
• 

• 

CARNI~GIE-Ml~LLON UNIVERSITY 

DEPARTMENT OF COMPUTER SCIENCE 

SPICE PROJECT 

Common Lisp Reference Manual 

Guy I .. Steele Jr. 
CARNEGIE-MI~1 ,LON UNIVERSITY 

TARTAN lABORATORIES INCORPORATED 

wilh major contributiolls by 

Scott E. Fahlman . 
CARNEGIE-MELLON UNIVERSITY 

Richard P. Gabriel 
STANFORD UNIVERSITY 

LAWRENCF I JVFRI\.,tORE NATIONAL lABORATORY 

David A. Moon 
SYl\1BOLICS. INCORPORATED 

Daniel L. Weinreb 
SYMBOIJCS. INCORPORATED 

29 November 1983 

Mary Poppins Edition 
Practically Perfect in Every Way 

Copyright © 1983 Guy L. Steele Jr. 

Supported by the Defense Advanced Research Projects Agency, Oepartmcnt of Defense, ARPA Order 3597, 
monitored by the Air Force Avionics Laboratory under contract F33615-78-C-1551. The views and 
conclusions contained in this document are those of the authors and should nut be interpreted as representing 
the official policies. either expressed or implied. of the Defense Advanced Research Projects Agency or the 

U.S. Government. 

-------.~ ...... -' ............ - .. - - .. _ ... -. __ .-. .. _.,-... _--_ ..... __ .. _ .. 



• 

• 

• 



• 

.~. 

TABLE OF CONTENTS 

1. Introduction 
1.1. Purpose 
1.2. Notational Conventions 

2. Data Types 
2.1. Numbers 

2.1.1. Integers 
2.1.2. Ratios 
2.1.3. Floating-point Numbers 
2.1.4. Complex Numbers 

2.2. Characters 
2.2.1. Standard Characters 
2.2.2. Line Divisions 

Table of Co·ntents 

2.2.3. Non-Standard Characters 
2.2.4. Character Attributes 

2.3. -Symbols 
2.4. Lists and Conses 
2.5. Arrays 

2.5.1. Vectors 
2.5.2. Strings 
2.5.3. Bit-vectors 

2.6. Hash tables 
2.7. Readtables 
2.8. Packages 
2.9. Pathnames 
2.10. Streams 
2.11. Random-states 
2.12. Structures 
2.13. Functions 
2.14. Unreadable Data Objects 
2.15. Overlap, Inclusion, and Disjointness of!'ypes 

3. Scope and Extent 

4. Type Specifiers 
.. 4.1. Type Specifier Symbols 

4.2. Type Specifier Lists 
4.3. Predicating Type Specifier 
4.4. Type Specifiers That Combine 
4.5. Type Specifiers That Specialize 
4.6. Type Specifiers That Abbreviate 
4.7. Defining New Type Specifiers 

1 
1 
3 

9 
11 
11 
12, 
13 
16 
16 
16 
17 
18 
18 
19 
21 
22 
23 
24 
24 
25 
25 
25 
25 
25 
25 
26 
26 
26 
27 

29 

35 
3S 
3S 
36 
36 
37 
40 
41 



ii 

4.8. Type Conversion Function 
4.9. Detennining the Type of an Object 

5 .. Program Structure 
5.1. Forms 

5.1.1. Self~Evaluating Forms 
5.1.2. Variables 
5.1.3. Special Forms 
5.1.4. Macros 
5.1.5. Function Calls 

5.2. Functions 
5.2.l. Named Functions 
5.2.2. Lambda-Expressions 

5.3. Top-Level Forms 
,,5.3.1. Defining Named Functions 
5.3.2. Declaring Global Variables and Named Constants 
5.3.3. Control of Time of Evaluation 

6. Predicates 
6.1. Logical Values 
6.2. Data Type Predicates 

6.2.1. General Type Predicates 
6.2.2. Specific D(Jta Type Predicates 

6.3. Equality Predicates 
6.4. Logical Operators 

7. Control Structure 
7.1. Constants and Variables 

7.1.1. Reference 
7.1.2. Assignment 

7.2. Generalized Variables 
7.3. Function Invocation 
7.4. Simple Sequencing 
7.5. Environment Manipulation 
7.6. Conditionals 
7.7. Blocks and Exits 
7.8. Iteration 

7.8.1. Indefinite Iteration 
7.8.2. General iteration 
7.8.3. Simple Iteration Constructs 
7.8.4. Mapping 
7.8.5. The "Program Feature" 

7.9. Multiple Values 
7.9.1. Constructs for Handling Multiple Values 
7.9.2. Rules Governing rhe Passing of Multiple Values 

COMMON LISP REFERENCE MANUAL 

42 
43 

45 
45 
45 
46 
47 
48 
48 
49 
49 
49 
54 
55 
56 
57 

59 
60 
60 
60 
60 
63 
67 

71 
72 
72 
76 
77 
89 
90 
91 
95 
98 
99 

100 
100 
103 
105 
107 
110 
110 
112 



• 

",--. • 

TABLE OF CONTENTS 

7.l0. Dynamic Non-local Exits 
7.10.1. Catch Fonns 
7.10.2. Throw Fonns 

8. Macros 
8.1. Defining Macros 
8.2. Expanding Macro Calls 

9. Declarations 
9.1. Declaration Syntax 
9.2. Declaration Specifiers 
9.3. Type Declaration for Fonns 

10. Symbols 
10.1. The Property List 
10.2. The Print Name 
10.3. Creating Symbols 

11. Packages 
11.1. Overview 
11.2. Consistency Rules 
11.3. Package Names 
11.4. Translating Strings to Symbols 
11.5. Exporting and Importing Symbols 
11.6. Name Conflicts 
11.7. Built-in Packages 
11.8. Package System Functions and Variables 
11.9. Modules 
11.10. An Example 

iii 

114 
114 
116 

117 
118 
123 

125 
125 
128 
131 

133 
133 
136 
137 

139 
139 
140 
141 
142 
143 
145 
148 
148 
153 
154 

12. Numbers 159 
12.1. Precision, Contagion, and Coercion 159 
12.2. Predicates on Numbers .- 161 
12.3. Comparisons on Numbers 162 
12.4. Arithmetic Operations 164 
12.5. Irrational and Transcendental Functions 166 

12.5.1. Exponential and Logarithmic Functions 161 
12.5.2. Trigonometric and Related Functions . 168 
12.5.3. Branch Cuts, Principal Values, and Boundary Conditions in the Complex Plane 171 

12.6. Type Conversions and Component Extractions on Numbers 174 
12.7. Logical Operatio~s on Numbers 179 
12.8. Byte Manipulation Functions 184 
12.9. Random Numbers 186 
12.10. Implementation Parameters . 188 



iv 

13. Characters 
13.1. Predicates on Characters 
13.2. Character Construction and Selection 
13.3. Character Conversions 
13.4. Character Control-Bit Functions 

14. Sequences 
14.1. Simple Sequence Functions 
14.2. Concatenating, Mapping, and Reducing Sequences 
14.3. Modifying Sequences 
14.4. Searching Sequences for Items 
14.5. Sorting and Merging 

15. Manipulating List Structure 
15.1. Conses 
15.2. Lists 
15.3. Alteration of List Structure 
15.4. Substitution of Expressions 
15.5. Using Lists as Sets 
15.6. Association Lists 

16.1Iash Tables 
16.1. Hash Table Functions 
16.2. Primitive Hash Function 

17. Arrays 
17.1. Array Creation 
17.2. Array Access 
17.3. Array Infonnation 
17.4. Access Function for Simple Vectors 
17.5. Functions on Arrays of Bits 
17.6. Fill Pointers 
17.7. Changing the Dimensions of an Array 

18. Strings 
18.1. String Access 
18.2. String Comparison 
18.3. String Construction and Manipulation 
18.4. Type Conversions on Strings 

19. Structures 
19.1. Introduction to Structures 
19.2. How to Use Defstruct 

. COMMON USP REFERENCE MANUAL 

191 
192 -. 196 
197 
199 

201 
203 
204 
207 
210 
212 

215 
215 
217 
223 
224 
226 
229 

233 
234 
236 

. 237 
237 
240 
241 
242 
243 
244 
245 

247 
247 
248 
249 
251 

253 
253 
255 

.-#. 



TABLE OF CONTENTS v 

~ 

• 19.3. Using the Automatically Defined Constructor Function 256 
19.4. Dcfstruct Slot-Options 257 
19.5. Defstruct Options 257 
19.6. By-position Constructor Functions 261 
19.7. Structures of Explicitly Specified Representational Type 262 

19.7.1. Unnamed Structures 262 
19.7.2. Named Structures 263 
19.7 .3. Other Aspects of Explicitly-Specified Structures 264 

20. The Evaluator 267 
20.1. Run-Time Evaluation of Fonns 267 
20.2. The Top-Level Loop 269 

21. Streams 273 
21.1. Standard Streams 273 
21.2. Creating New Streams 275 
21.3. Operations on Streams ·277 

22. Input/Output 279 
22.1. Printed Representation of LISP Objects 279 

22.1.1. What the Read Function Accepts 280 

~ 
22.1.2. Parsing of Numbers and Symbols 282 

• 22.1.3. Macro Characters 290 
22.1.4. Sharp-Sign Macro Character Syntax 293 
22.1.5. The Readtable 299 
22.1.6. What the Print Function Produces 303 

22.2. Input Functions 309 
22.2.1. Input from Character Streams 309 
22.2.2. Input from Binary.Streams 316 

22.3. Output Functions 316 
22.3.1. Output to Character Streams 316 
22.3.2. Output to Binary Streams 318 
22.3.3. Fonnatted Output to Character Streams 318 

22.4. Querying the User 333 

23. File System Interface 337 
23.1. File Names 337 

23.1.1. Pathnames 3~8 

23.1.2. Pathname Functions 340 
23.2. Opening and Dosing Files 344 
23.3. Renaming, Deleting, and Other Operations 348 
23.4. Loading Files 350 
23.5. Accessing Directories 351 

~ • 



vi 

24. Errors 
24.1. Handling Errors 
24.2. General Error Signalling Functions 
24.3. Specialized Error-Signalling Fonns and Macros 
24.4. Special Fonns for Exhaustive Case Analysis· 

25. Miscellaneous Features 
25.1. The Compiler 
25.2. Documentation 
25.3. Debugging Tools 
25.4. Environment Inquiries 

25.4.1. Time Functions 
25.4.2. Other Environment Inquiries 

25.5. Identity Function 

References 

COMMON LISP REFERENCE MANUAL 

353 
353 
353 
357 
358 

361 
361 
362 
363 
365 
365 
368 
369 

371 



.'--

• 

,--•• 

,.-.-.. • 

USTOFTABLES 

List of Tables 
Table 1-1: Sample Function Description 
Table 1-2: Sample Variable Description 
Table 1-3: Sample Constant Description 
Table 1-4: Sample Special Form Description 
Table 1-5: Sample Macro Description 
Table 2w 1: Recommended Minimum Floating-Point Precision and Exponent Size 
Table 4-1: Standard Type Specifier Symbols 
Table 5-1: Names of All COMMON LISP Special Fonns 
Table 11-1: Example of an "Initialization Fileu 

Table 11-2: Example file al cherny 
Table 11-3: Example file ph 109 is ton 
Table 22-1: Standard Character Syntax Types 
Table 22-2: Actual Syntax of Numbers 
Table 22-3: Standard Constituent Character Attributes 
Table 22-4: Standard Sharp-Sign Macro Character Syntax 

vii 

5 
5 
5 
6 
6 

14 
36 
47 

154 
155 
156 
283 
284 
288 
294 



viii COMMON LISP REFERENCE MANUAL 

Acknowledgenlents 

COMMON I.lSp was designed by a diverse group of people affiliated with many institutions. (In the 

acknowledgements below, institutional affiliations are indicated by numerical superscripts referring to the list 

of institutions at the end of this section. Multiple superscripts indicate multiple affiliations that may have 

been held either simultaneously Of consecutively when the individuars contributions were made, during the 

period from 198 I th rough 1983.) 

The many people who have contributed to the design and implementation of COMMON LISP and to the 

polishing of this document are hereby gratefully acknowledged: 

Paul Anagnostopoulos3 

Dan Aronson2 

Ahm B.H\,dcn6 

Eric Benson 15.9. 10 

.Jon Bentley2. 1 

.Jerry Boctjc3 

GetTy Brooks 12 
I~odncy A. Brooks9 

GaryL. Brown3 

R kha rd L. Bryan 10 

Glenn S. Burke6 

Howard 1. Cannon 10 

Gcorge .J. C.tTrette6 

Robert Cassels 10 

l\Ilonica Ccllio2 
David DilI2 
Scott Eo F.lhlman2 

Richard .1. Fatcman 13 

NC.11 Fcinbcrg2 

Ron Fischcr8 

.John Foderaro13 

Stcvc Ford 12 
I~ichard P. G.lhrieI9. 14 
.Joseph Ginder2. 7 

Hern.trd S. Grcenherg lO 

I~idmrd GrccnhhlU5 

Martin L. Griss 15.4 
Stcven I hmderson2 

Ch&ulcs L. Hedrick8 

Gail Kuiscr2 

Earl A. KillhlO 14 

Steve Krucger12 
. 10' .John L. Kulp 

.Jim 1 JHrge2 

I~oh Macblchlan2 

William 1\11:1ddox2 

Larry 1\11. M~lsinter16 
.Iohn 1\1cCarthy9 
Mich.lcl K McMahon lO 

Brian Milncs2 

D~lliid A. Moon10 

Heryl Morrison3 

Don 1\10rrison 15 

I)an· Pierson3 

Kcnt 1\11. Pitman6 

.Jonathan Rces17 

\"'alter van l~oggcn3 
SUS ... l noscnhauIll1 2 

\Villimn I J. Schcrlis2 
Lec Schumachcr2 

I~ichard M. Stallman6 

Barham K. Stcelc2 

Guy L. Steelc .Jr.2. 11 

Petcr Szolovits6 

\Villimn VCHJI\1cllc 16 

Ellen \Valdrum12 

Alhm C. W cchsler10 

Daniel L. \Veinrcb 10 

.Jon L White16 

Skcf Wholey2 

l~ichard Zippel6 

Lconard Zubkoff2. 11 

Some contributions were relatively small; others involved enonnous expenditures of effort and great 

dedication. All were important. and I am grateful for the interest and spirit of cooperation that allowed most 

decisions to be made by consensus after due discussion. 

Considerable encouragement and moral support were also provided by: 

Normn Abcl3 

Roger Hate 12 
Harvey Cragon12 

Dennis Duncan3 

Sanl FJlllcr3 

I am very grateful to each of them. 

Genc Kromcr12 

A. Nic(} Habcrmann2 

Gene Matthcws12 

Alhm Newell2 

Harry Tennant12 

Dana Seott2 

Patrick H. Winston6 

William A. \Vulr2, 11 

Lowcll Wood14 

• 

__ e 

:~-



ACK NOWI.EDGEMENTS ix 

.Jan Zuhkorr2 provided a great deal of organization. secretarial support, and unfililing good cheer in the face 

of adversity. Ed Frank 2 helped me greatly in using the Mergenthaler Linotype Omnitech/2000 laser printer at 

Carnegie-Mellon University to prepare the camera-ready copy for this book. 

The development of COMMON Lisp would most probably not have been possible without the electronic 
message system provided by the ARPANET. Design decisions were made on several hundred distinct points 

(for the most part by consensus, and by simple majority vote when necessary). Except for two one-day 
face-to-face meetings, all of the language design and discussion was done through the ARPANFT message 
system, which pellllitted effortless dissemination of messages to dozens of people. and several interchanges 
per day. The message system also provided automatic m'chiving of the entire discussion. which has proved 
invaluable in the preparation of this reference manual. Over the course of thirty months approximately 3000 
messages were sent (an average of three per day), each ranging in length from one line to twenty pages in 

length. Assuming 5000 characters per printed page of text, the entire discllssion totaled ahout 1100 pages. It 
would have been substaIltially more difficult. and would have required a much longer period of time, to 

conduct this discussion hy any other means. 

The ideas in COMMON I .lSI> have come from many sources and been polished by much discllssion. I am 
responsible for the form of this document, and for any errors or inconsistencies that may remain: but the 
credit ft)r the design and support of COMMON LIsp lies with the individuals named above, each of whom has 

made significant contributions. 

The organization, typography and content of this document were inspired in large part by the AfacLISP 

Reference "'lalZual by David A. Moon and others. and by the IJSP At/achille AtlalZual by Daniel Weinreb and 
David Moon. which in turn ackl~ow1cdges the efforts of Richard Sta\1man, Mike McMahon. Alan Bawden, 

Glenn Burke. and "many people too numerous to list". 

I thank Phyllis Keenan and Jonathan Baker of Digital Press for their help in preparing this manual for 

publication. 

I am grateful to Carnegie-McHan University and to Tartan I.aboratories Incorporated for supporting me in 

the writing of this manual over the last two and one-half years. 

Most of the writing of this book took place between midnight and 4 A.M. I am grateful to Barbara, Julia, and 

Peter for putting up with it. and for their love. 

Guy L. Steele Jr. 
Pittsburgh, Pennsylvania 
October 1983 

1. Ilcll Laboratories 
2. Carnegie-Mellon University, Computer Science Department 
3. Digital Equipment Corporation 
4. Hewlett-Packard Incorporated 
5. Lisp Machines Incorporated (LMI) 
6. MassachusctL<; Institute ofTcchnology 
7. Perq Systems Corp . 

. - .-.-.- .-.-.. -.----------~-



x 

8. Rutgcrs University. Laboratory for Computer Scicnce Research 
9. Stanford UnivcrsHy. Computer Scicnce Departmcnt 

to. Symholics. incorporated 
11. Tartan 1 ... 'lbor;lto.r1cS Incorporated 
12. Tcxas Instruments 
13. Univcrsity of California. Bcrkeley, Computer Science Division 
14. University of California .. 1 awrencc Livcnnore National) aboratory 
15. Univcrsity of Utah. Department of Computer Science 
16. Xerox Corporation. Palo Alto Rcscarch Center 
17. Yalc Univcrsity. Dcpaltmcnl of Computer Science 

COMMON LISP REFERENCE MANUAL 

... _- - ...... _-----------



ACKNOWL.EDGl~MENTS 

Would it be wonderful if. under the pressure of all these difficulties. 
the Convention should have been forced into some deviations from that 
artificial structure and regular symmetry which an abstract view of the 
subject might lead an ingenious theorist to bestow on a constitution 
planned in his closet or in his imagination? 

-.lames lfa"Jis(~1l. The Federalist No. 37. January II. 1788 

._--------------- ---~_.- ._-,,--_. -..... _ .. _._ .. -.- ............•.. -- ... -... ------_._- ..... -

xi 



xii COMMON LISP REFERENCE MANUAL 



Chapter 1 

Introduction 

COMMON LISP is a new dialect of LISP, a successor to MACLISP [12, 15], influenced strongly by Lisp 

Machine LISP [20, 13] and also to some extent by SCHEME [171 and I~'TERLISP [19]. 

1.1. Purpose 

COMMON LISP is intended to meet these goals: 

Commonality. 

Portability. 

Consistency. 

COMMON LISP originated in an attempt to focus the work of several implementation 
groups, each of which was constructing successor implementations of MACLISP for 
different computers. These implementations had begun to diverge because of the 
differences in the implementation environments: microcoded personal computers (Lisp 
Machine LISP, SPICE LISP), commercial timeshared computers (NIL), and supercomputers 
(5-1 LISP). While the differences among the several implementation environments of 
necessity will continue to force certain incompatibilities among the implementations, 
CO~1MON LISP serves as a common dialect to which each implementation makes any 
necessary extensions. 

COMMON LISP intentionally excludes features that cannot be implemented easily on a 
broad class of machines. On the one hand, features that are difficult or expensive to 
implement on hardware without special microcode are avoided or provided in a more 
abstract and efficiently implementable fonn. (Examples of this are the invisible forwarding 
pointers and locatives of Lisp Machine LISP. 'Some of the problems that they solve are 
addressed in different ways in COMMON LISP.) On the other hand, fe~tures that are useful 
only on certain "ordinary" or "commercial" processors are avoided or made optional. (An 
example of this is the type declaration facility, which is useful in some implementations 
and completely ignored in others. Type declarations are completely optional and for 
correct programs affect only efficiency, never semantics.) COMMON LISP is designed to 
make it easy to write programs that depend as little as possible on machine-specific 
characteristics such as word length, while allowing some variety of implementation 
techniques. 

Most LISP implementations are internally inconsistent in that by default the interpreter and 
compiler may assign different semantics to correct programs; this stems primarily from the 
fact that the interpreter assumes all variables to be dynamically seoped, while the compiler 
aSsumes all variables to be local unless explicitly directed otherwise. This has been the 
usual practice in LISP for the sake of convenience and efficiency, but can lea~ to very 

-1-



2 

Power. 

Expres$tveness. 

f 

Compatibility. 

Efficiency. 

Stability .. 

COMMON LISP REFERENCE MANUAL 

subtle bugs. The definit.ion of COMMON LISP avoids such anomalies by explicitly requiring 
the interpreter and compiler to impose identical semantics on correct programs. 

COMMON LISP is a descendant of MACLISP, which has traditionally placed emphasis on 
providing system-building tools. Such tools may in tum be used to build the user-level 
packages such as INTERLrsp provides; these packages are not, however, part of the 
COMMON LISP core specification. It is expected such packages will be built on top of the 
COMMON LISP core. 

COMMON LISP culls what we believe from experience to be the most usefui and 
understandable constructs from not only MAcLrsp, but also I~'TERLISP, other LISP dialects, 
and other programming languages. Constructs judged to be awkward or less useful have 
been excluded. (An example is the s tor e construct of MAC LISP.) 

Unless there is a good re.ason to the contrary, COMMON LISP strives to be compatible with 
Lisp Machine LISP. MACLISP, and INTERLISP, roughly in that order. 

COMMON LISP has a number of features designed to facilitate the production of high
quality compiled code in those implementations whose developers care to invest effort in 
an optimizing compiler. One implementation of COMMON LISP (namely S-l LISP) already 
has a compiler that produces code for numerical computations that is competitive in 
execution speed to that produced by a FORTRAN compiler [3]. (This extends the work done 
in MACLISP to produce extremely efficient numerical code [7].) 

It is intended that COMMON LISP will change only slowly and with due deliberation. The 
various dialects that are supersets of COMMON LISP may serve as laboratories within which 
to test language extensions, but such extensions will be added to COMMON LISP only after 
careful examination and experimentation. 

The goals of COMMON LISP are thus very close to those of STANDARD LISP [11]. COMMON LISP differs from 
STANDARD LISP primarily in incorporating mpre features, including a richer and more complicated set of data 
types and more complex control structureSJ 

This book is a language specification rather than an implementation specification (although implementation 
notes are scattered throughout the text). It defines a set of standard language concepts and constructs that 
may be psed for communication of data structures and algorithms in the COMMON LISP dialect This is 

sometim'es referred to. as the "core COMMON LISP language", because it contains conceptually necessary or 
import~t features. It is not necessarily implementationally minimal. While some features could be defined 
in terms~of others by writing LIsp code. (and indeed may be implemented that way), it was felt that these 
features should be conceptually primitive so that there might be agreement among all users as to their usage. 
(For example, bignums and rational. numbers could be implemented as LISP code given operations on 
fixnums. However, it is important to the conceptual integrity of the . language that they be regarded by the 
user as p!imitive, and they are useful enough to warrant a standard definition.) 

For the most part this book defines a programming language, not a programming environment. A few 
interfaces arc defined for invoking such st?ndard programming tools as a compiler, an editor, a program trace 
facility, and a debugger, but very little is said.about their nature or operation. It is expected that one or more 



CHAPTER 1: INTRODUCTION 3 

extensive programming environments will be built using COMMON LISP as a foundation, but these will be 
documented separately. 

1.2. Notational Conventions 

In COMMON LISP, as in most LISP dialects, the symbol nil (page 60) is used to represent both the empty 
list and the "false" value for Boolean tests. An empty list may, of course, also be written" ( )"; this normally 
denotes the same object as "n i 1". (It is possible, by extremely perverse manipulation of the package system, 
to cause the sequence ofletters 'on i 1" to be recognized not as the symbol that represents the empty list but as 
another sYlnboI with the same name. This obscure possibility will be ignored in this document.) 'niese two 
notations may be used interchangeably as far as the LISP system is concerned. However, as a matter of style, 
this document will prefer the notation" ( ) " when· it is desirable to emphasiz~ its use as an empty list, and will 
prefer the notation "n i 1" when it is desirable to emphasize its use as the Boolean "false" or as a symbol. 
Moreover, an explicit quote mark is used to emphasize its use as a symbol rather than as Boolean "false". 

For example: 
(append '() '(» => () ; Emphasize use of empty lists. 
(not nil) => t ; Emphasize use as Boolean "false". 
(get 'n i 1 t co lor) ; Emphasize use as a symbol. 

Any data object other than nil is construed to be Boolean "not false", that is, "true". The symbol t is 
conventionally used to mean "true" when no other value is more appropriate. When a function is said to 
"return false" or to "be false" in some circumstance, this means that it returns nil. However, when a 
function is said to "return tlue" or to "be true" in some circumstance, this Ineans that it returns some value 
other than nil, but not necessarily t. 

All numbers in this document are in decimal notation unless there is an explicit indication to the contrary. 

Execution of code in LISP is called evaluation, because executing a piece of code normally results in a data 
object called the value produced by the code. The symbol "=>" will be used in examples to indicate 
evaluation. For example: 

(+ 4 5) => 9 

means "the result of evaluating the code (+ 4 5) is (or would be, or would have been) 9". 

The symbol "==>" will be used in examples to indicate macro expansion. For example: 
(push x v) ==> (setf v (cons x v» 

means "the result of expanding the macro-call form (push x v) is (set f v (cons x v)}". This 
implies that the two pieces of code do the same thing; the second piece of code is the definition of what the 
first does. 

The symbol "<=>" will be used 'in examples to indicate code equivalence. For example: 
(- x y) <=> (+ x (- y» 

means "the value and e~ects of (- x' y) is always the same as the value an~ effects of (+ x (- y» for 
any values of the variables x and y". This implies that the two pieces of code do the same thing; however, 
neither directly defines the other in the way macro-expansion does. 



4 COMMON LISP REFERENCE MANUAL 

When this document specifies that it "is an error" for some situation to occur, this means that: 

• No valid COMMON LISP program should cause this situation to occur. 

• If this situation occurs, the effects and results are completely undefined as far as adherence to the 
COMMON LISP specification is concerned. 

• No COMMON LISP implementation is required to detect such an error. 

TI1is is not to say that some particular implementation might not define the effects and results for such a 

situation; it is merely that no program conforming to the COMMON USP specification may correctly depend 

on suet effects or results. 

f 
On the other hand, if it is specified in this document that in some situation "an error is signalled', this 

means that: , 
• If,this situation occurs, an error will be signalled; see error (page 354) and cerror (page 354). 

• Valid COMMON LISP programs may rely on the fad that an error will be signalled. 

• Every COMMON LISP implementation is required to detect such an error. 

In places where it is stated that so-and-so "must" or "must not" or "may not" be the case, then it "is an 

error'" ·if the stated requirement is not met. For example. if an argument "must be a symbol", then it "is an 

error" if the argument is not a symbol. In all cases where an error is to be signalled, the word "signalled" is 

used explicitly. 

Functions, variables, named constants, special forms, and macros arc described using a distinctive 

typographical fannat. Table 1-1 illustrates the manner in which COMMON LISP functions are documented. 

The fil'st line specifics the name of the function, the manner in which it accepts arguments, and the fact that it 

is a function. Following indented paragraphs explain the definition and uses of the function and often 

present examples or related functions. 

In general, actual code (including actual names of functions) appears in this t~peface: (con s a b). 

Names that stand for pieces of code (meta-variables) are written in· italics. In a function description, the 

names of the parameters appear in italics for expository purposes. The word "&0 p t ; 0 n a 1" in the list of 

paramtrs indicates that all arguments past that point are optional; the default values for the· parameters are 

describ,d in the text. Parameter lists may also contain "&res t", indicating that an indefinite number of 

arguments may appear, or "&key", indicating that keyword arguments are accepted. (The 

&opt; ona' I&restl&key syntax is actually used in COMMON LISP function definitions for these purposes.) 
~ 

Tablci 1-2 illustrates the manner in which a global variable is documented. The first line specifies the name 

of the variable and the fact that it is a variable. Purely as a matter of convention; all global variables used by 

COMMON LISP have names beginning and ending with an asterisk. 

Tabl~' 1· 3 illustrates the manner in which a named constant is documented. The fi~t line specifies the name 

of the constant and the fact that it is a constant. (A constant is just like a global variable, except that it is an 



CHAPTER 1: INTRODUCTION 5 

sample-function arg1 arg2 &optional arg3 arg4 [Function] 
The function s amp 1 e - fun c t ion adds together arg} and arg2, and then multiplies the result by 
arg3. If arg3 is not provided or is nil, the multiplication isn't done. s amp 1 e - fun c t ion then 
returns a list whose first element is this result and whose second element is arg4 (which defaults to 
the symbol foo). 

For example: 

(sample-function 3 4) => (7 fool 
(sample-function 1 2 2 'bar) => (6 bar) 

In general, (sample-function x y) <=> {l ist (+ x y) 'fool. 

Table I-I: Sample Fl!nction Description 

*sample-variable* [Variable] 
The variable *sample-variable* specifies how many times the special form 
s amp 1 e - s p e c tal - form should iterate. The value should always be a non-negative integer or 
nil (which means iterate indefinitely many times). The initial value is O. 

Table 1-2: Sample Variable Description 

samp 1 e-constan t [Constant] 
The named constant s amp 1 e - con s tan t has as its value the height of the tenninal screen in 
furlongs times the base-2 logarithm of the implementation's total disk capacity in by~es, as a 
floating-point number. 

Table 1-3: Sample Constant Description 

error ever to alter its value or to bind it to a new value.) 

Tables 1-4 and 1-5 illustrate the documentation of special forms and macros (which are closely related in 

purpose). These are very different from functions. Functions are called according to a single, specific~ 
consistent syntax; the &0 p t ion a 1 I&r e s t/&k ey syntax specifies how the function uses its arguments 

internally, but does not affect the syntax of a call. In contrast, each special form or macro can have its own 

idiosyncratic syntax. It is by special forms and macros that ~e syntax of COMMON LISP is defined and 

extended. 

In the description of a special form or macro, an italicized word names a corresponding part of the form 

that in vokes the special form or macro. Parentheses (" (" and ")") stand for themselves, and should be 

written as such when invoking the specia~ form or macro. Brackets, braces, stars, plus signs, and vertical bars 



6 COMMON LISP REFERENCE MANUAL 

s amp 1 e - spec i a 1 -f orm [name] ({var}*) {form} + [Special form] 
This evaluates each form in sequence as an implicit progn, and does this as many times as specified 
by the global variable *samp 1 e-var i ab 1 e*. Each variable var is bound and initialized to 43 
before the first iteration, and unbound after the last iteration. The name name, if supplied, may be 
used in a return-from (page 99) fonn to exit from the loop prematurely. If the loop ends 
normally, samp 1 e-spec i a l-f orm returns n i 1. 

For example: 
(setq *sample-variable* 3) 
(sample-special-form () formI form2) 

This evaluates formi t form2, formi t form2, formi, fom12 in that order. 

Table 1-4: Sample Special Form Description 

sample-macro var {tag I statement}* 
This evaluates the statements as? prog body, with the variable varbound to 43. 

(sample-macro x (return (+ x x») => 86 
(sampl e-macro var . body) ==> (prog « var 43» . body} 

Table 1-5: Sample Macro Description 

[Macro] 

are metasyntactic marks. Square brackets ("[" and "]") indicate that what they enclose is optional (may 
appear zero times.or one time in that place); the square brackets should not be written in code. Curly braces 
("{" and "}") simply parenthesize what they enclose, but may be followed by a star ("*") or a plus sign 
(" + "); a star indicates that what the braces enclose may appear any number of times (including zero, that is, 
not at all}t while a plus sign indicates that what the braces enclose may appear any non-zero number of times 
(that is, must appear at least once). Within braces or brackets, vertical bars ("I") separate mutually exclusive 
choices. In summary, the notation "{x}*" means zero or more occurrences of "x", the notation "{x} +": 

means one or more occurrences of "x",and the notation "[x)" means zero or one occurrences of "x". These 
notations are also used for syntactic d.escriptions expressed as BNF-like productions, as in Table 22-2. 

In the last example in Table 1-5, notice the use of "dot no.ta~on". The"." appearing in the expression . 
(s.amp 1 e -macro var • body) means tha~ the name body stands for a list of forms, not just a single fonn, at 
the end of a list This notation is often used in examples. 

The term "LISP reader" refers not to you, the reader of this document, nor to some person reading LISP 

code. but specifically to a LISP program (the function read (page 310» that reads characters from an input 
stream and interprets them by parsing as representations of LISP objects. _ 



CHAPTER 1: INTRODUCllON 7 

Certain characters are used in special ways in the syntax of COMMON LISP. . The complete syntax is 

explained in detail in chapter 22, but a quick summary here may be useful: 

" 

\ 

# 

An accent acute ("single quote") followed by an expression/onn·is an abbreviation for (quote fonn). 
Thus t foo means (quote foo) and t ( cons 'a t b) means (quote (cons ( quote a) 
(quote b»). 

Semicolon is the comment character. It and all characters up to the end of the line are discarded. 

Double quotes surround character strings: "This is a thirty-nine character string. ". 

Backslash is an escape character. It causes the next character to be treated as a letter rather than for its 
usual syntactic purpose. For example, A \ (B denotes a symbol whose name is "A( B", and" \"" denotes 
a character string containing one character, a double-quote. 

Vertical bars are used in pairs to surround the name of a symbol that has many special characters in it. It· 
is roughly equivalent to putting a backslash in front of every character so surrounded. For example, 
I A ( B ) I and A \ ( B \) both mean the symbol whose name consists of the four characters -, A ( B ) ". 

The number sign signals the beginning of a complicated syntactic structure. The next character 
designates the precise syntax to follow. For example, #010 5 mea~s 1058 (105 in octal notation); #\ L 
denotes a character object for the character "L"; and #( abc) denotes a vector of three elements a, b, 
and c. A particularly important case is that # 'fn means (f u n c t i 0 nfn), in a manner analogous to 
'foml meaning (quote form). 

Accent grave ("backquote") signals that the next expression is a template that may contain commas. The 
back quote syntax represents a program that will construct a data structure according to the template. 

Commas arc used within the backquote syntax. 

Colon is used to indicate which package a symbol belongs to. For example, chao s : res e t denotes the 
symbol named reset in the package named chaos. A leading colon indicates a keyword, a symbol that 
always evaluates to itself. 

The square brackets, braces, question mark, and exclamation point (that is, "[", "Ju, "{", "}", "?", and"!") 

are not used for any purpose in standard COMMON LISP syntax. These characters are explicitly reserved to the 

user, primarily for use as macro characters for user-defined syntax extensions. See section 22.1.3 (page 290). 

All code in this manual is written in lower case. COMMON LISP is generally insensitive to the case in which 

code is written. Internally, names of symbols. are ordinarily converted to and stored in upper-case fonn. 

There are ways to force case conversion on output if desired. In this document, wherever an interactive 

exchange between a user and the LISP system is shown, the input is exhibited in lower case and the output in 
uppercase. 

Some symbols are written with the colon ( : ) character apparently in their names. In particular, all keyworlJ 
symbols have names starting with a colon. The colon character is not actually part of the print name,_ but is a 

package prefix indicating that the symbol belongs to the keyword package. This is all explained in chapter 11; 

until you read that, just keep in mind that a symbol notated with a leading colon i.s in effect a constant that 

evaluates to itself. 



8 



Chapter 2 

Data Types 

COMMON LISP provides a variety of types of data objects. It is important to note that in LISP it is data 

objects that are typed, not variables. Any variable can have any LISP object as its value. (It is possible to 

make an explicit dcclaration that a variable will in fact take on onc of only a limited set of values. However, 

such a declaration may always be onlitted, and the program will still run correctly. Such a declaration merely 

constitutes advice from the user that may be useful in gaining efficiency. See decl are (page 125).) 

In COMMON LISP, a data type is a (possibly infinite) set of LISP objects. Many LISP objects belong to more 

than one such set. and so it doesn't always make sense to ask what the type of an object is; instead. one usually 

asks only whether an object belongs to a given type. The predicate ty pep (page 60) may be used to ask the 

latter question, and the function type-of (page 43) to ask the forme!. 

The data types defined in COMMON LISP are arranged into an almost-hierarchy (a hierarchy with shared 

subtrees) defined by the subset relationship. Certain sets of objects are interesting enough to deserve labels 

(such as the set of numbers or the set of strings). Symbols are used for most such labels (here, and throughout 

this dOC~lment the word symbol refers to atomic symbols, one kind of LISP object). See chapter 4 for a 

complete description of type specifiers. 

The root of the hierarchy, which is the set of all objects, is specified by the symbol t. The empty data type, 

which contains no objects, is denoted by n i 1. A type called common encompasses all the data objects 

required by the COMMON LISP language. A COMMON LISP implementation is free to provide other data types 

that are not subtypes of common. 

COMMON LISP objects may be roughly divided into the following categories: numbers, characters, symbols, 

lists, arrays, structures, and functions. Some of these ~ategories have many subdivisions. There are also 

standard types that are the union of two or more of these categories. The categories listed above,· while they 

are data types, are neither more nor less "real" than other data types; they simply constitute a particularly 

useful slice across the type hierarchy for expository purposes. 

Each of these categories is described briefly below. Then one section of this chapter is devoted to each, 

going into more detail, and briefly d'cscribing notations for objects of each type. Descriptions of LISP 

functions that operate on data objects are in later chapters. 

-9-



10 COMMON LISP REFERENCE MANUAL 

• Numbers are provided in various forms and representations. COMMON LISP provides a true 
integer data type: any integer, positive or negative, has in principle a representation as a COMMON 
LISP data object, subject only to total ~emory limitations (rather than machine word width). A 
true rational data type is provided: the quotient of two integers, if not an integer, is a ratio. 
Floating·point numbers of various ranges and precisions are also provided, as well as Cartesian 
complex numbers. 

• Characters represent printed glyphs such as letters or text fonnatting operations. Strings are 
particular one-dimensional arrays of characters. COMMON LISP provides for a rich character set, 
including ways to represent characters of various type styles. 

• Symbols (sometimes called atomicsymbols for emphasis or clarity) are named data objects. LISP 

provides machinery for locating a symbol object, given its name (in the form of a string). Symbols 
have properly lists, which in effect allow symbols to be treated as record structures with an 
extensible set of named components, eaGh of which may be any LISP object. 

• Lists are sequences represented in the form of linked cells called conses. There is a special object 
(the symbol nil) that is the empty list. All other lists are built recursively· by adding a new 
element to the front of an existing list. This is done by creating a new cons, which is an object 
having two components called the car and the cdr. The car may hold anything, and the cdr is 
made to point to the previously existing list. (Conses may actually be used completely generally as 
two·clement record structures, but their most important use is to represent lists.) 

• A rrays are dimensioned collections of objects. An array can have any non-negative number of 
dimensions, and is indexed by a sequence of integers. General arrays can have any LISP object as 
a component; others are specialized for efficiency. and can hold only certain types of LISP objects. 
It is possible for two arrays, possibly with differing dimension information, to share the same set 
of elements (such that modifying one array modifies the other also), by causing one to be displaced 
to the other. One-dimensional 'arrays of any kind are called vectors. One-dimensional arrays of 
characters are called strings. One dimensional arrays of bits (that is, of integers whose values are 0 
or 1) are called bit~vectors. 

• Hash tables provide an efficient way of mapping any LISP object (a key) to an associated object 

• Readtables are used to control the l?uilt-in expression parser read (page 310). 

• Packages are collections of symbols that serve as name spaces. The parser recognizes symbols by 
looking up character sequences in the "current package". 

• Pathnames represent names of files in a fairly implementation-independent manner. They are 
used to interface to the external file system. 

• Streams represent sources or sinks of data (typically characters or bytes). They are used to 
perfonn I/O, as well as for internal purposes such as parsing strings. 

• Random-states are data structures used to encapsulate the state· of the built-in random-number 
generator. 

• Strnctures are user-defined record structures, objects that have named components. The 
de f s t rue t (page 255) facility is used to define new structure types. Some COMMON LISP 



OIAPTER 2: DATA TYPES 

implementations may choose to implement certain system-supplied data types, such as bignums, 
readlables, streams, hash tables, and palhnames, as suuctures, b.ut this fact will be invisible to the 
user . 

• Functions are objects that can be invoked as procedures; these may take arguments, and return 
values. (All LISP procedures can be construed to return a value, and therefore treated as 
functions. Those that have nothing better to return usually return n; 1.) . Such objects include 
compiled-functions (compiled code objects). Some functions are represented as a list whose car is 
a particular symbol such as 1 amb da. Symbols may also be used as functions. 

11 

These categories are not always mutually exclusive. The required relationships among the various data 

types are explained in lnore detail i~ section 2.1S (page 27). 

2.1. Numbers 

There are several kinds of numbers defined in COMMON LISP. They are divided into rational numbers, 
consisting of integers and ratios; floating-point numbers, with names provided for up to four different 

preciSions; and complex numbers. 

2.1.1. Integers 

The in te ge r data type is intended to represent mathematical integers. Unlike most programming 

languages, COMMON LISP in principle imposes no limit on the magnitude of an integer; storage is 
automatically allocated as necessary to represent large integers. 

In every COMMON LISP implementation there is a range of integers that are represented more efficiently 

than others; each such integer is called a jixllum, and an integer that is not a fixnum is called a bignum. The 

distinction between fixnums and bignums is visible to the user in only a few places where the efficiency of 

representation is important. Exactly which integers are fixnums is implementation-dependent; typically they 

will be those integers in the range - 2 n to 2n - 1, inclusive, for some n not less than 15. See 

most-pos it i ve-fi xnum (page 188) and most-negat i ve-fi xnum (page 188). 

Integers are ordinarily written in decimal notation, as a sequence of decimal digits, optionally preceded by a 

sign and optionally followed by a decimal point. 

For example: 

o 
-0 
+6 
28 

1024. 
-1 

15511210043330985984000000. 

; Zero. 
; This always means the same as O. 
; The first perfect number. 
; The second perfect number. 
; T'Vo to the tenth power. 
; e'l1l • . 

; 25 factorial (25!). Probably a bignum. 
Compatibility note: MACLISP and lisp Machine LIsp nonnally assume that integers are written in octal (radix-8) notation 
unless a decimal point is present Ir-.'TERLISP assumes integers are written in decimal notation, and uses a trailing Q to 
indicate octal radix; however, a decimal point, even in trailing position, always indicates a floating-point number. This is of 
course consistent with FORTRAN; ADA does not pennit trailing decimal points. but instead requires them to be embedded. In 
COMMON LISP, integers written as described above are always construed to be in decimal notation, ~hether or not the 



12 COMMON LISP REFERENCE MANUAL 

decimal point is present: allowing the decimal point to be present permits compatibility with MACLISP. 

Integers may be notated in radices other than ten. The notation 

#nnrddddd or #nnRddddd 

means the integer in radix-nn notation denoted by the digits ddddd: More precisely, one may write "II", a 

non-empty sequence of decimal digits representing an unsigned decimal integer n, Hr" (or UR"), an optional 

sign, and a sequence ofradix-n digits, to indicate an integer written in radix n (which must be between 2 and 

36, inclusive). Only legal digits for the specified radix may be used; for example, an octal number may 

contain only the digits 0 through 7. Letters of the alphabet of either case may be used in order for digits 

above 9. Binary, octal, and hexadecimal radices are useful enough to warrant the special abbreviations "#b" 
for "#2r", "#0" for "1I8r", and "#x" for "#161'''. 

For example: 

2.1.2. Ratios 

#2r11010101 
#b11010101 

#b+11010101 
#0325 

#x05 
#16r+05 

#0-300 
#3r-21010 

#25R-7H 

; Another way of writing 213 decimal. 
; Ditto. 
; Ditto. 
; Ditto, in octal radix. 
; Ditto, in hexadecimal radix. 
; Ditto. 
; Decimal -192, written in base 8. 
; Same thing in base 3. 
; Same thing in base 25. 

A rat i 0 is a number representing the mathematical ratio of two integers. Infegers and ratios collectively 

constitute the type rat i on a 1. The canonical representation of a rational number is as an integer if its value 

is integral, and otherwise as the ratio of two integers, the numerator and denominator, whose greatest common 

divisor is one, and of which the denominator is positive (and in fact greater than 1, or else the value would be 

integral), written with "I" as a separator, thus: "3/5~'. It is possible to notate ratios in non-canonical 

(unreduced) ~orms, such as .. 4/6", but the LISP function pr i n 1 (page 3i6) always prints the canonical form 

for a ratio. 

If any computation produc.es a result that is a ratio of two integers such that the denominator evenly divides 

the numerator, then the result is immediately converted to .the equivalent integer. This is called the rule o~. 

rational canonicalization. 
Implementation note: While each implementation of COMMON LISP will. probably choose to maintain all ratios in reduced 
form, there is no requirement for this as long as its effects are not visible to the user. Note that while it may at first glance 
appear to save computation for the reader and various arithmetic operations not to have to produce reduced forms, this 
savings is likely to be counteracted by the increased cost of operating on Jaeger numerators and denominators. In any case, a 
COMMON LIsp ratio can never have a denominator that evenly divides its numerator, for such a number is always 
iepresented as an integer instead. . 

Rational numbers may be written as the possibly signed quotient of decimal numerals: an optional sign 

followed by two non-empty sequences of digits separated by a "I". This syntax may be described as follows: 

ratio:: = [sign] {digit} + I {digit}+ 

The second sequence may not consist entirely of zeros. 

For example: 

• 



CHAPTER 2: DATA TYPES 

2/3 
4/6 
-17/23 
-30517578125/32768 
10/5 

13 

; This is in canonical form. 
; A non-canonical form for the same number. 

; This is ( - 5/2}15. 
; The canonical fonn for this is 2. 

To notate rational numbers in radices other than ten, one uses the same radix specifiers (one of #nnR, #0, 

#8, or #X) as for integers. 

For example: 

#0-101/75 
#3r120/21 
#Xbc/ad 

2.1.3. Floating-point Numbers 

; Octal notation for - 65 I 61. 
; Ternary notation for 15 17. 
; Hexadecimal notation for 1881 173. 

- COM1\10N LISP allows an implementation to provide one or more kinds of floating-point number, which 

collectively make up the type float. A floating-point number is a (mathematical) rational number of the 

fOIm s*f * be- P, where s is + 1 or -1, the sign; b is an integer greater than 1, the base or radix of the 

representation; p is a positive integer, the precision (in base-b digits) of the floating-point number; f is a 

positive integer between lJP- 1 and lJP -1 (inclusive), the signijicand; and e is a~ integer, the exponent. The 

yalue of p and the range of e depends on the implementation and on the type of floating-point number within 

that implementation. In addition, there is a floating-point zero; depending on the implementation, there may 

also be a "minus zero". If there is no 'minus zero, then "0.0" and ".-0.0" are both interpreted as simply a 

floating-point zero. 
Irnplcment:ltion note: TIle forrr.. of the above description should not be construed to require the internal representation to 
be in sign-magnit.ude fOIlli. Two's-complemem and cthe;r representations arc also acceptable. Note that the radix of the 
internal representation may be oiller than 2, as on the IBM 360 and 370, which use radix 16; see fl oat-rad i x (page 177). 

Floa.ting-point numbers may be provided in a variety of precisions and sizes, depending on the 

implementation. High-quality floating-point software tends to depend critically on the precise nature of the 

floating-point arithmetic, and so may not always be completely portable. To aid in writing programs that are 

moderately portable, however, certain definitions are made here: 

• A short floating-point number (type short-float) is of the representatiOIi of smallest fixed 
precision provided by an implementation. 

• A long floating-point number (type 1 ong-fl oat) is of the representation of tIie largest fixed 
precision provided by an implementation. 

• Intermediate between short and long formats are two others, arbitrarily called single and double 
(types s; ng1 e-f1 oat and doub 1 e-f1 oat). 

The precise definition of these categories is implementation-dependent However, the rough intent is that 

short floating-point numbers be precise at least to about five decimal places; single floating-point numbers, at 

least to about seven decimal places; and double floating-point numbers, at least to about fourteen decimal 

places. It is suggested that the precision (measured in "bits", computed as p*10g2b) and the exponent size 

(also measured in "bits", computed as the base-210garithm of one plus the maximum exponent value) be at 

least as great as the values in Table 2-1. 



14 

Format 
Short 
Single 
Double 
Long 

Minimum Precision 
13 bits 
24 bits 
50 bits 
50 bits 

COMMON LISP REFERENCE MANUAL 

Minimum Exponent Size 
5 bits 
8 bits 
8 bits 
8 bits 

Table 2-1: Recommended Minimum Floating-Point Precision and Exponent Size 

Floating point nUlnbers are written ~n either decimal fraction or "computerized scientific" notation: an 

oPtional sign, then a non-empty sequence of digits with an embedded decimal point, then an optional decimal 

exponent specification. If there is no exponent specifier, then the decimal point is required, and there must 

be digits after it. The exponent specifier consists of an exponent marker, an optional sign, and a non-elnpty 

sequence of digits. For preciseness, here is a modified-BNF description of floating-point notation. 

floating-point-number:: = (sign] {digiJ}* decimal-point {digit} + [exponent] 
I {sign1 {digit} + (decimal-point {digit}*] exponent 

sign:: = + 1-
decimal-point :: = . 
digit:: = 01 1 I 2 1 3 1 4 I 5 J 6 1 71 8 I 9 
exponent:: = eXlJonent-marker[sign1 {digit} + 
exponent-marker:: = e I s I f 1 dill E I S I F .I 0 I L 

If no exponent specifi~r is present, or if the exponent marker "e" (or "E") is used, then the precise format to 

be used is not specified. When such a floating-point number representation is read and converted to an 

internal floating-point data object, the format specified by the variable * read-def au 1 t - float -format * 
(page 311) is used; the initial value of this variable is sin 9 1 e - flo at. 

The letters "5", "f", "d", and "'1" (or their respective upper-case equivalents) specify e~plicitly the use of 

short, single, double, and long format, respectively. 

Examples of floating-point numbers: 

0.0 
OEO 
-.0 

O. 
0.050 
OsO 
3. 14159Z6535897932384dO 
6.02E+23 
60ZE+21 
3.1010299957f-l 
-0.000000001s9 

; Floating-point zero in default fOlmat 
; Also floating-point zero in default format 
; This may be a zero or a minus zero, 
; depending on the implementation. 
;The integer zero, not a floating-point number! 
; A floating-point zero in short fonnat 
; Also a floating-point zero in short fonnat 
; A double-format approximation to 'IT. 

; Avogadro's number, in default fonnat 
; Also Avogadro's number, in default fonnat 
; loglO 2, in single format. 
; e1T1 m short format, the hard way. 

While COMMON LISP provides terminology and notation sufficient to accommodate four distinct floating-



CHAPTER 2: DATA TYPES 15 

point fonnats, not all implementations will have the means to support that many distinct formats. An 

implementation is therefore permitted to provide fewer than four distinct" internal floating-point fonnats, in 

which case at least one of them will be "shared" by more than one of the external format names short, single, 
double, and long according to the following rules: 

• If one internal fonnat is provided, then it is considered to be single, but serves also as short, 
double, and long. The data types short-float, single-float, double-float, and 
1 0 n 9 - flo a t are considered to be identica1. An expression such as (e q 1 1. 0 s 0 1. 0 dO) will 
be true in such an implementation. because the two numbers 1. 0 s 0 and 1. 0 d 0 will be 
converted into the same internal fonnat and therefore be considered to have the same data type, 
despite the differing external syntax. Similarly, (typep 1. OLO • short-fl oa t) will be true 
in such an implementation. For output purposes all floating-point numbers are assumed to be of 
Single format, and so will print using the exponent letter "E" or "F". 

• If two internal formats are provided, then either of two correspondences may be used, depending 
on which is the more appropriate: 

o One f-annat is short; the other is single and serves also as double and long. The data types 
single-float, double-float, and long-float are considered to be identical, but 
short-float is distinct. An expression such as (eql 1.0s0 1. ada) will be false. but 
( e q 1 1 . a fa 1. 0 dO) will be true. Similarly, (t Y pep 1. a L 0 · s h 0 r t - flo at) will 
be false, but (typep 1.0LO • s ingl e-fl oat) will be true. For output purposes all 
floating-point numbers are assumed to be of short or single format. 

o One fonnat is single, and serves also as short~ the other is double, and serves also as long. 
The data types s h 0 r t - flo a t and sin g 1 e - flo a t are considered to be identical, and the 
data types do u b 1 e - flo at, and 1 0 n g - flo a t are considered to be identical. An 
expression such as (e q 1 1 . 0 s 0 1. 0 dO) will be false, as will (e q 1 1 . 0 f 0 1. 0 dO) , 
but (eql 1.0dO 1.0LO) will be true. Similarly, (typep 1.0LO 'short-float) 
will be false. but (typep 1. OLD • doub 1 e-f 1 oa t) will be true. For output purposes 
all floating-point numbers are assumed to be of single or double format 

• If three internal formats are provided, then either of two correspondences may be use<L 
depending on which is the more appropriate: 

