned as the third argument. 

36 Illegal Vector Index 
The specified index is out of bounds for this vector. The bad index is passed as the third 
argument. 

37 Illegal Byte Pointer 
Bad S or P value to LDB or related function. Returns Sand P as the third and fourth 
arguments. 

38 Illegal Function 



I 

I 

II 

RFVISFI> INTFRNAI IWSIGN OF SPICE LISP 56 

Bad object being called as a functi~>n. The object is passed as the third argument. 

39 Too Few Arguments 
Attempt to activate the call to a function with too few arguments on the stack. Returns the 
number of arguments passed as the third argument. the function being called as the fourth. 

40 Too Many Arguments 
Attempt to activate the call to a function with too few arguments on the sUlck. Returns the 
number of arguments passed as the third argument. the function being cal1ed as the fourth. 

41 Unseen '111row Tag 
Returns the tag as the third argument. 

42 Null Open Frame 
Attempt to activate a function call. but no frame has been opened. No additional args. 

43 Undefined Type Code 
Can only result from a bug in the micro-machine. Returns the strange object as the third 
argument. 

44 Return From Initial Function 
Self-explanatory. 

45 GC Forward Not To Newspace 
Can only result from internal errors in the mIcro-machine. No additional args. 

46 Attcmpt To Transport GC Forward 
Can only result from internal errors in the micro-machine. No additional args. 

47 Object Not Integer 
The object is passed as the third argument. 

48 Short-float exponent overflow, underflow 
No additional args. 

49 Long- float exponent overflow, underflow 
No additional args. 

50 - 63 Unused. 

In the Tops-20 vinual machine, thc-following codes arc defined: 

64 Illegal File Token 
Ine bad token is passed as the third argument 

65 Illegal I/O Mode Specifier 
The bad mode is passed as the third argument 

I \ 
• I I C." 



llJJl'.j"]AIpJUU ·!!!f:!IF·····pll .. "j,ll ·l"m!! •• ,.r'nE!· "'·H·· j" 

c 

c 

o 

REVISED INTFRNAI. DESIGN OF SPICF LISP 57 

6.5. Trapping to the Accent Kernel 

Most of the primitive calls to the Accent kernel are made through a single microcode entry point. SVCal1. 

defined in Accent file process.mic. From I -isp level. these calls arc generated by the Kernel-Trap instnlction. 

Kernel-Trap takes lWO operands, an argumenl block and a lrap code. in thal order. The trap code is a 

fixnum which specifics the sort of lrap call deSired. The argument block is an I-Vector which contains the 

argument in fOlmation for the lrap call. The size and format of the argument block depends on which trap 

code is called. The return codes and values from the trap arc written into clemente; of the I-Vector by the 

kernel. 

Internally, the trap code and a pointer to the data portion of the [-Vector are passed to Accent on the PRRQ 

E-Stack, as follows: 

ETOS The trap code. 

ETOS -1 The low order 16 bits of the virtual address. 

E'rOS-2 The high order 16 bits of the virtual address. 

All of the kernel traps called by Lisp-level code use the virtual address as a pointer to an argument block. 

An argument block is stored at lisp level as an I-Vector of 16-bit quantities. The trap codes are defined in 

Accent file accenttype.pas, and'the arguments to these calls arc described in the Accent Kernel Interface 

~fanual. 

6.6. Interrupts 

There are three kinds of asynchronous events that the Spice Lisp system must service: hardware interrupts, 

process breaks, and software interrupts. 

Hardware interrupts must be serviced every 70 microinstructions. [t is guaranteed that no process registers 

will be altered and no page faults will occur, so all a microprogrammer need do is check the Intr-Pending 

condition every now and then, and call the hardware interrupt service routine. Sometimes that routine will 

set the process break flag, and a process break should occur. 

If there are other runnable processes on the machine, a process break will result in the dc-scheduling of the 

Lisp process. Process registers will be saved by the kernel, and restored when the Lisp runs again. After a 

process break, all cached virtual-to-physical memory translations may be invalid and the instruction buffer 

will probably be filled with some other process's instructions. The caches 'must be flushed and the instruction 
#$!!' ,~' . 

t~,<t1~"·· . 
< , ~,~~~~,.: .". • 

f,J..~>. '_a, ..,.-. 
'. ~~~,'. 



RI'"VISFI> INTFRNAI. DFSIGN OF SPICE I .lSI> 58 

buffcr must bc rcfillcd aftcr a proccss break. 

;\ftcr a proccss break. it is possiblc that the Lisp process wilt have received an "emcrgency messagc" from 

somc othcr process. I f so, the softwarc intcrrupt tlag will bc sct. To service this software intcrrupt. a 

brcak-typc call frainc is built to %SP-Software-Intermpt-Handlcr. which should reccivc thc message and 

figurc out what to do with it at Lisp levcl. The emergcncy message might. for cxamplc. report that an 

intcrrupt charactcr has bcen typcd. and thc intcrrupt handlcr could enter a break loop or throw to the I jsp 

top level. 

c 

c 



¢' ... 

o 

C 'i 
.' 

o 

It, 'W'"i+'y;;&,LI t+d 'ILtfL";w;"liWliJ,!.lWJtj",H4['1\lld.hY4iillW'MIIY'!!W "liT! Tnt'!!!Bfln!!'Q[ru'J!!llll!D[""Nf'P" 

RFVISFD INTFRNAI.IWSIUN OF SPICF LISP 

1.1. General 

Appendix I 
Fasload I~ile Format 

S9 

The purpose of Fasload mes is to allow concise storage and rapid loading of l-isp data. particularly function 

definitions. The intent is that loading a Fasload file has the same effect as loading the ASCII me from which 

the Fasload file was compiled. but accomplishes the tasks more efficiently. One noticeable difference. of 

course. is that function definitions may be in compiled fonn rather than S-exprcssion fonn. Another is that 

Fasload mes may specify in what part~ of memory the Lisp data should be allocated. For example, constant 

lists used by compiled code may be regarded as read-only. 

In some Lisp implementations. Fasload file fonnats are designed to allow sharing of code parts of the file. 

possibly by direct mapping of pages of the file into the address space of a process. This technique produces 

great perfonnance improvements in a paged time-sharing system. Since the Spice project is to produce a 

distributed personal-computer network system rather than a time-sharing system, efficiencies of this type are 

explicitly not a goal for the Spice Lisp Fasload file format. 

On the other hand. Spice Lisp is intended to be portable, as it will eventually run on a variety of machines • 

Therefore an explicit goal is that Fasload files shall be transportable among various implementations, to 

pennit efficient distribution of programs in compiled form. The representations of data objects in Fasload 

files shall be relatively independent of such considerations as word length. number of type bits. and so on. If 

two implementations interpret the same macrocode (compiled code fonnat), then Fasload files should be 

completely compatible. If they do not. then files not containing compiled code (so-called "Fasdump" data 

files) should still be compatible. While this may lead to a format which is not maximally efficient for a 

particular implementation. the sacrifice of a small amount of performance is deemed a worthwhile price to 

pay to achieve portability. 

The primary assumption about data format compatibility is that all implementations can support 110 on 

finite streams of eight-bit bytes. By "finite" we mean that a definite end-of-file point can be detected 

irrespective of the content of the data stream. A Fasload file will be regarded as such a byte stream. 



RFVISFD INTERNAL DESIGN OF SPICF LISP 60 

1.2. Strategy 

A Fasload file may be regarded as a human-readable prefix followed by code in a funny little language. 

When interpreted. this code will cause the construction of the encoded data stnlctures. The virtual machine 

which interprets this code has a slack and a lab/e. hoth initially empty. The tlhle may he thought of as an 

expandable register tile: it is used to rememher quantities which are needed more than once. The c1ement'i of 

both the st.<lck and the table arc I jsp data objects. Operators of the funny language may wke as operands. 

following hytes of the data stream. or items popped from the stack. Result') may be pushed back onto the 

stack or pushed onto the Glble. The table is an indexable st.<lck that is never popped: it is indexed relative to 

the base, not the top. so that an item once pushed always has the same index. 

