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Would it be wonderful if, under the pressure of all these difficulties,
the Convention should have been forced into some deviations from that
artificial structure and regular symmetry which an abstract view of the
subject might lead an ingenious theorist to bestow on a constitution
planned in his closet or in his imagination?

— James Madison, The Federalist No. 37, January 11, 1788



Chapter 1

Introduction

This manual documents a dialect of LISP called “COMMON Lisp”, which is a successor to MACLISP [12],
influenced strongly by Lisp Machine LISP [19] and also to some extent by SCHEME [16] and INTERLISP [18].

1.1. Purpose

COMMON LISP is intended to meet these goals:

Commonality.

Portability.

Consistency.

COMMON LISP originated in an attempt to focus the work of several implementation
groups each of which was constructing successor impiementations of MACLISP for different
computers. These implementations had begun to diverge because of the differences in the
implementation environments: microcoded personal computers (Lisp Machine LISP, SPICE
Lisp), commercial timeshared computers (NIL), and supercomputers (S-1 LiSP). While the
differences among the several implementation environments will of necessity force
incompatibilities among the implementations, nevertheless COMMON LISP can serve as a
common dialect of which each implementation can be an upward-compatibie superset.

CoMMON Lisr intentionally excludes features that cannot easily be implemented on a
broad class of machines. On the one hand, features that are difficult or expensive to
implement on hardware without special microcode are avoided or provided in a more
abstract and efficiently implementable form. (Examplies of this are the forwarding
(invisible) pointers and locatives of Lisp Machine LiSP. Some of the problems that they
solve are addressed in different ways in COMMON LISP.) Cn the other hand, features that
are useful only on certain “ordinary” or “commercial” processors are avoided or made
optional. (An example of this is the type declaration facility, which is useful in some
implementations and completely ignored in others; type declarations are completely
optional and for correct programs affect only efficiency, never semantics.) Moreover,
attention has been paid to making it easy to write programs in such a way as to depend as
little as possible on machine-specific characteristics such as word length, while allowing
some variety of implementation techniques.

Most Lisp implementations are internally inconsistent in that by default the interpreter and
compiler may assign different semantics to correct programs; this stems primarily from the
fact that the interpreter assumes all variables to be dynamically scoped, while the compiler
assumes all variables to be local unless forced to assume otherwise. This has been done for
the sake of convenience and efficiency, but can lead to very subtle bugs. The definition of
COMMON LISP avoids such anomalies by explicitly requiring the interpreter and compiler




Power.

Expressiveness.

Compatibility.

Efficiency.

Stability.
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to impose identical semantics on correct programs.

CoMMON LisP is a descendant of MACLISP, which has always placed emphasis on
providing system-building tools. Such tools may in turn be used to build the user-level
packages such as INTERLISP provides; these packages are not, however, part of the
COMMON LISP core specification. It is expected such packages will be built on top of the
COMMON LISP core.

COMMON LISP culls not only from MACLISP but from INTERLISP, other LisP dialects, and
other programming languages what we believe from experience to be the most useful and
understandable constructs.” Constructs that have proved to be awkward or less useful are
being eliminated (an example is the s tore construct of MACLISP).

Unless there is a good reason to the contrary, COMMON LISP strives to be compatible with
Lisp Machine LiSP, MACLISP, and INTERLISP, roughly in that order.

COMMON LISP has a number of features designed to facilitate the production of high-
quality compiled code in those implementations that care to invest effort in an optimizing
compiler. One implementation of COMMON LISP (namely S-1 LISP) already has a compiler
that produces code for numerical computations that is competitive in execution speed to
that produced by a FORTRAN compiler [3]. (This extends the work done in MACLISP to
produce extremely efficient numerical code [7].)

It is intended that COMMON LISP, once defined and agreed upon, will change only slowly
and with due deliberation. The various dialects that are supersets of COMMON LISP may
serve as laboratories within which to test language extensions, but such extensions will be
added to COMMON LISP only after careful examination and experimentation.

The goals of COMMON LISP are thus very close to those of STANDARD LiIsP [11]. COMMON Lisp differs from
STANDARD LISP primarily in incorporating more features, including a richer and more complicated set of .
data types and more complex control structures.

The COMMON LiSP documentation is divided into four parts, known for now as the white pages, the yellow
pages, the red pages, and the blue pages. (This document is the white pages.) :

e The white pages (this document) is a language specification rather than an implementation

specification. It defines a set of standard language concepts and constructs that may be used for
communication of data structures and algorithms in the COMMON LISP dialect. This is sometimes
referred to as the “‘core COMMON LISP language”, because it contains conceptually necessary or
important features. It is not necessarily implementationally minimal. While some features could
be defined in terms of others by writing LISP code (and indeed may be implemented that way), it
was felt that these features should be conceptually primitive so that there might be agreemert
among all users as to their usage. (For example, bignums and rational numbers could be
implemented as LISP code given operations on fixnums. However, it is important to the
conceptual integrity of the language that they be regarded by the user as pnmmve and they are
useful enough to warrant a standard definition.)

e The yellow pages is a program hbrary document, containing documentation for assorted and
relatively independent packages of code. While the white pages are to be relatively stable, the
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yellow pages are extensible; new programs of sufficient usefulness and quality will routinely be
added from time to time. The primary advantage of the division into white and yellow pages is
this relative stability; a package written solely in the white-pages language should not break if
changes are made to the yellow-pages library.

e The red pages is implementation-dependent documentation; there will be one set for each
implementation. Here are specified such implementation-dependent parameters as word size,
maximum array size, and sizes of floating-point exponents and fractions, as well as
implementation-dependent information such as the nature of the file system, the method of
invoking the implementation, and so on.

e The blue pages constitutes an implementation guide in the spirit of the INTERLISP virtual machine
specification [13]. It specifies a subset of the white pages that an implementor must construct, and
indicates a quantity of LiSP code written in that subset that implements the remainder of the white
pages. In principle there could be more than one set of blue pages, each with a companion file of
LisP code.

1.2. Notational Conventions

In COMMON LISP, as in most LISP dialects, the symbol ni1 (page 58) is used to represent both the empty
list and the “false” value for Boolean tests. An empty list may, of course, also be written *“( }”; this normally
denotes the same object as “ni1”. (It is possible, by extremely perverse manipulation of the package system,
to cause the sequence of letters “ni1” to be recognized not as the symbol that répresents the empty list but as
another symbol with the same name. However, “{ )" always denotes the empty list. This obscure possibility
will be ignored in this document.) These two notations may be used interchangeably as far as the LISP system
is concerned. However, as a matter of style, this document will prefer the notation “()” when it is desirable
to emphasize its use as an empty list, and will prefer the notation “ni1” when it is desirable to emphasize its
use as the Boolean “false™ or as a symbol. Moreover, an explicit quote mark is used 10 emphasize its use as a
symbol rather than as Boolean “false”.

For example:

' (append () '()) = () ; Emphasize use of empty lists.
(not nil) => t ; Emphasize use as Boolean “false”.
(get ’'nil ’color) - : Emphasize use as a symbol.

Any data object other than ni1 is construed to be Boolean “not false”, that is, “true”. The symbol t is
conventionally used to mean “true” when no other value is more appropriate. When a function is said to
“return false” or to “be false” in some circumstance, this means that it returns nil. However, when a
function is said to “return frue” or to “be frue” in some circumstance, this means that it returns some value
other than ni 1, but not necessarily t. \

All numbers in this document are in decimal notation unless there is an explicit indication to the contrary.

Execution of code in LISP is called evaluation, because executing a piece of code normally results in a data
object called the value produced by the code. The symbol “=>" will be used in examples to indicate
evaluation. For example:

(+ 45) => 9
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means “the result of evaluating the code (+ 4 5) is (or would be, or would have been) 9”.

The symbol “==>" will be used in examples to indicate macro expansion. For example:
’ (push x v) ==> (setf v (cons x v))
means “the result of expanding the macro-call form (push x v) is (setf v (cons x v))”. This
implies that the two pieces of code do the same thing; the second piece of code is the definition of what the
first does.

The symbol “<=>" will be used in examples to indicate code equivalence. For example:
(- xy) <> (+x (- )
means “the value and effects of (- x y) is always the same as the value and effects of (+ x (- y)) for
any values of the variables x and y”. This implies that the two pieces of code do the same thing; however,
neither directly defines the other in the way macro-expansion does.

When this document specifies that it “is an error” for some situation to occur, this means that:

¢ No valid COMMON LISP program should cause this situation to occur.

o If this situation occurs, the effects and results are completely undefined as far as adherence to the
COMMON LISP specification is concerned.

e No COMMON Lisp implementation is required to detect such an error.

This is not to say that some particular implementation might not define the effects and results for such a
situation; it is merely that no program conforming to the COMMON LISP specification may correctly depend
on such effects or results. |

On the other hand, if it is specified in thi§ document that in some situation “an error is signalled’, this
means that:

o If this situation occurs, an error will be signalled; see error (page 330) and cerror (page 330).
o Valid COMMON LISP programs may rely on the fact that an error will be signalled.

¢ Every COMMON LISP implementation is required to detect such an error.

In places where it is stated that so-and-so “must” or “must not” or “may not” be the case, then it “is an
error” if the stated requirement is not met. For example, is an argument “must be a symbol”, then it “is an
error” if the argument is not a symbol. In all cases where an error is to be signalled, the word “signalled” is
used explicitly. '

Functions, variables, named constants, special forms, and macros are described using a distinctive
typographical format. Table 1-1 illustrates the manner in which COMMON LISP functions are documented.
The first line specifies the name of the function, the manner in which it accepts arguments, and the fact that it
is a function. Following indented paragraphs explain the definition and uses of the function and often
present examples or related functions. ‘ .

In general, actual code (including actual names of functions) appears in this typeface: (cons a b).
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sample-function argl arg? &optional arg3 argd [Function]

The function sample-function adds together arg/ and arg2, and then multiplies the result by
arg3. If arg3 is not provided or is ni1, the multiplication isn’t done. sample-function then
returns a list whose first element is this result and whose second element is arg4 (which defaults to
the symbol foo).
For example:

(function-name 3 4) => (7 foo)

(function-pame 1 2 2 'bar) => (6 bar)

Asarule, (sample-function x y) <=> (1ist (+ x y) 'foo).

Table 1-1: Sample Function Description

*sample-variable* , [Variable]
‘The variable *sample-variable* specifies how many times the special form

sampie-special-form should iterate. The value should always be a non-negative integer or
n1i1 (which means iterate indefinitely many times). The initial value is 0.

Table 1-2: Sample Variable Description

sample-constant [Constani]
The named constant sample-constant has as its value the height of the terminal screen in

furlongs times the base-2 logarithm of the implementation’s total disk capacity in bytes, as a
floating-point number.

Table 1-3: Sample Constant Description

Names that stand for pieces of code (meta-variables) are written in italics. In a function description, the
names of the parameters appear in italics for expository purposes. The word “&optional” in the list of
parameters indicates that all arguments past that point are optional; the default values for the parameters are
described in the text. Parameter lists may also contain “&rest”, indicating that an indefinite number of
arguments may appear, or “&key”, indicating that keyword arguments are accepted. (The
&optional/&rest/&key syntax is actually used in COMMON LISP function definitions for these purposes.)

Table 1-2 illustrates the manner in which a global variable is documented. The first line specifies the name
of the variable and the fact that it is a variable. Purely as a matter of convention, all global variables used by
COMMON LISP have names beginning and ending with an asterisk.
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Table 1-3 illustrates the manner in which a named constant is documented. The first line specifies the name
of the constant and the fact that it is a constant. (A constant is just like a global variable, except that it is an
error ever to alter its value or to bind it to a new value.)

3

samp1e-s§ec1‘a1-f0rm [name] ({var}*) {form}* [Special form]

This evaluates each form in sequence as an implicit progn, and does this as many times as specified
by the global variable *sample-variable®. Each variable var is bound and initialized to 43 -
before the first iteration, and unbound after the last iteration. The name name, if supplied, may be
used in a return-from (page 92) form to exit from the loop prematurely. If the loop ends
normally, sampie-special-formreturns nil.
For example:

(setq *sample-variablie* 3)

(sample-special-form () forml form2)
This evaluates forml, form2, forml, form2, forml, form2 in that order.

Table 1-4: Sample Special Form Description

sample-macro var {tag | statement}* [Macro]
This evaluates the statements as a prog body, with the variable var bound to 43.

(sample-macro .x (return (+ x x))) => 86
(sample-macro var . body) ==> (prog ((var 43)) . body)

Table 1-5: Sample Macro Description

Tables 1-4 and 1-5 illustrate the documentation of special forms and macros (which are closely related in
purpose). These are very different from functions. Functions are called according to a single, specific,
consistent syntax; the &optional/&rest/&key syntax specifies how the function uses its arguments
internally, but does not affect the syntax of a call. In contrast, each special form or macro can have its own
idiosyncratic syntax. It is by special forms and macros that the syntax of COMMON LIsP is defined and
extended.

In the description of a special form or macro, an italicized word names a corresponding part of the form
that invokes the special form or macro. Parentheses (“(” and “)”) stand for themselves, and should be
written as such when invoking the special form or macro. Brackets, braces, stars, plus signs, and vertical bars
are metasyntactic marks. Square brackets (“[” and “]”) indicate that what they enclose is optional (may
appear zero times or one time in that place); the square brackets should not be written in code. Curly braces
(“{” and “}”) simply parenthesize what they enclose, but may be followed by a star (“*”) or a plus sign
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(“+”); a star indicates that what the braces enclose may appear any number of times (including zero, that is,
not at all), while a plus sign indicates that what the braces enclose may appear any non-zero number of times
(that is, must appear at least once). Within braces or brackets, vertical bars (“|”’) separate mutually exclusive
choices. In summary, the notation “{x}*” means zero or more occurrences of “x”, the notation “{x}*”
means one or more occurrences of “x”, and the notation “[x]” means zero or one occurrences of “x”. These
notations are also used for syntactic descriptions expressed as BNF-like productions, as in Table 22-2.

In the last example in Table 1-5, notice the use of “dot notation”. The *“.” appearing in the expression
(sample-macro var . body) means that the name body stands for a list of forms, not just a single form, at

.the end of a list. This notation is often used in examples.

The term “LISP reader” refers not to you, the reader of this document, nor to some person reading LISP
code, but specifically to a Li1SP program (the function read (page 291)) that reads characters from an input
stream and interprets them by parsing as representations of LISP objects.

Certain characters are used in. special ways in the syntax of COMMON LiSp. The complete syntax is

“explained in detail in Chapter 22, but a quick summary here may be useful:

'’ An accent acute (“single quote™) followed by an expression form is an abbreviation for (quote jform).
Thus 'foo means (quote foo) and '(cons ’a 'b) means (quote (cons (quote a)

(quote b))).
;  Semicolon is the comment character. It and all characters up to the end of the line are discarded.
" Double quotes surround character strings: "This is a thi rty-nine character string.".
\  Backslash is an escape character. - As a rule, it causes the next character to be treated as a letter rather

than for its usual syntactic purpose. For example, A\ (B denotes a symbol whose name is “A( B”, and
"\"" denotes a character string containing one character, a double-quote.

# The number sign begins a more complex syntax. The next character designates the precise syntax to
follow. For example, #0105 means 105, (105 in octal notation); #\L denotes a character object for the
character “L”; and #(a b c¢) denotes a vector of three elements a, b, and c. A particularly important
case is that #’ fin means (function fr}, in a manner analogous to ' form meaning (quote jform).

|  Vertical bars are used in pairs to surround the name of a symbol that has many special characters in it. It
is roughly equivalent to putting a backslash in front of every character so surrounded. For example,
“JA(B) | and “A\(B\)” both mean the symbol whose name consists of the four characters “A(B)”.

*  Accent grave (“backquote™) signals that the next expression is a template that may contain commas. The
backquote syntax represents a program that will construct a data structure according to the template.
. Commas are used within the backquote syntax.
- Colon is used to indicate which package a symbol belongs to. For example, chaos:reset denotes the

symbol named reset in the package named chaos. A leading colon indicates a keyword, a symbol that
always evaluates to itself,

The square brackets, braces, question mark, and exclamation point (that is, “[”, “7”, “{”, “}”, “?”, and “1”)
are not used for any purpose in standard COMMON LISP syntax. These characters are explicitly reserved to the
user, primarily for use as macro characters for user-defined syntax extensions. See section 22.1.3 (page 271).
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All code in this manual is written in lower case. COMMON LISP is generally insensitive to the case in which
code is written. Internally, names of symbols are ordinarily converted to and stored in upper-case form.
There are ways to force case conversion on output if desired. In this document, wherever an interactive
exchange between a user and the LISP system is shown, the input is exhibited in lower case and the output in
upper case.

Some symbols are written with the colon (:) character apparently in their names. In particular, all keyword
symbols have names starting with a colon. The colon character is not actually part of the print name, but is a
package prefix indicating that the symbol belongs to the keyword package. This is all explained in Chapter
11; until you read that, just keep in mind that a symbol notated with a leading colon is in effect a constant that
evaluates to itself.



Chapter 2
Data Types

CoMMON LIsP provides a variety of types of data objects. It is important to note that in LISP it is data
objects that are typed, not variables. Any variable can have any LISP object as its value. (It is possible to
make an explicit declaration that a variable will in fact take on one of only a limited set of values. However,
such a declaration may always be omitted, and the program will still run correctly. Such a declaration merely
constitutes advice from the user that may be useful in gaining efficiency. See declare (page 117).)

In COMMON LISP, a data type is a (possibly infinite) set of LISP objects. Many LISP objects belong to more
than one such set, and so it doesn’t always make sense to ask what the type of an object is; instead, one usually
asks only whether an object belongs to a given type. The predicate typep (page 58) may be used to ask the
latter question, and the function type-of (page 41) to ask the former.

The data types defined in COMMON LISP are arranged into an almost-hierarchy (a hierarchy with shared
subtrees) defined by the subset relationship. Certain sets of objects are interesting enough to deserve labels
(such as the set of numbers or the set of strings). Symbols are used for most such labels (here, and throughout
this document, the word symbol refers to atomic symbols, one kind of LISP object). See Chapter 4 for a
complete description of type specifiers.

" The root of the hierarchy, which is the set of all objects, is specified by the symbol t. The empty data type,
which contains no objects, is denoted by nii. A type called common encompasses all the data objects
required by the COMMON LIsp language. A COMMON LISP implementation is free to provide other data types
that are not subtypes of common.

COMMON LIsP objects may be roughly divided into the following categories: numbers, characters, symbols,
lists, arrays, structures, and functions. Some of these categories have many subdivisions. There are also
standard types that are the union of two or more of these categories. The categories listed above, while they
are data types, are neither more nor less “real” than other data types; they simply constitute a particularly
useful slice across the type hierarchy for expository purposes.

Each of these categories is described briefly below. Then one section of this chapter is devoted to each,
going into more detail, and briefly describing notations for objects of each type. Descriptions of LISP
functions that operate on data objects are in later chapters.
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e Numbers are provided in various forms and representations. COMMON LISP provides a true
integer data type: any integer, positive or negative, has in principle a representation as a COMMON
Lisp data object, subject only to total memory limitations (rather than machine word width). A
true rational data type is provided: the quotient of two integers, if not an integer, is a ratio.
Floating-point numbers of various ranges and precisions are also provided, as well as Cartesian
complex numbers.

e Characters represent printed glyphs such as letters or text formatting operations. Strings are
particular one-dimensional arrays of characters. COMMON LISP provides for a rich character set,
including ways to represent characters of various type styles.

e Symbols (sometimes called atomic symbols for emphasis or clarity) are named data objects.” LISP
provides machinery for locating a symbol object, given its name (in the form of a string). Symbols
have property lists, which in effect allow symbols to be treated as record structures with an
extensible set of named components, each of which may be any LISP object.

e Lists are sequences represented in the form of linked cells called conses. There is a special object
(the symbol ni1) that is the empty list. All other lists are built recursively by adding a new
element to the front of an existing list. This is done by creating a new cons, which is an object
having two components called the car and the cdr. The car may hold anything, and the cdr is
made to point to the previously existing list. (Conses may actually be used completely generally as
two-element record structures, but their most important use is to represent lists.)

e Arrays are dimensioned collections of objects. An array can have any non-negative number of
dimensions, and is indexed by a sequence of integers. General arrays can have any LISP object as
a component; others are specialized for efficiency, and can hold only certain types of LISP objects.
It is possible for two arrays, possibly with differing dimension information, to share the same set
of elements (such that modifying one array modifies the other also), by causing one to be displaced
to the other. One-dimensional arrays of any kind are called vectors. One-dimensional arrays of
characters are called strings. One dnnenswnal arrays of bits (that is, of integers whose values are 0
or 1) are called bit-vectors.

e Hash tables provide an efficient way of mapping any LISP object (a key) to an associated object.
® Readtables are used to control the built-in expression parser read (page 291).

e Packages ére collections of symbols that serve as name spaces. The parser recognizes symbols by
looking up character sequences in the “current package”.

e Pathnames represent names of files i m a fairly unplementanon—mdependent manner. They are
used to interface to the external file system.

e Streams represent sources or sinks of data (typically characters or bytes). They are used to
perform I/0, as well as for internal purposes such as parsing strings. '

e Random-states are data structures used to encapsulate the state of the built-in random-number
generator.

e Structures are user-defined record structures, objects that have named components. The
defstruct (page 245) facility is used to define new structure types. Some COMMON LIsp
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implementations may choose to implement certain system-supplied data types as structures such
as bignums, readtables, streams, hash tables, and pathnames.

e Functions are objects that can be invoked as procedures; these may take arguments, and return
values. (All LisP procedures can be construed to return a value, and therefore treated as
functions. Those that have nothing better to return usually return ni1.) Such objects include
compiled-functions (compiled code objects). Some functions are represented as a list whose car is
a particular symbol such as Tambda. Symbols may also be used as functions.

These categories are not always mutually exclusive. The required relationships among the various data

‘types are explained in more detail in section 2.15 (page 25).

2.1. Numbers

There are several kinds of numbers defined in COMMON LiSp. They are divided into rational numbers,
consisting of integers and ratios; floating-point numbers, with names provided for up to four different
precisions; and complex numbers.

2.1.1. Integers

The integer data type is intended to represent mathematical integers. Unlike most programming
languages, COMMON LiSP in principle imposes no limit on the magnitude of an integer; storage is
automatically allocated as necessary to represent large integers.

In every COMMON LISP implementation there is a range of integers that are represented more efficiently
than others; each such integer is called a fixnum, and an integer that is not a fixnum is called a bignum. The
distinction between fixnums and bignums is visible to the user in only a few places where the efficiency of
representation is important. Exactly which integers are fixnums is implementation-dependent; typically they
will be those integers in the range —2" to 2"-1, inclusive, for some n not less than 15. See
most-positive-fixnum (page 179) and most-negative-fixnum (page 179).

Integers are ordinarily written in decimal notation, as a sequence of decimal digits, optionally preceded by a
sign and optionally followed by a decimal pomt.
For example:

0 ;Zero.

-0 ;This always means the same as 0.

+6 ;The first perfect number.

28 ;The second perfect number.

1024. ;Two to the tenth power.
-1 e
15511210043330985984000000. ;25 factorial (25!). Probably a bignum.

Compatibility note: MacLisp and Lisp Machine Lisp normally assume that integers are written in oczal (radix-8) notation
unless a decimal point is present. INTERLISP assumes integers are written in decimal notation, and uses a trailing Q to -
indicate octal radix; however, a decimal point, even in trailing position, always indicates a floating-point number. This is of
course consistent with FORTRAN: ADA does not permit trailing decimal points, but instead requires them to be embedded. In
ComMoN Lisp, integers written as described above are always construed to be in decimal notation, whether or not the
decimal point is present; allowing the decimal point to be present permits compatibility with MAcLisp.
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Integers may be notated in radices other than ten. The notation
#nnrddddd or #nnRddddd
means the integer in radix-nn notation denoted by the digits ddddd. More precisely, one may write “#”, a
non-empty sequence of decimal digits representing an unsigned decimal integer n, “r” (or “R”), an optional
sign, and a sequence of radix-n digits, to indicate an integer written in radix n (which must be between 2 and
36, inclusive). Only legal digits for the specified radix may be used; for example, an octal number may
contain only the digits 0 through 7. Letters of the alphabet of either case may be used in order for digits
above 9. Binary, octal, and hexadecimal radicés_ are useful enough to warrant the special abbreviations “#b”
for “#2r”, “#0” for “#8r”, and “#x” for “#16r”.

For example:
#2r11010101 ; Another way of writing 213 decimal.
#b11010101 ;Ditto.
#b+11010101 ;Ditto.
#0325 ;Ditto, in octal radix.
#xD5 ;Ditto, in hexadecimal radix.
#16r+D5 ;Ditto.
#0-300 ;Decimal —192, written in base 8.
#3r-21010 ;Same thing in base 3.
#25R-7H ;Same thing in base 25.
2.1.2. Ratios

A ratio is a number representing the mathematical ratio of two integers. Integers and ratios are
collectively constitute the type rational. The canonical representation of a rational number is as an integer
if its value is integral, and otherwise as the ratio of two integers, the numerator and denominator, whose
greatest common divisor is one, and of which the denominator is positive (and in fact greater than 1, or else
the value would be integral), written with “/” as a separator thus: “3/5”. It is possible to notate ratios in
non-canonical (unreduced) forms, such as “4/6”, but the LISP function prin1 (page 296) always prints the
canonical form for a ratio.

If any computation produces a result that is a ratio of two integers such that the denominator evenly divides
the numerator, then the result is immediately converted to the equivalent integer. This is called the rule of
rational canonicalization. ‘

Implementation note: While each implementation of CoMMON Lisp will probably choose to maintain all ratios in reduced
form, there is no requirement for this as long as its effects are not visible to the user. Note that while it may at first glance
appear to save computation for the reader and various arithmetic operations not to have to produce reduced forms, this
savings is likely to be counteracted by the increased cost of operating on larger numerators and denominators. In any case, a
CoMMON LisP ratio can never have a denominator that evenly divides its numerator, for such a number is always
represented as an integer instead. ) :

Rational numbers may be written as the possibly signed quotient of decimal numerals: an optional sign
followed by two non-empty sequences of digits separated by a “/”. This syntax may be described as follows:

ratio :: = [sign] {digi}* / {digi}*

The second sequence may not consist entirely of zeros.
For example:
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2/3 ; This is in canonical form.

4/6 + A non-canonical form for the same number.
-17/23

-30517578125/32768 : This is (— 5/2)P°.

10/5 : The canonical form for this is 2.

To notate rational numbers in radices other than ten, one uses the same radix specifiers (one of #nnR, #0,
#B, or #X) as for integers.

For example:
#0-101/75 ; Octal notation for -65/61.
#3r120/21 ; Ternary notation for 15/7.
#Xbc/ad : Hexadecimal notation for 188/173.

2.1.3. Floating-point Numbers

COMMON LISP allows an implementation to provide one or more kinds of floating-point number, which
collectively make up the type float. A floating-point number is a (mathematical) rational number of the
form s*f*b¢~P, where sis +1 or —1, the sign; b is an integer greater than 1, the base or radix of the
representation; p is a positive integer, the precision (in base-b digits) of the floating-point number; f'is a
positive integer between 5! and 5°—1 (inclusive), the significand; and e is an integer, the exponent. The
value of p and the range of ¢ depends on the implementation and on the type of floating-point number within
that implementation. In addition, there is a floating-point zero; depending on the implementation, there may
also be a “minus zero”. If there is no minus zero, then “0.0” and “-0.0” are both interpreted as simply a
floating-point zero.

Implementation note: The form of the above description should not be construed to require the internal representation to
be in sign-magnitude form. Two's-complement and other representations are also acceptable. Note that the radix of the
internal representation may be other than 2, as on the 18M 360 and 370, which use radix 16; see f1oat-radix (page 168).

Floating-point numbers may be provided in a variety of precisions and sizes, depending on the
implementation. High-quality floating-point software tends to depend critically on the precise nature of the
floating-point arithmetic, and so may not always be completely portable. To aid in writing programs that are
moderately portable, however, certain definitions are made here: ’

e A short floating-point number (type short-float) is of the representation of smallest fixed
precision provided by an implementation.

¢ A long floating-point number (type long-float) is of the representation of the largest fixed
precision provided by an implementation.

¢ Intermediate between short and ldng formats are two others, arbitrarily called single and double
(types single-float and double-float). :

The precise definition of these categories is implementation-dependent. However, the rough intent is that
short floating-point numbers be precise at least to about five decimal places; single floating-point numbers, at
least to about seven decimal places; and double floating-point numbers, at least to about fourteen decimal
places. It is suggested that the precision (measured in “bits”, computed as p"‘logzb) and the exponent size
(also measured in “bits”, computed as the base-2 logarithm of one plus the maximum exponent value) be at
least as great as the values in Table 2-1. ‘
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Format Minimum Precision Minimum Exponent Size
Short 13 bits Sbits
' Single 24 bits 8 bits
Double 50 bits 8 bits-
Long 50 bits 8 bits

Table 2-1: Recommended Minimum Floating-Point Precision and Exponent Size

Floating point numbers are written in either decimal fraction or “computerized scientific” notation: an
optional sign, then a non-empty sequence of digits with an embedded decimal point, then an optional decimal
exponent specification. If there is no exponent specifier, then the decimal point is required, and there must
be digits after it. The exponent specifier consists of an exponent marker, an optional sign, and a non-empty
sequence of digits. For preciseness, here is a modified-BNF decription of floating-point notation.

Sloating-point-number :: = [sign] {digit}y* . {digif}* [exponeni]
|[sign] {digi} * [. {digi(}*] exponent

signii=+|-
digit::=0]1|2]|3]|4|5]|6|7]|8]|9
exponent :: = exponent-marker [sign] {digit} *

exponent-marker::= e |s|f|d]1|b|E|S|F|D|L]|B

If no exponent specifier is present, or if the exponent marker “e” (or “E”) is used, then the precise format to
be used is not specified. When such a floating-point .number representation is read and converted to an
internal floating-point data object, the format specified by the variable *read-default-float-format*
(page 291) is used; the initial value of this variable is single-float.

The letters “s”, “f”, “d”, and “1” (or their respective upper-case equivalents) specify explicitly the use of
short, single, double, and long format, respectively. The letters “b” and “B” are reserved for future definition.

Examples of floating-point numbers:

0.0 ; Floating-point zero in default format.
0EO ; Also floating-point zero in default format.
-.0 ; This may be a zero or a minus zero,

; depending on the implementation.

0. : : The integer zero, not a floating-point number!
0.0s0 ; A floating-point zero in short format.

0s0 ; Also a floating-point zero in short format.
3.1415926535897932384d0 : A double-format approximation to ar.
6.02E+23 : Avogadro’s number, in default format.
602E+21 ; Also Avogadro’s number, in default format.
3.1010299957f-1 11og 2, in single format.

-0.000000001s9 ; €"'1n short format, the hard way.

While COMMON LISP provides terminology and notation sufficient to accommodate four distinct floating-
point formats, not all implementations will have the means to support that many distinct formats. An
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implementation is therefore permitted to provide fewer than four distinct internal floating-point formats, in.
which case at least one of them will be “shared” by more than one of the external format names short, single,
double, and long according to the following rules:

o If one internal format is provided, then it is considered to be single, but serves also as short,
double, and long. The data types short-float, single-float, doubie-float, and
long-float are considered to be identical. An expression such as (eql 1.0s0 1.0d0) will
be true in such an implementation, because the two numbers 1.0s0 and 1.0d0 will be
converted into the same internal format and therefore be considered to have the same data type,
despite the differing external syntax. Similarly, (typep 1.010 ’short-float) will be true
in such an implementation. For output purposes all floating-point numbers are assumed to be of
single format, and so will print using the exponent letter “E” or “F”.

o If two internal formats are provided, then either of two correspondences may be used, depending
on which is the more appropriate:

o One format is short; the other is single and serves also as double and long. The data types
single-float, double-float, and Tong-float are considered to be identical, but
short-float is distinct. An expression suchas (eql 1.0s0 1.0d0) will be false, but
(eq1 1.0f0 1.0d0) will be true. Similarly, (typep 1.010 °short-float) will
be false, but (typep 1.010 ’single-float) will be true. For output purposes all
floating-point numbers are assumed to be of short or single format.

o One format is single, and serves also as short; the other is double, and serves also as long.
The data types single-float, double-float, and long-float are considered to be
idendcal, but short-float is distinct. An expression such as (eq1 1.0s0 1.0d0)
will be false, as will (eq1 1.0f0 1.0d0), but (eql 1.0d0 1.010) will be true.
Similarly, (typep 1.010 ‘’short-float) will be false, but (typep 1.010
'double-float) will be true. For output purposes all floating-point numbers are
assumed to be of single or double format.

o If three internal formats are provided, then either of two correspondences may be used,
depending on whlch is the more appropriate:

o One format is short; another format is single; and the third format is doubIe and serves also
as long.

o One format is single, and serves also as short; another is double; and the third format is long.

Implementation note: It is recommended that an implementation provide as many distinct floating-point formats as
feasible, given Table 2-1 as a guideline. Ideally, short-format floating-point numbers should have an “immediate”
representation that does not require consing, single-format floating-point numbers should approximate IEEE proposed
standard single-format floating-point numbers, and double-format floating-point numbers should approximate IEEE
proposed standard double-format floating-point numbers [9, 5, 6].

2.1.4. Complex Numbers

Complex numbers (type complex) may or may not be supported by a COMMON LISP implementation.

They are represented in Cartesian form, with a real part and an imaginary part each of which is a non-
| complex number (integer, floating-point number, or ratio). It should be emphasized that the parts of a
complex number are not necessarily floating-point numbers; in this COMMON LISP is like PL/I and differs
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from FORTRAN. However, both parts must be of the same type: either both are rational, or both are of the
same floating-point format.

* Complex numbers may be notated by writing the characters “#C” followed by a list of the real and
imaginary parts. If the two parts as notated are not of the same type, then they are converted according to the
rules of “floating-point contagion” as described in chapter 12. (Indeed, “#C(a b)” is equivalent to
“#,(complex a b)”; see the description of the function complex (page 169).)

For example:
#C(3.0s1 2.0s-1)
#C(5 -3) : A Gaussian integer.
" #C(5/3 7.0) ; Will be converted internally to #C(1.66666 7.0).
#C(0 1) ; The imaginary unit.

The type of a specific complex number is indicated by a list of the word complex and the type of the
components; for example, a specialized representation for complex numbers with short floating-point parts
would be of type (complex short-float). The type complex encompasses all complex
representations.

A complex number of type (complex rational )' (that is, one whose components are rational) can
never have a zero imaginary part. If the result of any computation would be a complex rational with a zero
imaginary part, the result is immediately converted to a non-complex rational number by taking the real part.
This is called the rule of complex canonicalization.

2.2. Characters

Every object of type character has three attributes: code, bits, and font. The code attribute is intended to
distinguish among the printed glyphs and formatting functions for characters. The bits attribute allows extra
flags to be associated with a character. The font attribute permits a specification of the style of the glyphs
(such as italics). Each of these attributes may be understood to be a nor-negative integer.

A character object can be notated by writing “#\” followed by the character itself. For example, “#\g”
means the character object for a lower-case “g”. This works well enough for “printing characters”. Non-
printing characters have names, and can be notated by writing “#\” and then the name; for example,
“#\return” (or “#\RETURN” or “#\Return”, for example) means the <return> character. The syntax for

character names after “#\” is the same as that for symbols.

The font attribute may be notated in unéigned decimal notation between the “#” and the “\”. For
example, #3 \A means the letter “A” in font 3. Note that not all COMMON LISP implementations provide for
non-zero font attributes; see char-font-T1imit (page 183).

The bits attribute may be notated by preceding the name of the character by the names or initials of the
bits, separated by hyphens. The character itself may be written instead of the name, preceded if necessary by
“\”. For example:
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#\Control-Meta-Return
#\Hyper-Space
#\Control-A
#\C-M-Return -

Note that not all COMMON LISP implementations provide for non-zero bits attributes; see
char-bits-1imit (page 183). ’

Any character whose bits and font attributes are zero may be contained in strings. All such characters
together constitute a subtype of the characters; this subtype is called string-char.

2.3. Symbols

Symbols are LISP data objects that serve several purposes and have several interesting characteristics. Every
object of type symbo1 has a name, called its print name. Given a symbol, one can obtain its name in the form
of a string. More interesting, given the name of a symbol as a string one can obtain the symbol itself. (More
precisely, symbols are organized into packages, and all the symbols in a package are uniquely identified by
name.)

Symbols have a component called the property list, or plist. By convention this is always a list whose
even-numbered components (calling the initial one component zero) are symbols, here functioning as
property names, and whose odd-numbered components are associated property values. Functions are
provided for manipulating this property list; in effect, these allow a symbol to be treated as an extensible
record structure,

Symbols are also used to represent certain kinds of variables in LISP programs, and there are functions for
dealing with the values associated with symbols in this role.

A symbol can be notated simply by writing its name. Ifits name is not empty, and if the name consists only
of upper-case alphabetic, numeric, or certain “pseudo-alphabetic” special characters (but not delimiter
characters such as parentheses or space), and if the name of the symbol cannot be mistaken for a number,
then the symbol can be notated by the sequence of characters in its name. Any upper-case letters that appear
in the (internal) name may be written in either case in the external notation (more on this below).

For example:
FROBBOZ . ; The symbol whose name is “FROBBOZ”.
frobboz ; Another way to notate the same symbol.
fRObBoz ; Yet another way to notate it.
unwind-protect ; A symbol with a *“-” in its name.
+$ ; The symbol named “+$”.
1+ : The symbol named “1+”.
+1 ; This is the integer 1, not a symbol.
pascal_style ; This symbol has an underscore in its name.
b~2-4*a*c . : This is a single symbol!

; It has several special characters in its name.

file.rel.43 ; This symbol has periods in its name.
/usr/games/zork ; This symbol has slashes in its name.

Besides letters and numbers, the following characters are normally considered to be “alphabetic” for the




18 COMMON LISP REFERENCE MANUAL

purposes of notating symbols:
+-* /08 % & _=<>"~.

Some of these characters have conventional purposes for naming things; for example, symbols that name
functions having extremely implementation-dependent semantics generally have names beginning with “%”.
The last character, the period “.”, is considered alphabetic provided that a token does not consist entirely of
periods. A single period standing by itself is used the notation of conses and dotted lists; a token consisting of
two or more periods is syntactically illegal. (The period also serves as the decimal point in the notation of
numbers.)

Thé following characters are also alphabetic by default, but are explicitly reserved to the user for definition
as reader macro characters (see section 22.1.3) or any other desired purpose, and therefore should not be used
routinely in names of symbols:

PLL1{}

A symbol may have upper-case letters, lower-case letters, or both in its print name. However, the LISP
reader normally converts lower-case letters to the corresponding upper-case letters when reading symbols.
The net effect is that most of the time case makes no difference when notating symbols. However, case does
make a difference internally and when printing a symbol. Internally the symbols that name all standard
CoMMON Lisp functions, variables, and keywords have upper-case names; their names appear in lower case
in this document for readability. Typing such names in lower case works because the function read will
convert them to upper case.

If a symbol cannot be notated simply by the characters of ité name, because the (internal) name contains
special characters or lower-case letters, then there are two *“escape” conventions for notating them. Writing a
“\”" character before any character causes the character to be treated itself as an ordinary character for use in a
symbol name; in particular, it suppresses internal conversion of lower-case letters to upper case. If any
character in a notation is preceded by \, then that notation can never be interpreted as a number.

For example: ‘
\( ; The symbol whose name is *(”.
\+1 ; The symbol whose name is “+1”.
+\1 ; Also the symbol whose name is “+1”,
\frobboz ; The symbol whose name is “fROBB0Z”.
3.14159265\s0 ; The symbol whose name is “3.14159265s0”,
3.14159265\S80 ; The symbol whose name is “3.14159265S0”.
3.14159265s0 ; A short-format floating-point approximation to =.
APL\\360 ; The symbol whose name is “APL\360".
ap1\\360 ; Also the symbol whose name is “APL\ 360",
\(b~2\)\ -\ 4=*a*c ; The nameis “(B~2) - 4*A*C”.

; It has parentheses and two spaces in it.

\(\b~2\)\ -\ 4*\a*\c ; The nameis “(b~2) - 4*a*c”.

:  The letters are explicitly lower case.
It may be tedious to insert a “\” before every delimiter character in the name of a symbol if there are many
of them. An alternative convention is to surround the name of a symbol with vertical bars; these cause every
character between them to be taken as part of the symbol’s name, as if “\” had been written before each one,
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excepting only | itself and \, which must nevertheless be precedéd by \.

For example:

"1 ; The same as writing \".
[(b~2) - 4*a*c| ;The nameis “(b~2) - 4*a*c”.
|frobboz] ; The name is “frobboz”, not “FROBBOZ”.
|APL\360| ; The name is “APL360”, because

; the “\” quotes the “3”.,
|APL\\360 | ; The name is “APL\360".
|ap1\\360| ; The name is “ap1\360”.
ININVEL ;Same as \ |\ |: the name is “| | ”.
|(B~2) - 4*A*C| ; Thenameis “(B~2) - 4*A*C”,

; It has parentheses and two spaces in it.
|(b~2) - 4*a*c| ;Thenameis “(b~2) - 4*a*c”.

2.4. Lists and Conses

A cons is a record structure containing two components, called the car and the cdr. Conses are used
primarily to represent lists.

A list is recursively defined to be either the empty list (which is represented by the symbol ni 1, but can also
be written as “()”) or a cons whose cdr component is a list. A list is therefore a chain of conses linked by
their cdr components and terminated by ni1. The car components of the conses are called the elements of
the list. For each element of the list there is a cons. The empty list has no elements at all.

A list is notated by writing the elements of the list in order, separated by blank space (space, tab, or return
characters) and surrounded by parentheses. :

For example: :
(a bc) ; A list of three symbols. ' .
(2.0s0 (a 1) #\*) ; A list of three things: a short floating-point number,

; another list, and a character object.
This is why the empty list can be written as “( ) ”; it is a list with no elements.

A dotted list is one whose last cons does not have ni1 for its cdr, but some other data object (which is also
not a cons, or the first-mentioned cons would not be the last cons of the ﬁst). Such a list is called “dotted”
because of the special notation used for it: the elements of the list are written between parentheses as before,
but after the last element and before the right parenthesis are written a dot (surrounded by blank space) and
then the cdr of the last cons. As a special case, a single cons is notated by writing the car and the cdr between

‘parentheses and separated by a space-surrounded dot.

IFor example:
(a . 4) ; A cons whose caris a symbol
; and whose cdris an integer.
(abc . d) ; A dotted list with three elements whose last cons

; has the symbol d in its cdr.
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Compatibility note: In MAcLisp, the dot in dotted-list notation need not be surrounded by white space or other delimiters.
The dot is required to be delimited in CoMMON LIisP, as in Lisp Machine Lisp.

It is legitimate to write something like (a b . (c d)); this means the same as (a b ¢ d). The
standard LiSP output routines will never print a list in the first form, however; they will avoid dot notation
wherever possible.

Often the term list is used to refer either to true lists or to dotted lists. The term “true list” will be used to
refer to a list terminated by ni1, when the distinction is important. Most functions advertised to operate on
lists expect to be given true lists. Throughout this manual, unless otherwise specified, it is an error to pass a

dotted list to a function that is specified to require a list as an argument.

Implementation note: Implementors are encouraged to use the equivalent of the predicate endp (page 208) wherever it is
necessary to test for the end of a list. Whenever feasible, this test should explicitly signal an error if a list is found to be
terminated by a non-ni1- atom. However, such an explicit error signal is not required, because some such tests occur in
important loops where efficiency is important. In such cases, the predicate atom (page 59) may be used to test for the end
of the list, quietly treating any non-n+i1 list-terminating atom as if it were ni1.

Sometimes the term free is used to refer to some cons and all the other conses transitively accessible to it
through carand cdrlinks until non-conses are reached; these non-conses are called the leaves of the tree.

Lists, dotted lists, and trees are not mutually exclusive data types; they are simply useful points of view
about structures of conses. There are yet other terms, such as association list. None of these are true LISP data
types. Conses are a data type, and ni1 is the sole object of type nu11. The LISP data type 11ist is taken to
mean the union of the cons and nu11 data types, and therefore encompasses both true lists and dotted lists.

2.5. Arrays

An array is an object with components arranged according to a Cartesian coordinate system. In general,
these components may. be any LISP data objects.

The number of dimensions of an array is called its rank (this terminology is borrowed from APL); this is a
non-negative integer. Likewise, each dimension is itself a non-negative integer. The total number of elements
in the array is the product of all the dimensions.

An implementation of COMMON LISP may impose a limit on the rank of an array, but this limit may not be
smaller than 7. Therefore, any COMMON LISP program may assume the use of arrays of rank 7 or less.

It is permissible for a dimension to be zero. In this case, the array has no elements, and any attempt to
access an element is in error. However, other properties of the array (such as the dimensions thermselves)
may be used. If the rank is zero, then there are no dimensions, and the product of the dimensions is then by
definition 1. A zero-rank array therefore has a single element.

An array element is specified by a sequence of indices. The length of the sequence must equal the rank of
the array. Each index must be a non-negative integer strictly less than the corresponding array dimension.
Array indexing is therefore zero-origin, not one-origin as in (the default case of) FORTRAN.
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As an example, suppose that the variable foo names a 3-by-5 array. Then the first index may be 0, 1, or 2,
and then second index may be 0, 1, 2, 3, or 4. One may refer to array elements using the function aref
(page 230):

(aref foo 2 1)
refers to element (2, 1) of the array. Note that aref takes a variable number of arguments: an array, and as
many indices as the array has dimensions. A zero-rank array has no dimensions, and therefore aref would
take such an array and no indices, and return the sole element of the array.

In general, arrays can be multi-dimensional, can share their contents with other array objects, and can have
their size altered dynamically (either enlarging or shrinking) after creation. A one-dimensional array may also
have a fill pointer.

Multidimensional arrays store their components in row-major order; that is, internally a multidimensional
array is stored as a one-dimensional array, with the multidimensional index sets ordered lexicographically, last
index varying fastest. This is important in two situations: (1) when arrays with different dimensions share
their contents, and (2) when accessing very large arrays in virtual-memory implementation. (The first
situation is a matter of semantics; the second, a matter of efficiency.)

An array that is not displaced to another array, has no fill pointer, and is not to have its size adjusted
dynamically after creation, is called a simple array. The user may provide declarations that certain arrays will
be simple. Some implementations can handle simple arrays in an especially efficient manner; for exmaple,
simple arrays may have a more compact representation than non-simple arrays.

2.5.1. Vectors

One-dimensional arrays are called vectors in COMMON LISP, and constitute the type vector (which is
therefore a subtype of array). Vectors and lists are collectively considered to be sequences. They differ in
that any component of a one-dimensional array can be accessed in constant time, while the average
component access time for a list is linear in the length of the list; on the other hand, adding a new element to
the front of a list takes constant time, while the same operation on an array takes time linear in the length of
the array.

A general vector (a one-dimensional array that can have any data object as an element, but has no
additional pataphernalia) can be notated by notating the components in order, separated by whitespace and
surrounded by “#(” and “)”.

For example:

#(a b c) ; A vector of length 3.
#(2 3 57 11 13 17 19 23 29 31 37 41 43 47)

: A vector containing the primes below 50.
#() ; An empty vector.

Note that when the function read parses this syntax, it always constructs a simple general vector.

Rationale: Many people have suggested that brackets be used to notate vectors: “fa b c]” instead of “#(a b c)”. This
would be shorter, perhaps more readable, and certainly in accord with cultural conventions in other parts of computer
science and mathematics. However, to preserve the usefulness of the user-definable macro-character feature of the function
read (page 291), it is necessary to leave some characters to the user for this purpose. Experience in MAcLisp has shown
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that users, especially implementors of languages for use in artificial intelligence research, often want to define special kinds
of brackets. Therefore ComMmON Lispavoids using square brackets and braces for any purpose.

+ Implementations may provide certain specialized representations of arrays for efficiency in the case where
all the components are of the same specialized (typically numeric) type. All implementations provide
specialized arrays for the cases when the components are characters (or rather, a special subset of the
characters); the one-dimensional instances of this specialization are called strings. All implementations are
also required to provide specialized arrays of bits, that is, arrays of type (array bit); the one-dimensional
instances of this specialization are called bit-vectors.

2.5.2. Strings

A string is simply a vector of characters; the type string is therefore a subtype of the type vector. A
string can be written as the sequence of characters contained in the string, preceded and followed by a “"”
(double-quote) character. Any “"” or “\” character in the sequence must additionally have a “\” character

before it.

For example:
"Foo" ' ; A string with three characters in it.
" : An empty string.
"\"APL\\3607?\" he cried." ; A string with twenty characters.
"Ix] = |-x|" ; A ten-character string.

Notice that any vertical bar “|” in a string need not be preceded by a “\”. Similarly, any double-quote in
the name of a symbol written using vertical-bar notation need not be preceded by a “\”. The double-quote
and vertical-bar notations are similar but distinct: double-quotes indicate a character string containing the
sequence of characters, while vertical bars indicate a symbol whose name is the contained sequence of
characters.

The characters contained by the double-quotes, taken from left to right, occupy locations within the string
with increasing indices. The leftmost character is string element number 0, the next one is element number 1,
and so on. '

Note that the function prin1 will print any character vector (not just a simple one) using this syntax, but
the function read will always construct a simple string when it reads this syntax.

2.5.3. Bit-vectors

A bit-vector can be written as the sequence of bits contained in the string, preceded by “#*”; any delimiter
character (such as whitespace) will terminate the bit-vector syntax.

For example:
#*10110 ; A five-bit bit-vector; bitOisa 1.
#* ; An empty bit-vector.

The bits notated following the “#*”, taken from left to right, occupy locations within the bit-vector with
increasing indices. The leftmost notated bit is bit-vector element number 0, the next one is element number
1, and so on.
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The function prin1 will print any bit-vector (not just a simple one) using this syntax, but the function.
read will always construct a simple bit-vector when its reads this syntax.

2.6. Hash tables

Hash tables provide an efficient way of mapping any LISP object (a key) to an associated object. They are
provided as primitives of COMMON LISP because some implementations may need to use internal storage
management strategies that would make it very difficult for the user to implement hash tables himself in a
portable fashion. Hash tables are described in chapter 16 (page 223).

2.7. Readtables

A readtable is a data structure that maps characters into syntax types for the LISP expression parser. In
particular, a readtable indicates for each character with syntax macro character what its macro definition is.
This is a mechanism by which the user may reprogram the parser to a limited but useful extent. See section
22.1.5 (page 280). ‘

2.8. Packages

Packages are collections of symbols that serve as name spaces. The parser recognizes symbols by looking up
character sequences in the “current package”. Packages can be used to hide names internal to a module from
other code. Mechanisms are provided for exporting symbols from a given package to the primary “user”
package. See chapter PACKAG (page PACKAG).

2.9. Pathnames

Pathnames are the means by which a COMMON LISP program can interface to an external file system in a
reasonably implementation-independent manner. See section 23.1.1 (page 314).

2.10. Streams

A stream is a source or sink of data, typically characters or bytes. Nearly all functions that perform 1/0 do
so with respect to a specified stream. The function open (page 322) takes a pathname and returns a stream
connected to the file specified by the pathname. There are a number of standard streams that are used by
default for various purposes. See chapter 21 (page 259).

2.11. Random-states

For information about random-state objects and the random-number generator, see section 12.8 (page
177). '
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2.12. Structures

Structures are instances of user-defined data types that have a fixed number of named components. They
are analogous to records in PASCAL. Structures are declared using the defstruct ‘(page 245) construct;
defstruct automatically defines access and constructor functions for the new data type.

Different structures may print out in different ways; the definition of a structure type may specify a print
procedure to use for objects of that type (see the :print-function (page 250) option to defstruct).
The default notation for structures is:

#S ( structure-name
slot-name-1 slot-value-1
slot-name-2 slot-value-2

)

where “#S” indicates structure syntax, structure-name is the name (a symbol) of the structure type, each
slot-name is the name (also a symbol) of a component, and each corresponding slot-value is the representation
of the LISP object in that slot.

2.13. Functions

A function is anything that may be correctly given to the funcall (page 83) or apply (page
83) function, to be executed as code when arguments are supplied.

A compiled-function is a compiled code object.
A list whose car is the symbol 1ambda may serve as a function; see Chapter 5.

A symbol may serve as a function; an attempt to invoke a symbol as a function causes the contents of the
symbol’s function cell to be used. See symbol-function (page 69)and defun (page 53).

2.14. Unreadable Data Objects

Some objects may print in implementation-dependent ways. As a rule, such objects cannot reliably be
reconstructed from a printed representation, and so they are printed usually in a format informative to the
user but not acceptable to the read function:

#<useful information>
A hypothetical example might be:

##i<stack-pointer si:rename-within-new-definition-maybe 311037552>
The LisP reader will signal an error on encountering “#<”.
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2.15. Overlap, Inclusion, and Disjointness of Types

The COMMON LISP data type hierarchy is tangled, and purposely left somewhat open-ended so that
implementors may experiment with new data types as extensions to the language. This section states
explicitly all the defined relationships between types, including subtype/supertype relationships, disjointness,
and exhaustive partitioning. The user of COMMON LISP should not depend on any relationships not explicitly
stated here. For example, it is not valid to assume that because a number is not complex and not rational that
it must be a f 10at, because implementations are permitted to provide yet other kinds of numbers.

First we need some terminology. If x is a supertype of y, then any object of type y s also of type x, and yis
said to be a subtype of x. Iftypes x and y are disjoint, then no object (in any implementation) may be both of
type x and of type y. Types a through g, are an exhaustive union of type x if each a; is a subtype of x, and
any object of type x is necessarily of at least one of the types a; a through a_ are furthermore an exhaustive
partition if they are also pairwise disjoint.

e The tyﬁe t is a supertype of every type whatsoever. Every object belongs to type t.

¢ The type ni1 is a subtype of every type whatsoever. No object belongs to type nil.

¢ The types cons, symbo1l, array, number, and character are pairwise disjoint.

e The types rational, float, and complex are pairwise disjoint subtypes of number.

e The types integer and ratio are disjoint subtypes of rational.

e The types f ixnum and bi ghum are disjoint subtypes of integer.

e The types short-float, single-float, double-float, and Tong-float are subtypes
of float. Any two of them must be either disjoint or identical; if identical, then any other types
between them in the above ordering must also be identical to them (for example, if
single-float and 1ong-float are identical types, then double-float must be identical
to them also).

e The type nu11 is a subtype of symbo1; the only object of type nul1 is nil.

e The types cons and nu11 form an exhaustive partition of the type 1ist.

.

o The type standard-char is a subtype of string-char; string-char is a subtype of
character. :

e The type string is a subtype of vector, for string means (vector string-char).
e Thetype bit-vector is asubtype of vector, forbit-vector means (vector bit).
e The types (vector t),string,and bit-vector are disjoint.

o The type vector is a subtype of array; for all types x, the type (vector x) is a subtype of
the type (array x (*)), the setof all one-dimensional arrays.
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o The type simple-array is a subtype of array.

e The types simple-vector, simple-string, and simple-bit-vector are disjoint
_subtypes of simple-array, for they respectively mean (simple-array t (*)),
(simple-array string-char (*)),and (simple-array bit (*)).

e The type simple-vector is a subtype of vector, and indeed is a subtype of (vector t).

e The type simpie-string isasubtype of string. (Note that although string is a subtype of
vector, simple-string is not asubtype of simple-vector.)

Rationale: The type simple-vector might better have been called simple-general-vector, butin
this instance euphony and user convenience were deemed more important to the design of CoMMON Lisp
than a rigid symmetry.

e The type simple-bit-vector is a subtype of bit-vector. (Note that although
bit-vector is a subtype of vector, simple-bit-vector is nut a subtype of
simple-vector.)

o The types vector and 1ist are disjoint subtypes of sequence.

o The types hash-table, readtable, package, pathname, stream, and random-state
are pairwise disjoint.

e Any two types created by defstruct - (page 245) are disjoint unless one is a supertype of the
other by virtue of the : include (page 249) option.

~ e An exhaustive union for the type common is formed by the types cons, symbo1l, (array x)

where x is either t or a subtype of common, fixnum, bignum, ratio, short-float,
single-float, double-float, long-float, (complex x) where x is a subtype of
common, standard-char, hash-table, readtable, package, pathname, stream,
random-state, and all types created by defstruct. An implementation may not unilateraily
add additional subtypes to common; however, future revisions to the COMMON LISP standard may
extend the definition of the common data type.

Note that a type such as number or array may or may not be a subtype of common, depending
on whether or not the given implementation has extended the set of objects of that type.
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Chapter 3
Scope and Extent

In describing various features of the COMMON LISP language, the notions of scope and extent are frequently
useful. These arise when some object or construct must be referred to from some distant part of a program.
Scope refers to the spatial or textual region of the program within which references may occur. Extent refers
to the interval of time within which references may occur.

As a simple example, consider this program: ’
(defun copy-cell (x) (cons (car x) (cdr x)))
The scope of the parameter named x is the body of the defun form. There is no way to refer to this
parameter from any other place but within the body of the defun. Similarly, the extent of the parameter x
(for any particular call to copy-ce11) is the interval from the time the function is invoked to the time it is
exited. (In the general case, the extent of a parameter may last beyond the time of function exit, but that
cannot occur in this simple case.)

Within COMMON LISP, a referenceable entity is established by the execution of some language construct,
and the scope and extent of the entity are described relative to the construct and the time (during execution of
the construct) at which the entity is established. For the purposes of this discussion, the term “entity” refers
not only to COMMON LISP data objects such as symbols and conses, but also to variable bindings (both
ordinary and special), catchers, and go targets. It is important to distinguish between an entity and a name
for the entity. In a function definition such as this:

(defun foo (x y) (* x (+y 1)))
there is a single name, x, used to refer to the first parameter of the procedure whenever it is invoked;
however, a new binding is established on every invocation. A binding is a particular parameter instance. The
value of a reference to the name x depends first on the scope within which it occurs (the one in the body of

~ foo in the example occurs in the scope of the function definition’s parameters); it depends also on the

particular binding (instance) involved (in this case, it depends on during which invocation the reference is
made). More complicated examples appear at the end of this chapter.

There are a few kinds of scope and extent that are particularly useful in describing COMMON LisP:

e Lexical scope. Here references to the established entity can occur only within certain program
portions that are lexically (that is, textually) contained within the establishing construct. Typically -
the construct will have a part designated the body, and the scope of all entities established will be
(or include) the body. :

-27 -
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Example: the names of parameters to a function normally are lexically scoped.
e Indefinite scope. References may occur anywhere, in any program.

e Dynamic extent. References may occur at any time in the interval between establishment of the
entity and the explicit disestablishment of the entity. As a rule, the entity is disestablished when
execution of the establishing construct completes or is otherwise terminated. Therefore entities
with dynamic extent obey a stack-like discipline, paralleling the nested executions of their
establishing constructs. '

Example: the with-open-file (page 325) opens a connection to a file and creates a stream

. object to represent the connection. The stream object has indefinite extent, but the connection to
the open file has dynamic extent: when control exits the with-open-file construct, either
normally or abnormally, the file is automatically closed.

Example: the binding of a “special” variable has dynamic extent.

e Indefinite extent. The entity continues to exist so long as the possibility of reference remains. (An
implementation is free to destroy the entity if it can prove that reference to it is no longer
possible.)

Example: most COMMON LISP data objects have indefinite extent.

Example: the names of lexically scoped parameters to a function have indefinite extent. (By
contrast, in ALGOL the names of lexically scoped parameters to a procedure have dynamic extent.)
This function definition:

(defun compose (f g)
#'(lambda (x) (funcall f (funcall g x))))

when given two arguments, immediately returns a function as its value. The parameter bindings
for f and g do not disappear, because the returned function, when called, could still refer to those
bindings. Therefore

(funcall (compose #'sqrt #'abs) -9.0)

produces the value 3.0. (An analogous prbcedure would not work correctly in typical ALGOL
implementations.)

In addition to the above terms, it is convenient to define dynamic scope to mean indefinite scope and
dynamic extent. Thus we speak of “special” variables as having dynamic scope, or being dynamically scoped,
because they have indefinite scope and dynamic extent: a special variable can be referred to anywhere as long
as its binding is currently in effect. :

The <bove definitions do not take into account the possibility of shadowing. Remote reference of entities is
accomplished by using names of one kind or another. If two entities have the same name, then the second
(say) may shadow the first, in which case an occurrence of the name will refer to the second and cannot refer
to the first.

In the case of lexical scope, if two constructs that establish entities with the same name are textually nested,
then references within the inner construct refer to the entity established by the inner one; the inner one
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shadows the outer one. Qutside the inner one but inside the outer one, references refer to the entity
established by the outer construct. For example:
(defun test (x z)

(Tet ((z (* x 2))) (print z))

z)
The binding of the variable z by the 1et (page 85) construct shadows the parameter binding for the function
test. The reference to the variable z in the print form refers to the 1et binding. The reference to z at
the end of the function refers to the parameter named z.

In the case of dynamic extent, if the time intervals of two entities overlap, then one interval will necessarily

-be nested within the other one (this is a property of the design of COMMON LISP).

Implementation note: Behind the-assertion that dynamic extents nest properly is the assumption that there is only a single
program or process. COMMON Lisp does not address the problems of multiprogramming (timesharing) or multiprocessing
(more than one active processor) within a single Lisp environment. The documentation for implementations that extend
ComMMoN Lisp for multiprogramming or multiprocessing should be very clear on what modifications are induced by such
extensions to the rules of extent and scope.

A reference by name to an entity with dynamic extent will always refer to the entity of that name that has
been most recently established that has not yet been disestablished. For example:

(defun funl (x)
(catch 'trap (+ 3 (fun2 x))))

(defun fun2 (y)
(catch 'trap (* 5 (fun3 y))))

(defun fun3 (z)
(throw 'trap z))

Consider the call (fun1 7). The result will be 10. At the time the throw (page 108) is executed, there are
two outstanding catchers with the name trap: one established within procedure funi, and the other within
procedure fun2. The latter is the more recent, and so the value 7 is returned from the catch form in fun2.
Viewed from within fun3, the catch in fun2 shadows the one in fun1. (Had fun2 been defined as

(defun fun2 (y) ‘
(catch ’'snare (* 5 (fun3 y))))

then the two catchers would have different names, and therefore the one in fun1 would not be shadowed.
The result would then have been'7.)

As a rule this document will simply speak of the scope or extent of an entity; the possibility of shadowing
will be left implicit.

A list of the important scope and extent rules in COMMON LISP:
"o Variable bindings normally have lexical scope and indefinite extent.

e Variable bindings that are declared to be special have dynamic scope (indefinite scope and
dynamic extent).

e A catcher established by a catch (page 107) or unwind-protect (page 107) special form has
dynamic scope.
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¢ An exit point established by a block (page 91) construct has lexical scope and dynamic extent.
(Such exit points are also established by do (page 93), prog (page 100), and other iteration
constructs.)

e The go targets established by a tagbody (page 100), named by the tags in the tagbody, and
referred to by go (page 102) have lexical scope and dynamic extent. (Such go targets are also
established by do (page 93), prog (page 100), and other iteration constructs.)

o Named constants such as ni1 (page 58) and pi (page 161) have indefinite scope and indefinite
extent.

The rules of lexical scoping imply that lambda-expressions, in general, produce “closures” over those
non-special variables visible to the lambda-expression; that is, the function represented by a lambda-
expression may refer to any lexically apparent non-special variable and get the correct value, even if the
construct that established the binding has been exited in the course of execution. The compose example
shown above provides one illustration of this. The rules also imply that special variable bindings are not
“closed over” (as they may be in certain other dialects of LISP).

Constructs that use lexical scope effectively generate a new name for each established entity on each
execution. Therefore dynamic shadowing cannot occur (though lexical shadowing may). This is of particular
importance when dynamic extent is involved. For example:

(defun contorted-example (f g x)
(if (= x 0)
(funcall f)
(block here .
(+ 5 (contorted-example g
#’(1ambda () (return-from here 4))
(- x1))))))
Consider the call (contorted-example nil nil 2). This produces the result 4. During the course of
execution there are three calls on contorted-example, interleaved with two establishments of blocks:

(contorted-example nil nil 2)
(block here; ...)
(contorted-example nil #'(lambda () (return-from here;, 4)) 1)
(block here, ...)

(contorted-example #'(lambda () (return-from here; 4))
#'(lambda () (return-from here, 4))
1)
(funcall f) ;
where f => #'(lambda () (return-from here; 4))

(return-from here; 4)
At the time the funcal1 is executed there are two block (page 91) exit points outstanding, each apparently
named here. In the trace above, these exit points are distinguished for expository purposes by subscripts.
The return-from (page 92) form executed as a result of the funcal1 operation refers to the outer one of
the outstanding exit points (he rel), not the inner one (herez). This is a consequence of the rules of lexical
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scoping: it refers to that exit point textually visible at the point of execution of the function (page
68) construct (here abbreviated by the #' syntax) that resulted in creation of the function object actually
invoked by the funcall.

If, in this example, one were to change the form (funcall f) to (funcall g), then the value of the
call (contorted-example nil nil 2) would be 9. That is because the funcall would cause the
execution of (return-from here, 4), thereby cuasing a return from the inner exit point (here,).
When that occurs, the value 4 is returned from the middle invocation of contorted-example, 5 is added
to that to get 9, and that value is returned from the outer block and the outermost call to
- contorted-example. The point of this is that which exit point is returned from has nothing to do with
being innermost or outermost, but depends on the lexical scoping information that is effectively packaged up
with a lambda-expression when the funct ion construct is executed.

The function contorted-example above works only because the function named by f is invoked
during the extent of the exit point. Block exit points are like non-special variable bindings in having lexical
scope, but differ in having dynamic extent rather than indefinite extent. Once the flow of execution has left
the block construct, the exit point is disestablished. For example:

(defun illegal-example ()
(1let ((y (block here #'(lambda (z) (return-from here z)))))
(if (numberp y) y (funcall y 5))))

One might expect the call (i11egal-example) to produce 5 by the following incorrect reasoning: the
1et statement binds the variable y to the value of the b1ock construct; this value is a function resulting from
the lambda-expression. Because y is not a number, it is invoked on the value 5. The return-from should
then return this value from the exit point named here, thereby exiting from the block again and giving y the
value 5, which being a number is then returned as the value of the call to i11egal-example.

The argument fails only because exit points are defined in COMMON LISP to have dynamic extent. The
argument is correct up to the execution of the return-from. The execution of the return-from is an
error, however, not because it cannot refer to the exit point, but because it does correctly refer to an exit point
and that exit point has been disestablished.
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Chapter 4
Type Specifiers

In COMMON LISP, types are named by LISP objecfs, specifically symbols and lists, called type specifiers.
Symbols name predefined classes of objects, while lists usually indicate combinations or specializations of
simpler types. Symbols or lists may also be abbreviations for types that could be specified in other ways.

4.1. Type Specifier Symbols

The type symbols defined by the system include those shown in Table 4-1. In addition, when a structure
type is defined using defstruct (page 245), the name of the structure type becomes a valid type symbol.

4.2. Type Specifier Lists

If a type specifier is a list, the car of the list is a symbol, and the rest of the list is subsidiary type
information. In many cases a subsidiary item may be unspecified. This is indicated by writing * for the
unspecified subsidiary item. For example, to completely specify a vector type one must mention the type of
the elements and the length of the vector, as for example

(vector double-float 100)
To leave the length unspecified one would write
(vector double-float *)
To leave the element type unspecified one would write
(vector * 100)
~ Suppose that two type specifiers are the same except that the first has a * where the second has a more explicit
specification. Then the second denotes a subtype of the type denoted by the first.

As a convenience, if a list has one or more unspecified items at the end, such items may simply be dropped
rather than writing an explicit * for each one. If dropping all occurrences of * results in a singleton list, then
the parentheses may be dropped as well (the list may be replaced by the symbol in its car). For example,
(vector double-float *) may be abbreviatedto (vector double-float),and (vector * *)
may be abbreviated to (vector) and then to simply vector.

