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Chapter 1

Introduction

COMMON LIsP is a new dialect of LISP, a successor to MACLISP [12, 15], influenced strongly by .Lisp
Machine Lisp [20, 13] and also to some extent by SCHEME [17] and INTERLISP [19].

1.1. Purpose

COMMON LISP is intended to meet these goals:

Commonality. CoMMON LISP originated in an attempt to focus the work of several implementation
groups, each of which was constructing successor implementations of MACLISP for
different computers. These implementations had begun to diverge because of the
differences in the implementation environments: microcoded personal computers (Lisp
Machine LISP, SPICE LISP), commercial timeshared computers (NIL), and supercomputers
(S-1 Lisp). While the differences among the several implementation environments of
neccessity will continue to force certain incompatibilities among the implementations,
COMMON LISP serves as a common dialect to which each implementation makes any
necessary extensions. ‘

Portability. COMMON LIisP intentionally excludes features that cannot be implemented easily on a
broad class of machines. On the one hand, features that are difficult or expensive to
implement on hardware without special microcode are avoided or provided in a more
abstract and efficiently implementable form. (Examples of this are the invisible forwarding
pointers and locatives of Lisp Machine LIsP. -Some of the problems that they solve are
addressed in different ways in COMMON LiSP.) On the other hand, features that are useful
only on certain “ordinary” or “commercial” processors are avoided or made optional. (An
example of this is the type declaration facility, which is useful in some implementations
and completely ignored in others. Type declarations are completely optional and for
correct programs affect only efficiency, never semantics.) COMMON LISP is designed to
make it easy to write programs that depend as little as possible on machine-specific
characteristics such as word length, while allowing some variety of implementation
techniques. '

Consistency. Most LISP implementations are internally inconsistent in that by default the interpreter and
compiler may assign different semantics to correct programs; this stems primarily from the
fact that the interpreter assumes all variables to be dynamically scoped, while the compiler
assumes all variables to be local unless explicitly directed otherwise. This has been the
usual practice in LISP for the sake cf convenience and efficiency, but can lead to very



2 ’ COMMON LISP REFERENCE MANUAL

subtle bugs. The definition of COMMON LISP avoids such anomalies by explicitly requiring
the interpreter and compiler to impose identical semantics on correct programs.

Power. CoMMON LisP is a descendant of MACLISP, which has traditionally placed emphasis on
providing system-building tools. Such tools may in turn be used to build the user-level
packages such as INTERLISP provides; these packages are not, however, part of the
CoMMON LIsP core specification. It is expected such packages will be built on top of the
COMMON LISP core.

Expres;?verzess. COMMON Lisp culls what we believe from experience to be the most usefui and

g understandable constructs from not only MACLISP, but also INTERLISP, other LISP dialects,
and other programming languages. Constructs judged to be awkward or less useful have
* been excluded. (An example is the store construct of MACLISP.)

Compatibility. Unless there is a good reason to the contrary, COMMON LISP strives to be compatible with
Lisp Machine Lisp, MACLISP, and INTERLISP, roughly in that order.

Eﬂicienéy. CoMMON LISP has a number of features designed to facilitate the production of high-

quality compiled code in those impiementations whose developers care to invest effort in
an optimizinig compiler. One implementation of COMMON LISP (namely S-1 LISP) already
has a compiler that produces code for numerical computations that is competitive in
execution speed to that produced by a FORTRAN compiler [3]. (This extends the work done
in MACLISP to produce extremely efficient numerical code [7].)

Stability. It is intended that COMMON LISP will change only slowly and with due deliberation. The
’ various dialects that are supersets of COMMON LISP may serve as laboratorics within which
to test language extensions, but such extensions will be added to COMMON LISP only after

careful examination and experimentation.

The goals of COMMON LISP are thus very close to those of STANDARD LIsP [11]. COMMON LiSP differs from
STANDARD LISP primarily in incorporating more features, including a richer and more complicated set of data
types and more complex control structures:

This book is a language specification rather than an implementation specification (although implementation
notes are scattered throughout the text). It defines a set of standard language concepts and constructs that
may be used for communication of data structures and algorithms in the COMMON LISP dialect. This is
sometimes referred to as the “core COMMON LISP language”, because it contains conceptually necessary or
important features. It is not necessarily implementationally minimal. While some features could be defined
in termséof others by writing LISP code (and indeed may be implemented that way), it was felt that these
features should be conceptually primitive so that there might be agreement among all users as to their usage.
(For example, bignums and rational numbers could be implemented as LISP code given operations on
fixnums. However, it is important to the conceptual integrity of the_language that they be regarded by the
user as primitive, and they are useful enough to warrant a standard definition.)

For the most part this book defines a programming language, not a programming environment. A few
interfaces are defined for invoking such standard programming tools as a compiler, an editor, a program trace
facility, and a debugger, but very little is said about their nature or operation. It is expected that one or more
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extensive programming environments will be built using COMMON LISP as a foundation, but these will be
documented separately. . T

-

1.2. Notational Conventions

In COMMON LISP, as in most LISP dialects, the symbol ni1 (page 60) is used to represent both the empty
list and the “false” value for Boolean tests. An empty list may, of course, also be written “{)”; this normally
denotes the same object as “ni1”. (It is possible, by extremely perverse manipulation of the package system,
to cause the sequence of letters “ni1” to be recognized not as the symbol that represents the empty, list but as
another symbol with the same name. This obscure possibility will be ignored in this document.) These two
notations may be used interchangeably as far as the LISP system is concerned. However, as a matter of style,
this document will prefer the notation “( )” whenit is desirable to emphasize its use as an empty list, and will
prefer the notation “ni1” when it is desirable to emphasize its use as the Boolean “false” or as a symbol.
Moreover, an explicit quote mark is used to emphasize its use as a symbol rather than as Boolean “false”.

For example: ’
(append '() "()) = () ; Emphasize use of empty lists.
(not nil) => t ; Emphasize use as Boolean “false”.
(get ’nil ‘color) ; Emphasize use as a symbol.

Any data object other than ni1 is construed to be Boolean “not false”, that is, “true”. The symbol t is
conventionally used to mean “true” when no other value is more appropriate. When a function is said to
“return false” or to “be false” in some circumstance, this means that it returns nil. Howecver, when a
function is said to “return true” or to “be frue” in some circumstance, this means that it returns some value
other than ni7, but not necessarily t. '

All numbers in this document are in decimal notation unless there is an explicit indication to the contrary.

Execution of code in LISP is called evaluation, because executing a picce of code normally results in a data
object called the value produced by the code. The symbol “=>" will be used in examples to indicate
evaluation. For example:

(+ 45) =9
means “the result of evaluating the code (+ 4 5) is (or would be, or would have been) 9”.

The symbol “==>" will be used in examples to indicate macro expansion. For example:
(push x v) ==> (setf v (cons x v))
means “the result of expanding the macro-call form (push x v)is (setf v (cons x v))”. This
implies that the two pieces of code do the same thmg, the second piece of code is the definition of what the
first does.

The symbol “<=>" will be used in examples to indicate code equivalence. For example:
(- xy) <= (+x(-Y))
means “the value and effects of (- x 'y) is always the same as the value and effects of (+ x (- y)) for
any values of the variables x and y”. This implies that the two pieces of code do the same thing; however,
neither directly defines the other in the way macro-expansion does.
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When this document specifies that it “is an error” for some situation to occur, this means that:

e No valid COMMON LISP program should cause this situation to occur.

o If this situation occurs, the effects and results are completely undefined as far as adherence to the
COMMON LISP specification is concerned. '

« No COMMON LISP implementation is required to detect such an error.

This is not to say that some particular implementation might not define the effects and results for such a
situation; it is merely that no program conforming to the COMMON LISP specification may correctly depend
on sucl effects or results.

On the other hand, if it is specified in this document that in some situation “an error is signalled”, this
means slE%hat;:

o If this situation occurs, an error will be signalled; see error (page 354)and cerror (page 354).
» Valid CoMMON LISP progrdms may rely on the fact that an error will be signalled.

° EVery COMMON Lisp implementation is required to detect such an error.

In places where it is stated thaﬁ so-and-so “must” or “must not” or “may not” be the case, then it “is an
error” if the stated rcquirement‘ifs not met. For example, if an argument “must be a symbol”, then it “is an
error” if the argument is not a symbol. In all cases where an error is o be signalled, the word “signalled” is
used eXplicitly.

Functions, variables, named constants, special forms, and macros arc described using a distinctive
typographical format. Table 1-1 illustrates the manner in which COMMON LISP functions are documented.
The first line specifies the name of the function, the manner in which it accepts arguments, and the fact that it
is a function. Following indented paragraphs explain the -definition and uses of the function and often
present examples or related functions. ’

In general, actual code (including actual names of functions) appears in this typeface: (cons a b).
Names that stand for pieces of code (meta-variables) are written in italics. In a function description, the
names of the parameters appear in italics for expository purposes. The word “&optional” in the list of
paramefg'f{ers indicates that all arguments past that point are optional; the default values for the parameters are
describgd in the text. Parameter lists may also contain “&rest”, indicating that an indefinite number of
argumeﬁnts may appear, or “&key”, indicating that keyword arguments are accepted. (The
&optional/&rest/&key syntax is actually used in COMMON LisP function definitions for these purposes.)

Tablé 1-2 illustrates the manner in which a global variable is documented. The first line specifies the name
of the variable and the fact that it is a variable. Purely as a matter of convention, all global variables used by
COMMON LIsP have names beginning and ending with an asterisk.

Tablé 1-3 illustrates the manner in which a named constant is documented. The first line specifies the name
of the constant and the fact that it is a constant. (A constant is just like a global variable, except that it is an
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sample-function argl/ arg? &optional arg3 argd [Function]

The function sample-function adds together argl/ and arg2, and then multiplies the result by
arg3. If arg3 is not provided or is ni1, the multiplication isn’t done. sample-function then
returns a list whose first element is this result and whose second element is arg4 (which defaults to
the symbol foo).
For example:

(sample-function 3 4) => (7 foo)

(sample-function 1 2 2 ’bar) => (6 bar)
In general, (sample-function x y) <=> (1ist (+ x y) 'foo).

Table 1-1: Sample Function Description

*sample-variable* : [Variable]
The variable *sample-variable* specifies how many times the special form
sample-special-form should iterate. The value should always be a non-negative integer or
ni1 (which means iterate indefinitely many times). The initial value is 0.

Table 1-2: Sample Variable Descrip.tion

sample-constant ‘ [Constani]
The named constant sample-constant has as its value the height of the terminal screen in
furlongs times the base-2 logarithm of the implementation’s total disk capacity in bytes, as a
floating-point number.

Table 1-3: Sample Constant Description

error ever to alter its value or to bind it to a new value.)

Tables 1-4 and 1-5 illustrate the documentation of special forms and macros (which are closely related in
purpose). These are very different from functions. Functions are called according to a single, speciﬁéi
consistent syntax; the &optional/&rest/&key syntax specifies how the function uses its arguments
internally, but does not affect the syntax of a call. In contrast, each special form or macro can have its own
idiosyncratic syntax. It is by special forms and macros that the syntax of COMMON LIsP is defined and
extended.

In the description of a special form or macro, an italicized word names a corresponding part of the form
that invokes the special form or macro. Parentheses (“(” and “)”) stand for themselves, and should be
written as such when invoking the special form or macro. Brackets, braces, stars, plus signs, and vertical bars
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sample-special-form [name] ({var}*) {form}* [Special form]
This evaluates each form in sequence as an implicit progn, and does this as many times as specified
by the global variable *sample-variable*. Each variable var is bound and initialized to 43
before the first iteration, and unbound after the last iteration. The name name, if supplied, may be
used in a return-from (page 99) form to cxit from the loop prematurely. If the loop ends
normally, sample-special-formreturnsnil.

For example:
(setq *sample-variable* 3)
(sample-special-form () forml form2)

This evaluates formli, form2, forml, form2, forml, form2 in that order.

Table 1-4: Sample Special Form Description

sample-macro var {tag | statemeni}* ' [Macro]
This evaluates the statements as a prog body, with the variable var bound to 43.

(sample-macro x (return (+ x x))) => 86
(sample-macro var . body) ==> (prog ((var 43)) . body)

Table 1-5: Sample Macro Description

are metasyntactic marks. Square brackets (“[” and “]”) indicate that what they enclose is optional (may
appear zero times or one time in that place); the square brackets should not be written in code. Curly braces
(“{” and “}”) simply parenthesize what they enclose, but may be followed by a star (“*) or a plus sign
(“+"); a star indicates that what the braces enclose may appear any number of times (including zero, that is,
not at all), while a plﬁs sign indicates that what the braces enclose may appear any non-zero number of times
(that is, must appear at least once). Within braces or brackets, vertical bars (“|”) separate mutually exclusive
choices. In summary, the notation “{x}*” means zero or more occurrences of “x”, the notation “Ix}To
means one or more occurrences of “x”_, and the notation “[x]” means zero or one occurrences of “x”. These
notations are also used for syntactic descriptions expressed as BNF-like productions, as in Table 22-2.

In the last example in Table 1-5, notice the use of “dot notation”. The “.” appearing in the expression
(sample-macro var . body) means that the name body stands for a list of forms, not just a single form, at

the end of a list. This notation is often used in examples.

The term “LisP reader” refers not to you, the reader of this document, nor to some person reading LISP
code, but specifically to a LISP program (the function read (page 310)) that reads characters from an input
stream and interprets them by parsing as representations of LISP objects.
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Certain characters are used in special ways in the symtax of COMMON LISP. - The complete syntax is
explained in detail in chapter 22, but a quick summary here may be useful:

*  An accent acute (“singie quote™) followed by an expression form'is an abbreviation for (quote form).
Thus 'foo means (quote foo) and '(cons ’a ’'b) means (quote (cons (quote a)
(quote b))).

;  Semicolon is the comment character. It and all characters up to the end of the line are discarded.
" Double quotes surround character strings: "This is a thirty-nine character string.".

\  Backslasi is an escape character. It causes the next character to be treated as a letter rather than for its
usual syntactic purpose. For example, A\ (B denotes a symbol whose name is “A(B”, and "\"" denotes
a character string containing one character, a double-quote.

|  Vertical bars are used in pairs to surround the name of a symbol that has many special characters in it. It
is roughly equivalent to putting a backslash in front of every character so surrounded. For example,
|A(B) ] and A\ (B\) both mean the symbol whose name consists of the four characters “A(B)”.

# The number sign signals the beginning of a complicated syntactic structure. The next character
designates the precise syntax to follow. For example, #0105 means 105 (105 in octal notation); #\L
denotes a character object for the character “L”; and #(a b c) denotesa vector of three elements a, b,
and c. A particularly important case is that # Jfn means (f unct1on fi), in a manner analogous to

' form meaning (quote form).

¢ Accent grave (“backquote”) signals that the next expression is a template that may contain commas. The
backquote syntax represents a program that will construct a data structure according to the template.
,  Commas arc used within the backquote syntax. '

Colon is used to indicate which package a symbol belongs to. For example, chaos:reset denotes the
symbol named reset in the package named chaos. A leading colon indicates a keyword, a symbol that
always evaluates to itself,

The square brackets, braces, question mark, and exclamation point (that is, “[”, “7”, “{”, “}”, “?”, and “1”)
are not used for any purpose in standard COMMON LISpP syntax. These characters are explicitly reserved to the
user, primarily for use as macro characters for user-defined syntax extensions. See section 22.1.3 (page 290).

All code in this manual is written in lower case. COMMON LISP is generally insensitive to the case in which
code is written. Internally, names of symbols. are ordinarily converted to and stored in upper-case form.
There are ways to force case conversion on output if desired. In this document, wherever an interactive
exchange between a user and the LISP system is shown, the input is exhibited in lower case and the output in
upper case. ' ‘

Some symbols are written with the colon (:) character apparently in their names. In particular, all keywor?!
symbols have names starting with a colon. The colon character ‘,is not actually part of the print name, butis a
package prefix indicating that the symbol belongs to the keyword package. This is all explained in chapter 11;
until you read that, just keep in mind that a symbol notated with a leading colon is in effect a constant that
evaluates to itself. :
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Chapter 2
Data Types

CoMMON LISP provides a variety of types of data objects. It is important to note that in LISP it is data
objects that are typed, not variables. Any variable can have any LISP object as its value. (It is possible to
make an explicit declaration that a variable will in fact take on one of only a limited set of values. However,
such a declaration may always be omitted, and the program will still run correctly. Such a declaration merely
constitutes advice from the user that may be useful in gaining efficiency. See declare (page 125).)

In COMMON LISP, a data type is a (possibly infinite) set of LISP objects. Many ISP objects belong to more
than one such set, and so it doesn’t always make sense to ask what the type of an object is; instead. one usually
asks only whether an object belongs to a given type. The predicate typep (pdge 60) may be used to ask the
latter question, and the function type-of (page 43) to ask the former.

The data types defined in COMMON LISP are arranged into an almost-hierarchy (a hicrarchy with shared
subtrees) defined by the subset relationship. Certain sets of objects are interesting enough to deserve labels
(such as the set of numbers or the set of strings). Symbols are used for most such labels (here, and throughout
this document. the word symbol refers to atomic symbols, one kind of LISP object). See chapter 4 for a
complete description of type specifiers.

The root of the hierarchy, which is the set of all objects, is specified by the symbol t. The empty data type,
which contains no objects, is denoted by nil. A type called common encompasses all the data objects
required by the COMMON LISP language. A COMMON LISP implementation is free to provide other data types
that are not subtypes of common.

COMMON LISP objects may be roughly divided into the following categories: numbers, characters, symbols,
lists, arrays, structures, and functions. Some of these categories have many subdivisions. There arc also
standard types that are the union of two or more of these categories. The categories listed above, while they
are data types, are neither more nor less “real” than other data types; they simply constitute a particularly
useful slice across the type hierarchy for expository purposes.

Each of these categorics is described briefly below. Then one section of this chapter is devoted to each,
going into more detail, and briefly describing notations for objects of each type. Descriptions of LISP
functions that operate on data objects are in later chapters.
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o Numbers are provided in various forms and representations. COMMON LISP provides a true
integer data type: any integer, positive or negative, has in principle a representation as a COMMON
LISp data object, subject only to total memory limitations (rather than machine word width). A
truc rational data type is provided: the quotient of two integers, if not an integer, is a ratio.
Floating-point numbers of various ranges and precisions are also provided, as well as Cartesian
complex numbers,

e Characters represent printed glyphs such as letters or text formatting operations. Strings are
particular one-dimensional arrays of characters. COMMON LISP provides for a rich character set,
including ways to represent characters of various type styles.

¢ Symbols (sometimes called atomic symbols for emphasis or clarity) are named data objects. LISP
provides machinery for locating a symbol object, given its name (in the form of a string). Symbols
have property lists, which in effect allow symbols to be treated as record structures with an
extensible set of named components, each of which may be any LISP object.

e Lists are scquences represented in the form of linked cells called conses. There is a special object
(the symbol ni1) that is the empty list. All other lists are built recursively- by adding a new
element to the front of an existing list. This is done by creating a new cons, which is an object
having two components called the car and the cdr. The car may hold anything, and the cdr is
made to point to the previously existing list. (Conses may actually be uscd completely generally as
two-clement record sttuctures, but their most important use is to represent lists.) .

e Arrays are dimensioned collections of objects. An array can have any non-negative number of
dimensions, and is indexed by a sequence of integers. General arrays can have any LISP object as
a component; others are specialized for efficiency. and can hold only certain types of LISP objects.
It is possible for two arrays, possibly with differing dimension information, to share the same st

of elements (such that modifying one array modifies the other also), by causing one to be displaced-

to the other. One-dimensional arrays of any kind are called vectors. One-dimensional arrays of
characters are called strings.- One dimensional arrays of bits (that is, of integers whose values are 0
or 1) are called bit-vectors.

o Hash tables provide an efficient way of mapping any LISP object (a key) to an asso§:iated object.

o Readtables are used to control the built-in expression parser read (page 310).

e Packages are collections of symbols that serve as name spaces. The parser recognizes symbols by
looking up character sequences in the “current package”..

o Pathnames represent names of files in a fairly implementation-independent manner. They are
used to interface to the external file system.

¢ Streams represent sources or sinks of data (typically characters or bytes). They are used to
perform 1/0, as well as for inteérnal purposes such as parsing strings.

¢ Random-states are data structures used to ,éncapsulate the state of the built-in random-number
generator. : : :

e Structures are user-defined record structures, objects that have named components. The

defstruct (page 255) facility is used to define new structure types. Some COMMON LISP .

’
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implementations may choose to implement certain system-supplied data types, such as bignums,
readtables, streams, hash tables, and pathnames, as structures, but this fact will be invisible to the
user. '

e ['unctions are objects that can be invoked as procedures; these may take arguments, and return
values. (All LisSP procedures can be construed to return a value, and therefore treated as
functions. Those that have nothing better to return usually return nil.) - Such objects include
compiled-functions (compiled code objects). Some functions are represented as a list whose car is
a particular symbol such as Tambda. Symbols may aiso be used as functions.

These categories are not always mutually exclusive. The required relationships among the various data:
types are explained in more detail in section 2.15 (page 27). |

2.1. Numbers

There are several kinds of numbers defined in COMMON Lisp. They are divided into rational numbers,
consisting of integers and ratios; floating-point numbers, with names provided for up to four different
precisions; and complex numbers.

2.1.1. Integers

The integer data type is intended to represent mathematical integers. Unlike most programming
languages, COMMON LISP in principle imposes no limit on the magnitude of an integer; storage is
automatically allocated as necessary to represent large integers.

In every COMMON LISP implementation there is a range of integers that are represented more efficiently
than others; cach such integer is called a fixnum, and an integer that is not a fixnum is called a bignum. The
distinction between fixnums and bignums is visible to the user in only a few places where the efficiency of
representation is important. Exactly which integers are fixnums is implementation-dependent; typically they
will be those integers in the range —2" to 2"—1, inclusive, for some n not less than 15. See
most-positive-fixnum (page 188) and most-negative-fixnum (page 188).

Integers are ordinarily written in decimal notation, as a sequence of decimal dlgltS opuonally preceded by a
sign and optionally followed by a decimal point.
For example:

0 ;Zero.

-0 ;This always means the same as 0.

+6 ;The first perfect number.

28 ; The second perfect number.

1024. ;Two to the tenth power.
-1 : Pl B
15511210043330985984000000. ;25 factorial (25!). Probably a bignum.

Compatibility note: MAcLIisp and Lisp Machine Lisp normally assume that integers are written in octal (radix-8) notation
unless a decimal point is present. INTERLISP assumes integers are written in decimal notation, and uses a trailing Q to
indicate octal radix; however, a decimal point, even in trailing position, always indicates a floating-point number. This is of
course consistent with FORTRAN; ADA does not permit trailing decimal points, but instead requires them to be embedded. In
CoMMON LisP, integers written as described above are aiways construed to be in decimal notation, whether or not the
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decimal point is present; allowing the decimal point to be present permits comj)atibility with MACLISP.
Integers may be notated in radices other than ten. The notation ‘

‘ #nnrddddd or #nnRddddd
means the integer in radix-an notation denoted by the digits ddddd. More precisely, one may write “#”, a
non-empty sequence of decimal digits representing an unsigned decimal integer n, “r” (or “R"), an optional
sign, and a sequence of radix-n digits, to indicate an integer written in radix n (which must be between 2 and
36, inclusive). Only legal digits for the specified radix may be used; for example, an octal number may
contain only the digits 0 through 7. Letters of the alphabet of either case may be used in order for digits
above 9. Binary, octal, and hexadecimal radices are useful enough to warrant the special abbreviations “#b”
for “#2r”, “#0” for “#8r”, and “#x” for “#16pr7.

For example:
. #2r11010101 ; Another way of writing 213 decimal.
: #b11010101 ;Ditto.
§ #b+11010101 ;Ditto.
¢ #0325 ;Ditto, in octal radix.
~ #xD5  ;Ditto, in hexadecimal radix.
#16r+D5 ;Ditto.
#0-300  ;Decimal —192, written in base 8.
#3r-21010 ;Same thing in base 3.
#25R-7H ;Same thing in base 25.
2.1.2. Ratios

A ratio is a number representing the mathematical ratio of two integers. 'I‘megers and ratios collectively
constitute the type rational. The canonical representation of a rational number is as an integer if its value
is integral, and otherwise as the ratio of two integers, the numerator and denominator, whose greatest common
divisor is one, and of which the denominator is positive (and in fact greater than 1, or else the value would be
integral), written with “/” as a separator, thus: “3/5”. It is possible to notate ratios in non-canonical
(unredﬁced) forms, such as “4/6”, but the LIsP function prin1 (page 316) always prints the canonical form
for a ratio.

If any computation produces a result that is a ratio of two integers such that the denominator evenly divides
the numerator, then the result is immediately converted to the equivalent integer. This is called the rule of

rational canonicalization.

Implementation note: While each implementation of CoMMON Lisp will probably choose to maintain all ratios in reduced
form, there is no requirement for this as long as its effects are not visible to the user. Note that while it may at first glance
appear to save computation for the reader and various arithmetic operations not to have to produce reduced forms, this
savmgs is likely 10 be counteracted by the increased cost of operating on larger numerators and denominators. In any case, a
ComMoN Lisp ratio can never have a denominator that evenly divides its numerator, for such a number is always
xepresemed as an integer- mswad.

Ratiénal numbers may be written as the possibly signed quotient of decimal numerals: an optional sign
followed by two non-empty sequences of digits separated by a “/”. This syntax may be described as follows:
ratio ::= [sign] {digity* 7 {digi}*

The second sequence may not consist entirely df Zeros.
For example:
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273 ; This is in canonical form.

4/6 ; A non-canonical form for the same number
-17/23

-30517578125/32768 © ; This is (= 5/2)15,

10/5 ; The canonical form for this is 2.

To notate rational numbers in radices other than ten, one uses the same radix specifiers (one of #anR, #0,
#B, or #X) as for integers.

For example:
#0-101/75 ; Octal notation for -65/61.
#3r120/21 : Ternary notation for 15/7.
#Xbc/ad ; Hexadecimal notation for 188/173.

2.1.3. Floating-point Numbers

- COMMON Lisp allows an implementation to provide one or more kinds of floating-point number, which
collectively make up the type float. A floating-point number is a (mathematical) rational number of the
form s*f*6°7%, where sis +1 or —1, the sign; b is an integer greater than 1, the base or radix of the
representation; p is a positive integer, the precision (in base-b digits) of the floating-point number; fis a
positive integer between 5”1 and 5 —1 (inclusive), the significand; and e is an integer, the exponent. The
value of p and the range of e depends on the implementation and on the type of floating-point number within
that implementation. In addition, there is a floating-point zero; depending on the implementation, there may
also be a “minus zero”. If there is no minus zero, then “0.0” and “~0.0" are both interpreted as simply a

floating-point zero.

Implementation note: The form of the above description should not be construed to require the internal representation to
be in sign-magnitude form. Two's-complement and cther representations are also acceptable. Note that the radix of the
internal representation may be oiher than 2, as on the iBM 360 and 370, which use radix 16; see f1oat-radix (page 177).

Floating-point numbers may be provided in a variety of precisions and sizes, depending on the
implemecntation. High-quality floating-point software tends to depend critically on the precise nature of the
floating-point arithmetic, and so may not always be completely portable. To aid in writing programs that are
moderately portable, however, certain definitions are made here:

e A short floating-point number (type short-float) is of the represematiori of smallest fixed
precision provided by an implementation.

e A long floating-point number (type Tong-float) is of the representation of the largest fixed
precision provided by an implementation.

-

o Intermediate between short and long formats are two others, arbitrarily called single and double
(types single-float and double-float).

The precise definition of these categories is implementation-dependent. However, the rough intent is that
short floating-point numbers be precise at least to about five decimal places; single floating-point numbers, at
least to about seven decimal places; and double floating-point numbers, at least to about fourteen decimal
places. It is suggested that the precision (measured in “bits”, computed as p*]ogzb) and the exponent size
(also measured in “bits”, computed as the base-2 logarithm of one plus the maximum exponent value) be at
least as great as the values in Table 2-1.
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Format Minimum Precision Minimum Exponent Size

Short - 13 bits 5 bits
Single 24bits 8 bits
Double 50 bits 8 bits
Long 50 bits 8 bits

Table 2-1: Recommended Minimum Floating-Point Precision and Exponent Size

Floating point nunbers are written in either decimal fraction or “computerized scientific” notation: an
optiohal sign, then a non-empty sequence of digits with an embedded decimal point, then an optional decimal
exponent specification. If there is no exponent specifier, then the decimal point is required, and there must
be digits after it. The exponent specifier consists of an exponent marker, an optional sign, and a non-empty
sequence of digits. For preciseness, here is a modified-BNF description of floating-point notation.

Sloating-point-number :: = [sign] {digit}* decimal-point {digit}* [exponent]
' | [sign] {digit} * [decimal-point {digif}*] exponent
signii=+|- ’
decimal-point ;1= .
digit::=0]1]2]314|5]6]7/8]9

exponent .= exponent-marker [sign)] {digif} *
exponent-marker::=e|s|f|d|1|E|S|{F|D]|L

If no exponent specifier is present, or if the exponent marker “e” (or “E”) is used, then the precise format to
be used is not specified. When such a floating-peint number repfesentation is read and converted to an
internal floating-point data cbject, the format specified by the variable *read-default-float-format*
(page 311) is used; the initial value of this variable is s i ngle-float.

The ietters “s”, "7, “d”, and “1” (or their respective upper-case equivalents) specify explicitly the use of
short, single, double, and long format, respectively.

Examples of floating-point numbers: ;
0.0 . ; Floating-point zero in defauit format.

0EQ 3 Also floating-point zero in default format.
-.0 , ' . ; This may be a zero or a minus zero,

; ~depending on the implementation.
0. ; ;' The integer zero, not a floating-point number!
0.0s0 : ; A floating-point zero in short format.
0s0 ~ ; Also a floating-point zero in short format.
3.1415926535897932384d0 ; A double-format approximation to «.
6.02E+23 ; Avogadro’s number, in default format.
602E+21 ; Also Avogadro’s number, in default format..
3.1010299957f-1 ilog,, 2, in single format.
-0.000000001s9 ; €' 1n short format, the hard way.

While COMMON LisP provides terminology and notation sufficient to accommodate four distinct floating-
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point formats, not all implementations will have the means to support that many distinct formats. An
implementation is therefore permitted to provide fewer than four distinct internal floating-point formats, in
which case at least one of them will be “sharcd” by more than one of the external format names short, single,
double, and long according to the following rules:

o If one internal format is provided, then it is considered to be single, but serves also as short,
double, and long. The data types short-float, single-float, double-float, and
lTong-float are considered to be identical. An expression such as (eql 1.0s0 1.0d0) will
be true in such an implemcntation, because the two numbers 1.0s0 and 1.0d0 will be
converted into the same internal format and therefore be considered to have the same data type,
despite the differing external syntax. Similarly, (typep 1.0L0 ’short-float) will be true
in such an implementation. For output purposes all floating-point numbers are assumed to be of
single format, and so will print using the exponent letter “E” or “F”.

o If two internal formats are provided, then either of two correspondences may be used, depending
on which is the more appropriate:

o One format is short; the other is single and serves also as double and Jong. The data types
single-float, double-float, and Tong-float are considered to be identical, but
short-float is distinct. An expression such as (eq1 1.0s0 1.0d0) will be false, but
(eql 1.0f0 1.0d0) will be true. Similarly, (typep 1.0L0 ’short-float) wil
be false, but (typep 1.0L0 ’single-float) will be true. For output purposes all
floating-point numbers are assumed to be of short or single format.

o One format is single, and serves also as short; the other is double, and serves also as long.
The data types short-float and single-float are considered to be identical, and the
data types double-float. and long-float are considered to be identical. = An
expression such as (eql 1.0s0 1.0d0) will be false, as will (eq1 1.0f0 1.0d0),
but (eql 1.0d0 1.0L0) will be true. Similarly, (typep 1.0L0 ’short-float)
will be false, but (typep 1.0L0 ‘'double-float) will be true. For output purposes
all floating-point numbers are assumed to be of single or double format.

o If three internal formats are provided, then either of two correspondences may be used,
depending on which is the more appropriate:

o One format is short; another format is single; and the third format is double and serves aiso .
as long.

o One format is single, and serves also as Short; another is double; and the third format is long.

Implementation note: It is recommended that an implementation provide as many distinct floating-point formats as
feasible, given Table 2-1 as a guideline. Ideally, short-format floating-point numbers should have an “immediate™
representation that does not require consing, single-format floating-point numbers should approximate IEEE proposed
standard single-format floating-point numbers, and double-format floating-point numbers should approximate IEEE
proposed standard double-format floating-point numbers [9, 5, 6].
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2.1.4. Complex Numbers

Complex numbers (type complex) may.or may not be supported by a COMMON LISP implementation.
They are represented in Cartesian form, with a real part and an imaginary part cach of which is a non-
complex number (integer, floating-point number, or ratio). It should be emphasized that the parts of a
complex number are not necessarily floating-point numbers; in this COMMON LISP is like PL/1 and differs
from FORTRAN. However, both parts must be of the same type: either both are rational, or both are of the
same floating-point format. ‘ '

Complex numbers may be notated by writing the characters “#C” followed by a list of the real and
imaginary parts. If the two parts as notated are not of the same type, then they are converted according to the
rules of “floating-point contagion” as-described in chapter 12. (Indeed, “#C(a b)” is equivalent to
“#,(compiex a b)”; see the description of the function complex (page 179).)

For example:
#C(3.0s1 2.0s-1) :
#C(5 -3) ; A Gaussian integer.
#C(5/3 7.0) ; Will be converted internally to #C(1.66666 7.0).
#C(0 1) ' ; The imaginary unit.

The type of a specific complex number is indicated by a list of the word compiex and the type of the
components; for example, a specialized representation for complex numbers with short floating-point parts
would be of type (complex short-float). The type complex encompasses all complex
representations. :

A complex number of type (complex raticnal) (that is, one whose components are rational) can
never have a zero imaginary part. If the result of any computation would be a complex rational with a zero
imaginary part, the result is immediately converted to a non-complex rational number by taking the real part.
This is called the rule of complex canonicalization.

2.2 Ch:iracters

Characters are represented as data objects of type character. There are two subtypes called
standard-char and string-char.

2.2.1. Standard Characters

A character object can be notated by writing “#\” followed by the character itself. ‘For example, “#\g”
means the character object for a lower-case “g”. This works well enough for “printing characters”. Non-
printing characters have names, and can be notated by writing “#\” and then the name; for example,
“#\Spéce’_’ (or “#\SPACE” or “#\space”, for example) means the space character. The syntax for
character names after “#\” is the same as that for symbols. However, only character names that are known to
the particular implementation may be used.

P :
COMMON LISP defines a “standard character set” (subtype standard-char) for two purposes. COMMON
LisP programs that are written in the standard character set can be read by any COMMON LISP
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implementation; and COMMON LISP programs that use only standard characters as data objects are most likely
to be portable. The COMMON LISP character set consists of a space character #\Space, a newline character
#\New1 ine, and these ninety-four non-blank printing characters or their equivalents:
! " # 8 %28&()*+,~./0123456789: ;<=>7
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\N]~_
‘(Yabcdefghijklmnopgrstuvwxyz{]|7}"~

It can be seen that the COMMON LISP standard character set is equivalent to the 95 standard ASCII printing
characters plus a newline character. Nevertheless, COMMON LISP is designed to be relatively independent of
the ASCII character encoding. For example, the collating sequence is not specified except to say that digits
must be properly ordered, the upper-case letters must be properly ordered, and the lower-case letters must be
properly ordered (see char< (page 194) for a precise specification). Other character encodings, »particularly
EBCDIC, should be easily accommodated (with a suitable mapping of printing characters).

The following characters are called semi-standard:
#\Backspace. #\Tab #\Linefeed #\Page #\Return #\Rubout

Not all implementations of COMMON LISP need to support them, but those that use the standard ASCII
character set should support them, treating as corresponding respectively to the ASCII characters BS (octal
code 010), HT (011), LF (012), FF (014), CR (015), and DEL (177). They are not members of the subtype
standard-char unless synonymous with one of the standard characters specificd above. For example, in a
given implementation it might be sensible for the implementor to define #\Linefeed or #\Return to be
synonymous with #\New11ine, or #\Tab to be synonymous with #\Space.

2.2.2. Line Divisions

The treatment of line divisions is one of the most difficult issues in designing portable software, simply
becausc there is so little agreement among operating systems. Some use a single character to delimit lines; the
recommended ASCII character for this purpose is the Line Feed character LF (also called New Line, NL), but

some systems use the Carriage return character CR. Much more common is the two-character sequence CR’

followed by LF. Frequently line divisions have no representation as a character, but is implicit in the
structuring of a file into records, each record containing a line of text. A deck of punched cards has this
structure, for example.

COMMON LISP provides an abstract interface by requiring that there be a single character, #\New1ine,
that within the language serves as a line delimiter. (The language C has a similar requirement.) An
implementation of COMMON LiSP must translate between this internal single-character representation and

whatever external representation(s) may be used.

Implementation note: How the character called #\New11ne is represented internally is not specified here, but it is strongly
suggested that the ASCII LF character be used in COMMON Lisp implementations that use the ASCII character encoding.
The ASCII cr character is a workable, but in most cases inferior, alternative.

The requirement that a line division be .represented as a single character has certain consequences. A
character string (see section 2.5.2), written in the middle of a program in such a way as to span more than one
line, must contain exactly one character to represent each line division. Consider this code fragment:
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(setq a-string "This string

contains

forty-two characters. "y
between “g” and there must be exactly one character, #\New11ine; a two-character sequence, such as
#\Return and then #\Newline, is not acceptable, nor is the absence of a character. The same is true

between “s” and “f”.

u ”»

When the character #\New11ine is written to an output file, the COMMON LISP implementation must take
the appropriate action to produce a line division. -This might involve writing out the next record, or

translating #\New1ine to a CR/LF sequence.

Implementation note: If an implementation uses the ASCII character encoding, uses the CR/LF sequence externally to
delimit lines, uses LF to represent #\New1ine internally, and supports #\Return as a data object corresponding to the
ASCII character CR, the question arises as to what action to take when the program writes out #\Return followed by
#\Newline: It should first be noted that #\Return is not a standard COMMON LisP charactet, and the action to be taken
when #\Return is written out is therefore not defined by the ComMMON Lisp language. A plausible approach is to buffer
the #\Return character, and elide it if and only if the next character if #\New11ine. Another plausible approach is simply
to ignore the difficulty, and declare that writing #\Return and then #\New1 ine results in the sequence CR/CR/LF in the
output.

2.2.3. Non-Standard Characters

Any implementation may provide additional characters, whether pnnung characters or named characters.
Some plausible examples: '
#\nm #\a #\Break #MHome-Up #\Escape

The use of such characters may render COMMON LISP programs non-portable.

2.2.4. Character Attributes

Every object of type character has three attributes: code, bits, and font. The code attribute is intended to
distinguish among the printed glyphs and formatting functions for characters; it is a numerical cncoding of
the character proper. The bits attribute allows extra flags to be associated with a character. The font attribute
permits a specification of the style of the glyphs (such as italics). Each of these attributes may be understood
to be a non-negative integer.

The font attribute may be notated in unsigned decimal notation between the “#” and the “\”. For
example, #3\A means the letter “A” in font 3. Note that not all COMMON LISP implementations provide for
non-zero font attributes; see char font-1imit (page 191)

The bits attribute may be notated by preceding the name of the character by the names or initials of the
bits, separated by hyphens. The character itself may be written mstead of the name, preceded if necessary by
“\"”. For example:

#\Control-Meta-Return
#\Hyper-Space
#AControl-A
#\C-M-Return

Note that not all COMMON ' LiIsp nnplementauons provide for non-zero bits attributes; see
char-bits-1imit (page 192).
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Any character whose bits and font attributcs are zero may be contained in strings. All such characters
together constitute a subtype of the characters; this subtype is called string-char.

2.3. Symbols
o
Symbols are LISP data objects that serve several purposes and have several interesting characteristics. Every

object of type symbo1 has a name, called its print name. Given a symbol, one can obtain its name in the form
of a string. More interesting, given the name of a symbol as a string one can obtain the symbol itself. (More
précisely, symbols are organized into packages, and all the symbols in a package are uniquely identified by
name.)

Symbols have a component called the properiy list, or plist. By convention this is always a list whose
even-numbered components (calling the initial one component zero) are symbols, here functioning as
property names, and whose odd-numbered components are associated property values. Functions are
provided for manipulating this property list; in effect, these allow a symbol to be treated as an extensible
record structure.

Symbols are also used to represent certain kinds of variables in LISP programs, and there are functions for
dealing with the values associated with symbols in this role,

A symbol can be notated simply by writing its name. If its name is not empty, and if the name consists only
of upper-case alphabetic, numeric, or certain “pseudo-alphabetic” special characters (but not delimiter
characters such as parentheses or space), and if the name of the symbol cannot be mistaken for a number,
then the symbol can be notated by the sequence of characters in its name. Any upper-case letters that appear
in the (internal) name may be written in either case in the external notation (more on this below).

For example:
FROBBOZ : The symbol whose name is “FROBBOZ”.
frobboz ; Another way to notate the same symbol.
fRObBoz : Yet another way to notate it.
unwind-protect ; A symbol with a “~” in its name.
+$ ~ ; The symbol named “+$”.
1+ ‘ ; The symbol named “1+”.
+1 ) ; This is the integer 1, not a symbol.
pascal_style ; This symbol has an underscore in its name.
b~2-4*a*c : ; This is a single symbol!

; It has several special characters in its name.

file.rel.43 ; This symbol has periods in its name.
/usr/games/zork ; This symbol has slashes in its name.

Besides letters and numbers, the following characters are normally considered to be “alphabetic” for the
purposes of notating symbols: S '
+-*/ Q8% & _=<>"~.

Some of these characters have conventional purposes for naming things; for example, symbols that name
functions having extremely implementation-dependent semantics generally have names beginning with “%”.
The last character, the period “.”, is considered alphabetic provided that a token docs not consist entirely of
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periods. A single period standing by itself is used in the notation of conses and dotted lists; a token consisting
of two or more periods is syntactically illegal. (The period also scrves as the decimal point in the notation of
numbers.)

The following characters are also alphabetic by default, but are explicitly reserved to the user for definition
as reader macro characters (see section 22.1.3) or any other desired purpose, and therefore should not be used
routinely in names of symbols: ‘

L 14{}

A symbol may have upper-case letters, lower-case letters, or both in its print name. However, the Lisp
reader normally converts lower-case letters to the corresponding upper-case letters when rcading symbols.
The negeffect is that most of the time case makes no difference when notating symbols. However, case does
make a difference internally and when printing a symbol. Internally the symbols that name all standard
CoMMON Lisp functions, variables, and keywords have upper-case names; their names appear in lower case
in this document for readability. Typing such names in lower case works because the function read will
convertthem to upper case.

If a symbol cannot be notated simply by the characters of its name, because the (internal) name contains
special characters or lower-case letters, then there are two “escape” conventions for notating them. Writing a
“\" character before any character causes the character to be ireated itself as an ordinary character for usein a
symbol name: in particular, it suppresses internal conversion of lower-case letters to upper case. If any
character in a notation is preceded by \, then that notation can never be interpreted as a number.

For example: ‘ .
\ ( ; The symbol whose name is “(”.
\+1 : The symbol whose name is “+1”.
+\1 : ; Also the symbol whose name is “+1”.
\frobboz - ; The symbol whose name is “fROBB0Z”.
3.14159265\s0 - ; The symbol whose name is “3.14159265s0”.
3.14159265\S0 ; The symbol whose name is “3.1415926550,
3.14159265s0 ; A short-format floating-point approximation to .
APL\\360 ' ; The symbol whose name is “APL\ 360",
ap1\\360 o ; Also the symbol whose name is “APL\ 360",
\(b~2\)\ -\ 4*a*c ; The name is “(B~2) - 4*A*C”.

» ; It has parentheses and two spaces in it.
\(\b~2\)\ -\ 4*\a*\c ;The nameis“(b~2) - 4*a*c”.
;  The letters are explicitly lower case.

It may be tedious to insert a “\” before every delimiter character in the name of a symbol if there are many

of them? An alternative convention is to surround the name of a symbol with vertical bars; these cause every
character between them to be taken as part of the symbol’s name, as if “\” had been written before each one,
excepting only | itself and \, which must nevertheless be preceded by \.
For example: '

¥
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1" - ; The same as writing \".
[(b~2) - 4*a*c| ;The name is “(b~2) - 4*a*c”,
|frobboz] ; The name is “frobboz”, not “FROBBOZ”.
|APL\360] " ; The name is “APL360”, because

;  the “\” quotes the “3”.
|APL\\360 | ; The name is “APL\360".
jap1\\360] ; The name is “ap1\360”.
INIV : ;Same as \ |\ |: the name is “| | ”.
[(B~2) - 4*A*C| ;Thename is “(B~2) - 4*A*C”.

: It has parcntheses and two spaces in it.
[(b~2) - 4*a*c| ;The name is “(b~2) - 4*a*c”.

2.4. Lists and Conses

A cons is a record structure containing two components, called the car and the cdr. Conses are used
primarily to represent lists.

A list is recursively defined to be either the empty list (which is represented by the symbol ni 1, but can also
be written as “()”) or a cons whose cdr component is a list. A list is therefore a chain of conses linked by
their cdr componerts and terminated by ni1. The car components of the conses are called the elements of
the list. For each element of the list there is a cons. The empty list has no elements at all.

A list is notated by writing the elements of the list in order, separated by blank space (space, tab, or return
characters) and surrounded by parentheses. "

For example:
(abc) ; A list of three symbols.
(2.0s0 (a 1) #\*) ; A list of three things: a short floating-point number,

; another list, and a character object.
This is why the empty list can be written as “( )”; it is a list with no elements.

A dotted list is one whose last cons does not have ni1 for its cdr, but some other data object (which is also
not a cons, or the first-mentioned cons would not be the last cons of the list). Such a list is called “dotted”
because of the special notation used for it: the elements of the list are written between parentheses as before,
but after the last element and before the right parenthesis are written a dot (surrounded by blank space) and
then the c¢dr of the last cons. As a special case, a single cons is notated by writing the car and the cdr between
parentheses and separated by a space-surrounded dot.

For example:
(a . 4) : ; A cons whose car is a symbol
: ; and whose cdris an integer.
(abc . d) ; A dotted list with three elements whose last cons
; has the symbol d in its cdr.

Compatibility note: In MACLISP, the dot in dotted-list notation need not be surrounded by white space or other delimiters.
The dot is required to be delimited in COMMON LIsP, as in Lisp Machine Lisp.

It is legitimate to write something like (a b . (c d)); this means the same as (a b c d). The
standard LISP output routines will never print a list in the first form, however; they will avoid dot notation
wherever possible.
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Often the term list is used to refer either to true lists or to dotted lists. The term “true list” will be used to
refer to a list terminated by n1i1, when the distinction is important. Most functions advertised to operate on
lists expect to be given true lists. Throughout this manual, unless otherwise specified, it is an error to pass a

dotted list to a function that is specified to require a list as an argument.

Implementation note: Implementors are encouraged to use the equivalent of the predicate endp (page 217) wherever it is
necessary 1o test for the end of a list. Whenever feasible, this test should explicitly signal an error if a list is found to be
terminated by a non-ni1 atom. However, such an explicit error signal is not required, because some such tests occur in
important loops where efficiency is important. In such cases, the predicate atom (page 61) may be used to test for the end
of the list, quietly treating any non-ni1 list-terminating atom as if it were ni1.

Sometimes the term #ree is used to refer to some cons and all the other conses transitively accessible to it
through car and cdr links until non-conses are reached; these non-conses are called the Jeaves of the tree.

Lists, dotted lists, and trees arc not mutually exclusive data types; they are simply useful points of view
about structures of conses. There are yet other terms, such as association list. None of these are true LISP data
types. Conses are a data type, and nil is the sole object of type nu11. The LISP data type 11ist is taken to
mean the union of the cons and nul11 data types, and therefore encompasses both true lists and dotted lists.