More precisely, a Fasload tile has the following macroscopic organization. It is a sequence of zero or more 

groups concatenated together. End-of-file must occur at the end of the last group. Each group begins with a 

series of seven-bit ASCII characters terminated by one or more bytes of an ones (FF 16): this is called the 

header. FolIowing the bytes which terminate the header is the body, a stream of bytes in the funny binary 

language. The body of necessity begins with a byte other than FF 16' The body is terminated by the operation 

FOP-END-GROUP. 

The first nine characters of the header must be "FAS L F I L E" in upper-case letters. The rest may be any 

ASCll text. but by convention it is formatted in a certain way. lbe header is divided into Jines, which are 

grouped into paragraphs. A paragraph begins with a line which docs not begin with a space or tab character, 

and contains a]] lines up to, but not including, the next such line. 'Ihe first word of a paragraph, defined to be 

alI characters up to but not including the first space .. tab, or end-of-line character, is the name of the 

paragraph. A Fasload file header might look something like this: 

FASL FILE >SteelesPerq>User>Guy>IoHacks>Pretty-Print.Slisp 
Package Pretty-Print 
Compiled 31-Mar-1988 09:01:32 by some random luser 
Compiler Version 1.6. Lisp Version 3.0. 
Functions: INITIALIZE DRIVER HACK HACKl MUNGE MUNGEI GAZORCH 

MINGLE MUDDLE PERTURB OVERDRIVE GOBBLE-KEYBOARD FRY-USER 
DROP-DEAD HELP CLEAR-MICROCODE %AOS-TRIANGLE 
%HARASS-READTABLE-MAYBE 

Macros: PUSH POP FROB TWIDDLE 
<one or more bytes of FF 16> 

The particular paragraph names and contents shown here are only intended as suggestions. 

o 



c 

o 

o 

LI •• '61J.\""+IL ""J" br++i".LJIrf.'Hh+.li.'[",I,;"'UI"'U"h '1 '1J]4U"Wb"Ul4j",'mnr'Hl [I'.,..'!" l"yrmlK' 

R FV ISFD I NTFR N A I. DFSIG N OF SPleF I.ISP 61 

1.3. Fasload Language 

Each operation in the binary Fasload language is an eight-hit (one-byte) opcode. Each has a name 

beginning with "FOP-". In the following descriptions, the name is followed by operand descriptors. Each 

descriptor denotes operands that follow the opcode in the input stream. A quantity in parentheses indicates 

the number of bytes of daw from the stream making up the opcwnd. Operands which implicitly come from 

the stack arc noted in the text. The notation It~ stack" means that the result is pushed onto the stack: It~ 

table" similarly means that the result is added to the wble. A construction like" II( 1) va/ue(II)" means that first 

a single byte 11 is read from the input stream, and this byte specifics how many bytes to read as the operand 

named value. A11 numeric values are unsigned binary integers unless otherwise specified. Values described as 

"signed" are in two's-complement form unless otherwise specified. When an integer read from the stream 

occupies more than one byte, the first byte read is the least significant byte. and the last byte read is the most 

significant (and contains the sign bit as its high-order bit if the entire integer is signed). 

Some of the operations are not necessary. but arc rather special cases of or combinations of others. Ibese 

are included to reduce the size of the file or to speed up important cases. As an example, nearly all strings are 

less than 256 bytes long, and so a special form of string operation might take a one-byte length rather than a 

four-byte length. As another example, some implementations may choose to store bits in an array in a 

left-to-right format within each word, rather than right-to-left. The Fasload file format may support both 

formats, with one being significantly more efficient than the other for a given implementation. The compiler 

for any implementation may generate the more efficient form for that implementation. and yet compatibility 

can be maintained by requiring al1 implementations to support both fonnats in Fasload files. 

Measurements are to be made to determine which operation codes are worthwhile: little-used operations 

may be discarded and new ones added. After a point the definition will be "frozen", meaning that existing 

operations may not be deleted (though new ones may be" added; some operations codes will be reserved for 

that purpose). 

o FOP-NOP No operation. (This is included because it is recognized that some implementations may 
benefit from alignment of operands to some operations, for example to 32-bit boundaries. 
This operation can be used to pad the instruction stream to a desired bounary.) 

1 FOP-POP ~ table 
One item is popped from the stack and added to the table. 

2 FOP- PUSH index(4) => stack 
Item number index of the table is pushed onto the stack. The first clement of the table is 
item number zero. 

3 FOP-BYTE - PUSH index(l) => stack 



RFVISFD INTFRNAI.I>FSIGN OFSPICF I.ISP 62 

Item number index of the (able is, pushed onto the stack. The first element of the table is 0 
item number zero. ('I, ' 

4 FOP- EMPTY - LIST ~ stack 
The empty list «( ) is pushed onto the stack. 

5 FOP- TRUTH ~ stack 
The standard truth value (T) is pushed onto the stack. 

6 FOP-SYMBOL -SAVE 11(4) 1lc111le(1I) ~ stack & table 
The four-byte operand 11 specifics thc Icngth of the print name of a symbol. The name 
follows. one character per byte. with thc first bytc of the print name being the first read. 
The name is intcrned in the default package, and thc rcsulting symbol is both pushed onto 
the stack and added to the table. 

7 FOP-SMALL -SYMBOL -SAVE n(l) name(n) ~ stack & table 
The one-byte operand n specifics the length of the print name of a symbol. The name 
follows. one character per byte, with the first byte of the print name being the first read. 
The name is interned in the default package, and the resulting symbol is both pushed onto 
the stack and added to the table. 

8 FOP-SYMBOL-IN-PACKAGE-SAVE index(4) n(4) name(n) ~ 'stack&table 
The four-byte index spccifies a package stored in the table. The four-byte operand n 
speci fies the length of the print name of a symbol. The name follows, one character per 
byte, with the first byte of thc print name being the first read. The name is interned in the 
specified package, and the rcsulting symbol is both pushed onto the stack and added to the 
table. 

9 FOP-SMALL -SYMBOL - IN -PACKAGE -SAVE index(4) n(l) name(n) ~ stack & table 
The four-byte index specifics a package stored in the table. The one-byte operand n 
specifics the length of the print name of a symbol. Thc name follows. one character per 
byte. with the first bytc of the print name bcing the first read. The name is interned in the 
specified packagc, and thc resulting symbol is both pushcd onto thc stack and addcd to the 
table. 

10 FOP-SYMBOL-IN-BYTE-PACKAGE-SAVE index(1) n(4) name(n) ~ stack & table 
Thc· onc-bytc index specifics a packagc stored in the table. The four-byte operand n 
specifics thc lcngth of the print name of a symbol. The name follows. one character per 
byte, with the first byte of thc prin·t name being the first read. The namc is interned in the 
specified package, and thc resulting symbol is both pushed onto the stack and added to the 
table. 

11 FOP-SMALL-SYMBOL-IN-BYTE-PACKAGE-SAVE· index(l) n(l) name(n) ~ stack & table 
The one-byte index specifics a package stored in the table. The onc-byte operand n 
specifics the length of the print name of a symbol. The name follows. one character per 
byte, with the first byte of thc print name bcing the first read. The name is intcrned in the 
specified package, and the resulting symbol is both pushed onto the stack and added to the 
table. 



c 

o 

o 

RFVISFD INTERNAl J)I~SIGN OFSPIC'F LIS.' 63 

12 Unused. 

13 FOP-DEFAUL T-PACKAGE imiex(4) 
A package stored in the table entry specified by index is made the default package for 
future FOP-SYMBOL and FOP-SMALL -SYMBOL interning operations. (These package 
FOPs may change or disappear as the package system is dClennined.) 