- 33 -~
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4.3. Predicating Type Specifier

A type specifier list (satisfies predicate-name) denotes the set of all objects that satisfy the predicate
fNamed by predicate-name, which must be a symbol whose global function definition is a one-argument
predicate. (A name is required; lambda-expressions are not allowed in order to avoid scoping problems.) For
example, the type (satisfies numberp) is the same as the type number. The call (typep x
*(satisfies p)) results in applying p to x and returning t if the result is true and ni1 if the result is
false.

As an example, the type string-char could be defined as .
(deftype string-char () ’'(and character (satisfies string-charp)))
See deftype (page 39).

As a rule, a predicate appearing in a satisfies type specifier shouid not cause any side effects when
invoked.

array fixnum package simple-vector
atom float pathname single-float
bignum function random-state standard-char
bit hash-table ratio stream
bit-vector ~integer rational string
character " keyword readtable string-char
common Tist sequence symbol
compiled-function long-float ‘ short-float t

complex . nil simple-array vector

cons Snull - simple-bit-vector

double-float number simple-string

Table 4-1: Standard Type Specifier Symbols

4.4. Type Specifiers That Combine

The following type specifier lists define a data type in terms of other types or objects.

(member object] object? ...)
This denotes the set containing precisely those objects named. An object is of this type if
and only if it is eq1 (page 62) to one of the specified objects.

Compatibility note: This is approximately equivalent to what the INTERLisP DECL package calls
memgq.

(not tpe) This denotes the set of all those objects that are not of the specified type.

(and typel type2 ...)
This denotes the intersection of the specified types.
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Compatibility note: This is roughly equivalent to what the INTERLisP DECL package calls a11of,

When typep (page 58) processes an and type specifier, it always tests each of the
component types in order from left to right, and stops processing as soon as one
component of the intersection has been found to which the object in question does not
belong. In this respect an and type specifier is similar to an executable and (page
64) form. The purpose of this is to allow a satisfies type specifier to depend on
filtering by previous type specifiers. For example, suppose there were a function pr imep
that takes an integer and says whether it is prime. Suppose also that it is an error to give
any object other than an integer to primep. Then the type specifier
(and integer (satisfies primep))

is guaranteed never to result in an error because the function primep will not be invoked
unless the object in question has already been determined to be an integer.

(or typel pe? ...)
This denotes the union of the specified types. For example, the type 11ist by definition is

the same as (or null cons). Also, the value returned by the function position
(page 202) is always of type (or null (integer 0 *)) (either ni1 or anon-negative
integer).

Compatibility note: This is roughly equivalent to what the INTERLisP DECL package calls oneof.

As for and, when t&pep processes an or type specifier, it always tests each of the
component types in order from left to right, and stops processing as soon as one
component of the union has been found to which the object in question belongs.

4.5. Type Specifiers That Specialize

Some type specifier lists denote specializations of data types named by symbols. These specializations may
be reflected by more efficient representations in the underlying implementation. As an example, consider the
typé (array short-float). Implementation A may choose to provide a specialized representation for
arrays of short floating-point numbers, and implementation B may choose not to.

If you should want to create an array for the express purpose of holding only short-float objects, you may
optionally specify to make-array (page 227) the element type short-float. This does not reguire
make-array to create an object of type (array short-float); it merely permits it. The request is
construed to mean “Produce the most specialized array representation capable of holding short-floats that the
implementation can provide.” Implementation A will then produce a specialized short-float array (of type
(array short-float)), and implementation B will produce an ordinary array (one of type (array

t)).
If one were then to ask whether the array were actually of type (array short-float), implementation
A would say “yes”, but implementation B would say “no”. This is a property of make-array and similar

functions: what you ask for is not necessarily what you get.

Types can therefore be used for two different purposes: declaration and discrimination. Declaring to
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make-array that elements will always be of type short-float permits optimization. Similarly, declaring
that a variable takes on values of type (array short-float) amounts to saying that the variable will take
on values that might be produced by specifying element type short-float tomake-array. On the other
hand if the predicate typep is used to test whether an object is of type (array short-float), only
objects actually of that specialized type can satisfy the test; in implementation B no object can pass that test.

The valid list-format names for data types are:

(array element-type dimensions)

This denotes the set of specialized arrays whose elements are all members of the type
element-type and whose dimensions match dimensions. For declaration purposes, this type
encompasses those arrays that can result by specifying element-type as the element type to
the function make-array (page 227); this may be different from what the type means
for discrimination purposes. element-type must be a valid type specifier or unspecified.
dimensions may be a non-negative integer, which is the number of dimensions, or it may be
a list of non-negative integers representing the length of each dimension (any dimension
may be unspecified instead), or it may be unspecified.

For example: '
(array integer 3) ; Three-dimensional arrays of integers.
(array integer (* * *)) ;Three-dimensionalarrays ofi mtegers
(array * (4 5 6)) ;4-by-5-by-6 arrays.

(array character (3 *)) ;Two-dimensional arrays of characters
A ; that have exactly three rows.
(array short-float ()) ;Zero-rank arrays of short-format
; floating-point numbers.

Note that (array t) isa proper subset of (array *). The reason is that (array t)
is the set of arrays that can hold any COMMON LISP object (the elements are of type t,
which includes all objects). On the other hand, (array *) is the set of all arrays
whatsoever, including for example arrays that can hold only characters. Now (array
character) is not a subset of (array t); the two sets are in fact disjoint, because
(array character) is not the set of all arrays that can hold characters, but the set of
arrays that are specialized to hold precisely characters and no other objects. To test
whether an array foo can hold a character, one should not use

(typep foo ’(array character))
but rather

(subtypep ’'character (array-element-type foo))

See array-element-type (page23l).

(simple-array element-type dimensions)
This is equivalent to (array element-type dimensions) except that it additionally
specifies that its elements are simple arrays. (See section 2.5.)

(vector element-type size)
This denotes the set of specialized one-dimensional arrays whose elements are all of type
element-type and whose lengths match size. This is entirely equivalent to (array
element-type (size)). \

For example:
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(vector double-float) ; Vectors of double-format
; floating-point numbers.

(vector * 5) ; Vectors of length 5.
(vector t 5) ; General vectors of length 5.
(vector (mod 32) *) ; Vectors of integers between 0 and 31.

The specialized types (vector string-char) and (vector bit) areso useful that
they have the special names string and bit-vector. Every implementation of
CoMMON LiSP must provide distinct representations for these as distinct specialized data
types.

(simple-vector size)

This is the same as (vec tor t size) except that it additionally specifies that its elements
are simple general vectors.

(complex type) Every element of this type is a complex number whose real part and imaginary part are

each of type type. For declaration purposes, this type encompasses those complex numbers
that can result by giving numbers of the specified type to the function complex (page
169); this may be different from what the type means for discrimination purposes. As an
example, Gaussian integers might be described as (complex dinteger), even in
implementations where giving two integers to the function comp1ex results in an object of
type (complex rational).

(function (argl-type arg2-type ...) value-type)

This type may be used only for declaration and not for discrimination; typep (page
58) will signal an error if it encounters a specifier of this form. Every element of this type is
a function that accepts arguments at least of the types specified by the argj-type forms, and
returns a value that is a member of the types specified by the value-type form. The
&optional, &rest, and &ey keywords may appear in the list of argument types. The
value-type may be a values type specifier, to indicate the types of multiple values.

As an example, the function cons (page 208) is of type (function (t t) cons),
because it can accept any two arguments and always returns a cons. It is also of type
(function (float string) 1ist), because it can certainly accept a floating-point
number and a string (among other things), and its result is always of type Tist (in fact a
cons and never nul1, but that does not matter for this type declaration). The function
truncate (page 166)is of type (function (number number) (values number
number)), as well as of type (function (integer (mod 8)) integer).

(values valuel-type value2-type ...)

This type specifer is extremely restricted: it may be used only as the value-type in a
function type specifier or in a the (page 123) declaration. It is used to specify
individual types when multiple values are involved. The &optional, &rest, and &key
keywords may appear in the value-type list; they thereby indicate the parameter list of a
function that, when given to multiple-value-call (page 104) along with the values,
would be suitable for receiving those values.
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4.6. Type Specifiers That Abbreviate

, The following type specifiers are, for the most part, abbreviations for other type specifiers that would be far
too verbose to write out explicitly (using, for example, member).

(integer low high) :

This denotes the integers between Jow and high. The limits low and high must each be an
integer, a list of an integer, or unspecified. An integer is an inclusive limit, a list of an
integer is an exclusive limit, and * means that a limit does not exist and so effectively
denotes minus or plus infinity, respectively. The type fixnum is simply a name for
(integer smallest largest) for implementation-dependent values of smallest and largest
(see most-negative-fixnum (page 179) and most-positive-fixnum (page
179)). The type (integer 0 1) isso useful that it has the special name bit.

(mod n) The set of non-negative integers less than n. This is equivalentto (integer 0 n—17) or
to (integer 0 (n)).

(signed-byte s) ‘ ‘
' The set of integers that can be represented in two’s-complement form in a byte of s bits.
This is equivalent to (integer —2°"7 257/-1). Simply signed-byte or
(signed-byte *)isthesameas integer.

(unsigned-byte s) -
The set of non-negative integers that can be represented in a byte of s bits. This is
equivalent to (mod 2°), that is, (integer 0 2°—1). Simply unsigned-byte or
(unsigned-byte *) is the same as (integer 0 ()), the set of non-negative
integers.

(rational low high)
This denotes the rationals between low and high. The limits Jow and Aigh must each be a
rational, a list of a rational, or unspecified. A rational is an inclusive limit, a list of a
rational is an exclusive limit, and * means that a limit does not exist and so effectively
denotes minus or plus infinity, respectively.

(float low high) ‘
The set of floating-point numbers between Jow and high. The limits Jow and high must
each be a floating-point number, a list of a floating-point number, or unspecified; a
floating-point number is an inclusive limit, a list of a floating-point number is an exclusive
limit, and * means that a limit does not exist and so effectively denotes minus or plus
infinity, respectively. '

In a similar manner one may use:

(short-float low high)

(single-float low high)

(double-float low high)

(1ong-float low high)
In this case, if a limit is a floating-point number (or a list of one), it must be one of the
appropriate format.
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(string size) .
This means the same as (array string-char (size)): the set of strings of the
indicated size.

(simple-string size)
This means the same as (simple-array string-char (size)): the set of simple
strings of the indicated size.

(bit-vector size)
This means the same as (array bit (size)): the set of bit-vectors of the indicated size.

(simple-bit-vector size)
This means the same as (simple-array bit (size)): the set of bit-vectors of the
indicated size.

4.7. Defining New Type Specifiers

New type specifiers can come into existence in two ways. First, defining a new structure type with
defstruct (page 245) automatically causes the name of the structure to be a new type specifier symbol.
Second, the de ftype special form can be used to define new type-specifier abbreviations.

deftype name lambda-list ,{declaratiogz | doc-string}* {form}* ' [Macro]

This is very similar to a defmacro (page 112) form: name is the symbol that identifies the type
specifier being defined, lambda-list is a lambda-list (and may contain &optional and &rest
tokens), and the forms constitute the body of the expander function. If we view a type specifier list
as a list containing the type specifier name and some argument forms, the argument forms
(unevaluated) are bound to the corresponding parameters in Jambda-list. Then the body forms are
evaluated as an implicit progn, and the value of the last form is interpreted as a new type specifier
for which the original specifier was an abbreviation.

deftype differs from defmacro in that if no initform is specified for an &optional parameter,
the default value is *, not ni1. )

If the optional documentation string doc-string is present, then it is attached to the name as a
documentation string of type type; see documentation (page 338).
For example:

(deftype mod (n) ‘(integer 0 (,n)))

(deftype 1list () '(or null cons))

(deftype square-matrix (&optional type size)
"SQUARE-MATRIX includes all square two-dimensional arrays."
*(array ,type (,size ,size)))

(square-matrix short-float 7) means (array short-float (7 7))
(square-matrix bit) means (array bit (* *))

Ifthe type name defined by deftype is used simply as a type specifier symbol, it is interpreted as a




COMMON LISP REFERENCE MANUAL

type specifier list with no argument forms. Thus, in the example above, square-matrix would
mean (array * (* *)), the set of two-dimensional arrays. This would unfortunately fail to
convey the constraint that the two dimensions be the same; (square-matrix bit) has the
same problem. A better definition is:

efun equidimensional (a
(def idi i 1 (
(or (< (array-rank a) 2)
(apply #'= (array-dimensions a))))

(deftype square-matrix (&optional type size)
‘(and (array ,type (,size ,size))
(satisfies equidimensional)))

4.8. Type Conversion Function

coerce object result-type [Function]

The result-type must be a type specifier; the object is converted to an “equivalent” object of the
specified type. If the coercion cannot be performed then an error is signalled. In particular,
(coerce x 'nil) always signals an error. As a rule, if object is already of the specified type, as
determined by typep (page 58), then it is simply returned. It is not generally possible to convert
any object to be of any type whatsoever; only certain conversions are permitted:

o Any sequence type may be converted to any other sequence type, provided that the new
sequence can contain all actual elements of the old sequence (it is an error if it cannot).
If the result-type is specified as simply array, for example, then (array t) is
assumed. A specialized type such as string or (vector (complex
short-float)) may be specified; of course, the result may be of either that type or
some more general type, as determined by the implementation. If the sequence is
already of the specified type, it may be returned without copying it; in this (coerce
type sequence) differs from (concatenate type sequence), for the latter is required
to copy the argument sequence. In particular, if one specifies sequence, then the
argument may simply be returned, if it already is a sequence. :

(coerce '(a b c) 'vector) => #(a b c)

¢ Some strings, symbols, and integers may be converted to characters. If object is a string
of length 1, then the sole element of the string is returned. If object is a symbol whose
print name is of length 1, then the sole element of the print name is returned. If object
is an integer n, then (int-char n) isreturned. See character (page 188).
(coerce "a" ’'character) => #\a

~ o Any non-complex number can be converted to be a short-float, single-float,
double-float, or Tong-float. If simply float is specified, and object is not
already a f1oat of some kind, then the object is converted to bea single-float.
(coerce 0 ’'short-float) => 0.0S0
(coerce 3.5L0 'float) => 3.5L0
(coerce 7/2 *float) => 3.5

¢ Any number can be converted to be a complex number. If the number is not already
complex, then a zero imaginary part is provided by coercing the integer zero to the type
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of the given real part. (If the given real part is rational, however, then the rule of
canonical representation for complex rationals will result in the immediate re-
conversion of the result from type comp1ex back to type rational.)

(coerce 4.5s0 ’'complex) => #C(4.5S0 0.0S0)

(coerce 7/2 'complex) => 7/2

(coerce #C(7/2 0) '(complex double-float))
=> #C(3.5D0 0.0D0)

» Any object may be coerced to type t.
(coerce x 't) <=> (identity x) <=> x

Coercions from floating-point numbers to rationals and from ratios to integers are purposely not
provided, because of rounding problems. The functions rational (page 165), rationalize,
floor (page 166), ceiling, truncate, and round may be used for such purposes. Similarly,
coercions from characters to integers are purposely not provided; char-code (page 188) or
char-int (page 190) may be used explicitly to perform such conversions.

4.9. Determining the Type of an Object

type-of object , [Function]
(type-of object) returns an implementation-dependent result: some type of which the object is

a member. Implementations are encouraged to return the most specific type that can be
conveniently computed and is likely to be useful to the user. If the argument is a user-defined

named structure created by defstruct then type-of will return the type name of that structure.

Because the result is implementation-dependent, it is usually better to use type-of of one

- argument primarily for debugging purposes; however, there are a few situations where portable

code requires the use of type-of, such as when the result is to be given to the coerce (page

40) or map (page 197) function. On the other hand, often the typep (page 58) function or the

typecase construct is more appropriate for some purpose than type-of.
Compatibility note: In MAcLIsp this function is called typep, and anomalously so, for it is not a predicate.
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Chapter 5

Program Structure

In the previous chapter the syntax was sketched for notating data objects in COMMON LISP. The same
syntax is used for notating programs, because all COMMON LISP programs have a representation as COMMON
LISP data objects. '

5.1. Forms

The standard unit of interaction with a COMMON LISP implementation is the form, which is simply a data
object meant to be evaluated as a program to produce one or more values (which are also data objects). One
may request evaluation of any-data object, but only certain ones (such as symbols and lists) are meaningful
forms, while others (such as most arrays) are not. Examples of meaningful forms are 3, whose value is 3, and
(+ 3 4), whose value is 7. We write “3 => 3” and “(+ 3 4) => 7” to indicate these facts. (“=>" means
“evaluates to”.) '

Meaningful forms may be divided into three categories: self-evaluating forms, such as numbers; symbols,
which stand for variables; and lists. The lists in turn may be divided into three categories: special forms,
macro calls, and function calls. (Any COMMON LISP data object not explicitly defined to be a valid form is
not a valid form, and attempting to evaluate such an object will cause an error to be signalled.)

5.1.1. Self-Evaluating Forms

All numbers, characters, strings, and bit-vectors are selfevaluating forms. When such an object is
evaluated, that object itself (or possibly a copy in the case of numbers) is returned as the value of the form.
The empty list ( ), which is also the false value ni1, is also a self-evaluating form: the value of ni1 is ni1l.
Keywords (symbols written with a leading colon) also evaluate to themselves: the value of :start is
:start.

5.1.2. Variables ‘ ~

Symbols are used as names of variables in COMMON LisP programs. When a symbol is evaluated as a form,
the value of the variable it names is produced. For example, after doing (setq items 3), which assigns
the value 3 to the variable named items, then items => 3. Variables can be assigned to, as by setq (page
70), or bound, as by 1et (page 85). Any program construct that binds a variable effectively saves the old
value of the variable and causes it to have a new value, and on exit from the construct the old value is
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reinstated.

There are actually two kinds of variables in COMMON LISP, called /exical (or static) variables and special (or
dynamic) variables. At any given time either or both kinds of variable with the same name may have a current
value. Which of the two kinds of variable is referred to when a symbol'is evaluated depends on the context of
the evaluation. The general rule is that if the symbol occurs textually within a program construct that creates
a binding for a variable of the same name, then the reference is to the variable specified by the binding; if no
such program construct textually contains the reference, then it is taken to refer to the special variable of that
name.

The distinction between the two kinds of variable is one of scope and extent. A lexically bound variable can
be referred to only by forms occurring at any place textually within the program construct that binds the
variable. A dynamically bound (special) variable can be referred to at any rime from the time the binding is -
made until the time evaluation of the construct that binds the variable terminates. Therefore lexical binding
of variables imposes a spatial limitation on occurrences of references (but no temporal limitation, for the
binding continues to exist as long as the possibility of reference remains). Conversely, dynamic binding of
variables imposes a temporal limitation on occurrences of references (but no spatial limitation). For more
information on scope and extent, see Chapter 3.

The value a special variable has when there are currently no bindings of that variable is called the global
value of the (special) variable. A global value can be given to a variable only by assignment, because a value
given by binding by definition is not global. ‘

It is possible for a special variable to have no value at all, in which case it is said to be unbound. By default,
every global variable is unbound unless and until explicitly assigned a value, except for those global variables
defined by this document or by the implementation aiready to have values when the LISP system is first
started. It is also possible to establish a binding of a special variable and then cause that binding to be
valueless by using the function makunbound (page 71). In this situation the variable is also said to be
“unbound”, although this is a misnomer; precisely speaking, it is bound but valueless. Itis an error to refer to
a variable that is unbound.

Certain global variables are reserved as “named constants”. They have a global value, and may not be
bound or assigned to. For example, the symbols t and ni1 are reserved. One may not assign a value to t or
nil, and one may not bind t or ni1. The global value of t is always t, and the global value of ni1 is always
nil. Constant symbols defined by defconstant (page 53) also become reserved and may not be further
assigned to or bound (although they may be redefined, if necessary, by using defconstant again).

5.1.3. Special Forms

If a list is to be evaluated as a form, the first step is to examine the first element of the list. If the first
element is one of the symbols appearing in Table 5-1, then the list is called a special form. (This use of the
word “special” is unrelated to its use in the phrase “special variable”.)
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block - (page 91) multiple-value-call (page 104)
catch (page 107) multiple-value-progl (page 104)
compiler-let (page 86) progn (page 84)
declare (page 117) progv (page 87)
flet (page 87) quote (page 68)
function (page 68) return-from (page 92)
go (page 102) setq (page 70)
if (page 89) tagbody (page 100)
labels (page 87) the (page 123)
let* . (page 86) throw (page 108)
let (page 85) unwind-protect (page 107)
macrolet (page 87)

(The page numbers indicate where the definitions of these special forms appear.)
Table 5-1: Names of All COMMON LIsP Special Forms

Special forms are generally environment and control conmstructs. Every special form has its own:
idiosyncratic syntax. An example is the if special form: “(if p (+ x 4) 5)” in COMMON LISP means
what “if p then x+4 else 5 would mean in ALGOL.

The evaluation of a special form normally produces a value or values, but it may instead call for a non-local
exit; see return-from (page92), go (page 102). and throw (page 108).

The set of special forms is fixed in COMMON LISP; no way is provided for the user to define more. The user
can create new syntactic constructs, however, by defining macros.

The set of special forms in COMMON LISP is purposely kept very small, because any program-analyzing
program must have special knowledge about every type of special form. Such a program needs no special
knowledge about macros, because it is simple to expand the macro and operate on the resulting expansion.
(This is not to say that many such programs, particularly compilers, will not have such special knowledge. A
compiler may be able to produce much better code if it recognizes such constructs as typecase and
multiple-value-bind and gives them customized treatment.)

An implementation is free to implement as a macro any construct described herein as being a special form._
Conversely, an implementation is free to implement as a special form any construct described herein as being
a macro, provided that an equivalent macro definition is also provided. The practical consequence is that the
predicates macro-function (page 111) and special-form-p may both be true of the same symbol. It
is recommended that a program-analyzing program process a form that is a list whose car is a symbol as
follows:

1. If the program has particular knowledge about the symbol, process the form using special-purpose
code. All of the symbols listed in Table 5-1 should fall into this category. -

2. Otherwise, if macro-function is true of the symbol, apply either macroexpand (page
116) ormacroexpand-1, as appropriate, to the entire form and then start over.




46 ' COMMON LISP REFERENCE MANUAL

3. Otherwise, assume it is a function call.

5.1.4. Macros

* Ifaform is a list and the first element is not the name of a special form, it may be the name of a macro; if
so, the form is said to be a macro call. A macro is essentially a function from forms to forms that will, given a
call to that macro, compute a new form to be evaluated in place of the macro call. (This computation is

sometimes referred to as macro expansion.) For example, the macro named return (page 92) will take a
form such as (return x) and from that form compute a new form (return-from nil x). We say

that the old form expands into the new form. The new form is then evaluated in place of the original form;

the value of the new form is returned as the value of the original form.

There are a number of standard macros in COMMON LISP, and the user can define more by using
defmacro (page 112).

Macros provided by a COMMON LISP implementation as described herein may expand into code that is not
portable among differing implementations. That is, a macro call may be implementation-independent

because the macro is defined in this document, but the expansion need not be.

Implementation note: Implementors are encouraged to implement the macros defined in this document, as far as is possible,
in such as way that the expansion wiil not contain any implementation-dependent special forms, nor contain as forms data
objects that are not considered to be forms in CoMMON Lisp. The purpose of this restriction is to ensure that the expansion
can be processed by a program-analyzing program in an implementation-independent manner. There is no problem with a
macro expansion containing calls to inplementation-dependent functions. This restriction is not a requirement of COMMON
Lisp; it is recognized that certain complex macros may be able to expand into significantly more efficient code in certain
implementations by using implementation-dependent special forms in the macro expansion.

5.1.5. Function Calls

If a list is to be evaluated as a form and the first element is not a symbol that names a special form or macro,
then the list is assumed to be a function call. The first element of the list is taken to name a function. Any and
all remaining elements of the list are forms to be evaluated; one value is obtained from each form, and these
values become the arguments to the function. The function is then applied to the arguments. The functional
computation normally produces a value, but it may instead call for a non-local exit; see throw (page 108). A
function that does return may produce no value or several values; see values (page 103). If and when the
function returns, whatever values it returns become the values of the function-call form.

For example, consider the evaluation of the form (+ 3 (* 4 5)). The symbol + names the addition
function, not a special form or macro. Therefore the two forms 3 and (* 4 5) are evaluated to produce
arguments. The form 3 evaluates to 3, and the form (* 4 5) is a function call (to the multiplication
function). Therefore the forms 4 and 5 are evaluated, producing a~guments 4 and 5 for the multiplication.
The multiplication function calculates the number 20 and returns it. The values 3 and 20 are then given as
arguments to the addition function, which calculates and returns the number 23. Therefore wesay (+ 3 (*
4 5)) => 23. '
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5.2. Functions

There are two ways to indicate a function to be used in a function call form. One is to use a symbol that
names the function. This use of symbols to name functions is completely independent of their use in naming
special and lexical variables. The other way is to use a lambda-expression, which is a list whose first element is
the symbol 1ambda. A lambda-expression is not a form; it cannot be meaningfully evaluated. Lambda-
expressions and symbols as names of functions can appear only as the first element of a function-call form, or
as the second element of the function (page 68) special form.

-5.2.1. Named Functions

A name can be given to a function in one of two ways. A global name can be given to a function by using
the defun (page 53) special form. A local name can be given to a function by using the f1et (page 87) or
labels (page 87) special form. When a function is named, a lambda-expression is effectively associated
with that name along with information about the entities that are lexically apparent at that point. If a symbol
appears as the first element of a function-call form, then it refers to the definition established by the

innermost f1et or 1abels construct that textually contains the reference, or if to the global definition (if

any) if there is no such containing construct.

5.2.2. Lambda-Expressions

A lambda-expression is a list with the following syntax:
(1ambda lambda-list . body)
The first element must be the symbol 1ambda. The second element must be a list. It is called the lambda-list,
and specifies names for the parameters of the function. When.the function denoted by the lambda-expression
is applied to arguments, the arguments are matched with the parameters specified by the lambda-list. The
body may then refer to the arguments by using the parameter names. The body consists of any number of
forms (possibly zero). These forms are evaluated in sequence, and the value(s) of the last form only are
returned as the value(s) of the application (the value n1i1 is returned if there are zero forms in the body).

The complete syntzix of a lambda-expression is:
(1ambda ({var}*
[&optional {var | (var [initform [svarl])}*]
[&rest var _
[&key {var | ({var | (keyword var)} [initform [svar]])}*
[&a1Tlow-other-keys]]
[&aux {var | (var [initform])}*])
{declaration | documentation-string}*
{form}*)
Each element of a lambda-list is either a parameter specifier or a lambda-list keyword; lambda-list keywords
begin with “&”. (Note that lambda-list keywords are not keywords in the usual sense; they do not belong to

the keyword package. They are ordinary symbols whose name begins with an ampersand.)

In all cases a var must be a symbol, the name of a variable, and similarly for svar ailso; each keyword must be
a keyword symbol, such as “: start”. An initform may be any form.
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A lambda-list has five parts, any or all of which may be empty:

o Specifiers for the reguired parameters. These are all the parameter specifiers up to the first
' lambda-list keyword; if there is no such lambda-list keyword, then all the specifiers are for
required parameters.

o Specifiers for optional parameters. If the lambda-list keyword &optional is present, the
optional parameter specifiers are those following the lambda-list keyword &optional up to the
next lambda-list keyword or the end of the list.

o A specifier for a rest'parameter. The lambda-list keyword &rest, if present, must be followed by
- a single rest parameter specifier, which in turn must be followed by another lambda-list keyword
or the end of the lambda-list.

o Specifiers for keyword parameters. If the lambda-list keyword &k ey is present, all specifiers up to
the next lambda-list keyword or the end of the list are keyword parameter specifiers. The keyword
parameter specifiers may optionally be followed by the Ilambda-list keyword
&allow-other-keys.

e Specifiers for aux variables. These are not really parameters. If the lambda-list keyword &aux is
present, all specifiers after it are auxiliary variable specifiers.

When the function represented by. the lambda-expression is applied to arguments, the arguments and
parameters are processed in order from left to right. In the simplest case, only required parameters are
present in the lambda-list: each is specified simply by a name var for the parameter variable. When the
function is applied, there must be exactly as many arguments as there are parameters, and each parameter is
bound to one argument. Here, and in general, the parameter is bound as a lexical variable unless a
declaration has been made that it should be a special binding (see declare (page 117)).

In the more general case, if there are n required parameters (n may be zero), there must be at least n
arguments, and the required parameters are bound to the first n arguments. The other parameters are then
processed using any remaining arguments.

If optional parameters are specified, then each one is processed as follows. If any unprocessed arguments
remain, then the parameter variable var is bound to the next remaining argument, just as for a required
parameter. If no arguments remain, howevei', then the initform part of the parameter specifier is evaluated,
and the parameter variable is bound to the resulting value (or to ni1 if no initform appears in the parameter
specifier). If another variable name svar appears in the specifier, it is bound to true if an argument was
available, and to false if no argument remained (and therefore initform had to be evaluated). The variable
svar is called a supplied-p parameter; it is not bound to an argument, but to a value indicating whether or not
an argument had been supplied for another parameter.

After all optional parameter specifiers have been processed, then there may or may not be a rest parameter.
If there is a rest parameter, it is bound to a list of all as-yet-unprocessed arguments. (If no unprocessed
arguments remain, the rest parameter is bound to the empty list.) If there is no rest parameter and there are
no keyword parameters, then there should be no unprocessed argumehts (it is an error if there are).
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Next any keyword parameters are processed. For this purpose the same arguments are processed that would
be made into a list for a rest parameter. (Indeed, it is permitted to specify both &rest and &key; in this case
the arguments are used for both purposes. This is the only situation in which an argument is used in the
processing of more than one parameter specifier.) If &k ey is specified, there must remain an even number of
arguments; these are considered as pairs, the first argument in each pair being interpreted as a keyword name
and the second as the corresponding value. It is an error for the first object of each pair to be anything but a

keyword.

Rationale: This last restriction is imposed so that a compiler may issue warnings about certain malformed calls to functions
that take keyword arguments. It must be remembered that the arguments in a function call that evaluate to keywords are
just like any other arguments, and may be any evaluable forms. A compiler could not, without additional context, issue a
warning about the call

(fi11 seq item x y)

because in principle the variable x might have as its value a keyword such as :start. However, a compiler would be
justified in issuing a warning about the call
(fi11 seq item 0 10)

because the constant 0 is definitely not a keyword. Similarly, if in the first case the variable x had been declared to be of
type integer then type analysis could enable the compiler to justify a warning.

In each keyword parameter specifier must be a name var for the parameter variable. If an explicit keyword
is specified, that is the keyword name for the parameter. Otherwise the name var serves to indicate the
keyword name, in that a keyword with the same name (in the keyword package) is used as the keyword.
Thus

(defun foo (&key radix (type 'integer)) ...)
means exactly the same ag

(defun foo (&key ((:radix radix)) ((:type type) 'integer)) ...)
The keyword parameter specifiers are, like all parameter specifiers, effectively processed from left to right.
For each keyword parameter specifier, if there is an argument pair whose keyword name matches that
specifier’s keyword name (that is, the names are eq), then the parameter variable for that specifier is bound to
the second item (the value) of that argument pair. If more than one such argument pair matches, it is not an
error; the leftmost argument pair is used. If no such argument pair exists, then the initform for that specifier
is evaluated and the parameter variable is bound to that value (or to n1i1 if no initform was specified). The
variable svar is treated as for ordinary optional parameters: it is bound to frue if there was a matching
argument pair, and to false otherwise.

It is an error if an argument pair has a keyword name not matched by any parameter specifier, unless at
least one of the following two conditions is met:

e &allow-other-keys was speciﬁéd in the lambda-list.

e Among the keyword argument pairs is a pair whose keyword is :allow-other-keys and
whose valueisnot nil.

If either condition obtains, then it is not an error for an argument pair to match no parameter specified, and
the argument pair is simply ignored (but such an argument pair is accessible through the &rest parameter if
one was specified). The purpose of these mechanisms is to allow sharing of argument lists among several
functions, and to allow either the caller or the called function to specify that such sharing may be taking place.
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After all parameter specifiers have been processed, the auxiliary variable specifiers (those following the
lambda-list keyword &aux) are processed from left to right. For each one the initform is evaluated and the
variable var bound to that value (or to ni1 if no initform was specified). (Nothing can be done with &aux
Yariables that cannot be done with the special form 1et (page 85):

(1ambda (x y &aux (a (car x)) (b 2) ¢) ...)
<=> (lambda (x y) (let ((a (car x)) (b 2) c) ...))
Which to use is purely a matter of style.)

As a rule, whenever any initform is evaluated for any parameter specifier, that form may refer to any
parameter variable to the left of the specifier in which the initform appears, including any supplied-p
variables, and may rely on no other parameter variable having yet been bound (including its own parameter
variable).

Once the lambda-list has been processed, the forms in the body of the lambda-expression are executed.
These forms may refer to the arguments to the function by using the names of the parameters. On exit from
the function, either by a normal return of the function’s value(s) or by a non-local exit, the parameter
bindings, whether lexical or special, are no longer in effect (but are not necessarily permanently discarded, for
a lexical binding can later be reinstated if a “closure” over that binding was created, perhaps using function
(page 68), and saved before the exit occurred). '

Examples of &optional and &rest parameters: :
((1ambda (a b) (+ a (* b 3))) 4 5) => 19
((1ambda (a &optional (b 2)) (+ a (* b 3))) 4 5) => 19
((Tambda (a &optional (b 2)) (+ a (* b 3))) 4) => 10
((1ambda (&optional (a2 b) (¢ 3 d) &rest x) (list a b x)))
=> (2 nil- 3 nil nil) - '
((1ambda (&optional (a 2 b) (c 3 d) &rest x) (list a b x)) 6)
=> (6 t 3 nil nil) -
((1ambda (&optional (a 2 b) (c 3 d) &rest x) (list a b c d x)) 6 3)
= (6t 31tnil)
((1ambda (&optional (a 2 b) (c 3 d) &rest x) (1ist a b ¢ d x))
6 3 8) ‘
= (6t 3t (8)) :
((1ambda (&optional (a 2 b) (c 3 d) &rest x) (list a b ¢ d x))
6389 10 11)
=> (6t 3t (89 10 11))

Examples of &k ey parameters:

[g]
Q

(2]
Q.

d) (1ist

((1ambda (a b &key c abocd))12)= (12nil nil)
((1ambda (a b &ey c d) (list ab cd)) 12 :c 6) => (12 6 nil)
((1ambda (a b &ey c d) (1list a b c d)) 12 :d 8) => (1 2 nil 8)
((1ambda (a b &key c d) (list a b cd)) 12 :c 6 :d 8) = (126 8)
((1ambda (a b &key c d) (list abcd)) 12 :d8 :c6) => (126 8)
((1ambda (a b &ey c d) (list a b cd)) :a1:d 8 :c 6) => (:a 16 8)
((1ambda (a b &ey c d) (1ist a b c d)) :a :b :c :d)

=> (:a :b :d nil) :

Examples of mixtures:
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((1ambda (a &optional (b 3) &rest x &key c (d a))
(1ist a b c d x))
1) => (1 3 nil 1 ())

((1ambda (a &optional (b 3) &rest x &key c (d a))
(1ist a b c d x))
12) =>(12nil1())

((1ambda (a &optional (b 3) &rest x &key c (d a))
(1ist a b c d x)) .
:c 7) = (:¢ 7 nil :c ())

((1ambda (a &optional (b 3) &rest x &key c (d a))
(1ist a b c d x))
16 :c7) = (1671 (:c 7))

((1ambda (a &optional (b 3) &rest x &key c (d a))
(1ist a b ¢ d x))
16 :d 8 => (16 nil 8 (:d 8))

((Tambda (a &optional (b 3) &rest x &key c (d a))
(1ist a b ¢ d x))
16 :d 8 :¢c9 :d 10) => (169 8 (:d8 :c9 :d 10))

All lambda-list keywords are permitted, but not terribly useful, in lambda-expressions appearing explicitly
as the first element of a function-call form, as shown in the examples above. They are extremely useful,
however, in functions given global names by defun (page 53).

All symbols whose names begin with “&” are conventionally reserved for use as lambda-list keywords and
should not be used as variable names. Implementations of COMMON LISP are free to provide additional
lambda-list keywords.

Tambda-Tist-keywords A [Constani]

The value of 1ambda-1ist-keywords is a list of all the lambda-list keywords used in the
implementation, including the additional ones used only by defmacro (page 112). It must
contain at least the symbols &optionatl, &rest, &key, &allow-other-keys, &aux, &body,
and &who1le.

As an example of the use of &a11ow-other-keys and :al1low-other-keys, consider a function that
takes two keyword arguments of its own, and also accepts additional keyword arguments to be passed to
make-array (page 227):

(defun array-of-strings (str dims &rest keyword-pairs
&key (start 0) end &allow-other-keys)
(apply #'make-array dims :
:initial-element (subseq str start end)
:allow-other-keys t
keyword-pairs))

This function takes a string and dimensioning information and returns an array of the specified dimensions
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each of whose elements is the specified string. However, : start and : end keyword arguments may be used
in the usual manner (see chapter 14) to specify that a substring of the given string should be used. In
addition, the presence of &a1low-other-keys in the lambda-list indicates that the caller may specify
additional keyword arguments; the &rest argument provides access to them. These additional keyword
arguments are fed to make-array. Now make-array normally does not allow the keywords : start and
:end to be used, and it would be an error to specify such keyword arguments to make-array. However,
the presence in the call to make-array of the keyword argument :allow-other-keys with a non-nil
value causes any extraneous keyword arguments, including :start and : end, to be acceptable and ignored.

lambda-parameters-limit | [Constani]

The value of 1Tambda-parameters-1imit is a positive integer that is the upper exclusive bound
on the number of distinct parameter names that may appear in a single lambda-list. This bound
depends on the implementation, but will not be smaller than 50. (Implementors are enouraged to
make this limit as large as practicable without sacrificing performance.) See
call-arguments-T1imit (page 84).

5.3. Top-Level Forms

The standard way for the user to interact with a COMMON LISP implementation is via what is called a
read-eval-print loop: the system repeatedly reads a form from some input source (such as a keyboard or a disk
file), evaluates it, and then prints the value(s) to some output sink (such as a display screen or another disk
file). As a rule any form (evaluable data object) is acceptable. However, certain special forms are specifically
designed to be convenient for use as fop-level forms, as opposed to forms embedded within other forms, as
“(+ 3 4)”is embedded within “(if p (+ 3 4) 6)”. These top-level special forms may be used to
define globally named functions, to define macros, to make declarations, and to define global values for
special variables.

It is not illegal to use these forms at other than top level, but whether it is meaningful to do so depends on
context. Compilers, for example, may not recognize these forms properly in other than top-level contexts.
(As a special case, however, if a progn (page 84) form appears at top level, then all forms within that progn

are considered by the compiler to be top-level forms.)

Compatibility note: In MacLisp. a top-level progn is considered to contain top-level forms only if the first form is
“(quote compile)”. This odd marker is unnecessary in COMMON LisP.

Macros are usually defined by using the special form defmacro (page 112). This facility is fairly
complicated, and is described in Chapter 8.

5.3.1. Defining Named Functions
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defun name lambda-list {declaration | doc-string}* {form}* [Macro] .

Evaluating this special form causes the symbol name to be a global name for the function specified
by the lambda-expression

(1ambda lambda-list {declaration}* {form}*)
defined in the lexical environment in which the defun form was executed (because defun forms
normally appear at top level, this is normally the null lexical environment).

If the optional documentation string doc-string is present (if not followed by a declaration, it may be
present only if at least one form is also specified, as it is otherwise taken to be a form), then it is
attached to the name as a documentation string of type function; see documentation (page
338). It is an error if more than one doc-string is present.

The forms constitute the body of the defined function; they are executed as an implicit progn.

The body of the defined function is implicitly enclosed in a block (page 91) construct whose
name is the same as the name of the function. Therefore return-from (page 92) may be used to
exit from the function. '

-Other implementation-dependent bookkeeping actions may be taken as well by defun. The name
is returned as the value of the defun form.

For example:

(defun discriminant (a b c)
(declare (number a b c)) :
"Compute the discriminant for a quadratic equation.
Given a, b, and c, the value b~2-4*a*c is calculated.
The quadratic equation a*x~2+b*x+c=0 has real, multiple,
or complex roots depending on whether this calculated
value is positive, zero, or negative, respectively."
(- (*bb) (*4ac)))
=> discriminant
andnow (discriminant 1 2/3 -2) => 76/9

It is permissible to redefine a function (for example, to install a corrected version of an incorrect
definition!).

5.3.2. Declaring Global Variables and Named Constants

defvar name [initial-value [documentation]] ' [Macro]
defparameter name initial-value [dacumentation] [Macro]
defconstant name initial-value [documentation) [Macrol

defvar is the recommended way to declare the use of a special variable in a program.
(defvar variable)
proclaims variable to be special (see proclaim (page 119)), and may perform other system-
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dependent bookkeeping actions. If a second “argument” is supplied:

(defvar variable initial-value)
then variable is initialized to the result of evaluating the form iniftial-value unless it already has a
value. The initial-value form is not evaluated unless it is used; this is useful if it does something
expensive like creating a large data structure. The initialization is performed by assignment, and so
assigns a global value to the variable unless there are currently special bindings of that variable
(normally there should not be any). ’

defvar also provides a good plaice to put a comment describing the meaning of the variable
(whereas an ordinary special proclamation offers the temptation to declare several variables at
once and not have room to describe them all).

(defvar *visible-windows* 0
"Number of windows at least partially visible on the screen")

defparameter is similar to defvar, but requires an initial-value form, and always evaluates it
and assigns the result to the variable. The semantic distinction is that defvar is intended to
declare a variable changed by the program, whereas defparameter is intended to declare a
variable that is normally constant, but can be changed (possibly at run time), considered as a change
to the program. defparameter therefore does not indicate that the quantity never changes; in
particular, it does not license the compiler to build assumptions about the value into programs
being compiled.

defconstant is like defparameter, but does assert that the value of the variable name is fixed,
and does license the compiler to build assumptions about the value into programs being compiled.
It is an error if there are any special bindings of the variable at the time the defconstant form is
executed (but implementations may or may not check for this).

Once a name has been declared by defconstant to be constant, any further assignment to or
binding of that special variable is an error. This is the case for such system-supplied constants as t
(page 58) and most-positive-fixnum (page 179). A compiler may also choose to issue
warnings about bindings of the lexical variable of the same name.

For any of these constructs, the documentation should be a string. It is attached to the name of the
variable, parameter, or constant under the variab1e documentation type; see documentation
(page 338).

These constructs are normally used only as top-level forms.
5.3.3. Control of Time of Evaluation

eval-when ({situation}*) {form}* [Function]
The body of an eval-when form is processed as an implicit progn, but only in the situations
listed. A situation may be compile, 1oad, or eval.

eval specifies that the interpreter should process the body. comp ile specifies that the compiler
should evaluate the body at compile time in the compilation context. 1oad specifies that the
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compiler should arrange to evaluate the forms in the body when the compiled file containing the
eval-when form is loaded.

The default interpretation is that top-level forms are effectively processed in eval and load
situations. eval-when is occasionally useful to get different effects. For example, if the compiler
is to be able to read a file properly that uses user-defined reader macro characters, it is necessary to
write
(eval-when (compile load eval)
(set-macro-character #\$ #'(lambda (stream char)

(declare (ignore char))
(1ist 'dollar (read stream)))))
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Chapter 6

Predicates

A predicate is a function that tests for some condition involving its arguments and returns ni1 if the
condition is false, or some non-ni1 value if the condition is true. One may think of a predicate as producing
a Boolean value, where ni1 stands for false and anything else stands for frue. Conditional control structures
such as cond (page 88), it (page 89), when (page 89), and unless (page 90) test such Boolean values.
We say that a predicate is true when it returns a non-n1i1 value, and is false when it returns ni1; that is, it is
true or false according to whether the condition being tested is true or false.

By convention, the names of predicates usually end in the letter “p” (which stands for “predicate™).

COMMON LISP uses a uniform convention in hyphenating names of predicates. If the name of the predicate
is formed by adding a “p” to an existing name, such as the name of a data type, a hyphen is placed before the
final “p” if and only if there is a hyphen in the existing name. For example, number begets numberp but
standard-char begets standard-char-p. On the other hand, if the name of a predicate is formed by
adding a prefixing qualifier to the front of an existing predicate name, the two names are joined with a
hyphen and the presence or absence of a hyphen before the final “p” is not changed. For example, the
predicate string-lessp has no hyphen before the “p” because is the string version of 1essp (a MACLISP
function that has been renamed “<” in COMMON LISP). The name string-less-p would incorrectly
imply that it is a predicate that tests for a kind of object called a “string-less”, and the name

stringlessp would connote a predicate that tests whether something has no strings (is “stringless™)!

The control structures that test Boolean values only test for whether or not the value is ni1, which is
considered to be false. Any other value is considered to be true. Often a predivate will return n1i1 if it “fails”
and some usefil value when it “succeeds”; such a function can be used not only as a test but also for the
useful value provided in case of success. An example is member (page 217).

If no better non-ni1 value is available for the purpose of indicating success, by convention the symbol t is
used as the “standard” non-false value.

6.1. Logical Values
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nil ' [Constani]

The value of ni1 is always ni1. This object represents the logical false value and also the empty
, list. It can also be written “( ).

t ‘ [Constani]

The value of t is always t.

| 6.2. Data Type Predicates

Perhaps the most important predicates in LISP are those that deal with data types; that is, given a data object
one can determine whether or not it belongs to a given type, or one can compare two type specifiers.

6.2.1. General Type Predicate

typep object type [Function)
typep is a predicate that is true if object is of type type, and is false otherwise. Note that an object
can be “of” more than one type, since one type can include another. The fype may be any of the
type specifiers mentioned in Chapter. 4 except that it may not be or contain a type specifier list
whose first element is function or values. A specifier of the form (satisfies fh) is
handled simply by applying the function fin to object (see funcall (page 83)); the object is
considered to be of the specified type if the result is not ni1.

subtypep typel type2 ' [Function]
The arguments must be type specifiers that are acceptable to typep (page 58). The two type
specifiers are compared; this predicate is true if fype/ is definitely a (not necessarily proper) subtype
of type2. If the result is ni1, however, then #ype/ may or may not be a subtype of type2 (sometimes
it is impossible to tell, especially when satisfies type specifiers are involved). A second
returned value indicates the certainty of the result; if it is true, then the first value is an accurate
indication of the subtype relationship. Thus there are three possible result combinations:

t t typel is definitely a subtype of type2
nil t typel is definitely not a subtype of fype2
nil nil subtypep could not determine the relationship

6.2.2. Specific Data Type Predicates
The following predicates are for testing for individual data types.
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null object [Function}] .
nul1 is true if its argument is (), and otherwise is false. This is the same operation performed by
the function not (page 64); however, not is normally used to invert a Boolean value, while nu11
is normally used to test for an empty list. The programmer can therefore express intent by the
choice of function name.

(null x) <=> (typep x 'null) <=> (eq x '())

symbolp object [Function]
symbo1p is true if its argument is a symbol, and otherwise is false.
(symbolp x) <=> (typep x 'symbol)

atom object : ‘ [Function]
The predicate atom is true if its argument is not a cons, and otherwise is false. Note that (atom
'()) is true, because ( )=nil.
(atom x) <=> (typep x 'atom) <=> (not (typep x ’'cons))

consp object ‘ [Function]
"The predicate consp is true if its argument is a cons, and otherwise is false. Note that the empty
listis not acons, so (consp '()) <=> (consp 'nil)=>nil.
(consp x) <=> (typep x ’cons) <=> (not (typep x 'atom))
Compatibility note: Some Lisp implementations call this function pairp or 1istp. The name pairp was
rejected for COMMON Lisp because it emphasizes too strongly the dotted-pair notion rather than the usual usage
of conses in lists. On the other hand, 1istp too strongly implies that the cons is in fact part of a list, which

after all it might not be; moreover, () is a list, though not a cons. The name consp seems to be the
appropriate compromise.

listp object [Function]
1istp is true if its argument is a cons or the empty list ( ), and otherwise is false. It does not check
for whether the list is a “true list” (one terminated by ni1) or a “dotted list” (one terminated by a
non-null atom).
(1istp x) <=> (typep x 'list) <=> (typep x '(or cons null))

numberp object : . . [Function]
numberp is true if its argument is any kind of number, and otherwise is false.
(numberp x) <=> (typep x ’number) '

integerp object [Function]
integerp is true if its argument is an integer, and otherwise is false.
(integerp x) <=> (typep x 'integer)

Compatibility note: In MacLisp this is called fixp. Users have been confused as to whether this meant
“integerp”or “fixnump”, and so these names have been adopted here.
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rationalp object

[Function]

rationalp is true if its argument is a rational number (a ratio or an integer), and otherwise is

. false.
(rationalp x) <=> (typep x ‘'rational)

floatp object

floatp is true if its argument is a floating-point number, and otherwise is false.

(floatp x) <=> (typep x ’'float)

com'p lexp object

comp1exp is true if its argument is a complex number, and otherwise is false.

(compiexp x) <=> (typep x 'complex)

characterp object
characterp is true if its argument is a character, and otherwise is false.
(characterp x) <=> (typep x ’'character)

stringp object :
stringp is true if its argument is a'string, and otherwise is false.
(stringp x) <=> (typep x 'string)

bit-vector-p object

bit-vector-p is trueif its argument is a bit-vector, and otherwise is false.

(bit-vector-p x) <=> (typep x 'bit-vector)

vectorp object
vectorp is true if its argument is a vector, and otherwise is false.
(vectorp x) <=> (typep 'x ’'vector)

simple-vector-p object

vectorp is true if its argument is a simple general vector, and otherwise is false.

(sim‘p‘le-vector-p x) <=> (typep x 'simple-vector)

simple-string-p object

simple-string-p is true if its argument is a simple string, and otherwise is false.

(simple-string-p x; <=> (typep x ’'simple-string)

simple-bit-vector-p object

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

[Function]

simple-bit-vector-p is true if its argument is a simple bit-vector, and otherwise is false.

(simple-bit-vector-p x) <=> (typep x ’'simple-bit-vector)
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arrayp object [Function]
arrayp is true if its argument is an array, and otherwise is false.
(arrayp x) <=> (typep x 'array)

packagep object ' [Function]
packagep is true if its argument is an package, and otherwise is false.
(packagep x) <=> (typep x 'package)

functionp object [Function]
' functionp is true if its argument is suitable for applying to arguments, using for example the
funcall or apply function. Otherwise functionp is false.

compiled-function-p object [Function]
compiled-function-p is true if its argument is any compiled code object, and otherwise is
false.

(compiled-function-p x) <=> (typep x 'compiled-function)

commonp object A [Function)
commonp is true if its argument is any common data type, and otherwise is false.
(commonp x) <=> (typep x 'common)

See also standard-char-p (page 184), string-char-p (page 184), streamp (page 263),
random-state-p (page 179), readtablep (page 281), hash-table-p (page 224), and pathnamep

(page 318).

6.3. Equality Predicates

COMMON LISP provides a spectrum of predicates for testing for equality of two objects: eq (the most
specific), eq1, equal, and equalp (the most general). eq and equal have the meanings traditional in
Lisp. eql was added because it is frequently needed, and equalp was added primarily to have a version of
equal that would ignore type differences when comparing numbers and case differences when comparing
characters. If two objects satisfy any one of these equality predicates, then they also satisfy all those that are
more general.

eq x y [Function]
‘ (eq x y) is true if and only if x and y are the same identical object. (Implementationally, x and y
are usually eq if and only if they address the same identical memory location.)

It should be noted that things that print the same are not necessarily eq to each other. Symbols
with the same print name usually are eq to each other, because of the use of the intern (page
142) function. However, numbers with the same value need not be eq, and two similar lists are
usually not eq.
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For example:
(eq 'a ’b) isfalse
(eq 'a 'a) istrue
(eq 3 3) might be true or false, depending on the implementation
(eq 3 3.0) isfalse
(eq #c(3 -4) #c(3 -4)) might be true or false, dependlng on the implementation
(eq #c(3 -4.0) #c(3 -4)) isfalse
(eq (cons 'a 'b) (cons 'a ’'c)) isfalse
(eq (cons 'a 'b) (cons 'a 'b)) isfalse
(setq x '(a . b)) (eg x x) istrue
(eq #\A #\A) might be true or false, depending on the implementation
(eq "Foo" "Foo") is false
(eq "FOO" "foo") isfalse
Implementation note: eq simply compares the two pointers given it, so any kind of object that is represented in
an “immediate” fashion will indeed have like-valued instances satisfy eq. In some implementations, for
example, fixnums and characters happen to “"work”. However, no program should depend on this, as other
implementations of COMMON LiSP might not use an immediate representation for these data types.

[Function]
The eq1 predicate is true if its arguments are eq, or if they are numbers of the same type with the
same value, or if they are character objects that represent the same character.

For example:

(eql *a 'b) isfalse

(eql ’a 'a) istrue

(eql 3 3) istrue

(eql 3 3.0) isfalse

(eql #c(3 -4) #c(3 -4)) istrue .

(eql #c(3 -4.0) #c(3 -4)) isfalse

(eql (cons 'a 'b) (cons 'a 'c)) isfalse

(eql (cons 'a 'b) (cons 'a 'b)) isfalse

(setq x ’'(a . b)) (eql x x) istrue

(eql #\A #\A) istrue

(eql "Foo" "Foo") isfalse

(eql "FOO" "foo") isfalse
Normally (eq1 1.0s0 1.0d0) would be false, under the assumption that 1.0s0 and 1.0d0
are of distinct data types. However, implementations that do not provide four distinct floating-
point formats are permitted to “collapse” the four formats into some smaller number of them; in
such an implementation (eql 1.0s0 1.0d0) might be true. The predicate = (page 153) will

compare the values of two numbers even if the numebrs are of different types.

equal x y [Function]

The equa?l predicate is true if its arguments are similar (isomorphic) objects. A rough rule of
thumb is that two objects are equa? if and only if their printed representations are the same.

Numbers and characters are compared as for eq1. Symbols are compared as for eq. This can
violate the rule of thumb about printed representations, but only in the case of two distinct symbols
with the same print name, and this does not ordinarily occur (only if uninterned symbols are
involved). ‘
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equalp

Most objects that have components are equal if they are of the same type and corresponding
components are equal. This test is implemented in a recursive manner, and may fail to terminate
for circular structures. For conses, equal is defined recursively as the two car's being equal and
the two cdr's being equal.

Two arrays are equal only if they are eq, with one exception: strings and bit-vectors are

‘compared element-by-element. Upper-case and lower-case letters in strings are considered to be

distinct by equal.
Compatibility note: In Lisp ‘Machine Lisp, equal ignores the difference between upper and lower case in
strings. This violates the rule of thumb about printed representations, however, which is very useful, especially
to novices. It is also inconsistent with the treatment of single characters, which in Lisp Machine Lisp are
represented as fixnums.

Two pathname objects are equal iff corresponding components (host, device, and so on) are
equivalent. Whether or not case is considered equivalent in strings depends on the file name
conventions of the file system. The intent is that pathnames that are equal should be functionaily
equivalent.
For example:

(equal 'a 'b) isfalse

(equal 'a 'a) istrue

(equal 3 3) istrue

(equal 3 3.0) isfalse

(equal #c(3 -4) #c(3 -4)) istrue

(equal #c(3 -4.0) #c(3 -4)) isfalse

(equal (coms 'a 'b) (cons ’'a 'c)) isfalse

(equal (cons 'a 'b) (cons 'a 'h)) istrue

(setqg x '(a . b)) (equal x x) istrue

(equal #\A #\A) istrue

(equal "Foo" "Foo") istrue

(equal "FOO" "foo") is false

To compare a tree of conses, using eql (or any other desired predicate) on the leaves, use
tree-equal (page 208).

xy [Function]
Two objects are equalp if they are equal; if they are characters and satisfy char-equal (page
187), which ignores alphabetic case and certain other attributes of characters; if they are numbers
and have the same numerical value, even if they are of different types; or if they have components
that are all equalp. 4

Objects that have components are equalp if they are of the same type and corresponding
components are equalip. This test is implemented in a recursive manner, and may fail to terminate
for circular structures. For conses, equalp is defined recursively as the two car’s being equalp
and the two cdr’s being equalp.

Two arrays are equalp if and only if they have the same number of dimensions, the dimensions
match, and the corresponding components are equalp. The specializations need not match; for
example, a string and a general array that happens to contain the same characters will be equalp
(though definitely not equal).

1]
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Two symbols can be equalp only if they are eq, that is, the same identical object.
For example:

(equalp 'a 'b) is false

(equalp 'a ’a) istrue

(equalp 3 3) istrue

(equalp 3 3.0) istrue

(equalp #c(3 -4) #c(3 -4)) istrue
(equalp #c(3 -4.0) #c(3 -4)) istrue
(equalp (cons 'a 'b) (cons 'a 'c)) isfalse
(equalp (cons 'a 'b) (cons 'a 'b)) istrue
(setq x "(a . b)) (equalp x x) istrue
(equalp #\A #\A) istrue

(equalp "Foo" "Foo") istrue

(equalp "FOO" "foo") istrue

6.4. Logical Operators

COMMON LIsP provides three operators on Boolean values: and, or, and not. Of these, and and or are
also control structures, because their arguments are evaluated conditionally. not necessarily examines its
single argument, and so is a simple function.

not x

[Function]
not returns t if xis ni7, and otherwise returns ni1. It therefore inverts its argument, interpreted
as a Boolean value.

null (page 59) is the same as nbt; both functions are included for the sake of clarity. As a matter
of style, it is customary to use nu11 to check whether something is the empty list, and to use not to
invert the sense of a logical value.

and {form}* ‘ [Macro)

(and forml form2 ... ) evaluates each form, one at a time, from left to right. If any form
evaluates to ni1, the value ni1 is immediately returned without evaluating the remaining forms. If
every form but the last evaluates to a non-ni1 value, and returns whatever the last form returns.
Therefore in general and can be used both for logical operations, where ni1 stands for false and
non-n1il values stand for frue, and as a conditional expression.
For example: '
(if (and (>= n 0)
' (< n (length a-simple-vector))
(eq (elt a-simple-vector n) 'foo))
(princ "Foo!"))

The above expression prints “Foo!” if element n of a-simple-vector is the symbol foo,
provided also that n is indeed a valid index for a-simple-vector. Because and guarantees
left-to-right testing of its parts, e 1t is not called if n is out of range. (In this example writing
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(and (>= n 0)
(< n (length a-simple-vector))
(eq (elt a-simple-vector n) 'foo)
(princ "Foo!"))

would accomplish the same thing; the difference is purely stylistic.) Because of the guaranteed
left-to-right ordering, and is like the and then operator in ADA, or what in some PASCAL-like
languages is called cand, rather than the and operator.

See also if (page 89) and when (page 89), which are sometimes stylistically more appropriate
than and for conditional purposes.

From the general definition, one can deduce that (and x) <=> x. Also, (and) evaluates to t,
which is an identity for this operation.

and can be defined in terms of cond (page 88) as follows:

(and x y z ... w) <=> (cond ((not x) nil)
((not y) nil)
((not z) mil)

(t w))
or {form}* ' [Macro]

(or forml form2 ... ) evaluates each form, one at a time, from left to right. If any form other
than the last evaluates to something other than nil, or immediately returns that non-ni1 value
without evaluating the remaining forms. If every form but the last evaluates to ni1, or returns
whatever evaluation of the last of the forms returns. Therefore in general or can be used both for
logical operations, where ni1 stands for false and non-ni1 values stand for true, and as a
conditional expression. Because of the guaranteed left-to-right ordering, or is like the or else
operator in ADA, or what in some PASCAL-like languages is called cor, rather than the or operator.

See also if (page 89) and unless (page 90), which are sometimes stylistically more appropriate
than or for conditional purposes.

From the general definition, one can deduce that (or x) <=> x. Also, (or) evaluates to ni1,
which is the identity for this operation.

or can be defined in terms of cond (page 88) as follows:
(or x y z ... w) <=> (cond (x) (¥) (2) ... (t w))
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Chapter 7

Control Structure

LISP provides a variety of special structures for organizing programs. Some have to do with flow of control
(control structures), while others control access to variables (environment structures). Most of these features
are implemented either as special forms or as macros (which typically expand into complex program
fragments involving special forms).

Function application is the primary method for construction of LISP programs. Operations are written as
the application of a function to its arguments. Usually, LISP programs are written as a large collection of small
functions, each of which implements a simple operation. These functions operate by calling one another, and
so larger operations are defined in terms of smaller ones. LISP functions may call upon themselves
recursively, either directly or indirectly.

Lisp, while more applicative in style than sta[ement-driented, nevertheless provides many operations that
produce side-effects, and consequently requires constructs for controlling the sequencing of side-effects. The
construct progn (page 84), which is roughly equivalent to an ALGOL begin-end block with all its semicolons,
executes a number of forms sequentially, discarding the values of all but the last. Many LISP control
constructs include sequencing implicitly, in which case they are said to provide an “implicit progn”. Other
sequencing constructs include prog1 (page 84) and prog2 (page 85)..

For looping, COMMON LISP provides the general iteration facility do (page 93), as well as a variety of
special-purpose iteration facilities for iterating or mapping over various data structures.

CoMMON Lisp provides the simple one-way conditionals when and unless, the simple two-way
conditional if, and the more general multi-way conditionals such as cond and case. The choice of which

form to use in any particular situation is a matter of taste and style.

Constructs for performing non-local exits with various scoping disciplines are provided: block (page 91),
return (page92),catch (page 107),and throw (page 108).

The multiple-value constructs provide an efficient way for a function to return more than one value; see
values (page 103).

-67 -
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7.1. Constants and Variables

7.1.1. Reference

. »

quote object . [Special form]

(quote x) simply returns x. The object is not evaluated, and may be any Lisp object whatsoever.
This construct allows any LISP object to be written as a constant value in a program.
For example:

(setq a 43)
(1ist a (cons a 3)) => (43 (43 . 3))
(1ist (quote a) (quote (cons a 3)) => (a (cons a 3))

Since quote forms are so frequently useful but somewhat cumbersome to type, a standard
abbreviation is defined for them: any form preceded by a single quote ( * ) character is assumed to
have “(quote )” wrapped around it.
For example:

(setq x '(the magic quote hack))
is normally interpreted by read (page 291) to mean

(setg x (quote (the magic quote hack)))
See section 22.1.3.

function fm ' [Special form]

The value of function is always the functional interpretation of fi; fn is interpreted as if it had
appeared in the functional position of a function invocation. In particular, if fi1 is a symbol, the
functional value of the variable whose name is that symbol is returned. If fz is a lambda-expression,
then a “lexical closure” is returned, that is, a function which when invoked will execute the body of
the lambda-expression in such a way as to observe the ruies of lexical scoping properly.

Since function forms are so frequently useful (for passing functions as arguments to other
function) but somewhat cumbersome to type, a standard abbreviation is defined for them: any
form preceded by a sharp sign and then a single quote ( #° ) is assumed to have “(function )”
wrapped around it. '
For example: )

(remove-if #'numberp '(1 a b 3))
is normally interpreted by read (page 291) to mean

(remove-if (function numberp) (1 ab 3))
See section 22.1.4. :

symbol-value symbol [Function]
symbo1-value returns the current value of the dynamic (special) variable named by symbol. An
error occurs if the symbol has no value; see boundp (page 69) and makunbound (page 71). Note
that constant symbols are really variables that cannot be changed, and so symbo1-value may be



CONTROL STRUCTURE 69

used to get the value of a named constant. In particular, symbo1-value of a keyword will return
that keyword. '

symbo1-value cannot access the value of a lexical variable.

This function is particularly useful for implementing interpreters for languages embedded in LISP.
The corresponding assignment primitive is set (page 71); alternatively, symbo1-value may be
used with setf (page72).

.symbol-function symbol [Function]
symbol-function returns the current global function definition named by symbol. An error
occurs if the symbol has no function definition; see fboundp (page 69). Note that the definition
may be a function, or may be an object representing a special form or macro. In the latter case,
however, attempting to invoke the object as a function will signal an error. If it is desired to process
macros, special forms, and functions equally well, as when writing an interpreter, it is best to test the
symbol with macro-function (page 111) and special-form-p (page 69) first, and then to
invoke the functional value only if these two tests both yield false.

symbol-function cannot access the value of a lexical function name produced by flet (page
87)or 1abels (page 87); it can access only the global function value.

This function is particularly useful for implementing interpreters for languages embedded in LISP.
The global function definition of a symbol may be altered by using setf (page 72) with
symbol-function.

boundp symbol . [Function]
boundp is true if the dynamic (special) variable named by symbol has a value; otherwise, it returns
nil.

See also set (page 71) and makunbound (page 71).

fboundp symbol [Function]
fboundp is is true if the symbol has a global function definition. Note that fboundp is true when
the symbol names a special form or macro. macro-function (page 111) and
special-form-p may be used to test for these cases.

See also symbol1-function (page 69)and fmakunbound (page71).

special-forn-p symbol [Function]
The function special-form-p takes a symbol. If the symbol globally names a special form
(example: quote (page 68)), then a non-nil value is returned, typically a function of
implementation-dependent nature that can be used to interpret a special form; otherwise ni1l is
returned.

It is possible for both special-form-p and macro-function (page 111) to be true of a
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symbol. This is possible because an implementation is permitted to implement any macro also as a-
special form for speed. On the other hand, the macro definition must be available for use by

programs that understand only the standard special forms listed in Table 5-1.
» .

7.1.2. Assignment
setq {var form}* [Special form]

The special form (setq var! forml var2 form2 ...) is the “simple variable assignment
statement” of Lisp. First form/ is evaluated and the result is stored in the variable var/, then form2
is evaluated and the result stored in var2, and so forth. The variables are represented as symbols, of
course, and are interpreted as referring to static or dynamic instances according to the usual rules,
so setq may be used for assignment of both lexical and special variables. setq returns the last
value assigned, that is, the result of the evaluation of its last argument. As a boundary case, the
form (setq) is legal and returns nil1. As a rule there must be an even number of argument
forms.
For example: .

(setg x (+ 3 2 1) y (cons x nil))
x is set to 6, y is set to (6), and the setq returns (6). Note that the first assignment was
performed before the second form was evaluated, allowing that form to use the new value of x.

See also the description of setf (page 72), which is the “general assignment statement”, capable of
assigning to variables, array elements, and other locations.

psetq {var form}* : [Macro]

A psetq form is just like a setq form, except that the assignments happen in parallel; first all of
the forms are evaluated, and then the variables are set to the resulting values. The value of the
psetq formis nil.
For example:
(setq a 1)
(setg b 2)
(psetq a b
a =2
b => 1
In this example, the values of a and b are exchanged by using parallel assignment. (If several
variables are to be assigned to in parallel in the context of a loop, the do (page 93) construct may

be appropriate.)

b a)
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set symbol value [Function].
set allows alteration of the value of a dynamic (special) variable. set causes the dynamic variable
named by symbol to take on value as its value. Only the value of the current dynamic binding is
altered; if there are no bindings in effect, the most global value is altered.
For example: '
(set (if (eq a b) 'c 'd) 'foo)
will either set c to foo or set d to foo, depending on the outcome of the test (eq a b).

set returns value as its result.

set cannot alter the value of a local (lexically bound) variable. The special form setq (page 70) is
usually used for altering the values of variables (lexical or dynamic) in programs. set is
particularly useful for implementing interpreters for languages embedded in LISP. See also progv
(page 87), a construct that performs binding rather than assignment of dynamic variables.

makunbound symbol : [Function]
fmakunbound symbol [Function]
makunbound causes the dynamic (special) variable named by symbol to become unbound (have no
“value). fmakunbound does the analogous thing for the global function definition named by
symbol,
For example:
(setq a 1)
a=>1
(makunbound 'a)
a => causes an error
(defun foo (x) (+ x 1))
(foo 4) => 5
(fmakunbound ’'foo)
(foo 4) => causesan error

Both functions return symbol as the result value.

7.2. Generalized Variables

In LISP, a variable can remember one piece of data, a LISP object. The main operations on a variable are to
recover that piece of data, and to alter the variable to remember a new object; these operations are often
called access and update operations. The concept of variables named by symbols can be generalized to any
storage location that can remember one piece of data, no matter how that location is named. Examples of
such storage locations are the carand cdr of a cons, elements of an array, and components of a structure.