o One format is short; another fonnat is single; and the third format is double and serves also . 
~~~' . 

o One fonnat is single, and serves also as short; another is double; and the third format is long. 

Implementation note:- It is recommended that an implementation provide as many distinct floating-point formats as 
feasible. given Table 2-1 as a guideline. Ideally. shon-format floating-point numbers should have an "immediate'" 
representation that does not require consing. single-format floating-point numbers should approximate IEEE proposed 
standard single-format floating-point numberS. and double-format floating-point numbers should approximate IEEE 

proposed standard double-format floating-pOint numbers [9, 5.6]. 



16 COMMON LISP REFERENCE MANUAL 

2.1.4. Complex Numbers 

Complex numbers (type comp 1 ex) may .ormay not be supported by a COMMON LISP implementation. 

They are represented in Cartesian form, widl a real part and an imaginary part each of which is a non

complex number (integer, floating-point number, or ratio). It should be emphasized that the parts of a 

complex number are not necessarily floating-point numbers; in this COMMON LISP is like PL/I and differs 

from FORTRAN. However, both parts must be of the same type: either both are rational, or both are of the 

same floating-point fOInlat 

Complex numbers may be notated by writing the characters "#C" followed by a list of the real and 

imaginary parts. If the two parts as notated are not of the same type, then they are converted according to the 

rules of "floating-point contagion" as· described in chapter 12. (Indeed, "#C (a b)" is equivalent to 

u#, (c~mp 1 ex a b)"; see the description of the function comp 1 ex (page 179).) 

Forex~ple: 
#C(3.0s1 2.05-1) 
#C (5 -3) ; A Gaussian integer. 
#C (5/3 7. a) ; Will be converted internally to #e (1.66666 7.0). 
'IIC (0 1) ; The imaginary unit 

The type of a specific complex number is indicated by a list of the word comp 1 ex and the type of the 

components; for example, a specialized representation for complex numbers with short floating-point parts 

would be of type (c omp 1 ex 5 h 0 r t - flo at) . The type c omp 1 e x encompasses all complex 

represen tations. 

A complex number of type (compl ex rat ional) (that is, one whose components are rational) can 

never have a zero imaginary part If the result of any computation would be a complex rational with a zero 

imaginary part, the result is immediately converted to a non-complex rational nmnber by taking the real part. 

This is called the rule of complex canonicalization. 
.' 

2.2. Characters 

Characters are represented as data objects of type character. There are two SUbtypes called 

standard-char and string-char. 

2.2.1. Standard Characters 

A character object can be notated by writing "#\" followed by the character itself. For example, "#\g" 

means the character object for a lower-case "g". This works well enough for "printing characters". Non

p.rinting characters have names, and can be notated by writing "#\" and then the name; for example, 

~~#\Space'~ (or "#\SPACE" or "fI\space"~ for example) means the space character. The syntax for 

character names after "IJ\" is the same as that for symbols. However, ,only character names that are known to 
the particular implementation may be used 

\ . 

COMMON LISP defines a ~'standard character set" (subtype standard-char) for two purposes. COMMON 

LISP programs that are written in the standard character set can be read by any COMMON LISP 



CHAPTER 2: DATA ITPES 17 

implementation; and COMMON LISP programs that use only standard characters as data objects are most likely 

to be portable. l11e COMMON LISP character set consists of a space character #\Space, a newline character 

#\Newl i ne, and these ninety-four non-blank printing characters or their equivalents: 
! » # $ % & ' ( ) * + / 0 1 2 3 4 5 6 7 8 9 ; < = > ? 
@ ABC D E F G H I J K L M N 0 P Q R STU V W X Y Z [ \ ] A 

'() abc d e f 9 h i j k 1 m n 0 p q r stu v w x y z { I } -
It can be seen that the COMMON LISP standard character set is equivalent to the .95 standard ASCII printing 

characters plus a newline character. Nevertheless, COMMON LISP is designed to be relalively independent of 

the ASCII character encoding. For example, the collating sequence is not specified except to say that digit.s 

must be properly ordered, the upper-case letters must be properly ordered, and the lower-case letters must be 

properly ordered (see char< (page 194) for a precise specification). Other character encodings,particularly 

EBCDIC, should be easily accommodated (with a.suitable mapping of printing characters). 

The following characters are called semi-standard: 
#\Backspace #\Tab #\Linefeed #\Page #\Return #\Rubout 

Not all implementations of COMMON LISP need to support them, but those that use the standard ASCII 

character set should support them, treating as corresponding respectively to the ASCII characters BS (octal 

code 010), HT (011), LF (012), FF (014), CR (015), and DEL (177). They are not members of the subtype 

standard-char unless synonymous with one of the standard characters specified above. For example, in a 

given implementation it might be sensible for the implementor to define #\L i nefeed or #\Return to be 

synonymous with #\Newl i ne, or #\ Tab to be synonymous with #\Space. 

2.2.2. Line Divisions 

The treatment of line divisions is one of the most difficult issues in designing portable software, siInply 

because there is so little agreement among operating systems. Some use a single character to delimit lines; the 

recommended ASCII character for this purpose is the Line Feed cha~acter LF (also called New Line, NL), but 

some systems use the Carriage return character CR. Much more common is the two-character sequence CR I 

followed by LF. Frequently line divisions have no representation as a character, but is implicit in the 

structuring of a file into records, each record containing a line of text. A deck of punched cards has this 

structure, for example. 

COMMON LISP provides an abstract interface by requiring that there be a single character, #\Newl i ne, 
that within the language serves as a line delimiter. (The language C has a similar requirement.) An 

implementation of COMMON LISP must translate between this internal single-character representation and 

whatever external representation(s) may be used. 
Implementation note: How the character called #\Newl i ne is· represented internally is not specified here. but it is strongly 
suggested that the ASCII LF character be used in CoMMON LIsp implementations that use the ASCII character encoding. 
The ASCII CR character is a workable, but in most cases inferior, alternative. 

The requirement that a line division be .represented as a single character has certain consequences. A 

character string (see section 2.5.2), writ~en in the middle of a program in such a way as to span more than one 

line, must contain exactly one character to represent each line division. Consider this code fragment: 



18 

(setq a-string "This string 
contains 
forty-two characters.") 

COMMON LISP REFERENCE MANUAL 

between "g" and "c" there must be exactly one character, #\Newl i ne; 'a two-character sequence, such as 

#\Return and then #\Newl i ne, is not acceptable, nor is the absence of a character. The same is true 

between "s" and "r'. 

When the character #\Newl ; ne is written to an output file, the COMMON LISP implementation must take 

the appropriate action to produce a line division. This might involve writing out the next record, or 

translating #\Newl i ne to a CR/LF sequence. 
Implementation note: If an implementation uses the ASCII character encoding, uses the CR/LF sequence externally to 
delimit lines, uses LF to represent #\Newl ine internally. and supports #\Return as a data object corresponding to the 
ASCII character CR, the question arises as to what action to take when the program writes out # \ Ret urn followed by 
#\Newl i ne: It should first be noted that #\Return is not a standard CoMMON LISP character, and the action to be taken 
when #\Return is written out is therefore not defined by the COMMON LISP language. A plausible approach is to buffet 
the #\ Retur II character, and elide it if and only if the next character if #\Newl i ne. Another plausible approach is simply 
to ignore the difficulty, and declare that writing #\Return and then #\Newl ine results in the sequence CR/CR/I.F in the 
output 

2.2.3. Non-Standard Characters 

Any implementation may provide additional characters, whether printing characters or named characters. 

Some plausible examples: 
#\w #\a #\Break #\Home-Up #\Escape 

The use of such characters may render COMMON LISP programs non-portable. 

2.2.4. Character Attributes 

Every object of type character has three attributes: code, bits, andfont. TIle code attribute is intended to 

distinguish among the printed glyphs and formatting functions for characters; it is a numerical encoding of 

the character proper. The bits attribute allows extra flags to be associated with a character. The font attribute 
permits a specification of the style of the glyphs (such as italics). Each of these attributes may be understood 

to be a non-negative integer. 

The font attribute may be notated ill unsigned decimal notation between the "#" and the "\". For 

example, #3 \A means the letter" A" in font 3. Note that not all COMMON LISP implementations provide for 

non-zero f011t attributes; see char-font-l imi t (page 191). 

The bits attribute may be notated by preceding the name of the character by the names or initials of the 

bitS, separated by hyphens. The character itself may bC'written instead of the name, preceded if necessary by 

"V'. For example: 
#\Control-Mata-Return 
#\Hyper-Space 
#\Control-A 
#\C-M-Return 

Note that not all COMMON LISP implementations provide for non-zero bits attributes; see 
cha'r~b its -, imi t (page 192). 



CHAffER 2: DATA TYPES 19 

Any character whose bitS and font attributes are zero may be contained in strings. All such characters 

together constitute a subtype of the cha~acters; this subtype is called s t r i n 9 - c h a r . 

2.3. Symbols 

Symbols are LISP data objects that serve several purposes and have several interesting characterist.ics. Every 

object of type symbo' has a name, called its print name. Given a symbol, one can obtain its name in the form 

of a string. More interesting, given the name of a symbol as a string one can obtain the symbol itself. (More 

precisely, symbols are organized into packages. and all the symbols in a package are uniquely identified by 

name.) 

SYlnbols have a component called the properly list, or plist. By convention this is always a list whose 

even-numbered components (calling the initial one component zero) are symbols, here functioning as 

property names, and whose odd-numbered components are associated property values. Functions are 

provided for manipulating this property list; in effect, these allow a symbol to be treated as an extensible 

record structure. 

Symbols are also used to represent certain kinds of variables in LISP programs, and there are functions for 

dealing with the values associated with symbols in this role. 

A symbol can be notated simply by writing its name. lfits name is not empty, and if the name consists only 

of upper-case alphabetic. numeric, or certain "'pseudo-alphabetic" special characters (but not delimiter 

characters such as parentheses or space), and if the name of the symbol cannot be mistaken for a number, 

then the symbol can be notated by the sequence of characters in its name. Any upper-case letters that appear 

in the '(internal) name may be written in either case in the external notation (more on this below). 

For example: 

FROBBOZ 
frobboz 
fRObBoz 
unwind-protect 
+$ 
1+ 
+1 
pascal_style 
b"'2-4*a*c 

; The symbol whose name is "FROBBOZ". 
; Another way to notate the same symbol. 
; Yet another way to notate it 
; A symbol with a "-" in its name. 
; The symbol named u+$". 
; The symbol named u1+". 
; This is the integer 1, not a symbol. 
; This symbol has an underscore in its name. 
; This is a single symbol! 
; It has several special characters in its name. 

f i 1 e. re 1 .43 ; This symbol has periods in its name. 
Ius rig arne s I z 0 r I< ; This symbol has slashes in its name. 

Besides letters and numbers, the following characters are nonnally considered to be "alphabetic" for the 

purposes of notating symbols: 

+ -* I @ $ % A & _ = < > - • 

Some of these characters have conventional purposes for naming things; for example, symbols that name 

functions having extremely implementation-dependent semantics generally have names beginning with "%". 

The last character, the period " . ", is considered alphabetic provided that a token docs not consist entirely of 



20 COMMON LISP REFERENCE MANUAL 

periods. A single period standing by itself is used in the notation of conses and dotted lists; a token consisting 

of two or more periods is syntactically illegal. (The period also serves as the deCimal point in the notation of 

numbers.) 

The following characters are also alphabetic by default, but are explicitly reserved to the user for definition 

as reader macro characters (see section 22.1.3) or any other desired purpose, and therefore should not be used 

routinely in names of symbols: 

? ! [ ] { } 

A symbol may have upper-case letters, lower-case letters, or both in its print name. However. the LISP 

reader normally converts lower-case letters to the corresponding upper-case letters when reading symbols. 

The ne~effect is that most of the time case makes no difference when notating symbols. However, case does 
make a"-difference internally and when printing a symbol. Internally the symbols that name all standard 

COMMON LISP functions, variables, and keywords have upper-case names; their names appear in lower case 

in this document for readability. Typing such names in lower case works because the function read will 
convertfthem to upper case. -

If a symbol cannot be notated simply by the characters of its name, because tht! (internal) name contains 

special characters or lower-case letters, then there are two "escape" conventions for notating them. Writing a 

"\" character before any character causes the character to be treated itself as an ordinary character for use in a 

symbol name: in particular, it suppres~es internal conversion of lower-case letters to upper case. If any 

character in a notation is preceded by \, then that notation can never be interpreted as a number. 

For example: 

\( 
\+1 
+\ 1 
\frobboz 
3.14159265\sO 
3.14159265\SO 
3.14159265s0 
APL\\360 
apl\\360 
\(b A 2\)\ -\ 4*a*c 

\(\b A 2\)\ -\ 4*\a*\c 

; The symbol whose name is "(". 
; The symbol whose name is "+ 1 '~. 
; Also the symbol whose name is "+ 1 ". 
; lbe symbol whose name is "fROBBOl". 
; The symbol whose name is "3. 14159265s0". 
; The symbol whose name is "3. 14159 265S0". 
; A short-format floating-point approximation to 'IT. 

; The symbol whose name is "APL \360". 
; Also the symbol whose name is "APL \360". 
; The name is "( B A 2) - 4 * A * C". 

It has parentheses and two spaces in it 
; The name is"( b A 2) - 4* a*c". 

The letters are explicitly lower case. 

It may be tedious to insert a "\" before every delimiter character in the name of a symbol if there are many 

of them! An alternative convention is to surround the name of a symbol with vertical bars; these cause every 

character between them to be taken as part of the symbol's name, as if "\" had been written before each one, 

excepting only I itself and \~ w~ich must nevertheless be preceded by \. 

For example: 



CHAffER 2: DATA TYPES 

I ,. I 
I (b A 2) - 4*a*c I 
Ifrobbozl 
IAPL\3601 

IAPL\\3601 
lapl\\3601 
I \ I \ II 
I(B"2) - 4*A*CI 

l(b"2) - 4*a*cl 

2.4. Lists and Conses 

; The same as writing \". 
;Thcnameis"(b"2) - 4*a*c". 
; The name is "frobboz", not "FROBBOZ". 
; The name is "APL360", because 
; the "\" quotes the .. 3". 
; The name is "APL \360". 
; The name is "ap 1 \360". 
; Same as \ I \ I : the name is "I I". 
; The name ,is" (B"2) - 4*A*C". 
; I t has parentheses and two spaces in it. 
; The name is "( b A 2) - 4 * a * c". 

21 

A con 5 is a record structure containing two components, called the car and the cdr. Conses are used 

primarily to represent lists. 

A list is recursively defined to be either the empty list (which is represented by the sy.mbol nil, but can also 

be written as "( )") or a cons whose cdr component is a iist. A list is therefore a chain of conses linked by 

their cdr components and terminated by nil. The car components of the conses are caned the elements of 

the list. For each element of the list there is a cons. 'DIe empty list has no elements at all. 

A list is notated by wridng the elements of the list in order, separat~d by blank space (space. tab, or return 

characters) and surrounded by parentheses. 

For e~:ample: 

(a b c) ; A list of three symbols. 
(2.050 (a 1) #\*) ; A list of three things: a short floating-point number, 

another list, and a character object 

This is why the empty list can be written as." ( )"; it is a list with no elements. 

A dotted list is one whose last cons does not have nil for its cdr, but some other data object (which is also 

not a cons, or the first-mentioned cons would I?-0t be the last cons of the list). Such a list is called "dotted" 

because of L'le special notation used for it: the elements of the list are written between parentheses as before, 

but after the last element and before the right parenthesis are written a dot (surrounded. by blank space) and 

then the cdr of the last cons. As a special case, a single cons is notated by writing the car and the cdr between 

parentheses and separated by a space-surrounded dot. 

For example: 

(a . 4) 

(a b c . d) 

; A cons whose car is a symbol 
; and whose cdr is an integer. 
; A dotted list with three elements whose last cons 

has the symbol d in its cdr. 
Compatibility note: In MACLlsp, the dot in dotted-list notation need not be surrounded by white space or other delimiterS. 
The dot is required to be delimited in COMMON LIsp, as in Lisp Machine LIsp. 

It is legitimate to write something like (a b . (c d»; this means the same as (a b cd) . The 

standard LISP output routines will never print a list in the first form, however; ~ey will avoid dot notation 

wherever possible. 



22 COMMON LISP REFERENCE MANUAL 

Often the term list is used to refer either to' true lists or to dotted lists. The term "true lisf' will be used to 

refer to a list terminated by n i 1, when the ~istinction is important. Most functions advertised to operate on 

lists expect to be given true lists. Throughout this manual, unless otherwise specified, it is an error to pass a 

dotted list to a function that is specified to require a list as an argument. 
Implementation note: Implementors are encouraged to use the equivalent of the predicate endp (page 217) wherever it is 
necessary to test for the end of a list. Whenever feasible. this test should explicitly signal an error if a list is found to be 
terminated by a non-n; 1 alom. However. such an explicit error signal is not required. because some such tests occur in 
important loops where efficiency is important. In such cases, the predicate atom (page 61) may be used to test for the end 
of the list, quietly treating any non-n; 1 list-terminating atom as if it were n; 1. 

Sometimes the term tree is used to refer to some cons and all the other conses transitively accessible to it 

through car and cdr links until non-conses are reached; these non-conses are called the leaves of the tree. 

Lists, dotted 1is~, and trees are not mutually exclusive data types; they are simply' useful points of view 

about structures ofconses. There are yet other terms, such as association list. None of these are true LISP data 

types. Conses are a data type, and n i 1 is the sole object of type n u 11. The LISP data type 1 i s t is taken to 

mean the union of the con sand n u 11 data types, and therefore encompasses both true lists and dotted lists. 

2.5. Arrays 

An array is an object with components arranged according to a Cartesian coordinate system. In general, 

these components may be any LISP data objects. 

The number of dimensions of an array is called its rank (this terminology is borrowed from APL); thIs is a 

non-negative integer. Likewise, each dimension is itself a non-negative integer. The total number of elements 

in the array is the product of all the dimensions. 

An implementation of COMMON LISP may impose a limit on the rank of an array, but ~is limit may not be 

smaller than 7. Therefore, any COMMON LISP program may assume the use of arrays of rank 7 or less. (A 

program may detelmine the actual limit on array ranks for a given implementation by examining the constant 

ar ray- ran k -1 imi t (page 240).) 

It is permissible for a dimens~on to be zero. In this case, the array has no elements; and any attempt to 

access an element is in error. However, other properties of the array (such as the dimensions thermselves) 

may be used. If the rank is zero, then there are no dimensions, and the product of the dimensions is then by 

definition 1. A zero-rank array therefore has a single ~lement 

An array element is specified by a sequence of indices. The length of the sequence must equal the rank of 

the array. Each index must be a non-negative integer strictly less than the corresponding array dimension. 

Array indexing is therefore zero-origin, not one-origin as in (the default case of) FORTRAN. 

As an example, suppose that the variable foo names a 3-by-5 array. Then the first index may be 0, 1, or 2; 
and then second index may be 0, l, 2, 3, or 4. One may refer to array elements using the function are f 
(page 240): 



CHAPTER 2: DATA 1YPES 23 

(aref foo 2 1) 

refers to element (2, 1) of the array. Note that aref takes a variable number of arguments: an array, and as 

many indices as the array has dimensions. A zero-rank array has no dimensions, and therefore are f would 

take such an array and no indices, and return the sole element of the array. 

In general, arrays can be multi-dimensional, can share their contents with other array objects, and can have 

their size altered dynamically (either enlarging or shrinking) after creation. A one-dimensional array may also 

have a fill pointer. 

Multidimensional arrays store their components in row-major order; that is, internally a multidimensional 

array is stored as a one-dimensional array, with the multidimensional index sets ordered lexicographically, last 

index varying fastest This IS important in two situations: (1) when arrays with different dimensions share 

t..~eir contents, and (2) when accessing very large arrays in a virtual-memory implementation. (The first 

situation is a matter of semantics;· the second, a matter of efficiency.) 

An array that is not displaced to another array, has no fill pointer, and is not to have its size adjusted 

dynamically after creation, is called a simple array. The user may provide declarations that certain arrays will 

be simple. Some implementations can handle simple arrays in an especially efficient manner; for example, 

simple arrays may have a more compact representation than non-simple arrays. 

2.5.1. VectorS 

One-dimensional arrays are called vectors in COMMON LISP, and constitute the type vector (which is 

therefore a subtype of a r r ay). Vectors and lists are collectively considered to be sequences. They di ffer in 

that any component of a one-dimensional array can be accessed in constant time, while the average 

component access time for a list is linear in the length of the list; on the other hand, adding a new element to 

the front of a list takes constant time, while the same operation on an array takes time linear in the length of 

the array. 

A general vector (a one-dimensional array that can have any data object as an element, but has no 

additional paraphernalia) can be notated by notating the components in order, separated by whitespace and 

surrounded by "# (" and " ) ". 

For example: 

# (a be) ; A vector oflength 3. 
#(2 3 5 7 11 13 17 19 23 29 31 37 41 43 47) 

; A vector containing the primes below SO. 
# ( ) ; An empty vector. 

Note that when the function rea d parses this syntax, it always constructs a simple general vector. 
Rationale: Many people have suggested that brackets be used to notate vectors: .. [a be]" instead of" # (a be) ". This 
would be shorter, perhaps more readable, and certainly in accord with cultural conventions in other parts of computer 
science and mathematics. However, to preserve the usefulness of the user-definable macro-character feature of the function 
read (page 310), it is necessarY to leave some characters to the user for this purpose. Experience in MAcLlsP has shown 
that users, especially implementors of languages for use in artificial intelligence research, often want to define special kinds 
of brackets. Therefore COMMON LIsp avoids using square brackets and braces for any purpose. 

Implementations may provide certain specialized representations of arrays for efficiency in the case where 



24 COMMON LISP REFERENCE MANUAL 

all the components are of the same specialized (typically numeric) type. All implementations provide 

specialized arrays for the cases wh~n the components are characters (or rather, a special subset of the 

characters); the one-<;iimensional instances of this specialization are called strings. An implementations are 

also required to provi<;le specialized arrays of bits, that is, arrays of type (a r-r ay bit); the one-dimensional 

instances of this specialization are called bit .. vectors. 

2.5.2. Strings 

A string is simply a vector of characters (characters of type s t r i n 9 ... c h a r. to be exact). The type s t r i n 9 

is therefore a subtype of the type vector. A string can be written as the sequence of characters contained in 

the string, preceded and followed by a "It" (double-quote) character. Any""" or "\" character in the 

sequence must additionally have a"\" character before it 

For example: 

"F 00" ; A string with three characters in it 
" II ; An empty string. 
"\"APL\\360?\" he cried. II ;Astringwithtwentycharacters. 
" I x I = I'" xl" ; A ten-character string. 

Notice that any venical bar "I" in a string need not be preceded by a "\,'. Similarly, any double-quote in 
the name of a symbol written using vertical-bar notation need not be preceded by a "\". The double-quote 

and vertical-bar notations are similar but distinct: double-qu.otes indicate a character string containing the 

sequence of characters, while vertical bars indicate a symbol whose n~e is the contained sequence of 

characters. 

The characters contained by the double-quotes, taken from left to right, occupy locations within the string 

with increasing indices. The leftmost character is stri.ng element number O~ the next one is element number 1, 
and so on. 

Note that the function pr i n 1 will-print any character vector (not just a simple one) using ~is syntax, but 

the function re a d will always construct a simple string wheR it reads this syntax. 

2.5.3 .. Bit-vectors 

A bit-vector can be written as the sequence of bits contained in the string, preceded by "#*"; any delimiter 
character (such as whitespace) wilt terminate the bit-vector syntax. 

For example: 

# * 10110 ; A five-bit bit-vector; bit 0 is a 1. 
#* ; An empty bit-vector .. 

The bit$. n~t~.d fQIlQwi1tg: tIl,(t "1Ii*c",. fa.ken f:i;olllleft to right, occupy locations within the bit-vector with 

inc:reasing indices. The, leftmost optated, bit is' bit~yector element number 0, the next one is element number 

1, and so on .. 

The function p r i n 1 will prh! any bit-vector (not just a simple one) using this syntax, but the function 

rea d will aJways construct a simple bit-vector when, it reads this syntax. 



CHAPTER 2: DATA TYPES 25 

2.6. I-Iash tables 

Hash tables provide an efficient way· of mapping any LISP object (a key) to an associated object. They are 

provided as primitives of COMMON LISP because some implementations may need to use internal storage 

management strategies that would make it very difficult for the user to implement hash tables himself in a 

portable fashion. Hash tables are described in chapter 16 (page 233). 

2.7. ReadtabIes 

A readtable is a data structure that maps characters into syntax types for the LISP expression parser. In 

particular, a readtable indicates for each character with syntax macro character what its macro definition is. 

This is a mechanism by which the user may reprogram the parser to a limited but useful extent. See section 

22.1.5 (page 299). 

2.8. Packages 

Packages are collections of symbols that serve as name spaces. The parser recognizes symbols by looking up 

character sequences in the "current package". Packages can be used to hide names internal to a module from 

other code. ~1echanisms are provided for exporting symbols from a given package to the primary "user" 

package. See chapter 11 (page 139). 

2.9. Pathnames 

Pathnames are the means by which a COMMON LISP program can interface to an ~xternal file system in a 

reasonably implementation-independent manner. See section 23.1.1 (page 338). 

2.10. Streams 

A stream is a source or sink of data, typically characters or bytes. Nearly all functions that perform I/O do 

so with respect to a specified stream. The function 0 pen (page 345) takes a pathname and returns a stream 

connected to the file specified by the pathname. There are· a number of standard streams that are used by 

default for various' purposes. See chapter 21 (page 273). 

2.11. Random-states 

For information about random-s.tate objects and the random-number generator, see section 12.9 (page 

186). 



26 COMMON LISP REFERENCE MANUAL 

2.12. Structures 

Structures arc instances of user-defined data types that have a fixed number of named components. TIley 

are analogous to records in PASCAL. Structures are declared using the defstruct (page 255) construct; 

de f s t r u c t automatically defines access and constructor functions for the new data type. 

Different structures may print out in different ways; the definition of a structure type may specify a print 

procedure to use for objects of that type (see the:print-function (page 260) option to defstruct). 

lbe default notation for structures is: 

#S (structure-name 
slot-name-] slot-value-/ 
slot-name-2 slot-value-2 

... ) 
where "#S" indicates structure syntax, structure-name is the name (~ symbol) of the structure type, each 

slol-name is the name (also a symbol) of a componc:nt, and each corresponding slol-value is the representation 

of the LISP object in that slot 

2.13. Functions 

A jimctiol1 is anything that may be correctly given to the funcall (page 89) or apply (page 

89) function. to be executed as code when arguments are supplied. 

A compiled-function is a contpiledcode object 

A lambda-expression (a list whose car is the symbol 1 amb da) may serve as a function. Depending on the 

implementation, it may be possible for other lists to serve as functions. (For example, an implementation 

might choose to represent a "lexical closure" as a list whose car contains some special marker.) 

A symbol may serve as a function: an attempt to invoke a symbol as a function causes the contents of the 

symbol's function cell to be used. See symbo l-funct i on (page 75) and defun (page 55). 

The result ofevaluating a fun c t ion (page 72) special fonn will always be a function. 

2.14. Unreadable Data Objects 

Some objects may print in implementation-dependent ways. Such objects cannot necessarily be r~liably 

reconstructed from a printed representation, and so they are usually printed in a format infonnative to the 

user but not acceptable to the r~ad function: 
#<useful infonnation> 

The LISP reader will signal ~n error on encountering "#<". 

As a hypothetical example, an implementation might print 
#<stack-pointer si:rename-within-new-definition-maybe #0311037552> 



CHAPTER 2: DATA TYPES 27 

for an implementation-specific "internal stack pointer" data type, whose printed representation includes the 

name of the type. some infonnation about the stack slot pointed to, and the machine address (in octal) of the 

stack slot 

2.15. Overlap, Inclusion, and Disjointness of Types 

The COMMON LISP data type hierarchy is tangled, and purposely left somewhat open-ended so that 

implementors may experiment with new daul types as extensions to the language. This section states 

explicitly all the defined relationships between types, including subtype/supertype relationships, disjointness, 

and exhaustive partitioning. The user of COMMON LISP should not depend on any relationships not explicitly 

stated here. For example, it is not valid to assume that because a number is not complex and not rational that· 

it must be a flo a t, because implementations are permitted to provide yet other kinds of numbers. 

First we need some tenninology. If x is a supertype of y, then any object of type y is also of type x, and y is 

said to be a subtype of x. If types x and yare disjoint, then no object (in any implementation) may be bOtll of 

type x and of type y. Types a1 through an are an exhaustive union of type x if each aj is a subtype of x, and 

any object of type x is necessarily of at least one of the types ai a1 through an arc furthennore an exhaustive 
partition if they are also pairwise disjoint ' 

• The type t is a supertype of every type whatsoever. Every object belongs to type t. 

• The type nil is a subtype uf every type whatsoever. No object belongs to type nil. 

• The types cons, symbol. array, number, and character are pairwise disjoint 

• The types ra t i on a 1, f loa t, and comp 1 e x arc pairwise disjoint subtypes of number. 

• The types; n teger and r.a t ; 0 are disjoint subtypes of rat i ona 1. 
Rationale: It might be thought that ; n t e g e r and rat; 0 should fonn an exhaustive partition of the type 
in t e 9 e r. Thi~ is purposely avoided here in order to permit compatible experimentation with extensions to 
the COMMON LIsp rational number system. 

• The types f; xn urn and b i gn um.are disjoint subtypes of integer. 
Rationale: It might be thought that f; xnum and b i gnum should fonn an exhaustive partition of the type 
integer. This is purposely avoided here in order to pennit compatible experimentation with" extensions to 
the COMMON LIsp integer number system such as the idea of adding explicit representations of infinity. or of 
positive and negative infinity . 

• The types short-float, single-float, double-float, and long-float are subtypes 
of flo at. Any two of them must be either disjoint or identical; if identical, then any other types 
between them in the above ordering must also be identical to them (for example, if 
single-float and long-float are identical types, then doub1e-f1oa.t must be identical 
to them also). 

• The type null is a subtype of symbol; the only object of type null is ni 1. 

• The types cons and null form an exhaustive partition of the type 1 i st. 



28 COMMON LISP REFERENCE MANUAL 

• The type standard-char is a subtype of string-char; string-char is a subtype of 
character. 

• The type s tr i ng is a subtype of vector, for s tr fngmeans (vector s tr ing -char). 

• The type bi t-vector is a subtype of vector, for bi t-vector means (vector bi t). 

• The types (vec tor t), s tr i n9, and 'b it-vee tor are disjoint. 

• The type vector is a subtype of array; for all types x, the type (vector x) is a subtype of 
the type (array x (*». 

• The type simpl e-array is a subtype of array. 

• The types simp 1 e-vector, simp 1e- s tr i n9, and simp 1e-bit -vector are disjoint 
sl:lbtypes of Simple-array; for ~ey respectively mean (simple-array t (*», 

(simple-array string-char (*»,and(simple-array bit (*». 

• The type simp 1 e -ve ctor is a subtype of yec tor ,and indeed is a subtype of ( vec tor t). 

• The type simp 1 e - s t r' i n g is a subtype of s t ring. {Note that although s t r in 9 is a sUbtype of 
vector. simp 1 e - s tr i ng is not a sUbtype of simp 1 e - vector.) 

Rationale: The type simp 1 e-vec tor might better have been called simp 1 e-genera 1 -vee tor. but in 
this instance euphony and user convenience were deemed more important to the design of COMMON LIsp 
than a rigid symmetry . 

• The type simple-bit-vector is a subtype of bit-vector. (Note that although 
bit-vector isa subtype of vector, simple-bit-vector is not a subtype of 
simp 1 e-vector.) 

• The types vector and 1 is t are, disjoint subtypes of sequence. 

• The types hash-ta'bl e, readtabl e, package, pathname, stream, and random-state 
are pairwise disjoint 

• Any two types created by defs truct (page 255) are disjoint unless one is a supertype of the 
other by virtue of the: ; nc lu d e (page 259) option. 

• An exhaustive union for the type common is funned by the types cons, symbol, (array x) 
where x is either t or a subtype of common, fixnum, bignum, ratio, short-float, 
s ingle-float, ('louble-float~ lOll;g-float, (compl ex x) where x is a subtype of 
common, standard-char, hash-table, readtable, package. pathname, stream, 
r~ndom-state,and a11typescreated by the user via defstruct(page 255). An 
irtlplementationmay not unilaterally add additional subtypes to common; however, future 
revisions to the COMMON LISP standard may extend the definition of the commo n data type. 

Note that a type such aSliUmber or array mayor may not be a subtype of common, depending 
on whether or not the given implementation has extended the set of objects of that type. 



Chapter 3 

Scope and Extent 

In describing various features of the COMMON LISP language, the notions of scope and extent are frequently 

usefuL Tnese arise when-some object or construct must be referred to from some distant part of a program. 

Scope refers to the spatial or textual region of the program within which references may occur. Extent refers 

to the interval of time within which references may occur. 

As a simple example, consider this program: 
(defun copy-cell (x) (cons (car x) (cdr x») 

The scope of the parameter named x is the body of the defun form. TIIere is no way to refer to this 

parameter from any other place but within the body of the defun. Similarly. the extent of the parameter x 

(for any particular call to copy-eel l) is the interval from the time the function is invoked to the time it is 
exited. (In the general case, the extent of a parameter may last beyond the time of function exit, but that 

cannot occur in this simple case.) 

Within COMMON LISP, a referenceable entity is established by the execution of some language construct, 

and t.l1e scope and extent of the entity are described relative to the construct and the time (during execution of 

the construct) at which the entity is established. For the purposes of this discussion, the term "entity" refers 

not only to COMMON LISP data objects such as symbols and conses, but also to variable bindings (both 

ordinary and special), catchers, and go targets. It is important to distinguish between an entity and a name 

for the entity. In a function definition such as this: 
(defun foo· (x y) (* x (+ y 1») 

there is a single name, x, used to refer to the first parameter of the procedure whenever it is invoked; 

however, a new binding is established on every invocation. A binding is a particular parameter in~tance. The 

value of a reference to the name x depends first on the scope within which it occurs (the one in the pody of 

f 00 in the example occurs in the scope of the functi~n definition's parameters); it depends also on. the 

particular binding (instance) involved (in this case, it depends on during which invocation the reference is 

made). More complicated examples appear at the end of this chapter. 

There are a few kinds of scope and extent that are particularly useful in describing COMMON LISP: 

• Lexical scope. Here references to me established entity can occur only within certain program 
portions that are lexically (that is, textually) contained within the establishing construct Typically 
the construct will have a part designated the body, and the scope of all entities established will be 
(or ~c1udc) the body. 

- 29-



30 COMMON LISP REFERENCE MANUAL 

Example: the names of parameters to a function normally are lexically scoped. 

• Indefinite scope. References may occu.r anywhere, in any program. 

• Dynamic extent. References may occur at any time in the interval between establishment of the 
entity and the explicit disestablishment of the entity. As a rule, the entity is disestablished when 
execution of the establishing. construct completes or is otherwise terminated. Therefore entities 
with dynamic extent obey a stack-like discipline, paralleling the nested executions of their 
establishing constn.lcts. 

Example: the wi th -open -f i 1 e (page 348) construct opens a connection to a file and creates a 
stream object to represent the connection. The stream object has indefinite extent, but the 
connection to the open file has dynamic extent: when control exits the wit h - 0 pen - f i 1 e 
constn.lct, either normally or abnormally, the file is automatically closed. 

Example: the binding of a "special" variable has dynamic extent. 

• Indefinite extent. The entity continues to exist so long as the possibility of reference remains. (An 
implementation is free to destroy the entity if it can prove that reference to it is no longer 
possible.) 

Example: most COMMON LISP data objects have indefinite extent. 

, . 
Example: the bindings of lexically seoped parameters of a function have indefinite extent. (By 
contrast, in ALGOL the bindings of lexically scoped parameters of a procedure have dynamic 
extent.) This function defini~ion: 

(defun compose (f g) 
#"(lambda (x) (funcall f (funcall 9 x»» 

when given two arguments, iInmediately returns a function as its value. The parameter bindings 
for f and 9 do not disappear, because the returned function, when called, could still refer to those 
bindings. Therefore 

{funcall (compose #'sqrt #tabs) -9.0) 
produces the value 3 . o. (An analogous procedure would not necessarily work correctly in typical 
ALGOL implementations.) 

In addition to the above tenns, it is convenient to define dynamic scope to mean indefinite scope and 
dynamic extent. Thus we speak of "special" variables as having dynamic scope, or being dynamically scoped, 

because they have indefinite sCope and dynamic extent: a special variable can be referred to anywhere as long 

as its binding is currently in effect 

The above definitions do not take into account the possibility of shadowing. Remote reference of entities is 
accomplished by using names of one kind or another. If two entities have the same name, then the second 

(say) may shadow the first, in which case an occurrence of the name will refer to the second and cannot refer 

to the first 

In the case of lexical scope, if two constructs that establish entities with the same nam.~ are textually nested, 

then references within the inner construct refer to the entity established by the inner one; the inner one 



CHAPTER 3: SCOPE AND EXTENT 31 

shadows the outer one. Outside the inner one but inside the outer one, references refer to the entity 

established by tbe outer construct. For~example: 
(defun test (x z) 

(let «z (* x 2») (print z» 
z) 

The binding of the variable z by the 1 e t (page 91) com;truct shadows the parameter binding for the function 

t est. The reference to the variable z in the p r i n t fonn refers to the 1 e t binding. The reference to z at 

the end of the function refers to the parameter named z. 

In the case of dynamic extent, if the time intervals of two entities overlap, then one interval will necessarily 

be nested within the other one (this is a property of the design of COMMON LISP). 

Implementation note: Behind the assertion that dynamic extentc; nest properly is the assumption that there is only a single 
program or process. CoMMON LISP goes not address the problems of multiprogramming (timesharing) or multiprocessing 
(mor\! than one active processor) within a single LIsp environment. The documentation for implementations that extend 
COMMO~ LISP for multiprogramming or multiprocessing should be very clear on what modifications are induced by such 
extensions to the rules of extent and scope. Implementors should note that COMMON LISP has been carefully designed to 
allow special variables to be implemented using either the "deep binding" technique or the "shallow binding" technique. 
but the two techniques have d~fferent semantic and performance implications for multiprogramming and mUltiprocessing. . 

A reference by name to an entity with dynamic extent will always refer to the entity of that name that has 

been most recently established that has not yet been disestablished. For example: 
(defun fun1 (x) 

{catch 'trap (+ 3 (fun2 x»» 

(defuo fun2 (y) 
(catch 'trap (* 5 (fun3 y»).) 

(defun fun3 (z) 
(throw 'trap z» 

Consider the call (f un 1 7). The result will be 10. At the time the t h row· (page 116) is executed~ there are 

two outstanding catchers with the name trap: one established within procedure funl, and the other within 

procedure fun2. The latter is the more recent, and so the value 7 is renlrned from the catch fonn 1n fun2. 

Viewed from within fun3, the catch in fun2 shadows the one in fun1. (Had fun2 been defined as 
(defun fun2 (y) 

(catch 'snare (* 5 (fun3 y»» 
then the two catchers would have different nanles, and therefore the one in fun 1 would not be shadowed. 

The result would then have. been 7.) 

As a rule this document will simply speak of the scope or extent of an entity; the possibility of shadowing 
. ~ 

will be left implicit; 

A list of the important scope and extent rules in COMMON LISP: 
I 

• Variable bindings nonnally have lexical scope and indefini~e extent 

• Variable bindings that are declared to be spec i a 1 have dynamic scope (indefinite scope and 
dynamic extent). 

• A catcher established bya catch (page 114) or unwi nd-protect (page 115) special fonn has 



32 COMMON USP REFERENCE MANUAL 

dynamic scope. 

• An exit point established by a b 1 oc k (page 98) construct has lexical scope and dynamic extent. 
(Such exit points are also established by do (page lOO)~ prog (page 108), and other iteration 
constructs. ) 

• The go targets established by a tagbody (page 107), named by the tags in the tagbody, and 
referred to by go (page 109) have lexical scope and dynamic extent. (Such go targets may also 
appear as tags in the bodies of do: (page 100), prog (page 108), and other iteration constructs.} 

• Named constants such as ni 1 (page 60) and pi (page 171) have indefinite scope and indefinite 
extent 

TIle rules of lexical seoping imply that lambda-expressions appearing in the fun c t ion construct will. in 
general. result in "closures" over those non-special variables visible to the lambda-expression. That is, the 

function represented by a lambda-expression may refer to any lexically apparent non-special variable and get . 

the corr~ct value, even if the construct that established the binding has been exited in the course of execution. 

The c omp 0 s e example shown above provides one illustration of this. The rules also imply that special 

variabletbindings are not "closed over" (as they may be in certain other dialects of Lrsp). 

Constructs that use lexical scope· effectively generate a new name for each established entity on each 

execution. Therefore dynamic shadowing cannot occur (though lexical shadowing may). This is of particular 

importance when dynamic extent is involved. For example: 
(~efun contorted-example (f 9 x) 
, (if (= x 0) . 

(funca11 f)' 
(block here 

(+ 5 (contorted-example 9 
"(lambda () (return-from here 4» 
(- xI»)) . 

Consider the call ( con tor ted - e x amp 1 e nil nil 2 ). This produces the result 4. During the course of 

execution there are three calls on contorted -examp 1 e~ interleaved with two establishments of blocks: 
(contorted-example nil nil 2) 

f. 

(block here! ... ) 

(contorted-example nil #'(lambda () (return-from here! 4» 1) 

(block here2 ..• ) 

(contorted-example #'(lambda () (return-from here l 4» 
#'(lambda () (return-from here2 4» 
0) 

(funcal1 f) 
where f => '·(lambda () (return-from here! 4» 

. . 

(return-from h~rel 4) 

:. 

At the time the fun call is executed there are two bloc k (page 98) exit points outstanding, each apparently 

named he reo In the trace above, these exit points are distinguished for expository purposes by subscripts. 



CHAIYfER 3: SCOPE AND FXTENT 33 

The ret urn - from (page 99) form executed as a result of the fun c a 11 operation- refers to the outer one of 

the outstanding exit points (here 1), not the inner one (here 2). This is a consequence of the rules of lexical 

scoping: it refers to that exit point textually visible at the point of execution of the fun c t ion (page 

72) construct (here abbreviated by the II' syntax) that resulted in creation of the function object actually 

invoked by the funcall. 

If, in this example, one were to change the form (f un c a 11 f) to (f u n c a 11 g), then the value of the 

call (contorted-example nil nil 2) would be" 9. That is because the funcall would cause the 

execution of (return-from here2 4), thereby causing a return from the inner exit point (here2). 

When that occurs, the value 4 is returned from the middle invocation of contorted-exampl e, 5 is added 

to that to get 9, and that value is returned from the outer block and the outennost call to" 

con tor ted - e x amp 1 e. The point of this is that which exit point is returned from has nothing to do with 

being innermost or outermost, but depends on the lexical scoping information that is effectively packaged up 

with a lambda-expression when the fun c t ion construct is executed. 

The function contorted-exampl e above works only because the function named by f is invoked 

during the extent of the exit point. Block exit points are like non-special variable bindings in having lexical 

scope, but differ in having dynamic extent rather than indefinite extent. Once the flow of execution has left 

the block construct, the exit point is disest:'lblished. For example: 
(defun illegal-example () " 

(let «y (block here #'(lambda (z) (return-from here z»»} 
(if (numberp y) y (funcall y 5»» 

One might expect the can (i 11 ega 1 - e x amp 1 e) to produce 5 by the" following incorrect reasoning: " the 

1 e t statement binds the variable"y to the value of the b 1 0 c k construct; this value is a function resulting from 
the lambda-expression. Because y is not a number, it is invoked on the value 5. The return -from,should 

then return this" value from the exit point narrled her e, thereby exiting from the block again and giving y the 

value 5, which being a number is then returned as the value of the call to i 11 ega 1 - e x amp 1 e. 

TIle argument fails only because exit points are defined in COMMON LISP to have dynamic extent. The 

argument is correct up to the execution of the ret urn - from. The execution of the ret urn - from is an 

error, however, not because it cannot r~fer to the exit point, but because it does correctly refer to an exit point 

alldthat exit point has been disestablished. 



34 COMMON LISP REFERENCE MANUAL 

, 



./-". 

Chapter 4 

Type Specifiers 

In COMMON LISP, types are. named by LISP objects, specifically symbols and lists, called type specifiers. 
Symbols name predefined classes of objects, v.'hile lists usually indicate combinations or specializations of 

simpler types. Symbols or lists may also be abbreviations for types that could be specified in other ways. 

4.1. Type Specifier Symbols 

The type symbols defined by the system include those shown in Table 4-1. In addition, when a structure 

type is defined using defs truct (page 255), u~e name of the structure type becomes a valid type symbol. 

4.2. Type Specifier Lists 

If a type specifier is a list, the car of the list is a symbol, and the rest of the list is subsidiary type 

information. In many cases a subsidiary item may be unspecified. This is indicated by writing * for the 

unspecitled subsidiary item. For example, to completely specify a vector type one must mention the type of 

the elements and the length of the vector, as fqr example 
(vector double-float 100) 

To leave the length unspecified one would write 
(vector double-float *) 

To leave the element type unspecified one would write 
(vector * 100) 

Suppose that two type specifiers are the same except that the fiist has a * where the second has a more explicit 

specification. Then the second denotes a subtype of the type denoted by the first . 

As a convenience, if a list has one or more unspecified items at the end, such items may simply 1?e dropped 

rather than writing an explicit * for each one. If dropping all occurrences of * results in a singleton list, then 

the parentheses may be dropped as well (the list may be replaced by the symbol in its car). For example, 

(vector double-float *) may be abbreviated to (vector double-float),and (vector * *) 

may be abbreviated to (vector) and then to simply vector. 

- 3S-



36 COMMON LISP REFERENCE MANUAL 

4.3. Pr~tlicating Type Specifier 

A type specifier list (s at i sf i e s predic~te-llame) denotes the set of a.l1 objects that satisfy the predicate 

named by predicate-name, whiCh must be a symbol whose global function definition is a one-argument 

predicate. (A name is required; lambda-expressions are not allowed in order to avoid scoping problems.) For 

example, the type (satisfies numberp) is the same as the type number. The call (typep x 

, ( sat i sf i e s p» results in applying p to x and returning t if the result is true and n i' if the result is 

false. { 

As an~ .. , '.; xample. the type s t r i n g - c h a r could be defined as . 
. ;eftype string-char () '(and character (satisfies string-char-p») 

See de type (page 41). 

I t is not a good idea for a predicate appearing in a sat i sf i e s type specifier to cause any side effects when 

invoked. 

'ray 
atom 
b1gnum 
bit 
bit-vector 
character 
Gommon 
ccimpiled-function 
complex 
cons 
double-float 

fixnum package 
float pathname 
function r~ndom-state 

hash-table ratio 
integer rational 
keyword readtable 
list sequence 
long-float short~f'oat 
nil Simple-array 
null simple-bit-vector 
number Simple-string 

Table 4-1: Standard Type Specifier Symbols 

4.4. Type SpecUlers That Combin~ 

Simple-vector 
Single-float 
standard-char 
stream 
string 
string-char 
symbol 
t 
vector 

The folfowing type specifier lists define a data type in terms of other tYpes or objects. 

( memb ert objectl object2 .•. ) 
. This denotes the set containing precisely those objects named. An object is of this type if 

and only if itis e ql (page,65) to one of the specified objects. 
Compatibility note: This is approximately equiv~ent to what the INTERUSP DECL package caIls 
m$J1lq. 

(not type) This denotes the set of all those objects that are not of the specified typ·e. 

(and tYP'i;.1 type2 ... ) 
i. This denotes the inte(Section of the specified types. 



CHAPTER 4: TYPE-SPECIFIERS 37 

Compatibility note: Thi~ is roughly equivalent to what the INl'ERLISP DECL package calls a 11 0 f. 

When typep (page 60) processes an and type specifier, it always tests each of the 
component types in order from left to right, and stops processing as soon as one 
component of the intersection has been found to which the object in question does not 
belong. In this respect an and type specifier is similar to an executable and (page 
68) form. The purpose of this is to allow a sat i sf i e s type· specifier to depend on 
filtering by previous type specifiers. For example, suppose there were a function p rime p 
that takes an integer and says whether it is prime. Suppose also that it is an error to give 
any object other than an integer to p rime p. Then the type specifier 

(and integer (satisfies primep» 

is guaranteed never to result in an error because the function primep will not be invoked 
unless the object in question has already been determined to be an integer. 

( 0 r typel type2 ... ) 
This denotes the union of the specified types. For example, the type 1 i s t by definition is 
the same as (0 r n u' leo n s ) . Also, the value returned by the function po sit ion 
(page 211} is always of type (or nul' (integer 0 *» (either nil or a non-negative 
integer). 

Compatibility note: This is roughly equivalent to what the INTERLISP DECL package calls oneof. 

As for and, when typep processes an or type specifier, it always tests each of the 
component types in order from left to right, and stops processing as soon as one 
component of the union has been found to which the object in question belongs. 

4.5. Type Specifiers That Specialize 

Some type specifier lists denote specializations of data types named by symbols. These specializations may 

be reflected by more efficient representations in the underlying implementation. As an example, consider the 

type (a r r ay s h 0 r t - flo at). Implementation A may choose to provide a specialized representation for 

arrays of short floating-point numbers, and implementation B may choose not to. 

If you should want to create an array for the express purpose of holding only short-float objects, you may 

optionally specify to make-array (page 237) the element type short-float. This does not require 
make-array to create ali object of type (array short-float); it merely permits it. The request is· 
construed to mean "Produce the most specialized array representation capable of holding short-floats that the 

implementation can provide." Implementation A will then produce a specialized short-float array (of typ~ 

( a r r ay s h 0 r t - f , 0 at», and implementation B will produce an ordinary array (one of type (a r ray 

t ». 

If one were then to ask whether the array were actually of type. ( a r r ay s h 0 r t - flo at), implementation 

A would say "yes", but implementation B would say "no". This is a property of rna k e - a r r ay and similar 

functions: what you ask for is not necessarily what you get 

Types can therefore be used for two different purposes: declaration and discrimination. Declaring to 



38 COMMON LISP REFERENCE MANUAL 

ma k e - a r ray that clements will always be of type s h 0 r t - flo at pennits optimization. Similarly, declaring 

that a variable takes on values of type (array shor't-fl oat) amounts to saying that the variable will take 

on values that might be produced by specifying element type short-float to make-array. On the other 

hand, if the predicate ty pep is used to test whether an object is of type (a r r ay s h 0 r t - flo at), only 

objects actually of that specialized type can satisfy the test; in implementation B no object can pass that test. 

The valid list-format names for data types are: 

(array, element-type dimensions) 
This denotes the set of specialized arrays whose elements are all members of the type 
element-type and whos~ dirnensions match dimensions. For declaration purposes, this type 
encompasses those arrays that can result by specifying element-type as the element type to 
the function m"ake-array (page 237); this may be different from what the type means 
for discrimination purposes. element-type must be a valid type specifier or unspecified. 
dimensions may be a non-negative integer, which is the number of dimensions, or it may be 
a list of non-negative integers representing the length of each dimension (any dimension 
may be unspecified instead), or it may be unspecified. 

For example: 

{array 
{array 
{ array 
{array 

integer 3) 
integer (* * *» 
* (4 5 6» 
character (3 *» 

; Three-dimensional arrays of integers. 
; Three-dimensional arrays of integers. 
; 4-by-5-by-6 arrays. 
; Two-dimensional arrays of characters 
; that have exacr.ly three rows. 

(array short-float (» ; Zero-rank arrays of short-format 
; floating-point numbers. 

Note that (array t) is a proper subset of.( array *). The reason is that (array t) 
is the set of arrays that can hold any COMMON LISP object (the elements are of type t, 
which includes all objects). On the other hand, (array *) is the set of all arrays 
whatsoever, including for example arrays that can hold only characters. Now (array 
character) is not a subset of (array t); the two sets are in fact disjoint, because 
(array character) is not the set of all arrays that can hold characters, but the set of 
arrays that are specialized to hold precisely characters and no other objects. To test 
whether an array f 00 can hold a character, one should not use 

{typep foo '(array character» 

but rather 
(subtypep 'character (array-eleme~t-type fool) 

See array-element-type (page 241). 

(s impl e-array element-type dimensions) 
This is equivalent to (array elemeni-iype dimensions) except that it additionally 
specifies that objects of the type are simple arrays. (See section 2.5.) 

(vector element-type size) 
This denotes the set of specialized one-dimensional arrays whose elements are all of type 
element-type and whose lengths match size. TIlis is entirely equivalent to {array 
element-type (size». . 

For example: 



CHAPTER 4: TYPE SPECIFIERS 39 

(vector doubl e-fl oat) .; Vectors ofdouble-fonnat 
; floating-point numbers. 

(vector •. 5) ; Vectors oflength 5. 
(vector t '5) ; General vectors oflength 5. 
(vee to r (mod 32) iii) ; Vectors ofintegers between 0 and 3l. 

The specialized types (v ec tor s tr i n g - ch ar) and (vec tor bit) are so Jseful that 
they have the special names stri ng and bi t-vector. Every implementation of 
COMMON LISP must provide distinct representations for these as distinct specialized data 
types. 

(Simple-vector sue) 

This is the same as (vector t size) except that it additionally specifies that its elements 
are simple general vectors. 

( c omp 1 e x type) Every element of this type is a complex number whose real part and imaginary part are 
each of type type. For declaration purposes, this type encompasses those complex numbers 
that can result by giving numbers of the specified type to the function comp 1 ex (page 
179); this may be different from what the type means for discrimination purposes. As an 
example, Gaussian integers might be described as (complex integer), even in 
implementations where giving two integers to the function comp 1 e x results in an object of 
~pe(complex rational). 

(function (arg!-type arg2-type ... ) value-type) 

(values 

TIlis type may be used only for declaration and not for discrimination; typep (page 
60) will signal an error if it encounters a specifier of t.'lis fonn. Every element of this type is 
a function that accepts arguments at least of the types specified by the argi-type forms, and 
returns a value that is a memb~r of the types specified by the value-type form. The 
&0 p t ion a 1, &r est, and &k ey keywords may appear in the list of argument types. 'The 
value-type may be a va 1 ues type specifier, to indicate the types of multiple values. 

As an example, the function cons (page 217) is of type (function (t t) cons), 
because it can accept any two arguments and always returns a cons. It is also of type 
( fun c t ion (f loa t s t r in g) 1 is t ), because it can certainly accept a floating-point 
number and a string (among other things), and its result is always of type , i s t (in fact a 
cons and never·n~' 1, but that does not matter for this type declaration). The function 
truncate (page 175) is of type (function (number number) (values number 
number»,aswellasoftype(function (integer (mod 8» ·integer). 

valueI-type value2-type ... ) , 
This type specifcr is extremely restricted: it may be used only as the value-type in a 
funct i on type specifier or in a the (page 131) special form. It is used to specify 
individual types when multiple values are involved. The &opt ional, &rest, and &key 
keywords may appear in the value-type list; they thereby indicate the parameter list of a 
function that, when given to mu 1 tip 1 e - v a 1 u e - c a 11 (page Ill) along with the values, 
would be suitable for receiving those values. 



40 COMMON LISP REFERENCE MANUAL 

4.6. type Specifiers That Abbreviate 

The following type specifiers are, for the most part, abbreviations for other type specifiers that would be far 

too verbose to write out explicitly (using, for example, member). 

(integer 

(mod n) 

low high) 
This denotes the integers between low and high. The limits low and high must each be an 
integer, a list of an integer. or unspecified. An integer is an inclusive limit, a list of an 
integer is an exclusive limit, and * means that a limit does not exist and so effectively 
denotes minus or plus infinity, respectively. The type fi xnum is simply a name for 
( in t e g e r smallest largesl) for implementation-dependent values of smallest and largest 
(see most-negat i ve-fi xnum (page 188) and most-pos i t i ve-fi xnum (page 
188». The type ( i ntege r 0 1) is so useful that it has the special name bit. 

The set of non-negative integers less than fl. This is equivalent to ( in t e g e rOn -1) or 
to (integer 0 (n» •. 

(signed-byte s) 
The set of integers that can be represented in two's-complement fonn in a byte of s bits. 
Thi~ is equivalent to (integer _2s- 1 2S

-
1_1). Simply signed-byte or 

(s i gned-byte *) is the same as integer. 

(unsigned-byte s) " 
The set of non-negative integers that can be represented in a byte of s bits. This is 
equivalent to (mod 2s ), L1.at is, (-integer 0 2s-1). Simply unSigned-byte or 
(uns i gnad-byte "') is the SaIne as (i nteger 0 *), the set of non-negative integers. 

(rational row h~h) " 

(float 

TIlis denotes the rationals between low and high. The limits low and high must each "be a 
rational, a list of a rational, or unspecified. A rational is an inclusive limit, a list of a 
rational is an exclusive limit, and '" means that a limit does not exist and so effectively 
denotes minus or plus infinity, respectively. 

low high) 
The set of floating-point numbers between low and high. The limits low and high must 
each be a floating-point number, a list of a floating-point number, or unspecified; a 
floating-point number is an inclusive limit, a list of a floating-point number is an exclusive 
limit, and '" means that a limit· does not exist and so effectively denotes minus or plus 
infinity, respectively. 

In a similar manner one may use: 

(short-float low high) 
( sin g 1 e - f 1 oa t low high) 
(double-float low high) 
(1 ong-fl oat low high) 

In this case, if a limit is a floating-point number (or a list of one), it must be one of the 
appropriate format 

(string size) This means the same as (array string-char (size»: the set of.strings of the .e 



CHAPTER 4: TYPE SPECIFIERS 41 

indicated size. 

( s i rn p 1 e - s t r i n 9 size) 
This means the same.as (simple-array string-char (size»: the set of simple 
strings of the indicated size. 

(b it-vector size) 
This means the same as ( a r r ay bit (size»: the set of bit-vectors of the indicated size. 

( s i rn p 1 e - bit - vee tor size) 
This means the same as (s imp 1 e - a r r ay bit ( size) ): the set of bit-vectors of the 
in dicated size. 

4.7. Defining New Type Specifiers 

New type specifiers can come into existence in two ways. First, defining a new structure type with 
defstruct (page 255) automatically causes the name of the structure to be a new type specifier symbol. 

Second, the deftype special form can be used to define new type-specifier abbreviations. 

deftype name lambda-list {declaration I doe-string}* {fonn}* [Alaero] 
This is very similar to a defrnacro (page 118) form: name is the symbolt~at identific:i the type 

specifier being defined, lambda-list is a lambda-list (and may contain &optiona"' and &rest 

tokens), and the fonns constitute the body of the expander function. If we view a type specifier list 

as a list containing the type specifier name and some argument forms, the argUlnent forms 
(unevaluated) are bound to the corresponding parameters in lambda-list. Then the body fonns are 
evaluated as an implicit pI' 0 9 n, and the value of the last form is interpreted as a new type specifier 

for which the original specifier was an abbreviation. The !lame is returned as the value of the 

deftype form. 

deftype differs from defmacro in that if no initfonn is specified for an &opt ional parameter, 

the default value is *, not nil. 

If the optional documentation string doc-string is present, then it is attached to the nami as a 

documentation string of type type; see documenta·t i on (page 362). 

For example: 
(deftype mod (n) t(integer 0 (,n») 
(deftype list () '(or null cons» 
(deftype square-matrix (&opt10nal type size) 

"SQUARE-MATRIX includes all square two-dimensional arrays." 
t(array ,type (,size ,size») 

(square-matrix short-float 7) means (array short-float (7 7» 
(square-matrix bit) means (array bit (* *» 

If the type naine defined by deftype is used simply as a type specifier symbol, it is interpreted as a 

type specifier list with no argument forms. Thus, in the example above, s qua r e - rna t r i x would 

mean (a r r ay .. ('" *» ~ the set of two-dimensional arrays. This would unfortunately fail to 



42 COMMON LISP REFERENCE MANUAL 

.~ convey the constraint that the two dimensions be the same; (s qua r e -ma t·r i x 

f same problem. A better definition is: 
(defun equidimensional (a) 

( 0 r ' « (a'r r ay - ran k a) 2) 
(apply #'= (ar~ay-dimensions a»» 

(deftype square-matrix (&optional type size) 
'(and (arr~y ,type (,size ,size» 

(satisfies equidimensional») 

bit) has the 

4.8. Type Conversion Function 

coerc~ object result-type [Functionl 

The result-type must be a type specifier: the object is converted to an "equivalent" object of the 

specified type. If the coercion cannot be performed then an error is signalled. In particular, 

(coerce x 'n i 1) always signals an error. If object is already of the specified type, as 

~ determined by typep (page 60), then it is simply returned. It is not generally possible to convert 

any object to be of any type whatsoever; only certain conversions are pernlitted: 

• Any sequence type may be converted to any other sequence type, provided that the new 
sequence can contain all actual elements of t.~e old sequence (it is an error if it cannot). 
If the result-type is specified as simply array, for example, then (array t) is 
assumed. A specialized typ~ such as s t r i n 9 or ( v e c to r ( camp 1 ex 
s h 0 r t - f 1 a at) ) may be specified; of course, the result may be of either that type or 
som\.: more general type, as determined by the implementation. If the sequence is 
already of the specified type, it may be returned without copying it; in this (coe rce, 
sequence type) differs from ( can cat e na t etype sequence), for the latter is required 
to copy the argument sequence. In particular, if one specifies sequence, then the 
argument may simply' be returned, if it already is a sequence. 

{coerce '( a b, c) 'vector) => #( abc) 

• Some strings, symbols, and integers may be converted to characters. If object is a string 
of length I, then the sole element of the string is returned. If object is a symbol whose 
print name is of length I, then the sole element of the print name is returned. If object 
is an integer n, then ( i nt-char n) is returned. See character (page 19~). 

{coerce "a" 'character) => #\a 

• Any non-complex number can be converted to be a short-float, s i ngl e-f1 oat, 
doub la-float, or 1 ong-fl oat. Ifsimply float is specified, and object is not 
already· a 'if', 08 t· of some kind, then the object is converted to be as i n 9 1 e - flo at. 

(coerce 0 ' short-f1 oat) => O.OSO 
(coarce 3.5LO lfloat) => 3.5LO 
(~o.rce 7/2 'float) => 3.5 

o Any number can be converted to be a complex number. If the number is not already 
complex, then a zero imaginary part is provided by coercing the integer zero to the type 
of the given'realpart. (If the given real part is rational, however, then the rule of 
canonical representation for complex rationals will result in the immediate re-



CHAPTER 4: TYPE SPEOFIERS 

conversion 'of the iesult from type comp 1 ex back to type ra t ; ona 1.) 
(coerce 4.550 'complex) => #C(4.5S0 O.OSO) 
(coerce 7/2' 'complex) => 7/2 
(coerce #C(7/2 0) '(complex double-float» 

=> #C(3.500 0.000) 

• Any object may be coerced to type t. 
(coerce x 't) <=> (identity x) <=> x 

43 

Coercions from floating-point numbers to rationals and from ratios to integers are purposely not 
provided. because of rounding problems. The functions rat ion a 1 (page 174), rat fo n ali z e, 
floor (page 175), ce; 1 i n9, truncate, and round may be used for such purposes. Similarly, 

coercions from characters to integers are purposely not provided; char-code (page 196) or 
ch ar - in t (page 198) may be used explicitly to perform such conversions. 

4.9. Determining the Type of an Object 

type -of object [Function] 
(type-of object) returns an implcmer.tation-dependent result: some type of which the object is 
a member. Impicmentations are encouraged to return the most specific type that can be 

convcni~ntly computed and is likely to be useful to the user. If the argument is a user-defined 
named sUUcture created by defs truct then type-of will return the type name of that structure. 

Because the result is Lrnplemcntation-dependent, it is usually better to use type -of primarily '~or 
debugging pur?oscs; however, there are a few sitlladons where portable code requires the use of 
type-of, such as when the result is to be given to the coerce (page 42) or map (page 

205) function. On the other hand, often the typep (page 60) function or the type case (page 

97) construct is more appropriate for some purpose than t,ype -of. 
Compatibility notc: In MACLisp the function type-of is called typep, aDd anomalously so, for it is not a 
predicate, 



44 COMMON LISP REFERENCE MANUAL 



Chapter 5 

Program Structure 

In chapter 2 the syntax was sketched for notating data objects in COMMON LISP. The same syntax is used 

for notating programs, because all COMMON LISP programs have a representation as COMMON LISP data 

objects. 

5.1. Forms 

The standard unit of interaction with a COMMON LISP implementation is the form, which is simply a data 

object meant to be evaluated as a program to produce one or more values (which are also data objects). One 

may request evaluation of any data object, but only certain ones (such as symbols and lists) arc meaningful 

forms, while otbers (such as most arrays) are not. Examples of meaningful fonns are 3, whose value is 3, and 

(+ 3 4), whose value is 7. We write ""3 => 3" and '"(+ 3 4) => 7" to indicate these facts. ("=>" means 

"evaluates to".) 

I\If eaningful forms may be divided into three categories: self-evaluating fonns, such as numbers; symbols, 

which stand for variables; and lists. The lists in turn may be divided into three categories: special forms, 

macro calls, and function calls. 

Any COMMON LISP data object not explicitly defined here to be a valid form is not a valid form. It is an 

error to attempt to evaluate anything but a valid form. 
Implementation note: An implementation is free to make implementation-dependent extensions to the evaluator, but is 
strongly encouraged to signal an error on any attempt to evaluate anything but a valid form or an object for which a 
meaningful evaluation extension has been purposely defined 

5.1.1. Self-Evaluating Forms 

All numbers, characters, strings, and bit-vectors· are self-evaluating forms. When such an object is 

evaluated, that object itself (or possibly a copy in the case of numbers) is returned as the value of the form. 

The empty list ( ), which is also the false value nil, is also a self-evaluating form; the value of nil is nil. 

Keywords (symbols written with a leading colon) also evaluate to themselves: the value of : start is 

: start. 

-45 -



46 COMMON LISP REFERENCE MANUAL 

5.1.2~ Variables 

Symbols are used as names·ofvariables in COMMON LISP programs. When a symbol is evaluated as a {onn, 

the value of the variable it names is produced. F or example, after doing (s e t q items 3), which assigns 

the value 3 to the variable named; terns, then items => 3. Variables can be assigned to, as by setq (page 

76), or bound, as by 1 et (page 91). Any program construct that binds a variable effectively saves the old 

value of the variable and causes it to have a new value, and on exit from the construct the old value is 

reinstated. 

Thei.·": are actually two kinds of variables in"COMMON LISP, called lexical (or static) variables and special (or 

dynG1~k) variables. At any given time either or both kinds of variable with the same name may have a current 

value. ivhich of the two kinds of variable is referred to when a symbol is evaluated depends on the context of 

the ev~1uation. The general rule is that if the symbol occurs textually within a program construct that creates 

a binding for a variable of the same name, then the reference is to the variable specified by the binding; if no 

::e~ogram construct textually contains the reference. then it is taken to refer to the special variable of that 

The distinction between the two kindS of variable is one of scope and extent. A lexically bound variable can 

be referred to only by forms occurring at any place textually within the program construct that binds the 

variable. A dynai'TIically bound (special) variable can be referred to at any time from the time the binding is 

made until the time evaluation of the construct that binds the variable terminates. Therefore lexical binding 

of variables imposes a spatiallimitation on occurrences of references (but no temporal' limitation, for the 

binding continues to exist as long as the possibility of reference remains). Conversely, dynamic binding of 

variables imposes a temporal limitation on occurrences of references (but no spatial limitation). For more 

information on scope and exten~ see chapter 3. 

The value a special variable has when there are currently no bindings of that variable is called the global 
value of the (special) variable. A global value can be given to a variable only by assignmen~ because a value 

given by binding by definition is not global. 

It is possible for a special variable to have no value at all, in which case it is said to be unbound. By defaul~ 

every global variable is unbound unless and until explicitly assigned a value, except for those global variables: 

define~by this document or by the implementation already to have values when the LISP system is first 
started.f It is also possible to establish a binding of a special variable and then cause that binding to be 

valuele!s by using the function makunbound (page 77). In this situation the variable is also said to be 
~ 

"unboqnd", although this is a misnomer; precisely speaking, it.is bound but valueless. It is an error to refer to 

a variable that is unbound. 

Certattl global variables are reserved as "named constantstt
• They have a global value, and may not be 

bound ~r assigned to. For example. the symbols t and n i 1 are reserved. One may not assign a value to t or 

n i 1, and one may not bind to .. : n i 1. The global value of t is always t, and the global value of n i 1 is always 

nil. Constant symbols defined by de f con s tan t (page 56) also become reserved and may not be further 

assigned to or bound (although they may beredefine~ if necessary, by using defconstant again). 



CHAPTER 5: PROGRAM STRUCTURE 47 

Keyword symbols (those written with a leading colon) are reserved and may never be assigned to or bound; a 
keyword always evaluates to itself. 

5.1.3. Special Forms 

If a list is to be evaluated as a form, the first step is to examine the first element of the list If the first 
element is one of the symbols appearing in Table 5-1, then the list is called a special form. (This use of the 
word "special" is unrelated to its use in the phrase "special variable".) 

bloCK 
catch 
compiler-let 
declare 
eval-when 
flet 
function 
go 
if 
labels 
let 
let· 

(page 98) macro1 at 
(page 114) multiple-value-call 
(page 92) multiple-value-progl 
(page 125) progn 
(page 57) progv 
(page 93) quote 
(page 72) return-from 
(page 109) s e tq 
(page 95) tagbody. 
(page 93) th a 
(page 91) th row 
(page 92) unwi nd-protact 

(The page numbers indicate where the definitions of these special forms appear.) 

Table 5-1: Names of All COMMON LISP Special Forms 

(page 93) 
(page Ill) 
(page 112) 
(page 90) 
(page 93) 
(page 72) 
(page 99) 
(page 76) 
(page 107) 
(page 131) 
(page 116) 
(page 115) 

Special forms are generally environment and control constructs. Every special form has its own 
idiosyncratic syntax. An example is the i f special form: "( i f P (+ x 4) 5)" in COMMON LISP means 
what "if p then x+4 else 5" would mean in ALGOL. 

The evaluation of a special form normally produces a value or values, but it may instead call for a non-local 
exit; see return-from (page 99), go (page 109~, and throw (page 116). 

The set of spccial forms is fixed in COMMON LISP; no way is provided for the user to define more. The user 
can create new syntactic constructs, however, by defining macros. 

The set of special forms in COMMON LISP is purposely kept very small, because any program-analyzittj 
program must have special knowledge about every type of special form. Such a program needs no specW 
knowledge about macros, because it is simple to expand the macro and operate on the resulting expansion. 
(This is not to say that many such programs, particularly compilers, will not have such special ~nowledge. A 
compiler may be able to produce much better code if it recognizes such constructs as typecase and 
mu 1 t ; P 1 e - val u e - b ; n d and gives them customized treatment.) 

An implementation is free to implement as a macro any construct described herein as being a special form. 
Conversely, an implementation is free to implement as a special form any construct described herein as being 
a macro, provided that an equivalent macro definition is also provided. The practical conseq~ence i~ that the 



48 COMMON LISP REFERENCE MANUAL 

predicates macro-funct i on (page 118) and spec i a l-form-p may both be true of the same sYlnbol. It 
is recommended that a program-analyzing .program process a fonn that is a list whose car is a symbol as 
folloW9: 

1. If the program has particular knowledge about the symbol, process the form using special-purpose 
code. All of the symbols listed in Table 5-1 should fall into this category. 

2. Otherwise, if macro-funct i on is true of the symbol, apply either macroexpand (page 
123) or macroexpand-l, as appropriate, to the entire form and then start over. 

3. Otherwise, assume it is a function call. 
'~ 

5.1.4. Macros 

If a fwm is a list and the first element is not the name of a special fOIm, it may be the name of a macro; if 
so, the I>rm is said to be a macro call. A macro is essentially a function from forms to forms that will, given a 
call to t;hat macro, compute a new form to be evaluated in place of the macro call. (This computation is 
sometiites referred to as macro expansion.) For example, the macro named return (page 99) will take a 
fonn slfh as (return x) and from that form compute a new form (return-from nil x). We say 
that the old form expands into the new fonn. The new form is then evaluated in place of the original form; 
the value of the new form is returned as the value of the original fonn. 

There: are a number of standard macros in COMMON LISP, and the ·user can define more by using 
defmac;:ro (page 118). 

Macros provided by a COMMON LISP implementation as described herein may expand into code that is not 
ponable among differing implementations. That is, a macro call may be implementation-independent 
because the macro is defined in this document, but the expansion need not be. 

Implementation note: Implementors are encouraged to implement the macros defined in this document, as far as is possible, . 
in such as way that the expansion will not contain any implementation-dependent special f01111s. nor contain as fOIlllS data 
objects that are not considered to be fOmls in CoMMON LISP. The purpose of this restriction is to ensure that the expansion 
can be processed by a program-analyzing program in an implementation-independent manner. There is no problem with a 
macro expansion containing calls to implementation-dependent functions. This restriction is not a requirement of CoMMON 

LISP; it is recognized that certain complex macros may be able to expand into significantly more efficient code in certain 
implementations by using implementation-dependent special fOmls in the macro expansion. 

5.1.5. Itunction Calls 

If a list is to be evaluated as a fOIm and the first element is not a symbol that names a special form or macro, 
then the list is assumed to be afunction call. The first element of the list is taken to name a function. Any and 
all remfning elements of the list are forms· to be evaluated; one value is obtained from each form, and these 
values become the arguments to the function. The function is then applied to the arguments. The functional 
compu~tion normally produces a value, but it may instead call for a nQn-Ipcal exit; see th row (page 116). A 
functioA that does return may produce no value or several values; see val u e s (page 110). If and when the 
function returns, whatever values it returns become the values of the function-call fonn. 

:& 

For example, consider the evaluation of the form (+ 3 (* 4 5)). The symbol + names the addition 



CHAPTER 5: PROGRAM STRUcrURE 49 

function, not a special form or macro. Therefore the two forms 3 and (* 4 5) are evaluated to produce 
arguments. The form 3 evaluates to 3, and the form (* 4 5) is a function call (to the multiplication 
fhnction). Therefore the forms 4 and 5 are evaluated, producing arguments 4 and 5 for the multiplication. 
The multiplication function calculates the number 20 and returns it. The values 3 and 20 are then given as 
arguments to the addition function, which calculates and returns the number 23. Therefore we say (+ 3 (* 

4 5» => 23. 

5.2. Functions 

, There are two ways to indicate a function to be used in a function call form. One is to usc a symbol that 
names the function. This us~ of symbols to name functions is completely independent of their use in naming 
special and lexical variables. The other way is to use a lambda-expression, which is a list whose first element is 
the symbol 1 ambda. A lambda-expression is not a form; it cannot be meaningfully evaluated. Lambda
expressions and symbols, when used in programs as names of functions, can appear only as the first element 
ofa function-call form, or as the second element of the function (page 72) special form. Note that 
symbols and lambda-expressions are treated as names of functions in these two contexts. This should be 
distinguished from the treatment of symbols and lambda-expressions as function object~ objects that satisfy 
the predicate fun c t ; 0 n p (page 63), as when giving such an object to ap ply (page 89) or fun c a 11 (page 
89) to be invoked. 

5.2.1. Named Functions 

A name can be given to a function in one of two ways. A global name can be given to a function by using 
the de fun (page 55) construct A local' name can be given toa function by using the f 1 e t (page 93) or 
1 abe 1 s (page 93) special form. When a function is named, a lambda-expression is effectively associated 
with that name along with information about the entities that are lexically apparent at that point. If a symbol 
appears as the first element of a function-call form, then it refers to the definition established by the 
innermost f 1 e t or 1 abe 1 s construct that textually contains the reference, or to the global definition (if any) 
if there is no such containing construct 

5.2.2. Lambda-Expressions" 

A lambda-expression is a list with the following syntax: 
(lambda lambda-list . body) 

The first element must be the symbol 1 amb da. The second element must be a list It is called the lambda-list, 
and specifies names for the parameters of the function. When the function denoted by the lambda-expres~ioii 
is applied to arguments, the arguments are matched with· the parameters specified by the lambda-list The 
body may then refer to the arguments by using the parameter names. The body consists of any number of 
forms (possibly zero). These forms are evaluated in sequence, and the value(s) of the last form only are 
returned as the value(s) of the application (the value n; 1 is returned if there are zero fonns in the body). 

The complete syntax of a lambda-exp'ression is: 



5(} 

(1 ambda ({ var} * 
[&op t lonal {var I ,_ var [initjonn [svarll)}*] 
[&res t var] 

COMMON LISP REFERENCE MANUAL 

[&key {var T ({var l (keyword var)} [init/onn [svarlJ)}* 
[&allow-ot~er-keYSn 

[&aux {var I (var [iniifonn» }*]) 
{declaration I documentation-string} * 
fIorm}*) 

Each element of a lambda-list is either a parameter specifier or a lambda-list keyword; lambda-list keywords 