14 FOP-PACKAGE ~ table 
An item is popped from the stack: it must be a symbol. The package of that name is . 
located and pushed onto the tahle. 

15 FOP-LIST lengtfl(l) ~ stack 
The unsigned operand length specifics a number of operands to be popped from the stack. 
These are made into a list of that length. and the list is pushed onto the stack. The first 
item popped from the stack becomes the last clement of the list, and so on. Hence an 
iterative loop can start with the empty list and perfonn "pop an item and cons it onto the 
list" length times. (Lists of length greater than 255 can be made· by using FOP-LIST· 
repeatedly. ) 

16· FOP-LIST- length(l) ~ stack 
This is like FOP- LI ST except that the constructed.1ist is tenninated not by ( ) (the empty 
list). but by an item popped from the stack before any others are. Therefore length + 1 
items are popped in all. Hence an iterative loop can start with a popped item and perform 
"pop an item and cons it onto the list" length + 1 times. 

17~24 FOP- LIST-t, FOP-LIST- 2 ..... FOP-LIST-8 
FOP-LIST-k is like FOP-LIST with a byte containing k following it. These exist purely 
to reduce the size of Fasload files. Measurements need to be made to determine the useful 
values of k. 

25-32 FOP-LIST--l, FOP-LIST--2 •...• FOP-LIST*-8 
FOP-LIST--k is like FOP-LIST- with a byte containing k following it. These exist 
purely to reduce the size of Fasload files. Measurements need to be made to determine the 
useful values of k. 

33 FOP- INTEGER n(4) value(n) ~ stack 
A four-byte unsigned operand specifics the number of following bytes. These bytes define 
the value of a signed integer in two's-complementform. The first byte of the value is the 
least significant byte. 

34 FOP-SMALL - INTEGER n(l) vaJue(n) ~ stack 
A one-byte unsigned operand specifics the number of following bytes. These bytes define 
the value of a signed integer in two's~complement fonn. The first byte of the value is the 
least significant byte. 

35 FOP-WORD- INTEGER value(4) ~ stack 
A four-byte signed integer (in the range _231 to 231_1) follows the operation code. A LISP 
integer (fixnum or bignum) with that value is constructed and pushed onto the stack. 



RFVISFD INTFRNAI. DFSIUN OF SPICE I.ISP 64 

36 FOP-BYTE-INTEGER va/ue(1) ~ stack 
i\ one-byte signed integer (in the range -128 to 127) follows the operation code. i\ I.lSP 
integer (fixnum or bignum) with that value is constructed and pushed onto the stack. 

37 FOP-STR ING 11(4) name(lI) ~ stack 
The four-byte operand 11 specifics the length of a string to construct. The characters of the 
string follow, one per byte. The constructed string is pushed onto the stack. 

38 FOP -SMALL -STR I NG 11(1) Ilame(n) ~ stack 
The one-byte operand 11 specifics the length of a string to construct. The characters of the 
string follow, one p~r byte. The constructed string is pushed onto the stack. 

39 FOP-VECTOR 11(4) ~ stack 
The four-byte operand Il specifics the length of a vector of I JSP objects to construct. The 
clemente:; of the vector arc popped off the stack: the first one popped becomes the last 
clement of the vector. The constructed vector is pushed onto the stack. 

40 FOP-SMALL -VECTOR n(l) ~ stack 
The one-byte operand n specifies the length of a vector of I JSP objects to construct The 
elements of the vector are popped off the stack; the first one popped becomes the last 
clement of the vector. The constructed vector is pushed onto the stack. 

41 FOP-UNI FORM-VECTOR n(4) ~ stack 
The four-byte operand n specifics the length of a vector of LISP objects to construct A 
single item is popped from the stack and used to initialize all elements of the vector. The 
constructed vcctor is pushed onto the stack. 

42 FOP-SMALL-UNIFORM-VECTOR 11(1) ~ stack 
The one-byte operand 11 specifics the length of a vector of LISP objccts to construct A 
single item is popped from the s~1ck and used to initialize all clements of the vector. The 
constructed vector is pushed onto the stack. 

43 FOP-TNT-VECTOR n(4) size(l) counl(l) dala(rnlcountlrsize*counlISh ~ stack 
The four-byte operand n specifics the length of a vector of unsigned integers to be 
constructed. Each integer is size bits big, and arc packed in th.e data stream in sections of 
counl apiece. Each section occupies an integral number of bytes. If the bytes of a section 
are lined up in a row, with the tlrst byte read at the r~ght, and successive bytes placed to the 
left. with the bits within a byte being arranged so that the low-order bit is to the right, then 
the integers of the section are successive groups of size bite:;, starting from the right and 
running across byte boundaries. (In other words, this is a consistent right-to-Ieft 
convention.) Any bits wasted at the left end of a section are ignored. and any wasted 
groups in the last section arc ignored. It is permitted for the loading implementation to use 
a vector format providing more precision than is required by size. For example, if size 
were 3, it would be permitted to use a vector of 4-bit integers. or evert vector of general 
LISP objects filled with integer LISP objects. However, an implementation is expected to 
usc the most restrictive format that will suffice, and is expected to reconstruct objects 
identical to those output if the Fasload file was produced by the same implementation. 
(For the PERQ U-vect{)f formats, one would have size an element of {I, 2, 4, 8, I6}, and 
counl = 321 size; words could be read directly into the U-vector. This operation provides a 

o 

c 

--~ ..... ~ .•....•...... -.-.-.... --- ------ -~.---.-~.~---.. ------.• ~-- ~--~----- -----



c 

( "'\ 
, / 

o 

~FVISFl> INTF~Nt\L IWSIGN OFSPIC'F I.ISP 65 

very general fonnat whereby almost any conceivable implementation can output in its 
preferred packed format, and ail0ther can read it meaningfully; by checking at the 
beginning for good C'lses. loading can sti1l proceed quickly.) The constructed vector is 
pushed onto the stack. 

44 FOP-UNIFORM-INT-VECTOR 11(4) siz~l) vlllue( f size/81) stack 
Thc t(Hlr-bytc operand II specinc~ the Icngth of a vcctor of unsigned integcrs to construct. 
Each intcgcr is size hit40l big. and is initializcd to thc valuc of the operand value. The 
constructcd vcctor is pushed onto the stack. 

45 FOP-FLOAT 11(1) expollen/(fnlSh m(1) mal11issa(fm/Sh ~ stack 

46-51 Unused' 

Thc first operand 11 is one unsigned byte, and describes the number of bils in the second 
operand exponem. which is a signed integer in two's-complemcnt format. The high-order 
bits of the last (most significant) byte of exponent shall equal the sign bit. Similar remarks 
apply to m and mantissa. The value denoted by these four operands is 
mantissax2cxponent-lcnglh(mantiSSQ). A floating-point number shall be constructed which has 
this value. and then pushed onto the stack. That floating-point format should be used 
which is the smallest (most compact) provided by the implementation which nevertheless 
provides enough accuracy to represent both the exponent and the mantissa correctly. 

52 FOP-ALTER index(l) 
Two items are popped from the stack: call the first newval and the second object. The 
component of objecl specified by index is altered to contain newval. The precise operation 
depends on the type of object: 

List 

Symbol 

A zero index means alter the car (perform RPLACA), and index=l 
means alter the cdr (RPLACD). 

By definition" these indices have the following meaning. and have 
nothing to do with the actual representation of symbols in a given 
implementation: 

o Alter value cell. 

1 Alter function cell. 

2 Alter property list (!). 

Vector (of any kind) 
Alter component number index of the vector. 

String Alter character number index of the string. 