For each kind of generalized variable, there are typically two functions that implement the conceptual
access and update operations. For a variable, merely mentioning the name of the variable accesses it, while
the setq (page 70) special form can be used to update it. The function car (page 207) accesses the carof a
cons, and the function rplaca (page 215) updatesit. The function s ymbol-value (page 68) accesses the
dynamic value of a variable named by a given symbol, and the function set (page 71) updates it.




72 COMMON LISP REFERENCE MANUAL

Rather than thinking about two distinct functions that respectively access and update a storage location
somehow deduced from their arguments, we can instead simply think of a call to the access function with
given arguments as a name for the storage location. Thus, just as x may be considered a name for a storage
location (a variable), so (car x) is a name for the car of some cons (which is in turn named by x). Now,
rather than having to remember two functions for each kind of generalized variable (having to remember, for
example, that rplaca corresponds to car), we adopt a uniform syntax for updating storage locations named
in this way, using the setf macro. This is analogous to the way we use the setq special form to convert the
name of a variable (which is also a form that accesses it) into a form that updates it. The uniformity of this
approach may be seen from the following table:

- Access function Update function Update using setf
X (setq x newvalue) (setf x newvalue)
(car x) (rplaca x newvalue) (setf (car x) newvalue)
(symbol-value x) (set x newvalue) (setf (symbol-value x) newvalue)

setf is actually a macro that examines an access form and produces a call to the corresponding update
function.

Given the existence of setf in COMMON LISP, it is not necessary to have setq, rplaca, and set as well;
they are redundant. They are retained because of their historical importance in LisP. However, most other
update functions (such as putprop, the update function for get (page 126)) have been eliminated in the
expectation that setf be uniformly used in their place.

setf {place newvalue}* . [Macro)

(setf place newvalue) takes a form place that when evaluated accesses a data object in some
location, and “inverts” it to produce a corresponding form to update the location. A call to the
setf macro therefore expands into an update form that stores the result of evaluating the form
newvalue into the place referred to by the access-form.

If more than one place-newvalue pair is specified, the pairs are processed sequentially:

(setf placel newvaluel
place? newvalue2)

placen newvaluen)
is precisely equivalent to

(progn (setf placel newvaluel)
(setf place2 newvalue2)

(setf placen newvaluen))
For consistency, it is legal to write ( setf ), which simply remuns nil.

The form place may be any one of the following:

o The name of a variable (either lexical or dynamic).

o A function call form whose first element is the name of any one of the following
functions: '
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car (page 207) caaaar (page208) cadddr (page 208)
cdr (page 207) cdaaar (page208) cddddr (page 208)
caar (page208) cadaar (page208) first (page 209)
cdar  (page208) cddaar (page208) second (page 209)
cadr  (page208) caadar (page208) third (page 209)
cddr  (page208) cdadar (page208) fourth (page 209)
caaar (page208) caddar (page208) fifth (page 209)
cdaar (page208) cdddar (page208) sixth (page 209)
cadar (page208) caaadr (page208) seventh (page 209)
cddar (page208) cdaadr (page208) eighth (page 209)
caadr (page208) cadadr (page208) ninth (page 209)
cdadr (page208) cddadr (page208) tenth (page 210)

caddr (page208) caaddr (page208) documentation (page 338)
cdddr (page208) cdaddr (page208) fill-pointer (page 234)
aref  (page230) getf (page 127) symbol-plist (page 127)
get (page 126) gethash (page225) symbol-value (page 68)
svref (page232) nth (page209) symbol-function (page69)
elt (page 195) pathname-plist (page 318)

A function call form whose first element is the name of a selector function constructed
by defstruct (page 245).

A function call form whose first element is the name of any one of the following
functions, provided that the new value is of the specified type so that it can be used to
replace the specified “location” (which is in each of these cases not really a truly
generalized variable):

Function name Required type
char (page 237) string-char
schar (page 237) string-char
bit (page 232) bit

sbit (page 232) bit

subseq (page195) sequence

In the case of subseq, the replacement value must be a sequence whose elements may
be contained by the sequence argument to subseq. (Note that this is not so stringent
as to require that the replacement value be a sequence of the same type as the sequence
of which the subsequence is specified.) If the length of the replacement value does not
equal the length of the subsequence to be replaced, then the shorter length determines
the number of elements to be stored, as for the function replace (page 199).

A function call form whose first element is the name of any one of the following
functions, provided that the specified argument to that function is in turn a place form;
in this case the new place has stored back into it the result of applying the specified
“update” function (which is in each of these cases not a true update function):

Function name Argument that is a place . Update function used
char-bit  (page191) First set-char-bit (page191)
1db (page 175) Second dpb (page 176)

mask-field (page17§) Second deposit-field (pagel76)
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e A the (page 123) type declaration form, in which case the declaration is transferred to
the newvalue form, and the resulting setf form is analyzed. For example,
(setf (the integer (cadr x)) (+ y 3))
is processed as if it were
(setf (cadr x) (the integer (+ y 3)))

o A call to apply where the first argument form is of the form #®name, that is,
(function name), where name is the name of a function calls to which are
recognized as places by setf. Suppose that the user of setf with apply looks like
this:

(setf (apply #' name xI x2 ... xn rest)
The setf method for the function name must be such that

(setf (name zI z2 ... zm) 20)
expands into a store form

(storefn zi; zi, ... zi zm)
That is, it must expand into a function call such that all arguments but the last may be
any permutation or subset of the new value z0 and the arguments of the access form,
but the /ast argument of the storing call must be the same as the last argument of the

~access call. See define-setf-method (page 81) for more details on accessing and

storing forms. :

Given this, the setf-of-app1y form shown above expands into

(apply #’storefn Xip Xiy ... Xip rest)
As an example, suppose that the variables indexes contains a list of subscripts for a
multi-dimensional array foo whose rank is not known until run time. One may access
the indicated element of the array by writing

(apply #'aref foo indexes)
and one may alter the value of the indicated element to have the value of newvalue by
writing _
(setf (apply #'aref foo indexes) newvalue)

¢ A macro call, in which case setf expands the macro call and then analyzes the
resulting form.

¢ Any form for which a define-modify-macro (page 78), defsetf (page 78) or
define-setf-method (page 81) declaration has been made.

setf carefully arranges to preserve the usual left-to-right order in which the various subforms are
evaluated. On the other hand, the exact expansion for any particular form is not guaranteed and
may even be implementation-dependent; all that is guaranteed is that the expansion of a
setf-form will be an update form that works for that particular implementation, and that the
left-to-right evaluation of subforms is preserved.

The ultimate result of evaluating a setf form is the value of newvalue. (Therefore (setf (car
x) y) does not expand into precisely (rplaca x y), butinto something more like

(let ((G1 x) (G2 y)) (rplaca G1 G2) G2)
the precise expansion being implementation-dependent.)
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The user can define new setf expansions by using defsetf (page 78).

v psetf {place newvalue}* [Macro]

psetf is like setf except that if more than one place-newvalue pair is specified then the
assignments of new values to places is done in parallel. More precisely, all subforms that are to be
evaluated are evaluated from left to right; after all evaluations have been performed, all of the
assignments are performed.

psetf alwaysreturns nil.

shiftf place {place}* newvalue [Macro)

Each place form may be any form acceptable as a generalized variable to setf (page 72). In the
form (shiftf placel place? ... placen newvalue), the values in placel through placen are
accessed and saved, and newvalue is evaluated, for a total of n+1 values in all. Values 2 through
n+1 are then stored into placel through placen, and value 1 (the original value of placel) is
returned. It is as if all the places form a shift register; the newvalue is shifted in from the right, all
values shift over to the left one place, and the value shifted out of place! is returned.
For example:

(setq x ’('a b c))

(shiftf (cadr x) 'z) => b

andnow x => (a z c)

The effect of (shiftf placel place2 ... placen newvalue) is roughly equivalent to

(prog1 placel
(setf placel place2)
(setf place? place3)

(setf placen newvalue))
except that the latter would evaluate any subforms of each place twice, while shiftf takes care to
evaluate them only once.

For example:
(setg n 0)
(setg x *(a b ¢ d)) :
(shiftf (nth (setg n (+ n 1)) x) 'z) => b
andnow x => (a z ¢ d)
but
(setq n 0)
(setq x '(a b c d))
(progl (nth (setq n (+ n 1)) x)
(setf (nth (setgqn (+ n 1)) x) 'z)) => b
andnow x => (a b z d) '

Moreover, for certain place forms shiftf may be significantly more efficient than the prog1
version,
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Rationale: shiftf and rotatef (below) have been included in CoMMON Lisp as generalizations of
two-argument versions formerly called swapf and exchf. The.two-argument versions have been found to be -
very useful, but the names were easily confused. The generalization to many argument forms and the change of
names were both inspired by the work of Suzuki [17], which indicates that use of these primitives can make

N certain complex pointer-manipulation programs clearer and easier to prove correct.

rotatef {place}* [Macro]

Each place form may be any form acceptable as a generalized variable to setf (page 72). In the
form (rotatef placel place2 ... placen), the values in placel through placen are accessed
and saved. Values 2 through n and value 1 are then stored into placel through placen. It is as if ail
the places form an end-around shift register that is rotated one place to the left, with the value of
placel being shifted around the end to placen. Note that (rotatef placel place?) exchanges
the contents of place and place2.

The effectof (rotatef placel place2 ... placen newvalue) is roughly equivalent to

(psetf placel place2
place2 place3

placen placel)
except that the latter would evaluate any subforms of each place twice, while rotatef takes care to
evaluate them only once. Moreover, for certain place forms rotatef may be significantly more
efficient. '

rotatef alwaysreturnsnil.

Other macros that manipulate generalized variables include getf (page 127), remf (page 127), incf
(page 156), decf (page 156), push (page 212), pop (page 213), assert (page 333), ctypecase (page
'335), and ccase (page 336).

Macros that manipulate generalized variables must guarantee the “obvious” semantics: subforms of
generalized-variable references are evaluated exactly as many times as they appear in the source program, and
they are evaluated in exactly the same order as they appear in the source program.

In generalized-variable references such as shiftf, incf, push, and setf of 1db, the generalized
variables are both read and written in the same reference. Preserving the source-program order of evaluation
and the number of evaluations is particularly important.

As an example of these semantic rules, in the generalized-variable reference (setf reference value) the
value to be stored must be evaluated afier all the subforms of the reference since it appears to the right of
them.

The expansion of these macros must consist of code that follows these rules or has the same effect as such
code. This is accomplished by introducing temporary variables bound to the subforms of the reference. As
an optimization in the implementation, temporary variables may be eliminated whenever it can be proven
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that this has no effect on the semantics of the program. For example, a constant need never be saved in a.
temporary variable. A variable, or any form that does not have side-effects, need not be saved in a temporary

variable if it can be proven that its value will not change within the scope of the generalized-variable

reference.

COMMON LisP provides built-in facilities to take care of these semantic complications and optimizations.
Since the required semantics can be guaranteed by these facilities, the user does not have to worry about
writing correct code for them, especially in complex cases. (Even experts can become confused and make
mistakes while writing this sort of code.)

Another reason for providing these built-in functions is that the optimizations that are appropriate will vary
from implementation to implementation. In some implementations most of the optimization is performed by
the compiler, while in others a simpler compiler is used and most of the optimization is performed in the
macros. The cost of binding a temporary variable relative to the cost of other Lisp operations may differ
greatly between one implementation and another, and some implementations may find it best never to
remove temporary variables except in the simplest cases.

A good example of the issues involved can be seen in the following generalized-variable reference:
(incf (1db byte-field variable))
This ought to expand into something like
(setq variable '
(dpb (1+ (1db byte-field variable))
byte-field
variable))
In this example expansion we have ignored the further complexity of returning the correct value, which is the
incremented byte, not the new value of variable. Note that the variable byte-field is evaluated twice,
and the variable variable is referred to twice on the “right-hand side” and once on the “left-hand side” of

the setf form.

Now consider this expression:
(incf (1db (aref byte-fields (incf i))
(aref words i)))
It ought to expand into something like this:

(let ((temp (incf 1)))
(setf (aref words i)
(dpb (1+ (1db (aref byte-fields temp)
(aref words i)))
(aref byte-fields temp)
(aref words i))))

Again we have ignored the complexity of returning the correct value,

The COMMON LisP facilities provided to deal with these semantic issues include:

o Built-in macros such as setf and push that follow the semantic rules.

e The define-modify-macro macro, which allows new generalized-variable manipulating
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macros (of a certain restricted kind) to be defined easily. It takes care of the semantic rules
automatically.

¢ The defsetf macro, which allows new types of generalized-variable references to be defined
easily. It takes care of the semantic rules automatically.

e The define-setf-method macro and the get-setf-method function, which provide
access to the internal mechanisms when it is necessary to define a complicated new type of
generalized-variable reference or generalized-variable-manipulating macro.

define-modify-macro name lambda-list function {doc-string] - [Macro]

Define a read-modify-write macro named name. An example of such a macro is incf (page 156).
The first subform of the macro will be a generalized-variable reference. The function is literally
the function to apply to the old contents of the generalized-variable to get the new contents; it is not
evaluated. lambda-list describes the remaining arguments for the finction; these arguments come
from the remaining subforms of the macro after the generalized-variable reference. lambda-list may
contain &optional and &rest markers. (The &key marker is not permitted here; &rest
suffices for the purposes of define-modify-macro.) doc-string is documentation for the macro
name being defined.

The expansion of a define-modify-macro is equivalent to the following, except that it
generates code that follows the semantic rules outlined above.

(defmacro name (reference . lambda-list)
doc-string .
‘(setf ,reference
(function ,reference ,argl ,arg2 ...)))

where argl, arg2, ..., are the parameters appearing in Jambda-list, appropriate provision is made for
a&rest parameter. '

As an example, incf (page 156) could have been defined by:
(define-modify-macro incf (&optional (delta 1)) +)

An example of a possibly useful macro that is not predefined in COMMON LISP is:
(define-modify-macro unionf (other-set &rest keywords) union)

defsetf access-fn {update-fn [doc-string] |

lambda-list ( store-variable) {declaration | doc-string}* {form}*} [Macro)

This defines how to setf a generalized-variable reference of the form (access-fn ...). The
value of a generalized-variable reference can always be obtained simply by evaluating it, so
access-fin should be the name of a function or a macro.

The user of defsetf provides a description of how to store into the generalized-variable reference
and return the value that was stored (because setf is defined to return this value). The
implementation of defsetf takes care of ensuring that subforms of the reference are evaluated
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exactly once and in the proper left-to-right order. In order to do this, defsetf requires that
access-fn be a function or a macro that evaluates its arguments, behaving like a function.
Furthermore, a setf of a call on access-fi will also evaluate all of access-fir’'s arguments; it cannot
treat any of them specially. This means that defsetf cannot be used to describe how to store into

. a generalized variable that is a byte, such as (1db field reference). To handle situations
that do not fit the restrictions imposed by defsetf, use define-setf-method (page 81),
which gives the user additional control at the cost of increased complexity.

A defsetf declaration may take one of two forms. The simple form of defsetf is

(defsetf access-fn update-fn [doc-string])
The update-fn must name a function (or macro) that takes one more argument than access-fir does.
When setf is given a place that is a call on access-fn, it expands into a call on update-fn that is
given all the arguments to access-fn and also, as its last argument, the new value (which must be
returned by update-fn as its value). For example, the effect of

(defsetf symbol-value set)
is built into the COMMON LISP system. This causes the form (setf (symbol-value foo)
fu) toexpand into (set foo fu).

Note that
(defsetf car rplaca)

would be incorrect, because rplaca (page 215) does not return its last argument.

The complex form of defsetf looks like

(defsetf access-fn lambda-list (store-variable) .. body)
and resembles defmacro (page 112). The body must compute the expansion of a setf of a call
on access-fn. "

lambda-list describes the arguments of access-fn. &optional, &rest, and &key markers are
permitted in lambda-list. Optional arguments may have defaults and “supplied-p” flags. The

store-variable describes the value to be stored into the generalized-variable reference.

Rationale: The store-variable is enclosed in parentheses to provide for a possible extension to multiple store
variables, receiving multiple values from the second subform of setf.

The body forms can be written as if the variables in the lambda-list were bound to subforms of the
call on access-fi and the store-variable were bound to the second subform of setf. However, this
is not actually the case. During the evaluation of the body forms, these variables are bound to
names of temporary variables, generated as if by gensym (page 130) or gentemp (page 130), that
will be bound by the expansion of setf to the values of those subforms. This permits the body
forms to be written without regard for order-of-evaluation issues. defsetf arranges for the
temporary variables to be optimized out of the final result in cases where that is possible. In other
words, an attempt is made by defsetf to generate the best code possible in a particular
implementation.

Note that the code generated by the body forms must include provision for returning the correct
value (the value of store-variable). This is left to the body forms rather than being handled by
defsetf because in many cases this value can be returned at no extra cost, by calling a function
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that simultaneously stores into the generalized variable and returns the correct value.

An example of the use of the complex form of defsetf:

(defsetf subseq (sequence start &optional end) (new-sequence)
- ‘(progn (replace ,sequence ,new-sequence

:startl ,start :endl ,end)
,new-sequence))

- The underlying theory by which setf and related macros arrange to conform to the semantic rules given
above is that from any generalized-variable reference one may derive its “setf method”, which describes

how to store into that reference and which subforms of it are evaluated.

" Compatibility note: To avoid confusion, it should be noted that the use of the word “method” here in connection with
setf has nothing to do with its use in Lisp Machine LisP in connection with message-passing and the Lisp Machine Lisp
“flavor system”.

Given knowledge of the subforms of the reference, it is possible to avoid evaluating them muitiple times or in
the wrong order. A setf method for a given access form can be expressed as five values:

o A list of temporary variables.

e A list of value forms (subforms of the given form) to whose values the temporary variables are to
be bound. These value forms must be evaluated in the order in which they appear in this list.

e A second list of temporary variables, called store variables.
o A storing form.

e An accessing form.

The store variables are to be bound to the values of the form to be' stored into the generalized variable. In
almost all cases only a single value is to be stored and there is only one store variable.

The storing form and the accessing form may contain references to the the temporary variables (and also, in
the case of the storing form, to the store variables). The accessing form returns the value of the generalized
variable. The storing form modifies the value of the generalized variable and guarantees to return the values
of the store variables as its values; these are the correct values for setf to return. (Again, in most cases there
is a single store variable and thus a single value to be returned.) The value returned by the accessing form is
(of course) affected by execution of the storing form, but otherwise either of these forms may be evaluated
any number of times, and therefore should be free of side effects (other than the storing action of the storing
form).

The temporary variables and the store variables are generated names, as if by gensym (page 130) or
gentemp (page 130), so that there is never any problem of name clashes among them, or between them and
other variables in the program. This is necessary to make the special forms that do more than one setf in
parallel work properly; these are psetf, shiftf, and rotatef. Computation of the setf method must
always create new variable names; it may not return the same ones every time.
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Some examples of setf methods for particular forms:

e For a variable x:

()

()
(g0001)

(setq x g0001)
X

e For (car exp):
(g0002)

(exp)

(g0003)

(progn (rplaca g0002 g0003) g0003)
(car g0002)

e For (subseq seq s e):
(g0004 90005 g0006)
(seq s e)
(g0007)
(progn (replace g0004 g0007 :startl g0005 :endl g0006)
g0007)
(subseq g0004 g0005 g0006)

define-setf-method access- -fn lambda-list {declaration | doc-string}* {form}* [Macro]

This defines how to setf a generalized-variable reference that is of the form (access-fn...). The
value of a generalized-variable reference can always be obtained simply by evaluating it, so
access-fn should be the name of a function or a macro.

The lambda-list describes the subforms of the generalized-variable reference, as with defmacro
(page 112). The result of evaluating the forms in the body must be five values representing the
setf method, as described above. Note that define-setf-method differs from the complex
form of defsetf in that while the body is being executed the variables in /ambda-Iist are bound to
parts of the generalized-variable reference, not to temporary variables that will be bound to the
values of such parts. In addition, define-setf-method does not have defsetf’s restriction
that access-fn must be a function or a function-like macro; an arbitrary defmacro destructuring
pattern is permitted in lambda-list.

By definition there are no good small examples of def ine-setf-method, because the easy cases
can all be handled by defsetf. A typical use is to define the se tf method for 1db (page 175):
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33 SETF method for the form (LDB bytespec int).
:;; Recall that the int form must itself be suitable for SETF.

R (define-setf-method 1db (bytespec int)
(multiple-value-bind (temps vals stores
store-form access-form)

(get-setf-method int) ;Get SETF method for int.
(let ((btemp (gensym)) ;Temp var for byte specifier.
(store (gensym)) ;Temp var for byte to store.

(itemp (first stores))) ;Temp var for int to store.
;3 Return the SETF method for LDB as five values.

(values (cons btemp temps) ;Temporary variables.
(cons bytespec vals) ;Value forms.
(1ist store) ;Store variables.

‘(let ((,itemp (dpb ,store ,btemp ,access-form)))
.store-form

,store) ;Storing form.
*(1db ,btemp ,access-form) ;Accessing form.
))))
get-setf-method form [Function)

get-setf-method returns five values, the setf method for form, which must be a generalized-
variable reference. get-setf-method takes care of error-checking and macro expansion and
guarantees to return exactly one store-variable.

As an example,an extremely simplified version of setf, allowing no more and no fewer than two
subforms, containing no optimization to remove unnecessary variables, and not allowing storing of
multiple values, could be defined by:

(defmacro setf (reference value)
(multiple-value-bind (vars vals stores store-form access-form)
(get-setf-method reference)
(declare (ignored access-form))
‘(let ,(mapcar #'list
(append vars stores)
(append vals (1ist value)))
,store-form)))

get-setf-method-multiple-value form [Function]
get-setf-method-muitiple-value returns five values, the setf method for form, which
must be a generalized-variable reference. This is the same as get-setf-method except that it
does not check the number of store-variables; use this in cases that allow storing multiple values
into a generalized variable. There are no such cases in standard COMMON LISP, but this function is
provided to allow for possible extensions.

7.3. Function Invocation

The most primitive form for function invocation in LISP of course has no name; any list that has no other
interpretation as a macro call or special form is taken to be a function call. Other constructs are provided for
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less common but nevertheless frequently useful situations.

apply function arg &rest more-args [Function]

This applies function to a list of arguments. function may be a compiled-code object, or a lambda-
expression, or a symbol; in the latter case the global functionql value of that symbol is used (but it is
illegal for the symbol to be the name of a macro or special form). The arguments for the function
consist of the last argument to apply appended to the end of a list of all the other arguments to
apply but the function itself; it is as if all the arguments to app1y except the finction were given
to Tist* (page 210) to create the argument list.
For example:

(setq f '+) (apply f '(1 2)) => 3

(setq T '-) (apply f '(1 2)) => -1

(apply #'max 3 56 '(2 7 3)) => 7

(apply 'cons '((+ 2 3) 4)) =>

((+ 2 3) . 4) not (5 . 4)

(apply #'+ '()) => 0
After the function argument there may be any number of individual arguments (possibly none)
followed by a list of all the rest of the arguments. If no individual arguments are specified and the
final list argument is empty, then the function receives no arguments. Note that if the function
takes keyword arguments, the keywords as well as the corresponding values must appear in the
argument list: .

(apply #'(lambda (&key a b) (list a b)) '(:b 3)) => (nil 3)
This can be very useful in conjunction with the &allow-other-keys feature:

(defun foo (size &rest keys &key double &allow-other-keys)
(let ((v (apply #'make-array :allow-other-keys t size keys)))
(if double (concatenate v v) v)))

(foo 4 :initial-contents '(a b c d) :double t)
=> #(a bcdabcd)

funcall fin &rest arguments [Function]
(funcall fn al a2 ... an) applies the function fn to the arguments al, @2, ..., an. fi may not
be a special form nor a macro; this would not be meaningful.
For example:

(cons 1 2) => (1 . 2)
(setq cons (symbol-function '+))
(funcall cons 1 2) => 3

The difference between funcall and an ordinary function call is that the function is obtained by
ordinary LISP evaluation rather than by the special interpretation of the function position that

normally occurs.
Compatibility note: This corresponds roughly to the INTERLISP primitive app1y®.
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call-arguments-limit ‘ ~ [Constani]

The value of cal1-arguments-1imit is a positive integer that is the upper exclusive bound on
the number of arguments that may be passed to a function. This bound depends on the
implementation, but will not be smaller than 50. (Implementors are enouraged to make this limit as
large as practicable without sacriﬁcing performance.) The value of call-arguments-1imit
must be as least as great as that of lambda-parameters-1imit (page 52). See also
multiple-values-1imit (page 103).

7.4. Simple Sequencing

progn {form}* [Special form)

The progn construct takes a number of forms and evaluates them sequentially, in order, from left
to right. The values of all the forms but the last are discarded; whatever the last form returns is
returned by the progn form. One says that all the forms but the last are evaluated for effect,
because their execution is useful only for the side effects caused, but the last form is executed for
value.

progn is the primitive control structure construct for ‘‘compound statements”; it is analogous to
begin-end blocks in ALGOL-like languages. Many LISP constructs are “implicit progn” forms, in
that as part of their syntax each allows many forms to be written that are to be evaluated
sequentially, discarding the results of all forms but the last, and returning the results of the last
form.

If the last form of the progn returns multiple values, then those multiple values are returned by the
progn form. If there are no forms for the progn, then the result is ni1. These rules generally
hold for implicit progn forms as well.

progl first {form}* . [Ma?ro]

prog1 is similar to progn, but it returns the value of its first form. All the argument forms are
executed sequentially; the value the first form produces is saved while all the others are executed,
and is then returned.

prog1 is most commonly used to evaluate an expression with side effects, and return a value that
must be computed before the side effects happen.
For example:
(progl (car x) (rplaca x 'foo))
alters the car of x to be foo and returns the old car of x.

progl always returns a single value, even if the first form tries to return multiple values. A
consequence of this is that (progl x) and (progn x) may behave differently if x can produce
multiple values. Seemultiple-value-progl (page 104). ‘ .
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prog2 first second {form}* [Macro]

prog2 is similar to prog1, but it returns the value of its second form. All the argument forms are
executed sequentially; the value of the second form is saved while all the other forms are executed,
and is then returned.

prog?2 is provided mostly for historical compatibility.
(prog2 a bc ... z) <=> (progn a (progl bc ... 2z))
Occasionally it is desirable to perform one side effect, then a value-producing operation, then
another side effect; in such a peculiar case prog2 is fairly perspicuous.
For example:

(prog2 (open-a-file) (compute-on-file) (close-the-file))
; value is that of compute-on-file

progz2, like progl, always returns a single value, even if the second form tries to return multiple
values. A consequence of this is that (prog2 x y) and (progn x y) may behave differently if
ycan produce multiple values. :

7.5. Environment Manipulation

let ({var | (var value)}*) {declaration}* {form}* [Special form] -

A 1et form can be used to execute a series of forms with specified variables bound to specified
values.

More precisely, the form

(let ((varl valuel)
(var2 value2) .

iva.rm valuem))
declaration!
declaration2

(.Iéc.laralionp
body!
body2

bodyn) -
first evaluates the expressions valuel, value2, and so on, in that order, saving the resulting values.
Then all of the variables varj are bound to the corresponding values in parallel; each binding will be
a local binding unless there is a special declaration to the contrary. The expressions bodyk are
then evaluated in order; the values of all but the last are discarded (that is, the body of a Tet form
is an implicit progn). The 1et form returns what evaluating bodyn produces (if the body is empty,
which is fairly useless, 1et returns ni1 as its value). The bindings of the variables disappear when
the 1et form is exited.

Instead of a list (varj valuej) one may write simply varj. In this case varjis initialized to ni1. Asa
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matter of style, it is recommended that varj be written only when that variable will be stored into
(such as by setq (page 70)) before its first use. If it is important that the initial value is ni1 rather
than some undefined value, then ‘it is clearer to write out (varj nil) (if the initial value is
intended to mean “false”) or (varj ' ()) (if the initial value is intended to be an empty list).

Declarations may appear at the beginning of the body of a 1et. See declare (page 117). |

Tet* ({var | (var value)}*) {declaration}* {form}* [Special form]

let* is similar to Tet (page 85), but the bindings of variables are performed sequentially rather
than in parallel. This allows the expression for the value of a variable to refer to variables
previously bound in the Tet* form.

More precisely, the form:

(let* ((varl valuel)
(var2 value2)

i ;’c;nn valuem) )
declarationl
declarationZ

&e.c}aratianp
bodyl
body2

bc;d.yn) .
first evaluates the expression valuel, then binds the variable var/ to that value; then its evaluates
value2 and binds var2; and so on. The expressions bodyj are then evaluated in order; the values of
all but the last are discarded (that is, the body of a 1et* form is an implicit progn). The 1et*

form returns the results of evaluating bodyn (if the body is empty, which is fairly useless, 1et*
returns ni1 as its value). The bindings of the variables disappear when the 1et* form is exited.

Instead of a list ( varj valuej) one may write simply varj. In this case varj is initialized to ni1. Asa
matter of style, it is recommended that varj be written only when that variable will be stored into
(such as by setq (page 70)) before its first use. If it is important that the initial value is ni1 rather
than some undefined value, then it is clearer to write out (varyj nil) (if the initial value is
intended to mean “false”) or (varj *()) (if the initial value is intended to be an empty 1ist).

Declarations may appear at the beginning of the body of a Tet*. See declare (page 117).

compiler-let ({var | (var value)}*) {declaration}* {form}* [Special form}

When executed by the LiSP interpreter, compiler-1et behaves exactly like Tet (page 85) with
all the variable bindings implicitly declared special. When the compiler processes this form,
however, no code is compiled for the bindings; iﬁstead, the processing of the body by the compiler
(including, in particular, the expansion of any macro calls within the body) is done with the special
variables bound to the indicated values in the execution context of the compiler. This is primarily
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useful for communication among complicated macros.

Declarations may appear at the beginning of the body of a compiler-let. See declare (page
117).

progv symbols values {form}* [Special form]

progyv is a special form that allows binding one or more dynamic variables whose names may be
determined at run time. The sequence of forms (an implicit progn) is evaluated with the dynamic
variables whose names are in the list symbols bound to corresponding values from the list values. (If
too few values are supplied, the remaining symbols are bound and then made to have no value; see
makunbound (page 71). If too many values are supplied, the excess values are ignored.) The
results of the progv form are those of the last form. The bindings of the dynamic variables are
undone on exit from the progv form. The lists of symbols and values are computed quantities;
this is what makes progv different from, for example, 1et (page 85), where the variable names
are stated explicitly in the program text.

progyv is particularly useful for writing interpreters for languages embedded in LIsP; it provides a
handle on the mechanism for binding dynamic variables.

flet ({(name lambda-list {declaration | doc-string}* {form}*)}*) {form}* [Special form]
labels ({(name lambda-list {declaration | doc-string}* {form}*)}*) {form}* [Special form]
macrolet ({(name varlist {declaration | doc-string}* {form}*)}*) {form}* [Special form]

f1et may be used to define locally named functions. Within the body of the f1et form, function
names matching those defined by the f1et refer to the locally defined functions rather than to the
global function definitions of the same name.

Any number of functions may be simultaneously defined. Each definition is similar in format to a
defun (page 53) form: first a name, then a parameter list (which may contain &optional,
&rest, or &ey parameters), then optional declarations and documentation string, and finally a
body.

The 1abe1s construct is identical in form to the fl1et construct. It differs in that the scope of the
defined function names for f1et encompasses only the body, while for Tabe1s it encompasses
the function definitions themselves. That is, Tabels can be used to define mutually recursive
functions, but flet cannot. This distinction is useful. Using f1et one can locally redefine a
global function name, and the new definition can refer to the global definition; the same
construction using 1abe1s would not have that effect.
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(defun integer-power (n k) ;A highly "bummed" integer
(declare (integer n)) ; exponentiation routine,
(declare (type (integer 0 *) k))

(Tabels ((expt0 (x k a)
’ (declare (integer x a) (type (1nteger 0 *) k))
(cond ((zerop k) a)
((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a)))))
(exptl (x k a)
(declare (integer x a) (type (integer 0 *) k))
(cond ((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a))))))
(expt0 n k 1)))

macrolet is similar in form to flet, but defines local macros, using the same format used by
defmacro (page 112).

7.6. Conditionals

cond {(test {form}*)}* ' [Macro}

The cond special form takes a number (possibly zero) of clauses, which are lists of forms. Each
clause consists of a zest followed by zero or more consequents.

For example:
(cond (test-1 consequent-1-1 consequent-1-2 . ..)
(test-2)
(test-3 consequent-3-1 ...)
)

The first clause whose fest evaluates to non-ni1 is selected; all other clauses are ignored, and the
consequents of the selected clause are evaluated in order (as an implicit progn).

More specifically, cond processes its clauses in order from left to right. For each clause, the test is
evaluated. Ifthe resultis ni1, cond advances to the next clause. Otherwise, the cdr of the clause is
treated as a list of forms, or consequents, which are evaluated in order from left to right, as an
implicit progn. After evaluating the consequents, cond returns without inspecting any remaining
clauses. The cond special form returns the results of evaluating the last of the selected
consequents; if there were no consequents in the selected clause, then the single (and necessarily
non-null) value of the fest is returned. If cond runs out of clauses (every test produced ni1, and
therefore no clause was selected), the value of the cond formis ni1.

If it is desired to select the last clause unconditionally if all others fail, the standard convention is to
use t for the zest. As amatter of style, it is desirable to write a last clause “(t ni1)” if the value of
the cond form is to be used for something. Similarly, it is in questionable taste to let the last clause
of a cond be a “singleton clause”; an explicit t should be provided. (Note moreover that (cond

(x)) may behave differently from (cond ... (t x)) if x might produce multiple
values; the former always returns a smgle value, while the latter returns whatever values x returns.)
For example: '
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if pred

(setq z (cond (a 'foo) (b 'bar))) ; Possibly confusing.
(setq z (cond (a 'foo) (b 'bar) (t nil))) ;Better.
(cond (a b) (c d) (e)) ; Possibly confusing.
(cond (a b) (c d) (t e)) ; Better.
(cond (a b) (c d) (t (values e))) ; Better (if one value needed).
(cond (a b) (c)) : ; Possibly confusing,.
(cond (a b)) (t ¢)) ; Better.
(if a b c) : ; Also better.
A LisP cond form may be compared to a continued if-then-elseif as found in many algebraic
programming languages:
(cond (p ...) if p them ...
(g ...) roughly else if g then ...
(r ...) corresponds else if r then ...
(t ...)) else ...
then [else] [Special form]

The if special form corresponds to the if-then-else construct found in most algebraic programming

Jlanguages. First the form pred is evaluated. If the result is not ni1, then the form then is selected;

otherwise the form else is selected. Whichever form is selected is then evaluated, and if returns
whatever evaluation of the selected form retumns.

(if pred then else) <=> (cond (pred then) (t else))
but if is considered more readable in some situations.

The else form may be omitted, in which case if the value of predis ni1 then nothing is done and
the value of the if form is ni1. If the value of the if form is important in this situation, then the
and (page 64) construct may be stylistically preferable, depending on the context. If the value is
not important, but only the effect, then the when (page 89) construct may be stylistically
preferable.

when pred {form}* . [Macro}

(when pred forml form2 ... ) first evaluates pred. If the result is nil, then no form is
evaluated, and ni1 is returned. Otherwise the forms constitute an implicit progn, and so are
evaluated sequentially from left to right, and the value of the last one is returned.

(when p a b ¢) <=> (and p (progn a b ¢c))
(when pa bc) <=> (cond (p a b c))

(when p a b c) <=> (if p (progn a b ¢) 'nil)
(when p a b ¢) <=> (unless (not p) a b c)

As a matter of style, when is normally used to conditionally produce some side effects, and the
value of the when-form is normally not used. If the value is relevant, then and (page 64) or if
(page 89) may be stylistically more appropriate. :
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unless pred {form}* ' [Macro]

(uniess pred forml form2 ... ) first evaluates pred. If the result is not ni1, then the forms
are not evaluated, and ni1 is returned. Otherwise the forms constitute an implicit progn, and so
are evaluated sequentially from left to right, and the value of the last one is returned.

(unless p-a b ¢) <=> (cond ((not p) a b c))
(unless p a bc¢) <=> (if p nil (progn a b ¢))
(unless p a b c) <=> (when (not pj a b c)

As a matter of style, unless is normally used to conditionally produce some side effects, and the
value of the unless-form is normally not used. If the value is relevant, then or (page 65) or if
(page 89) may be stylistically more appropriate.

case keyform {({({ke}*) | key} Uorm}*)}* [Macro]

case is a conditional that chooses one of its clauses to execute by comparing a value to various
constants, which are typically keyword symbols, integers, or characters (but may be any objects). Its
form is as follows:

(case keyform
( keylist-1 consequent-1-1 consequent-1-2 ...)
( keylist-2 consequent-2-1- . ..)
( keylist-3 consequent-3-1 ...)
ce)

Structurally case is much like cond (page 88), and it behaves like cond in selecting one clause
and then executing all consequents of that clause. It differs in the mechanism of clause selection.

The first thing case does is to evaluate the form keyfbrm to produce an object called the key object.
Then case considers each of the clauses in turn. If key is in the keylist (that is, is eq1 to any item
in the keylist) of a clause, the consequents of that clause are evaluated as an implicit progn, and
case returns what was returned by the last consequent (or ni1 if there are no consequents in that
clause). Ifno clause is satisfied, case returns nil.

It is an error for the same key to appear in more than one clause.

Instead of a keylist, one may write one of the symbols t and otherwise. A clause with such a
symbol always succeeds, and must be the last clause. See also ecase (page 335) and ccase
(page 336), each of which provides an implicit otherwise clause to signal an error if no clause is
satisfied.

Compatibility note: The Lisp Machine LisP caseq construct uses eq for the comparison. In Lisp Machine
Lisp case therefore works for fixnums but not bignums. The MACLISP caseq construct simply prohibits the
use of bignums; indeed, it permits only fixnums and symbols as clause keys. In the interest of hiding the
fixnum-bignum distinction, and for general language consistency, case uses eq1 in COMMON LisP.

If there is only one key for a clause, then that key may be written in place of a list of that key,
provided that no ambiguity results (the key should not be a cons or one of ni1 (which is confusable
with (), alist of no keys), t, or otherwise).
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typecase keyform {(type {form}*)}* o [Macro]

typecase is a conditional that chooses one of its clauses by examining the type of an object. Its
form is as follows:

(typecase keyform
(type-1 consequent-1-1 consequent-1-2 ...)
(type-2 consequent-2-1 ...)
(type-3 consequent-3-1 ...)

Structurally typecase is much like cond (page 88) or case (page 90), and it behaves like them
in selecting one clause and then executing all consequents of that clause. It differs in the
mechanism of clause selection.

The first thing typecase does is to evaluate the form keyform to produce an object called the key
object. Then typecase considers each of the clauses in tum. The first clause for which the key is
of that clause’s specified ype is selected, the consequents of this clause are evaluated as an implicit
progn, and typecase returns what was returned by the last consequent (or ni1 if there are no
consequents in that clause). If no clause is satisfied, typecase returns ni1.

As for case (page 90), the symbol t or otherwise may be written for fype to indicate that the
clause should always be selected. See also etypecase (page 335) and ctypecase (page 335),
each of which provides an implicit otherwise clause to signal an error if no clause is satisfied.

s tel

It is permissibie for more than one clause to specify a given type, particularly if one is a subtype of
another; the earliest applicable clause is chosen. -

For example:
(typecase an-object

(string ...) ; This clause handles strings.
((array t) ...) ; This clause handles general arrays.
((array bit) ...) ; This clause handles bit arrays.
(array ...) . ; This handles all other arrays.
((or 1ist number) ...) ; This handles lists and numbers.
(t ...)) ; This handles all other objects.

A COMMON LISP compiler may choose to issue a warning if a clause cannot be selected because it is
completely shadowed by earlier clauses.

1.7. Blocks and Exits

' block name {form}* [Special form]

The bTlock construct executes each form from left to right, returning whatever is returned by the
last form. If, however, a return or return-from form is executed during the execution of some
Jorm, then the results specified by the return or return-from are inmediately returned as the
value of the b1ock construct, and execution proceeds as if the b1ock had terminated normally. In
this b1 ock differs from progn (page 84); the latter has nothing to do with return.
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The name is not evaluated; it must be a symbol. The scope of the name is lexical; only a return or
return-from textually contained in some form can exit from the block. The extent of the name
is dynamic. Therefore it is only possible to exit from a given run-time incarnation of a block once,
either normally or by explicit return.

The defun (page 53) form implicitly puts a b1ock around the body of the function defined; the
block has the same name as the function. Therefore one may use return-from to return
prematurely from a function defined by defun.

The lexical scoping of the block name fully general, and has consequences that may be surprising to
users and implementors of other LISP systems. For example, the return in the following example
actually does “work” in COMMON LISP as one might expect:
(block Tloser
(catch ’'stuff
(mapcar #'(lambda (x) (if (numberp Xx)
(hairyfun x)
(return-from loser nil)))
items)))
Depending on the situation, a return in COMMON LISP may not be simple. A -return can break
up catchers if necessary to get to the block in question. It is possible for a “closure” created by
function for a lambda-expression to refer to a block name as long as the name is lexically

apparent.

return-from name [resuli] [Special form]

return [resuli] [Macro]

return-from is used to return from a block or from such constructs as do and prog that
implicitly establish a block. The name is not evaluated, and must be a symbol. A block
construct with the same name must lexically enclose the occurrence of return-from; whatever
the evaluation of result produces is immediately returned from the block. (If the result form is
omitted, it defaults to ni1.. As a matter of style, this form ought to be used to indicate that the
particular value returned doesn’t matter.)

The return-from form itself never returns, and cannot have a value; it causes results to be
returned from a block construct. If the evaluation of result produces multiple values, those
multiple values are returned by the construct exited.

(return form) is identical in meaning to (return-from nil jform); it returns from a block
named nil. As a rule, blocks established implicitly by iteration constructs such as do are named
nil,sothat return will exit properly from such a construct.
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7.8. Iteration

COMMON LiSP provides a number of iteration constructs. The 1oop (page 93) construct provides a trivial
iteration facility; it is little more than a progn (page 84) with a branch from the bottom back to the top. The
do (page 93)and do* (page 93) constructs provide a general iteration facility for controlling the variation of
several variables on each cycle. For specialized iterations over the elements of a list or n consecutive integers,
dolist (page 97) and dotimes (page 97) are provided. The-tagbody (page 100) construct is the most
general, permitting arbitrary go (page 102) statements within it. (The traditional prog (page 100) construct
is a synthesis of tagbody, block (page 91), and 1et (page 85).) All of the iteration constructs permit

statically defined non-local exits in the form of the return-from (page 92) and re turn statements.

7.8.1. Indefinite Iteration

loop {form}* [Macro]

Each form is evaluated in turn, from left to right. When the last form has been evaluated, then the
first form is evaluated again, and so on, in a never-ending cycle. The 100p construct never returns

a value. Its execution must be terminated explicitly, for example by using return (page 92) or
throw (page 108).

1oop, like most iteration constructs, establishes an implicit block named ni1. Thus return may
be used to exit from a Toop with specified results.

Rationale: This construct is included primarily as a primitive building block for more complicated iteration
macros that is perhaps more easily understood by a compiler than a full-blown tagbody (page 100).

A Toop construct has this meaning only if every form is non-atomic (a list). The case where one or
more than one form is a symbol is reserved for future extensions.

7.8.2. General iteration

do ({(var [init [step]])}*) (end-test {form}*) {declaration}* {tag | statement}* [Macro]
do* ({(var [init [step]])}*) (end-test {form}*) {declaration}* {tag | statement}* [Macro]

The do special form provides a generalized iteration facility, with an arbitrary number of “index
variables”. These variables are bound within the iteration and stepped in parallel in specified ways.
They may be used both to generate successive values of interest (such as successive integers) or to
accumulate results. When an end condition is met, the iteration terminates with a specified value.

In general, a do loop looks like this:
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(do ((varl initl stepl)
(var2 init2 step?)

(varn initn stepn))
(end-test . result)
{declaration}*

. lagbody)

The first item in the form is a list of zero or more index-variable specifiers. Each index-variable
specifier is a list of the name of a variable var, an initial value init (which defaults to ni1 if it is
omitted) and a stepping form step. If step is omitted, the var is not changed by the do construct
between repetitions (though code within the do is free to alter the value of the variable by using

setq (page70)).

An index-variable specifier can also be just the name of a variable. In this case, the variable has an
initial value of n1i1, and is not changed between repetitions.

Before the first iteration, all the init forms are evaluated, and then each var is bound to the value of
its respective init. This is a binding, not an assignment; when the loop terminates the old values of
those variables will be restored. Note that all of the init forms are evaluated before any var is
bound; hence init forms may refer to old values of the variables.

The second element of the do-form is a list of an end-testing predicate form end-test, and zero or
more forms, called the reswit forms. - This resembles a cond clause. At the beginning of each
jteration, after processing the variables, the end-fest is evaluated. If the result is ni1, execution
proceeds with the body of the do. If the result is not n1i1, the resulf forms are evaluated in order as
an*implicit progn (page 84), and then do returns. do returns the results of evaluating the last
result form. If there are no result forms, the value of do is ni1; note that this is not quite analogous
to the treatment of clausesin a cond (page 88) special form.

At the beginning of cach iteration other than the first, the index variables are updated as follows.
First every step form is evaluated, from left to right. Then the resulting values are assigned (as with
psetq (page 70)) to the respective index variables. Any variable that has no associated step form
is not affected. Because all of the step forms are evaluated before any of the variables are altered,
when a step form is evaluated it always has access to the old values of the index variables, even if
other step forms precede it. After this process, the end-test is evaluated as described above.

If the end-test of a do form is ni 1, the test will never succeed. Therefore this provides an idiom for
“do forever”: the body of the do ‘is executed repeatedly, stepping variables as usual, of course.
(The 1oop (page 93) construct performs a “do forever” that steps no variables.) The infinite loop
can be terminated by the use of return (page 92) return-from (page 92), go (page 102) to
an outer level, or throw (page 108).

For example:
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(do ((j O (+3J1)))
(nil) ; Do forever.
(format t "~%Input ~D:" j)
(let ((item (read)))
(if (null ditem) (return) ; Process items until ni1 seen.
(format t "~&0utput ~D: ~S" j (process item)))))

The remainder of the do form constitutes an implicit tagbody (page 100). Tags may appear
within the body of a do loop for use by go (page 102) statements appearing in the body (but such
go statements may not appear in the variable specifiers, the end-test, or the result forms). When the
end of a do body is reached, the next iteration cycle (beginning with the evaluation of step forms)
occurs.

An implicit block (page 91) named ni1 surrounds the entire do form. A return (page
92) statement may be used at any point to exit the loop immediately.

declare (page 117) forms may appear at the beginning of a do body. They apply to code in the
do body, to the bindings of the do variables, to the step forms (but not the init forms), to the

end-test, and to the result forms.

Compatibility note: “Old-style” MACLISP do loops, of the form (do war init step end-test . body), are not
supported. They are obsolete, and are easily converted to a new-style do with the insertion of three pairs of
parentheses. In practice the compiler can catch nearly all instances of old-style do loops because they will not
have a legal format anyway.

Here are some examples of the use of do:

(do ((i 0 (+ 1 1)) ; Sets every null element of a-vector to zero.
(n (array-dimension a-vector 0)))
((= 1 n))

(when (null (aref a-vector i))
(setf (aref a-vector i) 0)))

The construction

(do ((x e (cdr x))
(oldx x x))
((null x))
body)

exploits parallel assignment to index variables. On the first iteration, the value of o1dx is whatever
value x had before the do was entered. On succeeding iterations, o1dx contains the value that x
had on the previous iteration.

Very often an iterative algorithm can be most clearly expressed entirely in theAstep forms of a do,.
and the body is empty. '
For example:

(do ((x foo (cdr x))

(y bar (cdr y))

(z '() (cons (f (car x) (car y)) 2z)))
((or (null x) (null y))
(nreverse z)))

does the same thing as (mapcar #'f foo bar). Note that the step computation for z explmts
the fact that variables are stepped in parallel. Also, the body of the loop is empty. Finally, the use
of nreverse (page 196) to put an accumulated do loop result into the correct order is a standard




96

COMMON LISP REFERENCE MANUAL

idiom.

Other examples:
(defun list-length (Tist)
(do ((x list (cdr x))
(JO0(+3J1)))
((endp x) j)))

(defun list-reverse (list) .
(do ((x list (cdr x))
(y '() (cons (car x) y)))
((endp x) y)))

Note the use of endp (page 208) rather than nu11 (page 59) to test for the end of a list in the
above two examples. This results in more robust code.

As an example of nested loops, suppose that env holds a list of conses. The car of each cons is a list
of symbols, and the cdr of each cons is a list of equal length containing corresponding values. Such
a data structure is similar to an association list, but is divided into “frames”; the overall structure
resembles a rib-cage. A lookup function on such a data structure might be:

(defun ribcage-Tookup (sym ribcage)
(do ((r ribcage (cdr r)))
((nul1 r) nil)
(do ((s (caar r) (cdr s))
. (v (cdar r) (cdr v)))
((null s))
(when (eq (car s) sym)
(return-from ribcage-lookup (car v))))))

(Notice the use of indentation in the above example to set off the bodies of the do loops.)

A do loop may be explained in terms of the more primitive constructs block (page 91), return
(page 92), 1et (page 85), 1oop (page 93), tagbody (page 100), and psetq (page 70) as
follows: ’

(block nil
(let ((varl initl)
(var2 init2)

(varn initn))
{declaration}* ,
(1oop (when end-test (return (progn . result)))
(tagbody . tagbody)
(psetq varl stepl
var2 step2

vam stepn))))

do* is exactly like do except that the bindings and steppings of the variables are performed
sequentially rather than in parallel. At the beginning each variable is bound to the value of its init
form before the init form for the next variable is evaluated. Similarly, between iterations each
variable is given the new value computed by its step form before the step form of the next variable is
evaluated. Itis as if, in the above explanation, Tet were replaced by 1et* (page 86) and psetq
were replaced by setq (page 70). )
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7.8.3. Simple Iteration Constructs

The constructs dolist and dotimes perform a body of statements repeatedly. On cach iteration a
specified variable is bound to an clement of interest that the body may cxaminc. dolist cxamincs
successive clements of a list, and dotimes cxamines integers from 0 to n—1 for some specified positive
integer n.

The value of any of these constructs may be specified by an optional result form, which if omitted defaults
to the value nil.

The return (page 92) statement may be used to return immediately from a dolist or dotimes form,
discarding any following itcrations that might have been performed: in cffect, a block named nil
surrounds the construct. ‘The body of the loop is implicitly a tagbody (page 100) construct; it may contain
tags to serve as the targets of go  (page 102) statements. Declarations may appcar before the body of the loop.

dolist (var listform [resultform]) {declaration}* {tag | statement}* [Macro)

dolist provides straightforward iteration over the clements of a list. First do11ist cvaluates the
form listform, which should produce a list. It then exccutes the body once for cach clement in the
list, in order, with the variable var bound to the clement. Then resultform (a single form, not an
implicit progn) is cvaluated, and the result is the valuc of the doTist form. (When the resultform
is evaluated, the control variable var is still bound, and has the value ni1.) If resultforn is omitted,
the resultisnil.

For example:

(dolist (x '{a b c d)) (prinl x) (princ " ")) => nil
after printing“a b c d ”

An explicit return statement may be used to terminate the loop and return a specified value.

dotimes (var countform [resultform]) {declaration}* {tag | slaterr;}znt}* [Macro)

dotimes provides straightforward iteration over a scquence of integers, The expression
(dotimes (var countform resultform) . progbody) evaluates the form couniform, which
-should produce an integer. It then performs progbody once for cach integer from zero (inclusive) to
count (exclusive), in order, with the variable var bound to the integer; if the valuc of countform is
zero or negative, then the progbody is performed zero times. Finally, resultform (a single form, not
an implicit progn) is evaluated, and the result is the value of thc dotimes form. (When the
resultform is cvaluated, the control variable var is still bound, and bas as its value the number of
times the body was exccuted.) If resuliform is omitted, the resultis ni 1!

Altering the value of var in the body of the loop (by using qetc;'. {r-.0.70), for example) will have
unpredictable, possibly implementation-dependent resulte. A p:v\i:gﬁ 43' LISP compiler may choose
to issue a warning if such a variable appearsin a setq. '

For example:
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(defun string-posq (char string &optional
(start 0)
(end (string-length string)))
(dotimes (k (- end start) nil) ,
(when (char= char (char string (+ start k)))
(return k))))

An cxplicit return statement may be used to terminate the loop and return a specified value.

Sccalso do-symbols (page 144), do-external-symbols (page 144), and do-all1-symbols (page
144),

7.8;4. Mapping

Mapping is a type of itcration in which a function is successively applied to picces of onc or more
scquences.  ‘The result of the iteration is a scquence containing the respective results of the function
applications. "There arc scveral options for the way in which the picces of the list arc chosen and for what is
done with the results returned by the applications of the function.

The function map (page 197) may be used to map over any kind of sequence. The following functions
operatc only on lists,

mapcar function list &rest more-lists [Function]
maplist finction list &rest more-lists : [Function]
mapc function list &rest more-lists [Function]
map1 function list &rest more-lists ' [Function]
mapcan function list &rest more-lists : [Function]
mapcon function list &rest more-lists [Function]

For cach these mapping functions, the first argument is a function and the rest must be lists. The
function must takc as many arguments as there are lists,

mapcar operates on successive clements of the lists. First the function is applied to the car of each
list, then to the cadr of cach list, and so on. (Idcally all the lists are the same length; if not, the
iteration terminates when the shortest list runs out, and excess clements in other lists are ignored.)
The value returncd by mapcar is a list of the results of the successive calls to the function.

For example:

(mapcar #'abs '(3 -4 2 -5 -6)) => (3 4 2 5 6)

(mapcar #'cons '(a b c) (12 3)) => ((a . 1) (b ., 2) (c . 3))
maplist is like mapcar cxcept that the function is applied to the list and successive cdr’s of that
list rather than to successive elements of the list.

For example:
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(maplist #'(lambda (x) (cons ’'foo x))
(a b c d))
=> ((foo a b c d) (foo b ¢ d) (foo c d) (foo d))
(maplist #'(lambda (x) (if (member (car x) (cdr x)) 0 1)))
'(abacdbc))
= (0010111)
; An cntry is 1iff the corresponding clement of the input
;  list was the last instance of that clement in the input list.

map1 and mapc arc like maplist and mapcar respectively, except that they do not accumulate

the results of calling the function.

Compatibility note: In all Lisp systems since Lisp 1.5, map1 has been called map. In the chapter on sequences
it is cxplained why this was a bad choice. Here the name map is used for the far more uscful generic sequence
mapper. in closer accordance 1o the computer science literature, especially the growing body of papers on
functional programming.

These functions arc used when the function is being called merely for its side-cffects, rather than its
returned values. The value returned by map1 or mapc is the second argument, that is, the first
scquence argument,

mapcan and mapcon arc like mapcar and map1ist respectively, except that they combine the
results of the function using nconc (page 212) instead of 1ist. That s,

(mapcon f x! ... xn)
<=> (apply #'nconc {maplist f x/ ... xn))
and similarly for the relationship between mapcan and mapcar. Conceptually, these functions
allow the mapped function to return a variable number of items to be put into the output list. This
is particularly uscful for effectively returning zcro or one item:
(mapcan #’(lambda (x) (and (numberp x) (list x)))
'fa1bc3d34dy5b))
=> (1 3 4 5)
In this case the function serves as a filter; this is a standard LISP idiom using mapcan. (The
function remove-if-not (page 199) might have been uscful in this particular context, however.)
Remember that nconc is a destructive operation, and therefore so arc mapcan and mapcon; the
lists returned by the function are altered in order to concatcnate them.

Sometimes a do or a straightforward recursion is preferable to a mapping operation; however, the
mapping functions should be used wherever they naturally apply because this increases the clarity
of the code.

The functional argument to a mapping function must be acceptable to app1y; it cannot be a macro
or the name of a special form. Of course, there is nothing wrong with using functions that have
&optional and &rest parameters.

7.8.5. The “Program Feature”

Lisp implementations since LiSP 1.5 have had what was originally called “the program feature”, as if it were
impossible to write programs without it! The prog construct allows one to writc in an ALGOL-like or
FORTRAN-like statement-oriented style, using go statements, which can refer to tags in the body of the prog.
Modern LISP programming style tends to use prog rather infrequently. The various iteration constructs, such
asdo (page 93), have bodics with the characteristics of a prog.
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prog actually performs three distinct operations: it binds local variables, it permits use of the return
statement, and it permits usc of the go statement. In COMMON L.isp, these three operations have been
scparated into three distinct constructs: Tet (page 85), bTock (page 91), and tagbody (page 100). These
vthree constructs may be uscd independently as building blocks for other types of constructs. '

tagbody {rwg | statement}* [Special form)

The part of a prog after the variable list is called the body. An item in the body may be a symbol
or an integer, in which casc it is called a /ag. or a list, in which casc it is called a statement.

“Each clement of the body is processed from left to right. A tag is ignored; a siatement is evaluated,
and its results are discarded. If the end of the body is reached. the tagbody returns nil.

If (go tag) is evaluated, control jumps to the part of the body labelled with the tag.

Compatibility note: The “computed go™ feature of Macl.isp is not supported. The syntax of a computed go is
idiosyncratic, and the feature is not supported by Lisp Machine Lise, Ni1., or INTERLISP.

The scope of the tags cstablished by a tagbody is lexical, and the cxtent is dynamic. Once a
tagbody construct has been exited, it is no longer legal to go to a tag in its body. It is permissible
for a go to jump to a tagbody that is not the innermost tagbody construct containing that go;
the tags cstablished by a tagbody will only shadow other tags of like name.

The lexical scoping of the go targets named by tags is fully general, and has conscquences that may
be surprising to users and implementors of other LISP systems. For cxample, the go in the
following example actually does “work™ in COMMON LISP as one might cxpect:
(tagbody
(catch 'stuff
(mapcar #'(lambda (x) (if (numberp x)
(hairyfun x)

(go lose)))
items))

(return)
lTose
(error "I lost bigl!"))

Decpending on the situation, a go in COMMON LISP does not necessarily correspond to a simple
machinc “jump” instruction! A go can break up catchers if nccessary to get to the target. It is
possible for a *“closurc™ created by function for a lambda-expression to refer to a go target as
long as the tag is lexically apparent. Sce Chapter 3 for an claborate cxample of this.

prog ({var | (var [ini])}*) {declaration}* {tag | statement}* [Macro]
prog* ({var | (var [inii])}"‘) {declaration}* {tag | statement}* . [Macro)

A typical prog looks like:
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(prog (varl var2 (var3 init3) vard (varS init5))
{declaration}*
statement]
tagl
statement2
statement3
statement4
lag2
statements

)
The list after the keyword prog is a sct of specifications for binding var!, var2, ctc., which are
temporary variables. bound locally to the prog. This list is processed cxactly as the list in a Tet
(page 85) statement: first all the inif forms arc evaluated from left to right (where ni1 is used for
any omitted inir form), and then the variables are all bound in parallel to the respective results. Any
declaration appcaring in the prog is used as if appearing at the top of the 1et body.

The body of the prog is exccuted as if it were a tagbody (page 100) construct; the go (page
102) statement may be used to transfer control to a fag.

A prog implicitly cstablishes a block (page 91) named ni1 around the entire prog construct, so
that return (page 92) may be used at any time to cxit from the prog construct.

Here is a finc example of what can be done with prog:
(defun king-of-confusion (w)
(prog (x y z) ; Initialize x, y,ztonil
(setq y (car w) z (cdr w))
loop )
(cond ((null y) (return x))

((null z) (go err)))
rejoin

(setq x (cons (cons (car y) .(car z)) x)) -
(setq y (cdr y) z (cdr z))

(go Toop)
err

(error "Mismatch - gleepl")
(setq z y)
(go rejoin))
which is accomplished somewhat more perspicuously by:
. (defun prince-of-clarity (w)

(do ((y (car w) (cdr y))
(z (cdr w) (cdr z))

(x '() (cons (cons (car y) (car z)) x)))

((null y) x)
(when (null z)

(error "Mismatch - gleep!")
(setq z y))))

The prog construct may be explained in terms of the simpler constructs block (page 91), let
(page 85), and tagbody (page 100) as follows:

(prog variable-list {declaration}* . body)
<=> (block nil (let variable-list {declaration}* (tagbody . body)))
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The prog* special form is aimost the samc as prog. 'The only difference is that the binding and
initialization of the temporary variables is done sequentially, so that the init form for cach one can
usc the valucs of previous ones. Therefore prog* is to prog as Tet* (page 86) is to et (page
85).

For example:

(prog* ((y z) (x (car y)))
(return x))

returns the car of the value of z.

go lag [Special form]

- The (go rag) special form is used to do a “go to™ within a tagbody (page 100) construct. The
“tag must be a symbol or an integer; the ag is not cvaluated. go transfers control to the point in the
body labelicd by a tag eql to the one given. If there is no such tag in the body, the bodics of
lexically containing tagbody constructs (if any) are examined as well. It is an crror if there is no
matching tag lexically visible to the point of the go.

The go form does not ever return a value.

As a matter of style, it is recommended that the user think twice beforc using a go. Most purposes
of go can bc accomplished with one of the iteration primitives, nested conditional forms, or
return-from (page 92). If the usc of go scems to be unavoidable, perhaps the control structure
implemented by go should be packaged up as a macro definition.

7.9. Multiple Values

Ordinarily the result of calling a LISP function is a single LISP object. Sometimes, however, it is convenicnt
for a function to compute several objects and return them. COMMON LISP provides a mechanism for handling
multiple values directly. This mechanism is cleaner and more cfficient than the usual tricks involving
returning a list of results or stashing results in global variables.

7.9.1. Constructs for Handling Multiple Values

Normally multiple values are not used. Special forms arc required both to produce multiple values and to
receive them. If the caller of a function docs not request multiple values, but the called function prdduccs
muitiple values, then the first value is given to the caller and all others are discarded (and if the called
function produces zero values then the caller gets ni1 as a value).

The primary primitive for producing multiple values is values (page 103), which takes any number of
arguments and returns that many values. If the last form in the body of a function is a values with three
arguments, then a call to that function will return threc valucs. Other special forms also produce multiple
values, but they can be described in terms of values. Some built-in COMMON LISP functions (such as
floor (page 166)) return multiple valucs; those that do are so documented.
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The special forms for recciving multiple values arc multiple-value-list (page 104),
multiple-value-call (pagc 104), multiple-value-progl (pagc 104), multiple-value-bind
(page 104), and multiple-value-setq (page 105). These specify a form to evaluate and an indication of -
where o put the values returned by that form.

values &rest args ' [Function]
Returns all of its arguments, in order, as valucs.
For example:

(defun polar (x y)

(values (sqrt (+ (* x x) (* y y))) (atan y x)))
(multiple-value-let (r theta) (polar 3.0 4.0)
(list r theta))
=> (5.0 0.9272952)

The expression (values) returns zero valucs.

Sometimes it is desirable to indicate explicitly that a function will return cxactly one value, For
cxample, the function
(defun foo (x y)
(floor (+ x y) ¥))
will return two values becausc floor (page 166) rcturns two values. It may be that the sccond

value makes no sense, or that for cfficiency reasons it is desired not to compute the second value.
The values function is the standard way to indicatc that only one value is to be returned:

(defun foo (x y)
(values (floor (+ x y) y)))

This works because values rcturns exactly one value for cach of its argument forms; as for any
function call, if any argument form to values produccs more than onc value, all but the first are
discarded.

There is absolutely no way in COMMON LISP for a caller to distinguish between returning a single
value in the ordinary manner and returning exactly onc “multipla value”. For example, the values
returncd by the cxpressions (+ 1 2) and (values (+ 1 2)) arcidentical in cvery respect: the
single value 3.

multiple-values-1imit [Constani]
The valuc of multiple-values-T1imit is a positive intcger that is the upper exclusive bound
on the number of values that may be returned from a function. This bound depends on the
implementation, but will not be smaller than 20. (Implementors arc 2nouraged to make this limit as
large as practicable without sacrificing performance.) Sce 1Tambda parameters-1imit (page
S2)and catl -arguments-1imit (page 84).
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values-list list : 7 [Function]
" Returns as multiple values all the clements of /ist.
For cxample: ‘ .

» (values-list (list a b c)) <=> (values a b c)

multiple-value-list form ' [Macro]

multiple-value-1ist cvaluates form, and rcturns a list of the multiple values it returned.
For cxample:
(muttiple-value-list (floor -3 4)) => (-1 1)

multiplie-value-call function {form}* [Special form]

multiple-value-call first cvaluates fiunction to obtain a function, and then cvaluates all of the
Jorms. All the values of the forms arc gathered together (not just one valuc from cach), and given as
arguments to the function. The result of multiple-value-call is whatever is returned by the
function. ' '

For cxample:

(multiple-value-call #'+ (floor 5 3) (ﬂ»oor 7 3))
<=> (+ 1 2.2 1) => 6
(multiple-value-list: form) <=> (multiple-value-call #'1ist form)

multiple-value-progl form {form}* [Special form]

multiple-value-prog1 cvaluates the first form and saves all the values produced by that form.
It then cvaluates the other forms from left to right, discarding their values, The values produced by
the first form are returned by multiple-value-progl. Scec progl (page 84), which always
returns a single value.

multiple-value-bind ({var}*) values-form {declaration}* {form}* [Macro]

The values-form is cvaluated, and cach of the variables var is bound to the respective valuce returned
by that form. If therc arc morc variables than values returned, extra values of ni1 arc given to the
remaining variables. If there are more values than variables, the excess valucs are simply discarded.
The variables are bound to the values over the execution of the forms, which make up an implicit
progn.

Comy atibility note: This is compatible with Lisp Machine Lisp.
For example:

{multiple-value-bind (x) (floor 5 3) (list x)) => (1)
(multipie-value-bind (x y) (floor 5 3) (list x y)) => (1 2)
(multiple-value-bind (x y z) (floor 5 3) (list x y z))

=> (1 2 nil)
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multiple-value-setq variables form : [Macro)

‘The variables must be a list of variables. The form is cvaluated, and the variables are ser (not
bound) to the valucs returned by that form. 1f there are more variables than valucs returned, extra
values of ni1 arc assigned to the remaining variables. If there are more valucs than variables, the

cxcess values are simply discarded.

Compatibility note: In Lisp Machinc 1sp this is called multiple-value. The added clarity of the name
multiple-value-setqin Common Lisp was deemed worth the incompatibility with Lisp Machine Lisp.

multiple-value-setq always returns a single valuc, which is the first value returned by form,
or ni1 if form produces zcro valucs.

7.9.2. Rules for Tail-Recursive Situations

It is often the case that the valuce of a special form is defined to be the value of one of its sub-forms. For
cxample, the value of a cond is the valuc of the last form in the sclected clause. In most such cases, if the
sub-form produces multiple values, then the original form will also produce all of those values. This
passing-back of multiple values of course has no cffect unless eventually one of the special forms for receiving
multiple values is reached. '

To be explicit, multiple valucs can result from a special form under preciscly these circumstances:
Evaluation and Application

eeval (page 253) returns multiple values if the form given it to cvaluate
produces multiplc values.

eapply (pagec 83), funcall (pagec 83), and multiple-value-call
(page 104), pass back multiple values from the function appliced or called.

Implicit progn contexts

The special form progn (page 84) passes backs multiple values resulting from evaluation
of the last subform. Other situations referred to a$ “implicit progn”, where several forms
are evaluated and the results of all bu the last form are discarded, also pass back multiple
values from the last form. These situations include the body of a lambda-expression, in
particular those constructed by defun (page 53), defmacro, and deftype. Also
included are bodies of the constructs eval-when (page 54), progv (page 87), let
(page 85), let* (page 86), when (page 89), unless (page 90), block
multiple-value-bind (page 104), and catch (page 107), as well as clauscs in such
conditional constructs as case (page 90) and typecase (page91).