2.5. Arrays

An array is an object with components arranged according to a Cartesian coordinate system. In general,
these components may be any LISP data objects. '

The number of dimensions of an array is called its rank (this terminology is borrowed from APL); this is a
non-negative integer. Likewise, cach dimension is itself a non-negative integer. The total number of elements
in the array is the product of all the dimensions.

An implementation of COMMON LisP may impose a limit on the rank of an array, but this limit may not be
smaller than 7. Therefore, any COMMON LISP program may assume the use of arrays of rank 7 or less. (A
program may determine the actual limit on array ranks for a given implementation by examining the constant
array-rank-1imit (page 240).)

It is permissible for a dimension to be zero. In this case, the array has no elements, and any attempt to
access an element is in error. However, other properties of the array (such as the dimensions thermselves)
may be used. If the rank is zero, then there are no dimensions, and the product of the dimensions is then by
definition 1. A zero-rank array therefore has a single element.

An array element is specified by a sequence of indices. The length of the sequence must equal the rank of
the array. Each index must be a non-negative integer strictly less than the corresponding array dimension.
Array indexing is therefore zero-origin, not one-origin as in (the default case of) FORTRAN.

As an example, suppose that the variable foo names a 3-by-5 array. Then the first index may be 0, 1, or 2,
and then second index may be 0, 1, 2, 3, or 4. One may refer to array elements using the function aref
(page 240):
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(aref foo 2 1)
refers to element (2, 1) of the array. Note that aref takes a variable number of arguments: an array, and as
many indices as the array has dimensions. A zero-rank array has no dimensions, and therefore aref would
take such an array and no indices, and return the sole element of the array.

In general, arrays can be multi-dimensional, can share their contents with other array objects, and can have
their size altered dynamically (either enlarging or shrinking) after creation. A one-dimensional array may also
have a fill pointer.

Multidimensional arrays store their components in row-major order; that is, internally a multidimensional
array is stored as a one-dimensional array, with the multidimensional index sets ordered lexicographically, last
index varying fastest. This is important in two situations: (1) when arrays with different dimensions share
their contents, and (2) when accessing very large arrays in a virtual-memory implementation. (The first
situation is a matter of semantics; the second, a matter of efficiency.)

An array that is not displaced to another array, has no fill pointer, and is not to have its size adjusted
dynamically after creation, is called a simple array. The user may provide declarations that certain arrays will
be simple. Some implementations can handle simple arrays in an especially efficient manner; for example,
simple arrays may have a more compact representation than non-simple arrays.

2.5.1. Vectors

One-dimensional arrays are called vectors in COMMON LISP, and constitute the type vector (which is
therefore a subtype of array). Vectors and lists are collectively considered to be sequences. They differ in
that any component of a one-dimensional array can be accessed in constant time, while the average
component access time for a list is linear in the length of the list; on the other hand, adding a new element to
the front of a list takes constant time, while the same operation on an array takes time linear in the length of
the array. '

A general vector (a one-dimensional array that can have any data object as an element, but has no
additional paraphernalia) can be notated by notating the components in order, separated by whitespace and
surrounded by “#(” and “)”. g
For example: :

#(a b c) ; A vector of length 3.
#(2 3 567 11 13 17 19 23 29 31 37 41 43 47)

; A vector containing the primes below 50.
#() ; An empty vector.

Note that when the function read parses this syntax, it always constructs a simple general vector.

Rationale: Many people have suggested that brackets be used to notate vectors: “[a b c]” instead of "#(a b c)”. This
would be shorter, perhaps more readable, and certainly in accord with cultural conventions. in other parts of computer
science and mathematics. However, to preserve the usefulness of the user-definable macro-character feature of the function
read (page 310), it is necessary to leave some characters to the user for this purpose. Experience in MACLisP has shown
that users, especially implementors of languages for use in artificial intelligence research, often want to define special kinds
of brackets. Therefore COMMON Lisp avoids using square brackets and braces for any purpose.

Implementations may provide certain specialized representations of arrays for efficiency in the case where
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all the components are of the same specialized (typically numeric) type. All implementations provide
specialized arrays for the cases when the components are characters (or rather, a special subset of the
characters); the one-dimensional instances of this specialization are called strings. All implementations are
also required to provide specialized arrays of bits, that is, arrays of type (array bit); the one-dimensional
instances of this specialization are called bit-vectors.

2.5.2. Strings

A string is simply a vector of characters (characters of type string-char, to be exact). The type string
is therefore a subtype of the type vector. A string can be written as the sequence of characters contained in
the string, preceded and followed by a “"” (double-quote) character. Any or “\” character in the
sequence must additionally have a “\” character before it.

CIXTEN)

For example:
"Foo" ; A string with three characters in it.
" _ ; An empty string.
"\"APL\\360?\" he cried." ; A string with twenty characters.
"Ix|] = |-x]" ; A ten-character string.

“I”

Notice that any vertical bar in a string need not be preceded by a “\”. Similarly, any double-quote in
the name of a symbol written using vertical-bar notation need not be preceded by a *“\”. The double-quote
and vertical-bar notations are similar but distinct: double-quotes indicate a character string containing the
sequence of characters, while vertical bars indicate a symbol whose name is the contained sequence of
characters.

The characters contained by the double-quotes, taken from left to right, occupy locations within the string -

with increasing indices. The leitmost character is string element number 0, the next one is element number 1,
and so on.

Note that the function prin1 will print'any character vector (not just a simple one) using this syntax, but
the function read will always construct a simple string when it reads this syntax.

2.5.3. Bit-vectors

A bit-vector can be written as the sequence of bits c,on_taine,d,. in the string, preceded by “#*”; any delimiter
character (such as whitespace) will terminate the bit-vector syntax. :

For example: )
#*10110 ; A five-bit bit-vector; bit 0.is a 1.
#* ; An empty bit-vector..

The bits notated following: the. “#*”, taken from left to right, occupy locations within the bit-vector with
increasing indices. The leftmost notated: bit is bit-vector element number 0, the next one is element number
1, and so on, '

The function prin1 will print any bit-vector (not just a simple one) using this syntax, but the function
read will always construct a simple bit-vector when it reads this syntax.

X
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2.6. Hash tables

Hash tables provide an efficient way of mapping any LISP object (a key) to an associated object. They are
provided as primitives of COMMON LISP because some implementations may need to use internal storage
management strategies that would make it very difficult for the user to implement hash tables himself in a
portable fashion. Hash tables are described in chapter 16 (page 233).

2.7. Readtables

A readtable is a data structure that maps characters into syntax types for the LISP expression parser. In
particular, a readtable indicates for each character with syntax macro character what its macro definition is.
This is a mechanism by which the user may reprogram the parser to a limited but useful extent. See section
22.1.5 (page 299).

2.8. Packages

Packages are collections of symbols that serve as name spaces. The parser recognizes symbols by looking up
character sequences in the “current package”. Packages can be used to hide names internal to a module from
other code. Mechanisms are prov1dcd for cxporting symbols from a given package to the primary “user”
package. See chapter 11 (page 139). '

2.9. Pathnames
Pathnames are the means by which a COMMON LISP program can interface to an external file system in a
reasonably implementation-independent manner. See section 23.1.1 (page 338).

2.10. Streams

A stream is a source or sink of data, typically characters or bytes. Nearly all functions that perform 1/0 do
so with respect to a specified stream. The function open (page 345) takes a pathname and returns a stream
connected to the file specified by the pathname. There are a number of standard streams that are used by
default for various purposes. See chapter 21 (page 273). '

2.11. Random-states

For information about random-state objects and the random-number generator, see section 12.9 (page
186).
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2.12. Structures.

Structures arc instances of user-defined data types that have a fixed number of named components. They
are analogous to records in PASCAL. Structures are declared using the defstruct (page 255) construct;
defstruct automatically defines access and constructor functions for the new data type.

Different structures may print out in different ways; the definition of a structure type may specify a print
procedure to use for objects of that type (see the :print-function (page 260) option to defstruct).
The default notation for structures is:

#S ( structure-name
slot-name-1 slot-value-1
slot-name-2 slot-value-2

. L)
where “#S" indicates structure syntax, structure-name is the name (a symbol) of the structure type, each
slot-name is the name (also a symbol) of a component, and each corresponding slot-value is the representation
of the LISP object in that slot.

2.13. Functions

A function is anything that may be correctly given to the funcall (page 89) or apply (page
89) function, to be executed as code when arguments are supplied.

A compiled-function is a compiled code object.

A lambda-expression (a list whose car is the symbol 1ambda) may serve as a function. Depending on the
implementation, it may be possibie for other lists to serve as functions. (For example, an implementation
might choose to represent a “lexical closure” as a list whose car contains some special marker.)

A symbol may serve as a function; an attempt to invoke a symbol as a function causes the contents of the
symbol’s function cell to be used. See symbo1-function (page75)and defun (page 55).

The result of evaluating afunction (page 72) special form will always be a function.

2.14. Unreadable Data Objects

Some objects may print in implementation-dependent ways. Such objects cannot necessarily be reliably
reconstructed from a printed representation, and so they are usually printed in a format informative to the
user but not acceptable to the read function:

#<useful information> '
The LISP reader will signal an error on encountering “#<”.

As a hypothctical example, an implementation might print
#<stack-pointer si:rename-within-new-definition-maybe #0311037552>
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for an implementation-specific “internal stack pointer” data type, whose printed representation includes the
name of the type, some information about the stack slot pointed to, and the machine address (in octal) of the
stack slot. '

2.15. Overlap, Inclusion, and Disjointness of Types

The CoMMON LiSP data type hierarchy is tangled, and purposely left somewhat open-ended so that
implementors may experiment with new data types as extensions to the language. This scction states
explicitly all the defined relationships between types, including subtype/supertype relationships, disjointness,
and exhaustive partitioning. The user of COMMON LISP should not depend on any relationships not explicitly

stated here. For example, it is not valid to assume that because a number is not complex and not rational that -

it must be a f10at, because implementations are permitted to provide yet other kinds of numbers.

First we need some terminology. If x is a supertype of y, then any object of type y is also of type x, and y is
said to be a subtype of x. If types x and y are disjoint, then no object (in any implementation) may be both of
type x and of type y. Types a, through a, are an exhaustive union of type x if each a, is a subtype of x, and
any object of type x is necessarily of at least one of the types a; a through a, are furthermore an exhaustive
partition if they are also pairwise disjoint. '

e The type t is a supertype of every type whatsoever. Every objec; belongs toltype t.

« The type ni1 is a subtype of every type whatsoever. No object belongs to type nil.

o The types cons, symbol, array, number, and character are pairwise disjoint.

e Thetypes rational, float, and complex are pairwise disjoint subtypes of number.

e The types integer and ratio are disjoint subtypes of rational.

Rationale: It might be thought that integer and ratio should form an exhaustive partition of the type
integer. This is purposely avoided here in order to permit compatible experimentation with extensions to
the CoMMON LIsp rational number system.

e The types fixnum and bignumare disjoiht subtypes of integer.

Rationale: It might be thought that fixnum and bignum should form an exhaustive partition of the type
integer. This is purposely avoided here in order to permit compatible experimentation with' extensions to
the CoMMON LisP integer number system such as the idea of adding explicit representations of infinity, or of
positive and negative infinity.

o The types short-float, single-float, double-float, and 1ong-float are subtypes
of float. Any two of them must be either disjoint or identical; if identical, then any other types
between them in the above ordering must also be identical to them (for example, if
single-float and long-float are identical types, then double-f1oat must be identical
to them also).

o The type nu11 is a subtype of symbo1; the only object of type nullisnil.

¢ The types cons and nu11 form an exhaustive partition of the type 1ist.
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¢ The type standard-char is a subtype of string-char; string-char is a subtype of
character. '

e The type string is asubtype of vector, for string means (vector string-char).
o The type bit-vector is asubtype of vector, forbit-vector means (vector bit).
o The types (vector t),string,andbit-vector are disjoint.

o The type vector is a subtype of arrayi for all types x, the type {vector x) is asubtype of
th_e type (array x (*)).

o The type simple-array is a subtype of array.

e The types simple-vector, simple-string, and simple-bit-vector are disjoint
subtypes of simple-array, for they respectively mean (simple-array t (*)),
(simple-array string-char (*)),and (simple-array bit (*)).

e The type simple-vector is a subtype of yeCtor,and indeed is a subtype of (vector t).

o The type simpie-string is a subtype of string. (Note that although string is a subtype of
vector.simple-string is notasubtype of simple-vector.)
Rationale: The type simple-vector might better have been czalled simple-general-vector, butin
this instance euphony and user convenience were deemed more important to the design of CoMMON Lisp
than a rigid symmetry.

e The type simple-bit-vector is a subtype of bit-vector. (Note that although
bit-vector is a subtype of vector, simple-bit-vector is not a subtype of
simple-vector.) .

« The types vector and 11ist are disjoint subtypes of sequence.

o The types hash-table, reafdtayb%e, package, pathname, stream, and random-state
are pairwise disjoint.

» Any two types created by defstruct (page 255) are disjoint unless one is a supertype of the
other by virtue of the : include (page 259) option.

e An exhaustive union for the type common is formed by the types cons, symbo1, (array x)
where x is either t or a subtype of common, fixnum, bignum, ratio, short-float,
single-float, double-float, long-float, {complex x) where x is a subtype of
common, standard-char, hash-table, readtable, package, pathname, stream,
random-state, and all types created by the user via defstruct (page 255). An
implementation may not unilaterally add additional subtypes to common; however, future
revisions to the COMMON LiSP standard may extend the definition of the common data type.

Note that a type such as iiumber or array may or may not be a subtype of common, depending
on whether or not the given implementation has extended the set of objects of that type.
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Chapter 3 |
Scope and Extent

In describing various features of the COMMON LISP language, the notions of scope and extent are frequently

usefui. These arise when.some object or construct must be referred to from some distant part of a program.

Scope refers 10 the spatial or textual region of the program within which references may occur. Extent refers
to the interval of time within which references may occur.

As a simple example, consider this program:
(defun copy-cell (x) (cons (car x) (cdr x)))
The scope of the parameter named x is the body of the defun form. There is no way to refer to this
parameter from any other place but within the body of the defun. Similarly. the extent of the parameter x
(for any particular call to copy-ce11) is the interval from the time the function is invoked to the time it is
exited. (In the general case, the extent of a parameter may last beyond the time of function exit, but that
cannot occur in this simple case.)

Within COMMON LISP, a referenceable entity is established by the exccution of some language construct,
and the scope and extent of the entity are described relative to the construct and the time (during execution of
the construct) at which the entity is established. For the purposes of this discussion, the term “entity” refers
not only to COMMON LISP data objects such as symbols and conses, but also to variable bindings (both
ordinary and special), catchers, and go targets. It is important to distinguish between an entity and a name
for the entity. In a function definition such as this: '

(defun foo (x y) (* x (+ y 1)))

‘there is a single name, x, used to refer to the first parameter of the procedure whenever it is invoked;

however, a new binding is established on every invocation. A binding is a particular parameter instance. The
value of a reference to the name x depends first on the scope within which it occurs (the one in the body of
foo in the example occurs in the scope of the function definition’s parameters); it depends also on the
particular binding (instance) involved (in this case, it depends on during which invocation the reference is
made). More complicated examples appear at the end of this chapter.

There are a few kinds of scope and extent that are particularly useful in describing COMMON LISP:

e Lexical scope. Here references to the established entity can occur only within certain program
portions that are lexically (that is, textually) contained within the establishing construct. Typically
the construct will have a part desxgnated the body, and the scope of all entities established will be
(or include) the body. 4
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Example: the names of parameters to a function normally are lexically scoped.
o Indefinite scope. References may occur anywhere, in any program.

o Dynamic extent. References may occur at any time in the interval between establishment of the
entity and the explicit disestablishment of the entity. As a rule, the entity is disestablished when
execution of the establishing construct completes or is otherwise terminated. Therefore entities
with dynamic extent obey a stack-like discipline, paralleling the nested executions of their
establishing constructs.

Example: the with-open-file (page 348) construct opens a connection to a file and creates a
stream object to represent the connection. The stream object has indefinite extent, but the
connection to the open file has dynamic extent: when control exits the with-open-file
construct, either normally or abnormally, the file is automatically closed.

Example: the binding of a “special” variable has dynamic extent.

o Indefinite extent. The entity continues to exist so long as the possibility of reference remains. (An
implementation is free to dcstroy the entity if it can prove that reference to it is no longer
possible.) :

Example: most COMMON LISP data objects have indefinite extent.

Example: the bindings of lexically scoped parameters of a function have indefinite extent, (By
contrast, in ALGOL the bindings of lexically scoped parameters of a procedure have dynamic
extent.) This function definition:

(defun compose (f g)
~#'(lambda (x) (funcall f (funcall g x))))

when given two arguments, immediately returns a function as its value. The parameter bindings
for f and g do not disappear, because the returned function, when called, could still refer to those
bindings. Therefore '

(funcall (compose #’sqrt #'abs) -9. 0)
produces the value 3. 0. (An analogous procedure would not necessarily work correctly in typical
ALGOL implementations.)

In addition to the above terms, it is convenient to define dynamic scope to mean indefinite scope and
dynamic extent. Thus we speak of “special” variables as having dynamic scope, or being dynamically scoped,
because they have indefinite scope and dynamic éxtent: a special variable can be referred to anywhere as long
as its binding is currently in effect.

The above definitions do not take into account the possibility of shadowing. Remote reference of entities is
accomplished by using names of one kind or another. If two entities have the same name, then the second
(say) may shadow the first, in which case an occurrence of the name will refer to the second and cannot refer
to the first. ' '

In the case of lexical scope, if two constructs that establish entities with the same name are textually nested,
then refcrences within the inner construct refer to the entity established by the inner one; the inner one
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shadows the outer one. Outside the inner one but inside the outer one, references rcfer to the entity
established by the outer construct. For example:
(defun test (x z)

(let ((z (* x 2))) (print z))

z) ;
The binding of the variable z by the Tet (page 91) construct shadows the parameter binding for the function
test. The reference to the variable z in the print form refers to the 1et binding. The reference to z at
the end of the function refers to the parameter named z.

In the case of dynamic extent, if the time intervals of two entities overlap, then one interval will necessarily

be nested within the other one (this is a property of the design of COMMON LISP).

Implementation note: Behind the 4ssertion that dynamic extents nest properly is the assumption that there is only a single
program or process. COMMON Lisp does not address the problems of multiprogramming (timesharing) or multiprocessing
(more than one active processor) within a single Lisp environment. The documentation for implementations that extend
CommoN Lisp for multiprogramming or multiprocessing should be very. clear on what modifications are induced by such
extensions to the rules of extent and scope. Implementors should note that COMMON LisP has been carefully designed to
allow special variables to be implemented using either the “deep binding” technique or the “shallow binding™ technigue,
but the two techniques have d@fferent semantic and performance implications for multiprogramming and multiprocessing.

A reference by name to an entity with dynamic extent will always refer to the entity of that name that has

been most recently established that has not yet been disestablished. For example:

(defun funl (x)
(catch *trap (+ 3 (fun2 x))))

@
E

(defun fun2 (y)
(catch ’trap (* 5 (fun3 y))))

(defun fun3 (z)
(throw 'trap z))

Consider the call (fun1 7). The result will be 10. At the time the throw (page 116) is exccuted, there are
two outstanding catchers with the name trap: one established within procedure fun1, and the other within
procedure fun2. The latter is the more recent, and so the value 7 is returned from the catch formin fun2.
Viewed from within fun3, the catch in fun2 shadows the one in fun1. (Had fun2 been defined as

(defun fun2 (y)
(catch ’'snare (* 5 (fun3 y))))

then the two catchers would have different names, and therefore the one in fun1 would not be shadowed.
The result would then have been 7.) '

As a rule this document will simply speak of the scope or extent of an entity; the possibility of shadowing
will be left implicit. ' i

A list of the important scope and extent rules in COMMON LISP:
o Variable bindings normally have lexical scope and indefinite extent. .

e Variable bindings that are declared to be special have dynamic scope (indefinite scope and
dynamic extent).

o A catcher established by a catch (page 114) or unwind -protect (page 115) special form has
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dynamic scope.

e An exit point established by a block (page 98) construct has lexical scope and dynamic extent.
(Such cxit points are also established by do (page 100), prog (page 108), and other iteration
constructs.)

¢ The go targets established by a taghody (page 107), named by the tags in the tagbody, and
referred to by go (page 109) have lexical scope and dynamic extent. (Such go targets may also
appear as tags in the bodies of do (page 100), prog (page 108), and other iteration constructs.)

¢ Named constants such as ni1l (page 60) and pi (page 171) have indefinite scope and indefinite
extent.

The rules of lexical scoping imply that lambda-expréssions appearing in the function construct will, in
general, result in “closures” over those non-special variables visible to the lambda-expression. That is, the
function represented by a lambda-expression may refer to any lexically apparent non-special variable and get
the correct value, even if the construct that established the binding has been exited in the course of execution.
The compose example shown above provides one illustration of this. The rules also imply that special
variablé® bindings are not “closed over” (as they may be in certain other dialects of LISP).

Constructs that use lexical scope effectively generate a new name for cach established entity on each
execution. Therefore dynamic shadowing cannot occur (though lexical shadowmg may). This is of particular
importance when dynamic extent is involved. For example:

(defun contorted-example (f g x)
(if (= x 0) » .
(funcall f)
(block here
(+ 5 (contorted- examp1e g
, #'(1lambda () (return-from here 4))
(- x1))))))

Consider the call (con torted-example nil nil 2 ). This produces the result 4. During the course of
execution there are three calls on contorted-examp1e, interleaved with two establishments of blocks:
{contorted-example nil nil 2)

(block here; ...)
(contorted-example nil #’(Tambda () (return-from here, 4)) 1) ’
(block here, ...)

(contorted-example #'(lambda () (return-from here, 4))
#'(lambda () (return-from here, 4))
4 0)
(funcall f)
where f => #'(1ambda () (return-from here; 4))

; .
(return from here1 4)

At the time the funcal1 is executed there are two block (page 98) exit points outstandmg, cach apparently
named here. In the trace above, these exit points are distinguished for expository purposes by subscripts. ’
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The return-from (page 99) form executed as a result of the funcall operation-refers to the outer one of
the outstanding exit points { herel), not the inner one (here,). This is a consequence of the rules of lexical
scoping: it refers to that exit point textually visible at the point of execution of the function (page
72) construct (here abbieviated by the #' syntax) that resulted in creation of the function object actually
invoked by the funcall.

If, in this example, one were to change the form (funcall f) to (funcall g), then the value of the
call {contorted-example nil nil 2) would be 9. That is because the funcall would cause the
execution of (return-from here, 4), thereby causing a return from the inner exit point (here,).
When that cccurs, the value 4 is returned from the middle invocation of contorted-example, 5 is added
to that to get 9, and that value is returned from the outer block and the outermost call to.
contorted-example. The point of this is that which exit point is returned from has nothing to do with
being innermost or outermost, but depends on the lexical scoping information that is effectively packagéd up
with a lambda-expression when the function construct is executed.

The function contorted-example above works only because the function named by f is invoked
during the extent of the exit point. Block exit points are like non-special variable bindings in having lexical
scope, but differ in having dynamic extent rather than indefinite extent. Once the flow of execution has left
the block construct, thé cxit point is disestablished. For example:

(defun illegal-example () .
(let ((y (block here #'(lambda (z) (return-from here z)))))
(if (numberp y) y (funcall y 5))))

One might expect the call (i11egal-example) to produce 5 by the following incorrect reascning: - the
et statement binds the variable y to the value of the b1ock construct; this value is a function resulting from
the lambda-expression. Because y is not a number, it is invoked on the value 5. The return-from should
then return this value from the exit point named here, thereby exiting from the block again and giving y the
value 5, which being a number is then returned as the value of the call to i11egal-exampie.

The argument fails only because exit points are defined in COMMON LISP to have dynamic extent. The
argument is correct up to the execution of the return-from. The execution of the return-from is an
error, however, not because it cannot refer to the exit point, but because it does correctly refer to an exit point
and that exit point has been disestablished.
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Chapter 4
Type Specifiers

In COMMON LISP, types ére.named by LISP objects, specifically symbols and lists, called type specifiers.
Symbols name predefined classes of objects, while lists usually indicate combinations or specializations of
simpler types. Symbols or lists may also be abbreviations for types that could be specified in other ways.

4.1. Type Specifier Symbols

The type symbols defined by the system include those shown in Table 4-1. In addition, when a structure
type is defined using defstruct (page 255), the name of the structure type becomes a valid type symbol.

4.2. Type Specifier Lists

If a type specifier is a list, the car of the list is a symbol, and the rest of the list is subsidiary type
information. In many cases a subsidiary item may be unspecified. This is indicated by writing * for the
unspecified subsidiary item. For example, to completely specify a vector type one must mention the type of

the elements and the length of the vector, as for example
(vector double-flocat 100)
To leave the length unspecified one would write
(vector double-float *)
To leave the clement type unspecified one would write
(vector * 100)
Suppose that two type specifiers are the same except that the first has a * where the second has a more explicit
specification. Then the second denotes a subtype of the type denoted by the first.

As a convenience, if a list has one or more unspecified items at the end, such items may simply be dropped
rather than writing an explicit * for each one. If dropping all occurrences of * results in a singleton list, then
the parentheses may be dropped as well (the list may be replaced by the symbol in its car). For example,
(vector double-float *) may be abbreviated to (vector double-float),and (vector * ‘)
may be abbreviated to ( vector ) and then to simply vector.

- 35~
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4.3. Predicating Type Specifier

A type specifier list (satisfies predicate-name) denotes the set of all objects that satisfy the predicate
named by predicate-name, which must be a symbol whose global function definition is a one-argument
predicate. (A name is required; lambda-expressions are not allowed in order to avoid scoping problems.) For
example, the type (satisfies numberp) is the same as the type number. The call (typep x
'(satisfies p)) results in applying p to x and returning t if the result is true and ni1 if the result is
false. ' '

As an_example, the type string-char could be defined as
%ef‘cype string-char () ’'(and character (satisfies string-char-p)))
See deftype (page4l).
Itis riot a good idea for a predicate appearing in a satisfies type specifier to cause any side effects when
invoked. ~ '

Eray fixnum package simple-vector
atom float pathname single-float
bignum function random-state standard-char
bijt _hash-table ratio stream
bit-vector integer rational ’ string
character keyword readtable string-char
common list sequence symbol
compiled-function long-float short-float t

compiex nil _ simple-array vector

cons null ‘ simple-bit-vector

double-float number simple-string

Table 4-1: Standard Type Specifier Symbols

4.4. Type Specifiers That Combine

The following type specifier lists define a data type in terms of other types or objects.

(membet% objectl object2 ...)
This denotes the set containing precisely those objects named. An object is of this type if
and only ifitis eql (page 65) to one of the specified objects.

Compatibility. note: This: is approximately equivalen; to what the INTERLISP DECL package calls
memqg. . .

(not type) This denotes the set of all those objects that are not of the specified type.

(and typé] type2 ...)
gt This denotes the intersection of the specified types.

i s
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Compatibility note: This is roughly equivalent to what the INTERLisP DECL package calls a110f.

When typep (page 60) processes an and type spccifier, it always tests each of the
component types in order from left to right, and stops processing as soon as one
component of the intersection has been found to which the object in question does not
belong. In this respect an and type specifier is similar to an exccutable and (page
68) form. The purpose of this is to allow a satisfies type specifier to depend on
filtering by previous type specifiers. For example, suppose there were a function primep
that takes an integer and says whether it is prime. Suppose also that it is an error to give
any object other than an integer to primep. Then the type specifier
{(and integer (satisfies primep))

is guaranteed never to result in an error because the function primep will not be invoked
unless the object in question has already been determined to be an integer.

(or typel tpe2 ...) ; .
This denotes the union of the specified types. For example, the type 11st by definition is

the same as (or null cons). Also, the value returned by the function position
(page 211) is always of type (or null (integer 0 *)) (either nil ora non-negative
integer).

Compatibility note: This is roughly equivalent to what the INTERLISP DECL package calls oneof.

As for and, when typep processes an or type specifier, it always tests each of the
component types in order from left to right, and stops processing as soon as one
component of the union has been found to which the objcct in question belongs.

4.5. Type Specifiers That Specialize

Some type specifier lists denote specializations of data types named by symbols. These specializaﬁons may
be reflected by more efficient representations in the underlymg implementation. As an example, consider the
type (array short-float). Implementation A may choose to provide a specialized representation for
arrays of short floating-point numbers, and implementation B may choose not to.

If you should want to create an array for the express purpose of holding only short-float objects, you may
optionally specify to make-array (page 237) the element type short-float. This does not require
make-array to create an object of type (array short-float); it merely permits it. The request is
construed to mean “Produce the most specialized array representation capable of holding short-floats that the
implementation can provide.” Implementation A will then produce a specialized short-float array (of type
(array short-float)), and implementation B will produce an ordinary array (one of type (array

t))

If one were then to ask whether the array were actually of type.(array short-float), implementation
A would say “yes”, but implementation B would say “no”. This is a property of make-array and similar
functions: what you ask for is not necessarily what you get.

Types can therefore be used for two different purposes: declaration and discrimination. Declaring to
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make-array that clements will always be of type short-float pérmits optimization. Similarly, declaring
that a variable takes on values of type (array short-float) amounts to saying that the variable will take
on values that might be produced by specifying element type short-float to make-array. On the other
hand, if the predicate typep is used to test whether an object is of type (array short-float), only
objects actually of that specialized type can satisfy the test; in implementation B no object can pass that test.

The valid list-format names for data types are:

(array_ element-type dimensions)

This denotes the set of specialized arrays whose elements are all members of the type
element-type and whose dimensions match dimensions. For declaration purnoses, this type
encompasses those arrays that can result by specifying element-type as the element type to
the function make-array (page 237); this may be different from what the type means
for discrimination purposes. element-type must be a valid type specifier or unspecified.
dimensions may be a non-negative integer, which is the number of dimensions, or it may be
a list of non-negative integers representing the length of each dimension (any dimension
may be unspecified instead), or it may be unspecified.

For example:
(array integer 3) ; Three-dimensional arrays of integers.
(array integer (* * *)) ;Three-dimensional arrays of integers.
(array * (4 5 6)) ;+4-by-5-by-6 arrays.

(array character (3 *)) ;Two-dimensional arrays of characters
; that have exactly three rows,
(array short-float ()) ;Zero-rank arrays of short-format
; floating-point numbers.
Note that (array t) is a proper subset of (array *). The reason is that (array t)
is the set of arrays that can hold any COMMON LISP object (the elements are of type t,
which includes all objects). On the other hand, (array *) is the set of all arrays
whatsoever, including for example arrays that can hold only characters. Now (array
character) is not a subset of (array t); the two sets are in fact disjoint, because
(array character) is not the set of all arrays that can hold characters, but the set of
arrays that are specialized to hold precisely characters and no other objects. To test
whether an array foo can hold a character, one should not use
(typep foo ’'(array character))
but rather .
(subtypep ’character (array-element-type foo))

Seebarray-element-type (page 241).

(simple-array element-type dimensions) _
This is equivalent to (array elemeni-type dimensions) except that it additionally
specifies that objects of the type are simple arrays. (See section 2.5.)

(vector element-type size)
This denotes the set of specialized one-dimensional arrays whose elements are all of type
element-type and whose lengths match size. This is entirely equivalent to (array
element-type (size)).

For example: .
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(vector double-float) -; Vectors of double-format

; floating-point numbers.
(vector * 5) ; Vectors of length 5.
(vector t 5) . ; General vectors of length 5.
{(vector (mod 32) *) ; Vectors of integers between 0 and 31.

The specialized types (vector string-char) and (vector bit) areso useful that
they have the special names string and bit-vector. Every implementation of
CoMMON Lisp must provide distinct representations for these as distinct specialized data
types.

(simple-vector size)

This is the same as (vector t size) except that it additionally specifies that its elements
are simple general vectors. :

(complex type) Every element of this type is a complex number whose real part and imaginary parf are

each of type type. For declaration purposes, this type encompasses those complex numbers
that can result by giving numbers of the specified typc to the function complex (page
179); this may be different from what the type means for discrimination purposes. As an
example, Gaussian integers might be described as (complex integer), even in
implementations where giving two integers to the function comp1ex results in an object of
type (complex rational).

(function {argl-type arg2-type ...) value-type)

This type may be used only for declaration and not for discrimination; typep (page
60) will signal an error if it encounters a specifier of this form. Every element of this type is
a function that accepts arguments at Jeas? of the types specified by the argj-type forms, and
returns a value that is a member of the types specified by the value-type form. The
&optional, &rest, and &key keywords may appear in the list of argument types. The
value-type may be a values type specifier, to indicate the types of multiple values.

As an example, the function cons (page 217) is of type (function (t t) cons),
because it can accept any two arguments and always returns a cons. It is also of type
(function (float string) 1ist), because it can certainly accept a floating-point
number and a string (among other things), and its result is always of type 1ist (in fact a
cons and never-nul1, but that does not matter for this type declaration). The function
truncate (page 175)is of type (function (number number) (values number
number) ), as well as of type (function (integer (mod 8)) ‘integer).

{values valuel-type value2-type eel)

This type specifer is extremely restricted: it may be used .only as the value-type in a
function type specifier or in a the (page 131) special form. It is used to specify
individual types when multiple values are involved. The &optional, &rest, and &key
keywords may appear in the value-type list; they thereby indicate the parameter list of a
function that, when given to multiple-value-call (page 111) along with the values,
would be suitable for receiving those values.
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4.6. Type Specifiers That Abbreviate -

The following type specifiers are, for the most part, abbreviations for other type specifiers that would be far
too verbose to write out explicitly (using, for example, member).

(integer low high) ;
This denotes the integers between low and high. The limits Jow and high must each be an
integer, a list of an integer, or unspecified. An integer is an inclusive limit, a list of an
integer is an exclusive limit, and * means that a limit does not exist and so effectively
j denotes minus or plus infinity, respectively. The type fixnum is simply a name for
%K (integer smallest largest) for implementation-dependent values of smallest and largest
1 (see most-negative-fixnum (page 188) and most-positive-fixnum (page
188)). The type (integer 0 1) isso useful that it has the special name bit.

(mod n) The set of non-negative integers less than ». This is equivalent to (integer 0 n—1) or
: to(integer 0 (n)).

(signed-byte s) «
The set of integers that can be represented in two’s-complement form in a byte of s bits.
This is equivalent to (integer —25"7 2577-1). Simply signed-byte or
(signed-byte *)isthesameas integer.

(unsigned-byte s) .
The set of non-negative integers that can be represented in a byte of s bits. - This is
equivalent to (mod 2°), that is, {integer 0 2°-1). Simply unsigned-byte or
(unsigned-byte *)isthesameas (integer 0 *),the set of non-negative integers.

(rational low high) .
This denotes the rationals between Jow and high. The limits Jow and high must each be a
rational, a list of a rational, or unspecified. A rational is an inclusive limit, a list of a
rational is an exclusive limit, and * means that a limit does not exist and so effectively
denotes minus or plus infinity, respectively.

(float low high)
The set of floating-point numbers between Jow and high. The limits Jow and high must
" each be a floating-point number, a list of a floating-point number, or unspecified; a
§ floating-point number is an inclusive limit, a list of a floating-point number is an exclusive
limit, and * means that a limit does not exist and so effectively denotes minus or plus
infinity, respectively.

¥

In a similar manner one may use:
(short-float Jlow high)
(single-float low high)
(double-float low high)
- (long-float low high)
In this case, if a limit is a floating-point number (or a list of one), it must be one of the
appropriate format.

(string size) This means the same as (array string-char (size)): the set of strings of the
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indicated size.

(simple-string size)
This means the same as (simple-array string-char (size)): the set of simple

strings of the indicated size.
&

(bit-vector size) ,
This means the same as (array bit (size)): the set of bit-vectors of the indicated size.

(simple-bit-vector size)
This means the same as (simple-array bit (size)): the set of bit-vectors of the
indicated size. -

4.7. Defining New Type Specifiers

New type speciﬁers‘can come into existence in two ways. First, defining a new structure type with
defstruct (page 255) automatically causes the name of the structure to be a new type specifier symbol.
Second, the deftype special form can be used to define new type-specifier abbreviations.

deftype name lambda-list {declaration | doc-string}* {form}* [Macro}
This is very similar to a defmacro (page 118) form: name is the symbol that identifies the type
specifier being defined, lambda-list is a lambda-list (and may contain &optional and &rest
tokens), and the forms constitute the body of the expander function. If we view a type specifier list
as a list containing the type specifier name and some argument forms, the argument forms
(unevaluated) are bound to the corresponding parameters in lambda-list. Then the body forms are
evaluated as an implicit progn, and the value of the last form is interpreted as a new type specifier
for which the original specifier was an abbreviation. The name is returned as the value of the
deftype form. ’

deftype differs from defmacro in that if no initform is specified for an &optional parameter,
the default value is *, notnil.

If the optiénal documentation string doc-string is present, then it is attached to the name as a
documentation string of type type; see documentation (page 362).
For example: :

(deftype mod (n) '(integer 0 (.n)))
(deftype list () '(or null cons)) ot
(deftype square-matrix (&optional type size)
"SQUARE MATRIX includes all square two-dimensional arrays."
‘(array ,type (,size ,size)))

(square-matrix short-float 7) means (array short-float (7 7))
(square-matrix bit) means (array bit (* *)) .

If the type name defined by def type is used simply as a type speciﬁer symbol, it is interpreted as a
type specifier list with no argument forms. Thus, in the example above, square-matrix would
mean (array * (* *)). the set of two-dimensional arrays. This would unfortunately fail to
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§ convey the constraint that the two dimensions be the same; (square-matrix bit) has the
¥ same problem. A better definition is: ‘
(defun equidimensional (a)
(or (< (array-rank a) 2)
(apply #'= (array-dimensions a))))

(deftype square-matrix (&optional type size)
*(and (array ,type (,size ,size))
(satisfies equidimensional)))

4.8. Type Conversion Function

coser cé object result-type [Function].
The result-type must be a type specifier; the object is converted to an “equivalent” object of the
. specified type. If the coercion cannot be performed then an error is signalled. In particular,
(coerce x ’nil) always signals an error. If object is already of the specified type, as
¢ determined by typep (page 60), then it is simply returned. It is not generally possible to convert
any object to be of any type whatsoever; only certain conversions are permitted:

* Any sequence type may be converted to any other sequence type, provided that the new
sequence can contain all actual elements of the old sequence (it is an error if it cannot).
If the result-type is specified as simply array, for example, then (array t) is
assumed. A specialized type such as string or (vector (complex
short-float)) may be specified; of course, the result may be of either that type or ' ’
som¢ more general type, as determined by the implementation. If the sequence is
already of the specified type, it may be returned without copying it; in this (coerce
sequence type) differs from (concatenate #ype sequence), for the latter is required
to copy the argument sequence. In particular, if one specifies sequence, then the
argument may simply be returned, if it already is a sequence.

(coerce '(a b c¢) ’'vector) => #(a b c)

« Some strings, symbols, and integers may be converted to characters. If object is a string
of length 1, then the sole element of. the string is returned. If object is a symbol whose
- print name is of length I, then the sole element of the print name is returned. If object
is an integer i, then (int-char n) isreturned. See character (page 196).
{coerce "a" ’character) => #\a

¢ Any non-complex number can be converted to be a short-float, single-float,
double-float, or Tong-float. Ifsimply float is specified, and object is not
already a fToat of some kind, then the object is converted to be a single-float.
{coerce 0 'short-float) => 0.0S0
(coerce 3.5L0 'float) => 3.5L0
(coerce 7/2 *float) => 3.5

o Any number can be converted to be a complex number. If the number is not already
complex, then a zero imaginary part is provided by coercing the integer zero to the type
of the given real part. (If the given real part is rational, however, then the rule of
canonical ‘representation for complex rationals will result in the immediate re-




CHAPTER 4: TYPE SPECIFIERS 43

conversion of the result from type comp 1ex back to type rational.)

(coerce 4.550 ’'complex) => #C(4.5S0 0.0S0)

(coerce 7/2 ’complex) => 7/2

(coerce #C(7/2 0) '(compliex double-float))
=> #C(3.5D0 0.0D0)

e Any object may be coerced to type t.
(coerce x 't) <=> (identity x) <=> x

Coercions from floating-point numbers to raticnals and from ratios to integers are purposely not
provided, because of rounding problems. The functions rational (page 174), rationalize,
floor (page175),ceiling, truncate, and round may be used for such purposes. Similarly,
coercions from characters to integers are purposely not provided; char-code (page 196) or
char-int (page 198) may be used explicitly to perform such conversions.

4.9. Determining the Type of an Object

type-of object [Function]
(type-of object) returns an implemertation-dependent result: some type of which the object is
a member. Implementations are encouraged to return the most specific type that can be
conveniently computed and is likely to be useful to the user. If the argument is a user-defined
named structure created by defstruct then type-of will return the type name of that structure,
Because the result is implementation-dependent, it is usually better to use type-of primarily'for
debugging purposes; however, there are a few situations where portable code requires the use of
type-of, such as when the resuit is to be given to the coerce (page 42) or map (page
205) function. On the other hand, often the typep (page 60) function or the typecase (page

97) construct is more appropriate for some purpose than. type-of.
Compatibility note: In MacLisp the function type-of is called typep, and anomalously so, for it is not a
predicate.
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Chapter 5

Program Structure

In chapter 2 the syntax was sketched for notating data objects in COMMON LISP. The same syntax is used
for notating programs, because all COMMON LISP programs have a representation as COMMON LiISP data
objects.

5.1. Forms

The standard unit of interaction with a COMMON LISP implementation is the form, which is simply a data
object meant to be evaluated as a program to produce one or more values (which are also data objects). One
may request evaluation of any dawz object, but only certain ones (such as symbols and lists) are meaningful
forms, while others (such as most arrays) are not. Examples of meaningful forms are 3, whose value is 3, and
(+ 3 4), whose value is 7. We write “3 => 3” and “(+ 3 4) => 7” to indicate these facts. (*=>" means
“evaluates to”.) ‘

Meaningful forms may be divided into three categories: self-evaluating forms, such as numbers; symbois,
which stand for variables; and lists. The lists in turn may be divided into three categories: special forms,
macro calls, and function calls. '

Any COMMON LISP data object not explicitly defined here to be a valid form is not a vahd form. Itisan

error to attempt to evaluate anything but a valid form.

Implementation note: An nnplementauon is free to make implementation-dependent extensions to the evaluator, but is
strongly encouraged to signal an error on any attempt to evaluate anything but a valid form or an object for which a
meaningful evaluation extension has been purposely defined.

5.1.1. Self-Evaluating Forms

All numbers, characters, strings, and bit-vectors ‘are selfevaluating forms. When such an object is
evaluated, that object itself (or possibly a copy in the case of numbers) is returned as the value of the form.
The empty list (), which is also the false value ni1, is also a self-evaluating form; the value of ni1is ni1.
Keywords (symbols written with a leading colon) also evaluate to themselves: the value of :start is
:start.



4% | ' COMMON LISP REFERENCE MANUAL
i , _ _
5.1.2. Variables

Symbols are used as names of variables in COMMON LISP programs. When a symbol is evaluated as a form,
the value of the variable it names is produced. For example, after doing (setq items 3), which assigns
the value 3 to the variable named items, then items => 3. Variables can be assignedto, as by setq (page
76), or bound, as by 1et (page 91). Any program construct that binds a variable effectively saves the old
value of the variable and causes it to have a new value, and on exit from the construct the old value is
reinstated.

the evalﬁuatlon The general rule is that if the symbol occurs textually within a program construct that creates
a bzndmg for a variable of the same name, then the reference is to the variable spec1ﬁed by the binding; if no
such program construct textually contains the reference, then it is taken to refer to the special variable of that

name.

The distinction between the two kinds of variable is one of scope and extent. A lexically bound variable can
be referred to only by forms occurring at any place textually within the program construct that binds the
variable. A dynamically bound (special) variable can be referred to at any time from the time the binding is
made until the time evaluation of the construct that binds the variable terminates. Therefore lexical binding
of variables imposes a spatial limitation on occurrences of references (but no temporal limitation, for the
binding continues to exist as long as the possibility of reference remains). Conversely, dynamic binding of
variables imposes a temporal limitation on occurrences of references (but no spatial limitation). For more
information on scope and extent, see chapter 3.

The value a special variable has when there are currently no bindings of that variable is called the global
value of the (special) variable. A global value can be given to a variable only by assignment, because a value

given by binding by definition is not global.

Itis possible for a special variable to have no value at all, in which case it is said to be unbound. By defaulf,

every global variable is unbound unless and until explicitly assigned a value, except for those global variables’

deﬁne%by this document or by the implementation already to have values when the LISP system is first
started‘ It is also possible to establish a binding of a special variable and then cause that binding to be
valuelegs by using the function makunbound (page 77). In this situation the variable is also said to be

unbownd” although this is a rmsnomer precisely speaking, it.is bound but valueless. It is an error to refer to -

a vanable that is unbound.

Certain global variables are reserved as “named constants”. They have a global value, and may not be
bound or assigned to. For example, the symbols t and ni1 are reserved. One may not assign a value to t or
nil and one may not bind t oc ni1. The global value of tis always t, and the global value of ni1 is always
nil. Constant symbols defined by defconstant (page 56) also become reserved and may not be further
assigned to or bound (although they may be redefined, if necessary, by using defconstant again).

\.
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Keyword symbols (those written with a leading colon) are reserved and may never be assigned to or bound; a
keyword always evaluates to itself.

5.1.3. Special Forms

If a list is to be evaluated as a form, the first step is to examine the first element of the list. If the first
element is one of the symbols appearing in Table 5-1, then the list is called a special form. (This use of the
word “special” is unrelated to its use in the phrase “special variable”.)

block (page 98) macrolet (page 93)
catch (page 114) multiple-value-call (page 111) &
compiler-let (page 92) multiple-value-progl (page 112) .
declare (page 125) progn (page 90)
eval-when (page 57) progv (page 93)
flet (page 93) quote (page 72)
function {page 72) return-from (page 99)

go (page 109) setq (page 76)

if (page 95) tagbody. (page 107)
labels (page 93) the (page 131)
Tet . (page 91) throw (page 116)
let* . (page 92) unwind-protect (page 115)

(The page numbers indicate where the definitions of these special forms appear.)
Table 5-1: Names of All COMMON LisP Special Forms

Special forms are generally environment and control constructs. Every special form has its own
idiosyncratic syntax. An example is the if special form: “(if p (+ x 4) 5)” in COMMON LISP means
what “if p then x+4 else 5” would mean in ALGOL.

The evaluation of a special form normally produces a value or values, but it may instead call for a non-local
exit; see return-from (page99), go (page 109), and throw (page 116).

The set of special forms is fixed in COMMON LISP; no way is provided for the user to define more. The user
can create new syntactic constructs, however, by defining macros.

The set of special forms in COMMON LISP is purposely kept very small, because any program-analy;in?
program must have special knowledge about every type of special form. Such a program needs no special
knowledge about macros, because it is simple to expand the macro and operate on the resulting expansion.
(This is not to say that many such programs, particﬁlarly compilers, will not have such special knowledge. A
compiler may be able to produce much better code if it recognizes such constructs as typecase and
multiple-value-bind and gives them customized treatment.)

An implementation is free to implement as a macro any construct described herein as being a special form.
Conversely, an implementation is free to implement as a special form any construct described herein as being
a macro, provided that an equivalent macro definition is also provided. The practical consequence is that the



48 COMMON LISP REFERENCE MANUAL

predicates macro-function (page 118) and special-form-p may both be true of the same symbol. It
is recommended that a program-analyzing program process a form that is a list whose car is a symbol as ’
follows: '

1. If the program has particular knowledge about the symbol, proéess the form using special-purpose
code. All of the symbols listed in Table 5-1 should fal_l into this category.

2. Otherwise, if macro-function is true of the symbol, apply ecither macroexpand (page
123} or macroexpand-1, as appropriate, to the entire form and then start over.

3. Otherwise, assume it is a function call.

5.1.4. Macros

If a fi is a list and the first element is not the name of a special form, it may be the name of a macro; if
so, the%:n is said to be a macro call. A macro is essentially a function from forms to forms that will, given a
call to that macro, compute a new form to be evaluated in place of the macro call. (This computation is
sometit%es referred to as macro expansion.) For example, the macro named return (page 99) will take a -
form sgé:h as (return x) and from that form compute a new form (return-from nil x). We say
that the old form expands into the new form. The new form is then evaluated in place of the original form;
the value of the new form is returned as the value of the original form.