53 FOP-EVAL ~ stack 
Pop an item from the stack and evaluate it (give it to EVAL). Push the result back onto the 
stack. 



RFVISFD INTERNAl. DFSIGN OF SPleF LISP 66 

54 FOP-EVAL-FOR-EFFECT 
Pop an item from the stack and evaluate it (give it to EVAL). The result is ignored. 

55 FOP- FUNCALL /largs( 1) => stack 
Pop Ilargs+ 1 items from the stack and apply the last one popped as a function to all the 
rest as arguments (the first one popped being ule last argumcnt). Push U1C result back. onto 
thc stack. 

56 FOP - FUNCALL - FOR - E FF ECT nargs(l) 
Pop nargs+ 1 items from the stack and apply the last one popped as a function to all the 
rest as arguments (the first one popped being the last argument). The result is ignored. 

57 FOP-CODE - FORMAT id(l) 
The operand id is a unique identifier specifying the format for following code objects. 'me 
operations FOP-CODE and its rc1ativ·es may not occur in a group until after 
FOP-CODE - FORMAT has appeared: there is no default format. This is provided so that 
several compiled code formats may co-exist in a file, and so that a loader can detennine 
whether or not code was compiled by the correct compiler for the implementation being 
loaded into. So far the following code fonnat identifiers are defined: 

o ·PERQ 

1 VAX 

58 FOP-CODE nitems(4) size(4) code(size) => stack 
A compiled function is constructed and pushed onto the stack. 'This object is in the fonnat 
specified by the most recent occurrence of FOP -CODE - FORMAT. The operand nilems 
specifics a number of items to pop off the stack to use in the "boxed storage" section. The 
operand code is a string of bytes constituting the compiled executable code. 

59 FOP-SMALL -CODE niLems(l) size(2) code(size) => stack 
!\ compiled function is constructed and pushed onto the stack. This object is in the format 
specified by the most recent occurrence of FOP-CODE - FORMAT. The operand nilems 
specifies a number of items. to pop off the stack to use in the "boxed storage" section. The 
operand code is a string of bytes constituting the compiled executable code. 

60 FOP-STATIC-HEAP 
Until further notice operations which allocate data structures may allocate them in the 
static area rather than the dynamic area. (The default area for allocation is the dynamic 
area; this default is reset whenever a new group is begun. This command is of an advisory 
nature: implementations with no static heap can ignore it.) 

61 FOP-DYNAMIC-HEAP 
Following storage allocation should be in the dynamic area. 

62 FOP-VER I FY - TABLE -SI ZE siz£(4) 
If the current size of the table is not equal to size. then an inconsistency has been detected. 
This operation is inserted into a Fasload file purely for -error-checking purposes. It is good 
practice for a compiler to output this at least at the end of every group. if not more often. 

c 



o 

C
~I\, 

, .) 

o 

RFVISFD INTFR NAI. DESIGN OF SPICE LISP 67 

63 FOP-VERIFY-EMPTY-STACK 
I f the stack is not currently empty. then an inconsistency has been detected. This operation 
is inserted into a Fasload file purely for error-check ing purposes. It is good practice for a 
compiler to output this at least at the end of every group. if not more often. 

64 FOP-END-GROUP 
This is the last operation of a group. I f this is not the last byte of the file. then a new group 
follows: the next Ili ne bytes must be "F AS L F I L E". 

65 FOP-POP-FOR-EFFECT slack ~ 
One item is popped from the stack. 

66 FOP-MISC-TRAP ~ stack 
A trap object is pushed onto the stack. 

67 FOP-READ-ONLY-HEAP 
Following storage allocation may be in a read-only heap. (For symbols, the symbol itself 
may not be in a read-only area, but its print name (a string) may be. This command is of 
an advisory nature; implementations with no read-only heap can ignore it, or usc a static 
heap.) 

68 FOP-CHARACTER characterl.,3) ~ stack 
The three bytes specify the 24 bits of a Spice l.isp character object. The bytes. lowest first, 
represent the code. control. and font bits. A character is constructed and pushed onto the 
stack. 

69 FOP-SHORT -CHARACTER characlerl.,l) ~ stack 
The one byte specifics the lower eight bits of a spice lisp character object (the code). A 
character is constructed with zero control and zero font attributes and pushed onto the 
stack. 

70 FOP-RATIO ~ stack 
Creates a ratio from two integers popped from the stack. The denominator is popped first, 
the numerator second. 

71 FOP-COMPLEX ~ stack 
Creates a complex number from two numbers popped from the stack. The imaginary part 
is popped first. the real part second. 

72 FOP-LINK-ADDRESS-FIXUP narg,(l) restp(l) offset(4) ~ stack 
Valid only for when FOP-CODE-FORMAT corresponds to the Vax. This operation pops 
a symbol and a code object from the stack and pushes a modified code object back onto the 
stack according to the needs of the runtime Vax code linker. 

73 FOP-LINK-FUNCTION-FIXUP ojJset(4) ~ stack 
Valid only for when FOP-CODE-FORMAT corresponds to the Vax. This operation pops 
a symbol and a code object from the stack and pushes a modified code object back onto the 
stack according to the needs of the runtime Vax code linker. 



RFVISFD INTFRNAI. DFSIGN OFSPIC'F LISP 68 

74 FOP- FSET 
Pops the lOP two things off of the stack and uses them as arguments to FSET (Le. SETF of 
SYM BOL-FUNCTION). 

255 FOP-END-HEADER 
Indicates the end of a group header. as described above. 

o 

(
r-~ __ 

I I 

J 

--------- ------ ------------ - ----- - ---------------------------------------------- --- - --------------------- ------ ----------------------------------- ------ ---- ----- ---------------- ------------- -------- ----------- ---~--------------



() 

o 

RFVISFD INTFRNAI. DFSIGN OFSPIC'F LISP 

, , , 

Appendix II 
The Opcode l)efinition File 

-*- Lisp -*-

Instruction definitions for Spice Lisp. 
Written by Skef Wholey. 

This file contains information about the instruction set and is 
used by the microassembler, the compiler, the error system, and the 
disassembler. 

(defvar *lbyte-instruction-table* 
(make-array 256) 
"Table used to find the name of a 1 byte long instruction given its 
opcode.") 

(defvar *2byte~instruction-table· 
(make-array 256) 

69 

"Table used to find the name of a 2 byte long instruction given the second 
byte of its opcode.") 

(defvar *instruction-list* () "List of the instruction names.") 

;;; We do this random setq so that the right thing happens when a new 
;;; definition file is loaded. 

(setq *instruction-list* (» 

(defun definstruction (name opcode 
&optional (type 'read) (operand 'stack) offset) 

"Defines an instruction with the given· Name (a symbol) and Opcode. 
Opcode may be either a single integer or a list of integers. Type 
should be ona of Read, Write, Read-Modify-Write, Long-Branch, or 
Short-Branch. Operand defaults to Stack. Instructions which don't 
really have operands are considered to be Read Stack operations. 
Operand should be one of Stack, PSIC, NSIC, AL, Long-AL, Constant, 
Long-Constant. Symbol, Long-Symbol, or Ignore. If the instruction has an 
implied offset, that should be specified with the Offset." 
(if (fixnump opcode) 

(setq opcode (list opcode») 
(if (not (listp opcode» 

(error "The opcode for -S must be either an integer or a list." name» 
(setf (get name '%instruction-opcode) opcode) 
(setf (get name '%instruction-length) 

(+ (length opcode) 
{cond «memq type '(read write read-modify-write» 

(cond (offset 0) 
«memq operand '(stack ignore» 
0) 

«memq operand '(psic nsic al constant symbol» 
1) 

«memq operand '(long-al long-constant long-symbol» 



RFVISFD INTFRNAI DFSIGN OFSPICF LISP 

2) 
(t 
(error "-S is a losing operand." operand»» 

«eq type 'long-branch) 2) 
«eq type 'short-branch) 1) 
«eq type 'long-dispatch) 3) 
«eq type 'short-dispatch) 4) 
(t (error "-S is a losing type." type»») 

(setf (get name '%instruction-type) type) 
(setf (get name '%instruction-operand) operand) 
(setf (get name '%instruction-offset) offset) 
(push name *instruction-list*) 
(if (= (car opcode) 254) 

(setf (aref *2byte-instruction-table* (cadr opcode» name) 
(setf (aref *lbyte-instruction-table* (car opcode» name») 

70 

Definstructionclass is used to define a class of instructions, i.e. a 
set of instructions that perform the same operation on operands in 
different places. Each instruction in the class has its %Instruction-Gr 
property set to the Stack-Form. 