Conditional constructs

o if (page 89) passes back multiple values from whichever subform is selected
(the then form or the else form).

e and (page 64) and or (page 65) pass back multiple values from the last
subform, but not from subforms other than the last.
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s cond (page 88) passes back multiple values from the last subform of the
implicit progn of the sclected clause. If, however, the clause selected is a
singlcton clause, then only a single value (the non-nil predicate value) is
returned. This is true even if the singleton clausc is the last clause of the cond.
It is not permitted to treat a final clause “(x )™ as being the same as *(t x)™
for this reason; the latter passes back multiple values from the form x.

Returning from a block
The block (page 91) construct passes back multiple values from its last subform when it
cxits normally. If return-from (page 92) (or return)is used to terminate the block
prematurcly, then return-from passes back multiple values from its subform as the
valucs of the terminated block. Other constructs that create implicit blocks, such as do
(pagc 93). dolist (page 97), dotimes (page 97). prog (page 100), and prog* (page
100), also pass back multiple valucs specified by return-from (or return (page 92)).

In addition, do passes back multiple values from the last form of the exit clausc, exactly as
if the exit clause were a cond clause. Similarly, do1ist and dotimes pass back multiple
valucs from the resultform if that is cxccuted. These situations arc all examples of implicit
uscs of return-from,

Throwing out of a catch _ _
The catch (page 107) construct returns multiple valucs if the result form in a throw
(page 108) cxiting from such a catch produces multiple values. -

Miscellaneous situations

emultiple-value-progl (pagc 104) passes back multiple values from its
first subform. However, prog1 (page 84) always returns a single value,

esunwind-protect (page 107) rcturns multiple values if the form it protects
does.

Among spccial forms that never pass back multiple valucs arc setq (page 70), multiple-value-setq
(page 105), and prog1 (pagc 84). A good way to force only one valué to be returned from a form x is to
writc (values x).

The most important rule about multiple values is:

No matter how many values a form produces,
if the form is an argument form in a function call,
then exactly ONE value (the first one) is used.

For example, if you writc (cons (foo x)), then cons will receive exactly one argument (which is of
course an error), cven if foo returns two values. To pass both values from foo to cons, onc must use a
special form, such as (multiple-value-call #'cons (foo x)). In an ordinary function call, cach
argument form produces exactly one argument; if such a form returns zcro valucs, nil is used for the
argument, and if more than onc value, all but the first are discarded. Similarly, conditional constructs that test
the value of a form will use exactly one value (the first) from that form and discard the rest, or use ni1 if zero



N

CONTROL. STRUCTURE } 107
values are returncd.

7.10. Dynamic Non-local Exits

COoMMON L.1sp provides a facility for exiting from a complex process in a non-local, dynamically scoped
manncr. ‘There arc two classes of special forms for this purpose, called catch forms and throw forms, or simply
catches and throws. A catch form cvaluates some subforms in such a way that, if a throw form is executed
during such cvaluation, the evaluation is aborted at that point and the catch form immediately returns a value
specified by the throw. Unlike block (page 91) and return (page 92), which allow for so exiting a block
form from any point lexically within the body of the b1ock, the catch/throw mechanism works cven if the
throw form is not textually within the body of the catch form. The throw nced only occur within the extent
(time span) of the cvaluation of the body of the catch. 'This is analogous to the distinction between
dynamically bound (special) variables and lexically bound (local) variables.

7.10.1. Catch Forms

catch tag {form}* . [Special form]

The catch special form is the simplest catcher. The tag is cvaluated first to produce an object that
namgcs the catch; it may be any LISP object. The forms are cvaluated as an implicit progn, and the
results of the last form are returned. except that if during the evaluation of the forms a throw should
be exccuted, such that the tag of the throw matches (is eq to) the rag of the catch, then the
cvaluation of the forms is aborted and the results specified by the throw are immediately returned
from the catch expression.

The tag is uscd to match up throws with catches. (catch 'foo form) will catch a (throw
'foo form) butnota (throw °’bar form). Itis an crror if throw is done when there is no
suitable catch (or one of its variants) ready to catch it.

Catch tags are compared using eq, not eq1; therefore numbers and characters should not be used
as catch tags.

Compatibility note: The name catch comes from MacLisp, but the syntax of catch in CoMMON Lisp is
different. The MACLISP syntax was (catch jJorm tag), where the rag was not evaluated.

unwind-protect protected-form {cleanup-form}* [Special form]

Sometimes it is necessary to evaluate a form and make sure that certain side-effects take place after
the form is cvaluated; a typical example is:

(progn (start-motor)
(drill-hole)
(stop-motor))

The non-local exit facility of Lisp creates a situation in which the above code won’t work, however:
if dri11-hole should do a throw to a catch that is outside of the progn form (perhaps because
the drill bit broke), then (stop-motor) will never be evaluated (and the motor will presumably
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be left running). This is particularly likely if dri171-ho7e causes a LI1SP error and the user tells the
crror-handler to give up and abort the computation. (A possibly more practical example might be:
(prog2 (open-a-file)
(process-file)
* (close-the-file))

where it is desired always to close the file when the computation is terminated for whatever reason.)

In order to allow the example hole-drilling program to work, it can be rewritten using
unwind-protect as follows:

(unwind-protect
(progn (start-motor)
(drill-hole))

(stop-motor))

If drill-hole docs a throw that attempts to quit out of the unwind-protect, then
(stop-motor) will be exccuted.

As a general rule, unwind-protect guarantees to exccute all the cleanup-forms before exiting,
whether it terminates normally or is aborted by a throw of some kind. unwind-protect rcturns
whatever results from cvaluation of the protected-form, and discards all the results from the
cleanup-formns.

It should be emphasized that unwind¥protect protects against a// attempts to cxit from the
protected form, including not only such “dynamic exit™ facilitics such as throw (page 108) but
also such “lexical cxit™ facilitics as go (page 102) and return-from (pagc 92). Consider this
situation:
(tagbody :
(let ((x 3))
(unwind-protect
(if (numberp x) (go out))
(print x)))
out

.)
When the go is exccuted, the call to print is exccuted first, and then the transfer of control to the
tag out is completed.

7.10.2. Throw Forms

throw tag result [Special form]

The throw special form is the only explicit thrower in COMMON LISP, (However, crrors may cause
throws to occur also.) The tag is evaluated first to produce an object called the throw tag. The most
recent outstanding catch whose tag matches the throw tag is exited. A catch matches only if the
catch tag is eq to the throw tag.

In the process dynamic variable bindings are undone back to the point of the catch, and any
intervening unwind-protect cleanup code is executed. The resulr form is evaluated before the
unwinding process commences, and whatever results it produces are returned from the catch (or
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given to the catch-function, if appropriate).

If there is no outstanding catch whose tag matches the throw tag, no unwinding of the stack is
performed, and an crror is signalled. When the crror is signalled, the outstanding catches and the

dynamic variable bindings are thosc in force at the point of the throw.

Implementation note: ‘These requirements imply that throwing should typically make two passcs over the
control stack. In the first pass it simply scarches for a matching calch. In this scarch every catch must be
considered. but cvery unwind-protect should be ignored. On the sccond pass the stack is actually
unwound. onc frame at a time. undoing dynamic bindings and outstanding unwind-protect constructs in
reverse order of creation untit the maitching catch is reached.

Compatibility note: 'The name throw comes from MAcCLisp, but the syntax of throw in CoMMON Lisp is
different. ‘The Macl.sp syntax was (throw form fag), where the fag was not evaluated.
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Chapter 8 -

Macros

The CoMMON L.ISP macro facility allows the user to define arbitrary functions that convert certain LISP
forms into different forms before evaluating or compiling them. ‘This is done at the expression level, not at
the character-string level as in most other languages. Macros arc important in the writing of good code: they
make it possible to write code that is clear and clegant at the user level, but that is converted to a more
complex or more cfficient internal form for exccution.

When eval (page 253) is given a list whose car is a symbol, it looks for local definitions of that symbol (by
flet (pagc87), 1abels (pagc 87), and macrolet (page 87)): if that fails, it looks for a global dcfinition.
If the definition is a macro definition, then the original list is said to be a macro call. Associated with the
definition will be a function of one argument, called the expansion function. "This function is called with the
entire macro call as its one argument; it must return somc new LISP form, called the expansion of the macro
call. This éxpansion is then evaluated in place of the original form.

When a function is being compiled, any macros it contains arc cxpanded at compilation time. This means
that a macro definition must be seen by the compiler before the first use of the macro. Macros cannot be used
as functional arguments to such things as app1y (page 83), funcall (pagc 83), ormap (page 197); in such
situations, the list representing the “original macro call” does not exist, so the cxpansion function would not
know what to work on. '

8.1. Defining Macros

macro-function symbol .[Funclion]
The argument must be a symbol. If the symbol has a global function definition that is a macro
definition, then the expansion function (a function of one argument, the macro-call form) is
returned. If the symbols has no global function definition, or has a definition as an ordinary
function or as a special form but not as a macro, then nil is rcturned. (The function
macroexpand (page 116) is the best way to invoke the expansion function.)

Itis possiblc for both ma;ro-functibn and special-form-p (page 69) to be true of a
symbol. This is possible because an implementation is permitted to implement any macro also as a
special form for speed. On the other hand, the macro definition must be available for use by
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programs that understand only the standard special forms listed in Table 5-1.

macro-function cannot be used to determine whether a symbol names a locally defined macro
* cstablished by macrolet (page 87). It can ecxamine only global definitions.,

setf (page 72) may be uscd with macro-function to install a macro as a symbol’s global
function definition:
(setf (macro-function symbol) fir)
The value installed must be a function that accepts one argument, the entire macro call, and
computes the expansion for that call. Performing this operation causdes the symbol to have only
that macro definition as its global function definition; any previous definition is lost. For example,
(setf (macro-function 'block) #'(lambda (x) ...))
would not cause block to be defined as both a special form and as a macro. The definition of
block as a special form would be lost, and the specified function would be installed as a macro
definition.

defmacro name lambda-list {declaration | doc-string}* {form}* [Macro]

defmacro is a macro-defining macro that, unlikc macro, decomposcs the calling form in a more
clegant and uscful way. defmacro has cssentially the same syntax as defun (page 53): name is
the'symbol whose macro-definition we arc creating, lambda-list is similar in form to a lambda-list,
and the forms constitute the body of the expander function. If we view the macro call as a list
containing « function name and some argument forms, in cffect the expander function and the list
of (uncvaluated) argument forms is given to apply (page 83). 'The paramcter specifiers are
processed as for any lambda-expression, using the macro-call argument forms as the arguments.
Then the body forms are evaluated as an implicit progn, and the value of the last form is returned
as the cxpansion of the macro call.

If the optional documentation string doc-string is present (if not followed by a declaration, it may be
present only if at least one form is also specified, as it is otherwise taken to be a form), then it is
attached to the name as a documentation string of type function; scc documentation (page
338).

Like the lambda-list in a defun, a defmacro lambda-list may contain the lambda-list keywords
&optional, &rest, &key, &allow-other-keys, and &aux. For &optional and &key
parameters, initialization forms and “supplicd-p” paramecters may be specified, just as for defun.
Two additional tokens arc allowed in definacro variable lists only:

&body This is identical in function to &rest, but it informs certain pretty-printing and
cditing functions that thc remainder of the form is treated as a body, and should
be indented accordingly. (Only onc of &b ody or &rest may be used.)

&whole "~ This is followed by a single variable that is bound to the entire macro call form;
: this is the same value that the singlc parameter in a macro definition form
would reccive. &whole and the following variable should appear first in the

lambda-list, before any other parameter or lambda-list keyword.
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Sce Tambda-Tist-keywords (pageSl).

defmacro, unlikc any other COMMON LISP construct that has a lambda-list as part of its syntax,
provides an additional facility known as destructuring. Anywhere in the lambda-list where a
paramcter name may appear, and where ordinary lambda-list syntax (as described in scction 5.2.2)
docs not otherwise allow a list, a lambda-list may appcar in place of the parameter name. When
this is done, then the argument form that would match the paramecter is treated as a (possibly
dotted) list, to be used as an argument forms list for satisfying the paremeters in the embedded
lambda-list. As an example, onc could write the macro definition for dolist (page 97) in this
manner:

(defmacro dolist ((var listform &optional resultform)
&rest body) :
.)

Morc examples of embedded lambda-lists in defmacro arc shown below.

Another destructuring rule is that defmacro allows any lambda-list (whether top-level or
embeddced) to be dotted, ending in a parameter name. ‘This situation is treated exactly as if the
parameter name that ends the list had appcared preceded by &rest. For example, the definition
skeleton for do11st shown above could instcad have been written

(defmacro dolist ((var listform &optional resultform)
body)
.)

If the compiler encounters a defmacro, the new macro is added to the-compilation environment,
and a compiled form of the expansion function is also added to the output file so that the new
macro will be operative at runtime. If this i$ not the desired cffect, the defmacro form can be
wrapped in an eval-when (page 54) construct.

Sccalsomacrolet (page 87), which establishes macro definitions over a restricted Iexical scope.

Using defmacro, a definition for threc-argument if in terms of cond would look like this:
(defmacro if (pred result else-result)

‘(cond (,pred ,result)
(t ,else-result)))

(Note the usc of the backquote facility in this definition. Sec section 22.1.3.) If the above form is cxecuted by
the interpreter, it will cause the function definition of the symbol if to be a macro associated with which is a
onc-argument cxpansion function roughly equivalent to:

(lambda (calling-form)

(1ist ’'cond
: (1ist (cadr calling-form) (caddr calling-form))
(1ist 't (cadddr calling-form)))).

(The lambda-expression is produced by the macro construct. The calls to 1ist are the (hypothetical) result
of the backquote (') macro character and its associated commas. The precisc macro expansion function may

. depend on the implementation, for example providing some degree of explicit error checking on the number
of argument forms in the macor call.) ' '

Now, if eval encounters .
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(if (null foo) bar (plus bar 3))
this will be expanded into

(cond ((null foo) bar)
\ (t (plus bar 3)))

and eval trics again on this new form.

1t should be clear that the backquote facility is very uscful in writing macros. since the form to be returned

is normally a complex list structure, typically consisting of a mostly constant template with a few cvaluated
forms here and there.,

If if is to accept two or three arguments, with the else-result defaulting to ni1, as in fact it docs in
CoMMON L.isp, the definition might look like this:

(defmacro if (pred result &optional (else-result 'nil))
‘(cond (,pred ,result)
(t ,else-result)))

Destructuring is a very powerful facility that allows the de fmacro lambda-list to express the structure of a
complicated macro-call syntax. If no lambda-list keywords appear, then the defmacro lambda-list is simply
a list, nested to some extent, containing parameter names at the Icaves. The macro-call form must have the
same list structure. For example, consider this macro definition: '

(defmacro halibut ((mouth eyel eye2)

((finl lengthl) (fin2 1ength2))
tail)

Now consider this macro call:
(halibut (m (car eyes) (cdr eyes))-
((f1 (count-scales f1l)) (f2 (count-scales f2)))
my-favorite-tail) -
This would cause the expansion function to receive the following values for its parameters:
Paramecter ~ Value

mouth m

eyel (car eyes)

eye2 (cdr eyes)

fini f1

lengthl (count-scales f1)
fin2 f2

length2 (count-scales f2)
taiil my-favorite-tail

The following macro call would be in error, because there would be no argument form to match the
paramecter Tengthi:
(halibut (m (car eyes) (cdr eyes))
((f1) (f2 (count-scales f2)))
my-favorite-tail)
The following macro call would be in error, becausc a symbol appears in the call where the structure of the
lambda-list requires a list:
(halibut my-favorite-head

((f1 (count-scales .f1)) (f2 (count-scales f2)))
my-favorite-tail)
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The fact that the value of the variable my-favorite-head might happen to be a list is irrelevant here. Itis
the macro call itself whose structure must match that of the de fmacro lambda-list.

The use of lambda-list keywords adds cven greater flexibility. For example, suppose that it is convenient
within the cxpansion function for halibut to be able to refer to the list whose components arc called
mouth, eyel, and eye2 as head. Onc may write this:

(defmacro halibut ((&whole head mouth eyel eye2)
((finl lengthl) (fin2 length2))
tail)
~ Now consider the same valid macro call as before:
(halibut (m (car eyes) (cdr eyes))
((f1 (count-scales f1)) (f2 (count-scales f2)))
my-favorite-tail)
This would causc the expansion function to reccive the same valucs for its parameters, and also a value for the
paramcter head:

Paramcter  Value
head (m (car eyes) (cdr eyes))

The stipulation. that an embedded lambda-list is permitted only where ordinary lambda-list syntax would
permit a parameter name but not a list, is made to prevent ambiguity. For cxample, one may not write
(defmacro loser (x &optional (a b &rest c) &rest 2)

because ordinary lambda-list syntax docs permit a list following &cptional; the list (a b &rest c)
would be interpreted as describing an optional parameter named a. whosce dcfault value is that of the form b,
with a supplicd-p paramecter named &rest (not Icgal), and an extrancous symbol c in the list (also not legal).
An almost correct way to express this is
(defmacro loser (x &optional ((a b &rest c)) &rest 2z)
.)
The extra set of parcntheses removes the ambiguity. However, the definition is now incorrect because a
macro call such as (Toser (car pool)) would not provide any argument form for the lambda-list (a b
&rest c), and so the default value against which to match the lambda-list would be ni1, because no
explicit default valuc was specified. This is in crror because ni1 is an empty list; it does not have forms to
satisfy the parameters a and b. The fully correct definition would be either
(defmacro loser (x &optional ((a b &rest c) ’'(nil nil)) &rest z)
.)
or :
(defmacro loser (x &optional ((&optional a b &rest c)) &rest 2z)

-These differ slightly in that the first requires that if the macro call specifies a explicitly then it must also
specify b explicitly, whereas the second does not require this. That is,

(loser (car pool) ((+ x 1)))
would be a valid call for the second definition but not for the first.
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8.2. Expanding Macro Calls

macroexpand form &rest env | ) [Function)

macroexpand-1 form &rest env [Function)
If form is a macro call, then macroexpand-1 will expand the macro call once and return two
values: the cxpansion and t. If form is not a macro call, then the two values form and nil are
returned. :

A form is considered to be a macro call only if it is a cons whosc car is a symbol that names a macro.
The environment env is similar to that used within the evaluator; scc *eval (page 254). Any local
macro definitions cstablished within env by macrolet (page 87) will be considered. If only form
is given as an argument, then the environment is effectively null, and only glbbul macro definitions

(as cstablished by defmacro (page 112)) will be considered. '

Macro expansion is carried out as follows. Once macroexpand-1 has determined that a symbol
namcs a macro, it obtains the cxpansion function for that macro. ‘The value of the variable
*macroexpand-hook* (pagc 116) is then called as a function of two arguments: the cxpansion
function and the formn. The value returned from this call is taken to be the expansion of the macro
call. 'The initial valuec of *macroexpand-hook* is funcall (page 83), and the nct cffect is to
invoke the expansion function, giving it the form as its single argument. (The purposc of
*macroexpand-hook* is to facilitate various techniques for improving intcrpretation speed by
caching macro cxpansions.) .

macroexpand is similar to macroexpand-1, but repcatedly expands form until it is no longer a
macro call. (In cffect, macroexpand simply calls macroexpand-1 repeatedly until the second
value returned is ni1.) A sccond value of t or ni1 is returned as for macroexpand- 1, indicating
whether the original form was a macro call.

*macroexpand-hook* , [Variable]

The value of *macroexpand-hook* is used as the expansion interface hook by
macroexpand-1 (page 116).



Chapter 9

Declarations

Declarations allow you to specify extra information about your program to the LISP system. All
declarations arc completely optional and correct declarations do not affect the meaning of a correct program,
with onc cxception: special declarations do affect the interpretation of variable bindings and references,
and so must be specified where appropriate. All other declarations are of an advisory nature, and may be used
by the LISP system to aid you by performing extra error checking or producing more cfficient compiled code.
Declarations are also a good way to add documentation to a program. '

Note that it is considered an crror for a program to violate a declaration (such as a type declaration), but
an implementation is not required to detect such errors (though such detection, where feasible, is to be
cncouraged).

9.1. Declaration Syntax

declare {declaration-form}* [Special form]

A declare form is known as a declaration. Declarations may occur only at the beginning of the
bodics of certain special forms; that is, a declaration may occur only as a statement of such a special
form, and all statcments preceding it (if any) must also be declare forms (or possibly
documentation strings, in some cases). Decclarations may occur in lambda-cxpressions, and in the
following forms: : .

defmacro (page 112) dotimes (page 97)

defsetf (page 78) flet (page 87)
deftype (page 39) labels (page 87)
defun (page 53) let* : (page 86)
do* (page 93) Tet (page 85)
do-all-symbols (page 144) locally
do-external-symbols (page 144) macrolet
do-symbols (page 144) multiple-value-bind (page 104)
do (page 93) prog* (page 100)
dolist (page 97) . prog (page 100)

If a declaration is found anywhere else an error will be signalled.

It is permissible for a macro call to expand into a declaration and be recognized as such, provided
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that the macro call appears where a declaration may legitimately appear. (However, a macro call
may not appear in place of a declaration-form.)

Each declaration-form is a list whose car is a symbol spccifying the kind of declaration it is.
Declarations may be divided into two classcs: those that concern the bindings of variablcs, and
thosc that do not. (The special declaration is the solc exception: it cffectively falls into both
classcs, as explained below.) Those that concern variable bindings apply only to the bindings made
by the form at the head of whose body they appear. For example, in

(defun foo (x)
(declare (type float x))

(1e1); ((x 'a)) ...)

the type declaration applics only to the outer binding of x, and not to the binding made in the Tet.
Compatibility note: This is diffcrent from Maclsp, in which type declarations are pervasive.

Declarations that do not concern themselves with variable bindings are pervasive, affecting all code
in the body of the special form.” As an example of a pervasive declaration,

(defun foo (x y) (declare (notinline floor)) ...)
adviscs that everywhere within the body of foo the function f1o00or should not be open-coded, but
called as an out-of-line subroutine.

Some special forms contain picces of code that, properly speaking, arc not part of the body of the
special form. Examples of this are initialization forms that provide values for bound variables, and
the result forms of iteration constructs. In all cases such additional code is within the scope of any
pervasive declarations appearing before the body of the special form. Non-pervasive declarations
have no cffect on such code, except (of course) in those situations where the code is defined to be
within the scope of the variables affected by such non-pervasive declarations.
For example:
(defun few (x &optional (y *print-circle*))
(declare (special *print-circle*))
.)
The reference to *print-circle* in the first line of this example is special because of the
declaration in the second line.
For example:

(defun nonsense (k x z)
(declare (type integer k))
(let ((j (foo k x))

(x (* k k)))

(declare (inline foo) (special x z))

(foo x j z))) .
In this rather nonsensical example, k is declared to be of type integer. The in1ine declaration
applics to the inner call to foo, but not to the one to whose value , is bound, because that is code in
the binding part of the 1et. The special declaration of x causes iii¢ 1et form to make a special
binding for x, and causes the reference to x in the body of the 1et to be a special reference.
However, the reference to x in the first call to foo is-a local reference, not a special one. The
special declaration of z causcs the reference to z in the call to foo to be a special reference; it

-
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will not refer to the parameter to nonsense named z, because that paramcter binding has not
been declared to be special. (The special declaration of z does not appcar in the body of the

defun, but in an inncr constructs, and thercfore docs not affect the binding of the parameter.)

Compatibility note: In Maclisp, declare docs nothing in interpreted code, and is defined to simply cvaluate
all the argument forms in the compilation environment. In Common 1isp, declare docs uscful things for
both interpreted code and compiled code, and therefore arbitrary forms are not permitted within it. “The tricks
played in Maclisp with dec 1are are better done using eval-when (page 54).

locally ({declaration}* {form}* [Macro)

‘This special form may be used to make local pervasive declarations where desired. It does not bind
zmy variables, and so cannot be used meaningfully for declarations of variable bindings. (Note that
the special declaration may be used with 1ocally to pervasively affect references to (rather
than bindings of) variables.)
For example:

(locally (dectare (inline fioor) {notinline car cdr))

(declare (optimize space))
(floor (car x) (cdr y)))

proclaim declaration-form [Function]
The function proclaim takes a declaration-form as its argument and puts it into cffect globally.
(Such a global declaration is called a proclamatio}z.) Any variable names mnctioned are assumed to
refer to the dynamic values of the variable. For example, the proclamation

(proclaim '(type float tolerance))

once exccuted, specifics that the dynamic value of tolerance should always be a floating-point
number. Similarly, any function namecs mentioned are assumed to refer to the global function
definition.

A proclamation constitutes a universal declaration, always in force unless locally shadowed.
For example:
(proclaim ’'(intine floor))
advises that f1oor should normally be open-coded in-line by the compiler (but in the situation
(defun foo (x y) (declare (notinline floor)) ...)
it will be compiled out-of-linc anyway in the body of foo, because of the shadowing local
dcclaration to that cffect).

As a special case (so to speak), proclaim treats a special declaration-form as applying to all
bindings as well as to all references of the mentioned variables. For cxample, after
(proclaim '(special x)) ‘

then in a function definition such as

' (defun example (x) ...)
the parameter x will be bound as a special (dynamic) variable rather than as a lexical (static)
variable. This facility should be used with caution. The usual way to define a globally special
variable is with defvar (page53) ordefparameter (page 53).
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9.2. Declaration Forms

Here is a list of valid declaration forms for use in declare. A construct is said to be “affected” by a
’dcclaration if it occurs within the scope of a declaration.

special

type

lype

(special varl var2 ...) declarcs that all of the variables named arc to be considered
special. This declaration affects variable bindings, but also pervasively affects references.
All variable bindings affected are made to be dynamic bindings, and affected variable
references refer to the current dynamic binding rather than the current local binding.

. For cxample:
(defun hack (thing *mod*) ; The binding of the parameter
(declare (special *mod*)) ; *mod* isvisiblcto hack1,
(hackl (car thing))) ; butnot that of thing.

(defun hackl (arg)
(declare (special *mod*)) ;Decclarc references to *mod*
: ; within hack 1 to be spccial.
(if (atom arg) *mod*
(cons (hackl (car arg)) (hackl (cdr arg)))))
Note that it is conventional, though not required, to give special variables names that begin
and cnd with an asterisk.

This declaration docs not pervasively affect bindings unless it occurs at top level (this latter
exception arising from convenicnce and compatibility with MACL.ISP). Inncr bindings of a
variable implicitly shadow a special declaration, and must be explicitly re-declared to be
special.

For example:

(declare (special x)) ; x is always special.
(defun example (x y)
(declare (special y))

(let ((y 3)) ,

(print (+ y (locally (declare (special y)) y)))

(1let ((y 4)) (deciare (special y)) (foo x))))
In the contorted code above, the outcrmost and innermost bindings of y are special, and
therefore dynamically scoped, but the middle binding is lexically scoped. The two
arguments to + arc different, one being the value (which is 3) of the lexically bound
variable y, and the other being the value of the special variable named y (a binding of
which happens, coincidentally, to lexically surround it at an outer level).

As a rule, use of special declarations at top level should be avoided. The defvar
(page 53) and defparameter macros arc the conventional means for declaring special
variables in a program.

(type iype varl var2 ...) affects only variable bindings, and declares that the
specified variables will take on valucs only of the specified type. In particular, values
assigned to the variables by setq (page 70), as well as the initial valucs of the variables,
must be of the specified type. "

(type varl var2 ...) is an abbreviation for ‘( type type varl var2 ...) provided
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ftype

function

inline

notinline
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that type is onc of the symbols appearing in ‘T'ablc 4-1 (page 34).

(ftype type function-name-1 function-name-2 .. .) declares that the named functions
will be of the functional type type.

For cxample:
(declare (ftype (function (integer 1ist) t) nth)
(ftype (function (number) float) sin cos))
Note that rules of lexical scoping arc observed: if onc of the functions mentioned has a
lexically apparent local definition (as made by flet (page 87) or Tabels (page 87)),
then the declaration applies to that local dcfinition and not to the global function
definition.

(function name arglist result-typel result-iype2 .. .) is catircly cquivalent to
(ftype (function arglist result-typel result-type2 ...) name)
but may be more convenient for some purposcs.

For example:
(declare (function nth (integer 1list) t)
(function sin (number) float)
(function cos (number) float))
The syntax mildly resemblces that of defun (page 53): a function name, then an argument
list, then a specification of results.

Note that rules of lexical scoping arc obscrved: if onc of the functions mentioned has a
lexically apparent local definition (as made by flet (page 87) or 1abels (page §7)),
then the declaration applics to that local definition and not to the global function
definition.

(inline functionl function2 ...) declares that it is desirable for the compiler to
open-code calls to the specified functions: that is, the code for a specified function should
be integrated into the calling routine, appearing “in linc”, rather than a procedure call
appearing there. This may achieve cxtra speed at the expense of debuggability (calls to
functions compiled in-linc cannot be traced, for example). This declaration is pervasive.
Remember that a compiler is free to ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions mentioned has a
lexically apparcnt local definition (as made by flet (page 87) or Tabels (page 87)),
then the declaration applies to that local definition and not to the global function
definition.

(notinline fiunctionl function2 ...) declarcs that it is undesirable to compile the
specified functions in-line. This declaration is pervasive. Remember that a compiler is free
to ignore this declaration.

Note that rules of lexical scoping are obscrved; if one of the functions mentioned has a
lexically apparcnt local definition (as made by flet (page 87) or 1abels (page 87)),
then the dcclaration applies to that local definition and not to the global function
definition. '
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ignore

optimize
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(ignore varl var2 ... varn) affects only variable bindings, and declares that the
bindings of the specificd variables arc never used. It is desirable for a compiler to issuc a
warning if a variable so declared is cver referred to or is also declared special, or if a
variable is lexical, never referred to, and not declared to be ignored.

(optimize (qualityl valuel) (quality? valuel)...) adviscs the compiler that cach
quality should be given attention according to the specified corresponding value. A quality
is a symbol; standard qualitics include speed (of the object code), space (both code size
and run-time space), safety (run-time crror checking), and compilation-speed
(speed of the compilation process). Other qualitics may be recognized by particular
implementations. A value should be a non-negative integer, normally in the range 0 to 3.
The value 0 mecans that the quality is totally unimportant, and 3 that the quality is
cxtremely important; 1 and 2 arc intermediate values, with 1 the “normal™ or “usual”
value. Onc may abbreviate “(qualiry 3)" to simply “qualiry”™. This dcclaration is
pervasive.

For example:

(defun often-used-subroutine (x y)
(declare (optimize (safety 2)))
(error-check x y)
(hairy-setup x)
(locally .
;+ This inner loop really needs to burn.
(declare (optimize speed))
(do ((7 0 (+ i 1))
(z x (cdr z)))

({(null z))
(declare (fixnum 1)))))
(declaration namel name2 ...) adviscs the compiler that cach namejis a valid but

non-standard dcclaration name. The purpose of this is to tell onc compiler not to issue
warnings for declarations meant for another compiler or other program processor. This
declaration may appear only at the top level of a file.

For example:

(declare (declaration author target-Tlanguage
target-machine))
(declare (target-language ada)
(target-machine IBM-650))
(declare (author "Harry Tweeker"))

An implementation is free to'support other (implementation-dependent) declaration forms as well. On the
other hand, a COMMON LISP compiler is free to ignore cntire classes of declaration forms (for cxample,
implementation-dependent declaration forms not supported by that compiler’s implementation!), except for
the declaration declaration form. Compiler implementors are encouraged, however, to program the
compiler to issuc by default a warning if the compiler finds a declaration form of a kind it never uses. Such a
warning is required in any case if a declaration form is not one of those defined above and has not been
declared in a declaration declaration. '
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9.3. Type Declaration for IForms

Frequently it is uscful to declare that the value produced by the cvaluation of some form will be of a
particular type. Using declare one can declare the type of the value held by a bound variable, but there is
no casy way to declare the type of the value of an unnamed form. For this purpose the the special form is
defined: (the #ype jform) mcans that the value of form is declared to be of type fype.

the value-type form [Special form]

The form is evaluated; whatcver it produccs is returned by the the form. In addition, it is an error
if what is produced by the form docs not conform to the data type specificd by value-rype (which is
not cvaluated). (A given implementation may or may not actually check for this error.
Implementations arc encouraged to make an cxplicit error check when running interpretively.) In
effect, this declares that the user undertakes to guarantee that the values of the form will always be

of the specified type.

For example:
(the string (concatenate x y)) ; The result will be a string.
(the integer (+ x 3)) . ; The result of + will be an integer.
(+ (the integer x) 3) ; The value of x will be an integer.

(the (complex rational) (* z 3))
(the (unsigned-byte 8) (logand x mask))
The values type specificr may be used to indicate the types of multiple values:
(the (values integer integer) (floor x y))
(the (values string t)
(gethash the-key the-string-table))
Compatibility note: "This construct is borrowed from the INTERLISP DECL package: INTERLISP, however, allows

an implicit progn after the type specifier rather than just a single form. The Maclisp fixnum-identity
and flonum-identity constructs can be expressed as (the fixnum x)and (the single-float x).
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- Chapter 10
Symbols

A LISP symbol is a data object that has three user-visible components:

o The property list is a list that cffectively provides each symbol with many modifiable named
components,

e The print name must be a string, which is the sequence of characters used to identify the symbol.
Symbols arc of great use because a symbol can be located given its name (typed, say, on a
keyboard). Itis ordinarily not permitted to alter a symbol’s print name.

s The package cell must refer to a package object. A package is a data structure used to locate a
symbol given its name. A symbol is uniquely identificd by its name only when considered relative
to a package. A symbol may appear in many packages, but it can be owned by at most one
package. The package cell points to the owner, if any.

A symbol may actually have other components as well for use by the implementation. One of the more
important uscs of symbols is as names for program variables; it is frequently desirable for the implementor to
usc certain components of a symbol to implement the semantics of variables. Sece symbol-value (page
68) and symbol1-function (page 69). However, there are several possible implementation strategics, and
so such possible components arc not described here.

10.1. The Property List

Since its inception, LiSP has associated with cach symbol a kind of tabular data structure called a property
list (plist for short). A property list contains zero or more entrics: each entry associates with a symbol (called
the indicator) a 1.1sP object (called the value or, sometimes, the property). There are no duplications among
the indicators; a property-list may only have onc property at a time with a given name. In this way, given a
symbol and an indicator (another symbol), an associated value can be retricved.

A property list is very similar in purpose to an association list. The difference is that a property list is an
object with a unique identity; the operations for adding and removing property-list entries are destructive
opcrations that alter the property-list rather than making a new one. Association lists, on the other hand, are
normally augmented non-destructively (without side effects), by adding new entries to the front (sec acons
(page 219) and pairlis (page 219)).
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A property list is implemented as a memory ccll contairing a list with an even number (possibly zero) of
clements. (Usually this memory ccll is the property-list cell of a symbol, but any memory ccll acceptable to
setf (page 72) can be used if getf (page 127) and remf (page 127) arc used.) Each pair of clements in
the list constitutes an cntry; the first item is the indicator and the sccond is the value. Because property-list
functions arc given the symbol and not the list itself, modifications to the property list can be recorded by
storing back into the property-list cell of the symbol.

When a symbol is created, its property list is initially empty. Propertics are created by using get (page
126) within a setf (page 72) form. '

COMMON LisP docs not use a symbol’s property list as cxtensively as carlier LiSp implementations did.
l.ess-uscd data, such as compiler, debugging, and documentation information, is kept on property lists in
CoMMON LIsP.

Compatibility note: In older Lisp implementations, the print name, value, and function dcfinition of a symbol were kept on
its property list. The value cell was introduced into Macl.isp and INTERLISP 1o speed up access to variables: similarly for the
print-name cell and function cell (Macl.asp doces not usc a function cell). Recent Lisp implementations such as SPICE Lisp,
Lisp Machine 1.1sp, and Nii. have introduced all of these cells plus the package cell. None of the MACLISP system property
names (expr, fexpr.macro, array, subr, 1subr, fsubr, and in former times value and pname) cxist in COMMON
Lisp.

Compatibility note: In CommoNn Lisp, the notion of “disembodicd property list™ introduced in Macl.isp is climinated. It
tended to be used for rather kludpy things. and in Lisp Machine Lisp is often associated with the usc of locatives (to make it
“off by one™ for scarching alternating keyword lists). In CoMMoN Lisp special setf-like property list functions are
introduced: getf (page 127)and remf (page 127).

get symbol indicator &optional default [Function]
get scarches the property list of symbol for an indicator eq to indicator. The first argument must be
a symbol. If.onc is found, then the corresponding value is returned; otherwise default is returned.
If default is not specified, then ni1 is used for default. Note that there is no way to distinguish an
absent property from onc whosc value is default.
(get x y) <=> (getf (symbol-plist x) y)
Suppose that the property list of foo is (bar t baz 3 hunoz "Huh?"). Then, for example:
(get 'foo ’'baz) => 3
{(get 'foo 'hunoz) => "Huh?"
(get 'foo 'zoo) => nil
Compatibility note: In Maclisp, the first argument 1o get could be a list, in which case the cdr of the
list was treated as a so-called “disembodicd property list”. It could also be any other object, in which

casc get would always return nil. In CoMMON LISP. it is an error to give anything but a symbol to as
the first argument to get.

setf (page 72) may be used with get to create a new property-value pair, possibly replacing an
old pair with the same property name.
For example: '
(get 'clyde ’'species) => nil
(setf (get 'clyde ’'species) ’'elephant) => elephant
~andnow (get 'clyde ’'species) => elephant
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remprop symbol indicator [Function)

symbol-

This removes from symnbol the property with an indicator eq to indicator, by splicing it out of the

property list. It returns ni1 if no such property was found, or non-ni1 if a property was found.
(remprop x y) <=> (remf (symbol-plist x) y)

For example: ‘

If the property list of foo was
(color blue height 6.3 near-to bar)
then
(remprop 'foo ‘'height) => t
and foo's property list would have been altered to be
(color blue near-to bar)

plist symbol [Function]
This returns the list that contains the property pairs of symbol; the contents of the property list cell
arc extracted and returned.

Note that using ge t on the result of symbo1-p1ist does not work. One must give the symbol
itsclf to get, or usc the function getf (page 127).

setf (page 72) may be used with symbo1-p1ist to destructively replace the entire property list
of a symbol. This is a relatively dangerous operation, as it may destroy important information that
the implementation may happen to storc in property lists. Also, care must be taken that the new
property list is in fact a list of even length.

getf place indicator &optional default [Function]

getf scarches the property list stored in place for an indicator eq to indicator. If one is found, then
the corresponding value is returned; otherwise default is returned. If default is not specified, then
nilis uscd for default. Note that there is no way to distinguish an absent property from one whose
value is default. Often place is computed from a gcncralized variable acceptable to setf (page
72). Sce get (page 126). R

setf (page 72) may be used with getf, in which casc the place must indced be acceptable as a
place to setf. The cffect is to add a new property-value pair, or update an cxisting pair, in the
property list kept in the place.

remf place indicator : [Macro]

This removes from the property list stored in place the properey with an indicator eq to indicator,
by splicing it out of the property list. It rcturns ni1 if no such property was found, or t if a
property was found. The form place may be any generaiized-:. “able acceptable to setf (page
72). See remprop (page 127). S -
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get-properties place indicator-list {lunction)
get-properties islikc getf (page 127), cxcept that the second argument is a list of indicators.
get-properties scarches the property list stored in place for any of the indicators in

N indicator-list, until it finds the first property in the property list whose indicator is onc of the
clements of indicator-list. Normally place is computed from a genceralized variable acceptable to
setf (page72). '

get-properties rcturns three values. If any property was found, then the first two valucs are
the indicator and value for the first property whose indicator was in indicator-list, and the third is
that tail of the property list whose car was the indicator (and whose cadr is therefore the value), If
no property was found, all three values arc nil1. Thus the third value scrves as a flag indicating
success of failure, and also allows the scarch to be restarted after the property found if desired.

10.2. The Print Name

Every symbol has an associated string called the print name. This string is used as the cxternal
representation of the symbol: if the characters in the string are typed in to read (with suitable cscape
conventions for certain characters), it is interpreied as a reference to that symbol (if it is interned); and if the
symbol is printed, print types out the print name. For more information, sec the section on the reader (sce
scction 22.1.1, page 266) and printer (sec scction 22.1.6, page 283).

symbol-name sym , ' [Function)
This returns the print name of the symbol sym.
For ecxample:
(symbol-name 'XYZ) => "XYZ"
It is an extremely bad idea to modify a string being used as the print name of a symbol. Such a
modification may confuse the function read (page 291) and the package system tremendously.

samepnamep syml sym2 [Function)
This predicate is true if the two symbols sym/ and sym2 have equal print names; that is, if their
printed representation is the same. Upper and lower case letters arc considered to be different.

If cither or both of the arguments is a string instcad of a symbol, then that string is uscd in place of
the print name. samepnamep is uscful for, among other things, determining whether two symbols
would be the same cxcept that they are not in the same package.
For example: ' '

(samepnamep 'xyz (make-symbol "XYZ")) istrue
(samepnamep 'xyz (make-symbol "WXY")) is false
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10.3. Creating Symbols

Symbols can be used in two rather different ways. An interned symbol is one that is indexed by its print
name in a catalog called a package. Fvery time anyonce asks for a symbol with that print name, he gets the
same (eq) symbol. Every time input is read with the function read (page 291), and that print name appcars,
it is rcad as the same symbol. This property of symbols makes them appropriate to usc as names for things
and as hooks on which to hang permancnt data objects (using the property list, for example; it is no accident
that symbols arc both the only L.1SP objects that arc cataloged and the only LISP objects that have property
lists).

Interned symbols are normally created automatically; the first time someonce (such as the function read)
asks the package system for a symbol with a given print name, that symbol is automatically created. The
function to use to ask for an interned symbol is intern (page 142), or onc of the functions related to
intern. "

Although interned symbols are the most commonly used, they will not be discussed further here. For more
information, scc chapter PACKAG (page PACKAG).

An uninterned symbol is a symbol uscd simply as a data object, with no special cataloging (it belongs to no
particular package). An uninterncd symbol is printed as “#:” followed by its print name. The following are
some functions for creating uninterned symbols.

make-symbol print-name [Function]
(make-symbol print-name) creatcs a new uninterned symbol, whose print name is the string
print-name. ‘The value and function bindings will be unbound and the property list will be empty.

The string actually installed in the symbol’s print-namec component may be the given string
print-name or may be a copy of it, at thc implementation’s discretion. The user should not assume
that (symbol-name (make-symbol x)) is eq to x, but also should not alter a string once it

has been given as an argument to make-symbol.

Implementation note: An implementation might choose, for cxample, to copy the string to some read-only
arca, in the expectation that it will never be altered.

Compatibility note: Lisp Machine LiSP uses the second argument for an odd flag related to arcas. It is unclear
what NiL does about this.

copy-symbol sym &optional copy-props [Function]
This returns a new uninterned symbol with the same print name as sym. If copy-props is non-ni1,
then the initial value and function-definition of the new symbol will be the same as those of sym,
and the property list of the new symbol will be a copy of sym’s. If copy-propsis ni1 (the default),
then the new symbol will be unbound and undefined, and its property list will be empty.
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gensym &optional x [Function]

gensym invents a print name, and creates a new symbol with that print name. It returns the new,
uninterned symbol.

The invented print name consists of a prefix (which defaults to "G"), followed by the decimal
representation of a number. The number is increased by one every time gensym is called.

If the argument x is present and is an integer, then x must be non-negative, and the internal counter
is sct to x for future usc; otherwisc the internal counter is incremented. If x is a string, then that
string is made the default prefix for this and future calls to gensym. After handling the argument,
gensym creates a symbol as it would with no argument.
For example:

(gensym) => G7

(gensym "FOO-") => F00-8

(gensym 32) => F00-32

(gensym) => F00-33

(gensym "GARBAGE-") => GARBAGE-34

gensym is usually used to create a symbol that should not normally be secn by the user, and whose
print name is unimportant, cxcept to allow casy distinction by eye between two such symbols. The
optional argument is rarely supplied. The name comes from “gencrate symbol™, and the symbols
produccd by it are often called “gensyms”.

If it is crucial that no two generated symbols have the same print name (rather than merely being
distinct data structures), or if it is desirable for the generated symbols to be interned, then the
function gentemp (page 130) may be morc appropriate to use.

gentemp &optional prefix package [Function]

gentemp, likc gensym (page 130), crcates and recturns a new symbol. gentemp differs from
gensym in that it interns the symbol (scc intern (page 142)) in the package (which defaults to
the current package; sce *package* (page 140)). gentemp guarantees the symbol will be a new
one not alrcady cxisting in the package; it does this by using a counter as gensym docs, but if the
gencerated symbol is not really new then the process is repeated until a new one is created. There is
no provision for resctting the gentemp counter. Also, the prefix for gentemp is not remembered
from one call to the next; if prefix is omitted, the default prefix “T™ is used.

symbol-package sym : [Function]

Given a symbol sym, symbo1-package rcturns the contents of the package cell of that symbol.
This will be a package object or ni 1.

keywordp symbol ) [Function]

The argument must be a symbol. The predicate keywordp is true if the symbol is a keyword (that
is, belongs to the keyword package). Keywords are those symbols that are written with a lcading
colon. Every keyword is a constant, in the sense that it always cvaluates to itsclf. Sec constantp
(page 255). ’



Chapter 11
Packages

11.1. Overview

Onc problem with carlier ISP systems is the usc of a single name space for all symbols. In large Lisp
systems, with modules written by many different programmers, accidental name collisions become a scrious
problem. COMMON Lisp addresscs this problem through the package system, derived from an carlier package
system developed for Lisp Machine Lisp [19]. In addition to preventing name-space conflicts, the package
system makes the modular structure of large 1.ISP systems more explicit.

A packageis a data structurc that cstablishes a mapping from print names (strings) to symbols. The package
thus replaces the “oblist” or “obarray™ machinery of carlier LISP systems. At any given time one package is
current, and this package is used by the LISp reader in translating strings into symbols. The current package
is, by definition, the one that is the value of the global variable *package*. It is possible to refer to symbols
in packages other than the current one through the usc of package qualifiers in the printed representation of
the symbol. For example “foo:bar”, when scen by the reader, refers to the symbol whose name is bar in
the package whose name is foo.

The string-to-symbol mappings availablc in a given package are divided into two classes, external and
internal. We refer to the symbols accessible via these mappings as being external and internal symbols of the
_package in qucstion, though really it is the mappings that are different and not the symbols themselves.
Within a given package, a name refers to one symbol or to nong; if it does refer to a symbol, then it is cither
external or internal in that package, but not both.

External symbols arc part of the package’s public interface to other packages. These arc supposed to be
chosen with some care and are advertised to uscrs of the package. Internal symbols are for internal use only,
and these symbols are normally hidden from other packages. Most éymbols arc created as internal symbols;
they become external only if they appear explicitly in an export command for the package.

A symbol may appear in many packages. It will always have the same name wherever it appears, but it may
be external in some packages and internal in others. On the other hand, the same name (string) may refer to

different symbols in different packages.

Normally, a symbol that appears in one or more packages will be owned by one particular package, called
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the home package of the symbol; that package is said to own the symbol. Every symbol has a component

called the package cell that contains a pointer to its home package. A symbol that is owned by some package

is said to be interned. Some symbols arc not owned by any package; such a symbol is said to be uninterned,
~and its package cell contains ni1. ‘

Packages may be built up in layers. From the point of view of a package's uscr, the package is a single
collection of mappings from strings into internal and cxternal symbols. However, some of these mappings
may be established within the package itself. while other mappings are inherited from other packages via the
use-package construct. (The mechanisms responsible for this inheritance are described below.) In what
follows, we will refer to a symbol as being accessible in a package if it can be referred to without a package
qualifier when that package is current, regardless of whether the mapping occurs within that package or via
inheritance. We will refer to a symbol as being present in a package if the mapping is in the package itself and
is not inherited from somewhere clse.

A symbol is said to be interned in a package if it is availablc in that package and also is interned (that is,
owned, cither by the samc package or by some other package). Normally all the symbols available in a
package arc in fact interned, but the terminology is useful when discussing the pathological case of an
available but uninterned symbol. As a verb, to intern a symbol in a package means to causc the symbol to be
interned in the package if it was not alrcady; this prbccss is performed by the function intern (page 142).
To unintern a symbol from the package means to causc it to be not present, and additionally to make the
symbol uninterned if the package was the symbol's home package; this process is performed by the function
unintern (page 142).

11.2. Consistency Rules

Package-related bugs can be very subtle and confusing: things arc not what they appear to be. The
CoMMON LIsp package system is designed with a number of safcty features to prevent most of the common
bugs that would otherwise occur in normal use. This may scem over-protective, but experience with earlier
package systems has shown that such safety features are needed.

In dealing with the package system, it is uscful to keep in mind the following consistency rules, which
remain in force as long as the value of *package* is not changed by the user or his code:

e Read- Read consistency: Reading the same print name always gets you the same (eq) symbol.

e Print-Read consistency: An interned symbol always prints as a sequence of characters that, when
read back in, yiclds the same (eq) symbol.

¢ Print-Print consistency: If two interned symbols arc not eq, then their printed representations will
different sequences of characters.

These consistency rules remain true in spite of any amount of implicit interning caused by typing in LISP
~ forms, loading files, etc. This has the important implication that, as long as the current package is not
changed, results are reproducible regardless of the order of loading files or the exact history of what symbols
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were typed in when., The rules can only be violated by explicit action: changing the value of *package®,
forcing some action by continuing from an crror, or calling onc of the “dangcrous™ functions unintern
(page 142), shadow (page 143), or shadowing-import (pagc 143).

11.3. Package Names

Each package has a name (a string) and perhaps some nicknames. Thesc are assigned when the package is
created, though they can be changed later. A package’s name should be something long and sclf-explanatory
like editor; there might be a nickname that is shorter and casier to type, such as ed.

‘There is a single name space for packages. The function find-package (page 141) translates a package-
namec or nickname into the associated package. The function package-name (page 141) returns the name
of a package. ‘The function package-nicknames (pagc 141) returns a list of all nicknames for a package.
The function rename-package (page 141) removes a package's current name and nicknames and replaces
them with new oncs specificd by the user. Package renaming is occasionally useful when, for development
purposcs, it is desirable to load two versions of a package into the same LiISP. One can load the first version,
renamec it, and then load the other version, without getting a lot of name conflicts.

When the LISP reader sces a qualified symbol, it handles the package-name part in the same way as the.
symbol part with respect to capitalization. Alphabetic characters in the package name are converted to upper
casc unless preceded by the escape character *\™ or unless the package name is surrounded by **| ™ characters.
The lookup done by the find-package function is casc-sensitive, like that done for symbols. Note that
“|Foo]:|Bar]"” refers to a symbol whose name is “Bar™ in a package whosc namec is “Foo”. By contrast,
|Foo:Bar | refers to a seven-character symbol that has a colon in its name (as well as two upper-case letters
and four lower-casc letters) and is interned in the current package. Following the convention used in this
manual for symbols, we will show ordinary package names as being in lower-case, even though the name
string is internally represented in upper case. \ '

Most of the functions that require a package-name argument from the user accept cither a symbol or a
string. If the usecr supplics a symbol, its print-name will be used, and this will already have undergone
case-conversion by the usual rules; if the user supplies a string, he must be careful to capitalize the string so as
to match exactly the string that names the package.

11.4. Translating Strings to Symbols

_ The value of the special variable *package* must always be a package object (not a name). This is
referred to as the current package.

When the LISP reader has, by parsing, obtaincd a string of chamc';c;s:m..-‘:;:tgto name a symbol, that name
is looked up in the current package. This lookup may involve looking i ‘other packages whose external
symbols are inherited by the current package (sce below). If the name is fouud, the corresponding symbol is
returned. If the name is not found (that is, there is no symbol of that namc available in the current package),
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a ncw symbol is crecated for it and is placed in the current package as an internal symbol; morcover, the
current package becomes the owner (home package) of the symbol, and so the symbol becomes interned in
the current package. If the name is later read again while this same package is current, the same symbol will
Yhen be found and returned.

Often it is desirable to refer to an external symbol in some package other than the current one. This is done
through the use of a qualified name, consisting of a package name, then a colon, then the name of the symbol.
This causcs the symbol’s name to be looked up in the specified package, rather than in the current one. For
cxample, “editor:buffer” refers to the external symbol named “buffer™ available in the package
named “editor™, regardless of whether there is a symbol named “buffer™ in the current package. If there
is no package named “editor™, or if no symbol named “buffer™ is available in “editor™, or if
“buffer” is an internal symbol in “editor™, the LIS rcader will signal a correctable crror to ask the user
what he recally wants to do.

On rarc occasions, a user may nced to refer to an intérnal symbol of some package other than the
current onc. It is illegal to do this with the colon qualificr, since accessing an internal symbol of some other
package is usually a mistake. However, this operation is legal if you usc “#:" as the separator in place of the
usual colon. If “editor#:buffer™ is scen, the cffect is exactly the same as rcading “buffer”™ with
*package* temporarily rcbound to the package whosc name is “editor™. 'This spccial-purpose qualifier
should be used with caution.

The package named keyword contains all keyword symbols used by the Lisp systdm itsclf and by user-
written code. Such symbols must be casily accessible from any package, and name conflicts are not an issue
because these symbols are used only as labels and never to carry package-specific values or propertics.
Because keyword symbols arc used so frequently, COMMON LISP provides a special reader syntax for them.
Any symbol preceded by a colon but no package name (for cxample “: foo0") is added to (or looked up in)
thc keyword package as an external symbol. The keyword package is also trecated specially in that
whenever a symbol is added to the keyword package, the symbol always made external, and it is also
automatically declared to be a constant (sec defconstant (page 53)) and made to have itself as its value.
This is why every keyword cvaluates to itsclf. As a matter of style, keywords should always be accessed using
the leading-colon convention; you should never import or inherit keywords into any other package. It is an
error to try to apply use-package to the keyword package.

Each symbol contains a package cell that is u;cd to record the home package of the symbol, or ni1 if the
symbol is uninterned. This cell may be accessed by using the function symbol-package (page 130).
When an interned symbol is printed, if it is a symbol in the keyword package then it is printed with a
preceding colun; otherwise, if it is available (directly or by inheritance) in the current pactage, it is printed
without any qualification; otherwise, it is printed with the name of the home package as the qualificr, using

‘l‘”

:™ as the scparator if the symbol is external and “#: ™ if not.

A symbol whose package slot contains n1i1 (that is, has no home package) is printed preceded by “#:”. It
is possible, by the use of import (page 143) and unintern (page 142), to creatc a symbol that has no
recorded home package, but that in fact is available in somc package. The system docs not check for this
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pathological case, and such symbols will always be printed preceded by “#: ™.

In summary, the following four uses of symbol qualifier syntax are defined:

foo:bar When read, looks up “BAR™ among the external symbols of the package named “FOO".
Printed when symbol bar is external in its home package foo and is not available in the

_current package.
foo#:bar When read, interns “BAR™ as if “FOO™ were the current package. Printed when symbol

bar is intcrnal in its home package foo and is not available in the current package.

:bar When read, interns “BAR™ as an external symbol in the keyword package, and make it
cvaluate to itself. Printed when the home package of symbol bar is keyword.

#:bar When read, creates a new uninterned symbol named “BAR™. Printed when the symbol
bar is uninterned (has no home package). even in the pathological case that bar is
uninterned but nevertheless somchow available in the current package.

All other uses of colons within names of symbols are not defined by CoMMON LIsP, but are reserved for
implementation-dependent use; this includes names that end in a colon, contain two or more colons, or
consist of just a colon. '

11.5. Exporting and Importing Symbols

Symbols from onc package may be made available in another package in two ways.

First, any individual symbol may be added to a package by use of the function import (page 143). The
form (import ‘editor:buffer) takes thc external symbol named buffer in thec editor package
(this symbol was located when the form was read by the Lisp reader) and adds it to the current package as an
internal symbol. The symbol is then present in the current package. The imported symbol is not
automatically exported from the current package, but if it is alrcady present and external, that is not changed.
After the call to import it is possible to refer to buffer in the importing package without any qualifier.
The status of buffer in the package named editor is unchanged, and editor remains the home package
for this symbol. Once imported, a symbol is present in the ‘importing package and can be removed only by
calling unintern. ' '

If the symbol is already present in the importing package, import has no effect. If a distinct symbol with
the name buffer is available in the importing package (directly or by inheritance) then a correctable error is
signalled, as described in section 11.6.

If the user really wants to do a shadowing import without getting an error, he should usc the function
shadowing-import (page 143). This inserts the symbol into the specified package as an internal symbol,
regardless of whether another symbol of the same name will be shadowed by this action. (A symbol is said to
be shadowed by another one in some package if the first symbol would have be available by inheritance if not
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for the presence of the seccond symbol.) If a different symbol of the samc name is alrcady present in the
package. that symbol will first be uninterned from the package (see unintern (page 142)). The new symbol
is added to the package’s shadowing-symbols list. shadowing-import should be used with caution. It
changes the state of the package system in such a way that the consistency rules do not hold across the change.

The sccond mechanism is provided by the function use-package (page 144). This causcs a package to
inherit all of the cxternal symbols of some other package. These symbols become available as internal
symbols of the using package. ‘That is, they can be referred to without a qualifier while this package is
current, but they are not passed along to any other package that uses this package. Note that use-package,
unlikc import, does not causc any ncw symbols to be present in the current package, but only makes them
available by inhcritance. use-package checks carcfully for name conflicts between the newly imported
symbols and those alrcady available in the importing package. This is described in detail in section 11.6.

Typically a uscr, working by default in the user package, will load a number of packages into his LISP to
provide an augmented working environment; then he will call use-package on cach of these packages so
that he can casily access their cxternal symbols.

unuse-package undocs the cffects of a previous use-package. The external symbols of the used
package arc no longer inherited. However, any symbols that have been imported into the using package
continuc to be present in that package.

There is no way to inherit the internal symbols of another package; to refer to an internal symbol, you must
cither make that symbol's home package current, usc a qualificr, or import that symbol into the current
package. '

When intern or some other function wants to look up a symbol in a given package, it first looks for the
symbol among the external and internal symbols of the package itscif; then it looks through the external -
symbols of the used packages in some unspecificd order. The order does not matter; according to the rules
for handling name conflicts (scc below), if conflicting symbols appear in two or more packages inherited by
package X, a symbol of this namec must also appcar in X itself as a shadowing symbol. Of course,
implementations are free to choose other, more cfficient ways of implementing this search, as long as the
uscr-visible behavior is equivalent to what is described here.

The function export (page 143) takes a symbol that is available in some specified package (directly or by
inheritance) and makes it an external symbol of that package. If the symbol is alrcady available as an external
symbol in the package, export has no cffect. If the symbol is directly present in the package as an‘intcrnal
symbol, it is simply changed to external status. If it is available as an internal symbol via use-package, the
symbol is first imported into the package, then exported. (The symbol is then gitseut in the specified package
whether or not the package continucs to use package through which the svmbol was ariginally inherited.) If
the symbol is not available at all in the speccified package, a correctable error is signalled that, upon
continuing, asks the user whether the symbol should be imported. :

The function unexport (page 143) is provided mainly as a way to undo crroncous calls to export. It
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works only on symbols that arc dircctly present in the current package, switching them back to internal status.
If unexport is given a symbol that is alrcady available as an internal symbol in the current package, it does
nothing; if it is given a symbol that is not available in the package at all, it signals an crror.

11.6. Name Conflicts

A fundamental invariant of the package system is that within one package any particular name can refer to
at most onc symbol. A name conflict is said to occur when there is more than one candidate symbol and it is
not obvious which one to choose. If the system does not always choose the same way, the rcad-read
consistency rule would be violated. For example, some programs or data might have been read in under a
certain mapping of the name to a symbol. If the mapping changes to a different symbol. and subscquently
additional programs or data arc read, then the two programs will not access the same symbol even though
they use the same name. Even if the system did always choose the same way, a name conflict is likely to result
in a mapping from names to symbols different from what was expected by the user, causing programs to
exccute incorrectly. Therefore. any time a name conflict is about to occur, an crror is signalled. The user may
continuc from the error and tell the package system how to resolve the conflict.

Note that if the same symbol is accessible to a package through more than onc path, for instance as an
cxternal of more than onc package, or both through inheritance and through direct presence in the package,
there is no name conflict. Name conflicts occur only between distinct symbols with the same name.

The creator of 2 package can tell the system in advance how to resolve a name conflict through the use of
shadowing. Every package has a list of shadowing symbols. A shadowing symbol takes precedence over any
other symbol of the same name that would otherwise be accessible to the package. A name conflict involving
a shadowing symbol is always resolved in favor of the shadowing symbol, without signalling an crror (except
for onc cxception involving import described below). The functions shadow (page 143) and
shadowing-import (page 143) may be used to declare shadowing symbols. )

Name conflicts are detected when they become possible, that is, when the package structure is altered.
There is no need to check for name conflicts during every name lookup.

The functions use-package, import, and export check for name conflicts. use-package (page
144) makes the external symbols of the package being used accessible to the using package; cach of these
symbols is checked for name conflicts with the symbols alrcady accessible. import (page 143) adds a single
symbol to the internals of a package, checking for a name conflict with an existing symbol cither present in
the package or accessible to it. import signals a name conflict error even if the conflict is with a shadowing
symbol, the rationale ‘being that the uscr has given two explicit and inconsistent dircctives. export (page
143) makes a single symbol accessible to all the packages that use the package from which the symbol is
exported. All of these packages are checked for name conflicts: (export s p) docs (find-symbol
(symbol-name s) gq) for cach package gin (package-used-by-1ist p). Note that in the usual case
of an export during the initial definition of a package, the result of package-used-by-1ist willbe ni1l
and the name conflict checking will take negligible time.

-
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The function intern (pagc 142), which is the onc used most frequently by the LISP reader for looking up
names of symbols, docs not need to do any name-conflict checking, because it never creates a new symbol if
there is alrcady an accessible symbol with the name given.

* shadow and shadowing-import never signal a name-conflict crror, because by calling these functions
the uscr has specified how any possible conflict is to be resolved. shadow doces name-conflict checking to the
extent that it checks whether a distinct existing symbol with the specified name is accessible, and if so whether
it is directly present in the package or inherited; in the latter case a new symbol is created to shadow it.
shadowing-import does name-conflict checking to the extent that it checks whether a distinct existing
symbol with the same name is accessible; if so it is shadowed by the new symbol, which implies that it must be
uninterned if it was directly present in the package.

unuse-package, unexport, and unintern (when the symbol being uninterned is not a shadowing
symbol) do not need to do any name-conflict checking, because they only remove symbols from a package;
they do not make any new symbols accessible.

Giving a shadowing symbol to unintern can uncover a name conflict that had previously been resolved
by the shadowing. If package A uscs packages B and C, A contains a shadowing symbol x, and B and C cach
contain external symbols named x, then removing the shadowing symbol x from A will reveal a name conflict
between b: x and c: x if those two symbols are distinct. In this case unintern will signal an error.

Aborting from a name-conflict error leaves the original symbol accessible. Package functions always signal
name-conflict errors before making any change to the package structure. When multiple changes are to be
made, however, for example when export is given a list of symbols, it is permissible for the implementation
to process cach change separately, so that aborting from a name conflict caused by the second symbol in the
list will not uncxport the first symbol in the list. However, aborting from a name conflict error caused by
export of a single symbol will not leave that symbol accessible to sorne packages and inaccessible to others;
with respect to cach symbol processed, export behaves as if it were as an atomic operation.

Continuing from a name-conflict error should offer the user a chance to resolve the name conflict in favor
of cither of the candidates. The package structurc should be altered to reflect the resolution of the name
conflict, via shadowing-import,unintern, orunexport. -

A name conflict in use-package between a symbol directly present in the using package and an external
symbol of the used package may be resolved in favor of the first symbol by making it a shadowing symbol, or
in favor of the second symbol by uninterning the first symbol from the using package. The latter resolution is
dangerous if the symbol to be uninterned is an external symbol of the using package since it will cease to be
an cxternal symbol.

A name conflict in use-package between two external symbols inherited by the using package from
other packages may be resolved in favor of cither symbol by importing it into the using package and making it
a shadowing symbol. .
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A name conflict in export between the symbol being exported and a symbol alrcady present in a package
that would inherit the newly-exported symbol may be resolved in favor of the exported symbol by
uninterning the other one, or in favor of the alrcady-present symbol by making it a shadowing symbol.

A name conflict in export or unintern duc to a package inhcriting two distinct symbols with the same
namc from two other packages may be resolved in favor of cither symbol by importing it into the using
package and making it a shadowing symbol, just as with use-package.

A name conflict in import between the symbol being imported and a symbol inherited from some other
package may be resolved in favor of the symbol being imported by making it a shadowing symbol, or in favor
of the symbol alrcady accessible by not doing the import. A name conflict in import with a symbol
alrcady present in the package may be resolved by uninterning that symbol, or by not doing the import.

Good uscr-interface style dictates that use-package and export, which can causc many name conflicts
simultancously, first check for all of the name conflicts before presenting any of them to the user. The user
may then choose to resolve all of them wholesale, or to resolve cach of them individually, the latter requiring
a lot of interaction but permitting different conflicts to be resolved different ways. '

Implementations may offer other ways of resolving name conflicts. For instance, if the symbols that conflict
arc not being uscd as objects, but only as names for functions, it may be possible to “merge” the two symbols
by putting the function definition onto both symbols. References to either symbol for purposes of calling a
function would be cquivalent. A similar merging operation can be done for variable values and for things
stored on the property list. In Lisp Machine LISP, for example, onc can also forward the value, function, and
property cells so that futurc changes to cither symbol will propagate to the other one. Some other
implementations arc able to do this with valuc cells, but not with property lists. Only the user can know
whether this way of resolving a name conflict is adequate. because it will work only if the use of two non-eq
symbols with the samc name will not prevent the correct operation of his program. The value of offering
symbol-merging as a way of resolving name conflicts is that it can avoid the necd to throw away the whole
Lisp world, correct the package-definition forms that caused the crror, and start over from scratch.

11.7. Built-in Packages

At least the following packages are built into every COMMON LISP system:

Tisp The package named 1isp contains the primitives of the COMMON LISP system. Its
external symbols include all of the user-visible functions and global variables that are
present in the COMMON LISP system, such as car, cdr, *package*, ctc. Almost all other
packages will want to use 1isp so that these symbols will be available without
qualification.

user The user package is, by default, the current Iiaci{age at the time a COMMON LISP system
starts up. This package uses the 11sp package.

keyword This package contains all of the keywords uscd by built-in 1 user-defined LISP functions.

-
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Printed symbol representations that start with a colon are interpreted as referring to
symbols in this package. which arc always cxternal symbols. All symbols in this package
arc treated as constants that cvaluate to themsclves, so that the user can type : foo instead

\ of *: foo. :

system This package name is reserved to the implementation. Normally this is used to contain
names of implementation-dependent system-interface functions. ‘This package uses Tisp
: and has the nickname sys.

11.8. Package System Functions and Variables

Some of the functions and variables below have been described carlier, but arc included here for
completeness.

It is up to cach implementation’s compiler to ensure that when a compiled file is loaded, all of the symbols

in the file end up in the same packages that they would occupy if the LLISP source file were loaded. In most
‘ compilers, this will be accomplished by treating certain package operations as though they arc surrounded by
(eval-when (compile 1load) ...). (Scc eval-when (page 54)) These opcrations arc
make-package, in-package, shadow, shadowing-import, export, unexport. use-package,
unuse-package, and import. To guarantcc proper compilation in all CoMMON LISP implementations,
these functions should appear only at top-level within a file. As a matter of style, it is suggested that each file

contain only onc package, and that all of the package sctup forms appear ncar the start of the file.

Implementation note: In the past. some Lisp compilers have rcad the entire file into LiSP before processing any of the forms.
Other compilers have arranged for the loader to do all of its intern operations before cvaluating any of the top-level forms.
Neither of these techniques will work in a straightforward way in COMMON Lisp because of the presence of multiple
packages. .

For the functions described here, all optional arguments named package default to the current value of
*package*. Where a function takes an argument that is cither a symbol or a list of symbols, an argument of
nil is treated as an empty list of symbols. Any argument described as a package name may be cither a string
or a symbol. If a symbol is supplicd, its print-name will be used as the package name; if a string is supplied,
the user must be take care to specify the same capitalization used in the package name, normally all-capitals,

*package* [Variable]
The value of this variable must be a package; this package is said to be the current package. The

initial value of *package* is thc user package.