begin with H&". (Note that lambda-list keywords are not keywords in the usual sense; they do not belong to 
the keyword package. They are ordinary symbols each of whose names begins with an ampersand.) , . 

In all cases a var must be a symbol, the name of a variable, and similarly for svar also; each keyword must be 
a keyword symbol, such as": start u

• An initformmay be any fOrIn. 

A lambda-list has five parts, any or all of which may be empty: 

• S~ecifiers for the required parameters. These are all the parameter specifiers up to the first 
lambda-list keyword; if there is no such lambda-list keyword, then all the specifiers are for 
required paramete~. 

• Specifiers for optional parameters. If the lambda-list keyword &opt loo.a 1 is present, the 
uplional parameter specifiers are those following the lambda-list keyword &0 p t ion a 1 up to the 
'next lambda-list keyword or the end of the list 

• A:' specifier for a rest parameteF. The lambda-list keyword & res t, if present, must be followed by 
asingle rest parameter specifier, which in turn must be followed by another lambda-list keyword 
or the end of the lambda-list 

• Specifiers for keyword parameters. If the lambda-list keyword &key is present, all specifiers up to 
the next lambda-list keyword or the end of the list are keyword parameter. specifiers. The keyword 
parameter specifiers may optionally be followed by the lambda-list keyword 
&allow-other-keys. 

• Specifiers for aux variables. These· ar~ not realiy parameters. If the lambda-list keyword &aux is 
present, all specifiers after it are auxillary variable specifiers. 

Whe, the function represented by the lambda-expression is applied to arguments, the arguments and 
parameters are processed in order from left to right In the simplest case, only required parameters are 
present in the lambaa-list; each is specified simply by a name var for the' parameter variable. When the 
functto~ is applied,. there must.be exactly as many arguments as there are parameters, and each parameter is 
bound 'to one argument Here,. and in general" the parameter is bound as· a lexical variable unless a 

" decIa.ra~ion has: been made that it should be a special binding; see def va r (page 56), pro c 1 aim (page 
127), and dec 1 are (page 125). 

In the m()re general case, if there are n required parameters (n may be zero), there must be at least n 

arguments, and the required parameters are bound to the first n arguments. The other parameters are then 



CHAPTER 5: PROGRAM STRUCfURE 51 

processed using any remaining arguments. 

If optional parameters are specified, then each one is processed as follows. If any unprocessed arguments 
remain, then the parameter variable var is bound to the ncxt remaining argumen~ just as for a required 
parameter. If no arguments remain, however, then the initfonn part of the parameter specificr is evaluated, 
and the parameter variable is bound to the resulting value (or to nil if no initform appears in the parameter 
specifier). If another variable name svar appears in the specifier, it is bound to true if an argument was 
available, and to false if no argument remained (and therefore initform had to be evaluated). The, variable 
svar is called a supp/ied-p parameter; it is not bound to an argument, but to a value indicating whether or not 
an argument had been supplied for another parameter. 

After all optional parameter specifiers have been processed, then there mayor may not b;~ a rest parameter. 
If there is a rest parameter. it is bound to a list of all as-yet-unprocessed arguments. Of no unprocessed 
arguments remain. the rest parameter is, bound to the empty list) If thcre is no rest parameter and there are 
no keyword parameters, then there should be no unprocessed arguments (it is an error if there are). 

Next any keyword parameters are processed. For this purpose the same arguments are processed that would 
be made into a list for a rest parameter. (Indeed. it is permitted to specify both &res t and &key; in this case 
the arguments are used for both purposes. This is the only situation in which an argument is used in the 
processing of more than one parameter specifier.) If &k ey is specified, there must remain an even number of 
arguments; these are considered as pairs, the first argument in each pair being interpreted as a keyword name 
and the second as the corresponding value. It is an error for the first object of each pair to be anyth.ing but a 
keyword. 

Rationale: This last restriction is imposed 'so tllat a compiler may issue warnings about certain malformed calls to functions 
that take keyword arguments. It must be remembered that the arguments in a function call that eyaluate to keywords are 
just like any other arguments. and may be any evaluable forms. A compiler could not, without additional context, 'issue a 
warning about the call 

(fill seq item x y) 

because in principle the variable x might have as its value a keyword such as : star t. However, a compiler would be 
justified in issuing a warning about the call 

(fill seq item 0 10) 
because the constant 0 is definitely not a keyword Similarly, if in the first case the variable x had been declared to be of 
type integer then type analysis could enable the compiler to justify a warning. 

In each keyword parameter specifier must be a name var for the parameter variable. If an explicit keyword 
is specified, that is the keyword name for the parameter. Otherwise the name var serves to indicate the 
keyword name, in that a keyword with the same name (in the keyword package) is used as the keywor(i. 
Thus 

{defun foo {&key radix (type 'integer» ... ) 
means exactly the same as 

{defun foo {&key ({:radix radix» ({:tyP& type) 'integer» ... ) 
The keyword parameter specifiers are, like all parameter specifiers, effectively processed from left to right 
For each keyword parameter specifier, if there is an argument pair whose keyword name matches that 
specifier's keyword name (that is, the hames are eq), then the parameter variable for that specifier is bound to 

the second item (the value) of that argument pair. If more than one such argument pair matches, it is not an 



52 COMMON LISP REFERENCE MANUAL 

error; the leftmost argument pair is used. If no such argument pair exists, then the initform for that specifier 

is evaluated and the parameter variable is bound to that value (or to ni 1 if no"initjonn was specified). The 
variable svar is treated as for ordinary optional parameters: it is bound to true if there was a matching 

argument pair, and to false otherwise. 

It is "an error if an argument pair has a keyword name not matched by any parameter specifier, unless at 
least one of the following two conditions is met: 

• &a 11 ow-othe r-k eys was speCified in the lambda-list 

• Among the keyword argument pai,rs is a pair whose keyword is : a 11 ow - 0 the r - k ey sand " 
whose value is not n i 1 . 

If either condition obtains, then it is not an error for an argument pair to match no parameter specified, and 
the argument pair is simply ignored (but such an argument pair is accessible through the &rest parameter if 
one was specified). The purpose of these mechanisms is to allow sharing of argument lists among several 
functions, and to allow either the caller or the called function to specify that such sharing may be taking place. 

\ 
After all parameter specifiers have been processed, the auxiliary variable specifiers (those following the 

lambda-list keyword &aux) are processed from left to right. For each one the init/orm is evaluated and the 
variable var bound to that value (or to n i1 if no initfonn was specified). (Nothing can be done with &aux 
variables t.'1at cannot be done with the special form 1 e t * (page 92): 

(lambda (x y &aux (a (car x» (b 2) c) •.. ) 
" <=> (lambda (xy) (let* «a (car x» (b 2) c) ... » 

Which to use is purely a matter of style.) 

Whenever any il1it/om? is evaluated for any parameter specifier, that form may refer to any parameter 
variable to the left of the specifier in which the initfonn appears, including any supplied-p variables, and may 
rely on the fact that no other parameter variable haS yet been bound (including its own parameter variable). 

Once the lambda-list has been processed, the forms in the body of the lambda-expression are executed. 
These forms may refer to the arguments to the function by using the names of the parameters. On exit from 
the function, either by a" normal return of the function's value(s) or by a non-local exit, the parameter: 
bindings, whether lexical or special, are no longer in effect (but are not necessarily permanently discarded, for 
a lexical binding can later be reinstated if a "closure" over that binding was created, perhaps using fun c t ion 
(page 7'2), and saved before the exit occurred). 

~ 

Examples of &0 p t ion a 1 and &re s t .parameters: 

i 

t 



CHAPTER 5: PROGRAM STRUCfURE 

«(lambda (a b) (+ a (*.b 3») 4 5) => 19 
(lambda (a &optional (b 2» (+ a (* b 3») 4 5) => 19 
«lambda (a &optional (b 2» (+ a (* b 3») 4) => 10 
«lambda (&optional (a'2 b) (c 3 d) &rest x)'(list abc d x») 

=> (2 nil 3 nil nil) 
«lambda (&optional (a 2 b) (c 3 d) &rest x) (list abc d x» 6) 

=> (6 t 3 nil nil) 
«lambda {&optional (a 2 b) (c 3 d) &rest x) (list abc d x» 6 3) 

=> (6 t 3 t nil) 
{(lambda {&optional (a 2 b) (c 3 d) &rest x) (list abc d x» 

6 3 8) 
=> (6 t 3 t (8» 

«lambda (&optional (a 2 b) (c 3 d) &rest x) (list abc d x» 
6 3 8 9 10 11) 

=> (6 t 3 t (8 9 10 11» 
Examples of&key parameters: 

«lambda (a b &key c d) (list abc d» 1 2) => (1 2 nil nil) 
«lambda (a b &key c d) (list abc d» 1 2 :c 6) => (1 2 6 nil) 
«lambda (a b &key c d) (list abc d» 1 2 :d 8) => (1 2 nil 8) 
«lambda (a b &key c d) (list abc d» 1 2 :c 6 :d 8) => (1 2 6 8) 
«lambda (a b &key c d) (list abc d» 1 2 :d 8 :c 6) ~> (1 2 6 8) 
«lambda (a b &key c d) (list abc d» :a 1 :d 8 :c 6) => (:a 1 6 8) 
«lambda (a. b &key c d) (list abc d» :a :b :c :d) 

=> (: a : b : d nil) 
Examples of mixtures: 

«lambda (a &optional (b 3) &rest x &key c (d a» 
(list abc d x» 

1) . => (1 3 nil 1 (» 

«lambda (a &optional (b 3) &rest x &key c (d a» 
(list abc d x» 

1 2) => (1 2 nil 1 (» 

({lambda {a &optional (b 3) &rest.x &key c (d a» 
(list abc d x» 

:c 7) => {: c 7 nil ;c ( ) ) 

{{ 1 ambda (a &optional (b 3) &rest x &key c (d a» 
(list abc d x» 

1 6 :c 7) => (1 6 7 1 (:c 7» 

«lambda {a &optional (b 3) ~rest x &key c (d a» 
(list abc d x» 

1 6 :d 8) => {1 6 nil 8 (:d 8» 

{(lambda (a &optional (b 3) &rest x &key' c (d a» 
(list abc d x» 

1 6 :d 8 :c 9 :d 10) => (1 6 9 8 (:d 8 :c 9 :d 19)} 

53 

All lambda-list keywords are pennitted, but not terribly useful, in lambda-expressions appearing explicitly 
as the first element of a function-call fonn, as shown in the examples above. They are extremely useful, 
however, in functions given global names by de fun (page 55). 



S4 t COMMON LISP REFERENCE MANUAL 

1 " All symbols ~hose names begin with "&" are conventionally reserved for use as lambda-list keywords and 

should not be used as variable names. Im.plementations of COMMON LISP are free to provide additional 

lambda-list key~ords. 
i , 

lambda-list-keywords [Constant] 
The value of 1 amb"<la-l ist-keywords is a list of all the lambda-list keywords used in the 

implementation, including the additional ones used only by defmacro (page 118). It must 

contain at least the symbols&optional, &rest, &key, &al1ow-other-keys, &aux, &body, 

and &whol e. 

As an. example of the use of &a 11 ow-other-keys and: all ow-othe r -keys, consider a function that 

takes tWo keyword arguments of its own,· and also accepts additional keyword arguments to be passed to 

make-'array (page 237): 
,(defun array-of-strings(st'r dims &rest keyword-pairs 
.• &key (start 0) end &allow-other-keys) 
~ (apply H'make-array dims 

:initial-element (~ubseq str start end) 
:allow-other-keys t 
keyword-pairs» 

This function takes a string and dimensioning infonnation and returns an array of the specified dimensions 

each of whose elements is the specified string. However, :sta r t and : end. keyword arguments may be used 

in the usual manner (see chapter 14) to specify that a substring of the given string should be used. In 

additi~, the presence of &a11 ow-other-keys in the lambda-list indicates that the caller may specify _ 

additional keyword arguments; the &r est argument provides access to them. These additional keyword 

arguments arc fed to make-array. Now make-array normally does not allow the keywords: start and 

: end to be used. and it would be an error to specify such keyword arguments to make-array. However, 

the presence in the call to make-array of the keyword argument: allow-other-keys with a non-ni 1 

value causes any extraneous keyword arguments, including: s tart and: end, to be acceptable and ignored. 

lambda-parameters-ltmit [Constant] 
The value of1 ambd a "'p ar ame t e r s -1 im i t isa positive integer that is the upper exclusive bound 

on the number of distinct parameter names that may appear in a single lambda-list This bound 

depenhs 00 the implementation, but will not be smaller than 50. (Implementors are enouraged to 

make this limit as large as practicable without sacrificing performance.) See 

ca 11 - a r g·ume n ts -lim it (page 90). 

5.3. Top-Level Forms 

The standard way for the user to interact with a COMMON LISP implementation is via what is called a 
~ 

read-ev(1l-print loop: the system repeatedly reads a form from some input source (such as a keyboard or a disk 

file),eJaluates it, and then prints the value(s) to some output sink (such as a display screen or another disk 

file). A,ny fonn (evaluable data object) is acceptable; however, certain special forms are specifically designed 

to be convenient for use as top-level forms, as opposed to forms embedded withi~ other forms, as "( + 3 4) " 

f 
.~ 



CHAPTER 5: PROGRAM STRUCfURE 55 

is embedded within" ( if P (+ 3 4) 6)". These top-level special forms may be used to define globally 

named functions, to define macros, to make declarations, and to define global values for special variables. 

It is not illegal to use these forms at other than top level, but whether it is meaningful to do so depends on 

context Compilers, for example, may not recognize these forms properly in other than top-level contexts. 

(As a special case, however, if apr 0 9 n (page 90) form appears at top level, then all forms within that pro 9 n 

are considered by the compiler to be top-level forms.) 
Compatibility note: In MACLISP, a top-level progn is considered to contain top-level forms only if the first fonn is 
.. (quote camp; 1 e) ". This odd marker is unnecessary in COMMON LIsp. 

Macros are usually defined by using the special form defmacro (page 118). TIlis facility is fairly 

complicated, and is described in chapter 8. 

5.3.1. Defining Named Functions 

defun name lambda-list {declaration I doc-string}* {fonn}* [Macro] 

Evaluating this special form causes the symbol name to be a global name for the function specified 

by the lambda-expression 

( 1 am b d a lambda-list {declaration I doc-string} * {{onn} * ) 
defined in the lexical environment in which the defun form was executed (because defun forms 

normally appear at top level, this is normally the nu111exical environment). 

If the optional documentation string doc-string is present (if not followed by a declaration, it may be 

present only if at least one J01711 is also specified, as it is otherwise taken to be a Jonn), then it is 

attached to the name as a documentation string of type function; see documentat ion (page 

362). It is an error if more than one doc-string is present. 

The Jonns constitute the body of the defined function; they are executed as an implicit progn. 

The body of the defined function is implicitly enclosed in a block (page 98) construct whose 

name is the same as the name of the function. Therefore ret urn - from (page 99) may be used to 

exit from the function. 

Other implementation-dependent bookkeeping actions may be taken as well by defun. The name 

is returned as the value of the de fun form. 

For example: 
(defun discriminant (a b c) 

(declare (number a be» 
"Compute the discriminant for a quadratic equation. 
Given a, b, and c, the value bA 2-4*a*c is calculated. 
The quadratic equation a*xA2+b*x+c=O has real, multiple. 
or complex roots depending on whether this calculated 
value is positive, zero, or negative, respectively." 

(-' .( * b b) (* .4 a c») 
=> discriminant 
and now (d i scr im; nant 1 2/3 -2) => 76/9 

It is permissible to use defun to redefine a function (for example, to install a corrected version of 



S6 
, 

COMMON liSP REFERENCE MANUAL 

t an incorrect definition!}, or to redefine a macro as a function. It is an error to' attempt to redefine 
the name of a special form (see Table 5-1) as a function. 

5.3.2. Declaring Global Variables and Named Constants 

defvar name [initial-value [documentationll 
defparameter name initial-value [documentation] 

[Macro] 
[Macro] 
[Macro] defconstant name initial~value [documentation] 

defvar is the recommended way to declare the use ofa special variable in a program. 
(defvar variable) 

proclaims variable to be spec i a 1 (see procl a im (page 127», and may perform other system-
dependent b~okkeeping actions. If a second "argument" is supplied: 

( de f va r variable initial-value) 
then variable is initialized to the result of evaluating the form. initial-value unless it already has a 
value. The initial-value form is not evaluated unless it is used; this is useful if it does something 
expensive like creating a large data structure. The initialization is performed by assignment, and so 

1 assigns a global value to the variable unless there are currently special bindings of that variable 
(normally there should not be any). 

• defvar also provides a good place to put a comment descriping the meaning of the variable 
(whereas an ordinary sp.ec i a 1 procla~ation offers the temptation to declare several variables at 

once and not have room to describe them all). 
(defvar *visible-windows· 0 

"Number of windows at least partially visible on the screen") 

defparameter is similar to defvar, but requires an initial-value form, and always evaluates it 
and assigns the result to the variable. The semantic distinction is that defvar is intended to 
declare a variable changed by the program, whereas defparameter is intended to declare a 
variable that is normally constant, but can be changed (possibly at run time), considered as a change 
to the progr:am. defparameter therefore does not indicate that the quantity never changes; in 
particular, it does not license. the compiler to build assumptions about the value into programs 
being compiled. . 

defcons tant is like defparameter, but does assert that the value of the variable name is fixed, 
and does license the' compiler to build assumptions about the value into programs being compiled. 
(However, if the compiler chooses to replaces references to the name of the constant by the value of 
the constant in code to be compiled, perhaps in order to allow further optimization, the compiler 
nlust take care that such "copies" appear to be e q 1 to the object that is the actual value of the 
constant. For example, the compiler may freely make copies of numbers, but must exercise care 

, when the value is a list) 
I 

. i·' 

It is an error if there are any special bindings of the variable at the time the defconstant form is 
executed (but implementations mayor may not check for this) . 

Oncea name has b~en deClared by defconstant to be constant, any further assignment to or 

~ : 



• 

CHAPTER 5: PROGRAM STRUCfURE 57 

binding of that special variable is an error. This is the case for such system-supplied constants as t 

(page 60) and most-pos;~;ve-fixnum (page 188). A compiler may also choose to issue 

warnings about bindings of the lexical variable of the same name. 

For any of these constructs, the documentation should be a string. It is attached to the name of the 

variable, parameter, or constant under the va ria b 1 e documentation type; see doc ume n tat; 0 n 

(page 362). 

These constructs are nonnally used only as top-level forms. The value returned by each of these 

constructs is the name declared. 

5.3.3. Control of Time of Evaluation 

eval-when ({situation}*) Vonn}* [Special/onn] 
The body of an eval-when' fonn is processed as an implicit progn, but only in the situations 

listed. Each situation must be a symbol, either comp; 1 e, load, or eva 1. 

e val specifies that the interpreter should process the body. C omp i l'e specifies that the compiler 

should evaluate the body at compile time in the compilation context. loa d specifies that the 

compiler should arrange to evaluate the fonns in the body when the compiled file containing the 

eval-when form is loaded. 

The eval-when construct may be more precisely understood in terms of a niodel of how the 

compiler processes fonns in a file to be compiled. Successive fonns are read from the file using the 

function re ad (page 310), These top-level forms are normally processed in what we shall call 
not-compile-time mode. There is another mode called compile-time-too mode. The eva1-when 

special form controls which of these two modes to use. 

Every form processed as follows: 

• If the form is an eval-when form: 

o If the situation load is specified: 

• If the situation c omp ; 1 e is also specified, or if the current processing mode 
is compile-time-too and the situation eva 1 is also specified, then process 
each of the forms in the body in compile-time-loo mode. 

• Otherwise, process each of the forms in the body in not-compile-time mode. 

o If the situation load is not specified: 

• If the situation comp; 1 e is also specified, or if the current processing mode 
is compile-lime-too and the situation -eva 1 is also, specified, then evaluate 
each of the forms in the body in the compiler's executing environment. 

• Otherwise, ignore the eval-when form entirely . 

• If the form is not an eva 1 -when form, then do two things. First, if the current 



58 COMMON LISP REFERENCE MANUAL 

processing mode is compile-lime-loa mode. then evaluate the form in the compiler's 
executing environment. Second, perform normal compiler processing of the form 
(compiling functions defined by de fun forms, and so on). 

One example of the use ofeval-when is that if the compiler is to be able to properly read a file 
that uses user-defined reader macro characters, it is necessary to write 

(eval-when (compile load eval) 
(set-macro-character #\$ #'(lambda (stream char) 

(declare (ignore char» 
(list 'dollar (read stream»»)} 

This causes the call to set-macro-character (page 300) to be executed in the compiler's 
execution environment, thereby modifying its reader syntax table. 



Chapter 6 

Predicates 

A predicate is a function that tests for some condition involving its arguments and returns nil if the 

condition is false, or some non-n i 1 value if the condition is true. One may think of a predicate as producing 

a Boolean value, where nil stands for false and anything else stands for true. Conditional control structures 

such as cond (page 95), if (page 95), when (page 95), and unless (page 95) test such Boolean values. 

We say that a predicate is true when it returns a non-n i 1 value, and is false when it returns nil; that is, it is 

true or false according to whether the condition being tested is true or false. 

By convention, the 'names of predicates usually end in the letter "p" (which stands for "predicate"). 

COMMON LISP uses a uniform convention in hyphenating names of predicates. If the name of the predicate is 

formed by adding a "p" to an existing name, such as the name of a data type, a hyphen is placed before the 

final "p" if and only if there is a hyphen in the existing name. For example, number begets numberp but 

standard-char begets standard-char-p. On the other hand, if the name ofa predicate is fonnedby 

adding a prefixing qualifier to the front of an existing predicate name, the two, names are joined with a 

hyphen and the presence or absence of a hyphen before the final "p" is not cli~mged. For example, the 

predicate s t r i n 9 - 1 e ssp has no hyphen before the "p" because it is the string version of 1 e ssp (a 

MACLISP function that has been renamed "<" in COMMON LISP). The name string-less-p would 

incorrectly imply that it is a predicate that tes~ for a kind of object called a "s t r ; n 9 -1 e s s ", and the name 

s t r i n 9 1 e ssp would connote a predicate that tests whether something has no strings (is "stringless")! 

The control structures ,that test Boolean values only test for whether or not the value is n;l, which is 

considered to be false. Any other value is considered to be true. Often a predicate will return n i 1 if it "fails" 

and some useful value w~en it "succeeds"; such a function can be used not only as a test but also for the 

useful value provided in case of success. An example is member (page 226). 

If no better non';'n i 1 value is available for the purpose of indicating success, by convention the symbol t is 
used as the "standard" true value. 

- 59-



60 COMMON LISP REFERENCE MANUAL 

6.1. Logical Values 

nil 

t 

[Constant] 

The value of nil is always nil. This object represents the logical false value and also the empty 

list It can also be written" ( )". 

[Constant] 

The value of t is always t. 

6.2. Data Type Predicates 

Perhaps the most important predicates in LISP are those that deal with data types; that is, given a data object 

one can determine whether or not it belongs to a given type, or one can compare two type specifiers. 

6.2.1. General Type Predicates 

typep object type [Function] 
typep is a predicate that is true if object is of type type, and is false otherwise. Note that an object 

can be "of' more than one type, since one type can include another. The type may be any of the 

type specifiers mentioned in chapter 4 except that it may not be or contain a type specifier list 

whose first element is fun c t ion or val u e s . . A specifier of the form (s at i sf ie s In) is 

handled simply by applying the function fn to object (see fun call (page 89»; the object is 

considered to be of the specified type if the result is not nil. 

subtypep type} type2 [Function] 
The arguments must be type specifiers that are acceptable to typep (page 60). The two type 

specifiers are compared; this predicate is true if typeJ is definitely a (not necessarily proper) subtype 

of type2. If the result is nil, however, then type} mayor may not be a subtype of type2 (sometimes 

it is impossible to tell, especially when sat is fie s type specifiers are involved). A second 

returned value indicates the certainty of the result; if it is true, then the first value is an accurate 

indication of the subtype relationship'. Thus there are three possible result combinations: 

,t t 

nil t 
nil nil 

type} is definitely a subtype of type2 
typei is definitely not a subtype of type2 
subtypep could not detennine the relationship 

6.2.2. Specific Data Type Predicates 

The following predicates are for testing for individual data types. 



CHAPTER 6: PREDICATES 61 

null object [Function] 
null is true if its argument is ( ), and otherwise is false. This is the same operation performed by 

the function not (page 67); however, not is normally used to invert a Boolean value, while null 

is normally used to test for an empty list The programmer can therefore express intent by the 

choice of function name. 

(null x) <=> (typep x 'null) <=> Ceq x 'C»~ 

symbol p object 
s ymb 0 1 P is true if its argument is a symbol, and otherwise is false. 

(symbolp x) <=> (typep x 'symbol) 

[Function] 

atom object [Function] 
The predicate a tom is true if its argument is not a cons, and otherwise is false. Note that (a tom 

, ( ) ) is true,because ( ) = nil. 
(atom x) <=> (typep x 'atom) <=> {not (typep x 'cons» 

consp object [Function] 
TIle predicate con s p is true if its argument is a cons, and otherwise is false. Note that the empty 

listisnotacons,so(consp 'C»~ <=> (consp 'nil) =>nil. 
(consp x) <=> (typep x 'cons) <=> (not (typep x 'atom) 
Compatibility note: Some usp implementations call this function pairp or 1 istp. The name pairp was 
rejected for COMMON LISP because it emphasizes too strongly the dotted-pair notion rather than the usual usage 
of conses in lists. On the other hand, 1; s tp too strongly implies that the cons is in fact pan of a list, which 
after all it might not be; moreover, () is a list. though not a cons. The name consp seems to' be the 
appropriate compromise. 

1 i stp object [Function] 
1 i s t P is true if its argument is a cons or the empty list ( ), and otherwise is false. It does not check 

for whether the list is a "true list" (one tenninated by nil) or a "dotted list" (one terminated by a 

non-null atom). 
(listp x) <=> (typep x 'list) <=> (typep x '(or cons nUll» 

numberp object 
numb e r p is true if its argument is any kind of number, and otherwise is false. 

(numberp x) <=> (typep x 'number) 

i ntegerp object 
i n te 9 e r p is true if its argument is an integer, and otherwise is false. 

(intege~p x) <=> (typep x 'integer) 

[Function] 

[Function] 

Compatibility note: In MACUSP this is called fix p. Users have been confused as to whether this meant 
"integEjtrp" or "fixnump", and so these names have been adopted here. 



62 COMMON USP REFERENCE MANUAL 

ra tiona 1 pobject [Function] 
rat ion alp is true if its argument is a rational number (a ratio or an integer), and otherwise is 

false. 
(rationalp x) <=> (typep x 'rational) 

floatp object 
fl oatp is true if its argument is a floating-point number, and otherwise is false. 

(floatp x) <=> (typep x 'float) 

comp 1 exp object 
comp 1 exp is true if its argument is a complex number, and otherwise is false. 

(complexp x) <=> (typep x 'complex) 

characterp object 
characterp is true if its argument is a character, and otherwise is false. 

(characterp x) <=> (typep x 'character) 

stringp object 
s t r i n 9 p is true if its argument is a string, and otherwise is false. 

(stringp x) <=> (typep x 'string) 

bi t-vector-p object 
bit - ve c tor - p is true if its argument is a bit-vector, and otherwise is false. 

(bit-vector-p x) <=> (typep x 'bit-vector) 

vectorp object 
ve c tor p is true if its argument is a vector, and otherwise is false. 

(vectorp x) <=> (typep x 'vector) 

simple-vector-p object 
ve c tor p is true if its argument is a simple general vector, and otherwise is false. 

(simple-vector-p x) <=> (typep x 'simple-vector) 

simple-string-p obj~t 

simp 1 e - s t ring - p is true if its argument is a simple string, and otherwise is false. 
(simple-string-p x) <=> (typep x tsimple~string) 

simp 1 e-b i t-vector-p object 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

[Function] 

simp 1 e - bit - v e c tor - p is true if its argument is a simple bit-vector, and otherwise is false. 
(simple-bit-vector-p x) <=> (typep x 'simple-bit-vector) 



/-

e 
CHAPTER 6: PREDICATES 63 

arrayp object [Function] 
a r ray p is true if its argumc~t is an array, and otherwise is false. 

(arrayp x) <=> (typep x 'array) 

packagep object [Function] 
pac k age p is true if its argument is an package, and otherwise is false. 

(packagep x) <=> (typep x 'package) 

func t i onp object [Funclion] 
fun c t ion p is true if its argument is suitable for applying to arguments, using for example th~ 

funcall orapply function. Otherwisefunctionp is false. 

funct i onp is always true of symbols, lists whose caris the symbol 1 ambda, any value returned by 

the funct i on (page 72) special form, and any values returned by the function comp il e (page 

361) when the first argument is nil. 

compiled-function-p object [Function] 
c omp i 1 e d - fun c t ion - p is true if its argument is any compiled code object, and otherwise is 

false. 
(compiled-function-p x) <=> (typep x 'compiled-function) 

commonp object [Function] 
commonp is true if its argument is any standard COM~10~ LISP data type, and otherwise is false. 

(commonp x) <=> (typep x 'common) 

See also standard-char-p (page 192), string-char-p (page 192), streamp (page 277), 
random-state-p (page 188), readtablep (page 300), hash-table-p (page 234), and pathnamep 

(page 343). 

6.3. Equality Predicates 

COMMON LIsp provides -a spectrum of predicates for testing for equality of two objects: eq (the most 

specific), e q 1, e qua 1, and e qua 1 p (the most general). e q and e qua 1 have the meanings traditional in 
LISP. eql was added because it is frequently needed, and equa 1 p was added primarily to have a version of 

e qua 1 that would ignore type differences when comparing numbers and case differences when comparing 

characters. If two objects satisfy anyone of these equality predicates, then they also satisfy all those that are 

more general. 

eq x y [Function] 

( e q x y) is true if and only if x and y are the same identical object. (Implementationally, x and y 

are usually e q if and only if they address the same identical memory location.) 

It should be noted that things that print the same are not necessarily eq to each other. Symbols 
, 



64 COMMON LISP REFERENCE MANUAL 

with the same print name usually are e q to each other, because of the use of the i n t ern (page 
150) function. However, numbers with the same value need not be' eq, and two similar lists are 
usually not e q. 

For example: 

(eq 'a 'b) isfalse 
( e q 'a 'a) is true 
( e q 3 3) might be true or false, depending on the implementation 
( e q 3 3. 0) is false 
( e q 3. 0 3. 0) might be true or false, depending on the implementation 
(e q #c (3 -4) #c (3 -4» might be true or false, depending on the implementation 
( e q #c (3 -4.0) #c (3 -4» is false 
(eq (cons 'a 'b) (cons 'a 'c» isfalse 
( e q (c a n s 'a 'b) (c 0 n s 'a 'b» is false 
( e q '( a . b) '( a . b» might be true or false 
( pro 9 n (s e t q x (c a n s 'a 'b» (e q x x» is true 
(progn (setq x '(a. b» (eq x x» istrue 
(eq #\A #\A) might be true or false, depending on the implementation 
(eq "F 00" "Foo") might be true or false 
(eq "Faa" (copy-seq "Foo"» is false 
(eq "FOO" "foo") is false 

In COMMON LISP, unlike some other LISP dialects, the implementation is permitted to make 
"copies" of characters and numbers at any time. (This permission is granted because it allows 
tremendous performance improvements in many common situations.) The net effect is that 
COMMON LISP makes no guarantee that e q will be true even when both its arguments are «the 
same thing" if that thing js a character or number. 

For example: 

(let «x 5» (eq x x» mightbetrueorfalse 
TIle predicate e q 1 is the same as e q, except that if the arguments are characters or numbers of the 
same type then their values are compared. Thus eq 1 tells whether two objects are conceptually the 
same, whereas eq tells whether two objects are impl ementat ionally identical. It is for this 
reason that eq1, not eq, is the default comparison predicate for the sequence functions defined in 
chapter 14. 

Implementation note: eq simply compares. the two pointers given it. so any kind of object that is represented in 
an "immediate" fashion will indeed have like-valued instances satisfy eq. In some implementations. for 
example, fixnums and characters happen to "work". However, no program should depend on this. as other 
implementations of CoMMON LIsP might not use an immediate representation for these data types. 

An additional problem with eq is that the implementation is permftted to "collapse" constants (or 
portions thereof) appearing in code to be compiled if the~ are equa 1. An object is considered to 
be a constant in code to be compiled if it is a self-evaluating form or is contained in a quote (page 
72) form. This is why (eq "F 00" "F ~o") might be true or false; in interpreted code it would 
normally be false, because reading in the form (e q " F 00" " F 0 0 ") would construct distinct 
strings for the two arguments to eq, but the compiler might choose to use the same identical string 
or two distinct c~pies as the two arguments in the call to e q. Similarly, (e q '( a . b ) '( a . 
b» might be true or false, depending on whether the constant conses appearing in the quote 

fonns were collapsed by the compiler. However, (eq (cons 'a 'b) (cons 'a 'b» is 

always false, b~cause every distinct call, to the can s function necessarily produces a new and 



CHAPTER 6: PREDICATES 65 

. distinct cons. 

eql x y [Function] 
The e q 1 predicate is true if its arguments are e q, or if they arc numbers of the same type with the 

same value, or if they are character objects that represent the same character. 

For example: 

( e q 1 'a 'b) is false 
( e q 1 'a 'a) is true 
( e q 1 3 3) is true 
( e q , 3 3. 0) is false 
( e q 1 3. 0 3. 0) is true 
( e q 1 # c (3 - 4) # c (3 - 4 » is true 
( e q , # c (3 - 4 . 0) # c (3 - 4 » is false 
( e q , (c 0 n s 'a 'b) (c 0 n s 'a 'c» is false 
(eq' (cons 'a 'b) (cons 'a 'b» isfalsc 
( e q , '( a . b) '( a . b» might be true or false 
( pro 9 n (s e t q x (c 0 n s 'a 'b» (e q 1 x x» is true 
( pro 9 n (s e t q x '( a . b» (e q, x x» is true 
(eq' #\A #\A) istrue 
( e q 1 to F 00 " " F 00") might be true or false 
(eq' "Foo" (copy-seq "Foo"» isfalse 
( e q ,. "F 0 0 " " f 00 ") is false 

Normally (e q, 1. 0 sOl. 0 dO) would be false, under the assumption that 1. 0 s 0 and 1. 0 d 0 

arc of distinct data types. However, implementations that do not provide four distinct floating

point formats are pennitted to "collapsc" the four formats into some smaller number of them; in 

such an implementation (e q, 1 . 0 sOl. 0 dO) might be true. The predicate = (page 162) will 

comparc the values of two numbers even if the numbers are of differcnt types. 

If an implemcntation supports positive and negative zeros as distinct values (as in IEEE proposed 

standard floating-point format), then (e q 1 O. 0 - 0 • 0) will be false. Otherwise, when the syntax 

-0.0 is read it will be interpreted as the value 0.0, and so (eql 0.0 -0.0) will be true. The 

predicate = (page 162) differs from eq' in that (= 0.0 - 0 . 0) will always be true, because; 

compares the mathcmatical values of its operands, whereas e q 1 compares the representational 

values, so to speak. 

Two complex numbers are considered to be eql if their real parts are eql ·and their imaginary 

parts are eql. !'orexample, (eql #C(4 5) #C(4 5» is true and (eql #C(4 5) #C(4.0 

5 . 0 ) ) is false. Note that while (e q 1 HC ( 5 . 0 O. 0) 5. 0) is false, because the two arguments 

are of different types, (e q 1 #C (5 0) 5) is true, because by the rule of complex canonicalization 

#C (5 0) is not a complex number, but is always automatically reduced to the integer 5, just as the 

apparent ratio 20/4 is always simplified to 5. 

The case of (eql "Foo" "Foo") is discussed above in the description of eq (page 63). While 

e q 1 compares the values of numbers and characters, it does not compare the contents of strings. 

To compare the characters of two strings one should use e qua 1, e qua 1 p, s t r i n 9 = (page 248), 
or s t r i n 9 - e qua 1 (page 248). 



66 COMMON LISP REFERENCE MANUAL 

equ~l X Y [Function] 
The e qua 1 predicate is true if i~ arguments arc similar (isomorphic) objects. A rough rule of 

thumb is that two objects are equa 1 if and only if their printed representations are the same. 

Numbers and characters are compared as for e q 1. Symbols are compared as for e q. This can 

violate the rule of thumb about printed representations, but only in the case of two distinct symbols 

with the same print name, and this does not ordinarily occur (only if unintemed symbols are 

involved). 

Certain objects that have components are equa 1 if they are of the same type and corrcspcnding 

components are equa 1. This test is implemented in a recursive manner, and may fail to terminate 

for circular structures. 

For conses, equa 1 is defined recursively as the two cars being equa 1 and the two cdrs being 

equal. 

Two arrays are e qua 1 only if they are e q' with one exception: strings and bit-vectors are 

compared element-by-element. Upper-case and lower-case letters in strings are considered to be 

distinct byequa 1. 
Compatibility note: In Lisp Machine LISP, equa 1 ignores the difference between upper and lower case in 
strings. This violates the rule of thumb about printed representations. however. which is very useful, especially 
to novices. It is also inconsistent with the treatment of single characters. which in Lisp Machine LIsp are 
represented as fixnums. 

Two pathllame objects are e qua 1 if and oJ?ly if all the corresponding components (host, device, 

and so on) are equivalent. (Whether or not upper-case and lower-case letters are considered 

equivalent in strings appearing· in components depends on the file name conventions of the file 

system.) Pathnames that are equa 1 should be functionally equivalent 

For example: 

(equal 'a 'b) isfalse 
( e qua 1 • a t a ) is true 
( e qu a 1 3 3) is true 
(equal 3 3.0) isfalse 
( e qua 1 3. 0 3. 0) is true 
(equal #C(3 -4) #c(3 -4» istrue 
(equal #c(3 -4.0) #c(3 -4» isfalse 
(equal (cons 'a 'b) (cons 'a 'c» isfalse 
( e qua 1 (c 0 n s 'a 'b) (c 0 n s 'a 'b» is true 
( e qua 1 '( a . b) • (a . b» is true 
( p r 09 n (s e t q x (c on S 'a t b » (e qua 1 x x» is true 
( pro 9 n (s e t q x t (a . b» (-e qua 1 x x» is true 
(equa 1 #\A #\A) is true 
(equal "Foo" "Foo") is true 
(equal "Foo" (copy-seq "Foo"» istrue 
(equal "FOO" "foo") is false 

To compare a tree of conses, using eql (or any other desired predicate) on the leaves, use 

tree-equa 1 (page 217). 



e" 

CHAPTER 6: PREDICATES 67 

equa 1 P x y [Function] 
Two objects are e qua 1 p if they are e qua 1 ; if they are characters and satisfy c h a r - e qua 1 (page 

196), which ignores alphabetic case and certain other attributes of characters; if they are numbers 

and have the same numerical value, even if they are of different types; or if they have components 

that are all equa 1 p. 

Objects that have components are equa 1 p if they are of the same type and corresponding 

components are equa 1 p. This test is implemented in a recursive manner, and may fail to terminate 

for circular structures. For conses, equa 1 p is defined recursively as the two car's being equa 1 p 

and the two cd,s being equa 1 p. 

Two arrays are e qua 1 p if and only if they have the same number of dimensions, the dimensions, 

match, and the corresponding components are equa 1 p. The specializations need not match; for 

example, a string and a general array that happens to contain the same characters will be e qua 1 p 

(though definitely not e qua 1 ). 

Two symbols can be equa 1 p only if they are eq, that is,. the same identical object. 

For example: 

(equa1p 'a 'b) isfalse 
( e qua 1 p 'a 'a) is true 
( e qua 1 p 3 3) is true 
( e qua 1 p 3 3. 0) is true 
( e qua 1 p 3. 0 3. 0) is true 
(equalp #c(3 -4') #c(3 -4» istrue 
(equalp #c(3 -4.0) #c(3-4» istrue 
(equalp (cons 'a ',b) (c.ons 'a 'e» isfalse 
{ e Qua 1 p (c 0 n s 'a 'b) (c 0 n s 'a 'b» is true 
( e qua 1 p '( a . b) '( a . b» is true 
( pro 9 n (s e t q x (c 0 n s tat b » (e qua 1 p x x» is true 
( pro 9 n (s e t q x '( a . b» (e qua 1 p x x}) is true 
(equa1p #\A #\A) istrue 
(equa1p "Foo" "Foa") istrue 
(equal p "Foo" (copy-seq "Foo"» is true 
( e qua 1, p " F 00 " " f 0 0 tI) is true 

6.4. Logical Operators 

COMMON LISP provides three operators on Boolean values: and, or, and not.' Of these, and and or arq 

also control structures, because their arguments are evaluated conditionally. not necessarily examines it$/, 
r 

single argument, and so is a simple function. 

not x [Function] 

not returns t if x is nil, and otherwise returns nil. It there(ore inverts its argument, interpreted 

as a Boolean value. 

null (page 6~) is the same as not; both functions are included for-the sake of clarity. As a matter 

of style, it is customary to use null to check whether something is the empty list, and to use not to 



68 COMMON LISP REFERENCE MANUAL 

invert the sense of a logical value .. 

and {{omt}* [Afacro] 

(and forml form] ... ) evaluates each form, one at a time, from left to right. If any form 

evaluates to nil, the value nil is immediately returned without evaluating the remainingfomts. If 

every form but the last eyaluates to a non-n i 1 value, an d returns whatever the last form returns. 

Therefore in general and can be used both for logical operations, wl)ere nil stands for false and 

non-nil values stand for true, and as a conditional expression. 

For example: 
(if (and (>= n 0) 

« n (length a-simp1e-veetor» 
(eq Celt a-simp1e-veetor n) 'faa» 

(prine "Faa!"» 

The above expression prints "Foo!" if element n of a-simple-veetor is the symbol faa, 

provided also that n is indeed a valid index for a-simple-veetor. Because and guarantees 

left-to-right testing of its parts, e 1 t is not called if n is out of range. (In this example writing 
(and (>= nO) 

{< n (length a-simple-veetor» 
( e q (e 1 t a - simp 1 e - vee tor n) , f a a ) 
(prine "Faa!"» 

would accomp1ish the same thing; the difference is purely styl~stic.) Because of the guaranteed 

left-to-right ordering, and is like the and then operator in ADA, or what in some PASCAL-like 

languages is called cand, rather than the and operator. 

See also if (page 95) and when (page 95), which are sometimes stylistically more appropriate 

than and for conditional purposes. If it is necessary to test whether a predicate is true of all 

elements of a list or vector (element 0 and element 1 and element 2 and ... ), then the function eve r y 

(page 205) may be useful. , 

From the general definition, one can deduce that (and x) <=> x. Also, (and) evaluates to t, 

which is an identity for this operation. 

an d can be defined in tenns of. c~nd (page 95) as follows: 

(and x y z ... w) <=> {cond ({not x) nil) 
({not y) nil) 
{ (not z) ni 1 ) 

(t w» 

or {fonn}* [Macro] 

( or formlfonn2 ... ) evaluates each form, one at a time, from left to right If any fonn other 

than the last evaluates to. something other than nil, a r immediately returns that non-nil value 

without evaluating the remaining fomts. If every ,form but the last evaluates to nil, a r returns 

whatever evaluation of the last of the forms returns. Therefore in general 0 r can be used both for 

logical operations, where nil stands .. for false and non-nil values stan~ for true, and as· a 

conditional expression. Because of the guaranteed left-to-right ordering, or is like the or else 



CHAPTER 6: PREDICATES 69 

operator in ADA, or what in som~ PAScAL-like languages is called cor, rather than the or operator. 

See also if (page 95) and un 1 e s s (page 95), which are sometimes stylistically more appropriate 

than 0 r for conditional purposes. If it is necessary to test whether a predicate is true one or more 

elements of a list or vector (element 0 or element 1 or element 2 or ... ), then the function some 

(page 205) may be useful. 

From the general definition, one can deduce that (or x) <=> x. Also, (or) evaluates to nil, 

which is the identity for this operation. 

or can be defined in tenns of con d (page 95) as follows: 

(or x y z ... w) <=> (cond (x) (y) (z) ... (t w» 



70 COMMON LISP REFERENCE MANUAL 



Chapter 7 

Control Structure 

LISP provides a variety of special structures for organizing programs. Some have to do with flow of control 
(control structures), while others control access to variables (environment structures). Most of these features 
are implemented either as special forms or as macros (which typically expand into complex progrrun 
fragments involving special fonns). 

Function application is the primary method for construction of LISP programs. Operations are written as 
the application of a'function to its arguments. Usually, LISP programs are written as a large collection of small 
functions, each of whiCh implements a simple operation. These functions operate by calling one another, and 
so larger operations are defined in terms of smaller ones. LISP. functions may call upon themselve~ 

recursively, either directly or indirectly. 

LISP, while more applicative in style than statement-oriented, nevertheless provides many operations that 
produce side-effects, and consequently requires constructs for controlling the sequencing of side-effects. The 
construct pro 9 n (page 90), which is roughly equivalent to an ALGOL begin-end block with all its semicolons, 
executes a number of forms sequentially, discarding the values of all but the last Many LISP control 
constructs include sequencing irilplicitly, in which case they are said to provide an "implicit progn". Other 
sequencing constructs include prog 1 (page 90) and prog2 (page 91). 

For looping, COMMON LISP pro~ides the general iteration facility do (page 100), as well as a variety of 
special-purpose iteration facilities for iterating or mapping over various data structures. 

COMMON LISP provi~es the simple one-way conditionals when and un 1 ess, the simple two-way 
conditional if, and the more general multi-way conditionals such as cond and case. The choice of which 
fonn to use in any particular situation is a matter of taste and style. 

Constructs for performing non-local exits with various scoping disciplines are provided: block (page 98), 
return (page 99), return-from (page 99), catch (page 114), and throw (page 116). 

The multiple-value constructs provide an efficient way for a function to return more than one value; se~ 

va 1 ues (page 110). 

-·71-



72 COMMON LISP REFERENCE MANUAL 

7.1. Constants and Variables 

7.1.1. Reference 

quote object ' [SpeciaIJann] 
(quote x) simply returns x. The object is not evaluated, and may be any LISP object whatsoever. 

This construct allows any LISP object to be written as a constant value in a program. 

For example: I (setq a 43) 
I, (list a (cons a 3» => {43 (43 . 3» 
~ {list (quote a) {quote (cons a 3» => (a (cons a 3» 

Since quo t e forms are so frequently useful but somewhat cumbersome to type, a standard 

abbreviation is defined for th~m: any form preceded by a single quote ( , ) character is assumed to 

have "( quo t e )" wrapped aroun~ it. 

For example: 
(setq x ~(the magic quote hack» 

is normally interpreted by read (page 310) to mean 

{setq x {quote (the magic quote hack») 
See section 22.1.3. 

funct ion fn [Specialjonn] 
The value of fun c t ion is always the functional interpretation of In; jil is interpreted as if it had 

appeared in, the functional position of a function invocation. In particular, if jiz is a symbol, the 

functional definition associated with that symbol is returned (see symbol-funct ion (page 75». 

If In is a lambda-expression, then a "lexical closure" is returned, that is, a function which when 

invoked will execute the body of the lambda-expression in such a way as to observe the rules of 

lexical scoping properly. 

For example: 
{defun adder (x) {function {lambda (y) (+ x y»» 

The result of{ adde'r 3) is a function that will add 3 to its argument: 

(setq add3 (adder 3» 

! This w!:~::~~ ~~:~ t ~ ~n -C::tes a closure of the inner lambda-expression that is able to refer 
, to the value 3 of the variable x even after control has returned from the function add e r. 

More generally, a lexical closure in effect retains the ability to refer to lexically visible bindings, not 

just values. Consider this code: 
{defun two-funs (x) 

{list (function (lambda () x» 
{function (lambda (y) (setQ x'y»») 

{setq funs (two-funs 6» 
{funcall (car funs» => 6 
(funcall (cadr funs) 43) => 43 
{funcall (car funs» => 43 

The function two - funs returns a list of two functions, each of which refers to the ,binding of the 



CHAPTER 7: CONTROL STRUCTURE 73 

variable x created on entry to the function two- fun s when it was called with argument 6. This 

binding has the value 6 initially, but setq can alter a binding. The lexical closure created for the 

first lambda-expression does not "snapshot" the value 6 for x when the closure is created. The 

second function can be used to alter the binding (to 43, in the example above), and this altered 

value then becomes accessible to the first function. 

In situations where a closure of a lambda-expression over the same sen of bindings may be 

produced more than once, the various resulting closures mayor may not be eq, at the discretion of 

the implementation. 

For example: 

(let «x 5) (~uns 'C»~) 
(dotimes (j 10) 

(push #'(lambda (z)' 
(if (null z) (setq x 0) (+ x z») 

funs» 
funs) 

The result of the above expression is a list of ten closures. Each logically requires only the binding 

of x. and it is the same binding in each case, so the. ten closures mayor may not be the same 

identical ( e q) object. On the other hand, the result of the expression 

For example: 
(let «funs '(») 

(dotimes (j 10) 
(let «x 5» 

(push (function (lambda (z) 
(if (null z) (setq x 0) (+ x z»» 

funs») 
funs) 

is a list of ten closures, no two of which may be eq, because each closure is over a distinct binding 

of x, and these bindings can be behaviorally distinguished because of the use of setq. The 

question of distinguishable behavior is important; the result of the simpler expression 

For example: 

(let «funs 'C»~) 
(dotimes (j 10) 

. (let «x 5» 
(push (function (lambda (z) (+ x z») 

funs») 
funs) 

is a list often closures that may be pairwise eq. Although one might think that a different binding 

of x is involved for each closure (which is ind~ed the case), the bindings cannot be distinguished 

because their values are identical and immutable, there being no occurrence of setq on x. A 

compiler would therefore be justified in transforming the expression to 

For example: 
( 1 et « funs '(») 

( do time s (j 10) 
(push (function (lambda (z) (+' 5 z») 

funs» 
funs) 



74 COMMON LISP REFERENCE MANUAL 

where clearly th~ closuresrnay· be the same after all. The general rule, then, is that the 
implementation is free to have two distinct evaluations of the same funct i on form produce 
identical (~q) c:losures if it Gan prov~ that the two conceptually distinct resulting closures must in 

fact be behaviorally identical with respect to invocation. This is merely a permitted optimization; a 
~ perfectly valid implementation might simply cause every distinct evaluation of a fun c t ; 0 n fonn 

produce a new closure object not e q to ~y other. 

Frequently a compiler can d~duce that a closure in fact does not need to close over any variables 
bindings. For example, in thccode fragment 

(mapcar (function (lambda (x) (+ x 2») y). 

the function (1 ambda (x) (+ x 2) contains no references to any outside entity. In this 
important special case the same ~'closure" may be used as the value for all evaluations of the 
fun c t ion special form, and indeed this value need not be a closure object at all, but may be a· 
simple compiled function containing no environment information. (This is simply a special case of 
the foregoing discussion, but is included as a hint to implementors familiar with previous methods 
of implementing LISP. The distinction between closures and other kinds of function is somewhat 
pointless, actually, as COMMON LISP defines no particular representation for closures and no way to 
distinguish between closures and non-closure functions. All that matters is that the rules of lexical 
scoping be obeyed.) 

Since funct i on forms are so frequently useful (for passing. functions as arguments to other 
functions, or returning functions as results) but somewhat cumbersome to type, a standard 
abbreviation is defined for them: any form preceded by a sharp sign and then a single quote ( #' ) 

is assumed to have" ( fun c t ion ) " wrapped around it 

For example: 
(remove-if #'numberp '(1 a b 3) 

is normally interpreted by read (page 310) to mean 
(remove-if (function numberp) '(I a b 3» 

f 
See section 22.1.4. 

symbol-val ue s)!mbol [Function] 
~ ymb 0 1 - va lLJ e returns the current value of the dynamic (special) variable named by symbol. An 
error occurs if the symbol has no value; see boundp (page 75) and makunboun d (page 77). Note 
tnat constantsywbols are really variables that cannot be changed, and so symbol-val ue may be 
llseti to g~t the V;,llue of a named constant. In particular, symbol-va 1 ue of a keyword will return 
that keywOfq. 

s..YlIlb 0 1 ... va 1, u e cannut ~ess the value of a lexical variable. 

Th:is function is p&rticularly useful for implementing interpreters for languages embedded in LISP. 

The correSpOnQillg assignment p.rimitive is set (page 76); alternatively, symbol-val ue may be 
used with set f (pag~ 78)., 



CHAPTER 7: CONTROL STRUCTURE 75 

symbol-function symbol [Function] 
s ymb 0 1 - fun c t ion returns~ the current global function definition named by symbol. An error is 

signalled if the symbol has no function definition; see fboundp (page 75). Note that the 

definition may be a function, or may be an object representing a special fonn or macro. In the 

latter case, however, it is an error to attempt to invoke the object as a function. If it is desired to 

process macros, special forms, and functions equally well, as when writing an interpreter, it is best 

to test the symbol with macro-funct ion (page 118) and special-form-p (page 75) first, 

and then to invoke the functional value only if these two tests both yield false. 

This function is particularly useful for implementing interpreters for languages embedded in LISP. 

symbo l-funct i on caI).not access the value of a lexical function name produced by fl et (page 

93) or 1 abe 1 s (page 93); it can access only the global function value. 

The global function definition of a symbol may be altered by using set f (page 78) with 

s ymb 0 1 - fun c t ion. Perfoiming this operation causes the symbol to have only the specified 

definition as its global function definition; any previous definition, whether as a macro or as a 

function, is lost. It is an error to attempt to redefine the name of a special form (see Table 5-1). 

boundp symbol [Function] 
boundp is true if the dynamic (special) variable named by symbol has a value; otherwise, it returns 

nil. 

See also set (page 76) and makunbou"nd (page 77). 

fboundp symbol [Function] 
f b ou n d p is is true if the symbol has a global function definition. Note that f b ou n d p is true when 

the symbol names a special fonn or macro. macro-funct i on (page 118) and 

spec i a 1 -form-p may be used to test for these cases. 

See also symbol-funct ion (page 75) and fmakunbound (page 77). 

special-form-p symbol [Function] 
The function special-form-p takes a symbol. If the symbol globally names a special form 

(example: quote (page 72», then a non-n i 1 value is returned, typically a function of 

implementation-dependent nature that can be used to interPret a special fonn; otherwise nil is 
returned. 

It is possible for both spec i a l-form-p and macro-funct i on (page 118) to be true of a 

symbol. This is possible because an implementation is permitted to implement any macro also as a 

special fonn for speed. On the other hand, the macro definition must be available for use by 

programs that understand only the standard special forms listed in Table 5-1. 



76. COMMON USP REFERENCE MANUAL 

7.1.2. Assignment 

s e tq {var form}* [Special fonnJ 
, The special fonn (setq varl forml var) form2 ... ) is the '"simple variable assignment 

statement" of Lisp. First/onnl is evaluated and the result is stored in the variable varl, thenfonn2 
is evaluated and the result stored in var2, and so forth. The variables are represented as symbols, of 
course, and are interpreted as referring to static or dynamic instances according to the usual rules, 

so set q may be used for assignment of both lexical and special variables. set q returns the last 
i 
•• value assigned, that is, the result of the evaluation of its last argument. As a boundary case, the . . 

i fonn ( set q) is legal and returJ;ls n t1. There must be an even number of argument forms. . 
i 
~ For example: . 

(setq x (+ 3 2 1) Y (cons i ntl» 

if x is set to 6, y is set to (6), and the se tq returns (6). Note that the first assignment was 
performed before the second form was evaluated, allowing that form to use the new value of x. , 
See also the description of setf (page 78)~ which is the "general assignment statement", capable 
of assigning to variables, array elements, and other locations. 

psetq {var foml}* [Macro] 
A psetq form is just like a setq fonn, except that the assignments happen in parallel; first all of 
the forms are evaluated, and then the variables are set to the resulting values. The value of the 

psetq fonn is n i 1. 

For example: 
(setq a 1) 
(setq b 2) 
(psetq a b b a) 
a => 2 
b => 1 

In this example, the values of a and b are exchanged by using parallel assignment. (If several 
variables are to be assigned in parallel in the context of a loop, the do (page 100) construct may be 
appropriate.) 

.~ See also p set f (page 80). which is the "general parallel assignment statement" ~ capable of 
~~ assigning to variables, array elements, and other locations. 
-;;. 

set symbol value [Function] 

r set allows alteration of the value ofa dynamic (speCial) variable. set causes the dynamic variable 
named by symbol to take on value as its value. Only the value of the current dynamic binding is 

i. altered; if there are nQ bindings in effect, the most global value is altered. 
~ . For example: 

(set {if (e q ab) 'c 'd )' f 00 ) 

.' will either set c to foo or set d to foa, depending on the outcome of the test (eq a b). 

set returns value as its result 



CHAPTER 7: CONTROL STRUCfURE 77 

set cannot alter the value of a local (lexically bound) variable. The special form setq (page 76) is 

usually used for altering the values of variables (lexical or dynamic) in programs. set is' 

particularly useful for implementing interpreters for languages embedded in LISP. See also progv 

(page 93), a construct that perfonns binding rather than assignment of dynamic variables. 

makunbound symbol [Function] 
fmakunbound symbol [Function] 

makunbound causes the dynamic (special) variable named by symbol to become unbound (have no 

value). fmakunbound does the analogous thing for the global function definition named by 
symbol. 

For example: 
(setq a 1) 
a => 1 
(makunbound tal 
a = > causes an error 
(defun foo (x) (+ x 1» 
(foo 4) => 5 
(fmakunbound 'foo) 
( fo 0 4) = > causes an error 

Both functions return 5ymbol as the result value. 

7.2. Generalized Variables 

In LISP, a variable can remember one piece of data, a LISP object. The main operations on a variable are to 

recover that piece of data, and to alter the variable to remember a new object; these operations are often 

caned access and update operations. The concept of variables named by symbols can be generalized to any 

storage location that can remember one piece of data, no matter how that location is named. Examples of 

such storage locations are the cat and cdr of a cons, elements of an array, and components of a structure. 

For each kind of generalized variable, there are typically two functions that implement the conceptual 

access and update operations. For a variable, merely mentioning the name of the variable accesses it, while 
the setq (page 76) special form can be used to update it Thefunction car (page 215) accesses the carofa 

cons, and the function rp 1 aca (page 224) updates it. The function symbo 1 -va 1 ue (page 74) accesses the 

dynamic value of a variable named by a given symbol, and the function set (page 76) updates it. 

Rather than thinking about two distinct functions that respectively access and update a storage location 

somehow deduced from their argume~ts, we can instead simply think of a call to the access function with 

given arguments as a name for the storage location. Thus, just as x may be considered a name for a storage 

location (a variable), so (car x) is a name for the car of some cons (which is in ,tum named by x). Now, 

rather than having -to remember two functions for each kind of generalized variable (having to remember, for 

example, that r p 1 a c a corresponds to car), we adopt a unifonn syntax for updating storage locations named 

in this way, using the setf macro. This is analogous to the way we use the setq special form to convert the 

name of a variable (which is also a form that accesses it) into a form that updates, it. The unifonnity of this 

approach may be seen from the following table: 



78 COMMON LISP REFERENCE MANUAL 

,Access function UPdate function Update using set f 
x (setq x newva 1 u.e) (. set f x newvalu.e·) 
'(car x) (rplaca x onewvalue) (setf (car x) newvalu,e) 
(symbol-value x)(set x newvalue) (setf (symbol-value xl newvaTue') 

setf is actually a macro that examines an access form and produc'es a call to the corresponding update 

function. 

Given the existence of se t f in COMMON LISP, it is not necessary to have sat q, r p , a c a, and se t as well; 

they are redundant. They are retained because of their historical importance in LISP. However~ most other 

update functions (such as putprop,. the update function for get (page 134» have been eliminated in the 

expectation that sat f be uniformly used in their place. 

set f {place newvalue}* [Macro] 

( set f place newvalue) takes a form place that when evaluated accesses a data object in some 

, location, and "inverts" it to produce a corresponding form to update the location. A call to the 

sat f macro therefore expands into an update form that stores the result of evaluating the fonn 

newvalue into the place referred toby the access~form. 

f 

Ifmore than one place-newvalue pair is specified, the pairs are processed sequentially: 

( set f place/ newvaluel 
place2 newvalue2 ) 

placen newvaluen) 

is precisely equivalent to 

( P r ogo (sa t.f placel newl'aluel). 
(set f pklce2 newvalue2) 

( set f placen newvaluen» 

For consistency. it is legal to write ( set f ). which simply returns ni 1. 

The form place may be anyone of the following: 

• The name of a variable (either lexical or dynamiC) . 

• ' A function call form whose first element is the name of anyone of the following 
functions: 

car (page 215) caa'aa'r (page 216) cadddr (page 216) 
c"d~r (page 215} cd'aaar (page'216) cddddr (page 216) 
caa,r' (Ilage 216) cacl'a;ar (page 216) ftrst (page21S) 
cd:ar ~,age' 216); cddaar (page 216)' se·coR'd (page 218) 
ca,d:r (page 2:1.6) caadar (page 216) third (page 21S) 
cd;d:r Cpage216) cdad~ar (page'216) fourth (page 218) 
ca'a·ar (page 216) caddar (page 216) fi ft-h (page 21S) 
cd',aar (pag~ 216) cd'dd,ar (page 216) sixth (page 21S) 
cad'ar (page 216) ca,aadr (page 216) seventh (page 218) 
cdd;a.r ~page216} cd:aadr (page 216) eighth (page 218) 
c,aadr (page 216) cactad;r;-- (page' 216): ninth (page 21S) 
cd'adir (page 216-);: cdd'ad:r (page 216) . tenth (page 218) --



CHAPTER 7: CONTROL STRUCTURE 

caddr 
cdddr 
aref 
get 
svref 
elt 

(page 216) 
(page 216) 
(page 240) 
(page 134) 
(page 242) 
(page 203) 

caaddr 
cdaddr 
getf 
gethash 
nth 

(page 216) re s t 
(page 216) fill-pointer 
(page 135) symbol-pl ist 
(page 235) symbo l-v a 1 ue 
(page 218) symbo l-funct ion 
documentation 

(page 219) 
(page 245) 
(page 135) 
(page 74) 
(page 75) 
(page 362) 

• A function call form, whose first element is the name of a selector function constructed 
by defstruct (page 255). 

• A function call form whose first element is the name of anyone of the following 
functions. provided that the new value is of the specified type so that it can be used to 
replace the ,specified "location" (which is in each of these cases not really a truly 
generalized variable): 

Function name Reguired t:i12e 
char (page 247) string-char 
schar (page 247) string-char 
bit (page 243) bit 
sbit (page 243) bit 
subseq (page 203) sequence 

In the case of subseq, the replacement value must be a sequence whose elements may 
be contained by the sequence argument to sub seq. (Note that this is not so stringent 
as to require that the replacement value be a sequence of the same type as the sequence 
of which the subsequence is specified.) If the length of the replacement value does not 
equal the length of the subsequence to be replaced, then the shorter length determines 
the number of elements to' be stored, as for the function rep 1 ace (page 207). 

• A function call form whose first element is the name of anyone of the following 
functions, provided that the specified argument to that function is in tum a place form; 
in this case the new place has stored back into it the result of applying the specified' 
"update" function (which is in each of these" cases not a true update function): 

Function name Argument that is a place 
char - bit (page 199) First 
1 db (page 185) Second 
rna s k -f ; e 1 d (page 185) Second 

U12date function used 
set-char-bi t (page 200) 
d P b (page 186) 
de po S ; t - f ; e 1 d (page 186) 

• A th e (page 131) type declaration form, in which case the declaration is transferred to 
the newvalue fonn, and the resulting set f form is analyzed. For example, 

(setf (the integer (cadr'x» (+ y 3» 

is processed as if it were 
(setf (cadr x) (the integer (+ y 3») 

• A call to app 1 y where the first argument form is of the fonn II' name, that is, 
(funct i on name), where name is the name of a function, calls to which are 
recognized as places by set f. Suppose that the use of set f with ap ply looks like 
~~ , 

(setf (apply #t name xl x2 ... xn rest) xO) 

79 



80 COMMON LISP REFERENCE MANUAL 

The set f method for the function name must be such that 

(set f (name zJ z2 ... zm) zO) 

expands into a store form 

(storefn ziI zi2 ••• zik zm) 
That is, it must expand into a function call such that all arguments but the last may be 
any pennutation or subset of the new value zO and the arguments of the access form, 
but the last argument of the storing call must be the same as the last argument of the 
access call. See define-setf-method (page 87) for more details on accessing and 
sto~ing forms. 

Given this, the setf-of-apply form shown above expands into 

( app 1 y #' storefn xiI xi2 ... xik rest) 
As an example. suppose that the variable in de xes contains a list of subscripts for a 
multi-dimensional array foo whose rank is not known until run time. One may access 
the indicated element of the array by writing 

(apply #'aref foo indexes) 

and ~),1e may alter the value of the indicated element to have the value of newv a 1 ue by 
writing 

(setf (apply #'aref foo indexes) newvalue) 

• A macro call, in which case set f expands the macro call and then analyzes the 
resulting form . 

• Any form for which adefsetf (page 84) or define-setf-method (page 
87) declaration has been made. 

set f carefully arranges to preserve the usual left-to-right order in which the various subfornis are 

evaluated. On the other hand, the exact expansion for any particular form is not guaranteed and 

may even ,be implemen~tion-dependent; all that is guaranteed is that the expansion of a 
set f -fomf:· will be an update form that works for that particular implementation, and that the 

left-to-right evaluation of sub forms is preserved. 

. The ultimate result of evaluating a set f form is the value of newvalue. (Therefore ( set f (c a r 
x) y.) does not expand into precisely ( r p 1 ac a x y), but into something more like 

(let «G1 x) (G2 y» (rplaca G1 G2) G2) A 

i ~ the precise ixpansion being implementation-dependent} 

The user call define ~ew se t f expansions by using de f set f (page 84). 

psetf {place newvalue}* [Macro] 
p set f is like set f except that if more than one place-newvalue pair is specified then the 

assignments of new values to places are done in parallel. More precisely, all sub forms that are to be 

evaluated are evaluated from left to right; after all evaluations have been performed, all of the 

assignments are performed in an unpredictable order. (The unpredictability matters only if more 

than one place form refers to the same place.) 

ps e t f always returnsn i 1. 



CHAPTER 7: CONTROL STRUCTURE 81 

s h if t f {place} + newvaiue [A1acro] 
Each place fonn may be any.form acceptable as a generalized variable to set f (page 78). In the 

fonn (s hi f t f place! place2 ... placen newvalue), the values in place 1 through placen are 

accessed and saved, and newvalue is evaluated, for a total of Il + 1 values in all. Values 2 through 

n+ 1 are then stored into place1 through placen, and value 1 (the original value of place.!) is 
returned. It is as if all the places fonn a shift register; the newvalue is shifted in from the right, all 

values shift over to the left one place, and the value shifted out of place! is returned. 

For example: 
(setq x (list 'a 'b 'c» => (a b c) 

(shiftf (cadr x) 'z) => b 
and now x ='> (a z c) 

(shiftf (cadr x) (cddr x) 'q) => z 
and now x => (a (c) . q) 

The effect of ( s hi f t f place! place2 ... placen newvalue) is roughly equivalent to 

( 1 et « var! place!) 
(var2 place2) 

(varn placen» 
( set f place! var2) 
( set f place2 var3) 

( set f placen newvalue) 
var!) 

except that the latter would evaluate any subfonns of each place twice, while s hi f t f takes care to 

evaluate them only once. 

For example: 
(setq n 0) 

but 

(setq x '(a bed» 
(shiftf (nth (setq n (+ n 1») x) 'z) => b 

and now x = > (a zed) 

(setq n 0) 
(setq x '(a bed)} 
(prog1 (nth (setq n (+ n 1}) x) 

(setf (nth (setq n (+ n 1» x) 'z» => b 
, and now x => (a b z d) >tjr I 

Moreover, for certain place forms s h if t f may be significantly more efficient fuan the pro d\1 

version. 
Rationale: shiftf and rotatef (below) have been included in COMMON USP as generalizations of 
two-argument versions formerly called swapf and exchf. The two-argument versions have been found to be 
very useful. but the names were easily confused. The generalization to many argument forms and the change of 
names were both inspired by the work of Suzuki [18]. which indicates that use of these primitives can make 
certain complex pointer-manipulation programs clearer and fasier to prove correct. 



82 COMMON LISP REFERENCE MANUAL 

rota tef {Place}* [Macro] 
Each place fonn may be any form acceptable. as a generalized variable to setf (page 78). Iuthe 

fonn (rotatef place I place2 ... placen), the- values in place} through placen are accessed 

and saved. Values 2 through n and value 1 are then stored into place] through placen. It is as ifall 

the places form an end-around shift register that is rotated one place to the left, with the value of 

place] being shifted around' the end to placen. Note that (rotatef place] place2) exchanges 

the contents of place and place2~ 

The effect of ( rot at e f placel place2 ... placen newvalue)· is roughly equivalent to 

( p set f place] place2 
place2 place3 . 

placen' place1) 
except that the latter would evaluate any subforms of each place twice, while ro tat e f takes care to 

evaluate them only once. Moreover, for certain place forms rotatef may be significantly more 

efficient 

rota tef always returns n i 1. 

Other macros that manipulate generalized variables include getf (page 135), remf (page 136), i nef 

(page 165), deef (page 165), push (page 221), pop (page 222), assert (page 357), etypeeaso (page 

359), and e cas e (page 359). 

Macros that manipulate generalized variables must guarantee the "obvious" semantics: subforrns of 

generalized-variable references are evaluated exactly as many times as they appear in the source program~ and 

they are evaluated in exactly the same order as they appear in the source program. . 

In generalized-variable references such as shiftf, inef, push, arid setf of ldb, the generalized 

variables are both read and written in the same reference. Preserving the source-program order of evaluation 

and the number of evaluations is particularly important. 

As an example of these semantic rules. in the generalized-variable reference (s e t f reference value) the . 

value to be stored must be evaluated after all the sub forms of the reference since it appears to the right of 
~. - . 

them. 

The expansion of these macros must consist of code that follows these rules or has the same effect as such 

code. This is accomplished by introdUCing temporary variables bound to the subforrns of the reference. As 

art optimization in the implementation. temporary variables may be eliminated whenever it can be proven 

that this has no effect on the semantics of the program. For example, a constant need never be saved in a 

temporary variable. A variable, or any form that does not have side-effects, need not be saved in a temporary 

variable if it can be prov~n that its value will not change within the scope of the generalized-variable 

reference. 

COMMON LISP provides built-in facilities to take- care of these semantic complications and optimizations. 



" i 

CHAPTER7:CONTROLSTRUClURE 83 

Since the required semantics can be guaranteed by these facilities, the user does not have to worry about 

writing correct code for them, especially in complex cases. (Even experts can become confused and make 

mistakes while writing this ~ort of code~) 

Another reason for providing these built-in functions is that the optimizations that are appropriate will vary 

from implementation to imple~entation. In some implementations most of the optimization is performed .by 

the compiler, while in others a simpler compiler is used and most of the optimization is performed in the 

macros. The cost of binding a temporary variable relative to the cost of other Lisp operat.ions may differ 

greatly between one implementation and another, and some iJnplememations may find it best never to 

remove temporary variables except in the simplest cases. 

A good example of the issues involved can be seen in the followlng generalized-variable reference: 
(incf (ldb byte-field variable» 

TIlis ought to expand into something like 
(setq variable 

(dpb (1+ (ldb byte-field variable» 
byte-field 
variable» 

In this example exp"ansion we have ignored the further complexity of returning the correct val1Je, which is the 

incremented byte, not the new value of v ar i ab 1 e. Note that the variable byte -f i e 1 d is (~valuated twice, 

and the variable va r i ab 1 e is referred to three times: once as the location in which to store a value, and 

twice during the computation of that value. 

~ow consider this expression: 
(incf (ldb (aref byte-fields (incf i» 

(aref (determine-words-array) i») 

It ought to expand into something like this: 
(let «tempt (aref' byte-fields (incf i») 

(temp2 (determine-words-array») 
(setf (aref temp2 i) 

(dpb (1+ (ldb temp1 (aref t~mp2 i») 
temp1 
(aref temp2 i»» 

Again we have ignored the complexity of returning the correct value. What is important here is that the 

expressions ( inc f i) and ( de t e r min e - wo r d s - a r ray) must not be duplicated, because each may ha;ye 

a side effect or be affe:cted by side effects. ! 

The COMMON LISP facilities provided to deal with these semantic issues include: 

• Built-in macros such as set f and pus h that follow the semantic rules. 

• The de fin e -rno d i f Y - rna c r 0 macro, which allows new generalized-variable manipulating 
macros (of a certain restricted kind) to be defined easily. It takes care. of the semantic rules 
automatically. 

• The defsetf macro, which allows new types of generalized-variable references to be defined 

~ 



84 COMMON LISP REFERENCE MANUAL 

easily. It. takes care of the semantjc rules automatically . 

• The define-setf-method macro and the get-setf-method function, which provide 
access to the internal mechanisms when it is necessary to define a complicated new type of 
generaliz.ed-variable reference or generalized~variable-manipulating macro. 

defi ne-modi fy-macro name lambda-list jUnction [doc.;string] [Macro] 
Define a read-modify-write macro named name. An example of such a macro is ; n c f (page 165). 
The first subform of the macro· will be a generalized-variable reference. The fun c t ion is literally 

the function to apply to the old contents of the generalized-variable to get the new contents; it is not 

evaluated. lambda-list describes the remaining arguments for the function; these arguments come 

from the remaining subforms of the macro after the generalized-variable reference. lambda-list may 

contain &opt ional and &rest mark~rs. (The &key marker is not permitted here; &rest 

suffices for the purposes of defi ne-modi fy-macro.) doc-string is documentation for the macro 

name being defined. 

The expansion of a define-modify-macro is equivalent to the following, except that it 

generates code that follows the semantic rules outlined above. 
f ( de f ma c r 0 name (reference . lambda-list) 

doc-siring 
• ( set f ,reference 

(function ,reference ,argJ , arg2 ... }». 

where argJ, arg2, ... , are theparameters app~aring in lambda-list; appropriate provision is made for 

a &res t parameter. 

As an example, inc f (page 165) could have been defined by: 
(define-modify-macro incf (&optional(delta 1» +) 

An example of a possibly useful macro that is not predefined in COMMON LISP is: 
(define-modify-macro unionf (other-set &rest keywords) union) 

defsetf access-fn {update-fn [doc-string] I 
lambda-list (store-variable) {declaration I doc-string}* {fomt}*} [Macro] 

This defines how to set f a generalized-variable reference of the form (access-fn ...) . The 

value of a generalized-variable reference can always be obtained simply by evaluating it, so 

access-fn should be the name of a function or a macro. 

1 The user of de f set f provides a description of how to store into the generalized-variable reference 

and return the value that was stored (because set f is defined to return this value). The 

implementation of de f set f takes care of ensuring that subforms of the reference are evaluated 

exactly once and in the proper left"to-right order. In order to do this, de f set f requires that 

access-fn be a function or a macro that evaluates its arguments, behaving like a function. 

! Furthermore, a setf of a call on access-fn will also evaluate all of access~fn's arguments; it cannot 

~, treat any of them specially. This means l;hat defsetf cannot be used to describe how to store into 
a generalized variable that is a byte, such as (1 db f ; e 1 d' ref ere nee). To handle situations 

that do not fit the restrictions imposed by de f set f, use de fi n e - set f -me tho d (page 87), • '--. 



CHAPTER 7: CONTROL STRUCfURE 8S 

which gives the user additional control·at the cost of increased complexity. 

A defset f declaration may take one of two forms. The simple form of defsetf is 

( de f set f access-in update-jh [doc-string]) 

The update-in must name a function (or macro) ~at takes one more argument than access-in does. 

When set f is given a place that is a call on access-in, it expands into a calIon update-In that is 
given all the arguments to access-in and also, as its last argument, the new value (which must be 
returned by update-in as its value). For example, the effect of 

(defsetf symbol-value set) 

is built into the COMMON LISP system. This causes the form (setf (symbol-value. fool 
fu) to expand into (set ·foo fu). 

Note that 
(defsetf car rplaca) 

would be incorrect, because r p 1 a c a (page 224) does not return its last argument. 

The complex form of defsetf looks like 

( de f set f access-in lambda-list (store-variable) . body) 
and resembles defmacro (page 118). The body must compute the expansion ofa setf ofa call 

on access-in. 

lambda-list describes the arguments of access-in. &optional, &rest, and &key markers are 

pennitted in lambda-list. Optional arguments may have defaults and "supplied-p" flags. 'Ibe 

store-variable describes the value to be stored into the generalized-variable reference. 
Rationale: The store-variable ~ enclosed in parentheses to provide for a possible extension to multiple store 
variables, receiving multiple values from the second subfonn of set f. 

The body forms can be written as if the variables in the lambda-list were bound to subforms of the 

calIon access-in and the store-variable were bound to the second subform ofsetf. However, this 
is not actually the case. During the evaluation of the body forms, these variables are bound to 
names of temporary variables, generated as ifby gensym (page 137) or gentemp (page 138), that 

will be bound by the expansion of set f to the values of those sub forms. This permits the bo.dy 
forms to be written without regard for order-of-evaluation issues. de f s et f arranges for the 

temporary variables to be optimized out of the final result in cases where that is possible. In Other 
words, an attempt is made by defset f to generate ·the best code possible in a particular 
implementation. 

Note that the code generated by the body forms must include provision for returning the correct 

value (the value of store-variable). This is left. to the body forms rather than being handled by 

defsetf because in many cases this value can be returned at no extra cost, by calling a function 

that simultaneou~ly stores into the generalized variable and returns the correct value. 

An example of the use of the complex form of de f s et f: 
(defsetf subseq (seque~ce start &optional end) (new-sequence) 

'{progn (repl~ce .sequence ,new-sequence. 
:startl ,start :endf .end) 

,new-sequence» 



86 COMMON LISP REFERENCE MANUAL 

The underlying theory by which set f and related macros arrange to confonn to the semantic rules given 
above is that from any generalized-variable reference one may derive its "se t f method", which describes 
how to store into that reference and which subfonns of it are evaluated. 

Compatibility note: To avoid confusion? it should be noted that the use of the word "method" here in connection with 
set f has nothing to do with its use in Lisp Machine LIsp in connection with message-passing and the Lisp Machin~ LIsp 
"flavor system". 

Given knowledge of the subfonns of the reference, it is possible to avoid evaluating them multiple times or in 
the wrong order. A set f method for a given access form can be expressed as five values: 

• A list of temporary variables. 

• A list of value forms (subforms of the given form) to whose values the temporary variables are to 
he bound. 
f 

• A second list of temporary variables, called store variables. 

• A storing/orm. 

• An accessing form. 

The temporary variables will be bound to the values of the value forms as ifby 1 et * (page 92); that is, the 
value fonns will be evaluated in the order given. and may refer to the values of earlier value forms by using 
the corresponding variables. 

The store variables are to be bound to the values of the newvalue form, that is, the values to be stored into 
the generalized variable., In almost all cases only a single value is to be stored and there is only one store 
variable. 

The storing form and the accessing form may contain references to the the temporary variables (and also, in 
the case of the storing form, to the store variables). The accessing form returns the value of the generalized 
variable. The storing fonn modifies the value of the generalized variable and guarantees to return the values 
of the store variables as its values; these are,the correct values for set f to return. (Again, in most cases there 
isa single store variable and thus a single v~ue to be returned.) The value returned by the a~cessing fonn is 

(of course) affected by execution of the storing form, but otherwise either of these forms may be evaluated 
any number of times, and therefore should be free of side effects (other than the storing action of the storing 
fonn)., 

, 

The temporary variables and the store variables are generated names, as ifbygensym (page 137) or 
gentemp (page 138), so that there is never any problem of name clashes among them, or between them and 
other v,ariables in the program. This is necessary to make the special fonns that do more than one set f in 
paraI1e~ work properly; these arep set f, s h ; f t f, and rot ate f. Computation of the· set f method must 
always create new variable names; it may not return the same ones every time. 

SomJ examples of set f methods for particular fonns: 

• For a variable x: 



CHAPTER 7: CONTROL STRUCfURE 

( ) 
( ) 
(g0001) 
(setq x g0001) 
x 

• For (car exp): 
I 

(g0002) 
( exp) 
(g0003) 
(progn (rplaca g0002 g0003) g0003) 

, (car g0002) 

• For ( sub seq seq s e): 
(g0004 g0005 g0006) 
(seq s e) 
(g0007) _ 
(progn (replace gOb04 g0007 :start1 g0005 :end1 g0006) 

g0007) 
(subseq g0004 g0005 g0006) 

define-satf-method access-In lambda-list {declaration I doc-string}* {fonn}* 

87 

[Macro] 
This defines how to set f a generalized-variable reference that is of the form (access-In . .. ). The 

value of a generalized-variable reference can alwaYi be obtained'simply by evaluating it, so 

access-jn should be the name of a function or a macro. 

The lambda-list describes the subforms of the generalized-variable reference. as with defmacro 
(page 118). The result of evaluating the forms in the. body must be five values representing the 