(defun definstructionclass (stack-form &rest other-forms) 
(setf (get stack-form '%instruction-class) other-forms) 
(do «forms other-forms (cdr forms») 

«null forms» 
(let «glob (cdar forms») 

(if (listp glob) 
(do «subforms glob (cdr subforms») 

«null subforms» 
(setf (get (cdar subforms) '%instruction-group) stack-form» 

(setf (get glob '%instruction-group) stack-form»») 

IByte generates a definstruction for a one-byte instruction. 

(defvar *lbyte-instruction~counter* nil 
"Counter used to generate unique 1 byte long instructions.") 

(defmacro Ibyte (name. other-stuff) 
"Generates a Definstruction for the Name and Other-Stuff with a unique 
one-byte opcode." 
'(definstruction ,name • .(progl *lbyte-instruction-cQunter* 

(incf *lbyte-instruction-counter*» 
• t other-stuff» 

2Byte generates a definstruction for a two-byte instruction. 

(defvar *2byte-instruction-counter* nil 
"Counter used to generate unique 2 byte long instr~ctions.") 

(defmacro 2byte (name . other-stuff) 
"Generate's a Definstruction for the Name and Other-Stuff with a unique 

o 

one-byte opcode." C" 
'(definstruction ,name '(254 .(progl *2byte-instruction-counter* 

(incf *2byte-instruction-counter*») 



c 

o 

o 

REVISED INTERNAl. IlFSIGN OF SPICE l.ISP 

. ,other-stuff» 

Set the counts: 

(eval-when (compile) 
(setq *lbyte-instruction-counter* 1) 
(setq *2byte-instruction-counter* 0» 

;;: InstrSynonym defines a synonym for an instruction. 

(defmacro instrsynonym (for is) 
'(progn (setf (get ,is '%ins.truction-offset) 

(get ,for '%instruction-offset» 
(setf (get ,is '%instruction-destination) 

(get ,for '%instruction-destination» 
(setf (get ,is '%instruction-type) 

(get ,for '%instruction-type» 
(setf (get ,is '%instruction-length) 

(get ,for '%instruction-length» 
(setf (get ,is '%instruction-opcode) 

(get ,for '%instruction-opcode»» 

; ; ; All oca t i on: 

(2byte 'get-allocation-space) 
(2byte 'set-allocation-space) 
(2byte 'alloc-bit-vector) 
(2byte 'alloc-i-vector) 
(2byte 'alloc-string) 
(2byte 'alloc-bignum) 
(2byte 'float-long) 
(2byte 'make-complex) 
(2byte 'make-ratio) 
(2byte 'alloc-g~vector) 

(definstructionclass 'vector 
'(psic . vector-psie» 

(2byte 'vector)-
(2byte 'vector-psic 'read 'psic) 
(2byte 'alloc-function) 
(2byte 'alloe-array) 
(2byte 'alloc-symbol) 
(1byte 'cons) 
(definstruetionelass 'list 

'(psie ~ list-psic» 
(2byte 'list) 
(2byte 'list-psie) 
(definstruetionelass 'list· 

'(psic . list*-psie» 
(2byte 'list*) 
(2byte '1 ist*-psie 'read 'psic) 

;:: -Stack manipulation: 

(definstruetionclass 'push 

71 



RFVISFD INTERNAl, DESIGN OFSPICE I.lSP 

'(psie . «psie . push-psie) 
(0 . push-psicO) 
(1 . push-psicl) 
(2 push-psic2) 
(3 push-psic3) 
(4 . push-psic4) 
(5 push-ps;c5) 
(6 push-psic6) 
(7 . push-psic7) 
(8 push-ps;ca») 

'(nsie push-nsie) 
'Cal . «al . push-a1) 

(0 push-a10) 
(1 push-all) 
(2 push-a12) 
(3 . push-a13) 
(4 . push-a14) 
(5 push-a15) 
(6 . push-a16) 
(7 . push-a17) 
(a . push-ala) 
(9 . push-a19) 
( 1 0 push - a 11 0 ) 
(11 . push-alII) 
(12 . push-a112) 
(13 . push-a113») 

'(10ngal . push-1onga1) 
'(c. «e push-c) 

(1 . push-el) 
(2 push-e2) 
(3 . push-e3) 
(4 . push-e4) 
(5 . push-e5) 
(6 push-e6») 

'(lange. push-lange) 
'(s . push-s) 
'(longs. push-longs» 

(lbyte 'push-psie 'read 'psie) 
(instrsynonym 'set-O 'push-ps;eO) 
(lbyte 'push-psiel 'read 'ps;c 1) 
(lbyte 'push-ps; e2 'read 'ps; c 2) 
(lbyte 'push-ps;e3 'read 'psic 3) 
(lbyte 'push-pSie4 'read 'psic 4) 
(lbyte 'push-psie5 'read 'psic 5) 
(lbyte 'push-psie6 'read 'psic 6) 
(lbyte 'push-ps;e7 'read 'ps;c 7) 
(lbyte 'push-ps;c8 'read 'ps;c 8) 
(lbyte 'push-nsic 'read 'nsic) 
(lbyte 'push-al 'read 'all 
(lbyte 'push-alO 'read 'al 0) 
(lbyte 'push-all 'read 'all) 
(lbyte 'push-a12 'read 'al 2) 
(lbyte 'push-a13 'read 'al 3) 
(lbyte 'push-a14 'read 'al 4). 
(lbyte 'push-a15 'read 'al 5) 

72 

o 

() 



o 

o 

RFVISFI> INTFRNAI DFSIGN OF SPICE I.ISP 

(lbyte 'push-a16 'read 'al 6) 
(lbyte 'push-a17 'read 'al 7) 
(lbyte 'push-a18 'read 'al 8) 
(lbyte 'push-a19 'read 'al 9) 
(lbyte 'push-alIa 'read 'al 10) 
(lbyte 'push-alll 'read 'al 11) 
( 1 by t e 'p us h - all 2 'r e ad' a 1 12) 
(lbyte 'push-al13 'read 'al 13) 
(2byte 'push-l ongal 'read '1 ong-al) 
(lbyte 'push-c 'read 'constant) 
(lbyte 'push-cl 'read 'constant) 
(lbyte 'push-c2 'read 'constant) 
(lbyte 'push-c3 'read 'constant) 
(lbyte 'push-c4 'read 'constant) 
(lbyte 'push-c5 'read 'constant) 
(lbyte 'push-c6 'read 'constant) 
(2byte 'push-longc 'read 'long-constant) 
(lbyte 'push-s 'read 'symbol) 
(2byte 'push-longs 'read 'long~symbol) 

(definstructionclass 'pop 
'(al ((al pop-all 

(0 pop-ala) 
(1 pop-all) 
(2 pop-a12) 
(3 pop-a13) 
(4 pop-a14) 
(5 pop-a15) 
(6 pop-a16) 
(7 pop-a17») 

'(longal pop-longal) 
'(s pop-s) 
'(longs pop-longs)" 
'(ignore pop-ignore» 