The function Toad (page 327) rcbinds *package* to its current value. If some form in the file
changes the value of *package* during loading, the old value will be restored when the loading is
completed.
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make-package package-name &key nicknames use ‘ [Function)
Creates and returns a new package with the specified package name. As described above, this
argument may be cither a string or a symbol. The :ni cknames argument must be a list of strings
to be used as alternative names for the package. Once again, the user may supply symbols in place
of the strings, in which casc the print-names of the symbols arc used. These names and nicknames
must not conflict with any cxisting package names; if they do, a correctable error is signalled.

The :use argument is a list of packages or the names (strings or symbols) of packages whose
external symbols are to be inherited by the new package. These packages must already cxist. If not
supplicd, : use decfaults to alist of onc package, the 11sp package.

in-package package-name &key nicknames use [Function)
The in-package function is intended to be placed at the start of a file containing a subsystem that
is to be loaded into some package other than user. If there is not alrcady a package named
package-name. this function ‘is similar to make-package, except that after the new package is
created, *package* is sct to it. This binding will remain in force until changed by the uscr
(perhaps with another in-package call), or until the *package* variable reverts to its old value
at the completion of a Toad operation.

If there is an cxisting package whose name is package-name, the assumption is that the user is
rc-loading a file after making some changes. ‘The existing package is augmented to reflect any new
nicknames or new packages in the :use list (with the usual error-checking) and *package* is
then sct to this package.

find-package name [Function]
The name must be a string that is the name or nickname for a package. This argument may also be
a symbol, in which case the symbol’s print name is used. Thec package with that name or nickname
is returned; if no such package cxists, find-package returns nil. The matching of names
obscrvescase (asin string= (page 238)).

package-name package [Function)
The argument must be a package. This function returns the string that names that package.

package-nicknames package [Function)
The argument must be a package. This function returns the list of nickname strings for that
package, not including the primary name.

rename-package package new-name &optional new-nicknames [Function]
The old name and all of the old nicknamcs of package arc eliminated and are replaced by new-name
and new-nicknames. The new-name argument is a string or symbol; the new-nicknames argument,
which defaults to ni1, is a list of strings or symbols.

.
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package-use-1ist package ' [Function}
A list of other packages used by the argument package is returned.

3
package-used-by-1ist package [Function]

A list of other packages that use the argument package is returned.

package-shadowing-symbols package [Function]
A list is returned of symbols that have been declared as shadowing symbols in this package by
shadow or shadowing-import. All symbols on this list are present in the specified package.

list-all-packages : [Function]
‘This function returns a list of all packages that currently cxist in the LISP system.

intern siring &optional package [Function)
The package, which dcfaults to the current package, is scarched for a symbol with the name
specificd by the string argument. This scarch will include inherited symbols, as described in
scction 11.5. If a symbol with the specified name is found, it is returned. If no such symbol is
found. onc is created and is installed in the current package as an internal symbol (as an external
symbol if the package is the keyword package); the current package becomes the home package of
the created symbol..

Two values are returned. The first is the symbol that was found or created. The second value is
n1il if no pre-existing symbol was found. and takes on onc of three values if a symbol was found:
:internal if the symbol was dircctly present in the package as an internal symbol, :external
if the symbol was dircctly present as an cxternal symbol, or :inherited if the symbol was
inherited via use-package (which implics that the symbol is internal).

Compatibility note: Conceptually, intern translates a string to a symbol. In MAcCLIisP and several other

- dialects of Lisp, intern can take either a string or a symbci-zs :ivurgument; in the latter case, the symbol’s
print name is extracted and used as the string. 1lowever, this leads to some confusing issues about what to do if
intern finds a symbol that is not eq to the argument symbol. To avoid such confusion, COMMON LisP require
the argument to be a string.

find-symbol string &optional package [Function]
This is identical to intern, but it never creates a new symbol. If a symbol with the specified name
is found in the current package, directly or by inheritance, the symbol found is returned as the first
value and the second value is as specified for intern. If the symbol is not available in the
specificd package, both valucs are nil. :

unintern symbol &optional package Co X [Function]
If the specified symbol is present in the specified p~* .._»* =t . icess - . from this package, and also
from the package’s shadowing-symbols list if it is present there. Moreover, if package is the home
package for the symbol, the symbol is made to have no h~me package. Note that in some
circumstances the symbol may continue to be available in the specified package by inheritance.
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unintern returns t if it actually removed a symbol, and ni1 otherwise.

unintern should be used with caution. It changes the state of the package system in such a way
that the consistency rules do not hold across the change. )
Compatibility note: The cquivalent of this in MAcLisp is remob.

export symbols &optional package [Function)
The symbols argument should be a list of symbols, or possibly a single symbol. These symbols
become available as external symbols in package. Sce scction 11.5 for details. export returns t.

By convention, a call to export listing all exported symbols is placed ncar the start of a file to
advertisc which of the symbols mentioned the file are intended to be used by other programs.

unexport symbols &optional package [Function)
The argument should be a list of symbols, or possibly a single symbol. These symbols become
internal symbols in package. 1t is an error to .uncxport a symbol from the keyword package. Sce
scction 11.5 for details. unexport returns t.

import symbols &optional package [Function]
The argument should be a list of symbols, or possibly a single symbol. Thesc symbols become
intcrnal symbols in package, and can therefore be referred to without having to usc qualified-name
(colon) syntax. import signals a correctable crror if any of the imported symbols has the same
name as souic distinct symbol already available in the package. Sece section 11.5 for details.
import returns t.

shadowing-import symbols &optional package [Function]
This is like import, but it does not signal an crror cven if the importation of a symbol would shadow
some symbol alrcady available in the package. In addition to being imported, the symbol is placed
-on the shadowing-symbols list of package. Sce scction 11.6 for details. shadowing-import
returns t.

shadowing-import should be used with caution. It changes the state of the package system in
such a way that the consistency rules do not hold across the change.

shadow symbols &optional package [Function]
The. argument should be a list of symbols, or possibly a singlc symbol. The print-name of each
symbol is extracted, and the currcnt package is searched for a symbol of that name. If such a
symbol is present in this package (directly, not by inheritance) then nothing is done. Otherwise, a
new symbol is created with this print name, and it is inserted in the current package as an internal
symbol. The symbol is also placed on the shadowing-symbols list of package. See scction 11.6 for
details. shadow returns t.

shadow should be used with caution, It changes the state of the package system in such a way that
the consistency rules do not hold across the change.
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use-package packages-to-use &optional package [F-unction)

The packages-to-use argument should be a list of packages or package namcs, or possibly a single

package or package name. Thesc packages are added to the use-list of package if they are not there

* alrcady. All external symbols in the packages to use become available in package as internal

. symbols. Sce scction 11.5 for details. It is an crror to try to usc thc keyword package.
use-package returns t.

unuse-package packages-to-unuse &optional package [Function)
The packages-to-unuse argument should be a list of packagces or package namecs, or possibly a single
package or package name. These packages arc recmoved from the usc-list of package.
unuse-package returns t.

find-all-symbols string-or-symbol [Function]
find-all-symbols scarches cvery package in the LISP system for symbols whose print-name is
the specified string, and returns a list of such symbols. This scarch is casc-sensitive, If the
argument is a symbol, its print-name supplics the string to be scarched for.

do-symbols (var [package] [result-form]) {declaration}* {tag | statement}* : [Macro]

do-symbols provides straightforward itcration over the symbols of a package. The body is
performed once for cach symbol available in the package, in no particular order, with the variable
var bound to the symbol. Then resultform (a single form, not an implicit progn) is cvaluated, and
the result is the value of the do-symbols form. (When the resultform is evaluated, the control
variable .var is still bound, and has the value ni1.) If resultform is omitted, the result is ni1.
return (page 92) may be uscd to terminate the iteration prematurely. If exccution of the body
affects which symbols are contained in the package, other than possibly to remove the symbol
currently the value of var by using unintern, the cffects arc unpredictable.

do-external-symbols (var [package] [resull]) {declaration}* {wag | stmi}* [Macro]

do-external-symbo1ls is just like do- symbo1ls, except that only the external symbols of the
specified package are scanned.

4

"do-all-symbols (var [result-form]) {declaration}* {tag | statemens}* [Macro}

This is similar to do-symbo1ls, but exccutes the body once for every symbol contained in every
package. (This will not process every symbol whatsocver, because a symbol not available in any
package will not be processed. Normally uninterned symbols are not available in any package.) It
is not in general the case that each symbol is processed only once, because a symbol may appear in
many packages.
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11.9. Modules

A module is a COMMON L.ISP subsystem that is loaded from one or more files. A module is normally loaded
as a single unit, regardless of how many files are involved. A module may consist of onc package or scveral
packages. The file-loading process is necessarily implementation-dependent, but COMMON LISP provides
some very simple portable machinery for naming modulcs. for keeping track of which modules have been
loaded, and for loading modulcs as a unit.

**modules** [Variable]

The variable *moduies* is a list of namcs of the modules that have been loaded into the LISp
system so far. This list is uscd by the functions provide and require.

provide module-name [lIF'unction)

require module-name &optional pathname [Function]
Each module has a unique name (astring). The provide and require functions accept cither a
string or a symbol as the module-name argument. If a symbol is provided, its print name is used as
the module name. If the module consists of a single package, it is customary for the package and
module names to be the same.

The provide function adds a ncw module namec to the list 0f modules maintained in the variable
*modules*, thereby indicating that the module in question has been loaded.

The require function tests whether a module is alrcady present (using a casc-sensitive
comparison); if the modulc is not present, require proceeds to load the appropriate file or set of
files. The pathname argument, if present, is a single pathname or a list of pathnames whose files are
to be loaded in order, left to right. If the pathname argument is ni1 or is not provided, the system
will attempt to determine, in some system-dependent manner, which files to load. This will
typically involve some central registry of module names and the associated file-lists.

11.10. An Example

Most users will want to load and use packages but will never need to build one. Often, a user will load a
number of packages into the user package whenever he uses COMMON Lisp. Most implementations will
provide some sort of “initialization file” mechanism to make such sctup automatic when the LISP starts up.
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;333 Lisp init file for I. Newton.
i3+ Set up the USER package the way I 1like it.

(require ’'calculus) ;I use CALCULUS a lot. Load it.
(use-package ’'calculus) ;Get easy access to its
; exported symbols..

(require 'newtonian-mechanics) ;Same thing for NEWTONIAN-MECHANICS.
(use-package 'newtonian-mechanics)

;43 I just want a few thing from RELATIVITY,
;;: and other things conflict.
;+; Import only what I need into the USER package.

(require ‘'relativity)
(import ’(relativity:speed-of-1light
relativity:ignore-small-errors))

i3; These are worth loading, but I will use qualified names,
;33 such as PHLOGISTON:MAKE-FIRE-BOTTLE, to get at any symbols
;33 I might need from these packages.

(require 'ph]ogistbn)
(require 'alchemy)

i+: End of Lisp init file for I. Newton.

When cach of two files uscs some symbols from the other, one must be carcful to put the contents of the file
in the file in the proper order. Typically each file contains a single package that is a complete module, The

contents of such a file should include the following itcms, in order:

1. A call to provide that announces the module name.
2. A call to in-package that establishes the package.

3. A call to shadow that cstablishes any local symbols that will shadow symbols that would
otherwise be inherited from packages that this package will use.

4. A call to export that establishes all of this package’s external symbols.

5. Any number of calls to require to load other modules that the contents of this file might want
to usc or refer to. (Because the calls to require follow the calls to in-package, shadow, and
export, it is possible for the packages that may be loaded to refer to external symbols in this
package.)

6. Any number of calls to use-package, to make external symbols from other packages available
in this package.

| 7. Any number of calls to import, to make symbols from other packages present in this package.

8. Finally, the dcfinitions making up the contents of this package/module.
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The following mnemonic sentence may be helpful in remembering the proper order of these calls:
Put in seven extremely random user interface commands.
Each word of the sentence corresponds to one item in the above ordering:

Put Provide

IN IN-package
Seven Shadow
EXtremely EXport
Random Require
USEr USE-package
Interface Import

COmmands  COntents of package/module
Note that the sentence says what it helps you to do.
Now, suppose that the phlogiston and alchemy packages are single-file, single-package modules as
. described above. The ph1ogiston package needs to use the alchemy package, and the alchemy package

needs to use several external symbols from the ph1ogiston package. The following definitions allow the
user to supply require statement for either of these modules, or for both of them in either order.

The alchemy file:
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;+i13 Alchemy functions, written and maintained by Merlin, Inc.

(provide 'alchemy) ;The moduie is named ALCHEMY.
(in-package 'alchemy) ;So is the package.

;1 There is nothing to shadow.
::: Here is the external interface.

(export ’'(lead-to-gold gold-to-lead
antimony-to-zinc elixir-of-1ife))

;33 This package/module needé a function from
;s: the PHLOGISTON package/module.

(require ’'phlogiston)

;3 We don’t frequently need most of the external symbols from
;++ PHLOGISTON, so it's not worth doing a USE-PACKAGE on it.
;33 We'll just use qualified names as neéded. But we use

;;; one function, MAKE-FIRE-BOTTLE, a lot, so import it.

;33 It's external in PHLOGISTON, and so can be referred to

;33 here using ":" qualified-name syntax.

(import ’(ph1ogiston:make-f%re-bott]e))
;i Now for the real contents of this file.

(defun Tead to gold (x)
"Takes a quantity of lead and returns gold."
(when (> (phlogiston:heat-flow x) . ;Using a qualified symbol.
3)
(make-fire-bottle x)) ;Using an imported symbol.
(gild x))

:1:; And so on ...

The phlogiston file:
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;333 Phlogiston functions, by Thermofluidics, Ltd.

(provide ’phlogiston) ;The module is named PHLOGISTON.
(in-package 'phlogiston) ;So is the package.

;+; There is nothing to shadow.
+:: Here is the external interface.

(export '(heat-flow cold-flow mix-fluids separate-fluids
burn make-fire-bottle))

i3s3 This file uses functions from the ALCHEMY package/module.
{require ’'alchemy)
;:3 We use alchemy functions a 1ot, so use the package.

;33 This will allow symbols exported.from the ALCHEMY package
13 to be referred to here without the need for qualified names.

(use-package ’alchemy)
;33 No calls to IMPORT are needed here.
73+ The real contents of this package/module.

(defun heat-flow (amount x y)
"Make scme amecunt of heat flow from x to y."
(when feeling-weak .
(quaff (elixir-of-1ife))) ;No qualifier needed.
(push-heat amount x y))

;33 And so on )
For very large modules whose contents are spread over several files (the 11 sp package is an example), it is
recommended that the author create the package and declare all of the shadows and external symbols in a
separate file, so that this can be loaded before anything that might use symbols from this package.
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Chapter 12

Numbers

COMMON LISP provides several different representations for numbers. These representations may be
divided into four categories: integers, ratios, floating-point numbers, and complex numbers. Many numeric
functions will accept any kind of number; they are generic. Those functions that accept only certain kinds of
numbers are so documented below.

In general, numbers in COMMON LISP are not true objects; eq cannot be counted upon to operate on them
reliably. In particular, it is possible that the expression
(Tet ((x z) (y z)) (eq x y))
may be false rather than true, if the value of z is a number.

Rationale: This odd breakdown of eq in the case of numbers atlows the implementor enough design freedom to produce
exceptionally efficient numerical code on conventional architectures. MACLISP requires this freedom, for example, in order
to produce compiled numerical code equal in speed to FORTRAN. If not for this freedom, then at least for the sake of
compatibility, COMMON LisP makes this same restriction,

If two objects are to be compared for “identity”, but either might be a number, then the predicate eq1 (page
62) is probably appropriate; if both objects are known to be numbers, then = (page 153) may be preferable.

As a rule, computations with floating-point numbers are only approximate. The precision of a floating-
point number is not necessarily correlated at all with the accuracy of that number. For instance,
3.142857142857142857 is a more precise approximation to « than 3.14159, but the latter is more accurate. The
precision refers to the number of bits retained in the representation. When an operation combines a short
floating-point number with a long one, the result will be a long floating-point number. This rule is made to
ensure that as much accuracy as possible is preserved; however, it is by no means a guarantee. COMMON LISP
numerical routines do assume, however, that the accuracy of an argument does not exceed its precision.
Therefore when two small floating-point numbers are combined, the result will always be a small floating-
point number. This assumption can be overridden by first explicitly converting a small floating-point number
to a larger representation. (COMMON LISP never converts automatically from a larger size to a smaller one in
an effort to save space.)

Rational computations cannot overflow in the usual sense (though of course there may not be enough
storage to represent one), as integers and ratios may in principle be of any magnitude. Floating-point

computations may get exponent overflow or underflow; this is an error.

When rational and floating-point numbers are compared or combined by a numerical function, the rule of
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“floating-point contagion” is followed: when a rational meets a floating-point number, the rational is first
converted to a floating-point number of the same format. For functions such as + that take more than two
arguments it may be that part of the operation is carried out exactly using rationals and then the rest is done
\‘xsing floating-point arithmetic.

For functions that are mathematically associative (and possibly commutative), a COMMON LIsp
implementation may process the arguments in any manner consistent with associative (and possibly
commutative) rearrangement. This does not affect the order in which the argument forms are evaluated, of
course; that is always left to right, as in all COMMON LISP function calls. What is left loose is the order in
which the argument values are processed. The point of all this is that implementations may differ in which
automatic coercions are applied because of differing orders of argument processing. As an example, consider
this expression: -

(+ 1/3 2/3 1.0D0 1.0 1.0E-15)
One implementation might process the arguments from left to right, first adding 1/3 and 2/3 to get 1, then
converting that to a-double-precision floating-point number for combination with 1. 0D0, then successively
converting and adding 1.0 and 1.0E-15. Another implementation might process the arguments from right
to left, first performing a single-precision floating-point addition of 1.0 and 1. 0E-15 (and probably losing
some accuracy in the process!), then converting the sum to double precision and adding 1.0D0, then
converting 2/3 to double-precision floating-point and adding it, and then converting 1/3 and adding that. A
third implementation might first scan all the arguments, process all the rationals first to keep that part of the
computation exact, then find an argument of the largest floating-point format among all the arguments and
add that, and then add in all other arguments, converting each in turn, all this in a perhaps misguided attempt
to make the computation as accurate as possible. In any case, all three strategies are legitimate. The user can
or course control the order of processing explicitly by writing several calls; for example:

(+ (+ 1/3 2/3) (+ 1.0D0 1.0E-15) 1.0)
The user can also control all coercions simply by writing calls to coercion functions explicitly.

As a general rule, then, the type of the result of a numerical function is a floating-point number of the
largest format among all the floating-point arguments to the function; but if the arguments are all rational,
then the result is rational (except for functions that can produce mathematically irrational results, in which
case a single-format floating-point number may result).

There is a separate rule of complex contagion. As a rule, complex numbers never result unless one or more
of the arguments to a numerical function is complex. (Exceptions to this rule occur among the irrational and
transcendental functions.) When a non-complex number meets a complex number, the non-complex number
is first converted to a complex number by providing an imaginary part of 0.

If any computation produces a result that is a ratio of two integers such that the denominator evenly divides
the numerator, then the result is immediately converted to the equivalent integer. This is called the rule of
rational canonicalization.

If the result of any computation would be a complex rational with a zero imaginary part, the result is
immediately converted to a non-complex rational number by taking the real part. This is called the rule of
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complex canonicalization. Note that this rule does not apply to complex numbers whose components are
floating-point numbers. Whereas #C(5 0) and 5 are not distinct values in COMMON LISP (they are always
eql), #C(5.0 0.0) and 0.0 are always distinct values in COMMON LisP (they are never eq1, although
they are equalp).

12.1. Predicates on Numbers

zerop number [Function]
This predicate is true if number is zero (either the integer zero, a floating-point zero, or a complex
zero), and is false otherwise. It is an error if the argument number is not a number.

plusp number [Function]
This predicate is true if number is strictly greater than zero, and is false otherwise. It is an error if
the argument number is not a non-complex number.

minusp number [Function]
This predicate is true if number is strictly less than zero; otherwise ni1 is returned. It is an error if
the argument number is not a non-complex number.

oddp integer [Function]
This predicate is true if the argument integer is odd (not divisible by two), and otherwise is false. It
is an error if the argument is not an integer.

evenp integer [Function]
This predicate is true if the argument inzeger is even (divisible by two), and otherwise is false. It is
an error if the argument is not an integer. ‘

See also the data-type predicates integerp (page 59), rationalp (page 60) floatp (page 60),
complexp (page 60), and numberp (page 59).

12.2. Comparisons on Numbers

All of the functions in this section require that their arguments be numbers; to call one with a non-number
is an error. Unless otherwise specified, each works on all types of numbers, automatically performing any
required coercions when arguments are of different types. :

= number &rest more-numbers . [Function]
/= number &rest more-numbers | [Function)
< number &rest more-numbers : [Function]
> number &rest more-numbers [Function]

<= number &rest more-numbers : [Function)
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>= number &rest more-numbers [Function]
These functions each take one or more arguments. If the sequence of arguments satisfies a certain
N condition: '

= all the same

/= all different

< monotonically increasing

> monotonically decreasing

<= monotonically nondecreasing
>= monotonically nonincreasing

then the predicate is true, and otherwise is false. Complex numbers may be compared using = and
/=, but the others require non-complex arguments.

For example: ‘
(= 3 3) istrue (/= 3 3) isfalse
(= 3 5) isfalse (/= 3 5) istrue
(= 333 3) istrue (/7= 3 3 3 3) isfalse
(= 3 35 3) isfalse (/7= 3 3 5 3) isfalse
(=365 2) isfalse (/7= 3 6 5 2) istrue
(= 3 2 3) isfalse (/= 3 2 3) isfalse
(< 3 5) istrue (<= 3 5) istrue
(< 3 -5) isfalse (<= 3 -5) isfalse
(< 3 3) isfalse (<= 3 3) istrue
(<0346 7) istrue (<= 03 46 7) istrue
(<03 4 46) isfalse (<= 0 3 4 4 6) istrue
(> 4 3) istue (>= 4 3) istrue
(> 432 10) istrue (> 432 10) istrue
(> 433 20) isfalse (>= 4 33 2 0) istrue
(>4 3 12 0) isfalse (>= 4312 0) isfalse
= 3) istrue (/= 3) istrue
(< 3) istrue (<= 3) istrue

With two arguments, these functions perform the usual arithmetic comparison tests. With three or
more arguments, they are useful for range checks.

For example:
(<= 0 x 9) ; true iff x is between 0 and 9, inclusive
(< 0.0 x 1.0) ; true iff x is between 0.0 and 1.0, exclusive
(< -1 j (length s)) ; true iff j is a valid index for s
(<= 0 j k (- (length s) 1)) ; true iff j and k are each valid

;  indices for s and also j<k
Numbers of different types may be compared with this functions. For example, (> 3.0 0) is
true,asis (= 0 0.0).
Rationale: The “unequality” relation is called “/=" rather than “<>" (the name used in PAscAL) for two
reasons. First, /= of more than two arguments is not the same as the or of < and > of those same arguments.
Second, unequality is meaningful for complex numbers even though < and > are not. For both reasons it
would be misleading to associate unequality with the names of < and >.
Compatibility note: In CoMMON Lisp, the comparison operations perform “mixed-mode” comparisons: (= 3
3.0) is true. In MAcLisp, there must be exactly two arguments, and they must be either both fixnums or both

floating-point numbers. To compare two numbers for numerical equality and type equality, use eq1 (page
62). :
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max number &rest more-numbers . [Function] .
The arguments may be any non-complex numbers. max returns the argument that is greatest
(closest to positive infinity).
For example:

(max 1 3 2 -7)
(max -2 3 0 7)
(max 3) => 3

(max 3.0 7 1) => 7 or 7.0

If the arguments are a mixture of rationals and floating-point numbers, and the largest is a rational,
then the implementation is free to produce either that rational or its floating-point approximation.

> 3
> 7

min number &rest more-numbers [Function]
The arguments may be any non-complex numbers. min returns the argument that is least (closest
to negative infinity).
For example: '

(max 1 3 2 -7) => -7
(max -2 3 07) => -2
(min 3) => 3

(min 3.0 7 1) => 1 or 1.0

If the arguments are a mixture of rationals and floating-point numbers, and the smallest is a
rational, then the implementation is free to produce either that rational or its floating-point
approximation. ‘

12.3. Arithmetic Operations

All of the functions in this section require that their arguments be numbers; to call one with a non-number
is an error. Unless otherwise specified, each works on all types of numbers, automatically performing any
required coercions when arguments are of different types.

+ &rest numbers [Function]
Returns the sum of the arguments. If there are no arguments, the result is 0, which is an identity
for this operation.

Compatibility note: While + is compatible with its use in Lisp Machine Lisp, it is incompatible with MAcLisp,
which uses + for fixnum-only addition.

- number &rest more-numbers [Function]
The function -, when given one argument, returns the negative of that argument.

The function -, when given more than one argument, successively subtracts from the first argument

all the others, and returns the result. For example, (- 3 4 5) => -6.
Compatibility note: While - is compatible with its use in Lisp Machine Lisp, it is incompatible with MACLi1sP,
which uses - for fixnum-only subtraction. Also, - differs from difference as used in most Lisp systems in
the case of one argument. .
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* &rest numbers ' : [Function]
Returns the product of the arguments. If there are no arguments, the result is 1, which is an

identity for this operation.

N Compatibility note: While * is compatible with its use in Lisp Machine Lisp, it is incompatible with MacLisp,
which uses * for fixnum-only multiplication.

/ number &rest more-numbers [Function]
The function /, when given more than one argument, successively divides the first argument by all
the others, and returns the result.

With one argument, / reciprocates the argument.

/ will produce a ratio if the mathematical quotient of two integers is not an-exact integer.

For example:
(/ 12 8) =>3
(/ 13 4) => 13/4
(/ -8) => -1/8
(/ 3 45) => 3/20
To divide one integer by another producing an integer result, use one of the functions floor,

ceiling, truncate,orround (page 166).

If any argument is a floating-point number, rationalthen the rules of floating-point contagion apply.

Compatibility note: What / does is totally unlike what the usual // or quotient operator does. In most Lisp
systems, quotient behaves like / except when dividing integers, in which case it behaves like truncate
(page 166) of two arguments; this behavior is mathematically intractable, leading to such anomalies as

(quotient 1.0 2.0) => 0.5 but (quotient 1 2) => 0

In practice quotient is used only when one is sure that both argument are integers, or when one is sure that
at least one argument is a floating-point number.- / is tractable for its purpose, and “works” for any numbers.
For “integer division”, truncate (page 166), f1oor (page 166), ceiling (page 166), and round (page
166) are available in CoMMON LIsp.

1+ number [Function]
1- number \ [Function)
(1+ x)isthesameas (+ x 1). .

(1- x)isthesameas (- x 1). Note that the short name may be confusing: (1- x) does not

mean 1- x; rather, it means x—1. -
Rationale: These are included primarily for compatibility with MACLIsP and Lisp Machine Lisp.

Implementation note: Compiler writers are very strongly encouraged to ensure that (1+ x) and (+ x 1)
compile into identical code, and similarly for (1- x) and (- x 1), to avoid pressure on a LiSP programmer
to write possibly less clear code for the sake of efficiency. This can easily be done as a source-language

transformation.
incf place [delta] : . [Macro)
decf place [delta) [Macro]

The number produced by the form delta is added to (incf) or subtracted from (decf) the number
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in the generalized variable named by place , and the sum is stored back into place and returned.
The form place may be any form acceptable as a gencralized variable to setf (page 72). If deltais
not supplied, then the number in place is changed by 1.

For example:
(setq n 0)
(incf n) => 1 andnow n => 1
(decf n 3) => -2 andnow n => -2
(decf n -5) => 3 andnow n => 3
(decf n) => 2 andnow n => 2

The effect of (incf place delta) is roughly equivalent to

(setf place (+ place delta))
except that the latter would evaluate any subforms of place twice, while incf takes care to evaluate
them only once. Moreover, for certain place forms incf may be significantly more efficient than
the setf version.

conjugate number ' ' ~ [Function]
This returns the complex conjugate of number. The conjugate of a non-complex number is itself.
For a complex number z,
{(conjugate z) <=> (complex (realpart z) (- (imagpart z)))
For example: '

(conjugate #C(3/5 4/5)) => #C(3/5 -4/5)
(conjugate #C(0.0D0 -1.0D0)) => #C(0.0DO 1.0D0)
(conjugate 3.7) => 3.7

gcd &rest integers [Function]

Returns the greatest common divisor of all the arguments, which must be integers. The result of
gcd is always a non-negative integer. If one argument is given, its absolute value is returned. If no
arguments are given, gcd returns 0, which is an identity for this operation. For three or more
arguments,

(gcd a bc ... z) <=> (gcd (gcd a b) ¢ ... 2)
For example:

(gcd 91 -49) => 7

(gcd 63 -42 35) => 7

(gcd 5) => 5 A

(gcd -4) => 4

(gcd) => 0

Tcm integer &rest more-integers [Function)
This returns the least common multiple of its arguments, which must be integers. The result of 1cm
is always a non-negative integer. For two arguments that are not both zero,

(lcm a b) <=> (/ (abs (* a b)) (gcd a b))
If one or both arguments are zero,
(lcm a 0) <=> (lcm 0 a) <=> 0

For one argument, 1cm returns the absolute value of that argument. For three or more arguments,
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(lemabec ... z) <=> (lcm (lcma b) ¢ ... 2)
For example:
: (1cm 14 35) => 70

Mathematically, (1cm) should return infinity. Because COMMON LISP does not have a
representation for infinity, 1cm, unlike gcd, always requires at least one argument.

12.4. Irrational and Transcendental Functions

CoMMON LisP provides no data type that can accurately represent irrational numerical values. The
functions in this section are described as if the results were mathematically accurate, but actually they all
produce floating-point approximations to the true mathematical result in the general case. In some places
mathematical identities are set forth that are intended to elucidate the meanings of the functions; however,
two mathematically identical expressions may be computationally different because of errors inherent ia the
floating-point approximation process.

When the arguments to a function in this section are all rational and the true mathematical result is also
(mathematicaily) rational, then unless otherwise noted an implementation is free to return either an accurate

result of type rationa?l or a single-precision floating-point approximation.

Implementation note: There is a “floating-point cookbook by Cody and Waite [4] that may a useful aid in implementing
the functions define din this section.

12.4.1. Exponential and Logarithmic Functions

exp number [Function}
Returns e raised to the power number, where e is the base of the natural logarithms.

expt base-number power-number ' [Function]
Returns base-number raised to the power power-number. If the base-number is of type rational
and the power-number is an integer, the calculation will be exact and the result will be of type
rational; otherwise a floating-point approximation may result.

When power-number is 0 (a zero of type integer), then the result is always one, even if the
base-number is zero (of any type). More precisely,

(expt x 0) <=> (coerce 1 (type-of x))
If the power-number is a zero of any other data type, then the result is also one, except for two
things. First, it is an error if base-number is zero when the power-number is a zero not of type
integer. Second, the rules of floating-point and complex contagion may have been applied, and so
the result may be of a different data type from that returned when power-number is the integer zero.

Note that (expt -8 1/3) is not permitted to return -2; while -2 is indeed one of the cube roots
of -8, it is not the principal cube root, which is a complex number approximately equal to #C(0.5
1.73205).
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log number &optional base [Function]
Returns the logarithm of number in the base base, which defaults to e, the base of the natural
logarithms.
For example:

(Tog 8.0 2) => 3.0
(1og 100.0 10) => 2.0

Theresultof (10g 8 2) may be either 3 or 3. 0, depending on the implementation.

sqrt number [Function]
Returns the principal square root of number. If the number is not complex but is negative, then the
result will be a complex number whose components are of the same type.
For example:

(sqrt 9.0) => 3.0
(sqrt -9.0) => #c(0.0 3.0)

The result of (sqrt 9) may be either 3 or 3. 0, depending on the irnp]ementaﬁon. The result of
(sqrt -9) may beeither #c(0 3) or#c(0.0 3.0).

isqrt integer [Function]
Integer square-root: the argument must be a non-negative integer, and the result is the greatest .
integer less than or equal to the exact positive square root of the argument. '
For example:
(isqrt 9) => 3
(isqrt 12) => 3
(isqrt 300) => 18

12.4.2. Trigonometric and Related Functions

abs number [Function]
Returns the absolute value of the argument.

For a non-complex number,
(abs x) <=> (if (minusp x) (- x) x)
and the result is always of the same type as the argument.

For a complex number z, the absolute value may be computed as
(sqrt (+ (expt (realpart z) 2) (expt (imagpart z) 2)))

Implementation note: The careful implementor will not use this formula directly for complex numbers with
floating-point parts, but wi'l instead handle very large or very small exponents specially to avoid intermediate
overflow or underflow.

For example:
(abs #c(3.0 -4.0)) =>"5.0
The result of (abs #c(3 4)) may be either 5 or 5. 0, depending on the implementation.
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phase number ' [Function)

The phase of a number is the angle part of its polar representation as a complex number. That is,
(phase x) <=> (atan (realpart x) (imagpart x))

The result is in radians, in the range —= (exclusive) to = (inclusive). The phase of a positive

non-complex number is zero; that of a negative non-complex number is #. The phase of zero is

arbitrarily defined to be zero.

signum number [Function]
. By definition, ‘
(signum x) <=> (if (2erop x) x (/ x (abs x)))
For a rational number, signum will return one of -1, 0, or 1 according to whether the number is
negative, zero, or positive. For a floating-point number, the result will be a floating-point number
of the same format. For a complex number z, (signum z) is-a complex number of the same
phase but with unit magnitude, unless z is a complex zero, in which case the result is z.
For example: '
(signum 0) => 0
(signum -3.7L5) => -1.0LO
(signum 4/5) => 1
(signum #C(7.5 10.0)) => #C(0.6 0.8)
(signum #C(0.0 -14.7)) => #C(0.0 -1.0)
For non-complex rational numbers, signum is a rational function, but it may be irrational for
complex arguments.
sin radians [Function]
cos radians [Function]
tan radians [Function]
sin returns the sine of the argument, cos the cosine, and tan the tangent. The argument is in
radians. The argument may be complex.
cis radians [Function)
This computes " /%" The name “cis” means “cos + isin”, because ¢ = cos § + isin 8. The
argument is in radians, and may be any non-complex number. The result is a complex number
whose real part is the cosine of the argument, and whose imaginary part is the sine. Put another
way, the result is a complex number whose phase is the equal to the argument (mod 27) and whose
magnitude is unity. S
Implementation note: Often it is cheaper to calculate the sine and cosine of a single angle together than to
perform two disjoint calculations.
asin number [Function]
acos number ' [Function]

asin returns the arcsine of the argument, and cos the arccosine. The result is in radians. The
argument may be complex.
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atan y &optional x [Function] .
An arctangent is calculated and the result is returned in radians.

With two arguments y and x, neither argument may be complex. The result is the arctangent of the
quantity y/x. The signs of y and x are used to derive quadrant information; moreover, x may be
zero provided yis not zero. The value of atan is always between — = (exclusive) and = (inclusive).
The following table details various special cases.

Condition Cartesian locus Range of result
y=0 x>0 Positive x-axis 0

y>0 x>0 Quadrant I 0<result<x/2
y>0 x=0 ‘Positive y-axis n/2

y>0 x<0 Quadrant II n/2<result <o
y=0 x<0 Negative x-axis n

y<0 x<0 Quadrant III —m<result< —7/2
y<0 x=0 Negative y-axis —a/2

y<0 x>0 Quadrant IV —n/2 <result<0
y=0 x=0 Origin error

For floating-point approximations, the < signs in the above table ought to be < signs, because of
rounding effects; if y is greater than zero but nevertheless very small, then the floating-point
‘approximation to /2 might be a more accurate result than any other floating-point number. (For
that matter, when y = 0 the exact value #/2 cannot be produced anyway, but instead only an
approximation.)

With only one argument y, the argument may be complex. The result is the arctangent of y. For
non-complex arguments the result is non-complex and lies between —=#/2 and #/2 (both

exclusive).

Compatibility note: MAcLIsP has a function called atan whose range is from 0 to 2#. Almost every other
programming language (ANSI FORTRAN, IBM pL/1, INTERLISP) has an arctangent function with range —« to .

Lisp Machine Lisp provides two functions, atan (compatible with MACLISP) and atan2 (compatible with
everyone else).

CoMMON LisP makes atan the standard one with range —« to ». QObserve that this makes the one-argument
and two-argument versions of atan compatible in the sense that the branch cuts do not fall in different places,
which is probably why most languages use this definition. (An aside: the INTERLISP one-argument function
arctan has a range from 0 to =, while every other language in the world provides the range —=/2 to #/2!
Nevertheless, since INTERLISP uses the standard two-argument version, its branch cuts are inconsistent anyway.)

pi ' [Constani]

This global variable has as its value the best possible approximation to = in Jong floating-point
format.
For example:

(defun sind (x) ; The argument is in degrees.
(sin (* x (/ (float pi x) 180))))

An approximation to = in some other precision can be obtained by writing (f1oat pi x), where
x is a floating-point number of the desired precision; see f1oat (page 165).




162

sinh number
cosh number
tanh number
asinh number
acosh number
atanh number
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[Function]
[Function]
[Function]
[Function]
[Function]
[Function)

These functions compute the hyperbolic sine, cosine, tangent, arcsine, arccosine, and arctangent
- functions, which are mathematically defined as follows:

Hyperbolic sine ' (f=e /2

Hyperbolic cosine (F+e 572

Hyperbolic tangent (F—e M (F+e ™)

Hyperbolic arcsine log (x+V1+x°)

Hyperbolic arccosine log (x+(x+1DV(x—=1)/(x+1) )

Hyperbolic arctangent log(1+x)V1-1/x")

Implementation note: These formulae are mathematically correct, assuming completely accurate computation.
They may be terrible methods for floating-point computation! Implementors should consult a good text on
numerical .analysis. The formulas given above are not necessarily the simplest ones for real-valued
computations, either; they are chosen to define the branch cuts in desirable ways for the complex case.

12.4.3. Branch Cuts, Principal Values, and Boundary Conditions in the Complex Plane

Many of the irrational and transcendental functions are multiply-defined in the complex domain; for
example, there are in general an infinite number of complex values for the logarithm function. In each such
case a principal value must be chosen for the function to return. In general, such values cannot be chosen so
as to make the range cbntinuous; lines of discontinuity called branch cuts must be defined.

COMMON LisP defines the branch cuts, principal values, and boundary conditions for the complex
functions following a proposal for complex functions in APL [14]. The contents of this section are borrowed

largely from that proposal.

. Compatibility note: The branch cuts defined here differ in a few very minor respects from those advanced by W. Kahan,
who considers not only the “usual” definitions but also the special modifications necessary for IEEE proposed floating-point
arithmetic, which has infinities and minus zero as explicit computational objects. For example, he proposes that

V —-4+0i

=2ibutV -4-0i =-2i

It may be that the differences between the APL proposal and Kahan's proposal will be ironed out, perhaps in 1983. If so,
CoMMON Lisp will be changed as necessary to be compatible with these other groups. Any changes from the specification
below are likely to be quite minor.

sqrt

phase

Tog

The branch cut for square root lies along the negative real axis, continuous with quadrant
II. The range consists of the right half-plane, including the non-negative imaginary axis
and excluding the negative imaginary axis.

The branch cut for the phase function lies along the negative real axis, continuous with
quadrant II. The range consists of that portion of the real axis between —# (exclusive) and
« (inclusive).

The branch cut for the logarithm function of one argument (natural logarithm) lies along
the negative real axis, continuous with quadrant II. The domain excludes the origin. Fora
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expt
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complex number z=x+y i, log z is defined to be (log |z|)+ i phase(z). Therefore the range
of the one-argument logarithm function is that strip of the complex plane containing
numbers with imaginary parts between — (exclusive) and = (inclusive).

The two-argument logarithm function is defined as log b= (log z)/(log b). This defines the
principal values precisely. The range of the two-argument logarithm function is the entire
complex plane. Itis an error if z is zero. If zis nonzero and b is zero, the logarithm is taken
to be zero.

The simple exponential function has no branch cut.

The two-argument exponential function is defined as b*=¢* 8 2 This defines the
principal values precisely. The range of the two-argument exponential function is the
entire complex plane. Regarded as a function of x, with b fixed, there is no branch cut.
Regarded as a function of b, with x fixed, there is, in general, a branch cut along the
negative real axis, continuous with quadrant II, and the domain excludes the origin. By
definition, 0°=1. If =0 and the real part of x is strictly positive, then 5*=0. For all other
values of x, 0% is an error.

The following definition for arcsine determines the range and branch cuts:

arcsin z= — ilog (i z+ V 1-2 )

The branch cut for the arcsine function is in two pieces: one along the negative real axis to
the left of —1 (inclusive), continuous with quadrant 11, and one along the positive real axis
to the right of 1 (inclusive), continuous with quadrant IV. The range is that strip of the
complex plane containing numbers whose real part is between —#/2 and #/2. A number
with real part equal to —#/2 is in the range iff its imaginary part is non-negative; a number
with real part equal to #/2 is in the range iff its imaginary part is non-positive.

The following definition for arccosine determines the range and branch cuts:

arccoé z=-—ilog (z+i\/1—? )
or, which is equivalent,
arccos z=(w/2)—arcsin z

The branch cut for the arccosine function is in two pieces: one along the negative real axis
to the left of —1 (inclusive), continuous with quadrant II, and one along the positive real
axis to the right of 1 (inclusive), continuous with quadrant IV. This is the same branch cut
as for arcsine. The range is that strip of the complex plane containing numbers whose real
part is between 0 and #». A number with real part equal to 0 is in the range iff its imaginary
part is non-negative; a number with real part equal to = is in the range iff its imaginary part
is non-positive.

The following definition for (one-argument) arctangent determines the range and branch
cuts:

“arctan z=—ilog (1+i 2) \/1/(1+?) )
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Beware of simplifying this formnla; “obvious” simplifications are likely to alter the branch
cuts or the values on the branch cuts incorrectly. The branch cut for the arctangent
function is in two pieces: one along the positive imaginary axis above i (exclusive),
continuous with quadrant II, and one along the negative imaginary axis below —i
(exclusive), continuous with quadrant IV. The points i and —i are excluded from the
domain. The range is that strip of the complex plane containing numbers whose real part
is between —#/2 and #/2. A number with real part equal to —=#/2 is in the range iff its
imaginary part is strictly positive; a number with real part equal to #/2 is in the range iff its
imaginary part is strictly negative. Thus the range of arctangent is identical to that of
arcsine with the points — #/2 and #/2 excluded.

The following definition for the inverse hyperbolic sine determines the range and branch
cuts: .

arcsinh z=log (x+V 1+% )

The branch cut for the inverse hyperbolic sine function is in two pieces: one along the
positive imaginary axis above i (inclusive), continuous with quadrant I, and one along the
negative imaginary axis below — i (inclusive), continuous with quadrant IIl. The range is
that strip of the complex plane containing numbers whose imaginary part is between —«/2
and #/2. A number with imaginary part equal to —#/2 is in the range iff its real part is
non-positive; a number with imaginary part equal to #/2 is in the range iff its imaginary
part is non-negative.

The following definition for the inverse hyperbolic cosine determines the range and branch
cuts:

arccosh z=1log (x.+ (x+1D)V(x-1)/(x+1) )

The branch cut for the inverse hyperbolic cosine function lies along the real axis to the left
of 1 (inclusive), extending indefinitely along the negative real axis, continuous with
quadrant II and (between 0 and 1) with quadrant 1. The range is that half-strip of the
complex plane containing numbers whose real part is non-negative and whose imaginary
part is between — « (exclusive) and # (inclusive). A number with real part zero is in the
range iff its imaginary part is between zero (inclusive) and = (inclusive).

The following definition for the inverse hyperbolic tangent determines the range and
branch cuts:

arctanh z=log (1+x)V1-1/¥ )

Beware of simplifying this formula; “obvious” simplifications are likely to alter the branch
cuts or the values on the branch cuts incorrectly. The branch cut for the inverse hyperbolic
tangent function is in two pieces: one along the negative real axis to the left of —~1
(inclusive), continuous with quadrant III, and one along the positive real axis to the right of
1 (inclusive), continuous with quadrant I. The range is that strip of the complex plane
containing numbers whose imaginary part is between —#/2 and #/2. A number with
imaginary part equal to —#/2 is in the range iff its real part is strictly negative; a number
with imaginary part equal to #/2 is in the range iff its imaginary part is strictly positive.
Thus the range of arctangent is identical to that of arcsine with the points — #i/2 and #i/2
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excluded.

With these definitions, the following useful identities are obeyed throughout the applicable portion of the
complex domain, even on the branch cuts:

siniz = isinh z sinhiz=isinz arctan { z = iarctanh z
cosiz=coshz cosh iz = cos z arcsinh 7z =.jarcsin z
tan iz = itanh z arcsin i z = jarcsinh z arctanh iz = jarctan z -

12.5. Type Conversions and Component Extractions on Numbers

While most arithmetic functions will operate on any kind of number, coercing types if necessary, the
following functions are provided to allow specific conversions of data types to be forced, when desired.

float number &optional other [Function]
Converts any non-complex number to a floating-point number. With no second argument, then if
number is already a floating-point number, it is returned, and otherwise a single-float is
produced. If the argument other is provided, then it must be a floating-point number, and number
is converted to the same format as other. See also coerce (page 40).

rational number ' [Function)

rationalize number [Function]
Each of these functions converts any non-complex number to be a rational number. If the
argument is already rational, that argument is returned. The two functions differ in their treatment
of floating-point numbers.

rational assumes that the floating-point number is completely accurate, and returns a rational
number mathematically equal to the precise value of the floating-point number.

rationalize assumes that the floating-point number is accurate only to the precision of the
floating-point representation, and may return any rational number for which the floating-point
number is the best available approximation of its format; in doing this it attempts to keep both
numerator and denominator small.

It is always the case that

(float (rational x) x) <=> x
and

(float (rationalize x) x) <=> x
That is, rationalizing a floating-point number by either method and then converting it back to a
floating-point number of the same format produces the original number. What distinguishes the
two functions is that rational typically has a simple, inexpensive implementation, while
rationalize goes to more trouble to produce a result that is more pleasant to view and simpler
for some purposes to compute with.
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numerator rational [Function)
denominator rational [Function]
These functions take a rational number (an integer or ratio) and return as an integer the numerator
or denominator of the canonical reduced form of the rational. The numerator of an integer is that
integer, and the denominator of an integer is 1. Note that

(gcd (numerator x) (denominator x)) => 1
The denominator will always be a strictly positive integer; the numerator may be any integer.
For example:

(numerator (/ 8 -6)) => -4
(denominator (/ 8 -6)) => 3

There is no fix function in COMMON LISP, because there are several interesting ways to convert non-
integral values to integers. These are provided by the functions below, which perform not only type-
conversion but also some non-trivial calculations.

floor number &optional divisor [Function]
ceiling number &optional divisor [Function]
truncate number &optional divisor [Function]
round number &optional divisor ' : [Function]

In the simple, one-argument case, each of these functions converts its argument number (which
must not be complex) to be an integer. If the argument is already an integer, it is returned directly.
If the argument is a ratio or floating-point number, the functions use different algorithms for the
conversion.

f1oor converts its argument by truncating towards negative infinity; that is, the result is the largest
integer that is not larger than the argument.

ceiling converts its argument by truncating towards positive inﬁnityﬁ that is, the result is the
smallest integer that is not smaller than the argument.

truncate converts its argument by truncating towards zero; that is, the result is the integer of the
same sign as the argument and which has the greatest integral magnitude not greater than that of
the argument.

round converts its argument by rounding to the nearest integer; if number is exactly halfway
between two integers (that is, of the form integer+0.5) then it is rounded to the one that is even
(divisible by two). ’

Here is a table showing what the four functions produce when given various arguments.
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Argument floor ceiling truncate round
2.6 2 3 2 3
2.5 2 3 2 2
2.4 2 3 2 2
0.7 0 1 0 1
0.3 0 1 0 0
-0.3 -1 0 0 0
-0.7 -1 0 0 -1
-2.4 -3 =2 -2 -2
-2.5 -3 -2 -2 -2
-2.6 -3 -2 -2 -3

If a second argument divisor is supplied, then the result is the appropriate type of rounding or
truncation applied to the result of dividing the number by the divisor. For example, (f1oor 5 2)
= (floor (/ 5 2)), butis potentially more efficient. The divisor may be any non-complex
number. The one-argument case is exactly like the two-argument case where the second argument
is1.

Each of the functions actually returns two values; the second result is the remainder, and may be
obtained using multiple-vaiue-bind (page 104) and related constructs. If any of these

functions is given two arguments x and y and produces results ¢ and r, then g*y+r=x. The

remainder ris an integer if both arguments are integers, is rational if both arguments are rational,
and is floating-point if either argument is floating-point. (In the one-argument case the remainder

is a number of the same type as the argument.) The first result is always an integer.

Compatibility note: The names of the functions f1oor, ceiling, truncate, and round are more accurate
than nzmes like fix that have heretofore been used in various LisP systems. The names used here are
compatible with standard mathematical terminology (and with pPL/1, as it happens). In FORTRAN ifix means
truncate. ALGOL 68 provides round, and uses entier tomean floor. In MACLISP, fix and ifix both
mean f1oor (one is generic, the other flonum-in/fixnum-out). In INTERLISP, f ix means truncate. In Lisp
Machine Lisp, fix means f1oor and fixr means round. STANDARD Lisp provides a f ix function, but does
not accurately specify what it does exactly. The existing usage of the name f i x is so confused that it seems best

to avoid it altogether.
The names and definitions given here have recently been adopted by Lisp Machine Lisp, and MACLIsP and NIL
seem likely to follow suit.
mod number divisor : [Function)
rem number divisor [Function)

mod performs the operation f1oor (page 166) on its two arguments, and returns the second result

- of floor as its only result. Similarly, rem performs the operation truncate (page 166) on its

arguments, and returns the second result of truncate as its only result.

mod and rem are therefore the usual modulus and remainder functions when applied to two integer
arguments. In general, however, the arguments may be integers or floating-point numbers.

(mod 13 4) => 1 (rem 13 4) => 1
(mod -13 4) => 3 (rem -13 4) => -1
(mod 13 -4) => -3 (rem 13 -4) => 1
(mod -13 -4) => -1 (rem -13 -4) => -1
(mod 13.4 1) => 0.4 (rem 13.4 1) => 0.4

(mod -13.4 1) => 0.6 (rem -13.4 1) => -0.4
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ffloor number &optional divisor [Function]
fceiling number &optional divisor [Function]
ftruncate number &optional divisor [Function]
tround number &optional divisor [Function)

These functions are just like f1oor, ceiling, truncate, and round, except that the result (the
first result of two) is always a floating-point number rather than an integer. It is roughly as if
ffloor gave its arguments to f1oor, and then applied f1oat to the first result before passing
them both back. In practice, however, ffloor may be implemented much more efficiently.
Similar remarks apply to the other three functions. If the first argument is a floating-point number,
and the second agrument is not a floating-point number of shorter format, then the first result will
be a floating-point number of the same type as the first argument.

For example:

(ffloor -4.7) => -5.0 and 0.3
(ffloor 3.5d0) => 3.0d0 and 0.5d0

decode-float float ' [Function]
scale-float float integer [Function)
float-radix float : .  [Function]
float-sign float/ &optional float2 . [Function]
float-digits floar. -~ [Function]
float-precision float ' [Function]
integer-decode-float float [Function]

The function decode-float takes a floating-point number and returns three values.

The first value is a new floating-point number of the same format representing the significand; the
second value is an integer representing the exponent; and the third value is a floating-point number
of the same format indicating the sign. Let 5 be the radix for the floating-point representation; then
float-decode divides the argument by an integral power of b so as to bring its value between
1/b (inclusive) and 1 (exclusive), and returns the quotient as the first value. If the argument is zero,
however, the result equals the absolute value of the argument (that is, if there is a negative zero, its
significand is considered to be a positive zero).

The second value of decode-float is the integer exponent e to which b must be raised to
produce the appropriate power for the division. If the argument is zero, any integer value may be
returned, provided that the identity shown below for scale-float holds.

The third value of decode-f1oat is a floating-point number, of the same format as the argument,
whose absolute value is one and whese sign matches that of the argument.

The function scale-float takes a floating-point number f(not necessarily between 1/5 and 1)
and an integer &, and returns (* f (expt (float b f) k)). (Theuseof scale-float may
be much more efficient than using exponentiation and multiplication, and avoids intermediate
overflow and underflow if the final result is representable.)

Note that
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(multiple-value-bind (signif expon sign)
(decode-float f)
(scale-float signif expon))
<=> (abs f)
and
(multiple-value-bind (signif expon sign)
(decode-float f)
(* (scale-flioat signif expon) sign))

<=> f
The function fToat-radix returns (as an integer) the radix b of the floating-point argument.

The function f1oat-sign returns a floating-point number z such that z and float/ have the same
sign and also such that z and float2 have the same absolute value. The argument float2 defaults to
the value of (float 1 floatl); (float-sign x) therefore always producesa 1.0 or -1.0
according to the sign of x. (Note that if an implementation has distinct representations for negative
zero and positive zero then (float-sign -0.0) =>-1.0)

The function f1oat-digits returns, as a non-negative integer, the number of radix-b digits used
in the representation of its argument (including any implicit digits, such as a *“hidden bit”). The
function f1oat-precision returns, as a non-negative integer, the number of significant radix-b
digits present in the argument; if the argument is (a floating-point) zero, then the result is (an
integer) zero. For normalized floating-point numbers these two quantities will be the same, but the
precision will be less than the number of representation digits for a denormalized or zero number.

The function integer-decode-float is similar to decode-float but for its first value
returns, as an integer, the significand scaled so as to be an integer. For an argument f, this
integer will be strictly less than

(expt b (float-precision f))
but no less than

(expt b (- (float-precision f) 1))
except that if fis zero then the integer value will be zero.

The second value bears the same relationship to the first value as for decode-f1oat:
(muitiple-value-bind (signif expon sign)
(integer-decode-float f)
(scale-float (float signif f) expon))
<=> (abs f)

Rationale: These ﬁmctions‘allow the writing of machine-independent, or at least machine-parameterized,
floating-point software of reasonable efficiency.

complex realpart &optional imagpart ‘ [Function}
The arguments must be non-complex numbers; a number is returned that has realpart as its real
part and imagpart as its imaginary part. If imagpart is not specified then (coerce 0 (type-of
realpart) ) is effectively used (this definition has the effect that in this case the two parts will be
both rational or both floating-point numbers of the same format). Note that if both the realpart and
imagpart are rational and the imagpart is zero, then the result just the realpart because of the rule of
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canonical representation for complex rationals. It follows that the result of comp 1ex is not always
a complex number; it may be simply a rational.

Fealpart number : ' ) [Function]

imagpart number [Function]
These return the real and imaginary parts of a complex number. If number is a non-complex
number, then realpart returns its argument number and imagpart returns (coerce 0
(type-of number)) (this has the effect that the imaginary part of a rational is 0 and that of a
floating-point number is a floating-point zero of the same format).

12.6. Logical Operations on Numbers

The logical operations in this section require integers as arguments; it is an error to supply an non-integer as

an argument. The functions all treat integers as if they were represented in two’s-complement notation.

Implementation note: Internally, of course, an implementation of COMMON LiSP may or may not use a two’s-complement
representation. All that is necessary is that the logical operations perform calculations so as to give this appearance to the
user.

The logical operations provide a convenient way to represent an infinite vector of bits. Let such a
conceptual vector be indexed by the non-negative integers. Then bit j is assigned a “weight” 2. Assume that
only a finite number of bits are ones, or that only a finite number of bits are zeros. A vector with only a finite
number of one-bits is represented as the sum of the weights of the one-bits, a positive integer. A vector with
only a finite number of zero-bits is represented as -1 minus the sum of the weights of the zero-bits, a negative
integer.

This method of using integers to represent bit vectors can in turn be used to represent sets. Suppose that
some (possibly countably infinite) universe of discourse for sets is mapped into the non-negative integers.
Then a set can be represented as a bit vector; an element is in the set if the bit whose index corresponds to
that element is a one-bit. In this way all finite sets can be represented (by positive integers), as well as all sets
whose complements are finite (by negative integers). The functions 1ogior, 1ogand, and Togxor defined
below then compute the union, intersection, and symmetric difference operations on sets represented in this
way.

logior &rest integers : : [Function]
Returns the bit-wise logical inclusive or of its arguments. If no argument is given, then the result is
zero, which is an identity for this operation.

logxor &rest integers [Function]
Returns the bit-wise logical exclusive or of its arguments. If no argument is given, then the result is
zero, which is an identity for this operation.
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[Function]

Returns the bit-wise logical and of its arguments. If no argument is given, then the result is -1,
which is an identity for this operation.

logeqv &rest inlegérs

[Function}

Returns the bit-wise logical equivalence (also known as exclusive nor) of its arguments. If no
argument is given, then the result is -1, which is an identity for this operation.

lTognand integerl integer2
Tognor integerl integer2

logandc1 integerl integer2
logandc?2 integerl integer2

Togorcl integerl integer2
lTogorc2 integerl integer2

[Function]
[Function]
[Function]
[Function]
[Function]
[Function)

These are the other six non-trivial bit-wise logical operations on two arguments. Because they are
not associative, they take exactly two arguments rather than any non-negative number of

arguments.

(lognand
(lognor
(1ogandc1
(1ogandc2
(logorcl
(logorc2

nl
nl
nl
nl
nl
nl

n2)
n2)
n2)
n2)
n2)
n2)

AAAAAA
wononoanonon
VVVVVYyY

(lognot (logand nl n2))
(Tognot (logor nl n2))
(1ogand (lognot nl) n2)
(1ogand n/ (lognot n2))
(logor (lognot nl) n2)
(logor nl (lognot n2))

The ten bit-wise logical operations on two integers are summarized in this table:

Argumentl 0
Argument2 0

Operation name

logand
logior
logxor
Togeqv
lognand
lognor
logandcl
logandc2
Togorc1
logorc2

R R OO KRR R OO0O0

ORORORORRLROO

P ORROOEORE OO =

OO 00O MO =

and

inclusive or

exclusive or

equivalence (exclusive nor)
not-and

not-or

and complement of argl with arg2
and argl with complement of arg2
or complement of argl with arg2
or argl with complement of arg2
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boole op integerl integer2
boole-clr

boole-set
boole-1
boole-2
boole-c1
boole-c2
boole-and
boole-ior
boole-xor
boole-eqv
boole-nand
boole-nor
boole-andcl
boole-andc2
boole-orcl

boole-orc2

COMMON LISP REFERENCE MANUAL

* [Function]
[Constani]

[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani] -
[Constani)
[Constani]
[Constani]
[Constani]
[Constani)
[Constani)

[Constani]

The function boole takes an operation op and two integers, and returns an integer produced by
performing the logical operation specified by op on the two integers. The precise values of the
sixteen variables are implementation-dependent, but they are suitable for use as the first argument

to boole:
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boole-andcl
boole-andc2
boole-orcl

and complement of integer! with integer2
and integerl with complement of integer2
or complement of integer! with integer2

integer] 0 0 1 1
integer2 0 1 0 1 Operation performed
boole-clr 0 0 0 0 always0
boole-set 1 1 1 1 alwaysl
boole-1 0 0 1 1 .integerl
boole-2 0 1 0 1 .integer?
boole-c1 1 1 0 0 complementofinteger!
boole-c2 1 0 1 0 complementofinteger2
boole-and 0 0 0 1 and
boole-ior 0 1 1 1 inclusiveor
boole-xor 0 1 1 0 exclusiveor
boole-eqv 1 0 0 1 equivalence (exclusive nor)
boole-nand 1 1 1 0 notand
boole-nor 1 0 0 0 notor
0 1 0 O
0 0 1 0
1 1 0 1
1 0 1 1

boole-orc2

or integer! with complement of integer2

boo1e can therefore compute all sixteen logical functions on two arguments. In general,

(boole boole-and x y) <=> (logand x y)
and the latter is more perspicuous. However, boo1e is useful when it is necessary to parameterize
a procedure so that it can use one of several logical operations.

lognot integer

[Function}

Returns the bit-wise logical not of its argument. " Every bit of the result is the complement of the

corresponding bit in the argument.

(Togbitp j (lognot x)) <=> (not (logbitp j x))

logtest integerl integer2

[Function]

logtest is a predicate that is true if any of the bits designated by the 1I's in integer! are 1’s in

integer?.

(Togtest x y) <=> (not (zerop (logand x y)))

logbitp index integer

[Function]

logbitp is true if the bit in integer whose index is index (that is, its weight is 2index) is 3 one-bit;

otherwise it is false.
For example:

(logbitp 2 6) istrue
(Togbitp 0 6) isfalse
(logbitp k n) <=> (1db-test (byte 1 k) n)
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ash integer count ' [Function}
Shifts integer arithmetically left by count bit positions if count is positive, or right -count bit
positions if count is negative. The sign of the result is always the same as the sign of integer.

* Arithmetically, this operation performs the computation floor(integer*2°“™).

Logically, this moves all of the bits in integer to the left, adding zero-bits at the bottom, or moves
them to the right, discarding bits. (In this context the question of what gets shifted in on the left is
irrelevant; integers, viewed as strings of bits, are “half-infinite”, that is, conceptually extend
infinitely far to the left.)

For example:

(Togbitp j (ash n k))
<=> (and (>= j k) (logbitp (- j k) n))

logcount integer [Function]
The number of bits in integer is determined and returned. If integer is positive, then 1 bits in its
binary representation are counted. If integer is negative, then the 0 bits in its two’s-complement
binary representation are counted. The result is always a non-negative integer.

For example:
(logcount 13) => 3 . ; Binary representationis ...0001101
(Togcount -13) => 2 ; Binary representationis ...1110011
(Togcount 30) => 4 ; Binary representationis ...0011110
(logcount -30) => 4 ; Binary representationis ...1100010

The following identity always holds:
(logcount x) <=> (Togcount (- (+ x 1)))

'integer-'léngth integer [Function]
This function performs the computation

ceiIing(logz(if integer< 0 then — integer else integer+1))

This is useful in two different ways. First, if integer is non-negative, then its value can be
represented in unsigned binary form in a field whose width in bits is at least (integer-length
integer). Second, regardless of the sign of integer, its value can be represented in signed binary
two’s-complement form in a field whose width in bits is at least (+ (integer-Tength integer)
1).

For example:
(integer-length 0)
(integer-length 1)
(integer-length 3)
(integer-length 4)
(integer-length 7)
(integer-length -1)
(integer-length -4)
(integer-length -7)
(integer-length -8)
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Compatibility note: This function is similar to the MACLisP function haulong. One may define haulong as
(haulong x) <=> (integer-length (abs x))

12.7. Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of contiguous bits appearing
anywhere in an integer. Such a contiguous set of bits is called a byte. Here the term byte does not imply some
fixed number of bits (such as eight), but a field of arbitrary and user-specifiable width.

The byte-manipulation functions use objects called byte specifiers to designate a specific byte position
within an integer. The representation of a byte specifier is implementation-dependent; it is sufficient to know
that the function byte will construct one, and that the byte-manipulation functions will accept them. The
function by te accepts two integers representing the position and size of the byte, and returns a byte specifier.

Such a specifier designates a byte whose width is size, and whose bits have weights 2725707+ 5i2¢=1 throi0h
2position.

byte size position ' [Function]
~ byte takes two integers representing the size and position of a byte, and returns a byte specifier
suitable for use as an argument to byte-manipulation functions.

byte-size bytespec [Function]
byte-position bytespec [Function]
Given a byte specifier, byte-size returns the size specified as an integer; byte-position
similarly returns the position.
For example:

(byte-size (byte j k)) <=> j
(byte-position (byte j k)) <

=

1db bytespec integer [Function]
bytespec specifies a byte of integer to be extracted. The result is returned as a positive integer.
For example: '
(logbitp j (1db (byte s p) n)
<=> (and (< j 5) (logbitp (+ j p) n))
The name of the function “1db” means “load byte”.

Compatibility note: The MAcLisp function haipart can be implemented in terms of 1db as follows:

(defun haipart (integer count)
(let ((x (abs integer)))
(if (minusp count)
(1db (byte (- count) 0) x)
(1db (byte count (max 0 (- (integer-length x) n)))
x))))

setf (page 72) may be used with 1db, provided that the argument integer is specified by a form
that is a place form acceptable to setf, to modify a byte within the integer that is stored in that
place. The effect is to perform.a dpb (page 176) operation and then store the result back into the
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place.
1db-test bytespec integer’ [Function]
* 1db-test is a predicate that is true if any of the bits designated by the byte specifier bytespec are

I’sin integer; that s, it is true if the designated field is non-zero.
(1db-test bytespec n) <=> (not (zerop (1db bytespec n)))

mask-field bytespec integer [Function]
This is similar to 1db; however, the result contains the specified byte of integer in the position
specified by bytespec, rather than in position 0 as with 1db. The result therefore agrees with integer
in the byte specified, but has zero bits everywhere else.
For example:

(1db bs (mask-field bs n)) <=> (1db bs n)
(logbitp j (mask-field (byte s p) n))

<=> (and (>= j p)} (< j s) (logbitp j n))
(mask-field bs n) <=> (logand n (dpb -1 bs 0))

setf (page 72) may be used with mask-field, provided that the argument integer is specified
by a form that is a place form acceptable to setf, to modify a byte within the integer that is stored
in that place. The effect is to perform a deposit-field (page 176) operation and then store the
result back into the place. ‘

dpb newbyte bytespec integer ‘ [Function]
Returns a number that is the same as infeger except in the bits specified by bytespec. Let s be the
size specified by bytespec; then the low s bits of newbyte appear in the result in the byte specified by
bytespec. The integer newbyte is therefore interpreted as being right-justified, as if it were the result
of 1db.
For example:
(logbitp j (dpb m (byte s p) n))
<=> (if (and (>=j p) (<Jj (+ p 5)))
(logbitp (- j p) m)
(logbitp j n))

The name of the function “dpb” means “deposit byte”.

deposit-field newbyte bytespec integer , ‘ [Function]
This function is to mask-field as dpb is to 1db. The result is an integer that contains the bits of
newbyte within the byte specified by bytespec, and elsewhere contains the bits of integer.
For example:
(logbitp j (dpb m (byte s p) n))
<=> (if (and (>=jp) (<j(+ p 9)))
(Togbitp j m)
(Togbitp j n))
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Implementation note: If the byrespec is a constant, one may of course construct, at compile time, an equivalent
mask m, for example by computing (deposit-field -1 bytespec 0). Given this mask m, one may then
compute .
(deposit-field nmewbyre bytespec integer) ‘
by computing \
(1ogor (logand newbyte m) (logand integer (lognot m)))
where the result of (1ognot m) can of course also be computed at compile time. However, the following
expression (which I got indirectly from Knuth) may also be used, and may require fewer temporary registers in
some situations: - .
(logxor integer (1ogand m (logxor infeger newbyte)))
A related, though possibly less useful, trick is that
(let ((z (logand (logxor x y) m)))
(setq x (logxor z x))
(setq y (logxor z y)))
interchanges those bits of x and y for which the mask m is 1, and leaves alone those bits of x and y for which m
is 0.

12.8. Random Numbers

random number &optional state [Function]
(random n) accepts a positive number n and returns a number of the same kind between zero
(inclusive) and n (exclusive). .The number n may be an integer or a floating-point number. An
approximately uniform choice distribution is used: if n is an integer, each of the possible results
occurs with (approximate) probability 1/n. (The qualifier “approximate” is used because of
implementation considerations; in practice the deviation from uniformity should be quite small.)

The argument sfate must be an object of type random-state; it defaults to the value of the -
variable *random-state*. This object is used to maintain the state of the pseudo-random-

number generator, and is altered as a side effect of the random operation.

Compatibility note: random of zero arguments as defined in MACLIsP has been omitted because its value is too
implementation-dependent (limited by fixnum range).