set f method, as described above. Note that de fin e - set f -me tho d differs from the complex 

fonn of·d e f set f in that while the body is being executed the variables in lambda-list are bound to 

parts of the generalized-variable reference. not to temporary variables that will be bound to the 
values of such parts. In addition, define-setf-methoddoes not have defsetf's restriction 

that access-In must be a function or a function-like macro; an arbitrary defmacro destructuring 
pattern is permitted in lambda-lisl. 

By definition there are no good small examples of defi ne-setf -method, because the easy cases 

can all be handled by de f set f. A typical use is to define the set f method for 1 db (page 185): 



88 COMMON liSP REFERENCE MANUAL 

SElF method for the form (LOB byiespec int). 
" , Recall that the iot form must itself be suitable for SElF. 

(define-setf-method ldb (bytespec int) 
(multiple-value-bind (temps vals stores 

store-form access-form) 
(get~setf~method iot) ;Get SETF method for into 

(let ({btemp (gensym» ;Temp var for byte specifier. 
(store (gensym» ;Temp var for byte to store. 
(stemp (first stores») ;Temp var for int to store. 

" Return the SElF method for LOB as five values. 
(values t(,btemp ,@temps ,stemp) ;Temporary variables. 

t(,Qytespec ;Value forms. 
,@vals 
(dpb ,store ,btemp ,access-form» 

(list store) ;Store variables. 
'(progn ,store-form ,store) ;Storing form. 
'(ldb ,btemp .access-form) ;Accessing form. 
) ) ) ) 

get - s~ t f -me thod form [Function] 
get-setf-method returns five values, the setf method for fom?, which must be a generalized
variable reference. get-setf··method takes care of error .. checking and macro expansion and 
guarantees to return exactly one store-variable. 

As an example, an extremely simplified version of set f, allowing no more and no fewer than two 
subfonns, containing no optimization to remove unnecessary variables, and not allowing storing of 
multiple values, could be define4 by:" 

(defmacro setf (reference valua) 
(multiple-value-bind (vars'vals stores store-form access-form) 

(get-satf-method reference) 
(declare (ignored access-form» 
'(let* ,{mapcar #'list 

(append vars stores) 
{append vals (list value») 

,store-form») 

get-set f-method-mu1t i p 1 e .... val ua form [Function] 
get-setf-method-multiple-value ·retums five values, the setf method for fonn, which 
must be a generalized"!'variable reference. This is the same as ge t - set f - me tho d except that it 
does not check the number of storc .. variables; use ~is in cases that allow storing multiple values 
into a ienefali~-e:d variable. There ar<;,fl;O such cases in standard COMMON LISP, but this function is 
provided to allow for possible extensions. 

e --



CHAPTER 7: CONTROL STRUCTURE 89 

7.3. Function Invocation 

The most primitive fonn for function invocation in LISP of course ~as no name; any list that has no other 

interpretation as a macro call or special form is taken to be a function call. Other constructs are provided for 

less common but nevertheless frequently useful situations. 

apply function arg &rest more-args [Function] 
This applies jUnction to a list of arguments. function may be a compiled-code object, or a lambda

expression, or a symbol; in the latter case the global functional value of that symbol is used (but it is 

illegal for the symbol to be the name of a macro or special form). The arguments for the .funci~on 

consist of the last argument to ap ply appended to the end of a list of all the other arguments· to " 

ap ply but the function itself; it is as if all the arguments to ap ply except the jUnction were given 

to 1 i s t * (page 219) to create the argument list. 

For example: 
(setq f '+) (apply f '(1 2» => 3 
(setq f #'-) (apply f '(1 2» => -1 
(apply #'max 3 5 '(2 7 3» => 7 
(apply 'cons '«+ 2 3) 4» => 

( (+ 2 3) . 4) not (5 . 4) 
(apply #'+ 'C»~ => 0 

Note that if the function takes keyword arguments, the ~eywords as well as the corresponding 

values must appear in the argument list: 
(apply #'(lambda (&key a b) (list a b» '(:b 3» => (nil 3) 

This can be very useful in conjunction with the &a 11 ow - 0 the r - key s feature: 
(defun foo (size &rest keys &key double &allow-other-keys) 

(let «v (apply #'make-array size :allow-other-keys t keys») 
(if double (concatenate v v) v») 

(foo 4 :ini'tial-contents '(a bed) :double t) 
=> #(a bed abc d) 

funcall In &rest arguments [Function] 
( fun call In al a2 ." ... an) applies the function In to the arguments aI, a2, ... , an. In may not 

be a special fonn nor a macro; this would not be meaningful. 

For example: 
(cons 1 2) => (1 . 2) 
(setq cons (symbol-function '+» 
(funca1l cons 1 2) => 3 

The difference between fun call and an ordinary function call is that the function is obtained by 

ordinary LISP evaluation rather than by the special interpretation of the function position that 

normally occurs. 
Compatibility note: This corresponds roughly to the INTERUSP primitive app 1 y*. 



90 COMMON USPREFERENCE MANUAL 

call-arguments-l imit [Constant] 
The value of ca ll-arguments~l imit is aposi,tive integer that is the upper exclusive bound on 

the number of arguments that may be passed to a function. This bound depends on the 

implcmentation~ but win not be smaller than 50~ (Implementors are' enouraged to make this limit as 
large as practicable without sacrificing perform,ance.) The value of call-arguments-l imit 

must be as least as great as that of lambda-paramete'rs-limit (page 54). See also 

mul tip 1 e-va 1 ues-l im; t (page 111)~ 

7 ~4. Simple Sequencing 

progn' UOnn}* [Special fonn] 

The progn construct takes a number of forms and evaluates them sequentially~ in order, from left 

to right. The values of all the forms but the last are discarded; whatever the last form returns is 

1 returned by the pro g n form. One says that all the forms but the last are evaluated for effect, 

because their execution is useful only for the side effects caused, but the last form is executed for 

value. 

progn is the primitive control structure construct for "compound statements"; it is analogous to 

begin-end blocks in ALGOL-like languages. Many LISP constructs are "implicit p rogn" forms. in 

that as part of their syntax each allows many forms to be ~ritten that are to be evaluated 
sequentially, discarding the results of all fonns but the last, and returning the results of the last 

form. 

If the last foim of the progn returns multiple values. then those multiple values are returned by the 
progn form. If there are no forms for the progn, then . the result is n i i. These rules gene~ally 

hold for implicit pro 9 n forms as wen. 

progl first {form}* [Macro] 
progl is similar to progn, but it returns the value of its first form. All the argument forms are 

executed sequentially; the value. the first fonn produces is saved while all the others are executed, 

and is then returned. 

progl is most commonly used to evaluate an expression with side effects, and return a value that 
must be computed before the side effects happen. 

For example: 
(progl {car x} (rplaca x ~foo» 

alters the car of x to be f 0 0 and returns the old car of x. 

;, progl alwaysretums a single value, even if the first fonn tries to retum multiple values. A 
consequence of this is that· ( pro 9 1 x) and (p r 0 9 n x) may behave differently if x can produce 

multiple values. See mu 1 t ; p le-va 1 ue-prog 1 (page 112). A point of style: although prog 1 

can be used to force exactly a single value to be returned~ it is conventional to use the function 
val u e s (page 110) for this purpose. e -



CHAPTER 7: CONTROLSTRUCfURE 91 

prog2 first second lfonn}* [Macro] 
prog2 is similar to progl, but it returns the value of its second"form. All the argument forms are 

executed sequentially; the value of the second form is saved while all the other fonns are executed, 

and is then returned. 

p r og 2 is provided mostly for historical compatibility . 

. (prog2 abc ... z) <=> (progn a (progl be ... z» 

Occasionally it is desirable to perform one side effect, then a value-producing operation, then 

another side effect; in such a peculiar case prog2 is fairly perspicuous. 

For example: 
(prog2 (open-a-file) (compute-on-file) (close-the-fila» 

; value is that of c omp uta ~ 0 n - f i 1 a 

prog2, like prog 1, always returns a single value, even if the second form tries to return multiple 

values. A consequence of this is that (p r 0 9 2 x y) and (p r 09 n x y) may behave differently if 
y can produce multiple values. 

7.5. Environment Manipulation -

1 at ({ var I (var value)}*) {declaration}* lfonn}* [Special/onn] 
A 1 a t form can be used to execute a series of forms with specified variables bound to specified 

values. 

~1ore precisely, the fonn 

(1 at « varl valuel) 
(var2 value2) 

(vann valuem» 
declaralionl 
declaralion2 

declarationp 
bodyl 
body2 

bodyn) 

: 

first evaluates the expressions valuel, value2, and so on, in that order, saving the resulting value). 

Then all of the variables-varjare bound to the corresponding values in parallel; each binding will ~e 
a lexical binding unless there is asp e cia 1 d~laration to the contrary. The expressions bodyk ·are 

then evaluated in order; the values of all but the last are discarded (that is, the body of a 1 et form 

is an implicit progn). The 1 at form returns what evaluating bodyn produces (if the body is empty, 

which is fairly useless, 1 at returns n i 1 as its value). The bindings of the variables have lexical 

scope and indefinite extent 

Instead of a list (varj valuej)' one .may write simply varj. In this case varj is initialized to n; 1. As a 

matter of style, it is recommended that varj be written only when that variable will be stored into 

(such as by sa tq (page 76» before ~ts first use. Ifit is important that the initial value is nil rather 



92 COMMON LISP REFERENCE MANUAL 

than some undefined value, then it is clearer to write out (varj n ; l) (if. the initial value is 
intended to mean "f(llse") or (var) • ( ) ) (if the initial value is intended to be an empty list). 

Declarations may appear at the beginning of the body ofa let. See decl are (page 125). 

let * ({ v~r I (var value)}*) {declaration}* {fonn}* [Special/onn] 

let * is similar to let (page 91), but the bindings of variables are performed sequentially rather 
than in parallel. This allows the expression for the value of a variable to refer to variables 
previously bound in the 1~. t * form~ 

More precisely, the form: 
( 1 et * « var} value}) 

( var 2 value2) 

(vann valuem» 
declaration} 
declaration2 

declarationp 
body} 
body2 

bodyn) 

first evaluates the expression valuel, then binds the variable varl to that value; then its evaluates 

value2 and. binds var2; and so on. The expressions body) are then evaluated in order; the values of 
all but the last are discarded (that is, the body of ale t * form is an implicit pro 9 n). The 1 e t * 
fonn returns the results of evaluating bodyn (if the body is empty, which is fairly useless, 1 et * 
returns n ; 1 as its value). The bindings of the variables have lexical scope and indefinite extent 

Instead of a list (var) valuej); one may writesimply varj~ In this case varj is initialized to n i ,. As a 
matter of style, it is recommended that var) be written only when that vari~ble will be stored into 
(such as by set Q, (page 76» before its. first use. If it is important that the initial value is n i' rather 
than some und~fined value~ then it is clearer to write out (varj n, i 1) (if the initial value is 
intended to mean '-'fal~") or (vari .- ( ) ) (if the initial value is intended to be an empty list). . -

Declarations: may appear at, the beginning of the body of a let *. See dec 1 a.r e (page 125). 

COOlP; 1 er-,1 et ({l'ar- t (val' vall#~)}*») {fi;>mt}* [Specialform] 

Wben. ex~c'ij;te~tb~ the LISPo'in~I1Plet~l!; comptler-let behaves exactly like 1 e;t (page'91J"with 
alt th~ variaQI~ bin£iings, implicitly d~c1ared s:J):ec ta,l. When. the· compiler processes this foan, 
l)pwever,. no, code· is~ compiled; for the' bindings; instead; the processing of the body by the compiler 
Oncl1Jding. in! particular; the' expa.osiQn ot: any mact() calls within; the body} is done with the, special 
variaples bound to; the: indicated:~ vt1lues. in the execution context of the compiler. This is primarily 

useful for cQrrnnunic~tionamQng complicated' macros. 

DeclarCl:tions~,may nor ap~ax:, at;.t;he·begjnning oCthe· body of a campi 1 er -let. 



,'-" 

CHAPTER 7: COl\lROL STRUCI1JRE 

Rationale: Because of the unorthodox handling by compiler-let of its variable bindings. it would be 
complicated and confusing to permit declarations that apparently referred to the variables bound by 
C omp i 1 e r -1 e t. Disallowing declarations eliminates the problem. 

93 

pro 9 V symbols values lfonn} * [ Special [ann] 

pro 9 v is a special form. that allows binding one or more dynamic variables whose names may be 

determined at run time. The sequence of forms (an irnpHcit progn) is evaluated with the dynamic 

variables whose names are in the list symbols bound to corresponding values from the list values. (If 

too few values are supplied, the remaining symbols are bound and then made to have no value; see 

makunbound (page 77). If too many values are supplied, the excess values are ignored.) The 

results of the pro 9 v form are those of the last fonn. The bindings of the dynamic variables ~l"e 

undone on exit from th~ progv form. The lists of symbols and values are computed quantities; 

this is what makes progv different from, for example, 1 et (page 91), where the variable names 

are stated explicitly in the. program text 

progv is particularly useful for writing interpreters for languages embedded in LISP; it provides a 
handle on the mechanism for binding dynamic variables. 

f1et ({(name lambda-list {declaration I doc-string}* {fonn}*)}*) lfonn}* [Special [ann] 

1 abe 1 s ({ (name lambda-list {declaration I doc-string} * {fonn} * ) } * ) lfonn} * [ Special [ann] 

macrolet ({(name varlisl {declaration I doc-string}* {fonn}*)J*) lfonn}* [Specialfonn] 

f 1 e t may be used to define locally named functions. Within the body of the f 1 e t form, function 

names matching those defined by the f 1 e t refer to the locally defined functions rather than to the 

global function definitions of the same name. 

Any number of functions may be simultaneously defined. Each definition is similar in f<;>rmat to a 

de fun (page 55) form: first a name, then a parameter list (which may contain &0 p t ion a 1 , 

&rest, or &key parameters), then optional declarations and documentation string, and· finally a 

body. 

The 1 abe 1 s construct is identical in form to the f 1 e t construct It differs in that the scope of the 

defined function names for f1 et encompasses only the body, while for 1 abel s it encompasses 

the function definitions themselves. That is, labe 1 s can be used to define mutually recursive 

functions, but f 1 e t cannot This distinction is useful. Using f 1 e t one can locally redefine a 

global function name, and the new definition can refer to the global definition; the same 
f 

construction using 1 abe 1 s would not have that effect 



94 COMMON USP REFERENCE MANUAL 

(defun integer~power (n k) ;A highly "bummed" integer 
(declare (integer' n» ;exponen t i at i on routine. 
(declare (type (integer 0 *) k» 
(labels «exptO (x k a) 

(declare (integer x a) (type (integer 0 *) k» 
(cond «zerop k) a) 

«evenp k) (exptl (* x x) (floor k 2) a» 
(t (exptO (* x x) (floor k 2) (* x a»») 

(expt1. (x k a) 
(declare (integer x a) (type (integer 0 *) k» 
(cond «evenp k) (expt1 (* x x) (floor k 2) a)} 

(t (exptO (* x x) (floor k 2) (* x a»))) 
(exptO n k 1»)) 

macrol et is similar in fonn to fl et, but. defines local macros, using the same fonnat used by 

defmacro (page 118). The names established by macrol et as names for macros are lexically 

seoped. 

,Macros often must be exp.anded at "compile time" (more generally, at a time before the program 

itself is executed). and so the run-time values of variables are not available to macros defined by 

macrol et. The precise rule is that the macro-expansion functions defined by macrol et are 

defined in the global environment; lexically scoped entities that would ordinarily be lexically 

apparent are not visible within the expansion functions. However, lexcially seoped entities are 
visible within the body of the rna c r ole t form, and are visible to the code that is the expansion of a 

, macro call. The following example should make this clear: 
(defun foo (x flag) 

(macrolet «fudge (z) 
; The parameters x and f 1 a g are not accessible 
; at this point; a reference to f 1 a g would be to 
: the global variable of that name. 
, ( iff 1 a g (* • z ,z ) , z ) ).) 

: The parameters x and flag are accessible here. 
(+ x 

(fudge x) 
(fudge (+ xl»») 

The body of the macrol et becomes 
(+ x 

(if flag (* x x) x» 
{if flag (* (+ x 1) (+ x 1» (+ x 1») 

after macro e.xpansion. The occurrences of x and fl ag legitimately refer to the parameters of the 
function fOQ, because those parameters are visible at the site of the macro call which produced the 

expansion. 



CHAPTER 7: CONTROL STRUCTURE 95 

7.6. Conditionals 

if test then [else] [Specialfonn] 
The if special form corresponds to the if-thcn-clsc construct found in most algebraic programming 

languages. First the form test is evaluated. If the result is not nil, then the fonn then is selected; 

otherwise the form .else is selected. Whichever fonn is selected is then evaluated, and i f returns 

whatever evaluation of the selected form returns. 

( i f test then else) < = > (c 0 n d (test then) (t else» 

but if is considered more readable in some situations. 

The else form may be omitted, in which case if the value of test is nil then nothing is done and the 

value of the if form is nil. If the value of the if form is important in this situation, then the and 

(page 68) construct may be stylistically preferable, depending on the context. If the value is not 

important, but only the effect, then the when (page 95) construct may be stylistically preferable. 

when test {fonn}* [Macro] 
(when test fonnl form2 ... ) first evaluates test. If the result is nil, then no form is 

evaluated, and nil is returned. Otherwise the forms constitute an implicit progn, and so are 

evaluated sequentially from left to right, and the value of the last one is. returned. 

(when p a b c) <=> (and p (progrr a be» 
(when p a b c) <=> (cond (p a be» 
(when p a b c) <=> (if P (progn a b c) nil) 
(when p a b c) <=> (unless (not p) a b c) 

As a matter of style, when is normally used to conditionally produce some side effects, and the 
value of the when-form is normally not used. If the value is relevant, then it may be "Stylistically 

more appropriate to use an d (page 68) or if (page 95). 

un 1 ess test {form}* 
( un 1 e s s test forml form2 

[Macro] 
) first evaluates test. If the result is not n; 1, then.theforms are 

not evaluated, and nil is returned. Otherwise the forms constitute an implicit progn, and so are 

evaluated sequentially from .left to right, and the value of the last one is returned. 

(unless p a b c) <=> (cond «not p) a be» 
(unless p a b c) <=> (if P nil (progn a be» 
(unles~ p a b c) <=> (when (not p) a b c) 

As a matter of sty Ie, un 1 e s s is normally used to conditionally produce some side effects, and the 

value of the un 1 ess-form is normally not used. If the. value is relevant, then it may be stylistically 

more appropriate to use i f (page 95). 

cond {( test {form}*)}* [Macro] 

A con d form has a number (possibly zero) of clauses. which are lists of foons. Each clause consists 

of a test followed by zero or more consequents. 

For example: 



96 

(cond (test-] consequent~]-] consequent-]-2· .•• ) 
( test-2) 
( test-3 consequent-3-] ....) 
. .. ) 

COMMON liSP REFERENCE MANUAL 

The first clause whose test evaluates to non-n i 1 is selected; all other clauses are ignored, and the 

consequents of the selected clause are evaluated in order (as an implicit progn). 

More specifically. cond processes its clauses in order from left to right. For each clause, the test is 

evaluated. If the result is n i 1, con d advances to the next clause. Otherwise, the cdr of the clause "is 

treated as a list of forms, or consequents, which are evaluated in order from left to right, as an 
~ ;r implicit progn. After evalualing the consequents, cond returns without inspecting any remaining 

;~ 

; 

clauses. The cond special form returns the results of evaluating the last of the selected 

consequents; if there were no consequents in the selected clause, then the single (and-necessarily 

non-:nu11) value of the test is returned. If cond runs out ofdauses (every test produced n i 1, and 

therefore no clause was selected), the value of the cond form is hi 1. 

If it is desired to select the last clause unconditionally if all others fail, the standard convention is to 

use t for the test. As a matter of style, it is desirable to write a last clause" (t nil)" if the value of 

the cond form is to be used for something. Similarly, it is in questionable taste to let the last clause 

of a cond be a "singleton clause"; an explicit t should be provided. (Note moreover that (cond 

. .. ( x» may behave differently from (c 0 n d ... (t x» if x might produce multiple 

values: the former always returns a single value, while the latter returns whatever values x returns. 
However, as a matter of style it is preferable to obtain this behavior by writing (cond ... (t 

( va 1 ue s x»), using the v a 1 u e s (page 110) function explicitly to indicate the discarding of 

any excess values.) 

For example: 

(setq z (cond (a 'fool (b 'bar») 
(setq z (cond (a 'fool (b 'bar) (t nil») 
(cond (a b) (c·d) (e» 
(cond (a b) (c d) (t e» 
(cond (a b) (c d) {t (values e»)
(cond (a b) (c» 
(cond (a b) (t c)J 
(if a b c) 

; Possibly confusing. 
; Better. 
; PossibJy confusing. 
: Better. 
; Better (if one value needed). 
; Possibly confusing. 
; Better. 
; Also better. 

A LISPC 0 n d form may be compared to a continued if-then-elscif as found in many algebraic 
-~ 
'~ programming langua.ges: 

(cond (p ••• J 
(q ••• ) 
(r ••. ) 

(t ... » 

roughly 
corresponds 

to 

if p then •.. 
else if q then 
else if r then 

else 

case key/orm {{ {( {key}*) /key} {fonn}* )}* [Macro] 
cas e is a condition,,-! that chooses one· of its· clauses to execute by comparing a value to various 

constants, which are typically keyword symbols,integers,orcharacters (but may be any objects). Its 
fonn is as -follows: 



CHAPTER 7: CONTROL STRUCTURE 97 

(case ke)iorm 
(keylisl-l consequent-/-/ consequent-/-2 ... ) 
( keylisl-2 consequent-2-/ ... ) 
( keylist-3 consequent-3-/ ... ) 
... ) 

Structurally case is much like cond (page 95), and it behaves like cond in selecting one clause 

and then executing all consequents of that clause. It differs in the mechanism of clause selection. 

The first thing case does is to evaluate. the form key/arm to produce an object called the key object. 
Then case considers each of the clauses in turn. If key is in the keylist (that is, is eql to any item 

in the keylist) of a clause, the consequents of that clause are evaluated as an implicit progn, and 

case returns what was returned by the last consequent (or nil if there are no consequents in that 

clause). If no clause is satisfied, cas e re~urns nil. 

The keys in the keylists are not evaluated; literal key values must appear in the key lists. It is an 

error for the same key to appear in more than one clause; a consequence is that the order of the 

clauses does not affect the behavior of the cas e construct 

Instead of a keylist, one may write one of the symbols t and otherwi se. A clause with such a 

symbol always succeeds, and must be the last clause (this is an exception to the order-independence 

of clauses). See also ecase (page 359) and ccase (page 359), each of which provides an implicit 

o the rw i s e clause to signal an error if no clause is satisfied. 
Compatibility note: The I.isp Machine LIsp caseq construct uses· eq for the comparison. In Lisp Machine 
LISP cas e therefore works for fixnums but not bignums. The MAC LIsp cas e q construct simply prohibits the 
use of bignums: indeed. it permits only- fixnums and symbols as clause keys. In the interest of hiding the 
fixnum-bignum distinction, and for general language consistency. case uses eq 1 in CoMMON LISP. 

If there is only one key for a clause, t.lten that key may be written in place of a list of that key, 

provided that no ambiguity results (the key should not be a cons or one of nil (which is confusable 

. with ( ), a list of no keys), t, or otherwi se). 

typecase key/onn {( type {fomt}* )}* [Macro] 
ty pee a s e is a conditional that chooses one of its clauses by examining the type of an object Its 

fonn is as follows: 

(typecase key/omt 
(type-/. consequent-/-/ consequent-]-2 ••• ) 
(type-2 consequent-2-/ •.• ) 
( type-3 consequent-3-/ ... ) 
... ) 

Structurally typecase is much like cond (page 95) or case (page 96), and it behaves like them 

in selecting one clause and then executing all consequents of that clause. It differs in the 

mechanism of clause selection. 

The first thing typecase does is to evaluate the form"key/orm to produce an object called the key 

object Then typecase considers each of the clauses in turn. The type that appears in each clause 

is a type specifier; it is not evaluated, but it a literal type specifier. The first clause for which the key 

is of that clause's specified type is selected, the consequents of this clause are evaluated as an 

implicit progn, and typecase returns what was returned by the last consequent (or nil if there 



98 COMMON LISP REFERENCE MANUAL 

are no consequents in that clause). Ifno clause is satisfied, typecase returns nil. 

As for case (page 96), the symbol t or otherwi se may be written for type to indicate that the 

clause should always be selected. See also etypecase (page 359) and ctypecase (page 359), 

each of which provides an implicit otherwi se clause to signal an error ifno clause is satisfied. 

It is permissible for more than one clause to specify a given type, particularly if one is a subtype of 

another; the earliest applicable clause is chosen. Thus for t y pee a s e, unlike cas e (page 96). the 

order of the clauses may atTect the behavior of the constnlct 

~ For example: 
J (typecase an-object 

(string ... ) -
( ( a r r ay t) ... ) 
( ( a-r ray bit) ... ) 
(array ... ) 
((or list number) ... ) 
(t ... » 

; This clause handles strings. 
; This clause handles general arrays. 
: This clause handles bit arrays. 
; This handles all other arrays. 
; This handles lists and numbers. 
; This handles all other objects. 

A COMMON LISP compiler may choose to issue a warning if a clause cannot be selected because it is 

completely shadowed by' earlier clauses. 

7.7. Blocks and Exits 

block name {form}* [Special/oml] 

$ 

The block construct executes each /om1 from left to right, returning whatever is returned by the 

last/oml. If, however, a return or-return-from form that specifies the same Ilame is executed 

during the execution of some/arm, then the results specified by the return or return-from are 

immediately returned as the value of the block construct, and execution proceeds as if the block 

had terminated normally. In this block differs from progn (page 90); the latter has nothing to 

de with return. 

The name is not evaluated; it must be a symbol. The scope of the name is lexical; only a return or 

return-from textually contained in some form can exit from the block. The extent of the name 

is dynamic. Therefore it is only possible to exit from a given run-time incarnation of a block once,: 

either normally or by explicit return. 

The defun (page 55) form implicitly puts a block around the body of the function defined; the 

block has the same name as the function. Therefore one may use return-from to return 

prematurely from a function defined by de fun. 

The lexical scoping of the block name is fully general, and has consequences that may be surprising 

to users and implementors of other LISP systems. For example, the ret urn - from in the following 

example actually does "work" in COMMON LISP as one might expect: 

.-



CHAPTER 7: CONTROL STRUCTURE 

(block loser 
(catch 'stuff 

(mapcar "(lambda (x) (if (numberp x) 
(hairyfun x) 

99 

(return-from loser nil») 
items») 

Depending on the situation, a return in COMMON LISP may not be simple. A return can break 

up catchers if necessary to get to the block in question. It is possible for a "closure" created by 

funct ion for a lambda-expression to refer to a block name as long as the name is lexically 

apparent 

return-from name [result] 
return [result] 

[Specialj01m1 . 
[Macro] 

ret urn - from is used to return from a b 1 0 c k or from such constructs as do and pro 9 that 

implicitly establish a block. The name is not evaluated, and must be a symbol. A block 

construct with the same name must lexically enclose the occurrence of return -from; whatever 

the evaluation of result produces is immediately returned from the block. (If the result form is 

omitted. it defaults to nil. As a matter of style, this form ought to be used to indicate that the 

particular value returned doesn't matter.) 

The ret urn - from fOIm itself never returns, and cannot have a value; it causes results to be 

returned from a b 1 0 c k construct If the evaluation of result produces multiple values, those 

multiple values are returned by the construct exited. 

(return form) is identical in meaning to (return-from nil form); it returns from a block 

named nil. Blocks established implicitly by iteration constructs such as do are named nil, so that 

ret urn will exit properly from such a construct 

7.8. Iteration 

COMMON LISP provides a number of iteration constructs. The loop (page 100) construct provides a trivial 

iteration facility; it is little more than a progn (page 90) with a branch from the bottom back to the top. The 

do (page 1(0) and do* (page 100) constructs provide a general iteration facility for controlling the variation 

of several variables on each cycle. For specialized iterations over the elements of a list or n consecutive 

integers, do 1 i st (page 104) and dot imes (page 104) are provid~d. The tagbody (page 107) construct is 

the most general, permitting arbitrary go (page 109) statements within it (The traditional prog (page 

108) construct is a synthesis of tagbody, block (page 98), and 1 et (page 91).) All of the iteration 

constructs permit statically defined non-local exits in the form of the return-from (page 99) and return 

statements. 



100 COMMON LISP REFERENCE MANUAL 

7.8.1. Indefinite Iteration 

loop lfonn}· [Macro1 

Each form is evaluated in tum, from left to right. When the last fonn has been evaluated, then the 
first fonn is evaluated again, and S9 on, in a never-ending cycle. The 1 00 p construct never returns 
a value. Its execution must be terminated explicitly, for example by using return (page 99) or 
th row (page 116). 

1 00 p, like most iteration constnlcts, establishes an implicit block named nil. TI1US ret urn may 
be used to exit from a 1 00 p with specified results. 

Rationale: This construct is included primarily as a primitive building block for more complicated iteration 
macros that is perhaps more easily understood by a compiler than a full-blown tagbody (page 107). 

A loop construct has this meaning only if every foml is. non-atomic (a list). The case where some 
fonn (possibly more than one) is atomic is reserved for future extensions. 

Implementation note: There have been several proposals for a powerful iteration mechanism to be called 
loop. One version is provided in Lisp Machine LISP. Implementors are encouraged to experiment with 
extensions to the loop syntax, but users should be advised that in all likelihood some specific set of extensions 
to loop will be adopted in a future revision of CoMMON LIsp. 

7.8.2. General iteration 

do ({( var [init [step]])}·) (end-test {result}·) {declaration}· {tag I statement}· 

do· ({(var [init [step]])}*) (end-test Vorm}*) {declaration}· {tag I statement}* 

[A/aero] 

[JJacro] 

The do spe<;ial form provides a generalized iteration facility, with an arbitrary number of "index 
variables". These variables are bound within the iteration and stepped in parallel in specified ways. 
They may be used both to generate successive values of interest (such as successive integers) or to 
accumulate results. When an end condition is met, the iteration terminates with a specified value. 

In' general, a do loop looks like this: 
(do « varl initl stepl) 

(var2 init2 step2) 

(varn initn stepn» 
(end-test . result) 

{declaration}· ' 
. tagbody) 

1\ do * loop looks exactly the same except that the name do is replaced by do·. 

The first i(em in. the fonn is a list of zero or more index· variable specifiers. Each index-variable 
~pecifier is a list of the name of a variable var, an initial value init (which defaults to nil if it is 

omitted) and a. stepping form step. If step is omitted, the var is not changed by the do construct 
between repetitions (though code within the: do is free to alter the value of the variable by using 
setq (page 76». 

An index .. vatiable specifier can also be just the name of a variable. In this case, the variable has an 
in~tial value of nil, and is nol changed between repetitions, 



CHAPTER 7: CONTROL STRUCTURE 101 

Before the first iteration, all the init forms are evaluated, and each var is bound to the value of its 

respective in it. This is a binding, not an assignment; when the' loop terminates the old values of 

those variables will be restored. For do, all of the init forms are evaluated before any var is bound; 

hence all the init forms may refer to the old bindings of all the variables (that is, to the values visible 

before beginning execution of the do construct). For do *, the first in; t fonn is evaluated, then 

the first va r is bound to that value, then the second init form is evaluated, then the second var is 
bound, and so on: in general, the initj torm can refer to the new binding vark if k < j, and otherwise 

to the old binding of vark. 

The second element of the loop is a list of an end-testing predicate form end-test, and zero or mO~1 

forms, called the result forms. This resembles a cond clause. At the beginning of each iteratio~. 
after processing the variables, the end-t~st is evaluated. If the result is n; 1, execution proceeds with 

the body of the do (or do*) form. If the result is not n; 1. the result fOIms arc evaluated in order as 
an implicit progn (page 90), and then do returns. do returns the results of evaluating the last 

result form. If there are no result forms, the value of do is n i 1; note that this is not quite analogous 

to the treatment of clauses in a con d (page 95) fonn. 

At the beginning of each iteration other than the first, the index valiables are updated as follows. 

All the step forms are evaluated, from left to right, and the resulting values are assigned to the 

respective index variables. Any variable that has no associated step form is not assigned to. For do, 
all the step forms are evaluated before any variable is updated; the assignment of values to variables 

is done in parallel, as ifby psetq (page 76). Because all of the step fOIms are evaluated before any 
of the variables are altered. when a step form is evaluated it always has access to the old values of all 
the index variables, even if other step forms precede it. For do*, the first step form is evaluated, 

then the value is assigned to the first va r, then the second slep form is evaluated, then the value is 

assigned. to the second var, and so on; the assignment of values to variables is done sequentially, as 

ifby setq (page 76). For either do or do*, after the variables have been updated, the end-test is 

evaluated as described above, and the iteration continues. 

If the end-test of a do form is n i 1, the test will never succeed. Therefore this provides an idiom for 

"do forever": the body of the do is executed repeatedly, stepping variables as usual, of course. 

(The 1oop, (page 100) construct performs a "do forever" that steps no variables.) The infinite.10op 

can be termiIiated by the use of return (page 99), return-from (page 99), go (page 109) to 

an outer level, or th row (page 116). 

For example: 

(do «j 0 (+ j 1») 
(n; 1 ) 

(format t "-%Input -0:" j) 
(let «item (read») 

( ; f (n u 11 item) ( return) 
(format t "-&Output -0: 

; Do forever. 

; Process items until nil seen. 
-S" j (process item»») 

The remain,der of the do form constitutes an implicit tagbody (page 107). Tags may appear 

within the body of a do loop· for use by go (page 109) statements appearing in the body (but such 

go statements may not appear in the variable specifiers, the end-lest,' or the resull forms). When the 

end of a do body is reached, the next iteration cycle (beginning with the evaluation of step forms) 



102 COMMON USP REFERENCE MANUAL 

occurs. 

An implicit block (page 98) named nil surrounds the entire do form. A return (page 
99) statement may be used at any point to exit the loop immediately. 

dec 1 are (page 125) forms may appear at the beginning of ado body. They apply to code in the 

do body, to the binding~ of the do variables, to the step forms (but not the init forms), to the 
end-test, and to the result forms. 

Compatibility note: "Old-style" MACLISP do loops, of the form (do var init step end-test . body), are not 
supported. They are obsolete, and are easily converted to a new-style do with the insertion of three pairs of 

• parentheses. In practice the compiler can catch nearly all instances of old-style do loops because they will not 
have a legal format anyway. 

Here are some exampleS of the use of do: 

(do « i 0 (+ i 1» ; Sets every null element of a-vector to zero. 
(n (array-dimension a-vector 0») 

«= in» 
(when (null (aref a-vector i» 

(setf (aref a-vector i) 0») 

The construction 
(do «x e (cdr x» 

(oldx x x» 
«null x» 

body) 

exploits parallel assignment to index variables. On the first iteration, the value of 0 1 dx is whatever 
value x had before the d a was entered. On succeeding iterations, old x contains the value that x 
had on the previous iteration. 

Very often an iterative algorithm can be most clearly expressed entirely in the step forms of a do, 
and the body is empty. 

For example: 

(do «x foo (cdr x» 
(y bar (cdr y» 
(z t() (cons (f (car x) (car y» z») 

«or (null x) (null 'y» 
(nreverse z)")} 

does the same thing as (mapcar #t f foo bar). Note that the stepcomputatio.n for z exploits, 
, the fact that variables are stepped in parallel. Also, the body of the loop is empty. Finally, the use 

of nreverse (page 204) to put an accumulated do loop result into the correct order is a standard 
idiom. 

Another exaample: 
(defun list-reverse (list) 

(do «x list (cdr x» 
(y t() {cons (car x) y») 

«endp x) y») 

Note the use of endtl (page 217)rather than null (page 61) or atom (page 61) to test for the 
end of a list; this may result in more robust code. 

As an example of nested loops, suppose that en v holds a list of conses. The car of each cons is a list ,it 



CHAPTER 7: CONTROL STRUCfURE 103 

of symbols, and the cdr of each cons is a list of equal length containing corresponding values. Such 

a data structure is similar to .~m association list. but is divided into "frames"; the overall structure 

resembles a rib-cage. A lookup function on such a data structure might be: 
(defun ribcage-lookup (sym ribcage) 

(do «r ribcage (cdr r») 
({null r) nil) 

{do {{s (caar r) (cdr s» 
(v (cdar r) (cdr v») 

({null s» 
(when (eq (car s) sym) 

(return-from ribcage-lookup (car v»»» 

(Notice the use of indentation in the above example to set off the bodies of the do loops.) 

A do loop may be explained in tenns of the more primitive constructs block (page 98), return 
(page 99), let (page 91), loop (page 100), tagbody (page 107), and psetq (page 76) as 

follows: 
(block nil 

(l et « var1 initl) 
(var2 init2) 

(varn initn» 
{declaration}· 
(loop (when end-test (return· (progn . result») 

(tagbody . tagbody) 
(psetq var1 step1 

var2 step2 

varn stepn»» 
do· is exactly like do except that the bindings and steppings of the variables are perfonned 
sequentially rather than in parallel. It is as if, in the above explanation, 1 e t were replaced· by let· 

and psetq were replaced by setq. 

7.8.3. Simple Iteration Constructs 

The constructs dol i stand dot i me s perform a body of statements repeatedly. On each iteration· a 
specified variable is bound to an element of interest that the body may examine. do 1 is t examines 

successive elements of a li~t, and dot i me s examines integers from 0 to n -1 for some specified positive 
integer n. 

.~~ 
" ~1 

The value of any of these constructs may be sp.ecified by an optional result follIl, which if omitted default$ 

to the value nil. 

The return (page 99) statement may be used to return immediately from a dol i st or dot imes form, 

discarding any following iterations that might have been perfonned; in effect, a b 1 0 c k named nil 
surrounds the construct The body of the loop is implicitly a tagbody (page 107) construct; it may contain 

tags to serve as the targets of go (page 109) statements. Declarations may appear before the body of the loop. 



104 COMMON LISP REFERENCE MANUAL 

do 1; s t (var list/ann [result/ann]) {declaration}* {tag I statement}* [Macro] 
do 1; s t provides straightforward iteration over the elements of a list: "First do 1 ; st evaluates the 

form list/onn, which should produce a list. It then executes the body once for each element in the 

list, in order, with the variable var bound to the clement. Then result/ann (a single form, not an 

implicit progn) is evaluated, and the result is the value of the do 1 i st form. (When the result/arm 
is evaluated, the control variable var is still bound, and has the value n i 1.) If result/onn is omitted, 

the result is nil. 

For example: 
(do1ist (x tea bed» (prin1 x) (prine" "» => nil 

after printing" abe d " 

An explicit ret urn statement may be used to terminate the loop and return a specified value. 

dotimes (var count/ann [result/ann]) {declaration}* {tag I statement}* [Macro] 
do time s provides straightforward iteration over a sequence of integers. The expression 

{dot imes (var count/onn result/onn) . progbody) evaluates the form count/arm, which 

should produce an integer. It then performs progbody once for each integer from zero (inclusive) to 

count (exclusive), in order, with the variable var bound to the it:lteger; if the value of count/orm is 
zero or negative, then the progbody is performed zero times. Finally, resultfonn (a single form, not 
an implicit progn) is evaluated, and the result is the va1u~ of the dot imes form. (When the 

result/ann is evaluated, the control variable var is still bound, and has as its value the number of 
times the body was executed.) If result/onn is omitted, the result is n i.1 . 

An explicit return statement may be used to terminate the loop and return a specified value. 

For example: 



CHAPTER 7: CONTROL STRUCTURE 

;;; True if the specified sub&equence of the string is a 
;;; palindrome (reads the same forwards and backwards). 
(defun palindromep (string &optional 

(start 0) . 
(end (string-length string») 

(dotimes (k (floor (- end start) 2) t) 
(unless (char-equal {char string (+ start k» 

(char string (- end k 1») 
(return nil»» 

(palindromep "Able was I ere I saw Elba") => t 

(palindromep "A man, a plan, a canal--Panama!") => nil 

(remove-if-not #'alpha-char-p ;Remove punctuation. 
"A man, a plan, a canal--Panama!") 

=> "AmanaplanacanalPanama" 

(palindromep 
(remove-if-not '#'alpha-char-p 

. "A man, a plan, a canal--Panama!"» => t 

(p·al indromep 
(remove-if-not 
#'alpha-char-p 
"Unremarkable was I ere I saw Elba Kramer, nu?"» ;> t 

(palindromep 
(remove-if-not 
#'alpha-char-p 
"A man, a plan, a cat, a ham, a yak. 

a yam, a hat, a canal--Panamal"» => t 

105 

Altering the value of var in the body of the loop (by using setq (page 76), for example) will have 
unpredictable, possibly implementation-dependent results. A COMMON LISP compiler may choose 
to issue a warning if such a variab~~ appears in a setq. 

See also do-symbol s (page 152), do-external-symbol s (page 153), and do-all-symbol s (page 
153). 

7.8.4. Mapping 

Mapping is a type of iteration in which. a function is successively applied to pieces of one or more 
sequences. The result of the iteration is a sequence containing the respective results of the function 
applications. There are several options for the way in which the pieces of the list are chosen and for what is 
done with the results returned by the applications of the function. 

The function map (page 205) may be used to map over any kind of sequence. The following functions 
operate only on lists. 



106 COMMON USP REFERENCE MANUAL 

mapcar junction list &res t 'more-Iists 
map 1 is t junction list&res t more-lists ~ 

mapc junction list &rest more-lists 

I Function] 
[ Function] 
[Function] 

map 1 junclioll list &res t more-lists . [Function1 
mapean junction list &res t more-lists [Function] 
mapeon junction list &rest more-lists [Function] 

For each these mapping functions, the first argument is a function and the rest must be lists. The 

function must take as many arguments as fuere are lists. 

ma p car operates on successive elements of the Jists. First the function is applied to the car of each 

list, then to the cadr of each list, and so on. (Ideally all the lists are the same length; if not, the 

iteration terminates when the'shortest list runs out, and excess elements in other lists are ignored.) 

The value returned by map car is a list of the results of the successive calls to the function. 

For example; 
(mapcar #'abs '(3 -4 2 -5 -6» => (3 4 2 5 6) 
(mapcar #'cons '(a b c) '(1 23» => «a. 1) (b. 2) (c .3» 

ma p 1 i s t is like rna p car except that the function is applied to the list and successive cdr's of that 

list rather than to successive elements of the list 

For example; 
(maplist #'(lambda (x) (cons 'foo x» 

'(a b cd» 
=> «foo abc d) (foo bed) (foo c d) (foo d» 

(maplist#'(lambda (x) (if. (member (car x) (cdr x» 0 1») 
, (a b a C d. b c» _ 

~> (0 0 1 0 1 1 1) 
; An entry is 1 if the corresponding element of the input 

list was the last instance of that element in the input list. 

map 1 and mapc are like map 1 is t and mapcar respectively, except that they do not accumulate 

the results of calling the function~ 
Compatibility note: In all LIsp systems since I.lSP 1.5, map 1 has been called map. In the chapter on sequences 
it is explained why this was a bad choice. Here the name map is used for the far more useful generic sequence 
mapper, in closer accordance to the computer science literature, especially the growing body of papers on 
functional programming. 

These functions are used when the function is being called merely for its side-effects, rather than its 

returned values. The. value returned by map 1 or mapc is the second argument, that is, the first 
sequence argument 

mapean and mapeon are like mapcarand map 1 is t respectively, except that they combine the 

results of the function using nconc (page 221) instead of 1 i st. That is, 

(mapcon f xl .•. xn) 
<=> (apply #'ncone (maplist·/ xl ... xn» 

and similarly for the relationship between mapcan and m~pcar, Conceptually, these functions 

, allow the mapped function to return a variable number of items to be put into the output list This 

is particularly useful f'1r effectively returning zero or one item: 
(mapcan #'(lambda (x) (and (numberp x) (list x») 

'(a 1 b c 3 4 d 5» . 
=> (1 3 4 5) 



CHAPTER 7: CONTROL STRUCTURE 107 

In this case the function serves as a filter; this is a standard LISP idiom using rna pea n. (The 

function r erno v e - ; f - not (page 207) might have been useful in this particular context, however.) 

Remember that ncone is a destructive operation, and therefore so are rnapean and mapcon; the 

lists returned by thefonclion are altered in order to concatenate them. 

Sometimes a do or a straightforward recursion is preferable to a mapping operation; however, the 

mapping functions should be used wherever they naturally apply because this increases the clarity 

of the code. 

The fimctional argument to a mapping function must be acceptable to ap p , y: it cannot be a macro 

or the name of a special form. Of course, there is nothing wrong with using functions that have 

&opt ;onal and &rest parameters. 

7.8.5. The "Program Feature" 

LISP implementations since LISP 1.5 have had what was originally called "the program feature", as if it were 

impossible to write programs without it! The prog construct allows one to write in an ALGOL-like or 

FORTRAN-like statement-oriented style, using go statements, which can refer to tags in the body of the "prog. 

"Modem LISP programming style tends to use prog rather infrequently. The various iteration constructs, such 

as do (page 100), have bodies with the characteristics of a prog. (However, the ability to use go statements 

within iterations constructs is very seldom used in practice.) 

prog actually performs three distinct operations: it binds local variables, it permits use of the return 

statement, lli,d it pennits use of the go statement. In COMMON LISP. these three operations hav.e been 

separated into three distinct constructs: 1 et (page 91), b 1 oel< (page 98). and tagbody (page 107). These 

three constructs may be used independently as building blocks for other types of constructs. 

tagbody {tag I statement}* [Special/onn] 

The part of a prog after the variable list is called the body. An item in the body may be a symbol 

or an integer, in which case it is called a lag, or a list, in which case it is called a statement. 

Each element of the body is processed from left: to right A tag is ignored; a statement is evaluated, 

and its results are discarded. If the end of the body is reached, the tagbody returns n i 1. 

If ( go tag) is evaluated, control jumps to the part of the body labelled with the tag. 
Compatibility note: The "computed go" feature of MAc LISP is not supported. The syntax of a computed go is 
idiosyncratic. and the feature is not supported by Lisp Machine LISP. NIL, or INTER.uSP. 'f> 

The scope of the tags established by a tagbody is lexical, and the extent is dynamic. Once a 

tagbody construct has been exited, it is no longer legal to go to a tag in its body. It is pennissible 

for a go to jump to a tag body that is not the inncnnost tagbody construct containing that go; 

the tags established by a tagbody will only shadow oth~r tags of like name. 

The lexical Seoping of the go, targets named by tags is fully general, and has consequences that may 

be surprising to users and implementors of other LISP systems." For example, the go in the 

" following example actually does "work" in COMMON LISP as one might expect: 



108 COMMON USP REFERENCE MANUAL 

(tagbody 
(catch 'stuff 

(mapcar #'(lambda (x) (if (numberp x) 

(return) 
lose 

items» 

(error "I lost big!"» 

( h air y fun' x) 
(go lose») 

Depending on the situation, a go in COMMON LISP does not necessarily correspond to a simple 

machine "jump" instruction! A go can break up catchers if necessary to get to the target. It is 

~ possible for a "closure" created by funct ; on for a lambda-expression to refer to a go target as 

i long as the tag is lexically apparent. See chapter 3 for an elaborate example of this. 

prog ({var I (var [init])}*) {declaration}* {tag I statement}* 

prog* ({ var I (var [init])}*) {declaration}* {tag I statement}* 

A typical prog looks like: 

[Macro] 

[Macro] 

(prog (var1 var2 .( var3 init3) var4 (var5 init5» 
{declaration}* 

tag1 

tag] 

. slalementi 

statement2 
statement3 
statement4 

statement5 

) 

The list after the keyword prog is a set of specifications for binding varI. var2, etc., which are 

temporary variables, bound locally to the prog. This list is processed exactly as the list in a 1 et 

(page·91) statement: first all the init forms are evaluated from left to right (where ni 1 is used for 

any omitted init fonn), and then the variables are all bound in parallel to the respective results. Any 

declaration appearing in the prog is used as if appearing at the top of the 1 et body. 

The body of the prog is executed as if it were a tagbody (page 107) construct; the go (page 

109) statement may be used to transfer control to a tag. 

Apr 0 9 implicitly establishes a b 1 0 C k(page 98) named nil around the entire p r 09 construct, so 

that return (page 99) may be used at any time to ,exit from the prog construct 

Here is a fine example of what can be done withp r og: 



CHAPTER 7: CONTROL STRUCTURE 109 

go tag 

(defun king-of-confusion (w) 
(prog (x y z) ;Initializex,y,ztonil 

loop 
(setq y -(car w) z (cdr w» 

(cond «null y) (return x» 
«null z) (go err») 

rejoin 

err 

(setq x (cons (cons (car y) (car z» x» 
(setq y (cdr y) z (cdr z» 
(go loop) 

(cerror "Will ignore extraneous items" 
"Mismatch - gleepl -5" y) 

(setq z y) 
(go rejoin») 

which is accomplished somewhat more perspicuously by: 
(defun prince-of-clarity (w) 

(do «y (car w) (cdr y» 
(z (cdr w) (cdr z» 
(x 'C) (cons (cons (car y) (car z» x») 

«null y) x) 
(when (null z) 

(cerror "Will ignore extraneous items" 
"Mismatch ~ gleepl -5" y) 

(setq z y»» 

The prog construct may -be explained in terms of the simpler con~tructs block (page 98), , et 

(page 91). and tagbody (page 107) as follows: 

(p rag variable-list {declaration}* . body) 
<::> (b lock n; 1 (1 et variable-list {declaration}* (tagbody . body») 

The prog* special fonn i~ almost the same as prag. The only difference is that the binding and 
initialization of the temporary variables is done sequentially, so that the init fonn· for each· one can 
use the values of previous ones. 'Iberefore prog* is to prog as let* (page 92) is to let (page 
91). 
For example: 

(prog* «y z) (x (car y») 
(return x» 

returns the car of the value of z. 
~ 

~ 
[Special !omi] 

t 

The. (go tag) special fonn is used to do a "go to" within a tagbody (page 107) construct The 

tag must be a symbol or an integer; the lag is not evaluated go transfers control to the point in the 

body labelled by a tag eq' to the one given. If there is no such tag in the body, the bodies of 
lexically containing tagbody constructs (if any) are examined as well. It is an error if there is no 

matching tag lexically visible to the point of the go. 

The go form does not ever return a value. 

As a matter of style, it is recommended that the user think tw.ice before using a ~o. Most purposes 



110 COMMON LISP REFERENCE MANUAL 

of go can be accomplished with one of the iteration primitives, nested conditional forms, or 

return-from (page 99). If the use of go seems to be unavoidable,· perhaps the control Structure 

implemented by go should be packaged up as a macro definition. 

7.9. Multiple Values 

Ordinarily the result of calling a LISP function is a single LISP object. Sometimes, however, it is convenient 

for a function to compute several objects and return them. COMMON LISP provides a mechanism for handling 

multiple values dire(:tly. This mechanism is cleaner and more efficient than the usual tricks involving 

returning a list of results or stashing results in global variables. 

7.9.1.~Constructs for Handling Multiple Values 

Nortilally multiple values are not used. Special foons are required both to produce multiple values and to 

receiver them. If the caller of a function does not request multiple values, but the called function produces 

multiple values, then the first value is given to the caller and all others are discarded (if the called function 

produc;es zero values then the caller gets nil as a value). 

The primary primitive for producing mUltiple values is val ues (page 110), which takes any number of 

arguments and returns that many values. If the last form in the body of a function is a val u e s with three 

arguments, then a call to that function will return three values. Other special forms also produce multiple 
values,"but they can be described in terms of va 1 ues. Some built-in COMMON LISP functions (such as 

floor (page 175) return multiple values; those that do are so documented. 

The. special fonns for receiving multiple values are mu 1 tip 1 e - val u e -1 i s t (page Ill), 
mul t ipl e-val ue-call (page Ill), mul t ipl e-val ue-progl (page 112), mul t ipl e-val ue-bi nd 

(page 112), and mul tip 1 e-va 1 ue-setq (page l12). These specify a fonn to evaluate and an indication of 

where to put the values returned by that fotm. -

values &rest args 
Returns all of its· arguments, in order, as values. 

For example: 
(defun polar (x y) 

(values (sqrt (+ (* x x) (* y y») (atan y x») 

(multiple-value-bind (r theta) (pOlar 3.0 4.0) 
(list r theta» 

=> (5. OD. 9272952) 
The expression (va1~es) tetUrns zero values. 

[Function] 

Sometimes it is desirable to indicate explicitly that a function will return exactly one value. For 

example, the funttiOI: 
(defun foa (x y) 

(floor (+ x y) y}) 

will return two values because'1 oot' (page 175) returns two values. It may be that the second 



CHAPTER 7: CONTROL STRUCTURE III 

. value makes no sense, or that for efficiency reasons it is desired not to compute the second value. 
The val u e s function is the standard way to indicate that only one value is to be returned: 

(defun foo (x y). 
(valu~s (floor (+ x y)y») 

This works because v a 1 u e s returns. exactly one value for each of its argument fonns; as for any 
function call, if any argument form to val u e s produces more than one value. all but the first are 
discarded. 

There is absolutely no way in COMMON LISP for a caller to distinguish between returning a single 
value in the ordinary manner and returning exactly one "multiple value". For example. the values 
returned by the expressions (+ 1 2) and (val ue s (+ 1 2» are identical in every respect: th~ 
single value 3. 

mu1tip1e-va1ues-1imit [Constant] 
The value of mul tip 1 e-va 1 ues -1 imi t is a positive integer that is the upper exclusive bound 
on the number of values that may be returned from a function. This bound depends on the 
implementation, but will not be smaller than 20. (Implementors are enouraged to make this limit as 
large as practicable without sacrificing performance.) See 1 amb da - parameter s -1 im it (page 
54) and ca 1 J -ar gumen ts -1 i mi t (page 90). 

val u e s - 1 i s t list [Function] 

Returns as multiple values all the elements of list. 

For example: 
(values-list (list a be» <=> (values a b e) 

In general, 
(values-l ist list) <=> (apply "values list) 

but val u e s -1 i s t may be clearer or mote efficient 

mu1tip1e-va1ue-1ist jOnn [Macro] 
mu 1 tip 1 e - val u e -1 i s t evaluates fonn, and retUrns a list of the multiple values it returned. 

For example: 
(mu1tip1e-va1ue-1is~-(f1oor -3 4) m> (-1 1) 

.~ 

mu 1 tip 1 e - val ue - call jUnction {fonn}* [Special fo~l 
mu 1 tip 1 e - val u e - call first evaluates jUnction to obtain a function, and then evaluates all of the 
fonns. All the values of the fonns are gathered together (not just one value from each), and given as 
arguments to the functio~. The result of mu 1 tip 1 e - val u e - c a 11 is whatever is returned by the 
function. 

For example: 
(mu1tip1e-value-ca11 #'+ (floor 5 3) (floor 7 3» 

<=> (+ 1 2 2 1) => 6 
(mu1tip1e-value-1ist jbnn) <=> (mu1tiple-value-~a11 "list fonn) 



112 COMMON LISP REFERENCE MANUAL 

mul tip 1 e-va 1 ue-prog 1 fohn ,iform}* [Special/ann] 
mu 1 tip 1 e-v a 1 ue -prog t~evalu.ates the first/arm and saves all the values produced by that form. 

It then evaluates the other /onns from left to right, discarding their values. The values produced by 

the first/onn are returned by multiple-value-prog1. See progl (page 90), which always 

returns a single value. 

multiple-value-bind ({var}*) values-form {declaration}* {form}* [Macro] 
The values-form is evaluated, and each of the variables var is bound to the respective value returned 

.1> by that fonn. If there are more variables than values returned, extra values of nil are given to the 

, remaining variables. If there are more values than variables, the excess values are simply discarded. 
4. The variables are bound to the values over the execution of the forms, which make up an implicit 

~ progn. 
Compatibility nole: This is compatible with Lisp Machine I.lSP. 

For example: 
(multiple-value-bind (x) (floor 5 3) (list x» => (l) 
(multiple-value-bind (x y) (floor 5 3) (list x y» => (1 2) 
(multiple-value-bind (x y z) (floor 5 3) (list x y z» 

=> (l 2 nil) 

multiple-value-setq variables form [Macro] 
The variables must be a list of variables. The foml is evaluated, and the ~ariables are set (not 

bound) to the values returned by that form .. If there are more variables than values returned, extra 

values of nil are assigned to the remaining variables. If there are more values than variables, the 

excess values are simply discarded. 
Compatibility note: In Lisp Machine LISP this is called mul t ipl e-val ue. The added clarity of the name 
mu 1 tip 1 e - val u e - set q in COMMON LISP was deemed worth the incompatibility with Lisp Machine LIsp. . 

mu 1 tip 1 e - val u e - set q always returns a single value, which is the first value returned by form, 
or nil· if fonn produces zero values. 

7.9.2. Rules Governing the Passing of Multiple Values 

It is often the case that the value of a special form or macro call is defined to be the value of one of its 

sub-f0ffi,ls. For example, the value of a cond is the value of the last-form in the selected clause. In most such 

cases, if!the sub-form produces multiple values, then the original form will also produce all of those values. 

This pafsing back of multiple values of course has no effect unless eventually one of the special forms for 

receivin~multiple values is reached. 

To be~ explicit, multiple values can result from a special form under precisely these circumstances: 

Evaluation and Application 

.. e val (page 267) returns multiple values if the form given it to evaluate produces multiple 
: values . 

• apply (page 89), funcall (page 89), and multiple-value-call (page Ill), pass 
back multiple values from the function applied or called 

•• 



CHAPTER7:CO~iROLSTRUCTURE 

Implicit p r og n contexts 

• The special form pro 9 n (page 90) passes backs multiple values resulting from evaluation of 
the last subfonn. Other situations referred to as "implicit progn", where several forms are 
evaluated and the results of all but the last form are discarded, also pass back multiple values 
from the last fonn. These situations include the body of a lambda-expression, in particular 
those constIucted by defun (page 55), defmacro (page 118). and deftype (page 41). 
Also included are bodies of the constructs eva l-when (page 57), progv (page 93), , et 
(page 91), let· (page 92), when (page 95). unless (page 95), block (page 98), 
mul tip 1 e-va 1 ue-b i nd (page 112), and catch (page 114), as well as clauses in such 
conditional constructs as case (page 96), typecase (page 97), ecase (page 359), 
etypecase (page 359), ccase (page 359), and ctypecase (page 359). 

Conditional constructs 

• if (page 95) passes back multiple values from whichever subform is selected (the then form 
or the else fonn). 

• and (page 68) and or (page 68) pass back multiple values from the last subform, but not 
from subfonns other than the last 

• cond (page 95) passes back mUltiple values from the last subforr.l of the implicit progn of 
t~eselected clause. If, however, the clause selected is a singleton clause, then only a single 
value (the non-nil predicate value) is returned. This is tnle even if the $ingleton clause is the 
last clause of the condo It is not oermitted to treat a final clause "( x)" as being the same as 
"( t x)" for this r~ason; the latter passes back multiple values from the fonn x. 

Relurningfrom a block 

• The block (page 98) construct passes back multiple values from its last subform when it exits 
nonnally. If return-from (page 99) (or return) is used to tenninate the block 
prematurely, then return-from passes back multiple values from its subtonn as the values 
of the tenninated b 1 0 c k. Other constructs that create implicit blocks, such as do (page 100), 
dol i st (page 104), dot imes (page 104), prog (page 108), and prog* (page 108), also 
pass back multiple values specified by retu-rn-from (or return (page 99)}. 

• do passes back multiple values from the last form of the exit clause. exactly as if the exit clause 0 

were a cood clause. Similarly, doli st and dot imes pass back multiple values from the 
result/orm if that is 0 executed. These situations are all examples 0 of implicit uses of 
return-from. 

• Throwing out of a catch 
The catch (page 114) construct returns multiple values if the result form in a throw (page 
116) exiting from such a catch produces multiple values. 

Miscellaneous situations 

• mul tip' e-ova 1 ue-progl .(page 112) passes back multiple values from its first subfonn. 
However, prog 1 (page 90) always returns a single value. 

• unwi nd-protect (page 115) returns multiple values if the fonn it protects does. 

113 



114 COMMON LISP REFERENCE MANUAL 

• th e (page 131) returns multiple values if the fonn it contains does. 

Among special forms that never pass back multiple values are set q (page 76), mu 1 tip 1 e.~ va.l ue - set q 

(page 112), prog 1 (page 90), and prog2 (page 91). The conventional way to force only one value to be 

returned from a form x is to write (val ue s. x). 

, TIle most important rule about multiple values is: 

No matter how many values a form produces, 
if the· form is an argument form in a function call, 

then exactly ONE value (the first one) is used. 

For ~~ample, if you write (cons (floor xl), then cons will always receive exactly one argument 
(which 'is of course an error), even though floor returns two values. To pass. both values from floor to 
con S, one must write something like {mu 1 tip 1 e-v a lue- c a 11 #' con s (f loor x». In an ordinary 
function call, each argument form produces exactly one argument; if such a form returns zero values, nil is 

used fJr the argument, and if more than one value, all but tl:le first are discarded. Similarly, conditional 
constructs such as if that test the value ofa form will use exactly one value (the first) from that form and 
discard the rest, or use n i 1 if zero values are returned. 

7.10. L>ynamic Non-local Exits 

COMMON LISP provides a facility for exiting from a complex process in a non-local. dynamically scoped 
manner. There are two classes of special forms for this purpose, called catch forms and throw forms, or simply 
catches and throws. A catch form evaluates some subfonns in such· a way that, if a throw form is executed 
during such evaluation, the evaluation is aborted at that point and the catch form immediately returns a value 
specified by the throw. Unlike b lock (page 98) and return (page 99), which allow for so exiting a block 
form from any point lexically within the body of the bloc k, the catch/throw mechanism works even if the 
throw form is not textually within the body of the catch fonn. The throw need only occur within the extent 
(time span) of the evaluation of the qody of the' catch. This is analogous to the distinction between 
dynamically bound (special) variables and lexically bound (local) variables. 

7 .IO.1.Catch Forms 

catc h, . tag {form}* [Special form] 
The catch special form is the simplest" catcher. The funn tag is· evaluated first to produce an 
object that names the cat~h; it may be any LISP object. A catcher is then established with the object 
as the tag. The forms are evaluated as an implicit pr 09.0, and the results of the last form are 
returned, except that if during the evaluation of the forms a throw should be executed, such that the 
tag of the throw ma(ches (is eq to) the tag of the catch, and the catcher is the most recent 
outstanding catcher with: that tag, then the evaluation of the forms is aborted and the results 
specified by the throw are immediately returned from the catch expression. The catcher 



CHAPTER 7: CONTROL STRUCfURE 115 

established by the catch expression is disestablished just before the results are returned. 

The tag is used to match up throws with catches. (catch t foo form) will catch a (throw 

'foo fonn) but not a (throw 'bar form). It is an error if throw is done when there is no 

suitable catch ready to catch it 

Catch tags are compared using e q t not e q 1 ; therefore numbers and characters should not be used 

as catch tags. 
Compatibility note: The name catch comes from MACLIsp, but the syntax of catch in COMMON LIsp is 
different The MACLIsp syntax was ( cat c h /onn lag). where the tag was not evaluated. 

unwi nd-protect protected-fOlm {cleanup-fo1m}· [Special form] 

Sometimes it is necessary to evaluate a form and make sure that certain side-effects take place after 
the form is evaluated; a typical example is: 

(progn (start-motor) 
(drill-hole) 
(stop-motor» 

The non-local exit facility of Lisp creates a situation in which the above code won't work, however: 

if d rill - h ole should do a throw to a catch that is outside of the pro 9 n fonn (perhaps because 

the drill bit broke), then (stop-motor) will never be evaluated (and the motor will presumably 
be Ie ft running). This is particularly likely if d rill - h ole causes a LISP error and the user tens the 

error-handler to give up and abort the computation. (A possibly more practical example might be~ 
(prog2 (open-a-file) 

(process-file) 
(close-the-file» 

where it is desired always to close the file when the computation is terminated for whatever reason~) 

In order to allow the example hole-drilling program to work, it can be rewritten using 

unwi nd-protect as follows: 
(unwind-protect 

(progn (start-motor) 
(drill-hole» 

(stop-motor» 

If drill-hole does a throw that attempts to quit out of the unwind-protect, then 

(stop-motor) will be executed. 

As a general rule, unwi nd-protect guarantees to execute all the c1eanup-fonns before exiting, 

whether it terminates normally or is aborted by a throw of some kind. un win d - pro t e c t returps 

whatever results from evaluation of· the protected-jorm, and discards all the results from the 

cleanup-forms. 

It should be emphasized that unwi nd-protect protects against all attempts to exit from the 

protected form, including not only such "dynamic exit" facilities such as throw (page 116) but 

also such "'lexical exit" facilities as go (page 109) and return-from (page 99). Consider this 

situation: 



116 

(tagbody 
(let «x 3» 

(unwind-protect 

out 
... ) 

(if (numberp x) (go out» 
(print x») 

COMMON USP REFERENCE MANUAL 

When the go is executed, the call to p r i ntis executed first, and then the transfer of control to the 

tag 0 u t is completed. 

7.10.2. Throw :Forms 

throw tag result [Special/arm] 

The th row special fonn is the only explicit thrower in COMMON LISP. (However, errors may cause 

, throws to occur also.) The tag is evaluated first to produce an object called the throw tag; then the 

result form is evaluated; and its results are saved (if theresull form produces multiple values, than 

all the values are saved). The most recent outstanding catch whose tag matches the throw tag ~ 

exited; the saved results are returned as the value(s) of the catch. A ca tch matches only if the 

catch tag is e q to the throw tag. 

In the process dynamic variable bindings are undone back to the point of the catch, and any 

intervening unwi nd-protect cleanup code is executed. The result fonn is evaluated before the 

unwinding process commences, and whatever results it produces are returned from the catch. 

If there is no outstanding catcher whose tag matches the throw tag, no unwinding of the stack is 

performed, and an error is signalled. When the error is signalled, the outstanding catchers and the 

dynamic variable bindings are those in force at the point of the throw. 
hnpicmcntation note: These requirements imply that throwing should typically make two passes over the 
control stack. In the first pass it simply searches for a matching catch~ In this search every catch must be 
considered, but every un win d - pro tee t should be ignored. On the second pass the stack is actually 
unwound. one frame at a time. undoing dynamic bindings and outstanding unwind-protect constructs in 
reverse order of creation until the matching catch is reached. 

Compatibility note: The name throw comes from MAcusp, but the syntax of throw in COMMON USP is 
different ~e MAcusp syntax was (throw form tag). where the tag was not evaluated. 



Chapter 8 

Macros 

h-

The COMMON LISP macro facility allows the user to define arbitrary functions that convert certain LIS~' 
forms into different forms before evaluating or compiling them. This is done at the expression level, not at 

the character-string level as in most other languages. Macros are important in the writing of good code: they 

make it possible to write code that is clear and elegant at the user level, but that is converted to a more 

complex or more efficient internal form for execution. 

When eval (page 267) is given a list whose caris a symbol, it looks for local definitions of that symbol (by 

fl et (page 93),1 abel s (page 93), and macrol et (page 93»; if that fails, it looks for a global definition. 

If the definition is a macro definition, then the original list is said to be a macro cal!. Associated with the 

definition will be a function of two arguments, called the expansion/unclion. This funclion is called with the 

entire macro call as its first argument (the second, argument is a lexical environment); it must return some new 

LISP form, called the expansion of the macro call. (Actually, a more general mechanism is involved; 'see 

macroexpand (page 123).) This expansion is then evaluated in place of the original form. 

When a function is being compiled, any macros it contains are expanded a~ compilation time. This means 

that a macro definition must be se.en by the compiler before the first use of the macro. 

More generally, an implementation of COMMON LISP has great latitude in deciding exactly when to expand 

macro calls within a program. For example, it is acceptable for the defun (page 55) special fonn to expand 

all macro calls within its body at the tithe the de fun fonn is executed, and record the fully expanded body as 

the body of the function being defined. (An implementation might even choose always to compile functions 

defined by defun, even ~hen operating in an "interpretive" model) 

Macros should be written in such a way as to depend as little as possible on the execution environment to 
produce a correct expansion. To ensure consistent b~havior, it i~ best to ensure that all macro definitions are 

available (to the interpreter, compiler, or whatever) before any code containing calls to those macros is 
introduced. 

In COMMON LISP, macros are not functions. In particular, macros cannot be used as functional arguments 

to such functions as apply (page 89), funcall (page 89), or map (page 205); in such situations, the list 

representing the "original macro call" does not exist, and cannot exist, because in .some sense the arguments 

have already been evaluated 

-117 -



118 . COMMON LISP REFERENCE MANUAL 

8.1. Defining Macros 

ma;cro~funct ion symbol [Function] 

The argument must be a symbol. If the symbol has a global function definition that is a macro 

definition, then the expansion function (a function of one argument, the macro~call fonn) is 

returned. If the symbol has no global function definition, or has a definition as an ordinary 

function or as a special _ form but - not as a macro, then nil is returned. (The function 

macroexpand (page 123) is the best way to invoke the expansion function.) 

~,-_-.. _It is possible for both macro-function and special-form-p (page 75) to be true of a 

~' .. -- symbol. This is possible beca~se an implementation is permitted to implement any macro also as a 

; special fonn for speed. On the other hand, the macro definition must be available for use by 

! programs that understand only the standard special forms listed in Table 5-1. _ 

, macro-·funct i on cannot be used to determine whether a symbolnmTIes a locally defined macro 

, established by macro] et (page 93). It can examine only global definitions. 

i 
setf (page 78) maybe used with macro-funct i on to install a macro as a symbol's global 

~- - function definition: 

(setf (macro-function symbol) fn) 

The value installed must be a function that accepts one argument, the entire macro call, and 

computes the expansion for that call. Performing this operation causes the symbol to have only that 

macro definition as its global function definition; any previous definition, whether as a macro or as 

a function, is loSt. It is an error to attempt to redefine the name of a sp>!cial form (see Table 5-1). 

defma,cro name lambda-list {declaration I doc-string}* {fonn}* [Macro] 

defmacro is a macro-defining macro that arranges to decompose the macro call form in an elegant 

and useful way. defmacro has essentially the same syntax as defun (page 55): name is-the 

symbol whose macro-definition we are creating, lambda-list is similar in fonn to a lambda-list, and 

theforms consti,tute the body of the expander function. The defmacro construct arranges to 

install this expander function, as the global macro-definition of name. The expander function is 

effectively defined in the global environment; lexically scoped entities established outside the 

.,'_:.',-.; defmacro form thatwou,ld ordinarily be lexically apparent are not visible within the body of the 
expansion function~ The name is returned as the value of the defmacro form. 

~r 
'~' "If we view the macro call as a list containing a function name and some argument fonns, in effect 
ji 

: the expander function and the list of (unev-aluated) argument forms is given to ap ply (page 89). 

';, The parameter. specifiers ,are processed· as 'for any lambda-expression, using the macro-call 

argument forms as the arguments. Then the body' forms are evaluated as an implicit pro 9 n, and 

. the value of the last fonn is returned as the expansion of the macro call. 

'" If the optional documentation string doc-string is present (if not fo1l9wed by a declaration, it may be 

, present only if at least one form is also specified, as it is otherwise taken to be a form), then it is 

attached to the name as a documentation string of type funct ion; see documentat i on (page 

362). 



CHAPTER 8: MACROS 119 

Like the lambda-list in a defun, a defmacro lambda-list may contain the lambda-list keywords 

&optional, &rest, &key,&allow-other-keys, and &aoux. For &optional and &key 

parameters, initialization fonns and "supplied-p" parameters may be specified, just as for de fun. 

Three additional tokens are a]]owed in defmacro variable lists only: 

&body This is identical in function to &res t. but it informs certain pretty-printing and 
editing functions that the remainder of the form is treated as a body, and should 
be indented accordingly. (Only one of &body or &res t may be used.) 

&who 1 e This is followed by a single variable that is bound to the entire macro can foml; 
this is the value that the macro. detinition function receives as its single 
argument. &who 1 e and the following variable should appear first in the 
lambda-list, before any other parameter or lambda-list keyword. r 

&env ironment This is followed by a single variable that is bound to an environment 
representing the lexical environment in which the macro call is to be interpreted. 
This environment may not be the complete lexical environment; it should be 
used only with the function macroexpand (page 123) for the sake of any local 
macro definitions that the macrol et (page 93) construct may have eSL1~lished 
within that lexical environment. This is useful primarily in the rare cases where a 
macro definition must explicitly expand any macros in a subfonn of the macro 
call before computing its own expansion. 

See 1 ambda-l i st-keywords (page 54). 

defmacro, unlike any other COMMON LISP construct tllat haS a lambda-lis! as part of its syntax, 

provides an additional facility known as destrucluring. Anywhere in the lambda-list where a 

parameter name may appear. and where ordinary lambda-list syntax (as described in section 5.2.2) 
does not otherwise allow a list, a lambda-list may appear in place of the parameter name. When 

this is done, then the argument fonn that would match the parameter is treated as a (possibly 

dotted) list, to be used as an argument forms list for satisfying the parameters in the embedded 

lambda-list As an example, one could write the macro definition for do 1 is t (page 104) in this 

manner: 
(defmacro dolist «var listform &optional resultform) 

&rest body) 
• 0 •• ) 

More examples of embedded lambda-lists in defmacro are shown below. 
.1 

Another destructuring rule is that defmacro allows any lambda':list (whether top-level o~~ 

embedded) to be dotted. ending in a parameter name. This situation is ·treated exactly as if thet 
parameter name that ends the list had appeared preceded by &ras t. For example, the definition 

skeleton for do 1 i s t shown above could instead have been written 
(defmacro dolist «var listform &optional resultform) 

. body) 
... ) 

If the compiler encounters a .defmacro, the new macro is added to the compilation environment, 

and a compiled form of the expansion function is also added to the output file so that the new 

macro ~ll be operative at runtime. If this is not the desired dTect, the defmacro fonn can be 



120 COMMON LISP REFERENCE MANUAL 

wrapped in an e val - w hen (page 57) construct 

It is permissible to use defmacro to redefine a macro (for example, to install a corrected version of 

an incorrect definition!), or to redefine a function as a macro. It is an error to attempt to redefine 

the name of a special fonn (see Table 5-1) as a macro. 

See also macrolet (pa&e 93), which establishes macro definitions over a restricted lexical scope. 

Suppose, for the sake of example, that it were desirable to implement a conditional construct analogous to 

the FORTRAN arithmetic IF statement. (This of course requires a cenain stretching of the imagination and 

suspension of disbelief.) The construct should accept four forms: a test-value, a neg-jonn, a zero-jonn, and a 

pos-form. One of the last three fonns is chosen to be executed according to whether the value of the test-fonn 
is positive, negative, or zero. 

r 

llsing de fmac r 0, a definition for such a construct might look like this: 
(defmacro arithmetic-if (test neg-form zero-form pos-form) 

(let «var (gensym») 
t(let «var ,test» 

(cond «< tvar 0) ,neg-form) 
«= tvar 0) ,zero-form) 
(t .pos-form»») 

(Note the use of the backquote facility in this definition. See section 22.1.3. Also note the use of gensym 

(page 137) to generate a new variable name. This is necessary to avoid conflict with any ,variables that might 

be referred to in neg-jorm~ zero-fonn, or pos-fonn.} 

If the above form is executed by the interpreter, it will cause the function definition of the symbol 

a r' i t hme tic - i f to be a macro associated with which is a two-argument. expansion function roughly 

equivalent to: 
(lambda (calling-form'environment) 

(declare (ignore environment» 
(let «var (gensym») 

(list 'let 
(list (list '~ar (cadr'calling-form») 
(1 i st 'cond 

(list (list '< var '0) (caddr calling-form» 
{list (li~t '= var '0) (cadddr calling-form» 
(list 't (fifth calling-form»»» 

(The lambda-expression is produced by the defmacro declaration. The calls to 1 i st are the (hypothetical) 

result o~ the backquote( t ) macro character and its associated commas. The precise macro expansion function 

may dePend on the implementation, for example providing some degree of explicit error checking on the 

number of argument forms in the macro caU.) 

Now, ifeva1 encounters 
(arithmetic-if (- x 4.0) 

(- x) 
(error "Strange ze~o") 
x) 



CHAPTER 8: MACROS 

this will be expanded into something like· 
(let «g407 (- x 4.0»)" 

( con d « < g407 0) (- ·x» 
«= g407 0) (error "Strange zero"» 
(t x») 

121 

and eva 1 tries again on this new form. (It should be clear now that the backquote faci1ity is very useful in 

writing macros, since the form to be returned is normally a complex list structure, typically consisting of a 

mostly constant template with a few evaluated forms here and there. The backquote t.emplate provides a 

"picture" of the resulting code, with places to be filled in indicated by preceding commas.) 

To make the example even more tasteless, we might allow the pos-/onn and zero-fonn to be omitted, 

allowing their values to default to n·i 1 , in much the same way that the else fonn of a COMMON LISP ; f (page 

95) construct may be omitted: 
(defmacro arithmetic-if (test neg-form &optional zero-form pos-form) 

(let «var (gensym»). 
'{let {(var ,test» 

(cond «< ,var 0) ,neg-form) 
{(= ,va~ 0) ,zero-form) 
(t ,pos-form»») 

Then one could write 
(arithmetic-if (- x 4.0) (print x» 

which would be expanded into something like 
(let {(g408 (- x 4.0») 

(cond ({< g408 0) (print x». 
({= g408 0) nil) 

o(t nil») 

The resulting code is correct but rather silly-looking. One might rewrite the 1l1acr~ definition to produce 

better code when pos-/omz and possibly zero-form are omitted, or one might simply rely on the COMMON LISP 

implementation to provide a compiler smart enough to improve the code itself. 

Destructuring is a very powerful facility tnat allows the defmacro lambda-list to express the structure ofa 

complicated macro-call syntax. If no lambda-list keywords appear, then the defmacro lambda-Jist is simply 

a list, nested to some extent, containing parameter names at the leaves. The macro-call fonn must have the 

same list structure. For example, consider this macro definition: 
{defmacro halibut {(mouth eyet eye2) 

Now consider this macro call: 

({fint 1engtht) (f1n2 length2» 
tail) 

(halibut (m (car eyes) (cdr eyes» 
«ft (count-scales ft» (f2 (count-scales f2») 
my-favorite-tail) 

This would cause the expansion function to receive the following \falues for its parameters: 



122 

Parameter 
mouth 
eyel 
eye2 
finl 
lengthl 
fin2 
length2 
tail 

Value 
m 
(car eyes) 
(cdr eyes) 
fl 
(count-scales fl) 
f2 
(count-scales f2) 
my-favorite-tail 

COMMON LISP REFERENCE MANUAL 

The following macro call would be in error, because there would be no argument form to match the 

parameter 1 ength 1: 
(halibut (m (car eyes) (cdr eyes» 

«fl) (f2 (count-scales f2») 
my-favorite-tail) 

The following macro call would be in error, because a sytnbol appears in the call where the s~cture of the 

lambda-list requires a list: 
(halibut my-favorite-head 

«fl (count-scales fl» (f2 (count-scales f2») 
my-favorite-tail) 

The fact that the value of the variable lOy-favori te-head might happen to be a list is irrelevant here. It is 
the macro call itself whose structure Inust match that of the defmacro lambda-list. 

The use of lambda-list keyword~ adds even greater flexibility. For example. suppose that it is convenient 

within the expansion function for ha 1 i but to be able to refer to the list \\'hose components are called 

mouth, eye1, and eye2 as head. One may write this: e 
(defmacro halibut «&whble head mouth eyel eye2) 

«finl lengthl) (fin2 length2» 
tail) 

N ow consider the same valid macro call as before: 
(halibut (m (car eyes) (cdr eyes» 

«fl (count-scales fl» (f2 (count-scales '2») 
lOy-favorite-tail) 

This would cause the expansion function to receive the same values for its parameters, and also a value for the 

parameter he ad; 

Parameter ~ 
head (m (car eyes) (cdr eyes» 

The stipulation, that an embedded lambda-list is pennitted only where ordinary lambda-list syntax would 

permit apararneter narne.but not a list, is made to prevent ambiguity. For exa:mple, oile may not write 
(defmacro loser (x &optional (a b &~est c) &rest z) 

... ) 
because ordinary lambda-list syntax does permit a list following &0 p t ion al; the list (a b&r est c) 

would be interpreted as describing an optional parameter named a, whose default value is that of the form b, 

with a supplied-p parameter named&res t (not legal), and an extraneous symbol c in the list (also not legal). 

An almost correct way to express this is . 
(deflOacro loser (x &optional «a b &restc» &rest z) 

... ) 



CHAPTER 8: MACROS 123 

The extra set of parentheses removes . the ambiguity. Howevert the definition is -now incorrect because a 

macro call such as (loser (car poe 1 ) ) would not provide any argument form for the lambda-list (a b 

&res t c L and so the default value .against which to match the lambda-list would be nil, because no 