(lbyte 'pop-al 'write 'all 
(lbyte 'pop-ala 'write 'ala) 
( 1 by t e 'p 0 p - all ' wr i t e 'a 1 1 ) 
(lbyte 'pop-a12 'write 'al 2) 
(lbyte 'pop-a13 'write 'al 3) 
(lbyte 'pop-a14 'write 'al 4) 
(lbyte· 'pop-a15 'write 'al 5) 
(lbyte 'pop-a16 'write 'al 6) 
(lbyte 'pop-a17 'write 'al 7) 
( 2 by t e 'p 0 P -1 0 n gal ' w r i t e '1 0 n g - a 1 ) 
(lbyte 'pop-s 'write 'symbol) 
(2byte 'pop-longs 'write 'long-symbol) 
(lbyte 'pop-ignore 'write 'ignore) 
(2byte 'exchange) 
(definstructionclass 'copy 

'(al ((al copy-all 
(2 copy-a12) 
(3 copy-a13) 
(4 copy-a14) 
(5 copy-a15»» 

(2byte 'copy) 
(lbyte 'copy-al 'write 'all 

73 



RFVISFD INTFRNAI. DFSIGN OF Sf>lCF I.ISP 

(lbyte 'copy-a12 'write 'al 2) 
(lbyte 'copy-a13 'write 'al 3) 
(lbyte 'copy-a14 'write 'al 4) 
(lbyte 'copy-a15 'write 'al 5) 
(definstructfonclass 'npop 

'(nsic . npop-nsic» 
(lbyte 'npop) 
(lbyte 'npop-nsic 'write 'nsic) 
(definstructionclass 'bind-null 

'(c .bind-null-c» 
(2byte 'bind-null) 
(2byte 'bind-null-c 'read 'constant) 
(definstructionclass 'bind 

'Cc . bind-c» 
(2byte 'bind) 
(lbyte 'bind-c 'read 'constant) 
(definstructionclass 'unbind 

'(psic . unbind-psic» 
(2byte 'unbind) 
(2byte 'unbind-psic 'read 'p~ic) 

::: List manipulation: 

(definstructionclass 'car 
'(al . car-all) 

(lbyte 'car) 
(lbyte 'car-al 'read 'all 
(definstructionclass 'cdr 

'(al . cdr-all) 
(lbyte 'cdr) 
(lbyte 'cdr-al 'read 'all . 
(definstructionclass 'cadr 

'(al . cadr-al» 
(lbyte 'cadr) 
( 1 by t e 'c ad r - a l' rea d 'a 1 ) 
(definstructionclass 'cddr 

'(al . cddr-al» 
(lbyte 'cddr) 
(lbyte 'cddr-al 'read 'al) 
(definstructionclass 'cdar 

'(al . cadr-al» 
(lbyte 'cdar) 
(lbyte 'cdar-al 'read 'all 
(definstructionclass 'caar 

'(al . caar-al» 
(lbyte 'caar) 
(lbyte 'caar-al 'read 'all 
(definstructionclass 'set-cdr 

'(al . set-cdr-al) 
'(s . set-cdr-s» 

(lbyte 'set-cdr-al 'read-modify-write 'all 
(lbyte 'set-cdr-s 'read-modify-write 'symbol) 
(definstructionclass 'set-cddr 

'(al . set-cddr-al) 
'(s . set-cddr-s» 

74 

c 

c 



c 

o 

REV ISFD I NTFR N A I. DESIO N OF SPICE LISP 

(lbyte 'set-cddr-al 'read-modify-write 'al) 
(2byte 'set-cddr-s 'read-modify-write 'symbol) 
(definstructionclass 'spread 

'(al . spread-al» 
(2byte 'spread) 
(2byte 'spread-a 1 'read 'a 1 ) 
(definstructionclass 'replace-car 

'(al . replace-car-al» 
(lbyte rreplace-car) 
(lbyte 'replace-car-al 'read 'al) 
(definstructionclass 'replace-cdr 

'(al . replace-cdr-al» 
(lbyte · repl ace-cdr) 
(lbyte 'replace-cdr-al 'read 'al) 
(2byte 'assoc) 
(2byte 'assq) 
(2byte 'member) 
(2byte 'memq) 
(definstructionclass 'endp 

'(al . endp-al» 
(2byte 'endp) 
(lbyte 'endp-al 'read 'al) 
(2byte 'getf) 

;;; Symbol manipulation: 

(lbyte 'get-value) 
(lbyte 'set-value) 
(lbyte 'get-definition) 
(2byte 'set-definition) 
(lbyte · get-pl ist) 
(2byte 'set-pl ist) 
(lbyte 'get-pname) 
(2byte 'get-package) 
(2byte 'set-package) 
(2byte 'boundp) 
(2byte 'fboundp) 

;;; Array manipulation: 

(2byte 'vector-length) 
(2byte 'g-vector-length) 
(2byte 'simple-string-length) 
(2byte 'simple-bit-vector-length) 
(2byte 'get-vector-subtype) 
(2byte 'set-vector-subtype) 
(2byte 'get-vector-access-code) 
(2byte 'shrink-vector)' 
(2byte 'typed-vref) 
(2byte 'typed-vset) 
(2byte 'header-length) 
(2byte 'header-ref) 
(2byte 'header-set) 
(2byte 'aref1) 
(lbyte 'svref) 

75 



RFVISFD INTFRNAJ. DFSIGN OFSPICF LISP 

(lbyte 'schar) 
(lbyte 'sbit) 
(2byte 'aset1) 
(definstruttionclass 'svset 

'{ignore. (svset-ignore») 
(lbyte 'svset) 
(lbyte 'svset-ignore) 
(definstructionclass 'scharset 

'{ignore. (scharset-ignore») 
(lbyte 'scharset) 
(lbyte 'scharset-ignore) 
(lbyte 'sbitset) 
(2byte 'bit-bash) 
(2byte 'byte-blt) 
(2byte 'find-character) 
(2byte 'find-character-with-attribute) 
(2byte 'sxhash-simple-string) 

;;; Type predicates:· 

(lbyte 'get-type) 
(2byte 'get-space) 
(2byte 'bit-vector-p) 
(2byte 'simple-bit-vector-p) 
(2byte 'simple-integer-vector-p) 
(lbyte 'stringp) 
(lbyte 'simple-string-p) 
(2byte 'b i gnump) 
(2byte 'long-float-p) 
(2byte 'complexp) 
(2byte 'ratiop) 
(2byte 'integerp) 
(2byte 'rationalp) 
(2byte 'floatp) 
(2byte 'numberp) 
(2byte 'general-vector-p) 
(lbyte 'simple-vector-p) 
(2byte 'compiled-function-p) 
(lbyte 'arrayp) 
(lbyte 'vectorp) 
(2byte 'complex-array-p) 
(lbyte 'symbolp) 
(lbyte'listp) 
(lbyte 'atom) 
(lbyte 'consp) 
(lbyte 'fixnump) 
(2byte 'short-float-p) 
(2byte 'characterp) 

;;; Arithmetic and Logic: 

(2byte .'integer-length) 
(2byte 'float-short) 
(2byte 'realpart) 
(2byte ';magpart) 

76 



o 

C'''''' <--) 

o 

REVISED INTFRNAI. DFSIGN OFSPIC'F LISP 

(2byte 'numerator) 
(2byte 'denominator) 
(2byte 'decode-float) 
(2byte 'scale-float) 
(definstructionclass '= 

'Cal . =-al) 
'(psic . =-psic» 

(lbyte '=) 
(lbyte '=-al 'read 'all 
(lbyte '=-psic 'read 'psic) 
(definstructionclass '< 

'(al . <-al) 
'(psic . <-psic» 

(1byte '<) 
(1byte '<-al 'read 'al) 
(1byte '<-psic 'read 'psic) 
(definstructionclass '> 

'(al . >-al) 
'(psic . >-psic» 

(1byte '» 
(1byte '>-al 'read 'al) 
(lbyte '>-psic 'read 'psic) 
(1byte 'truncate) 
(definstructionclass '+ 

'(al . +-al) 
'(psic . «psic . +-psic) 

(1 . +-psicl) 
(2 . +-psic2»» 