There are a number of standard macros in COMMON LISP, and the user can define more by using
defmacro (page 118).

Macros provided by a COMMON LIsP implementation as described herein may expand into code that is not
portable among differing implementations. That is, a macro call may be implementation-independent

because the macro is defined in this document, but the expansion need not be.

Implementation note: Implementors are encouraged to implement the macros defined in this document, as far as is possible, -
in such as way that the expansion will not contain any implementation-dependent special forms, nor contain as forms data
objects that are not considered to be forms in CoMMON Lisp. The purpose of this restriction is to ensure that the expansion
can be processed by a program-analyzing program in an implementation-independent manner. There is no problem with a
macro expansion containing calls to implementation-dependent functions. This restriction is not a requirement of COMMON
Lisp; it is recognized that certain complex macros may be able to expand into significantly more efficient code in certain
implementations by using implementation-dependent special forms in the macro expansion.

3.1.5. Eunction Calls

If alist is to be evaluated as a form and the first element is not a symbol that names a special form or macro,
then the list is assumed to be a function call. The first element of the list is taken to name a function. Any and
all remémng elements of the list are forms to be evaluated one value is obtained from each form, and these
values become the arguments to the function. The function is then applied to the arguments The functional
computation normally produces a value, but it may instead call for a non-local exit; see throw (page 116). A
function that does return may produce no value or several values; see values (page 110) If and when the
funcnox: returns, whatever values it returns become the values of the function-call form.

For example, consider the evaluation of the form (+ 3 (* 4 5)). The symbol + names the addition
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function, not a special form or macro. Therefore the two forms 3 and (* 4 5) are evaluated to produce
arguments. The form 3 evaluates to 3, and the form (* 4 5) is a function call (to the multiplication
function). Thercfore the forms 4 and 5 are evaluated, producing arguments 4 and 5 for the multiplication.
The multiplication function calculates the number 20 and returns it. The values 3 and 20 are then given as
arguments to the addition function, which calculates and returns the number 23. Therefore wesay (+ 3 (*
4 5)) => 23. :

5.2. Functions

.

~There are two ways to indicate a function to be used in a function call form. One is to use a symbol that
names the function. This use of symbols to name functions is completely independent of their use in naming
special and lexical variables. The other way is to use a lambda-expression, which is a list whose first element is
the symbol 1ambda. A lambda-expression is not a form; it cannot be meaningfully evaluated. Lambda-
expressions and symbols, when used in programs as names of functions, can appear only as the first element
of a funciion-call form, or as the second element of the function (page 72) special form. Note that
symbols and lambda-expressions are treated as names of functions in these two contexts. This should be
distinguished from the treatment of symbols and lambda-expressions as function objects, objects that satisfy
the predicate functionp (page 63), as when giving such an object to apply (page 89) or funcall (page
89) to be invoked.

5.2.1. Named Functions

A name can be given to a function in one of two ways. A global name can be given to a function by using
the defun (page 55) construct. A local name can be given to a function by using the flet (page 93) or
labels (page 93) special form. When a function is named, a lambda-expression is effectively associated
with that name along with information about the entities that are lexically apparent at that point. If a symbol
appears as the first element of a function-call form, then it refers to the definition established by the
innermost f1et or 1abe1s construct that textually contains the reference, or to the global definition (if any)
if there is no such containing construct.

5.2.2. Lambda-Expressions:

A lambda-expression is a list with the following syntax:
(lambda lambda-list . body)
The first element must be the symbol Tambda. The second element must be a hst. It is called the Jambda-list,
and specifies names for the parameters of the function. When the function denoted by the lambda-expressxon
is applied to arguments, the arguments are matched with the parameters specified by the lambda-list. The
body may then refer to the arguments by using the parameter names. The body consists of any number of
forms (possibly zero). These forms are evaluated in sequence, and the value(s) of the last form only are
returned as the value(s) of the application (the value ni 1 is returned if there are zero forms in the body).

The complete syntax ofa lambda-expression is:
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(1 ambda ({var}*
[&optional {var | ( var [initform [svar]]) 1
[&rest var] _
[&key {var | ({var | (keyword var)} [initform [svar]])}*
[&aT1low-other-keys]]
[&aux {var | (var [initform})}*])
{declaration | documenlatzon-strmg}*
{form}*)
Each element of a lambda-list is either a parameter specifier or a lambda-list keyword, lambda-list keywords
begin with “&”. (Note that lambda-list keywords are not keywords in the usual sense; they do not belong to
the keyword package. They are Qrdinary symbols each of whose names begins with an ampersand.)
; ;
In all cases a var must be a symbol, the name of a variable, and similarly for svar also; each keyword must be
a keyword symbol, such as “: start”. An initform may be any form.

A 1arribda-list has five parts, any or all of which may be empty:

o Specifiers for the required parameters. These are all the parameter specifiers up to the first
lambda-list keyword; if there is no such lambda-list keyword, then all the specifiers are for
required parameters.

o Specifiers for optiondl parameters. - If the lambda-list keyword &optional is present, the
optional parameter specifiers are those following the lambda-list keyword &optional up to the
next lambda-list keyword or the end of the list.

o A'specifier for a rest parameter. The lambda-list keyword &rest, if present, must be followed by
a single rest parameter specifier, which in turn must be followed by another lambda-list keyword
or the end of the lambda-list. ‘

o Specificrs for keyword parameters. If the lambda-list keyword &key is present, all specifiers up to
the next lambda-list keyword or the end of the list are keyword parameter specifiers. The keyword
parameter specifiers may optionally be followed by the lambda-list keyword
&allow-other-keys.

o Specifiers for aux variables. These are not really parameters. If the lambda-list ke‘yword' &aux is
present, all specifiers after it are auxiliary variable specifiers.

Whex;‘ the function represented by the lambda-expression is applied to arguments, the arguments and
parameters are processed in order from left to right. In the simplest case, only required parameters are
present in the lambda-list; each is specified simply by a name var for the parameter variable. When the
ﬁmcti:ori is applied, there must be exactly as many arguments as there are parameters, and each parameter is
bound w one argument. Here, and in general, the parameter is bound as a lexical variable unless a
declarauon has been made that it should be a special binding; see defvar (page 56), proclaim (page
127), and declare (page 125).

In the more general case, if there are n required parameters (# may be zero), there must be at least n
arguments, and the required parameters are bound to the first » arguments. The other parameters are then
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processed using any remaining arguments.

If optional parameters are specified, then each one is processed as follows. If any unprocessed arguments
remain, then the parameter variable var is bound to the next remaining argument, just as for a required
parameter. If no arguments remain, however, then the initform part of the parameter specifier is evaluated,
and the parameter variable is bound to the resulting value (or to ni1 if no initform appears in the parameter
specifier). If another variable name svar appears in the specifier, it is bound to true if an argument was
available, and to false if no argument remained (and therefore initform had to be evaluated). The variable
svar is called a supplied-p parameter; it is not bound to an argument, but to a value indicating whether or not
an argument had been supplied for another parameter. '

After all optional parameter specifiers have been processed, then there may or may not be a rest parameter.
If there is a rest parameter, it is bound to a list of all as-yet-unprocessed arguments. (If no unprocessed
arguments remain, the rest parameter is bound to the empty list.) If there is no rest parameter and there are
no keyword parameters, then there should be no unprocessed arguments (it is an error if there are).

Next any keyword parameters are processed. For this purpose the same arguments are processed that would
be made into a list for a resz parameter. (Indeed. it is permitted to specify both &rest and &key; in this case
the arguments are used for both purposes. This is the only situation in which an argument is used in the
processing of more than one parameter specifier.) If &k ey is specified, there must remain an even number of
arguments; these are considered as pairs, the first argument in each pair being interpreted as a keyword name
and the second as the corresponding value. It is an error for the first object of each pair to be anything bup a

keyword.

Rationale: This last restriction is imposed so that a compiler may issue warnings about certain malformed calls to functions
that take keyword arguments. It must be remembered that the arguments in a function call that evaluate to keywords are
just like any other arguments, and may be any evaluable forms. A compiler could not, without additional context, issue a
warning about the call :

(fi11 seq item x y)
because in principle the variable x might have as its value a keyword such as :start. However, a compiler would be
justified in issuing a warning about the call

(fi11 seq item 0 10) .
because the constant 0 is definitely not a keyword. Similarly, if in the first case the variable x had been declared to be of
type integer then type analysis could enable the compiler to justify a warning.

In each keyword parameter specifier must be a name var for the parameter variable. If an explicit keyword
is specified, that is the keyword name for the parameter. Otherwise the name var serves to indicate the
keyword name, in that a keyword with the same name (in the keyword package) is used as the keyword.
Thus '

(defun foo (&key radix (type ’'integer)) ...)
means exactly the same as

(defun foo (&key ((:radix radix)) ((:type type) 'integer)) ...)
The keyword parameter specifiers are, like all parameter specifiers, effectively processed from left to right.
For each keyword parameter specifier, if there is an argument pair whose keyword name matches that
specifier’s keyword name (that is, the names are eq), then the parameter variable for that specifier is bound to
the second item (the value) of that argument pair. If more than one such argument pair matches, it is not an
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error; the leftmost argument pair is used. If no such argument ’pair exists, then the initform for that specifier
is evaluated and the parameter variable is bound to that value (or to ni1 if no initform was specified). The
variable svar is treated as for ordinary optional parameters: it is bound to frue if there was a matching
argument pair, and to false otherwise.

It is an error if an argument pair has a keyword name not matched by any parameter specifier, unless at
least one of the following two conditions is met:

e &allow-other-keys was specified in the lambda-list.

o Among the keyword argument pairs is a pair whose keyword is :allow-other-keys and
whose value isnotnil.

If either condition obtains, then it is not an error for an argument pair to match no parameter specified, and
the argument pair is simply ignored (but such an argument pair is accessible through the &rest parameter if
one was specified). The purpoSe of these mechanisms is to allow sharing of argument lists among several
ﬁmctidns, and to allow either the caller or the called function to specify that such sharing may be taking place.

Aftex? all parameter specifiers have been processed, the auxiliary variable specifiers (those following the
lambda-list keyword &aux) are processed from left to right. For each one the initform is evaluated and the
variable var bound to that value (or to n1i1 if no initform was specified). (Nothing can be done with &aux
variables that cannot be done with the special form Tet* (page 92):

(1ambda (x y &aux (a (car x)) (b 2) ¢c) ...)
. <=> (lambda (x y) (let* ((a (car x)) (b 2) c) ...))

Which to use is purely a matter of style.)

Whenever any initform is evaluated for any parameter specifier, that form may refer to any parameter
variable to the left of the specifier in which the initform appears, including any supplied-p variables, and may
rely on the fact that no other parameter variable has yet been bound (including its own parameter variable).

Once the lambda-list has been processed, the forms in the body of the lambda-expression are executed.
These forms may refer to the arguments to the function by using the names of the parameters. On exit from
the function, either by a normal return of the function’s value(s) or by a non-local exit, the parameter’
bindings, whether lexical or special, are no longer in effect (but are not necessarily permanently discarded, for
alexical binding can later be reinstated if a “closure” over that binding was created, perhaps using function
(page 72), and saved before the exit occurred).

Examples of &optional and &rest parameters:

R NP
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({1ambda
{(1ambda
((lambda
((Tambda
=> (2
((1ambda
=> (6
((1ambda
=> (6
{(lambda
6 3 8)
=> (6
((1ambda
6 389
=> (6

((1ambda
((1lambda
((1ambda
((1ambda
((1ambda
((1ambda
((lambda

=> (:a

(a

(ab) (+a(*b
(a &optional (b
(a &optional (b
(&optional (a 2
nil 3 nil nil)
(&optional (a 2
t 3 nil nil)

(&optional
t 3 tnil)
(&optional

t 3t (8))
(&optional
10 11)

(a 2

(a 2

{(a 2

3))) 4 5i => 19
2)) (+ a (* b 3))) 45) => 19
2)) (+ a (* b 3))) 4) => 10

b) (c 3 d)
b) (c 3 d)
d)

d)

b) (c 3

b) (c 3

b) (¢ 3

t3t (89 10 11))
Examples of &k ey parameters:

(a
(a
(a
(a

(a

&key
&key
&key
&key
&key
&key
&key

(=2~ i = i o i o g = g =

(a
b

Examples of mixtures:

((1ambda (a &optional (b 3) &rest

(1ist a b c d x))

1)

((1ambda (a &optional (b 3) &rest

(1ist a b c d x))

1 2)

((1ambda (a &optioba1

(list a b c d x))

:c 7)

((1ambda (a &optional

=> (:¢ 7 nil

(1ist a b ¢ d x))
) = (1671

16 :¢7

d)
d)
d)
d)
d)
d)
d)

= (13 nil 1 ())

(b
H

(b

((1ambda (a &optional (b
(1ist a b c d x))
) = (16

16 :d38

nil

((1ambda (a &optional (b
(1ist a b c d x))
:c 9 :d 10)

16 :d8

(1ist
(list
(1ist
(list
(Tist
(list
(list

[V VR U
[0 = i = g = g = g i =
O00000ao0

=> (12 nil 1())

3) &rest:x
())

3) &rest x
(:¢ 7))
3) &rest x
8 (:d8))
3) &rest x

=> (16938

&rest x) (list a b
&rest x) (list
&rest {(list

&rest (Tist

&rest (list

caoaacaaaa
N Nt ant? Nt st st ot
! e g Nt Nt it s

o e e b b e

&key
&key (d
&key (d
&key (d
&key

(d

&key c (d a))

(:d 8

:c 9 :d 10))

(2}

x)))
x)) 8)
x)) 6 3)

x))

x))
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All lambda-list keywords are permitted, but not terribly useful, in lambda-expressions appearing explicitly
as the first clement of a function-call form, as shown in the examples above. They are extremely useful,
however, in functions given global names by defun (page 55).
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- b ,
All symbols v»;hose names begin with “&” are conventionally reserved for use as lambda-list keywords and
should not be used as variable names. Implementations of COMMON LIsP are free to provide additional

lambda-list keyézords. .
] L

o g

lambda-1list-keywords [Constani]
The value of Tambda-1ist-keywords is a list of all the lambda-list keywords used in the
implementation, including the additional ones used only by defmacro (page 118). It must
contain at least the symbols &optional, &rest, &key, &allow-other-keys, &aux, &body,
and &whole. ' ' ‘

Asan example of the use of &allow-other-keys and :allow-other-keys, consider a function that
takes two keyword arguments of its own, and also accepts additional keyword arguments to be passed to
make-array (page 237):

(defun array of-strings (str dims &rest keyword-pairs
: &key (start 0) end &allow-other-keys)
(apply #'make-array dims
:initial-element (subseq str start end)
:allow-other-keys t
keyword-pairs))

This function takes a string and dimensioning information and returns an array of the specified dimensions
each of whose elements is the specified string. However, :start and : end keyword arguments may be used
in the usual manner (see chapter 14) to specify that a substring of the given string should be used. In
addmcg: the presence of &allow-other-keys in the lambda-list indicates that the caller may specify
additional keyword arguments; the &rest argument provides access to them. These additional keyword
arguments arc fed to make-array. Now make-array normally does not allow the keywords : start and
:end to be used, and it would be an error to specify such keyword arguments to make-array. However,
the presence in the call to make-array of the keyword argument :allow-other-keys with anon-nil
value causes any extraneous keyword arguments, including :start and : end, to be acceptable and ignored.

Tambda-parameters- 11m1t [Constani]
The value of Tambda-parameters-1imitisa posmve integer that is the upper exclusive bound

on the number of distinct parameter names that may appear in a single lambda-list. This bound

depends on the implementation, but will not be smaller than 50. (Implementors are enouraged to
make this limit as. large as practicable without sacrificing performance.) See
call-arguments-1imit (page 90).

5.3. Tep*iLeve‘l Forms

The Standard way for the wuser to interact with a - COMMON LISP implementation is via what is called a
read- eval-prmt loop: the system repeatedly reads a form from some input source (such as a keyboard or a disk
file), evaluates it, and then prints the value(s) to some output sink (such as a display screen or another disk
file). Any form (evaluable data object) is acceptable; however, certain special forms are specifically designed
to be cdnvcnient for use as top-level forms, as opposed to forms embedded within other forms, as “(+ 3 4)”

ot
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is embedded within “(if p (+ 3 4) 6)”. These top-level special forms may be used to define globally
named functions, to define macros, to make declarations, and to define global values for special variables.

It is not illegal to use these forms at other than top level, but whether it is meaningful to do so depends on
context. Compilers, for example, may not recognize these forms properly in other than top-level contexts,
(As a special case, however, if a progn (page 90) form appears at top level, then all forms within that progn

are considered by the compiler to be top-level forms.)

Compatibility note: In MAcLisp, a top-level progn is considered to contain top-level forms only if the first form is
“(quote compile)”. This odd marker is unnecessary in COMMON LisP.

Macros are usually defined by using the special form defmacro (page 118). This facility is fairly
complicated, and is described in chapter 8.

5.3.1. Defining Named Functions .

defun name lambda-list {declaration | doc-string}* {form}* [Macro}
Evaluating this special form causes the symbol name to be a global name for the function spéciﬁed
by the lambda-expression
(lambda lambda-list {declaration | doc-string}* {form}*)
defined in the lexical environment in which the defun form was executed (because defun forms
normally appear at top level, this is normally the null lexical environment).

If the optional documentation string doc-string is present (if not followed by a declaration, it may be
present only if at least one form is also specified, as it is otherwise taken to be a form), then it is
attached to the name as a documentation string of type function; see documentation (page
362). It is an error if more than one doc-string is present.

The forms constitute the body of the defined function; they .are executed as an implicit progn. '

The body of the defined function is implicitly enclosed in a block (page 98) construét whose
name is the same as the name of the function. Therefore return-from (page 99) may be used to
exit from the function. ‘

Other implementation-dependent bookkeeping actions may be taken as well by defun. The name
is returned as the value of the defun form.

For example:

(defun discriminant (a b c)
(declare (number a b c))
"Compute the discriminant for a quadratic equation.
Given a, b, and c, the value b~2-4*a*c is calculated.
The quadratic equation a*x~2+b*x+c=0 has real, multiple,
or complex roots depending on whether this calculated
value is positive, zero, or negative, respectively."”
(- (*bb)(*4ac))) ‘
=> discriminant : .
andnow (discriminant 1 2/3 -2) => 76/9

- It is permissible to use defun to redefine a function (for example, to install a corrected version of
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an incorrect definition!), or to redefine a macro as a function. It is an error to-attempt to redefine
the name of a special form (see Table 5-1) as a function.

5.3.2. Declaring Global Variables and Named Constants .

defvar name [initial-value [documentation]} [Macro}
defparameter name initicl-value [documentation] [Macro]
defconstant name initial-value [documentation} [Macro]

defvar is the recommended way to declare the use of a special variable in a program.
(defvar variable)
proclaims variable to be special (see proclaim (page 127)), and may perform other system-
! dependent bookkeeping actions. If a second “argument” is supplied:
: (defvar variable initial-value)
then variable is initialized to the result of evaluating the form initial-value unless it already has a
value. The initial-value form is not evaluated unless it is used; this is useful if it does something
expensive like creating a large data structure. The initialization is performed by assignment, and so
¥ assigns a global value to the variable unless there are currently special bindings of that variable
(normally there should not be any).

' defvar also provides a good place to put a comment describing the meaning of the variable
(whereas an ordinary special proclamation offers the temptation to declare several variables at
once and not have room to describe them all).

(defvar *visible-windows* 0
% "Number of windows at least partially visible on the screen.")

defparameter is similar to defvar, but requires an initial-value form, and always evaluates it
and assigns the result to the variable. The semantic distinction is that defvar is intended to
declare a variable changed by the program, whereas defparameter is intended to declare a
variable that is normally constant, but can be changed (possibly at run time), considered as a change
to the program. defparameter therefore does not indicate that the quantity never changes; in
particular, it does not license the compiler to build assumptions about the value into programs
being compiled. )

defconstant is like defparameter, but does assert that the value of the variable name is fixed,
and does license the compiler to build assumptions about the value into programs being compiled.
(However, if the compiler chooses to replaces references to the name of the constant by the value of
the constant in code to be compiled, perhaps in order to allow further optimization, the compiler
must take care that such “copies” appear to be eq1 to the object that is the actual value of the
constant.  For example, the compiler may freely make copies of numbers, but must exercise care
when the value is a list.) .

It is an error if there are any special bindings of the variable at the time the defconstant form is
executed (but implementations may or may not check for this).

" Once a name has been declared by defconstant to be constant, any further assignment to or

LI
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binding of that special variable is an error. This is the case for such system-supplied constants as t
(page 60) and most-positive-fixnum (page 183). A compiler may also choose to issue
warnings about bindings of the lexical variable of the same name.

For any of these constructs, the documentation should be a string. It is attached to the name of the
variable, parameter, or constant under the variable documentation type; see documentation
(page 362). : ‘

These constructs are normally used only as top-level forms. The value returned by each of these
constructs is the name declared.

5.3.3. Control of Time of Evaluation

eval-when ({situation}*) {form}* ' [Special form]
The body of an eval-when form is processed as an implicit progn, but only in the situations
listed. Each situation must be a symbol, either compile, 10ad, or eval.

eval specifies that the interpreter should process the body. compile specifies that the compiler
should evaluate the body at compile time in the compilation context. load specifies that the
compiler should arrange to evaluate the forms in the body when the compiled file containing the
eval-when form is loaded.

The eval-when construct may be more precisely understood in terms of a miodel of how the
compiler processes forms in a file to be compiled. Successive forms are rcad from the file using the
function read (page 310). These top-level forms are normally processed in what we shall call
not-compile-time mode. There is another mode called compile-time-too mode. The eval-when
special form controls which of these two modes to use. ' '

Every form processed as follows:
o Ifthe form is an eval-when form:
o If the situation 10ad is specified:

o If the situation comp i1e is also specified, or if the current processing mode
is compile-time-1oo and the situation eval is also specified, then process
each of the forms in the body in compile-time-too mode.

o Otherwise, process each of the forms in the body in not-compile-time mode.

o If the situation 1o0ad is not specified:

o If the situation compi1e is also specified, or if the current processing mode
is compile-time-too and the situation-eval is also specified, then evaluate
each of the forms in the body in the compiler’s executing environment.

¢ Otherwise, ignore the eval-when form entirely.

o If the form is not an eval-when form, then do two things. First, if the current
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processing mode is compile-time-too mode, then evaluate the form in the compiler’s
executing environment.  Sccond, perform normal compiler processing of the form
(compiling functions defined by de fun forms, and so on).

One example of the use of eval-when is that if the compiler is to be able to properly read a file
that uses user-defined reader macro characters itis necessary to write

(eval-when (compile load eval)
(set-macro-character #\$ #'(lambda (stream char)
(declare (ignore char))
(Tist ’dollar (read stream)))))

This causes the call to set-macro-character (page 300) to be executed in the compllers

* execution environment, thereby modxfymg its reader syntax table.

-t




Chapter 6

Predicates

A predicate is a function that tests for some condition involving its arguments and returns nil if the
condition is false, or some non-ni1 value if the condition is true. One may think of a predicate as producing
a Boolean value, where ni1 stands for false and anything else stands for true. Conditional control structures
such as cond (page 95), if (page 95), when (page 95), and unless (page 95) test such Boolean values.
We say that a predicate is true when it returns a non-ni1 value, and is false when it returns ni71; that is, it is
true or false according to whether the condition being tested is true or false.

By convention, the names of predicates usually end in the letter “p” (which stands for “predicate™).
COMMON LISP uses a uniform convention in hyphenating names of predicates. If the name of the predicate is
formed by adding a “p” to an existidg name, such as the name of a data type, a hyphen is placed before the
final “p” if and only if there is a hyphen in the existing name. For example, number begets numberp but
standard-char begets standard-char-p. On the other hand, if the name of a predicate is formed by
adding a prefixing qualifier to the front of an existing predicate name, the two names are joined with a
hyphen and the presence or absence of a hyphen before the final “p” is not cﬁénged. For example, the
predicate string-lessp has no hyphen before the “p” because it is the string version of lessp (a
MaAcCLIsSP function that has been renamed “<” in COMMON LISP). The name string-less-p would
incorrectly imply that it is a predicate that tests for a kind of object called a “string-1ess”, and the name

stringlessp would connote a predicate that tests whether something has no strings (is “stringless”)!

The control structures that test Boolean values only test for whether or not the value is ni1, which is
considered to be false. Any other value is considered to be true. Often a predicate will return n1i1 if it “fails”
and some useful value when it “succeeds”; such a function can be used not only as a test but also for the
useful value provided in case of success. An example is member (page 226).

If no better non-n i1 value is available for the purpose of indicating succesé, by convention the symbol t is
used as the “standard” true value.

-59 —
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6.1. Logical Values

nil [Constani]
‘ The value of ni1 is always nil. This object represents the logical false value and also the empty
list. It can also be written “( )”.

t [Constani]
The value of t is always t.

6.2. Data Type Predicates

Perhaps the most important predicates in LISP are those that deal with data types; that is, given a data object
one can determine whether or not it belongs toa given type, or one can compare two type specifiers.

6.2.1. General Type Predicates

typep object type v [Function]

typep is a predicate that is true if object is of type type, and is false otherwise. Note that an object

- can be “of” more than one type, since one type can include another. The fype may be any of the

type specifiers mentioned in chapter 4 except that it may not be or contain a type specifier list

whose first element is function or values. A specifier of the form (satisfies fh) is

handled simply by applying the function fn to object (see funcall (page 89)); the object is
considered to be of the specified type if the resultisnot ni1.

subtypep fypel type2 [F unclzon] .
The arguments must be type specifiers that are acceprable to typep (page 60). The two type
specifiers are compared; this predicate is true if fype! is definitely a (not necessarily proper) subtype
of type2. If the result is ni1, however, then fype/ may or may not be a subtype of 1ype2 (sometimes
it is impossible to tell, especially when satisfies type specifiers are involved). A second
returned value indicates the certainty of the result; if it is true, then the first value is an accurate
indication of the subtype relationship. Thus there are three possible result combinations:

-t t typel is definitely a subtype of {ype2
nil t typel is definitely not a subtype of type2
nil nil subtypep could not determine the relationship

6.2.2. Specific Data Type Predicates
The following predicates are for testing for individual data types.
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. null object 4 [Function)

nu11 is true if its argument is ( ), and otherwise is false. This is the same operation performed by
the function not (page 67); however, not is normally used to invert a Boolean value, while nui1
is normally used to test for an empty list. The programmer can therefore express infent by the
choice of function name. '

(null x) <=> (typep x 'null) <=> (eq x '())

symbolp object : [Function]
symbo1p is true if its argument is a symbol, and otherwise is false.
(symbolp x) <=> (typep x 'symbol)

atom object ' [Function]
The predicate atom is true if its argument is not a cons, and otherwise is false. Note that (atom
' (1)) is true, because ()=nil. |
(atom x) <=> (typep x ‘'atom) <=> (not (typep x ’'cons))

consp object ; ' ' [Function]
The predicate consp is true if its argument is a cons, and otherwise is false. Note that the empty
list is not acons, so (consp '()) <=> (consp 'nil) =>nil.
(consp x) <=> (typep x 'cons) <=> (not (typep x ’atom))

. Compatibility note: Some LisP implementations call this function pairp or 1istp. The name pairp was
rejected for CoMMON Lisp because it emphasizes too strongly the dotted-pair notion rather than the usual usage
of conses in lists. On the other hand, 1istp too strongly implies that the cons is in fact part of a list, which
after all it might not be; moreover, () is a list, though not a cons. The name consp seems to- be the
appropriate compromise. ‘

listp object . [Function)
14stp is true if its argument is a cons or the empty list ( ), and otherwise is false. It does not check
for whether the list is a “true list” (one terminated by n1i1) or a “dotted list” (one terminated by a
non-null atom).
(1istp x) <=> (typep x ’'list) <=> (typep x ’'(or cons null))

numberp object ‘ [Function}
numberp is true if its argument is any kind of number, and otherwise is false.
(numberp x) <=> (typep x ’number)

integerp object [Function]
integerp is true if its argument is an integer, and otherwise is false.
(integerp x) <=> (typep x 'integer)
Compatibility note: In MACLIsP this is called fixp. Users have been confused as to whether this meant
“integerp” or “fixnump”, and so these names have been adopted here.
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rationalp object : : . [Function]
‘ rationalp is true if its argument is a rational number (a ratio or an integer), and otherwise is
false. ‘

(rationalp x) <=> (typep x 'rational)

floatp object ) A [Function]
' floatp is true if its argument is a floating-point number, and otherwise is false.
(floatp x) <=> (typep x ’'float)

complexp object [Function]
comp1 ex p is true if its argument is a complex number, and otherwise is false.
(complexp x) <=> (typep x ’'complex)
characterp object , [Function)
characterp is true if its argument is a character, and otherwise is false.
(characterp x) <=> (typep x ’character)

~stringp object o [Function]
stringp is true if its argument is a string, and otherwise is false. '
(stringp x) <=> (typep x ’'string)

bit-vector-p object [Function]
~ bit-vector-p is true if its argument is a bit-vector, and otherwise is false.
(bit-vector-p x) <=> (typep x ’bit-vector)

vectorp object . [Function]
vectorp is true if its argument is a vector, and otherwise is false.
(vectorp x) <=> (typep x ’'vector)

simple-vector-p object T [Function]
vectorp is true if its argument is a simple general vector, and otherwise is false. ‘
(simple-vector-p x) <=> (typep x ’simple-vector)

simple-string-p object ’ [Function)
simple-string-p is true if its argument is a simple string, and otherwise is false.
(simple-string-p x) <=> (typep x ’simple-string)

simple-bit-vector-p object ) [Fulclion]
simple-bit-vector-p istrue if its argument is a simple bit-vector, and otherwise is false.
(simple-bit-vector-p x) <=> (typep x ’'simple-bit-vector)
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arrayp object : ' [Function)
arrayp is true if its argument is an array, and otherwise is false.
(arrayp x) <=> (typep x 'array)

packagep object [Function)
packagep is true if its argument is an package, and otherwise is false.
(packagep x) <=> (typep x ’package)

functionp object [Function)
functionp is true if its argument is suitable for applying to arguments, using for example the
funcallor apply function. Otherwise functionp is false.

functionp is always true of symbols, lists whose car is the symbol 1ambda, any value returned by
the function (page 72) special form, and any values returned by the function compile (page
361) when the first argumentis ni1.

compiled-function-p object ' ' [Function]
compiled-function-p is true if its argument is any compiled code object, and otherwise is
false.

(compiled-function-p x) <=> (typep x 'compiled-function)

commonp object : : [Function]
commonp is true if its argument is any standard COMMON LISp data type, and otherwise is false.
*common)

(commonp x) <=> (typep x

See also standard-char-p (page 192), string-char-p (page 192), streamp (page 277),

random-state-p (page 188), readtablep (page 300), hash-table-p (page 234), and pathnamep
(page 343).

6.3. Equality Predicates

COMMON LisP provides -a spectrum of predicates for testing for equality of two objects: eq (the most
specific), eq1, equal, and equalp (the most general). eq and equal have the meanings traditional in
LisP. eq1l was added because it is frequently needed, and equalp was added primarily to have a version of
equal that would ignore type differences when comparing numbers and case differences when comparing
characters. If two objects satisfy any one of these equality predicates, then they also satisfy all those that are
more general. '

eq x y [Function]
(eq x y) is true if and only if x and y are the same identical object. (Implementationally, x and y
are usually eq if and only if they address the same identical memory location.)

It should be noted that things that print the same are not necessarily eq to each other. Symbols

)
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with the same print name usually are eq to each other, because of the use of the intern (page .
150) function. However, numbers with the same value need not be eq, and two similar lists are
usually not eq.
For example:
(eq 'a 'b) is false
(eq 'a ’a) istrue
(eq 3 3 ) mxght be true or false, depending on the unplementauon
(eq 3 3.0) isfalse
(eq 3.0 3.0) might be true or false, depending on the implementation

(eq #c(3 -4) #c(3 -4)) might be true or false depending on the implementation
(eq #c(3 -4.0) #c(3 4)) is false

(eq (cons 'a 'b) (cons ’a 'c)) isfalse

(eq (cons 'a 'b) (cons ’a b)) isfalse

(eq ’(a . b) '(a . b)) mightbe true or false

(progn (setq x (cons 'a 'b)) (eq x x)) istrue

(progn (setg x '(a . b)) (eq x x)) istrue

(eq #\A #\A) might be true or false, depending on the implementation
(eq "Foo" "Foo") might be true or false

(eq "Foo" (copy-seq "Foo")) 1sfa1se

(eq "FOO" "foo") isfalse

In COMMON Lisp, unlike some other LISP dialects, the implementation is permitted to make
“copies” of characters and numbers at any time. (This permission is granted because it allows
tremendous performance improvements in many common situations.) The net effect is that
COMMON LisP makes no guarantee that eq will be true even when both its arguments are “the
same thing” if that thing is a character or number.

For example:

(let ((x 5)) (eq x x)) might be true or false
The predicate eq1 is the same as eq, except that if the arguments are characters or numbers of the
same type then their values are compared. Thus eq1 tells whether two objects are conceptually the
same, whereas eq tells whether two objects are implementationally identical. It is for this
reason that eq1, not eq, is the default comparison predicate for the sequence functions defined in

chapter 14.

Implementation note: eq simply compares the two pointers given it, so any kind of object that is represented in
an “immediate” fashion will indeed have like-valued instances satisfy eq. In some implementations, for
example, fixnums and characters happen to “work”. However, no program should depend on this, as other
implementations of COMMON LisP might not use an immediate representation for these data types.

An additional problem with eq is that the implcmentation is permitted to “collapse” constants (or
portions thereof) appearing in code to be compiled if they are equal. An object is considered to
be a constant in code to be compiled if it is a self-evaluating form or is contained in a quote (page
72) form, This is why (eq "Foo" "Foo") might be true or false; in interpreted code it would
knonnally be false, because reading in the form (eq "F 00" "F oo") would construct distinct
strings for the two arguments to eq, but the compiler might choose to use the same identical string
or two distinct copies as the two arguments in the call to eq. Similarly, (eq *(a . b) '(a .
b)) might be trué or false, depending on whether the constant conses appearing in the quote
forms were collapsed by the compiler. However, (eq (cons 'a 'b) (cons ‘'a ‘b)) is
always false, because every distinct call'to the cons function necessarily produces a new and
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eql x y

distinct cons.

. : [Function)
The eq1 predicate is true if its arguments are eq, or if they are numbers of the same type with the
same value, or if they are character objects that represent the same character.

For example:

(eql 'a 'b) isfalse

(eql ’'a 'a) istrue

(eql 3 3) istrue

(eql 3 3.0) isfalse

(eql 3.0 3.0) istrue

(eql #c(3 -4) #c(3 -4)) istrue

(eql #c(3 -4.0) #c(3 -4)) isfalse

(eql (cons 'a 'b) (cons ’a ’'c)) isfalse

(eql (cons *a 'b) (cons ’a 'b)) isfalse

(eql *(a . b) ’'(a . b)) might be truc or false

(progn (setq x (cons 'a 'b)) (eql x x)) istrue

(progn (setg x '(a . b)) (eql x x)) istrue

(eql #\A #\A) istrue

(eql "Foo" "Foo") might be true or false

(eq1 "Foo" (copy-seq "Foo")) is false

(eql "FOO" "foo") is false
Normally (eq1 1.0s0 1.0d0) would be false, under the assumption that 1.0s0 and 1.0d0
arc of distinct data types. However, implementations that do not provide four distinct floating-
point formats are permitted to “collapse™ the four formats into some smalier number of them; in
such an implementation (eq? 1.0s0 1.0d0) might be true. The predicate = (page 162) will

compare the values of two numbers even if the numbers are of different types.

If an implementation supports positive and negative zeros as distinct values (as in IEEE proposed
standard floating-point format), then (eq? 0.0 -0. 0) will be false. Otherwise, when the syntax
-0.0 is read it will be interpreted as the value 0.0, and so (eq1 0.0 -0.0) will be true. The
predicate = (page 162) differs from eq1l in that (= 0.0 -0.0) will always be true, because =
compares the mathematical values of its operands, whereas eq1 compares the representational
values, so to speak. '

Two compléx numbers are considered to be eq1 if their real parts are eq1 -and their imaginary
parts are eq1. For example, (eq1 #C(4 5) #C(4 5)) istrue and (eql #C(4 5) #C(4.0
5.0)) is false. Note that while (eql #C(5.0 0.0) 5.0) is false, because the two arguments
are of different types, (eq1 #C(5 0) 5) is true, because by the rule of complex canonicalization
#C(5 0) is not a complex number, but is always automatically reduced to the integer 5, just as the
apparent ratio 20/ 4 is always simplified to 5.

The case of (eq1 "Foo" "Foo") is discussed above in the description of eq (page 63). While
eq1 compares the values of numbers and characters, it does not compare the contents of strings.
To compare the characters of two strings one should use equal, equalp, string= (page 248),
orstring-equal (page 248).
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equal x y ' ‘ [Function]
The equal predicate is true if its arguments are similar (1somorph1c) objects. A rough rule of
thumb is that two objects are equa if and only if their printed representations are the same.

Numbers and characters are compared as for eql. Symbols are compared as for eq. This can
violate the rule of thumb about printed representations, but only in the case of two distinct symbols
with the same print name, and this does not ordinarily occur (only if uninterned symbols are
involved).

Certain objects that have components are equal if they are of the same type and correspcading
components are equal. This test is implemented in a recursive manner, and may fail to terminate
for circular structures.

For conses, equal is defined recurswely as the two car's bemg equal and the two cdr's being
equal.

Two arrays are equal only if they are eq, with one exception: strings and bit-vectors are
‘compared element-by-element. Upper-case and lower-case letters in strings are considered to be

distinct by equal.
Compatibility note: In Lisp Machine LisP, equal ignores the difference between upper and lower case in
strings. This violates the rule of thumb about printed representations, however, which is very useful, especially
to novices. It is also inconsistent with the treatment of single characters, which in Lisp Machine Lisp are
represented as fixnums.

Two pathname objects are equal if and only if all the correspohding components (host, device,
and so on) are equivalent. (Whether or not upper-case and lower-case letters are considered .
equivalent in strings appearing in components depends on the file name conventions of the file
system.) Pathnames that are equal should be functionally equivalent.
For example:
‘ (equal ’a 'b) is false

(equal 'a ’'a) istrue

(equal 3 3) istrue

(equal 3 3.0) isfalse

(equal 3.0 3.0) istrue

(equal #c(3 -4) #c(3 -4)) istrue

(equal #c(3 -4.0) #c(3 -4)) isfalse

(equal (cons ’a ’'b) (comns ‘a ’c)) isfalse

(equal (cons ’a 'b) (cons ’a 'b)) istrue

(equal °'(a . b) '(a . b)) istrue

(progn (setq x (cons 'a b)) (equal x x)) istrue

(progn (setq x '(a . b)) (equal x x)) istrue

(equal #\A #\A) istrue

(equal "Foo" "Foo") istrue

(equal "Foo" (copy-seg "Foo")) is true

(equal "FOO" "foo") isfalse

To compare a tree of conses, using eql (or any other desn'ed predicate) on the leaves, use
tree-equal (page217).
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’ equalp x y [Function]
Two objects are equalp if they are equal; if they are characters and satisfy char-equal (page
196), which ignores alphabetic case and certain other attributes of characters; if they are numbers
and have the same numerical value, even if they are of different types; or if they have components
that are all equalp. '

Objects that have components are equalp if they are of the same type and corresponding
components are equatp. This test is implemented in a recursive manner, and may fail to terminate
for circular structures. For conses, equalp is defined recursively as the two car's being equalp
and the two cdr’s being equalp.

Two arrays are equalp if and only if they have the same number of dimensions, the dimensions .
match, and the cofresponding components are equalp. The specializations need not match; for

example, a string and a general array that happer{s to contain the same characters will be equalp

(though definitely not equal).

Two symbols can be equalp only if they are eq, that is, the same identical object.
For example: ' '

(equalp 'a ’b) isfalse

(equalp 'a 'a) istrue

(equalp 3 3) istrue

(equalp 3 3.0) istrue

— (equaip 3.0 3.0) istrue
‘ (equalp #c(3 -4) #c(3 -4)) istrue
(equalp #c(3 -4.0) #c(3 -4)) istrue

(equalp (cons 'a 'b) (cons ’a ’c)) isfalse
(equalp (cons 'a ’b) (cons 'a ’b)) istrue
(equalp '(a . b) ’(a . b)) istrue

(progn (setq x (cons ’'a ’b)) (equalp x x)) istrue
(progn (setq x '(a . b)) (equalp x x}) istrue
(equalp #\A #\A) istrue

(equalp "Foo" "Foo") istrue

(equalp "Foo" (copy-seq "Foo")) istrue .

(equalp "FOO" "foo") istrue

6.4. Logical Operators

COMMON LISP provides three operators on Boolean values: and, or, and not. Of these, and and or arq(_:
also control structures, because their arguments are evaluated conditionally. not necessarily examines its;
single argument, and so is a simple function. : '

not x ' _ [Function]
not returns t if xis ni1, and otherwise returns ni1. It therefore inverts its argument, interpreted
as a Boolean value. ’

null (page 61) is the same as not; both functions are included for-the sake of clarity. As a matter
‘ of style, it is customary to use nu11 to check whether something is the empty list, and to use not to
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invert the sense of a logical value. .

and {form}* L - : [Macro]
(and forml form2 ... ) evaluates each form, one at a time, from left to right. If any form
evaluates to n1i 1, the value ni1 is immediately returned without evaluating the remaining forms. If
every form but the last evaluates to a non-n1i1 value, and returns whatever the last form returns.
Therefore in general and can be used both for logical operations, where ni1 stands for false and
non-n1i7 values stand for true, and as a conditional expression.
For example:
(if (and (>= n 0) _
(< n (length a-simple-vector))
(eq (elt a-simple-vector n) 'foo))
(princ "Foo!"))

The above expression prints “Foa!” if element n of a-simple-vector is the symbol foo,
provided also that n is indeed a valid index for a-simple-vector. Because and guarantees
left-to-right testing of its parts, e 1t is not called if n is out of range. (In this example writing
(and (>= n 0) ~
(< n (Tength a-simple-vector))
{eq (elt a-simple-vector n) ’'foo)
(princ "Fool")) .
would accomplish the same thing; the difference is purely stylistic.) Because of the guaranteed
left-to-right ordering, and is like the and then operator in ADA, or what in some PASCAL-like.

languages is called cand, rather than the and operator.

See also if (page 95) and when (page 95), which are sometimes stylistically more appropriate '
than and for conditional purposes. If it is necessary to test whether a predicate is true of all
elements of a list or vector (element 0 and element 1 and element 2 and...), then the function every
(page 205) may be useful.

- From the general definition, one can deduce that (and x) <=> x. Also, (and) evaluates to t,
which is an identity for this operation.

and can be defined in terms of cond (page 95) as follows:

(and x y z ... w) <=> (cond ((not x) nil)

{((not y) nil)
((not 2z) nil)

(t w))

or {form}* ' ' [Macro]
(or forml form2 ... ) evaluates each form, one at a time, from left to right. If any form other
than the last evaluates to something other than ni1, or immediately returns that non-ni1 value
without evaluating the remaining forms. If every form but the last evaluates to nil, or returns
whatever evaluation of the last of the forms returns. Therefore in general or can be used both for
logical operations, where ni1 stands -for false and non-ni1 values stand for true, and as a
conditional expression. Because of the guaranteed left-to-right ordering, or is like the or else
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‘ operator in ADA, or what in some PASCAL-like languages is called cor, rather than the or operator.
See also if (page 95) and un1 ess (page 95), which are sometimes stylistically more appropriate
than or for conditional purposes. If it is necessary to test whether a predicate is true one or more

elements of a list or vector (element { or element 1 or element 2 or...), then the function some
(page 205) may be useful.

From the general definition, one can deduce that (or x) <=> x. Also, (or) evaluates to nil,
which is the identity for this operation.

or can be defined in terms of cond (page 95) as follows:
(or xyz ... w) <=> (cond (x) (¥) (z) ... (t w))

\
|
e~
|
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Chapter 7

Control Structure

LisP provides a variety of special structures for organizing programs. Some have to do with flow of controlw
(control structures), while others control access to variables (environment structures). Most of these features
are implemented either as special forms or as macros (which typically expand into complex program
fragments involving special forms).

Function application is the primary method for construction of LiSP programs. Operations are written as
the application of a-function to its arguments. Usually, LISP programs are written as a large collection of small
functions, each of which implements a simple operation. These functions operate by calling one another, and
so larger operations are defined in terms of smaller ones. LISP. functions may call upon themselves
recursively, either directly or indirectly.

Lisp, while more applicative in style than statement-oriented, ncvertheless provides many operations that
produce side-effects, and consequently requires constructs for controlling the sequencing of side-effects. The
construct progn (page 90), which is roughly equivalent to an ALGOL begin-end block with all its semicolons,
executes a number of forms sequentially, discarding the values of all but the last. Many LISP control
constructs include sequencing implicitly, in which case they are said to provide an “implicit progn”. Other
sequencing constructs include prog1 (page 90) and prog2 (page 91).

For looping, COMMON LIsP provides the general iteration facility do (page 100), as well as a variety of
special-purpose iteration facilities for iferating or mapping over various data structures.

COMMON Lisp provides the simple one-way conditionals when and unless, the simple two-way
conditional if, and the more general multi-way conditionals such as cond and case. The choice of whxch

form to use in any particular situation is a matter of taste and style.

Constructs for performing non-local exits with various scoping disciplines are provided: block (page 98),
return (page99), return-from (page99), catch (page 114), and throw (page 116).

The multiple-value constructs provide an efficient way for a function to return more than one value; sce
values (page 110).

-1 -~
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7.1. Constants and Variables

7.1.1. Reference

quote object . ' [Special form]

(quote x) simply returns x. The object' is not evaluated, and may be any LISP object whatsoever.
This construct allows any LISP object to be written as a constant value in a program.
For example:

(setg a 43)
(1ist a (cons a 3)) => (43 (43 . 3))
(1ist (quote a) (quote (cons a 3)) => (a (cons a 3))

Since quote forms are so frequently useful but somewhat cumbersome to type, a standard
abbreviation is defined for them: any form preceded by a single quote ( * ) character is assumed to
have “(quote )” wrapped around it.
For example:

(setq x ‘(the magic quote hack))
is normally interpreted by read (page 310) to mean

(setq x (quote (the magic quote hack)))
See section 22.1.3.

function fh ' [Special form]

The value of function is always the functional interpretation of f; fi is interpreted as if it had
appeared in the functional position of a function invocation. In particular, if fi is a symbol, the
functional definition associated with that symbol is returned (see symbo1-function (page 75)).
If fnn is a lambda-expression, then a “lexical closure” is returned, that is, a function which when
invoked will execute the body of the lambda-expressmn in such a way as to observe the rules of

~ lexical scoping properly.

@
kd
i

For example:
(defun adder (x) (function (lambda (y) (+ x y))))
The result of (adder 3) is a function that will add 3 to its argument:
(setq add3 (adder 3))
{funcall add3 5) => : :
This works because funct ion creates a closure of the inner lambda- -expression that is able to refer
to the value 3 of the variable x even after control has returned from the function adder.

More generally, a lexical closure in effect retains the ability to refer to lexically visible bindings, not
just values. Consider this code:

(defun two-funs (x)

(1ist (function (lambda () x))
(function (lambda (y) (setq x y)))))

(setq funs (two-funs 6))

(funcall (car funs)) => 6

(funcall (cadr funs) 43) => 43

(funcall (car funs)) => 43

The function two~-funs returns a list of two functions, each of which refers to the binding of the
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.  variable x created on entry to the function two-funs when it was called with argument 6. This

binding has the value 6 initially, but setq can alter a binding. The lexical closure created for the
first lambda-expression does not “snapshot” the value 6 for x when the closure is created. The
second function can be used to alter the binding (to 43, in the example above), and this altered
value then becomes accessible to the first function.