Implementation note: In general, it is not adequate to define (random n) for integral n to be simply (mod
(random) n); this fails to be uniformly distributed if n is larger than the largest number produced by
random, or even if 7 merely approaches this number. Assuming that the underlying mechanism produces
“random bits” (possibly in chunks such as fixnums), the best approach is to produce enough random bits to
construct an integer kK some number d of bits larger than (integer-length n) (see integer-length
(page 174)), and then compute (mod k n). The quantity dshould be at least 7, and preferably 10 or more.

To produce random floating-point numbers in the range [4, B), accepted practice (as determined by a quick
look through the Collected Algorithms from the ACM, particularly algorithms 133, 266, 294, and 370) is to
compute X*(B— A4)+ 4, where X is a floating-point number uniformly distributed over [0.0, 1.0) and computed
by calculating a random integer N in the range [0, M) (typically by a multiplicative-congruential or linear-
congruential method mod M) and then setting X=N/M. See also[10]. If one takes M = 2/, where fis the
length of the significand of a floating-point number (and it is in fact common to choose M to be a power of
two), then this method is equivalent to the following assembly-language-level procedure. Assume the
representation has no hidden bit. Take a floating-point 0.5, and clobber its entire significand with random bits.
Normalize the result if necessary.

For example, on the PDP-10, assume that accumulator T is completely random (all 36 bits are random). Then
the code sequence :

LSH T,-8 ; Clear high 9 bits; low 27 are random.
FSC T,128. ; Install exponent and normalize.

will produce in T a random floating-point number uniformly distributed over [0.0, 1.0). (Instead of the LSH,
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one could do “TLZ T,777000; but if the 36 random bits came from a congruential random-number
generator, the high-order bits tend to be “more random™ than the low-order ones, and so the LSH would be a
bit better for uniform distribution. Ideally all the bits would be the result of high-quality randomness.)

With a hidden-bit representation, normalization is not a problem, but dealing with the hidden bit is. The
method can be adapted as follows. Take a floating-point 1.0 and clobber the explicit significand bits with
random bits; this produces a random floating-point number in the range [1.0, 2.0). Then simply subtract 1.0.
In effect, we let the hidden bit creep in and then subtract it away again.

For example, on the vax, assume that register T is completely random (but a little less random than on the
PDP-10, as it has only 32 random bits). Then the code sequence

" INSV #~X81,#7,#9,T ; Install correct sign bit and exponent.
SUBF #~F1.0,T ; Subtract 1.0.

will produce in T a random floating-point number uniformly distributed over [0.0, 1.0). Again, if the low-order
bits are not random enough, then “ROTL #7, T" should be performed first.

Implementors may wish to consult reference {15] for a discussion of some efficient methods of generating
pseudo-random numbers.

*random-state* : [Variable]

This variable holds a data structure, an object of type random-state, that encodes the internal
state of the random-number generator that random uses by default. The nature of this data
structure is implementation-dependent. It may be printed out and successfully read back in, but
may or may not function correctly as a random-number state object in another implementation. A
call to random will perform a side effect on this data structure. Lambda-binding this variable to a
different random-number state object will correctly save and restore the old state object, of course.

make-random-state &optional sate [Function]
This function returns a new object of type random-state, suitable for use as the value of the
variable *random-state*. If state is ni1 or omitted, random-state returns a copy of the
current random-number state object (the value of the variable *random-state*). If state is a
state object, a copy of that state object is returned. If siate is t, then a new state object is retuirned

that has been “randomly” initialized by some means (such as by a time-of-day clock).

Rationale: CoMMON Lisp purposely provides no way to initialize a random-state object from a user-
specified “seed”. The reason for this is that the number of bits of state information in a random-state
object may vary widely from one implementation to another, and there is no simple way to guarantee that any
user-specified seed value will be “random enough”. Instead, the initialization of random-state objects is left
to the implementor in the case where the argument t is given tomake-random-state.

To handle the common situation of executing the same program many times in a reproducible manner, where
that program uses r andom, the following procedure may be used:

L Evaluate (make-random-siate t) tocreatea random-state object.
2. Write that object to a file, using print (page 296), for later use.

3. Whenever the program is to be run, first use read (page 291) to create a copy of the random-state
object from the printed representation in the file. Then use the random-state object newly created
by the read operation to initialize the random-number generator for the program.

It is for the sake of this procedure for reproducible execution that implementations are required to provxde a
read/print syntax for objects of type random-state.
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random-state-p object [Function] .

random-state-p is true if its argument is a random-state object, and otherwise is false.
(random-state-p x) <=> (typep x ’'random-state)

12.9. Implementation Parameters

The values of the named constants defined in this section are implementation-dependent. They may be
useful for parameterizing code in some situations.

most-positive-fixnum [Constani]
most-negative-fixnum [Constani]

The value of most-positive-fixnum is that fixnum closest in value to positive infinity
provided by the implementation.

The value of most-negative-fixnum is that fixnum closest in value to negative infinity
provided by the implementation.

most-positive-short-float [Constani)
least-positive short-float ‘ [Constani]
least-negative-short-float [Constani]
most-negative-short-float [Constani]

The value of most-positive-short-float is that short-format floating-point number closest
in value to positive infinity provided by the implementation.

The value of least-positive-short-float is that positive short-format floating-point
number closest in value to zero provided by the implementation.

The value of least-negative-short-float is that negative short-format floating-point
number closest in value to zero provided by the implementation.

The value of most-negative-short-float is that short-format floating-point number closest
in value to negative infinity provided by the implementation.

most-positive-single-float [Constani]

least-positive-single-float ' [Constani]
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least-negative-single-float [Constani]
most—negativé-sing'le-f’loat [Constani]
most-positive-double-float ‘ [Constani]
Teast-positive-double-float [Constani}
least-negative-double-float ‘ [Constani]
most-negative-double-float [Constani]
most-positive-long-float [Constani]
least-positive-long-float » ' [Constani]
least-negative-long-float [Constani]
most-negative-long-float . [Constani]

These are analogous to the constants defined above for short-format floating-point numbers.

short-float-epsilon [Constani]
single-float-epsilon [Constani]
double-float-epsilon [Constani]
long-float-epsilon [Constani]

These constants indicate, for each .ﬂoating-point format, the smallest positive number e of that
format such that ~
(not (= (float 1 ¢e) (+ (float 1 e) e)))

short-float-negative-epsilon ' ' [Constani]
single-float-negative-epsilon [Constani]
double-float-negative-epsilon ‘ . [Constani]

long-float-negative-epsilon , [Constani]
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These constants indicate, for each floating-point format, the smallest positive number e of that
format such that
(not (= (float 1 e) (- (float 1 ¢) e)))
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Chapter 13

Characters

COMMON LISP provides a character data type; objects of this type represent printed symbols such as letters.

Every character has three attributes: code, bits, and font. The code attribute is intended to distinguish
among the printed glyphs and formatting functions for characters. The bits attribute allows extra flags to be
associated with a character. The font attribute permits a specification of the style of the glyphs (such as
italics). "

char-code-limit . [Constani]

The value of char-code-11imit is a non-negative integer that is the upper exclusive bound on
values produced by the function char-code (page 188), which returns the code component of a
given character; that is, the values returned by char-code are non-negative and strictly less than
the value of char-code-11imit.

char-font-limit [Constani)

The value of char-font-11imit is a non-negative integer that is the upper exclusive bound on
values produced by the function char-font (page 188), which returns the font component of a
given character; that is, the values returned by char-font are non-negative and strictly less than
the value of char-font-1imit.

Implementation note: No CoMMON Lisp implementation is required to support non-zero font attributes; if it
does not, then char-font-1imit should be 1.

char-bits-limit ' : [Constani]

The value of char-bits-11imit is a non-negative integer that is the upper exclusive bound on
values produced by the function char-bits (page 188), which returns the bits component of a
given character; that is, the values returned by char-b1its are non-negative and strictly less than
the value of char-bits-11imit. Note that the value of char-bits-11imit will be a power of
two.




184 COMMON LISP REFERENCE MANUAL

Implementation note: No CoMMON Lisp implementation is required to support non-zero bits attributes; if it
does not, then char-bits-1imit should be 1.

13.1. Predicates on Characters

The predicate characterp (page 60) may be used to determine whether any LISP object is a character
object.

standard-char-p char [Function}
The argument char must be a character object. standard-char-p is true if the argument is a
“standard character”, that is, one of the ninety-five ASCII printing characters or <return>. If the
argument is a non-standard character, then standard-char-p is false.

Note in particular that any character with a non-zero bits or font attribute is non-standard.

graphic-char-p char ' [Function]
The argument char must be a character object. graphic-char-p is true if the argument is a
“graphic” (printing) character, and false if it is a “non-graphic” (formatting or control) character.
Graphic characters have a standard textual representation as a single glyph, such as “A” or “*” or
“=”, By convention, the space character is considered to be graphic. Of the standard characters (as
defined by standard-char-p), all but <return> are graphic. If an implementation provides any
of the semi-standard characters <backspace>, {tab>, <rubout>, <linefeed>, and <{page>, they are not
graphic.

Graphic characters of font 0 may be assumed all to be of the same width when printed; programs
may depend on this for purposes of columnar formatting. Non-graphic characters and characters of
other fonts may be of varying widths.

Any character with a non-zero bits attribute is non-graphic.

string-char-p char - ‘ [Function]
The argument char must be a character object. string-char-p is true if char can be stored into
a string, and otherwise is false. Any character that satisfies standard-char-p also satisfies
string-char-p; others may also.

alpha-char-p char . [Function]
The argument char must be a character object. alpha-char-p is true if the argument is an
alphabetic character, and otherwise is false.

If a character is alphabetic, then it is perforce graphic. Therefore any character with a non-zero bits
attribute cannot be alphabetic. Whether a character is alphabetic may depend on its font number.

Of the standard characters (as defined by standard-char-p), the letters “A” through “Z” and
“a” through “z” are alphabetic.
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upper-case-p char [Function] .
lower-case-p char [Function]
both-case-p char [Function]

digit-char-p char &optional (radix 10.) ' [Function] -
The argument char must be a character object, and radix must be a non-negative integer. If charis -
not a digit of the radix specified by radix, then digit-char-p is false; otherwise it returns a ..

The argumént char must be a character object. upper-case-p is true if the argument is an
upper-case (majuscule) character, and otherwise is false. Tower-case-p is true if the argument is
an lower-case (minuscule) character, and otherwise is false.

both-case-p is true if the argument is upper-case and there is a corresponding lower-case
character (which can be obtained using char-downcase (page 189)), or if the argument is lower-
case and there is a corresponding upper-case character (which can be obtained using
char-upcase (page 189)).

If a character is either upper-case or lower-case, it is necessarily alphabetic. However, it is
permissible in theory for an alphabetic character to be neither uppercase nor lowercase (in a
non-Roman font, for example).

Of the standard characters (as defined by standard-char-p), the letters “A” through “Z” are
upper-case and “a” through *“z” are lower-case.

non-negative integer that is the “weight” of char in that radix.
Digits are necessarily graphic characters.

Of the standard characters (as defined by standard-char-p), the characters “0” through “9”,

“A” through “Z”, and “a” through “2” are digits. The weights of “0” through “9” are the integers

0 through 9, and of “A” through “Z” (and also “a” through “z”) are 10 through 3S.
digit-char-p returns the weight for one of these digits if and only if its weight is strictly less
than radix. Thus, for example, the digits for radix 16 are “0123456789ABCDEF™.

Here is an example of the use of digit-char-p:

(defun convert-string-to-integer (str &optional (radix 10))
"Given a digit string and optional radix, return an integer."
(do ((j O (+3]1)) <

(n 0 (+ (* n radix) _

(or (digit-char-p (char str j) radix)

(ferror "Bad radix-~D digit: ~C"
radix
(char str j))))))
((= 3 (length str)) n)))

alphanumericp char [Function]

The argument char must be a character object. alphanumericp is true if charis either alphabetic
or numeric. By definition,
(alphanumericp x) <=> (or (a'lpha char-p x) (d1g1t char-p x))
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Alphanumeric characters are therefore necessarily graphic (as defined by graphic-char-p
(page 184)).

Of the standard characters (as defined by standard-char-p), the characters “0” through “9”,
“A” through “Z”, and “a” through “z” are alphanumeric.

char= character &rest more-characters [Function]
char/= character &rest more-characters [Function]
char< character &rest more-characters [Function]
char> character &rest more-characters . [Function]
char<= character &rest more-characters [Function]
char>= character &rest more-characters [Function]

The arguments must all be character objects. These functions compare the objects using the
implementation-dependent total ordering on characters, in a manner analogous to numeric
comparisons by = (page 153) and related function.

The total ordering on characters is guaranteed to have the following properties:

o The standard alphanumeric characters'obey the following partial ordering:
A<B<C<D<E<F<G<H<I<J<K<L<M<N<0O<P<Q<R<S<T<U<V<W<X<Y<Z
a<b<c<d<e<f<g<h<i<j<k<] <m<n<o<p<q<r<s<t<u<v<w<x<y<z
0<1<2<3<4<5<6<7<8<9
either 9<A or Z<0
either 9<a or z<0

This implies that alphabetic ordering holds within each case (upper and lower), and that
the digits as a group are not interleaved with letters. However, the ordering or possible
interleaving of upper-case letters and lower-case letters is unspecified. (Note that both
the ASCII and the EBCDIC character sets conform to this specification. As it happens,
neither ordering interleaves upper-case and lower-case letters: in the ASCHI ordering,
9<A and Z<a, whereas in the EBCDIC ordering z<A and Z<0.)

o If two characters have the same bits and font attributes, then their ordering by char< is
consistent with the numerical ordering by the predicate < (page 153) on their code
attributes.

o If two characters differ in any attribute (code, bits, or font) then they are different.

The total ordering is not necessarily the same as the total ordering on the integers produced by
applying char-int (page 190) to the characters (although it is a reasonable implementation
technique to use that ordering). '

While alphabetic characters of a given case must be properly ordered, they need not be contiguous;
thus (char<= #\a x #\z) is not a valid way of determining whether or not x is a lower-case
letter. That is why a separate Tower-case-p (page 185) predicate is provided.

For example:
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There is no requirement that (eq c1 c2) be true merely because (char=

(char= #\d #\d) istrue

(char/= #\d #\d) is false

(char= #\d #\x) isfalse

(char/= #\d #\x) istrue

(char= #\d #\D) isfalse

(char/= #\d #\D) istrue

(char= #\d #\d #\d #\d) istrue
(char/= #\d #\d #\d #\d) is false
(char= #\d #\d #\x #\d) is false
(char/= #\d #\d #\x #\d) is false
(char= #\d #\y #\x #\c) isfalse
(char/= #\d #\y #\x #\c) istrue
(char= #\d #\c #\d) isfalse
(char/= #\d #\c #\d) isfalse
(char< #\d #\x) istrue

(char<= #\d #\x) istrue

(char< #\d #\d) isfalse

(char<= #\d #\d) istrue

(char< #\a #\e #\y #\z) istrue
(char<= #\a #\e #\y #\z) istrue
(char< #\a #\e #\e #\y) isfalse
(char<= #\a #\e #\e #\y) istrue
(char> #\e #\d) istrue

(char>= #\e #\d) istrue

(char> #\d #\c #\b #\a) istrue
(char>= #\d #\c #\b #\a) istrue
(char> #\d #\d #\c #\a) is false
(char>= #\d #\d #\c #\a) istrue

(char> #\e #\d #\b #\c #\a) is false
(char>= #\e #\d #\b #\c #\a) isfalse

(char> #\z #\A) may be true or false
(char> #\Z #\a) may be true or false

187

cl c2) is true.

While eq may distinguish two character objects that char= does not, it is distinguishing them not
as characters, but in some sense on the basis of a lower-level implementation characteristic. (Of
course, if (eq c1 c2) is true then one may expect (char= c1 c2) to be true.) However, eq1l
(page 62) and equal (page 62) compare character objects in the same way that char = does.

char-equal character &rest more-characters
char-not-equal character &rest more-characters
char-lessp character &rest more-characters
char-greaterp character &rest more-characters

char-not-greaterp character &rest more-characters

char-not-lessp character &rest more-characters
The predicate char-equal is like char=, and similarly for the others, except according to a
different ordering such that differences of bits attributes and case are ignored, and font information
is taken into account in an implementation-dependent manner. For the standard characters, the
ordering is such that A=a, B=b, and so on, up to Z=z, and furthermore either 9<A or Z<0.
For example:

[Function]
[Function}
[Function]
[Function]
[Function]
[Function]
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(char-equal #\A #\a) istrue
(char= #\A #\a) isfalse
(char-equal #\A #\Control-A) istrue
The ordering may depend on the font information. For example, an implementation might decree
: that (char-equal #\p #\p) betrue, but that (char-equal #\p #\x) be false (where #\#
is a lower-case “p” in some font). Assuming italics to be in font 1 and the Greek alphabet in font 2,
this is the same as saying that (char-equal #0\p #1\p) may be true and at the same time

(char-equal #0\p #2\p) may be false.

13.2. Character Construction and Selection

character object [Function)
The function character coerces its argument to he a character if possible; see coerce (page
40).

(character x) <=> (coerce x ’character)

char-code char ' [Function]
The ‘argument char must be a character object. char-code returns the code attribute of the
character object; this will be a non-negative integer less than the (normal) value of the variable
char-code-1imit (page183).

char-bits char [Function]
The argument char must be a character object. char-bits returns the birs attribute of the
character object; this will be a non-negative integer less than the (normal) value of the variable
char-bits-1imit (page 183).

char-font char [Function]
The argument char must be a character object. char-font returns the font attribute of the
character object; this will be a non-negative integer less than the (normal) value of the variable
char-font-1imit (page 183).

code-char code &optional (bits 0) (font 0) ' [Function)
All three arguments must be non-negative integers. If it is possible in the implementation to
construct a character object whose code attribute is code, whose bits attribute is bits, and whose font
attribute is font, then such an object is returned; otherwise ni1 is returned.

For any integers ¢, b, and f; if (code-char ¢ b f) isnotnil then

(char-code (code-char ¢ b f)) => ¢
(char-bits (code-char ¢ b f)) => b
(char-font (code-char ¢ b f)) => f

If the font and bits attributes of a character object x are zero, then it is the case that
(char= (code-char (char-code c)) c) istrue
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make-char char &optional (bits 0) (font 0) [Function]

The argument char must be a character, and bits and font must be non-negative integers. If it is
possible in the implementation to construct a character object whose code attribute is that of char,
whose bits attribute is bits, and whose font attribute is font, then such an object is returned;
otherwise ni1 is returned.

If bits and font are zero, then make-char cannot fail. This implies that for every character object
one can “turn off” its bits and font attributes. ’

13.3. Character Conversions

char-upcase char [Function)
char-downcase char : [Function]

The argument char must be a character object. char-upcase attempts to convert its argument to
an upper-case equivalent; char-downcase attempts to convert to lower case.

char-upcase returns a character object with the same font and bits attributes as char, but with .
possibly a different code attribute. If the code is different from char’s, then the predicate
lower-case-p (page 185) is true of char, and upper-case-p (page 185) is true of the result
character. Moreover, if (char= (char-upcase x) x) is not true, then it is true that

(char= (char-downcase (char-upcase x)) x)

Similarly, char-downcase returns a character object with the same font and bits attributes as
char, but with possibly a different code attribute. If the code is different from char'’s, then the
predicate upper-case-p (page 185) is true of char, and 1ower-case-p (page 185) is true of
the result character. Moreover, if (char= (char-downcase x) x) is not true, then it is true
that
(char= (char-upcase (char-downcase x)) x)

Note that the action of char-upcase and char-downcase may depend on the bits and font
attribute of the character. In particular, they have no effect on a character with a non-zero bits
attribute, because such characters are by definition not alphabetic. See alpha-char-p (page
184).

digit-char weight &optional (radix 10.) (bits 0) (font 0) [Function]

All arguments must be integers. digit-char determines whether or not it is possible to construct
a character object whose bits attribute is bits, whose font attribute is font, and whose code is such
that the result character has the weight weight when considered as a digit of the radix radix (see the
predicate digit-char-p (page 185)). It returns such a character if that is possible, and
otherwise returns ni1.

digit-char cannot return n1i1 if bits and font are zero, radix is between 2 and 36 inclusive, and
weight is non-negative and less than radix.

If more than one character object can encode such a weight in the given radix, one shall be chosen
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consistently by any given implementation; moreover, among the standard characters upper-case
letters are preferred to lower-case letters.

For example:
(digit-char 7) => #\7
* (digit-char 12) => nil
’ (digit-char 12 16) => #\C ;not #\c

(digit-char 6 2) => nil
(digit-char 1 2) => #\1

char-int char _ [Function]
The argument char must be a character object. char-int returns a non-negative integer encoding
the character object.

If the font and bits attributes of char are zero, then char-int returns the same integer
char-code would. Also,

(char= c1 c2) <=> (= (char-int c1) (char-int c2))
for characters c1 and c2. '

This function is provided primarily for the purpose of hashing characters.

int-char integer ' [Function]
The argument must be a non-negative integer. int-char returns a character object ¢ such that
(char-int c) is equal to infeger, if possible; otherwise int-char returns false.

char-name char _ [Function]
The argument char must be a character object. - If the character has a name, then that name (a
symbol) is returned; otherwise ni1 is returned. All characters that have zero font and bits
attributes and that are non-graphic (do not satisfy the predicate graphic-char-p (page 184))
have names. Graphic characters may or may not have names. -

The standard characters <return> and <space> have the respective names return and space. The
optional characters <tab>, {page>, <rubout>, <linefeed>, and <backspace> have the respective names
tab, page, rubout, 1inefeed, and backspace.

Characters that have names can be notated as “#\” followed by the name. (See section 22.1.4.)
Although the name may be written in any case, it is considered stylish to capitalize it thus:
“#\Space”. . ’ :

char-name will only locate “simple” character names; it will not construct names such as
“Control-Space” on the basis of the character’s bits attribute.

name-char sym [Function]
The argument sym must be a symbol. If the symbol is the name of a character object, that object is
returned; otherwise n1i1 is returned.
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13.4. Character Control-Bit Functions

CoMMON LIsP provides explicit names for four bits of the bits attribute: Control, Meta, Hyper, and Super.
The following definitions are provided for manipulating these. Each COMMON LISP implementation provides
these functions for compatibility, even if it does not support any or all of the bits named below.

char-control-bit [Constani)
char-meta-bit ' ‘ [Constani]
char-super-bit [Constani]
char-hyper-bit [Constani]

The values of these named constants are the “weights” (as integers) for the four named control bits.
The weight of the control bit is 1; of the meta bit, 2; of the super bit, 4; and of the hyper bit, 8.

If a given implementation of COMMON LISP does not support a pérticular bit, then the
‘corresponding variable is zero instead. '

char-bit char name : [Function]
char-bit takes a character object char and the name of a bit, and returns non-ni1 if the bit of
that name is set in char, or nil if the bit is not set in char. Valid values for name are
implementation-dependent, but typically are : control, :meta, :hyper, and : super.
For example:

(char-bit #\Control-X :control) => frue

setf (page 72) may be used with char-b1it, provided that the argument char is specified by a
form that is a place form acceptable to setf, to modify a bit of the character stored in that place.
The effect is to perform a set-char-bit (page 191) operation and then store the result back
into the place.

set-char-bit char name newvalue [Function]
char-bit takes a character object char, the name of a bit, and a flag. A character is returned that
is just like char except that the named bit is set or reset according to whether newvalue is non-ni1l
or nil. Valid values for name are implementation-dependent, but typically are :control,
:meta, :hyper, and :super.
For example:

(set-char-bit #\X :control t) => #\Control-X
(set-char-bit #\Control-X :control t) => #\Control-X
(set-char-bit #\Control-X :control nil) => #\X
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Chapter 14

Sequences

The type sequence encompasses both lists and vectors (one-dimensional arrays). While these are
different data structures with different structural properties leading to different algorithmic uses, they do have
a common property: each contains an ordered set of elements. Note that ni1 is considered to be a sequence,
of length zero.

There are some operations that are useful on both lists and arrays because they deal with ordered sets of
elements. One may ask the number of elements, reverse the ordering, extract a subsequence, and so on. For
such purposes COMMON LISP provides a set of generic functions on sequences:

elt reverse map remove

Tength nreverse some remove-duplicates
subseq concatenate every delete

copy-seq position notany delete-duplicates
fill find notevery substitute
replace sort reduce nsubstitute

count merge search mismatch

Some of these operations come in more than one version. Such versions are indicated by adding a suffix (or,
occasionally, a prefix) to the basic name of the operation. In addition, many operations accept one or more
optional keyword arguments that can modify the operation in various ways.

If the operation requires testing sequence elements according to some criterion, then the criterion may be
specified in one of two ways. The basic operation accepts an item, and elements are tested for being eq1 to
that item. (A test other than eq1 can be specified by the :test or :test-not keyword.) The variants
formed by adding “-if” and “-if-not” to the basic operation name do not take an item, but instead a
one-argument predicate, and elements are tested for satisfying or not satisfying the predicate. As an example,
(remove ilem sequence)

returns a copy of sequence from which all elements eq1 to izem have been removed;
(remove item sequence :test #'equal)

returns a copy of sequence from which all elements equa? to ifem have been removed;
(remove-if #'numberp sequence)

returns a copy of sequence from which all numbers have been removed.

If an operation tests elements of a sequence in any manner, the keyword argument :key, if not ni1,
should be a function of one argument that will extract from an element the part to be tested in place of the
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whole element. For example, the effect of the MACLISP expression (assq item seq) could:be obtained
by

(find item sequence :test #'eq :key #'car)
JThis searches for the first element of sequence whose caris eq to item.

For some operations it can be useful to specify the direction in which the sequence is conceptually
processed. In this case the basic operation normally processes the sequence in the forward direction, and
processing in the reverse direction is indicated by a non-ni1 value for the keyword argument : from-end.
(The processing order specified by the : from-end is purely conceptual. Depending on the object to be
processed and on the implementation, the actual processing order may be different. For this reason a
user-supplied fest function should be free of side effects.)

Many operations allow the specification of a subsequence to be operated upon. ‘Such operations have
keyword arguments called :start and : end. These arguments should be integer indices into the sequence,
with start<end (it is an error if start>end). They indicate the subsequence starting with and including element
start and up to but excluding element end. The length of the subsequence is therefore end— start. If start is
omitted it defaults to zero, and if end is omitted or ni1 it defaults to the length of the sequence; therefore if
both are omitted the entire sequence is processed by default. For the most part, subsequence specification is
permitted purely for the sake of efficiency; one can simply call subseq instead to extract the subsequence
before operating on it. Note, however, that operatmns that calculate indices return indices into the original
sequence, not into the subsequence:

(position #\b "foobar" :start 2 :end 5) => 3
(position #\b (subseq "foobar"™ 2 5)) => 1

If two sequences are involved, then the keyword arguments :starti, :end1, :start2, and :end2 are
used to specify separate subsequences for each sequence.

For some functions, notably remove and delete, the keyword argument : count is used to specify how
many occurrences of the item should be affected. If this is ni1 or is not supplied, all matching items are
affected.

In the following function descriptidns, an element x of a sequence “satisfies the test” if any of the following
holds:

e A basic function was called, testfn was spec1ﬁed by the keyword :test, and ( fun call testfn
item (keyfn x)) is true.

e A basic function was called, tesyfn was specified by the keyword test-not, and (funcall
testfn item (keyfn x)) is false.

e An “-if” function was called, and (funcall predicate (keyfn x)) is true.

e An “-if-not” function was called, and (funcall predicate (keyfn x)) is false.

In each case keyfn is the value of the : key keyword argument (the default being Lhe identity function). See,
for example, remove (page 199).
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In the following function descriptions, two elements x and y taken from sequences “match” if either of the
following holds:

o testfn was specified by the keyword :test, and (funcall testfn (keym x) (keyfn y)) is
true. .

e testfn was specified by the keyword :test-not, and (funcall testfn (keyfn x) (keyfn
y)) is false. .

See, for example, search (page 203).

As a rule, whenever a sequence function must construct and return a new vector, it always returns a simple
vector (see section 2.5).

14.1. Simple Sequence Functions

elt sequence index " [Function]
This returns the element of sequence specified by index, which must be a non-negative integer less
than the length of the sequence as returned by 1ength (page 196). The first element of a sequence
has index 0.

(Note that e1t observes the fill pointer in those vectors that have fill pointers. The array-specific
function aref (page 230) may be used to access vector elements that are beyond the vector’s fill
pointer.)

setf (page 72) may be used with elt to destructively replace a sequence element with a new
value. '

subseq sequence start &optional end [Function)
This returns the subsequence of sequence specified by start and end. subseq always allocates a
new sequence for a result; it never shares storage with an old sequence. The result subsequence is
always of the same type as the argument sequence.

setf (page 72) may be used with subseq to destructively replace a subsequence with a sequence
of new values; see also replace (page 199).

copy-seq sequence . ' [Function]
A copy is made of the argument sequence; the result is equa? to the argument but not eq to it.
(copy-seq x) <=> (subseq x 0)
but the name copy-seq is more perspicuous when applicable.
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length sequence [Function]
The number of elements in sequence is returned as a non-negative integer. If the sequence is a
vector with a fill pointer, the “active length” as specified by the fill pointer is returned. See section
17.6 (page 234).

reverse seguence ' [Function]
The result is a new sequence of the same kind as seguence, containing the same elements but in
reverse order. The argument is not modified.

nreverse sequence - [Function]
The result is a sequence containing the same elements as sequence but in reverse order. The
argument may be destroyed and re-used to produce the result. The result may or may not be eq to
the argument, so it is usually wise tc say something like (setq x (nreverse x)), because
simply (nreverse x) is not guaranteed to leave a reversed value in x.

make-sequence fype size &key :initial-element [Function]
This returns a sequence of type fype and of length size, each of whose elements has been initialized
tothe :initial-element argument. Ifspecified, the :initial-el ement argument must be
an object that can be an element of a sequence of type tfype.
For example:

(make~-sequence ’'(vector double-float) 100
:initial-element 1d0)

Ifan :initial-element argument is not specified, then the sequence will be initialized in an
implementation-dependent way.

14.2. Concatenating, Mapping, and Reducing Sequences

concatenate result-type &rest sequences [Function]
The result is a new sequence that contains all the elements of all the sequences in order. All of the
sequences are copied from; the result does not share any structure with any of the argument
sequences (in this concatenate differs from append). The type of the result is specified by
result-type, which must be a subtype of sequence, as for the function coerce (page 40). It must
be possible for every element of the argument sequences to be an element of a sequence of type
result-type. .

If only one sequence argument is provided, and it has the type specified by result-type,
concatenate is required to copy the argument rather than simply returning it. If a copy is not
required, but only possible type-conversion, then the coerce (page 40) function may be
appropriate.
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map result-type function sequence &rest more-sequences [Function)
The function must take as many arguments as there are sequences provided; at least one sequence
must be provided. The result of map is a sequence such that element j is the result of applying
function to element j of each of the argument sequences. The result sequence is as long as the
shortest of the input sequences.

If the function has side-effects, it can count on being called first on all the elements numbered 0,
then on all those numbered 1, and so on.

The type of the result sequence is specified by the argument result-type, as for the function coerce
_ (page 40). In addition, one may specify ni1 for the result type, meaning that no result sequence is

to be produced; in this case the function is invoked only for effect, and map returns ni1. This gives
" an effect similar to that of mapc (page 98).

Compatibility note: In MacLisp, Lisp Machine Lisp, INTERLISP, and indeed even Lisp 1.5, the function map
has always meant a non-value-returning version. However, standard computer science literature, and in
particular the recent wave of papers on “functional programming”, have come to use map to mean what in the
past Lisp people have called mapcar. To simplify things henceforth, CoMMoON Lisp follows current usage, and
what was formerly called map is named map1 (page 98) in CoMMON Lisp.

For example:
(map 'list #'- "(1 2 3 4)) => (-1 -2 -3 -4)
(map 'string ‘
#'(lambda (x) (if (oddp x) #\1 #\0))

(12 3 4))
=> "1010"
some predicale sequence &rest more-sequences ' [Function]
every predicate sequence &rest more-sequences [Function]
notany predicate sequence &rest more-sequences _ [Function]
notevery predicate sequence &rest more-sequences fFunction]

These are all predicates. The predicate must take as many arguments as there are sequences
provided. The predicate is first applied to the elements with index 0 in each of the sequences, and
possibly then to the elements with index 1, and so on, until a termination criterion is met or the end
of the shortest of the sequences is reached.

If the predicate has side-effects, it can count on being called first on all the elements numbered 0,
then on all those numbered 1, and so on.

some returns as soon as any invocation of predicate returns a non-ni1 value; some returns that
value. If the end of a sequence is reached, some returns nil. Thus, considered as a predicate, it is
true if some invocation of predicate s true.

every returns nil as soon as any invocation of predicate returns ni1. If the end of a sequence is
reached, every returns a non-ni1 value. Thus, considered as a predicate, it is true if every
invocation of predicate is true.

notany returns ni1l as soon as any invocation of predicate returns a non-ni1 value. If the end of
a sequence is reached, notany returns a non-ni1 value. Thus, considered as a predicate, it is true
if no invocation of predicate is true. '
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notevery returns a non-nil value as soon as any invocation of predicate returns ni1. If the end
of a sequence is reached, notevery returns nil. Thus, considered as a predicate, it is true if not

every invocation of predicate is true.

* Compatibility note: The order of the arguments here is not compatible with INTERLISP and Lisp Machine Lisp.
This is to stress the similarity of these functions to map. The functions are therefore extended here to functions
of more than one argument, and multiple sequences.

reduce function sequence &key :from-end :start :end :initial-value [Function]
The reduce function combines all the elements of a sequence using a binary operation; for
example, using + one can add up all the elements.

The specified subsequence of the sequence is combined or “reduced” using the finction, which
must accept two arguments. The reduction is left-associative, unless the : from-end argument is
true (it defaults to ni1), in which case it is right-associative. If an ;initial-value argument is i
given, it is logically placed before the subsequence (after it if : from-end is true) and included in
the reduction operation.

If the specified subsequence contains exactly one element and no : initial-value is given, then
that element is returned and the finction is not called. If the specified subsequence is empty and an
:initial-value isgiven, then the : initial-value is returned and the function is not called.

If the specified subsequence is. empty and no :initial-value is given, then the function is
called with zero arguments, and reduce returns whatever the function does. (This is the only case
where the function is called with other than two arguments.)

For example:

(reduce #'+ '(1 2 3 4)) => 10 '

(reduce #'--'(1 2 3 4)) <=> (- (- (- 12) 3) 4) => -8

(reduce #'- (1 2 3 4) :from-end t) ; Alternating sum.
<=> (- 1 (-2 (-3 4))) => -2 :

(reduce #'+ '()) => 0

(reduce #'+ '(3)) => 3

(reduce #'+ '(foo)) => foo

(reduce #'1ist '(1 2 3 4)) => (((1 2) 3) 4)

(reduce #'1ist "(1 2 3 4) :from-end t) => (1 (2 (3 4)))

(reduce #°1ist '(1 2 3 4) :initial-value 'foo)

=> ((((foo 1) 2) 3) 4)
(reduce #'1ist '(1 23 4)
:from-end t :initial-value 'foo)
=> (1 (2 (3 (4 foo))))
If the function produces side effects, the order of the calls to the function can be correctly predicted
from the reduction ordering demonstrated above.

The name “reduce” for this function is borrowed from APL.
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14.3. Modifying Sequences

fi11 sequence item &key :start :end - [Function)

The sequence is destructively modified by replacing the elements of the subsequence specified by
the :start and :end parameters with the item. The item may be any LISP object, but must be a
suitable element for the sequence. The item is stored into all specified components of the sequence,
beginning at the one specified by the : start index (which defaults to zero), and up to but not
including the one specified by the :end index (whlch defaults to the length of the sequence).
f1i11 returns the modified sequence.
For example:

(setq x (vector 'a 'b 'c ’'d 'e)) => #(a b c d e)

(fi11 x 'z :start 1 :end 3) => #(a z z d e)

andnow x => #(a z z d e)

(fi11 x 'p) => #(p p P P P)
andnow x => #(p pp p pP)

replace sequencel sequence? &key :startl :endl :start2 :end2 . [Function)
The sequence sequencel is destructively modified by copying successive elements into it from
sequence2. The elements of sequence2 must be of a type that may be stored into sequencel. The
subsequence of sequence? specified by :start2 and :end2 is copied into the subsequence of
sequencel specified by :start1 and :end1. (The arguments :start1 and :start2 default to
zero. The arguments :end1 and :end2 default to nil, meaning the end of the appropriate
sequence.) If these subsequences are not of the same length, then the shorter length determines
how many elements are copied; the extra elements near the end of the longer subsequence are not
involved in the operation. The number of elements copied may be expressed as:

(min (- endl startl) (- end2 start2))

The value returned by rep1ace is the modified sequencel.

If sequencel and sequence2 are the same object and the region being modified overlaps with the
region being copied from, then it is as if the entire source region were copied to another place and
only then copied back into the target region.

remove ifem sequence &key :from-end :test :test-not :start :end [Function]

:count :key
remove-if fest sequence &key :from-end :start :end :count :key [Function]
remove-if-not test sequence &ey :from-end :start :end :count :key [Function]

The result is a sequence of the same kind as the argument sequence that has the same elements
except that those in the subsequence delimited by :start and :end and satisfying the test (see
above) have been removed. This is a nondestructive operation; the result is a copy of the input
sequence, save that some elements are not copied.

The : count argument, if supplied, limits the number of elements removed; if more than : count
elements satisfy the test, only the leftmost : count such elements are removed.
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A non-nil :from-end specification matters only when the :count argument is provided; in
that case only the rightmost : count elements satisfying the test are removed.

For example:
(remove 4
(remove 4
(remove 4

= (12
(remove 3 '(1 2 4
(remove-if #'oddp
(remove-if #'evenp

=> (12 4135)

The result of remove may share with the argument sequence; a list result may share a tail w1th an
input list, and the result may be eq to the input sequence if no elements need to be removed.

)) => (1 213 5)
) :count 1) => (1 2 1 3 4 5)
) :count 1 :from-end t)

3 45) :test #>) => (4 3 4 5)
(1241345))=>(244)
'(1241345) :count 1 :from-end t)

delete item sequence &key :from-end :test :test-not :start :end [Function]

:count :key

delete-if fest sequence &key :from-end :start :end :count :key [Function]
delete-if-not fest sequence &ey :from-end :start :end :count :key [Function)

This is the destructive counterpart to remove. The result is a sequence of the same kind as the
argument sequence that has the same elements except that those in the subsequence delimited by
:start and :end and satisfying the test (see above) have been deleted. This is a destructive
operation. The argument sequence may be destroyed and used to construct the result; however, the
result may or may not be eq to sequence.

The :count argument, if supplied, limits the number of elements deleted; if more than : count
elements satisfy the test, only the leftmost : count such are deleted.

A non-nil :from-end specification matters only when the :count argument is provided; in
that case only the rightmost : count elements satisfying the test are deleted.

For example:

(delete 4 °
(delete 4 °
(delete 4 °*
= (12
(delete 3 "(1 2 4
(delete-if #'oddp
(delete-if #’evenp
= (12 41315)
Compatibility note: In MACLISP, the delete function uses an equal comparison rather than eq1, which is
the default test for delete in CoMMON Lisp. Where in MACLISP one would write (delete x y) one must
in CoMMON Lisp write (delete x y :test #'equal).

345))=>(1213)5)
3 45) :count 1) => (1 2 1 3 45)
3 45) :count 1 :from-end t)

4 5) :test #'>) => (4 3 4 5)
241345))=>(21414)
1241345) :count 1 :from-end t)

remove-duplicates seguence &ey :from-end :test :test-not [Function]

:start :end :key

delete-duplicates sequence &ey :from-end :test :test-not [Function]

:start :end :key
The elements of sequence are compared pairwise, and if any two match then the one occurring
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earlier in the sequence is discarded (but if the : from-end argument is true then the one later in .
the sequence is discarded). The result is a sequence of the same kind as the argument sequence
with enough elements removed so that no two of the remaining elements match.

remove-duplicates is the non-destructive version of this operation. The result of
remove-duplicates may share with the argument sequence; a list result may share a tail with an
input list, and the result may be eq to the input sequence if no elements need to be removed.

delete-duplicates may destroy the argument seguence.

Some examples:

(remove-duplicates '(a b cbdde)) =>(acbde)
(remove-duplicates '(a b c b dde) :from-end t) => (a b c d e)
(remove-duplicates *((foo #\a) (bar #\%) (baz #\A))
:test #'char-equal :key #'cadr)
=> ((bar #\%) (baz #\A))
(remove-duplicates '((foo #\a) (bar #\%) (baz #\A))
:test #'char-equal :key #'cadr :from-end t)
=> ((foo #\a) (bar #\%))

These functions are useful for converting a sequence into a canonical form suitable for representing

‘a set.
substitute newitem olditem sequence &key :from-end :test :test-not [Function]
' :start :end :count :key
substitute-if newitem test sequence &ey :from-end :start :end [Function]
:count :key
substitute-if-not newitem test sequence &key :from-end :start :end [Function)

, :count :key
The result is a sequence of the same kind as the argument sequence that has the same elements
except that those in the subsequence delimited by :start and :end and satisfying the test (see
above) have been replaced by newitem. This is a nondestructive operation; the result is a copy of
the input sequence, save that some elements are changed.

The :count argument, if supplied, limits the number of elements altered; if more than : count
elements satisfy the test, only the leftmost : count such are replaced.

A non-nil :from-end specification matters only when the :count argument is provided; in
that case only the rightmost : count elements satisfying the test are removed.

For example:
(substitute 9 4 '(12 41345))=>(129132925)
(substitute 9 4 (12 413 45) :count 1) => (12 913 45)
(substitute 9 4 (12 413 4 5) :count 1 :from-end t)
=> (1241395)
(substitute 9 3 (12 413 45) :test #'>) => (99 493 45) .
! 2 4

(substitute-if 9 #'oddp
(substitute-if 9 #’evenp
=> (1241395)

The result of substitute may share with the argument sequence; a list result may share a tail

1345))=>(924994029)
1241345) :count 1 :from-end t)
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with an input list, and the result may be eq to the input sequence if no elements need to be

changed.
nsubstitute newitem olditem sequence &key :from-end :test :test-not [Function]
:start :end :count :key
nsubstitute-if newitem test sequence &key :from-end :start :end [Function]
' i :count :key '
nsubstitute-if-not newitem test sequence &key :from-end :start :end [Function]
:count :key

This is the destructive counterpart to substitute. The result is a sequence of the same kind as
the argument sequence that has the same elements except that those in the subsequence delimited
by :start and :end and satisfying the test (see above) have been replaced by newitem. This is a
destructive operation. The argument sequence may be destroyed and used to construct the result;
however, the result may or may not be eq to sequence.

14.4. Searching Sequences for Items

find item sequence &ey :from-end :test :test-not :start :end :key [Function)
find-if test sequence &key :from-end :start :end :key [Function)
find-if-not test sequence &key :from-end :start :end :key [Function)

If the sequence contains an element satisfying the test, then the leftmost such element is returned;
otherwise ni1 is returned.

If :start and :end keyword arguments are given, only the specified subsequence of sequence is
searched.

If anon-nil :from-end keyword argument is specified, then the result is the rightmost element
satisfying the test.

position item sequence &key :from-end :test :test-not :start :end :key [Function]

position-if fest sequence & ey :from-end :start :end :key [Function]

position~if-not fest sequence &key :from-end :start :end :key [Function)
If the sequence contains an element satisfying the test, then the index within the sequence of the
leftmost such element is returned as a non-negative integer; otherwise ni1 is returned. '

If :start and :end keyword arguments are given, only the specified subsequence of sequence is
searched. However, the index returned is relative to the entire sequence, not to the subsequence.

If a non-ni1 :from-end keyword argument is specified, then the result is the index of the
rightmost element satisfying the test. (The index returned, however, is an index from the left-hand
end, as usual.)
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. count item sequence &key :from-end :test :test-not :start :end :key [Function]

\

’ count-if flest sequence &key :from-end :start :end :key [Function]
count-if-not frest sequence &key :from-end :start :end :key [Function]

The result is always a non-negative integer, the number of elements in the specified subsequence of
sequence satisfying the test (see above).

The :from-end argument does not affect the result returned; it is accepted purely for
compatibility with other sequence functions.

mismatch sequencel sequence? &key :from-end :test :test-not :key [Function)
:startl :start2 :endl :end2
The specified subsequences of sequencel and sequence2 are compared element-wise. If they are of
equal length and match in every element, the result is ni1. Otherwise, the result is a non-negative
integer, the index within sequencel of the leftmost position at which they fail to match; or, if one is
shorter than and a matching prefix of the other, the index within sequencel/ beyond the last position
tested is returned. '

Ifanon-nil :from-end keyword argument is given, then one plus the index of the rightmost
position in which the sequences differ is returned. In effect, the (sub)sequences are aligned at their
right-hand ends; then, the last elements are compared, the penultimate elements, and so on. The -
index returned is again an index into sequencel.

search seguencei sequence? &key :from-end :test :test-not :key [Function]
:startl :start2 :endl :end2
A search is conducted for a subsequence of sequence? that element-wise matches sequencel. If
there is no such subsequence, the result is n1i1; if there is, the result is the index into sequence2 of
the leftmost element of the leftmost such matching subsequence.

If a non-ni1 :from-end keyword argument is given, the index of the lefimost element of the
rightmost matching subsequence is returned.

The implementation may choose to search the sequence in any order; there is no guarantee on the
number of times the test is made. For example, search with a non-ni1 : from-end argument
might actually search a list from left to right instead of from right to left (but in either case would
return the rightmost matching subsequence, of course). Therefore it is a good idea for a user-
supplied predicate be free of side-effects.

14.5. Sorting and Merging

sort sequence predicate &key :key ‘ [Function]
stable-sort sequence predicate &key :key [Function]
The sequence is destructively sorted according to an ordering determined by the predicate. The
predicate should take two arguments, and return non-ni1 if and only if the first argument is strictly
less than the second (in some appropriate sense). If the first argument is greater than or equal to the

i,



204

COMMON LISP REFERENCE MANUAL

second (in the appropriate sense), then the predicate should return ni1.

The sort function determines the relationship between two elements by giving keys extracted
from the elements to the predicate. The :key argument, when applied to an element, should
return the key for that element. The :key argument defaults to the identity function, thereby
making the element itself be the key. :

The :key function should not have any side effects. A useful example of a : key function would
be a component selector function for a defstruct (page 245) structure, for sorting a sequence of
structures.

(sort a p :key s) :
<=> (sort a #'(lambda (x y) (p (s x) (sy¥))))

While the above two expressions are equivalent, the first may be more efficient in some
implementations for certain types of arguments. For example, an implementation may choose to
apply s to each item just once, putting the resulting keys into a separate table, and then sort the
parallel tables, as opposed to applying sto an item every time just before applying the predicate.

If the :key and predicate functions always return, then the sorting operation will always terminate,
producing a sequence containing the same elements as the original sequence (that is, the result is a
permutation of sequence). This is guaranteed even if the predicate does not really consistently
represent a total order (in which case the elements will be scrambled in some unpredictable way,
but no element will be lost). If the : key function consistently returns meaningful keys, and the
predicate does reflect some total ordering criterion on those keys, then the elements of the result
sequence will be properly sorted according to that ordering. '

The sorting operation performed by sort is not guaranteed szable. Elements considered equal by
the predicate may or may not stay in their original order. (The predicate is assumed to consider two
elements x and y to be equal if (funcall predicate x y) and (funcall predicate y x) are
both false.) The function stable-sort guarantees stability, but may be slower than sort in
some situations.

The sorting operation may be destructive in all cases. In the case of an array argument, this is
accomplished by permuting the elements in place. In the case of a list, the list is destructively
reordered in the same manner as for nreverse (page 196). Thus if the argument should not be
destroyed, the user must sort a copy of the argument.

Should execution of the :key function or the predicate cause an error, the state of the list or array
being sorted ‘is undefined. However, if the error is corrected the sort will, of course, proceed
correctly.

Note that since sorting requires many comparisons, and thus many calls to the predicate, sorting will
be much faster if the predicate is a compiled function rather than interpreted.
For example:
(setq foovector (sort foovector #'string-lessp :key #'car))
If foovector contained these items before the sort:
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("Tokens" "The Lion Sleeps Tonight")
("Carpenters"” "Close to You")
("Ro1ling Stones" "Brown Sugar")
("Beach Boys" "I Get Around")
("Beatles" "I Want to Hold Your Hand")

then after the sort foovector would contain:

("Beach Boys" "I Get Around")
("Beatles" "I Want to Hold Your Hand")
("Carpenters” "Close to You")
("Ro11ing Stones" "Brown Sugar")
("Tokens" "The Lion Sieeps Tonight")

merge resull-type sequencel sequence? predicate &key :key [Function]
The sequences sequencel and sequence2 are destructively merged according to an ordering
determined by the predicate. The result is a sequence of type result-type, which must be a subtype
of sequence, as for the function coerce (page 40). The predicate should take two arguments,
and return non-nil if and only if the first argument is strictly less than the second (in some
appropriate sense). If the first argument is greater than or equal to the second (in the appropriate
sense), then the predicate should return nil.

The merge function determines the relationship between two elements by giving keys extracted -
from the elements to the predicate. The :key function, when applied to an element, should return
the key for that element; the : key function defaults to the identity function, thereby making the
element itself be the key.

The : key function should not have any side effects. A useful example of a : key function would
be a component selector function for a defstruct (page 245) structure, for merging a sequence
of structures.

If the :key and predicate functions always return, then the merging operation will always
terminate. The result of merging two sequences x and y is a new sequence z, such that the length of
zis the sum of the lengths of x and y, and z contains the all the elements of xand y. If x/ and x2
are two elements of x, and x/ precedes x2 in x, then x/ precedes x2 in z, and similarly for elements
of y. Inshort, zis an interleaving of x and y.

Moreover, if x and y were correctly sorted according to the predicate, then z will also be correctly
sorted. If x or yis not so sorted, then z will not be sorted, but will nevertheless be an interleaving of
xand y.

The merging operation is guaranteed stable; if two or more elements are considered equal by the
predicate, then the elements from sequencel will precede those from sequence2 in the result.

For example:
(merge *(13 46 7) '(258) #'<)=>(12345678)
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Chapter 15
Manipulating List Structure

A cons, or dotted pair, is a compound data object having two components, called the car and cdr. Each
component may be any LISP object. A listis a chain of conses linked by cdr fields; the chain is terminated by
some atom (a non-cons object). An ordinary list is terminated by ni1, the empty list (also written “( )”). A
list whose cdr-chain is terminated by some non-n1i1 atom is called a douted list.

The recommended predicate for testing for the end of a list is endp (page 208).

15.1. Conses

car x ‘ [Function]
Returns the car of x, which must be a cons or (); that is, x must satisfy the predicate 1istp (page
59). By definition, the car of () is (). If the cons is regarded as the first cons of a list, then car
returns the first element of the list. ‘
For example:

(car '(a b c)) => a

See first (page 209). The car of a cons may be altered by using rplaca (page 215) or setf
(page 72). -

cdr x [Function]
Returns the cdr of x, which must be a cons or ( ); that is, x must satisfy the predicate 1istp (page
59). By definition, the cdr of () is (). If the cons is regarded as the first cons of a list, then cdr
returns the rest of the list, which is a list with all elements but the first of the original list.
For example:

(cdr "(a b c)) => (b ¢)

See rest (page 210). The cdr of a cons may be altered by using rplacd (page 215) or setf
(page 72).
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c...rP x [Function]
All of the compositions of up to four car’s and cdr's are defined as functions in their own right. The
names of these functions begin with “c” and end with “r”, and in between is a sequence of “a” and
» “d” letters corresponding to the composition performed by the function. '
For example:
(cddadr x) isthesameas (cdr (cdr (car (cdr x))))
If the argument is regarded as a list, then cadr returns the second element of the list, caddr the
third, and cadddr the fourth. If the first element of a list is a list, then caar is the first element of
the sublist, cdar is the rest of that sublist, and cadar is the second element of the sublist; and so
on.

As a matter of style, it is often preferable to define a function or macro to access part of a
complicated data structure, rather than to use a long car/cdr string:

(defmacro lambda-vars (lambda-exp) ‘(cadr ,lambda-exp))
;then use Tambda-vars everywhere instead of cadr

See also defstruct (page 245), which will automatically define new record data types and access
functions for instances of them.

Any of these functions may be used to specify a place for setf (page 72).

cons x y , [Function]
cons is the primitive function to create a new cons, whose caris x and whose cdris y.
For example:
{cons 'a 'b) => (a . b
(cons 'a (cons 'b (cons 'c.'()))) => (a b ¢)
(cons ’'a '(b ¢ d)) => (a b c d)

cons may be thought of as creating a cons, or as adding a new element to the front of a list.

tree- equa'l Xx y &ey :test :test-not [Function]
This is a predicate that is true if x and y are isomorphic trees with identical leaves; that is, if x and y
are atoms that satisfy the test (by default eql), or if they are both conses and their cars are
tree-equal and their cdrs are tree-equal. Thus tree-equal recursively compares conses
(but not any other objects that have components). See equal (page 62), which does recursively
compare certain other structured objects, such as strings.

15.2. Lists

endp object [Function]
The predicate endp is the recommended way to test for the end of a list. It is false of conses, true of

n1i1, and an error for all other arguments.

Implementation note: Implementations are encouraged to signal an error, especially in the interpreter, for a
non-list argument. The endp function is defined so as to allow compiled code to perform simply an atom
check or a null check if speed is more important than safety.
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list-length list [Function]
Tist-length returns, as an integer, the length of list. 1ist-length differs from length
(page 196) when the list is circular; Tength may fail to return, whereas 1ist-1ength will return
nil.
For example:
(1ist-length ’()) => 0
(list-length '(a b c d)) => 4
(1ist-1ength '(a (b ¢) d)) => 3
(1ist-length '(a b c de f g) 4) => 4
(et ((x (list 'a b ¢)))
(rplacd (last x) x)
(1ist-Tength x)) => nil
1ist-1ength could be implemented by:
(defun list-length (x)
(do ((n 0 (+ n 2))
(y x (cddr y))
(z x (cdr 2)))
(nil)
(when (endp y) (return n))
(when (endp (cdr y)) (return (+ n 1)))
(when (and (eq y z) (> n 0)) (return nil))))

See 1ength (page 196), which will return the length of any sequence.

nth n list [Function]
(nth n lisi) returns the n'th element of list, where the zeroth element is the car of the list. nmust
be a non-negative integer. If the length of the list is not greater than n, then the result is ( ), that is,
ni1. (This is consistent with the idea that the car and cdrof ( ) are each ().)

For example:
(nth 0 ’'(foo bar gack)) => foo -
(nth 1 ’'(foo bar gack)) => bar
(nth 3 '(foo bar gack)) => ()
Compatibility note: This is not the same as the INTERLISP function called nth, which is similar to but not
exactly the same as the CoMMON Lisp function nthcdr. This definition of nth is compatible with Lisp
Machine Lisp and NiL. Also, some people have used macros and functions called nth of their own in their old
MacLisp programs, which may not work the same way.

nth may be used to specify a place to setf (page 72); when nth is used in this way, the argument
nmust be less than the length of the isz.

first list : ' [Function]
second list [Function]
third list [Function]
fourth list [Function]
fifth list [Function]
sixth list [Function]
seventh list : {Function]
eighth list [Function]

ninth list ' ' ' [Function)
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tenth list [Function]

These functions are sometimes convenient for accessing particular elements of a list. first is the
same as car (page 207); second is the same as cadr; and so on. Note that the ordinal
numbering used here is one-origin, as opposed to the zero-origin numbering used by nth (page
209): '

(fifth x) <=> (nth 4 x)

setf (page 72) may be used with each of these functions to store into the indicated position of a
list.

rest list [Function]

rest means the same as cdr, but mnemonically complements first.

nthcdr n list [Function]

(nthcdr n list) performs the cdr operation n times on /ist, and returns the result.

For example:
(nthcdr 0 '(a b c)) => (a b c)
(nthcdr 2 ’'(a b ¢)) =
(nthcdr 4 "(a b ¢c)) => ()
In other words, it returns the n’th cdr of the list.
Compatibility note:. This is similar to the INTERLISP function nth, except that the INTERLISP function is
one-based instead of zero-based. -
(car (nthcdr n x)) <=> (nth n x)

last list ' [Function]

1ast returns the last cons (not the last element!) of list. If listis (), it returns ().

For example:
(setg x '(a b c d))
(last x) => (d)
(rplacd (last x) '(e f))
X => '(abcdef)
(last "(abc . d)) => (c . d)

Tist &rest args . [Function]
1ist constructs and returns a list of its arguments.
For example:
(1ist 3 4 'a (car '(b . c)) (+ 6 -2)) => (3 4 a b 4)
Tist* arg &rest others [Function]

Tist* is like 1ist except that the last cons of the constructed list is “dotted”. The last argument
to 1ist* is used as the cdr of the last cons constructed; this need not be an atom. If it is not an
atom, then the effect is to add several new elements to the front of a list.

For example:
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(1ist* 'a 'b 'c 'd) => (a b ¢ . d)

This is like
(cons 'a (cons 'b (cons ’'c 'd)))
Also:

(1ist* 'a 'b 'c '(d e f)) => (abcdef)
(list* x) <=> x

make-1ist size &ey :initial-element [Function)
This creates and returns a list containing size elements, each of which is initialized to the
:initial-element argument (which defaults to ni1). size should be a non-negative integer.
For example:
(make-1ist 56) => (nil nil pil nil nil)
(make-1ist 3 :initial-element 'rah) => (rah rah rah)

append &rest Iists [Function] .
The arguments to append are lists. The result is a list that is the concatenation of the arguments.
The arguments are not destroyed.
For example:

(append '(a b c) '(de f) '() '(g)) => (abcdef g)

Note that append copies the top-level list structure of each of its arguments except the last. The
function concatenate (page 196) can perform a similar operation, but always copies all its
arguments. See also nconc (page 212), which is like append but destroys all arguments but the
last.

The last argument actually need not be a list, but may be any LiSP object, which becomes the tail
end of the constructed list. For example, (append '(a b c) 'd)=>(a b ¢ . d).

(append x '()) is an idiom once frequently used to copy the list x, but the copy-list
function is more appropriate to this task.

‘copy-list list [Function]
Returns a list that is equa1 to /ist, but not eq. Only the top level of list-structure is copied; that is,
copy-1ist copies in the cdr direction but not in the car direction. If the list is “dotted”, that is,
(cdr (last list)) is a non-ni1 atom, this will be true of the returned list also. See also
copy-seq (page 195)and copy~tree (page212).

copy-alist list ‘ ‘ [Function)
copy-alist is for copying association lists. The top level of list structure of /ist is copied, just as
copy-1ist does. In addition, each element of is that is a cons is replaced in the copy by a new
cons with the same car and cdr.
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copy-tree object [Function)
copy-tree is for copying trees of conses. The argument object may be any LISP object. Ifit is not
a cons, it is returned; otherwise the result is a new cons of the results of calling copy-tree on the
car and cdr of the argument. In other words, all conses in the tree are copied recursively, stopping
only when non-conses are encountered. Circularities and the sharing of substructure are not
preserved.

revappend x y [Function]
(revappend x y) is exactly the same as (append (reverse x) y) except that it is
potentially more efficient. Both x and y should be lists. The argument x is copied, not destroyed.
Compare this with nreconc (page 212), which destroys its first argument.

nconc &rest lists [Function]

nconc takes lists as arguments. It returns a list that is the arguments concatenated together. The
arguments are changed, rather than copied. (Compare this with append (page 211), which _copies
arguments rather than destroying them.)
For example:

(setq x '"(a b c))

(setqy '(d e f))

(nconc x y) => (abcdef)

x => (abcdef)

Note, in the example,that the value of x is now different, since its last cons has been rplacd’d to
the value of y. If one were then to evaluate (nconc x y) again, it would yield a piece of
“circular” list structure, whose printed representationwouldbe (a b c d e f d e f d e f
... ), repeating forever; if the *print-circle* (page 287) switch were non-ni1, it would be
printedas(a b c . #1=(d e f . #1#)).

nreconc x y [Function]
(nreconc x y) is exactly the same as ('nconc (nreverse x) y) except that it is potentially
more efficient. Both x and y should be lists. The argument x is destroyed. Compare this with
revappend (page212).

push item place [Macro}

The form place should be the name of a generalized variable containing a list; item may refer to any
LISP object. The item is consed onto the front of the list, and the augmented list is stored back into
place and returned. The form place may be any form acceptable as a generalized variable to setf
(page 72). If the list held in place is viewed as a push-down stack, then push pushes an element
onto the top of the stack.
For example:

(setq x *(a (b c) d))

(push 5 (cadr x)) => (56 b ¢) andnow x => (a (5 b c) d)
The effect of (push item place) is roughly equivalent to
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(setf place (cons item place))
except that the latter would evaluate any subforms of place twice, while push takes care to evaluate
them only once. Moreover, for certain place forms push may be significantly more efficient than
the setf version.

pushnew item place ' [Macro]

The form place should be the name of a generalized variable containing a list; item may refer to any
Lisp object. If the item is not already a member of the list (as determined by comparisons using the
: test predicate, which defaults to eq1), then the item is consed onto the front of the list, and the
augmented list is stored back into place and returned; otherwise the unaugmented list is returned.
The form place may be any form acceptable as a generalized variable to setf (page 72). If the list
held in place is viewed as a set, then pushnew adjoins an element to the set; see adjoin (page
217).

The keyword arguments to pushnew follow the conventions for the generic sequence functions.
See Chapter 14.

pushnew returns nil.

For example:
(setq x '(a (b c) d)) .
(pushnew 5 (cadr x)) => (5 b c) andnow x => (a (5 b c) d)
(pushnew 'b (cadr x)) => (5 b c) and x is unchanged

The effect of (pushnew item place :test p) isroughly equivalent to

(setf place (adjoin item place :test p))
except that the latter would evaluate any subforms of place twice, while pushnew takes care to
evaluate them only once. Moreover, for certain place forms pushnew may be significantly more
efficient than the setf version.

pop place ‘ [Macro]

The form place should be the name of a generalized variable containing a list. The result of pop is
the car of the contents of place, and as a side-effect the cdr of the contents is stored back into
place. The form place may be any form acceptable as a generalized variable to setf (page 72). If
the list held in place is viewed as a push-down stack, then pop pops an element from the top of the
stack and returns it.

For example:

(setq stack '(a b c))
(pop stack) => a andnow stack => (b c)

The effect of (pop place) is roughly equivalent to

(progl (car place) (setf place (cdr place))) .
except that the latter would evaluate any subforms of place thrice, while pop takes care to evaluate
them only once. Moreover, for certain place forms pop may be significantly more efficient than the
setf version.
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butlast list &optional n [Function)
This creates and returns a list with the same elements as /ist, excepting the last n elements. »n
defaults to 1. The argument is not destroyed. If the list has fewer than n elements, then () is
, returned.
For example:

(butlast '(a b c d)) => (a b c)
(butlast '((a b) (c d))) => ((a b))
(butlast '(a)) => ()

(butlast nil) => ()

The name is from the phrase “all elements but the last”.

nbutlast list &optional n [Function]
This is the destructive version of but1ast; it changes the cdr of the cons n+1 from the end of the
listto ni1. ndefaults to 1. If the list has fewer than n elements, then nbutlast returns (), and
the argument is not modified. (Therefore one normally writes (setq a (nbutlast a)) rather
than simply (nbutlast a).)
For example:

(setq foo '(a b ¢ d))
(nbutlast foo) => (a b ¢)
foo => (a b c)

(nbutlast '(a)) => ()
(nbutlast 'nil) => ()
1diff list sublist [Function]

list should be a list, and sublist should be a sublist of list, that is, one of the conses that make up list.
1diff (meaning “list difference”) will return a new list, whose elements are those elements of list
that appear before sublist. If sublist is not a tail of list, then a copy of the entire /ist is returned. The
argument /ist is not destroyed. ' .

For example:

(setq x (abcde))

(setq y (cdddr x)) => (d e)

(1diff x y) => (a b c)

but

(1diff *(a b c d) "(c d)) => (a b c d)
since the sublist was not eq to any part of the list.

15.3. Alteration of List Structure

The functions rplaca and rplacd may be used to make alterations in already-existing list structure; that
is, to change the cars and cdrs of existing conses. One may also use setf (page 72) in conjunction with car
and cdr (page 207). '

The structure is not copied but is physically altered; hence caution should be exercised when using these
functions, as strange side-effects can occur if portions of list structure become shared. The nconc (page
212), nreverse (page 196), nreconc (page 212), and nbutlast (page 214) functions, already



MANIPULATING LIST STRUCTURE v 215

described, have the same property, as do certain of the generic sequence functions such as delete (page
200). However, they are normally not used for this side-effect; rather, the list-structure modification is purely
for efficiency and compatible non-modifying functions are provided.

rplaca x y [Function]
(rplaca xy) changes the car of x to y and returns (the modified) x. x must be a cons, but y may
be any Lisp object.
For example:

(setq g '(a b c))
(rplaca (cdr g) 'd) => (d c)
Now g => (a d ¢)

rplacd x y _ [Function]
(rplacd xy) changes the cdr of x to y and returns (the modified) x. x must be a cons, but y may
be any Lisp object.
For example:

(setq x '(a b c))
(rplacd x 'd) => (a . d)
Now x => (a . d)

15.4. Substitution of Expressions

A number of functions are provided for performing substitutions within a tree. All take a tree and a
description of old sub-expressions to be replaced by new ones. They come in non-destructive and destructive
varieties, and specify substitution either by two arguments or by an association list.

The naming conventions for these functions and for their keyword arguments generally follow the
conventions for the generic sequence functions. See Chapter 14.

s

subst new old tree &ey :test :test-not :key [Function]
subst-if predicate new tree &key :key [Function]
subst-if-not predicate new tree &ey :key [Function)

(subst new old tree) makes a copy of tree, substituting new for every subtree or leaf of free
(whether the subtree or leaf'is a caror a cdror its parent) such that ol/d and the subtree or leaf satisfy
the test. It returns the modified copy of tree. The original tree is unchanged, but the result tree may
share with parts of the argument tree.

Compatibility note: In MAcLIsp, subst is guarauteed nor to share with the tree argument, and the idiom
(subst nil nil x) was used to copy a tree x. In CoMMON Lisp, the function copy-tree (page
212) should be used to copy a tree, as the subst idiom will not work.

For example:
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(subst ’tempest 'hurricane
"(shakespeare wrote (the hurricane)))
=> (shakespeare wrote (the tempest))
(subst 'foo 'nil '(shakespeare wrote (twelfth night)))
=> (shakespeare wrote (twelfth night . foo) . foo)
(subst '(a . cons) ’'(old . pair) .
'((o1d . spice) ((old . shoes) old . pair) (old . pair))
:test #'equal)
=> ((old . spice) ((old . shoes) a . cons) (a . cons))

This function is not destructive; that is, it does not change the car or cdr of any already-existing list
structure. One possible definition of subst:

(defun subst (old new tree &rest x &key test test-not key)
(cond ((satisfies-the-test old tree :test test
:test-not test-not :key key)
new)
((atom tree) tree)
(t (let ((a (apply #'subst old new (car tree) x))
(d (apply #'subst old new (cdr tree) x)))
(if (and (eq a (car tree)) (eq d (cdr tree)))
tree

(cons a d))))))

See also substitute (page 201), which substitutes for top-level elemems of a sequence.

nsubst new old free &key :test :test-not :key [Function]
nsubst-if predicate new tree &key :key [Function)
nsubst-if-not predicate new tree &ey :key [Function]

nsubst is a destructive version of subst. The list structure of tree is altered by destructively
replacing with new each leaf of the tree such that o/d and the leaf satisfy the test.

sublis alist tree &ey :test :test-not :key [Function]

sub1is makes substitutions for symbols in a tree (a structure of conses). The first argument to
sublis is an association list. The second argument is the tree in which substitutions are to be
made, as for subst (page 215). sub1is looks at all leaves in the tree; if a leaf appears as a key in
the association list (that is, the key and the leaf satisfy the test), it is replaced by the object it is
associated with. This operation is non-destructive. In effect, sub11is can perform several subst
operations simultaneously.