explicit default value was specified. This is in error because nil is an empty list; it does not have forms to 

satisfy the parameters a and b. The fully correct definition would be either 

or 

(defmacro loser (x &optional «a b &rest c) '(nil nil» &rest z) 
... ) 

(defmacro loser (x &optional «&optional a b &rest c» &rest z) 
... ) 

These differ slightly in that the first requires that if the macro call· specifies a explicitly then it must also 

specify b explicitly, whereas the second does not require this. That is, 
(loser (car pool) «+ xI») 

would be a valid call for the second definition but not for the first 

8.2~ Expanding l\lacro Calls 

macroexpand !onn &opt ional env [Fullction] 
macroexpand-l fonn &opt ional env [Function] 

If fonn is a macro call, then macroexpand-l will expand the macro call on:e and return two 

values: the expansion and t. If f01m is not a macro call, then the two values fonn and nil are 

returned. 

A fonn is considered to be a macro call only if it is a cons whose car is a symbol that names a macro. 

TIle environment env is similar to that used within the evaluator (see eva 1 hook (page 268»; it 

defaults to a null environment. Any local macro definitions established within env by macrol et 

(page 93) will be considered. If only form is given as an argument, then the environment is 

effectively null, and only global macro definitions (as established by defmacro (page 118» will 

be considered. 

Macro expansion is carri~d out as follows. Once ma c roe x pan d -1 has detennined that a symbol 

names a macro, it obtains -the expansion function for that macro~ The value of the variable 

*macroexpand-hook * (page 124) is then called as a function of three arguments: the 

expansion function, the fonn, and the environment env. The value returned from this call is taken 

to be the expansion of the macro call. The initial value of *macroexpand-hook'" is funcall 

(page 89), and the net effect is to invoke the expansion function, giving it form and env as its two 

arguments_ (The purpose of ·macroexpand-hook· is to facilitate various techniques for 

improving interpretation speed by caching macro expansions.) 

The evaluator expands macro calls as if through the use of macroexpand-1; the point is that 

eva 1 (page 267) also uses *macroexpand-hook·. 

macroexpand is similar to macroexpand-1, but repeatedly expandsfonn until it is no longer a 

macro call. (In effect, macroexpand simply calls macroexpand-1 repeatedly until the second 



124 COMMON USP REFERENCE MANUAL 

value returned is n i 1.) A second value of tor ni 1 is returned as for macroexpand-l, indicating 
whether the original/ann was a m~cro call. 

*mac roexpand -hook * [Variable] 

The value of *macroexpand""hQok* is used as the expansion interface hook by 
macroexpand-l (page 123). 



Chapter 9 

Declarations 

Declarations allow you to specify extra information about your program to the LISP system. All 
declarations are completely optional and correct declarations do not affect the meaning of a correct program, 
with one exception: s pe c ; a' declarations do affect the interpretation of variable bindings and references, 
and so must be specified where appropriate. All other declarations are of an advisory nature, and may be used 
by the LISP system to aid you by performing extra error checking or producing more efficient compiled code. 
Declarations are also a good way to add documentation to a program. 

Note that it is considered an error for a program to violate a dec1aration (such as a type declaration), but 
an implementation is not required to detect such errors (tl)ough such detection, where feasible, is to be 
encouraged). 

9.1. Declaration Syntax 

dec' are {decl-spec}* [Special form] 
A dec' are form is known as a declaration. Declarations'may occur only atthe beginning of the 
bodies of certain special forms; that is, a declaration may occur only as a statement of such a special 
form, and all statements preceding it (if any) must also be dec' are forms (or possibly 
docuI'Q.entation strings, in some cases). Declarations may occur in lambda-expressions, and in the 
following forms: 

defmacro (page 118) dot 1mas (page 104) 
defsetf (page 84) 'fl et (page 93) 
deftype (page 41) 1 abel s (page 93) 
defun (page 55) 1 at (page 91) 
do* (page 100) 1 at· (page 92) 
do-al'-symbols (page 153)' locally (page.127) 
do-external-symbol s (page 153) macrol at (page 93) 
do-symbo 1 s (page 152) mul t 1 P 1 e-va 1 ue-b i nd (page 112) 
do (page 100) prog (page 108) 
do 1 i st (page 104) prog· (page 108) 

It is an error to attempt to evaluate a declaration. Those special forms that permit declarations to 

appear perform explicit checks for their presence. 

-12S -



126 COMMON LISP REFERENCEMA'NUAL 

Compatibility note: In MACLISP, declare is aspeciaI fonn that does nothing but return the'symbol decl are 
as its result. The interpreter knows nothing. about declarations, but just blindly evaluates them, effectively 
ignoring thcm~ TIle MACLISP compiler recognizes declarations, but processes them simply by evaluating the 
subfonns of the declaration in the compilation contex t In COMMON LISP it is important. that both the: 
interpreter and compiler recognize declarations (especially spec; aT declarations) and treat them: consistently, 
arid' so the rules about the structure and usc of declarations have been made considerably more stringent. The 
odd' tricks r>layed in MACUSP by writing arbitrary forms to be evaluated within a d'ec 1: ar e form are better 
done in both MACUSP and COMMON LISP by using aval-when (page 57)~ 

It is permissible for a macro call to expand into a declaration and be recognized as such, provided 

that the macro call appears where a declaration may legitimately appear. (However,. a macro call 

may not appear in place of a decl:'spec.) 

Each dec/-spec is a list whose car is a symbol specifying the kind of declaration to be made. 

Declarations may be divided into two classes: those that concern the bindings of variables, and 

those that do riot. (The sp.ec i al declaration is the sole exception: it effectively falls into both' 

classes; as explained below;) those that concern variablebinrlings apply only to the bindings made 

by the form at the head of whose body they appear~ For example, in 
(defun foo (x) 

(declare (type float x») ... 
(let «x 'a» ... ) 
... ) 

the type declaration applies only to the outer binding of x; and not to the binding made in the 

1 et. 
Compatibility note: This is different from MACLISP, in which type declarations are pervasive. 

Declarations that do not concern themselves with variable bindings are pervasive, affecting all code , 

in the body of the special fOIm. As an example of a pervasive declaration, 
(defun foo ex y) (dectare (notinline floor» ... ) 

advises that everywhere within the body offoo the function floor should not be open-coded, but 

called as an out-of-line subroutine. 

Some special fonDs contain pieces of code that, properly speaking, are not part of the body of the 

special fonn. Examples of this are initialization forms that provide values for bound variables, and 

the result forms of iteration c~nstructs. In- all cases such additional code is within the scope of any 

perVasive declarations appearing before the body of the special· fonn. Non·pervasive declarations 

have tio effect on such code, except (of cOurse) in those situations where the code is defined to be 

within the scope of~e variables affected by such non-pervasive declarations. 

For example: 
{d~tun few ex &optioAal (y ~print-circle*» 

(cleclar;e (speci'81 ·print-circle·» 
... ) 

The referenCe to ·print-·circle· in the first line of this example is special because of the 
declaration in theseooOO title. . 
For example: 



CHAPTER 9: DECLARA'flONS 

(defun nonsense (k x z) 
(declare (type integer k» 
(let «j (foo·k x» 

(x (* k k») 
(declare (inline fool (special x z» 
(foo x j z») 

127 

In this rather nonsensical example, k is declared to be of type integer. The in 1 i ne declaration 

applies to the inner can to f 0 0, but not to the one to whose value j is bound. because that is code in 

the binding part of the 1 e t. The s p e cia 1 declaration of x causes the 1 e t fOffil to make a special 

binding for x, and causes the reference to x in the body of the 1 e t to be a special reference. 

However, the reference to x in the first call to foo is a local reference, not a special one. The 

s p e cia 1 declaration of z causes the reference to z in the call to f 0 0 to be a special reference; it 

will not refer to the parameter to nonsense named z, because that parameter binding has not 

been declared to be spec i a 1. (The speci a 1 declaration of z does not appear in the body of the 

defun, but in an inner const~cts, and therefore does not affect the binding of the parameter.) 

locally {declaration}* {form}* [A/acro] 
This special fonn may be used to make local pervasive declarations where desired. It does not bind 

any variables, and so cannot be used meaningfully for declarations of variable bindings. (Note that 

the s p e cia 1 declaration may be used with 10 c a 11 y to pervasively affect references to (rather 

than bindings of) variables.) 

For example: 
(locally (declare (inl;-ne floor) (notin1ine car cdr» 

(declare (optimize space» 
(floor (car x) (cdr y») 

procl aim decl-spec [Function] 
The function rH'oc1 a imtakes a dec/-spec as its argument and puts it into effect globally." (Such a 

global declaration is called a proclamation.) Any variable names mentioned are assumed to refer to 

the dynamic values of the variable. For example, the proclamation 
(proclaim '(type float tolerance» 

once executed, specifies that the dynamic value of to 1 erance should always be a floating-point 

number. Similarly, any function names mentioned are assumed to refer to the global function 

definition. 

A proclamation constitutes a universal declaration, always in force unless locally shadowed. 

For example: 
(proclaim '(inline floor» 

advises that f 1 00 r should nonnally be open-coded in-line by the compiler (but in the situation 
(defun foo (x y) (declare (notinline floor» .... ) 

it will be compiled out-of-line anyway in the body of f 00, because of the shadowing local 

declaration to that effect}. 

As a special case (so to speak), procl a im treats a spec i a 1 declaration-form as applying to all 

bindings as well as to all references of the mentioned variables. For example, afr:er 



128 

{proclaim '(spacial x» 
then in a function definition such as 

(defun example (x) ... ) 

COMMON LISP REFERENCE MANUAL 

the parameter x will be bound as· a special (dynamic) variable rather than as a lexical (static) 

variable. This facility should be used with caution. The usual way to define a globally special 

variable is withdefvar (page 56) or defparameter (page 56). 

9.2. D~c1aration Specifiers 

Here~,is a list of valid declaration specifiers for usc in decl are. A construct is said to be "affected" by a 

dcc1ara~on if it occurs within the .scope of a declaration. 

special ( s p e cia 1 varl var2 ... ) specifies that all of the variables named are to be considered 
special. TIlis specifier affects variable bindings, but. also pervasively affects references. All 
variable bindings affected are made to be dynamic bindings, and affected variable 
references refer to the current dynamic binding rather than the current local binding. 

For example: 

(defun hack (th ing *mod*) ; The binding of the parameter 
(dec 1 are (spec i a 1 *mod'" J) ; *mod * is visible to hack 1, 
(hack1 (car thing») ; but not that of thing. 

{defun hack1 (arg) 
(declare (special *mod*» 

(if (atom arg) *mod* 

; Declare references to *mod* 
; within hac k 1 to be special. 

(cons (hack1 (car arg» (hack1 (cdr arg»») 

Note that it is conventional, though not required, to give special variables names that begin 
and end with an asterisk. 

Asp e cia 1 declaration does not pervasively affect bindings. Inner bindings of a variable 
implicitly shadow asp e cia 1 declaration, and must be explicitly re-declared to be special. 
(However, a spec i a 1 proclamation does pervasively affect bindings; this exception is 
made for reasons of convenience and compatibility with MACLISP.) 

For example: 

{procl a 1m '( spec 1 al x» ; x is always special. 

{defun examp 1e (x y) 
{declare (special y» 
(let «y 3) {x (* x 2») 

(print (+ y {locally ('declare (special y» y») 
(l~t ({y 4» {declare (s~~cia1 y» (foo x»» 

In the contorted code above, the outermost and innermost bindings of yare special, and 
therefore dynamicallyscoped, but the middle binding is lexically scoped. The two 
arguments to + are different, one being the value (which is 3) of the lexically bound 
variable 'y, and the other. being the value of ·the special variable named y (a bindingof 
which happens, coincidental1y, to lexically surround it at an outer level). All the bindings 
of x and references to x are special~however, because of the proclamation that x is 
(always) spec i a 1. 



CHAPTER .9: DECLARATIONS 129 

type 

type 

ftype 

function 

inline 

As a matter of style, use of spec i a 1 proclamations should be avoided. 'The de fv ar 
(page 56) and defparameter macros are the conventional means for proclaiming special 
variables in a program. 

( type type varl var2 ... ) affects only variable bindings, and specifies that the 
variables mentioned will take on values only of the specified type. In particular, values 
assigned to .the variables by setq (page 76), as well as the initial values of the variables, 
must be of the specified type. 

(type var} var2 ... ) is an abbreviation for (type type varl var2 ... ) provided 
that type is one of the symbols appearing in Table 4-1 (page 36). 

(ftype type jUnction-name-} jUnction-name-2 ... ) specifies thatlhe named 
functions will be of the functional type type. 

For example: 
(declare (ftype (function (integer list) t) nth) 

(ftype (function (number) float) sin cos» 

Note that rules of lexical scoping are observed; if one of the functions mentioned has a 
lexically apparent local definition (as made by f 1 e t (page 93) or 1 ab e 1 s (page 93», 
then the declaration applies to that local definition and not to the global function 
definition. 

(funct i on name arglist result-type} result-type2 ... ) is entirely equivalent to 

(ftype (funct ion argUst result-type} result-type2 ... ) name) 

but may be more convenient for some purposes. 

For example: 
(declare (function nth (integer list) t) 

(function sin (number) float) 
(function cos (number) float» 

The syntax mildly resembles that of defun (page 55): a function name, then an argum.ent 
list, then a specification of results. 

Note that rules of lexieal seoping are observed; if one of the functions mentioned has a 
lexically apparent local definition (as made by f 1 et (page 93) or 1 abe 1 s (page 93», 
then the declaration applies to that local definition and not to the global function 
definition. 

( i n 1 i n e jUnction] jUnction2 ... ) specifies that it is desirable for the compiler to 
open-code calls to the specified functions; that is, the code for a specified function should 
be integrated into the calling routine, appearing "in line", rather than a procedure call 
appearing there. This may achieve extra speed at the expense of debuggability (calls to 
functions compiled in-line cannot be traced, for example). Thi~ declaration is pervasive. 
Remember that a compiler is free to ignore this declaration. 

Note that rules of lexical seoping are observed; if one of the functions mentioned has a 
lexically apparent local definition (as made by f 1 e t (page 93) or 1 abe 1 s (page 93}), 
then the declaration applies to that local definition and not to the global function 
definition. 



130 

notinline 

optim~ze 

COMMON LISP REFERENCE MANUAL 

( not i n 1 i ne junction! function2 ... ) specifies that it is undesirable to compile the 
specified functions in-line. This declaration is pervasive. A compiler is not free to ignore 
this declaration. . 

Note that rules of lexical seoping are observed; if one of the functions mentioned has a 
lexically apparent local definition (as made by fl et (page 93) or 1 abe 1 s (page 93»~ 
then the declaration applies to that local definition and not to the global function 
defmition. 

i 
( ; gnore var! var2 ... varn) affects only variable bindings, and specifics tlldt the 
bindings of the specified variables are never used. It is desirable for a compiler to iSsu¢ a 
warning if a variable so declared is ever referred to or is also declared special, or if a 
variable is lexical, never referred to, and not declared to be ignored. 

i 
(optimize (quality! value!) (quality2 value2) ... ) advises the compiler thatea~h 
quality should be given attention according to the specified corresponding value. A quality 
is a symbol; standard qualities include speed (of the object code), space (both code size 
and run-time space), sa f e ty (run-time error checking), and camp i 1 at ion - s p e ~ d 
(speed of the compilation process). Other. qualities may be recognized by particu~ar 
implementations. A value should be a non-negative integer, normally in the range 0 to! 3. 
The value 0 means that the quality is totally unimportant, and 3 that the quality; is 
extremely important; 1 and 2 are intermediate values, with 1 the "normal" or "usual" 
value. One may abbreviate"( quality 3)" to simply "quality'~. This declaration! is 
pervasive. 

For example: 
(defun often-used-subroutine (x y) 

(declare (optimize (safety 2») 
(error-check x y) 
(hairy-setup x) 
(locally 

;; This inner loop really needs to burn. 
(declare (optimize speed» 
(do ({i 0 (+ i 1» 

(z x (cdrz») 
((null z» 

( dec 1 are (f.i xnum i»») 

dec 1 a.fa ti 0 n ( dec 1 a rat ~ 0 n name! name2 ... ) advises the compiler that each namej is a valid . ut 
non-standard declaration name. The purpose of this is to tell one compiler not to issue 
warnings for declarations meant for another compiler or other program processor. TIlis 
kind of declaration maybe used only as a proclamation. 

For example: 



CHAPTER 9: DECLARATIONS 

{proclaim '(declaration author 
target-language 
target-machine» 

(proclaim '(target-language ada» 

( pro c 1 aim '( tar get - ma chi n e l 8.M - 650 ) ) 

(defun strangep (x) 
(declare (author "Harry Tweeker"» 
(member x '(strange weird odd peculiar») 

131 

An implementation is free to support other (implementation-dependent) declaration specifiers as well. On 
the other hand, a COMMON LISP compiler is free tp ignore entire classes of declaration specifiers (for example, 
implementation-dependent declaration specifiers not supported by that compiler's implementation!), except 
for the decl arat i on declaration specifier. Compiler implementors are encouraged, however, to program 
the compiler to issue by default a warning if the compiler finds a declaration specifier of a kind it never uses. 
Such a warning is required in any case if a declaration specifier is not one of those defined above and has n~t 
been declared in a dec 1 a rat ion decla:ration. 

9.3. Type Declaration for Forms 

Frequently it is useful to declare that the value produced by the eV(iluation of some (ormwill be of a 
particular type. Using dec 1 are one can declare the type of the value held by a bound variable, but there is 
no easy way to declare the type of the value of an unnamed form. For this purpose the th e spcc~al form is 
defined: (the Iype form) means that the value of/amz is declared to be of type type. 

the value-type form [Special/ann] 
The form is evaluated; whatever it produces is returned by the the fonn. In addition, it is an error 
if what is produced by the form does not conform to the data type specified by value-type (which is 
not evaluated). (A given implementation mayor may not actually check for this error. 
Implementations are encouraged to make an explicit error check when running interpretively.) In 
effect, this declares that the user undertakes to guarantee that the values of the foml will always be 
of the specified type. 

For example: 

(the string (concatenate x y» 
(the integer (+ x 3» 
(+ (the integer x) 3) 
(the (complex rational) (* z 3» 
(the (unSigned-byte 8) (logand x 

; The result will be a string~ 
; The result of + will be an integer. 
; The value of x will be an integer.· 

mask» 
The val u e s type specifier may be used to indicate the types of multiple values: 

{the (values integer integer) (floor x y» 
(the .(values string t) 

(gethash the-key the-string-table» 



132 COMMON LISP REFERENCE MANUAL 

Compatibility note: This construct is borrowed from the INTERUSP DECL package; INTER LISP. however, allows 
an implicit progn after the type specifier rather than just a single fonn. The MACLIsp f i xnum- i dent ity 
and f1 onum- i dent ity constructs can be expressed as (the fi xnum x) and (the sing 1 e-fl oat x). 



Chapter 10 

Symbols 

A LISP symbol is a data object that has three user-visible compollents: 

• The property list is a list that effectively provides each symbol with many modifiable narned 
components. 

• The print name must be a string, which is the sequence of characters used to identify the symbol. 
Symbols are of great use because a symbol can be located given its name (typed, say, on a 
keyboard). It is ordinarily not permitted to alter a symbol's print name. 

• The package cell must refer to a package object. A package is a data structure used to locate a 
symbol given its name. A symbol is uniquely identified by its name only when considered relative 
to a package. A symbol may appear in many packages, but it can be owned by at most one 
package. The package cell points to the owner, ifany. 

A symbol may actually have other components as well for use by the implementation. One of the more 

important uses of symbols is as names for program variables; it is frequently desirable for the implementor to 

use certain components of a symbol to implement the semantics of variables. See symb 0 1 - val u e (page 

74) and symbol-funct ion (page 75). However, there are several possible implementation strategies, and 

so such possible components are not described here. 

10.1. The Property List 

Since its inception, LIsp has associated with each symbol a kind of tabular data structure called a property 

list (plist for short). A property list contains zero or more entries; each entry associates with a key (called the 

indicator), which is typically a symbol, an arbitrary LISP object (called the value or, sometimes, the property). 
There are no duplications among the indicators;· a property-list may only have one property at a time with a 

given name. In this way, given a symbol and an indicator (another symbol), an associated value can be 

retrieved. 

A property list is very similar in purpose to an association list The difference is that a property list is an 

object with a unique identity; the operations for adding and rernoving property-list entries are destructive 

operations that alter the property-list rather than making a new one. Association lists, on the other hand, are 

normally augmented non-destructively (without side effects), by adding new entries to the front (see aeons 

-133 -



134 COMMON USP REFERENCE MANUAL 

(page 229) and p air 1 i s (page 229». 

A property list is implemented as a memory cell containing a list with an even number (possibly zero) of 
elements. (Usually this memory cell is the property-list cell of a symbol, but any memory cell acceptable to 
setf (page 78) can be used if getf (page 135) and remf (page 136) are llsed.) Each pair of elements in 
the list constitutes an entry; the first item is the indicator and the second. is the value. necause property-list 
functions are given the symbol auci not tl1e list itself, modifications to the property list can be recorded by 
storing back into the property-list cell of the symbo1. 

When a symbol is created, its property list is initially empty. Properties are created by using ge t (page 
134) within a se t f (page 78) fonn. 

COMMON LISP does not use a symbol's property list as extensively as earlier LISP implementations did. 

Less-used data, such as compiler, debugging, and documentation information, is kept on property lists. in 
COMM0N LISP. 

Compatibility note: In older Lisp implementations, the print name, value, and function definition of a symbol were kept on 
its property list. The value cell was introdu.ccd into MACLISP and INTERLISP to speed up access to variables: similarly for the 
print-name cell and function cell (MAcLlsP does not use a function cell). Recent LISP implementations such as SPICE LISP, 

Lisp Machine LIsp, ,and NIL have introduced all of these cells plus the package cell. None of the MACLlsP system property 
names (expr, fexpr, macro, array, subr, 1 subr, fsubr. and in former times value and pname) exist in CoMMON 

UsP. 

Compatibility note: In COMMON LIsp. the notion of "disembodied property list" introduced in MAcLlsP is eH.minated. It 
tended to be used for rather kludgy things, and in Lisp Machine LIS~ is often associa,ted with the use of locatives (to make it 
.. off by one" for searching alternating keyword lists). In COMMON LISP special set f -like property list functions are 

introduced: 9 6 t f (page 135) and r emf (page 136). 

get symbol indicator &opt iona1 defau1t [Function] 
gel searches the property list of symbol for an indicator e q to indicqtor. The first argument must be 
a symboL If one is found, then the corresponding value is retur11ed; otherwise default is returned. 
If default is not specified, theli nil is used {or default. Note that there is no way to distinguish an 
abs~nt property from one whose value is defal;l.lt. 

(get x y) <=> (g~etf ($ymbol""pl ist xl y) 

$uPPQsethatthepropert~listoffoo is (b,ar t ba~ 3 hunol! "Huh?"). Then, for example: 
(get 'foo 'baz) ~> 3 
(get 'foo 'hunozJ ~> "Huh?" 
(g.et 'foo, 'ZQo) ::.:> nil 

Comp~I)Uity Q~t.~: IJJ MAPI;1SPI, the first, arg~ment to get cou14 be a list. in which case the cdr of the 
list. was tr~t~; ~; a SQ-~l¢ "4isemlJoclieq pro~rty list". It could ~so be apy other obj~ in which 
~~ g~t~ would~ aJj\Yay~ r.-etUQ)1 III 1.. In CoMMON LISPii~ is all error to give lUlything but a symbol as 
the,· fjJ~t; ~Jll~n~·tp;~e,t.. 

s~e' t f (pag~e 78). m~y b~· useQ:i wi~ 9;e:t t~l create a new property-,value paiF, possibly replacing an 
Ql'¢ pair witb the sam~·, })J.ioperty Qant~. 

For e!Ca,mpl~.:~ 
(ge~t 'clyd:'Etc 'spe.c.i,e;~); => n;i.l 
(s,~.t~ (get "c;:rycl~ "~p,e;cies) 'e1epJJ,ant:) =>e1 e'p.hant 
a.:pdIl{)w (, g~\~ .. ,. c·i;~d:e\ 's:pectes) ;~, e lepllant 



CHAPTER 10: SYMBOlS 135 

. The default argument may be specified to get in this context; it is ignored by setf, but may be 

useful in such macros as push that are'fclated to setf: 
(push item (get .sym 'token-stack '(initial-item») 

means the approximately the same as 
(setf (get sym 'token-stack '(initial-item» 

(cons item (get sym 'token-stack '(initial-item»» 

which in tum would"be treated as simply 
(setf (get ~ym 'token-stack) 

(cons item (get sym 'token-stack '(initial-item»» 

remprop symbol indicator [Function] 
This removes from symbol the propelty with an indicator eq to indicator, by splicing it out of the 

property list It returns nil if no such property was found, or non-n i 1 if a property was found. 
(remprop x y) <=> (remf (symbol-plist x) y) 

For example: 

If the property list of foo was 
(color blue height 6.3 near-to bar) 

then 
(remprop 'foo 'height) => t 

and foo's property list would have been altered to be 
(color blue near-to bar) 

symbol-plist symbol [Function] 
This returns the list that contains the property pairs of symbol; the contents of the property list cell 

are extracted and returned. 

Note that using get on the result of symbol-pl ist does not work. One must give the symbol 

itself to gat, or use the function gatf (page 135). 

set f Jpage 78) may be used with s ymb 0 1 - P 1 ; s t to destructively replace the entire property list 
of a symboL This is a relatively dangerous operation, as it may destroy important information that 

the implementation may happen to s~re in property lists. Also, care must be taken that the new 

property list is in fact a list of even length. 

getf place indicator &opt ional defoult [Function] 
get f searches theproperty list stored in place for an indicator e q to indicator. If one is found, then 
the corresponding value is returned; otherwise default is returned. If default is· not specified,then 

nil is used for default. Note that there is no way to distinguish an absent property from one whose 

value is default. Often place is computed from a generalized variable acceptable to set f (page 

78). 

setf (page 78) may be used with getf, in which case the place must indeed be acceptable as a 

place to sat f. The effect is to add a new property-value pair. or update an existing pair, in the 

property list kept in the place. The default argument may be specified to get f in this context; it is 

ignored by set f, but may be useful in such macros as pus h that arc' related to sat f. See the 



136 COMMON liSP REFERENCE MANUAL 

description of get (page 134) for an example of this. 

remf place indicator [Macro] 
This removes from the property list stored in place the property with an indicator e q to indicator, 
by splicing it out of the property list It returns nil if no. such property was found, or some 

non-n i 1 value if a property was found. The form place may be any generalized variable acceptable 

to setf (page 78). See remprop (page 135). 

get-propert i es place indicator-list [Function] 

, 

get - pro per tie s is like get f (page 135), except that the second argument is a list of indicators. 

get - pro per tie s searches' the property list stored in place for any of the indicators in 

indicator-list, until it finds the first property in the property list whose indicator is one of the 

elements of indicator-list. Normally place. is computed from a generalized variable acceptable to 
set f (page 78). 

get-properties returns three values. If any property was found, then the first two values are 

the indicator and value for the first property whose indicator was in indicator-list, and the third is 
that tail of the property list whose car was the indicator (and whose cadr is therefore the value). If 

no property was found, all three values are nil. Thus the third value serves as a flag indicating 

success or failure, and also allows the search to be restarted after the property found if desired. 

10.2. The Print Name e 
Every symbol has an associated string called the print name. This string is used as the external 

representation of the symbol: if the characters in the string are typed in to read (with suitable escape 
conventions for certain characters), it is interpreted as a reference to that symbol (if it is interned); and if the 

symbol is printed, p r i nt types out the print name. For more infonnation, see the section on the reader (see 
section 22.1.1, page 280) and printer (see section 22.1.6, page 303). 

symbol-name sym 
TIlis returns the print name of the symbol sym. 

For example: 
(symbol-name 'xyz) => "XYZ" 

[Function] 

It· is an extremely bad idea to modify a string being. used as the print name of a symbol. Such a 

modification may confuse the function read {pag.e 310) and the package system tremendously. 



CHAPTER 10: SYMBOLS 137 

10.3. Creating Symbols 

Symbols can be used in two rather different ways. An interned symbol is one that is indexed by its print 
name in a catalogue called a package. Every time anyone asks for a symbol with that print name, he gets the 
same (eq) symbol. Every time input is read with the function read (page 310), and that print name appears, 
it is read as the same symbol. This property of symbols makes them appropriate to use as names for things 
and as hooks on which to hang permanent data objects (using the property list, for example). 

Interned symbols are normally created automatically; the first time someone (such as the function read) 
asks the package system for a symbol with a given print name,· that symbol is automatically creat~d. The 
function to use to ask for an interned symbol is in te r n (page 150), or one of the functions related to 
intern. 

Although interned symbols are the most commonly used, they will not be discussed further here. For more 
information, see chapter 11. 

An uninterned symbol is a symbol used simply as a data object, with no special cataloguing (itbe10ngs to no 
particular package). An unintemed symhol is printed as "#:" followed by its print name. The following are 
some functions for creating unintemed symbols. 

make - symbo 1 print-name [Function] 
(make-symbol print-name) creates a new unintemed symbol, whose print name is the string 
print-name. The value and function bindings will be unbound and the property list will be empty. 

The string actually installed in the symbol's print-name component may be the given string 
print-name or may be a copy of it, at the implementation's discretion. The user should not assume 
that (symbol-name (make-symbol x» is eq to x, but also should not alter a string once it 
has been given as an argument to make-symbol. 

Implementation note: An implementation might choose. for example. to copy the string to some read-only 
area. in the expectation that it will never be altered 

Compatibility note: Lisp Machine LISP uses the second argument for an odd flag related to areas. It is unclear 
what NIL does about this. 

copy-symbol sym &opt ional copy-props [Fu1lction] 
This returns a new uninterned symbol with the same print name as sym. If copy-props is non-n i 1, 
then the initial value and function-definition of the new symbol will be the same as those of S)'m, 
and the property list of the new symbol will be a copy of sym's. If copy-props is nil (the default), 
then the new symbol will be unbound and undefined, and its property list will be empty. 

gensym &optional x [Function] 
gensym invents a print name, and creates a new symbol with that print name. It returns the new, 
uninterned symbol. . 

The invented print name consists of a prefix (which defaults to "G tI
), followed by the decimal 



138 COMMON USP REFERENCE MANUAL 

representation of a number. The number is increased by one every time gen sym is called. 

If the argument x is present and is an integer, then x must be non-negative, and the internal counter 

is set to x for future use; otherwise the internal counter is incremented. If x is a string, then that 

string is made the default prefix for this and future calls to gensym. After handling the argument, 

9 ens ym creates a symbol as it would with no argument 

For example: 
(gensym) => G.7 
(gensym "FOO-") => FOO-8 
(gensym 32) => FOQ;...32 
(gensym) => FOO-33 
(gensym "GARBAGE-") => GARBAGE-34 

gensym is usually used to create a symbol that should not normally be seen by the user, and whose 

print name is unimportant, except to allow easy distinction by eye between two such symbols. The' 

optional argument is rarely supplied. The name comes from "generate symbol", and the symbols 

produced by it are often called "gensyms". 
Compatibility note: In earlier versions of LISP, such as MACLIsp and INTERLISP, the print name of a gensym 
was of fixed length, consisting of a single letter and a fixed-length decirpal representation with leading zeros if 
necessary, for example "G0007". This convention was motivated by an implementation consideration, namely 
that the name should fit into a single machine word, allowing a quick and clever implementation. Such 
considerations are less relevant in COMMON LIsp. The consistent use of a valiable-Iength prefu can make it 
easier for the programmer, when debugging, to determine what code generated a particular symbol. The 
elimination of the fixed-length decimal representation prevents the ~e name from being used twice unless 
the counter is explicitly reset. 

If it is desirable for the generated symbols to be interned, and yet guaranteed to be symbols distinct 

from all others, then the function gentemp (page 138) may be more appropriate to use. 

gentemp &opt ional prefix package [Function] 
gentemp. like gensym (page 137), creates and returns a new symbol. gentemp differs from 

ge-nsym in that it interns the symbol (see intern (page 150» in the package (which defaults to 

the current package; see *package* (page 149». gentemp guarantees the symbol will be a new 

one not already existing in the package; it does this by using a counter as gensym does, but if the 

generated symbol is not really .new then the process is repeated until a new one is created. There is. 
no provision for resetting the gentemp counter. Also, the prefix for gentemp is not remembered 

from one call to the next; if prefix is omitted, the default prefix "T" is used. 

symbol-package sym [Function] 
Given a symbol sym, symbol-package returns theconterits of the package cell of that symbol. 

This will be a package object or n i 1. 

keywordp object [Function] 
The argument may be any LISP object. The predicate keywordp is true if the argument is a 

.symbol and that symbol is a keyword (that is, belongs to the keyword package). Keywords are 

those symbols that are written with a leading colon. Every keyword is a constant, in the sense that it 

always evaluates .to itself. See cons tantp (page 269). 



Chapter 11 

Packages 

11.1. Overview 

One problem with earlier LISP systel!ls is the use of a single name space for all symbols. In large LISP 

systems, with modules written by many different programmers, accidental name collisions become a serious 

problem. COMMON LISP addresses this problem through the package system, derived from an earlier package 

system developed for Lisp Machine LISP [20]. In addition to preventing natne-space conflicts, the package 

system makes the modular structure of]arge LISP systems more explicit 

A package is a data structure that establishes a mapping from print names (strings) to symbols. The package 

thus replaces the "oblist" or "obarray" machinery of earlier LISP systems. At any given time one package is 

current, and this package is used by the LISP reader in translating strings into symbols. The current package 

is, by definition, the one that is the value of the global variable * p ac k age *. It is possible to refer to symbols 

in packages other than the current one through the use of package qualifiers in the printed representation of 

the symbol. For example "foo: bar", when seen by the reader. refers to the symbol whose nameis bar in 

the package whose name is foo. (Actually, this is true.only if bar is an external symbol of foo, that is,a 

symbol that is supposed to be visible outside of f 00. A reference to an internal symbol requires the 

intentionally clumsier syntax "foo: : bar".) 

The string-to-symbol mappings available in a given package are divided into two classes, external and 

internal. We refer to the symbols accessible via these mappings as being external and internal symbols of the 

package in question, though really it is the mappings that· are different and not the symbols themselves. 

Within a given package, a name refers to one symbol or to none; if it does refer to a symbol, then it is either 

external or internal in' that package, but not both. ~ 
~ 

External symbols are part of the package's public interface to other packages. These are supposed to be 

chosen with some care and are advertised to users of the package. Internal symbols are for internal use only, 

and these symbols are normally hidden from other packages. Most symbols are created as internal symbols; 

they become external only if they appear explicitly in an ex p 0 r t- command for the package. 

A symbol may appear in many packages. It will always have the same name wherever it appears, but it may 

be external in some packages and internal in others. On the other hand, the same name (string) may refer to 

different symbols in different packages. 

-139 -



140 COMMON USP REFERENCE MANUAL 

Nonnally, a symbol that appears in one or more packages will be owned by one particular package, called 

the home package of the symbol; that package is said to own the symbol. Every symbol has a component" 

called the package cell that contains a pointer to its home package. A symbol that is owned by some package 

is said to be interned. Sonie symbols are not owned by any package; such a symbol is said to be uninterned, 
and its package cell contains n ; 1. 

Packages may be built up in layers. From the point of view of a package's user, the package is a single 

collection of mappings from strings into internal and external symbols. However, some of these mappings 

may be established within the package itself, while other mappings are inherited from other packages via the 

use-package construct (The mechanisms responsible for thL~ inheritance are described below.) In what 
follows, we will refer to a symbol as being accessible in a package if it can be referred to without a package 

. quali.fil when that package is current, regardless of whether the mapping occurs within that package or via 
inheritance. We will refer to a symbol as being present in a package if the mapping is in the package itself and 
is not inherited from somewhere else. 

A symbol is said to be interned in a package x if it is accessible in that package and also is owned (by eith~r 

that package or some other package). Normal1yall the symbols accessible in a package will in fact be owned 

by some package, but the terminology is useful when discussing the pathological case of an accessible but 
unowned (unintemed) symbol. 

As a verb, to intern a symbol in a package means to cause the symbol to be interned in the package if it was 
not already; this process is perfonned by the fUllction ; n te r n (page 150). If the symbol was previously 
unowned, then the package it is being interned in becomes its owner (hOlne package); but if the symb01 wAs 

. previously owned.by another package, that other package continues to own the symbol. 

To unilltern a symbol from the package means to cause it to be not pr~sent, and additionally to nlake the 
symbol unintemed if the package was the symbol's home package (owner); this process is performed by the 
function un i n t ern (page lSI). 

11.2. Consistency Rules 

Package-related bugs can be very subtle and confusing: things· are not what they appear to be. The 
COMMON LIsp package system is designed with a·number of safety features to prevent most of the common 

bugs that would otherWise occur in normal use. This may seem over-protective, but experience with earlier 
packag~systems has shown that such safety features are needed. 

In dealing with the package system, it is useful to keep in mind the following consistency rules, which 

remain in force as long as the value of *p a c k age * is not changed by: the user or his code: 

• Read-read consistency: Reading the same printname always gets you the same (eq) symbol . 

• Print-read consistency.~An interned symbol always prints as a sequence of characters that, when 
read back in, yi~lds· the same ( e q) symbol. 



CHAPTER 11: PACKAGES 

• Print-print consistency: If two interned symbols are not eq, then their printed representations will 
be different sequences of characters. 

141 

These consistency rules remain true in spite of any amount of implicit interning caused by typing in LISP 

fonns, loading files, etc. This has the inlportant implication that, as long as the current package is not 

changed, results are rep rod ucible regardless of the order of loading files or the exact history of what symbols 

were typed in when. The ndes can only b·e violated by explicit action: changing the value of * pac k age * , 
forcing some action by continuing from an error, . or calling one of the "dangerous" functions un i n t ern 

(page 151), unexport ,(page 151), shadow (page 152), shadowing-import (page 152), or 

unuse-package (page 152). 

11.3. Package Names 

Each package has a name (a string) and perhaps some nicknames. These are assigned when the package is 

created, though they can be changed later. A package's name sho~ld be something long and self-explanatory 

like ed i tor; there might be a nickname that is shorter-and easier to type, such as ed. 

There is a single name space for packages. The function fin d - pac k age (page 149) translates a package

name or nickname into the associated package. The function package-name (page 150) returns the name 

of a package. The function package'-n i c:knames (page 150) returns a list of all nicknames for a package. 

The function rename-package (page 150) removes a package's current name and nicknames and replaces 

dlem with new ones specified by the user. Package renaming is occasionally useful when, for development 

purposes, it is desirable to load two versions of a package into the same LISP. One can load d1e first verSion, 

rename it, and then load the other version, without getting a lot of name conflicts. 

When the LISP reader se:es a qualified symbol, it handles the package-name part in the same way as the 

symbol part with respect to i capitalization. .,Alphabetic characters in the package name are converted to upper 

case unless preceded by the escape character "\" or unless the package name is surrounded by" I" characters. 

The lookup done by the f; n d - pac k age function is case-sensitive, like that done for symbols. Note that 

"I Foo I : I Bar I" refers to a symbC?1 whose name is "Bar" in a package whose name is "Foo". By contrast, 

IF 00: Bar I refers to a seven-character symbol that has a colon in its name (as well as two upper-case letters 

and four lower-case letters) and is interned in the current package. Following the convention used in this 

manual for symbols, we _will show ordinary package names as being in lower-case, even though the name 

string is internally represented in upper case. 

Most of the functions that require a package-name argument from the user accept either.a symbol or a 

string. If the user supplies a symbol, its. print-name will be used, and this will already have undergone 

case-conversion by the usual rules; if the user supplies a string, he must be careful to capitalize the string so as 

to match exactly the string that names the package. 



142 COMMON USP REFERENCE MANUAL 

11.4. Translating Strings to Symbols ° 

TIle value of the special variable *packOage* must always be a package object (not a name). This is 

referred to as the current package. 

When the LISP reader has, by parsing, obtained a string of characters thought to name a symbol, that name 

is looked up in the current package. This lookup may involve looking in other packages whose external 

symbols are inherited by the current package (see below). If the name is found, the corresponding symbol is 

returned. If the name is not found (that is, there is no symbol of that name accessible in the current package), 

a new symbol is created for it and is placed in the current package as an internal symbol; moreover, the 

current package becomes the owner (home package) of the symbol, and so the symbol becomes interned in 

the current package. If the name is later read again while this same package is current, the same symbol will 

then be found and returned. 

Often it is desirable to refer to an external symbol in some package other than the current one. This is done 

through dle use ofa qualified name, consisting ofa package name, then acolon, then the name of the symbol. 

This causes the symbol's name to be looked up in the specified package, rather than in the current one. For 
example, "editor: buffer" refers to the external symbol named "buffer" accessible in the package 
named "ed i tor", regardless of whether there is a symbol named "buffer" in the current package. If there 

is no package named "editor", or if no symbol named "buffer" is accessible in "editor", or if 

"b u f fer" is an internal symbol in "e d ito r". the LISP reader will signal a correctable error to ask the user 

what he really wants to do. 

On rare occasions, a" user may need to refer to an internal symbol of some package other than the current 

one. It is illegal to do this with the colon qualifier, since accessing an internal symbol of some other package is 

usually. a mistake. However, this operation is legal if you use a doubled colon " : :" as the separator in place 

of the usual single colon. If"ed; tor:": buffer" is seen, the effect is exactly the same as reading "buffer" 

with *package* temporarily rebound to the package whose name is "edi tor". This special-purpose 

qualifier should be used with caution. 

The package named keyword contains all keyword symbols used by the LIsp system itself and by user

written code. Such symbols must be easily accessible from any package, and name conflicts are not an issue 

because these symbols are used only as labels and never to carry package-specific values or properties. 

Because keyword symbols are used so frequently, COMMON LISP provides a special reader syntax for them. 

Any symbol preceded by a colon but no package name (for example": foo")is added to (or looked up in) 

the keyword package as an external symbol. The keyword package is also treated specially in that 
whenever a symbol is added to the keyword package, the symbol is always made external, and it is also 

automatically declared to bea constant (see defconstant (page 56» and made to have itself as its value . 

. This is why every keyword evaluates tp itself. As a matter of style, keywords should always be accessed using 

the leading-colon convention; you should never import or inh~rit.keywords into any other package. It is an 
error to try to apply use-package to the keyword package. 

Each symbol contains a package cell that is used to record the home package of the symbol, or nil if the 



Q-IAPTER 11: PACKAGES 143 

symbol is unintemed. This cell may be accessed by using the function s ymb 01 - pac k age (page 138). 
When an interned symbol is printed, if it is a symbol in the k~yword' package then it is printed with a 

preceding colon; otherwise, if it is accessible (directly or by inheritance) in the current package, it is printed 

without any qualification; otherwise, it is printed with the name of the home package as the qualifier, using 

":" as the separator if the symbol is.~xtemal and": :" ifnot. 

A symbol whose package slot contains ni 1 (that is, has no home package) is printed preceded by "#:". It 
is possible. by the use of import (page 151) and un intern (page 151). to create a symbol that has no 

recorded home package, but that in fact is accessible in some pack~ge. The system does not check for this 

.pathological case, and such symbols wi11 always be printed preceded by "#:", 

In summary, the following four uses of symbol qualifier syntax·are defined: 

foo:bar 

foo: :bar 

:bar 

#:bar 

When read, looks up"BA"R" among the external symbols of the package named "FOOu
• 

Printed when symbol bar is external in its home package foo and is not accessible in the 
current package. 

When read, interns "BAR" as if "Faa" were the current package. Printed when symbol 
bar is internal in its home package f 0 0 and is not accessible in the current package. 

When read, interns "BAR" as an external symbol jn the keyword package, and make it 
evaluate to itself. Printed when the home package of symbol bar is keyword. 

When read, creates a new uninterned symbol named "BAR", Printed when the symbol 
bar is uninterned (has no home package), even in the pathological case that bar is 
uninterned but nevertheless somehow accessible in the current package. 

All other uses of colons within names of symbols are not defined by COMMON LISP, but are reserved for 

implementation-dependent use; this includes names that end in a colon, contain two or more colons, or 

consist of just a colon. 

11.5. Exporting and Importing Symbols : 

Symbols from one package may be made accessible in another package in two ways. 

First, any individual symbol may be added to a package by use of the function import (page 151). The 

form (import 'edi tor: buffer)' takes the external symbol named buffer in the ed; tor package 

(this symbol was located when the form was read by the LISP reader) and adds it to the current package as an 

internal symbol. The symbol is then present in the current package. The imponed symbol is not 

automatically exported from the current package, but if it is already present and external, that is not changed 

Af~er the call to import it is possible to refer to buffer in the importing package without any qualifier. 

The status of b u f fer in the package llamed e d ito r is unchanged, and e d ito r remains the home package 

for this symbol. Once imported, a symbol is present in the importing package and can be removed only by 

calling un intern. 



144 COMMON USP REFERENCE MANUAL 

If the symbol is already present in the importing package, ; mpo r t has no effect If a· distinct symbol with 
the name buf f er is accessible in the importing package (directly or by inheritance) then a correctable error 
is signalled, as described in secti(}n 11.6. because import avoids letting one symbol shadow another. 

A symbol is said to be shadowedby another one in som,e package if the first symbol wou1d be accessible by 
inheritance if not for thepresence~fthe second symbol. If the user really wants to import a symbol without 
the possibility of getting an error because of shadowing, he should use the function shadowing-import 
(page 152). This inserts the symbol into the specified package as an internalsymboI. regardless of whether 
another symbol of the same name will be Shadowed by this action. If a different symbol of the same name is 
already present in the package, that symbol will first be unintemed from the package (see un intern (page 
151». The new symbol is added to the package's shadowing-symbolslist shadowi ng- import should be 
used with caution: It changes the state of ' the package system in such' a way that the consistency rules do not . 
hold across the change. 

The second mechanism is provided by the function use - pac k age (page 152). This causes a package to 
inherit all of the external symbols of some oL.'1er package. These symbols become accessible as internal 
symbols of the using package. That is, they can be referred to without a qualifier while :this package is 

current,but they are not passed along to' any other package that uses this package. Note that use-package, 
unlike import, does not cause any new symbols to be present in the current package~ but only makes them 
accessible 'by inheritance. use - pack a ge checks carefully for name conflicts between the newly imported 
symbols and those already accessible in the importing package. This is described in detail in section 11.6. 

Typically a user~ working by default in the user package, will load a number of packages into his LIsp to' 
provide an augmented working environment; then he will call use-package on each of these packages so 
. that he can easily access their external symbols. 

u'Ouse-package undoes'the effects ofa previous .use-package. The external symbols of the used 
package are no longer inherited. However, any symbols that have been imported into the using package 
continue to be present in that package. 

There is no way to inherit the internal symbols oCanother package; to refer to an internal symbol, you must 
either make that symbors home package current, use aquaUfier, or import that symbol into' the current 
package. 

When in te·r n or -some other function 'wan·ts to look up a ·symbol in a given pac.k.age~ it first looks for -the 
symbol among the ·extemaland mternal symbols ,of the package itself; then it looks through the external 
symbols of the used packages in some unspecified order. The order does not matter; according to the rules 
for handling name conflicts (see below), if conflicting symbols. appear in two· or more packages inherited by 
package X, a symbol of this name must also appear in X itself asa shadowing symbol. Of course, 
implementations are free to choose other, more efficient ways of implementing this search, as long as the 
user-visible behavior is equivalent to what is described here. 

The function export (page 151) takes a symbol that is accessible in some specified package (directly ~r by 



CHAPTER 11: PACKAGES 145 

inheritance) and· makes it "an external symbol of that package. If the symbol is already accessible as an 

external symbol in the package, expo~t has no effect. If the symbol is directly present in the package as an 

internal symbol, it is simply changed to external status. If it is accessible as an internal symbol via 

use - pac k age, the symbol is first imported into the package, then exported. (The symbol is then present in 

the specified package whether or not the package continues to use the package through which the symbol was 

originally inherited.) If the symbol is not accessible at all in the specified package, a correctable error is 

signalled that, upon continuing, asks the user whether the symbol should be imported. 

The function unexport (page 151) is provided mainly as a way to undo erroneous calls to export. It 

works only on symbols that are directly present in the current package, switching them back to internal status. 

If unexport is given a symbol th~t is already accessible as an internal symbol in the current package, it does 

nothing; if it is given a symbol that is not accessible in th~ package at all, it signals an error. 

11.6. Name Conflicts 

A fundamental invariant of the package system is that within one package any particular name can refer to 

at most one symbol. A name conflict is said to occur when there is more than one candidate symbol and it is 

not obvious which one to choose. If the system does not always choose the same way, the read-reld 

consistency rule would be violated. For example, some programs or dat-'! might have been read in under a 

certain mapping of the name to a symbol. If the mapping changes tq a different symbol, and subsequently 

additional programs or data are read, then the two programs will not access the same symbol even though 

they use the same name. Even if the system did always choose the same way, a name conflict is likely to result 

in a mapping from names to symbols different from what was expected by the user, causing programs to 

execute incorrectly. Therefore, any time a name conflict is about to occur, an error is signalled. The user may 

continue from the error and tell the package system how to resolve the conflict 

Note that if the same symbol is accessible to a package through more than one path, for instance as an 

external of more than one package, or both through inheritance and through direct presence in the package, 

there is no name conflict Name conflicts occur only between distinct symbols with the same name . 

. The creator of a package can tell the system in advance how to resolve a name conflict through the use of . 

shadowing. Every package ·has a list of shadowing symbols. A shadowing symbol takes precedence over any 

other symbol of the same name that would otherwise be accessible to the package. A name conflict involving 

a shadowing symbol is always resolved in favor. of the shadowing symbol, without signalling an error (exceQt 

for one exception involving import described below). The functions shadow (page 152) and 

shadowi ng-import (page 152) may be used to declare shadowing symbols. 

Name conflicts are detected when they become possible, th~t is. when the package structure is altered. 

There is no need to check for name conflicts during every name lookup. 

The functions use-package, import, and export check for name conflicts. use-package (page 

1?2) makes the external symbols of the package being used accessible to the using package; each of these 



146 COMMON LISP REFERENCE MA?\UAl 

symbols is checked for name conflicts with the symbols already accessible. import (page 151) adds a single 
symbol to the internals ofa package, checking for a nmne conflict with an existing symbol either prewttt in 
the package or accessible to it.i mpo r t signals a name conflict error cvC'n if the conflict is with a shadowing 
symbol, the rationale being that the user has given two explicit and inconsistent directives. export (page 
151) makes a singl~symbol accessible to all the packag,es that use the package from which the symbol is 
exported. All of these packages are 'checked for name conflicts: (9)( P or t $ p) docs (f i rl d'" S Yiftb 01 
(symbol-name s) q) foreachpackageqin (package-used"'by""11st p). Notcthatfnthcusualcase 
of an ex po r t during the initial dcnnitiohof a package, the result of pa Ck! ge -- use d ... by'" 1 i s t will be fi i 1 
and the name conflict checking will take negligible time. 

The function intern (page 150), which is the otte.usc4tnoSt frcqucluly by the LISP reader for looking up 
names of symbols; does hot .need to do any narne"'conflict checking, because it never creutcsa new syl'nbol if 
there i~ already an acc"Cssible symbol with the name given. 

shad ow arld shadOw in 9 -; mpor t n~ver signal a name"'conflict error, because by calling these functions 
the user has specified how any possible conflict is to be resolved. s had ow does name-conflict checking to the 
extent that it checks whether adislinct existing symbol with the specified name is accessible~ and if so whether 
it is directly present in the package or inherit~d; in tlle latt~r case a new symbol is created to shadow it. 

shad ow; n 9 - imp 0 r t does namc'"conflict· checking to the extent that it checks whether a distinct exbtitlg 

symbol with the same name is accesSible; if so it is shadowed by the new symbol, which implies th~t it must be 
unintcfllcd jf it was directly present in the package. 

unuse-packag~~ unexport, and un'iht.ern (whet. the symbol being unintcrfied is riot a shadowing 

symbol) do not need to do any name"'tonflict checking., because they only remove symbols from a package; 
u1ey do not mak~ any new syrnbolsacce,ssible .. 

Giving a shadowing symbol to y:n inter "can uncover a name conflict .that had previously been resolved 
by the shadowing. Ifpackage A uses packages nand C, A contains a shadowing symbol x, and Band C each 
contain external symh'olsnamed x~ then removing tl1e shadowing symbol x from A will reveal a name conflict 
between b : x and 0:: x if those. two symbols are distinct~ In this case un in t e r' n will signal al1errOf. 

Aborting from a name"'col1f1ict error Itaves the original symbol accessible. Packa:ge functions always signal 
l1ame-contlicterrots before maldttl any (hattge to 'the package structure. When multiple changes arc to be 
made" hciwevef, for example when ex por t is given a liSl of symbols, it is permissible ror the implementation 
to process e:ach 'change: 'Separltely., so that :aborting ftoma n~e conflict caused by fh~ second symbol in the . 
list wilt· not uAetpott the· tilltsymbol bl ·the list. HQWeWft ·abomngtrot11 a name ooatlic:t error caused by 
exportofasittgle symbol wIllnot~vf thitsymbGlac~ibte to some packages and inaccessible to others; 
with respect to each symbol prOt'essed, expo r t behaves as tnt were as an atomic operation. 

Contin;uingftoma ~nflict error should offer·t,M tls:er a chance to resolve the, name conflict in favor 
of either of tbecandida~.Tbe package mructure should bea.lter-ed to reflect the resolution of the name 
conflict, via shadowi no- impor t, un, in te rh~;Of un~JtJ.1or t~ 



CHAPTER 11: PACKAGES 147 

A name conflict in use-package between a symbol directly present in the using package and an external 

symbol of the used package may be resolved in favor of the first symbol by making it a shadowing symbol, or 

in favor of the second symbol by unintcrning the first symbol from the using package. The latter resolution is 

dangerous if the symbol to be uninterned is an external symbol of the usiilg package since it will cease to be 

an external symbol. 

A name conflict in use-pack.age between two external symbols inh~rited by the using package from 

other packages may be resolved in favor of either symbol by importing it into the using package and making it 

a shadowing symbol. 

A name conflict in export between the symbol being exported and a symbol already present, in a package. 

that would inherit the newly-exportcd symbol may be resolved in favor of the exportl.!d symbol by 

uninterning the other one, or in favor of the already-present symbol by making it a shadowing symbol. 

A nam\! conflict in ex port or un i n te r n due to a package inheriting tWo distinct symbols with the same 

name from two other packages may be resolved in favor of either symbol by importing it into the using 

p,tckage and making it a shadowing symbol, just as with use - pac k age. 

A name conflict in impol't between the symbol being imported and a symbol inherited from some other 

package may be resolved in favor of the symbol being imported by m~king·jt a shadowing symbol, or in favor 

of the symbol atr~ady accessible by not doing the import. A name conflict in import with a symbol 

already present in the package may be resolved by uninterning that symbol~ or by not doing the import. 

Good user-interface style dictates that use-package and export, which can cause many name conflicts 

simultaneously, first check for all of the name conflicts before presenting' any of th~m to the user. The user 

may then choose io resolve all of L'1em wholesale, or to resolve each of them individually, 'me latter requhing 

a lot of interaction but permitting different conflicts to be resolved different ways. 

Implementations may offer other ways of resolving name conflicts. For iristance, if the symbols that conflict 

are not being used as objects, but only as names for functions, it may be possible to "merge" the two symbols 

by putting the function definition ann> both symbols. References to either symbol.for purposes of calling a 

functiol1 would be equivalent. A similar merging operation can be done for variable values and for things 

stored on L'1e property list. In Lisp Machine LISP, for example, one can also forward the value, function, and 

propeny cells so that future changes to either symbol will propagate to the other one. Some other 

implementations are able to do this with value cells, but not with property lists. Only the user can know 

whether this way of resolving a name conflict is adequate, because it will work only if the use of two non-eq 

symbois with the same name will not prevent the correct operation of his program. The value of offering 

symbol-merging as a way of resolving name conflicts is that it Can avoid the need. to throwaway the whole 

LISP world, correct the package-definition forms that caused the error, and start over from scratch. 



148 COMMON LISP REFEltENCE MANUAL 

11.7. Buiit-in Pacf<ages 

At least the following packages are built irito every COMMON LISP system: 

lisp 

user 

The package named 1 i sp contain$ tllC primitives of the COMMON LISP system. Its 
external symbols include an of the user-visible functions and global variables that are 
present in thcCOM~10N LISP system, 2uch as car, cdr, *package*,etc. Almost an other 
packages will want to use 1 is P so L.~at these symbols will be accessible without 
qualification. 

The userpa<.:kage is. by default, the current packag·;: at th~ time 3 COTvl\10i' LIsp system 
starts up. This package uses the 1 ; sp package. 

keyword This package contains all of the kcyv:orus lls~d by built-in or user-defined LISP functions. 
Printed symbol reprcscntadons that star~ with d colon arc in tCI13 fctcd as referring to 
symbols in this package. ~.'hich are ahv.:tys external symbols. All symbols in this pa~kage 
are treated as constants that evaluate to themselves. so that the user can type: f 00 instead 
of' : foo. 

system This package name is reserved to the implementation. NonnJlly L'1is is used to contain 
names of irnpktncntation-d,~pcildcnt s),stcm-iutcrfacl! functions. 'i1115 package uses 1 i sp 
and has the nickname sys. 

11.S. Package Systenl Functions and V ariabl2:~ 

Some of the functions and variables below ha,,~ been described earlier, but are included here for 

completeness. 

It is up to each implementation's compiler to ensure that when a compiled file is loaded, all of the sy~bols 
in the file end up in the same packages that they would occupy if the LiSP source file were loaded. In most 
compilers, this will be accomplished by treating certain package operations as though they are surrounded by 

(eva l..,.when (compi 1 e load eva 1) .•. ); see eva l-whan {page 57}. These opcf(uions are 

make-package, in-package, shado\aJ,shadowi ng- import~ e.lport~ un expor t,use -package" 

unuse-package. and import. To guarantee proper compilation in aU COMMON LISP impiementations, 
these functions should appear only at top level within a file. Asa matter of style, it is sliggestcd that each file 
contain only one package, and that all of the package setup forms appear near the start of the file. This is 
discussed in more detaiL with examples, in .section 11.10. 

Imp~lemectation note: In the past. some LISP compilers have read the entire file into LIsp before proces.c;ing any of the forms. 
Other compilers have. :arranged for the loader to do all of itS intern· .opcrations before evaluating any of the top-leveJ forms. 
Neither of these techniques win work ina straightforward way in COMMON LISP because of the presence 'Of multiple 
packages. 

For the functions described here, all optional arguments named package default to the current value of 

,. pac k a 9 e* . Where a function takes an argument that is either a symbol or a list of symbols, an argument of 
nil is treated as an empty list of symbols. Any argument described as a package name may be either a string 

or a symbol. If a symbol is supplied, its print-nanle will be used as the package name; if a string is supplie<L 

• 



CIIAI-TER 11: PACKAGES 149 

the user must be take care to specify the same capitalization used in the package name, normally all-capitals. 

*package* [Variable] 
The value of this variable must be a package; this package is said to be the current package. The 

initial value of *package* is the user package. 

ll1e function load (page 351) rebinds *package* to its current value. If some form in the file 

changes the value of *p.ackage* during loading, the old value will be restored when the loading is 

completed. 

make-package package-name &key nicknames use [Fullction] 
Creates and returns a' new package with the specified package name. As described above, this 

argument may be either a string or a symbol. The : n i c k name s argument must "be a list of strings 
to be used as alternative names for the package. Once again, the user may supply symbols in place 

of the strings, in which case the print-names of the symbols are used. These names and nicknames 
must not conflict with any existing package names~ if they do, a correctable error is signalled. 

The : use argument is a list of packages or the names (strings or symbols) of packages whose 

external symbols are to be inherited by the new package. These packages must already exist. If not 

supplied, : use defaults to a list of one package, the 1 i s p package. 

in -p ackagp. package-name &key nicknames use [Function] 
The in - pack age function is intended to be placed at the start of a file containing a subsystem that 

is to be loaded into some package other than user. If there is not already a package named 

package-name, this function is similar to make-package, except that after the new package is 

created, *package* is set to it. This binding will remain in force until changed by the user 

(perhaps with another in - pac k a g.e call), or until the * pac k age * variable reverts to its old value 

at the completion of a load operation. 

If there is an existing package whose name is package-name, the assllmption is that the user is 

re-loading a file after making some changes. The existing package is augmented to reflect any new 

nicknames 'or new packages in the : use list (with the usual error-checking) and *package* .is 

then set to this package. 

find-package name [Function] 
The name must be a string that is the name or nickname for a package. This argument may also be 

a symbol, in which case the symbol's print name is used The package with that name or nickname 

is returned; if no such package exists, find-package returns n; 1. The matching of names .; 

observes case (as in s t r i n g = . (page 248». 



150 COMMO.N JJISPREFER£NCEMANUAiL 

',piac.kage-name package [FunctiaoJ 
Theargurnentifllust h,e,a package. This futilc1;iO,ft returns '.the 's.tringl11at ~names that[Jlaok~, . 

. pa~;k;(i!re -·ni,ck-names package [Functi<on] 

The argument :must he'a package. Thisfun-ctionretUffls the list of nickname 'strings for that 
package,:no't ,inCluding·the :primary name. 

r,e;oame -p.ackag,e package neJV-;1'l(,fIi:le&o;p.t 1:0,0;8 ~ ne;W"tLicknames .lRu'nc!tiQlf] 

The old name ,and all of .the 'old nipknames ··of package,~ ie:limina:t:edandaFe replacedhynew-ina1!l!Je 
andnew-lJicknames. The 'neW"'name argument is a string :or symbol; :tl1e !ne,w-.n.icknamesargum,ent, 
which defaults to;o i ~, is alistafstdngsorsymbols. 

;pa~cjka·g e--,us e -1 :;:st package [FutlcJion] 
A Jistofothe'rpackages use,(\} ;by ~thear;gum:e:nt packtige,is Tettamed. 

Ipa;c:k;age~.u,sed-:bN- ~ 1St package (Functitui] 
A list of other packages that use the :argtiment pacKage is Temme'. 

[ Function] 
A list is returned of symbols that have 'beendeclaredasshadowin.gsymhojs in this package 'by 

sh ad 0 war sh a dow ;(1g- im.p{)r t. All symbols on this ilistare present in tbespecified package . 

1 'is:t -8 ~ l-pca,ckag'es [Function] 
This funCti01l returns a list ,ofal1;paokages ti.lat;c:urrrently \e,xist :in~,th~ 1;Ispsystem.. 

1!1l t,e.rn .s~':tng&o;pt 'lo'na 1 package [Func:tiDn] 

The package., which defaults to the ·current :package., is :seMched f0'fa .symbolwitb. the name 
':specifled ,by tbestl'il7;gargument. Thls:searchwi1.1 J.nclud;einneriteas¥mbols, as described m-section 
llL.S. Ira :Sc~olw.i&Xhe ;specified name is f~ll:l~;it js ::retumed. If;nos-uch ·symbol is found,· one is 
'created :and is installed in ;the 'OJ.il'tfent -package:as ;al);:i;n:temai $y-mbQI (as ;an'external ,symbol if the': 
qlaCkage ;is tile k'e:r·Wi()ir,d ,package).; ltbeeurrentpackage ':becomes ,theil01llepackage mthe ,created 

'~mbo1. 

r~ walues ,are ,returned. The iiratis ~*esy,ml)"61 ;tlat was found ~or ,oreated,. . The ;se,e,ondvalueis 
j'l1i'a .if no:pre"t:existitli ,sym0,ol W;.as f'Qwd, .and ~taik~sQnOJle;ofthJf!.e valllleg jfa sym'b01 \was foun<d: 

:: iilll~r,ei<l~ The~~hdl'wasw£eC~YiPJtes,em:in ::.t!he lllackage .as,an.teJll~:SJ'.bQl. 

:: ift~tt-e;rflia'The~ymbol 'was.dif'ec~r:l'Y:p$esen.tasan ;e"5temaisymboL 

: l igth,er it.,e,d The is~boJiw;as 'inherited, Niaus:e "":packa>Q~,( whic.himplies ;that 'the symbol;:is 
intemal~. 

• 



CHAPTER 11: PACKAGES 151 

Compatibility note: Conceptually, intern translates a lltring 10 a symbol In MACUSP and several other 
dial(;!cts of LISP, intern can take either a string or a symbol as its argument: in the latter case, the symbol's 
pnnt name is extracted and used as the string. However, this leads to some confusing issues about what to do if i 

intern finds a symbol that.is not eq to the argument symbol. To.avoid such confusion, COMMON LISP require, 
the argument to be a string. 

f i nd-symbo 1 string &opt i on al package [Function] 
This is identical to in t ern, but it never creates a new symbol. If a symbol with the specified narne 

is found in the current package, directly or by inheritance, the symbol found is returned as the first 

value and the second value is as specified for intern. If the symboi is not accessible in the 

specified package, both values aI e nil. 

unintern symbol &optiona1 package [Function] 
If the specified symbol is present in the specified package, it is removed from this package, and also 

from the package's shadowing-symbols list if it is present there. Moreover, if package is the home 

pac~age for the symbol, the symbol is made to have no home package. Note tllat in some 

circumstances the symbol may continue to be accessible in the specified package by inheritance. 

. un i n t ern returns t if it actually removed a symbol, and nil otherwise. 

un i n t ern should be used with caution. It changes the state of L.'1e package system in such a way 

that the consistency rules do not hold across the change. 
Compatibility note: The equivalent of this in MACLTSP is remob. 

export symbols &opt i onal package [Function1 
The symbols argument should be a list of symbols, or possibly a single symbol. These symbols 

become accessible as external symbols in package. See section 11.5 for details. ex p 0 r t returns t. 

By convention, a call to export listing all exported symbols is placed near the start of a file"to 

advertise which of the symbols mentioned the file are intended to be used by other programs. 

unexport symbols &opt i ona 1 package [Function] 
The argument should be. a .list of syinbols, or possibly a single symbol. These symbols become 

internal symbols in package. It is an error to unexport a symbol from the keyword package. See 

section 11.5 for details. un ex po r t returns t. 

import symbols &optional package [Function] 
The argument should be a list of symbols, or possibly a single symbol. These symbols become 

internal symbols in package, and can therefore be referred to without having to use qualified-name 

(colon) syntax. import signals a correctable error if any of the imported symbols has the same 

name as so~e distinct symbol already accessible in the package. See' section 11.5 for details. 

import returns t. 



152 COMMON USP REFERE~CE MANUAL 

shadowi ng- import symbols' &opt ional package [Function] 
This is like import, but it does not .signal an error even if the importation of a symbol would shadow 

some symbol already accessible in the package. In addition to being imported, the symbol is placed 

on the shadowing-symbols list of package. See section 11.6 .for details. s had ow i n 9 - imp 0 r t 

returns t. 

shad ow in 9 - ; mp 0 r t should be used with caution. It changes the state of the package system in 

such a way that the consistency rules do not hold across the change. 

shadow symbols &opt iona1 package [Function] 
The argument should be a list of symbols, or possibly a single symbol. The print-name of each 

symbol is extracted. and the 'current package is searched for a symbol of that name. If such a 

symbol is present in tlltS package (directly, not by inheritance) then nothing is done. Otherwise~ a 

. new symbol is created with this print name, and it is inserted in the current package as an internal 

symbol. The symbol is also placed on the shadowing-symbols list of package. See section 11.6 for 

details. shadow returns t. 

s had ow should be used with caution. It changes the state of t~e package system in such a way that 

the consistency rules do not hold across the change. 

use-package packages-lo-use &optiona1 package [Function] 
The packages-lo-use argument should be a list of packages or package names, or possibly a single 

package or. package name. These packages are added to the use-list of package if they are not there 

already. An external symbols in the packages to use become accessible in package as internal 

symbols. See section 11.5 for details. It is an error to try to use the keyword package. 

use-package returns t. 

unuse-package packages-lo-unuse &opt i ona 1 package [Function) 
The packages-lo-unuse argument should be a list of packages or package names, or possibly a single 

package or package name. These packages are removed from the use-list of package. 
unuse-package returns t. 

fi nd-a ll-symbo1 s string-or-symbol [Function] 
fin d - a 11 - symb 01 s searches every package in the LISP system for symbols whose print-name is 

the specified string. and returns a list of such symbols. This search is case-sensitive. If the 

argument is a symbol, its print-name supplies the string to be searched for. 

do-symbol s (var (package [result-fonnJ]) {declaration}* {tag I statement}* [Macro] 
do-symbol s provides straightforward iteration over the" symbols of a package. The body is 

.performed once for each symbol accessible in the package, in no particular order, with the variable 

varbound to the symbol. Then resull-fonn (a single form, not an implicit progn) is ev.aluated, and 
the result is the value of the do-symbol s fo.rm. (When the resull-fonn is evaluated, the control 

variable var is still bound, and has the value ni 1.) If the resull-fonn is omitted, the. result is ni 1. 



CHAPTER 11: PACKAGES 153 

return (page 99) may be used to tenninate the iteration prematurely. If execution of the body 

affects which symbols are contained in the package, other tha'n possibly to remove the symbol 

currently the value of varby using un intern, the effects are unpredictable. 

do-externa1-symbo1 s (var [package [result]]) {declaration}* {tag I statement}* [Alaero] 
do-exte rn a 1- symbo 1 s is just like do- symbo 1 s, except that only the external symbols of the 
specified package are scanned. 

do-all-symbols (var [result-fonn]) {declaration}* {tag I statement}* [."'facro] 

This is similar to do-symbol s, but executes the body once for every symbol contained in every 

package. (This will not process every symbol whatsoever, because a symbol not accessible in any 

package will not be processed. Normally uninterned symbols are not accessible in any package.) it 
is not in general the case that each symbol is processed only once, because a symbol may appear in 
many packages. 

11.9. Modules 

A module is a COMMON LISP subsystem that is loaded from one or more files. A module is normally loaded 

as a single unit, regardless of how many files are involved. A module may consist of one package or several 

packages. The file-loading process is necessarily implementation-dependent, but COMMON LISP provides 

some very simple portable machinery for naming modules, for keeping track of which modules have been 

loaded, and for loading modules as a unit 

*modu1 es* [Variable} 
The variable *modul es* is a list of names of the modules that have been loaded into the LISP 

system so far .. This list is used by the functions pro v .i de and r e qui r e. 

prov i de module-name [Function] 
r e qui r e module-name &0 p t ion a 1 path name [Function] 

Each m<fule has a unique name (a string). The prov ; de and requi re functions accept either a 

string or a symbol as the module-name argument. If a symbol is provided t its print name is used as 

the module name. If the module consists of a single package, it is custornary for the package and 4· . 

module names to be the same. 

The prov ; de function adds a new module name to the list of modules maintained in $e variable 

* rno d u 1 e s * t thereby indicating that the module in question has been loaded. 

The requi re ·function tests whether a module is already present (using a case"sensitive 

comparison); if the module is not present, requi re proceeds to load the appropriate file or set of 

files. The pathname argument, if present, is a single pathname or a list of pathnames whose files are 

to be loaded in order, left to fight. If the pathname argument is nil or is not providedt the system 

will attempt to determine, in some system-dependent manner, which files to load. This will 
typically involve some central registry ofJ;llodule names and the associated file-lists. 



154·' COMMON LISP REFERENCE MANUAL 

hnplementation note: One way to implement such a registry on many operating systems is simply to use a 
distinguished "library" directory within the file system, where the name of each file is the same as the module it 
contains. 

;;;; Lisp init file for I. Newto~. 

;;; Set up the USER package the way I like it. 

(require 'calculus) 
(use-package 'calculus) 

;1 use CALCULUS a lot. Load it. 
:Get easy access to its 
; exported symbols. 

(require 'newtonian-mechanics) ;Same thing for NEWTONIAN-MECHANICS. 
(use-package 'newtonian-mechanics) 

, , , 

. , , 
I just want a few thing from RELATIVITY, 
and other things conflict. 
Import only what I need into the USER package . 

Crequire 'relativity) 
(import '(relativity:speed-of-light 

relativity:ignore-smal1-errors» 

" , 
These are worth loading, but I will use qualified names, 
such as PHLOGISTON:MAKE-FIRE-BOTTLE, to get at any symbols 
I might need from these packages. 

(require 'phlogiston) 
(require 'alchemy) 

;;; End of Lisp init file for I. Newton. 
Table II-I: Example ofan "Initialization File" 

11.10. An Example 

Most users will want to load and use packages but will never need to build one. Often, a user will load a 
number of packages into the user package whenever he uses COMMON LISP. Typically an implementation 
might provide some sort of "initialization file" mechanism to make such setup automatic when the LISP starts 
up. Table 11-1 shows an example of such an initialization file, one that simply causes other facilities to be 
loaded. 

When, each of two files uSeS some symbols from the other, one must be careful to arrange the contents of 
the file in the proper order. Typically each file contains a single package that is a complete module. The 
contents of such a file should include the following items. in order: 

1. A call to pro v ide that announces the module name. 
2. A call to in-pack age that establishes the package. 



CHAPTER 11: PACKAGES 

;;;; Alchemy functions~ written and maintained by Merlin, Inc. 

(provide 'alchemy) 
(in-package 'alchemy) 

;The module is named ALCHEMY. 
;So is the package. 

" , There is nothing to shadow. 

" , Here is the external interface. 

(export '(lead-to-gold gold-to-lead 
antimony-to-zinc elixir-of-life» 

" , 
This package/module needs a function from 
the PHLOGISTON package/module. 

(require 'phlogiston) 

" , 

We don't frequently need most of the external symbols from 
PHLOGISTON, so it's not worth doing a USE-PACKAGE on it. 
We'll just use qualified names as needed. But we use 
one function, MAKE-FIRE-BOTTLE, a lot, so import it. 
It's external in PHLOGISTON. and so can be referred to 
here u~ing If:" qualified-name syntax. 

(import '(phlogiston:make-fire-bottle» 

;;; Now for the real contents of this file. 

(defun lead-to-gold (x) 
"Takes a quantity of lead and returns gold." 
(when (> (phlogiston:heat-flow x) ;Using a qualified symbol. 

3) 
(make-fire-bottle 'x» ;Usingan imported symbol. 

(gild x» 

; ;; And so on 
Table 11-2: Example file a1 chemy 

3. A call to shadow that establishes any local symbols that will shadow symbols that would 
otherwise be inherited from packages that this package will use. 

4. A call to export that establishes all of this package's external symbols. 
S. Any number of calls to requ ire to load other modules that the contents of this file might want 

to use or refer to. (Because the calls to requ ire follow the calls to in - p ac k age, shadow, and 
export, it is possible for the packages that may be loaded to refer to external symbols in this 
package.) 

6. Any number of calls to use-package, to make external symbols from other packages accessible 
in this package. 

7. Any number of calls to import. to Inake symbols from other packages present in this package. 
8. Finally, the definitions making up the contents of this package/module. 

155 



156 COMMON LISP REFERENCE MANUAL 

;;;; Phlogiston functions, by Thermofluidics, Ltd. 

(provide 'phlogiston) 
(in-package 'phlogiston) 

;The module is named PHLOGISTON. 
;50 is the package. 

" , There is nothing to shadow. 

" , Here is the external interface. 

(export '(heat-flow cold-flow mix-fluids separate-fluids 
burn make-fire~bottle» 

;;; This file uses ·functions from the ALCHEMY package/module. 

(require 'alchemy) 

We use alchemy functions a lot. so use the package. 
This will allow symbols exported from the ALCHEMY package 

" , to be referred to here without the need f6r qualified names. 

(use-package 'alchemy) 

" , No calls to IMPORT are needed here. 

The real contents of this package/module. 

(defun heat-flow (amount x y) 
"Make some amount of heat flow from x toy." 
(when feeling-weak 

(quaff (elixir-of-life») ;No qualifier needed. 
(push-heat amount x y» 

;;; And so ~n ... 
Table 11 .. 3: Example file phlogiston 

'The following mnemonic sentence may be helpful in remembering the proper order of these calls: 
Put in seven extremely random user interface commands. 

Each word of the sentence corresponds to one item in the above ordering: 

Put 
IN 
Seven 
EXtremely 
Random 
USEr 
Interface .. 
COmmands 

Provide 
IN-package 
Shadow 
EXport 
Require 
USE-package 
Import 
COntents of package/module 

Note that the sentence says what it belps you to do. 



CHAPTER 11: PACKAGES 157 

Now, suppose for the sake of example that the ph 1 og is ton and 81 cherny ·packages are single-file, 

single-package modules as described above. The ph log is ton package needs to usc the a 1 cherny package, 