In situations where a closure of a lambda-expression Vover the same sert of bindings may be
produced more than once, the various resulting closures may or may not be eq, at the discretion of
the implementation.
For example:
(Tet ((x 5) (funs *()))
(dotimes (j 10)
(push #’(lambda (z)
(if (null z) (setq x 0) (+ x z)))
funs))
funs)
The result of the above expression is a list of ten closures. Each logically requires only the binding
of x, and it is the same binding in each case, so the ten closures may or may not be the same
identical (eq) object. On the other hand, the result of the expression

For example:

(1et ((funs '()))
(dotimes (j 10)

<4 (let ((x 5))
. : (push (function (lambda (z)
(if (null z) (setq x 0) (+ x z))))

funs)))
funs)

is a list of ten closures, no tWo of which may be eq, because each closure is over a distinct binding
of x, and these bindings can be behaviorally distinguished because of the use of setq. The
question of distinguishable behavior is important; the result of the simpler expression

For example:

(let ((funs '()))
(dotimes (j 10)
(et ((x 5))
(push (function (lambda (z) (+ x z)))
funs))) '
funs) : ,
is a list of ten closures that may be pairwise eq. Although one might think that a different binding
of x is involved for each closure (which is indeed the case), the bindings cannot be distinguished
because their values are identical and immutable, there being no occurrence of setq on x. A

compiler would therefore be justified in transforming the expression to
For example: '

(let ((funs '()))
(dotimes (j 10)
(push (function (lambda (z) (+ 5 z)))

, funs))
‘ funs)
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where clearly the closures may be the same after all. The general rule, then, is that the
. implementation is free to have two distinct evaluations of the same function form produce
identical (eq) closures if it can prove that the two conceptually distinct resulting closures must in
fact be behaviorally identical with respect to invocation. This is merely a permitted optimization; a
4 perfectly valid implementation might simply cause every distinct evaluation of a function form
produce a new closure object not eq to any other.

Frequently a compiler can deduce that a closure in fact does not need to close over any variables
bindings. For example, in the code fragment
(mapcar (function (lambda (x) (+ x 2))) y)

the function (1ambda (x) (+ x 2)) contains no references to any outside entity. In this

important special case the same “closure” may be used as the value for all evaluations of the

function special form, and indeed this value need not be a closure object at all, but may be a-

simple compiled function containing no environment information. (This is simply a special case of
~ the foregoing discussion, but is included as a hint to implementors familiar with previous methods
L of implementing LISP. The distinction between closures and other kinds of function is somewhat

pointless, actually, as COMMON LIsP defines no particular representzition for closures and no way to

distinguish between closures and non-closure functions. All that matters is that the rules of lexical

scoping be obeyed.) ‘

Since function forms are so frequently useful (for passing.functions as arguments to other
functions, or returning functions as results) but somewhat cumbersome to type, a standard
abbreviation is defined for them: any form preceded by a sharp sign and then a single quote ( #° )
is assumed to have “(function )” wrapped around it.
For example:
(remove-if #'numberp (1 a b 3))

is normally interpreted by read (page 310) to mean

’ ~(remove-if (function numberp) ‘(1 a b 3))

" See section 22.1.4.

symbol-value symbol . o [Function]
symbol-value returns the current value of the dynamic (special) variable named by symbol. An
error occurs if the symbol has no value; see boundp (page 75) and makunbound (page 77). Note
that constant symbols are really variables that cannot be changed, and so symbo1-value may be
usedl to get the value of a named constant. In particular, symbo1-value of a keyword will return
that keyword, |

symbo1-value cannot access the value of a lexical variable.

. This function is particularly useful for implementing interpreters for languages embedded in Lisp.
" The corresponding assignment primitive is set (page 76); alternatively, symbo1-value may be
- used with setf (page 78).
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symbol-

boundp

function symbol ' [Function]
symbol-function returns the current global function definition named by symbol. An error is
signalled if the symbol has no function definition; see fboundp (page 75). Note that the
definition may be a function, or may be an object representing a special form or macro. In the
latter case, however, it is an error to attempt to invoke the object as a function. If it is desired tc
process macros, special forms, and functions equally well, as when writing an interpreter, it is best
to test the symbol with macro-function (page 118) and special -form-p (page 75) first,
and then to invoke the functional value only if these two tests both yield false.

This function is particularly useful for implementing interpreters for languages embedded in LiSP.

symbol-function cannot access the value of a lexical function name produced by flet (pagé
93) or 1abels (page 93); it can access only the global function value.

The global function definition of a symbol may be altered by using setf (page 78) with
symbol-function. Performing this operation causes the symbol to have only the specified -
definition as its global function definition; any previous definition, whether as a macro or as a
function, is lost. It is an error to attempt to redefine the name of a special form (see Table 5-1).

symbol [Function]
boundp is true if the dynamic (special) variable named by symbol has a value; otherwise, it returns
nil. : '

See also set (page 76) and makunbound (page 77).

fboundp symbol [Function]

fboundp is is true if the symbol has a global function definition. Note that fbound p is true when
the symbol names a spccial form or macro. macro-function (page 118) and
special-form-p may be used to test for these cases.

See also symbo1-function (page75)and fmakunbound (page 77).

special-form-p symbol [Function) 4

The function special-form-p takes a symbol. If the symbol globally names a special form
(example: quote (page 72)), then a non-nil value is returned, typically a function of
implementation-dependent nature that can be used to intefpret a special form; otherwise ni1l is
returned. :

It is possible for both special-form-p and macro-function (page 118) to be true of a
symbol. This is possible because an implementation is permitted to implement any macro also as a
special form for speed. On the other hand, the macro definition must be available for use by
programs that understand only the standard special forms listed in Table 5-1.
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7.1.2. Assignment

setq {var form}* [Special form]
. The special form (setq var!/ forml var2 form2 ...} is the “simple variable assignment

" statement” of Lisp. First forml is evaluated and the result is stored in the variable var/, then form2

is evaluated and the result stored in var2, and so forth. The variables are represented as symbols, of

course, and are interpreted as referring to static or dynamic instances according to the usual rules,

so setq may be used for assignment of both lexical and special variables. setq returns the last

‘jé value assigned, that is, the result of the evaluation of"its last argument. As a boundary case, the
¢ form (setq) is legal and returns ni1. " There must be an even number of argument forms.
&

For example:

(setq x (+ 3 2 1) y (cons X nil))
¢« x issetto 6, y is set to (6), and the setq returns (6). Note that the first assignment was
- performed before the second form was evaluated, allowing that form to use the new value of x.

" See also the description of setf (page 78), which is the “general assignment statement”, capable
of assigning to variables, array elements, and other locations.

psetq {var form}* [Macro)
A psetq form is just like a setq form, except that the assignments happen in parallel; first all of
the forms are evaluated, and then the variables are set to the resulting values. The value of the

- psetqformisnil.

~ For example:
(setq a 1)
(setq b 2)
(psetq a b b a)
a => 2
. b => 1
‘In this example, the values of a and b are exchanged by using parallel assignment. (If several
“variables are to be assigned in parallel in the context of a loop, the do (page 100) construct may be

appropriate.)

See also psetf (page 80), which is the “general parallel assignment statement”, capable of '
- assigning to variables, array elements, and other locations.

s e SN

set symbol value ‘ , [Function]
. set allows alteration of the value of a dynamic (special) variable. set causes the dynamic variable ‘
named by symbol to take on value as its value. Only the value of the current dynamic binding is
. altered; if there are no bindings in effect, the most global value is altered.
" For example:
(set (if (eq a b) 'c 'd) ‘foo)
wxll either set ¢ to foo orset d to f 00, depending on the outcome of the test (eq a b).

set retums value as its result.
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set cannot alter the value of a local (lexically bound) variable. The special form setq (page 76) is
usually used for altering the values of variables (lexical or dynamic) in programs. set is-
particularly useful for implementing interpreters for languages embedded in LISP. See also progv
(page 93), a construct that performs binding rather than assignment of dynamic variables.

makunbound symbol . [Function]
fmakunbound symbol ' [Function]
makunbound causes the dynamic (special) variable named by symbol to become unbound (have no
value). fmakunbound does the analogous thing for the global function definition named by
symbol.
For example:
(setq a 1)
a =1
(makunbound ’'a)
a => causes an error
(defun foo (x) (+ x 1))
(foo 4) => 5
(fmakunbound 'foo)
(foo 4) => causes an error

Both functions return symbol as the result value.

7.2. Generalized Variables

In LISP, a variable can remember one piece of data, a LISP object. The main operations on a variabie are to
recover that piece of data, and to alter the variable to remember a new object; these operations are often
called access and update operations. The concept of variables named by symbols can be generalized to any
storage location that can remember one piece of data, no matter how that location is named. Examples of
such storage locations are the car and cdr of a cons, elements of an array, and components of a structure.

For each kind of generalized variable, there are typically two functions that implement the conceptual
access and update operations. For a variable, merely mentioning the name of the variable accesses it, while
the setq (page 76) special form can be used to update it. The function car (page 215) accesses the car of a
cons, and the function rp1 aca (page 224) updates it. The function symbo1-value (page 74) accesses the
dynamic value of a variable named by a given symbol, and the function set (page 76) updates it.

Rather than thinking about two distinct functions that respectively access and update a storage location
somehow deduced from their arguments, we can instead simply think of a call to the access function with
given arguments as a name for the storage location. Thus, just as x may be considered a name for a storage
location (a variable), so (car x) is a name for the car of some cons (which is in turn named by x). Now,
rather than havingto remember two functions for each kind of generalized variable (having to remember, for
example, that rp1aca corresponds to car), we adopt a uniform syntax for updating storage locations named
in this way, using the setf macro. This is analogous to the way we use the setq special form to convert the
name of a variable (which is also a form that accesses it) into a form that updates.it. The uniformity of this
approach may be seen from the following table:
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' gcess ﬁmcuon Update function Update using setf

(setq x newvalue) (setf x newvalue)
(car‘ X) (rplaca x newvalue) (setf (car x) newvalue)
(symbol-value x) (set x newvalue) (setf (symbol-value x) newvalue)

setf is actually a macro that examines an access form and produces a call to the corresponding update
function. '

Given the existence of setf in COMMON LISP, it is not necessary to have setq, rplaca, and set as well;
théy are redundant. They are retained because of their historical importance in: LiSP. However, most other
update functions (such as putprop, the update function for get (page 134)) have been eliminated in the
expectation that se tf be uniformly used in their place.

setf {place newvalue}* - [Macro}
(setf place newvalue) takes a form place that when evaluated accesses a data object in some
_location, and “inverts” it to produce a corresponding form to update the location. A call to the
¥ setf macro therefore expands into an update form that stores the result of evaluating the form .
newvalue into the place referred to by the access-form.

If more than one place-newvalue pair is specified, the pairs:are processed sequentially:

(setf placel newvaluel
place2 newvalue?)

placen newvaluen)

is precisely equivalentto

(progn (setf p]dcel newvaluel )
(setf place? newvalue)

(setf placen newvaluen))
For consistency, it is legal to write ( sétf ), which simply returns ni 1.

The form place may be any one of the following:

o The name of a variable (either lexical or dynamic).

o A function call form whose first element is the name of any one of the following

functions:
car (page 215) caaaar (page2l6) cadddr : (page 216)
cdr (page 215) cdaaar . (page216) cddddr (page 216)
caar  (page2l6) cadaar (page2l6) first (page 218)
cdar  (page2l6) cddaar (page2l6) second (page 218)
, cadr  (page2l6) caadar (page2l6) third (page 218)
% cddr  (page2l6) cdadar (page2l6). fourth (page 218)
) caaar (page216) caddar (page2l6) fifth (page 218)
cdaar (page2l6) cdddar (page2l6) sixth (page 218)
cadar (page2l6) caaadr (page2l6) seventh (page 218)
cddar (page2l6) cdaadr (page2l6) eighth (page 218)
caadr (page2l6) cadadr (page2l6) ninth (page 218)

cdadr (page2l6) cddadr (page216) .tenth (page 218)
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caddr (page2l6) caaddr (page2l6) rest (page 219)
cdddr (page2l6) cdaddr (page216) fill-pointer (page 245)
aref  (page240) getf (page 135) symbol-plist (page 135)
get (page 134) gethash (page235) symbol-value  (page74)
svref (page242) nth  (page218) symbol-function (page75)
elt (page 203) documentation (page 362)

» A function call form whose first element is the name of a selector function constructed
by defstruct (page255). ) '

e A function call form whose first element is the name of any one of the following
functions, provided that the new value is of the specified type so that it can be used to
replace the specified “location” (which is in each of these cases not really a truly

generalized variable):
Functionname @~ Required type
char . (page 247) string-char
schar {page 247) string-char
bit (page 243) bit

shit (page 243) bit

subseq  (page203) sequence

In the case of subseq, the replacement value must be a sequence whose elements may
be contained by the sequence argument to subseq. (Note that this is not so stringent
as to require that the replacement value be a sequence of the same type as the sequence
of which the subsequence is specified.) If the length of the replacement value does not
equal the length of the subsequence to be replaced, then the shorter length determines
the number of elements to be stored, as for the function replace (pags207). .

e A function call form whose first element is the name of any one of the following
functions, provided that the specified argument to that function is in turn a place form;

in this case the new place has stored back into it the result of applying the specified”

“update” function (which is in each of these cases not a true update function):

Function name Argument that is a plg date function use

char-bit  (page 199) First set-char-bit (page 200)
1db - (page 185) Second dpb (page 186)
mask-field (page185) Second . deposit-field (page 186)

e A the (page 131) type declaration form, in which case the declaration is transferred to
the newvalue form, and the resulting setf form is analyzed. For example,
(setf (the integer (cadr-x)) (+ y 3))
is processed as if it were
(setf (cadr x) (the integer (+ y 3)))

e A call to apply where the first argument form is of the form #’name, that is,
(function name), where name is the name of a function, calls to which are
recognized as places by setf. Suppose that the use of setf with app1y looks like
this:

(setf (apply #'name xI x2 ... xn rest) x0)

79
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The setf method for the function name must be such that

(setf (name 2zl 22 ... zm) z20)
expands into a store form

(storefn zi, zi, ... zi, zm)
That is, it must expand into a function call such that all arguments but the last may be
any permutation or subset of the new value z0 and the arguments of the access form,
but the last argument of the storing call must be the same as the last argument of the
access call. See define-setf-method (page 87) for more details on accessing and
storing forms.

Given this, the setf-of-app1y form shown above expands into

(apply #'storefn Xi, Xiy ... Xip rest)
As dn example, suppose that the variable indexes contains a list of subscripts for a
multi-dimensional array foo whose rank is not known until run time. One may access
the indicated element of the array by writing

(apply #’aref foo indexes)
and éne may alter the value of the indicated element to have the value of newvalue by
writing

(setf (apply #'aref foo indexes) newvalue)

e A macro call in which case setf expands the macro call and then analyzes the
resulting form.

e Any form for which a defsetf (page 84) or define-setf-method (page
87) declaration has been made.

setf carefully arraﬁges to preserve the usual left-to-right order in which the various subforms are
evaluated. On the other hand, the exact expansion for any particular form is not guaranteed and
may even be implementation-dependent; all that is guaranteed is that the expansion of a

setf- form will be an update form that works for that particular implementation, and that the

leﬁ-to-nght evaluation of subforms is preserved.

The ultimate result of evaluating a setf form is the value of newvalue. (Therefore (setf (car
x) y) does not expand into precisely (rplaca x y), butinto something more like
(Tet ((G1 x) (G2 y)) (rplaca Gl G2) G2)

the precise expansion being implementation-dependent.)

The user can define new se tf expansions by using defsetf (page 84).

psetf {place newvalue}"‘ ' ' [Macro]

psetf is like setf except that if more than one place-newvalue pair is specified then the
assignments of new values to places are done in parallel. More precisely, all subforms that are to be
evaluated are evaluated from left to right; after all evaluations have been performed, all of the
assignments are performed in an unpredictable order. (The unpredictability matters only if more
than one place form refers to the same place.)

psetf alwaysreturnsnil.

&
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shiftf {place}™ newvalue ' [Macro
Each place form may be any form acceptable as a generalized variable to setf (page 78). In the
form (shiftf placel place2 ... placen newvalue), the values in placel through placen are

accessed and saved, and newvalue is evaluated, for a total of n+1 values in all. Values 2 through
n+1 are then stored into placel through placen, and value 1 (the original value of placel) is
returned. It is as if all the places form a shift register; the newvalue is shifted in from the right, all
values shift over to the left one place, and the value shifted out of placel is returned.

For example:
(setgq x (1ist 'a ’b ’c)) => (a b c)

(shiftf (cadr x) 'z) => b
andnow x => (a z c)

(shiftf (cadr x) (cddr x) 'q) => z
andnow x => (a (c) . q)

The effect of (shiftf placel place2 ... placen newvalue) is roughly equivalent to

(let ((varl placel)
(var2 place?)

i;a.rn placen))
(setf placel var2)
- (setf place? var3)

(setf placen newvalue)
varl)

except that the latter would evaluate any subforms of each place twice, while shiftf takes care to
evaluate them only once.

For example:
(setq n 0)
(setg x '(a b c d)) :
(shiftf (nth (setq n (+ n 1)) x) ’'z) => b
andnow x => (a z ¢ d)
but
(setq n 0) ~
(setg x *(a b ¢ d))
(progl (nth (setq n (+ n 1)) x)
: (setf (nth (setq n (+ n 1)) x) 'z)) =>b
andnow x => (a b z d)

' &
Moreover, for certain place forms shiftf may be significantly more efficient than the proéfgl

version.
Rationale: shiftf and rotatef (below) have been included in CommON Lisp as generalizations of
two-argument versions formerly called swapf and exchf. The two-argument versions have been found to be
very useful, but the names were easily confused. The generalization to many argument forms and the change of
names were both inspired by the work of Suzuki [18}, which indicates that use of these primitives can make
certain complex pointer-manipulation programs clearer and easier to prove correct.



82 _ COMMON LISP REFERENCE MANUAL

rotatef {place}* ‘ _ ‘ [Macro]
‘Each place form may be any form acceptable as a generalized variable to setf (page 78). In the
form (rotatef placel place2 ... placen), the values in placel through placen are accessed

and saved. Values 2 through n and value 1 are then stored into placel through placen. It is as if all
the places form an end-around shift register that is rotated one place to the left, with the value of
placel being shifted around the end to placen. Note that (rotatef placel place2) exchanges
the contents of place and place2,

The effect of (rotatef placel place2 ... placen newvalue) is roughly equivalent to

¢ (psetf placel place2
place2 place3 .

placen placel) v
except that the latter would evaluate any subforms of each place twice, while rotatef takes care to
evaluate them only once. Moreover, for certain place forms rotatef may be significantly more
efficient. '

rotatef alwaysreturnsnil.

Other macros that manipulate generalized variables include getf (page 135), remf (page 136), incf
(page 165), decf (page 165), push (page 221), pop (page 222), as sert (page 357), ctypecase  (page
359), and ccase (page 359).

Macros that manipulate generalized variables must guarantee the “obvious” semantics: subforms of

generalized-variable references are evaluated exactly as many times as they appear in the source program, and .

they are evaluated in exactly the same order as they appear in the source program, .

In generalized-variable references such as shiftf, incf, push, and setf of 1db, the generalized
variables are both read and written in the same reference. Preserving the source-program order of evaluation
and the number of evaluations is particularly important.

As an example of these semantic rules, in the generalized-variable reference (setf reference value) the
value tog_be stored must be evaluated afier all the subforms of the reference since it appears to the right of

them.

The expansion of these macros must consist of code that follows these rules or has the same effect as such

code. This is accomplished by introducing temporary variables bound to the subforms of the reference. As

an optimization in the implementation, temporary variables may be eliminated whenever it can be proven
that this has no effect on the semantics of the program. For example, a constant need never be saved in a
temporary variable. A variable, or any form that does not have side-effects, need not be saved in a temporary
variable if it can be proven that its value will not change within the scope of the generalized-variable
referénce. ‘

COMMON LISP provides built-in facilities to take care of these semantic complications and optimizations.




CHAPTER 7: CONTROL STRUCTURE ' 83

Since the required semantics can be guaranteed by these ‘facilities, the user does not have to worry about
writing correct code for them, especially in complex cases. (Even experts can become confused and make
mistakes while writing this sort of code:)

Another reason for providing these built-in functions is that the optimizations that are appropriate will vary
from implementation to implementation. In some implementations most of the optimization is performed by
the compiler, while in others a simpler compiler is used and most of the optimization is performed in the
macros. The cost of binding a temporary variable relative to the cost of other Lisp operations may differ
greatly between one implementation and another, and some implementations may find it best never to
remove temporary variables except in the simplest cases.

A good example of the issues involved can be seen in the following generalized-variable reference:
(incf (1db byte-field variable))
This ought to expand into something like
(setq variable
(dpb (1+ (1db byte-field varijable))
byte-field
variable))
In this example expansion we have ignored the further complexity of returning the correct value, which is the
incremented byte, not the new value of variable. Note that the variable byte-field is evaluated twice,
and the variable variable is referred to three times: once as the location in which to store a value, and

twice during the computation of that value.

Now consider this expression:
(incf (1db (aref byte-fields (incf i))
(aref (determine-words-array) i)))
It ought to expand into something like this:
(Tlet ((templ (aref byte-fields (incf i)))
(temp2 (determine-words-array)))
(setf (aref temp2 i)
(dpb (1+ (1db templ (aref temp2 1)))
temp1l
A (aref temp2 1)))) ,
Again we have ignored the complexity of returning the correct value. What is important here is that the
expressions (incf i) and (determine-words-array) must not be duplicated, because each may haye
a side effect or be affected by side effects. :
H

The CoMMON LisP facilities provided to deal with these semantic issues include:

o Built-in macros such as setf and push that follow the semantic rules.

e The define-modify-macro macro, which allows new géneralized-variable manipulating
macros (of a certain restricted kind) to be defined easily. It takes care of the semantic rules
automaticaily.

e The defsetf macro, which allows new types of generalized-variable references to be defined
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easily. It takes care of the semantic rules automatically. : I

e The define-setf-method macro and the get-setf-method function, which provide
access to the internal mechanisms when it is necessary to define a complicated new type of
generalized-variable reference or generalized-variable-manipulating macro.

define-modify-macro name lambda-list function [doc-string] [Macro]
Define a read-modify-write macro named name. An example of such a macro is incf (page 165).
The first subform of the macro will be a generalized-variable reference. The function is literally
the function to apply to the old contents of the generalized-variable to get the new contents; it is not
evaluated. lambda-list describes the remaining arguments for the function; these arguments come
from the remaining subforms of the macro after the generaﬁzed-variable reference. lambda-list may
contain &optional and &rest markers. (The &key marker is not permitted here; &rest
suffices for the purposes of def ine-modify-macro.) doc-string is documentation for the macro
name being defined. )

The expansion of a define-modify-macro is equivalent to the following, except that it 4
generates code that follows the semantic rules outlined above.

(defmacro name (reference . lambda-list)
| doc-string
‘(setf ,reference
(function ,reference ,argl ,arg2 ...)))-
where argl, arg2, ..., are the parameters appearing in lambda-list; appropriate provision is made for

a &rest parameter.

As an exampie, incf (page 165) could have been defined by:
(define-modify-macro incf (&optional (delta 1)) +)

An example of a possibly useful macro that is not predefined in COMMON LISP is:
(define-modify-macro unionf (other-set &rest keywords) un 1on)
defsetf access-fn {update-fn [doc-string] |
lambda-list (store-variable) {declaration | doc-string}* {form}*} [Macro}
This defines how to setf a generalized-variable reference of the form (access-fn ...). The
value of a generalized-variable reference can always be obtained simply by evaluatmg it, so
access-fn should be the name of a function or a macro.

The user of defsetf provides a descn'ption of how to store into the generalized-variable reference
and return the value that was stored (because setf is defined to return this value). The
implementation of defsetf takes care of ensuring that subforms of the reference are evaluated
exactly once and in the proper left-to-rxght order. In order to do this, defsetf requires that
access-fn be a function or a macro that evaluates its arguments, behaving like a function.
Furthermore, a setf of a call on access-fn will also evaluate all of access-fi’s arguments; it cannot
treat any of them specially. This means that def'setf cannot be used to describe how to store into
a generalized variable that is a byte, such as (1db field reference). To handle situations
that do not fit the restrictions imposed by defsetf, use define-setf-method (page 87),

S o
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which gives the user additional control at the cost of increased complexity.

A defsetf declaration may take one of two forms. The simple form of defsetf is

(defsetf access-fn update-fn [doc-string])
The update-fn must name a function (or macro) that takes one more argument than access-fi does.
When setf is given a place that is a call on access-fh, it expands into a call on update-fn that is
given all the arguments to access-fi and also, as its last argument, the new value (which must be
returned by update-fn as its value). For example, the effect of

(defsetf symbol-value set)
is built into the COMMON LISP system. This causes the form (setf (symbol-value foo)
fu) to expand into (set -foo fu). ‘ '

Note that
(defsetf car rplaca)

would be incorrect, because rplaca (page 224) does not return its last argument.

The complex form of defsetf looks like _

(defsetf access-fn lambda-list (store-variable) . body)
and resembles defmacro (page 118). The body must compute the expansion of a setf of a call
on access-fn.

lambda-list describes the arguments of access-fn. &optional, &rest, and &key markers are
permitted in lambda-list. Optional arguments may have defaults and “supplied-p” flags. The

store-variable describes the value to be stored into the generalized-variable reference.

Rationale: The store-variable is enclosed in parentheses to provide for a possible extension to multiple store
variables, receiving multiple values from the second subform of setf.

The body forms can be written as if the variables in the lambda-list were bound to subforms of the
call on access-fn and the store-variable were bound to the second subform of setf. However, this
is not actually the case. During the evaluation of the body forms, these variables are bound to
names-of temporary variables, generated as if by gensym (page 137) or gentemp (page 138), that
will be bound by the expansion of setf to the values of those subforms. This permits the body
forms to be written without regard for order-of-evaluation issues. defsetf arranges for the
temporary variables to be optimized out of the final result in cases where that is possible. In other
words, an attempt is made by defsetf to generate the best code possible in a particular

implementation. -~ : §

Note that the code generated by the body forms must include provision for returning the confecf
value (the value of store-variable). This is left to the body forms rather than being handled by
defsetf because in many cases this value can be returned at no extra cost, by calling a function
that simultaneously stores into the generalized variable and returns the correct value.

An example of the use of the complex form of defsetf:
(defsetf subseq (sequence start &optional end) (new-sequence)
*(progn (replace ,sequence ,new-sequence .
:startl ,start :end?l ,end)
»new-sequence))
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‘The underlying theory by which setf and related macros arrange to conform to the semantic rules given
above is that from any gencralized-variable reference one may derive its “setf method”, which describes

how to store into that reference and which subforms of it are evaluated.

Compatibility note: To avoid confusion, it should be noted that the use of the word “method” here in connecuon with
setf has nothing to do with its use in Lisp Machine Lisp in oonnecnon with message- passmg and the Lisp Machine Lisp
“flavor system”.

Given knowledge of the subforms of the reference, it is possible to avoid evaluating them multiple times or in
the wrong order. A setf method for a given access form can be expressed as five values:

o A list of temporary variables.

o A list of value forms (subforms of the given form) to whose values the temporary variables are to

be bound.
j
o A second list of temporary variables, called store variables.

eA storing form.

e An accessing form.

The temporary variables will be bound to the values of the value forms asif by Tet* (page 92); that is, the
value forms will be evaluated in the ordcr gwen and may refer to the valucs of earlier value forms by using
the corresponding vanables

The store variables are to be bound to the values of the newvalue form, that is, the values to be stored into
the generalized vanable In almost all cases only a single value is to be stored and there is only one store
variable.

The storing form and the accessing form may contain references to the the temporary variables (and also, in
the case of the storing form, to the store variables). The accessing form returns the value of the generalized
variable. The storing form modifies the value of the generalized variable and guarantees to return the values
of the store variables as its values; these are the correct values for setf to return. (Again, in most cases there
is a single store variable and thus a single value to be returned.) The value returned by the accessing form is
(of course) affected by execution of the storing form, but otherwise either of these forms may be evaluated
any number of times, and therefore should be free of side effects (other than the storing action of the storing
form).

The temporary variables and the store variables are generated names, as if by gensym (page 137) or
gentemp (page 138), so that there is never any problem of name clashes among them, or between them and
other variables in the program. This is necessary to make the special forms that do more than one setf in
parallei work properly; these are psetf, shiftf, and rotatef. Computation of the setf method must
always create new variable names; it may not return the same ones every time.

Somé examples of setf methods for particular forms:

o For a variable x:
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e For (:car exp):

(g0002)

(exp)

(g0003)

(progn (rplaca g0002 g0003) g0003)
‘(car g0002)

e For (subseq seq s e):

(90004 g0005 g0006)

(seq s e)

(g0007) .

(progn (replace g0004 g0007 :startl g0005 :endl1 g0006)
g0007) ‘

(subseq g0004 g0005 g0006)

define-setf-method access-fn lambda-list {declaration | doc-string}* {form}* [Macro}

This defines how to se tf a gencralized-variable reference that is of the form (access-fin. . . ). The
value of a generalized-variable reference can always be obtained simply by evaluating it, so
access-fn should be the name of a function or a macro.

The lambda-list describes the subforms of the generalized-variable reference, as with def macro
(page 118). The result of evaluating the forms in the body must be five values representing the
setf method, as described above. Note that define-setf-method differs from the complex
form of defsetf in that while the body is being executed the variables in lambda-list are bound to
parts of the generalized-variable reference, not to temporary variables that will be bound to the
values of such parts. In addition, define-setf-method does not have defsetf’s restriction
that access-fn must be a function or a function-like macro; an arbitrary defmacro destructuring
pattern is permitted in lambda-list.

By definition there are no good small examples of def ine-setf-me thod, because the easy cases
can all be handled by defsetf. A typical use is to define the setf method for 1db (page 185):
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::; SETF method for the form (LDB bytespec int).
;33 Recall that the int form must itself be suitable for SETF.
(define-setf-method 1db (bytespec int)
(multiple-value-bind (temps vals stores
store-form access-form)

(get-setf-method int) ;Get SETF method for int.
(let ((btemp (gensym)) ;Temp var for byte specifier.
(store (gensym)) . ;Temp var for byte to store.

(stemp (first stores))) ;Temp var for int to store.
Return the SETF method for LDB as five values.

o
s

(values ‘'(,btemp ,@temps ,stemp) . ;Temporary var1ab1es
‘(.bytespec ' ;Value forms.
,@vals
(dpb ,store ,btemp ,access-form))
(1ist store) ;Store variables.

‘(progn ,store-form ,store) ;Storing form.
‘(1db ,btemp ,access-form) ;Accessing form.

))))

get-setf-method form ' [Functzon]
get-setf-method returns ﬁve values, the se tf method for form, which must be a generalized-
variable reference. get-setf-method takes care of error-checking and macro expansion and
guarantees to return exactly one store-variable. ’

As an example,an extremely simplified version of setf, allowing no more and no fewer than two
subforms, containing no optimization to remove unnecessary variables, and not allowing stormg of

multiple values, could be defined by:

(defmacro setf (reference value)
(multiple-value-bind (vars vals stores store form access-form)
(get-setf-method reference)

(dec1are (ignored access-form))

‘(let* ,(mapcar #'list
(append vars stores)
(append vals (11st value)))

store form)))

get-setf-method-multiple-value form ' ’ [Function]

© get-setf-method-muitiple-vatlue returns five values, t.he setf method for form, which

must be a generalized-variable reference. This is the same as get-setf-method except that it

does not check the number of store-variables; use this in cases-that allow storing multiple values .

~ into a generalized variable. There are no such cases in standard COMMON LISP, but this function is
provided to allow for possible extensions.
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7.3. Function Invocation

The most primitive form for function invocation in LISP of course has no name; any list that has no other
interpretation as a macro call or spccial form is taken to be a function call. Other constructs are provided for
less common but nevertheless frequently useful situations.

apply function arg &rest more-args [Function]

This applies fiunction to a list of arguments. finction may be a compiled-code object, or a lambda-
expression, or a symbol; in the latter case the global functional value of that symbol is used (but it.is
illegal for the symbol to be the name of a macro or special form). The arguments for the function
consist of the last argument to app1y appended to the end of a list of all the other arguments to .
apply but the finction itself; it is as if all the arguments to app1y except the finction were given
to 1ist* (page 219) to create the argument list. '
For example:

(setq f '+) (apply f '(1 2)) => 3

(setq f #'-) (apply f "(1 2)) => -1

(apply #'max 3 5 (2 7 3)) => 7

(apply 'cons '((+ 2 3) 4)) =

: ((+23).4) not (5. 4)

(apply #'+ *()) => 0 :
Note that if the function takes keyword arguments, the keywords as well as the corresponding
values must appear in the argument list:

(apply #'(lambda (&key a b) (list a b)) '(:b 3)) => (nil 3)
This can be very useful in conjunction with the &allow-other -ke ys feature:

(defun foo (size &rest keys &key double &allow-other-keys)
(let ((v (apply #'make-array size :allow-other-keys t keys)))
(if double (concatenate v v) v)))

(foo 4 :initial-contents '(a b ¢ d) :double t)
=> #(abcdabcd)

funcall fi &rest argumenis . : [Function]
(funcall fi al a2 ...- an) applies the function f# to the arguments a/, a2, ..., an. fi may not
be a special form nor a macro; this would not be meaningful.
For example: é
(cons 1 2) => (1 . 2)
(setq cons (symbol-function '+))
(funcall cons 1 2) => 3

The difference between funcall and an ordinary function call is that the function is obtained by
ordinary LISP evaluation rather than by the special interpretation of the function position that

normally occurs.
Compatibility note: This corresponds roughly to the INTERLISP primitive app1y®.
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cali-arguments-Timit : [Constand

The value of call-arguments-Timit is a positive integer that is the upper exclusive bound on
the number of arguments that may be passed to a function. This bound depends on the
implementation, but will not be smaller than 50. (Implementors are enouraged to make this limit as
large as practicable without sacrificing performance.) The value of call-arguments-1imit
must be as least as great as that of lambda-parameters-1imit (page 54). See also
multiple-values-1imit (pagelll).

7.4. Simple Sequencing

progn} {form}* - _ [Special form]

- e

The progn construct takes a number of forms and evaluates them sequentially, in order, from left
to right. The values of all the forms but the last are discarded; whatever the last form returns is
returned by the progn form. One says that all the forms but the last are evaluated for effect,
because their execution is useful only for the side effects caused, but the last form is executed for -
value.

progn is the primitive control structure construct for “compound statements”; it is analogous to
begin-end blocks in ALGOL-like languages. Many LISP constructs are “implicit progn” forms, in
that as part of their syntax each allows many forms to be written that are to be evaluated
sequentially, discarding the results of all forms but the last, and returning the results of the last
form. ’

if the last form of the progn returns multiple values, then those multiple values are returned by the
progn form. If there are no forms for the progn, then the result is ni1. These rules generally
hold for implicit progn forms as well.

progl first {form}* [Macro]

prog1 is similar to progn, but it returns the value of its first form. All the argument forms are
executed sequentially; the value the first form produces is saved while all the others are executed,
and is then returned. '

prog1 is most commonly used to evaluate an expression with side effects, and return a value that
must be computed before the side effects happen.
For example: :
(progl (car x) (rplaca x "foo))
alters the car of x to be foo and returns the old car of x.

progl always returns a single value, even if the first form tries to return multiple values. A
consequence of this is that {prog1 x) and (progn x) may behave differently if x can produce
multiple values. See multipte-value-progl (page 112). A point of style: although prog1
can be used to force exactly a single value to be returned, it is conventional to use the function
values (page 110) for this purpose. ,
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prog2 first second {form}* : ' [Macro]
prog2 is similar to prog1, but it returns the value of its second form. All the argument forms are
executed sequentially; the value of the second form is saved while all the other forms are executed,
and is thent returned.

prog?2 is provided mostly for historical compatibility.
(prog2 abc ... z) <=> (progn a (progl bc ... z))
Occasionally it is desirable to perform one side effect, then a value-producing operation, then
another side effect; in such a peculiar case p rog?2 is fairly perspicuous.
For example:

(prog2 (open-a-file) (compute-on-file) (close-the-file))
; value is that of compute-on-file

prog2, like prog1, always returns a sihgle value, even if the second form tries to return multiple
values. A consequence of this is that (prog2 x y) and (progn x y) may behave differently if
y can produce multiple values.

7.5. Environment Manipulation

let ({var | (var value)}*) {declaration}* {form}* [Special form]
A let form can be used to execute a series of forms with specified variables bound to specified
values.

More precisely, the form

(let ((varl valuel) -
(var2 value2)

(varm valuem))
declarationl
declaration2

¢'1e.c.larationp
bodyl
body2

bodyn) ‘

first evaluates the expressions valuel, value2, and so on, in that order, saving the resulting value}.
Then all of the variables varj are bound to the corresponding values in parallel; each binding will b',_fe
a lexical binding unless there is a special declaration to the contrary. The expressions bodyk.are
then evaluated in order; the values of all but the last are discarded (that is, the body of a 1et form
is an implicit progn). The 1et form returns what evaluating bodyn produces (if the body is empty,
which is fairly useless, 1et returns ni1 as its value). The bindings of the variables have lexical
scope and indefinite extent. '

Instead of alist (varj valuejy one may write simply varj. In this case va}j is initialized to ni1. Asa
matter of style, it is recommended that varj be written only when that variable will be stored into
(such as by setq (page 76)) before its ﬁ;st use. Ifit is important that the initial value is ni1 rather
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than some undefined value, then it is clearer to write out (varj nil) (if-the initial value is
intended to mean “false™) or (varj ' () ) (if the initial value is intended to be an empty list).

Declarations may appear at the béginning of the body of a 1et. See declare (page 125).

let* ({var | (var value)}*) {declaration}* {form}* [Special form]
let* is similar to Tet (page 91), but the bindings of variables are performed sequentially rather
than in parallel. This allows the expression for the value of a variable to refer to variables
previously bound in the 1et* form. '

More precisely, the form:

(Tet* ((varl valuel)
(var2 value?)

 (varm valuem))
declarationl
declaration2

declarationp
bodyl
body2

bodyn) ‘
first evaluates the expression valuel, then binds the variabie varl to that value; then its evaluates
value2 and binds var2; and so on. The expressions bodyj are then evaluated in order; the values of .
all but the last are discarded (that is, the body of a Tet* form is an implicit progn). The Tet* .
 form returns the results of evaluating bodyn (if the body is empty, which is fairly useless, Tet*
returns ni1 as its value). The bindings of the variables have lexical scope and indefinite extent.

Instead of a list ( varj valuej) one may write simply varj. In this case varjis initialized toni1. Asa
matter of style, it is recommended that varj be written only when that variable will be stored into
(such as by setq (page 76)) before its first use. Ifit is important that the initial value is ni1 rather
than some undefined value, then it is clearer to write out (varji nil) (if the initial value is
intended to mean “false™) or { varj *()) (if the initial value is intended to be an empty list).

Declaration,s. may appear at the beginning of the body of a 1et*. See deciare (page 125).

.compiler-Tet ({var | (var value)}*) {form}* : [Special form]
~ When executed by the LISP interpreter, comp iTer-1let behaves exactly like Tet (page 91) with
~ all the variable bindings. implicitly declared special. When the compiler processes this form,

however, no.code is compiled for the bindings; instead; the processing of the body by the compiler

(including, in; particular; the expansion of any macro calls within the body):is: done with: the special
. variables bound to-the indicated: values. in the execution context of the compiler. This is primarily
" useful for communicction among complicated macros.

Declarations may not appear at. the:beginning of the body of a campiler-Tet.
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Rationale: - Because of the unorthodox handling by compﬂer-Tet of its variable bindings, it would be
complicated and confusing to permit declarations that apparently referred to the variables bound by
compiler-let. Disallowing declarations eliminates the problem.

progv symbols values {form}* [Special form]

progv is a special form that allows binding one or more dynamic variables whose names may be
determined at run time. The sequence of forms (an implicit progn) is evaluated with the dynamic
variables whose names are in the list symbols bound to corresponding values from the list values. (If
too few values are supplied, the remaining symbols are bound and then made to have no value; see
makunbound (page 77). If too many values are supplied, the excess values are ignored.) The
results of the progv form are those of the last form. The bindings of the dynamic variables are
undone on exit from thé progv form. The lists of symbols and values are computed quantiu'és;
this is what makes progv different from, for example, Tet (page 91), where the variable names
are stated explicitly in the program text. )

progv is particularly useful for writing interpreters for languages embedded in LISP; it prov1des a
handle on the mechanism for binding dynamic variables.

flet ({(name lambda-list {declaration | doc-string}* {form}*)}*) {form}* [Special form}

labels ({(name lambda-list {declaration | doc-string}* {form}*)}*) {form}* [Special form]
macrolet ({(name varlist {declaration | doc-string}* {form}*)}*) {form}* [Special form]

f1et may be used to define locally named functions. Within the body of the f1et form, function
names matching those defined by the f1et refer to the locally defined functions rather than to the
global function definitions of the same name. ‘

Any number of functions may be snnultaneously defined. Each definition is similar in format to a
defun (page 55) form: first a name, then a parameter list (which may contain &optional,
&rest, or & ey parameters), then optional declarations and documentation string, and finally a
body. :

The Tabe1s construct is identical in form to the f1et construct. It differs in that the scope of the

defined function names for f1et encompasses only the body, while for 1abels it encompasses
the function definitions themselves. That is, Tabels can be used to define mutually recursive -
functions, but f1et cannot. This distinction is useful. Using f1et one can locally redefine a
global function name, and the new definition can refer to the global definition; the same
construction using Tabe1s would not have that effect.
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(defun integer-power (n k) ;A highly "bummed" integer
(declare (integer n)) ; exponentiation routine.
(declare (type (integer 0 *) k))

(labels ((expt0 (x k a)
(declare (integer x a) (type (integer 0 *) k))
(cond ((zerop k) a)
((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a)))))
{exptl (x k a)
(declare (integer x a) (type (integer 0 *) k))
(cond ((evenp k) (exptl (* x x) (floor k 2) a))
(t (expt0 (* x x) (floor k 2) (* x a))))))
(expt0 n k 1)))

macrolet is similar in form to flet, but defines local macros, using the same format used by
defmacro (page 118) The names established by macrolet as names for macros are lexically
scoped.

" Macros often must be expanded at “compile time” (more generally, at a time before the program
itself is executed), and so the run-time values of variables are not available to macros defined by
- macrolet. The precise rule is that the macro-expansion functions defined by macrolet are
defined in the global environment; lexically scoped entities that would ordinarily be lexically
apparent are not visible within the expansion functions. However, lexcially scoped entities are
visible within the body of the macrolet form, and are visible to the code that is the expansion of a
" macro call. The following example should make this clear:
(defun foo (x flag)
(macrolet ((fudge (z2)
; The parameters x and f1ag are not accessible
; at this point; a reference to f1ag would be to
; the global variable of that name.
*(if flag (* .z ,z) ,z)))
; The parameters x and f1ag are accessible here.
(+ x
(fudge x) -
(fudge (+ x 1)))))
The body of the macrolet becomes
(+ x
(if flag (* x x) x))
(if flag (* (+ x 1) (+ x 1)) (+ x < 1)) ,
-+ after macro expansion. The occurrences of x and f1ag legitimately refer to the parameters of the
function foo, because those parameters are visible at the site of the macro call which produced the
* expansion.
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. 7.6. Conditionals

if lest then [else] , - : . [Special form]
The if special form corresponds to the if-then-else construct found in most algebraic programming
languages. First the form fest is evaluated. If the result is not ni1, then the form then is selected;
otherwise the form else is selected. Whichever form is selected is then evaluated, and if returns
whatever evaluation of the selected form returns.
(if test then else) <=> (cond (test then) (t else))
but if is considered more readable in some situations.

The else form may be omitted, in which case if the value of zestis ni1 then nothing is done and the
value of the if form is ni1. If the value of the if form is important in this situation, then the and
(page 68) construct may be stylistically preferable, depending on the context. If the value is not
important, but only the effect, then the when (page 95) construct may be stylistically preferable.

when test {form}* . [Macro]

(when test forml form2 ... ) first evaluates fest. If the result is ni1, then no form is
evaluated, and ni1l is returned. Otherwise the forms constitute an implicit progn, and so are
evaluated sequentially from left to right, and the value of the last one is returned.

(when p a b ¢) <=> (and p (progn a bc))

‘ (when p a b ¢) <=> (cond (p a b c))
‘ (when p a b c) <=> (if p (progn a b ¢) nil)

(when p a b ¢) <=> (unless (not p) a b c)
As a matter of style, when is normally used to conditionally produce some side effects, and the
value of the when-form is normally not used. If the value is relevant, then it may be stylistically
more appropriate to use and (page 68) or if (page 95).

unless fest {form}* ' . [Macro)
(unless test forml form2 ... ') first evaluates fest. If the result is not ni1, then the forms are
not evaluated, and ni1 is returned. Otherwise the forms constitute an implicit progn, and so are
evaluated sequentially from left to right, and the value of the last one is returned.

(unless p a b ¢) <=> (cond ((not p) a b ¢))
(uniess p a b ¢) <=> (if p nil (progn a b c))
(unless p a b ¢) <=> (when (not p) a b ¢)

As a matter of style, unless is normally used to conditionally produce some side effects, and the
value of the unless-form is normally not used. If the value is relevant, then it may be stylistically
more appropriate to use if (page 95).

cond {(rest {form}*)}* . : [Macro]
A cond form has a number (possibly zero) of clauses, which are lists of forms. Each clause consists
of a test followed by zero or more consequents.

‘-\ For example:
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(cond (test-1 consequent-1-1 consequent-1-2- ...)
(test-2) ;
(test-3 consequent-3-1 .. .)
) '
The first clause whose fesz evaluates to non-ni7 is selected; all other clauses are ignored, and the
consequents of the selected clause are evaluated in order (as an implicit progn).

More specifically, cond processes its clauses in order from left to right. For each clause, the zest is
evaluated. If the resultis ni1, cond advances to the next clause. Otherwise, the cdrof the clause is
treated as a list of forms, or consequents, which are evaluated in order from left to right, as an
implicit progn. After evaluating the consequents, cond returns without inspecting any remaining
clauses. The cond special form returns the results of evaluating the last of the selected
consequents; if there were no consequents in the selected clause, then the single (and necessarily
non-null) value of the fest is returned. If cond runs out of clauses (every test produced nil, and
therefore no clause was selected), the value of the cond formisnil.

If it is desired to select the last clause unconditionally if all others fail, the standard convention is to
use t for the test. As amatter of style, it is desirable to write a last clause “(t ni1)” if the value of

- the cond form is to be used for something. Similarly, it is in questionable taste to let the last clause

of a cond be a “singleton clause”; an explicit t should be provided. (Note moreover that (cond

(x)) may behave differently from (cond ... (t x)) if x might produce multiple
values; the former always returns a single value, while the latter returns whatever valucs x returns.
However, as a matter of style it is preferable to obtain this behavior by writing (cond ... (t

(values Xx))), using the values (page 110) function explicitly to indicate the discarding of

any excess values.)

For example:
(setq z (cond (a 'fooe) (b ‘'bar))) ; Possibly confusing.
(setq z (cond (a 'foo) (b 'bar) (t nil))) ;Better.
(cond (a b) (c'd) (e)) ; Possibly confusing.
(cond (a b) (¢ d) (t e)) ; Better.
(cond (a b) (c d) (t (values e)))" ; Better (if one value needed).
(cond (a b) (¢)) ; Possibly confusing.
(cond (a b) (t c)) 8 ; Better.
(if a b ¢c) : ' ; Also better.

A Lisp cond form may be compared to a continued if-then-elseif as found in many algebraic

5 programming languages:
{cond (p ...) : if p them ..
{qg ...) roughly else if g then ...
(r ...) corresponds else if 7 then ..
e e w ° v 0 e
t ...)) else ..
case keyform {({({key}*) | key} {form}*)}* ' [Macro]

case is a condition] that chooses one of its clauses to execute by comparing a value to various
constants, which are typically kéyword symbols, integers, or characters (but may be any objects). Its
form is as follows: ' ' '
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. (case keyform :
(keylist-1 consequent-1-1 consequent-1-2 . ..)