For example: )

(sublis "((x . 100) (z . zprime))
"(plus x (minus g z x p) 4))
=> (plus 100 (minus g zprime 100 p) 4)

nsublis alist tree &ey :test :test-not :key [Function]

nsublis is like sub11is but destructively modifies the relevant leaves of the tree.
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15.5. Using Lists as Sets

CoMMON LIsp includes functions that allow a list of items to be treated as a set. There are functions to add,
remove, and scarch for items in a list, based on various criteria. There are also set union, intersection, and
difference functions. ‘

The naming conventions for these functions and for their keyword arguments generally follow the
conventions for the generic sequence functions. See Chapter 14.

member item list &ey :test :test-not :key : [Function)
member-if predicate list &ey :key [Function]
member-if-not predicate list &key tkey [Function]

The list is searched for an element that satisfies the test. If none is found, ni1 is returned;
otherwise, the tail of list beginning with the first element that satisfied the test is returned. The /list
is searched on the top level only. These functions are suitable for use as predicates.

For example:

(member ‘snerd '(a b ¢ d)) => nil
(member-if #'numberp '(a #\Space 5/3 foo)) => (5/3 foo)
(member 'a '(g (ay) cadeaf)) => (adeaf)

Note, in the last example, that the value returned by member is eq to the portion of the list
beginning with a. Thus rplaca on the result of member may be used, if you first check to make
sure member did not return ni1, to alter the found list element.

Seealso find (page 202) and position (page 202).

Compatibility note: In MacLisp, the member function uses an equal comparison rather than eq1, which is
the default test for member in CoMMON Lisp. Where in MACLISP one would write (member x y) one must
in COMMON Lisp write (member x y :test #'equal). With two arguments, the CoMMON Lisp function
member is equivalent to the MacLisP function memg.

tailp sublist list [Function]

' This predicate is true if sublist is a sublist of list (i.e., one of the conses that makes up Iisi).
Otherwise it is false. Another way to look at this is that tailp is true if (nthedr n list) is
sublist, for some value of n. See 1diff (page 214).

adjoin item list &ey :test :test-not :key [Function)
adjoin is used to add an element to a set, provided that it is not already a member. The equality
test defaults to eq1. ' ‘

(adjoin item list) <=> (if (member item list) list (cons item list))
See pushnew (page 213).

union listl list2 &key :test :test-not :key [Function}

‘nunion list] list2 &ey :test :test-not :key [Function]

union takes two lists and returns a new list containing everything that is an element of either of the
lists. If there is a duplication between two lists, only one of the duplicate instances will be in the
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result. If either of the arguments has duplicate entries within it, the redundant entries may or may
not appear in the result.
For example:

(union '(a b c) '(f ad)) => (abcf d)
There is no guarantee that the order of elements in the result will reflect the ordering of the
arguments in any particular way. The implementation is therefore free to use any of a variety of
strategies.

nunion is the destructive version of union. It performs the same operation, but may destroy the
argument lists, using their cells to construct the result.

intersection list] lis122 &key :test :test-not :key [Function]
nintersection Ilist] list2 &ey :test :test-not :key : [Function)
intersection takes two lists and returns a new list containing everything that is an element of
both argument lists. If either list has duplicate entries, the redundant entries may or may not
appear in the result. '
For example:
(intersection '(abc) '(f ad)) => (a)
There is no guarantee that the order of elements in the result will reflect the ordering of the
arguments in any particular way. The implementation is therefore free to use any of a variety of
strategies.

nintersection is the destructive version of intersection. It performs the same operation,
but may destroy /ist/ using its cells to construct the result. (The argument /ist2 is not destroyed.)

set-difference list] list2 &key :test :test-not :key " [Function]

nset-difference list] list2 &ey :test :test-not :key [Function]
set-difference returns a list of elements of /is¢/ that do not appear in /ist2. This operation is
not destructive. ' :

nset-difference is the destructive version of set-difference. This operation may destroy

listl.
set-exclusive-or list] list2 &ey :test :test-not :key [Function]
nset-exclusive-or list list2 &key :test :test-not :key [Function]

set-exclusive-or returns a list of elements that appear in exactly one of list/ and list2. This
operation is not destructive.

nset-exclusive-or is the destructive version of set-exclusive-or. Both lists may be
destroyed in producing the result.
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subsetp list] list2 &key :test :test-not :key [Function] .

subsetp is a predicate that is true iff every element of /ist/ appears in /ist2.

15.6. Association Lists

An association list, or a-list, is a data structure used very frequently in LISP. An a-list is a list of pairs
(conses); each pair is an association. The car of a pair is called the key, and the cdris called the datum.

An advantage of the a-list representation is that an a-list can be incrementally augmented simply by adding
new entries to the front. Moreover, because the searching function assoc (page 220) searches the a-list in
order, new entries can “shadow” old entries. If an a-list is viewed as a mapping from keys to data, then the
mapping can be not only augmented but also altered in a non-destructive manner by adding new entries to
the front of the a-list.

Sometimes an a-list represents a bijective mapping, and it is desirable to retrieve a key given a datum. For
this purpose the “reverse” searching function rassoc (page 220) is provided. Other variants of a-list
searches can be constructed using the function find (page 202) or member (page 217).

It is permissible to let ni1 be an element of an a-list in place of a pair. Such an element is not considered to -

be a pair, but is simply passed over when the a-list is searched by assoc (page 220).

acons key datum a-list [Function]
acons constructs a new association list by adding the pair (key . datum) to the old a-list.
(acons x y a) <=> (cons (cons x y) a)

pairlis keys data &optional a-list [Function]
pairlis takes two lists and makes an association list that associates elements of the first list to
corresponding elements of the second list. It is an error if the two lists keys and data are not of the
same length. If the optional argument a-/ist is provided, then the new pairs are added to the front
of it. :

The new pairs may appear in the resulting a-list in any order; in particular, either forwards or
backwards order is permitted. Therefore the result of the call ‘
(pairlis '(one two) (1 2) '((three . 3) (four . 19)))

might be
((one . 1) (two . 2) (three . 3) (four . 19))
but could equally well be

((two . 2) (one . 1) (three . 3) (four . 19))
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assoc ilem a-list &ey :test :test-not [Function)
assoc-if predicate a-list [Function]
assoc-if-not predicate a-list [Function]

' Each of these searches the association list a-/ist. The value is the first pair in the a-list such that the

car of the pair satisfies the test, or ni1 if there is none such.

For example:

(assoc 'r *((a . b) (c . d) (r . x) (s . y)(r.2)))
= (r . x)

(assoc 'goo '((foo . bar) (zoo . goo))) => nil

(assoc '2 '((1abc) (2bcd) (-7 xy z))) => (2 b c d)
It is possible to rplacd the result of assoc provided that it is not n1i1, if your intention is to
“update” the “table” that was assoc’s second argument. (However, it is often better to update an
a-list by adding new pairs to the front, rather than altering old pairs.)
For example:

(setq values '((x . 100) (y . 200) (z . 50)))
(assoc 'y values) => (y . 200)

(rplacd (assoc 'y values) 201)

(assoc 'y values) => (y . 201) now

A typical trick is to say (cdr (assoc x y)). Because the cdrof ni1 is guaranteed to be ni1,
this yields ni1 if no pair is found or if a pair is found whose cdris ni1. This is useful if ni1 serves
its usual role as a “default value”.

The two expressions

(assoc iem list :test fn)
and

(find item list :test fn :key. #'car)
are equivalent in meaning with one important exception: if ni1 appears in the a-list in place of a
pair, and the item being searched for is ni1, find will blithely compute the car of the ni1 in the
a-list, find that it is equal to the item, and return ni1, whereas assoc will ignore the ni1 in the
a-list and continue to search for an actual pair (cons) whose caris ni1. See find (page 202) and
position (page 202).

Compatibility note: In MacLisp, the assoc function uses an equal comparison rather than eq1, which is the

default test for assoc in ComMMoN Lisp. Where in MacLisp one would write (assoc x y) one must in

CoMMON Lisp write (assoc x y :test #'equal). With two arguments, the CoMMON Lisp function
assoc is equivalent to the MACLIsP function assg. -

rassoc item a-list &key :test :test-not [Function]
rassoc-if predicate a-list ' [Function]
rassoc-if-not predicate a-list [Function]

rassoc is the reverse form of assoc; it searches for a pair whose cdr satisfies the test, rather than
the car. If the a-list is considered to be a mapping, then rassoc treats the a-/ist as representing the
inverse mapping.
For example:

(rassoc 'a '({(a . b) (b . c) (c . a) (z . a))) => (c . a)
The expressions ~
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(rassoc item list :test fn)
and

(find item list :test fn :key #'cdr)
are equivalent in meaning, except when the item is ni1 and ni1 appears in place of a pair in the
a-list. See the discussion of the function assoc (page 220).
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Chapter 16
- Hash Tables

A hash table is a LISP object that can efficiently map a given LISP object to another LISP object. Each hash
table has a set of entries, each of which associates a particular key with a particular value. The basic functions
that deal with hash tables can create entries, delete entries, and find the value that is associated with a given
key. Finding the value is very fast even if there are many entries, because hashing is used; this is an important
advantage of hash tables over property lists.

A given hash table can only associate one value with a given key; if you try to add a second value it will
replace the first. Also, adding a value to a hash table is a destructive operation; the hash table is modified. By
contrast, association lists can be augmented non-destructively.

Hash tables come in three kinds, the difference being whether the keys are compared with eq, eq1, or
equal. In other words, there are hash tables that hash on Lisp objects (using eq or eq1) and there are hash
tables that hash on tree structure (using equal).

Hash tables are created with the function make-hash-table, which takes various options, including
which kind of hash table to make (the default being the eq1 kind). To look up a key and find the associated
value, use gethash. New entries are added to hash tables using setf (page 72) with gethash. To
remove an entry, use remhash. Here is a simple example.

(setq a (make-hash-table))

(setf (gethash ’'color a) ‘'brown)
(setf (gethash ’'name a) ’fred)
(gethash ’color a) => brown
(gethash ’'name a) => fred
(gethash ’pointy a) => nil

In this example, the symbols color and name are being used as kéys, and the symbols brown and fred
are being used as the associated values. The hash table has two items in it, one of which associates from
color to brown, and the other of which associates from name to fred.

Keys do not have to be symbols; they can be any LISP object. Likewise values can be any LISP object.

When a hash table is first created, it has a size, which is the maximum number of entries it can hold.
Usually the actual capacity of the table is somewhat less, since the hashing is not perfectly collision-free. With
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the maximum possible bad luck, the capacity could be very much less, but this rarely happens. If so many
entries are added that the capacity is exceeded, the hash table will automatically grow, and the entries will be
rehashed (new hash values will be recomputed, and everything will be rearranged so that the fast hash lookup

still works). This is transparent to the caller; it all happens automatically.

Compatibility note: This hash table facility is compatible with Lisp Machine Lisp. It is similar to the hasharray facility of

INTERLISP, and some of the function names are the same. However, it is nor compatible with INTERLisP. The exact details
and the order of arguments are designed to be consistent with the rest of MACLISP rather than with INTERLISP. For instance,
the order of arguments to maphash is different, there is no “system hash table”, and there is not the INTERLISP restriction
that keys and values may notbe ni1.

16.1. Hash Table Functions

This section documents the functions for hash tables, which use objects as keys and associate other objects
with them.

make-hash-table &key :test :size :rehash-size :rehash-threshold [Function}
This function creates and returns a new hash table. The : test argument determines how keys are
compared; it must be one of the three values #'eq, #'eql, or #'equal, or one of the three
symbols eq, eq1, or equal. If no test is specified, eq1 is assumed.

The :size argument sets the initial size of the hash table, in entries. (The actual size may be
rounded up from the size you specify to the next “good” size, for example to make it a prime
number.) You won’t necessarily be able to store precisely this many entries into the table before it
overflows and becomes bigger, but this argument does serve as a hint to the implementation of
approximately how many entries you intend to store. .

The :rehash-size argument specifies how much to increase the size of the hash table when it
becomes full. This can be an integer greater than zero, which is the number of entries to add, or it
can be a floating-point number greater than one, which is the ratio of the new size to the old size.
The default value for this argument is implementation-dependent.

The :rehash-threshold argument specifies how full the hash table can get before it must
grow. This can be an integer greater than zero and less than the rehash-size (in which case it will be
scaled whenever the table is grown), or it can be a floating-point number between zero and one.
The default value for this argument is implementation-dependent.

For example:

(make-hash-table :rehash-size 1.5
:size (* number-of-widgets 43))

hash-tab’lé-p object [Function)
hash-table-p is true if its argument is a hash table, and otherwise is false.
(hash-table-p x) <=> (typep x 'hash-table)
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gethash key hash-table &optional default [Function] .
Find the entry in hash-table whose key is key, and return the associated value. If there is no such
entry, return default, which is ni1 if not specified.

“gethash actually returns two values, the second being a predicate value that is true if an entry was
found, and false if no entry was found.

setf (page 72) may be used with gethash to make new entries in a hash table. In this context,
the default argument should not be specified to gethash. If an entry with the specified key
already exis_ts, it is removed bef_'ore the new entry is added.

‘remhash key hash-table [Function]
Remove any entry for key in hash-table. This is a predicate that is true if there was an entry or false
if there was not.

maphash function hash-table [Function]

For each entry in hash-table, call function on two arguments: the key of the entry and the value of
the entry. If entries are added to or deleted from the hash table while amaphash is in progress, the
‘results are unpredictable, with one exception: if the function calls remhash to remove the entry
currently being processed by the function, or performs a setf (page 72) of gethash on that entry
to change the associated value, then those operations will have the intended effect.

For example:

:; Alter every entry in MY-HASH-TABLE, replacing the value with
;3 its square root. Entries with negative values are removed.
(maphash #'(1ambda (key val)
(if (minusp val)
(remhash val my-hash-table)
(setf (gethash key my-hash-table)

(sqrt val))))
my-hash-table)

maphash returns ni1.

clrhash hash-table [Function]
Remove all the entries from hash-table. Returns the hash table itself.

hash-table-count hash-table ‘ ’ [Function]
This returns the number of entries in the kash-table. When a hash table is first created or has been
cleared, the number of entries is zero.

16.2. Primitive Hash Function
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sxhash object . [Function]
sxhash computes a hash code for an object, and returns the hash code as a non-negative fixnum.
A property of sxhash is that (equal x y) implies (= (sxhash x) (sxhash y)).

The manner in which the hash code is computed is implementation-dependent, but is independent
of the particular “incarnation” or “core image”. Hash values may be written out to files, for
example, and read in again into an instance of the same implementation.



Chapter 17

Arrays

An array is an object with components arranged according to a rectilinear coordinate system. Arrays in
COMMON Lisp may have any number of dimensions, including zero. (A zero-dimensional array has exactly
one element.) Every COMMON LISP implementation must support arrays with up to at least 7 dimensions.
Each dimension is a non-negative integer; if any dimension of an array is zero, the array has no elements.

An array may be a general array, meaning each element may be any LISP object, or it may be a specialized
array, meaning that each element must be of a given restricted type.

One-dimensional arrays are called vectors. General vectors may contain any LISP object. Vectors whose
elements are restricted to type string-char are called strings. Vectors whose elements are restricted to
type bit are called bit-vectors.

17.1. Array Creation

make-array dimensions &key :element-type :initial-element [Function]
:initial-contents :adjustable :fill-pointer
:displaced-to :displaced-index-offset
This is the primitive function for making arrays. The dimensions argument should be a list of
non-negative integers that are to be the dimensions of the array; the length of the list will be the
dimensionality of the array. Each dimension must be smaller than array-dimension-1limit
(page 230), and the product of all the dimensions must be smaller than
array-total-size-1imit (page 230). Note that if dimensions is nil then a zero-
dimensional array is created. For convenience when making a one-dimensional array, the single
dimension may be provided as an integer rather than a list of one integer.

An implementation of COMMON LISP may impose a limit on the rank of an array, but this limit may
not be smaller than 7. Therefore, any COMMON LISP program may assume the use of arrays of rank
7 or less. The implementation-dependent limit on array rank is reflected in array-rank-1imit
(page 230).

The keyword arguments for make-array are as follows:

:element-type
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This argument should be the name of the type of the elements of the array; an
array is constructed of the most specialized type that can nevertheless
accommodate elements of the given type. The type t specifies a general array,
one whose elements may be any LISP object; this is the default type.

:initial-element

This argument may be used to initialize each element of the array. The value
must be of the type specified by the :element-type argument. If the
:initial-element option is omitted, the initial values of the array elements
are undefined (unless the :initial-contents or :displaced-to option
is used). The :initial-element option may not be used with the
:initial-contents or :displaced-to option.

:initial-contents

:adjustable

:fill-pointer

:displaced-to

This argument may be used to initialize the contents of the array. The value is a
nested structure of sequences. If the array is zero-dimensional, then the value
specifies the single element. Otherwise, the value must be a sequence whose
length is equal to the first dimension; each element must be a nested structure
for an array whose dimensions are the remaining dimensions, and so on.

For example:
(make-array '(4 2 3) :initial-contents

"(((a bc) (123))
(d e f) (312))
(g h i) (23 1))

((J k1) (000))))

The numbers of levels in the structure must equal the rank of the array. Each
leaf of the nested structure must be of the type specified by the : type option.
If the :initial-contents option is omitted, the initial values of the array
elements are undefined (unless the :initial-element or :displaced-to
option is used). The :initial-contents option may not be used with the
:initial-element or :displaced-to option.

This argument, if specified and not ni1, indicates that it must be possible to

~ alter the array’s size dynamically after it is created. This argument defaults to

nil.

This argument specifies that the array should have a fill pointer. If this option is
specified and not ni1, the array must be one-dimensional. The value is used to
initialize the fill pointer for the array. If the value t is specified, the length of the
array is used; otherwise the value must be an integer between 0 (inclusive) and
the length of the array (inclusive). This argument defaultsto ni1.

This argument, if specified and not nil, specifies that the array will be a
displaced array. The argument must then be an array; make-array will create
an indirect or shared array that shares its contents with the specified array. In this
case the :displaced-index-offset option may be useful. The
:displaced-to option may not be used with the :initial-element or
:initial-contents option. This argument defaultstonil.

:displaced-index-offset
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This argument may be used only in conjunction with the displaced-to
option. It must be a non-negative integer (it defaults to zero); it is made to be
the index-offset of the created shared array.

When an array A is given as the :displaced-to argument to make-array
when creating array B, then array B is said to be displaced to array A. Now the
total number of elements in an array, called the fotal size of the array, is
calculated as the product of all the dimensions (see array-total-size
(page 231)). Itis required that the total size of A be no smaller than the sum of
the total size of B plus the offses n specified by the
:displaced-index-offset argument. The effect of displacing is that array
B does not have any elements of its own, but instead maps accesses to itself into
accesses to array A.The mapping treats both arrays as if they were one-
dimensional by taking the elements in row-major order, and then maps an access
to element & of array B to an access to element k+ n of array A.

is called with the :adjustable, :fi11-pointer, and :disp1aced-£o

arguments each either unspecified for ni1, then the resulting array is guaranteed to be a simple
array. (See section 2.5.)

Here are some examples of the use of make-array:

:; Create a one-dimensional array of five elements.
(make-array 5)

; + Create a two-dimensional array, 3 by 4, with four-bit elements.
(make-array '(3 4) :element-type '(mod 16))

:+ Create an array of single-floats. _
(make-array 5 :element-type ’'single-float))

;1 Making a shared array.

(setq a
(setg b

(make-array '(4 3)))
(make-array 8 ':displaced-to a
':displaced-index-offset 2))

1+ Now it is the case that:

(aref b 0) <=> (aref a 0 2)
(aref b 1) <=> (aref a 1 0)
(aref b 2) <=> (aref a 1 1)
(aref b 3) <=> (aref a 1 2)
(aref b 4) <=> (aref a 2 0)
(aref b 5) <=> (aref a 2 1)
(aref b 6) <=> (aref a 2 2)
(aref b 7) <=> (aref a 3 0)

The last example depends on the fact that arrays are, in effect, stored in row-major order for
purposes of sharing. Put another way, the indices for the elements of an array are ordered

lexicographically.

Compatibility note: Both Lisp Machine Lisp, as described in reference [19], and FORTRAN [1, 2] store arrays in
column-major order.




230 COMMON LISP REFERENCE MANUAL

array-rank-limit [Constani]

The value of array-rank-1imit is a positive integer that is the upper exclusive bound on the

¢ rank of an array. This bound depends on the implementation, but will not be smaller than $;
therefore every COMMON LISP implementation supports arrays whose rank is betwen 0 and 7
(inclusive). (Implementors are enouraged to make this limit as large as practicable without
sacrificing performance.)

array-dimension-limit ‘ [Constani]

The value of array-dimension-1imit is a positive integer that is the upper exclusive bound
on each individual dimension of an array. This bound depends on the implementation, but will not
be smaller than 1024. (Implementors are enouraged to make this limit as large as practicable
without sacrificing performance.)

array-total-size-limit [Constani]

The value of array-total-size-11imit is a positive integer that is the upper exclusive bound
on the total number of elements in an array. This bound depends on the implementation, but will
not be smaller than 1024. (Implementors are enouraged to make this limit as large as practicable
without sacrificing performance.)

vector &rest objects [Function]
The function vector is a convenient means for creating a simple general vector with specified
initial contents. It is analogous to the function 1ist.

(vector a, a, ... a))
<=> (make-array (list n) :element-type t
zinitial-contents (list a; @, ... a)))

17.2. Array Access

aref array &rest subscripts : [Function]
This accesses and returns the element of array specified by the subscripts. The number of subscripts
must equal the rank of the array, and each subscript must be a non-negative integer less than the
corresponding array dimension. '

aref is unusual among the functions that operate on arrays in that it completely ignores fill
pointers. aref can access without error any array element, whether active or not. The generic
sequence function e1t (page 195), however, observes the fill pointer; accessing an element beyond
the fill pointer with e1t is an error.

setf (page 72) may be used with aref to destructively reblace an array element with a new value.
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17.3. Array Information

array-element-type array [Function]
array-element-type returns a type specifier for the set of objects that can be stored in the
array. This set may be larger than the set requested when the array was created; for example, the
result of .
(array-element-type (make-array 5 :element-type '(mod 5)))
could be (mod 5), (mod 8), fixnum, t, or any other type of which (mod 5) is a subtype. See

subtypep (page 58).

array-rank array [Function]
Returns the number of dimensions (axes) of array. This will be a non-negative integer. See
array-rank-1imit (page 230).

Compatibility note: In Lisp Machine Lisp this is called array-#-dims. This name causes problems in
MacLisp because of the # character. The problem is better avoided.

array-dimension array axis-number ' [Function]
-The length of dimension number axis-number of the array is returned. array may be any kind of
array, and axis-number should be a non-negative integer less than the rank of array. Ifthe arrayisa
vector with a fill pointer, array-dimens ion returns the total size of the vector, including inactive
elements, not the size indicated by the fill pointer. (The function Tength (page 196) will return

the size indicated by the fill pointer.)

Compatibility note: This is similar to the Lisp Machine Lisp function array-dimension-n, but takes its
arguments in the other order, and is zero-origin for consistency instead of one-origin. In Lisp Machine Lisp
(array-dimension-n 0) returns the length of the array leader.

array-dimensions array [Function]
array-dimensions returns a list whose elements are the dimensions of array.

array-total-size array [Function]

array-total-size returns the total number of elements in the array, calculated as the product
of all the dimensions.

(array-total-size x)
<=> (apply #'* (array-dimensions x)) ‘
<=> (reduce #'* (array-dimensions x) :initial-value 1)
Note that the total size of a zero-dimensional array is 1. The total size of a one-dimensional array is
calculated without regard for any fill pointer.

array-in-bounds-p array &rest subscripts : [Function)
This predicate checks whether the subscripts are all legal subscripts for array, and is true if they are;
otherwise it is false. The subscripts must be integers. The number of subscripts supplied must equal
the rank of the array. Like aref, array-in-bounds-p ignores fill pointers.
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array-row-major-index array &rest subscripts [Function]
This function takes an array and valid subscripts for the array, and returns a single non-negative
integer less than the total size of the array that identifies the accessed element in the row-major
ordering of the elements. The number of subscripts supplied must equal the rank of the array.
Each subscript must be a non-negative integer less than the corresponding array dimension. Like
aref,array-row-major-index ignores fill pointers.

A possible definition of array-row-major-index, with no error-checking:

(defun array-row-major-index (a &rest subscripts)
(apply #'+ (maplist #'(lambda (x y)

(* (car x) (apply #'* (cdr y))))
subscripts
(array-dimensions a))))

For a one-dimensional array, the result of array-row-major-index always equals the supplied
subscript.

17.4. Access Function for Simple Vectors

svref simple-vector index [Function]
The first argument must be a simple general vector, that is, an object of type simple-vector.
The element of the simple-vector specified by the integer index is returned. The index must be
non-negative and less than the length of the vector.

setf (page 72) may be used with svref to destructively replace a simple-vector element with a
new value.

svref is identical to aref (page 230) except that it requires its first argument to be a simple
vector. In some implementations of COMMON LISP svref may be faster than aref in situations
where it is applicable. Seealso schar (page237)and sbit (page 232).

17.5. Functions on Arrays of Bits

bit bit-array &rest subscripts _ [Function]

sbit simple-bit-array &rest subscripts [Function]
bit is exactly like aref (page 230) but requires an array of bits, that is, one of type (array
bit). The result will always be 0 or 1.

shit is like b1t but additionally requires that the first argument be a simple array (see section 2.5).

- Note that bit and sbit, unlike char (page 237) and schar (page 237), allow the first argument
to be an array of any rank.

setf (page 72) may be used with bit or sbit to destructively replace a bit-array element with a
new value.

bit and sbit are identical to aref (page 230) except for the more specific type requirements on
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the first argument. In some implementations of COMMON LISP bit may be faster than aref in
situations where it is applicable, and sb it may similarly be faster than bi t.

bit-and bit-arrayl bit-array-2 &optional result-bit-array [Function]
bit-ior bit-arrayl bit-array-2 &optional result-bit-array [Function]
bit-xor bit-arrayl bit-array-2 &optional result-bit-array [Function]
bit-eqv bit-arrayl bit-array-2 &optional result-bit-array [Function]
bit-nand bit-arrayl bit-array2 &optional result-bit-array [Function]
bit-nor bit-arrayl bit-array2 &optional result-bit-array ‘ [Function]
bit-andcl bit-arrayl bit-array? &optional result-bit-array [Function]
bit-andc2 bit-arrayl bit-array? &optional result-bit-array [Function]
bit-orc1 bit-arrayl bit-array2? &optional result-bit-array [Function)
bit-orc2 bit-arrayl bit-array? &optional result-bit-array [Function)

These functions perform bit-wise logical operations on bit-arrays. All of the arguments to any of
these functions must be bit-arrays of the same rank and dimensions. The result is a bit-array of
matching rank and dimensions, such that any given bit of the result is produced by operating on
corresponding bits from each of the arguments.

If the third argument is ni1 or omitted, a new array is created to contain the result. If the third
argument is a bit-array, the result is destructively placed into that array. If the third argument is t,
then the first argument is also used as the third argument; that is, the result is placed back in the .
first array. '

The following table indicates what the result bit is for each operation as a function of the two -
corresponding argument bits.

argument! 0 0 1 1 i
argument2_ 0 1 0 1 Operation name
bit-and 0 0 0 1 and
bit-ior 0 1 1 1 inclusiveor
bit-xor 0 1 1 0 |exclusiveor
bit-eqv 1 0 0 1 equivalence (exclusive nor)
bit-nand 1 1 1 0 notand
bit-nor 1 0 0 0 notor
bit-andcil 0 1 0 0 andcomplement of argumentl with argument2
bit-andc2 0 0 1 0 andargumentl with complement of argument2
bit-orcl 1 1 0 1 orcomplementof argumentl with argument2
bit-orc2 1 0 1 1 orargumentl with complement of argument2
For example:

(bit-and #*1100 #*1010) => #*1000
(bit-xor #1100 #*1010) => #*0110
(bit-andcl #*1100 #*1010) => #*0100

See Togand (page 171) and related functions.
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bit-not bit-array &optional result-bit-array [Function]
The first argument must be an array of bits. A bit-array of matching rank and dimensions is
returned that contains a copy of the argument with all the bits inverted. See Tognot (page 173).

If the second argument is ni 1 or omitted, a new array is created to contain the result. If the second
argument is a bit-array, the result is destructively placed into that array. If the second argument is
t, then the first argument is also used as the second argument; that is, the resuit is placed back in
the first array.

17.6. Fill Pointers

Several functions for manipulating a fill pointer are provided in COMMON LISP to make it easy to
incrementally fill in the contents of a vector, and more generally to allow efficient varying of the length of a
vector. For example, a string with a fill pointer has most of the characteristics of a PL/I varying string.

The fill pointer is a non-negative integer no larger than the total number of elements in the vector (as
returned by array-dimension (page 231)); it is the number of “active” or “filled-in” elements in the
vector. The fill pointer constitutes the “active length” of the vector; all vector elements whose index is less
than the fill pointer are active, and the others are inactive. Nearly all functions that operate on the contents of
a vector will operate only on the active elements. An important exception is aref (page 230), which can be
used to access any vector element whether in the active region of the vector or not. Itis important to note that

vector elements not in the active region are still considered part of the vector.

Implementation note: An implication of this rule is that vector elements outside the active region may not be
garbage-collected.

Only vectors (one-dimensional arrays) may have fill pointers; multi-dimensional arrays may not. (Note,
however, that one can create a multi-dimensional array that is displaced to a vector that has a fill pointer.)

array-has-fill-pointer-p array [Function]
The argument must be an array. array-has-fill1-pointer-p returns t if the array has a fill
pointer, and otherwise returns ni1. Note that array-has-fill-pointer-p always returns
ni1 if the array is not one-dimensional.

fill-pointer vector , , [Function]
The fill pointer of vectoris returned. It is an error if the vector does not have a fill pointer.

setf (page 72) may be used with fi11-pointer to change the fill pointer of a vector. The fill
pointer of a vector must always be an integer between zero and the size of the vector (inclusive).

vector-push new-element vector [Function]
vector must be a one-dimensional array that has a fill pointer, and new-element may be any object.
vector-push attempts to store new-element in the element of the vector designated by the fill
pointer, and increase the fill pointer by one. If the fill pointer does not designate an element of the
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vector (specifically, when it gets too big), it is unaffected and vector-push returns nil.
Otherwise, the store and increment take place and vector-push returns the former value of the
fill pointer (one less than the one it leaves in the vector); thus the value of vector-push is the
index of the new element pushed.

vector-push-extend new-element vector &optional extension {Function)
vector-push-extend is just like vector-push except that if the fill pointer gets too large, the
vector is extended (using adjust-array (page 235)) so that it can contain more elements; it
never “fails” the way vector-push does, and so never returns nil. The optional argument
extension, which must be a positive integer, is the minimum number of elements to be added to the
vector if it must be extended.

vector-pop veclor : [Function)
vector must be a one-dimensional array that has a fill pointer. If the fill pointer is zero,
vector-pop signals an error. Otherwise the fill pointer is decreased by one, and the vector
element designated by the new value of the fill pointer is returned.

17.7. Changing the Dimensions of an Array

adjust-array array new-dimensions &key :element-type :initial-element [Function]
: :initial-contents :fill-pointer
:displaced-to :displaced-index-offset
adjust-array takes an array and a number of other arguments as for make-array (page 227).'
The number of dimensions specified by new-dimensions must equal the rank of array.

adjust-array returns an array of the same type and rank as arragy, with the specified
new-dimensions. In effect, the array argument itself is modified to conform to the new
specifications, but this may be achieved either by modifying the array or by creating a new array
and modifying the array argument to be displaced to the new array.

In the simplest case, one specifies only the new-dimensions and possibly an :initial-element
argument. Those elements of array that are still in bounds appear in the new array. The elements
of the new array that are not in the bounds of array are initialized to the : initial-element; if
this argument is not provided, then the initial contents of any new elements are undefined.

If :element-type is specified, then array must be such that it could have been originally created
with that type; otherwise an error is signalled. Specifying :element-type to adjust-array
serves only to require such an error check. '

If :initial-contents or :displaced-to is specified, then it is treated as for make-array.
In this case none of the original contents of array appears in the new array.

If :fi11-pointer is specified, the fill pointer of the array is reset as specified. An error is
signalled if array had no fill pointer already.
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ad just-array may, depending on the implementation and the arguments, simply alter the given
array or create and return a new one. In the latter case the given array will be altered so as to be
displaced to the new array and have the given new dimensions.

It is not permitted to call adjust-array on an array that was not created with the
:adjustable option.

If adjust-array is applied to an array that is displaced to another array x, then afterwards
neither array nor the retummed result is displaced to x unless such displacement is explicitly re-
specified in the call to adjust-array.

Example: suppose that the 4-by-4 array m has the following contents:

alpha beta gamma delta

epsilon zeta eta theta

iota kappa Tambda mu -

nu xi omicron pi
Then the result of

(adjust-array m *(3 5) :initial-element ’baz)
is a 3-by-5 array with contents

alpha beta gamma delta baz
epsilon zeta ' eta theta baz
iota kappa Tambda mu baz

Note that if array -a is created displaced to array b and subsequently array b is given to
adjust-array, array a will still be displaced to array b; the effects of this displacement and the
rule of row-major storage order must be taken into account.



Chapter 18
Strings

A string is a specialized kind of vector (one-dimensional array) whose elements are characters. Specifically,
the type string is identical to the type (vector string-char), which in turn is the same as (array
string-char (*))

As a rule, any string-specific function whose name begins with the prefix “string” will accept a symbol
instead of a string as an argument provided that the operation never modifies that argument; the print name of
the symbol is used. In this respect the string-specific sequence operations are not simply specializations.of
generic versions; the generic sequence operations described in Chapter 14 never accept symbols as sequences.
This slight inelegance is permitted in COMMON LISP in the name of pragmatic utility. One may get the effect
of having a generic sequence function operate on either symbols or strings by applying the coercion function
string (page 241)to any argument whose data type is in doubt.

Also, there is a slight non-parallelism in the names of string functions. Where the suffixes equalp and
eq1 would be more appropriate, for historical compatibility the suffixes equal and = are used instead to
indicate case-insensitive and case-sensitive character comparison, respectively.

Any LISP object may be tested for being a string by the predicate stringp (page 60).
Note that strings, like all vectors, may have fill pointers (though such strings are not necessarily simple).

String operations generally operate only on the active portion of the string (below the fill pointer). See
fill-pointer (page 234)and related functions.

18.1. String Access
char string index [Function]
schar simple-string index [Function]

The given index must be a non-negative integer less than the length of string, which must be a
string. The character at position index of the string is returned as a character object. (This character
will necessarily satisfy the predicate string-char-p (page 184).) "As with all sequences in
COMMON LIsP, indexing is zero-origin.

For example:

- 237 -
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(char "Floob-Boober-Bab-Boober-Bubs" 0) => #\F
(char "Floob-Boober-Bab-Boober-Bubs" 1) => #\1

See aref (page230)and elt (page 195). In effect,
(char s j) <=> (aref (the string s) j)
setf (page 72) may be used with char to destructively replace a character within a string.

For char, the string may be any string; for schar, it must be a simple string. In some
implementations of COMMON LISP the function schar may be faster than char when it is
applicable. '

18.2. String Comparison

The naming conventions for these functions and for their keyword arguments generally follow the
conventions for the generic sequence functions. See Chapter 14.

string= stringl string? &key :startl :endl :start2 :end2 [Function]

string= compares two strings, and is true if they are the same (corresponding characters are
identical) but is false if they are not. The function equal (page 62) calls string= if applied to
two strings. '

The keyword arguments :startl and :start2 are the places in the strings to start the
comparison. The arguments :end1 and :end2 are the places in the strings to stop comparing;
comparison Siops just defore the position specified by a limit. The start arguments default to zero
(beginning of string), and the end arguments (if either omitted or ni 1) default to the lengths of the
strings (end of string), so that by default the entirety of each string is examined. These arguments
are provided so that substrings can be compared efficiently.

string= is necessarily false if the (sub)strings being compared are of unequal length; that is, if
(not (= (- endl startl) (- end2 start2)))

is true then string= is false.

For example:

(string= "foo" "foo") istrue

(string= "foo" "Foo") is false

(string= "foo" "bar") is false

(string= "together" "frog" :startl 1 :endl 3 :start2 2)
is true

string-equal stringl string? &ey :startl :endl :start2 :end2 [Function]

string-equal is just like string= except that differences in case are ignored; two characters
are considered to be the same if char-equal (page 187) is true of them.
For example: '

(string-equal "foo" "Foo") istrue
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string< stringl string? &key :startl :endl :start2 :end2 [Function]
string> stringl string? &key :startl :endl :start2 :end2 ’ [Function]
string<= stringl string? &key :startl :endl :start2 :end2 [Function)
string>= stringl string? &key :startl :endl :start2 :end2 [Function)
string/= stringl string? &key :startl :endl :start2 :end2 [Function]

The two string arguments are compared lexicographically, and the result is ni1 unless string!/ is
(less than, greater than, less than or equal to, greater than or equal to, not equal to) string2,
respectively. If the condition is satisfied, however, then the result is the index within the strings of
the first character position at which the strings fail to match; put another way, the result is the
length of the longest common prefix of the strings.

A string a is less than a string b if in the first position in which they differ the character of a is less
than the corresponding character of & according to the function char< (page 186), or if string a is
a proper prefix of string b (of shorter length and matching in all the characters of a).

The keyword arguments :startl and :start2 are the places in the strings to start the
comparison. The keyword arguments :end1 and :end2 places in the strings to stop comparing;
comparison stops just before the position specified by a limit. The “start” arguments default to zero
(beginning of string), and the “end” arguments (if either omitted or ni1) default to the lengths of
the strings (end of string), so that by default the entirety of each string is examined. These
arguments are provided so that substrings can be compared efficiently. The index returned in case
of a mismatch is an index into stringl.

string-lessp stringl string? &key :startl :endl :start2 :end2 [Function)
string-greaterp stringl string? &key :startl :endl :start2 :end2 [Function]
string-not-greaterp stringl/ string? &key :startl :endl :start2 :end2 [Function]
string-not-lessp stringl string? &key :startl :endl :start2 :end2 [Function]
string-not-equal swring! string2 &key :startl :endl :start2 :end2 [Function]

These are exactly like string<, string>, string<=, string>=, and string/=, respectively,
except that distinctions between upper-case and lower-case letters are ignored. It is as if
char-lessp (page 187) were used instead of char< (page 186) for comparing characters.

18.3. String Construction and Manipulation

make-string size &ey :initial-element [Function]
This returns a string of length size, each of whose characters has been initialized to the
:initial-element argument. Ifan : initial-element argument is not specified, then the
string will be initialized in an implementation-dependent way.

Implementation note: It may be convenient to initialize the string to null characters, or to spaces, or to garbage
(“whatever was there”).

A string is really just a one-dimensional array of “string characters™ (that is, those characters that are
members of type string-char). More complex character arrays may be constructed using the
function make-array (page 227).
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string-trim character-bag string [Function]
string-left-trim character-bag string : [Function)
S tring-right-trim character-bag string [Function]

string-trim returns a substring of string, with all characters in character-bag stripped off the
beginning and end. The function string-left-trim is similar, but strips characters off only
the beginning; string-right-trim strips off only the end. The argument character-bag may
be any sequence containing characters.

For example: :
(string-trim '(#\Space #\Tab #\Return) " garbanzo beans
") => "garbanzo beans"
(string-trim " (*)" " ( *three (silly) words* ) ")
=> "three (silly) words"
(string-left-trim " (*)" " ( *three (silly) words* ) ")
=> "three (silly) words* )} "
(string-right-trim " (*)" " ( *three (silly) words* ) ")
=> " ( *three (silly) words"
If no characters need to be trimmed from the string, then either the argument string itself or a copy

of it may be returned, at the discretion of the implementation.

string-upcése string &key :start :end [Function]
string-downcase string &key :start :end [Function]
string-capitalize string &ey :start :end [Function]

string-upcase returns a string just like string with all lower-case alphabetic characters replaced
by the corresponding upper-case characters. More precisely, each character of the result string is
produced by applying the function char-upcase (page 189) to the corresponding character of
string.

string-downcase is similar, except that upper-case characters are converted to lower-case
characters (using char-downcase (page 189)).

The keyword arguments :start and :end delimit the portion of the string to be affected. The
result is always of the same length as string, however.

The argument is not destroyed. However, if no characters in the argument require conversion, the
result may be either the argument or a copy of it, at the implementation’s discretion.
For example:
(string-upcase "Dr. Livingston, I presume?")
=> "DR. LIVINGSTON, I PRESUME?"
(string-downcase "Dr. Livingston, I presume?")
=> "dr. livingston, i presume?” ‘
(string-upcase "Dr. Livingston, I presume?" :start 6 :end 10)
=> "Dr. LiVINGston, I presume?"” )
string-capitalize produces a copy of string such that every word (subsequence of case-
modifiable characters or digits delimited by non-case-modifiable non-digits) has its first character, if
case-modifiable, in upper-case and any other case-modifiable characters in lower-case.

For example:
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(string-capitalize " hello ") => " Hello "
(string-capitatlize

"occlUDeD cASEmenTs FOreSTA11 iNADVertent DEFenestraTION")
=> "Occluded Casements Forestall Inadvertent Defenestration”
(string-capitalize ‘'kludgy-hash-search) => "Kludgy-Hash-Search"
(string-capitalize "DON'T!") => "Don'T!" ;not "Don’t!"
(string-capitalize "pipe 13a, fool6c") => "Pipe 13a, Fooléc"

nstring-upcase string &ey :start :end [Function]
nstring-downcase string &key :start :end [Function]
nstring-capitalize string &ey :start :end _ [Function]

These functions are just like string-upcase, string-downcase, and
string-capitalize (page 240), but destructively modify the argument string by altering case-
modifiable characters as necessary.

The keyword arguments :start and :end delimit the portion of the string to be affected. The
argument string is returned as the result.

18.4. Type Conversions on Strings

string x [Function]
Most of the string functions effectively apply string to such of their arguments as are supposed to
be strings. If x is a string, it is returned. If x is a symbol, its print name is returned. In any other
situation, an error is signalled.

To convert a sequence of characters to a string, use coerce (page 40). (Note that (coerce x
*string) will not succeed if x is a symbol. Conversely, string will not convert a list or other
sequence to be a string.)

To get the string representation of a number or any other LISP object, use prinl-to-string
(page 297), princ-to-string (page297),or format (page 298).
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Chapter19

Structures

CoMMON LisP provides a facility for creating named record structures with named components. In effect,
the user can define a new data type; every data structure of that type has components with specified names.
Constructor, access, and assignment constructs are automatically defined when the data type is defined.

This chapter is divided into two parts. The first part discusses the basics of the structure facility, which is
very simple and allows the user to take advantage of the type-checking, modularity, and convenience of
user-defined record data types. The second part discusses a number of specialized features of the facility that
have advanced applications. These features are completely optional, and you needn’t even know they exist in

order to take advantage of the basics.

Rationale: It is important not to scare the novice away from defstruct with a multiplicity of features. The basic idea is
very simple, and we should encourage its use by providing a very simple description. The hairy stuff, including all options,
is shoved to the end of the chapter.

19.1. Introduction to Structures

The structure facility is embodied in the defstruct macro, which allows the user to create and use
aggregate datatypes with named elements. These are like “structures” in PL/I, or “records” in PASCAL.

As an example, assume you are writing a LISP program that deals with space ships in a two-dimensional
plane. In your program, you need to represent a space ship by a LISP object of some kind. The interesting
things about a space ship, as far as your program is concerned, are its position (represented as x and y
coordinates), velocity (represented as components along the x and y axes), and mass.

A ship might therefore be represented as a record structure with five components: x-position, y-position,
x-velocity, y-velocity, and mass. This structure could in turn be implemented as a LISP object in a number of
ways. It could be a list of five elements; the x-position could be the car, the y-position the cadr, and so on.
Equally well it could be a vector of five elements: the x-position could be element 0, the y-position element 1,
and so on. The problem with either of these representations is that the components occupy places in the
object that are quite arbitrary and hard to remember. Someone looking at (cadddr shipl) or
(vref shipl 3) in a piece of code might find it difficult to determine that this is accessing the y-velocity
component of ship1. Moreover, if the representation of a ship should have to be changed, it would be very
difficult to find all the places in the code to be changed to match (not all occurrences of cadddr are intended
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to extract the y-velocity from a ship).

Ideally components of record structures should have names. One would like to write something like
(ship-y-velocity ship1) instead of (cadddr ship1). One would also like a more mnemonic way
to create a ship than this:

(1ist 0 0 0 0 0)

Indeed, one would like ship to be a new data type, just like other LISP data types, that one could test with
typep (page 58), for example. The defstruct facility provides all of this.

defstruct itself is a macro that defines a structure. For the space ship example one might define the
structure by saying:
(defstruct ship
x-position
y-position
x-velocity
y-velocity
mass)
This declares that every ship is an object with five named components. The evaluation of this form does

several things:

o It defines ship-x-position to be a function of one argument, a ship, that returns the
x-position of the ship; ship-y-position and the other components are given similar function
definitions. These functions are called the access functions, as they are used to access elements of
the structure.

¢ The symbol ship becomes the name of a data type, of which instances of ships are elements.
This name becomes acceptable to typep (page 58), for example; (typep x ’ship) is trueiff
x is a ship. Moreover, all ships are instances of the type structure, because shiip is a subtype
of structure. :

o A function named ship-p of one argument is defined; it is a predicate that is true if its argument
. is a ship, and is false otherwise.

o A function called make-ship is defined that, when invoked, will create a data structure with five
components, suitable for use with the access functions. Thus executing
(setq ship2 (make-ship))
sets ship2 to a newly-created ship object. One can specify the initial values of any desired
component in the call to make-ship in this way:
(setq ship2 (make-ship :mass *default-ship-mass*
:x-position 0O
:y-position 0))
This constructs a new ship and initializes three of its components. This function is called the
constructor function, because it constructs a new structure.

¢ One may use setf to alter the components of a ship:
(setf (ship-x-position ship2) 100)
This alters the x-position of ship2 to be 100. This works because defstruct behaves as if it
generates an appropriate defsetf (page 78) form for each access function.
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This simple example illustrates the power of defstruct to provide abstract record structures in a
convenient manner. defstruct has many other features as well for specialized purposes.

19.2. How to Use Defstruct

defstruct nameand-options [doc-string] {slot-description}™* [Macro}

Defines a record-structure data type. A general call to defstruct looks like this:

(defstruct (name option-1 option-2 ...)
doc-string
slot-description-1
slot-description-2
.)
name must be a symbol; it becomes the name of a new data type consisting of all instances of the
structure. The function typep (page 58) will accept and use this name as appropriate.

Usually no options are needed at all. If no options are specified, then one may wrife simply name
instead of ( name) after the word defstruct. The syntax of options and the options provided are
discussed in section 19.5 (page 247).

If the optional documentation string doc-string is present, then it is attached to the name as a
documentation string of type structure; see documentation (page 338).

Each slot-description-j is of the form
( slot-name default-init )
slot-option-name-1 slot-option-value-1
slot-option-name-2 slot-option-value-2
.)

Each slot-name must be a symbol; an access function is defined for each slot. If no options and no
default-init are specified, then one may write simply slot-name instead of (slot-name) as the slot
description. The default-init is a form that is evaluated each time a structure is to be constructed;
the value is used as the initial value of the slot. If no defaulr-init is specified, then the initial
contents of the slot are undefined and implementation-dependent. The available slot-options are

described in Section 19.4.

Compatibility note: Slot-options are not currently provided in Lisp Machine Lisp, but this is an upward-
compatible extension.

Besides defining an access function for each slot, defstruct arranges for setf to work properly
on such access functions, defines a predicate named name-p, and defines a constructor function
named make-name. All names of automatically created functions are interned in whatever
package is current at the time the defstruct declaration is processed (see *package* (page
140)). Also, all such functions may be declared in11ine at the discretion of the implementation to
improve efficiency; if you do not want some function declared in11ine, follow the defstruct
form with a notin11ine declaration to overrride any automatic in11ine declaration.
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19.3. Using the Automatically Defined Constructor Function

After you have defined a new structure with defstruct, you can create instances of this structure by
zusing the constructor function. By default, defstruct defines this function automatically. For a structure
named foo, the constructor function is normally named make-foo; you can specify a different name by
giving it as the argument to the :constructor (page 248) option, or specify that you don’t want a normal
constructor function at all by using nil1 as the argument (in which case one or more “by-position”
constructors should be requested; see section 19.6 (page 251)).

A call to a constructor function, in general, has the form
( name-aof-constructor-function

slot-keyword-1 form-1

slot-keyword-2 form-2

ced)
All arguments are keyword arguments. Each slot-keyword should be a keyword whose name matches the
name of a slot of the structure (defstruct determines the possible keywords simply by interning each
slot-name in the keyword package). All the keywords and forms are evaluated. In short, it is just as if the
constructor function took all its arguments as &key parameters. For example, the example ship structure
shown in section 19.1 has a constructor function that takes arguments roughly as if its definition were

(defun make-ship (&key x-position y-position
x-velocity y-velocity mass)
ees) .

If slot-keyword-j names a slot, then that element of the created structure will be initialized to the value of
Jorm-j. If no slot-keyword-j/ form-j pair is present for a given slot, then the slot will be initialized by evaluating
the default-init form specified for that slot in .the call to defstruct. (In other words, the initialization
specified in the defstruct defers to any specified in a call to the constructor function.) If the default
initialization form is used, it is evaluated at construction time, but in the lexical environment of the
defstruct form in which it appeared. If the defstruct itself also did not specify any initialization, the
clement’s initial value is undefined. You should always specify the initialization, either in the defstruct or

in the call to the constructor function, if you care about the initial value of the slot.

Compatibility note: The Lisp Machine Lisp documentation is slightly unclear about when the initialization specified in the
defstruct form gets evaluated: at defstruct evaluation time, or at constructor time? The code reveals that it is at
constructor time, which causes problems with referential transparency with respect to lexical variables (which currently
don’t exist officially in Lisp Machine Lisp anyway). The above remark concerning the lexical environment in effect requires
that the initialization form is treated as a thunk; it is evaluated at constructor time, but in the environment where it was
written (the defstruct environment). Most of the time this makes no difference anyway, as the initialization form is
typically a quoted constant or refers only to special variables. The requirement is imposed here for uniformity, and to
ensure that what look like special variable references in the initialization form are in fact always treated as such.

Each initialization form specified for a defstruct component, when used by the constructor function for
an otherwise unspecified component, is re-evaluated on every call to the constructor function. It is as if the
initialization forms were used as init forms for the keyword parameters of the constructor function. For
example, if the form (gensym) were used as an initialization form, either in the constructor-function call or
as the default initialization form in the defstruct declaration, then every call to the constructor function
would call gensym once to generate a new symbol.
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19.4. defstruct Slot-Options

Each slot-description in a defstruct form may specify one or more slot-options. A slot-option consists of
a pair of a keyword and a value (which is not a form to be evaluated, but the value itself).

For example:

(defstruct ship
(x-position 0.0 :type short-float)
(y-position 0.0 :type short-float)
(x-velocity 0.0 :type short-float)
(y-velocity 0.0 :type short-float)
(mass *default-ship-mass* :type short-float :read-only t))

This specifies that each slot will always contain a short-format floating-point number, and that the last slot
may not be altered once a ship is constructed.

The available slot-options are:

:type

:read-only

The option :type (fype specifies that the contents of the slot will always be of the
specified data type. This is entirely analogous to the declaration of a variable or function;
indeed, it effectively declares the result type of the access function. An implementation
may or may not choose to check the type of the new object when initializing or assigning to
aslot. Note that the argument form fype is not evaluated.

The option :read-only x, where x is not ni1l, specifies that this slot may not be
altered; it will always contain the value specified at construction time. setf (page
72) will not accept the access function for this slot. If x is ni1, this slot-option has no

effect. Note that the argument form x is not evaluated. '

19.5. Options to defstruct

The preceding description of defstruct is all that the average user will need (or want) to know in order
to use structures. The remainder of this chapter discusses more complex features of the defstruct facility.

This section explains each of the options that can be given to defstruct. As with slot-options, a
defstruct option may be either a keyword or a list of a keyword and arguments for that keyword.

‘conc-name

This provides for automatic prefixing of names of access functions. It is conventional to
begin the names of all the access functions of a structure with a specific prefix, the name of
the structure followed by a hyphen. This is the default behavior.

The argument to the :conc-name option specifies an alternate prefix to be used. (If a
hyphen is to be used as a separator, it must be specified as part of the prefix.) If ni1is
specified as an argument, then no prefix is used; then the names of the access functions are
the same as the slot names, and it is up to the user to name the slots reasonably.

Note that no matter what is specified for : conc-name, with a constructor function one
uses slot keywords that match the slot names, with no prefix attached. On the other hand,
one uses the access-function name when using setf. Here is an example:
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(defstruct door knob-color width material)

(setq my-door (make-door :knob-color 'red :width 5.0))
(door-width my-door) ==> 5.0

(setf (door-width my-door) 43.7)

(door~width my-door) => 43.7

The :type option specifies what kind of LISP object will be used to implement the
structure. It takes one argument, which must be one of the types enumerated below.

Specifying this option has the effect of forcing a specific representation, and of forcing the
components to be stored in successive elements of the specified representation.

Normally this option is not specified, in which case the structure is represented in an
implementation-dependent manner, and the : named option is assumed unless : unnamed
is explicitly specified.

vector Use a general vector, storing components as vector elements. This is
normally :named. The first component is vector element 1 if the
structure is : named, and element 0 if it is : unnamed.

(vector element-type)
A specialized vector may be used, in which case every component must
be of a type that can be stored in such a vector. The first component is
vector element 1 if the structure is :named, and element 0 if it is
:unnamed.

list Use a list. A structure of this type cannot be distinguished by typep,
even if the : named option is used. By default this is : unnamed. The
first component the cadr if the structure is : named, and the car if it is
sunnamed.

The :named option specifies that the structure is “named”; this option takes no argument.
A named structure has an associated predicate for determining whether a given LISP object -
is a structure of that name. Some named structures in addition can be distinguished by the
predicate typep (page 58). If neither :named nor :unnamed is specified, then the
default depends on the : type option.

The :unnamed option specifies that the structure is not named; this option takes no
argument. The “type” of an unnamed structure can never be distinguished by typep.

This option takes one argument, a symbol, which specifies the name of the constructor
function. If the argument is not provided or if the option itself is not provided, the name
of the constructor is produced by concatenating the string "make-" and the name of the
structure, putting the name in whatever package is current at the time the defstruct
declaration is processed (see *package* (page 140)). If the argument is provided and is
ni1, no constructor function is defined.

This option actually has a more general syntax that is explained in section 19.6 (page 251).
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This option takes one argument, which specifies the name of the type predicate. If the
argument is not provided or if the option itself is not provided, the name of the predicate is
made by concatenating the name of the structure to the string "-p", putting the name in
whatever package is current at the time the defstruct declaration is processed (see
*package* (page 140)). If the argument is provided and is ni 1, no predicate is defined.
A predicate can be defined only if the structure is :named (page 248).

This option is used for building a new structure definition as an extension of an old
structure definition. - As an example, suppose you have a structure called person that
looks like this:

(defstruct person name age sex)

Now suppose you want to make a new structure to represent an astronaut. Since astronauts
are people too, you would like them to also have the attributes of name, age, and sex, and
you would like LISP functions that operate on person structures to operate just as well on
astronaut structures. You can do this by defining astronaut with the : include
option, as follows:
(defstruct (astronaut (:include person)
(:conc-name 'astro-))
helmet-size
(favorite-beverage 'tang))

The :include option causes the structure being defined to have the same slots as the
included structure, in such a way that the access functions for the included structure will
also work on the structure being defined. In this example, an astronaut will therefore
have five slots: the three defined in person, and the two defined in astronaut itself.
The access functions defined by the person structure can be applied to instances of the
astronaut structure, and they will work correctly. Moreover, astronaut will have its
own access functions for components defined by the person structure. The following
examples illustrate how you can use astronaut structures:
(setq x (make-astronaut :name 'buzz

:age 45,

:sex t

:helmet-size 17.5))

(person-name x) => buzz
(astro-name x) => buzz
(astro-favorite-beverage x) => tang

The difference between the access functions person-name and astro-name is that
person-name may be correctly applied to any person, including an astronaut, while
astro-name may be correctly applied only to an astronaut. (An implementation may
or may not check for incorrect use of access functions.)

The argument to the :include option is required, and must be the name of some
previously defined structure. The included structure must be of the same :type as this
structure. The structure name of the including structure definition becomes the name of a
data type, of course; moreover, it becomes a subtype of the included structure. In the
above example, astronaut is a subtype of person; hence

(typep (make-astronaut) ’person)
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is true, indicating that all operations on persons will work on astronauts.

The following is an advanced feature of the :include option. Sometimes, when one
structure includes another, the default values or slot-options for the slots that came from
the included structure are not what you want. The new structure can specify default values
or slot-options for the included slots different from those the included structure specifies,
by giving the : include option as:

(:include name slot-description-1 slot-description-2 ...)

Each slot-description-j must have a slot-name or slot-keyword that is the same as that of
some slot in the included structure. If slot-description-jhas no default-init, then in the new
structure the slot will have no initial value. Otherwise its initial value form will be replaced
by the default-init in slot-description-j. A normally writable slot may be made read-only. If
a slot is read-only in the included structure, then it must also be so in the including
structure. If a type is specified for a slot, it must be the same as, or a subtype of, the type
specified in the included structure. If it is a strict subtype, the implementation may or may
not choose to error-check assignments.

For example, if we had wanted to define astronaut so that the default age for an
astronaut is 45, then we could have said:
(defstruct (astronaut (:include person (age 45)))
helmet-size.
(favorite-beverage 'tang))

:print-function

This option may be used only with :named structures. The argument to this option
should evaluate to a function of three arguments to be used to print structures of this type.
When a structure of this type is to be printed, the function is called on the structure to be
printed, a stream to print to, and an integer indicating the current depth (to be compared
against *print-level* (page 288)). The printing function should observe the values of
such printer-control variables as *print-escape* (page 287) and *print-pretty*

(page 287).

:initial-offset

:eval-when

This allows you to tell defstruct to skip over a certain number of slots before it starts
allocating the slots described in the body. This option requires an argument, a non-
negative integer, which is the number of slots you want defstruct to skip. To make use
of this option requires that you have some familiarity with how defstruct is
implementing your structure; otherwise, you will be unable to make use of the slots that
defstruct hasleft unused,

Normally the functions defined by defstruct are defined at eval time, compile time,

and load time. This option allows the user to control this behavior. The argument to the

:eval-when option is just like the list that is the first subform of an eval-when (page

54) special form. For example, '
(:eval-when (eval compile))

will cause the functions to be defined only when the code is running interpreted or inside
the compiler.
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19.6. By-position Constructor Functions

If the :constructor (page 248) option is given as (:constructor name arglist), then instead of
making a keyword driven constructor function, defstruct defines a “positional” constructor function,
taking arguments whose meaning is determined by the argument’s position rather than by a keyword. The
arglist is used to describe what the arguments to the constructor will be. In the simplest case something like
(:constructor make-foo (a b c)) defines make-foo to be a three-argument constructor function
whose arguments are used to initialize the slots named a, b, and c.

In addition, the keywords &optional, &rest, and &aux are recognized in the argument list. They work
‘in the way you might expect, but there are a few fine points worthy of explanation.

For example:

(:constructor create-foo
(a &optional b (c ’'sea) &rest d &aux e (f 'eff)))

This defines create-foo to be a constructor of one or more arguments. The first argument is used to
initialize the a slot. The second argument is used to initialize the b slot. If there isn’t any second argument,
then the default value given in the body of the defstruct (if given) is used instead. The third argument is
used to initialize the c slot. If there isn’t any third argument, then the symbol sea is used instead. Any
argumenis following the third ai'gurnent are collected into a list and used to initialize the d slot. If there are
three or fewer arguments, then ni1 is placed in the d slot. The e slot is not initialized; its initial value is
undefined. Finally, the f slot is initialized to contain the symbol eff.

The actions taken in the b and e cases were carefully chosen to allow the user to specify all possible
behaviors. Note that the &aux “variables” can be used to completely override the default initializations given
in the body.

With this definition, one can write
(create-foo 1 2)
instead of .
(make-foo :a 1 :b 2)
and of course create-foo provides defaulting different from that of make-foo.

It is permissible to use the : constructor option more than once, so that you can define several different
constructor functions, each taking different parameters.

Because a constructor of this type operates By Order of Arguments, it is sometimes known as a BOA
constructor.
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Chapter 20
The Evaluator

20.1. Run-Time Evaluation of Forms

eval form , [Function]
The form is evaluated in the current dynamic environment and a null lexical environment.
Whatever results from the evaluation is returned from the call to eval. '

Note that when you write a call to eval two levels of evaluation occur on the argument form you
write. First the argument form is evaluated, as for arguments to any function, by the usual
argument evaluation mechanism (which involves an implicit use of eval). Then the argument is
passed to the eval function, where another evaluation occurs.
For example:

(eval (1ist 'cdr (car ’((quote (a . b)) c)))) => b
The argument form (1ist ’cdr (car '((quote (a . b)) c))) isevaluated in the usual
way to produce the argument (cdr (quote (a . b))); this is then given to eval because
eval is being called explicitly, and eval evaluates its argument (cdr (quote (a . b))) to
produce b.

If all that is required for some application is to obtain the current dynamic value of a given symbol,
the function symbol-value (page 68) may be more efficient than eval.

*evalhook® [Variable]
*applyhook® _ ' | [Variable]

If the value of *evalhook* is not ni1, then eval behaves in a special way. The non-ni1 value
of *evalhook* should be a function that takes arguments according to a lambda-list that looks
like (form &rest env); this is called the eval hook function. When a form is to be evaluated (any
form at all, even a number or a symbol), whether implicitly or via an explicit call to eval, no
attempt is made to evaluate the form. Instead, the hook function is invoked, and passed the form to
be evaluated as its first argument. The hook function is then responsible for evaluating the form;
whatever is returned by the hook function is assumed to be the result of evaluating the form.

The variable *app1yhook* is similar to *evalhook*, but is used when a function is about to be

- 253 -
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applied to arguments. If the value of *appiyhook* is not ni1, then eval behaves in a special
way. The non-n1i1 value of *app1yhook* should be a function that takes arguments according to
a lambda-list that looks like (fiunction args &rest env); this is called the apply hook function.
When a function is about to be applied to a list of arguments, no attempt is made to apply the
function. Instead, the hook function is invoked, and passed the function and the list of arguments
as its first and second arguments. The hook function is then responsible for evaluating the form;
whatever is returned by the hook function is assumed to be the result of evaluating the form. The
apply hook function is used only for application of ordinary functions within eval. Itis not used
for applications via apply (page 83) or funcall (page 83), for applications by such functions as
map (page 197) or reduce (page 198), or for invocation of macro-expansion functions by either
eval ormacroexpand (page 116).

The other arguments passed to either kind of hook function contain information about the lexical
environment in an impiementation-dependent format. These arguments are suitable for the
functions *eval (page.254), evalhook (page 254), and applyhook (page 254).

When either kind of hook function is invoked, both *evalhook* and *applyhook* are
rebound to the value ni1 around the invocation of the hook function. This is so that the hook
function will not be invoked recursively on evaluations and applications that occur in the course of
executing the code of the hook function. The hook function may find useful the functions
evalhook (page 254) and applyhook (page 254) for performing recursive evaluations and
applications.

The hook feature.is provided as an aid to debugging. The step (page 340) facility is implemented
around this hook.:

If a non-local exit causes a throw back to the top level of LISP, perhaps because an error could not
be corrected, then *evalhook* and *applyhook* are automatically reset to ni1, as a safety
feature.

*eval form &rest env : [Function]

This function is just like eva1, but treats env as a specification of the lexical environment in which
to evaluate the form. The format of env is implementation-dependent, and may be required to
consist of a certain number of arguments, but anything that is passed to a hook function because of
the *evalhook* feature will be acceptable.

Note that if a hook function simply calls *eval to evaluate the form, an endless loop may occur,
because *eval will invoke the hook function on its argument if *evalhook* is not nil. See
evalhook (page 254).

evalhook jform evalhookfn applyhookfn &rest env [Function]
applyhook function args evalhookfn applyhookfn &rest env S [Function]

The functions evalhook and applyhook are provided to make it easier to exploit the hook
feature.
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In the case of evalhook, the form is evaluated. The the case of applyhook, the function is .
applied to the list of arguments args. In either case, the variable *evalhook* is bound to
evalhookfn and *appiyhook* is bound to applyhookfn around the operation, and furthermore the
env arguments are used as the lexical environment, as for *eval (page 254). The check for a hook
function is bypassed for the evaluation of the form itself (for evalhook) or for the application of
the function to the argsitself (for app1yhook), but not for subsidiary evaluations and applications.
such as evaluations of subforms. It is this one-shot bypass that makes evalhook and app1yhook
so useful.

Here is an example of a very simple tracing routine that uses just the eval hook feature:
(defvar *hooklevel* 0)

(defun hook (x)
(let ((*evalhook* 'eval-hook-function))
(eval x)))

(defun eval-hook-function (form &rest env)
(1et ((*hooklevel* (+ *hooklevel* 1)))
(format trace-output "~%~V@TForm: ~S"
(* *hooklevel* 2) form)
(let ((values (multiple-value-list
(apply #’evalhook
form
#'eval-hook-function
nil
env))))
(format trace-output "~%~V@Tvalue:~{~S ~}"
(* *hooklevel* 2) values)
(values-1ist values))))

Using these routines, one might see the following interaction:
(hook '(cons (floor *base* 2) 'b))
Form: (CONS (FLOOR *BASE* 2) (QUOTE B))
Form: (FLOOR *BASE* 3)
Form: *BASE®*
Value: 10
Form: 3
Value: 3
Value: 3 1 :
Form: (QUOTE B)
Value: B :
Value: (3 . B)
(3 . B)

constantp object ’ [Function]
If the predicate constantp is true of an object, then that object always evaluates to the same
thing; it is a constant. This includes self-evaluating objects such as numbers, characters, strings,
bit-vectors, and keywords, as well as all constant symbols declared by defconstant (page 53),
such as ni1 (page 58), t (page 58), and pi (page 161). In addition, a list whose car is quote,
such as (quote foo), is considered to be a constant.
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If constantp is false of an‘object, then that object might or might not always evaluate to the same
thing.

30.2. The Top-Level Loop

Normally one interacts with LISP through a “top level read-eval-print loop”, so called because it is the
highest level of control and consists of an endless loop that reads an expression, evaluates it, and prints the
results. One has an effect on the state of the LISP system only by invoking actions that have side effects.

The precise nature of the top-level loop for COMMON LISP is purposely not specified rigorously here, so that
implementors can experiment to improve the user interface. For example, an implementor may choose to
require line-at-a-time input, or may provide a fancy editor or complex graphics-display interface. An
implementor may choose to prompt explicitly for input, or may choose (as MACLISP does) not to clutter up
the transcript with prompts.

The top-level loop is required to trap all throws and recover gracefully. It is also required to print all values
resulting from evaluation of a form, perhaps on separate lines. If a form returns zero values, as little as
possible should be printed.

The following variables are maintained by the top-level loop as a limited safety net, in case the user forgets
to save an interesting input expression or output value. (Note that the names of some of these variables
violate the convention that names of global variables begin and end with an asterisk.) These are intended
primarily for user interaction, which is why they have short names. Use of these variables should be avoided
in programs.

+ [Variable]
o [Variable)
+4+ . [Variable]

While a form is being evaluated by the top-level loop, the variable + is bound to the previous form
read by the loop. The variable ++ holds the previous value of + (that is, the form evaluated two
interactions ago), and +++ holds the previous value of ++.

- [Variable]

While a form is being evaluated by the top-level loop, the variable - is bound to the form itself; that
is, it is the value about to be given to + once this interaction is done.
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[Variable]
[Variable]
[Variable]

While a form is being evaluated by the top-level loop, the variable * is bound to the result printed
at the end of the last time through the loop; that is, it is the value produced by evaluating the form
in +. If several values were produced, * contains the first value only (or ni1 if zero values were
produced). The variable ** holds the previous value of * (that is, the result printed two
interactions ago), and *** holds the previous value of **.