and the a 1 cherny package needs to use several external symbols from the ph log; s ton package. TIle 

definitions in the alchemy and phlogiston files (see Tables 11-2 and 11-3) allow a user to specify 

requ i re statements ~or either of these modules, or for both of them in either order, and all relevant 

information will be loaded aut~matical1y and in the correct order. 

For very large modules whose contents are spread over severalfiies (the 1 ; s p package is an example), it is 

recommended that L'1e author create the package and declare all of the shadows and external symbols in a 

separate file, so that this can be loaded before anything that might use symbols from this package. 



158 COMMON .LISP REFERENCE MANUAL 

e 
~., 



Chapter 12 

Numbers 

COMMON LISP provides several different representations for numbers. These representations may be 
divided into four categories: integers, ratios, floating-point numbers, and complex numbers. Many numeric 
functions will accept any kind of number; they are generic. Those functions that accept only certain kinds of 
numbers are so documented below. 

In general. numbers in- COMMON LISP are not true objects; e q cannot be counted upon to operate on them 
reliably. In particular, it is possible that the expression 

(let «x z) (y z» (eq x y}) 

may be false raL.'lcr than true, if the value of z is a number. 
Rationale: This odd breakdown of eq in the case of numbers allows the implementor enough design freedom to produce 
exceptionally efficient numerical code on conventional architectures. MAcLIsp requires this freedom, for cxmrlple, in order 
to produce compiled numerical code equal in speed to FORTRAN. If not for this frcedom, then at Ica;,t for the sake of 
compatibility, COMMON Lisp makes this same restriction. 

If two objects are to be compared for "identity", but either might be a number, then the predicate eq 1 (page 
65) is probably appropriate; if both objects are known to be numbers,. then = (page 162) may be preferable .. 

12.1. Precision, Contagion, and Coercion 

In general, computations with floating-point numbers are only approximate. The precision of a floating
point number is n~t necessarily correlated at all with ,the accuracy of that number. For ins~nce, 
3.142857142857142857 is a more precise approximation to 'II than 3.14159, but the latter is more accurate. ·lbe 
precision refers to the number of bits retained in the representation. When an operation combines a short 
floating-point number with a·long one, the resu1t.will be a long floating-pOint number. This rule is made to 
ensure that as much- accuracy as possible is preserved; however, it is by no means a guarantee. COMMON LISr 

numerical" routines do assume, however, that the accuracy of an argunlent does not exceed its precisiod: 
Therefore when two small floating-point numbers are combined, the result will always be a small floating
point number. This assumption can be overridden by first explicitly. converting a small floating-point number 
to a larger representation. (COMMON LISP never converts automatically from a larger size to a smaller one.) 

Rational computations cannot overflow in the usual sense (though of course' there may not be enough 
storage to represent one), as integers and ratios may in principle be of .any magnitude. Floating-point 
computations may get exponent overflow or underflow; this is an error. 

/ 

-159 -



160 COMMON LISP REFERENCE MANUAL 

When rational and floating-point numbers are compared or combined by a numerical function, the rule of 

"floating-point contagion" is followed: when a rational meets a floating-point number, the rational is first 

converted to a floating-point number of the. same format. For functions such as + that take more than two 

arguments it maybe that part of the operation is carried out exactly using rationals and then the rest is done 

using floating-point arithmetic. 

For functions that are mathematically associative (and possibly commutative), a COMMON LISP 

implementation may process the arguments in any manner consistent with associative (and possibly 

commutative) rearrangement. This does not affect the order in which the argument forms are evalUated, of 

course; that is always left to right, as in all COMMON LISP function calls. What is left loose is the order in 

which the argument values are processed. The point of all this is that implementations may differ in which 

automatic coercions are applied because of differing orders of argument processing. As an example, consider 

this expression: 
(+ 1/3 2/3 1.000 1.0 1.0E-15) 

One ini'plementation might process the arguments from left to right, first adding 1/3 and 2/3 to get 1, then 

converting that to a double-precision floating-point number for combination with 1.000, then successively 

converting and adding 1 . 0 and 1 . 0 E -15. Another implementation might process the arguments from right 

to left. first perfonning a single-precision floating-point addition of 1 . 0 and 1. 0 E -15 (and probably losing 

some accuracy in the process!), then converting the sum to double precision and adding 1.000, then 

converting 2/3 to double-precision. floating-point and adding it, and then converting 1/3 and adding that. A 

third implementation might first scan all the arguments. process all the rationals first to keep that part of the 

computation exact, then find an argument of the largest floating-point fonnat among an the arguments and 

add that, and then add in all other arguments, converting each in tum, all this in a perhaps misguided attempt 

to make the computation as accurate as possible. In any case, all three strategies are legitimate. The user can 

of course control the order of processing explicitly by writing several calls; for example: 
(+ (+ 1/3 2/3) (+ 1.000 1.OE-15) 1.0) 

The user can also control all coercions simply by writing calls to coercion functions explicitly. 

In general, then, the type of the result of a numerical function is a floating-point number of the largest 

format among all the floating-point arguments to the function; but if the arguments are all rational, then the 

result is rational (except for functions thac can produce mathematically irrational results, in which case a 

single-fonnat floating-point number may result). 

There is a separate rule of complex contagion. As a rule, complex numbers never result from a numerical 

function unless one or more of the arguments is complex. (Exceptions to this rule occur among the irrational 

and transcendental functions, specifically expt (page 167), 109 .(page 167). sqrt (page 168), as i n (page 

169), ac\os (page 169), acosh (page 171), and atanh (page 171); see section 12.5.). When a non-complex 

number meets a complex number, the non-complex number is in effect first converted to a complex number 
by providing an imaginary part of o. 

Ifany computation produces a result that is a ratio of two integers such that the denolninator evenly divides 

the numerator, then the result is immcdiately converted to the equivalent intcger. This is called the rule of 

rational canonicalitation. 



---

CHAPTER 12: NUMBERS 161 

If the result of any computation would be a complex rational with a zero imaginary part. the result is 

immediately converted to a non-comp~cx rational number by taking the real part This is called the nIle C?f 

complex canonicalization. Note that this rule docs not apply to complex numbers whose components are 
floating-point numbers. Whereas #e (5 0) and 5 are not distinct values in COMMON LISP (they are always 

e q 1), #e ( 5 . 0 O. 0) and 5 . 0 are always distinct values in COMMON LISP (they are never e q', although 

they are equa 1 p). 

12.2. Predicates on Numbers 

zerop number [Functio,g 
This predicate is true if number is zero (either the integer zero, a floating-point zero, or a complex 

zero), and is false otherwise. Regardless of whether an implementation provides distinct 
representations for positive and negative floating-point zeros, (zerop -0.0) is always true. It is 
an error if the argument number is not a number. 

P 1 usp number [Function] 
This predicate is true if 'lumber is strictly greater than zero, and is false otherwise. It is an error if 
the argument number is not a non-complex number. 

min u s p number [Function] 
This predicate is tnle if number is strictly less than zero, and is false otherwise. Regardless of 

whether an implementation provides distinct representations for positive and negative floating
point zeros, (zerop -0.0) is always false. (The function fl oat-s i gn (page 177) may be used 

to distinguish a negative zero.) It is an error if the argument number is not a non-complex number. 

oddp integer [Function] 
This predicate is true if the argument integer is odd (not divisible by two), and otherwise is false. It 

is an error if the argument is not an integer. 

evenp integer [Function] 
This predicate is true if the argument integer is even (divisible by two),. and otherwise is false. It is 
an error if the argument is not an integer. ~t 

~ 
1 

See also the data-type predicates integerp (page 61), rationalp (page 62), floatp (page 62), 

comp 1 exp (page 62), and numberp (page 61). 



·162 COMt\10 N LISP REFERENCE MANUAL 

12.3. Comparisons on Numbers 

All of the functions in this section require that their arguments be numbers; to can one with a non-number 
is an error. Unless ptherwise specified, each works on all types of numbers, automatically pcrfonning any 
required coercions when arguments are of different types. 

= number &rest more-numbers 
/= number &res t more-numbers 
< number &res t more-numbers 
> number &res t more,'numbers 
<= number &res t more-numbers 

[Function] 
[Function] 
[Function] 
[Function] 
(Function] 

>= number &res t more-numbers [Function] 
These functions each take one or more arguments. If the sequence of arguments satisfies a certain 
condition: 

= all the same 
/ = all different 
< monotonically increasing 
> monotonically decreasing 
< = monotonically· nondecreasing 
> = monotonically nonincreasing 

then the predic:ate is true, and otherwise is false. Cemp1cx numbers may be compared using;:; and 
/ =. but the others require non-complex arguments. Two complex numbers 'arc considered equal by 
= if their rea] parts are equal and their imaginary parts are equal according to =. A complex 
number may be compared to a non-complex number with = or / =. 
For example: 

(= 3 3) is true 
(= 35) isfalse 
(= 3 3 3 3) is true 
(= 3 3 5 3) isfalse 
(= 3 6 5 2) is false 
(= 3 2 3) is false 
« 3 5)' is true 
« 3 -5) iSfalse 
« 3 3) isfalse 
«. 0 3 4 6 7) is true 
« 0 3 4 4 '6) isfalse 
( > 4 3) is true 
(> 4 3 2 1 0) is true 
(> 4 3 3 2 0) isfalse 
(> 4 3 1 2' 0) is false 
(= 3) is true. 
« 3) istrue 
(= 3. 0 #C ( 3 . 0 O. 0 }) is true 
(= 3 3. 0) is true . 
(:: 0.0 -0.0) is true . 
(> 0.0 -0.0) isfalse 

( / = 3 3)- is false 
( /:: 3 5) is true 
( / = 3 3 3 3) is false 
(/= 3 3 5 3) isfalse 
( / = 3 6 5 2) is true 
( / = 3 2 3) is false 
( < = 3 5) is true 
( < = 3 - 5) is false 
( < = 3 3)· is true 
( <:: 0 3 4 6 7) is true 
( < = 0 3 4 4 6) is true 
( > = 4 3) is true 
( > = 4 3 2 1 0) is true 
( > = 4 3 3 2 O) is true 
(>= 4 3 1 2 0) isfalse 
( / = 3) is true 
( « = 3) is true 
( / = 3. 0 #C ( 3 . 0 1. 0 » is true 
(= 3. 0 s 0 3. 0 dO) is true 
(:: 5/ 2 2. 5) is true 
(= 0 - 0 . 0) is true 

With two arguments, these functions perform the usual arithmetic comparison tests. With three or 



CHAPTER 12: NuMBERS 

more arguments~ they are useful for rangechecl<.s; 

For example: 

«::; 0 x.g) 
« 0.0 x 1.0) 
« -1 j (length s» 
«= 0 j k (- (length 

; true if x is between 0 and 9, inclusive 
; true if x is between 0.0 and l.0, exclusive 
; true if j is a valid index for S 

S ) 1 ) ) ; true if j and k are each valid 
indices for s and also j:Sk 

Rationale: The "uoequality" relation is caJIed "/=" rather than "<>" (the name used in PASCAL) for two 
reasons. First. / = of more than two arguments is not the same as the 0 r of < and > of those same arguments. 
Second. unequality is meaningful for complex numbers even though < and > are not. For both reasons it 
would be misleading to ac:;sociate unequaIity with the names of < and >. 

Compatibility note: In CoMMON LIsp. the comparison operations perform "mixed-mode" comparisons: (= 3 
3.0) is true. In MACLISP. there must be exactly two arguments. and they must be either both fixnums or both 
floating-point numbers. To compare two numbers for numerical equality and type equality, use e q 1 (page 
65). 

163 

max number &res t more-numbers [Function] 
m; n number &res t more-numbers [Function] 

The arguments may be any non-complex numbers. max returns the argument that is greatest 

(closest to positive infinity). m; n returns the argument that is least (closest to negative infinity). 

For max, if the arguments are a mixture of rationals and floating-point numbers, and the largest 

argument is a rational. then the implementation is free to produce either that rational or its floating

point approximation; if the largest argUlncnt is a floating-point number of a smaller fonnat than the 

largest forn1at. of any floating-point argument. then the implementation is free to return the 

argument in its given format or expanded to the larger fonnat. More concisely, the implementation 

has the choice of returning the largest argument as is or applying t.'1e mles of floating-point 

c~ntagion, taking all the arguments into consideration for conw.gion purposes. Also, if one or more 

of the arguments are equal. then anyone of them may be chosen as the value to return. Similar 

.remarks apply to min (replacing "largest argument" by "smallest argument"). 

For example: 
(max 6 12) => 12 
(max -6 -12) => -6 
(max 1 3 2 -7, ~> 3 
(max -2 3 0 7) => 7 
(max 3) => 3 
(max 5.0 2) => 5.0 
(max 3·. 0 7 1) => 7 or 7. 0 
(max 1.0s0 7.0dO) => 7.0dO 

(min 
(min 
(min 
(min 
(min 
(min 
(min 

(min 1.0s0 7.0dO) => 1.0s0 or 1.0dO 
(max 3 1 1.0s0 1.0dO) => 3 or 3.0~0 

6 12) => 6 
-6 -12) => -12 
1 3 2 -7) => -7 
-2 3 0 7) => -2 
3) => 3 
5.0 2) => 2 or 2.0 
3.0 7 1) => l' or 1.0 

(min 3 1 1.0s0 i.OdO) => 1 or 1.0s0 or 1.0dO 



164 COMMON LISP REFERENCE MA~UAL 

12.4. Arithmetic Operations 

All of the functions in this section require· that their arguments be numbers; to call one with a non-number 
is an error. Unless otherwise specified, each works on all types of numbers, automatically perfonning any 
required coercions when arguments are of different types. 

+ &r est numbers [Function] 
Returns the sum of the arguments. If there are no arguments, the result is 0, which is an identity 
for this operation. 

Compatibility note: While + is compatible with its use in Lisp Machine LISP, it is incompatible with MAcLISP, 

which uses + for fixnum-only addition. 

- number & res t more-numbers [Function] 
The function -, when given one argument, returns the negative of that argument 

The function -, when given more than one argument, successively subtracts from the first argument 
all the others, and returns the result For example, (- 3 4 5) :::> -6. 

Compatibility note: While - is compatible with its use in Lisp Machine LISP, it is incompatible with MAcLISP, 

which uses - for fixnum-only subtraction. Also, - differs from d iff erence as used in most LISP systems in 
the case of one argument 

III &res t numbers [Fullction] 

Returns the product of the arguments .. If there are no arguments, the result is 1, which is an 

identity for this operation. 
Compatibi!ity note: While· is compatible with its use in Lisp Machine LISP, it is incompatible with MACLIsp, 

which uses • for fixnum-only multiplication. 

I number &rest more-numbers [Func/.ion] 
The function /, when given more than one argument, successively divides the first argument by all 
the others. and returns the result 

With 'one argument, / reciprocates the argument 

/ will·produce a ratio if the mathematical quotient of two integers is not an exact integer. 

Forexamp1e: 
(I 12 4) :::> 3 
(/ 13 4) :::> 13/4 
(I -8) :::> -1/8 
(I 3 4 5) :::> 3120 

To divide one integer by another producing an integer result, use one of the functions f 1 00 r t 

c e i 1 i n g, t run cat e. or r 0 u n d (page 175). 

If any argument is a floating-point number, then the rules of floating-point contagion apply. 
Compatibility notc: What I does is totally unlike what the usual I lor quo tie n t operator does. In most LISP 

systems, quo tie n t behaves like I e."{cept when dividing integers. in which case it behaves like t run c a te 
(page 175) of two arguments; this behavior is mathematically intractable. leading to such anomalies as 

(quotient 1.0 2.0) ->0.5 but (quotient 1 2) -> 0 



CHAPTER 12: NUMBERS 

In practice quo tie ntis used only when one is sure that both arguments are integers, or when one is sure that 
at least one argumenUs a floating-point number. / is tractable for its purpose, and "works" for any numbers. 

165 

1+ number 
1- number 

[Function] 
[Function] 

( 1 + x) is the same as (+ xl). 

(1- x) is the same as (... x 1). Note that the shon name may be confusing: (1- x) does not 
mean 1- x; rather, it means x-I. 

Rationale: These are included primarily for compatibility with MACLISP and Lisp Machine LIsp. 

Implementation note: Compiler writers are very strongly encouraged to ensure that (1 +- x) and (+ xl) 
compile into identical code. and similarly for (1- x) and (- x 1), to avoid pressure on a LIsp programmer 
to write possibly less clear code for the sake of efficiency. This can easily be done as a source-language 
transformation. 

incf place [delta] 
decf place [delta] 

[Macro] 
[Alaero] 

The number produced by the fonn delta is added to (i n c f) or subtracted from ( dec f) the number 
in the generalized variable named by place, and the sum is stored back into place and returned. 
The form place may be any form acceptable as a generalized variable to se t f (page 78). If delta is 
not supplied, then the number in place is changed by 1. 

For example: 
(setq n 0) 
( ; ncf n) => 1 and now n => 1 
(decf n 3) => -2 and now n => -2 
(deef n -5) => 3 and now n => 3 
( dec f n) => 2 and now n => 2 

The effect of ( ; n c f place delta) is roughly equivalent to 
( set f place (+ place delta» 

except that the latter would evaluate any subfonns of place twice, while ; n c f takes care to evaluate 
them only once. Moreover, for certain place fonns ; n c f may be significantly more efficient than 
the set f version. 

conjugate number· [Function] 
This returns the complex conjugate of number. The conjugate of a not:l-complex number is itself. 
For a complex number z, 

(conjugate z) <=> (complex (realpart z) (- (imagpart z») 
For example: 

(conjugate #C(3/5 4/5» => #C(3/5 -4/5) 
(conjugate #C(O.ODO -1.000» => #C(O.ODO 1.000) 
(conjugate 3.7) => 3.7 



166 COMMON LISP REFERENCE MANUAL 

ged &res t integers [Function] 
Returns the greatest common divisor of all the arguments, which must be integers. The result of 
9 e d is always a non-negative integer. If one argument is giveh, its absolute value is returned. If no 
arguments are given, ged returns 0, which is an identity for this operation. For three or more 
arguments, 

(ged abc .. ~ z) <~> (ged (ged a b) c ... z) 
For example: 

(ged 91 -49) => 7 
(ged 63 -42 35) => 7 
(ged 5) => 5 
(ged -4) => 4 
(ged) ~> 0 

1 em integer &res t more-integers [Function] 
111is returns the least common multiple of its arguments, which must be integers. The result of 1 em 

is always.a non-negative integer. For two arguments that are not both ze~o, 
(lem a b) <=> (/ (abs (* a 'b» (ged a b» 

If one or both arguments are zero, 
(lem a 0) <=> (lem 0 a) <=> 0 

For one argument,l em returns tllC absolute value of that argumep.t. For three or more arguments, 
(1 em abc ... z) <=> (1 em (1 em a b} c' ••. z) 

For example: 
(lcm 14 35) => 70 

~1athelnatically, (1 em) should return infinity. Because COMMON LISP does not have a 
representation for infinity, 1 em'. unlikc ged, always requires at least one argument 

12.5. Irrational and Transcendental Functions 

COMMON LISP provides no data type that can accurately represent irrational numerical values. The 
functions in this section are described~s if the results were mathematically accurate, but actually they all 
produce floating-point approximations to the true mathematical result. in the general case. In some places 
mathematical identities are set forth that are intended to elucidate the meanings of the functions; however, 
two mathematically identical e.xpressions may be computatioIfaIly diffetentbecause of errors inherent in the 
floating-point approximation process. 

When the arguments to a function in this section are all rational and the true mathematical result is also 
(mathematically) rational. then unless otherwise noted an implementation is free to return either an accurate 
result of type rat i on a 1 or a Single-precision floating-point approximation. If the arguments are all .rational 
but the result cannot be expressed as a rational number~ then a Single-precision floating-point approximation 
is always returned. 

The rules of flo:lting"'point contagion and complex contagion are effectively obeyed by all the functions in 
this section except expt, which treats some cases of rational exponents specially. When, possibly ~fter 



CHAPTER 12: NWBERS 167 

cont1gious conversion. all of the arguments are of the same floating-point or complex floating-point type, 

then the result will be of that same typc~ unless otherwise noted. 
Implementation note: There is a "floating-point cookbook" by Cody and Waite [4] that may be a useful aid in implementing 
the functions defined in this section. 

12.5.1. Exponential and Logarithmic Func~jons 

exp number· [Function] 
Returns e raised to the power number, where e is the base of the natural logarithms. 

expt base-number power-numbe~ [Function] 
Returns base-number raised to the power power-number. If the base-number is of type rat i on a 1 

and the power-number is an integer, the calculation will be exact and the result will be of type 

rat ion a 1 ; otherwise a floati.ng-point approximation may result 

When power-number is 0 (a zero of type integer), then the result is always the value one in the type 

of base-number, even if the base-number is zero (of any type). 11lat is: 

(expt x 0) <=> (coerce 1 (type-of x» 
If the power-number is a zero of any other data type, then the result is also the value one, in the type 

of the arguments after the application of the contagion rules, with one exception: it is an error if 

base-number is zero when the power-number is a zero not of type integer. 

Implementations of ex p tare pennitted to use different aigorithms for the cases of a rational 

power-number and a floating-point power-number, the motivation is that in many cases greater 

accuracy can be achieved for the case of a rational power-number. For example, (exp t p; 16) 

and (e x p t p; 16. 0 ) may yield slightly different results if the first case is computed py repeated 

squaring and the second by the use of logarithms. Similarly, an implementation might choose to 

compute (expt x 3/2) as if it had been written (sqrt (expt x 3»,perhapsproducinga 

more accurate result than would (e x p t xl. 5 ). It is left to the implementor to determine the 

best strategies. 

The result of ex p t can be a complex number even when neither argument is complex, if 
base-number is negative and power-number is not an integer. The result is always the principal 

complex value. Note that (expt -8 1/3) is not pennitted to return -2; while -2 is indeed one 

of the cube roots of -8, it is not the principal cube root, which is a complex number approximately 

equal to #e ( 0 . 5 1. 73205 ) . 

log number &optional base [Function] 
Returns the logarithm of number in the base base, which defaults to e, the base of the natural 

logarithms. 

For example: 
(log 8.0 2) => 3.0 
(log 100.0 10) => 2.0 

The resultof (log 8 2) may be either 3 or 3.0, depending on the implementation. 



168 COMMON LISP REFERENCE MANUAL 

Note that log may return a complex result when given a non-E:omplex argument if the argument is 
negative. For example: 

(log -1.0) <=> (complex 0.0 (float pi 0.0» 

sqrt number [Function] 
Returns the principal square root of number. If the number is not complex but is negative, then the 
result will be a complex number. 

For example: 
(sqrt 9.0) => 3.0 
(sqrt -9.0) => Hc{O.O 3.0) 

The result of (sqrt 9) may be either 3 or 3.0, depending on the implementation. The result of 
(sqrt -9) maybe either Hc(O 3) orHce-O.O 3.0). 

i sqrt illteger [Function] 
Integer square-root: the argument must be a non-negative integer, and the result is the greatest 
integer less than or equal to the exact positive square root of the argument. 

For example: 
( i sqrt 9) => 3 
( i sqrt 12) => 3 
(isqrt 300) => 17 
(isqrt 325) => 18 

12.5.2. Trigononletric and Related Functions 

abs number 
Returns the absolute value of the argument. 

For a non"complex number, 
( ab s x) < = > (i f (.m i nus p x) (- x) x) 

and the result is always of the same type as. the argument 

For a complex number z, the absolute value may be computed as 

[Function) 

(sqrt (+ {expt (realpart z) 2) (expt, (imagpart z) 2»)) 
Implementation note: The careful implementor will not use this formula. directly for all complex numbers, but 
will instead l)andle very large or very small components specially to avoid int~rmediate overflow or underflow. 

For example: 
Cabs #c(3.0 -4.0» ~> 5.0 

The result Qf tabs le( 3 4}) may be either 5 or 5. 0, depending on the implementation. 

phas,e number [Function] 
The phase of an't:lmber is the angle part of its polar representation as a complex number .. That is, 

(pbase xl <;> (atan' (imagpart x) (realpart x» 
The· result: is in radians~ in tb~, range -'11 (exclusive) to '11' (inclusive),· The phase of a positive 
flO:Il"complex number is zerQ,; that of a ~egative non-complex number is '1T. The phase of zero is 



CHAPTER 12: NUMBERS 169 

arbitrarily defined to be zero.· 

If the argument is a complex floating-point number, the result is a floating-point number of the 

same type as the' components of the argument. If the argument is a floating-point number, the 

result is a floating-point number of the same type. If the argument is a rational number or complex 

rational number, the result is a single-format floating-point number. 

signum number [Function] 
By definition, 

(signum x) <=> (if (zerop x) x (/ x (abs x») 
For a rational number, sign urn will return one of -1, 0, or 1 according to whether the number is 

negative, zero, or positive. For a floating-point number, the result will be a floating-point number 

of the same format whose value is minus one, zero, or one. For a complex number z, ( signum z) 

is a complex number of the same phase but with unit magnitude, unless z is a complex zero, in 
which case the result is z. 

For example: 
(signum 0) => 0 
(signum -3.7l5) => -1.0l0 
(signum 4/5) => 1 
(signum #e(7.S 10.0» => #C(0.6 0.8) 
(signum #C(O.O -14.7» => #C(O.O -1.0) 

For non-complex rational numbers, signum is a ratiomil function, but it may be irrational for 

complex arguments. 

sin radians 
cos radians 
tan radians 

sin returns the sine of the argument, cos the cosine, and tan the tangent. 

radians. The argument may be complex. 

-[Function] 
[Function] 
[Function] 

The argument is in 

cis radians [Function] 
This computes ei*radiaTlS. The name "c i s'~ means "cos + i sin", because tiD = cos 8 + i sin 8. The 

argument is in radians, and may be any non-complex number. The result is a complex number 

whose real part is the cosine of the argument, and whose imaginary part is the sine. Put another 

way, the result is a complex number whose phase is the equal to the argument (mod 2'.7) and whose 

magnitude is unity. 
Implementation note: Often it is cheaper to calculate the. sine and cosine of a single angle together than to 
perform two disjoint calculations. 

as i n number [Function] 
acos number [Function] 

as i n returns the arc sine of the argument, and· a cos the arc cosine. The result is in . radians. The 

argument may be complex. 



170 COMMON LISP REFERENCE MANUAL 

The arc sine and arc cosine functions may be defined mathematically for an argument x as follows: 

Arc sine 
Arc cosine 

-ilog(ix+~) 
-i1og(X+i~) 

Note that the result, of either as in or a cos may be complex even if the argument is not complex; 
this occurs when the absolute value of the argument is greater than one. 

Implementation note: These fonnulae are mathematically correct, assuming completely accurate computation. 
They may be terrible methods for floating-point computation! Implcmentors should consult a good text on 
numerical analysis. The formulas given above are not necessarily the simplest ones for real-valued 
computations, either; ·theyare chosen to define the branch cuts in desirable ways for the complex case. 

atan y &optional X [Function] 
An arc tangent is calculated and the result is returned in radians. 

With two arguments y and x, neither argument may be complex. The result is the arc tangent of the 
quantity y/x. The signs of y and x are used to derive quadrant information; moreover, x may be 
zero provided y is not zero. The value of at an is always between -'IT (exclusive) and 'IT (inclusive). 
The following table details various special cases. 

Condition Cartesi£ln locus Range of result 
y=O x>O Positive x"axis 0 
y>O x>O Quadrant I 0< result < .,,/2 
y>O x=O Positive y-axis ."i2 
y>O x<O Quadrant II . 'IT 12 < result < ." 
y=O x<O Negative x-axis 71 

y<O x<O Quadrant III -71 < result < -71/2 
y<O x=O Negative y-axis ...... 71/2 

y<O x>O Quadrant IV -71/2 < result < 0 
y=O x=O Origin error 

With only one argument y, the argument maybe complex. The result is the arc tangent of y, which 
may be defined by the following formula: 

Arc tangent - ilog «1 + i z) Vl/(1 + ?) ) 
Implementation note: This fonnula is mathematically correct, assuming completely accurate computation. It 
may be a terrible .method for floating-point computation! Implementors should consuh a good text on 
numerical analysis. The formUla given above is not necessarily the simplest one for real-valued computations. 
either: it is chosen to define the branch cuts in desirable ways for Ute complex case. 

For a non-complex argument y the lcsult·is non-complex and lies between -1112 and .,,12 (both 
exclusive). 

Compatibility note: MACUSP has a function called atan whose range is from 0 to 2,,: Almost every other 
programming language (ANSI FOR11tAN, IBM PLlt. INTERLISP) has a two-argument arc tangent function with 
range -1t to 'Tf. Lisp Machine LISP provides two two-argument arc tangent functions. atan (compatible with 
MACUSP) and a tan 2 (compatible with everyone else). 

COMMON LISP makes two-argument atan the standard one with range -'Tf to'Tf. Observe that this makes the 
on~argument and two-argument versions of atan compatible in the sense that the branch cuts do not faU in 
different places. (The INTERUSP oneaargument function arctan has a range from Oto 'IT, while nearly every 
other programming. language provides the range -1112 to 'IT /2 for one-argument arc tangent! Nevertheless, 
since INTERUSP uses the standard two-argument version of arc tangent. its branch cuts are inconsistent 
anyway.) 



OIAPTER 12: NUMBERS 171 

pi 

sinh 

cosh 

tanh 

as inh 

acosh 

[Constant] 
This global variable has as its value the best possible approximation to 'IT in long floating-point 

format 

For example: 

(defun sind (x) : The argument is in degrees. 
{sin {* x {/ (float pi x) 180»»· 

An approximation to 'IT in some other precision can be obtained by writing (f loa t pix), where 

x is a floating-point number of the desired precision; see f loa t (page 174). 

number [function] 
number [Functio'11 
number [Function] 

number [Function] 
number [Function] 

atanh number [Function] 
These functions compute the hyperbolic sine, cosine, tangent, arc sine, arc cosine, and arc tangent 

functions, which are mathematically defined for an argument x as follows: 

Hyperbolic sine 
Hyperbolic cosine 
Hyperbolic tangent 
Hyperbolic arc sine 
Hyperbolic arc cosine 

. Hyperbolic arc tangent 

(~-e-X)/2 

(~+e-X)/2 

(~- e-~(~+ e-X) 
log(x+ 1+7) . 
log (x+ (x + l)v'~(x-----l~)/~(x-+---l~) ) 
log «1 + x)v' I-Ii? ) 

Note that the result of acosh may be complex even if the argument is not complex; this occurs 

when the argument is less than one. Also, the result of a tan h may be complex even if the . 

argument is not complex; this occurs when the absolute value of the argument is greater than one. 
Implementation Dote: These fonnulae are mathematically correct, assuming completely accurate computation. 
They may be terrible methods for floating-point computation! Implementors should consult a good text on 
numerical analysis. The formulas given above are not necessarily the simplest ones for real-valued 
computations. either; they are chosen to define the branch cuts in desirable ways for the complex case. 

12.5.3. Branch Cuts, Principal Values, and Boundary .Conditions in the Complex Plane 

Many of the irrational and transcendental functions are multiply-defined in. the complex domain; for 

example, there are in general an infinite number of complex values for the logarithm function. In each sucl! 

case a principal value must be chosen for the function to return. In general, such values· cannot be chosen S6 
as to make the range continuous; lines in the· domain called branch cuts must be defined, which in turn define 

the discontinuities in the range. 

COMMON LISP defines the branch cuts, principal values, and boundary conditions for the complex 

functions following a proposal for complex. functions in APL [14]. The contents of this section are borrowed 

largely from that proposal. 



172, 

sqrt 

COMMON LISP REFERENCE MANUAL 

'Compatibility note: The branch cUts defined hcre differ ill a few "cry minor respects from those ad vanced by W. Kahan, 
who considers not only the "usual" definitions but also the special modifications necessary for IEEE proposed floating-point 
arithmetic. which has infinities and minus zero a.~ explicit computational objects. For example. he proposes that 
V -4+0i =2i, but V -4-0i . = -2L 

It may be that the differences between the APL proposal and Kahan's proposal will be ironed out. If so, COMMON LISP may 
be changed as necessary to be compatible with these other groups. Any changes from the specification beiow are likely to be 
quite minor. 

TIle branch cut for square root lies along the negative real axis, continuous with quadrant 
II. The range consists of the right half-plane, including the non-negative imaginary axis 
and excluding the negative imaginary axis. 

phase The branch cut for the phase function lies along the negative real axis, continuous with 
quadrant II. The range consists of that portion of the real axis between -'IT (exclusive) and 
'IT (inclusive). 

log 

exp 

expt 

asin 

acos 

The branch cut for the logarithm function of one argument (natural logarithm) lies along 
the negative real axis, continuous with quadrant II. The domain excludes the origin. For a 
complex number z, log z is defined to be (log Izl) + i phase(z}. Therefore the range of the 
one-argument logarithm function is that strip of the complex plane containing numbers 
with imaginary parts between -'IT (exclusive) and 'IT (inclusive). 

TIle two-argument logarithm function is defined as 10gb z= (log z)/(log b). This defines the 
principal values precisely. The range of the two-argumc·nt logarithm function is the entire 
complex plane. It is an error if z is zero. If z is nonzero and b is zero, the logarithnl is taken 
to be zero. 

The simple exponential function has no branch cut. 

The two-argument exponential function is defined as bX = t? log b. 11lis defines the 
principal values precisely. The range of the two-argument exponential function is the 
entire complex plane. Regarded as a function of x, with b fixed, there is no branch cut 
Regarded as a function of b, with x fixed, there is, in general, a branch cut along the 
negative real axis, continuous with quadrant II, and the domain excludes the origin. By 
definition, 00 = 1. If b = 0 and the real part of x is strictly positive, then bX = O. For all other 
values of x, OX is an error. 

The following definition for arc sine detennines the range and branch cuts: 

arcsin z= - i log (i z+ v'l'="7 ) 
The br~ch cut for the arc sine function is in two pieces: one along the negative real axis to 
the left of -1 (inclusive), continuous· with quadrant II, and one along the positive real axis 
to the right of 1 (inclusive), continuous with quadrant IV. The range is that strip of the 
complex plane containing numbers whose real part is between -'IT /2 an·d 'IT /2. A number 
with real part equal to - 'IT /2 is in the range if and only if its imaginary part is non
negative; a number with real part equal to· 'IT /2 is in the range if and only if its· imaginary 
part is non-positive. . 

The following definition for arc cosine determines the range and branch cuts: 

Ji' . .,'. 



CHAPTER 12: NUMBERS 173 

atan 

asinh 

acosh 

, arc~os z,= - i log (z+ i v'1-7) 
or, which is equivalent, 

arccos z = (71 12) - arcsin z 

The branch cut for the arc cosine function is in two pieces: one along the negative real axis 
to the left of ...... 1 (inclusive), continuous with quadrant fl, and one along the positive real 
aXis to the right of 1 (inclusive), continuous with quadrant IV. This is the same branch cut 
as for arc sine. lbe range is that strip of the complex plane containing numbers whose real 
part is between 0 and '7T. A number with real part equal to 0 is in the range if and only if its 
imaginary part is non-negative; a number with real part equal to 71 is in the range if and 
only if its imaginary part is non-positive. 

The following definition for (OI~e-argument) arc tangent detennines the range and branch 
cuts: 

arctan z= - i log «1 + i z) \/'1/(1 + ?) ) 
Beware of simplifying this formula; "obvious" simplifications are likely to alter the branch 
cuts or the values on the branch cuts incorrectly. The branch cut for the arc tangent 
function is in two pieces: one along the positive imaginary axis above i (exclusive), 
continuous with quadrant II. and one along the negative imaginary axis below - i 
(exch.!sive). continuous with quadrant IV. The points i and - i are excluded from the 
domain. The range is that strip of the complex plane containing numbers whose real part 
is between - 'it 12 and 'IT 12. A number with real part equal to - 71 12 is in the range if and 
only if its imaginary part is strictly pusitive; a number with real part equal to 17/2 is in the 
range if and only if its inlaginary part is strictly negative. Thus the range of arc tangent is 
identical to that of arc sine with tht'! points - w 12 and 'iT 12 excluded. 

The following definition for the inverse hyperbolic sine detennines the range and branch 
cuts: 

arcsinh z= log (z+ v'1+7" ) 
The branch cut for the inverse hyperbolic sine function is in two pieces: one along the 
positive imaginary axis above i (inclusive), continuous with quadrant·!, and one along the 
negative imaginary axis below - i (inclusive). continuous with quadrant III. The range is 
'that strip of the complex plane containing numbers whose imaginary part is between -w/2 
and 'IT /2. A l1umber with imaginary pan equal to -",/2 is in the range if and only if its real 
part is non-positive; a number with imaginary part equal to ",/2 is in the range if and only 
if its imaginary part is non-negative. 

The following definition for the inverse hyperbolic cosine determines the range and branch 
cuts: 

arccosh z= log (z+(z+ 1)\/' (z-l)/(z+ 1) ) 

The branch cut for the inverse hyperbolic cosine function lies along the real axis to the left 
of 1 (inclusive), extending indefinitely along the negative real axis, continuous with 
quadrant II and (between 0 and 1) with quadrant I. The range is ~at half-strip of the 



174 

atanh 

COMMON LISP REFERENCE MANUAL 

complex plane containing numbers whosc real part is non-negative and whose imaginary 
part is between - 'IT (exclusive) and '11 (inclusive). A numbc·r with real part zero is in the 
rangc iffits imaginary part is between zero (inclusive) and 'IT (inclusive). 

The following definition for the inverse hyperbolic tangent detennines the range and 
branch cuts: 

arctanh z= log «1 + z)v'l-l/;: ) 

Beware of simplifying this formula: "obvious" simplifications are likely to alter the branch 
cuts or the values on the branch cuts incorrectly. The branch cut for the inverse hyperbolic 
tangent function is in. two pieces: one along the negative real axis to the left of :....1 
(inclusive), continuous with quadrant III, and one along the positive real axis to the right of 
1 (inclusive), continuous with quadrant I. The points -1 and 1 are exc1uded from the 
doma.in. The range is that strip of the complex plane containing numbers whose imaginary 
part is between - '1112 and 'lT/2. A number with imaginary part equal to - '1112 is in the 
range if and only if its real part is strictly negative; a number with imaginary part equal to 
'lTi2 is in the rangc if and only if its imaginary part is strictly positive. Thus the range of the 
inverse hyperbolic tangcnt function is identical to that of the inverse hyperbolic .sine 
function with the points - 7T il2 and 7T il2 excluded. 

With these definitions, the following useful identities are obeyed throughout the applicable portion of the 
complex domain, even on the branch cuts: 

sin i z = i sinh z 
cos i z = coshz 
tan i z = i tanh z 

sinh i z = isin z 
cosh i z = cos z 

arcsin i z = i arcsinh z 

12.6. Type Conversions and Component Extractions on Numbers 

. arctan i z = i arctanh z 
arcsinh i z = i arcsin z 
arc tanh i z = i arctan z 

While most arithmetic functions will operate on any kind of number, coercing types if necessary, . the 
following functions are provided to allow specific conversions of data types to be forced, when desired. 

float number &optional other [Function]. 

Converts any non-complex number to a floating-point nu.mber. With no second argument, then if 
number is already a floating-point number, it is returned, and otherwise.a sin 9 1 e - f loa t is 
produced. If the argument other is provided, then it must be a floating-point number, and number 

is converted to the same fannat as other. See also coerce (page 42). .. 

rat; ona 1 number [Function] 

rational ize number [Function] 

Each of these functions converts any non-complex number to be a rational number. If the 
argument is already r~tional, it is returned. The two functions differ in their. treatment of floating
point numbers. 

rat; ana 1 assumes that the floating-point number is completely accurate, andreturns a rational 



CHAPTER 12: NUMBERS 175 

. number mathematically equal to the precise value- of the floating-point number. 

rational ize assumes that the fleating-point number is accurate only to the precision of the 

floating-point representation; and may return any rational number for which the floating-point 

number is the best available approximation of its format; in doing this it attempt~ to keep both 

numerator and denominator small. 

It is always the case that 
(float (rational x) x) <=> x 

and 
(float (rationalize x) x) <=> x 

That is, rationalizing a floating-point number by either method and then converting it back to a 
floating-point number of the same format produces the original number. \\That distinguishes the 

two functions is that rational typically has a simple, inexpensive implementation, while 

rat i on ali ze goes to more trouble to produce a result that is more pleasant to view and simpler 

for some purposes to compute with. 

n ume rat 0 r rational 
denominator rotfun~ 

[Function] 
[Function] 

These functions t'tke a rational nUlnber (an integer or ratio) and return as an integer th~ numerator 

or denominator of the canonicai reduced form of the rational. The numerator of an integer is that 

integer, and the denominator of an integer is 1. Note that 

(ged (numerator x) (denominator x» => 1 

The denominator 'Nill always be a strictly positive integer; the numerator may be any integer. 

For example: 
(numerator (/ 8-6» => -4 
(d~nominator (/ 8 -6» => 3 

There is no f; x function in COMMON LISP, because there are several interesting ways to convert non

integral values to integers. These are provided by the functions below, which perform not only type

conversion but also some non-trivial calculations. 

floor number &opt lonal divisor [Function] 
ceil ing number &opt.ional divisor [Function] 
truncate number &opt ional divisor [Function] 
round number &opt ional divisor [Function] 

In the simple, one-argument case, each of these functions converts its argument number (which 

must not be complex) to be an integer. If the argument is already an integer, it is returned directly. 

If the argument is a ratio or floating-point number, the functions use different algorithms for the 

conversion. 

floor converts its argument by truncating towards negative infinity; that is, the result is the largest 

integer that is not larger than the argument 



116 COMMON USPREf'ERENCE MANUAL 

ce i 1 in 9 converts its argtunent by trurlcating towards positive' Infinity; that is,- tIre result is the 
smallest integer that is tlOt smanet~thart the argument. 

truncate converts· its argument by truncating to,wards zero; that is, the result is me' integer of the 
same sign as the argument and which has dle greatest integral magnitude not greater than that of 
the argument.. 

round converts Its argument by founding to the nearest integer; if number is exactly halfway 
between two integers (that is;, of the form integer-t 05) then if is rounded to the one' that is even 
(divisible by two)~ 

Here is a table showing what the four functions prnduce when given various arguments. 
Argument 

2.6 
2.5 
2.4 
0.7 
0.3 

floor 
2 
2: 
2 
o 
0-

cei T jug 
3· 
3 
3 
1 
1 

truncate 
Z 
2 
Z 
o 
o 

~ 
3 
2 
2 
1 
o 

-0.3 -1 o 
-0.7 --1 o 
-2.4 -3 -2 
-2.5 -3 -2 
-2.6 -3 "2 

o 
o 

-2 
-2 
-2 

o 
-1 
""2 
-2 
-3 

If a secdnd argument divisor is supplied, then the result is the appropriate type of rounding or 

truncation applied to the result of dividing the number by the divisor. For exarnplet (f 1 oor 5 2) 
= (f 1 oor (/ 5 2» 1 but is potentially more efficient. 'Ille divisor may be any non-complex 
number. The one-argument case is exactly like the two-argument case where the second argument 
is 1. 

Each of the functions actually returns tWO values, whether given one or two arguments. The second 
result is the remainder, and may be obtained using mul t ipl e-va 1 ue""o1 nd (page 112) and 
related constructs. If any of these functions is given two arguments x and y and produces results q 

and f, then q*y+r=x. The first resu]t qis always an integer. The remainder ris an integer if both 
arguments are integers,. is rational if both arguments· are rational, and is floating-point if either 

argument is floating-point One consequence of is that in the one-argument case the remainder is 

always a number of tft~ same type as the argument. 

When only one argumeI1t is given, the two results are exact; the mathematical sum of the two 
tesultS is always equal to the mathematital value of the argument. 

CO_IMky Rote: The names <'1fthe fbnttions (1 oo,r j CEti ling, truncate, &"ld round are more accurate 
than. names like fix that have heretofore be-en used 111 various LISP systems. 'The names used here are 
eompatibIe With standard matneltiatfca1 t~nninol~ (and with FLII. as it happens). In FOIt-mAN ifix means 
truncate. Ai.G€)L 68 pro\<1des round,. and uses tUftier to mean floor. In MACLISP, fix and ifix both 
rn-eart f loar (otie is gertE:ti(!j thE! oUter fYonu111-in/tllnum-out)~ In IN'ttItLISP, f iX· means t r u nc ate. In Lisp 
Matliitle LISP; fix means f 1 €h)'r and (i x f rtteatis r (}un d. STANDAIH> LiSP provides: a fix function. but does 
I16t aceurateW specify what it does e:<tIctly. The existing usage of the name f i)( is so confused that it seems best 
to avoid it altogetftet. 

The' names attd denAit10llS givefi h-ete haw recently been adopted by Lisp' Machine LISP, and MAcuSP and NIL 
seem likely to (onOw Stl'it. 



CHAPTER 12: NUMBERS 

mo d number divisor 
rem number divisor 

177 

[Function] 
[Function] 

mod perfonns the operation floor (page 175) on its two arguments, and returns the second result 

of floor as its only result. Sinli1arly, rem perfonns the operation truncate (pagc 175) on its 

arguments, and returns the second result of t run cat e as its only result 

mod and rem are therefore the usual modulus and remainder functions when applied to two integer 

arguments. In general, however, the arguments may be integers or floating-point numbers. 
(mod 13 4) => 1 (rem 13 4) => 1 
(mod -13 4) => 3 (rem -13 4) => -1 
(mod 13 -4) => -3 (rem 13 -4) => 1 
(mod -13 -4) =.> -1 (rem -13 -4) => -1 
(mod 13.4 1) => 0.4 (rem 13.4 1) => 0.4 
(mod -13.4 1) => 0.6 (rem -13.4 1) => -0.4 
Compatibility note: The INTERUSP function rema; nder is essentially equivalent to the COMMON LISP 
function r em. The MACLIsp function r ema in d e r is like r em but accepts only integer arguments. 

f floor number &0 p·t ion a 1 divisor 
fee i 1 i n 9 number &0 p t ion a 1 divisor 

[Function] 
[Function] 

ftruncate number &opt ional divisor [Function] 
fround number &opt ional divisor [Function] 

ll1ese functions are just like fl 00 r, ce; 1 i ng, tr un ca te. and roun d, except that the result (the 

first result of two) is always a floating-point number rat.'1er than an integer. It is roughly as if 

ff 100 r gave its arguments to f 1 00 r, and then applied flo a t to d1e first result before passing 

them both back. In practice, . however, ffloor may be implemented much morc efficiently. 

Similar remarks apply to the other three functions. If the first argument is a floating-point number. 

and the second argument is not a fleating-point number of shorter fonnat, then the first result will 

be a floating-point number of the same type as the first argument. 

For example: 
(ffloor -4.7) => -5.0 and 0.3 
(ffloor 3.5dO) => 3.0dO and 0.5dO 

decode-float float 
sca 1 e-f1 oat float integer 
fl oa t- rad i x float 
f loa t- sign float} &opt i ona 1 float2 
float-digits float 
float-precision·float 

integer-decode-float float 
The function dec 0 d e - flo a t takes a floating-point number and returns three values. 

[Func"tion] 
[Function] 
[Function] 
[Function] 
[Function] 

-[Function] 

[Function] 

The first va1~e is a new floating-point number of the same format representing the significand; the 

second value is an integer representing the exponent; and the third value is a floating-point number 

of the same fonnat indicating the sign. Let b be the radix for the floating-point representation; then 

decode-float divides the argument by an integral power of b so as to bring its value between 



178 COMMON USP REFERENCE MANUAL 

II b(inclusive) and 1 (exclusive), and returns the quotient as the first value. If the argument is zero, 

however, the result equals the absolute value of the argument (that is, if there is a negative zero, its 

significand is considered to bea positive zero). 

The second value of decode-float is the integer exponent e to which b must be raised to 

produce the appropriate power for the division. If the argument is zero, any integer value may be 

returned, provided that the identity shown below for sea 1 e - flo a t holds. 

The third value of decode-fl oa t is a floating-point number, of the same fonnat as the argument, 

whose absolute value is one and whose sign matches that of the argument. 

The function seal e-fl oat takes a floating-point number f(not necessarily between lIb and 1) 

and an integer k, and returns (,.. f (expt (f 1 oat b 1) k». (The use of sea 1 e- float may 

be much more efficient than using exponentiation and multiplication, and avoids intennediate· 

overflow and underflow if the final result is representable.) 

Note that 

and 

(multiple-value-bind (signif expon sign) 
(decode~float 1) 

(scale-float signif expon» 
<=> (abs 1) 

(multiple-value-bind (signif expon sign) . 
(decode-float 1) 

(* (scale-float signif expon) sign» 
<=> f 

The function f loa t - r ad i x returns (as an integer) the radix b of the floating-point argument 

The function flo a t - s i g n returns a floating-point number z such that z and floatl have the same 

sign and also such that z and float2 have the same absolute value. The argument float2 defaults to 

thevalueof(float 1 floatl); (.float-sign x) therefore always produces a 1.00r-l.00f 

appropriate fonnat according to the sign of x. (Note that if an implementation has distinct 

representations for negative zero and positiye zero then (float - sign -0.0) => -1.0.) 

The function flo a t - dig its returns, as a non-negative integer, the number of radix-b digits used 

in the representation of its argument (including any implicit digits, such as a "hidden bit"). The 

function f1 oat-pr~cis ion returns, as anon-negative integer, the number of significant radix-b 

digits present in the argument; if the argument is (a· floating-point) zero, then the result is (an 

integer) zero. For nonnalized floating-point numbers the results of float-digits and 

flo a t - pre cis i on will be the same, but the . precision will be less than the number of 

representation digits for a denotmalized or zero number. 

The functioninteger-decode-float is similar to ~ecode-float but for its first value 

returns, as an integer,the significand scaled so as to be an integer. For an ar~ment f, this 

integer will be strictly less than 

(expt b (float-precision 1) 
but no less than 



CHAPTER 12: NL'MBERS 

(expt b- (- (float-precision f) 1» 

except that if fis zero then th~ integer value will be zero. 

The second value bears the same relationship to the first value as for decode-float: 
{multiple-value-bind (signif expon sign) 

(integer-decode-float f) 
(scale-float (float signif j) expon» 

<=> (abs f) 
Rationale: These "functions allow the writing of machine-independent, or at least machine-parametcIized. 
floating-point software of reasonable effickncy. 

179 

complex rea/part &optional imagpart [Function] 
The arguments must be 'non-complex numbers; a number is returned that has realpart as its real 

part and imagpart as its imaginary part, possibly converted accor:ding to the rule of floating-point 

contagion (thus both components will be of the same type). If imagpart is not specified then 

(coerce 0 (type-of realpart) is effectively used. Note that if both L~e real part and 

imagpart are rational and the imagpart is zera, then the result just the realpart because of the rule of 

canonical representation for complex rationals. It follows that the result of camp 1 ex is not always 

a complex number; it may be simply a rat i ana 1. 

real part number [Function] 
i rna 9P ar t nuinber [Functiofl] 

These return the real and imaginary parts of a complex number. If number is a non-complex 

number, then realpart returns its argument number ~nd imagpart returns {coerce 0 

(type"-of number» (this has the effect that the imaginary part of a rational is 0 and that of a 

floating-point number is a floating-point zero of the same fonnat). " 

12.7. Logical Operations on Numbers 

The logical operations in this section require integers as arguments; it is an error to supply a non-integer as 

an argument The functions all treat integers as if they were represented in two's-complement notation. 
bnplementation note: Internally, of course, an implementation of COMMON USP mayor may not use a two's-complement 
representation. All that is nccessary is that the logical operations perform calculations 50 as to give this appearance to the 
user. 

The logical operations provide a convenient way to represent an infinite vector of bits. Let such ~"" 

conceptual vector be indexed by the non-negative integers. Then bit j is assigned a "weight" 2j
• Assume that 

only a finite number of bits are ones, or that only a finite number of bits are zeros. A vector with only a finite 

number of one-bits is represented as the sum of the weights of the one-bits, a positive integer. A vector with 

only a finite number of zero-bits is represented as -1 minus the s~m of the weights of the zero-bits, a negative 

integer. 

This method of using integers to represent bit vectors can in tum be used to represent sets. Suppose that 

some (possibly countably infinite) universe of discourse for sets is mapped into the non-negative integers. 



COMMON LISP REFERENCE MANUAL 

Then a set can be represented as a- bit vector:- an clement is in the set if the bit whose index corresponds to 
that element is a onc:--b'it. In -this wa~( all finite· sets can, be' representcd (by positive intcgers),- as well as all sets 
whose complements are finite (by ne:g~tive:'integers)~ TIle'functions log; or, rogarrd', and 1 ogxor defined 
below then compute the union" intersection" and symmetric difference operations on sets represented in this 
way~ 

logi or &rest integers [Function] 
It ctums the bit-wise logical inclusive or of its arguments. 1fno argument is given, then the result is 
zero, which, is an identity f()r this: operation~ 

logxor &res t integers [Function] 
Returns' the bit~wise loglcal exclusive," orof itS argumentS. -Ifnoargutnent is given~ then the result is 
zero; which is an identity for thisoper.ati()l1~ 

logand &rest integers - [Function] 
Returns the bit:-wise logical andof its arguments. Ifuo argument is given, then the result is -1, 
which is at1 identity forrthis operation~ 

logeqv &res,t integers [Function] 
Returns· the bit-wise logical equivalence (also known as exclusive nor) or its arguments. If no 

argument is given; thenthe'resultis -1, whichis,anidcntity for this operation. 

To 9 nan de integer} integer] [Function] 
iognor' integerl integer2 [Function] 
10 g:a,nd'c 1 integer] intege1'.1:' [Function] 
10ga:nd;c2 integ~rI integu1i [Function) 
1 og'or e 1: integer! intege1!1: [Function] 
1 ogor e2' integer} int'egel1 [Function] 

Thestf are. tn'e other six- rlon~trivia1 bit:..wise logicalol'erations on two' arguments. Because they ate 
not associative~: th~y take' exactly two argumentS ratlrer _ than; at1~ non~negative' number of: 
a:r~llmentS~ 

(To'grra;tf!<f nt n2): 
G lo:g;Jl'Gl'" 111 n2-): 

froggn~C:,l1 n'[ n1). 
(; lC1~;nd1CZ nll wJ) 
t lid':g;:iiG!P~C:J nl/ -n2) 
(:f l'o-'g--,·'iI'K"""c"2' flit t ) n''1l)'', \f "'" ~ . '1'"1": .,.' "I) ~ 

<:t.>, 

<;:>' 

<=> 
<=':>-' 
<Jilt>' 

<=>, 

flog116t f1o-g,al1'd' n} n2) 
flo-g~I"O:t (\ TOg;i:OiF nJ' nZJ) 
flog;and (.l:ogno;t nI) n2) 
(i log~afld) nl f lo"gtl'o':t n2),,) 
(log;i'o:1" (lIC1g'n'o;t ttl) n2). 
flo g:Jo'r"' n)' (logn'ot n2 r)' 

Jiie'ten bit-wise'lagieaIl operatiGtts(jtf tWO} integerS-are sllmmacized;m this table: 



CHAPTER 12: NUMBERS 181 

/--

e 
Argument I 0 0 1 1 
Argument 2 0 1 0 1 Operation name 

logand 0 0 0 1 and 
logior 0 1 1 1 inclusive or 
logxor 0 1 1 0 exclusive or 
logeqv 1 0 0 1 equivalence (exclusive nor) 
lognand 1 1 1 0 not-and 
lognor 1 0 0 0 not-or 
logandcl 0 1 0 0 and complement of argl with arg2 
logandc2 0 0 1 0 and argl with complement of arg2 
logorcl 1 1 0 1 or complement of argl with arg2 
logorc2 1 0 1 1 or argl with complement of arg2 



182 COMMON LISP REFERENCE MANUAL 

boo 1 e op integer} integer2 

boole-clr 

boole-set 

boole-1 

boole-2 

boole-c1 

boole-c2 

boole-and 

boole-ior 

boole-xor 

boole-eqv 

boole-nand 

boole-nor 

boole-andc1 

boole-andc2 

boole-orc1 

boole-orc2 

[Function] 
[ C ollstant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[ C ollstant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 
[Constant] 

The function boo 1 e takes an operation op and two integers, and returns an integer produced by 

performing the logical operation specified by op on the two integers. The precise values of the 

sixteen constants arc implementation-dependent, but they are suitable for use as the first argument 

to bool e: 

integerl 0 0 1 1 
integer2 0 1 0 1 O[!.erafio!l [!.erfgmleg 

boole-clr 0 0 0 0 always 0 
boole-set 1 1 1 1 always 1 
boole-1 0 0 1 1 integer} 
boole-2 0 1 0 1 integer2 
boole-cl 1 1 0 0 complement of integer} 
boole-c2 1 0 1 0 complement of integer2 
boole-and 0 0 0 1 and 
boole-ior 0 1 1 1 inclusive or 
boole-xor 0 1 1 0 exclusive or 
boole-eqv 1 0 0 1 equivalence (exclusive nor) 
bool e-nand . 1 1 1 0 not-and 
boole-nor 1 0 0 0 not-or 
boole-andc1 0 1 0 0 and complement of integer} with integer2 
boole-andc2 0 0 1 0 and integerl with complement of illteger2 
boole-orc1 1 1 0 1 or complement of integer] with integer2 
boole-orc2 1 0 1 1 or integer} with complement of integer2 

boo 1 e can therefore compute all sixteen logical functions on two arguments. In gener~ 
(boole boole-and x y) <=> (logand x y) 

. and the latter is more perspicuous. However, boo leis useful when it is necessary to parameterize 

a procedure so that it can use one of several logical operations. 

e 



CHAPTER 12: NUMBERS 183 

lognot integer [Function] 
Returns the bit-wise logical not of its argument. Every bit of tlle result is the complement of the 

corresponding bit in the argument. 

(logbitp j (lognot x» <=> (not (logbitp j x» 

1 ogtes t integerl integer2 [Funclion] 
1 ogtes t is a predicate that is true if any of the bits designated by the 1's in integerl are 1's in 

integer2. 
(logtest x y) <=> (not (zerop (logand x y») 

J; 
10gb i tp index integer " [Functiolll 

logbitp is true if the bit in integer whose index is index (that is, its weight is 2index) is a one-bit: 
otherwise it is false. 

For example: 

( log bit P 2 6) is true 
( log bit p 0 6) is false 
(logbitp k n) <=> (ldb~test (byte 1 k) n) 

as h integer count [Function] 
This function shifts integer arithmetically left by count bit positions if count is positive, or right 

-count bit positions if count is negative. The sign of the result is always the snme as the sign of 

integer. 

Mathematically speaking, this operation performs the computationJloOl(ifZteger*2coun~. " 

Logically, this moves all of the bits in integer to the left, adding zero-bits at the bottom, or moves 

them to the right, discarding bits. (In this context the question of what gets shifted in on the left is 

irrelevant; integers, viewed as strings of bits, are "half-infinite", that is, conceptually extend 

infinitely far to the left.) 

For example: 

(logbitp j (ash n k» 
~=> (and (>= j k) (logbitp (- j k) n» 

1 ogcount integer [Functio,1 
The number of bits in integer is determined and returned. If integer is positive, then 1 bits in ijs 

4 

. binary representation are counted. If integer i~ negative, then the 0 bits in its two's-complement 

binary representation are counted. The result is always a non-negative integer. 

For example: 

(logcou"nt 
{logcount 
{logcount 
(logcount 

13) => 3 
-13) => 2 
30) => 4 
-30) => 4 

The following identity always holds: 

; Binary representation is ... 000 110 1 
; Binary representation is ... 1110011 
; Binary representation is ... 00 11110 
; Binary representation is ... 1100010 



184 

(logcount X) <-> (logcount (- (+ X 1») 
<-> (logcount (lognot x» 

COMMON LISP REFERENCE MANUAL 

i n t e 9 e r - 1 eng t h integer [Function] 
This function performs the computation 

ceiling(log2(if integer ( 0 then - integer else integer+ 1» 

This is useful in two different ways. First, if integer is non-negative, then its value can be 

represented in unsigned binary form· in a field whose width in bits is no smaller than 

( i n t e 9 e r -1 eng t h integer) . Second, regardless of the sign of integer, its value can be 

represented in signed binary two's-complement form in a field whose width in bits is no smaller 

than (+ (integer-length integer) 1). 

Fer example: 
(integer-length 0) -> 0 
(integer-length 1) => 1 
(integer-length 3) => 2 
(integer-length 4) => 3 
(integer-length 7) => 3 
(integer-length -1) => 0 
(i nteger.-l ength -4) -> 2 
(integer-length -7) -> 3 
(integer-length "'8) -> 3 

Compatibility note: Tnis function is similar to the MACUSP function hau long. One may define haul ong as 
(haulong x) <=> (integer-length (abs x» 

12.8. Byte Manipulation Functions 

Several functions are provided for dealing with an arbitrary-width field of contiguous bits appearing 

anywhere in art integer. Such a contiguouS set of bits is called a byte. Here the term byte does not imply some 

fixed number of bits (such as eight), but a field of arbitrary and user-specifiable width. 

The byte"'manipulation functions use objects called byte specifiers to designate a specific byte position 

within an integer. The representation of a byte specifier is implementation-dependent; in particular, it mayor 

may not. be a number. It is sufficient to know that the function byte will construct one, and that the 

byte-mapipulation functions will accept them. The function byte accepts two integers representing the 

position~and size of the byte, and returns a byte .. specifier. Such a specifier designates a byte whose width is 
size, and whose bits have weights zP°sition+size-l through lPDsitioR. 

byte sIze position {Function] 
byte. takes two integers representing the size and position of a byte, and returns a byte specifier 

i' suitable for use as an argument to byte-manipulation functions . 

..... 
,. -A-



CHAPTER 12: NlJMBERS 

byte-s i ze bytespec 
byte-pos it ion hytespec 

185 

[Function] 
[Fullction] 

Given a byte specifier. byte-size returns the size specified as an integer; byte-position 

similarly returns the position. 

For example: 

(byte-size (byte j k» <=> j 
(byte-position (byte j k» <=> k 

1 db bytespec integer [Function] 
hylespec specifies a byte of integer to be extracted. TIle result is returned as a positive integer. 

For example: 
(logbitp j (ldb (byte s p) n) 

<=> (and « j s) (logbitp (+ j p) n» 
The name of the function" 1 d.b" means "load byte". 

Compatibility note: The MACLISP function ha i part can be implemented in tenns of 1 db as follows: 
(defun haipart (integer count) 

(let «x (abs integer)}) . 
(if (minusp count) 

(ldb (byte (- count) 0) x) 
(ldb (byte count (max 0 (- (integer-length x) n») 

x») ) 

setf (page 78) may be used with 1 db, provided that the argument integer is specified by a fonn 
that is a place fonn acceptable to setf, to modify a byte within the integer that is stored in that 
place. The effect is to perform a d p b (page 186) operation and then store the result back into the 
place .. 

ldb-test bytespec integer [Function] 
1 db - t est is a predicate that is true if any of the bits designated by the byte specifier bytf!spec are 
1's in integer; that is, it is true if the designated field is non-zero. 

(ldb-test bylespec n) <=> (not (zerop (ldb bytespec n») 

mask-field bytespec integer [Function) 
This is similar to 1 db; however, the result contains the specified byte of integer in the pOSition 
specified by bytespec, rather than in position 0 as with 1 db. The result therefore agrees with integer 

in the byte specified, but has zero bits everywhere else.i 
~~ 

For example: 

(ldb bs (mask-field bs n» <=> (ldb bs n) 

(logbitp j (mask-field (byte s p) n»" 
<=> (and (>= j p) « j s) (10gb i tp j n» 

( mas k - fie 1 d bs n) < = > (log and fl (d P b -1 bs 0» 
. set f (page 78) may be used with ma s k - fie 1 d, provided that the argument integer is specified 

by a form that is a place form acceptable to set f, to modify a byte within the integer that is stored 

in that place. The effect is to perfonn a de po sit - f ; e 1 d (page 186) operation and then store th~ 



186 COMMON USP REFERENCE MANUAL 

result back into the place. 

dpb newbyte bytespec integer [Function] 
Returns a number that is the same as integer except in the bits specified by bytespec. Let s be the 

size specified by bytespec; then the low s bits of new byte appear in the result in the byte specified by 

bytespec. The integer newbyte is therefore interpreted as being right-justified, as if it were the result 

of 1 db. 

For exampl~: 

(logbitp j (dpb m (byte s p) n» 
. <=> (i f (and (>= j p) « j (+ p s») 

(logbitp (- j p) m) 
(logbitp j n» 

The name of the function "d P b •• means" deposit byte" . 

depos i t -f i e 1 d newbyte bytespec integer [Function} 
This function is to mask -f i e 1 d as dpb is to 1 db. The·result is an integer that contains the bits of 

newbyte within the byte specified by bytespec, and elsewhere contains the bits of integer. 

For example: 

{logbitp j (dpb m (byte s p)n» 
<=>(if (and (>= j p) « j (+ p s») 

( 1 ogb i tp j m) 
(logbitp j n» 

Implementation note: If the bytespec is a constant, one may of course construct, at compile time, an equivalent 
mask m, for example by computing (depos; t-fiel d -1 bytespec 0). Given this r.13Sk m, one may then 
compute' . 

(depos i t-fiel d newbyte bytespec integer) 

by computing 
(logior (logand newbyte m) (logand integer (lognot m») 

where the result of (1 ognot m) can oC-course also be computed at compile time. However, the fo~lowing 
expression (which I got indirectly from Knuth) may also be used, and may require fewer temporary registers in 
some situations: 

(logxor integer (1ogand m (1 ogxor integer newbyte») 

A related, though possibly less useful, trick is that 
(let «z (logand (logxor x y) m») 

(setq x (logxor z x» 
(setq y (logxor z y») 

interchanges those bits of x and y for which the mask m is 1, and leaves alone those bits of x and y for which m 
is O. 

12.9. Random Numbers 

random number &opt ional state [Function] 
( ran dom n) accepts a positive number n and returns a number of the same kind between zero 

(inclusive) and Ii (exclusive). Th~ number n may be an integer or a floating-point number. An 

approximately uniform choice distribution is used: if n is an integer, each of the possible results 

occurs with (approximate) probability lIn. (The qualifier "approximate" is used because of 

.# 



CHAPTERI2:N~BERS 187 

implementation considerations; in practice the deviation from uniformity should be quite small.) 

TIle argument slale must be an object of type random- state; it defaults to the value of the 

variable *random-state*. This object is used to maintain the state of the pscudo-random

number generator, and is altered as a side effect of the ran d om operation. 
Compatibility note: random ofzeTO arguments as defined in MACLISP has been omitted because its value is too 
implementation-~epcndent (limited by fixnum range). 

Implementation note: In general. even if random of zero arguments were defined as in M-\cLISP. it is not 
adequate to define (random n) for integral n to be simply (mod (random) n); this fails to be uniformly 
distributed if n is larger than the largest number produced by random, or even if n merely approaches Li.is 
number. This is anoLlJ.er reason for omitting random of zero arguments in COMMON LISP. Assuming that the 
underlying mechanism produces "random bits" (possibly in chunks su~h as fixnums), the best approach is to 
produce enough random bits to construct an integer k some number d of bits larger than ( i n t e 9 e r - 1 eng t h 
n) (see integer-l ength (page 184», and then compute (mod k n). The quantity dshould be at least 7, 
and preferably 10 or more. 

To produce random floating-point numbers in the range [A, B), accepted practice (as detcnnined by a look 
through the Col!ected Algorithms from the ACM, particularly algorithms 133, 266. 294, and 3iO) is to compute 
X*(B-A)+A, where X is a floating-point number uniformly distributed over [0.0, 1.0) and computed by 
calculating a random integer N in the range [0, 111) (typically by a multiplicative-congrucjlual or linear
congruential method mod }.1) and then setting X = N / M. See also [10J. If one takes Jyf = i, where f is L~C 
length of ~e significand of a floating-point number (and it is in fact common to choose M to be a power of 
two). then this method is equivalent to the following assembly-language-level procedure. Assume the 
representation has no hidden bit Take a floating-point 0.5, and clobber its entire significand with random bits. 
~ormalize th(..result if necessary. 

For example, on the PDP-10, assume that accumulator T is completely random (all 36 bits ar~ random). Then 
the code sequence . 

lSH T, -9 : Clear high 9 bits; low 27 are random. 
FSC T, 128. ; Install exponent and normalize. 

,',ill produce in T a random noating-poin~ number uniformly distributed over [0.0, 1.0). (Instead of the LSH; 
one could do "HZ T, 777000; bl:lt if the 36 random bits came from a congruentlal random-number 
generator. the high-order bits tend to be "more random" than the low-order ones. and so the Lsn would be a 
bit better for unifcrm distribution. Ideally all the bits would be the result of high-quality randomness.) 

With a hidden-bit representation. normalization is not a problem, but dealing with the hidden bit is. The 
method can he adapted as follows. Take a floating-point 1.0 and clobber the explicit significand bits with 
random bits; this produces a random floating-point number in the range [1.0, 2.0). Then simply subtract 1.0. 
In effect, we let the hidden bit creep in and then subtract it away again. 

For example, on the VAX, assume that register T is completely random (but a little less random than on the 
PDP-lO, as it has only 32 random bits) .. Then the code sequence 

INSV #AX81,#7~#9,T 
SUBF HAFt. 0, T 

; Install correct !':ign bit and exponent 
; Subtract LO. 

will produce in T a random floating-point number uniformly distributed over [0.0,1.0). Again. if the low-order 
bit~ are not. random enough, then "ROTl #7, Ttt should be performed first 

Implementors may wish to consult reference [16] for a discUssion of some efficient methods of generating 
pseudo-random numbers. 

*random.-state* [Variable] 
This variable holds a data structure, an object of type random-state,.thatencodes the internal 

state of the random-number generator that random uses by default. The nature of this data 

structure is implementation-dependent It may be printed out and successfully read back in, but 

mayor may not function correctly as a random-number state object in another implementation. A 

call to random will perform a side effect on this data ~trUcture. Lambda-binding this variable to a 

different random-number state object will correctly saye and restore. the bId state object, o~ course. 



188 COMMON USP REFERENCE MANUAL 

make-random-state &opt 100a1 state' [Fullction] 
This function returns a new obje~t of type random'- s tate, suitable for use as the value of the 

variable *randorn-s tate*. If Slale is n 11 or omitted, random- s ta te returns a copy of the 

current random-number state object (the value of the variable *random-state*). If state is a 

s.tate object, a copy of that state object is returned. If state is t, then a new state object is returned 

that has been "randomly" initialized by some means (such as by a time-of-day clock). 
Rationale: COMMON LISP purposely provides no way to initialize a random-state object from a user
specified "seed", 1be reason for this is that the number of bits of state information in a random-state 
object may vary widely from one implementation to another, and there is no simple way to guarantee that any 
user-specified seed value will be "random enough ", Instead, the initialization of ran d om- s ta t e objects is left 
to the unplementor in the case where the argument t is given to make-random-state. 

To handle the common !.ituation of executing the same program many times in a reproducible manner, where 
that program uses random, me following procedure may be used: 

1. Evaluate (make-random-state t) to create a random-state object 

2. Write that object to a file, using p r i n t (page 316). for later use. 

3. Whenever the program is to be run, first use read (page 310) to create a copy of the random-state 
object irom the printed representation in the file. Then use the random-state obj(;ct newly created 
by the read operation to initialize the random-number generator for the prog~ 

It ir; for the sake of this proct;dure for reproducible e.xecution that implementations are required to provide a 
read/print syntax for objects of type ran d om- s tat e. 

It is also possible to make copies ofa random-state object directly without going through the print/read 
process, simply by using the ran d om- s tat e function to copy the object: this allows the same sequence of 
random numbers to be generated many times within a single program, 

Implementation nole: A recommended way to implement tlle type random-state is effectively to use the 
machinery for de t' s t rue t (page 255). TIle usual structure syntax may then be used for printing 
random-state objects; one might look something like ,.. #S(RANDOM-STATE DATA #(14 49 98436589 786345 8734658324 ... J) 
where the components are of course completely implementation-dependent 

random-state-p object [Function] 
ran d om - s tat e - p is true if its argument is a random-state object, and otherwise is false. 

(random-state-p x) <=> (typep x 'random-state) 

12.10. Implementation Par~meters 

The values of the named constants defined in this section are implementation-dependent They may be 

useful for parameterizing code in some situations. 

most-positive-fixnum 

most-negative-fixnum 

[Constant] 
[Constant] 

The value of mo s t - P 0 sit i ve - fix n um is that fixnum closest in value to positive infinity 
provided by the implementation. 

The value 'Of mo s t - neg a t 1 v e - fix n urn is that fixnum closest in value to negative infinity 

provided by the implementation. 



~ 

e 

--

CHAPTER 12: NUMBERS 189 

most-positive-short-float [Constant] 
least-positive-short-float [Constant] 
least-negative-short-float [C ol1stant1 . 
most-negative-short-float [Constant] 

The value of mos t -pos i t i ve- short -f loa t is that short-format floating-point number closest 
in value to (but not equal to) positive infinity provided by the implementation. 

:rhe value of least-positive-short-float is that positive short-format floating-point 

number closest in value' to (but not equal to) zero provided by the implementation. 

The value of 1 east-negat i ve-short-fl oat is that negative short-format floating-point 

number closest in value to (but not equal to) zero provided by the implementation. (Note that even 

if an implementation supports minus zero as a distinct short floating-point value. 
1 eas t-negat i ve-short-fl oat must not be minus zero.) 

The value of mo s t - neg a t i ve - s h 0 r t - flo a t is that short-format floating-point number closest 
in value to (but not equal to) negative infinity provided by the implementation. 

most-positive-single-float [Constant] 
lenst-positive-single-float (Constant1 
least-negative-single-float [Cons/ani] 
most-negat1ve-single-float [Constant] 
most-positive-double-float [ COllstant] 
least-positive-double-float [Constant] 
least-negative-double-float [Constanl] 
most-negative-double-float [C olls/ant1 
most-positive-long-float [Constant] 
least-positive-long-float· [Constant] 
least-negative-long-float [Constant] 
most-negative-long-float [Constant] 

These are analogous to the constants defined above for short-format floating-point numbers. 

short-fl oat-eps i 1 on [Constant] 
sing 1 e -f1 oa t -eps i 10n [Constant] 
double-float-epsilon [Constant] 

1 ong-fl oat-eps i 1 on [Const~nl] 

These constants have as value, for each floating-point format, the smallest positive floating-point 

number e of that fonnat such that the expression 

(not (=. (float 1 e) (+ (float 1 e) e») 

is true when actually evaluated. 



/' 

190 COMMON LISP REFERENCE MANUAL 

shor t-fl oat-negat i ve-eps i 1 on [Constant] 
s iog1 e-f1 oat-oegat ive-eps 11 on [Constant) e 
doub 1 e - f1 oa t -nega t i ve -ep s i 1 on [Constant] 
1 ong-fl oat-negat i ve-eps i 10n [Constant] 

~lbese constants have as value, for each floating-point fonnat, the smallest positive floating-point 
number e of that fofmat ~uch that the expression 

(not (.~ (float 1 e) (- (float 1 e) e») 

is true when actually evaluated. 

.... .' 
... -, eo ,. -.. 

:." ... 
'-



Chapter 13 

Characters 

COMMON LISP provides a character'data type; objects of this type represent printed symbols such as letters. 

In general~ characters in COMMON LISP are not true objects; e q cannot be counted upon to operate on them 
reliably. In particular~ it is possible that the expression 

(let «x z) (y z» (eq x y» 
may be false rather than true, if the value of z is a character. 

Rationale: This odd breakdown of eq ill the case of characters allows the implementor enough design freedom to produce 
exccptionaliy efficient code on conventional architectures. In this respect the treatment of characters exactly parallels that of 
numbers, as described in chapter 12. 

If two objects are to be compared for "identity"~ but either might be a character~ then th~ predicate eq 1 

(page 65) is probably appropriate. 

Every character has three attributes: code, bitl)~ and font. The code attribute is intended to distinguish 
among the printed glyphs and fonnatting functions for characters. The bits attribute allows extra flags to be 

associated with' a character. The font attribute permits a specification of the style' of the glyphs (such as 
italics). 

ch ar-code'-l imi t [Constant] 
The value of char-code':" im; t is a, non-negative integer that is the upper exclusive bound on 

values produced by the function char-code (page 196)~ which returns the code component of a 

given character; that is, the values returned by char-code are non-negative and strictly less than 
thevalueofchar-code-l imit. 

ir: 

char-font-limit [ConstaAt] 
The value of c h a r - f 0 n t -1 ; mit is a non-negative integer that is the upper exclusive bound on 

values produced by the function c h a r - f 0 n t (page 196), which returns the font component of a 

given character; that is, the values returned by char-font are non-negative and strictly less than 

the value of char -font -1 imi t. 
Implementation note: No COMMON LISP implementation is required to support non-zero font attributes; if it 
docs not, then char-font-l imi t should be 1. 

-191-



192 COMMON LISP REFERENCE MANUAL 
.. 

char-bits-limit [C ollstant] 
The value of char-bits-l imit is a non-negative integer that is the upper exclusive bound on 

values produced by the function char-bi ts (page 196), which returns the bits component of a 

given character; that is, the values returned by ch ar - bits are non-negative and strictly less than 

the value of char-b; ts -1 imi t. Note that the value of char -b; ts -1 imi t will be a power of 

two. 
Implementation note:. No COMMON L!Sp implementation is required to support non-zero bits attributes; if it 
does not, then char-bits-l'imit should be 1. 

13.1. Predicates on Characters 

The predicate characterp (page 62) may be used to determine whether any LISP object is a character 

objec~ 

standard-char-p char [Function] 
The argument char must be a character object. -s tan dar d - c h a r - p is true if the argument is.a 

"5tandard character", that is, an object of type s tandard- ch ar. 

Note that any character wit.h a non"zero bits or font attribute is non-standard. 

graphic-char-p char [Function] . . 

The argument char must be a character object. 9 rap h i c - c h a r - p is true if the argument is a 

"'graphic" (printing) character, and false if it is a "non-graphic" (formatting or control) character. 

Graphic characters have a standard textual representation as a single glyph~ such as "A" or "*" or 

"::". By convention, the space character is considered to be graphic. Of the standard characters all 

but #\New1 i ne are graphic. The semi-standard characters #\Backspace, #\ Tab, #\Rubout, 

#\L i nefeed;#\Return, and #\Page. are not graphic. 

Programs may assume that graphic characters of font 0 are all of the same width when printed, for 

example for pUl'pOS~s of columnar formatting. (This does not prohibit the use of a variable-pitch 

font as font 0, b~t merely implies that every implementation of COMMON LISP must provide some 
mode of operation in which font 0 is a fixed-pitch fOllt.) Portable programs should assume that, in: 

general, non-graphic characters and characters of other fonts may be of varying widths. 

Any character with a non-zero bits attribute is non-graphi~. 

stri ng-char-p char .£Function] 
The argument char must be a character object. s t r i n 9 - c h a r - p is tme if char can be stored into 
a string, and otherwise is faIse. Any character that satisfies standard-char-p also satisfies 

5 tri ng-char-p;others may also. 



CHAPTER 13: CHARACTERS 193 

alpha-char-p char [Function] 
The argument char must be a character object. alp h a - c h a r - p is L'Ue if the argum~nt. is an 

alphabetic character. and otherwise is false. 

If a character is alphabetic, then it is perforce graphic. Therefore any character with a non-zero bits 

attribute cannot be alphabetic. Whether a character is alphabetic may depend on its font number. 

Of the standard characters (as defined by standard-char-p), the letters "A" through "Z" and 

"a" through "z" are alphabetic. 

upper-case-p char 

lower'-case-p char 
both -case-p char 

[Function] 
[Function]" 
[Func;tion1 

Th~ argument char must be a character object. upper-case-p is true if the argument is an 

upper-case (majuscule) character, and otherwise is falsc. 1 ower-case-p is tnlC ifu.1.e argument is 

an lower-case (minuscule) character, and otherwise is false. 

bot h - cas e - p is true if the argument is upper-case and there is a corresponding lower-case 

character (which can be obtained using char-downcase (page 197», or if the argument is lower

case and thcre is a corresponding upper-case character (whic~ can be obtained using 

char-upcase (page 197». 

If a character is either upper-case or lower-case, it is necessarily alphabetic (and therefore is graphic, 

and therefore has a zero bits attribute). However, it is pennissible in theory for an alphabetic 

character to be neither uppercase nor lowercase (in a non-Roman font. for example). 

Of the standard characters (as defined by standard-char-p), the letters "A" through "z" are 

upper-case and "a" through "z" are lower-case. 

d; 9 i t - c h a r - p char &0 p t ion a 1 (radix 10) [Function] 
The argument char must be a character object, and radix must be a non-neg~tive integer. If char is 
not a digit of t'1e radix specified by" radix, then dig it - c h a r - p is faise; otherwise it returns a 
non-negative integer that"is the "weight" of char in that radix. 

Digits arc necessarily graphic characters. 

Of the standard characters (as defined by standard-char-p), the characters "0" through "9", 

"A" through "Z", and '''a'' through "z" are digits. The weights of"O" through "9" are the integers 

o through 9, and of "A" through "z" (and ~o "a!' through "z") are 10 through 35. 

dig; t - c h a r - p returns the weight for one of these digits if and only if its weight is strictly less 

than radix. Thus, for example, the digits for radix 16 are "0123456789J\BCDEF". 

Here is an example of the use of d ; gi t-char-p: 



194 COMMON LISP REFERENCE MANUAL 

(defun conv~rt-string-to-integer (str &optional (radix 10» 
"Given a digit string and optional radix. return an integer." 
(do (j 0 {+ j 1)1 

(n 0 {+ (* n radix) 
(or (digit-char-p (char str j) radix) 

(error "Sad radix--D digit: -e" 
radix 
(char str j»}») 

«= j (length str» n») 

a 1 phanumeri cpchar [Function] 
TIle argument char must be a character object. alp h an u me ric p is true if char is either alphabetic 

or numeric. By definition, 
(alphanumericp x) 

<=> (or (alpha-char~p x) (not (null (digit-char-p x»» 

Alphanumelic characters are therefore necessarily graphic (as defined by graphic-char-p 

(page 192». 

Of the standard characters (asdefincd by standard-char-p),the characters "0" through "9", 

4'A'; through "Z", and "a" through "z" are alphanumeric. 

char= character &rest more-characters 
char/= character &rest more-characters 
c h a r < character & res t more-charae lers' 
char> character &res t more-characters 
char<= character &rest more-characters 

[Function] 
[Function] 

[Function] 
[Function] 
[Function] 

char>=character &res t more-characters [Fum;tion] 
The arguments must all be character objects. These functions compare the objects using the 

implementation-dependent total ordering on characters, in a manner analogous to numeric 

comparisons by = (page 162) and related functions. 

The total ordering on characters is guaranteed to' have the following properties: 

• The standard alphanumeric characters obey the following partial ordering: 

A<B<C<D<E<FeG<H<IeJ<K<L<M<N<O<P<Q<R<S<T<U<V<W<X<Y<Z 
a<b<c<d<e<f<g<h<i<j<k<l<m<n<o<p<q<r<s<t<u<v<w<x<y<z 
0<1<2<3<4<5<6<7<8<9 . 
either 9<A or Z<O 
either 9<a or 2<0 

This implies that alphabetic ordering holds within each case (upper and lower), and that 
the digits as a group are not interleaved with letters. However, the ordering or possible 
interleaving of upper-case letters and lower-case letters is unspecified. (Note that both 
the ASCII and the EBCDIC character sets conform to Ulis specification. As it happens, 