( keylist-2 consequent-2-1 ...)
| ‘ ( keylist-3 consequent-3-1 ...)
| ced)
‘ Structurally case is much like cond (page 95), and it behaves like cond in selecting one clause
and then executing all consequents of that clause. It differs in the mechanism of clause selection.

The first thing case does is to evaluate the form keyform to produce an object called the key object.
Then case considers each of the clauses in turn. If key is in the keylist (that is, is eq? to any item
in the keylisf) of a clause, the consequents of that clause are evaluated as an implicit progn, and
case returns what was returned by the last consequent (or ni1 if there are no consequents in that
clause). If no clause is safisfied, case returns nil,

The keys in the keylists are not evaluated; literal key values must appear in the keylists. It is an
error for the same key to appear in more than one clause; a consequence is that the order of the
clauses does not affect the behavior of the case construct.

Instead of a keylist, one may write one of the symbols t and otherwise. A clause with such a
symbol always succeeds, and must be the last clause (this is an exception to the order-independence
of clauses). See also ecase (page 359) and ccase (page 359), each of which provides an implicit

otherwise clause to signal an error if no clause is satisfied.

. Compatibility note: The Lisp Machine LisP caseq construct uses eq for the comparison. In Lisp Machine
‘-\ Lisp case therefore works for fixnums but not bignums. The MACLISP caseq construct simply prohibits the
use of bignums; indeed, it permits only fixnums and symbols as clause keys. In the interest of hiding the

fixnum-bignum distinction, and for general language consistency, case uses eq1 in COMMON Lisp.

If there is only one key for a clause, then that key may be written in place of a list of that key,
provided that no ambiguity results (the key should not be a cons or one of ni1 (which is confusable
-with (), a list of no keys), t, or otherwise).

typecase keyform {(twype {form}*)}* [Macro)
typecase is a conditional that chooses one of its clauses by examining the type of an object. Its
form is as follows:

(typecase keyform
(type-1. consequent-1-1 consequent-1-2 .. .)
(type-2 consequent-2-1 ...)
(type-3 consequent-3-1 ...)
ces) :

Structurally typecase is much like cond (page 95) or case (page 96), and it behaves like them
in selecting one clause and then executing all consequents of that clause. It differs in the
mechanism of clause selection.

The first thing typecase does is to evaluate the form keyform to produce an object called the key
object. Then typecase considers each of the clauses in turn. The fype that appears in each clause
is a type specifier; it is not evaluated, but it a literal type specifier. The first clause for which the key
‘\ is of that clause’s specified fype is selected, the consequents of this clause are evaluated as an
implicit progn, and typecase returns what was returned by the last consequent (or ni1 if there
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are no consequents in that clause). If no clause is satisfied, typecase returns nil.

As for case (page 96), the symbol t or otherwise may be written for type to indicate that the
clause should always be selected. See also etypecase (page 359) and ctypecase (page 359),
each of which provides an implicit otherwise clause to signal an error if no clause is satisfied.

It is permissible for more than one clause to specify a given type, particularly if one is a subtype of
another; the earliest applicable clause is chosen. Thus for typecase, unlike case (page 96), the
order of the clauses may affect the behavior of the constmct.

2 For example:

§ (typecase an-object
(string ...) ; This clause handles strings.
((array t) ...) A ; This clause handles general arrays.
((array bit) ...) : This clause handles bit arrays.
(array ...) ; This handles all other arrays.
({or 1ist number) ...) ; This handles lists and numbers.
(t ...)) : ; This handles all other objects.

A COMMON LIsp compiler may choose to issue a warning if a clause cannot be selected because it is
completely shadowed by earlier clauses. ‘

- 7.7. Blocks and Exits

block name {form}* : o [Special form]
The block construct executes each form from left to right, returning whatever is returned by the
last form. If, however, a return or-return-from form that specifies the same name is executed
during the execution of some form, then the results specified by the return or return-from are
immediately returned as the value of the b1ock construct, and execution proceeds as if the block
had terminated normally. In this b1ock differs from progn (page 90); the latter has nothing to
do with return.

The name is not evaluated; it must be a symbol. The scope of the name is lexical; only areturn or
return-from textually contained in some form can exit from the block. The extent of the name
is dynamic. Therefore it is only possible to exit from a given run-time incarnation of a block once, -
either normally or by explicit return.

The defun. (page 55) form implicitly puts a b1ock around the body of the function defined; the
block has the same name as the function. Therefore one may use return-from to return
prematurely from a function defined by de fun.

The lexical scoping of the block name is fully general, and has consequences that may be surprising
to users and implementors of other LISP systems. For example, the return-from in the following
. example actually does “work™ in COMMON LISP as one might expect:
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(block loser .
(catch ’stuff
(mapcar #' (1ambda (x) (if (numberp x)
(hairyfun x)
(return-from loser nil)))
items)))

Depending on the situation, a return in COMMON LISP may not be simple. A return can break
up catchers if necessary to get to the block in question. It is possible for a “closure” created by
function for a lambda-expression to refer to a block name as long as the name is lexically

apparent.
return-from name [resuli] ' [Special formj .
return [resuli] [Macro]

return-from is used to return from a biock or from such constructs as do and prog that
implicitly establish a block. The name is not evaluated, and must be a symbol. A block
construct with the same name must lexically enclose the occurrence of return-from; whatever

- the evaluation of resu/t produces is immediately returned from the block. (If the result form is
omitted, it defaults 1o ni1. As a matter of style, this form ought to be used to indicate that the
particular value returned doesn’t matter.)

The return-from form itself never returns, and cannot have a value; it causcs results to be
returned from a block construct. If the evaluation of result produces mumple values, those
multiple values are returned by the construct exited.

(return form) is identical in meaning to (return-from nil form); it returns from a block
named ni1. Blocks established implicitly by iteration constructs such as do are named ni1, so that
return will exit properly from such a construct.

7.8. Iteration

COMMON LisP provides a number of iteration constructs. The 1oop (page 100) construct provides a trivial
iteration facility; it is little more than a progn (page 90) with a branch from the bottom back to the top. The
do (page 100) and do* (page 100) constructs provide a general iteration facility for controlling the variation
of several variables on each cycle. For specialized iterations over the clements of a list or n consecutive
integers, dolist (page 104) and dotimes (page 104) are provided. The tagbody (page 107) construct is
the most general, permitting arbitrary go (page 109) statements within it. (The traditional prog (page
108) construct is a synthesis of tagbody, block (page 98), and 1et (page 91).) All of the iteration
constructs permit statically defined non-local exits in the form of the return-from (page 99) and return
statements.
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7.8.1. Indeﬁnite Iteration

loop {form}* : [Macro]
Each form is evaluated in turn, from left to right. When the last form has been evaluated, then the
first form is evaluated again, and so on, in a never-ending cycle. The 1oop construct never returns
a value. Its execution must be terminated explicitly, for example by using return (page 99) or
throw (page 116).

Toop, like most iteration constructs, establishes an implicit block named ni1. Thus return may

be used to exit from a 1oop with specified results.

Rationale: This construct is included primarily as a primitive building block for more complicated iteration
macros that is perhaps more easily understood by a compiler than a full-blown tagbody (page 107).

A Toop construct has this meaning only if every form is non-atomic (a list). The case where some

form (possibly more than one) is atomic is reserved for future extensions.

Implementation note: There have been several proposals for a powerful iteration mechanism to be called
lToop. One version is provided in Lisp Machine Lisp. Implementors are encouraged to experiment with
extensions to the 10op syntax, but users should be advised that in all likelihood some specific set of extensxons
to Toop will be adopted in a future revision of COMMON Lisp,

7.8.2. General iteration

do ({(var [init [step]})}*) (end-test {resuli}*) {declaration}* {tag | .statement}* [Macro]

do* ({(var [init [step]])}*) (end-test {form}*) {declaration}* {tag | statement}* [Macro]
The do special form provides a generalized iteration facility, with an arbitrary number of “index
variables”. These variables are bound within the iteration and stepped in parallel in specified ways.
They may be used both to generate successive values of interest (such as successive integers) or to
accumulate results. When an end condition is met, the iteration terminates with a specified value.

In general, a do loop looks like this:
(do ((varl initl stepl)
(var2 init2 step2)

(varn initn stepn))

(end-test . result)
{declaration}*

lagbody)

A do* loop looks exactly the same except that the name do is replaced by do*.

The first item in the form is a list of zero or more index-variable specifiers. Each index-variable
specifier is a list of the name of a variable var, an initial value init (which defaults to ni1 if it is
omitted) and a stepping form step. If step is omitted, the var is not changed by the do construct
between repetitions (though code within the do is free to alter the value of the variable by using
' setq (page 76)).

.. An index-variable specifier can also be just the name of a variable. In this case, the variable has an
initial valye of ni1, and is not changed between repetitions.
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Before the first iteration, all the inif forms are evaluated, and each var is bound to the value of its
respective init. This is a binding, not an assignment; when the loop terminates the old values of
those variables will be restored. For do, a/l of the init forms are evaluated before any var is bound;
hence all the init forms may refer to the old bindings of all the variables (that is, to the values visible
before beginning execution of the do construct). For do*, the first init form is evaluated, then
the first var is bound to that value, then the sccond inif form is evaluated, then the sccond var is
bound, and so on; in general, the initj form can refer to the new binding vark if % < j, and otherwise
to the old binding of vark.

The second element of the loop is a list of an end-testing predicate form end-test, and zcro or more
forms, called the result forms. This resembles a cond clause. At the beginning of each iieratioﬁ,
after processing the variables, the end-test is evaluated. If the resultis ni1, execution proceeds with
the body of the do (or do*) form. If the result is not ni1, the result forms are evaluated in order as
an implicit progn (page 90), and then do returns. do returns the results of evaluating the last
result form. If there are no result forms, the value of do is ni1; note that this is not quite analogous
to the treatment of clauses in a cond (page 95) form.

At the beginning of each iteration other than the first, the index variables are updated as follows.
All the step forms are evaluated, from left to right, and the resulting values are assigned to the
respective index variables. Any variable that has no associated step form is not assigned to. For do,
all the step forms are cvaluated before any variable is updatzd; the assignment of values to variables
is done in parallel, as if by psetq (page 76). Because all of the step forms are evaluated before any
of the variables are altered, when a step form is ¢valuated it always has access to the old values of all
the index variables, even if other step forms precede it. For do*, the first step form is evaluated,
then the value is assigned to the first var, then the second siep form is evaluated, then the value is
assigned to the second var, and so on; the assignment of values to variables is done sequentially, as
ifby setq (page 76). For either do or do*, after the variables have been updated, the end-test is
evaluated as described above, and the iteration continues.

If the end-test of a do form is n1i 1, the test will never succeed. Therefore this provides an idiom for
“do forever”: the body of the do is executed repeatedly, stepping variables as usual, of course.
(The Toop. (page 100) construct performs a “do forever” that steps no variables.) The infinite loop
can be terminated by the use of return (page 99), return-from (page 99), go (page 109) to
an outer level, or throw (page 116). ‘ ;
For example:

(do ((J O (+31)))
(nil) - : Do forever.
(format t "~%Input ~D:" j)
(let ((item (read)))
(if (null item) (return) ; Process items until ni1 seen.
(format t "~&0utput ~D: ~S" j (process item)))))
The remainder of the do form constitutes an implicit tagbody (page 107). Tags may appear
within the body of a do loop- for use by go (page 109) statements appearing in the body (but such
go statements may not appear in the variable specifiers, the end-test, or the result forms). When the

end of a do body is reached, the next iteration cycle (beginning with the evaluation of step forms)

R
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occurs.

An implicit block (page 98) named ni1 surrounds the entire do form. A return (page .
99) statement may be used at any point to exit the loop immediatély. '

declare (page 125) forms may appear at the beginning of a do body. They apply to code in the
do body, to the bindings of the do variables, to the step forms (but not the init forms), to the

end-test, and to the result forms.

Compatibility note: “Old-style” MACLISP do loops, of the form (do var init step end-test . body), are not
supported. They are obsolete, and are easily converted to a new-style do with the insertion of three pairs of
parentheses. In practice the compiler can catch nearly all instances of old-style do loops because they will not
have a legal format anyway.

Here are some examples of the use of do:

(do ((i 0 (+ i 1)) ;Setseverynullelementofé-vector to zero.
(n (array-dimension a-vector 0)))
((= 1 n))

(when (null (aref a-vector i))
(setf (aref a-vector i) 0)))
The construction

(do ((x e (cdr x))
(o1dx x x))
((nul1 x))
body)

exploits parallel assignment to index variables. On the first iteration, the value of 61dx is whatever
value x had before the do was entered. On succeeding iterations, o1dx contains the value that x .
liad on the previous iteration. )

Very often an iterative algorithm can be most clearly expressed entirely in the step forms of a do,
and the body is empty..
For example:

(do ((x foo (cdr X))

(y bar (cdr y))

(z "() (cons (f (car x) (car y)) 2)))
((or (null x) (null y))
~{nreverse z)))

does the same thing as (mapcar #'f foo bar). Note that the step computation for z exploits
the fact that variables are stepped in parallel. Also, the body of the loop is empty. Finally, the use
of nreverse (page 204) to put an accumulated do loop result into the correct order is a standard
idiom,

Another exaample:

(defun list-reverse (list)
(do ((x Tist (cdr x))

(¥ '() (cons (car x) y)))
((endp x) y)))

Note the use of endp (page 217) rather than nu11 (page 61) or atom (page 61) to test for the
end of a list; this may result in more robust code.

As an example of nested loops, suppose that env holds a list of conses. The car of each cons is a list
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of symbols, and the cdr of each cons is a list of equal length containing corresponding values. Such
a data structure is similar to an association list, but is divided into “frames”; the overall structure
resembles a rib-cage. A lookup function on such a data structure might be:

(defun ribcage-lookup (sym ribcage)
(do ((r ribcage (cdr r)))
((null r) nil)
(do ((s (caar r) (cdr s))
(v (cdar r) (cdr v)))
((null s))
(when (eq (car s) sym)
(return-from ribcage-lookup (car v))))))

(Notice the use of indentation in the above example to set off the bodies of the do loops.)

A do loop may be explai}led in terms of the more primitive constructs block (page 98), returﬁ
(page 99), 1et (page 91), Toop (page 100), tagbody (page 107), and psetq (page 76) as
follows:

(block nil
(let ((varl initl)
(var2 init2)

(varn initn))
{declaration}*
(1oop (when end-test (return (progn . result)))
(taghody . tagbody)
(psetq varl stepl
var2 step2

\.'a.r;z stepn)))) ;
do* is exactly like do ‘except that the bindings and steppings of the variables are performed
sequentially rather than in parallel. Itis as if, in the above explanation, 1et were replaced' by 1et*
and psetq were réplaced by setq. '

7.8.3. Simple Iteration Constructs

The constructs dolist and dotimes perform a body of statements repeatedly. On each iteration a
specified variable is bound to an element .of interest that the body may examine. dolist examines
successive elements of a list, and dotimes examines integers from 0 to n—1 for some specified positive
integer n.

The value of any of these constructs may be speciﬁed by an optional result form, which if omitted default§
to the value nil. '

The return (page 99) statement may be used to return immediately from a do1ist or dotimes form,
discarding any following iterations that might have been performed; in effect, a block named nil
surrounds the construct. The body of the loop is implicitly a tagbody (page 107) construct; it may contain
tags to serve as the targets of go (page 109) statements. Declarations may appear before the body of the loop.
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‘ dolist (var listform [resultform]) {declaraticn}* {tag | statement}* [Macro]

| dolist provides straightforward‘iteration over the elements of a list. ‘First do1ist evaluates the

’ form listform, which should produce a list. It then executes the body once for each element in the
list, in order, with the variable var bound to the clement. Then resultform (a single form, not an
implicit progn) is evaluated, and the result is the value of the do1ist form. (When the resultform
is evaluated, the control variable var is still bound, and has the value ni1.) If resultform is omitted,
the resultis ni1.

For example: : .
(dolist (x '(a b ¢ d)) (prinl x) (princ " ")) => nil

% afterprinting“a b ¢ d ” :
An explicit return statement may be used to terminate the loop and return a specified value.
dotimes (var countform [resultform]) {declaration}* {tag | statemeni}* [Macro]
dotimes provides straightforward iteration over a sequence of integers. The expression
(dotimes (var countform resultform) . progbody) evaluates the form countform, which

¥ should produce an integer. It then performs progbody once for each integer from zero (inclusive) to
count (exclusive), in order, with the variable var bound to the integer; if the value of countform is
zero or negative, then the progbody is performed zero times. Finally, resultform (a single form, not
an implicit progn) is evaluated, and the result is the value of the dotimes form. (When the
resultform is evaluated, the control variable -var is still bound, and has as its value the number of
times the body was ekecutcd.) If resultform is omitted, the resultis ni1l.

An explicit re turn statement may be used to terminate the loop and return a specified value.
For example: ’
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;33 True if the specified subsequence of the string is a
;;: palindrome (reads the same forwards and backwards).
(defun pa11ndromep (string &optional
‘ (start 0) -
(end (string-length strlng)))
(dotimes (k (floor (- end start) 2) t)
(unless (char-equal (char string (+ start k))
. , (char string (- end k 1)))
(return nil))))

(palindromep "Able was I ere I saw Elba") => t
(palindromep "A man, a plan, a canal--Panama!") => nil

(remove-if-not #’alpha-char-p ;Remove punctuation.
"A man, a plan, a canal--Panamal")
=> "AmanaplianacanalPanama"

(palindromep
(remove-if-not #’ a1pha char-p
"A man, a plan, a canal--Panamal")) => t |

(palindromep
{(remove-if-not
#'alpha-char-p
"Unremarkable was I ere I saw Elba Kramer, nu?")) => t

(palindromep
(remove-if-not
#'alpha-char-p
"A man, a plan, a cat, a ham, a yak,
a yam, a hat, a canal--Panamal!")) => t

Altering the value of var in the body of the loop (by using setq (page 76), for example) will have
unpredictable, possibly implementation-dependent results. A COMMON LISP compiler may choose
to issue a warning if such a variable appears in a setq.

See also do-symbo1s (page 152), do external-symbols (page153) and do-all-symbols (page
153).

7.8.4. Mapping

Mapping is a type of iteration in which a function is successively applied to pieces of one or more
sequences. The result of the iteration is a sequence containing the respective results of the function
applications. There are several options for the way in which the pieces of the list are chosen and for what is
done with the results returned by the applications of the function.

The function map (page 205) may be used to map over any kind of sequence. The following functio_nsv
operate only on lists.
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mapcar function list &rest ‘more-lists - [Function]
maplist function list &rest more-lists [Function]
mapc function list &rest more-lists [Function]
mapl1 function list &rest more-lists . [Function]
mapcan function list &rest more-lists [Function]
mapcon function list &rest more-lists [Function]

For each these mapping functions, the first argument is a function and the rest must be lists. The
function must take as many arguments as there are lists.

mapcar operates on successive elements of the lists. First the function is applied to the car of each

list, then to the cadr of each list, and so on. (Ideal]y all the lists are the same length; if not, the
- iteration tcrminates when the'shortest list runs out, and excess elements in other lists are ignored.)
~ The value returned by mapcar is a list of the results of the successive calls to the function.

For example:

(mapcar #’abs '(3 -4 2 -5 -6)) => (34 2 5 6) ;

(mapcar #’cons '(a b c) *(1 2 3)) => ((a . 1) (b . 2) (c . 3))
maplist is like mapcar except that the function is applied to the list and successive cdr’s of that
list rather than to successive elements of the list.

For example: ;
(maplist #'(lambda (x) (cons 'foo x))
(a b c d)) »
=> ((foo a b c d) (foo b ¢ d) (foo ¢c d) (foo d))
(maph‘st #’(1ambda (x) (if. (member (car x} (cdr x)) 0 1)))
'(abacdbc))
=>(0010111)
:An entry is 1 if the corresponding element of the mput
;  list was the last instance of that element in the input list.

mapl and mapc are like map1ist and mapcar respectively, except that they do not accumulate

the results of calling the function. ‘
Compatibility note: In all Lisp systems since Lisp 1.5, map1 has been called map. In the chapter on sequences
it is explained why this was a bad choice. Here the name map is used for the far more useful generic sequence
mapper, in closer accordance to the computer science literature, especially the growing body of papers on
functional programming.
These functions are used when the function is being called merely for its side-effects, rather than its
returned values. The value retumed by map1 or mapc is the second argument, that i is, the first

sequence argument.

. mapcan and mapcon are like mapcar and map1ist respectively, except that tﬁey combine the
results of the function using ncenc - (page 221) instead of 1 1st That is,
‘ {mapcon f xI ... xn)
<=> (apply #’nconc (maplist fx/ ... xn))
and similarly for the relationship between mapcan’ and mapcar. Conceptually, these functions
- allow the mapped function to return a variable number of items to be put into the output list. This
is particularly useful for effectively returning zero or one item:

(mapcan #’(lambda (x) (and (numberp x) (1ist x)))
'(albc34d5))
=> (1 3 4 5)
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In this case the function serves as a filter; this is a standard LiSP idiom using mapcan. (The
function remove-if-not (page 207) might have been uscful in this particular context, however.)
Remember that nconc is a destructive operation, and therefore so are mapcan and mapcon; the
lists returned by the function are aliered in order to concatenate them.

Sometimes a do or a straightforward recursion is preferable to a mapping operation; however, the
mapping functions should be used wherever they naturally apply because this increases the clarity
of the code.

The functional argument to a mapping function must be acceptable to app1y; it cannot be a macro
or the name of a special form. Of course, there is nothing wrong with using functions that have
&optionaland &rest parameters.

7.8.5. The “Program Feature”

L1Sp implementations since LISP 1.5 have had what was originally called “the program feature”, as if it were
impossible to write programs without it! The prog construct allows one to write in an ALGOL-like or
FORTRAN-like statement-oriented style, using go statements, which can refer to tags in the body of the prog.
Modern LISP programming style tends to use prog rather infrequently. The various iteration constructs, such
as do (page 100), have bodies with the characteristics of a prog. (However, the ability to use go statements
within iterations constructs is very seldom used in practice.)

prog actually performs three distinct operations: it binds local variables, it permits use of the return
statement, and it permits use of the go statement, In COMMON LISP, these three operations have been
separated into three distinct constructs: 1et (page 91), block (page 98). and tagbody (page 107). These
three constructs may be used independently as building blocks for other types of constructs.

tagbody {tag | statement}* ' [Special form)
The part of a prog after the vanable list is called the body. An item in the body may be a symbol
or an integer, in which case it is called a sag, or a list, in which case it is called a statement.

Each element of the body is processed from left to right. ‘A fag is ignored; a statement is evaluated,
and its results are discarded. If the end of the body is reached, the tagbody returns nil. ’

If (go tag) is evaluated, control jumps to the part of the body labelled with the /ag.

Compatibility note: The “computed go™ feature of MACLIsP is not supported. The syntax of a computed gois |
idiosyncratic, and the feature is not supported by Lisp Machine Lisp, NiL, or INTERLISP. 4

The scope of the tags established by a tagbody is lexical, and the extent is dynamic. Once a
tagbody construct has been exited, it is no longer legal to go to a fag in its body. It is permissible
for a go to jump to a tagbody that is not the innermost tagbody construct containing that go;
the tags established by a tagbody will only shadow other tags of like name.

The lexical scoping of the go, targets named by tags is fully general, and has consequences that may
be surprising to users and implementors of other LISP systems.- For example, the go in the
following example actually does “work™ in COMMON LISP as one might expect:
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(tagbody
(catch 'stuff
(mapcar #’ (1ambda (x) (if (numberp x)
(hairyfun x)

(go lose)))
items))

(return)
lose
(error "I 1ost big!"))

Depending on the situation, a go in COMMON LISP does not necessarily correspond to a simple
machine “jump” instruction! A go can break up catchers if necessary to get to the target. It is
5 possible for a “closure” created by function for a lambda-expression to refer to a go target as
§' long as the tag is lexically apparent. See chapter 3 for an elaborate example of this.

prog ({var | (var [ini])}*) {declaraiion}* {tag | statement}* [Macro]
prog* ({var | (var [ini])}*) {declaration}* {tag | statement}* [Macro)
A typical prog looks like:

(prog (varl var2 (var3 init3) vard (var5 inil5))

{declaration}*

- statementl
tagl :
statement2
statement3
statementd
tag2

statements

The list after the keyword prog' is a set of specifications for binding vari, var2, etc., which are
temporary variables, bound locally to the prog. This list is processed exactly as the list in a Tet
- (page 91) statement: first all the init forms are evaluated from left to right (where ni1 is used for
any omitted init form), and then the variables are all bound in parallel to the respective results. Any
declaration appearing in the prog is used as if appearing at the top of the 1et body. ‘

The body of the prog is executed as if it were a tagbody (page 107) construct the go (page
’ 109) statement may be used to transfer control to a tag.

A prog implicitly establishes a block (page 98) named ni1 around the entire prog construct, so
! that return (page 99) may be used at any time to exit from the prog construct.

Here is a fine example of what can be done with prog:
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go lag

(defun king-of-confusion (w)
(prog (x y z) - ; Initialize x, y, ztoni1
(setq y -(car w) z (cdr w))
loop
(cond ((null y) (return x))

((nu11 z) (go err)))
rejoin

(setq x (cons (cons (car y) (car z)) x))
(setq y (cdr y) z (cdr 2z))

(go loop)
err

(cerror "Will ignore extraneous items"
"Mismatch - gleep! ~8" y) »
(setq z y) !
(go rejoin))) | :
which is accomplished somewhat more perspicuously by:
(defun prince-of-clarity (w)

(do ((y (car w) (cdr y))
(z (cdr w) (cdr 2z))

(x () (cons (cons (car y) (car z)) x)))

((nul1 y) x)
(when (null z)
(cerror "Will ignore extraneous items"
"Mismatch - gleep! ~S" y)
(setq z y))))

The prog construct may be explained in terms of the simpler constructs block (page 98), et
(page 91), and tagbody (page 107) as follows: :

(prog variable-list {declaration}* . body)
<=> (block nil (let variable-list {declaration}* (tagbody . body)))

The prog* special form is almost the same as prog. The only difference is that the binding and
initialization of the tempofary variables is done sequentially, so that the init form for each one can
use the values of previous ones. Therefore prog* is to prog as let* (page 92)isto Tet (page
91).

For example:

(prog* ((y z) (x (car y)))
(return x))

returns the car of the value of z.

. [Special form]
The (go tag) special form is used to do a “go to” within a tagbody (page 107) construct. The
tag must be a symbol or an integer; the tag is not evaluated. go transfers control to the point in the
body labelled by a tag eq1 to the one given. If there is no such tag in the body, the bodies of
lexically containing tagbody constructs (if any) are examined as well. It is an error if there is no

matching tag lexically visible to the point of the go.
The go form does not ever return a value.

As a matter of style, it is recommended that the user think twice before using a go. Most purposes



110 COMMON LISP REFERENCE MANUAL

of go can be accomplished with one of the iteration pﬁmitives, nested conditional forms, or
return-from (page99). If the use of go seems to be unavoidable, perhaps the control structure
implemented by go should be packaged up as a macro definition.

7.9. Multiple Values

Ordinarily the result of calling a LISP function is a single LISP object. Sometimes, however, it is convenient
for a function to compute several objects and return them. COMMON LISP provides a mechanism for handling
multiple values directly. This mechanism is cleaner and more efficient than the usual tricks mvolvmg
returning a list of results or stashing results in global variables.

7.9.1.§;Constructs for Handlihg Multiple Values

Nor@a]ly multiple values are not used. Special forms are required both to produce multiple values and to
receivefthem If the caller of a function does not request multiple values, but the called function produces
multiple values, then the first value is given to the caller and all others are discarded (if the called funcnon
produces zero values then the caller gets ni1 as a value).

The primary primitive for prdducing multiple va.lues is values (page 110), which takes any number of
arguments and returns that many values. If the last form in the body of a function is a values with three
arguments, then a call to that function will return three values. Other special forms also produce multiple
values, but thev can be described in terms of values. Some built-in COMMON LISP functions (such as
floor (page 175)) return multiple values; those that do are so documented.

The special forms for receiving multiple values are multiple-value-list (page 111),
multiple-value-call (page 111),multiple-value-progl (page 112), muitiple-value-bind
(page 112), and multiple-value-setq (page 112). These specify a form to evaluate and an indication of
where to put the values réturned by that form.

values &rest args [Function]
Returns all of its arguments, in order, as values.
For example: -
(defun polar (x y)
(values (sqrt (+ (* x x) (* y ¥))) (atan y X)))

p (multiple-value-bind (r theta) (polar 3.0 4.0)
¢ (1ist r theta))
s> (5.0 0.9272952)

The expression ( values) returns zero values.

S -

; Sometimes it is desirable to indicate explicitly that a function will return exactly one value. For
., example, the functior:
(defun foo (x y)
(floor (+ x y) y))
~ will return two values because f1oor (page 175) returns two values. It may be that the second
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“value makes no sense, or that for efficiency reasons it is desired not to compute the second value.

The values function is the standard way to indicate that only one value is to be returncd:

(defun foo (x y).
(values (floor (+ x y) y)))

This works because values returns exactly one value for each of its argument forms; as for any
function call, if any argument form to values produces more than one value, all but the first are
discarded.

There is absolutely no way in COMMON LISP for a caller to distinguish between returning a single
value in the ordinary manner and returning exactly one “multiple value”. For example, the values
returned by the expressions (+ 1 2) and (values (+ 1 2)) areidentical in every respect; rhe
single value 3.

multiple-values-limit - [Constant]

The value of multiple-values-1imit is a positive integer that is the upper exclusive bound
on the number of values that may be returned from a function. This bound depends on the
implementation, but will not be smaller than 20. (Implementors are enouraged to make this limit as
large as practicable without sacrificing performance.) See Tambda-parameters-1imit (page
54) and cé]]-arguments-]imit (page 90). ' '

values-list list ' ' [Function]

Returns as multiple values all the elements of list.

For example:
(values-list (1ist a b ¢)) <=> (values a b ¢)

. In general,

(values-list list) <=> (apply #'values list)
but values-11st may be clearer or more efficient.

multiple-value-list form ' [Macro]

multiple-value-1ist evaluates form, and returns a list of the multiple values it returned.

For example: - )
(multiple-value-list (floor -3 4)) => (-1 1)

multiple-value-call function {form}* [Specialfbnri]

multiple-value-call first evaluates finction to obtain a function, and then evaluates all of the
Jorms. All the values of the forms are gathered together (not just one value from each), and given as
arguments to the function. The resultof multiple-value-call is whatever is returned by the
function.

For example:

(multiple-value-call #'+ (floor & 3) (floor 7 3))
<=> (+ 122 1) =>6
(multiple-value-list form) <=> (multiple-value-call #’ Hst ﬁ7rm)
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multiple-value-progl foim \Q{fbrm}* : [Special form]
multiple-value-prog#evaluates the first form and saves all the values produced by that form.
It then evaluates the other forms from left to right, discarding their values. The values produced by
the first form are returned by multip1 e-val ue-progl. Sece progl (page 90), which always
returns a single value.

multiple-value-bind ({var}*) values-form {declaration}* {form}* [Macro]
The values-form is evaluated, and each of the variables var is bound to the respective value returned
by that form. If there are more variables than valucs returned, extra values of ni1 are given to the
remaining variables. If there are more values than variables, the excess values are simply discarded.
f-' The variables are bound to the values over the execution of the forms, which make up an implicit
progn. ' . ,
Compatibility note: This is compatible with Lisp Machine Lisp.

For example:

(multiple-value-bind (x) (floor 5 3) (list x)) => (1)
(multiple-value-bind (x y) (floor 5 3) (Tist x y)) => (1 2)
(multiple-value- b1nd (x y z) (floor 5 3) (11st Xy z))
s> (12 nil)

multiple-value-setq variables form - : [Macro]
The variables must be a list of variables. The form is evaluated, and the variables are ser (not
bound) to the values returned by that form. If there are more variables than values returned, extra
values of n11 are assigned to the remaining variables. If there are more values than variables, the

- excess values are simply discarded.

Compatibility note: In Lisp Machine Lisp this is called multiple-value. The added clanty of the name
multiple-value-setq in CoMMON Lisp was deemed worth the incompatibility with Lisp Machine Lisp.

multiple-value-setq always returns a single value, which is the first value returned by form,
or ni1if form produces zero values. ‘

7.9.2. Rules Governing the Passing of Multiple Values

It is often the case that the value of a special form or macro call is defined to be the value of one of its
sub- forrhs For example, the value of a cond is the value of the last form in the selected clause. In most such
cases, 1f ithe sub-form produces mulnple values, then the original form will also produce all of those values.
This pa;smg back of multiple values of course has no effect unless eventually one of the special forms for

: recexvmg mulitiple values is reached. :

To be explicit, multiple values can result from a special form under precisely these circumstances:
Evaluation and Application .

. eval (page 267) returns multiple values if the form given it to evaluate produces multiple
: values. -

e apply (page 89), funcall (page 89), and multiple-value-call (page 111), pass
back multiple values from the function applied or called.
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. Implicit progn contexts

o The special form progn (page 90) passes backs multiple values resulting from evaluation of
the last subform. Other situations referred to as “implicit progn”, where several forms are
evaluated and the results of all but the last form are discarded, also pass back multiple values
from the last form. These situations include the body of a lambda-expression, in particular
those constructed by defun (page 55), defmacro (page 118), and deftype (page 41).
Also included are bodies of the constructs eval-when (page 57), progv (page 93), et
(page 91), let* (page 92), when (page 95). unless (page 95), block (page 98),
multiple-value-bind (page 112), and catch (page 114), as well as clauses in such
conditional constructs as case (page 96), typecase (page 97), ecase (page 359)
etypecase (page 359), ccase (page 359),and ctypecase (page 359).

Conditional constructs

o if (page 95) passes back mumple values from whichever subform is selected (the then form
or the else form).

e and (page 68) and or (page 68) pass back mulnple values from the last subform, but nut
from subforms other than the last.

e cond (page 95) passes back multiple values from the last subform of the implicit progn of
the selected clause. If, however, the clause selected is a singleton clause, then only a single
value (the non-ni1 predicate value) is returned. This is true cven if the singleton clause is the
last clause of the cond. Itis not permitted to treat a final clause “(x)” as being the same as
“(t x)” for this rcason; the latter passes back multiple values from the form x.

Returning from a block

e The block (page 98) construct passes back multiple values from its last subform when it exits
normally. If return-from (page 99) (or return) is used to terminate the block
prematurely, then return-from passes back multiple values from its subform as the values
of the terminated b1ock. Other constructs that create implicit blocks, such as do (page 100),
dolist (page 104), dotimes (page 104), prog (page 108), and prog* (page 108), also
pass back multiple values specified by return-from (or return (page 99)).

e do passes back multiple values from the last form of the exit clause, exactly as if the exit clause -

were a cond clause. Similarly, dolist and dotimes pass back muitiple values from the
resultform if that is executed. These situations are all examples.of implicit uses of
return-from. :

LY

The catch (page 114) construct returns mulnple values if the result form in a throw (page
116) exiting from such a catch produces multiple values.

Miscellaneous situations

emultiple-value-progl (page 112) passes back multiple values from its first subform.
‘ However, prog1 (page 90) always returns a single value.

e Throwing out of a catch
e unwind-protect (page 115) returns multiple values if the form it protects does.

113
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e the (page 131) returns multiple values if the form it contains does.

~ Among special forms that rever pass back multiple values are setq (page 76), multiple-value-setq
(page 112), prog1 (page 90), and prog2 (page 91). The conventional way to force only one value to be
returned from a form x is to write (values x).

' The most important rule about mixlt.iple values is:

No matter how many values a form produces,
if the form is an argument form in a function call,
';; then exactly ONE value (the first one) is used.

¥

For e;'}&ample, if you write (cons (floor x)), then cons will always receive exactly one argument

(which is of course an error), even though f1oor returns two values. To pass both values from floor to
cons, one must write something like (multiple-value-call #'cons (floer x)). Inan ordinary
function call, cach argument form produces exactly one argument; if such a form returns zero values, ni1 is
used for the argument, and if more than one value, all but the first are discarded. Similarly, conditional
construéts such as if that test the value of a form will use exactly one value (the first) from that form and
discard the rest, or use ni 1 if zero values are returned.

7.19. Dynamic Non-local Exits

CoMMON LisP provides a facility for exiting from a complex process in a non-local, dynamically scoped

manner. There are two classes of special forms for this purpose, called catch forms and throw forms, or simply
catches and throws. A catch form. evaluates some subforms in such a way that, if a throw form is executed
during such evaluation, the evaluation is aborted at that point and the catch form immediately returns a value
specified by the throw. Unlike btock (page 98) and return (page 99), which allow for so exiting a block
form from any point lexically within the body of the b1ock, the catch/throw mechanism works even if the
throw form is not textually within the body of the catch form. The throw need only occur within the extent

(time span) of the evaluation of the body of the-catch. This is analogous to the distinction between

dynamically bound (special) variables and lexically bound (local) variables.
7.10.1. Catch Forms

catch g {form}* : [Special form]
* The catch special form is the simplest catcher. The form tag is evaluated first to produce an

object that names the catch; it may. be any LISP object. A catcher is then established with the object

as the tag. The forms are evaluated as an implicit progn, and the results of the last form are

- returned, except that if during the evaluation of the forms a throw should be executed, such that the

. tag of the throw maiches (is. eq to) the tag of the catch, and the catcher is the most recent

s outstanding catcher with: that tag, then the: evaluation of the forms is aborted and the results.
specified by the throw are immediately returned from the catch expression. The catcher -
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established by thé catch expression is disestablished just before the results are returned.

The tag is used to match up throws with catches. (catch ’foo form) will catch a (throw
'foo form) butnot a (throw ‘’bar form). Itis an error if throw is done when there is no
suitable catch ready to catch it.

Catch tags are compared using eq, not eq1; therefore numbers and characters should not be used

as catch tags.

Compatibility note: The name catch comes from MACLIsP, but the syntax of catch in CoMmoN Lisp is
different The MACLISP syntax was (catch form fag), where the tag was not evaluated.

unwind-protect protected-form {cleanup-form}* [Special form]

Sometimes it is necessary to cvaluate a form and make sure that certain side-effects take place after
the form is evaluated; a typical example is:

(progn (start-motor)
(drill-hole)
(stop-motor))

The non-local exit facility of Lisp creates a situation in which the above code won’t work, however:
ifdril1-hoTle should do a throw to a catch that is outside of the progn form (perhaps because
the drill bit broke), then {stop-motar) will never be evaluated (and the motor will presumably
be left running). This is particularly likely if dr111-ho1e causes a LISP error and the user tells the
error-handler to give up.and abort the computation. (A possibly more practical example might be:
(prog2 (open-a-file)
(process-file)
(close-the-file))

where it is desired always to close the file when the computation is terminated for whatever reason.)

In order to allow the example hole-drilling program to work, it can be rewritten using
unwind-protect as follows: '

(unwind-protect
(progn (start-motor)
(drill-hole))

(stop-motor))

If drill-hole does a throw that attempts to quxt out of the unwind-protect, then
(stop- motor) will be executed.

As a general rule, unwind-protect guarantees to execute all the cleanup-forms before exiting,
whether it terminates normally or is aborted by a throw of some kind. unwind-protect returns
whatever results from evaluation of the protected-form, and d1scards all the results from the
cleanup-forms.

It should be emphasized that unwind-protect protects against all attempts to exit from the
protected form, including not only such “dynamic exit” facilities such as throw (page 116) but
also such “lexical exit” facilities as go (page 109) and return-from (page 99). Consider this
situation:
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(tagbody
(let ((x 3))
(unwind-protect
(if (numberp x) (go out))
(print x)))
out

vel)

When the go is executed, the call to print is executed first, and then the transfer of control to the

tag out is completed.

7.10.2. Throw Forms

throw tag result ) ' : [Special form]

The throw special form is the only explicit thrower in COMMON Lisp. (However, errors may cause
throws to occur also.) The rag is evaluated first to produce an object called the throw tag; then the

‘result form is evaluated; and its results are saved (if the result form produces multiple values, than

all the values are saved). The most recent outstanding catch whose tag matches the throw tag is
exited; the saved results are returned as the value(s) of the catch. A catch matches only if the
catch tag is eq to the throw tag.

In the process dynamic variable bindings are undone back to the point of the catch, and any
intervening unwind-protect cleanup code is executed. The result form is evaluated before the
unwinding process commences, and whatever results it produces are returned from the catch.

If there is no outstanding catcher whose tag matches the throw tag, no unwinding of the stack is
performed, and an error is signalled. When the error is signalled, the outstanding catchers and the
dynamic variable bindings are those in force at the point of the throw.

Impiementation note: These requirements imply that throwing should typically make two passes over the
control stack. In the first pass it simply searches for a matching catch. In this search every catch must be
considered, but évery unwind-protect should be ignored. On the second pass the stack is actually
unwound, one frame at a time, undoing dynamic bindings and outstanding unwind-protect constructs in
reverse order of creation until the matching catch is reached.

Compatibility note: The name throw comes from MACLIsP, but the syntax of throw in CoMMON Lisp is
different. The MacLisP syntax was ( throw form rag), where the /g was not evaluated.




Chapter 8

Macros S

0

The COMMON LISP macro facility allows the user to define arbitrary functions that convert certain Lisp
forms into different forms before evaluating or compiling them. This is done at the expression level, not at
the character-string level as in most other languages. Macros are important in the writing of good code: they
make it possible to write code that is clear and elegant at the user level, but that is converted to a more
complex or more efficient internal form for execution.

When eval (page 267) is given a list whose caris a symbol, it looks for local definitions of that symbol (by
flet (page93), Tabels (page 93), and macrolet (page 93)); if that fails, it looks for a global definition.
If the definition is a macro definition, then the original list is said to be a macro call. Associated with the
definition will be a function of two arguments, called the expansion function. This function is called with the
entire macro call as its first argument (the second argument is a lexical environment); it must return some new
Lisp form, called the expansion of the macro call. (Actually, a more general mechanism is involved; see
macroexpand (page 123).) This expansion is then evaluated in place of the original form.

When a function is being compiled, any macros it contains are expanded at compilation time. This means
that a macro definition must be seen by the compiler before the first use of the macro.

More generally, an implementation of COMMON LISP has great latitude in deciding exactly when to expand
macro calls within a program. For example, it is acceptable for the defun (page 55) special form to expand
all macro calls within its body at the tirhe the defun form is executed, and record the fully expanded body as
the body of the function being defined. (An implementation might even choose always to compile functions
defined by defun, even when operating in an “interpretive” mode!)

Macros should be written in such a way as to depend as little as possible on the execution environment to
produce a correct expansion. To ensure consistent behavior, it is best to ensure that ail macro definitions are
available (to the interpreter, compiler, or whatever) before any code containing calls to those macros is

introduced.

In COMMON LISP, macros are not functions. In particular, macros cannot be used as functional arguments
to such functions as apply (page 89), funcall (page 89), or map (page 205); in such situations, the list
representing the “original macro call” does not exist, and cannot exist, because in some sense the arguments
have already been evaluated. o

- 117 -



118 . - COMMON LISP REFERENCE MANUAL

8.1 Defining Macros

macro-function symbol [Function}
Lo - The argument must be a symbol. If the symbol has a global function definition that is a macro
- definition, then the expansion function (a function of one argument, the macro-call form) is
returned. If the symbol has no global function definition, or has a definition as an ordinary
- function or as a special form but not as a macro, then nil is returned. (The function

“ macroexpand (page 123) is the best way to invoke the expansion function.)

It is possible for both macro-function and special-form-p (page 75) to be true of a
symbol. This is possible because an implementation is permitted to implement any macro also as a
special form for speed. On the other hand, the macro definition must be available for use by
» programs that understand only the standard special forms listed in Table 5-1.

' macro-function cannot be used to determine whether a symbol names a locally defined macro
. established by macrolet (page 93). Itcan examine only global definitions.

setf (page 78) méyrbe used with macro-function to install a macro as a symbol’s global
.“l"', function definition: :
(setf (macro-function symbol) fn)

. The value installed must be a function that accepts one argument, the entire macro cail, and
computes the expansion for that call. Performing this operation causes the symbol to have only that
macro definition as its global function definition; any previous definition, whether as a macro or as
a function, is lost. Itis an error to attempt to redefine the name of a special form (see Table 5-1).

defmacro name lambda-list {declaration | doc-stringt* {form}* :  [Macro]

defmacro is a macro-defining macro that arranges to decompose the macro call form in an elegant

and useful way. defmacro has essentially the same syntax as defun (page S5): name is the

symbol whose macro-definition we are creating, lambda-list is similar in form to a lambda-list, and

“the forms constitute the body of the expander function. The defmacro construct arranges to

install this expander function, as the global macro-definition of name. The expander function is

effectively defined in the global environment; lexically scoped entities established outside the

defmacro form that would ordinarily be lexically apparent are not visible within the body of the
expansion function: The name is returned as the value of the defmacro form.

If we view the macro call as a list containing a function name and some argument forms, in effect
the expander function and the list of (unevaluated) argument forms is given to apply (page 89).
 The parameter specifiers are processed as for any lambda-expression, using the macro-call
: argument forms as the arguments. Then the body forms are evaluated as an implicit progn, and
- the value of the last form is returned as the expansion of the macro call.

- If the optional documentation string doc-string is present (if not followed by a declaration, it may be
‘ present only if at least one form is also specified, as it is otherwise taken to be a form), then it is
attached to the name as a documentation string of type function; see documentation (page
362). ‘
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Like the lambda-list in a defun, a defmacro lambda-list may contain the lambda-list keywords
&optional, &rest, &key, &allow-other-keys, and &aux. For &optional and &key
parameters, initialization forms and “supplied-p” parameters may be specified, just as for defun.
Three additional tokens are allowed in defmacro variable lists only:

&body This is identical in function to &rest, but it informs certain pretty-printing and
cditing functions that the remainder of the form is treated as a body, and should
be indented accordingly. (Only one of &body or &rest may be used.)

&whole This is followed by a single variable that is bound to the entire macro call form;
this is the value that the macro definition function receives as its single
argument. &whole and the followmg variable should appear first in the
‘lambda-list, before any other parameter or lambda-list keyword. 7

&environment This is followed by a_ single variable that is bound to an environment
representing the lexical environment in which the macro call is to be interpreted.
This environment may not be the complete lexical environment; it should be
uscd only with the function macroexpand (page 123) for the sake of any local
macro definitions that the macrolet (page 93) construct may have established
within that lexical environment. This is useful primarily in the rare cascs where a
macro definition must explicitly expand any macros in a subform of the macro
call before computing its-own expansion.

See Tambda-1ist-keywords (page 54).

defmacro, unlike any other COMMON LISP construct that has a lambda-list as part cf its syntax,
provides an additional facility known as destructuring. Anywhere in the lambda-list where a
parameter name may appear, and where ordinary lambda-list syntax (as described in section 5.2.2)
does not otherwise allow a list, a lambda-list may appear in place of the parameter name. When
this is done, then the argument form that would match the parameter is treated as a (possibly
dotted) list, to be used as an argument forms list for satisfying the parameters in the embedded
lambda-list. As an example, one could write the macro definition for do1ist (page 104) in this
manner:

(defmacro dolist ((var listform &optional resultform)
&rest body)
. .)

More examples of embedded lambda-lists in defmacro are shown below.

Another destructuring rule is that defmacro allows any lambda-list (whether top-level ox%
embedded) to be dotted, ending in a parameter name. This situation is ‘treated exactly as if thef*
parameter name that ends the list had appeared preceded by &rest. For example, the definition
skeleton for do11ist shown above could instead have been written
(defmacro dolist ((var listform &optional resultform)
body)
..)

If the compiler encounters a.defmacro, the new macro is added to the compilation environment,
and a compiled form of the expansion function is also added to the output file so that the new
macro will be operative at runtime. If this is not the desired effect, the defmacro form can be
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wrapped in an eval-when (page 57) construct.

It is permissible to use defmacro to redefine a macro (for example, to install a corrected version of
an incorrect definition!), or to redefine a function as a macro. It is an crror to attempt to redefine
the name of a special form (see Table 5-1) as a macro.