If the evaluation of + was aborted for some reason, * will have the value n1i1; this is so that + and
* ++and **, and +++ and *** will be correspond properly.

[Variable]
[Variable]
[Variable]

While a form is being evaluated by the top-level loop, the variable / is bound to a list of the results
printed at the end of the last time through the loop; that is, it is a list of all values produced by
evaluating the form in +. The value of * should always be equal to the car of the value of /. The
variable // holds the previous value of / (that is, the results printed two interactions ago), and ///
holds the previous value of //.

If the evaluation of + was aborted for some reason, / will have the value ni1; this is so that + and
/,++and //, and +++ and /// will be correspond properly.




258

COMMON LISP REFERENCE MANUAL



Chapter 21

Streams

Streams are objects that serve as sources or sinks of data. Character streams produce or absorb characters;
binary streams produce or absorb integers. The normal action of a COMMON LISP system is to read characters
from a character input stream, parse the characters as representations of COMMON LISP data objects, evaluate
. each object (as a form) as it is read, and print representations of the results of evaluation to an output
character stream. | '

Typically streams are connected to files or to an interactive terminal. Streams, being LISP objects, serve as
the ambassadors of external devices by which input/output is accomplished.

A stream may be input-only, 6utput-only, or bidirectional. What operations may be performed on a stream -
depends on which of the three types of stream it is.

21.1. Standard Streams

There are several variables whose values are streams used by many functions in the LISP system. These
variables and their uses are listed here. By convention, variables that are expected to hold a stream capable of
input have names ending with “~input”, and similarly “-output” for output streams. Those expected to
hold a bidirectional stream have names ending with “~i0”.

*standard-input* [Variable]
In the normal LISP top-level loop, input is read from *standard-input* (that is, whatever
stream is the value of the global variable *standard-input*). Many input functions, including
read (page 291) and read-char (page 293), take a stream argument that defaults to
*standard-inputs®.

*standard-output* [Variable]
In the normal LISP top-level loop, output is sent to *standard-output® (that is, whatever

stream is the value of the global variable *standard-output*). Many output functions,
including print (page 296) and write-char (page 297), take a stream argument that defaults

— 259 —
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to *standard-output®.

*error-output® [Variable]

The value of *error-output* is a stream to which error messages should be sent. Normally this
is the same as *standard-output®*, but *standard-output* might be bound to a file and
*error-output* left going to the terminal or a separate file of error messages.

*query-io* , [Variable]

The value of *query-1io* is a stream to be used when asking questions of the user. The question
should be output to this stream, and the answer read from it. When the normal input to a program
may be coming from a file, questions such as “Do you really want to delete all of the files in your
directory??” should be sent directly to the user, and the answer should come from the user, not
from the data file. *query-io* is used by such functions as yes-or-no-p (page 312).

*debug-io* [Variable]

The value of *debug-io*isa stream to be used for interactive debugging purposes. This is often
the same as the value of *query-io* (page 260), but need not be.

*terminal-io* ‘ [Variable]

The value of *terminal-io* is ordinarily the stream that connects to the user’s console.
Typically, writing to this stream would cause the output to appear on a display screen, for example,
and reading from the stream would accept input from a keyboard. It is intended that standard
input functions such as read (page 291) and read-char (page 293), when used with the console
stream, would cause “echoing” of the input into the outpu’t side of the stream. (The means by
which this is accomplished is of course highly implementation-dependent.)

*trace-output* [Variable}

The value of *trace-output® is the stream on which the trace (page 339) function prints its
output. o

*standard-input*, *standard-output*, *error-output®*, *trace-output®*, and
*query-io* are initially bound to synonym streams that pass all operations on to the stream that is the
value of *terminal-io*. (See make-synonym-stream (page 261).) Thus any operations performed
on those streams will go to the terminal.

No user program should ever change the value of *terminal-io*. A program that wants (for example)
to divert output to a file should do so by binding the value of *standard-output®; that way error
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messages sent to *error-output* can still get to the user by going through *terminal-io®*, which is .
usually what is desired.

21.2. Creating New Streams

Perhaps the most important constructs for creating new streams are those that open files; see
with-open-file (page 325) and open (page 322). The following functions construct streams without
reference to a file system.

make-synonym-stream symbol [Function]
make-synonym-stream creates and returns a “synonym stream”. Any operations on the new
stream will be performed on the stream that is then the value of the dynamic variable named by the
symbol. If the value of the variable should change or be bound, then the synonym stream will
operate on the new stream.

make-broadcast-stream &rest streams [Function]
Returns a stream that only works in the output direction. Any output sent to this stream will be
‘sent to all of the streams given. The set of operations that may be performed on the new stream is
the intersection of those for the given streams. The results returned by a stream operation are the
values returned by the last stream in streams, the results of performing the operation on all
preceding streams are discarded.

make-concatenated-stream &rest streams [Function}
Returns a stream that only works in the input direction. Input is taken from the first of the streams
until it reaches end-of-file; then that stream is discarded, and input is taken from the next of the
streams, and so on. If no arguments are given, the result is a stream with no content; any input
attempt will result in end-of-file.

make-two-way-stream input-stream output-stream [Function]
Returns a bidirectional stream that gets its input from input-stream and sends its output to
output-stream.

make-echo-stream input-stream output-stream ’ [Function]
Returns a bidirectional stream that gets its input from input-stream and sends its output to
output-stream. In addition, all input taken from input-stream is echoed to output-stream.

make-string-input-stream string &optional start end [Function]
Returns an input stream that will supply, in order, the characters in the substring of string delimited
by start and end, and then signal end-of-file.
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make-string-output-stream &optional line-length [Function]
Returns an output stream that will accumulate all output given it for the benefit of the function
get-output-stream-string.

» , :

get-output-stream-string string-output-stream [Function]
Given a stream produced by make-string-output-stream, this returns a string containing all
the characters output to the stream so far. The stream is then reset; thus each call to
get-output-stream-string gets only the characters since the last such call (or the creation of
the stream, if no such previous call has been made).

with-open-stream (var stream) {declaration}* {form}* [Macro]

The form stream is evaluated and must produce a stream. The variable varis bound with the stream
as its value, and then the forms of the body are executed. The stream is automatically closed on exit
from the with-open-stream form, no matter whether the exit is normal or abnormal. The
stream should be regarded as having dynamic extent.

with-input-from-string (var string {keyword value}*) {declaratian}* {form}* [Macro]

The body is executed as an implicit progn with the variable var bound to a character input stream
that supplies successive characters from the value of the form string.
with-input-from-string returns the results from the last form of the body.

The input stream is automatically closed on exit from the with-input-from-string form, no
matter whether the exit is normal or abnormal. The stream should be regarded as having dynamic
extent.

The following keyword options may be used:

:index The form after the : index keyword should be a place acceptable to setf. If
the with-input-from-string form is exited normally, then the place will
have stored into it the index into the szring indicating the first character not read
(the length of the string if all characters were used). The place is not updated as
reading progresses, but only at the end of the operation.

:start The :start keyword takes an argument indicating, in the manner usual for
sequence functions, the beginning of a substring of string to be used.

:end The :end keyword takes an argument indicating, in the manner usual for
sequence functions, the end of a substring of string to be used.

For example:

(with-input-from-string (s "Animal Crackers" :index j :start 6)
(read s)) => crackers

As a side effect, the variable j is set to 15.

The :start and : index keywords may both specify the same variable, which is a pointer within
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the string to be advanced, perhaps repeatedly by some containing loop.

, With-output-to-string (var [siring]) {declaration}* {form}* [Macro]
The body is executed as an implicit progn with the variable var bound to a character output
stream. All output to that stream is saved in a string. If no string argument is provided, then the
value of with-output-from-string is a string containing all the collected output. If string is
specified, it must be a string with a fill pointer, the output is incrementally appended to the string
(see vector-push (page 234)); in this case with-output-to-string returns the results
from the last form of the body.

The output stream is automatically closed on exit from the with-output-from-string form,
no matter whether the exit is normal or abnormal. The stream should be regarded as having
dynamic extent.

21.3. Operations on Streams

This section contains discussion of only those operations that are common to all streams. Input and output
is rather complicated, and is discussed separately in Chapter 22. The interface between streams and the file
system is discussed in Chapter 23.

streamp object [Function]
streamp is true if its argument is a stream, and otherwise is false.
(streamp x) <=> (typep x 'stream)

input-stream-p stream [Function]
This predicate is true if its argument (a stream) can handle input operations, and otherwise is false.

output-stream-p stream [Function)
This predicate is true if its argument (a stream) can handle output operations, and otherwise is false.

stream-element-type stream [Function]
A type specifier is returned to indicate what objects may be read from or written to the stream.
Streams created by open (page 322) will have an element type restricted to a subset of
character or integer, but in principle a stream may conduct transactions using any LISP
objects.

close stream &key :abort [Function]
The stream is closed. No further input/output operations may be performed on it. However,
certain inquiry operations may still be performed, and it is permissible to close an already-closed
stream.
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If the :abort parameter is not ni1 (it defaults to ni1), it indicates an abnormal termination of
the use of the stream. An attempt is made to clean up any side effects of having created the stream
in the first place. For example, if the stream performs output to a file, the file is deleted and any
previously existing file is not superseded.



Chapter 22
“Input/Output

22.1. Printed Representation of Lisp Objects

LISP objects are not normally thought of as being text strings; they have very different properties from text
strings as a consequence of their internal representation. However, to make it possible to get at and talk about
LISP objects, LISP provides a representation of objects in the form of printed text; this is called the printed
representation, which is used for input/output purposes and in the examples throughout this manual.
Functions such as print (page 296) take a LISP object and send the characters of its printed representation
to astream. The collection of routines that does this is known as the (LIiSP) printer. The read function takes
characters from a stream, interprets them as a printed representation of a LISP object, builds a corresponding
object, and returns it; the collection of routines that does this is called the (LISP) reader.

Ideally, one could print a LISP object and then read the printed representation back in, and so obtain the
same identical object. In practice this is difficult, and for some purposes not even desirable. Instead, reading
a printed representation produces an object that is (with obscure technical exceptions) equal (page 62) to
the originally printed object.

Most LISP objects have more than one possible printed representation. For example, the integer twenty-

seven can be written in any of these ways:
27 27. #033 #x1B #b11011 #.(* 33 3)

A list of two symbols A and B can be printed in many, many ways:

(A B) (a b) ( a b) (\A |B])
(INA] '

)

The last example, which is spread over three lines, may be ugly, but it is legitimate. In general, wherever
whitespace is permissible in a printed representation, any number of spaces, tab characters, and newlines may
appear.

When print produces a printed representation, it must choose arbitrarily from among many possible
printed representations. It attempts to choose one that is readable. There are a number of global variables

that can be used to control the actions of print, and a number of different printing functions.

This section describes in detail what is the standard printed representation for any Lisp object, and also
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describes how read operates.

22.1.1. What the read Function Accepts

* The purpose of the LISP reader is to accept characters, interpret them as the printed representation of a LISP
object, and construct and return such an object. The reader cannot accépt everything that the printer
produces; for example, the printed representations of compiled code objects cannot be read in. However, the
reader has many features that are not used by the output of the printer at all, such as comments, alternative
representations, and convenient abbreviations for frequently-used unwieldy constructs. The reader is also
parameterized in such a way that it can be used as a lexical analyzer for a more general user-written parser.

When the reader is invoked, it reads a character from the input stream and dispatches according to the
attributes of that character. Every character that can appear in the input stream can have one of the following
attributes: whitespace, constituent, escape character, or macro character. In addition, a macro character may
be terminating or non-terminating (of tokens).

Supposing that the first character has been read; call it “x”. The reader then performs the following
actions:

o If x is a whitespace character, then discard it and start over, reading another character.

o If x is a macro character, then execute the function associated with that character. The function
may return zero values or one value (see values (page 103)). If one value is returned, that
object is returned by the reader. If zero values are returned, the reader starts anew, reading a
character from the input stream and dispatching. The function may of course read characters
from the input stream; if it does, it will see those characters following the macro character.

o If x is an escape character, then read the next character and pretend it is a constituent, ignoring its
usual syntax. Drop into the following case.

o If x is a constituent, then it begins an extended token, representing a symbol or a number. The
reader reads more characters, accumulating them until a whitespace character or a macro character
that is terminating is found, or until end-of-file is reached. However, whenever an escape
character is found during the accumulation, the character after that is treated as a pure constituent
and also accumulated, no matter what its usual syntax is. Similarly, any non-terminating macro
character is simply accumulated as if it were a constituent. Call the eventually found terminating
macro character or whitespace character “y”. All characters beginning with x up to but not
including y form a single extended token. (If end-of-file was encountered, the characters
beginning with x up to the end of the file form the extended token.) This token is then
interpreted as a number if possible, and otherwise as a symbol. The number or symbol is then

returned by the reader.

Compatibility note: What MacLisp calls a “single character object” (tokens of type single) are not provided for explicitly in
CoMMON Lisp. They can be viewed as simply a kind of macro character. That is, the effect of (setsyntax '$ 'single
ni1) in MACLISP can be achieved in COMMON Lisp by
(set-macro-character '$ #'(lambda (stream char)
(declare (ignore stream char))

'$))
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,  <wab> whitespace <{page> whitespace {return> whitespace
{space> whitespace @ constituent ' terminating macro character
! constituent* A constituent a constituent
" terminating macro character B  constituent b constituent
# non-terminating macro character C constituent C constituent
$ constituent D constituent d constituent
%  constituent E constituent e conslituent
& constituent F constituent f constituent
' terminating macro character G constituent g constituent
(  terminating macro character H constituent h  constituent
}  terminating macro character 1 constituent i constituent
*  conslituent J  constituent j constituent
+  constituent K constituent k constituent
, lerminating macro character L constituent 1 constituent
-~ constituent M constituent m constituent
. conslituent N constituent n  constituent
/  constituent 0 constituent 0 constituent
0 constituent P constituent p constituent
1 constituent Q constituent q constituent
2 constituent R constituent r constituent
3 constituent S constituent S constituent
4  constituent -T constituent t constituent
5  constituent ‘U constituent u constituent
6 constituent V  constituent v constituent
7  constituent W constituent W constituent
8 constituent X constituent X  constituent
9  constituent Y constituent Yy constituent
:  conslituent Z constituent Z constituent
;  lerminating macro character [ constituent* { constituent*
< constituent \ escape character | terminating macro character
= constituent 1 constituent* } constituent*
>  conslituent ~  constituent ~  conslituent
?  constituent* . _  constituent <{rubout> constituent
<backspace> constituent Clinefeed> whitespace

* The characters marked with an asterisk are initially constituents, but are reserved to the user for use as macro characters or for any other
desired purpose. '

Table 22-1: Standard Character Syntax Attributes
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The characters of the standard character set initially have the attributes shown in Table 22-1. Note that the
square brackets, braces, question mark, and exclamation point (that is, “[”, “]”, “{", “}”, “?”, and “!”) are
gormally defined to be constituents, but are not used for any purpose in standard COMMON LISP syntax and
do not occur in the names of built-in COMMON LISP functions or variables. These characters are explicitly
reserved to the user, primarily for use as macro characters if desired.

number .= integer| ratio | floating-point-number
integer :: = [sign] {digit} * [.]
ratio :: = [sign] {digi}* 7 {digi}*
floating-point-number :: = [sign] {digi}* . {digit}* [exponeni]
| [sign] {digii} * [. {digit}*] exponent
signii=+|- '
digit::=0]1]2]3]4|5|6]7]|81]9
exponent ::= exponent-marker [sign] {digit} *
exponent-marker::=e|s|f]d|1|b]E|S|F|D|L|B
The notation “{x}*" means zero or more occurrences of “x”, the notation “{x}+"
notation “[x]"” means zero or one occurrences of “x”.

Table 22-2: Syntax of Numbers

means one or more occurrences of “x”, and the

22.1.2. Parsing of Numbers and Symbols

When an extended token is read, it is interpreted as a number or symbol. As a rule, letters not preceded by
escape characters are converted to upper case. If the token can be interpreted as a number according to the
BNF syntax in Table 22-2, then a number object of the appropriate type is constructed and returned. It should
be noted that in a given implementation it may be that not all tokens conforming to the syntax for numbers
can actually be converted into number objects. For example, specifying too large or too small an exponent for
a floating-point number may make the number impossible to represent in the implementation. Similarly, a
ratio with denominator zero (such as “~35/000") cannot be represented in any implementation. The
exponent markers “b” and “B” are undefined, but are reserved for future extension of the floating-point type.
In any such circumstance where a token with the syntax of a number cannot be converted to an internal
number object, an error is signalled. (On the other hand, an error cannot be signalled for specifying too many
significant digits for a floating-point number.) ‘

There is actually one exception to the syntax of numbers described in Table 22-2. The radix used for
reading integers and ratios is normally decimal. However, this radix is actually determined by the value of the
variable *read-base* (page 269), whose initial value is 10. *read-base* may take on any integral
value between 2 and 36; let this value be n. Then a token x is interpreted as an integer or ratio in base n if it
could be properly so interpreted in the syntax “#nRx”. So, for example, if the value of *read-base* is 16,
then the printed representation

(a small face in a bad place) .
would be interpreted as if the following representation had been read with *read-base* set to ten:
(10 small 64206 in 10 2989 place) '
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because four of the seven tokens in the list can be interpreted as hexadecimal numbers. This facility is
intended to be used in reading files of data that for some reason contain numbers not in decimal radix; it may
also be used for reading programs written in LiSP dialects (such as MACLISP) whose default number radix is
not decimal. Non-dccimal constants in COMMON LISP programs or portable COMMON LISP data files should
be written using #0, #X, #B, or #nR syntax.

Note that a token representing a number may not contain any escape characters. An escape character robs
the following character of all syntactic qualities, forcing it to be strictly alphabetic.

If the token consists solely of dots (with no escape characters), then an error is signalled, except in one
circumstance: if the token is a single dot, and occurs in a situation appropriate to “dotted list” syntax, then it is
accepted as a part of such syntax. (Signalling an error catches not only misplaced dots in dotted list syntax,
but also lists that were truncated by *print-length* (page 288) cutoff.)

In all other cases the token is construed to be the name of a symbol. If there are any package markers
(colons) in the token, they divide the token into pieces used to control creation of the symbol. The cases
where there are two or more colons, or where a colon appears at the end of the token, presently do not mean
anything in COMMON LISP and are reserved for future use; see chapter PACKAG (page PACKAG). If there
is a single non-final colon, it divides the token into two parts. The first part specifies a package. A null first
part indicates the keyword package; otherwise it is interpreted as the name of a symbol in the current
package, and that symbol must name a package. The second part is the name of the symbol.

If a symbol token contains no package markers, then the entire token is the name of the symbol. The
symbol is looked up in the default package; see *package* (page 140).

The interpretation of standard characters within extended tokens is shown in Table 22-3. These
interpretations can be used, of course, only for characters defined to be constituent characters. For characters
of type whitespace, macro character, or escape character, the interpretations in Table 22-3 are effectively
shadowed. (The interpretation of “superdigits” is relevant to the reading of rational numbers in a radix
greater than ten.)

*read-base* [Variable]

The value of *read-base* controls the interpretation of tokens by read (page 291) as being
integers or ratios. Its value is the radix in which integers and ratios are to be read; the value may be
any integer from 2 to 36 (inclusive), and is normally 10 (decimal radix). Its value affects only the
reading of integers and ratios. In particular, floating-point numbers are always read in decimal
radix. The value of *read-base* does not affect the radix for numbers whose radix is explicitly
indicated by #0, #X, #B, or #nR syntax. ‘

Compatibility note: This variable corresponds to the variable called ibase in MACLIsP, and to the function
called rad1ix in INTERLISP.
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<tab> alphabetic * { alphabetic

Clinefeed> alphabetic * | alphabetic *

<page> alphabetic * } alphabetic

<return> alphabetic * ) alphabetic *

{space> alphabetic * C] alphabetic

! alphabetic A,a alphabetic, superdigit

" alphabetic * B,b alphabetic, superdigit, reserved exponent
# alphabetic * C,c alphabetic, superdigit

$ alphabetic - D,d alphabetic, superdigit, double-float exponent
% alphabetic E,e alphabetic, superdigit, float exponent

& alphabetic F,f alphabetic, superdigit, single-float exponent
’ alphabetic * G,g alphabetic, superdigit

( alphabetic * H,h alphabetic, superdigit

) alphabetic * I,4 alphabetic, superdigit

* alphabetic J,j alphabetic, superdigit

+ alphabetic, plus sign K,k alphabetic, superdigit

R alphabetic * L,1 alphabetic, superdigit, long-float exponent
- alphabetic, minus sign M,m alphabetic, superdigit

. alphabetic, dot, decimal point N, n  alphabetic, superdigit

/ alphabetic, ratio marker 0,0 alphabetic, superdigit

0 digit P,p alphabetic, superdigit

1 digit - Q,q alphabetic, superdigit

2 digit " R,r alphabetic, superdigit

3 digit S,s alphabetic, superdigit, short-float exponent
4 digit T,t alphabetic, superdigit

5 digit U,u alphabetic, superdigit
6 digit V,v alphabetic, superdigit

7 digit W,w alphabetic, superdigit
8 digit X,x alphabetic, superdigit .
9 digit Y,y alphabetic, superdigit

: package marker Z,z alphabetic, superdigit

; alphabetic * [ alphabetic

< alphabetic \ alphabetic *

= alphabetic ] alphabetic

> alphabetic ~ alphabetic

? alphabetic _ alphabetic

<rubout>  alphabetic ~ alphabetic

<backspace> alphabetic

* The interpretations in this table apply only to characters determined to have the constiruent attribute. Entries marked with an asterisk
are normally shadowed because thie indicated characters have whitespace, macro character, or escape character syntax.

Table 22-3: Standard Constituent Character Attributes
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22.1.3. Macro Characters

If the reader encounters a macro character, then the function associated with that macro character is called,
and may produce an object to be returned. This function may read following characters in the stream in
whatever syntax it likes (it may even call read recursively) and returns the object represented by that syntax.
Macro characters may not be recognized, of course, when read as part of other special syntaxes (such as for
strings).

The reader is therefore organized into two parts: the basic dispatch loop, which also distinguishes symbols

~ and numbers, and the collection of macro characters. Any character can be reprogrammed as a macro

character; this is a means by which the reader can be extended. The macro characters normally defined are:

( The left parenthesis character initiates reading of a pair or list. The function read (page 291) is called

recursively- to read successive objects, until a right parenthesis is found to be next in the input stream. A
list of the objects read is returned. Thus

(a bc)
is read as a list of three objects (the symbols a, b, and c¢). The right parenthesis need not follow the
printed representation of the last object immediately; whitespace characters may precede it. This can be
useful for putting one object on each line and making it easy to add new objects:

(defun traffic-light (color)
(case color

(green)

(red (stop))

(amber (accelerate)) ; Insert more colors after this line.

))
It may be that no objects precede the right parenthesis, as in “()” or “( )”; this reads as a list of zero
objects (the empty list).
If a token is read between objects that is just a dot “.”, not preceded by an escape character, then exactly
one more object must follow (possibly followed by whitespace), and then the right parenthesis:

(abc . d)

This means that the cdr of the last pair in the list is not ni1, but rather the object whose representation
followed the dot. The above example might have been the result of evaluating
(cons 'a (cons 'b (cons 'c 'd))) => (a b c . d)
Similarly, we have I
(cons ’'znets ’'wolg-zorbitan) => (znets . wolq-zorbitan)
It is permissible for the object following the dot to be a list:
(abcd. (ef . (g))) isthesameas (a b c d e f g)
but this is a non-standard form that print will never produce.

)  The right-parenthesis character is part of various constructs (such as the syntax for lists) using the
left-parenthesis character, and is invalid except when used in such a construct.

' The single-quote (accent acute) character provides an abbreviation to make it easier to put constants in
programs. ’foo reads the same as (quote jfoo): alist of the symbol quote and foo.

;  Semicolon is used to write comments. The semicolon and all characters up to and including the next
<return> character are ignored. Thus a comment can be put at the end of any line without affecting the
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reader (except that semicolon, being a macro character and therefore a delimiter, will terminate a token,
and so cannot be put in the middle of a number or symbol).

For example:

73 +: COMMENT-EXAMPLE and related nonsense.
;33 This function is useless except to demonstrate comments.
13 Notice that there are several kinds of comments.

(defun comment-example (x y) ;X is anything; Y is an a-list.
(cond ((listp x) x) . ;If X is a list, use that.
;3 X is now not a Tlist. There are two other cases.
((symbolp x)
:: Look up a symbol in the a-list. '
(cdr (assoc x y))) ;Remember, (cdr nil) is nil.

;s Do this when all else fails:
(t (cons x ;Add x to a default Tlist.
"((1isp t) ;LISP is okay.
(fortran nil) ;FORTRAN is not.
(p1/i -500) ;Note that you can put comments in
(ada .001) ; "data" as well as in "programs".

:; COBOL??
(teco -1.0e9))))))

This example illustrates a few conventions for comments in common use. Comments may begin with
one to four semicolons.

e Single-semicolon comments are all aligned to the same column at the right; usually each
comments about only the line it is on. Occasionally two or three contain a single sentence
together; this is indicated by indenting all but the first by a space.

¢ Double-semicolon comments are aligned to the level of indentation of the code. A space
follows the two semicolons. Usually each describes the state of the program at that point, or
describes the section that follows.

o Triple-semicolon comments are aligned to the left margin. Usually they are not used within
function definitions, but precede them in large blocks.

¢ Quadruple-semicolon comments are interpreted as subheadings.

Compatibility note: These conventions arose among users of MACLISP, and have been found to be very useful. The
conventions are conveniently exploited by certain software tools, such as the EMACS editor and the ATSIGN listing
program developed at MIT.

The double-quote character begins the printed representation of a string. Characters are read from the
input stream and accumulated until another double-quote is encountered, except that if an escape
character is seen, it is discarded, the next character is accumulated, and accumulation continues. When a
matching double-quote is seen, all the accumulated characters up to but not including the matching
double-quote are made into a simple string and returned.

|  The vertical-bar character begins one printed representation of a symbol. Characters are read from the
input stream and accumulated until another vertical-bar is encountered, except that if an escape
character is seen, it is discarded, the next character is accumulated, and accumulation continues. When a
matching vertical-bar is seen, all the accumulated characters up to but not including the matching
vertical-bar are made into a symbol and returned. In this syntax, no characters are ever ¢converted to
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upper case; the name of the symbol is precisely those characters between the vertical bars (allowing for
any escape characters).

*  The backquote (accent grave) character makes it easier to write programs to construct complex data
structures by using a template.As an example, writing
‘(cond ((numberp ,x) ,@y) (t (print ,x) ,@y))
is roughly equivalent to writing
(1ist 'cond
(cons (1list 'numberp x) y)
(1ist* 't (list 'print x) y))
The general idea is that the backquote is followed by a template, a picture of a data structure to be built.
This template is copied, except that within the template commas can appear. Where a comma occurs,
the form following the comma is to be evaluated to produce an object to be inserted at that point.
Assume b has the value 3, for example, then evaluating the form denoted by “*(a b ,b ,(+ b 1)
b)” producestheresult (a b 3 4 b).

If a comma is immediately followed by an at-sign (“@”), then the form following the at-sign is evaluated
to produce a list of objects. These objects are then “spliced” into place in the template. For example, if
x hasthe value (a b c¢), then
‘(x ,x ,@x foo ,(cadr x) bar ,(cdr x) baz ,@(cdr x))
=> (x (abc) abc foo b bar (b c) baz b c)

The backquote syntax can be summarized formally as follows. For each of several situations in which
backquote can be used, a possible interpretation of that situation as an equivalent form is given. Note
that the form is equivalent only in the sense that when it is evaluated it will calculate the correct result.
An implementation is quite free to interpret backquote in any way such that a backquoted form, when
evaluated, will produce a result equa?l to that produced by the interpretation shown here.

e ' basic is the same as ° basic, that is, (quote basic), for any form basic that is not a list or a
general vector. '

e ', form is the same as form, for any form, provided that the representation of form does not

6

begin with “@” or “.”. (A similar caveat holds for all occurrences of a form after a comma.)
e ', @form s an error.

o ‘(xI x2 x3 ... xn . atom) may be interpreted to mean (append x/ x2 x3 ...
xn (quote atom)), where the underscore indicates a transformation of an xj as follows:

o form is interpreted as (1ist ‘form), which contains a backquoted form that must
then be further interpreted.

o formisinterpreted as (1ist form).
o ,@form is interpreted simply as form.

e '(xI x2 x3 ... xn) may be interpreted to mean the same as the backquoted form * (x/
x2 x3 ... xn . nil),thereby reducing it to the previous case.

e '(xI x2 x3 ... xn . ,form) may be interpreted to mean (append xI/ x2 x3 ...
xn form), where the underscore indicates a transformation of an xj as above.
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o '(xI x2 x3 ... xn . ,@form) is an error.

o "#(xI x2 x3 ... xn) may be interpreted to mean (make-array (1list n)
' :initial-contents '(xI x2 x3 ... xn)).

No other uses of comma are permitted; in particular, it may not appear within the #A or #S syntax.

Anywhere “,@” may be used, the syntax “, .” may be used instead to indicate that it is permissible to
destroy the list produced by the form following the “, .”; this may permit more efficient code, using
nconc (page 212)instead of append (page 211), for example.

If the backquote syntax is nested, the innermost backquoted form should be expanded first. This means
that if several commas occur in a row, the leftmost one belongs to the innermost backquote.

Once again, it is emphasized that an implementation is free to interpret a backquoted form as any form
that, when evaluated. will produce a result that is equal to the result implied by the above definition.
In particular, no guarantees are made as to whether the constructed copy of the template will or will not
share list structure with the template itself. As an example, the above definition implies that

‘((,a b) ,c ,@d)
will be interpreted as if it were

(append (1ist (append (1ist a) (1ist 'b) ’'nil)) (list c) d 'nil)
but it could also be legitimately interpreted to mean any of the following:

(append (1ist (append (1ist a) (list 'b))) (list c) d)

(append (1ist (append (1ist a) '(b))) (list c) d)

(append (1ist (cons a '(b))) (1list c¢) d)

(1ist* (cons a '(b)) ¢ d)

(1ist* (cons a (1ist 'b)) c d)

(Tist* (cons a '(b)) ¢ (copy-list d))
(There is no good reason why copy-1-ist should be performed, but it is not prohibited.)

,  The comma character is part of the backquote syntax and is invalid if used other than inside the body of
a backquote construction as described above.

#  The sharp-sign character is a dispatching macro character. It reads an optional digit string and then one
more character, and uses that character to select a function to run as a macro-character function.

The sharp-sign character also happens to be a non-terminating macro character. This is completely
independent of the fact that it is a dispatching macro character; it is a coincidence that the only standard
dispatching macro character in COMMON LISP is also the only standard non-terminating macro character.
The sharp-sign character is a non-terminating macro character in COMMON LISP primarily for the sake of
the infix “#:” syntax for referring to the internal symbols of a package as described in chapter
PACKAG.

See the next section for predefined sharp-sign macro characters.

22.1.4. Sharp-Sign Abbreviations

The standard syntax includes forms introduced by a sharp sign (“#”). These take the general form of a
sharp sign, a second character that identifies the syntax, and following arguments in some form. If the second
character is a letter, then case is not important; #0 and #o are considered to be equivalent, for example.
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Certain sharp-sign forms allow an unsigned decimal number to appear between the sharp sign and the
second character; some other forms even require it.

The currently-defined sharp-sign constructs are described below and summarized in Table 22-4; more are
likely to be added in the future. However, the constructs “#!”, “#?”, “#[”, “#]", “#{", and “#}” are
explicitly reserved for the user and will never be defined by the COMMON LISP standard.

#\

#\x reads in as a character object that represents the character x. Also, #\name reads in as the
character object whose name is name. Note that the backslash “\” allows this construct to be parsed
easily by EMACS-like editors.

In the single-character case, the character x must be followed by a non-constituent character, lest a
name appear to follow the “#\”. A good model of what happens is that after “#\” is read, the reader
backs up over the “\” and then reads an extended token, treating the initial “\” as an escape
character (whether it really is or not in the current readtable).

Upper-case and lower-case letters are distinguished after “#\”; “#\A” and “#\a” denote different
character objects. Any character works after #\, even those that are normally special to read, such
as parentheses. Non-printing characters may be used after #\, although for them names are
generally preferred.

#\name reads in as a character object whose name is name (actually, whose name is
(string-upcase name); therefore the syntax is case-insensitive). The following names are
standard across all implementations:

return The carriage return or newline character.

space The space or blank character.

The following names are semi-standard; if an implementation supports them, they should be used for
the described characters and no others.

rubout The rubout or delete character.

page The formfeed or page-separator character.
tab The tabulate character.

backspace The backspace character.

Tinefeed The line feed character.

The name should have the syntax of a symbol.

When the LISP printer types out the name of a special character, it uses the same table as the #\
reader; therefore any character name you see typed out is acceptable as input (in that
implementation). Standard names are always preferred over non-standard names for printing.

The following convention is used in implementations that support non-zero bits attributes for
character objects. If a name after #\ is longer than one character and has a hyphen in it, then it may
be split into the two parts preceding and following the first hyphen; the first part (actually,
string-upcase of the first part) may then be interpreted as the name or initial of a bit, and the
second part as the name of the character (which may in turn contain a hyphen and be subject to
further splitting).

For example:

#\Control-Space #\Control-Meta-Tab
#\C-M-Return #\H-S-M-C-Rubout
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#<tab> signals error
#<space> signals error
#! undefined*

#" undefined

## reference to label

#% undefined

#% undefined

#& undefined

#' function abbreviation
#(  general vector

#) signals error

#*  Dbit-vector

#+ read-time conditional
#, load-time evaluation
#- read-time conditional
#. read-time evaluation
#/ undefined

#0 (infix argument)

#1 (infix argument)

#2 (infix argument)

#3  (infix argument)

#4 (infix argument)

#5 (infix argument)

#6  (infix argument)

#7 (infix argument)

#8 (infix argument) -
#9 (infix argument)

#: uninterned symbol
#; undefined

#< signals error

#= labels LISP object

#> undefined

#7 undefined*
#<backspace> undefined

#<page> signals error
#@ undefined

#A array

#B binary rational
#C complex number
#D° undefined

#E undefined

#F undefined

#G undefined

#H undefined

#1 undefined

#J undefined

#K undefined

#L undefined

#M  undefined

#N undefined

#0 octal rational

#P undefined

#Q undefined

#R  radix-n rational
#S structure

#T undefined

#U undefined

#V  undefined

#W undefined

#X hexadecimal rational
#Y undefined

#Z undefined

#[ undefined*

#\ named character
#] undefined*

#~ undefined

#_ undefined
#<linefeed> signals error

#<return>  signals error

#e
#a
#b
#c
#d
e
#f
#g
#h
#i
#3
#k
#1
#m
#n
#o
#p
#q
fr
s
#t
#u
#v
#w
#x
#y
#z
#{
#|
#)
4~

undefined
array

binary rational
complex number
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
undefined
octal rational
undefined
undefined
radix-n rational
structure
undefined
undefined
undefined
undefined
hexadecimal rational
undefined
undefined
undefined*
balanced comment
undefined*
undefined

#<rubout> undefined

* The combinations marked by an asterisk are explicitly reserved to the user and will never be defined by CoMMON Lisp.
Table 22-4: Standard Sharp-Sign Macro Character Syntax
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If the character name consists of a single character, then that character is used. Another “\” may be .
necessary to quote the character.

#\Control-% #\Control-Meta-\"
#\Control-\a #\Meta->

If an unsigned decimal integer appears between the “#” and “\”, it is interpreted as a font number,
to become the char-font (page 188) of the character object.

#' #’ foo is an abbreviation for (function fo0). foo may be the printed representation of any LiSp
object. This abbreviation may be remembered by analogy with the ' macro-character, since the
function and quote special forms are similar in form.

#( A series of representations of objects enclosed by “#(” and “)” is read as a simple general vector of
those objects. This is analogous to the notation for lists.

If an unsigned decimal integer appears between the “#” and “(”, it specifies explicitly the length of
the vector. In that case, it is an error if too many objects are specified before the closing *)”, and if
too few are specified the last one is used to fill all remaining elements of the vector.

For example:
#(abcccec)
#6(a b c ¢c c ¢)
#6(a b ¢)

#6(a b c ¢)

all mean the same thing: a vector of length 6 with elements a, b, and four instances of c.

#» A series of binary digits (0 and 1) preceded by “#*” is read as a simple bit-vector containing those
bits, the lefumost bit in the series being bit 0 of the bit-vector.

If an unsigned decimal integer appears between the “#” and “*”, it specifies explicitly the length of
the vector. In that case, it is an error if too many bits are specified, and if too few are specified the
last one is used to fill all remaining elements of the bit-vector.

For example:

#*101111
#6*101111
#6*101
#6*1011

all mean the same thing: a vector of length 6 with elements 1,0, 1, 1, 1, and 1.

#: #: foo requires foo to have the syntax of an unqualified symbol name (no embedded colons). It
denotes an uninterned symbol whose name is foo. Every time this syntax is encountered a different
uninterned symbol is created.

#. #. foo is read as the object resulting from the evaluation of the LISP object represented by foo, which
may be the printed representation of any LISP object. The evaluation is done during the read
process, when the “#.” construct is encountered. This, therefore, performs a “read-time” evaluation
of foo. By contrast, “#,” (see below) performs a “load-time” evaluation.

Both “#.” and “#, " allow you to include, in an expression being read, an object that does not have a
convenient printed representation; instead of writing a representation for the object, you write an
expression that will compute the object.
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#, foo is read as the object resulting from the evaluation of the LISP object represented by foo, which
may be the printed representation of any LISP object. The evaluation is done during the read
process, unless the compiler is doing the reading, in which case it is arranged that foo will be
evaluated when the file of compiled code is loaded. This, therefore, performs a *“load-time”
evaluation of foo. By contrast, #. (see above) performs a “read-time” evaluation. In a sense, #, is
like specifying (eval load) to eval-when (page 54), while #. is more like specifying (eval
compile). It makes no difference when loading interpreted code, but when code is to be compiled,
# . specifies compile-time evaluation and #, specifies load-time evaluation.

#brational reads rational in binary (radix 2). For example, #81101 <=> 13, and #b101/11 <=>
5/3. '

#orational reads rational in octal (radix 8). For example, #037/15 <=> 31/13, and #0777 <=>
511.

#xrational reads rational in hexadecimal (radix 16). The digits above 9 are the letters A through F
(the lower-case letters a through f are also acceptable). For example, #xF00 <=> 3840.

#radixrrational reads rational in radix radix. radix must consist of only digits, and it is read in
decimal; its value must be between 2 and 36 (inclusive).

For example, #3r 102 is another way of writing 11, and #11R32 is another way of writing 35. For
radices larger than 10, letters of the alphabet are used in order for the digits after 9.

The syntax #nAobject constructs an n-dimensional array, using object as the value of the
:initial-contents argument to make-array (page227).

For example, “#2A((0 1 5) (foo 2 (hot dog)))” represents a 2-by-3 matrix:
0 1 - 5
foo 2 (hot dog)

The syntax #s(name slotl valuel slot2 value? ...) denotes a structure. This is legal only if
name is the name of a structure already defined by defstruct (page 245), and if the structure hasa
standard constructor macro, which it normally will. Let ez stand for the name of this constructor
macro; then this syntax is equivalent to

#.(cm slotl ’valuel slot2 °value? ...)

That is, the constructor macro is called, with the specified slots having the specified values (note that
one does not write quote-marks in the #S syntax). Whatever object the constructor macro returns is
returned by the #S syntax.

The syntax #n=object reads as whatever LISP object has object as its printed representation. However,
that object is labelled by n, a required unsigned decimal integer, for possible reference by the syntax
#n# (below). The scope of the label is the expression being read by the outermost call to read.
Within this expression the same label may not appear twice.

The syntax #n#, where n is a required unsigned decimal integer, serves as a reference to some object
labelled by #n=; that is, #n# represents a pointer to the same identical (eq) object labelled by #n=.
This permits notation of structures with shared or circular substructure. For example, a structure
created in the variable y by this code:
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#+

#

f<

(setqg x (1list 'p ’q))
(setq y (1list (1ist 'a 'b) x 'foo x)) -
(rplacd (last y) (cdr y))
could be represented in this way:
((a b) . #1=(#2=(p q) foo #2# . #1#))

Without this notation, but with *print-length* (page 288) set to 10, the structure would print
in this way:

((a b) (p q) foo (p q) (p q) foo (p q) (p q) foo (p q) ...)
A reference #n# may only occur after a label #n=; forward references are not permitted.

The #+ syntax provides a read-time conditionalization facility. The general syntax is “#+feature
Jorm”. If feature is “true”, then this syntax represents a LISP object whose printed representation is
form. If feature is “false”, then this syntax is effectively whitespace; it is as if it did not appear.

The feature should be the printed representation of a symbol or list. If feature is a symbol, then it is
true if and only if it is a member of the list that is the value of the global variable *features®
(page 345).
Compatibility note: MAcLIsP uses the status special form for this purpose, and Lisp Machine Lisp duplicates
status essentially only for the sake of (status features). The use of a variable allows one to bind the
features list, for example when compiling.
Otherwise, feature should be a boolean expression composed of and, or, and not operators on
(recursive) feature expressions. .

For example, suppose that in implementation A the features spice and perq are true, and in
implementation B the feature 1ispm is true. Then the expressions on the left below are read the
same as those on the right in implementation A:

(cons #+spice "Spice” #+lispm "Lispm" x) (cons "Spice" x)

(setq a '(1 2 #+perq 43 #+(not perq) 27)) (setgq a '(1 2 43))

(let ((a 3) #+(or spice lispm) (b 3)) (let ((a 3) (b 3))
(foo a)) (foo a))

In implementation B, however, they are read in this way:

(cons #+spice "Spice" #+lispm "Lispm" x) (cons "Lispm" x)

(setq a '(1 2 #+perq 43 #+(not perqg) 27)) (setq a '(1 2 27))

(let ((a 3) #+(or spice 1lispm) (b 3)) (let ((a 3) (b 3))
(foo a)) (foo a))

The #+ construction must be used judiciously if unreadable code is not to result. The user should
make a careful choice between read-time conditionalization and run-time conditionalization.

#-feature formis equivalent to #+(not feature) form.

#|...|# is treated as a comment by the reader, just as everything from a semicolon to the next
{return> is treated as a comment. Anything may appear in the comment, except that it must be
balanced with respect to other occurrences of “#]” and “|#”. Except for this nesting rule, the
comment may contain any characters whatsoever.

The main purpose of this construct is to allow “commenting out” of blocks of code or data. The
balancing rule allows such blocks to contain pieces already so commented out. In this respect the
#]| . .. |# syntax of COMMON LISP differs from the /*. . . */ comment syntax used by PL/i and C.

This is not legal reader syntax. It is used in the printed representation of objects that cannot be read
back in. Attempting to read a #< will cause an error. (More precisely, it is legal syntax, but the
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macro-character function for it signals an error.)

#{(space>, #<tab>, #<return>, #<page>

’ A # followed by a standard whitespace character is not legal reader syntax This is so that
abbreviated forms produced via *print-level* (page 288) cutoff will not read in again; this
serves as a safeguard against losing information. (More precisely, it is legal syntax, but the macro-
character function for it signals an error.)

#) This is not legal reader syntax. This is so that abbreviated forms produced via *print-level®
(page 288) cutoff will not read in again; this serves as a safeguard against losing information. (More
precisely, it is legal syntax, but the macro-character function for it signals an error.)

22.1.5. The Readtable

Previous sections have described the standard syntax accepted by the read function. This section discusses
the advanced topic of altering the standard syntax, either to provide extended syntax for LISP objects or to aid
the writing of other parsers.

There is a data structure called the readtable that is used to control the reader. It contains information about
the syntax of each character equivalent to that in Table 22-1. Initially it is set up exactly as in Table 22-1 to
give the standard COMMON LISP meanings to all the characters, but the user can change the meanings of
characters to alter and customize the syntax of characters. It is also possible to have several readtables
describing different syntaxes and to switch from one to another by binding the variable *readtable®.

Even if an implementation supports characters with non-zero bits and font attributes, it need not (but may)
allow for such characters to have syntax descriptions in the readtable. However, every character of type
string-char must be represented in the readtable.

*readtable* [Variable]

The value of *readtab1 e* is the current readtable. The initial value of this is a readtable set up
for standard COMMON LISP syntax. You can bind this variable to temporarily change the readtable
being used.

To program the reader for a different syntax, a set of functions are provided for manipulating'readtables.
Normally, you should begin with a copy of the standard COMMON LISP readtable and then customize the
individual characters within that copy.

copy-readtable &optional from-readtable to-readtable [Function]
A copy is made of from-readtable, which defaults to the current readtable (the value of the global
variable *readtable*). If from-readtable is unsupplied or nil, then a copy of a standard
COMMON LISP readtable is made; for example,
(setq *readtable* (copy-readtable))
will restore the input syntax to standard COMMON LISP syntax, even if the original readtable has



INPUT/OUTPUT 281

been clobbered (assuming it is not so badly clobbered that you cannot type in the above
expression!).

If to-readtable is unsupplied or nil, a fresh copy is made. Otherwise fo-readtable must be a
readtable, which is clobbered with the copy.

readtablep odbject [Function]
readtablep is true if its argument is a readtable, and otherwise is false.
.(readtablep x) <=> (typep x 'readtable)

set-syntax-from-char fto-char from-char &optional {o-readtable from-readtable [Function]
Makes the syntax of fo-char in to-readtable be the same as the syntax of from-char in _from-readtable.
The t0-readtable defaults to the current readtable (the value of the global variable *readtable*
(page 280)), and from-readtable defaults to ni1, meaning to use the syntaxes from the standard LISp
readtable.

Only attributes as shown in Table 22-1 are copied; moreover, if a macro character is copied, the
macro definition function is copied also. However, attributes as shown in Table 22-3 are not
copied; they are “hard-wired” into the extended-token parser. For example, if the definition of “S”
is copied to “*”, then “*” will become a constituent, but will be simply alphabetic and cannot be
used as an exponent indicator for short-format floating-point number syntax.

It “works” to copy a macro definition from a character such as “|” to another character; the
standard definition for **|” looks for another character that is the same as the character that invoked
it. It doesn’t “work” to copy the definition of “(” to “{”, for example; it can be done, but it lets
one write lists in the form “{a b c¢)”, not“{a b c}”, because the definition always looks for a
closing “)”. See the function read-delimited-1ist (page 292), which is useful in this

connection.
set-macro-character char function &optional non-terminating-p readtable [Function)
get-macro-character char &optional readtable [Function]

set-macro-character causes char to be a macro character that when seen by read causes
function to be called. If non-terminating-p is not nil (it defaults to ni1), then it will be a
non-terminating macro character: it may be embedded within extended tokens.
set-macro-character returns t.

get-macro-character returns the function associated with char, and as a second value returns
the non-terminating-p flag; it returns ni1 if char does not have macro-character syntax. In each
case, readtable defaults to the current readtable.

Sfunction is called with two arguments, stream and char. The stream is the input stream, and char is
the macro-character itself. In the simplest case, finction may return a LISP object. This object is
taken to be that whose printed representation was the macro character and any following characters
read by the function. As an example, a plausible definition of the standard single-quote character
is: '
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(defun single-quote-reader (stream char)
(declare (ignore char))
(1ist 'quote (read stream nil nil t)))
(set-macro-character #\' #'single-quote-reader)

(Note that t is specified for the recursive-p argument to read; see section 22.2.1.) The function
reads an object following the single-quote and returns a list of the symbol quote and that object.
The char argument is ignored.

The function may choose instead to return zero values (for example, by using (values) as the
return expression). In this case the macro character and whatever it may have read contribute

‘nothing to the object being read. As an example, here is a plausible definition for the standard

semicolon (comment) character:

(defun semicolon-reader (stream char)
(declare (ignore char))
;3 First swallow the rest of the current input line.
(do () ((char= (read-char stream nil nil t) #\Return)))
;s Return zero values.
(values))

(set-macro-character #\; #'semicolon-reader)
(Note that t is specified for the recursive-p argument to read-char; see section 22.2.1.) The
Jfunction should not have any side-effects other than on the stream. Front ends (such as editors and
rubout handlers) to the reader may cause function to be called repeatedly during the reading of a
single expression in which the macro character only appears once, because of backtracking and
restarting cf the read operation.

make-dispatch-macro-character char &optional non-terminating-p readtable - [Function]

This causes the character char to be a dispatching macro character in readtable (which defaults to
the current readtable). If non-terminating-p is not ni1 (it defaults to ni1), then it will.be a
non-terminating macro character: it may be embedded within extended tokens.
make-dispatch-macro-character returns t.

Initially every character in the dispatch table has a character-macro function that signals an error.
Use set-dispatch-macro-character to define entries in the dispatch table.

set-dispatch-macro-character disp-char sub-char function &optional readtable  [Function]
get-dispatch-macro-character disp-char sub-char &optional readtable [Function]

set-dispatch-macro-character causes function to be called when the disp-char followed by
sub-char is read. The readtable defaults to the current readtable. The arguments and return values
for function are the same as for normal macro characters, documented above under
set-macro-character (page 281), except that function gets sub-char as its second argument,
and also receives a third argument that is the non-negative integer whose decimal representation
appeared between disp-char and sub-char, or ni1 if there was none.

The sub-char may not be one of the ten decimal digits; they are always reserved for specifying an
infix.integer argument. Moreover, if sub-char is a lower-case character (see Tower-case-p (page
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185)), its upper-case equivalent is used instead. (This is how the rule is enforced that the case of a .
dispatch sub-character doesn’t matter.)

set-dispatch-macro-character returns t.

get-dispatch-macro-character returns the macro-character function for sub-char under
disp-char, or ni1 if there is no fucntion associated with sub-char.

If the sub-char is one of the ten decimal digits, gé t-dispatch-macro-character always
returns ni1. If sub-charis a lower-case character, its upper-case equivalent is used instead.

For either function, an error is signalled if the specified disp-char is not in fact a dispatch character
in the specified readtable. It is necessary to use make-dispatch-macro-character (page
282) to set up the dispatch character before specifying its sub-characters.

As an example, suppose one would like #$ foo to be read as if it were (do1lars foo). One might
say:
(defun sharp-dollar-reader (stream subchar arg)
(declare (ignore subchar arg))

(1ist 'dollars (read stream)))
~ (set-dispatch-macro-character #\# #\$ #’sharp-dollar-reader)

Compatibility note: This macro-character mechanism is different from those in MAcLisp, INTERLISP, and Lisp Machine
Lisp. Recently Lisp systems have implemented very general readers, even readers so programmable that they can parse
arbitrary compiled BNF grammars. Unfortunately, these readers can be complicated to use. This design is an attempt to
make the reader as simple as possible to understand, use, and implement. Splicing macros have been eliminated; a recent
informal poll indicates that no one uses them to produce other than zero or one value. The ability to access parts of the
object preceding the macro character have been eliminated. The MACLISP single-character-object feature has been
eliminated, because it is seldom used and trivially obtainable by defining a macro.

The user is encouraged to turn off most macro characters, turn others into single-character-object macros, and then use
read purely as a lexical analyzer on top of which to build a parser. It is unnecessary, however, to cater to more complex
lexical analysis or parsing than that needed for COMMON LisP.

22.1.6. What the print Function Produces

The COMMON LISP printer is controlled by a number of special variables. These are referred to in passing
in the following discussion, and are documented fully at the end of this section.

How an expression is printed depends on its data type, as described in the following paragraphs.

Integers. If appropriate, a radix specifier may be printed; see the variable *print-radix* (page 287).
If an integer is negative, a minus sign is printed and then the absolute value of the integer is printed.
Non-negative integers are printed in the radix specified by the variable *print-base* (page 287) in the
usual positional notation, most significant digit first. The number zero is represented by the single digit 0,
and never has asign. A decimal point may then be printed.

Ratios. If appropriate, a radix specifier may be printed; see the variable *pri nt-radix* (page 287). If
the ratio is negative, a minus sign is printed. Then the absolute value of the numerator is printed, as for an
integer; then a “/”; then the denominator. The numerator and denominator are both printed in the radix
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specified by the variable *print-base* (page 287); they are obtained as if by the numerator (page
166) and denominator (page 166) functions, and so ratios are always printed in lowest form.

[} .
Floating-point numbers. Floating point numbers are printed in one of two ways. If the floating point
number is between 1073 (inclusive)'and 10’ (exclusive), it may be printed as the integer part of the number,
then a decimal point, followed by the fractional part of the number; there is always at least one digit on each
side of the decimal point. If the format of the number does not match that specified by the variable
*read-default-float-format* (page 291), then the exponent marker for that format and the digit
“0” are also printed. For example, the base of the natural logarithms as a short-format floating-point number
might be printed as “2. 7182850 | :

Outside of the range 1073 10 107, a floating-point number will be printed in “computerized scientific
notation”. The representation of the number is scaled to be between 1 (inclusive) and 10 (exclusive) and then
printed, with one digit before the decimal point and at least one digit after the decimal point. Next the
exponent marker for the format is printed, except that if the format of the number matches that specified by
the variable *read-default-float-format* (page 291), then the exponent marker “E” is used.
Finally, the power of ten by which the fraction must be multiplied to equal the original number is printed as a
decimal integer. For example, Avogadro’s number as a short-format floating-point number might be printed
as “6.02S23". ‘

Characters. When *print-escape* (page 287)is ni1, a character prints as itself; it is sent directly to
the output stream. When *print-escape* is not ni1, then #\ syntax is used. For example, the printed
representation of the character #\A with control and meta bits on would be “#\CONTROL-META-A", and
that of #\ a with control and meta bits on would be “#\CONTROL-META-\a". '

Symbols. When *print-escape* (page 287) is nil, only the characters of the print name of the
symbol are output (but the case in which to print any upper-case characters in the print name is controlled by
the variable *print-case* (page 288)).

When *print-escape* is not ni1, backslashes “\” and vertical bars “|” are included as required. In
particular, backslash or vertical-bar syntax is used when the name of the symbol would be otherwise treated
by the reader as a number. The case in which to print any upper-case characters in the print name is
controlled by the variable *print-case*. Package prefixes may be printed (using colon “:” syntax) if
necessary (see below). As a special case, ni1 may sometimes be printed as “()” instead, when
*print-escape* and *print-prefty* arebothnotnil.

The rules for package qualifiers are as follows. When the symbol is printed, if it is in the keyword package
then it is printed with a preceding colon; otherwise, if it is present in the current package, it is printed without
any qualification; otherwise, it is printed with qualification. See *package* (page 140).

A symbol that is uninterned (has no home package) is printed preceded by “#:” if the variable
*print-gensym* (page 288)is non-ni1; ifitis ni1, then the symbol is printed without a prefix, as if it
were in the current package. ‘ ‘
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Implementation note: Because the “#:" syntax does not intern the following symbol, it is necessary to use circular-list
syntax if *print-circle* (page 287)is not ni1 and the same uninterned symbol appears several times in an expression
to be printed. For example, the result of

(let ((x (make-symbol "F00"))) (list x x))
would be printed as “(#:foo #:foo)” if *print-circle® were nil, but as “(#1=#:foo #1#)" if
*print-circle®* werenotnil.

The case in which symbols are printed is controlled by the variable *print-case* (page 288).

Strings. The characters of the string are output in order. If *print-escape* (page 287)isnotnil,a
double quote “"” is output beforehand and afterward, and all and double quotes and escape characters are
‘preceded by “\”. The printing of strings is not affected by *print-array* (page 289). If the string has a
fill pointer, then only those characters below the fill pointer are printed.

Conses. Wherever possible, list notation is preferred over dot notation. Therefore the following algorithm
is used: ‘

1. Print an open parenthesis “(”.
2. Print the car of the cons.
3. If the cdris a cons, make it the current cons, print a space, and go to step 2.

“

4. If the cdris not null, print a space, a dot . ”, a space, and the cdr.
5. Print a close parenthesis )",

This form of printing is clearer than showing each individual cons cell. Although the two expressions below
are equivalent, and the reader will accept either one and produce the same data structure, the printer will
always print such a data structure in the second form.

(a . (b . ((c. (d.nil)) . (e . nil))))
(ab (c d) e)

The printing of conses is affected by the variables *print-level* (page 288) and *print-length*
(page 288).

Bit-vectors. A bit-vector is printed as “#*” followed by the bits of the bit-vector in order. If
*print-array* (page 289)is ni1, however, then the bit-vector is printed in a format (using “#<”) that is
concise but not readable. If the bit-vector has a fill pointer, then only those bits below the fill pointer are
printed.

Vectors. Any vector other than a string or bit-vector is printed using general-vector syntax; this means that
information about specialized vector representations will be lost. The printed representation of a zero-length
vector is “#( )”. The printed representation of a non-zero-length vector begins with “#(”. Following that is
printed the first element of the vector. If there are any other elements, they are printed in turn, with a space
printed before each additional element. A close parenthesis “)” after the last element terminates the printed
representation of the vector. The printing of vectors is affected by the variables *print-level* (page
288) and *print-length* (page 288). If the vector has a fill pointer, then only those elements below the
fill pointer are printed.

If*print-array* (page289)is ni1, however, then the vector is not printed as described above, but in a
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format (using “#<”) that is concise but not readable.

Arrays. Normally any array other than a vector is printed using “#nA” format. Let n be the rank of the
array. Then “#" is printed, then n as a decimal integer, then “A”, then n open parentheses. Next the elements
are scanned in row-major order. Imagine the array indices being enumerated in odometer fashion, recalling
that the dimensions are numbered from 0 to n—1. Every time the index for dimension j is incremented, the
following actions are taken:

1. If Xn—1, then print a close parenthesis.

2. If incrementing the index for dimension j caused it to equal dimension j, reset that index to zero
and increment dimension j—1 (thereby performing these three steps recursively), unless j=0, in
which case simply terminate the entire algorithm. If incrementing the index for dimension j did
not cause it to equal dimension j, then print a space.

3. If Xn—1, then print an open parenthesis.

This causes the contents to be printed in a format suitable for the :initial-contents argument to
make-array (page 227). The lists effectively printed by this procedure are subject to *print-level®*
(page 288) and *print-Tlength* (page 288). If *print-array* (page 289) is ni1, however, then the
array is printed in a format (using *“#<”) that is concise but not readable.

Random-states. COMMON LISP does not specify a specific syntax for printing objects of type
random-state. However, every implementation must arrange to print a random-state object in such a way
that, within the same implementation of COMMON LISP, the function read (page 291) can construct from
the printed representation a copy of the random-state object as if the copy had been made by
make-random-state (page178).

Structures defined by defstruct (page 245) are printed under the control of the :print-function
optlon to defstruct.

Any other types are printed in an implementation-dependent manner. It is recommended that printed
representations of all such objects begin with the characters “#<” and end with “>” so that the reader will
catch such objects and not permit them to be read under normal circumstances.

When debugging or when frequently dealing with large or deep objects at toplevel, the user may wish to
restrict the printer from printing large amounts of information. The variables *print-level®* and
*print-Tength* allow the user to control how deep the printer will print, and how many elements at a
given level the printer will print. Thus the user can see enough of the object to identify it without having to
wade through the entire expression.
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*print-escape* [Variable]

When this flag is ni1, then escape characters are not output when an expression is printed. In
particular, a symbol is printed by simply printing the characters of its print name. The function
princ (page 296) effectively binds *print-escape* tonil.

When this flag is not ni1, then an attempt is made to print an expression in such a way that it can
be read again to produce an equa] structure. The functxon prinl (page 296) effectively binds

*print-escape*tot.
Compatibility note: This flag controls what was called slashification in MACLisp,

The initial value of this variable is t.
*print-pretty* [Variable] .

When this flag is ni1, then only a small amount of whitespace is output when printing an
expression, as described below.

When this flag is not ni1, then the printer will endeavor to insert extra whitespace where
appropriate to make the expression more readable.

*print-circle* ' [Variable]

When this flag is ni1 (the default), then the printing process proceeds by recursive descent; an
attempt to print a circular structure may lead to looping behavior and failure to terminate.

When this flag is not ni1, then the printer will endeavor to detect cycles in the structure to be
printed, and to use #n= and #n# syntax to indicate the circularities.

*print-base* [Variable]

The value of *print-base* determines in what radix the printer will print rationals. This may
be any integer from 2 to 36, inclusive; the default value is 10 (decimal radix). For radices above

10, letters of the alphabet are used to represent digits above “9”.
Compatibility note: MACLisP calls this variable base, and its default value is 8, not 10.

In both MACLISP and COMMON LISP, floating-point numbers are always printed in decimal, no
matter what the value of *print-base®*.

*print-radix* [Variable]

If the variable *print-radix* is non-ni1, the printer will print a radix specifier to indicate the
radix in which it is printing a rational number. To prevent confusion of the letter “0” and the digit
“0”, and of the letter “B” with the digit “8”, the radix specifier is always printed using lower-case
letters. For example, if the current base is twenty-four (decimal), the decimal integer twenty-three
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would print as “#24rN”. If *pri nt-base* is 2, 8, or 16, then the radix specifier used is #b, #o,
or #x. For integers, base ten is indicated by a trailing decimal point, instead of using a leading
radix specifier; for ratios, “#10r” is used. The default value of *print-radix*isnil.

*print-case* ) [Variable]

The read (page 291) function normally converts lower-case letters appearing in symbols to upper
case, so that internally print names normally contain only upper-case characters. However, users
may prefer to see output in lower case or mixed case. This variable controls the case (upper or
lower) in which to print any upper-case characters in the names of symbols when vertical-bar syntax
is not used. The value of *print-case* should be one of the keywords : upcase, :downcase,
or :capitalize; the initial value is :upcase.

Lower-case characters in the internal print name are always printed in lower case, and are preceded
by an escape character. Upper-case characters in the internal print name are printed in upper case,
lower case, or in mixed case so as to capitalize words, according to the value of *print-case®.
The convention for what constitutes a “word” is the same as for the function
string-capitalize (page 240).

*print-gensym®* [Variable]

The *print-gensym* variable controls whether the prefix “#:” is printed before symbols that
have no home package. The prefix is printed if the variable is not ni1. The initial value of
*print-gensym* is t.

*print-level®* _ [Variable]

*print-Tlength* : ‘ [Variable]

The *print-level* variable controls how many levels deep a nested data object will print. If
*print-Tevel* is nil (the initial value), then no control is exercised. Otherwise the value
should be an integer, indicating the maximum level to be printed. An object to be printed is at level
0; its components (as of a list or vector) are at level 1; and so on. If an object to be recursively
printed has components and is at a level equal or greater to the value of *print-level®, then
the object is printed as simply “#”.

The *print-length* variable controls how many elements at a given level are printed. A value
of ni1 (the initial value) indicates that there be no limit to the number of components printed.
Otherwise the value of *print-Tength* should be an integer. Should the number of elements
of a data object exceed the value *print-Tength*, the printer will print three dots “...” in
place of those elements beyond the number specified by *print-length*. (In the case of a
dotted list, if the list contains exactly as many elements as the value of *print-length*, and in
addition has the non-null atom terminating it, that terminating atom is printed, rather than printing
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“o0)

*print-level* and *print-length* affect the printing not only of lists, but also of vectors,
arrays, and any other object printed with a list-like syntax. They do not affect the printing of
symbols, strings, and bit-vectors.

The LIsP reader will normally signal an error when reading an expression that has been abbreviated
becaue of level or length limits. This is because the “#” dispatch character normally signals an erro
when followed by whitespace or *“)”, and because “. . .” is defined to be an illegal token, as are all
tokens consisting entirely of periods (other than the single dot used in dot notation).

As an example, here are the ways the object
(if (member x items) (+ (car x) 3) ’'(foo . #(a b c d "Baz")))
would be printed for various values of *print-level*=vand *print-length*=n.

v__n QOulput
1 #

(if ...)

(if # ...)

(if ## ...)

(if # # #)

(if ...)

(if (member x

(if (member x

(if (member x
X
X

R I |

items) (+ # 3) ...)

R R |

items) (+ (car x) 3) ...)

items) (+ (car x) 3) '(foo . #(a b c d ...)))

(if (member
(if (member
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*print-array* ) [Variable]

Ifprint-array is ni1, then the contents of arrays other than strings are never printed. Instead,
arrays are printed in a concise form using “#<” that gives enough information for the user to be
able to identify the array, but does not include the entire array contents. If print-array is not
nil, non-string arrays are printed using “#(”, “#*”, or “#nA” syntax. The initial value of
*print-array*ist..

22.2. Input Functions

22.2.1. Input from Asci1 Streams

Many input functions take optional arguments called input-stream, eof-errorp, and eof-value. The
input-stream argument is the stream from which to obtain input; if unsupplied or ni1 it defaults to the value
of the special variable *standard-input* (page 259). One may also specify t as a stream, meaning the
value of the special variable *terminal-io* (page 260).

The eof-errorp argument controls what happens if input is from a file (or any otlier input source that has a
definite end) and the end of the file is reached. If eof-errorp is true (the default), an error will be signalled at
end of file.- If it is false, then no error is signalled, and instead the function returns eof*value.
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Functions such as read (page 291) that read an “object” rather than a single character will always signal an
error, regardless of eof-errorp, if the file ends in the middle of an object. For example, if a file does not
contain enough right parentheses to balance the left parentheses in it, read will complain. If a file ends in a
symbol or a number immediately followed by end-of-file, read will read the symbol or number successfully
and when called again will see the end-of-file and only then act according to eof-errorp. Similarly, the
function read-11ine (page 293) will successfully read the last line of a file even if that line is terminated by
end-of-file rather than the newline character. If a file contains ignorable text at the end, such as blank lines
and comments, read will not consider it to end in the middle of an object.

Many input functions also take an argument called recursive-p. If specified and not-ni1, this argument
specifies that this call is not a “top-level” call to read, but an imbedded call, typically from the function for a
macro-character. It is important to distinguish such recursive calls for three reasons.

First, when end-of-file is encountered, the action taken is controlled by the eof-errorp and eof-value of the
most recent outstanding top-level call to an input function; the eof-errorp and eof-value of any “recursive”
calls are ignored. If the eof-errorp for that top-level call is false, then the eof-value is returned from that
top-level call, effectively throwing out of any recursive calls.

Sécond, a top-level call establishes the context within which the #n= and #n# syntax is scoped. Consider,
for example, the expression ‘ '
(cons "#3=(p q r) '(xy . #3#))
If the single-quote macro-character were defined in this way:

(set-macro-character
#\'
#'(1ambda (stream char)
(declare (ignored char))
(1ist 'quote (read stream))))

then the expression could not be read properly, because there would be no way to know when read is called
recursively by the first occurrence of “'” that the label #3= would be referred to later in the containing
expression; there is no way to know because read could not know that it was called by a macro-character
function rather than from “top level”. The correct way to define the single-quote macro character uses the
recursive-p argument: '

(set-macro-character
#\’
#'(lambda (stream char)
(declare (ignored char))
(1ist 'quote (read stream nil nil t))))

Third, a recursive call does not alter whether the reading process is to preserve whitespace or not (as
determined by whether the top-level call was to read or read-preserving-whitespace). Suppose
again that single-quote had the first, incorrect, macro-character definition shown above. Then a call to
read-preserving-whitespace that read the expression “' foobaz ” would fail to preserve the space
character following the symbol “foo” because the single-quote macro-character function calls read, not
read-preserving-whitespace, to read the following expression (in this case “fo00”). The correct
definition, which passes the value t for the recursive-p argument to read, allows the top-level call to
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determine whether whitespace is preserved.

read &optional inpul-stream eof-errorp eof-value recursive-p [Function]
read reads in the printed representation of a LISP object from input-stream, builds a corresponding
LISP object, and returns the object. The details are explained above.

*read-default-float-format®* [Variable]

The value of this variable must be a type specifier symbol for a specific floating-point format; these
include short-float, single-float, double-float, Tong-float, and may include
implementation-specific types as well. The default valueis single-flioat.

*read-default-float-format* indicates the floating-point format to be used for reading
floating-point numbers that have no exponent marker or have “e” or “E” for an exponent marker.
(Other exponent markers explicitly prescribe the floating-point format to be used.) The printer also
uses this variable to guide the choice of exponent markers when printing floating-point numbe