neither ordering interleaves upper"case and lower-case letters: in the ASCII ordering, 
9<A and Z<a, whereas in the EBCDIC ordering z<A and Z<O.) 

• If two characters have the same bits and font attributes, then their ordering by c h a r < is 
consistent with the numerical ordering by the predicate < (page 162) on their code 



.~. 

CHAPTER 13: CHARACTERS 195 

attributes . 

• If two characters differ in any atuibute (code, bits, or font) then they are different. 

The total ordering is not neccssarily the same as the total ordering on the integers produced by 

applying ch ar - in t (page 198) to the characters (although it is a reasonable implementation 

technique to use that ordering). 

\Vhile alphabetic charactcrs of a given case must be properly ordered, tlley need not be contiguous; 

thus (char<= #\a x #\z) is not a valid way of detennining whether or not x is a lower-case 

letter. That is why a separate lower-case-p (page 193) predicate is provided. 

For example: 

(char= #\d #\d) is true 
( c h a r I = # \ d # \ d) is false 
(char= #\d #\x) is false 
(charI = #\d #\x) is true 
( c h a r = # \ d # \ D) is false 
(char/= #\d #\0) istrue 
(char= #\d #\d #\d #\d) is true 
(char/= #\d #\d #\d #\d) is false 
(char= #\d #\d #\x #\d) is false 
(~har/= #\d #\d #\x #\d) is false 
( c h a r = # \ d #\ Y #\ x #\ c) is false 
(char/= #\d #\y #\x .#\c) istrue 
( c h a r = # \ d # \ c # \ d) is false 
( c h a r I = #\ d #\ c #\ d) is false 
(char< #\d #\x) istrue 
(char<= #\d #\x) istrue 
( c h a r < # \ d # \ d) is false 
(char<= #\d #\d) is tnle 
(char< #\a #\e #\y #\z) is true 
(char<= #\a #\e #\y #\z) istrue 
(char< #\a #\e #\e #\y) is false 
(char<= #\a #\e #\e #\y) is true 
(char> #\e #\d) is true 
(char>= #\e #\d) is tIue 
(ch.ar> #\d #\c #\b #\a) is true 
(char>:: #\d '#\c #\b #\a) burue 
(.char> #\d #\d #\c #\a) is false 
(char>= #\d #\d #\c #\a) istrue 
(char> #\e #\d #\b #\c #\a) isfalse 
(char>= #\e #\d #\b #\c #\a) is false 
(char> #\z #\A) may be tnie or fa~se 
(char> #\Z #\a) may be true or false 

There is no requirement that (e q c 1 c 2) be true merely because (c h a r = c 1 c 2) is true. 

While eq may distinguish two character objects that ch ar = does not, it is distinguishing them not 

as characters, but in some sense on the basis of a lower-level implementation characteristic. (Of 
course, if (eCi cl c2) is true then one may expect (char= cl c2) to be true.) However, eql 

(page 65) and e qua 1 (page ~6) compare character objects in the same way that c h a r = docs. 



196 COMMON LISP REFERENCE MANUAL 

char-equa 1 character &res t more· characters [Function] 
[Function] c h a r - not - e qua 1 character &r est more·characters 

char-lessp character &rest mor~characters [Function] 
char-greaterp character &rest more-characters [Function] 
char-not-greaterp character &rest more-characters [Function] 
char -not -1 es sp character &res t mor~characters [Function} 

The predicate char-equal is like char=. and similarly for the others, except according to a 

different ordering such that differences of bits attributes and case are ignored, and font infonnation 

is taken into account in an implementation-dependent manner. For the standard characters, the 

ordering is such that A::: a, B:::b, and so on, up to Z=z, and furthermore either 9<A or Z<O. 

For example: 

(char-equal #\A #\a) is true . 
(char= #\A #\a) is false 
(char-equal #\A #\Contro1-A) istrue 

The ordering may depend on the font infonnation. For example, an implementation might decree 

that(char-equa1 #\p #\p) be true, but that {char-equal #\p #\'1T)befalse(where#\7T 

is a lower·casc "pH in some font}. Assuming italics to be in font 1 and the Greek alphabet in font 2, 
this is the SaIne as saying that (c h a r - e qua 1 #0 \ P # 1 \ p) may be true and at the same time 
(char-equa 1 #O\p #2\p) may be false. 

13.2. Character Construction and Selection 

character object [Function]. 
The function character coerces its argument to be a char~cter if possible; see coerce (page 
42). 

(character x) <=> (coerce x 'character) . 

char-code char [Function] 
The argument char must be a character object. char-code returns the code attribute of the 

character object; this will be a non-negative integer less than the (normal) value of the variable. 
char-code-1 imit (page 191). . 

char-bits char [Function] 
The argument char must be a character object. char-b; ts returns the bits attribute of the 

character object; this will be a non-negative integer less than the (normal) value of the variable 
char-bits-l imit (page 192). 

char-font char [Function] 
The argument char must be a character object. char-font returns the font attribute of the 

character object; this will be a non-negative integer less than the (normal) value of the variable 
char-font -1 im; t (page 191). 



---

CHAPTER 13: CHARACfERS 197 

cod e - c h a r code &0 p t ion a 1 (bits 0) (font 0) [Function] 
All three arguments must be non-negative integers. If it is possible in the implementation to 

construct a character object w.hose code attribute is code, whose bits attribute is bits, and whose font 

attribute is font, then such an object is returned; otherwise nil is returned. 

For any integers c, b, andf, if (code-char c b 1) is not n; 1 then 

(char-code (code-char c b 1) => c 
(char-b i ts (code-char c b 1) => b 
(char-font (code-char c b 1) => f 

If the font and bits attributes of a character object x are zero, then it is the case that 

( c h a r = (c 0 d e - c h a r (c h a r - cod e c» c) is true 

make-char char &optional (bits 0) (font 0) . [Function] 
The argument char must be a character, and bits and font must be non-negative integers. If it is 

possible in the implementation to construct a character object whose code attribute is that of char~ 

whose bits attribute is bits, and whose font attribute is font, then such an object is returned; 

otherwise nil is returned. 

If bits and font are zero, then make-char cannot fail. This implies that for every character object 

one can "turn off' its bits and font attributes. 

13.3. Character Conversions 

char-upcase char [Function] 
char-downcase char . [Function] 

The argument char must be a character object. char-upcase attempts to convert its argument to 

an upper-case equivalent; char-downcase attempts to convert to lowercase. 

char-up case returns a character object with the same font and bits attributes as char, but with 

possibly a different code attribute. If the code is different from char's, then the predicate 

lower-case-p (page 193) is true of char, and upper-case-p (page 193) is true of the result 

character. Moreover, if (chl:ir= (char-upcase x) x) is not true, then it is true that 
(char= (char-downcase (char-upcase x» x) 

Similarly, char-downcase returns a character object with the same font and bits attributes as 

char, but with possibly a different code attribute. If the code is different from char's, then the 

predicate upper-case-p (page 193) is true of char, and 10wer-case-p (page 193) is true of 

the result character. Moreover, if (char= (char-downcase x) x) is not true, then it is true 

that 
(char= (char-upcase (char-downcase x» x) 

Note that the action of char-upcase and char-downcase may depend on the bits and font 

attribute of the character. In particular, they have no effect on a character with a non-zero bits 

attribute, because such characters are by definition not alphabetic. See alp h a - c h a r - p (page 

193). 



198 COMMON LISP REFERE1~CE MANUAL 

digit-char ,weight &optiona1 (radix '10) (font 0) [Function] 

All a~guments must be in tegers. d~ i9 i t- c h a r determines whether or not it is possible to construct 

a character object whose font attribute is font, and whose code is such that the result character has 

the weight weight when considered as a digit of the radix radix (see the predicate di gi t-char-p 

(page 193». It returns such a character if that is possible, and otherwis~ returns nil. 

dig i t - c h a r cannot return 0 i 1 if font is zero, radix is between 2 and 36 inclusive, and weight is 
non-negative and less than radix. 

If more than one character object can encode such a weight in the given radix, one shall be chosen 

consistently by any given implementation; moreover, among the standard characters upper-case 

letters are preferred to lower-c.ase letters. 

For example: 
(digit-char 7) => #\7 
(digit-char 12) => nil 
(digit-char 12 16) ~> #\C 
(digit-char 6 2) => oil 
(digit-char 1 2) => #\1 

;not #\e 

Note that ,argument is provided for specifying the bits component of the returned character, 

because a digit cannot have a non-zero bils component. The reasoning is that every digit is graphic 
(see dig it - char - p (page 193)} and no graphic character has a non-zero bits component (see 

graph i c-char-p (page 192». 

char-int char [Function] 
The argument char must be a character object. char - i n t returns a non-negative integer encoding 

the character object 

If the font and bits attributes of char are zero, then c h a r - i n t returns the same integer 

char-code would. Also, 
(char= cl e2) <=> (= (char-int cl) (char-int e2» 

for characters c 1 and c2. 

This function is provided primarily for the purpose of hashing characters. 

i nt-char integer [Function] 
The argument must be a non-negative integer. i n t - c h a r returns a character object c such that 

( c h a r - in t c) is equal to integer, if possible; otherwise i n t - e h a r returns false. 

char-name char [Function1 
The argument char must be a character object If the character has a name, then that name (a 

string) is retufned; otherwise nil is returned. All characters that have zero font and bits attributes 

and that are non-graphic (do not satisfy the predicate 9 r ap hi c- c h a r - p (page 192» have names. 
Graphic characters may or may not have names. 

The standard newline and'space characters have the respective names Newl i ne and Space. The 



CHAPTER 13: CHARAC-1ERS . 199 

semi-standard characters have the names Tab, Page, Rubout, L inefeed, Return, and 

Backspace. 

Characters that have names can be notated as U#\" followed by the name. (See section 22.1.4.) 

Although the name may be written in any case, it is stylish to capitalize it thus: "#\Space". 

char-name will only locate "'simple" character names; it will not construct names such as 

"Contro l-Space" on the basis of the character's bits attribute. 

name-char name [Function] 
The argument n arne must be an object coerceable to a string as if by the function s t r i n g (pag~ 

251). If the name .is the same as the name of a character object (as determined by str i ng-equa 1 

(page 248)), that object is returned; otherwise nil is returned. 

13.4. Character Control-Bit Functions 

COMMON LISP provides explicit names for four bits of the bits attribute: Control, Meta, Hyper, and Super. 
The following definitions are provided for manipulating these. Each COMMON LISP implementation provides 

these functions for compatibility, even if it does not support any or all of the bits named below. 

char-control-bit 

char--rneta-bit 

char-super-bit 

[Constant] 
[Constant] 
[Constant] 

c h a r - h Y per - bit [ Constant] 
The values of these named constants are the "w€ights" (as integers) for the four named control bits. 

The weight of the control bit is 1; of the meta bit, 2; of the super bit, 4; and of the hyper bit, 8. 

If a given implementation of COMMON LISP does not support a particular bit, then the 

corresponding constant is zero instead. 

char-bit char name [Function] 
c h a r - bit takes a character object char and the name of a bit, and returns non-nil if the bit of 

that name is set in char, or nil if the bit is not set in char. 

For .example: 

(char-bit #\Control-X :control) => t~e 

Valid values for name are implementation-dependent, but typically are : contro 1, : me·ta, 

: hyper, and : super. It is an error to give char-b i t the name of a bit not supported by the 

implementation. 

set f (page 78) may be used with c h a r - bit, provided that the argument char is specified by a 

form that is· a place form acceptable to set f, to modify a bit of the character stored in that place. 
The effect is to. pcrfonn a set - c h a r - b ; t (page 200) operation and then store the result back 

into the place. 



200 COMMON LISP REFERENCE MANUAL 

set-char-bi t char name newvalue [Function] 
c h a r - bit takes a character object char, the name of a bit, and a flag. A character is returned that 

is just like char except that the named bit is set or reset according to whether newvalue is non-n i 1 

or nil. Valid values for name are implementation-dependent. but typically are :control, 
:meta, :hyper, and : super. 

For example: 

(set-char-bit #\X :control t) => #\Control-X 
(set-char-bit #\Control-X :control t) => #\Control-X 
(set-char-bit #\Control-X :control nil) => #\X 



Chapter 14 

Sequences 

The type sequence encompasses both lists and vectors (one-dimensional arrays). While these are 

different data structures with different structural properties leading to different algorithmic uses, they do have 

a conlmon property: each contains an ordered set of elements. Note that nil is considered to be a sequence, 

oflength zero. 

There are some operations that are useful on both lists and arrays because they deal with ordered sets of 
elemente;. One may ask the number of elements, reverse the ordering, extract a subsequence, and so on. For 

such purposes COMMON LISP provides a set of generic functions on sequences: 
elt reverse map remove 
length nreverse some remove-duplicates 
subseq concatenate e~ery delete 
copy-seq position notany delete-duplicates 
fill find notevery substitute 
replace sort reduce nsubstitute 
count merge search mismatch 

Some of these operations come in more than one version. Such versions are indicated by adding a suffix (or, 

occasionally, a prefix) to the basic name of the operation. In addition, many operations accept one· or more 
. optional keyword arguments that can modify the operation in various ways. 

If the operation requires testing sequence elements according to some criterion, then the criterion may be 
specified in one of two ways. The basic operation accepts an item, and elements are tested for being e q 1 to 

that item. (A test other than eql can be specified by the : test or : test-not keyword. It is an error to 

use both of these keywords in the same call.) The variants fonned by adding "-if" and "-if-not" to the 

basic operation name do not take an item, but instead a one-argument predicate, and elements are tested for 

satisfying or not satisfying the predicate. As an example, 

(remove item sequence) 
returns a copy of sequence from which all elements e q 1 to item have been removed; 

(remove item sequence : test #' equal) 

returns a copy of sequence from which all elements e qua 1 to item have been removed; 

(remove- if #' numberp sequence) 
returns a copy of sequence from which all numbers have been removed 

If an operation tests elements of a sequence in any manner, the keyword argument : I< e y, if not nil, 

- 201-



202 COMMON liSP REFERENCE MANUAL 

should be a function of one argument that will extract from an element the part to be testcd in place of the 

whole element For example, the effect of the MACLlsp expression (assq i tern seq ) could be obtained e 
by 

( fin d item sequence : t est # t e q : key #' car) 

This searches for the first element of sequence whose caris eq to item. 

For some operations it can be useful to specify the direction in which the sequence is conceptually 

processed. In this case the basic operation normally processes the sequence in the forward direction, and 

processing in the reverse direction is indicated by a non-n i 1 value for the keyword argument : f r om- end. 

(The processing order specified by the :. from-end is purely conceptual. Depending on the object to ·be 

processed and on the implementation, the actual· processing order may be different. For this reason a 

user-supplied test function should be free of side effects.) 

Many operations allow the specification of a subsequence to be operated upon. Such operations have 
keyword arguments called: s tart and: end. These arguments should be integer indices into the sequence, 

with startS end (it is an error if start> end). They indicate the subsequence starting with and including element 

start and up to but excluding element end. The length of the subsequence is therefore end- start. If start is 

omitted it defaults to zero, and if end is omitted or nil it defaults to the length of the sequence; therefore if 

both are omitted the entire sequence is processed by default. For the most part, subsequence specification is 

permitted purcly for the sake of efficiency; one can simply call subseq instead to extract the subsequence 
before operating on it. Note, however; that operations that calculate indices return indices into the original 

sequence, not into the subsequence: 
(position #\b "foobar" :star~ 2 :end 5) => 3 
(position #\b (subseq "foobar" 2 5» => 1 

If two sequences are involved, then the keyword arguments: start 1, : end 1, : s tart2, and : end2 are 

used to specify separate subsequences for each sequence. 

For some functions, notably remove and de 1 ete, thet,keyword argument: count is used to specify how 
many occurrences of the item should be affected. If this is n ; 1 or is not supplied, all matching items are 

affected. 

In the following function descriptions, an element x of a sequence. "satisfies the test" if any of the following 

holds: 

• A basic function was called, testfn was specified by the keyword : t est, and (f u n c a 11 testfn 
item (keyfn x» is true. 

• A basic function was called, test/n was specified by the keyword: test-not, and (funcall 
testfn item (keyfn x» ~ false. 

• An "- i.f" function was called, and (funca 11 predicate (keyfn x» is true. 

• An "- ; f - not n function was called, and (f un c a 11 predicate (keyfn x».is false. 

In each case keyfn is the value of the : key keyword argument (the default being the identity function). See, e ,-' 



CHAPTER 14: SEQUENCES 203 

for example. remove (page 207). 

In the following function descriptions, two elements x and y taken from sequences "match" if either of the 
following holds: 

• testfn was specified by the keyword : t est, and (f un c a 11 testfn (keyfn x) (keyfn y» is 
true . 

• testfn was specified by the keyword : t est - not, and (f u n c a 11 testfn (keyfn x) (keyfn 
y) ) is false. 

See, for example, search (page 211). 

Whenever a sequence function must construct and return a new vector, it always returns a simple vector (see 
section 2.5). Similarly, any strings constructed will be simple strings. 

14.1. Simple Sequence Functions 

e 1 t sequence index [Function] 

This returns the element of sequence specified by index, which must be a non-negative integer less 
than the length of the sequence as returned by 1 eng t h (page 204). The first element of a sequence 
has index O. 

(Note that e 1 t observes the fill pointer in those vectors that have fill pointers. The array-specific 
function are f (page 240) may be used to access vector elements that are beyond the vector's ~ll 
pointer.) 

set f (page 78) may be used with e 1 t to destructively replace a sequence element with a new 
value. 

subseq sequence start &opt iona1 end [Function] 

This returns the subsequ~nce of sequence sp'ecified by start and end. sub seq always allocates a 
new sequence for a result; if never shares storage with an old sequence. The result subsequence is 
always of the same type as the argument sequence. 

i~ 

set f (page 78) may be used with sub seq to destructively replace a subsequence with a sequeie 
of new values; see also rap 1 ace (page 207). 

copy-seq sequence [Function] 

A copy is made of the argument sequence; the result is aqua 1 p to the ar~ent but not eq to it 
(copy-seq x) <=> (subseq x 0) 

but the name cop y - seq is more perspicuous when applicable. 



204 COMMON LISP REFERENCE MANUAL 
I 

1 ength sequence [ Function] 
The number of elements in sequ~nce is returned as a non-negative integer. If the sequence is a 

vector with a fill pointer, the "active length" as specified by the fill pointer is returned. See section 

17.6 (page 244). 

reverse sequence [Function] 
The result is a new sequence of the same kind as sequence, containing the same clements but in 
reverse order. The argument is not modified. 

nreverse sequence [Function] 
The result is a sequence containing the same elements as sequence but in reverse order. The 
argument may be destroyed and re-used to produce the result The result mayor may not be eq to 

the argument. so it is usually wise to say something like (s e t q x ( n rever sex) ), because 
simply (nreverse x) is not guaranteed to leave a reversed value in x. 

make-sequence type size &key :initial-element [Function] 
This returns a sequence of type type and of length size, each of whose elements has been initialized 

to the : in i t i a 1 - e 1 eme n t argument. If specified, the : in i t i a 1 - e 1 eme n t argument must be 

an object that can be an element of a sequence of type type. 

For example: 
(make-sequence '(vector double-float) 100" 

:initial-element IdO) 
If an : i nit i a 1 - e 1 eme n t argument is not specified, then the sequence will be initialized in an 
implementation-dependent way." 

14.2. Concatenating, Mapping, and Reducing Sequences 

concatenate result-type &rest sequences [Function] 
The result is a new sequence that contains all the elements of all the sequences in order. All of the 

sequences are copied from; the result does not share any structure with any of the argument 

sequences (in this concatenate differs from append). The type of the result is specified by 

result-type, which must be a subtype of sequence, as for the function coerce (page 42). It must 
be possible for every element of the argument sequences to be an element of a sequence of type 

result- type. 

If only one sequence argument is provided, and it has the type specified by result-type, 
con cat en ate is required to copy the argument rather than simply returning it If a copy is not 

required, but only possible type-conversion, then the coerce "(page 42) function may be 
appropriate. 



CHAPTER 14: SEQUENCES 205 

map result-type function sequence &res t more-sequences [Function] 
The function must take as many arguments as there are sequences provided; at least one sequence 
must be provided. The result of map is a sequence such that element j is the result of applying 
function to element j of each of the argument sequences. The result sequence is as long as the 
shonest of the input sequences. 

If the function has side-effects. it can count on being called first on all the elements numbered 0, 
then on all those numbered 1, and so on. 

The type of the result sequence is specified by the argument result-type (which must be a subtype of 
the type sequence). as for the function coerce (page 42). In addition. one may specify·n i 1 for 
the result type, meaning that no result sequence is to be produced; in this case the function is 
invoked only for effect, and map returns n; 1. This gives an effect similar to that of mapc (page 
106). 

Compatibility note: In MAcLISP, Lisp Machine LISP, INTERLISP, and indeed even LISP 1.5, the function map 
has always meant a non-value-returning version. However, standard computer science literature. and in 
particular the recent wave of papers on "functional programming", have come to use map to mean what in the 
past LISP people have called mapcar. To simplify things henceforth. COMMON LISP follows current usage, and 
what was formerly called map is named map 1 (page 106) in CoMMON LISP. 

For example: 
(map 'list #'- '(1 2 3 4» => (-1 -2 -3 -4) 
(map 'string 

#'(lambda (x) (if (oddp x) #\1 #\0», 
'(123 4» 

=> "1010" 

some predicate sequence &res t more-sequences [Function] 
every predicate sequence &res t more-sequences [Function] 
notany predicate sequence &rest more-sequences [Function] 
notevery predicate sequence &rest more-sequences [Function] 

These are all predicates. The predicate must take as many arguments as there are sequences 
provided. The predicate is first applied to the elements with index 0 in each of the sequences, and 
possibly then to the elements with index 1, and so on, until a termination criterion is met or the end 
of the shortest of the sequences is reached. 

If the predicate has side-effects, it can count on being called first on all the elements !lumbered 0, 
then on all those numbered 1, and so on. 

some returns as soon as any invocation of pr~dicate returns a non-n i 1 value; some returns that 
value. If the end of a sequence is reached, s orne returns nil. Thus, considered as a predicate, it is 

true if some invocation of predicate is true. 

eve r y returns nil as soon as any invocation of predicate returns nil. If the end of a sequence is 
reached, eve r y returns a non-nil value. Thus, considered as a predicate, it is true if every 
invocation of predicate is true. 

notany returns nil as soon as any invocation of predicate returns a non-n i 1 value. If the end of 
a sequence is reached, notany returns a non-n i 1 value. Thus, considered as a predicate, it is true 



206 COMMON USP REFERENCE MANUAL 

if no\rivocation of predicate is true. 

no taiv,e r y returns a non-n i 1 value as soon as any invocation of predicate returns ni 1. If the end 

of a ~~qucnce is reached, not eve r y returns nil. Thus, considered as a predicate. it is true if not 

every in vocation of predicate is true. 
~. Compatibility note: The order of the arguments here is not compatible with INfERLISP and Lisp Machine LIsp. 
'. This is to stress thesim~larity of these functions to map. The functions are therefore extended here to functions 

of more than one argument, and multiple sequences. 

reduce jUnction sequence &key: from-end : start : end : in i t i a 1-va' ue [Function] 
The reduce function combines all the elements of a sequence using a binary operation; for 

example, using + one can add up all the elements. 

The specified subsequence. of the sequence is combined or "reduced" using the jUnction, which 

must accept two arguments. The reduction is left-associative, unless the : from-end argument is 

true (it defaults to nil), in which case it is right..;associative. If an : i nit i a 1 - v a 1 u e argument is 

, given,;it is logically placed before the subsequence (after it if : from-end is true) and included in 
the r~duction operation. 

If the specified subsequence contains exactly one element and no : in i t i a 1 - va' u e is given, then 

that ele·ment is returned and the function is not called. If the specified subsequence is empty and an 
: in i t i a 1 - val ue is given, then the : in i t i a 1 - v a 1 ue is returned and the jUnction is not called. 

If the .. specified subsequence is empty and no : i nit i a 1 - val u e is given, then the jUnction is 
callcd;with zero arguments, and red u c e returns whatever the function does. (This is the only case 

Where~.~e junction is called with other than two arguments.) 

For example: 
(reduce #'+ ~(1 2 3 4» => 10 

. (reduce #'- '(1 2 3 4»<=> (- (- (- 1 2) 3) 4) => -8 
(reduce #' - '( i 2 3 4) : from-end t) ; Alternating sum. 

<=> (- 1 (- 2 (- 3 4») => -2 
(reduce #'+ 'C»~ => 0 
(reduce #'+ '(3» => 3 
(reduce #'+ '(foQ» => foo 
"(reduce #'list '(1"2 3 4» => ({{1 2) 3) 4) 
(reduce #'list '(1 2 3 4) :from-end t) => {I {2 (3 4)~) 

. (reduce #'list '(1 2 3 4) :initial-value 'fool 
=> «{(faa 1) 2) 3) 4) 

: (reduce #'list '(I 2 3 4) 
:from-end t :initial-va1ue 'fool 

=> (1 {2 {3 (4 fool»~) 

If the jUnction produces side effects, the order of the calls to the jUnction can be correctly predicted 

from the reduction ordering demonstrated above. 

The name "reduce" for this function is borrowed from APL. 



.""-' 

CHAPTER 14: SEQUENCES 207 

14.3. Modifying Sequences 

fill sequence item &key :start :end [Function] 
The sequence is destructively modified by replacing each element of the subsequence specified by 

the : start and: end parameters with the item. The item may be any LISP object, but must be a 

suitable clement for the sequence. The item is stored into all specified components of the sequence, 
beginning at the one specified by the : s tart index (which defaults to zero), and up to but not 
including the one specified by the : end index (which defaults to the length of the sequence). 

fill returns the modified sequence. 

For example: 
(setq x (vector 'a 'b 'c 'd 'e» => #(a b c d e) 
(fill x 'z :start 1 :end 3) => #(a z z d e) 

and now x => # (a z z de) 
(f ill x 'p) => #( P P P P p) 

and now x => # (p p p p p) 

replace sequence} sequence2 &key :startl :end1 :start2 :end2 [Function] 
The sequence sequence} is destructively modified by copying successive elements into it from 

sequence2. The clements of sequence2 must be of a type that may be stored into sequencel. The 
subsequence of sequence2 specified by : start2 and: end2 is copied into the subsequence of 
sequence] specified by : s tar t 1 and : end 1 .. (The arguments : S tar t 1 and : s tar t 2 default to 

zero. The arguments : end 1 and : end 2 default to nil, meaning the end of the appropriate 

sequence.) If these subsequences are not of the same length, then the shorter length determines 

how many elements are copied: the extra elements near the end of the longer subsequence are not 
involved in the operation. The number of elements copied may be expresse~ as: 

( min (- end} startl) (- end2 start2» 
The value returned by rep 1 ace is the modified sequence}. 

If sequence} and sequence2 are the same (e q) object and the region being modified overlaps the 

region being copied from, then it is as if the entire source region were copied to another place and 
only then copied back into the target region. However, if sequence} and sequence2 are not the 

same, but the region being modified overlaps the region being copied from (perhaps because of 
shared list structure or displaced arrays), then after the rep 1 ace operation 1he subsequence of 
sequence} being modified will have unpredictable contents. ,~ 

"7' 

remove item sequence &key : from-end :test : test-not : start : end 

:count :key 

t 
>~} 

[FunctiJn] 

remove- if test sequence &key : from-end : start : end : count : key [Function] 
remove- if-not test sequence &key : from-end : start. : end : count : key' [Function] 

The result is a sequence of the same kind as the argument s~quence that has the same elements 

except that those in the subsequence delimited by : start and : end and satisfying the test (see 

above) have been removed. This is a nondestructive operation; the result is a copy of the input 

sequence, save that some elements are not copied. Elements not removed occur in the same order in 



208 COMMON LISP REFERENCE MANUAL 

the result that they did in the argument. 

The ~count argument. if supplied. limits the number ,of elements removed; if more than: count 

elemJnts s~tisfy the test. only the leftmost: count such elements are removed. 

A non-ni 1 : from-end specification matters only when the : count argument is provided; in 
that case only the rightmost : co u n t elements satisfying the test are removed. 

For example: 
(remove 4 '(1 2·4 1 3 4 5» => (1 2 1 3 5) 
(remove 4 '(1 2 4 1 3 4 5) :count 1) => (1 2 1 3 4 5) 
(remove 4 '(I 2 4 1 3 4 5) :count 1 :from-end t) 

=> (1 2 4 1 3 5) 
(remove 3 '(I 2 4 1 3 4 5) :test I'»~ => (4 3 4 5) 
(remove-if j'oddp '(1 2 4 1 3 4 5» => (2 4 4) 
(remove-if #'evenp !(1 2 4 1 3 4 5) :count 1 :from-end t) 

=> (1 2 4 1 35) 

The result of r emo v e may share' with the argument sequence; a list result may share a tail with an 

input ·list, and the result may be e q to the input sequence if no elements need to be removed. 

delete item sequence &key : from-.end : test : test-not : start : end 

:count :key 

[Function] 

del ete- i f lest sequence&key : from-end : start :end : count :key [Function] 
delete:-if-not test sequence &key :from-end :start :end :count :key [Function] 

This is the destructive counterpan to remove. The result is a sequence of the same kind as the 

argument. sequence that has. the same elements except that those in the subsequence delimited by 
: start and: end and satisfying the test (see above) have been deleted. This is a destnictive 

operation. The argument sequence may be destroyed and used to construct the result; however. the 

resuk mayor may not bee q to sequence. Elements not deleted occur in the same order in the result 

that they did in the argument 

The : count argument, if supplied, limits the number of elements deleted; if more than: count 

elements satisfy the test, only the leftmost: count such are deleted. 

A non-n i 1 : from-end specification matters only when the : count argument is provided; in: 
that case only the rightmost : C ou n t elements satisfying ~e test are deleted. 

For example: 
(delete·4 '( 1 2 4 1 3 45}) => (1 2 1 35) .. 
(delete 4 '·(124 13 4 5) :count 1) => (1213 4 5) 
(delete 4 '(1 2 4 1 3 4 6) :count 1 :from-end t) 

=> (1 2 4 1 35) 
(delete 3 '(1 2 4 1 3 4 5) :test It»~ => (4 3 4 5) 
(delete-if#'oddp '(1 2 4 1 3 4 5» => (2 4 4) 
(delete-if·#'evenp '(1 24 1 3 4 5) :countl :f~om-end t) 

=> (12 4 1 3 5) 
CompatibiUty note: In MAcuSP,the delete function uses an equal comparison rather than eql, which is 
the default test for de 1 e te in COMMON l.JsP. Where in MACLISP one would write ( de 1 e t e x y ), one must 
in CoMMON I,.ISP write (de 1 ete x y : tes til' equa 1 ) to get the completely identicaleffect Similarly, 
one can get the precise effect, and no more, of the MACLISP (d e 1 q x y) by writing in COMMON LIsp 
(delete x y ~test #'eq). 



CHAPTER 14: SEQUENCES 

rernove-dupli.cates sequence l~key :frorn-end :test :test-not 

:start :end :key 

delete-duplicates sequence l~key :from-end :test :te.st-not 

:start :end :key 

209 

[Function] 

[Function] 

The elements of sequence are compared pairwise, and if any two match then the one occurring 

earlier in the seque~ce is discarded (but if the : from-end argument is true then the one later in 

the sequence is discarded). The result is a sequence of the same kind as the argument sequence 

with enough elements removed so that no two of the remaining elements match. 

r erno v e - d u P 1 i cat e s .is the non-destructive version of this operation. The result of 

rernove-dupl i cates may share with the argument sequence; a list result may share a tail with an 

input list, and the result m,ay be e q to the input sequence if no elements need to be removed. 

del e t e - d u P 1 i cat e s rnay destroy the argument sequence. 

Some examples: 
(remove-duplicates '(a b c b d de» => (a c b d e) 
(remove-duplicates '(a b c b d d e) :from-end t) => (a bed e) 
(remove-dupl ;cates ' «foo #\a) (bar #\%) (baz #\A» 

:test #'char-equal :key #'cadr) 
=> «bar #\%) (baz #\A» 

(remove-duplicates '«foo #\a) (bar #\%) (baz #\A» 
:test #'char-equal. :key #'cadr :from-end t) 

=> «(faa #\a) (bar #\%» 

These functions are useful for converting a sequence into a canonical form suitable for representing 

asel 

subs t i tute newitem old item setluence &key : from-end : tes t : tes t-not 
:start :en~ :count :key 

substitute-if newitem test se,quence &key :from-end :start :end 

:count :key 

substitute-if-not newitem test sequence &key :from-end :start :end 

': . : count : key 

[Function] 

[Function] 

[Function] 

The result is a sequence of the same kind as the argument sequence that ha~ the same elements 

except that those in the subsequence delimited by : s tart and : end and satisfying the test (see 
above) have been replaced by newitem. This is a nondestructive operation; the result is a copy of 

the input sequence, save that some elements are changed 

The : co un t argument, if supplied" limits the number of elements altered; if more than : co u n t 

elements satisfy the test, only the leftmost: count such are replaced. 
L, 

A non-ni 1 : from-end specification matters only when the : count argument is provided; in' 

that case only the rightmost : co un t elements satisfying the test are removed. 

For example: 



210 COMMON LISP REFERENCE MANUAL 

(substitute 9 4 t{l l 4 I 3 4 5» => (I 2 9 I 3 9 5) 
(substitute 9 4 t{l_ 2 4 1 3 4 5) :count 1) => (1 2 9 1 3 4 5) 
(substitute 9 4 t{l- 2 4 1 345) :count 1 :from-end t) 

=> (I 2 4 1 3 9 5) 
(substitute 9 3 t{l 2 4 1 3 4 5):test Nt» => (9 9 4 9 3 4 5) 
{substitute-if 9 #toddp ';(l_ 2 4 134 5» => (9 2 4 9 9 4 9) 
(substitute-if 9 "evenp '(I 2 4 1 3 4 5) :count 1 :from-end t) 

=> (I 2 4 1 3 9 5) 

The result of subs t i tute may share with the argument sequence; a list result may share a tail 
with an input list, and the result may be e q to the input sequence if no elements need to be 
changed. 

See also subs t (page 224), ~hich perfonnssubstitutions throughout a tree. 

nsubstitute llewitem olditem sequence &key :from-end :test :test-not 
:start :end :count :key 

[Function] 

nsubstitute-if newitem test sequence &key :from-end :start :end 

:count :key 

nsubstitute-if-not newitem test sequence &key :from-end :start :end 

:count :key 

[Function] 

[Function] 

This is the destructive counterpart to sub s tit ute. The result is a sequence of the same kind as 
the argument sequence that has the same elements except that th~se in the subsequence delimited 
by : s tar t and : end and satisfying the test (see above) have been replaced by newitem. This is a 

destructive operation. The argument sequence may be destroyed and used to construct the result; 
however, th~ result mayor may not be e q to sequence. 

See also n sub s t (page 225), which perfonns destructive substitutions throughol:1t a tree. 

14.4. Searching Sequences for Items 

find item sequence &key :from-end :test :test-not :start :end :key [Function] 
find--if test sequence &key :from-end :start :end :key [Function] 
find-if-not test sequence &key :from-end :start :end :key [Function] 

If the sequence contains an element satisfying the test, then the leftmost such element is returned; 
otherwise n ; 1 is returned. 

If : S tar t -and : e ild keyword arguments -~re given, only the specified subsequence of sequence is 
searched. 

If a non-n i 1 : from-end keyword argument is specified, then the result is the rightmost element 
satisfying the test 



CHAPTER 14: SEQUENCES 211 

position item sequence &key :from-end :test :test-not :start :end :key [Function] 
position-if test sequence'&key :from-end :start :end :key [Function] 
position-if-not test sequence &key :from-end :start :end :key [Function] 

If .the sequence contains an element satisfying the test, then the index within the sequence of the 

leftmost such element is returned as a non-negative integer; otherwise nil is returned. 1 

If : s tart and: end keyword arguments are given, only the specified subsequence of sequence is 
searched. However, the index returned is relative to the entire sequence, not to the subsequence. 

If a non-n i 1 : f rom-end keyword argument is specified, then the result is the index of the 

rightmost element satisfying the test. (The index returned, however, is an index from the left-hand 

end, as usual.) 

count item sequence &key : from-end : test : test-not : start : end : key [Function] 
count-if test sequence &key :from-end :start :end :key [,function] 
count-if-not test sequence &key :from-end :start :end :key [Function] 

The result is always a non-negative integer, the number of elements in the specified subsequence of 

sequence satisfying the test (see above). 

The : from-end argument does not affect the result returned; it is accepted purely for 

compatibility with other sequence functions. 

mismatch sequence] sequence2 &key :from-end :test :test-not :key [Function] 
:startl :start2 :endl :end2 

The specified subsequences of sequence] and sequence2 are compared element-wise. If they are of 
equal length and match in every element, the result is nil. Otherwise, the result is a non-negative 

iDteger, the index within sequence] of the leftmost positioll: a~ which they fail to match; or, if one is 
shorter than and a matching prefix of the other, the index relative to sequencel beyond the last 

position tested is returned. 

If a non-n ; 1 : from - end keyword argument is given, then one plus the index of the rightmost 
position in ,which the sequences differ is returned. In effect, the (sub )sequences are aligned at ~eir 
right-hand ends; then, the last elements are compared, the penultimate elements, and so on. ' The 

index returned is again an index relative to sequence!. 

search sequencel sequence2 &key : from-end : test : tes t-not : key [Functi~~] 
" 

:startl :start2 :endl :end2 

A search is conducted for a subsequence of sequence2 that element-wise matches sequencel. If 

there is no such subsequence, the result is nil; if there is, the result is the index into sequence2 of 

the leftmost element of the leftmost such matching subsequence. 

If a non-n t1 : from-end keyword argument is given, the index of the leftmost element of the 

rightmost matching subsequence is returned. 

The implementation may choose to ,search the sequence in any order; there is no guarantee on the 



212 COMMON LISP REFERENCE MANUAL 

number of times the test is made., For example, search with a non-n i 1 : from-end argument 

might actually search a list from left to right instead of from right to left (but in either case would 

return the rightmost matching subsequence, of course). Therefore it is a good idea for a user~ 

supplied predicate be free of side-effects. 

14.5. Sortjpg and Merging 
" 1- . 

sort sequence predicate &key : key [F;..;nction] 
stable-sort sequence predicate &key :key [Function] 

The sequence is destructively sorted according to an ordering determined by the predicate. The 

predicate should take two arguments, and return non-n i 1 if and only if the first argument is strictly 

less than the second (in some appropriate sense). If the first argument is greater than or equal to the ' 

second (in the appropriate sense), then the predicate should return n i 1. 

• The so r t function determines the relationship between two elements by giving keys extracted 
from the elements to the predicate. The : key argument, when applied' to an element, should 

return the key for that element The : key argument defaults to the identity function, thereby 

making the element itself be the key. 

The : key function should not have any side effects. A useful example of a : key function would 
be a component selector function for a defstruct (page 255) structure, for sorting a sequence of 

structures. 
(sort a p : key s) 

<=> (sort a #'(lambda (x y) (p (s x) (s y»» 

Wbjle the above two expressions are equivalent, the first may be more efficient in 'some 

nflementations, for ~ertain types 0: arguments. ,For ex~ple, an implementation may choose to 
aI't.1iy s to each Item Just once, putting the resulting keys Into a separate table, and then sort the 
parallel tables, as opposed to applying s to an item every time just before applying the predicate. 

If the : key and predicate functions always return, then the sorting operation will always terminate, 

producing a sequence containi~g the same,elements as the Original sequence (that is~ the result is a 
permutation of sequence). This"is guaranteed even if the predicate does not really consistently 

represent a total order (in which case the elements will be scrambled in some unpredictable way, 

but no element will ,be lost). If the : key function consistently returns meaningful keys, and the 

pf~dicate does reflect some total ordering criterion on those keys, then the elements of the result 

se'quence will be properly sorted according to that ordering. 

The sorting operation performed by so r t is not guaranteed stable. Elements considered equal by 

the predicate mayor may not stay in their original order. (The predicate is assumed to consider two 

t elementsxandytobeequalif(funcall. predicate x y) and (funcall 'predicate y x) are 

both false.} The function stable-sort guarantees stability, but may be slower than sort in 
some situations. 

,! 

• nt;;~orting operation may be destructive in all cases. In the case of an array argument, this is 

ac ' plished by permuting the elements in place. In the case of a list, the list is destructiyely 

----'-'----~-------~--. ---_.-



CHAPTER 14: SEQUENCES 213 

reordered in the same manner as for n rever s e (page 204). Thus if the argument should not be 

destroyed, the user must sort .a copy of the argument. 

Should execution of the : key function or the predicate cause an error, the state of the list or array 

being sorted is undefined. However, if the error is corrected the sort will, of course, proceed 
correctly. 

Note that since sorting requires many comparisons, and thus many calls to the predicate, sorting will 
be much faster if the predicate is a compiled function rather than interpreted. 

For example: 
(setq foovector (sort foovector #'string-lessp :key #'car» 

Iffoovector contained these items before the sort: 
("Tokens" "The Lion Sleeps Tonight") 
("Carpenters" "Close to You") 
("Rolling Stones" "Brown Sugar") 
("Beach Boys" "I- Get Around") 
("Beatles" "I Want to Hold Your Hand") 

then after the sort f 0 0 v e c tor would contain: 
("Beach Boys" "I Get Around") 
("Beatles" "I Want to Hold Your Hand") 
("Carpenters" "Close to You") 
("Rolling Stones" "Brown Sugar") 
("Tokens" "The Lion Sleeps Tonight") 

merge result-type sequence1 sequence2 predicate &key : key [Function] 
The sequences sequencel and sequence2 are destructively merged according to an ordering 

determined by the predicate. The result is a sequence of type result-type, which must be a subtype 

of sequence, as for the function coerce (page 42). The precjicate should take two arguments, 

and return non-nil if and only if the first argument is strictly less than the second (in some 
appropriate sense). If the first argument is greater than or equal to the second (in the appropriate 
sense), then the predicate should return n i 1. 

The me r g e function determines the relationship between two elements by giving keys extracted 

from the elements to the predicate. The : key function, when applied to an element, should return 

the key for that ~lement; the : key function defaults to. the identity function, thereby making the 

element itself be the key. 

The : key function should not have any side effects. A useful example of a : key function would 

be a component selector function for a defstruct (page 255) structure, for merging a sequence 
of structures. 

If the : key and predicate functions always return, then the merging operJ~on will always 

terminate. The result of merging two sequences x and y is a new sequence z, such that the length of 

Z is the sum of the lengths of x and y, and z contains the all the elements of x and -yo If xl and xl 
are two elements of x, and xl precedes x2 in x, then xl precedes x2 in z, and similarly for elements 

of y. In short, Z is an interleaving of x and y. 

" 



214 COMMON LISP REFERENCE MANUAL 

Morebver, if x and y were correctly sorted according to the predicate, then .z will also becorrectiy 
sorted. 

For example: 
(merge 'list ~(1 3 4 6 7) ~(2 5 a) #'<) ~> (1 2 345 6 7 a) 

If x or y is not so sorte<L then z will not be sorted, but will nevertheless be an interleaving of x and 
y. 

The merging operation is guaranteed stable; if two or more elements are considered equal by the 
predicale, then the elements from sequenceJ will precede those from sequence2 in the result (The 
predicale is assumed to consider two elements x ·and y to be equal if (fullca 11 predicate x y) 

and (funca 11 . predicate y xl are both false.) 
For example: 

(emerge 'string "90Y""n.os.yn #'char-less;p) =>":8000sYy" 

The result can not be "BnoOsYy",'''B!nO·o,syYl'., 'or "SnoOsyY". The function char-lessp 

(page 196) ignores case, and so considers thecharacters"yn and '''y'' to be equal, for example; the 
stability property then guarantees that the 'character from the first argument {'~Y")must precedetbe 
one from the second argument ("y"}. 



Chapter 15 

Manipulating List Structure 

hf 
A cons, or dotted pair, is a compound data object having two components, ~al1cd the car and cdr. Each 

component may be any LISP object. A list is a chain of conses linked by cdr fields: the chain is terminated by 
some atom (a non-cons object). An ordinary list is terminated by nil, the empty list (also written "( ) "). A 
list whose cdr-chain is terminated by some non-n i 1 atom is called a dotted list. 

The recommended predicate for testing for the end of a list is end p (page 217). 

15.1. Conses 

car list [Function] 
Returns the car of list, which must be a cons or ( ): that is, list must satisfy the predicate 1 i s t p 
(page 61). By definition, the car of ( ) is ( ). If the cons is regarded as the first cons of a list, then 

. car returns the first element of the list 

For example: 
(car '(a b ~» => a 

See fir s t (page 218). The car of a cons may be altered by using r p 1 a c a (page 224) or set f 
(page 78). 

cdr list [Function] 

Returns the cdr of list, which must be a cons or ( ); that is, list must satisfy the predicate 1 istp 
(page 61). By definition, the cdr of ( ) is ( ). If the coils is regarded as the first cons of a list, then 
cdr returns the rest of the list, which is a list with all elements but the first of the original1ist 
For example: 

(cdr '(a be» => (b c) 
See rest (page 219). The cdr of a cons may be altered by using rp 1 acd (page 224) or setf 
(page 78). 

- 215-



216 COMMON LISP REI-"'ERENCE MANUAL 

caar list 
cadr list 
cdar list 

cddr 1 list 
caaar list 
caadr list 
cadar list 
caddr list 
cdaar list 
cdadr list 
cddar list 
cdddr, list 
caaaar list 
caaadr list 
caadar list 

caaddf list 
cadaar list 
cadadr list 

[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 

caddar list [Function] 
cadddr list [Function] 
cdaaap list [Function] 
cdaadr list [Function] 
cdadar list [Function] 
cdaddr list [Function] 
cddaar list IF unction] 
cddadr list [Function] 
cdddar· list [Function] 
cddddr list [Function] 

All of the compositions of up to four cars and cdrs are defined as COMMON LISP functions in their 
own right. The names of these functions begin with .. c" and end with "r", and in between is a 
sequence of "a" and "d" letters corresponding to the composition performed by the function. 

For example: 

(cddadr x) is the same as (cdr (cdr (car (cdr x»» 

If the argument is regarded as a list, then cadr returns the second element of the list, caddr the 

third, and cadddr the fourth. If the first element of a list is a list, then caar is the first element of 
the sub list, cdar is the rest of that sublist, and cadar is the second element of the sublist; and so 

on. 

As a matter of style, it is often preferable to define a function or macro to access part of a 
'J$. i complicated data stru:ture, rather than to use a long car / cdr string: 

(defmacro lambda-vars (lambda-exp) t{cadr .lambda-exp» 
; then use 1 amb d a - va r s everywhere instead of cad r 

See also defs truct (page 255), which will automatically define new record data types and access 



CHAPTER 15: MANIPULA TINO UST STRUCTURE 

functions for instances of them. 

Any of these functions may be used to specify a place for set f (page 78). 

cons x y 

con s is the primitive function to create a new cons, whose car is x and whose cdr is y. 

For example: 
(cons 'a 'b) ~> (a. b) 
(cons 'a (cons 'b (cons 'c 'C»~»~ => (a b c) 
(cons 'a '(b cd» => (a bed) 

217 

[Function] 

con s may be thought of as creating a cons, or as adding a new element to the front of a list· 

tree-equal x y &key :test :test-not [Function] 
This is a predicate that is true if x and yare isomorphic trees with identical leaves; that is, if x and y 

are atoms that satisfy the test (by default eq 1), or if they are both conses and their cars are 

tree-equal and their cdrs are tree-equal. Thus tree-equa 1 recursively compares canses 

(but not any other objects that have components). See e qua 1 (page 66), which does recursively 

compare certain other structured objects, such as strings. 

15.2. Lists 

endp object [Function] 
The predicate end p is the recommended way to test for the end of a list It is false of conses, true of 
nil, and an error for all other arguments. 

Implementation note: Implementations are encouraged to signal an error, especially in the interpreter, for a 
non-list argument The endp function is defined so as to allow compiled code to perform simply an atom 
check or a null check if speed is more important than safety. . 

1 i s t -1 eng t h list [Function] 
1 i st-l ength returns, as an integer, the length of list. 1 i st-l ength differs from 1 ength 

(page 204) when the list is circular; 1 ength may fail to return, whereas 1 is t-l ength will r~turn 

ni 1. 

For example: 
(list-length 'C»~ => 0 
(list-length '(a bed» => 4 
(list-length '(a (b e) d» =~ 3 
(let «x (list 'a be») 

(rplacd (last x) x) 
(list-length x» => nil 

1 i s t -1 eng th could be implemented as follows: 



218 

(defun list-length (x) 
(do «n 0 (+ n 2» 

(fast x (cddr fast» 
(slow x (cdr'slow») 

(nil) 

COMMON LISP REFERENCE MANUAL 

;Counter. 
;Fast pointer: leaps by 2. 
; S low po;' n t e r: 1 e a p s b.y 1. 

;; If fast pointer hits the end, return the count. 
(when (endp fast) (return n» 
(when (en~p (cdr fast» (return (+ n I)}) 

If fast pointer eventually equals slow pointer, 
then we must be stuck in a circular list. 

(A deeper property is the converse: if we are 
stuck in a circular list, then eventually the 

" fast pointer will equal the slow pointer. 
That fact justifies this implementation.) 

(when (and (eq fast slow) (> nO» (return nil»» 

See 1 eng th (page 204), which will return the length of any sequence. 

nth n Jist [Function] 

first 

( nth n list) returns the n'th element of list, where the zeroth element is the car of the list n must 

be a non-negative integer. -If the length of the list is not greater than n, then the result is ( ), that is, 
nil. (This is consistent with the idea that the car and cdr of ( ) are each ( ).) 

For example: 
(nth 0 '(foo bar gack» => foo 
(nth 1 '(foo bar gack» => bar 
(nth 3 '(foo bar gack» => () 

Compatibility note: This is not the same as the INTER LIsP function called nth, which is similar to but not 
exactly the same as the COMMON LISP function nth cdr. This definition of nth is compatible with Usp 
Machine Lisp and NIL. Also, some people have used macros and functions called nth of their own in their old 
MAcLisp programs, which may not work the same way. 

nth may be used to specify a place to set f (page 78); when nth is used in this way. the argument 
n must be less than the length of the list. 

Note that the arguments to nth are reversed from the order used by most other sequence selector 
functions such as e 1 t (page 2Q3). 

list [Function] 
second list [Function] 
th i rdlist [Function] 
fourth list [Function] 
fi fth list [Function] 
six th list [Function] 
seventh list [Function] 
e i gh th. list [Function] 
ninth list [Function] 
tenth list [Function] 

These functions are sometimes convenient for accessing particular elements of a list fir s t is the 

same as car (page 215); second is the same as cadr; and so on. Note that the ordinal e 
"'-" 



CHAPTER 15: MANIPULATING LIST STRUCfURE 219 

numbering used here is one-origin, as opposed to the zero-origin numbering used by nth (page 
218): 

(fifth x) <=> (nth 4 x) 

set f (page 78) may be used with each of these functions to store into the indicated position of a 
list 

res t list 

rest means the same as cdr, but mnemonically complements firs t. 

set f (page 78) may be used with res t to replace the cdr of a list with a new value. 

nthcdr n list 

(nthcdr n list) performs the cdr operation n times on list, and returns the result 
For example: 

(nthcdr 0 '(a b c» => (a b c) 
(nthcdr 2 '(a be» => (c) 
(nthcdr 4 '(a be» => () 

In other words, it returns the n'th cdr of the list 

[Function] 

[Function] 

Compatibility note: This is similar to the INTERLISP function nth, except that the INTERLISP function is 
one-based instead of zero-based. 

(car (nthcdr n x» <=> (nth n x) 

1 ast list 

1 as t returns the last cons (not the last element!) of liSle If list is ( ). it returns ( ). 
For example: 

(setq x '(a bed» 
( 1 as t x) => (d l 
(rp 1 acd (1 as t x) '( e f» 
x => '(a bed e f) 
( 1 as t '( abc . d» => (c . d) 

list &rest args 

1 i s t constructs ~d returns a list of its arguments. 
For example: 

(list 3 4 'a (car '(b. c» (+ 6 -2» => (3 4 a b 4) 

[Function] 

[Function] . 

1 is t * arg &res t others [Function] 
1 is t * is like 1 is t except that the last cons of the constructed list is "dotted". The last argument 
to 1 i s t * is used as the cdr of the last cons constructed; this need not be an atom. If it is not an 
atom, then the effect is to add several new elements to the front of a list 
For example: 



220 

(1 is t· 'a 'b 'c 'd) => (a be. d) 
This is like 
(cons 'a (cons 'b (cons 'c 'd») . 
Also: 

COMMON LISP REFERENCE MANUAL 

( 1 i st· 'a ' b 'c '( d e f» => (a bed e f) 
(list· x) <=> x 

make-list size &key :initial-element [Function] 
This creates and returns a. list containing size elements, each of which is initialized to the 

: i nit i a 1 - e 1 eme n t argument (which defaults to nil). size should be a non-negative integer. 
For example: 

( make -1 is t 5) => (n i 1 nil 0 il oi 1 nil) 
(make-list 3 :ioitial-e1ement 'rah) => (rah rah rah) 

append &res t lists [Function] 
The arguments to a p p eo d are lists. The result is a list that is the concatenation of the arguments. 
The arguments are not destroyed. 

For example: 

( a p p e 0 d '(a b c) , { d e f)' () t ( 9 » => (a b c d e f g) 

Note that append copies the top-level list structure of each of its arguments except the last The 

function concatenate (page 204) can perform a similar operation, but always copies ,all its 
arguments. See also nconc (page 221), which is like append but destroys all arguments but the 
last 

The last argument actually need not be a list, but may be any LISP object, which becomes the tail 
end of the constructed list For example, (append ·(a b c) 'd) => {a b c . d}. 

( a p pen d x '(» is an idiom once frequently used to CORY the list x, but the copy -1 i s t 
function is more appropriate to this task. ' 

copy-l ist list .{Function] 
Returns a list that isequa 1 to list. but noteq. Only the top level of list-structure is copied; that is, 

copy-1 ist copies in the cdr direction but not in the car direction. If the list is "dotted", that is,: 

(cdr (1 as t list» is a non-ni 1 atom, this will be true of the returned list also. See also 
copy-seq (page 203) and copy-t.ree (page 221). 

copy-al ist list [Function] , 

co p y'" ali s t is for copying association lists. The top level .of list structure .of list is copied, just as 

cop Y -1 i s t does. In additiDn, each element of list that is a cons is replaced in the copy by a new 
cons with the same car and cdr. 



CHAPTER 15: MANJPULA TING LIST STRUCTURE 221 

copy-tree object [Function] 
copy-tree is for copying trees ofconses. The argument object may be any LISP object. Ifit is not 

a cons, it is returned; otherwise the result is a new cons of the results of calling cop y - t r e e on the 

car and cdr of the argument. In other words, all conses in the tree arc copied recursively, stopping 

only when non-conses are encountered. Circularities and the sharing of substructure are not 
preserved. 

revappend x y [Function] 
(revappend x y) is exactly the same as (append (reverse x) y) except that it is 

potentially more efficient Both x and y should be lists. The argument x is copied, not destroyed. 

Compare this with nreconc (page 221), which destroys its first argument. 

nconc &rest lists [Function] 
nco n c takes lists as arguments. It returns a list that is the arguments concatenated together. The 

arguments are changed, rather than copied. (Compare this with append (page 220), which copies, 

arguments rather than destroying them.) 

For example: 
(setq x '(a b c» 
(setq y '(d e f» 
(nconc x y) => (a b c d e f) 
x => (a b c d e f) 

Note, in the example, that the value of x is now different, since its last cons has been rp 1 acd'd to 

the value of y. If one were then to evaluate (n con c x y) again, it would yield a piece of 
"circular" list structure, whose printed representation would be (a bed e f d e f d e f 

. . . ), repeating forever; if the * p r i n t - c i r c 1 e * (page 307) switch were non -nil, it would be 

printed as (a b c. #l=(d e f. #1#». 

nreconc x y [Function] 
(nreconc x y) is exactly the same as (nconc (nreverse x) y) except that it is potentially 

more efficient Both x and y should be lists. The argument x is destroyed. Compare this with 

revappend (page 221). 

push item place [Ma~ro] 

The fonn place should be the name of a generalized variable containing a list; item may refer to Any 
\' 

LISp object. The item is consed onto the front of the list, and the augmented list is stored back ihto 
place and returned. The form place may be any form. acceptable as a generalized variable to setf 

(page 78). If the list held in place is viewed as a push-down stack, then push pushes an element 

onto the top of the stack. 

For example: 
(setq x t(a (b c) d» 
(push 5 (cadr x» => (5 b c) andnow x => (a (5 b c) d) 

The effect of ( pus h item place) is roughly equivalent to 

(setf place (cons item place» 



222 COMMON USP REFERENCE MANUAL 

except that the latter would evaluate any subfonns of place twice, while push takes care to evaluate 
them only once. Moreover, for c~nain place forms pus h may be significantly more efficient than 
the set f version. 

pushnew item place [Macro] 
The form place shouldbe the name of a generalized variable containing a list; item may refer to any 
LISP object. If the item is not alre~dy a member of the list (as determined by comparisons using the 
: tes t predicate, which defaults to eq 1), then the item is consed onto the front of the list, and the 
augmented list is stored back into place and returned; otherwise the unaugmented list is returned. 
The form place may be any fonn acceptable as a generalized variable to set f (page 78). If the list 
held in place is viewed as a set, then pushnew adjoins an element to the set; see adjoin (page 
226). 

The keyword arguments to pus h new follow the conventions for the generic sequence functions. 
See chapter 14. In effect, these keywords are simply passed on to the ad j 0 i n function. 

pushnew returns the new contents of the place. 

For example: 
(setq x '(a (b c) d» 
(pushnew 5 (cadr x» ;> (5 b c) 
(pushnew 'b (cadr ~) ;> (5 Q c) 

The effect of 
( pus h new item place : t est p) . 

is roughly equivalent to 

and now x ;> (a (5 b c) d) 
and x is unchanged 

( set f place (a d j oi n item place : t est p» 

except that the latter would evaluate any subforms of place twice, while push·new takes care to 
evaluate them only once. Moreover, for certain place forms push new may be significantly more 
efficient than the set f version. 

pop place [Macro] 
The form place should be the name of a generalized variable containing a list The result of pop is 
the car of the contents of place, and as a side-effect the cdr of the contents is stored back into 

place. The form place. may be any form acceptable as a generalized variable to set f (page 78). If 
the list held in place is viewed as a·push-down stack, then pop pops an element from the top of the 
stack and re~rns it 

For example: 
(setq stack ~(a be» 
(pop stack) => a andnow stack => (be) 

The effect of (pop place) is roughly equivalent to 
( pro 9 1 (c a r place) (s e t f place (c d r place)) 

except that the .latter would evaluate any subforms of place thrice, while po p takes care to evaluate 
them only once. Moreover, for certain place forms pop may be significantly more efficient than the 
set f version. 



OIAPTER 15: MANIPULATING UST STRUCfURE 223 

but1ast list &optiona1 n [Function] 
This creates and returns a list with the same elements as list,· excepting the last Il clements. n 
defaults to 1. The argument is not destroyed. If the list has fewer than n elements, then () is 

returned. 

For example: 
(but1ast '(a bed» => (a b c) 
(but1ast '«a b) (c d») => «a b» 
(but1ast '(a» => () 
(but1ast nil·) => () 

The name is from the phrase "all elements but the lasf'~ 

nbut1ast list &optiona1 n [Function] 
This i~ the destructive version of but 1 as t; it changes the cdr 0 f the cons n + 1 from the end of the 

list to nil. n defaults to 1. If the list has fewer than· n elements, then n but 1 as t returns ( ), and 

the argument is not modified. (Therefore one normally writes ( set q a (n but 1 as t a) rather 

than simply (nbut1 ast a).) 

For example: 
(setq faa '(a bed» 
(nbutlast faa) => (a b c) 
faa => (a be) 
(nbutlast '(a» => () 
(nbut1ast 'nil) => () 

1 d iff list sublist [Function] 
list should be a list, and sublist should be a sub list of list, that is, one of the conses that make up list. 
1 d i ff (meaning "list difference") will return a new (freshly consed) list, whose elements are those 

elements of·list that appear before sublist. If sublist is not ~ tail of list (and in particular if sublist is 
nil), then a copy of the entire list is returned. The argument list is not destroyed. 

For example: 
(setq x '(a bed e» 
(setq y (edddr x» => (d e) 
(ldiff x y) => (a b c) 
but 
(ldiff '(a bed) t(c d» => (a bed) 
since the sublist was not e q to any part of the list 

15.3. Alteration of List Structure 

The functions r p 1 a c a and r p 1 a c d may be used to make alterations in already-existing list structure; that 

is, to change the cars and cdrs of existing conses. One may also use setf (page 78) in conjunction with car 

and cdr (page 215)~ . 

The structure is not copied but is physically altered; hence caution should be exercised when using these 

functions, as strange side-effects can occur if portions of list structure become shared. The ncone (page 

221), nreverse (page 204), nreconc (page 221), and nbut1ast (page 223) functions, already 



224 COMMON LISP REFERENCE MANUAL 

described, have the same property, as do certain; of the generic sequence functions such as del e t e (page 
208). However, they are normally not used for this side·effcct; rather, the list-structure modification is purely 
for efficiency and compatible non·modifying. functions are provided. 

rp 1 aea x y [Function] 
(rp 1 aca x y) changes Jhe car of x to yand returns (the modified) x. x must be a cons, buty may 
be any Lisp object. 

For example: 
(setq 9 '(a be» 
(rplaca (cdr g) td) => (d c) 
Now 9 => (a d c) 

rp 1 acd x y [Function]" 
( r p 1 a cd x y) changes the cdr of x to yand returns (the modified) x. x must be a cons, but y may 
be any Lisp object. 

For example: 
(setq x tea be» 
(rplacd x'd) => (a • d) 
Now x =~ (a . d) 

15.4. Substitution of Expressions 

A number of functions are provided for performing substitutions within a tree. All take a tree and a . 
description of old sub·expressions to be replaced by new ones. They come in non-destructive and dest.f':1ctive 
varieties, and specify substitution either by two arguments or by an association list 

The naming conventions. for these functions and for their keyword arguments generally follow the 
conventions for the generic sequence functions. See chapter 14. 

subst new old tree &key :test :test-not. :key [Function] 
subs t- i f new test tree &key : key . [Function] 
subst-if-not new test tree &key :key [Function] 

(subst new old tree) makes a copy of tree, substituting new for every subtree or leaf of tree 
(whether the subtree or leaf is a car or a cdr of its parent) such that old and the subtree or leaf satisfy 
the test. It returns the modified copy of tree. The original tree is unchanged, but the. result tree may 
share with parts of the argument tree. 

Compatibility note: In MAcLISP, sub s t is guaranteed not to share with the tree argument, and the idiom 
(subst nil nil x) was used to copy a tree x. In CoMMON LIsp, the function copy-tree (page 
221) should be used to copy a tree, as the sub s t idiom will not work. 

For example: 



CHAPTER 15: MANIPULATING LIST STRUcruRE 

(subst 'tempest ~hurricane 

'(shakespeare wrote (the hurricane») 
=> (shakespeare wrote (the tempest}) 

(subst 'foo 'nil '(shakespeare wrote (twelfth night») 
=> (shakespeare wrote (twelfth night. foo) . foo) 

(subst '(a. cons) '(old. pair) 

225 

'«old. spice) «old. shoes) old. pair) (old. pair)} 
:test #'equal} 

=> «old. spice) «old. shoes) a . cons} (a . cons}) 

This function is not destructive; that is, it does not change the car or cdr of any already-existing list 

structure. One possible definition of subs t: 

(defun subst (old new tree &rest x &key test test-not key) 
{cond {(satisfies-the-test old tree :test test 

. :test-not test-not :key key) 
new} 

«atom tree) tree) 
(t (let {(a (apply #'subst old new (car tree) x» 

(d {apply #'subst old new (cdr tree) x») 
. (if {and (eql a (car tree» 

{eql d (cdr tree») 
tree 
(cons a d»»» 

See also sub s tit ute (page 209), which substitutes for top-level elements of a sequence. 

n sub s t new old tree & key : t est : t est - not : key 

nsubst-if new lesllree &key :key 

nsubst-if-not new test tree &key : key 

[Function] 
[Function] 
[Function] 

nsubst is a destructive version of subst. The list structure of tree is altered by destructively 

replacing with new each leaf of the tree such that old and the leaf satisfy the test 

subl is alist tree &key :test :test-not :key [Function] 
sub 1 is makes substitutions for objects in a tree (a structure of conses). The first argument to 

sub 1 isis an association list The second argument is the tree in which substitutions are to be 

made, as for subs t (page 224). sub 1 is looks at all subtrees and leaves of the tree; if a subtree or 

leaf appears as a key in the association list (that is, the key and the subtree or leaf satisfy the test), it 

is replaced by the object it is associated with. This operation is non-destructive'. In effect, sub 1 is 

can perfonn several sub s t operations simultaneously. 

For example: 
( sub 1 is' ( (x . 100 ) ( z·. z p rime ) ) 

'{plus x (minus 9 z x p) 4 . x» 
=> (plus 100 (minus 9 zprime 100 p) 4 . 100) 

(sublis '«(+ x y) . (- x y» «-.x y) . (+ x y») 
'(* (/ (+ x y) (+ x p» (- x·y» 
:test I'equal) 

=> (* (/ (- x y) (+. x p» (+ x y» 



226 COMMON USP REFERENCE MANUAL 

nsubl is alist tree &key :test :test-not :key [Function] 
n sub 1 isis like sub 1 is but destructively modifies the relevant parts~ of the tree. 

15.5. Using Lists as Sets 

COMMON LISP includes functions that anow a list of items to be treated as a set. There are functions to add, 

remove, and search for items in a list, based on various criteria. There are also set union, intersection, and 
difference functions. 

The naming conventions for these functions and for their keyword arguments generally follow the 
conventions for the generic seque.nce functions. See chapter 14. 

member item list &key :test :test-not :key [Function] 

member-if predicate list&key :key [Function] 

member- if-not predicate list &key : key [Function] 

The list is searched for an element that satisfies the test. If none is found, nil is returned; 

otherwise, the tail of list beginning with the first element that satisfied the test is returned. The list 

is searched on the top level only. These functions are suitable for use as predicates. 

For example: 

(member 'snerd '(a bed» => nil 
(member-if #'numberp '(a #\Space 5/3 foo» => (5/3 foo) 
(member 'a '(g (a y) cad e a f» => (a d e a f) 

Note, in the last example, that the. value returned by member is eq to the portion of the list 

beginning with a. Thus rpl aca· on the result of member may be used, if you first check to make 
sure me mb e r did not return ni 1, to alter the found list element 

See also find (page 210) and pas it i 0.0 (page 211). 
Compatibility note: In MACLISP, the mambe r function uses an e qu a 1 comparison rather than eq 1, which is 
the default test for member in CoMMON LIsp. Where in MAcLrsp one would write (member x y), one must 
in CoMMON LISP write (member x y : test #' equal) to' get the completely identical effect Similarly. 
one· can get the precise effect. and no more, of the MAcLIsp (memq x y) by writing in COMMON USP 
(member ~ y :test g·eq). 

t ail p sublist list [Function] 

This predicate is true if sublist is a sublist of list (Le.9 one of the conses that makes up list). 
Otherwise it is false.. Another way to look at this is that ta i 1 P is true if (n the d r n list) is 
sublis!, for some value of n. See 1 d iff (page 223) .. 

adjoin item list &key : test : test-not :key [Function] 

adjo i n is used to add an elem.ent to a set, provided that it is not already a member. The equality 
test defaults to e q 1 . 

(adjoi n item'list) <=>. (i f (member item list) list (cons item list» 

In general, the test may be any predicate;. the item is added to the list only if there is no element of 
the list that "satisfies the test'f. 



---

CHAPTER 15: MANIPULATING LIST STRUCfURE 

. See pushnew (page 222). 

unionlistl list2 &key :test :te'st-not :key 

nunion listl list2 &key : test : test-not : key 

227 

[Function] 
[Function] 

un i on takes two lists and returns a new list containing everything that is an element of either of the 

liSls. If there is a d~plication between two lists, only one of the duplicate instances will be in the 

result If either of the arguments has duplicate entries within it, the redundant entries may or.may 
not appear in the result 

For example: 

(union '(a b c) '(f a d» => (a b c f d) 

There is no guarantee that the order of elements in the result will reflect the ordering of the ' 

arguments in any particular way. The implementation is therefore free to use any of a variety of 
strategies. 

In general, the test may be any predicate, and the union operation may be described as follows. For 

all possible ordered pairs consisting of one element from listl and one element from list2, the test is 

used to determine whether they "match". For every matching pair, at least one of the two elements 

of the pair will be in the result Moreover, any element from either list that matches no element of 

the other will appear in the result All this is very general, but probably not particularly useful 
unless the test is an equivalence relation. 

The : tes t - not argument can be useful when the test function is the logical negation of an 

equivalence test. A good example of this is the function mi smatch (page 211), whic~ is logically 

inverted so that possibly useful information can be returned if the arguments do not match. This 

additional "useful infonnation" is discarded in the following example; mi sma tch is used purely as 
a predicate. 

(union '(#(a b) #(5 0 6) #(f 3» 
'(#('5 0 6) (a b) #(g h» 
:test-not 
#'mismatch) 

=> (#(a b) #(5 0 6) #(f 3) #(g h» 
=> «a b) #(f 3) #(5 0 6) #(g h» 

; One possible result 
; Another possible result 

Using :test-not #'mis'match differs from using :test #'equalp, for example, because 

mi smatch will detennine that #( a b) and (a b) are the same, while equal p (page 67) wout;. 
regard them as not the same. 

nun ion is the destructive version of un ion. It perfonns the same operation, but may destroy the 
argument lists, using their cells to construct the result 

intersect ion listl list2 &key : test : test-not : key [Function] 
nintersection lisa list2 &key :test :test-not ,:key [Function] 

i n t e r sec t ion takes two lists and returns a new list containing everything that is an element of 

both argument lists. If either list has duplicate entries, the redundant entries mayor may not 
appear in the result 

For example: 



228 COMMON USP REFERENCE MANUAL 

(intersectton t(a b C) t(f a d)} => (a) 

'"There is no guarantee that the order of elements in the result will reflect the ordering of the 

arguments in any particular way. The implementation is therefore free to use any of a variety of 
strategies. 

In general, the test may be any predicate, and the intersection operation may be described as 

follows. For all possible ordered pairs consisting of one element from listI and one element from 

list2, the test is used to determine whether they "match". For every matching pair, at exactly one of 

the two elements of the pair will be put in the result. No element from either list appears in the 

result that does not match an element from the other list All this is very general, but probably not 

particularly useful unless the test is an equivalence relation. 

n i n t e r sec t ion is the destructive version of i n t e r sec t ion. It performs the same operation, 

but may destroy list! using its cells to construct the result. (The argument list2 is not destroyed.) 

set-di fference listI list2 &key : test : test-not : key 

nset-di fference listl list2 &key : test : test-not : key 
[Function] 
[Function] 

set - d iff ere n c e returns a list of elements of listI that do not appear in list2. This operation is 
not destructive. 

There is no guarantee that the order of elements in the result will reflect the ordering of the 
arguments in any particular way. The implementation is therefore free to use any of a variety of 
strategies. 

In general, the test may be any predicate, and the set difference operation may be described as 

follows. For all possible ordered pairs consisting of one element from listl and one element from 

list2, the test is used to determine whether they "match". An element of listl appears in the result if 

and only if it does not match any element of list2. This is very general, and permits interesting 

applications. For example, one can remove from a list of strings all those strings containing one of a 
given list characters: 

;; Remove all flavor names that contain "c" or "WHo 
{set-difference '("strawberry" "chocolate" "banana" 

"lemon" "pistachio" "rhubarb") 
, (#\c #\w) 
:test 
#'(lambda (s c) (find c s})} 

=> (" banana" "rhubarb It tt 1 emon tt ) ; One possible ordering. 

nset-d i fference is the destructive version of set-di fference. This operation may destroy 
listl. 

set-exclusive-or listl list2 &key :test :test-not :key [Function] 
nset-exclusive-or listl list2 &key :test :test-not :key [Function] 

set - e xc 1 us i ve - 0 r returns a list of elements that appear in exactly one of listl and list2. This 
operation is not destructive. 

There is no guarantee that the order of elements in the result will reflect the ordering of the 



CHAPTER 15: MANIPULATING LIST STRUCTURE 229 

arguments in any particular way. The implementation is therefore free to use any of a variety of 

strategies. 

In general, the test may be any predicate, and the set-exc1usive-or operation may be described as 

follows. For all possible ordered pairs consisting of one element from listl and one clement from 

list2, the test is used to determine whether they "match", The result contains precisely those 

elements of listl and list2 that appear in no matching pair. 

nset -exel us i ve -or is the destructive version of set -exe 1 us i ve-or, Both lists may be 

destroyed in producing the result 

subsetp listl list2 &key' :test :test-not :key [Function] 
sub set p is a predicate that is true if every element of listl appears in ("matches" some element of) 

list2, and false otherwise. 

15.6. Association Lists 

An association list, or a-list, is a data structure used very frequently in LISP. An a-list is a list of pairs 

(conses); each pair is an association. The car of a pair is called the key, and the cdr is called the datum. 

An advantage of the a-list representation is that an a-list can be incrementally augmented simply by adding 

new entries to the front. Moreover, because the searching function ass 0 e (page 230) searches the a-list in 
order, new entries can "shadow" old entries. If an a-list is viewed as a mapping from keys to data, then the 

mapping can be not only augmented but also altered in a non-destructive manner by adding new entries to 

the front of the a-list. 

Sometimes an a-list represents a bijective mapping, and it is desirable to retrieve a key given a datum. For 

t;his purpose the "reverse" searching function rassoc (page 231) is provided. Other variants of a-list 

searches can be constructed using the function fin d (page 210) or memb e r (page 226). 

It is permissible to let nil be an element of an a-list in place of a pair. Such an element is not consider~d to 

be a pair, but is simply passed over when the a-list is searched by as soc (page 230). 

a con s key datum a-list 
acons constructs a new association list by adding the pair (key 

(aeons x y a) <=> (cons (cons x y) a) 

1 

[Functl~n] 
,ii 

datum) to the old a-list. " 

pairlis keys data. &optional a-list [Function] 
p air lis takes two lists and makes an association list that associates elements of the first list to 

correspondi.ng elements of the second list It is an error if the two lists keys and data are not of the 

same length .. If the optional"argument a-list is provided, then the new pairs are added to the front 

of it. 



230 COMMON LISP REFERENCE MANUAL 

The new pairs may appeaf in the resulting a-list in . any order; in particular, either forwards or 

backwards order is pennitted. Therefore the result of the call 
(pairlis '(.one two). '(1 2) '(three. 3) .(four . 19») 

might be 

«one. 1) (two. 2) (three. 3) (four. 19» 

but could equally well be 

«two. 2) (one. 1) (three. 3) (four. 19» 

assoc item a-list &key : test : test-not [Function] 

as soc- i f predicate a-list [Function] 

assoc-if-not predicate a-list [Function] 

Each of these searches the association list a-list. The value is the first pair in the a-list such that the 

car of the pair satisfies the test, or nil if there is none such. 

For example: 

(assoc 'r '( (a . b) (c . d) (r . x) (s . y) (r . z») 
=> (r. x) 

(assoc 'goo '«foo . bar) (zoo. goo») => nil 
(assoc '2 '«1 a b c) (2 bed) (-7 x y z») => (2 bed) 

It is possible to r p 1 a cd the result of ass 0 c provided that it is not nil, if your intention is to 

"update" the "table" that was as soc's second argument. (However, it is often better to update an 

a-list by adding new pairs to the front, rather than altering old pairs.) 

For example: 

(setq values '«x. 100) (y . 200) (z . 50») 
(assoc 'y values) => (y . 200) 
(rp1acd (assoc 'y values) 201) 
(assoc 'y values) => (y .201) now 

A typical trick is to say (c d r (a s soc x y». Because the cdr of n i 1 is guaranteed to be nil, 

this yields nil if no pair is found or if a pair is found whose cdr is n i 1. This is useful if ni 1 serves 
its usual role as a "default valuen

• 

The two expressions 

(assoc item list : tes~ In) 
and 

( fin d item list : t est In : key #' car) 

are equivalent in meaning with one important exception: if nil appears in the a-list in place of a 

pair, and the item being searched for is nil, find will blithely compute the car of the n i 1 in the 

a-list, find that it is equal" to the item, and return nil, whereas ass 0 c will ignore the nil in the 

a-list and continue to search for an actual pair (cons) whose car is n i 1. See find (page 210) and 
po sit ion (page 211). 

Compatibility note: In MAcusp, the as soc function uses an equal comparison rather than eql, which is the 
default test for assoc in COMMON LIsp. Where in MAcusp·one would write (assoc x y), one must in 
COMMON LISP write ( ass 0 c x y : t est # • e Qua 1) to get the completely identical effect Similarly. one 
can get the precise effect, and no more. of the MAcusp (assq x y) by writing in COMMON USP (assoc x 
y:test #'eq). 



CHAPTER 15: MANIPULATING LIST STRUCTURE 

rassoc item a-list &key : test : toest-not 

rassoc- i f predicate a-list 

r as soc - i f - not predicate a-list 

231 

[Function] 
[Function] 
[Fullction] 

r ass 0 c is the reverse form of ass 0 c; it searches for a pair whose cdr satisfies the test, rather than 

the car. If the a-list is considered to be a mapping, then rassoc treats the a-list as representing the 

in verse mapping. 

For example: 
(rassoc 'a '«a. b) (b . c) (c . a) (z . a») => (c . a) 

The expressions 

(rassoc item list : tes tin) 
and 

( fin d item list : t est In : ke y #' cdr) 

are equivalent in meaning, except when the item is n i.l and nil appears in place of a pair in the 

a-list. See the discussion of the function as soc (page 230). 



232 COMMON LISP REFERENCE MANUA.L 



Chapter 16 

Hash Tables 

A hash table isa LISP object that can efficiently map a given LISP object to another LISP object. Each hash 

table has a set of entries, each of which associates a particular key with a particular value. The basic functions 

that deal with hash tables can create entries, delete entries, and find the value that is associated with a given 

key. Finding the value is very fast even if there are many entries, because hashing is used; this is an important 

advantage of hash tables over property lists. 

A given hash table can only associate one value with a given key; if you try to add a second value it will 

replace the first. Also, 'adding a value to a hash table is a destructive operation; the hash table is modified. By 
contrast, association lists can be augmented non-destructively. 

Hash tables come in three kinds, the difference being whether the keys are compared with eq, eq 1, or 

equa 1. In other words, there are hash tables that hash on Lisp objects (using eq or eq 1) and there are hash 

tables that hash on tree structure (using equa 1). 

Hash tables are created with the function make-hash-tabl e, which takes various options, including 

which kind of hash table to make (the default being the eql kind). To look up a key and find the associated 

value, use gethash. New entries are added to hash tables using setf (page 78) with gethash. To 

remove an entry, use remh as h. Here is a simple example. 
(setq a (make-hash-table» 
(setf (gethash 'color a) 'brown) 
(setf (gethash 'name a) 'fred) 
(gethash 'color a) => brown 
(gethash 'nam~ a) => fred 
(gethash 'pointy a) => nil 

In this example, the symbols color and name are being used as keys, and the symbols brown and fred 
are being used as the associated values. The hash table has two items in it, one of which associates from 

co lor to brown, and the other of which associates from name to fred. 

~ Keys do not have to be symbols; they can be any LISP object. Likewise values can be any LISP object 

When a hash table is first created, it has a size, which is the maximum num~er of entries it can hold. 

Usually the actual capacity of the table is somewhat less, since the hashing is not perfectly collision-free. With 

- 233-



234 COMMON USP REFERENCE MANUAL 

the maximum possible bad lucK, the capacity could be very much less, but this rarely happens. If so many 

entries are added that the capacity is exceed~d. the hash table will automatically grow, and the entries will be 

rehashed (new hash values will be recomputed, and everything will be rearranged so that the fast hash lookup 

still works). This is transparent to the caller; it all happens automatically. 
Compatibility note: This hash table facility is compatible with Lisp Machine LISP. It is similar to the hasharray facility of 
INTERLlSP. and some of the function names are the same. However. it is not compatible with INTER LISP. The exact details 
and the order of arguments are designed to be consistent with the rest of MAcLIsp rather than with INTERLISP. For instance, 
the order of arguments to maphash is different, there is no "system hash table", and there is not the INTERLISP restriction 
that keys and values may not be nil. 

16.1~ Hash Table Functions 

This section documents the functions for hash tables; which use objects as keys and associate other objects 

with them. 

make-hash-table &key :test :size :rehash-size :rehash-threshold [Fullction] 

This function creates and returns a new hash table. The : t est argument determines how keys are 

compared; it must be one of the three values #' e q, #' e q 1, or #' e qua 1, or one of the three 

symbols e q, e q 1 , or e qua 1. If no test is specified, e q 1 is assumed. 

The : s i z e argument sets the initial size of the hash table, in entries. (TIle actual size may be 

rounded up from the size you specify to the next "good" size, . for example to make it a prime 

number.) You won't necessarily be able to store precisely this many entries into the table before it 

overflows and becomes bigger, but this argument does serve as a hint to the implementation of 

" approximately how many entries you intend to store. 

The : r e has h - s i z e argument specifies how much to increase the size of the hash table when it 

becomes full. 111is can be an integer greater than zero, which is the number of entries to' add, or it 

can be a floating-point number greater than one, which is the ratio of the new size to the old size. 

The default value for this argument is implementation-dependent 

The : rehash-threshol d argument specifies how full the hash table can get before it must 