See alsomacrolet (page 93), which establishes macro definitions over a restricted lexical scope.

Suppose, for the sake of example, that it were desirable to implement a conditional construct analogous to
the FORTRAN arithmetic IF statement. (This of course requires a certain stretching of the imagination and
suspension of disbelief.) The construct should accept four forms: a fest-value, a neg-form, a zero-form, and a
pos:- fbﬁn. One of the last three forms is chosen to be executed according to whether the value of the test-form
is positive, negative, or zero.

Using defmacro, a definition for such a construct might look like this:
(defmacro arithmetic-if (test neg-form zero-form pos-form)
(tet ((var (gensym)))
- (let ((var ,test))
(cond ((< ,var 0) ,neg-form)
“((= ,var 0) ,zero-form)
(t .pos-form)))))

(Note the use of the backquote facility in this definition. See section 22.1.3. Also note the use of gensym -

(page 137) to gencrate a new variable name. This is necessary to avoid conflict with any variables that might
be referred to in neg-form, zero-form, or pos-form.)

If the above form is executed by the interpreter, it will cause the function definition of the symbol
arithmetic-if to be a macro associated with which is a two-argument expansion function roughly

equivalent to:
(Tambda (caﬂing-form'environment)
(declare (ignore environment))
(let ((var (gensym)))
(list 'let » .
(1ist (list ’'var (cadr-calling-form)))
(1ist ’cond . ,
(Tist (1ist < var ’'0) (caddr calling-form))
(Tist (71ist '= var '0) (cadddr calling-form))
(1ist 't (fifth calling-form))))))

(The lambda-expressmn is produced by the de fmacro declaration. The calls to T1ist are the (hypothetical)
- result of the backquote (*) macro character and its associated commas. The precise macro expansion function
may depend on the implementation, for example provxdmg some degree of explicit error checking on the
number of argument forms in the macro call.)

Now, if eval encounters
(arithmetic-if (- x 4.0)
(- x)
(error "Strange zero")

x)

L
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this will be expanded into something like
(let ((g407 (- x 4.0))) .
(cond ((< g407 0) (- x))
((= g407 0) (error "Strange zero"))
(t x)))
and eval tries again on this new form. (It should be clear now that the backquote facility is very useful in
writing macros, since the form to be returned is normally a complex list structure, typically consisting of a
mostly constant template with a few evaluated forms here and there. The backquote template provides a

“picture” of the resulting code, with places to be filled in indicated by preceding commas.)

To make the example even more tasteless, we might allow the pos-form and zero-form to be omitted,
allowing their values to default to n-i 1, in much the same way that the else form of a COMMON LISP i f (page
95) construct may be omitted: ' ' '

(defmacro arithmetic-if (test neg-form &optional zero-form pos-form)
(let ((var (gensym))).
‘(let ((var ,test)) -
(cond ((< ,var 0) ,neg-form)
((= ,var- 0) ,zero-form)
(t ,pos-form)))))
Then one could write
(arithmetic-if (- x 4.0) (print x)) .
which would be expanded into something like
(et ((g408 (- x 4.0)))
(cond ((< g408 0) (print x)).
((= g408 0) nil)
(t nil)))
The resulting code is correct but rather silly-looking. One might rewrite the macro definition to produce
better code when pos-form and possibly zero-form are omitted, or one might simply rely on the COMMON LIsp

implementation to provide a compiler smart enough to improve the code itself,

Destructuring is a very powerful facility that allows the defmacro lambda-list to express the structure of a
complicated macro-call syntax. If no lambda-list keywords appear, then the defmacro lambda-list is simply
a list, nested to some extent, containing parameter names at the leaves. The macro-call form must have the
same list structure. For example, consider this macro definition:

(defmacro halibut ((mouth eyel eye2)
((fin1 lengthl) (fin2 length2))
tail)
Now consider this macro call: .
(halibut (m (car eyes) (cdr eyes))
((f1 (count-scales f1)) (f2 (count-scales f2)))
my-favorite-taii)
This would cause the expansion function to receive the following values for its parameters:
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Parameter ~ Value

mouth m

eyel (car eyes)

eye2 (cdr eyes)

finl f1 '
lengthl (count-scales f1)
“fin2 f2

length2  (count-scales f2)
tail my-favorite-tail

The following macro call would be in error, because there would be no argument form to match the
parameter Tengthi:
(ha1 ibut (m (car eyes) (cdr eyes))
((f1) (f2 (count-scales f2)))
: my-favorite-tail) - .
The following macro call would be in error, because a symbol appears in the call where the structure of the
lambda-list requires a list:

(halibut my-favorite-head ,
((f1 (count-scales f1)) (f2 {count-scales f2)))
my-favorite-tail)
The fact that the value of the variable my-favorite-head might happen to be alist is irrelevant here. It is
the macro call itself whose structure must match that of the defmacro lambda-list.

The use of lambda-list keywords adds even greater flexibility. For example, suppose that it is convenient
within the expansion function for halibut to be able to refer to the list whose components are called
mouth, eyel, and eye2 as head. One may write this:

(defmacro halibut ((&whole head mouth eyel eye2)

((finl lengthl) (fin2 1ength2))
tail)

Now consider the same valid macro call as before:

(ha'l1but (m (car eyes) (cdr eyesr))

((f1 (count-scales f1)) (f2 (count-scales f2)))
my-favorite-tail)

This would cause the expansion function to receive the same values for its parameters, and also a value for the
parameter head:

Parameter  Value SR : ,
head (m (car eyes) (cdr eyes))

The s_ftipulation, that an embedded lambda-list is permitted only where ordinary lambda-list syntax would
permit a parameter name but not a list, is made to prevent ambiguity. For example, one may not write
~ (defmacro loser (x &optional (a b &rest c¢) &rest z) '

because ordinary lambda-list syntax does permit a list following &optiona'i; the list (a b &rest c¢)
would be interpreted as describing an optional parameter named a, whose default value is that of the form b,

with a supplied-p parameter named &rest (not legal), and an extraneous symbol ¢ in the list (also not legal).
An almost correct way to express this is :

(defmacro loser (x &optional ((a b &rest c)) &rest z)
ces)
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The extra set of parentheses removes.the ambiguity. However, the definition is now incorrect because a
macro call such as (Toser (car pool)) would not provide any argument form for the lambda-list (a b
&rest c), and so the default value against which to match the lambda-list would be ni1, because no
explicit default value was specified. This is in error because ni1 is an empty list; it does not have forms to
satisfy the parameters a and b. The fully correct definition would be either
(defmacro loser (x &optional ((a b &rest c) ’'(nil nil)) &rest z)
) \ A
or
(defmacro loser (x &optional ((&optional a b &rest c)) &rest 2z)
.)
These differ slightly in that the first requires that if the macro call specifies a explicitly then it must also
specify b explicitly, whereas the second does not require this. That is, '
(Toser (car pool) ((+ x 1)))
would be a valid call for the second definition but not for the first.

8.2. Expanding Macro Calls

macroexpand form &optional env [Function]

macroexpand-1 form &optional env [Function]
If form is a macro call, then macroexpand-1 will expand the macro call once and return two
values: the expansion and t. If form is not a macro call, then the two values form and nil are
returned.

A form is considered to be a macro call only if it is a cons whose car is a symbol that names a macro.
The environment env is similar to that used within the evaluator (see evalhook (page 268)); it
defaults to a null environment. Any local macro definitions established within env by macrolet
(page 93) will be considered. If only form is given as an argument, then the environment is
effectively null, and only global macro definitions (as established by defmacro (page 118)) will
be considered.

Macro expansion is carried out as follows. Once macroexpand-1 has determined that a symbol
names a macro, it obtains the expansion function for that macro. The value of the variable
*macroexpand-hook* (page 124) is then called as a function of three arguments: the

" expansion function, the form, and the environment env. The value returned from this call is taken
to be the expansion of the macro call. The initial value of *macroexpand-hook* is funcall
(page 89), and the net effect is to invoke the expansion function, giving it form and env as its two
arguments. (The purpose of *macroexpand-hook* is to facilitate various techniques for
improving interpretation speed by caching macro expansions.)

The evaluator expands macro calls as if through the use of macroexpénd- 1; the point is that
eval (page 267) also uscs *macroexpand-hook®. ’

macroexpand is similar to macroexpand-1, but repeatedly expands form until it is no longer a
macro call. (In effect, macroexpand simply calls macroexpand-1 repeatedly until the second
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value returned is ni1.) A second value of t or ni1 is returned as for macroexpand-1, indicating’

whether the original form was a macro call.

*macroexpand-hook* [Variable]

The value of *macroexpand-hook* is used as the expansion interface hook by

- macroexpand-1 (page 123).
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Chapter9

Declarations

Declarations allow you to specify extra information about your program to the LISP system. All
declarations are completely optional and correct declarations do not affect the meaning of a correct program,
with one exception: special declarations do affect the interpretation of variable bindings and references,
and so must be speciﬁed where appropriate. All other declarations are of an advisory nature, and may be used
by the LISP system to aid you by performing extra error checking or producing more efficient compiled code.
Declarations are also a good way to add documentation to a program.

Note that it is considered an error for a program to violate a declaration (such as a type declaration), but
an implementation is not required to detect such errors (though such detection, where feasible, is to be
encouraged). o

9.1. Declaration Syntax

declare {decl-spec}* : [Special form)
A declare form is known as a declaration. Declarations may occur only at the beginning of the
bodies of certain special forms; that is, a declaration may occur only as a statement of such a special
form, and all statements preceding it (if any) must also be declare forms (or possibly
documentation strings, in some cases). Declarations may occur in lambda-expressions, and in the
following forms: ’ L
defmacro - (page 118) dotimes (page 104)

defsetf ' (page 84) flet (page 93)
deftype (page 41) Tabels ' (page 93)
defun ~ (page 55) Tet (page9l)
do* (page 100) let* (page 92)
do-all-symbols (page 153) locally (page 127)
do-external-symbols - (page 153) macroiet (page 93)
do-symbols (page 152) multiple-value-bind (page112)

do : (page 100) prog (page 108)
dolist (page 104) prog®* (page 108)

It is an error to attempt to evaluate a declaration. Those special forms that permit declarations to
appear perform explicit checks for their presence.

-125 -
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Compatibility note: In MacCLisp, declare is aspecial form that does nothing but return the symbol declare

“as its result. The interpreter knows nothing about declarations, but just blindly evaluates them, effectively
ignoring them. The MacLisp compiler recognizes declarations, but processes them: simply by evaluating the
subforms' of the' declaration in- the compilation context. In Common Lisp it is- impertant that both the:
interpreter and: compiler recognize declarations (especially special declarations) and treat them: consistently,
and so the rules about the structure and use of declarations have been made corisiderably more stringent. The
odd tricks played in MACLISP by writing arbitrary forms to. be evaluated within a dec Fare form are better
done in both MAcLisp and CommoN Lisp by using eval-when (page 57).

It is permissible for a macro call to expand into a declaration and be recognized as such, provided
that the macro call appears where a declaration may legitimately appear. (However, a macro call
may not appear in place of a decl-spec.)

Each decl-spec is a list whose car is a symbol specifying the kind of declaration to be made.
Declarations may be divided into two classes: those that concern thie bindings of variables, and

those that do not. (The special declaration is the sole exception: it effectively falls into both’

classes; as explained below.) Those that concern variable bindings apply only to the bindings made
by the form at the head of whose body they appear. For example, in
(defun foo (x)
(declare (type float x)) ...
(1e'; ((x *a)) ...)
the type declaration applies only to the outer binding of x, and not to the binding made in the
let.
Compatibility note: This is different from MAcLIsP, in which type declarations are pervasive.

" . Declarations that do not concern themselves with vatiable bindings are pervasive, affecting all code

in the bbdy of the special form. As an example of a pervasive declaration,

(defun foo (x y) (declare (notinline floor)) ...)
advises that everywhere within the body of foo the function f1oor should not be open-coded, but
called as an out-of-line subroutine.

Some special forms contain pieces of code that, properly speaking, are not part of the body of the
special form. Examples of this are initialization forms that provide values for bound variables, and
the result forms of iteration constructs. In-all cases such additional code is within the scope of any
pervasive declarations appearing before the body of the special form. Non-pervasive declarations
have no effect on such code, except (of course) in those situations where the code is defined to be
within the scope of the variables affected by such non-pervasive declarations.
For example:
(defun few (x &optional (y *print-circle*))

(declare (special *print-circle*))

cee) ’ :
The reference to *print-circle* in the first line of this examme is special because of the
declaration in the second line. | | | ’ -
For example:

@
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(defun nonsense (k x z)
(declare (type integer k))
(let ((j (foo-k x))
(x (* k k))) |
(declare (inline foo) (special x z))
(foo x j 2))) |
In this rather nonsensical example, k is declared to be of type integer. The in1ine declaration
applies to the inner call to foo, but not to the one to whose value j is bound, because that is code in
the binding part of the Tet. The special declaration of x causes the 1et form to make a special
binding for x, and causes the reference to x in the body of the let to be a special reference.
However, the reference to x in the first call to foo is a local reference, not a special one. The
special declaration of.z causes the reference to z in the call to foo to be a special reference; it
will not refer to the parameter to nonsense named z, because that parameter binding has not
been declared to be special. (The special declaration of z does not appear in the body of the

defun, but in an inner constructs, and therefore does not affect the binding of the parameter.)

locally {declaration}* {form}* [Macro)
This special form may be used to make local pervasive declarations where desired. It does not bind
any variables, and so cannot be used meaningfully for declarations of variable bindings. (Note that
the special declaration may be used with Tocally to pervasively affect references to (rather
than bindings of) variables.)
For example: , '
{(1ocally (declare (inline floor) (notinline car cdr))

(declare (optimize space))
(floor (car x) (cdr y)))

proclaim deckspec A [Function]
The function proclaimtakes a decl-spec as its argument and puts it into effect globally. (Such a
global declaration is called a proélamalion.) Any variable names mentioned are assumed to refer to
the dynamic values of the variable. For example, the proclamation

(proclaim ’(type float tolerance))

once executed, specifies that the dynamic value of tolerance should always be a floating-point
number. Similarly, any function names mentioned are assumed to refer to the global function
definition. '

A proclamation constitutes a universal declaration, always in force unless locally shadowed. ¢

For example: ' '
(proclaim '(inline floor))

advises that f1oor should normally be open-coded in-line by the compiler (but in the situation
(defun foo (x y) (declare (notinline floor)). ...)

it will be compiled out-of-line anyway in the body of foo, because of the shadowing local

declaration to that effect).

As a special case (so to speak), proclaim treats a special declaration-form as applying to -all
bindings as well as to all references of the mentioned variables. For example, after
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(proclaim '(special x))
then in a function definition such as

(defun example (x) ...)
the parameter x will be bound as a special (dynamic) variable rather than as a lexical (static)
variable. This facility should be used with caution. The usual way to define a globally special
variable is with defvar (page 56) or defparameter (page 56).

1+

9.2. Declaration Specifiers

Hereiiis a list of valid declaration specifiers for use in declare. A construct is said to be “affected” by a
declaration if it occurs within the scope of a declaration.

special

L]

(special varl var2 ...) specifies that all of the variables named are to be considered
special. This specifier affects variable bindings, but also pervasively affects references. All
variable bindings affected are made to be dynamic bindings, and affected variable
references refer to the current dynamic binding rather than the current local binding.

For example:
(defun hack (thing *mod*) ; The binding of the parameter
(declare (special *mod*)) ; *mod* isvisible to hack1,
(hackl (car thing))) ; butnotthatof thing.

(defun hackl (arg)
(declare (special *mod*)) ;Declare referencesto *mod*
; within hack 1 to be special.
(if (atom arg) *mod*
: (cons (hackl (car arg)) (hackl (cdr arg)))))
Note that it is conventional, though not required, to give special variables names that begin
and end with an asterisk.

A épec ial declaration does not pervasively affect bindings. Inner bindings of a variable
implicitly shadow a special declaration, and must be explicitly re-declared to be special.
(However, a special proclamation does pervasively affect bindings; this exception is

~ made for reasons of convenience and compatibility with MACLISP.)

For example: ‘
' (proclaim '(special x)) . ; x is always special.

(defun example (x y)
(declare (special y))
(Tet ((y 3) (x (* x 2)))
(print (+ y (locally (declare (special y)) y)))
{(let ((y 4)) (declare (special y)) (foo x))))
In the contorted code above, the outermost and innermost bindings of y are special, and
therefore dynamically scoped, but the middle binding is lexically scoped. The two
arguments to + are different, one being the value (which is 3) of the lexically bound
variable y, and the other being the value of the special variable named y (a binding of
which happens, coincidentally, to lexically surround it at an outer level). All the bindings
of x and references to x are special, however, because of the proclamation that x is
(always) special. '

o
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type

type

ftype

function

inline

As a matter of style, use of special proclamations should be avoided. The defvar
(page 56) and defparameter macros are the conventional means for proclaiming special
variables in a program.

(type tpe varl var2 ...) affects only variable bindings, and spccifies that the
variables mentioned will take on values only of the specified type. In particular, values
assigned to the variables by setq (page 76), as well as the initial values of the variables,
must be of the specified type.

(zype varl var2 ...) is an abbreviation for (type type varl var2 ...) provided
that fype is one of the symbols appearing in Table 4-1 (page 36).

(ftype type function-name-1 function-name-2 ...) specifies that the named .
functions will be of the functional type type.
For example:

(declare (ftype (function (integer 1list) t) nth)

(ftype (function (number) float) sin cos))

Note that rules of lexical scoping are observed; if one of the functions mentioned has a
lexically apparent local definition (as made by flet (page 93) or 1abels  (page 93)),
then the declaration applies to that local definition and not to the global function
definition.

(function name arglist result-typel resuIt-lypéZ ... ) is entirely equivalent to
(ftype (function arglist result-typel result-type2 ...) name)
but may be more convenient for some purposes.

For example:

(declare (function nth (integer 1list) t)
(function sin (number) float)
(function cos (number) flgcat))

The syntax mildly resembles that of defun (page 55): a function name, then an argument

~ list, then a specification of results.

Note that rules of lexical scoping are observed; if one of the functions mentioned has a
lexically apparent local definition (as made by f1et (page 93) or 1abels (page 93)),
then the declaration applies to that local definition and not to the global function
definition.

(inline functionl function? ...) specifies that it is desirable for the compiler to
open-code calls to the specified functions; that is, the code for a specified function should
be integrated into the calling routine, appearing “in line”, rather than a procedure call
appearing there. This may achieve extra speed at the expense of debuggability (calls to
functions compiled in-line cannot be traced, for example). This declaration is pervasive.
Remember that a compiler is free to ignore this declaration.

Note that rules of lexical scoping are observed; if one of the functions mentioned has a
lexically apparent local definition (as made by flet (page 93) or tabels (page 93)),
then the declaration applies to that local definition and not to the global function
definition.
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(notinline functionl function2 ...) specifies that it is undesirable to compile the
specified functions in- lme This declaranon is pervasive. A compiler is not free to 1gnore
this chlaratlon

Note that rules of lexical scoping are observed; if one of the functions mentioned haé a
lexically apparent local definition (as made by flet (page 93) or Tabels (page 93)),
then the declaration applies to that local definition and not to the global function
definition. |

!
(ignore varl var2 ... varn) affects only variable bindings, and specifies that Lhe
bindings of the specified variables are never used. It is desirable for a compiler to 1ssue a
warning if a variable so declared is ever referred to or is also declared special, or if a
variable is lexical, never referred to, and not declared to be ignored. i
(optimize (qualityl valuel) (quality? value?)...) advises the compiler that eai:h
quality should be given attention according to the specified corresponding value. A quality
is a symbol; standard qualities include speed (of the object code), space (both code size
and run-time space), safety (run-time error checking), and compilation-speed -
(speed of the compilation process). Other qualitics may be recognized by particular
implementations. A value should be a non-negative integer, normally in the range 0 to!3.
The value 0 means that the quality is totally unimportant, and 3 that the qualityé is
extremely important; 1 and 2 are intermediate values, with 1 the “normal” or “usual”
value. One may abbreviate “(quality 3)” to simply “quality”. This declaration; is
pervasive.

For example:

(defun often-used-subroutine (x y)
(declare {optimize (safety 2)))
(error-check x y)

(hairy-setup x)
(locally
;3 This inner loop really needs to burn
(declare (optimize speed))
(do ((i 0 (+ 1 1))
(z x (cdr 2)))
((null 2))
(declare (fixnum i)))))

(declaration namel name2 ...) advises the compiler that each namejis a valid But
non-standard declaration name. The purpose of this is to tell one compiler not to issue
warnings for declarations meant for another compiler or other program processor. This
kind of declaratwn may be used only as a proclamation.

For example:
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(proclaim ’(declaration author
' target-language
target-machine))

(proclaim ’(target-language ada))
(proclaim '(target-machine IBM-650))

(defun strangep (x)
(declare (author "Harry Tweeker"))
(member x '(strange weird odd peculiar)))

An implementation is free to support other (implementation-dependent) declaration specifiers as well. On
the other hand, a COMMON LISP compiler is free to ignore entire classes of declaration specifiers (for example,
implementation-dependent declaration specifiers not supported by that compiler’s implementation!), except
for the declaration declaration specifier. Compiler implementors are encouraged, however, to program
the compiler to issue by default a warning if the compiler finds a declaration specifier of a kind it never uses.
Such a warning is required in any case if a declaration specifier is not one of those defined above and has not
been declared in a declaration declaration. '

9.3. Type Declaration for Forms

Frequently it is useful to declaie that the value produced by the evaluation of some form will be of a
particular type. Using dec1are one can declare the type of the value held by a bound variable, but there is
no easy way to declare the type of the value of an unnamed form. For this purpose the the special form is
defined: (the fype form) means that the value of form is declared to be of type type.

the value-type form ) [Special form)
The form is evaluated; whatever it produces is returned by the the form. In addition, it is an error
if what is produced by the form does not conform to the data type specified by value-type (which is
not evaluated). (A given implementation may or may not actually check for this error.
Implementations are encouraged to make an explicit error check when running interpretively.) In
effect, this declares that the user undertakes to guarantee that the values of the foml will always be

of the specified type.

For example:
(the string (concatenate x y)) : The result will be a string.
(the integer (+ x 3)) . ; The result of + will be an integer.
(+ (the integer x) 3)  ;The value of x will be an integer.

(the (complex rational) (* z 3))
(the (unsigned-byte 8) (logand x mask))
The values type specifier may be used to indicate the types of multiple values:

{the (values integer integer) (floor x y))
(the (values string t)
(gethash the-key the- strmg table))
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Compatibility note: This construct is borrowed from the INTERLISP DECL package; INTERLISP, howe\?er, allows

an implicit progn after the type specifier rather than just a single form. The MAcCLisP fixnum-ident it y

and flonum-ident ity constructs can be expressed as (the fixnum x) and (the singie-float x).
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Chapter 10
Symbols

A LISP symbol is a data object that has three user-visible components:

e The property list is a list that cffecuvely provides each symbol with many modifiable named
components.

o The print name must be a string, which is the sequence of characters used to identify the symbol.
Symbols are of great use because a symbol can be located given its name (typed, say, on a
keyboard). Itis ordinarily not permitted to alter a symbol’s print name.

o The package cell must refer to a package object. A package is a data structure used to locate a
symbol given its name. A symbo] is uniquely identified by its name only when considered relative
to a package. A symbol may appear in many packages, but it can be owned by at most one
package. The package cell points to the owner, if any.

A symbol may actually have other components as well for use by the implementation. One of the more
important uses of symbols is as names for program variables; it is frequently desirable for the implementor to
use certain components of a symbol to implement the semantics of variables. See symbol-value (page
74) and symbo1-function (page 75). However, there are several possible implementation strategies, and
so such possible components are not described here.

10.1. The Property List

Since its inception, LISP has associated with each symbol a kind of tabular data structure called a property
list (plist for short). A property list contains zero or more entries; each entry associates with a key (called the
indicator), which is typically a symbol, an arbitrary LISP object (called the value or, sometimes, the property).
There are no duplications among the indicators;" a property-list may only have one property at a time with a
given name. In this way, given a symbol and an indicator (another symbol), an associated value can be
retrieved.

A property list is very similar in purpose to an association list. The difference is that a property list is an
object with a unique identity; the operations for adding and removing property-list entries are destructive
operations that alter the property-list rather than making a new one. Association lists, on the other hand, are
normally augmented non-destructively (without side effects), by adding new entries to the front (see acons
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(page 229) and pairlis (page 229)).

A property list is implemented as a memory cell containing a list with an even number (possibly zero) of
elements. (Usually this memory cell is the property-list cell of a symbol, but any memory cell acceptable to
setf (page 78) can be used if getf (page 135)and remf (page 136) are used.) Each pair of elements in
the list constitutes an entry; the first item is the indicator and the second is the value. Because property-list
functions are given the symbol and not the list itself, modiﬁcati‘ons to. the property list can be recorded by
storing back into the property-list cell of the symbel.

When a symbol is created, its property list is initially empty. Properties are created by using get (page
134) within a setf (page 78) form.

CoMMON LISP does not use a symbol’s property list as extensively as earlier LISP implementations did.
Less-used data, such as compiler, debugging, and documentation information, is kept on property lists in
COMMON LISP.

Compatibility note: In older Lisp implementations, the print name, value, and function definition of a symbol were kept on
its property list. The value cell was introduced into MACLISP and INTERLISP to speed up access to variables; similarly for the
print-name cell and function cell (MAcLisp does not use a function cell). Recent LisP implementations such as SPICE Lisp,
Lisp Machine Lisp, and NiL have introduced all of these cells plus the package cell. None of the MaCLIsP system property
names (expr, fexpr, macro, array, subr, Isubr, fsubr, and in former times value and pname) exist in COMMON
Lisp. .

Compatibility note: In CoMMON Lisp, the notion of “disembodied property list” introduced in MacLisp is climinated. It
tended to be used for rather kludgy things, and in Lisp Machine Lisp is often associated with the use of locatives (to make it
“off by one” for searching alternating keyword lists). In COMMON LisP special setf-like property list functions are
introduced: getf (page 135)and remf (page 136).

get symbol indicator &optional default , [Function}
get scarches the property list of symbol for an indicator eq to indicator. The first argument must be
a symbol. If one is found, then the corresponding value is returned; otherwise default is returned.
If default is not specified, then ni1 is used for default. Note that there is no way to distinguish an
absent property from one whose value is default.
(get x y) <=> (getf (symbol-plist x) y)
Suppose that the property list of foo is (bar t baz 3 hunoz "Huh?"). Then, for example:
(get "foo 'baz) s> 3 ' ‘
(get ’foo ’hunoz) => "Huh?"
(get 'foo ’zoo) => nil :
Compatibility. note: In MACLIsP; the first argument to get could be a list, in which case the cdr of the
list, was. treated: as, a so-called: “disembodied property list”. It could aiso be any, other object, in which
case get would always return, nil. In CoMMON Lisp, it is an, error to give anything but a symbol as
the first argument to get. . ‘

setf (page 78) may be used with get to create a new ptfopetty-»value- pair, possibly replacing an
old pair with the same property name.
For example:

(get ’'clyde 'species) => nil

(setf (get *clyde ’'species) ’'elephant) => elephant

andnow (get 'clyde 'species) => elephant
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~ The defaulr argument may be specified to get in this context; it is ignored by setf, but may be

useful in such macros as push that arerclated to setf:
(push item (get sym 'token-stack '(initial-item)))
means the approximately the same as _
(setf (get sym 'token-stack ’'(initial-item))
(cons item (get sym ’'token-stack ’'(initial-item))))
which in turn would be treated as simply

(setf (get sym 'token-stack)
(cons item (get sym 'token-stack ’'(initial-item))))

remprop syMboI indicator - [Function]

This removes from symbol the property with an indicator eq to indicator, by splicing it out of the
property list. It returns ni1 if no such property was found, or non-n1i1 if a property was found.
(remprop x y) <=> (remf (symbol-plist x) y)
For example: '
If the property list of foo was
(color blue height 6.3 near-to bar)
then
- (remprop 'foo ’'height) => t
and foo’s property list would have been altered to be
(color blue near-to bar)

symbol-plist symbol [Function)

This returns the list that contains the property pairs of symbol; the contents of the property list cell
are extracted and returned.

Note that using get on the result of symbol1-p1ist does not work. One must give the symbol
itself to ge t, or use the function getf (page 135).

setf (page 78) may be used with symbo1-p1ist to destructively replace the entire property list
of a symbol. This is a relatively dangerous operation, as it may destroy important information that
the implementation may happen to store in property lists. Also, care must be taken that the new
property list is in fact a list of even length. ’

getf place indicator &optional dejbult [Function]

getf searches the property list stored in place for an indicator eq to indicator. If one'is found, then
the corresponding value is returned; otherwise default is returned. If default is not specified, then
ni1 is used for default. Note that there is no way to distinguish an absent property from one whose
value is default. Often place is computed from a generalized variable acceptable to setf (page
78).

setf (page 78) may be used with getf, in which case the place must indeed be acceptable as a
place to setf. The effect is to add a new property-value pair, or update an existing pair, in the
property list kept in the place. The default argument may be specified to getf in this context; it is
ignored by setf, but may be useful in such macros as push that are related to setf. See the
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description of get (page 134) for an example of this.

remf place indicator [Macro]
This removes from the property list stored in place the property with an indicator eq to indicator,
by splicing it out of the property list. It returns ni1 if no such property was found, or some
non-n1i1 value if a property was found. The form place may be any generalized variable acceptable
o setf (page78). Seeremprop (page 135).

get-properties place indicator-list [Function]
get-properties islike getf (page 135), except that the second argument is a list of indicators.
get-properties searches: the property list stored in place for any of the indicators in
indicator-list, until it finds the first property in the property list whose indicator is one of the
elements of indicator-list. Normally place is computed from a generalized variable acceptable to
setf (page78). .

get-properties returns three values. If any property was found, then the first two values are -
the indicator and value for the first property whose indicator was in indicator-list, and the third is
that tail of the property list whose car was the indicator (and whose cadr is therefore the value). If
no property was found, all three values are ni1. Thus the third value serves as a flag indicating
success or failure, and also allows the search to be restarted after the property found if desired.

10.2. The Print Name

Every symbol has an associated string called the print name. This string is used as the external
representation of the symbol: if the characters in the string are typed in to read (with suitable escape
conventions for certain characters), it is interpreted as a reference to that symbol (if it is interned); and if the
symbol is printed, print types out the print name. For more information, see the section on the reader (see
section 22.1.1, page 280) and printer (see section 22.1.6, page 303).

symbol-name sym v ‘ [Function]
This returns the print name of the symbol sym. ’
For example: »
(symbol-name 'xyz) => "XYZ"
It is an extremely bad idea to modify a string being used as the print name of a symbol. Such a
modification may confuse the function read (page 310) and the package system tremendously.
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10.3. Creating Symbols

Symbols can be used in two rather different ways. An inferned symbol is one that is indexed by its print
name in a catalogue called a package. Every time anyone asks for a symbol with that print name, he gets the
same (eq) symbol. Every time input is read with the function read (page 310), and that print name appears,
it is read as the same symbol. This property of symbols makes them appropriate to use as names for things
and as hooks on which to hang permanent data objects (using the property list, for example).

Interned symbols are normally created automatically; the first time someone (such as the function read)
asks the package system for a symbol with a given print name, that symbol is automatically created. The
function to use to ask for an interned symbol is intern (page 150), or one of the functions rclated to
intern.

Although interned symbols are the most commonly used, they will not be discussed further here. For more
information, see chapter 11. -

An uninterned symbol is a symbol used simply as a data object, with no special cataloguing (it belongé to no
particular package). An uninterned symbol is printed as “#:” followed by its print name. The following are
some functions for creating uninterned symbols.

make-symbol print-name : {Function]
(make-symbol print-name) creates a new umntemed symbol whose print name is the string
print-name. The value and function bindings will be unbound and the property list will be empty.

The string actually installed in the symbol’s print-name component may be the given string
print-name or may be a copy of it, at the implementation’s discretion. The user should not assume
that (symbol-name (make-symbol x)) is eq to x, but also should not alter a string once it

has been given as an argument to make-symbo1.

Implementation note: An implementation might choose, for example, to copy the string to some read-only
area, in the expectation that it will never be altered.

Compatihility note: Lisp Machine LisP uses the second argument for an odd flag related to areas. It is unclear
what NiL does about this.

copy symbol sym &optional copy-props [Function]
This returns a new uninterned symbol with the same print name as sym If copy-props is non-ni1,
then the initial value and function-definition of the new symbol will be the same as those of sym,
and the property list of the new symbol will be a copy of sym’s. If copy-propsis ni1 (the default),
then the new symbol will be unbound and undefined, and its property list will be empty.

gensym &optional x [Function]
gensym invents a print name, and creates a new symbol with that print name. It returns the new,
uninterned symbol. '

The invented print name consists of a prefix (which defaults to "G"), followed by the decimal
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representation of a number. The number is increased by one every time gensym is called.

If the argument x is present and is an integer, then x must be non-ncgative, and the internal counter
is set to x for future use; otherwise the internal counter is incremented. If x is a string, then that
string is made the default prefix for this and future calls to gensym. After handling the argument,
gensym creates a symbol as it would with no argument.

For example:
(gensym) => G7
(gensym "F00- ") => FOO-8
(gensym 32) => F00-32
(gensym) => F00-33
(gensym "GARBAGE-") => GARBAGE-34

gensym is usually used to create a symbol that should not normally be seen by the user, and whose
print name is unimportant, except to allow casy distinction by eye between two such symbols. The:
optional argument is rarely supplied. The name comes from “generate symbol”, and the symbols

produced by it are often called “gensyms”.

Compatibility note: In earlier versions of Lisp, such as MACLisP and INTERLISP, the print name of a gensym
was of. fixed length, consisting of a single letter and a fixed-length decimal representation with leading zeros if
necessary, for example “G0007”. This convention was motivated by an implementation consideration, namely
that the name should fit into a single machine word, allowing a quick and clever implementation. Such
considerations are less relevant in CoMmoN Lisp. The consistent use of a variable-length prefix can make it
easier for the programmer, when debugging, to determine what code generated a particular symbol. The
climination of the fixed-length decimal representation prevents the same namne from being used twice unless
the counter is explicitly reset.

Ifit is desirable for the generated symbols to be interned, and yet guaranteed to be symbols distinct

from all others, then the function gentemp (page 138) may be more appropriate to use.

gentemp &optional prefix package _ : [Function]

gentemp, like gensym (page 137), creates and returns a new symbol. gentemp differs from
gensym in that it interns the symbol (see intern (page 150)) in the package (which defaults to
the current package; see *package* (page 149)). gentemp guarantees the symbol will be a new
one not already existing in the package; it does this by using a counter as gensym does, but if the
generated symbol is not really new then the process is repeated until a new one is created. There is.
no provision for resetting the geﬁtemp counter. Also, the prefix for gentemp is not remembered
from one call to the next; if prefix is omitted, the default prefix “T” is used. :

symbol-package sym . [Function}

Given a symbol sym, symbo1-package returns the contents of the package cell of that symbol.
This will be a package object ornil.

keywordp object ’ ' [Function]

The argument may be any LISP object. The predicate keywordp is true if the argument is a

.symbol and that symbol is a keyword (that is, belongs to the keyword package). Keywords are

those symbols that are written with a leading colon. Every keyword is a constant, in the sense that it
always evaluates to itself. See constantp (page 269). '
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Chapter 11
Packages

11.1. Overview

One problem with earlier LISP systems is the use of a single name space for all symbols. In large Lisp
systems, with modules written by many different programmers, accidental name collisions become a serious
problem. COMMON LISP addresses this problem through the package system, derived from an earlier package
system developed for Lisp Machine LISP [20]. In addition to preventing name-space conflicts, the package
system makes the modular structure of large LISP systems more explicit.

A package is a data structure that establishes a mapping from print names (strings) to symbols. The package
thus replaces the “oblist” or “obarray” machinery of earlier LISP systems. At any given time one package is
current, and this package is used by the LISP reader in translating strings into symbols. The current package
is, by definition, the one that is the value of the global variable *package*. Itis possible to refer to symbols
in packages other than the current one through the use of package qualifiers in the printed representation of
the symbol. For example “foo:bar”, when seen by the reader, refers to the symbol whose name is bar in
the package whose name is foo. (Actually, this is true .only if bar is an external symbol of foo, that is, a
symbol that is supposed to be visible outside of foo. A reference to an internal symbol requires the
intentionally clumsier syntax “foo: :bar”.)

The string-to-symbol mappings available in a given package are divided into two classes, external and
internal. We refer to the symbols accessible via these mappings as being external and internal symbols of the -~
package in question, though really it is the mappings that are different and not the symbols themselves.
Within a given package a name refers to one symbol or to none; if it does refer to a symbol, then it is elther
external or internal in that package, but not. both

e RO

External symbols are part of the package’s public interface to other packages. These are supposed to be
chosen with some care and are advertised to users of the package. Internal symbols are for internal use only,
and these symbols are normally hidden from other packages. Most symbols are created as internal symbols;
they become external only if they appear explicitly in an expor t command for the package.

A symbol may appear in many packages. It will always have the same name wherever it appears, but it may

be external in some packages and internal in others. On the other hand, the same name (string) may refer to
different symbols in different packages. -
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Normally, a symbol that appears in one or more packages will be owned by one particular package, called

the home package of the symbol; that pack‘agc,is said to own the symbol. Every symbol has a component

called the package cell that contains a pointer to its home package. A symbol that is owned by some package
is said to be interned. Some symbols are not owned bv any package; such a symbol is said to be uninterned,
and its package cell contams nil.

Packages may be built up in layers. From the point of view of a package’s user, the package is a single
collection of mappings from strings into internal and external symbols. However, some of these mappings
may be established within the package itself, while other mappings are inherited from other packages via the
use-package construct. (The mechanisms responsible for this inheritance are described below.) In what
follows, we will refer to a symbol as beiﬁg accessible in a package if it can be referred to without a package
,quahﬁg when that package is current, regardless of whether the mapping occurs within that package or via
inheritance. We will refer to a symbol as being present in a package if the mapping is in the package itself and
is not inherited from somewhere else.

A symbdl is said to be interned in a package x if it is accessible in that package and also is owned (by either
that package or some other package). Normally all the symbols accessible in a package will in fact be owned
by some package, but the terminology is useful when discussing the pathological case of an accessible but
unowned (uninterned) symbol.

As a verb, to infern a symbol in a package means to cause the symbol to be interned in the package if it was
not already; this process is performed by the function intern (page 150). If the symbol was previously
unowned, then the package it is being interned in becomes its owner (home package); but if the symbol was
- previously owned by another package, that other package continues to own the symbol.

To unintern a symbol from the package means to cause it to be not present, and additionally to make the
symbol uninterned if the package was the symbol’s home package (owner); this process is performed by the
functionunintern (page151). '

11.2. Consistency Rules ‘

. Package-related bugs can be very subtle and confusing: things are not what they appear to be. The
COMMON Lisp package system is designed with a number of safety features to prevent most of the common
bugs that would otherwise occur in normal use. This may seem over-protective, but expenence with earlier
packag%systems has shown that such safety features are needed.

In dealing with the package system, it is useful to keep in mind the following consistency rules, which
remain in force as long as the value of *package* is not changed by the user or his code:

e Read-read consistency: Reading the same print name always gets you the same (eq) symbol.

o Print-read consistency:-An interned symbol always prints as a sequence of characters Lhat, when
read back in, yields the same (eq) symbol.
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o Print-print consistency: If two interned symbols are not eq, then their printed representations will
be different sequences of characters.

These consistency rules remain true in spite of any amount of implicit interning caused by typing in Lisp
forms, loading files, etc. This has the important implication that, as long as the current package is not
changed, results are reproducible regardless of the order of loading files or the exact history of what symbols
were typed in when. The rules can only be violated by explicit action: changing the value of *package®*,
forcing some action by continuing from an error, -or calling one of the “dangerous” functions unintern
(page 151), unexport . (page 151), shadow (page 152), shadowing-import (page 152), or
unuse-package (page152).

11.3. Package Names

Each package has a name (a string) and perhaps some nicknames. ' These are assigned when the package is
created, though they can be changed later. A package’s name should be something long and self-explanatory
like editor; there might be a nickname that is shorter-and easier to type, such as ed.

There is a single name space for packages. The function find-package (page 149) translates a package-
name or nickname into the associated package. The function package-name (page 150) returns the name
of a package. The function package-nicknames (page 150) returns a list of all nicknames for a package.
The function rename-package (page 150) removes a package’s current name and nicknames and replaces
them with new ones specified by the user. Package renaming is occasionally useful when, for development
purposes, it is desirable to load two versions of a package into the same LISP. One can load the first version,
rename it, and then load the other version, without getting a lot of name conflicts.

When the LISP reader sees a qualiﬁéd symbol, it handles the package-name part in the same way as the
symbol part with respect to' capitalization. Alphabetic characters in the package name are converted to upper
case unless preceded by the escape character *“\” or unless the package name is surrounded by “|” characters.
The lookup done by the find-package' function is case-sensitive, like that done for symbols. Note that
“|Foo|: |Bar|” refers to a symbol whose name is “Bar” in a package whose name is “Foo”. By contrast,
|Foo:Bar| refers to a seven-charactér symbol that has a colon in its name (as well as two upper-case letters
and four lower-case letters) and is interned in the current package. Following the convention used in this
manual for symbols, we will show ordinary package names as being in lower-case, even though the name
string is internally represented in upper case.

|

Most of the functions that require a package-name argument from the user accept either.a symbol or a
string. If the user supplies a symbol, its print-name will be used, and this will already have undergone
case-conversion by the usual rules; if the user supplies a string, he must be careful to capitalize the string so as
to match exactly the string that names the package. i C
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11.4. Translating Strings to Symbols -

The value of the special variable *package* must always be a package object (not a name). This is
referred to as the current package.

When the LISP reader has, by parsing, obtained a string of characters thought to name a symbol, that name
is looked up in the current package. This lookup may involve looking in other packages whose external
~ symbols are inherited by the current package (see below). If the name is found, the corresponding symbol is
returned. If the name is not found (that is, there is no symbol of that name accessible in the current package),
a new symbol is created for it and is placed in the current package as an internal symbol; moreover, the
current package becomes the owner (home package) of the symbol, and so the symbol becomes interned in
the current package. If the name is later read again while this same package is current, the same symbol will
then be found and returned. B '

Often it is desirable to refer to an external éyrnbol in some package other than the current one. This is done

through the use of a qdalified name, consisting of a package name, then a colon, then the name of the symbol. -

This causes the symbol’s name to be looked up in the specified package, rather than in the current one. For
example, “editor:buffer” refers to the external symbol named “buffer” accessible in the package
named “editor”, regardless of whether there is a symbol named “buffer” in the current package. If there
is no package named “editor”, or if no symbol named “buffer” is accessible in “editor”, or if
“buffer” is an internal symbol in “editor”, the LISP reader will signal a correctable error to ask the user
what he really wants to do. ' '

On rare occasions, a user may need to refer to an internal symbol of some package other than the current
one. Itis illegal to do this with the colon qualifier, since accessing an internal symbol of some other package is
usually a mistake. However, this operation is legal if you use a doubled colon “: :” as the separator in place
of the usual single colon. If“editor::buffer” is seen, the effect is exactly the same as reading “buffer”
with *package* temporarily rebound to the package whose name is “editor”. This special-purpose
qualifier should be used with caution. :

The package named keyword contains all keyword symbols used by the LISP system itself and by user-
written code. Such symbols must be easily accessible from any package, and name conflicts are not an issue
because these symbols are used only as labels and never to carry package-specific values or properties.
Because keyword symbols are used so frequently, CoMMON Lisp provides a special reader syntax for them.
Any symbol preceded by a colon but no package name (for example “: f0o”) is added to (or looked up in)
the ke yword package as an external symbol. The ke yword package is also treated specially in that
whenever a symbol is added to the keyword package, the symbol is always made external, and it is also
automatically declared to be a constant (see defconstant (page 56)) and made to have itself as its value.
This is why every keyword evaluates to itself. As a matter of style, keywords should always be accessed using
the leading-colon convention; you should never import or inh_erit.keywords into any other package. It is an
erTor to try to apply use-package to the keyword package.

Each symbol contains a package cell that is"»used to record the home package of the symbol, or ni1 if the
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symbol is uninterned. This ccll may be accessed by using the function s ymbol-package (page 138).
When an interned symbol is printed, if it is a symbol in the keyword package then it is printed with a
preceding colon; otherwise, if it is accessible (directly or by inheritance) in the current package, it is printed
without any qualification; otherwise, it is printed with the name of the home package as the qualifier, using

“, 9

:” as the separator if the symbol is external and “: :  if not.

A symbol whose package slot contains ni 1 (that is, has no home package) is printed preceded by “#:”. It
is possible, by the use of import (page 151) and unintern (page 151), to create a symbol that has no
recorded home package, but that in fact is accessible in some package. The system does not check for this
pathological case, and such symbols _will always be printed preceded by “#:”.

In summary, the following four uses of symbol qualifier syntax-are defméd: :

foo:bar When read, looks up “BAR” among the external symbols of the package named “F00”.
Printed when symbol bar is external in its home package foo and is not accessible in the
current package.

foo::bar When read, interns “BAR” as if “FO0” were the current package. Printed when symbol

bar is internal in its home package foo and is not accessible in the current package.

:bar When read, interns “BAR” as an external symbol in the keyword package, and make it
evaluate to itself. Printed when the home package of symbol bar is keyword.

#:bar When read, creates a new uninterned symbol named “BAR”. Printed when the symbol
bar is uninterned (has no home package), even in the pathological case that bar is
uninterned but nevertheless somehow accessible in the current package.

All other uses of colons within names of symbols are not defined by COMMON LISP, but are reserved for
implementation-dependent use; this includes names that end in a colon, contain two or more colons, or
consist of just a colon. '

11.5. Exporting and Importing Symbols

Symbols from one package may be made accessible in another package in two ways.

First, any individual symbol may be added to a package by use of the function import (page 151). The
form (import ’editor:buffer) takes the external symbol named buffer in the editor package
(this symbol was located when the form was read by the LISP reader) and adds it to the current package asan
internal symbol. The symbol is then present in the current package. The imported symbol is not
automatically exported from the current package, but if it is already present and external, that is not changed.
After the call to import it is possible to refer to buffer in the importing package without any qualifier.
The status of buffer in the package named editor is unchanged, and editor remains the home package
for this symbol. Once imported, a symbol is present in the importing package and can be removed only by

* callingunintern,
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- If the symbol is already present in the importing package, import has no effect. If a-distinct symbol with
the name buffer is accessible in the importing package (directly or by inheritance) then a correctable error
is signalled, as described in section 11.6, because import avoids letting one symbol shadow another.

A symbol is said to be shadowed by another one in some package if the first symbol would be accessible by
inheritance if not for the presence of the second symbol. If the user really wants to import a symbol without
the possibility of getting an error because of shadowing, he should use the function shadowing-import
(page 152). This inserts the symbol into the specified package as an internal symbol, regardless of whether
another symbol of the same name will be shadowed by this action. If a different symbol of the same name is
already present in the package, that symbol will first be uninterned from the package (see unintern (page
151)). The new symbol is added to the package’s ShadOWing-symbols list. shadowing-import should be
used with caution; It changes the state of the package system in such a way that the consistency rules do not -
hold across the change.

The second mechanism is provided by the function use-package (page 152). This causes a package to
inherit all of the external symbols of some other package. These symbols become accessible as internal
symbols of the using package. That is, they can be referred to without a qualifier while this package is
current, but they are not passed along to any other package that uses this package. Note that use-package,
unlike import, does not cause any new symbols to be present in the current package, but only makes them
accessible by inheritance. use-package checks carefully for name conflicts betwcen the newly imported
symbols and those already accessible in the importing package. This is described in detail in section 11.8,

Typically a user, working by default in the user package, will load a number of packages into his LiSP to-
provide an augmented working environment; then he will call use-package on each of these packages so
- that he can easily access their external symbols.

unusé—pack age undoes the effects of a previous use-package. The external symbols of the used
package are no longer inherited.. However, any symbols that have been imported into the using package
continue to be present in that package. :

There is no way to inherit the internal symbols of another package to refer to an internal symbol, you must
either make that symbol’s home package current, use a quahﬁer or import that symbol into the current
package. '

When intern or some other function wants to look up a symbol in a given package, it first looks for the
symbol among the external and internal symbols of the package itself; then it looks through the external
symbols of the used packages in some unspecified order. The order does not matter; according to the rules
for handling name conflicts (see below), if conflicting symbols appear in two-or more packages inherited by
package X, a symbol of this name must also appear in X itsclf as a shadowing symbol. Of course,
implementations are free to choose other, more efficient ways of implementing this search, as long as the
user-visible behavior is equivalent to what is described here.