(1byte '+) 
(1byte '+-psic 'read 'psic) 
(1byte '+-psic1 'read-modify-write 'psic 1) 
(1byte '+-psic2 'read 'psic 2) 
(lbyte '+-al 'read 'al) 
(definstructionclass '-

'(al . --al) 
'(psic . «psic . --psic) 

(1 . --psic1) 
(2 . --psic2»» 

(1byte '-) 
(1byte '--psic 'read 'psic) 
( 1 by t e '- - psi c 1 'r e a d - rno d i f Y - w r i t e 9 psi c 1) 
(1byte '--psic2 'read 'psic 2) 
(1byte '--al 'read 'all 
(lbyte '*) 
#+Cornmon 
(1byte 'I ) 
#-Cornmon 
(1byte 'II) 
(definstructionclass '1+ 

'(al . 1+-al» 
(instrsynonym '+-psicl '1+) 
(1byte '1+-al 'read-modify-wri te 'al) 
(definstructionclass '1-

'(al . 1--al» 
(instrsynonym '--psicl '1-) 

77 



REVISED INTERNAl, DESIGN OF SPICE I JSP 

(lbyte 'l--al 'read-modify-write 'all 
(lbyte 'negate) 
(2byte 'abs) 
(2byte '1 ogand) 
(2byte 'logior) 
(2byte 'logxor) 
(2byte 'lognot) 
(2byte 'boole) 
(2byte 'ash) 
(2byte 'ldb) 
(2byte 'mask-field) 
(2byte 'dpb) 
(2byte 'deposit-field) 
(2byte 'lsh) 
(2byte 'logldb) 
(2byte 'logdpb) 

;;; Branching and dispatching: 

(lbyte 'branch-forward 'short-branch) 
(2byte 'long-branch-forward 'long-branch) 
(lbyte 'branch-backward 'short-branch) 
(2byte 'long-branch-backward 'long-branch) 
(lbyte 'branch-null-forward 'short-branch) 
(2byte 'long-branch-null-forward 'long-branch) 
(lbyte 'branch-not-null-forward 'short-branch) 
(2byte 'long-branch-not-null-forward 'long-branch) 
(lbyte 'branch-null-backward 'short-branch) 
(2byte 'long-branch-null-backward 'long-branch) 
(lbyte 'branch-not-null-backward · short-branch) 
(2byte 'long-branch-not-null-backward 'long-branch) 
(lbyte 'branch-save-not-null-forward 'short-branch) 
(2byte 'long-branch-save-not-null-forward 'long-branch) 
(lbyte 'branch-save-not-null-backward 'short-br~nch) 
(2byte 'long-branch-save-not-null-backward 'long-branch) 
(2byte 'dispatch 'short-dispatch) 
(2byte 'long-dispatch 'long-dis~atch) 

;;; Function call and return: 

(definstructionclass 'call 
'(c. «c. call-c) 

(1 . call-cl) 
(2 . call-c2) 
(3 . call-c3) 
(4 . call-c4»» 

(2byte 'call) 
(lbyte 'call-c 'read 'constant) 
(lbyte 'call-cl 'read 'constant 1) 
(lbyte 'call-c2 'read 'constant 2) 
(lbyte 'call-c3 'read 'constant 3) 
(lbyte 'call-c4 'read 'constant 4) 
(definstructionclass 'call-0 

'(c. call-O-c» 
(2byte 'call-O) 

78 

() 



( \ 

.. p1 

o 

RFVISFD INTERNAl. DFSIGN OF SPICE LISP 

(lbyte 'call-O-c 'read 'constant) 
(definstructionclass 'call-multiple 

'(c. call-multiple-c» 
(lbyte 'call-multiple) 
(lbyte 'call-multiple-c 'read 'constant) 
(lbyte 'start-call) 
(definstructionclass 'push-last 

'(al . «al . push-last-al) 
(0 push-last-alO) 
(1 . push-last-all) 
(2 . push-last-a12) 
(3 . push-last-a13»» 

(instrsynonym'start-call 'push-last) 
(lbyte 'push-l ast-al 'read 'al) 
(1byte 'push-last-alO 'read 'al 0) 
(lbyte 'push-last-a11 'read 'al 1) 
(lbyte 'push-last-a12 'read 'al 2) 
(lbyte 'push-last-a13 'read tal 3) 
(definstructionclass· 'return 

'Cal . return-all) 
(lbyte 'return) 
(lbyte 'return-al 'read 'all 
(2byte 'escape-return) 
(2byte 'break-return) 
(2byte 'catch) 
(2byte 'catch-multiple) 
(2byte 'catch-all) 
(2byte 'throw) 

;;; Miscellaneous: 

(lbyte 'eq) 
(lbyte 'eql) 
(1byte 'set-null) 
(lbyte 'set-t) 
(1byte 'set-O) 
(1byte 'make-predicate) 
(1byte 'not-predicate) 
(2byte 'values-to-n) 
(2byte 'n-to-values) 
(2byte 'force-values) 
(2byte 'flush-values) 

;;; System hacking: 

(2byte 'make-immediate-type) 
(2byte 'Sbit-system-ref) 
(2byte 'Sbit-system-set) 
(2byte '16bit-system-ref) 
(2byte '16bit-system-set) 
(2byt~ 'collect-garbage) 
(2byte 'newspace-bit) 
(2byte 'kernel-trap) 
(2byte 'halt) 
(2byte 'arg-in-frame) 

79 



REVISED INTFRNAI. DESIGN OF SPICE LISP 

(2byte 'active-call-frame) 
(2byte 'set-call-frame) 
(2byte 'c ur ren t -open - frame) 
(2byte 'set-open-frame) 
(2byte 'current-stack-pointer) 
(2byte 'current-binding-pointer) 
(2byte 'read-control-stack) 
(2byte 'write-contral-stack) 
(2byte 'read-binding-stack) 
(2byte 'write-binding-stack) 

(setq *lbyte-instruction-counter* #.*lbyte-instruction-counter*) 
(setq *2byte-instruction-counter* #.*2byte-instruction-caunter*) 

(format t H[_3D 1-byte instructions have been defined.]" 
(1- #.*lbyte-instruction-counter*» 

(terpri) 
(format t "[-3D 2-byte instructions have been defined.]" 

#.*2byte-instruction-counter*) 

80 

() 



c 

REVISED INTERNAL DESIGN OF SPICE LISP 

Index 
%SP-Inlernal-Apply 13. 47 
%SP-Inlernal-Frror \3 
%SP-Inlernal-Throw-Tag 13 
%SP-Software-lnlerrupH landler 13 

• 36 

+ 36 

- 36 

I 36 

1 + 37 
1- 37 
16bil-System-Ref 43 
16bit-System-Set 43 

Sbit-System-Ref 43 
Sbit-System-Set 43 

( 3S 

= 3S 

> 35 

Abs 37 
Accent message space 4 
Access-type codes 11 
AClive frame 16 
Active-Call-Frame 44 
Active-Catch register 14· 
Activc-Calch-I:rame 44 
Active-Code register 14 
Active-Frame register 14 
Activc-Function register 14 
Alloc-Array 24 
AlIoc-Bignum 23 
Alloc-Bit-Vector 23 
AlIoc-Function 24 
AHoc-G-Vector 24 
AlIoc+Vcctor 23 
AHoc-String 23 
AHoc-Symbol 24 
Arefl. 30 
Arg-In-Frame 44 
Array format 7. 10 
Array header format 12 
ArrayP 34 
Arrays 12 
Asetl 31 
Ash 38 
Assoc 27 
Assq 27 

Bignum fonnat 7,12 

81 



REVISED INTERNAL DFSIGN OF SPICE LISP 

BignumP 33 
Bind 26 
Bind- Null 26 
Binding stack format 17 
Binding slack space 8 
Binding-Stack pointer 4 
Binding-Stack-Pointcr register 14 
Bil numhering 2 
Bit-Bash 32 
Bit-Vector format 7 
Bit-Vector-P 33 
Boole 37 
Boundp 29 
Branch 39 
Branch- Not- Null 39 
Branch-Null 39 
Branch-Savc-Not- Null 39 
Break-Return 41 
Byte code formalS 21 
Byte codes 21 
Byte numbering 2 
Byte-BLT 32 

Caar 26 
Cadr 26 
Call 40.46 
Call I leader fonnat 5 
Call-O 40, 46, 47 
Call-Header 5 
Call-Multiple 40.46 
Car 26 
CAref2 31 
CAref3 31 
CAsct2 32 
CAset3 32 
Catch 17. 4t, 49 
Catch frames 17 
Catch header fonnat 5 
Catch-All 41 
Catch-All object 5.49 
Catch-Frame 5 
Catch-Multiple 41 
Cdar 26 
Cddr 26 
Cdr 26 
CE (contents of effective address) 22 
Character object 5 
CharacterP 34 
Clean-Space pointer 18 
Code vector 15 
Collect-Garbage 43 
Compiled-Function-P 34 
Complex number fonnat 7 
Complex-Array-P 34 
ComplexP 33 
Cons 24 
ConsP 34 
Constants in code 15 
Control registers 14 
Control stack space 8 

82 

()\ 
\~,l 



o 

o 

REVISED INTERNAl. DESIGN OF SPICE LISP 

Control-stack format 16 
Control-Stack pointcr 4 
Control-Stack-Pointer register 14 
Copy 26 
Current-Binding-Pointcr 45 
Currcnt-Opcn-Frame 44 
Current-Stack-Pointcr 44. 

1 )ccodc-I,'\oal 35 
Dcfinition cell 6 
DFFSTR ucr 10 
Denominator 35 
Deposit-Field 38 
Dispatch 39 
Dpb 38 

E (effective address) 22 
Effective address 21 
Endp 21 
Eq 41 
Eql 41 
Errors S3 
Escape to macrocode convention S1 
Escape-Return 40 
Exchange 2S 

FBoundp 29 
rind-Character 32 
Find-Character-With-Attribute 32 
Fixnum format 4 
rixnumP 34 
Float-J .ong 3S 
Float-Shon 35 
}'loating point formats 4, 7 
FloaLP 33 
r-lonum formats 4. 7 
Flush-Values 42 
Porcc-Values 42 
Forwarding pointers 8 
Free-Storage pointer 18 
Function object format 8. 10 

G- Vector fonnat 7 
G-Vector-Length 29 
Garbage Collection 18 
GC-Forward pointer 8 
General-Vector format 7. 9 
Gcneral-Vector-P 34 
Get-Allocation-Space 23 
Get-Definition 28 
Get-Package 28 
Gct-Plist 28 
Gct-Pname 28 
Get-Space 43 
Get-Type 43 
Get-Value 28 
Gct-Vcctor-Acccss-Code 30 
Gct-Vcctor-Subtype 29 
GetF 28 

83 

__ ... iDUiiiWdII ........... liMlIliiPJWWWWPWIW ............... iiUiiiiiiAMIdiiI&iiiMI''''1iiiii!WlWIiMd1iiJllQG4dMm .. .;;w'M1ibii&A\1IiGii&itI&MWWII .... .,a;;;;;;;;1&l4DJfGJ,_, .. 



REVISED INTERNAl, DESIGN OF SPICE LISP 

Ilairy stuff 46 
Iialt 44 
lIash tables lO 
Ilcader-I.ength 30 
Ileader-Ref 30 
I leader-Set 30 

1- Vector format 7 
Imagpart 35 
Immediate object format 3 
Integer-! ,cngth 35 
Integer-Vector format 7. 10 
IntegerP 33 
Interrupts 57 

Kernel traps 57 
Kernel-Trap 44 

Ldb 38 
Lisp objects 3 
List 24 
List cell 6 
List- 24 
ListP 34 
I.ogand 37 
I.ogdpb 38 
l.ogior 37 
Logldb 38 
l.ognot 37 
Logxor 37 
l.ong- Float-P 33 
L.ong- I-lonum format 7 
IAlih 38 

Macro instruction formats 21 
Macro instruction set 21 
Make-Complex 23 
Make-Immediate-Type 43 
Make-Predicate 42 
Make-Ratio 23 
Mask- Field 38 
Member 27 
Memq 27 
Mise type codes 4 
Mise-Binding-Stacic-Pointer 4 
Misc-Conlrol-Stack-Pointer 4 
Mise-System-Table-Pointer 4 
Mise-Trap 4 
Multiple values 48 

N-To-Values 42 
Negate 37 
Newspace-Bit 43 
NIL 13 
Non-Local Exits 49 
Not-Predicate 42 
NPop 26 
NumberP 33 
Numerator 3S 

84 



. " 

c 

o 

REVISED INTERNAL DESIGN OF SPICE LISP 

Open frame 16 
Open-I;rame register 14 

Package cell 6 
PC register 14 
Perq quadword aJignment '9 

Plisl cell 6 
Pname cell 6 
Pointer object fonnat 3, 5 
Pop 25 
Print name cell 6 
Prog.ram Counter register 14 
Property list cell 6 
Pu ri fication 19 
Push 25 
Push-Last 40, 47 

Quadword aJignment 9 

Ratio format 7 
RationalP 33 
RaUoP 33 
Read-Binding-Stack 4S 
Read-Control-Stack 45 
Read-only space 6 
Realpart 35 
Replace-Car 27 
Replace-Cdr 27 
Return 40, 48 
Runtime Environment 14 

SHit 30 
SBilsct 31 
Scale-) :Ioat 35 
Scavenger 19 
SChar 30 
SCharset 31 
Set-O 42 
Set-Allocation-Space 23 
Set-Call-Frame 44 
Set-Cddr 27 
Set-Cdr 27 
Set-Definition 28 
Set-Lpop 27 
Sct-LPush 24 
Sct-Newspace-ror-Type 43 
Set-Null 42 
Sct-Open-Frame 44 
Set-Package 29 
Set-PUst 28 
Set-T 42 
Set-Value 28 
Set-Vector-Subtype 29 
Short-Float format 4 
Short-Aoat-P 34 
Shrink-Vector 30 
Simple-Bit-Vcctor-Length 29 
Simple-Bit-Vector-P 33 
Simple-Integer-Vector-P 33 
Simple-String-Length 29 

-

85 

llJdJJllMlliim"IiIJidiW!iUMii!Ib);mD&W®Q1Mi1lfAdKG41IiIMAi!8if&&IWlIl&Ii& MdMiA&iJIlMtIAiiG\ih!lU1fiJJAMMi iblw."aOOMifGiGi&iitkJ """."" n ;;;a;;;;; 1ft jUt; (;; " ##, ; I, ,;a I i ,t R· ,~ 



, . 

REVISED INTERNAL DESIGN OF SPICE LISP 

Simple-String-P 33 
Simple-V cctor-P 34 
Space codes 4, 6 
Special binding stack space 8 
Spread 27 
Stack spaces 8 
Stan-Call 40. 47 
Static space 6 
Storage management 18 
String formal 7. 12 
StringP 33 
SVrcf 30 
SVset 31 
SVsct* 31 
SXI lash-Simple-String 32 
Symbol 6 
SymbolP 34 
System table pointer 4 
System table space 4, 8 

T 13 
Throw 41,49 
TOS register 14 
Transporter 18 
Trap code 4 
Trapping to the kernel 57 
Truncate 36, 52 
Type codes 3 
Typed- Vrcf 30 
Typcd-Vset 30 

Unbind 26 
Unwind-Protcct 49 

Value cell 6 
Values-Marker 5 
Values-To- N 42 
Vector 24 
V cctor format 7 
Vector- I ,cngth 29 
VcctorP 34 
Vectors 9 
Vinual memory 5 

Write-Binding-Stack 45 
Writc-Control-Stack 45 

• t 

86 