The function export (page 151) takes a symbol that is accessible in some specified package (directly or by
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inheritance) and- makes it ‘an external symbol of that package. If the symbol is already accessible as an
external symbol in the package, export has no effect. If the symbol is directly present in the package as an
internal symbol, it is simply changed to external status. If it is accessible as an internal symbol via
use-package, the symbol is first imported into the package, then exported. (The symbol is then present in
the specified package whether or not the package continues to use the package through which the symbol was
originally inherited.) If the symbol is not accessible at all in the specified package, a correctable error is
signalled that, upon continuing, asks the user whether the symbol should be imported.

The function unexport (page 151) is provided mainly as a way to undo erroneous calls to export. It
works only on symbols that are directly present in the current package, switching them back to internal status.
Ifunexport is given a symbol that is already accessible as an internal symbol in the current package, it does
nothing; if it is given a symbol that is not accessible in the package at all, it signals an error,

11.6. Name Conflicts

A fundamental invariant of the package system is that within one package any particular name can refer to
at most one symbol. A name conflict is said to occur when there is more than one candidate symbol and it is
not obvious which one to choose. If the system does not always choose the same way, the read-read
consistency rule would be violated. For example, some programs or data might have been read in under a
certain mapping of the name to a symbol. If the mapping changes to a different symbol, and subsequently
additional programs or data are read, then the two programs will not access the same symbol even though
they use the same name. Even if the system did always choose the same way‘ a name conflict is likely to result
in a mapping from names to symbols different from what was expected by the user, causing programs to
execute incorrectly. Therefore, any time a name conflict is about to occur, an error is signalled. The user may
continue from the error and tell the package system how to resolve the conflict. '

Note that if the same symbol is acbessib-le to a package through more than one path, for instance as an
external of more than one package, or both through inheritance and through direct presence in the package,
there is no name conflict. Name conflicts occur only between distinct symbols with the same name.

" The creator of a package can tell the system in advance how to resolve a name conflict through the use of -
shadowing. Every package has a list of shadowing symbols. A shadowing symbol takes precedence over any
other symbol of the same name that would otherwise be accessible to the package. A name conflict involving
a shadowing symbol is always resolved in favor.of the shadowing symbol, without signalling an error (except
for one exception involving import described below). The functions shadow (page 152) and
shadowing-import (page 152) may be used to declare shadowing symbols. ‘

Name conflicts are detected when they become possible, that is, when the package structure is altered.
There is no need to check for name conflicts during every name lookup.

The functions use-package, import, and export check for name conflicts. use-package (page
152) makes the external symbols of the package being used accessible to the using package; each of these
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symbols is-checked for name conflicts with the symbols already accessible. import (page 151) adds a single
symbol to the internals of a package, checking for a name conflict with an existing symbol cither present in
the package of accessible toit. import signals a name conflict error even if the conflict is with a shadowing
symbol, the rationale being that the user has given two explicit and inconsistent directives. export (page
151) makes a single symbol accessible to all the packages that use the package from which the symbol is
exported. All of these packages are checked for name conflicts: (export s p) does (find=$ymbol
(symbol-name s) g) foreach package ¢in (package-used-by=-11st p). Note that in the usual case
of an export during the initial definition of a package, the result of package-used=by«Tist will be nil
- and the name conflict checking will take negligible time.

The function intern (page 150), which is the one used most frequently by the Lisp reader for looking up
names of symbols, does not need to do any name-conflict checking, because it never creates a new symbol if
there is aiready an accessible symbol with the name given.

shadow and shadowin g-import never signal a name-conflict error, because by calling these functions
the user has specified how any possible conflict is to be resolved. shadow does name-conflict checking to the
extent that it checks whether a distifict existing symbol with the specified name is accessible, and if so whether
it is directly present in the package or inherited; in the latter case a new symbol is created to shadow it.
shadowing-import does narhe-conflict checking to the extent that it checks whether a distinet existing
symbo! with the samc name is accessible; if so it is shiadowed by the new symbol, which implies that it must be
uninterned if it was dircctly present in the package.

unuse-package, unexport, and unintern (whern the symbol being uninternied is not a shadowing
symbol) do not need to do any natne-conflict checking, because they only remove qymLois from a package;
“they do not make any new symbols accessible.

Giving a shadowing symb%él to unintern can uncover a name conflict that had previously been resolved
by the shadowing. If package A uses packages B and C, A contains a shadowing symbol x, and B and C each
contain external symbols namied x, then removing the shadowing symbol x from A will reveal a name conflict
between b : x and ¢ : x if those two symbols are distinct. In this case unintern will signal an error.

Aborting from a name-conflict error leaves the original symbol accessible. Package functions always signal
name-conflict errors before making any change to the package structure. When multiple changes are to be
made, however, for example when export is given a list of symbols, it is permissible for the implementation
1o process each change separately, so that aborting from a name conflict caused by the secorid symbol in the
list will not unexport the first symbol in the list. However, abartmg from a name conflict error caused by
export of a single symbol will not leave that symbol accessible to some packages and inaccessible to others;
with tespect to each symbol processed, export behaves as if it were as an atomic operation.

- Contitiuing from a name-conflict etror should offer the user a chance to resolve the name conflict in favor
of either of the candidates. The package structure should be altered to reflect the ré%lﬁtlﬁn of the name
conflict, via shadawing import, unintern, or unexport.
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A name conflict in use-package between a symbol directly present in the using pzickage and an external
symbol of the used package may be resolved in favor of the first symbol by making it a shadowing symbol, or
in favor of the seccnd symbol by uninterning the first symbol from the using package. The latter resolution is
dangerous if the symbol to be uninterned is an cxternal symbol of the us’in'g package since it will cease to be
an external symbol. :

A name conflict in use-p;ack'age between two external symbols inherited by the using package from
other packages may be resolved in favor of either symbol by importing it into the using package and making it
a shadowing symbol.

A name conflict in export between the symbol being exported and a syinbol already present in a package.
that would inherit the newly-exported symbol may be resolved in favor of the exported symbol by
uninterning the other one, or in favor of the already-present symbol by making it a shadowing symbol.

A name conflict in export or unintern due to a package inheriting two distinct symbols with the same
name from two other packages may be resolved in favor of either symbol by importing it into the using
package and making it a shadowing symbol, just as with use-package. -

A name conflict in import between the symbol being imported and a $§ymbol inherited from some other
package may be rescived in favor of the syinbol being imported by making:it a shadowing symbol, or in favor
of the symbol atready accessible by not doing the import. A name conflict in import with a symbol
already present in the package may be resolved by uninterning that symbol, or by not doing the import.

Good user-interface style dictates that use-package and export, which can cause many name conflicts
simultaneously, first check for all of the name conflicts before presenting any of them to the user. The user
may then choose to resolve all of them wholesale, or to resolve each of them individually, the latter requiring -
a lot of interaction but permitting different conflicts to be resolved different ways.

Implementations may offer other ways of resolving name conflicts. For iristance, if the symbols that conflict
are not being used as objects, but only as names for functions, it may be possible to “merge” the two symbols
by putting the function definition onto both symbols. References to either symbol for purposes of calling a
function would be equivalent. A similar merging operation can be done for variable values and for things
stored on the property list. In Lisp Machine LISP, for example, one can also forward the value, function, and
property cells so that future changes to either symbol will propagate to the other one. Some other
implementations are able to do this with value cells, but not with property lists. Only the user can know
whether this way of resolving a name conflict is adequate, because it will work only if the use of two non-eq
symbois with the same name will not prevent the correct operation of his program. The value of offering
symbol-merging as a way of resolving name conflicts is that it can avoid the need to throw away the whole
LisP world, correct the package-definition forms that caused the error, and start over from scratch.
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11.7. Buiit-in Packages

At least the following packages are built into every COMMON LISP system:

1isp The package named 1isp contains the primitives of the COMMON LiSP system. Its
external symbols include all of the user-visible functions and global variables that are
present in the CoMMON LISP system, zuch as car, cdr, *package*, etc. Almost all other
packages will want to use lisp so that these symbols will be accessible without
- qualification.

user The user package is. by default, the current package at the time a COMMON LiSP system
starts up. This package uscs the 11 sp package.

keyword This package contains all of the keywords used by built-in or user-defined LISP functions.
Printed symbao! representations that start with a colon arc interpreted as referring to
symbols in this package. which are always external symbols. All symbols in this package
are treated as constants that evaluate to themselves., so that the user can type : foo instead
of ’ :foo.

syétem‘ This package name is rescrved to the implementation. Normally this is used to contain
names of impicinentation-dependeunt systera-interface functions. This package uses 1isp
and has the nickname sys.

11.8. Package System Functions and Variables

Some of the functions and variables below have been described earlier, but are included here for
completeness.

It is up to each implementation’s compiler to ensure that when a compiled file is loaded, all of the symbols
in the file end up in the same packages that they would occupy if the LiSP source file were loaded. In most
- compilers, this will be accomplished by treating certain package operations as though they are surrounded by
(eval-when (compile load eval) ...); see eval-whan (page 57). These operations are
make-package, in-package, shadow, shadowing-import, export, unexport, use-package,
:undse~pa~ckage. and import. To guaranteé proper compilation in all COMMON Lisp implementations,

- these functions should appear only at top level within a file. As a matter of style, it is suggested that each file
contain only one package, and that all of the package sctup forms appear near the start of the file. This is
discussed in more detail, with exampics, in section 11.10.

Implementation note: In the past. some Lisp compilers have read the entire file into Lisp before processing any of the forms.
Other compilers have arranged for the loader to do all of its intern operations before evaluating any of the top-level forms.
Neither of these techniques will work in a straightforward way in CoMMON Lisp because of the presence of multiple
packages. : : ' ' :

For the functions described here, all optional arguments named package default to the current value of
*package*. Where a function takes an argument that is cither a symbol or a list of symbols, an argument of
n1i1 is treated as an empty list of symbols. Any argument described as a package name may be either a string
or a symbol. If a symbol is supplied, its print-name will be uscd as the package name; if a string is supplied,
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the user must be take care to specify the same capitalization used in the package name, normally all-capitals.

*package* [Variable]

The value of this variable must be a package; this package is said to be the current package. The
initial value of *package* is the user package.

The function 1oad (page 351) rebinds *package* to its current value. If some form in the file
changes the value of *p.aCkage* during loading, the old value will be restored when the loading is
completed.

make-package package-name &key nicknames use [Function]

Creates and returns a new package with the specified package name. As described above, this
argument may be cither a string or asymbol. The :nicknames argument must be a list of strings
to be used as alternative names for the package. Once again, the user may supply symbols in place
of the strings, in which casc the print-names of the symbols are used. These names and nicknames
must not conflict with any existing package names; if they do, a correctable error is signalled.

The :use argument is a list of packages or the names (strings or symbols) of packages whose
external symbols are to be inherited by the new package. Thesc packages must already exist. If not
supplied, :use defaults to alist of onc package, the 11sp package.

in-package package-naime &key nicknames use ' [Function]

The in-package function is intended to be placed at the start of a file containing a subsystein that
is to be loaded into some package other than user. If there is not already a package named
package-name, this function is similar to make-package, except that after the new package is
created, *package* is set to it. This binding will remain in force until changed by the user
(perhaps with another in-package call), or until the *package* variable reverts to its old vaiue
at the completion of a Toad opefation.

If there is an existing package whose name is package-name, the assumption is that the user is
re-loading a file after making some changes. The existing package is augmented to reflect any new
nicknames or new packages in the :use list (with the usual error-checking) and *package* is
then set to this package.

find-package name - . [Function]

The name must be a string that is the name or nickname for a package. This argument may also be
a symbol, in which case the symbol’s print name is used. The package with that name or nickname
is returned; if no such package exists, find-package returns nil. The matching of names
observes case (asin string= (page 248)).

g
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package-name package V [Function]
The argument must be a package. This function returns the string that :names that package.

pvax:;k;a:ge ~-nicknames package [Function]
The argument must be a padiage This function returns the list of nickname strings for that
‘package, not including the primary:

rename-package package new-name &optional new-nicknames [Function]
The-old name and all of the old nicknames of peckage are-climinated and are replaced by new-name
- and new-nicknames. The new-name argument is a string .or symbol; the new-nickriames argument,

which defaults to ni 1, is a list of strings or symbols.

package-use-11ist package [Function]
A list-of other packages used by the argument package is returned.

package-used-by-1ist package , o [Function)
- A list of other packages that use the argument package is returned.

package-shadowing-symbols package [Function)
‘ A list is returned of symbols that have been declared as shadowing symbols in this package by
shadow or shadowing-import. All symbols on:thislist are present in the specified package.

list-all-packages ' [Function)
This function returns a list.of all packages that.currently exist in the LISP system.

intern string &optional package ‘ [Function)
The package, which defaults to the current package, is searched for a symbol with the name
specified by the string argument. This-search will include inherited symbols, as described in section
- 11.5. 1fasymbol with the specified name is found, it is returned. Ifno such symbol is found, one is
- created and is installed in the current package as.an internal symbol (as an external symbeol if the”
package is the keyword ;package); the current package becomes the home package of the created
symbol.

‘ Two values .are returned. The first is the symbol that was found or created. The second value is _
LLE if no pre-existing symbol was found, and takes on one of three values if a symbol was found:

sinternal  Thesymbol was directly presentin the package as.an internal symbol.
cexternal The symbol was directly present as an-external symbol.

~ :imherited The symbol was inherited via use-package (which implies that the symbol is
internal).
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Compatibility note: Conceptually, intern translates a string 10 2 symbol In MAcLise and several other
dialects of L1sp, intern can take either a string or a symbol as its argument; in the latter case, the symbol’s
print name is extracted and used as the siring. However, this leads to some confusing issues about what to do if | -
intern finds a symbol that is not eq to the argument symbol. To.avoid such confusion, CoMMON Lisk require |
the argument to be a string,

find-symbol string &optional package [Function]

This is identical to intern, but it never creates a new symbol. If a symbol with the specified name
is found in the current package, directly or by inheritance, the symbol found is returned as the first
value and the second value is as specified for intern. If the symboi is not accessible in the
specified package, both values are ni1.

unintern symbol &optional package [Function]

‘

export

If the specified symbol is present in the specified package, it is removed from this package, and also
from the package’s shadowing-symbols list if it is present there. Moreover, if package is the home
package for the symbol, the symbol is made to have no home package. Note that in some
circunistances the symbol may continue to be accessible in the speciﬁed package by inheritance.

_unintern returns t if it actually removed a symbol, and ni1 otherwise.

unintern should be used with caution. It changes the state of the package system in such a way

that the consistency rules do not hold across the change.
Compatibility note: The equivalent of this in MACLISP is remob.

symbols &optional package [Function]
The symbols argument should be a list of symbols, or possibly a single symbol. These symbols
become accessible as external symbols in package. See section 11.5 for details. export rewmns t.

By convention, a call to export listing all exported symbols is placed near the start of a file'to
advertise which of the symbols mentioned the file are intended to be used by other programs.

unexport symbols &optional package [Function]

import

The argument should be a }ist of symbols, or possibly a single symbol. These symbols become
internal symbols in package. It is an error to unexport a symbol from the keyword package. See
section 11.5 for details. unexport returns t. '

symbols &optional package _ [Function]
The argument should be a list of symbols, or possibly a single symbol. These symbols becorhe
internal symbols in package, and can therefore be referred to without having to use qualified-name
(colon) syntax. import signals a correctable error if any of the imported symbols has the same
name as some distinct symbol already accessible in the package. See section 11.5 for details.
import returns t. ‘
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shadowing-import symbols &optional package [Function]
This is like import, but it does not signal an error even if the importation of a symbol would shadow
some symbol already accessible in the package. In addition to being imported, the symbol is placed
on the shadowing-symbols list of package. See section 11.6.for details. shadowing-import
returns t. :

shadowing-import should be used with caution. It changes the state of the package system in
such a way that the consistency rules do not hold across the change.

shadow symbols &optional package ' [Function]
The argument should be a list of symbols, or possibly a single symbol. The print-name of each
symbol is extracted, and the current package is searched for a symbol of that name. If such a
symbol is present in this package (directly, not by inheritance) then nothing is done. Otherwise, a
new symbol is created with this print name, and it is inserted in the current package as an internal
symbol. The symbol is also placed on the shadowing-symbols list of package. See section 11.6 for
details. shadow returns t.

shadow should be used with caution. It changes the state of the package system in such a way that
the consistency rules do not hold across the change.

use-package packages-to-use &optwn al package [ Function]

’ The packages-to-use argument should be a list of packages or package names, or possibly a single
package or package name. These packages are added to the use-list of package if they are not there
already. All external symbols in the packages to use become accessible in package as internal
symbols. See section 11.5 for details. It is an error to try to use the keyword package.
use-package returns t. ‘ ' ‘

unuse-package packages-to-unuse &optional package : [Function)
The packages-to-unuse argument should be a list of packages or package names, or possibly a single
package or package name. These packages are removed from the use-list of package.
unuse-package returns t.

find-al1-symbols string-or-symbol [Function]
find-all-symbols searches every package in the LISP system for symbols whose print-name is
the specified string, and returns a list of such symbols. This search is case-sensitive. If the
argument is a symbol, its print-name supplies the string to be searched for.

do-symbols (var [package [result-form]]) {declaration}* {tag | statement}* [Macro]
do-symbols provides straightforward iteration over the symbols of a package. The body is
performed once for each symbol accessible in the package, in no particular order, with the variable
var bound to the symbol. Then result-form (a single form, not an implicit progn) is evaluated, and
the result is the value of the do-symbols form. (When the result-form is evaluated, the control
variable var is still bound, and has the value ni1.) If the result-form is omitted, the result is ni1.
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return (page 99) may be used to terminate the iteration prematurely. If execution of the body
affects which symbols are contained in the package, other than possibly to remove the symbol
currently the value of var by using unintern, the effects are unpredictable.

do-external-symbols (var [package [resz)ll]] ) {declaratidn}* {tag | statement}* [Aacro]
do-external-symbols is just like do-symbo1s, except that only the external symbols of the
specified package are scanned.

do-all-symbols (var [result-form]) {declaration}* {tag | statement}* [Macro)
This is similar to do-symbo1s, but executes the body once for every symbol contained in every
package. (This will not process every symbol whatsoever, because a symbol not accessible in any
package will not be processed. Normally uninterned symbols are not accessible in any package.) It
is not in general the case that each symbol is processed only once, because a symbol may appear in
many packages.

11.9. Modules

A module is a COMMON LISP subsystem that is loaded from one or more files. A module is normally loaded
as a single unit, regardless of how many files are involved. A module may consist of one package or several
packages. The file-loading process is necessarily implementation-dependent, but COMMON LiSP provides
some very simple portable machinery for naming modules, for keepmg track of which modules have been
loaded, and for loading modules as a unit. :

*modules* ’ v : [Variable]
The variable *modules* is a list of names of the modules that have been loaded into the Lisp
system so far. This list is used by the functions provide and require.

provide module-name [Function]

require module-name &optional pathname ' [Function]
Each mogule has a unique name (a string). The provide and require functions accept either a
string or a symbol as the module-name argument. If a symbol is provided, its print name is used as
the module name. If the module comnsists of a single package, it is customary for the package and
module names to be the same.

The provide function adds a new module name to the list of modules maintained in the variable
*modules*, thereby indicating that the module in question has been loaded.

The require function tests whether a module is already present (using a case-sensitive
comparison); if the module is not present, require proceeds to load the appropriate file or set of
files. The pathname argument, if present, is a single pathname or a list of pathnames whose files are
to be loaded in order, left to right. If the pathname argument is ni1 or is not provided, the system
will attempt to determine, in some system-dependent manner, which files to load. This will
typically involve some central registry of module names and the associated file-lists.
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Implementation note: One wéy to implement such a registry on many operating systems is simply to use a
distinguished “library™ dircctory within the file system, where the name of each file is the same as the module it
contains.

i1y Lisp init file for I. Newton.
:;: Set up the USER package the way I like it.

(require ’'calculus) ;I use CALCULUS a Tot. Load it.
(use-package 'calculus) ;Get easy access to its
; exported symbols.

(require 'newtonian-mechanics) ;Same thing for NEWTONIAN-MECHANICS.
(use-package ’'newtonian-mechanics)

733 I just want a few thing from RELATIVITY,
;33 and other things conflict.
73: Import only what I need into the USER package.

érequire 'relativity)
(import ’(relativity:speed-of-Tight
relativity:ignore-small-errors))

:+s These are worth loading, but T will use qualified names,
i3 such as PHLOGISTON:MAKE-FIRE-BOTTLE, to get at any symbols
;3: I might need from these packages.

(require ’'phlogiston)
(require ’alchemy)

;33 End of Lisp init file for I. Newton.
Table 11-1: Example of an “Initialization File”

11.10. An Example T

Most users will want to load and use packages but will never need to build one. Often, a user will load a
number of packages into the user package whenever he uses COMMON LISP. Typically an implementation
might provide some sort of “initialization file” mechanism to make such setup automatic when the LISP starts
up. Tabie 11-1 shows an example of such an initialization file, one that simply causes other facilities to be

loaded.

When each of two files uses some symbols from the other, one must be careful to arrange the contents of
the file in the proper order. Typically each file contains a single package that is a complete module. The
contents of such a file should include the following items, in order:

1. A call to provide that announces the module name.
2. A call to in-package that establishes the package.
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;333 Alchemy functions; written and maintained by Merlin, Inc.
{(provide ’alchemy) ;The module 1is named ALCHEMY.
(in-package ’'alchemy) ;S0 is the package.

;33 There is nothing to shadow.
;:: Here is the external interface.

(export '(lead-to-gold gold-to-lead
antimony-to-zinc elixir-of-life))

;:3 This package/module needs a function from
;35 the PHLOGISTON package/module.

(require ’'phlogiston)

;33 We don’t frequently need most of the external symbols from
;33 PHLOGISTON, so it’s not worth doing a USE-PACKAGE on it.
;33 We’ll just use qualified names as needed. But we use

;:; one function, MAKE-FIRE-BOTTLE, a lot, so import it.

;vs It’s external in PHLOGISTON, and so can be referred to

;s here using ":" qualified-name syntax.

(import ’'(phlogiston:make-fire-bottle))
;;; Now for the real contents of this file.

(defun 1ead—to-go1d (x)
"Takes a quantity of lead and returns gold." .
(when (> (phlogiston:heat-flow x) ;Using a qualified symbol.
‘ 3) .
(make-fire-bottle x)) ' ;Using an imported symbol.
(gild x))

i+ And so on .
Table 11-2: Example file a1chemy

3. A call to shadow that establishes any local symbols that will shadow symbols that would
otherwise be inherited from packages that this package will use.

4. A call to export that establishes all of this package’s external symbols.

5. Any number of calls to require to load other modules that the contents of this file might want -

to use or refer to. (Because the calls to require follow the calls to in-package, shadow, and

export, it is possible for the packages that may be loaded to refer to external symbols in this

package.) :

6. Any number of calls to use-package, to make external symbols from other packages accessible
in this package.

7. Any number of calls to import, to make symbols from other packages present in this package.

8. Finally, the definitions making up the contents of this package/module.



156 : . COMMON LISP REFERENCE MANUAL

R >9h1ogiston functions, by Thermofluidics, Ltd.

(provide ’phlogiston) ;The module is named PHLOGISTON.
(in-package ’'phlogiston) ;So is the package.

333 There is nothing to shadow.
;1. Here 1is the externzﬂ interface.

(eprrt ‘(heat-flow cold-flow mix-fluids separate- fluids
burn make-fire- bottle))

is: This file uses -functions from the ALCHEMY package/module.
_(require ’'alchemy)

;17 We use alchemy functions a lot, so use the package.

y,. This will allow symbols exported from the ALCHEMY package

;;; to be referred to here without the need for qualified names.

(use-package ’alchemy)

::; No calls to IMPORT are 'needed here.

:i: The real contents of this package/module.

(defun heat-flow (amount x y)
"Make some amount of heat flow from x to y."
(when feeling-weak
(quaff (elixir-of-1ife))) ;No qualifier needed.
{(push-heat amount x y)) .

s And so on .
Table 11-3: Example file phTogiston

The following mnemonic sentence may be helpful in remembering the proper order of these calls:
Put in seven extremely random user interface commands.
Each word of the sentence corresponds to one item in the above ordering:

Put : Provide
IN IN-package
Seven Shadow

~ EXtremely EXport
Random Require
USEr ~ USE-package
Interface Import

COmmands  COntents of package/module

Note that the sentence says what it helps you to do.
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Now, suppose for the sake of example that the phlogiston and alchemy -packages are single-file,
single-package modules as described above. The ph1ogiston package nceds to use the alchemy package,
and the alchemy package needs to use several external symbols from the phlogiston package. The
definitions in the alchemy and phlogiston files (see Tables 11-2 and 11-3) allow a user to specify
require statements for either of these modules, or for both of them in either order, and all relevant
information will be loaded automatically and in the correct order.

For very large modules whose contents are spread over several files (the 11sp package is an example), it is
recommended that the author create the package and dcclare all of the shadows and external symbols in a
separate file, so that this can be loaded before anything that might use symbols from this package.
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Chapter 12

Numbers

g

COMMON Lisp provides several different representations for numbers. These representations may be
divided into four categories: integers, ratios, floating-point numbers, and complex numbers. Many numeric
functions will accept any kind of number; they are generic. Those functions that accept only certain kinds of
numbers are so documented below. :

In general, numbers in COMMOCN LISP are not true objects; eq cannot be counted upon to operate on them
reliably. In particular, it is possible that the expression '
(Tet ((x z) (y z)) (eq x y)).
may be false rather than true, if the value of z is a number.

Rationale: This odd breakdown of eq in the case of numbers allows the implementor eaough design freedom to produce
exceptionally efficient numerical code on conventional architectures. MAacLisP requires this freedom, for example, in order
to produce compiled numerical code equal in speed to FORTRAN. If not for this freedom, then at least for the sake of
compatibility, CoMMON Lisp makes this same restriction.

If two objects are to be compared for “identity”, but either might be a number, then the predicate eq1 (page
65) is probably appropriate; if both objects are known to be numbers, then = (page 162) may be preferable.

12.1. Precision, Contagion, and Coercion

In general, computations with floating-point numbers are only approximate. The precision of a floating-
point number is not necessarily correlated at all with the accuracy of that number. For instance,
3.142857142857142857 is a more precise approximation to = than 3.14159, but the latter is more accurate. The
precision refers to the number of bits retained in the represeritation. When an operation combines a short
floating-point number with along one, the result will be a long floating-point number. This rule is made to
ensure that as muchaccuracy as possible is preserved; however, it is by no means a guarantee. COMMON Lisp
numerical routines do assume, however, that the accuracy of an argument does not exceed its precisioﬁi
Therefore when two small floating-point numbers are combined, the result will always be a small floating-
point number. This assumption can be overridden by first explicitly converting a small floating-point number
to a larger representation. (COMMON LISP never converts automatically from a larger size to a smaller one.)

Rational computations cannot overflow in the usual sense (though of course there may not be enough

storage to represent one), as integers and ratios may in principle be of any magnitude. Floating-point
computations may get exponent overflow or underflow; this is an error.
/ .

- 159 -
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When rational and floating-point numbers are compared or combined by a numerical function, the rule of
“floating-point contagion” is followed: when a rational meets a floating-point number, the rational is first

converted to a floating-point number of the.same format. For functions such as + that take more than two .

arguments it may be that part of the operation is carried out exactly using rationals and then the rest is done
using floating-point arithmetic.

For functions that are mathefnatically associative (and possibly commutative), a COMMON Lisp
implementation may process the arguments in any manner consistent with associative (and possibly
- commutative) rearrangement. This does not affect the order in which the argument forms are evaluaied, of
cdurse; that is always left to right, as in all COMMON LisP function calls. What is left loose is the order in
which the argument values are processed. The point of all this is that implementations may differ in which

automatic coercions are applied because of differing orders of argument processing. As an example, consider

this expression:
(+ 1/3 2/3 1.0D0 1.0 1.0E-15)

One ixﬁplementation might process the arguments from left to right, first adding 1/3 and 2/3 to get 1, then
converting that to a double-precision floating-point number for combination with 1.0D0, then successively
converting and adding 1.0 and 1. 0E-15. Another implementation might process the arguments from right
to left. first performing a single-precision floating-point addition of 1.0 and 1. 0E-15 (and probably losing
some accuracy in the process!), then converting the sum to double precision and adding 1.0D0, then
converting 2/3 to double-precision floating-point and adding it, and then converting 1/3 and adding that. A
third implemcntatioxi might first scan all the arguments, process all the rationals first to keep that part of the
computation exact, then find an argument of the largest floating-point format among all the arguments and

add that, and then add in all other arguments, converting each in turn, all this in a perhaps misguided attempt -

to make the computation as accurate as possible. In any case, all three strategies are legitimate. The user can
of course control the order of processing explicitly by writing several calls; for example:

(+ (+ 1/3 2/3) (+ 1.0D0 1.0E-15) 1.0)
The user can also control all coercions simply by writing célls to coercion functions explicitly.

In general, then, the type of the result of a numerical function is a floating-point humber of the largest
format among all the floating-point arguments to the function; but if the arguments are all rational, then the
result is rational (except for functions that can produce mathematically irrational results, in which case a
single- format floating-point number may resuit).

There is a separate rule of cémplex contagion. As a rule, complex numbers never result from a numerical
function unless one or more of the arguments is complex. (Exceptions to this rule occur among the irrational
and transcendental functions, specifically expt (page 167), Tog (page 167). sqrt (page 168), asin (page
169), acos (page 169), acosh (page 171),and atanh (page 171); see section 12.5.). When a non-complex
number meets a complex number, the non-complex number is in effect first converted to a complex number
by providing an imaginary part of 0.

If any computation produces a result that is a ratio of two integers such that the denominator evenly divides
the numerator, then the result is inmediately converted to the equivalent integer. This is called the rule of
rational canonicalization.
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If the result of any computation would be a complex rational with a zero imaginary part, the result is
immediately converted to a non-complex ratioral number by taking the real part. This is called the rule of
complex canonicalization. Note that this rule docs not apply to complex numbers whose components are
floating-point numbers. Whereas #C(5 0) and 5 are not distinct values in COMMON LISP (they are always
eql), #C(5.0 0.0) and 5.0 are always distinct values in COMMON LISP (they are never eq1, although
they are equalp).

12.2. Predicates on Numbers

zerop number ' ' [Function)
This predicate is true if number is zero (either the integer zero, a floating-point zero, or a complex
zero), and is faise otherwise. Regardless of whether an implementation provides distinct
representations for positive and negative floating-point zeros, (zerop -0.0) is always true. Itis
an error if the argument number is not a number.

plusp number ' ‘ [Function]
This predicate is true if number is strictly greater than zero, and is false otherwise. It is an error if
the argument number is not a non-complex number.

minusp number ; ' . [Function]
This predicate is true if number is strictly less than zero, and is false otherwise. Regardless of
whether an implementation provides distinct representations for positive and negative floating-
puint zeros, (zerop -0.0) is always false. (The function float-sign (page 177) may be used
to distinguish a negative zero.) It is an error if the argument aumber is not a non-complex number. .

oddp integer V ' [Function]
This predicate is true if the argument integer is odd (not divisible by two), and otherwise is false. It
is an error if the argument is not an integer.

evenp integer , [Function] -
This predicate is true if the argument integer is even (divisible by two), and otherwise is false. It is
an error if the argument is not an integer. :

RS

gl

See also the data-type predicates integerp (page 61), rationalp (page 62), floatp (page 62),
complexp (page62), and numberp (page 61). '




12.3. Comparisons on Numbers

All of the functions in this section require that their arguments be numbers; to call one with a non-number
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is an error. Unless otherwise specified, each works on all types of numbers, automatically performing any
required coercions when arguments are of different types.

number &rest more-numbers A [Function]
/= number &rest more-numbers . : [Function]
< number &rest more-numbers A [Fusction]
> number &rest more-numbers ' ' [Function]
<= number &rest more-numbers ' | Function]
>= number &rest more-numbers : ' [Function]

These functions each take one or more arguments. If the scquence of arguments satisfies a certain
condition:

= . all the same

/= all different

< monotonically increasing

> monotonically decreasing

<= monotonically nondecreasing
>= monotonically nonincreasing

then the predicate is true, and otherwise is false. Cemplex numbers may be compared using = and

/=. but the others require non-complex arguments. Two complex numbers are considered equal by ’
= if their real parts are equal and their imaginary parts are equal according to =. A complex A
number may be compared to a non-complex number with = or /=.

For example:
(= 3 3) istrue (/= 3 3) isfalse
(= 3 5) isfalse (/= 3 5) istrue
(= 3 33 3) istrue (/= 3 3 3 3) isfalse
(=3 35 3) isfalse (/= 3 3 5 3) isfalse
(= 365 2) isfalse (/= 3 6 5 2) istrue
(= 3 2 3) isfalse (/= 3 2 3) isfalse
(< 3 5) istrue (<= 3 5) istrue
(< 3 -5) isfalse (<= 3 -5) isfalse
(< 3 3) isfalse (<= 3 3) istrue
(<03 467) istrue (<= 03 46 7) istrue
(< 0 34 46) isfalse (<= 0 3 4 4 6) istrue
(> 4 3) istrue (>= 4 3) istrue
(> 4 32 10) istrue (>= 4 32 1 0) istrue
(>4 33 20) isfalse (>= 4 332 0) istrue
(> 4 31 20) isfalse (>= 4312 0) isfalse
(= 3) istrue. (/= 3) istrue
(< 3) istrue (<= 3) istrue
(= 3.0 #C(3.0 0.0)) istrue (/= 3.0 #C(3.0 1.0)) istrue
(= 3 3.0) istrue ' (= 3.0s0 3.0d0) istrue
(= 0.0 -0.0) istrue . (= 5/72 2.5) istrue
(> 0.0 -0.0) is false (= 0 -0.0) istrue

With two arguments, these functions perform the usual arithmetic comparison tests. With three or ’




CHAPTER 12: NUMBERS

more arguments, they are useful for range-checks.

For example:
(<= 0 x 9)
(< 0.0 x 1.0)

(< -1 j (length s))
(<= 0 j k (- (length s) 1))

Rationale: The “upequality” relation is called “/="

.
’

; true if x is between 0 and 9, inclusive

; true if x is between 0.0 and 1.0, exclusive
; true if j is a valid index for s

; true if j and k are each valid
indices for s and also j<k

rather than “<>” (the name used in PASCAL) for two
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reasons. First, /= of more than two arguments is not the same as the or of < and > of those same arguments.
Second, unequality is meaningful for complex numbers even though < and > are not. For both reasons it
would be misleading fo associate unequality with the names of < and >.

Compatibility note: In CoMMon LisP, the comparison operations perform “mixed-mode” comparisons: (= 3
3.0) is true. In MAcLIiSP, there must be exactly two arguments, and they must be either both fixnums or both
floating-point numbers. To compare two numbers for numerical equality and type equality, us\. eql (page

65).

max number &rest more-numbers

min number &rest more-numbers
The arguments may be any non-complex numbers. max returns the argument that is greatest
(closest to positive infinity). min returns the argument that is least (closest to negative infinity).

[Function]
[Function]

For max, if the arguments are a mixture of rationals and floating-point numbers, and the largest
argument is a rational, then the implementation is free to produce cither that rational or its floating-
point approximation; if the largest argument is a floating-point number of a smaller format than the
largest format of any floating-point argument, then the nnplementanon is free to retrn the
argument in its given format or expanded to the larger format. More concisely, the implementation
has the choice of returning the largest argument as is or appiying the rules of floating-point
contagion, taking all the arguments into consideration for contagion purposes. Also, if one or more
of the arguments are equal, then any one of them may be chosen as the value to return. Similar
remarks apply to min (replacing “largest argument” by “smallest argument”).

For example:

(max
(max
(max
(max
(max
(max
(max
(max
(min
(max
(min

6 12) => 12
-6 -12) => -6
132 -7) ¢
-2307)-=
3) = 3
.0 2) => 5.
.07 1) =
.0s0 7.0d0) =>
.0s0 7.0d0) =>
1 1.0s0 1.0d0
1 1.0s0 1.0d0

>3
> 7

0

7T or7.0
7.0d
1.0s
=>

wwt-a»-awm

0
0
3
1

)
) =

(min
(min
(min
(min
(min
(min
(min

or 1.0d0
or 3.0d0
or 1.0s0 or 1.0d0

6 12) => 6

-6 -12) => -12
132 -7) = -7
-2307) => -2
3) = 3

5.0 2) => 2 or 2.0
3.07 1) => 1o0r 1.0
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12.4. Arithmetic Operations

All of the functions in this section require that their arguments be numbers; to call one with a non-number
is an error. Unless otherwise specified, each works on all types of numbers, automatically performing any
required coercions when arguments are of different types.

+ &rest numbers [Function]
Returns the sum of the arguments If there are no arguments, the result is 0, which is an identity
for this operation.

Compatibility note: While + is compatible with its use in Lisp Machine Lisp, it is incompatible with MAcLisp,
which uses + for fixnum-only addition.

.

- number &rest more-numbers [Function]
The function -, when given one argument, returns the negative of that argument.

The function -, when given more than one argument, successively subtracts from the first argument

all the others, and returns the result. For example, (- 3 4 5) => -6.

Compatibility note: While - is compatible with its use in Lisp Machine Lisp, it is incompatible with MACLIsp,
which uses - for fixnum-only subtraction. Also, - differs from difference as used in most Lisp systems in
- the case of one argument.

* &rest numbers : : [Function]
Returns the product of the arguments.  If there are no arguments, the result is 1, which is an
identity for this operation.

Compatibility note: While * is compatible with its use in Lisp Machine Lisp, it is incompatible with MacLisp,
which uses * for fixnum-only multiplication.

/ number &rest more-numbers - [Function)
The function /, when given more than one argument, successively divides the first argument by all
the others, and returns the result.

With one argument, / reciprocates the argument.

/ will produce a ratio if the mathematical quotient of two integers is not an exact integer.

For example:

(/ 12 4) => 3

(/ 13 4) => 13/4

(/ -8) => -1/8

(/ 3 45) => 3/20 _
To divide one integer by another producing an integer result, use one of the functions f1loor,

ceiling, truncate,or round (page 175).

If any argument is a floating-point number, then the rules of floating-point contagion apply.

Compatibility note: What / does is totally unlike what the usual //-or quotient operator does. In most Lisp
systems, quotient behaves like / except when dividing integers, in which case it behaves like truncate
(page 175) of two arguments; this behavior is mathematicaily intractable, leading to such anomalies as

(guotient 1.0 2.0) => 0.5 but (quotient 1 2) => 0
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In practice quotient is used only when one is sure that both arguments are integers, or when one is sure that
at least one argument is a floating-point number. / is tractable for its purpose, and “woiks” for any numbers.

1+ number . [Function]
1- number : [Function)
(1+ x) isthesameas (+ x 1).

(1- x)isthesameas (- x 1). Note that the short name may be confusing: (1- x) does not
mean 1 - x; rather, it means x—1. ’
Rationale: These are included primarily for compatibility with MacLisp and Lisp Machine Lisp.

Implementation note: Compiler writers are very strongly ericouraged to ensure that (1+ x) and (+ x 1)
compile into identical code, and similarly for (1- x) and (- x 1), to avoid pressure on a Lisp programmer
to write possibly less clear code for the sake of efficiency. This can easily be done as a source-language

transformation.
incf place [delta] , [Macro]
decf place [delta] » ' [Macro]

The number produced by the form delfa is added to (incf ) or subtracted from (decf) the number
in the generalized variable named by place , and the sum is stored back into place and returned.
The form place may be any form acceptable as a generalized variable to setf (page 78). If deltais
not supplied, then the number in place is changed by 1.

For example:
(setq n 0) ;
(incf n) => 1 andnow n => 1
(decf n 3) => -2 andnow n => -2
(decf n -5) => 3 andnow n => 3
(decf n) => 2 andnow n => 2

The effect of (incf place delta) is roughly equivalent to

(setf place (+ place delta))
except that the latter would evaluate any subforms of place twice, while incf takes care to evaluate
them only once. Moreover, for certain place forms incf may be significantly more efficient than
the setf version.

conjugate number [Functzon]
This returns the complex conjugate of number. The conjugate of a non-complex number is itself.
For a complex number z,
(conjugate z) <=> (complex (realpart z) (- (imagpart z)))
For-example:

(conjugate #C(3/5 4/5)) => #C(3/5 -4/5)
(conjugate #C(0.000 -1.0D0)) => #C(0.0DO 1.0D0)
(conjugate 3.7) => 3.7
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gcd &rest integers : : : [Function]

Returns the greatest common divisor of all the arguments, which must be integers. The result of
gcd is always a non-negative integer. If one argument is given, its absolute value is returned. If no
arguments are given, gcd returns 0, which is an identity for this operation. For three or more
arguments,

(ged @ bc ... z) <=> (gcd (ged a b) ¢ ... z)
For example: '

(gcd 91 -49) => 7

(gcd 63 -42 35) => 7

(ged 5) => 5

(gcd -4) => 4

(gecd) => 0

Tcm integer &rest more-integers [Function]
This returns the least common multiple of its arguments, which must be integers. The result of 1cm
is always a non-negative integer. For two arguments that are not both zero,

(Tcm a b) <=> (/ (abs (* a b)) (gcd a b))
If one or both arguments are zero, -
(lcm a 0) <=> (lcm 0 a) <=> 0

For one argument, 1cm returns the absolute value of that argument. For three or more arguments,
(lema b c ... z) <=> (lem (lcm a b)Y ¢ ... z)
For example:
(Tem 14 35) => 70
Mathematically, (1cm) should return infinity. Because COMMON LISP does not have a
representation for infinity, 1cm, unlike gcd, always requires at least one argument.

12.5. Irrational and Transcendental Functions

COMMON LISP provides no data type that can accurately represent irrational numerical values. The
functions in this section are described as if the results were mathematically accurate, but actually they all
produce floating-point approximations to the true mathematical result in the general case. In some places
mathematical identities are set forth that are intended to elucidate the meanings of the functions; however,
two mathematically identical expressions may be computanoxfaﬂy different because of errors inherent in the
floating-point approximation process.

When the arguments to a function in this section are all rational and the true mathematical result is also
(mathematically) rational, then unless otherwise noted an implementation is free to return either an accurate
result of type rational or a single-precision floating-point approximation. If the arguments are all rational
but the result cannot be expressed as a rational number, then a single-precision floating-point approximation
is always returned.

The rules of floating-point contagion and complex contagion are effectively obeyed by all the functions in
this section except expt, which treats some cases of rational exponents specially. When, possibly after
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contagious conversion, all of the arguments are of the same floating-point or complex floating-point type,

then the result will be of that same type unless otherwise noted.

Implementation note: There is a “{loating-point cookbook” by Cody and Waite [4] that may be a useful aid in implementing
the functions defined in this section.

12.5.1. Exnonential and Logarithmic Functions

exp number : v [Function]

Returns e raised to the power number, where e is the base of the natural logarithms.

expt base-number power-number [Function]

Returns base-number raised to the power power-number. If the base-number is of type rational
and the power-number is an integer, the calculation will be exact and the result will be of type
rational; otherwise a floating-point approximation may result.

When power-number is 0 (a zero of type integer), then the result is always the value one in the type
of base-number, even if the base-number is zero (of any type). That is:

{(expt x 0) <=> (coerce 1 (type-of x))
If the power-number is a zero of any other data type, then the result is also the value one, in the type
of the arguments after the application of the contagion rules, with one exception: it is an error if
base-number is zero when the power-number is a zero not of type integer. '

Implementations of expt are permitted to use different aigorithms for the cascs of a rational
power-number and a floating-point power-number; the motivation is that in many cascs greater
accuracy can be achieved for the case of a rational power-number. For example, (expt pi 16)
and (expt pi 16.0) may yield slightly different results if the first case is computed by repeated
squaring and the second by the use of logarithms. Similarly, an implementation might choose to
compute (expt x 3/2) asifit had been written (sqrt (expt x 3)), perhaps producing a
more accuraie result than would (expt x 1.5). Itis left to the implementor to determine the
best strategies.

The result of expt can be a complex number even when neither argument is complex, if
base-number is negative and power-number is not an integer. The result is always the principal
complex value. Note that (expt -8 1/3) is not permitted to return -2; while -2 is indeed one
of the cube roots of -8, it is not the principal cube root, which is a complex number approxxmately
equal to #C(0.5 1.73205).

log number &optional base : [Function]

Returns the logarithm of number in the base base, which defaults to e, the base of the natural
logarithms, - :

For example:

(log 8.0 2) => 3.0
(log 100.0 10) => 2.0

The result of (Tog 8 2) may be either 3 or 3.0, depénding on the implementation.
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Note that 10g may return a complex result when given a non-complex argument if the argument is

negative. For example:
(log -1.0) <=> (compliex 0.0 (float pi 0.0))

sqrt number ' [Function)

Returns the principal square root of number. If the number is not complex but is negative, then the
result will be a complex number.
For example:

(sqrt 9.0) => 3.0

(sqrt -9.0) => #c(0.0 3.0) .
The resultof (sqrt 9) may be either 3 or 3. 0, depending on the implementation. The result of
(sqrt -9) may be either #c(0 3) or#c(0.0 3.0).

isqrt integer , [Function]
Integer square-root: the argument must be a non-negative integer, and the result is the greatest
integer less than or equal to the exact positive square root of the argument. '

For example:
(isgrt 9) => 3
(isgrt 12) => 3
(isgrt 300) =>

7
(isgrt 325) => 18

LU

[SENWY

12.5.2. Trigonometric and Related Functions

abs number ' : [Function]
Returns the absolute value of the argument.

For a non-complex number,
(abs x) <=> (if (minusp x) (- x) x)
and the result is always of the same type as the argument.

For a complex number z, the absolute value may be computed as
(sqrt (+ (expt (realpart z) 2) (expt (imagpart z) 2)))

Implementation note: The careful implementor will not use this formula directly for all complex numbers, but
will instead handle very large or very small components specially to avoid intermediate overflow or underflow.

For example: ;
(abs #c(3.0 -4.0)) => 5.0
The result of (abs #c(3 4)) may be either 5 or 5. 0, depending on the implementation.

phase number v [Function]
The phase of a number is the angle part of its polar representation as a complex number. That is,
(phase x) <=> (atan-(imagpart x) (realpart x)})
The result is in radians, in the range —= (exclusive) to = (inclusive). The phase of a positive
non-complex number is zero; that of a negative non-complex number is #. The phase of zero is

®
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. - arbitrarily defined te be zero.

If the argument is a complex floating-point number, the result is a floating-point number of the
same type as the components of the argument. If the argument is a floating-point number, the
result is a floating-point number of the same type. If the argument is a rational number or complex
rational number, the result is a singlc-format floating-point number.

signum number . [Function]

By definition, ,

(signum x) <=> (if (zerop x) x (/ x (abs x)))
For a rational number, signum will return one of -1, 0, or 1 according to whether the number is
negative, zero, or positive. For a floating-point number, the result will be a floating-point number
of the same format whose value is minus one, zero, or one. For a complex number z, {signum z)
is a complex number of the same phase but with unit magnitude, unless z is a complex zero, in
which case the result is z.
For example:

{signum 0) => 0O

(signum -3.7L5) => -1.0L0

{signum 4/5) => 1

(signum #C(7.5 10.0)) => #C(0.6 0.8)

(signum #C(0.0 -14.7)) => #C(0.0 -1.0)

. For non-complex rational numbers, signum is a rational function, but it may be irrational for
complex arguments.

sin radians [Function]
cos radians [Function]
tan radians : [Function]

sin returns the sine of the argument, cos the cosine, and tan the tangent{. The argument is in
radians. The argument may be complex. '

cis radians ) ‘ , [Function]
This computes ¢” %44, The name “cis” means “cos + isin”, because ¥ = cos 8 + isin 4. The
argument is in radians, and may be any non-complex number. The result is a complex number
whose real part is the cosine of the argument, and whose imaginary part is the sine. Put another
way, the result is a complex number whose phase is the equal to the argument (mod 27) and whose

magnitude is unity. ,
Implementation note: Often it is cheaper to calculate the. sine and cosine of a single angle together than to
perform two disjoint calculations.
asin number ’ [Function]
acos number [Function]

asin returns the arc sine of the argument, and acos the arc cosine. The result is in radians. The

.’\\ argument may be complex.
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The arc sine and arc cosine functions may be defined mathematically for an argument x as follows:

Arc sine —-ﬂog(ix+\/1—;2 )

Arc cosine ~ilog (x+iV1-x°)

Note that the result of either as in or acos may be complex even if the argument is not complex;

this occurs when the absolute value of the argument is greater than one.

Implementation note: These formulae are mathematically correct, assuming completely accurate computation.
They may be terrible methods for floating-point computation! Implementors should consult a good text on
numerical analysis. The formulas given above are not necessarily the simplest ones for real-valued
computations, either; they are chosen to define the branch cuts in desirable ways for the complex case.

atan y &optional x . : [Function]
An arc tangent is calculated and the result is retumcd in radians.

With two arguments y and x, neither argument may be complex. The result is the arc tangent of the
quantity y/x. The signs of y and x are used to derive quadrant information; moreover, x may be
zero provided y is not zero. The value of atan is always between —  (exclusive) and = (inclusive).
The following table details various special cases.

Condition Cartesian locus Range of result
y=0 x>0 Positive x-axis 0

y>0 x>0 Quadrant I 0 < result < #/2
y>0 x=0 Positive y-axis /2

y>0 x<0 Quadrant IT n/2 < result <«
y=0 x<0 Negative x-axis 4

y<0 x<0 Quadrant I1I —x <result < —7/2
y<0 x=0 Negative y-axis —a/2

y<0 x>0 Quadrant IV —7/2 <result <0
y=0 x=0 Origin error

With only one argument y, the argument may be complex. The result is the arc tangent of y, which
may be defined by the following formula:

Arc tangent —ilog (1+i2) VI/Q+D) )

Implementation note; This formula is mathematically correct, assuming completely accurate computation. It
may be a terrible method for floating-point computation! Implementors should consult a good text on
numerical analysis. The formula given above is not necessarily the simplest one for real-valued computations,
either: it is chosen to define the branch cuts in desirable ways for the complex case.

For a non-complex argument y the result is non-complex and lies between —«/2 and #/2 (both

exclusive).

Compatibility note: MacLisp has a function called atan whose range is from 0 to 2». Almost every other
programming language (ANSI FORTRAN, IBM pL/1, INTERLISP) has a two-argument arc tangent function with
range == to =. Lisp Machine Lisp provides two two-argument arc tangent functions, atan (compatible with
MacLisp) and atan2 (compatible with everyone else). .

CommON Lisp makes two-argument atan the standard one with range —« to . Observe that this makes the
one-argument and two-argument versions of atan compatible in the sense that the branch cuts do not fall in
different places. (The INTERLISP one-argument function arctan has a range from 0 to «, while nearly every
other programming language provides the range —#/2 to »/2 for one-argument arc tangent! Nevertheless,
since INTERLISP uses the standard two-argument version of arc tangent, its branch cuts are inconsistent
anyway.) .
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‘ pi S - : [Constani]
" This global variable has as its value the best possible approximation to # in long floating-point
format.
For example;

(defun sind (x) ’ : The argument is in degrees.
(sin (* x (/ (float pi x) 180))))

An approximation to = in some other precision can be obtained by writing (f1oat pi x), where
x is a floating-point number of the desired precision; sec f1oat (page 174).

sinh number _ : R [Function)
cosh number _ [Function]
tanh number - : [Function)
asinh number ‘ . [Function]
acosh number A - [Function]
atanh number [Function)

These functions compute the hyperbolic sine, cosine, tangent, arc sine, arc cosine, and arc tangent
functions, which are mathematically defined for an argument x as follows:

Hyperbolic sine (F-e 72
Hyperbolic cosine (e +e~ %72
, Hyperbolic tangent - (= e~ N/ (F+ e
‘\ Hyperbolic arc sine log(x+V1+x° )
Hyperbolic arc cosine log (x+(x+ LDV (x=1)/(x+1) )
- Hyperbolic arc tangent ) log(1+x)V1-1/x°)

Note that the result of acosh may be complex éven if the argument is not complex; this occurs
when the argument is less than one. Also, the result of atanh may be complex even if the -

argument is not complex; this occurs when the absolute valiie of the argument is greater than one.

Implementation note: These formulae are mathematically correct, assuming completely accurate computation.
They may be terrible methods for floating-point computation! Implementors should consult a good text on
numerical analysis. The formulas given above are not necessarily the simplest ones for real-valued
computations, either; they are chosen to define the branch cuts in desirable ways for the complex case.

12.5.3. Branch Cuts, Principal Values, and Boundary Conditions in the Complex Plane

Many of the irrational and transcendental functions are multiply-defined in. the complex domain; for
¢ example, there are in general an infinite number of complex values for the logarithm function. In each such
case a principal value must be chosen for the function to return. In general, such values cannot be chosen so
as to make the range continuous; lines in the domain called branch cuts must be defined, which in turn define
the discontinuities in the range.

COMMON LisP defines the branch cuts, principal values, and boundary conditions for the complex
functions following a proposal for complex functions in APL [14]. The contents of this section are borrowed
largely from that proposal. '
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Compatibility note: The branch cuts defined here differ in a few very minor respects from those advanced by W. Kahan,
who considers not only the “usual” definitions but aiso the special modifications necessary for ILEE proposed floating-point
arithmetic, which has infinities and minus zero as explicit computational objects. For exampic, he proposes that
V=4+0i =2ibutV -4-0i =-2i

It may be that the differences between the APL proposal and Kahan's proposal will be ironed out. If so, COMMON Lisp may
be changed as necessary to be compatible with these other gro.xps Any changes from the specification beiow are likely to be

qQuite minor.

sqr‘t

phase

log

exp

expt

asin

acos

The branch cut for square root lies along the negative real axis, continuous with quadrant

II. The range consists of the right half-plane, including the non-negative imaginary axis
and excluding the negative imaginary axis.

The branch cut for the phase function lies along the negative real axis, continuous with
quadrant I1. The range consists of that portion of the real axis between —# (exclusive) and
w (inclusive).

The branch cut for the logarithm function of one argument (natural logarithm) lies along
the negative real axis, continuous with quadrant II. The domain excludes the origin. Fora
complex number z, log z is defined to be (log |z|)+ i phase(z). Therefore the range of the
one-argument logarithm function is that strip of the complex plane containing numbers
with imaginary parts between —# (exclusive) and = (inclusive).

The two-argument logarithm function is defined as log b z=(log z)/(log b). This defines the
principal values precisely. The range of the two-argument logarithm function is the entire
complex plane. Itis an errorif zis zero. If z is nonzero and b is zero, the logarithm is taken
to be zero.

The simple exponential function has no branch cut.

The two-argument exponential function is defined as 6*=¢* 18 8 This defines the
principal values precisely. The range of the two-argument exponential function is the
entire complex plane. Regarded as a function of x, with b fixed, there is no branch cut,
Regarded as a function of b, with x fixed, there is, in general, a branch cut along the
negative real axis, continuous with quadrant II, and the domain excludes the origin. By
definition, 0°=1. If 5=0and the real part of x is strictly positive, then b*=0. For all other
values of x, 0% is an erior.

The' followihg definition for arc sine determines the range and branch cuts: '
arcsin z= —ilog (i z+ V1—2 )

The branch cut for the arc sine function is in two pieces: one along the negative real axis to
the left of —1 (inclusive), continuous with quadrant II, and one along the positive real axis
to the right of 1 (inclusive), continuous with quadrant IV. The range is that strip of the
complex plane containing numbers whose real part is between —=/2 and #/2. A number
with real part equal 10 —#/2 is in the range if and only if its imaginary part is non-
negative; a number with real part equal to #/2 is in the range if and only if its-imaginary
part is non-positive, '

The following definition for arc cosine determines the range and branch cuts:
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atan

asinh

acosh

‘arccos z= —ilog (z+1 V1~ Z)
or, which is cquivalent,
arccos z=(w/2)— arcsin z

The branch cut for the arc cosine function is in two pieces: one along the negative real axis
to the left of —1 (inclusive), continuous with quadrant I1, and one along the positive real
axis to the right of 1 (inclusive), continuous with quadrant IV. This is the same branch cut
as for arc sine. The range is that strip of the complex plane containing numbers whose real
part is between 0 and 7. A number with real part equal to 0 is in the range if and only if its
imaginary part is non-negative; a number with real part equal to = is in the range if and
only if its imaginary part is non-positive.

The following definition for (of;e-argument) arc tangent determines the range and branch
cuts:

arctan z=—ilog((L+iz) V 1/(1+?) )

Beware of simplifying this formula; “obvious” simplifications are likely to alter the branch
cuts or the values on the branch cuts incorrectly. The branch cut for the arc tangent
function is in two pieces: one along the positive imaginary axis above i (exclusive),
continuous with quadrant lI. and one along the necgative imaginary axis below —i
(exclusive), continuous with quadrant IV. The points / and —i are excluded from the
domain. The range is that strip of the complex plane containing numbers whose real part

- is between —«/2 and #/2. A number with real part equal to —«/2 is in the range if and

only if its imaginary part is strictly positive; a number with real part equal to /2 is in the
range if and only if its imaginary part is strictly negative. Thus the range of arc tangent is
identicai to that of arc sine with the points —#/2 and #/2 excluded.

The following definition for the inverse hyperbolic sine determines the range and branch
cuts: ' ' '

arcsinh z=log (z+ V 1+2 )

The branch cut for the inverse hyperbolic sine function is in two pieces: one along the
positive imaginary axis above i (inclusive), continuous with quadrant I, and one along the
negative imaginary axis below —i (inclusive), continuous with quadrant IIl. The range is

-that strip of the complex plane containing numbers whose imaginary part is between — #/2

and /2. A aumber with imaginary part equal to —=/2 is in the range if and only if its real
part is non-positive; a number with imaginary part equal to #/2 is in the range if and only
if its imaginary part is non-negative. :

The following definition for the inverse hyperbolic cosine determines the range and branch
cuts:

arccosh z=log (z+(z+1)V(z—1)/(z+1) )

The branch cut for the inverse hyperbolic cosine function lies along the real axis to the left
of 1 (inclusive), extending indefinitely along the negative real axis, continuous with
quadrant II and (between 0 and 1) with quadrant I The range is that half-strip of the
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complex plane containing numbers whose real part is non-negative and whose imaginary
part is between — « (exclusive) and = (inclusive). A number with real part zero is in the
range iff its imaginary part is between zero (inclusive) and # (inclusive).

atanh The following definition for the inverse hyperbolic tangent determines the range and
branch cuts:

arctanh z=log (1+2)V1-1/ z )

Beware of simplifying this formula; “obvious™ simplifications are likely to alter the branch
cuts or the values on the branch cuts incorrectly. The branch cut for the inverse hyperbolic
tangent function is in two pieces: one along the negative real axis to the left of =1
(inclusive), continuous with quadrant III, and one along the positive real axis to the right of
1 (inclusive), continuous with quadrant [. The points —1 and 1 are excluded from the
domain. The range is that strip of the complex plane containing numbers whose imaginary
part is between —#/2 and #/2. A number with imaginary part equal to —n/2 is in the
range if and only if its real part is strictly negative; a number with imaginary part equal to
«/2 is in the range if and only if its imaginary part is strictly positive. Thus the range of the
inverse hyperbolic tangent function is identical to that of the inverse hyperbolic sine
function with the points —#i/2 and #i/2 excluded.

With these definitions, the following useful identities are obeyed throughout the applicable portion of the
complex domain, even on the branch cuts: :

siniz = isinh z : : sinhiz = isinz ‘arctan i z = iarctanh z
cosiz = cosh z coshiz=cosz arcsinh i z = farcsin z
taniz = itanh z arcsin i z = 7arcsinh z arctanh i z = farctan z -

12.6. Type Conversions and Componént Extractions on Numbers

While most arithmetic functions will operate on any kind of number, coercing types if necessary, the
following functions are provided to allow specific conversions of data types to be forced, when desired.

float number &optional other v ‘ [Function].
Converts any non-i:omplex number to a floating-point number. With no second argument, then if
number is already a floating-point number, it is returned, and otherwise a single-float is
produced. If the argument otker is provided, then it must be a floating-point number, and number
is converted to the same format as other. See also-coerce (page 42). )

rational number , [Function]

rationalize number . ‘ [Function)
Each of these functions converts any non-complex number to be a rational number. If the
argument is already retional, it is returned. The two functions differ in their treatment of floating-
point numbers. S

 rational assumes that the floating-point number is completely accurate, and returns a rational
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" number mathematically equal to the precise value of the floating-point number.

rationalize assumes that the flcating-point number is accurate only to the precision of the
floating-point representation, and may return any rational number for which the floating-point
number is the best available approximation of its format; in doing this it attempts to keep both
numerator and denominator small.

It is always the case fhat

(float (rational x) x) <=> x
and

(float (rationaiize xj x) <=> x
That is, rationalizing a floating-point number by either method and then converting it back to a
floating-point number of the same format produces the original number. What distinguishes the
two functions is that rational typically has a simple, incxpensive implementation, while
rationalize goes to more trouble to produce a result that is more pleasant to view and siimpler
for some purposes to compute with,

‘numerator rational [Function]
denominator rational [Function}
These functions tike a rational number (an integer or ratio) and return as an integer the numerator
or denominator of the canonicai reduced form of the rational. The numerator of an intcger is that
integer, and the denominator of an integer is 1. Note that
(gcd (numerator x) (demominator x)) => 1
The denominator will always be a strictly positive integer; the numerator may be any integer.
For example: '
(numerator (/ 8 -6)) => -4
(denominator (/ 8 -6)) => 3

There is no fix function in COMMON LISP, because there are several interesting ways to convert non-
integral values to integers. These are provided by the functions below, which perform not only type-
conversion but also some non-trivial calculations.

floor number optional divisor ' [Function]
ceiling number &optional divisor [Function]
truncate number &optional divisor [Function]
round number &optional divisor [Function]

In the simple, one-argument case, each of these functions converts its argument number (which
must not be complex) to be an integer. If the argument is already an integer, it is returned directly.
If the argument is a ratio or floating-point number, the functions use different algorithms for the
conversion.

floor converts its argument by truncating towards negative infinity; that is, the result is the largest
integer that is not larger than the argument.
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ceiling converts its argument by trusicating towards positive infinity; that is, the result is the
smallest integer that is riot smaller than the argumntent.

truncate converts its argument by truncating towards zero; that is, the result is the integer of the

~ same sign as the argument and which has the greatest integral magnitade not greater than that of

the argument.

round converts its argument by rounding to the nearest integer; if number is exactly halfway
between two integers (that is, of the form integer+0.5) then it is rounded to the one that is even
(divisible by two).

Here is a table showing what the four functions produce when given various arguments,

Argument floor - ceiling truncate round
2.6 ra 3 Z 3
2.5 2 3 2 2
2.4 2 3 2 2
0.7 0 1 0 1
0.3 0 1 0 0

-0.3 © -1 0 0 0

-0.7 -1 0 0 -1

-2.4 -3 -2 -2 ~2

-2.5 -3 =2 -2 -2

-2.6 -3 -2 -2 -3

If a second argumernt divisor is supplied, then the result is the appropriate type of rounding or
truncation applied to the result of dividing the number by the divisor. For example, (fToor 5 2)
= (floor (/ 5 2)), butis potentially more efficient. The divisor may be any non-complex
number. The one-argument case is exactly like the two-argument case where the second argument
is 1.

Each of the functions actually returns two values, whether given one or two arguments. The second
result is the remainder, and may be obtained using multiple-value=bind (page 112) and
related constructs. If any of these functions is given two arguments x and y and produces results g
and r, then ¢*y+ r=x. The first result g is always an integer. The remainder r is an integer if both
arguments are integers, is rational if both arguments are rational, and is floating-point if either
argumernt is floating-point. One consequence of is that in the one-argument case the remainder is
always a number of the same type as the argument.

When only one argumerit is given, the two results arc exact; the mathematical sum of the two
results is always equal to the mathematical value of the argument.
Conipatibility note: The naries of the functions £ 1oor, ceiling, truncate, and round are more accurate
than nates like f1x that have herctofore been used in various Lisp systems. The names used here are
compatible with standard mathematical terminology (and with FL/I, as it happens). In FORTRAN ifix means
truncate. ALGOL 68 provides round, and uses entier to mean floor. In MAcLISP, fix and ifix both
mean fToor (one is gerieric, the other flonum-in/fixnum-out). In INTERLISP, f i means truncate. In Lisp
Machinie Lisp, f 1x means f1oor and fixr meatis round. STANDARD Lisp providesa fix function, but does
not accurately specify what it dees exactly. The existing usage of the name f ix is so confused that it seems best
to avoid it altogether.
The names and definitions given here have recently been adopted by Lisp Machine Lisp, and MacLise and NiL
seem likely to follow suit. '
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. mod number divisor ' ' [Function]
rem number divisor : ' : ’ [Function)
mod performs the operation f1oor (page 175) on its two arguments, and returns the second result
of f1oor as its only result. Similarly, rem performs the operation truncate (page 175) on its
arguments, and returns the second result of truncate as its only result.
mod and rem are therefore the usual modulus and remainder functions when applied to two integer
arguments. In general, however, the arguments may be integers or floating-point numbers.
(mod 13 4) => 1 (rem 13 4) => 1
(mod -13 4) => 3 (rem -13 4) => -1
(mod 13 -4) => -3 (rem 13 -4) => 1
(mod -13 -4) => -1 (rem -13 -4) => -1
(mod 13.4 1) => 0.4 A (rem 13.4 1) => 0.4
(mod -13.4 1) => 0.6 (rem -13.4 1) => -0.4
Compatibility note: The INTERLISP function remainder is essentially equivalent to the CoMMmoON Lisp
function rem. The MACLISP function remainder is like rem but accepts only integer arguments.
ffloor number &optional divisor o : [Function]
fceiling number &optional divisor : ; _ [Function}
ftruncate number &optional divisor [Function]
fround number &optional divisor : {Function)
These functions are just like floor, ceiling, truncate. and round, except that the result (the
( ‘ first result of two) is always a floating-point number rather than an integer. It is roughly as if
ffloor gave its arguments to f1oor, and then applied float to the first result before passing

them both back. In practice, however, ffloor may be implemented much more efficienty.
Similar remarks apply to the other three functions. If the first argument is a floating-point number,
and the second argument is not a flcating-point number of shorter format, then the first result will
be a floating-point number of the same type as the first argument.

For example:

(ffloor -4.7) => -5.0 and 0.3
(ffloor 3.5d0) => 3.0d0 and 0.5d0

decode-float float [Function]
scale-float float integer : * [Function)
float-radix float ; A : [Function]
float-sign floatl &optional floar2 [Function]
float-digits float . _ [Function)
float-precision float [Function)
integer-decode-float float [Function)

The function decode-f1oat takes a floating-point number and returns three values.

The first value is a new floating-point number of the same format representing the significand; the
second value is an integer representing the exponent; and the third value is a ﬂoatiﬁg-point number
.ﬁ " of the same format indicating the sign. Let b be the radix for the floating-point representation; then
decode-float divides the argument by an integral power of b so as to bring its value between
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1/b (inclusive) and 1 (exclusive), and returns the quotient as the first value, If'the argument is zero,
however, the result equals the absolute value of the argument (that is, if there is a negative zero, its
significand is considered to be a positive zero).

The second value of decode-float is the integer exponent e to which b must be raised to
produce the appropriate power for the division. If the argument is zero, any integer value may be
returned, provided that the identity shown below for scale-float holds.

The third value of decode-f1oat is a floating-point number, of the same format as the argument,
whose absolute value is one and whose sign matchcs that of the argument.

The function scale-float takes a floating-point number f(not necessarily between 1/5 and 1)
and an integer £, and returns (* f (expt (float b f) k)). (Theuseof scale-float may
be much more efficient than using exponentiation and multiplication, and avoids intermediate -
overflow and underflow if the final result is representable.)

Note that
(multiple-value-bind (signif expon sign)
‘ (decode-float f)
(scale-float signif expon))
<=> (abs f)
and ‘
(multiple-vaiue-bind (signif expon sign) -
(decode-float )
(* (scale-float signif expon) sign))

<=> f
The function f1oat-radix returns (as an integer) the radix b of the floating-point argument.

The function f1oat-sign returns a floating-point number z such that z and float! have the same
sign and also such that z and floar2 have the same absolute value. The argument floa:2 defaults to
the value of (f1oat 1 floatl); (float-sign x) therefore always producesa 1.0 or -1.0 of
appropriate format according to the sign of x. (Note that if an implementation has distinct

- representations for negative zero and positive zero then (float-sign -0.0) =>-1.0.)

The function f1oat-digits returns, as a non-negative integer, the number of radix-5 digits used
in the representation of its argument (including any implicit digits, such as a “hidden bit”). The
function f1oat-precision returns, as a non-negative integer, the number of significant radix-b
digits present in the argument; if the argument is (a floating-point) zero, then the result is (an
integer) zero. For normalized floating-point numbers the results of float-digits and
float-precision will be the same, but the ‘precision will be less than the number of
representation digits for a denormalized or zero number.

The function integer-decode-float is similar to decode-float but for its first value
returns, as an integer, the significand scaled so as to be an integer. For an argument f, this
integer will be strictly less than .

(expt b (float-precision f))
but no less than
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(expt b (- (float-precision f) 1))
except that if fis zero then the integer value will be zero.

The second value bears the same relationship to the first value as for decode-float:
(multiple-value-bind (signif expon sign)
(integer-decode-float f)
(scale-float (float signif f) expon))
<=> (abs f)

Rationale: These functions allow the writing of machine-independent, or at least machine-parameterized,
floating-point software of reasonable efficicncy.

complex realpart &optional imagpart [Function]
The arguments must be non-complex numbers; a number is rcturned that has realpart as its real
part and imagpart as its imaginary part, possibly converted according to the rule of floating-point
contagion (thus both components will be of the same type). If imagpart is not specified then
(coerce 0 (type-of realpart)) is effectively used. Note that if both the realpart and
imagpart are rational and the imagpart is zero, then the result just the realpart because of the rule of
canonical representation for complex rationals. It follows that the result of complex is not always
a complex number; it may be simply a rational. '

realpart number , [Frunction]

imagpart nuinber . : [Function]
These return the real and imaginary parts of a complex number. If number is a2 non-complex
number, then realpart rewrns its argument number and imagpart returns (coerce 0
(type-of nuwmnber)) (this has the effect that the imaginary part of a rational is 0 and that of a
floating-point number is a floating-point zero of the same format).

12.7. Logical Operations on Numbers

The logical operations in this section require integers as arguments; it is an error to supply a non-integer as

an argument. The functions all treat integers as if they were represented in two’s-complement notation.

Implementation note: Internally, of course, an impiementation of COMMON LiSP may or may not use a two's-complement
representation. All that is necessary is that the logical operations perform calculations so as to give this appearance to the
user. :

The logical operations provide a convenient way to represent an infinite vector of bits. Let such a
conceptual vector be indexed by the non-negative integers. Then bit j is assigned a “weight” 2. Assume that
only a finite number of bits are ones, or that only a finite number of bits are zeros. A vector with only a finite
number of one-bits is represented as the sum of the weights of the one-bits, a positive integer. A vector with
only a finite number of zero-bits is represented as -1 minus the sum of the weights of the zero-bits, a negative
integer.

This method of using integers to represent bit vectors can in turn be used to represent scts. Suppose that
some (possibly countably infinite) universe of discoursc for sets is mapped into the non-negative integers.
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Then a set can be represented as a bit vector; an element is in the set if the bit whose index corresponds to-
that efement is a-one-bit. In this way all Tinite: sets can be represented (by positive integers), as well as all sets
whose complements are finite (By negativerintegers). The: functions Togior, Togand, and Togxor defined
below then compute the union, intersection; and symmetric difference operations on sets: represented in this

way.

Togior &rest integers [Fi unctton]
Returns the bit-wise logical inclusive or of its arguments. If no argument is given, then the result is
zero, which is an identity for this operation.

logxor &rest integers . [Function]
Returns the bit-wise logical exclusive orof its arguments. If noargument is given;, then the result is
zero, which is an identity for this operation:

logand &rest integers : [Function]

: Returns the bit-wise logical and of its arguments. If no argument is given, then the result is -1,
which is-an identity for this operanon

logeqv &rest integers : [Function]

‘Returns the bit-wise logical equivalence (also known as exclusive nor) of its argquments. If no
~ argument is given, then the resultis - 1, which is-an identity for this operation.

Tognand integerl integer2 ‘ [Func'tion]

Tognor integerl integer? [Function}

logandc1 integerl integer2 : . ‘ [Function]

Togandc2 integerl integer? ' : - [Function]

Togorc?t integerl integer? [Function)

logorc2 integerl integer? : ' [Function]

These are the other six don-trivial bit-wise logical operations on two' arguments. Because they are
not associative, they take exactly two argumtents rather than any non-negative number of-
argumients: .
(Tognand nl n2) <=» (Yognot (Togand nl n2))

(Togmor nl n2) <=> (lognot (Togior nl n2))
( Togandct nl n2) <=> (Togand (Yognot nl) n2)
(VogandcZ nl n2) <=> (Yogand nl (Tognot n2))
(TYogiorct nl n2) <= (logior (lognot nl) n2)
(Togiorc2 nl' n2y <=> (logior nl (lognot n2))

The ten bit-wise logical operations o two integers are summarized in this table:
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Argumentl 0 0 1 1
Argument2 0 1 0 1 Operation name
logand 0 0 0 1 and '
logior 0 1 1 1 inclusive or
Togxor 0 1 1 0 exclusive or
lTogeqv 1 0 0 1 equivalence (exclusive nor)
Tognand 1 1 1 0 not-and
Tognor 1 0 0 0 not-or
logandc1 0 1 0 0 and complement of argl with arg2
lTogandc2 0 0 1 0 and argl with complement of arg2
logorcl 1 1 0 1 or complement of argl with arg2
logorc2 1 0 1 1 or argl with complement of arg2
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boole op integerl integer2
boole-clr
boole-set
boole-1
boole-2
boole-c1
boole-c2
boole-and
boole-ior
boole-xor
boole-eqv
boole-nand
boole-nor
boole-andcl
boote-andc2
boole-orcl
boole-orc2
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[Function)

- [C onstani)

[Constan{]
[Constani]
[Constanq
[Constani]
[Constani]

[Constani]

[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]
[Constani]

[Constand]

[Constani]

The function boole takes an operation op and two integers, and returns an integer produced by
performing the logical operation specified by op on the two integers. The precise values of the
sixteen constants arc implementation-dependent, but they are suitable for use as the first argument

to boole:

integerl
integer?

Operation performed

boole-clir
boole-set
boole-1
boole-2
boole-c1
boole-c2
boole-and
boole-ior
boole-xor
boole-eqv

boole-nand -

~boole-nor

boole-andcl
~ boole-andc2

boole-orcl
boole-orc2

0
0
0
1
0
0
1
1
0
0
0
1
1
1
0
0
1
1

O R ORMORORMMOORMORMOO

RO MR OO MROMMEOMOORF M OO M

MR OO0 OROMEMOOREMO -

always 0

always 1

integerl

integer2

complement of integer!

complement of integer2?

and

inclusive or

exclusive or

equivalence (exclusive nor)

not-and

not-or

and complement of integer! with integer?
and integerl with complement of integer2
or complement of integer! with integer2
or integer! with complement of integer2

boole can therefore compute all sixteen logical functions on two arguments. In general,
(boole boole-and x y) <=> (logand X y)

" and the latter is more perspicuous. However, boo1e is useful when it is necessary to parameterize

a procedure so that it can use one of several logical operations.

®
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lognot integer . , [Function]
Returns the bit-wise logical not of its argument. Every bit of the result is the complement of the

corresponding bit in the argument.
(Togbitp j (lognot x)) <=> (not (loghitp j x))

logtest integerl integer2 ‘ [Function]

logtest is a predicate that is true if any of the bits designated by the 1's in integer! are 1’s in
integer?.

(logtest x y) <=> (not (zerop (logand x y)))

1ogb"itp index integer . - [Fn,znctiqgi]
logbitp is true if the bit in integer whose index is index (that is, its weight is 27%*) is a one-bit;
otherwise it is false.
For example:

(logbitp 2 6) istrue
(logbitp 0 6) isfalse
(logbitp k n) <=> (1db-test (byte 1 k) n)

ash integer count ' [Function}
This function shifts integer arithmetically left by count bit positions if count is positive, or right
-count bit positions if count is negative. The sign of the result is always the same as the sign of
integer.

Mathematically speaking, this operation performs the computation floor(integer*2°°*™),

Logically, this moves all of the bits in integer to the left, adding zero-bits at the bottom, or moves
them to the right, discarding bits. (In this context the qﬁestion of what gets shifted in on the left is
irrelevant; integers, viewed as strings of bits, are “half-infinite”, that is, conceptually extend
infinitely far to the left.)

For example:

(Togbitp j (ash n k))
<=> (and (>= j k) (logbitp (- j k) n))

logcount integer : [Funclio%;]
The number of bits in integer is determined and returned. If integer is positive, then 1 bits in 158
"binary representation are counted. If integer is negative, then the 0 bits in its two’s-complement
binary representation are counted. The result is always a non-negative integer. '

For example: .
(logcount 13) => 3 ; Binary representationis ...0001101
(1Togcount -13) => 2 : Binary representationis ...1110011
(logcount 30) => 4 ; Binary representationis ...0011110
(logcount -30) => 4 ; Binary representationis ...1100010

The following identity always holds:
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('logcount X) <=> (1ogcount (- (+ x 1)))
<=> (logcount (lognot x))

integer-length integer A | ' [Function)
This function performs the computation

ceiling(logz(if integer< 0 then — integer elsc integer+1))

This is useful in two different ways. First, if integer is non-negative, then its value can be
represented in unsigned binary form. in a field whose width in bits is no smaller than
(integer-length integer). Second, regardless of the sign of integer, its value can be
represented in signed binary two’s-complement form in a field whose width in bits is no smaller
than (+ (integer-length infeger) 1).
For example:
. (integer-length 0)
: (integer-length 1)
(integer-length 3)
(integer-length 4)
(integer-length 7)
(integer-length -1)
(integer-length -4)
(integer-length -7)
(integer-length -8)
Compatibility note: This function is similar to the MacLisp function haulong. One may define haulong as
(haulong x) <=> (integer-length (abs x))
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12.8. Byte Manipulation Functions

Several functions are provided for dealing with an arbitrary-width field of contiguous bits appearing
anywhere in an integer. Such a contiguous set of bits is called a byre. Here the term byte does not imply some
fixed number of bits (such as eight), but a field of arbitrary and user-specifiable width.

The byte~manipu1ation functions use objects called b)zte specifiers to designate a specific byte position
within an integer. The representation of a byte specifier is implementation-dependent; in particular, it may or
may not be a number. It is sufficient to know that the function byte will construct one, and that the
byte—manipulation functions will accept them. The function byte accepts two integers representing the
position.. ‘and size of the byte, and returns a byte_specifier. Such a specifier designates a byte whose width is
size, and whose bits have weights 2705ition+size=1 o gpy pposition,

byte size position [Function]
- byte takes two integers representing the size and position of a byte, and returns a byte specifier
i suitable for use as an argument to byte-manipulation functions.

L _
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Yo
‘ byte-size bytespec : [Function]
byte-position &ytespec o [Function)
Given a byte specifier, byte size returns the size specified as an- integer; byte-position
similarly returns the position.
For example:
(byte-size (byte j k)) <=>
(byte-position (byte j )) > k
1db bytespec integer [Func tzon]
bytespec specifies a byte of integer to be extracted. The result is returned as a positive intcger. .
For example: *
(logbitp j (1db (byte s p) n)
<=> (and (< j s) (logbitp (+ j p) n))
The name of the function “1db” means “load byte”.
Compatibility note: The MACLISP function haipart can be implemented in terms of 1db as follows:
(defun haipart (integer count)
{(let ((x (abs integer))) ‘
(if (minusp count)
(1db (byte (- count) 0) x)
(1db (byte count (max 0 (- (integer-length x) n)))
X))
o~ setf (page 78) may be used with 1db, provided that the argument integer is specified by a form
‘ that is a place form acceptable to setf, to modify a byte within the integer that is stored in that
place. The effect is to perform a dpb (page 186) operation and then store the result back into the
place. -
1db-test bytespec integer ' [Function)

1db-test is a predicate that is true if any of the bits designated by the byte specifier bytespec are
I’sin integer; that is, it is true if the designated field is non-zero.
(1db-test bytespec n) <=> (not (zerop (1db bytespec n)))

mask-field bylespec integer ‘ [Function]
This is similar to 1db; however, the result contains the specified byte of integer in the position
specified by bytespec, rather than in position 0 as with 1db. The result therefore agrees with mteger
in the byte specified, but has zero bits everywhere else.
For example: . .
(1db bs (mask-field bs n)) <=> (1db bs n)

“afl

(logbitp j (mask-field (byte s p) n))
<=> (and (>= j p) (< js) (logbitp j n))
(mask-field bs n) <=> (logand n (dpb -1 bs 0))
~ 'setf (page 78) may be used with mask-field, provided that the argument integer is specified
‘ ) by a form that is a place form acceptable to setf, to modify a byte within the integer that is stored
in that place. The effect is to perform a deposit-field (page 186) operation and then store the
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result back into the place.
dpb newbyte bytespec -integer ' v [Function] .
Returns a number that is the same as integer except in the bits specified by bytespec. Let s be the
size specified by bytespec; then the low sbits of newbyte appear in the result in the byte specified by
bytespec. The integer newbyte is therefore interpreted as being right-justified, as if it were the result
of 1db.
For example:
(logbitp j (dpb m (byte s p) n)) ‘
- <=> (if (and (>= jp) (< j(+ ps)))
(logbitp (- j p) m)
v (togbitp j n)) -
The name of the function “dpb™ means “deposit byte”.

deposit-field newbyte bytespec integer ' [Function] .
. &
This function is to mask~-field as dpb is to 1db. The resuit is an integer that contains the bits of ’
newbyte within the byte specified by bytespec, and elsewhere contains the bits of inzeger.
For example:
{Togbitp j (dpb m (byte s p) n))
<=> (if (and (>=jp) (<j (+ p 5)))
(logbitp j m)
(Togbitp j n))
Implementation note: If the byzespec is a constant, one may of course construct, at compile time, an equivalent
mask m, for example by computing (deposit-field ~1 bytespec 0). Given this riask m, one may then ’
compute ’ ' ’
(deposit-field newbyre bytespec integer)
by computing

’ (logior (logand newbyte m) (Togand inreger (1ognot m)))
where the result of (1ognot m) can of course also be computed at compile time. However, the following
expression (which I got indirectly from Knuth) may also be used, and may require fewer temporary registers in
some situations:
(logxor integer {Yogand m (logxor integer newbyte)))
A related, though possibly less useful, trick is that
(tet ((z (logand (logxor x y) m)))
(setg x (logxor z x))
(setq y (logxor z y)))
interchanges those bits of x and y for which the mask mis 1, and leaves alone those bits of x and y for which m
is 0.

12.9. Random Numbers

random number &optional state ‘ [Function}
’ (random n) accepts a positive number »n and returns a number of the same kind between zero
(inclusive) and n (exclusive). The number # may be an integer or a floating-point number. An
approximately uniform choice distribution is used: if » is an integer, each of the possible results
occurs with (approximate) probability 1/n. (The qualifier “approximate” is used because of
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- implementation considerations; in practice the deviation from uniformity should be quite small.)

The argument sfate must be an object of type random-state; it defaults to the value of the
variable *random-state*. This object is used to maintain the state of the pseudo-random-

number generator, and is altered as a sidc effect of the random operation.

Compatibility note: random of zero arguments as defined in MACLISP has been omitted because its value is too
implementation-dependent (limited by fixnum range).

Implementation note: In gencral. even if random of zero arguments were defined as in MAcLISP, it is not
adequate to define (random n) for integral » to be simply (mod (random) 2); this fails to be uniforraly
distributed if r is larger than the largest number produced by random. or even if n merely appreaches this
rumber. This is another reason for omitting random of zero arguments in COMMON Lisr. Assuming that the
underlying mechanism produces “random bits” (possibly in chunks such as fixnums), the best approach is to
produce enough random bits to construct an integer k some number d of bits larger than (integer-length
n) (see integer-length (page 184)), and then compute (mod & n). The quantity 4 should be at least 7,
and preferably 10 or more.

To produce random floating-point numbers in the range [4, B), accepted practice {as detcrmined by a look
through the Collected Algorithms from the ACM, particularly algorithms 133, 266, 294, and 370) is to compute
X*(B- A)+ A, where X is a floating-point number uniformly distributed cover [0.0, 1.0) and computed by
caiculating a random integer N in the range [0, M) (typically by a multiplicative-congrueptial or linear-
congruential method mod M) and then setting X=N/M. See also [10]. If one takes M = 2/, where f'is the
length of the significand of a floating-point number (and it is in fact common lo choose M to be a power of
two), then this method is equivalent to the following assembly-language-level procedure. Assume the
representation has no hidden bit. Take a floating-point 0.5, and clobber its entire significand with random bits.
Normalize the result if necessary.

For example, on the PDP-10, assume that accumulator T is completely random (all 36 bits are random}. Then

the code scquence
LSH T,-8 : Clear high 9 bits; low 27 are andom.
FSC T,128. ; Install exponent and normalize.

will produce in T a random {loating-poin: number uniformly distributed over [0.0, 1.0). (Instcad of the LSH,
one could do “TLZ T,777000; but if the 36 random bits came from a congruenthal random-number
generator, the high-order bits tend to be “more random” than the low-order ones, and so the LSH would be a
bit better for unifcrm distribution. Ideally all the bits would be the resuit of high-quality randomness.)

With a hidden-bit representation, normalization is not a problem, but dealing with the hidden bit is. The
method can be adapted as follows. Take a floating-point 1.0 and clobber the explicit significand bits with
random bits; this produces a random floating-point number in the range [1.0, 2.0). Then simply subtract 1.0.
In effect, we let the hidden bit creep in and then subtract it away again.

For example, on the VAX, assume that register T is completely random (but 2 little less random than on the
PDP-10, as it has only 32 random bits).- Then the code sequence

INSV #~X81,#7,#9,T ; Install correct sign bit and exponent.
SUBF #~F1.0,T ; Subtract 1.0.

will produce in T 2 random floating-point number uniformly distributed over [0.0, L0). Again, if the low-order
bits are not random enough, then “ROTL #7,T” should be performed first.

Implementors may wish to consult reference [16] for a discussion of some efficient methods of generating
pseudo-randont numbers.

*random state* : - : : . [Variable]
This variable holds a data structure, an object of type random-state, that encodes the internal
state of the random-number generator that random uses by default. The nature of this data
structure is implementation-dependent. It may be printed out and successfully read back in, but
may or may not function correctly as a random-number state object in another implementation. A
call to random will perform a side effect on this data §‘txi1ct}xre. L’émbda-binding this variable to a
different random-number state object will correctly save and restore the old state object, of course.
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make-random-state &optional state’ [Function]
This function returns a new object of type random-state, suitable for use as the value of the
variable *random-state*. If siazeis nil or omitted, random-state returns a copy of the
current random-number state object (the value of the variable *random-state*). If siateis a
state object, a copy of that state object is returned. If state is t, then a new state object is returned
that has been “randomly” initialized by some means (such as by a time-of-day clock).
Rationale: CoMMON Lisp purposely provides no way to initialize a random-state object from a user-
specified “seed”. The réason for this is that the number of bits of state information in a random-state
object may vary widely from one impiementation to another, and there is no simple way to guarantee that any

user-specified sced value will be “random enough”. Instead, the initialization of random-state objects is left
to the implementor in the case where the argument t is given to make-random-state.

To handle the common situation of executing the same program many times in a reproducible manner, where
that program uses random, the following procedure may be used:

1. Evaluate (make-random-state t) tocreatearandom-state object.
2. Write that object to a file, using print (page 316), for later use.

3. Whenever the program is to be run, first use read (page 310) to create a copy of the random-state
object irom the printed representation in the file. Then use the random~-state object newly created
by the read operation to initialize the random-number generator for the program.

It is for the sake of this procedure for reproducible execution that implementations are requiréd to provide a
read/print syntax for objects of type random-state.

It is also possible to make copies of a random-state object directly without going through the print/read
process, simply by using the random-state function to copy the object: this allows the same sequence of
random numbers to be generated many times within a single program.
Implementation nete: A recommended way to implement the type random-state is effectively to use the
. machinery for defstruct (page 255). ‘The usual structure syntax may then be used for printing
random-state objects; one'might look something like
b #S(RANDOM-STATE DATA #(14 49 98436589 786345 8734658324 ...))

where the components are of course completely impleinentation-dependent.

random-state-p object [Function]
random-state-p is true if its argument is a random-state object, and otherwise is false.
(random-state-p x) <=> (typep x ’'random-state)

12.10. Implementation Parameters -

The values of the named constants defined in this section are implementation-dependent. They may be
useful for parameterizing code in some situations.

most-positive-fixnum i : ‘ [Constani]

most-negative-fixnum - o : [Constani]
The value of mosi-positive-f ixnum is that fixnum closest in value to positive infinity
provided by the implementation.

The value of most-negative-fixnum is that fixnum closest in value to negative infinity
provided by the implementation. '
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most-positive-short-float ' [Constani]
least-positive-short-float : [Constani]
least-negative-short-float [Constani}
most-negative-short-float : . [Constani]

The value of most-positive-short-float is that short-format floating-point number closest
in value to (but not equal t0) positive infinity provided by the implementation.

The value of least-positive-short-fioat is that positive short-format floating-point
number closest in value to (but not equal to) zero provided by the implementation.

The value of Teast-negative-short-float is that ncgative short-format floating-point
number closest in value to I( but not equal to) zero provided by the implementation. (Note that even
if an irnplemeritation supports minus zero as a distinct short floating-point value,
least-negative-short-float must not be minus zero.)

The value of most-negative-short-float is that short-format floating-point number closest
in value to (but not equal to) negative infinity provided by the implementation.

most-positive-single-float [Constani]
least-positive-single-float ‘ [Constani]
least-negative-single-fioat [Constani]
most-negative-single-float ' [Constani]
most-positive-double-float : [Constani]
least-positive-double-float [Constani]
least-negative-double-float [Constanl]
most-negative-double-float : [Censtani]
most-positive-Tong-float [Constani]
least-positive-long-float o - . [Constani]
least-negative-long-float ' ‘ [Constani]
most-negative-long-float [Constani]

These are analogous to the constants defined above for short-format floating-point numbers.

short-float-epsilon - o [Constand]

single-float-epsilon _ [Constani]
double-float-epsilon ’ Co : [Constant]
long-float-epsilon [Constani]

These constants have as value, for each ﬂoatmg point format, the smallest positive ﬂoatmg point
number e of that format such that the expression- '

(not (= (float 1 ¢) (+ (float 1 ¢) e)))
is true when actually evaluated.
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short-float-negative-epsilon . : . [Constani]
single-float-negative-epsilon ‘ [Constani]
double-float-negative-epsilon . . A [Constani]
long-float-negative-epsilon "~ [Constani]

These constants have as value, for each floating-point format, the smallest positive floating-point
number e of that format such that the expression

(not (= (float 1 ¢e) (- (float 1 e) e)))
is true when actually evaluated, -

- ey




Chapter 13

Characters

CoMMON LisP provides a character-data type; objects of this type represent printed symbols such as letters,

In general, characters in COMMON LISP are not true objects; eq cannot be counted upon to operate on them
reliably. In particular, it is possible that the expression
(Tet ((x z) (y z)) (eq x y))
may be false rather than true, if the value of z is a character.

Rationale: This odd breakdown of eq in the case of characters allows the implementor cnough design freedom to produce
exceptionaliy efficient code on conventional architectures. In this respect the treatment of characters exactly parallels that of
aumbers, as described in chapter 12.

If two cbjects are to be compared for “identity”, but either might be a character, then the predicate eq1
(page 65) is probably appropriate.

Every character has three attributes: code, bits, and font. The code attribute is intended to distinguish
amonyg the printed glyphs and formatting {unctions for characters. The bits attribute allows extra flags to be
associated with a character. The font attribute permits a specification of the style of the glyphs (such as
italics). ' '

char-code-limit [Constani]
The value of char-code-1imit is a non-negative integer that is the upper exclusive bound on
values produced by the function char-code (page 196), which returns the code component of a
given character; that is, the values returned by char-code are non-negative and strictly less than
the value of char-code- 11m1t o AR 1

char-font-limit ‘ [Constarft]
The value of char-font-1imit is a non-negative integer that is the upper exclusive bound on
values produced by the function char-font (page 196), which returns the font component of a
given character; that is, the values returned by char-font are non-negatwe and strictly less than

the value of char-font-1imit.

Implementation note: No CoMMON Lisp impiementation is required to support non-zero font attributes; if it
does not, then char-font-11imit should be 1.
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char-bits-limit A , [Constani]
The value of char-bits-1imit is a non-negative integer that is the upper caclusive bound on
values produced by the function char-bits (page 196), which returns the bits component of a
given character; that is, the values returned by char-bits are non-negative and strictly less than
the value of char-bits-1imit. Note that the value of char-bits-Timit will be a power of

two.

- Implementaiion note:. No CoMMON Lisp implementation is required to support non-zero bits attributes; if it
does not, then char-bits-11imit should be 1.

13.1. Predicates on Characters

The predicate characterp (page 62) may be used to determine whether any LISP object is a character
object.

standard-char-p char : ‘ ' [Function]
- The argument char must be a character object. -standar d-char- p is true xf the argument is a
“standard character”, that is, an object of type standard-char.

Note that any character with a non-zero bits or font attribute is non-standard.

graphic-char-p char ' A ' [Function}

The argument char must be a character object. graphic-char? p is true if the argument is a

“craphic” (printing) character, and false if it is a “non-graphic” (formatting or control) character.

- Graphic characters have a standard textual representation as a single glyph, such as “A” or “*” or

“=”. By convention, the space character is considered to be graphic. Of the standard characters all

but #\New1l1ine are graphic. The semi-standard characters #\Back space, #\Tab, #\Rubout,
#\Linefeed;#\Return, and #\Page are not graphic. .

Programs may assume that graphic characters of font 0 are all of the same width when printed, for
example for purposes of columnar formatting. (This does not prohibit the use of a variable-pitch
font as font 0, but merely implies that every implementation of COMMON LISP must provide some
mode of operation in which font 0 is a fixed-pitch font.) Portable programs should assume that, in’
general, non-graphic characters and characters of other fonts may be of varymg widths,

Any character with a non-zero bits attribute is non-graphlc

string-char-p char o - [Function]

The argument char must be a character object. string-ch ar- p is toe if char can be stored into

a string, and otherwise is false. Any character that satisfies standard-char-p also satisfies

string-char-p; others may also.




—.

CHAPTER 13: CHARACTERS 193

alpha-char-p char : - : [Function]

The argument c/ar must be a character object. alpha-char-p is true if the argument is an
alphabetic character, and otherwise is false.

If a character is alphabetic, then it is perforce graphic. Therefore any character with a non-zero bits
attribute cannot be alphabetic. Whether a character is alphabetic may depend on its font number.

Of the standard characters (as defined by standard-char-p), the letters “A” through “Z” and
“a” through “z” are alphabetic.

upper-case-p char [Function]
lower-case-p char [Function}:
both-case-p char [Function]

The argument char must be a character object. upper-case-p is true if the argument is an
upper-case {majuscule) character, and otherwise is falsc. To