grow. This can be an Integer greater than zero and less than the rehash-size (in which case it will be 

scaled whenever the table is grown), or it can be a floating-point number between zero and one. 

The default value for this argument is implementation-dependent 

For example: 

. {make-hash-table :rehash-~ize 1.5 
:size (* ·number-of-widgets 43» 

hash -tab 1 e'-p object 

has h - tab 1 e - p is true if its argument is a hash table, and otherwise is false. 
(hash-table-px) <=> (typep x 'hash-table) 

[Function] 



CHAPTER 16: HASH TABLES 235 

gethash key hash-table &opt ional default [Function] 

Find the entry in hash-table whose key is key, and return the associated value. If there is no such 

entry, return default, which is nil if not specified. 

gethash actually returns two values, the second being a predicate value that is true if an entry was 

found, and false if no entry was found. 

set f (page 78) may be used with get has h to make new entries in a hash table. If an entry with 

the specified key already exists, it is removed before the new entry is added. The default argument 

may be specified to get has h in this context; it is ignored by set f, but may be useful in such 

macros as inc f that are related to set f : 
(incf (gethash a-key table 0» 

means the approximately the same as . 

(setf (gethash a-key table 0) (+ (gethash a-key table 0) 1» 
which in turn would be treated as simply 

(setf (gethash a-key table) (+ (gethash a-key table 0) 1» 

r e mh ash key hash-table [Function] 
Remove any entry for key in hash-table. This is a predicate that is true if there was an entry or false 

if there was not. 

maphash jUnction hash-table [Function] 
For each entry in hash-table, callfunclion on two arguments: the key of the entry and the value of 

the entry. If entries are added to or deleted from the hash table while a maphash is in progress, the 

results are unpredictable, with one exception: if the jUnction calls remh as h to remove the entry 

currently being processed by the junction, or performs a set f (page 78) of ge th as h on that entry 

to change the associated value, then those operations will have the intended effect 

For example: 
;; Alter every entry in MY-HASH-TABLE, replacing the value wit~ 
;; its square root. Entries with negative values are removed. 
(maphash #'(lambda (key val) 

(if (minusp val) 
(remhash key my-hash-table) 
(setf (gethash key my-hash-table) 

(sqrt val»» 
my-hash-table) 

maph as h returns nil. 

cl rhash hash-table 
Remove all the entries from hash-table. Returns the hash table itself. 

[Function] 



236 COMMON USP REFERENCE MANUAL 

hash-tabl e-count hash-table [Fullction] 
This returns the number of entries in the hash-table. When a hash table is first created or has been 

cleared, the number of entries is zero. 

16.2. Primitive Hash Function 

sxhash object [Function] 
sxhash computes a hash code for an object, and returns the haSh code as a non-negative t'ixnum. 

Apropertyofs-xhash is that (equal x y) implies (= (sxhash x) (sxhash y». 

The manner in which the hash code is computed is implementation-dependent, but is independent 

of the particular "incarnation" or "core image". Hash values may be written out to files, for 

example, and read in again into an instance of the same impiementation. 



Chapter 17 

Arrays 

An array is an object with components arranged according to a rectilinear coordinate system. Arrays in 
COMMON LISP may have any number of dimensions, including zero. (A zero-dimensional array has exactly 

one element) Every COMMON LISP implementation must support arrays with up to at least 7 dimensions. 

Each dimension is a non-negative integer; if any dimension of an array is zero, the array has no elements. 

An array may be a general array, meaning each element may be any LISP object, or it may be a specialized 
array, meaning that each element must be of a given restricted type. 

One-dimensional arrays are called vectors. General vectors may contain any LISP object. Vectors whose 

elements are restricted to type s t r i n 9 - c h a r are called strings. Vectors whose elements are restricted to 

type bit are called bit-vectors. 

17.1. Array Creation 

make-array dimensions &key : e·1 ement-type : in i t i a 1-e1 ement [Function] 
:initia1-contents :adjustab1e :fi11-pointer 
:disp1aced-to :disp1aced-index-offset 

This is the primitive function for making arrays. The dimensions argument should be a list of 

non-negative integers that are to be the dimensions of the array; the length of the list will be the 

dimensionality of the array. Each dimension must be smaller than array-dimens ion-1 imit 

(page 240), and the product of all 
array-tota 1- s i ze-1 1mi t (page 240). 

the dimensions must be smaller than 
~ 

Note that if dimensions is nil then a zer~r 

dimensional array is created. For convenience when making a one-dimensional array, the singl¢ 

dimension Inay be provided as an integer rather than a list of one integer. 

An implementation of COMMON LISP may impose a limit on the rank of an array, but this limit may 

not be smaller than 7. Therefore, any COMMON LISP p~ogram may assume the use of arrays of rank 

. 7 or less. The implementation-dependent limit on array rank is reflected in a r ray - ran k -1 i mit 

(page 240). 

The keyword arguments for make-array are as follows: 

:e1ement-type 

- 237-



238 COMMON LISP REFERENCE MANUAL 

This argument should be the name of the type of the clements of the array; an 
array is constructed of the most specialized ·type that can nevertheless 
accommodate elements of the given type. The type t specifies a general array, 
one whose clements may be any LISP object; this is the default type. 

:initial-element 
This argument may be used to initialize each element of the array. The value 
must be of the type specified by the : e 1 erne n t - ty p e argument. If the 
: in i t i a 1 -e 1 erne n t option is omitted, the initial values of the array elements 
are undeflned (unless the : in i t i a 1-con tents or : d i sp 1 aced- to option 
is used). The : i nit i a 1 - e 1 erne n t option may not be used Wiu.1 the 
: i nit i a 1 -.c 0 n ten t s or : dis P 1 ace d - to option. 

:initia1-contents 
This argument may be used to initialize the contents of the array. The value is a 
nested structure of sequences. If the array is zero-dimensional, then the value 
specifies the single element Otherwise, the value must be a sequence whose 
length is equal to the first dimension; each element must be a nested structure 

·.iI for an array whose dimensions are the remaining dimensions, and so on. 

For example: 
(make-array '(4 2 3) :initial-contents 

'«(a b c) (1 2 3» 
«d e f) (3 1 2» 
«9 h i) (2 3 1» 
«j k 1) (0 0 0»» 

The numbers of levels in the structure must equal the rank of the array. Each 
leaf of the nested structure must be of the type specified by the : type option. 
If the : initia1·-contents option is omitted, the initial values of the array 
elements are undefined (unless the : i nit i a 1 - e 1 erne n t or : dis P 1 ace d - to 
option is used). The : i nit i a 1 - con ten t s option may not be used with the 
: in it i a 1 - e 1 erne n t or : dis place d - to option. 

: ad jus t ab 1 e This argument, if specified and not nil, indicates that it must be possible to 
alter the array's size dynamically after it is created. This argument defaults· to 
niL 

:fil1-pointer 

:disp1aced-to 

This argument specifies that the array should have a fill pointer. If this option is 
specified and not nil, the array must be one-dimensional. The value is used to 
initialize the fill pointer for the array. If the value t is specified, the length of the 
array is used; otherwise the value must be an integer between 0 (inclusive) and 
the length of the array (inclusive). This argument defaults to nil. 

This argument, if specified and not nil, specifies that the array will be a 
displaced array. The argument must then be an array; make-array will create 
an indirect or shared array that shares its contents with the specified array. In this 

. case the :displ aced-index-offset option may be useful. It is an error if 
the array specif.ied as the : dis P 1 ace d - to argument does not have the same 
:e1ement-type as the array being created. The ·:disp1aced-to option 
may not be used with the : initial-element or : initia1-contents 
option. This argument-defaults to nil. 



CHAPTER 17: ARRAYS 239 

:displaced-index-offset 
This argument may be. used only in conjunction with the dis P 1 ace d - to 
option. Itmust be a non-negative- integer (it defaults to zero); it is made to be 

. the index-offset 'Of the created shared array. 

When an array A is given as the: dis P 1 aced-to argument to make-array 
when creating array B, then array B is said to be displaced to array A. Now the 
total number of elements in an array, called the tolal size of the array, is 
calculated as the product of all the dimensions (see array-total-size 
(page 241)). It is required that the total size of A be no smaller than the sum of 
the total size of B plus the offset n specified by the 
: d i sp 1 aced- index -off set argument. The effect of displacing is that array 
B does not have any elements of its own, but instead maps accesses to itself into. 
accesses to array A. The mapping treats both arrays as if they were one
dimensional by taking the elements in row-major order, and then maps an access 
to element k of array B to an access to clement k+ n of array A. 

If make-array is called with the : adj us tab 1 e, : fill-poi nter, and : d i sp 1 aced-to 

arguments each either unspecified or nil, then the resulting array is guaranteed to be a simple 

array. (See section 2.5.) 

Here are some examples of the use of make-array: 

;; Create a one-dimensional array of five elements. 
(make-array 5) 

;; Create a two-dimensional array, 3 by 4, with four-bit elements. 
(make-array '(3 4) :element-type '(mod 16» 

;; Create an array of single-floats. 
(make-array 5 :element-type 'Single-float» 

, , Making a shared array. 
(setq a (make-array '(4 3») 
(setq b (make-array 8 :displaced-to a 

:displaced-index-offset 2» 
Now it is the case that: 

(aref b 0) <=>. ( aref a 0 2) 
(aref' b. 1) <=> (aref a 1 0) 
(aref b 2)- <=> (aref a 1 1) 
(aref b 3) <=> (aref a 1 2) 
(aref b 4) <=> ( aref a 2 0) 
(aref b 5) <=> (aref a 2 1) 
(aref b 6) <=> ( aref a 2 2) 
(aref b 7) <=> (aref a 3 0)" 

The last example depends on the fact that arrays are, in effect, stored in row-major order for 

purposes of sharing. Put another way, the indices for the elements _ of an array are ordered 

lexicographically. 
Compatibility note: Both Lisp Machine LIsp, as described in reference [20]. and FORTRAN [I, 2] store arrays in 
column-major order. 



240 COMMON LISP REFERENCE MANUAL 

array-rank-1imit [C onstallt] 
The value of a r r ay- ran k -1 i m ~ t is a positive integer that is the upper exclusive bound on the 

rank of an array. This bound depends on the implementation, but will not be smaller than 8; 

therefore every COMMON LISP implementation supports arrays whose rank is betwen 0 and 7 

(inclusive). (Implementors are enouraged to make this limit as large as practicable without 

sacrificing perfonnance.) 

array-dimens ion-1 imit [Constant] 
The value of a r ray - dime n s ion -1 i mit is a positive integer that is the upper exclusive uound 

on each individual dimension of an array. This bound depends on the implementation, but will not 

be smaller than 1024. (Implementors are enouraged to make this limit as large as practicable 

without sacrificing perfonnance.) 

array-tota1-size-1imit [Constant] 
The value of array-tota1-s i ze-1 imi t is a positive integer that is the upper exclusive bound 

on the total number of elements in an array. This bound depends on the implementation, but will 

not be smaller than 1024. (Implementors are enouraged to make this limit as large as practicable 

without sacrificing perfonnance.) 

The actual limit on array size imposed by the implementation may vary according the 

: e 1 emen t - type of the array; in this case the value of ar ray- iota 1 - size -1 i mi t will be the 

smallest of these individual limits. 

vector &rest objects [Function] 
The function vector .is a convenient means for creating a simple general vector with specified 

initial contents. It is analogous to the function 1 ; st. 

(vector a1 az ... an) 
<=> (make-array (list n) :e1ement-type t 

:initial-contents (list at az ... an» 

17.2. Array Access 

aref array &rest subscripts [Function] 
This accesses and returns the element of array specified by the subscripts. The number of subscripts 

must equal the rank of the array, and each· subscript must be a non-negative integer less than the . 

corresponding array dimension. 

are f is unusual among the functions that operate on arrays in that it co~pletely ignores fill 
. pointers. are f can access without error any array element, whether active or not The generic 

sequence function e 1 t (page 203), however, observes the fill pointer; accessing an element beyond 

the fill pointer with e 1 t is an error. 

set f (page 78) may be used with are f to destructively replace an array clement with a new value. 

--



------------------------------------------- -- ~--~--~-

CHAPTER 17: ARRAYS 241 

Under some circumstances it is desirable to write code that will extract an element from an array a 

given a list z of the indices, in such a way that the code works regardless of the rank of the array. 

This is easily using a p ply (page 89): 
(apply #'aref a z) 

(The length of the list must of course equal the rank of the array.) This construction may be used 

with set f to alter the element so selected to some new value w: 
(setf (apply #'aref a z) w) 

17.3. Array Information 

array-el ement-type array [Function] 
array-el ement-type returns a type specifier for the set of objects that can be stored in the 

array. This set may be larger than the set requested when the array was created; for example, the 

result of 
(array-element-type (make-array 5 :element-type '(mod 5») 

could be (mod 5), (mod 8), fixnum, t,oranyothertypeofwhich (mod 5) isasubtype. See 

subtypep (page 60). 

array-rank array [Function] 
Returns the number of dimensions (axes) of array. This will be a non-negative integer. See 

array-.rank-l imi t (page 240). 
Compatibility note: In Lisp Machine LISP this is called array-#-d ims. This name causes problems in 
MAcLIsp because of the # character. The problem is better avoided. 

array-dimens ion array axis-number [Function] 
The length of dimension number axis· number of the array is returned. array may be any kind of 

array, and axis-number should be a non-negative integer less than the rank of array. If the array is a 
vector with a fill pointer, ar ray - d ; me n s ion returns the total size of the vector, including inactive 

elements, not the size indicated by the fill pointer. (The function 1 ength (page 204) will return 

the size indicated by the fill pointer.) 
Compatibility note: This is similar to the Lisp Machine LIsp function array-dimension-n, but takes its 
arguments in the other order, and is zero-origin for consistency instead of on~origin. In Lisp Machine LIsP 
( a r r ay - dime n s ion - nO) returns the length of the array leader. 

array-dimensions array [Function] 
a r r ay - dime n s ion s returns a list whose elements are the dimensions of a"ay. 

array-total-size a"ay [Function] 
a r r ay - tot a 1 - s i z e returns the total number of elements in the a"ay, calculated as the product 

of all the dimensions. 

(array-total-size x) 
<=> (apply #'. (array-dimensions x» 
<=> (reduce #t. (array-dimensions x» 



242 COMMON USP REFERENCE MANUAL 

Note that the total size of a zero-dimensional array is 1. The total size of a one-dimensional array is 

calculated without regard for any fill pointer. 

array-in-bounds-p array &rest subscripts [Function] 
This predicate checks whether the subscripts are all legal subscripts for array, and is true if they are; 

otherwise it is false. The ~ubscripls must be integers. The number of subscripts supplied must equal 
the rank of the array. Like aref, array- i n-bounds-p ignores fill pointers. 

array-row-major- index array &rest subscripts [Function] 
This function takes an array and valid subscripts for the array, and returns a single, non-negative 

integer less than the total size of the array that identifies the accessed element in the row-major 

ordering of the elemen~. The number of subscripts supplied must equal the rank of the array., 
Each subscript must be a non-negative integer less than the corresponding array dimension. Like 

aref, array-row-major- index ignores fill pointers. 

A possible definition of a r ray - row -ma j 0 r - i n d ex, with no error-checking: 
(defun array-row-major-index (a &rest subscripts) 

(apply #'+ (maplist #'(lambda (x y) 
. (* (car x) (apply #'* (cdr y»» 

subscripts 
(array-dimensions ~»}) 

For a one-dimensional array, the result of array-row-major- index always equals the supplied 

subscript 

adjus tab 1 e-array-p array [Function] 
This predicate is true if the argument (which ~ust be an array) is adjustable, and otherwise is false. 

17.4. Access Function for Simple Vectors 

svref simple-vector index [Function] 
The first argument must be a'simple general vector, that is, an object of type Simple-vector. 

The element of the simple-vector specified by the integer index is returned. The. index must be 

non-negative and less than the length of the vector. 

setf (page 78) may be used with svref to destructively replace a simple-vector element with a 
new value. 

svref is identical to aref (page 240) except that it requires its first argument to be a simple 

. vector. In some implementations of COMMON LISP s v ref may be· faster than are f in situations 
~ where it is applicable. See also schar (page 247) and sb i t (page 243). . 



---

CHAPTER 17: ARRAYS 243 

li.S. Functions on Arrays of Bits' _ 

bit bit-array &res t subscripts [Function1 
sbit simple-bit-array &rest subscripts [Function] 

bit-and 

bit-ior 
bit-xo," 

bit-eqv 

bit is exactly like are f (page 240) but requires an array of bits, that is, one of type (a r r ay 

bit). The result will always be 0 or 1. 

s bit is like bit but additionally requires that the first argument be a simple array (see section 2;5). 

Note that bit and sb i t, unlike char (page 247) and schar (page 247), allow the first argument 

to be an array of any rank. 

set f (page 78) may be· used with bit. or s b ; t to destructively replace a bit-array element with a 

new value. 

bit and s bit are identical to are f (page 240) except for the more specific type requirements on 

the first argument. In some implementations of COMMON LISP bi t may be faster than aref in 

situations where it is applicable, and s bit may similarly be faster than bit. 

bit-array] bit-array-2 &optiona1 result-bit-array 
bit-array] bit-array-2 &optiona1 result-bit-array 
bit-array] bit-array-2 &opt iona1 result-bit-array 
bit-array] bit-array-2 &optiona1 result-bit-array 

bit-nand bit-array] bit-array2 &optiona1 resul t-bit-array 
bit-nor bit-arrayl bit-array2 &opt i ona lresult-bit-array 
bit - andc 1 bit-array] bit-array2 &opt i ona 1 result-bit-array 
bit-andc2 bit-array] bit-array2 &optiona1 result-bit-array 
bit-orc1 bit-array] bit-array2 &optiona1 result-bit-array 
bit-orc2 bit-array] bit-array2 &optiona1 result-bit-array 

[Function] 
[Function] 
[Function] 
[Function] 
[.Function] 
[Function] 
[Function] 
[Function] 
[Function] 
[Function] 

These functions perform bit-wise logical operations on bit-arrays. All of the arguments to any of 

these functions must be bit-arrays of the same rank and dimensions. The result is a bit-array of 

matching rank and dimensions, such that any given bit of the result is produced by operating on 

corresponding bits from each of the arguments. 

If the third argument is nil or omitted, a new array is created to contain the result If the tlJrd 
"" argument is a bit-array, the result is destructively placed into that array. If the third argument ~l t, 

then the first argument is also used ~ the third argument; that is, the result is placed back in the 

first array. 

The following table indicates what the result bit is for each operation as a function of the two 

corresponding argument bits. 



244 I COMMON USP REFERENCE MANUAL 

argument] 0 0 1 1 
argument2 0 1 0 1 O{l,eration name 

bit-and 0 0 0 1 and 
bit-ior 0 1 1 1 inclusive or 
bit-xor 0 1 1 0 exclusive or f, 

bit-eqv 1 0 0 1 equivalence (exclusive nor) 
bit-nand 1 1 1 0 not-and 
bit-nor 1 0 0 0 not-or 
bit-andc1 0 1 0 0 and complement of argumentl with argument2 
bit-andc2 0 0 1 0 and argumentl with complement of argument2 
bit-orc1 1 1 0 1 or complement of argumentl with argument2 
bit-orc2 1 0 1 1 or argument] with complement of argument2 

For example: 
(bit-and #*1100 #*1010) => #*1000 
(bit-xor #*1100 #*1010) => #*0110 
(bit-andc1 #*1100 #*1010) => #*0100 

See , 0 9 and (page 180) and related functions. 

bit - not bit-array &op tiona' result-bit-a"ay [Function] 
The first argument must be an array of bits. A bit-array of matching rank and dimensions is 

returned that contains a copy of the argument with all the bits inverted. See' ognot (page 183). 

If t.'1e second argument is nil or omitted, a new array is created to contain the result If the second 

argument is a bit-array, the result is destructively placed into that array. If the second argument is 

t, then the first argument is also used as the second argument; that is, the result is placed back in 

the first array. 

17.6. Fill Pointers 

Several functions for manipulating a fill pointer are provided in COMMON LISP to make it easy to 

incrementally fill in the contents of a vector, and more generally. to allow efficient varying of the length of a 

vector. For example, a string with a fill pointer has most of the characteristics of a PL/I varying. string. 

The fill pointer is a non-negative integer no larger than the total number of elen;tents in the vector (as 

returned by array-dimension (page 241»; it is the number of "active" or "filled-in" elements in the 

vector. The fill pointer constitutes the "active length" of the vector; all vector elements whose index is less 

than the fill pointer are active, and the others are inactive. Nearly all functions that operate on the contents of 

a vector will operate only on the active elements. An important exception is aref (page 240), which can be 

used to access anY' vector element whether in the active region of the vector or not. It is important to note that 

vector elements not in the active region are still considered part of the vector. 
Implementation note: An implication of this rule is that vector elements outside the actiye region may not be 
garbage-collected. 

Only vectors (one-dimensional arrays) may have fill pointers; multi-dimensional arrays may not (Note, 



CHAPTER 17: ARRAYS 245 

I 
however~ that one can create a multi-dimensional array that is displaced to a vector that has a fill pointer.) 

array-has-fill-pointer-p array [Function] 
The argument must be an array. array-has -f ill-po i nter-p returns t if the array has a fill 

pointer, and otherwise returns niL Note that a r ray - h as - f ill - poi n te r - p always returns 

nil if the array is npt one-dimensional. 

fi 1 1-pointer vector [Function] 
The fill pointer of vector is returned. It is an error if the vector does not have a fill pointer. 

set f (page 78) may be used with f i 11 - poi n t e r to change the fill pointer of a vector. The 'fill. 
pointer of a vector must always be an integer between zero and the size of the vector (inclusive). 

vector-push new-element vector [Function] 
vector must be a one-dimensional array that has a fill pointer, and new-element may be any object. 

vector-push attempts to store new-element in the element of the vector designated by the fill 

pointer, and increase the fill pointer by one. If the fill pointer does not designate an element of the 

vector (specifically, when it gets too big), it is unaffected and ve c tor - pus h returns nil. 
Otherwise, the store and increment take place and v e c tor - pus h returns the fanner value of the 

fill pointer (one less than the one it leaves in the vector); .thus the value of vector-push is the 

index of the new element pushed. 

vector-push-extend new-element vector &optional extension [Function] 
vee tor - pus h - ext end is just like vee tor - pus h except that if the fill pointer gets too large, the 

vector is extended (using adjust-array (page 245» so that it can contain more elements. If, 

however, the vector is not adjustable, then ve c tor - pus h - ext end simply "fails" the way 

ve c tor - pus h does, and returns nil. The optional argument extension, which must be. a positive 

integer, is the minimum number of elements to be added to the vector if it must be extended; it 

defaults to a "reasonable" implementation-dependent value. 

vector-pop vector [Function] 
vector must be a one-dimensional array that has· a fill pointer. If the' fill pointer is zero, 

vector-pop signals an error. Otherwise the fill pointer is decreased by one, and the veclQr 
t 

element designated by the new value of the fill pointer is returned. . 

17.7. Changing the Dimensions or an Array 

[Function] adjust-array array new-dimensions &key :element-type :initial-element 
:initial-contents :fill-pointer 
:displaced-to :displaced-index-offset 

ad jus t - a r r ay takes an array and a number of other ·arguments as for· rna k e - a r r ay (page 237). 
The number of dimensions specified by new-dimensions must equal the rank of array. 



246 COMMON LISP REFERENCE MANUAL 

adjust-array returns an array of the same type and rank as array, with the specified 

new-dimensions. In effect, the array argument itself is modified to confonn to the new 

specifications, but this may be achieved either by modifying the array or by creating a new array 

and modifying the a"ay argument to be displacedto the new array. 

In the simplest case, one specifies only the new-dimensions and possibly an : in i t i a 1 - e 1 erne n t 

argument. Those elements of array that are still in bounds appear in the new array. The elements 

of the new array that are not in the bounds of a"ay are initialized to the : in i t i a 1 - e 1 erne n t; if 

this argument is not provided,then the initial contents of any new elements are undefined. 

If : e 1 erne n t - ty p e is specified, then array must be such that it could have been originally created 

with that type; otherwise an error is signalled. Specifying : e 1 erne n t - t Y P e to ad jus t - a r ray 

serves only to require such an error check. 

If : in i t i a 1- con ten ts or : d i sp 1 aced - to is specified, then it is treated as for make -ar ray. 

In this case none of the Oliginal contents of array appears in the new array. 

If : fill - poi n t e r is specified, the fill pointer of the a"ay is reset as specified. An error is 

signalled if a"ay had no fill pointer already. 

adjust-array may, depending on the implementation and the arguments, simply alter the given 

array or create and return a new one. In the latter case the given array will be altered so as to be 

displaced to the new array and have the given new dimensions. 

It is not permitted to call ad jus t - a r rayon an array that was not created with the 

:adjustab1e option. The pred~cate adjustable-array-p (page 242) may be used to 

detennine whether or not an array is adjustable. 

If a dj us t - a r r ay is applied to an array that is displaced to another array x, then afterwards 

neither array nor the returned result is. displaced to x unless such displacement is explicitly re

specified in the call to adjust-array. 

For example, suppose that the 4-by-4 array m looks like this: 
#2A( ( alpha beta gamma delta ) 

( 'epsilon zeta eta theta ) 
( iota kappa 1 ambda mu ) 
( nu xi omicron pi ) ) 

Then the result of 
(adjust-array m t (3 5) :initial-element t baz) 

is a 3-by-S array with contents 
#2A( ( alpha beta gamma delta baz ) 

(epsilon zeta eta theta baz ) 
( iota kappa 1 ambda mu baz ) ) 

Note that if array a is created displaced to array, b and subsequently array b is given to 

ad jus t - a r r ay, ~ay a will still be displaced to array b; the effects of this displacement and the 

rule of row-major storage order must be taken into account 



Chapter 18 

Strings 

A string is a specialized kind of vector (one-dimensional array) whose elements are characters. Specifically, 

the type str i ng is identical to the type (vector s tr i ng-ch ar), which in tum is the same as (arr ay 
string-char (*)) 

Any string-specific function defined in this chapter whose name begins with the prefix "s t r i n g" will 
accept a symbol instead of a string as an argument provided that the operation never modifies that argument; 

the print name of the symbol is used. In this respect the string-specific sequence operations are not simply 

specializations of generic versions; the generic sequence operations described in chapter 14 never accept 

symbols as sequences. This slight inelegance is permitted in COMMON LISP in the name of pragmatic utility. 

One may get the effect of having a generic sequence function operate on either symbols or strings by applying 

the coercion function s tr in 9 (page 251) to any "argument whose data type is in doubt 

Also, there is a slight non-parallelism in the names of string functions. Where the suffixes equa 1 p and 

e q 1 would be more appropriate, for historical compatibility the suffixes e qua 1 and = are used instead to 
indicate case-insensitive and case-sensitive character comparison, respectively. 

Any LISP object may be tested for being a string by the predicate s tr i ngp (page 62). 

Note that strings, like all vectors, may have tilt" pointers (though such strings are not necessarily simple). 
String operations generally operate obly on the active portion of the string (below the fill pointer). See 
f i 11 - poi n t e r (page 245) and related functions. 

18.1. String Access 

char string index [Function] 
schar Simple-string index [Function] 

The given index must be a non-negative integer less than the length of string, which must be a 

string. The character at position index of the string is returned as a character object. (This character 

will necessarily satisfy the predicate string-char-p (page 192).) As with all sequences in 
COMMON LISP, indexing is zero-origin. 

For example: 

- 247-



248 COMMON LISP REFERENCE MANUAL 

(char "Floob-Boober-Bab-Boober-Bubs" 0) => #\F 
(char "Floob-Boober·Bab-Boober-Bubs" 1) => #\1 

See aref (page 240) and e 1 t (page 203). In effect, 
(char s j) <=> (aref (the string s) j) 

set f (page 78) may be used with c h a r to destructively replace a character within a string. 

For char, the string may be any string; for schar, it must be a simple string. In some 

implementations of COMMON LISP the function schar may be faster than char when it is 
applicable. 

18.2. String Comparison 

The naming conventions for these functions and· for their keyword arguments generally follow the 
conventions for the generic sequence' functions. See chapter 14 . 

. ~ 

string= string! string2 &key :start1 :end1 :start2 :end2 [Function] 
s t r i n 9 = compares two strings, and is true if they are the same (corresponding characters are 
identical) but is false if they are not. The function e qua 1 (page 66) calls s t r in 9 = if applied to 
two strings. 

The keyword arguments : s tar t 1 and : s tar t 2 are the pl~ces in the strings to start the 
comparison. The arguments: end 1 and: end2 are the places in the strings to stop comparing; 

comparison stops just before the position specified by a limit. The start arguments default to zero 

(beginning of string), and the end arguments (if either omitted or nil) default to the lengths of the 
strings (end of string), so that by default the entirety of each string is examined. These arguments 
are provided so that substrings can be compared efficiently. 

s tr i n9= is necessarily false if the (sub)strings being compared are of unequal length; that is, if. 
(not (= (- end1 start1) (- end2 start2») 

is true then s t r ; n 9 = is false. 

For example: 

(string= "foo" "foolt) istrue 
(string= "foolt "Faa") isfalse 
(s tr i ng= "faa" "bar") is false 
(string= "together" "frog" :start1 1 :endl 3 :start2 2) 

is true 

string'-equal string1 string2 &key :startl :endl :start2 :end2 [Function] 

s t r i n 9 - e qua 1 is just like s t r ; n 9 = except that differences in case are ignored; two characters 
; are considered to be the same if c h a r - e qua 1 (page 196) is true of them. 

For example: 

( s t r ; n g - e q l' a 1 " f 00 " " F a 0") is true 



CHAPTER 18: STRINGS 

string< string! string2 &key :start1 :end1 :start2 :end2 

string> string! string2 &key :start1 :endl :start2 :end2 

string<= string! string2 &key :startl :end1 :start2 :end2 

string>= string! string2 &key :start1 :end1 :start2 :end2 

string/= sIring! string2 &key :start1 :end1 :start2 :end2 

249 

[Function] 
[Function] 
[Function] 
[Function] 
[Function] 

The two string argumentc; are compared lexicographically, and the result is nil unless string! is 

(less than, greater than, less than or equal to, greater than or equal to, not equal to) string2, 
respectively. If the condition is satistied, however, then the result is the index within the strings of 

the first character position at which the strings fail to match; put another way, the result is the 

length of the longest common prefix of the strings. 

A string a is less than a string b if in the first position in which they differ the character of a is less 

than the corresponding character of b according to the function ch ar< (page 194), or if string a is 
a proper prefix of string b (of shorter length and matching in all the characters of a). 

The keyword arguments : S tar t 1 and : s tar t 2 are the places in the strings to start the 

comparison. The keyword arguments: end1 and: end2 places in the strings to stop comparing; 

comparison stops just before the position specified by a limit The "start" arguments default to zero 

(beginning of string), and the "end" arguments (if either omitted or nil) default to the lengths of 

the strings (end of string), so that by default the entirety of each string is examined. These 

arguments are provided so that substrings can be compared efficiently. The index returned in case 

ofa mismatch is an index into string!. 

string-lessp string! string2 &key .:startl :end1 :start2 :end2 

string-greaterp string! string2 &key :start1 :end1 :start2 :end2 

string-not-greaterp stringl string2 &key :start1 :end1 :start2 :end2 

string-not-lessp string! string2 &key :start1 :end1 :start2 :end2 

stri ng-not-equal stringl string2 &key : start1 : end1 : start2 : end2 

[Function] 
[Function] 
[Function] 
[Function] 
[Function] 

These are exactly like str; ng<, str i ng>, str i ng<=, str i ng>=, and s tr i ng/ =, respectively, 

except that distinctions between upper-case and lower-case letters are ignored. It is as if 

c h a r -1 e s ,s p (page 196) were used instead of c h a r < (page 194) for comparing characters. 

18.3. String Construction and Manipulation 

make-string size &key : initial-element [Funct~on] 

This returns a string (in fact a simple string) of length size, each of whose characters has been 

initialized to the : in i t i a 1-e 1 ement argument. If an : in it i a 1-e 1 ement argument is not 

specified, then the string will be initialized in an implementation-dependent way. 
Implementation note: It may be convenient to initialize the string to null characters, or to spaces, or to garbage 
("whatever was there''). 

A string is really just a one-dimensional array of "string characters" (that is, those characters that are 

members of type s t r i n 9 - c h a r ). More complex character arrays may be constructed using the 

function ma k e - a r r ay (page 237). ' 



250 COMMON USP REFERENCE MANUAL 

s t r in 9 - trim character-bag string [Function] 
s t r i ng-l eft - tr im character-bag string [Function] 
string-right-trim character-bag string [Function] 

s t r i n 9 - t rim returns a substring of string, with all characters in character-bag stripped off the 

beginning and end. The function s t r i n 9 -1 eft - t rim is similar, but strips characters off only 

the beginning; string-,right-trim strips off only the end. The argument character-bag may 

be any sequence containing characters. 

For example: 
(string-trim '(#\Space #\Tab #\New1ine) " garbanzo beans 

") => "garbanzo beans" 
(string-trim" (*)" " ( *three (silly) words* ) ") 

=> "three (silly) words" 
(string-left-trim" (*)" " ( *three (silly) words* ) ") 

=> "three (silly) words* ) " 
(string-right-trim " (*)" " ( *three (silly) words* ) ") 

=>" ( *three (silly) words" 

If no characters need to be trimmed from the string, then either the argument string itself or a copy 

of it may be returned, at the discretion of the implementation. 

string-upcase string &key :start :end 

string-downcase string &key :start :end 

[Function] 
[Function] 

s t r i ng- cap ita 1 i ze string &key : start :end [Function] 
s t r i n 9 - up cas e returns a string just like string with all lower-case alphabetic characters replaced 

by the corresponding upper-case characters. More precisely, each character of the result string is 
produced by applying the function char-upcase (page 197) to the corresponding character of 

string. 

s t r i n 9 - down cas e is similar, except that upper-case characters are converted to lower-case 

characters (using char-downcase (page 197». 

The keyword arguments : S tar t and : end delimit the portion of the string to be affected. The 

result is always of the same length as string" however. 

The argument is not destroyed. However, if no characters in the argument require conversion, the 

result may be either the argument or a copy of it, at the implementation's discretion .. 

For example: 
(string-upcase "Dr. Livingston, I presume?") 

=> "DR. LIVINGSTON, I PRESUME?" 
(string-d~wncase "Or. Livingston, I presume?") 

=> "dr. livingston, i presume?" 
(string-upcase "Dr. Livingston, I presume?fl :start 6 :end 10) 

=> "Dr. LiVINGston, I presume?" 

string-capital ize produces a copy of string such that every word (subsequence of case

modifiable characters or digits delimited by non-case-modifiable non-digits) has its first character, if 

case-modifiable, in upper-case and any other case-modifiable characters in lower-case. 

For example: 



CHAPTER 18: STRINGS 

(string~capitalize " hello ") => " Hello" 
(string-capitali·ze 

251 

"occlUDeD cASEmenTs FOreSTAll iNADVertent DEFenestraTION") 
=> "Occluded Casements Forestall Inadvertent Defenestration" 

(string-capitalize 'kludgy-hash-search) => "Kludgy-Hash-Search" 
( s t r i n 9 - cap ita 1 i z e " DON'T! ") = > " 0 0 n ' T ! " ; not " Don't! " 
(string-capitalize "pipe 13a, foo16c") => "Pipe 13a, Foo16c" 

nstring-upcase string &key :start :end 

nstring-downcase string &key :start :end 
[Function] 
[Function] 

nstring-capital ize string &key :start :end [Function] 

These functions are just like string-upcase, string-downcase, and 

s t r i n 9 - cap ita 1 i z e . (page 250), but destructively modify the argument string by altering case

modifiable characters as necessary. 

The keyword arguments: s tart and : end delimit the portion of the string to be affected. The 

argument string is returned as the result 

18.4. Type Conversions on Strings 

s t r i og x [Function] 
Most of the string functions effectively apply s t r i n 9 to such of their arguments ~s are supposed to 

be strings. If x is a string, it is returned. If x is a symbol, its print name is returned. If x is a string 

character (a character of type s t r in 9 - ch ar), then a string containing that one character is 
returned. In any other situation, an error is signalled. 

To convert a sequence of characters to a string, use co~rce (page 42). (Note that (coerce x 

, s t r i n g) will not succeed if x is a symbol. Conversely, S t rio 9 will not convert a list. or other 
sequence to be a string.) 

To get the string representation of a number or any other LISP object, use priol-to-striog 

(page 317), pr i oc-to- str i og (page 317), or format (page 318) . 

• 



252 COMMON LISP REFERENCE MANUAL 



Chapter 19 

Structures 

COMMON LISP provides a facility for creating named record structures with named components. In effect,

the user can define a new data type; every data structure of that type has components with specified names. 

Constructor, access, and assignment constructs are automatically defined when the data type is defined. 

This chapter is divided into two parts. The first part discusses the basics of the structure facility, which is 

very simple and allows the user to take advantage of the type-checking, modularity, and convenience of 

user-defined record data types. The second part (beginning with section 19.4) discusses a number of 

specialized features of the facility that have advanced applications. These features are completely optional, 

and you needn't even know they exist in order to take advantage of the basics. 

19.1. Introduction to Structures 

The structure facility is embodied in the de f s t rue t macro, which allows the user to create and use 

aggregate datatypes with named elements. These are like "structures" in PL/I, or "records" in PASCAL. 

As an example, assume you are writing a LISP program that deals with space ships in a two-dimensional 

plane. In your program, you need to represent a space ship by a LISP object of some kind. The interesting 

things about a space ship, as far as your program is concerned, are its position (represented as x and y 

coordinates), velocity (represented as components along the x and y axes), and mass. 

A ship might therefore be represented as a record structure with five components: x;'position, y-positionJ 

x-velocity, y-velocity, and mass. This structure could in tum be implemented as a LISP object in a number cf 
ways. It could be a list of five elements; the x-position could be the car, the y-position the cadr, and so o~ 
Equally well it could be a vector of five elements: the x-position could be element 0, the y-position element 1, 

and so on. The problem with either of these representations is that the components occupy places in the 

object that are quite arbitrary and hard to remember. Someone looking at (cadddr shipl) or 

( are f s hip 1 3) in a piece of code might find it difficult to determine that this is accessing the y-velocity 

component of s hip 1. Moreover, if the representation of a ship should have to be changed, it would be very 

difficult to find all the places in the code to be changed to match (not all occurrences of cad d d r are intended 

to extract the y-velocity from a ship). 

- 253-



254 COMMON LISP REFERENCE MANUAL 

Ideally components of record structures should have names. One would like to write something like 

( s hip -Y - vel 0 city s hip 1) instead of .( cad d drs hip 1 ). One would also like a more mnemonic way 
to create a ship than this: 

(list 0 0 0 0 0) 

Indeed, one would like s hip to be a new data type, just like other LISP data types, that one could test with 
ty pep. (page 60), for example. The de f s t r u c t facility provides all of this. 

defstruct itself is a macro that defines a structure. For the space ship example one might define the 
structure by saying: 

(defstruct ship 
x-position 
y-position 
x-velocity 
y-velocity 
mass) 

This declares that every s hip is an object with five named components. The evaluation of this fonn does 
several things: 

• It defines s hip ... x - po sit ion to be a function of one argument, a ship, that returns the 
x-position of the ship; s hip -Y - po sit ion and the other components are given similar function 
definitions. These functions are called the access junctions, as they are used to access elements of 
the structure. 

• The symbol s hip becomes the name of a data type, of which instances of ships are elements. 
This name becomes acceptableto typep (page 60), for example; (typep x 'sh i p) is true if 
x . is a ship, and false. if x is any object other than a ship. Moreover, all ships are instances of the 
type s t r u c t u r e, because s hip is a subtype of s t r u c t u r e. 

• A function named s hip - P of one argument is defined; it is a predicate that is true if its argument 
is a ship, and is false otherwise. 

• A function called make-sh i p is defined that, when invoked, will create a data structure with five 
components, suitable for use with the access functions. Thus execu~g 

(setq ship2 (make-ship» 

sets s hip 2 to a newly-created s hip object. One can specify the initial values of any desired 
component in the call to mak e - s hip by using keyword arguments in this way: 

(setq ship2 (make-ship :mass *default-ship-mass* 
:x-position 0 
:y-position 0)"') 

This constructs a new ship and initializes three of its components. This function is called the 
constructor junction,because it constructs a new structure. 

• The #S syntax can be used to read instances of s hip structures, and a printer function is provided 
for printing out ship structures. For example, the yalue of the variable sh i p2 shown above might 
be printed as 

#S(ship X~Position 0 y-position 0 x-velocity nil 
y-velocity nil mass 170000.0) 



CHAPTER 19: STRUCfURES 

• A function called copy - s hip of one argument is defined that, when given ash i p object, will 
create a new s hi P object that is a copy of the given one. This function is called the copier 
function . 

• One may use set f to alter the components of ash; p: 
(setf (ship-x-position ship2) 100) 

This alters the x-position of ship2 to be 100. This works because de f s t r u c t behaves as if it 
generates an appropriate defsetf (page 84) fonn for each access function. 

255 

This simple example illustrates the power of de f s t r u c t to provide abstract record structures in a 

convenient manner. de f s t r u c t has many other features as well for specialized purposes. 

19.2. How to Use Defstruct 

defs truct name-and-optiolls [doc-string] {slot-description} + 

Defines a record-structure data type. A general call to de f s t r u c t looks like this: 

(defstruct (name option-l option-2 ... ) 
doc-string 
slot-description-l 
slot-description-2 
... ) 

[J\facro] 

The name must be a symbol; it becomes the name of a new data type consisting of all instances of 

the structure. The function ty pep (page 60) will accept and use this name as appropriate. The 

name is returned as the value of-the defstruct fonn. 

Usually no options are needed at all. If no options are specified, then one may write simply name 
instead of (name) after the word defs truct. The syntax of options and the options provided are 
discussed in section 19.5 (page 257) .. 

If the optional documentation string doc-string is present, then it is attached to the name as a 

documentation string of type s t r u c t u r e; see doc ume n tat ion (page 362). 

Each slot-description-jis of the fonn 

(slot-name default-init 
slot-option-name-l slot-option-value-l 
slot-option-name-2 slot-opt ion-value-2 
... ) 

Each slot-name must be a symbol; an access function is defined for each slot If no options and no 
default- init are specified, then one may write simply slot-name instead of (slot-name) 'as the slot 

description. The default-init is a fonn that is evaluated each time a structure is to be constructed; 

the value is used as the initial value of the slot. If no default-in it is speeified, then the initial 

contents of the slot are undefined and implementation-dependent The available slot-options are 

described in' Section 19.4. 



256 COMMON LISP REFERENCE MANUAL 

Compatibility nole: Slot-options. are not currently provided in Lisp Machine LIsp, but this is an upward
compatible extension. 

Besides defining an access fhnction for each slot, de f s t r u c t arranges for set f to work properly 

on such access functions, defines a predicate named name-p, defines a constructor function named 

ma k e -name, and defines a copier function named copy - name. All names of automatically created 

functions are interned in ~hatever package is current at the time the de f s t r u c t form is processed 

(see *package* (page 149». Also, all such functions may be declared in 1 i ne at the discretion 

of the implementation to improve efficiency; if you do not want some function declared in 1 i ne, 

follow the de f s t r u c t form with a not i n 1 i n e declaration to override any automatic i n i i n e 

declaration. 

19.3. Using the Automatically Defined Constructor Function 

After you have defined a new structure with defs truct, you can create instances of this structure by 

using the constructor function. By default, de f s tr uc t defines this function automatically. For a structure 

named foo, the constructor function is normally named make-foo; you can specify a different name by 

giving it as the argument to the : constructor (page 258) option, or specify that you don't want a normal 

constructor function at all by using nil as the argument (in which case one or more "by-position" 

constructors should be requested; see section 19.6 (page 261». 

A call to a constructor function, in general, has the form 

( name-ofconstructor-junction 
slot-keyword-l form-l 
slot-keyword-2 form-2 
... ) 

All arguments are keyword arguments. Each slot-keyword should be a keyword whose name matches the 

name of a slot of the structure (defstruct determines the possible keywords simply by interning each 

slot-name in the keyword package). All the keywords and forms are evaluated. In short, it is just as if the 

constructor function took all itS arguments as &key parameters. For example, the example sh i p structure 

shown in section 19.1 has a constructor function that ~kes arguments roughly as if its definition. were 
(defun make-ship (&key x-position y-position 

x-velocity y-velocity mass) 
... ) 

If slot-keyword-) names a slot, then that element of the created structure will be initialized to the value of 

form-j. If no pair slot-keyword-) and form-} is present for a given slot, then the slot will be initialized by 

evaluating the default-init fonn specified for that slot in the call to de f s t rue t. (In other words, the 

initialization specified in the de f s t rue t defers to any specified in a call to the constructor function.) If the 

default initialization form is used, it is evaluated at construction time, but in the lexical- environment of the 

defstruct form in which it appeared. If the defstruct itself also did not specify any initialization, the 

element's initial value is undefinrd. You should always specify the initialization. either in the de f s t rue t or 

in the call to the constructor function, if you care about the initial value of the slot. 



CHAPTER 19: STRUCTURES 257 

Each initialization fonn specified for ao de f s t r u c t component, when used by the constructor function for 

an otherwise unspecified component, i~ re-evaluated on every call to the constructor function. It is as if the 

initialization forms were used as init forms for the keyword parameters of the constructor function. For 

example, if the form (ge n sym) were used as an initialization form, either in the constructor-function call or 

as the default initialization form in the de f s t r u c t form, then every call to the constructor function would 

call 9 ens ym once to generate a new symbol. 

This concludes the basic description of de f s t r u ct. The sections that follow describe more advanced 

features. 

19.4. Defstruct Slot-Options' 

Each slot-description in a de f s t r u c t form may specify one Of more slot-options. A slot-option consists of 

a pair of a keyword and a value (which is not a form to be evaluated, but the value itself). 

For example: 
(defstruct ship 

(x-position 0.0 :type short-float) 
(y-position 0.0 :type short~float) 
(x-velocity 0.0 :type short-float) 
(y-velocity 0.0 :type short-float) 
(mass *default-ship-mass* :type short-float :read-only t» 

This specifics that each slot will always contain a short-format floating-point number, and that the last slot 

may not be altered once a ship is constructed. 

The available slot-options are: 

: type The option : type type specifies that the contents of the slot will always be of the 
specified data type. This is entirely analogous to the declaration of a variable or function; 
indeed, it effectively declares the result type of the access function. An implementation 
mayor may not choose to check the type of the new object when initializing or assigning to 
a slot. Note that the argument form type is not evaluated; it must be a valid type specifier. 

: read-on 1 y The option : read-on 1 y x, where x is not nil, specifies that this slot may not be 
altered; it will always contain the value specified at construction time. set f (page 
78) will not accept the access function for this slot. If x is n ; 1, this slot-option has no 
effect Note that the argument form x is not evaluated. 

Note that it is impossible to specify a slot-optiono~nless a default value is specified first. 

19.5. Defstruct Options 
. . 

The preceding description of defstruct is all that the average user will need (or want) to know in order 

to use structures. The remainder of this chapter discusses more complex features of the de f s t rue t facility. 

This section explains each of the options that can be given to de f s t r u ct. A de f s t r u c t option may be 

either a keyword or a list of a keyword and arguments for that keyword. (Note that the syntax for 



258 COMMON LISP REFERENCE MANUAL 

de f s t r u c t options differs from the pair syntax used for slot-options.} 

:conc""'name 

:constructor 

:copier 

This provides for automatic prefixing of names of access functions. It is conventional to 
begin the names of all the access functions of a structure with a specific prefix, the name of 
the structure followed by a hyphen. This is the default behavior. 

The argument to the : conc-name option specifies an alternate prefix to be used. (If a 
hyphen is to be used as a separator, it must be specified as part of the prefix.) If nil is 
specified as an argument, then no prefix is used; then the names of the access functions are 
the same as the slot names, and it is up to the user to name the slots reasonably. 

Note that no matter what is specified for : con c - n arne, with a constructor function one 
uses slot keywords that match the slot names, with no prefix attached. On the other hand, 
one uses the access-function name when using set f. Here is an example: 

(defstruct door knob-color width material) 
(setq my-door (make-door :knob-co10r 'red :width 5.0» 
(door-width my-door) ==> 5.0 
(setf (door-width my-door) 43.7) 
(door-width my-door) => 43.7 

This option takes one argument, a symbol, which specifies the name of the constructor 
function. If the argument is not provided or if the option itself is not provided, the name 
of the constructor is produced by concatenating the string "make-" and the name of the 
structure, putting the name in whatever package is current at the time the defstruct 
fonn is processed (see *package* (page 149». If the argument is provided and is nil, 
no constructor function is defined. 

This option actually has a more general syntax that is explained in section 19.6 (page 261). 

This option takes one argument, a symbol, which spe~ifies the name of the constructor 
function. If the argument is not provided or if the option itself is not provided: the name 
of the constructor is produced by concatenating the string "c 0 p y -" and the name of the 
structure, putting the name in whatever package is current at the time the defstruct 
fonn is processed (see * p ac k age * (page 149). If the argument is provided and is nil, 
no copier function is defined. , 
The automatically defined copier function simply makes a new struc,ture and transfers all 
components verbatim from the argument into the newly created structure. No attempt is 
made to make copies of the components. Corresponding components of the old and new 
structures will therefore be e q 1. 

: predi cate This option takes one argument, which specifies the name of the type predicate. If the 
argument is not provided or if the option itselfis not provided, the name of the predicate is 
made by concatenating the name of the structure to the string "- p " , putting the name in 
whatever package is current at the time the defs truct form is processed (see 

1 *package* (page 149»). If the argument is provided and is nil, no predicate is defined. 
A predicate can be defined only if the structure is "named"; if the : type (page 
260) option is specified and the : named (page 261) option is not specified, then'the 
: pre die ate option must either be unspecified or have the value ni 1. 



CHAPTER 19: STRUCfURES 259 

:include This option is used for building a new stnlctufe definition as· an extension of an old 
structure definition. As an example, suppose you have a structure called per s on that 
looks like this: 

(defstruct person name age sex) 

Now suppose you want to make a new structure to represent an astronaut. Since astronauts 
are people too, you would like them to also have the attributes of name, age, and sex, and 
you would like LISP functions that operate on pe rs on stnlctures to operate just as well on 
astronaut structures. You can do this by defining astronaut with the : include 
option, as follows: 

(defstruct (astronaut (:include person) 
(:conc-name astro-» 

helmet-size 
(favorite-beverage 'tang» 

The : inc 1 u d e option causes the structure being defined to have the same slots as the 
included structure, in such a way that the access functions for the included structure will 
also work on the structure being defined. In this example, an astronaut will therefore 
have five slots: the three defined in person, and the two defined in astronaut itself. 
The access functions defined by the per son s'tructure can be applied to instances of the 
as t ron aut structure, and they will work correctly. Moreover, as t ron aut will have its 
own access functions for components defined by the person structure. The following 
examples illustrate how you can use as tronaut structures: 

(setq x (make-astronaut :name 'buzz 
:age 45. 
:sex t 
:helmet-size 17.5» 

(person-name x) => buzz 
(astro-name x) => buzz 
(astro-favorite-beverage x) => tang 

The difference between the access functions person-name and astro-name is that 
person-name may be correctly applied to any person, including an astronaut, while 
astro-name may be correctly applied only to an astronaut. (An implementation may 
or may not check for incorrect use of access functions.) 

At most one : inc 1 u d e option may be specified ina single de f s t r u c t form. The 
argument to the : inc 1 u d e option is requirecL and must be the name of some previousl~ 
defined structure. If the structure being defined has no : type option, then the included' 
structure must also have had no : type option specified for it If the structure being 
defined has a : type option, then the included structure must have been declared with a 
: type option specifying the same representation. type, but it is pennissible for either one 
to have the : name d option and the other not to have the : n arne d option. 

If no : type option is involved, then the structure name of the including structure 
definition becomes the name of a data type, of course, and therefore a valid type specifier 
recognizable by typep (page 60); moreover, it becomes a subtype of the included 
structure. In the above example, as t ron aut is a subtype of per son; hence 

(typep (make-astronaut) 'person) 



260 COMMON LISP REFERENCE MANUAL 

: is true, indicating that all operations on persons will also work on astronauts. 

The following is an advanced feature of the : i.nc 1 ude option. Sometimes, when one 
structure includes another, the default values or slot-options for the slots that came from 
the included structure are not what you want. The new structure can specify default values 
or slot-options for the included slots different from those the included structure specifies, 
by giving the : i nelude option as: 

( : i n e 1 u d e name slot-description-] slot-description-2 ..• ) 

Each slot-description-} must have a slot-name or slot-keyword that is the same as that of 
some slot in'the included structure. If slot-description~-j has no default-illit, then in tht! new 
structure the slot will have no initial value. Otherwise its initial value form will be replaced 
by the default-init in slot-description-}. A normally writable slot may be made read-only. If 
a slot is read-only in the included structure, then it must also be so in the including 
structure. If a type is specified for a slot, it must be the same as, or a subtype of, the type 
specified in the included structure. If it is a strict subtype~ the implementation mayor may 
not choose to error-check assignments. 

For example, if we had wanted to define as tronaut so that the default age for an 
astronaut is 45, then we could have said: 

(defstruet (astronaut (:inelude person (age 45») 
helmet-size 
(favorite-beverage 'tang» 

:print-function 

,:type 

This option may be used only if the : type (page 260) option is not specified. The 
argument to the : p r i n t - fun e t ~ 0 n option should be a function of three arguments, in a 
form acceptable to the funct ion (page 72) special form, to be used to print structures of 
this type. When a structure of this type is to be printed, the function.is called on three 
arguments: the structure to be printed, a stream to print to, and an integer indicating the 
current depth (to be compared against *print-level* (page 308». The printing 
function should observe the values of such printer-control variables as * p r i n t - e sea p e * 
(page 307) and *pri nt-pret ty* (page 307). 

If the :print-funetion option is not specified and the :type option also not 
specified, then a default printing function is provided for the structure that will print out 
all its slots using #S syntax (see section 22.1.4). 

The : type option explicitly specifies the representation to be used for the structure. It 
takes one argument, which must be one of the types enumerated below. 

Specifying this option has the. effect of forcing a specific representation, and of forcing the 
components to be stored, in the order specified in the de f s t rue t form, in corresponding 
successive elements of the specified representation. It also prevents the structure name 
from becoming a valid type specifier recognizable by typep (page 60). See section 
19.7 for details. 

Normally this option is not specified, in which case the structure is represented in an 
implementation-dependent manner. 



CHAPTER 19: STRUCfURES 261 

:named 

vector This produces the same result as specifying (v e c to r t ) . The 
structure is represented as a general vector, storing components as 
vector elements. The first component is vector element 1 if the structure 
is : named, and element 0 otherwise. 

(vector element-type) 
The structure is represented as a (possibly specialized) vector, storing 
components as vector elements. Every component must be of a type 
that can be stored in a vector of the type specified. The first component 
is vector element 1 if the structure is : name d, and clement 0 otherwise. 
The structure may be : name d only if the type symb 0 1 is a su!?type of 
the specified e1 ement-type. 

1 i s t The structure is represented as a list. The first component is the cadr if 
the structure is : named, and the carifit is : unnamed. 

The : n arne d option specifics that the structure i$ "named"; this option takes no argument. 
Ifno : type option is specified, then- the structure is always named, so this option is useful 
only in conjunction with the : type option. See section 19.7 for a further description of 
this option. 

:initial-offset 
This allows you to tell defs truct to skip over a certain number of·s10ts before it starts 
allocating the slots described in the body. This option requires an argument, a non
negative integer, which is the number of slots you want defstruct to skip. The 
: in i t i a 1 - 0 f f set option may be used only if the : ty p e option is also spec~fied. See 
section 19.7.3 for a further description of this option. 

19.6. By-position Constructor Functions 

If the :constructor (page 258) option is given as (:constructor name arglist), then instead of 

making a keyword dri ve~ constructor function, de f s t r u c t defines a "positional" constructor function, 

taking arguments whose meaning is determined by the argument's position rather than by a keyword.. The 

argUst is used to describe what the arguments to the constructor will be. In the simplest case something-like 

( : constructor make-foo (a b c)} defines make-fo·o to be a three-argument constructor function 

whose arguments are used to initialize the slots named a, b, and c. 

In addition, the keywords &opt ional, &rest, and &~ux are recognized in the argument list They work 

in the way you might expect, but there are a few fine points worthy of explanation. 

For example: 
(:constructor create-foo 

(a &optional b (c 'sea) &rest d .&aux e (f 'eff») 

This defines create-foo to be a constructor of one or more arguments. The first argument is used to 

initialize the a slot. The s~cond argument is used to initialize the b slot. If there isn't any second argument, 

then the default value given in the body of the def s truct (if given) is used instead. The third argument is 

used to initialize the c slot. If there isn't any third argument, then the symbol sea is used instead. Any 



262 COMMON LISP REFERENCE MANUAL 

arguments following the third argument are collected into a list 'and used to initialize the d slot. If there are 

three or fewer arguments, then nil is placed in the d slot. The e slot is not initialized; its initial value is 
undefined. Finally, the f slot is initialized to.contain the symbol e f f. 

The actions taken in the band e cases were carefully chosen to allow the user to specify all possible 

behaviors. Note that the &aux "v~ables" can be used to completely override the default initializations given 

in the body. 

With this definition, one can write 
(create-foo 1 2) 

instead of 
(make-foo :a 1 :b 2) 

and of course create-fooprovides ~efaulting different from that ofmake-foo. 

It is permissible to use the : con s t r u c to r option more than once, so that you can define several different 
constructor functions, each taking different parameters. 

Because a constructor· of this type operates ny Order of Arguments, it is sometimes known as a BOA 

constructor. 

19.7. Structures of Explicitly Specified Representational Type 

Sometimes it is in}portant for some reason to have explicit control over the representation of a structure. 
The: type (page 260) option allowsone to specify that a structure shall be implemented in a particular way, 

using a list or a specific kind of vector, and to specify the exact allocation of structure slots to components of 

the representation. A structure may also be "unnamed" or "named", according to whether the structure name 

is stored in (and thus recoverable from) the structure. 

19.7.1. Unnamed Structures 

Sometimes a particular data representati~n is imposed by external requirements, and yet it is desirable to 
document the data fonnat as a defstruct-style structure. For example, consider expressions built up from 

numbers, symbols, and binary operations such a~ + and *. An operation might be represented as it is in LIsp, 
as a list of the operator and the two operands. This fact can be expressed succinctly with defstruct in this 
manner: 

(defstruct (binop (:type list» 
(operator '7 :type symbol) 
operand-l 
operand-2) 

This will define a constructor function make-binop and three selector functions binop-operator, 
bin 0 p - 0 per and - 1, and bin 0 p - 0 per and - 2. (It will not, however, define a predicate bin 0 p - p, for 
reasons explained below.) 

The effect ofmake-b i nop is simply to construct a list of length three: 



CHAPTER 19: STRUCTURES 

(make-binop :operator '+ :operand-l 'x :operand-2 5) 
=> (+ x 5) 

(make-operand :operand-2 4 :operator '*) 
=> (* nil 4) 

263 

It is just like the function 1 i s t except that it takes keyword arguments and performs slot defaulting 

appropriate to the bin 0 p conceptual data type. Similarly, the selector functions bin 0 p - 0 per a tor, 

binop-operand-l, and binop-operand-2 are essentially equivalent to car, cadr, and caddr, 

respectively. (They might not be completely equivalent because, for example, an implementation would be 

justified in adding error-checking code to ensure that the argument to each selector function is a length-3 list) 

We speak of bin 0 p as being a "conceptual" data type because bin 0 p is not made a part of the COM~qN 
LISP type system. The predicate. ty pep (page 60) will not recognize bin 0 p as a type specifier, and 

type-of will return 1 ist when given a binop structure. Indeed, there is no way to distinguish a data 

structure constructed by make-b i nop from any other list that happens to have the correct structure. 

There is not even any way to recover the structure name bin 0 p from a structure created by rna k e - bin 0 p. 

This can be done, however, if the structure is "named". 

19.7.2. Named Structures 

A "named" stmcture has the property that given an instance of the structure one can recover the structure 

name. For structures defined with no : type option, the structure name actually becomes part of the 

COMMON LISP data-type system. The function type-of (page 43), when applied to such a stnlcture, will 

return the structure name as the type of the object; the predicate ty pep (page 60) will recognize the 

structure name as a valid type specifier. 

For structures defined with a : type option, type-of will return a type specifier such as 1 i st or 

(vector t), depending on the type specified to the : type option. The structure name does not become a 

valid type specifier. However, if the : named option is also specified, then the first component of the 

structure (as created by a defstruct constructor function) will always contain the structure name. This 

allows the structure name to be recovered from an instance of the structure, and allows a reasonable predicate 

for the conceptual type to be defined: the automatically defined "name- p" predicate for the structure 

operates by first checking that its argument is of the proper type (1; st, (vector t L or whatever), and 
then checking whether the first component contains the appropriate type name. 

Consider the bin 0 p example shown above, modified only to include the : name d option: 
(defstruct (binop (:type list) :named) 

(operator '1 :type symbol) 
operand-l 
operand-2) 

As before, this will define a constructor function rna k"e - bin 0 p and three sele«;tor functions 

bi nop-operator, bi nop-operand-l, and bi nop-operand-2. It will also define a predicate 

bi nop-p. 

The effect of ma k e - bin 0 p is now to construct a list of length four: 



264 COMMON LISP REFERENCE MANUAL 

(mak~-binop :operator '+ :o~erand-l 'X :operand-2 5) 
=> (binop + X 5) 

~make-operand :operand-2 4 :operator '*) 
=> (binop * nil 4) 

The structure has the same layout as before except that the structure name bin 0 p is included as the first list 

element. The selector functions binop-operator, binop-operand-l, and binop-operand-2 are 

essentially equivalent to cadr, caddr, and cadddr, respectively. The predicate binop-p is more or less 
equivalent to this definition: 

(defun binop-p (x) 
(and (consp x) (eq (car x) 'binop») 

The name b i nop is still not a valid type specifier recognizable to typep, but at least there is a way of 
distinguishing bin 0 p structures from other similarly defined structures. 

19.7.3. Other Aspects of Explicitly-Specified Structures 

The : in i t i a 1 - 0 ff set (page 261) option allows one to specify that slots be allocated beginning at a 
representational element other than the first. For example, the form 

(defstruct (binop (:type list) (:initial-offset 2» 
(operalor '? : type symbol) 
operand-l 
operand-2) 

would result in the following behavior for make-b i nop: 
(make-binop :operator '+ :operand-l 'x :operand-2 5) 

=> (n i 1 nil + x 5) 
(make-operand :operand-2 4 :operator '*) 

=> (n i 1 nil * nil 4) 

The selector functions binop-operator, binop-operand-l, and binop-operand-2 
essentially equivalent to caddr, cadddr, and car ofcddddr, respectively. Similarly, the fonn 

(defstruct (binop (:type list) :named (:initia1~offset 2» 
(operator '? :type symbol) 
operand~l 

operand-2) 

would result in the fol~owing behavior for make-b i nop: 
(make-binop :operator '+ :operan~-l 'x :operand-2 5) 

=> (nil niT binop + x 5) 
(make-operand :operand-2 4 :operator t*) 

=>(ni1 nil binop * nil 4) 

would be 

If the : i n'C 1 ude (page 259) is used with the : type option, then the effect is first to skip over as many 
representation elements as needed to represent the included structure, then to skip over any additional 

elements specified by the : i ni t i a 1 - 0 f f set option, and then to begin allocation of elements from that 
point. For example: 



CHAPTER 19: STRUCTURES 

(defstruct (binop (:type list) :named (:initial-offset. 2» 
(operator '? :type symbol) 
operand-1 
operand-2) 

(defstruct (annotated-binop (:type list) 
(:initial-offset 3) 
(:include binop» 

commutative associative identity) 

(make-annotated-binop :operator '. 
:operand-1 'x 
:operand-2 5 
:commutative t 
:associative t 
:identity 1) 

=> (nil nil binop * x 5 nil nil nil t t 1) 

265 

The first two nil elements stem from the : in i t i a 1 - 0 f f set of 2 in the definition of bin a p. The next 

four elements contain the structure name and three slots for b i nap. TIle next three nil elements stem from 

the : in i t i a l-offset of 3 in the definition of annotated-b i nop. The last three list elements contain 

the additional slots for an anna ta ted -b i nop. 



266 COMMON USP REFERENCE MANUAL 



Chapter 20 

The Evaluator 

20.1. Run-Time Evaluation of Forms 

eval form [Function] 
The form is evaluated in the current dynamic environment and a null lexical environment. 

Whatever results from the evaluation is returned from (he call to e val. 

Note that when you write a call to e val two levels of evaluation occur on the argument form you 

write. First the argument form is evaluated, as for arguments to any function, by the ustial 

argument evaluation mechanism (which involves an implicit use of eva 1). Then the argument is 

passed to the eva 1 function, where another evaluation occurs. 

For example: 

(eval (list 'cdr (car '«quote (a . b» c»» => b 

The argument form ( lis t 'c"d r (c a r '( ( quo t e (a . b» c ) ) ) is evaluated in the usual 

way to produce the argument (c d r ( quo t e (a . b ) ) ); this is then given to e val because 

eval is being called explicitly, and eval evaluates its argument (cdr (quote (a . b») to 

produce b. 

If all that is required for some application is to obtain the current dynamic value ofa given symbol, 

the function symbol-val ue (page 74) may be more efficient than eval. 

*evalhook* 

*applyhook* 

[Variable] 
[Variable] 

If the value of *eva 1 hook * is not n; 1, then eva 1 behaves in a specici1 way. The non-n; 1 value 

of *eva 1 hook * should be a function that takes two arguments, a form and an environment; this is 
called the eval hook function. When a form is to be evaluated (any form at all, e"ven a number or a 

symbol), whether implicitly or via an explicit call to e val, no attempt is made to evaluate the form. 

Instead, the hook function is invoked, and passed the form to be evaluated as its first argument 

The hook function is then responsible for evaluating the form; whatever is returned by the hook 

function is assumed to be the result of evaluating the form. 

The variable * app 1 yhook * 'is'similar to *eva 1 hook *, but is used when a function is about to be 

applied to arguments. If the value of *applyhook* is not nil, then eva1 behaves in a special 

way. The non-n i 1 value of * app 1 yhook * should be a function that takes three arguments, a 

- 267-



268 

-------------------~------------------------------------------

COMMON USP REFERENCE MANUAL 

function, a list of arguments, and an environment; this is called the apply hook jUnction. When a 

function is about to be applied to a list of arguments, no attempt is made to apply the function._ 
Instead. the hook function is invoked, and passed the function and the list of arguments as its first 

and second arguments. The hook function is then responsible for evaluating the form; whatever is 

returned by the hook function is assumed to be the result of evaluating the form. The apply hook 

function is used only f~r application of ordinary functions within e val. It is not used for 

applications via apply (page 89) or funcall (page 89), for applications by such functions as 

map (page 20S) or reduce (page 206), or for invocation of macro-expansion functions by either 

eval or macroexpand (page 123). 

The last argument passed to either kind of hook function contains information about the lexical 

environment in an implementation-dependent format. These arguments are suitable for the 

functions eva 1 hook (page 268), app 1 yhook (page 268), and macroexpand (page 123). 

When either kind of hook function is invoked, both *evalhook*and *applyhook* are 

rebound to the value nil around the invocation of the hook function. This is so that the hook 
function will not be invoked recursively on evaluations and applications that occur in the course of 

executing the code of the hook function. The functions eva 1 hook (page 268) and app 1 yhook 

(page 268) are useful for performing recursive evaluations and applications within the hook 

function. 

The hook feature is provided as an aid to debugging. The step (page 363) facility is implemented 

using this hook. 

If a non~local exit Causes a throw back to the top level of LISP, perhaps because an error could not 

be corrected, then *eva 1 hook * and *app 1 yh ook * are automatically reset to nil, as a safety 

feature. 

. . 
eval hook form evalhookfn applyhookfn &opt iona1 env [Function] 

app1yhook function args evalhookfn applyhookjn &optional env [Function] 

The functions e v alh 0 ok and a p ply h 0.01< are provided to make it easier to exploit the hook 

feature. 

In the case of eva1hook, thefonn is evaluated. In the case of app 1 yhook, thefimction is applied 

to the list of arguments args. In eiiliercase, tile variable*eva 1 hook * is bound to evalhookfn and 
lie ap ply hook * is bound to app/yhook/naround the operation, and furthermore the env argument 

are used as the lexical environment (it defaults to the null environment). The check for a hook 

function is bypassed for the evaluation of the form itself (forev a 1 h 0 0 k) or for the application of 

the jUnction to the args itself{for app lyhook), but not for subsidiary evaluations and applications. 

such as evaluations of sub forms. It is thisone~shot bypass that makes eva 1 ho~k and app 1 yhook 

so useful. 

Here is an example of a very simple tracing routine that uses just the eval hook feature: 



CHAPTER 20: THE EVALUATOR 

(defvar"*hooklevel* 0) 

(defun hook (x) " 
(let «*evalhook* teval-hook-function» 

(eval x») 

(defun eval-hook-function (form &rest env) 
(let «*hooklevel* (+ *hooklevel* 1») 

(format *trace-output* "-%-V@TForm: -S" 
(* *hooklevel* 2) form) 

(let «values (multiple-value-list 
(evalhook form 

,'eval-hook-function 
nil 
env»» 

(format *trace-output* "-%-V@TValue:-{-S -}" 
(* *hooklevel* 2) values) 

(values-list values»» 

Using these routines, one might see the following interaction: 
(hook t(cons (floor ·print-base* 2) tb» 

Form: (CONS (FLOOR *PRINT-BASE* 2) (QUOTE B» 
Form: (FLOOR *PRINT-BASE* 3) 

Form: *PRINT-BASE* 
Value: 10 
Form: 3 
Value: 3 

Value: 3 1 
Form: (QUOTE B) 
Value: B 

Value: (3 . B) 
(3 . B) 

269 

cons tan tp object [Function] 
If the predicate con s tan t p is true of an object, then that object, when considered as a fonn to be 

evaluated, always evaluates to the same thing; it is a constant. This inclu~es self-evaluating objects 

such as numbers, characters, strings, bit-vectors, and keywords, as well as all constant symbols 

declared by de f con s tan t (page 56), such as nil (page 60), t (page 60), and p i (page 171). 

In addition, a list -whose car is quo t e, such as (q uo te f 0 0 ), is considered to be a constant 

If constantp is false of an object, then that object, considered as a fonn, might or might nQt 

always evaluate to the same thing. 
.. 

20.2. The Top-Level Loop 

Normally one interacts with LISP through a "top level read-eva l-pr ; nt loop", so called because it is the 

highest level of control and consists of an endless loop that reads an expression, evaluates it, and prints the 

results. One has an effect on the state of the LISP system only by invoking actions that have side effects. 

The precise nature of the top-level loop for COMMON LISP is purposely not specified rigorously here, so that 



270 COMMON LISP REFERENCE MANUAL 

imp]ementors can experiment to improve the user interface. For example, an implementor may choose to 

require line-at-a-time input, or may provide a fancy editor or complex graphics-display interface. An 

implementor may choose to prompt explicitly for input, or may choose (as MAC LISP does) not to clutter up 

the transcript with prompts. 

The top-level loop is required to trap all throws and recover gracefully. It is also required to print all values 

resulting from evaluation of a form, perhaps on separate lines. If a form returns zero values, as little as 

possible should be printed. 

The following variables are maintained by the top-level loop as a limited safety net, in case the user forgets 

to save an interesting input expression or output value. (Note that the names of some of these variables 

violate the convention that names of global variables begin and end with an asterisk.} These are intended 

primarily for user interaction, which is why they have short names. Use of these variables should be avoided 

in programs. 

+ 

++ t 
+++ 

[Variable] 
[Variable] 
[Variable] 

While a form is being evaluated by the top-level loop, the variable + is bound to the previous form 

• read by the loop. The variable ++ holds the previous value of + (that is, the form evaluated two 

* 
** 
*** 

interactions ago), and +++ holds the previous value of ++. 

[Variable] 
While a form is being evaluated by the top-level loop, the variable - is bound to the form itself; that 

is, it is the value about to be given to + once this interaction is done. 

[Variable] 
[Variable] 
[Variable] 

While a form is being evaluated by the top-level loop, the variable * is bound to the result printed. 

at the' end of the last time through the loop; that is, it is the value produced by evaluating'the form 

in +. If several values were produced, * contains the first 'value only; * contains nil if zero values 

were produced. The variable * * holds the previous value of * (that is, the result printed two 

interactions ago), and * * * holds the previous value of * * . 

If the evaluation of + is aborted for some reason, then the values associated with *, * * , and * * * are 

not updated; they are updated only if the printing of values is at least begun (though not necessarily 

completed). 



CHAPTER 20: THE EVALUATOR 271 

I 

II 
III 

[Variable] 
~ 

[Variable] 
[Variable] 

While a form is being evaluated by the top-level loop, the variable I is bound to a list of the results 
printed at the end of the last time through the loop: that is, it is a list of all values produced by 
evaluating the form. in +. The value of * should always be the same as the car of the value of I. 
The variable I I holds the previous value of I (that is, the results printed two interactions ago), and 
I I I holds the previous value of I /. Therefore the value of * * should always be the same as the car 
of //, and similarly for * * * and I / I . 

If the evaluation of + is aborted for some reason, then the values associated with /, / I, and / I / are 
not updated; they are updated only if the printing of values is at least begun (though not necessarily 

, completed). 

As an example of the processing of these variables, consider the following possible transcript, where ">" is a 
prompt by the top-level loop for user input: 

" >(cons - -) 
«CONS - -) CONS - -) 

>(values) 

>(cons 'a 'b) 
(A • B) 

>(hairy-loop)"G 
### QUIT to top level. 

>(floor 13 4) 
3 
1 

At this point we have: 
+++ => (cons 'a 'b) 
++ => (hairy-loop) 
+ => (floor 13 4) 

*** 
** 
* 

;Interaction 1. 
; Cute, huh? 

;Interaction 2. 
; Nothing to print. 
;Interaction" 3. 
; Single value. 

;Interaction 4. 
; (User aborts the computation.) 

;Interaction 5. 
; Two values. 

=> NIL 
=> (A 
=> 3 

B) 
III => () 
II => «A B» 
I => (3 1) 



272 COMMON LISP REFERENCE MANUAL 



Chapter 21 

Streams 

Streams are objects that serve as sources or sinks of data. Character strealTIS produce or absorb characters; 

binary streams produce or absorb integers. The nonnal action of a COMMON LISP system is to read characters 

from a character input stream, parse the characters as representations of COMMON LISP data objects, evaluate 

each object (as a form) as it is read, and print representations of the results of evaluation to an output 

character stream. 

Typically streams are connected to files or to an interactive terminal. Streams, being LISP objects, serve as 

the ambassadors of external devices by which input/output is accomplished. 

A stream, whether a character stream or a binary stream, may be input~0111y, output·only, or bidirectional. 

\Vhat operations may be performed on a stream depends on which of the six types of stream it is. 

21.1. Standard Streams 

_ There are several variables whose values are streams used by many functions in the LISP system. These 

variables and their uses are listed here. By convention, variables. that are expected to hold a stream capable of 

input have names ending with h - ; n put", and similarly" - 0 u t put" for output streams. Those expected to 

hold a bidirectional stream have names ending with "- i ou. 

·s tandard- input· [Variable] 
In the nonnal LISP top-level loop, input is read from • s tan dar d - i n put· (that is, whatever 

stream is the value of the global variable • s tandard- input *). Many input functions, including 

read (page 310) and read-char (page 313), take a stream argument that defaults to 

·standard-input·. 

·s tandard-output· . [Variable] 
In the normal LISP top-level loop, output is sent to • s tan dar d - 0 u t put· (that is, whatever 

stream is ~e value of the global variable ·s tandard-output *). Many output functions, 

including pr int (page 316) and wr i te-char (page 317), take a stream argument that defaults 

to ·standard-output·. 

- 273-



274 COMMON USP REFERENCE MANUAL 

*error-output* [Variable] 
The value of * err 0 r - 0 ut put * is a stream to which error messages should be sent Nonnillly this 

is the.same as *standard-outp·ut*, but *standard-output* might be bound to a file and 

* err 0 r - 0 u tp u t * left going to the terminal or a separate file of error messages. 

*query- i 0* [Variable] 
The value of * que r y - i 0 * is a stream to be used when asking questions of the user. The question 

should be output to this stream, and the answer read from it. When the nonnal input to a program 

may be coming from a file, questions such as "Do you really want to delete all of the files in your 

directory?" should be sent directly to the user, and the answer should come from the user, not from 

the data file. *query- i 0* is used by such functions as yes-or- no-p (page 334). 

* deb u 9 - i 0 * [ Variable] 
The value of *debug- i 0* is a stream to be used for interactive debugging purposes. This is often 

the same as the value of *query- to* (page 274), but need not be. 

*term~nal-io* [Variable] 
The value of * term ina 1 - i 0* is ordinarily the stream that connects to the user's console. 

Typically, writing to this stream would cause the output to appear on a display screen, for example, 

and reading from the stream would accept input from a keyboard. It is intended that standard 

input functions such as read (page 310) and read-char (page 313), when used with this stream, 

would cause "echoing" of the input into the output side of the stream. (The means by which this is 

accomplished are of course highly implementation-dependent) 

*trace-output* [Variable] 
The value of *trace-output* is the stream on which the trace (page 363) function prints its 

output 

,*standard-input*, *standard-output*,~error-output*, *trace-output*,*query-io*, 

and * deb u 9 - i 0 * are initially bound to 'synonym .streams that pass all operations on to the stream that is the 

value of *terminal -io*. (See make-synonym-stream (page 275).) Thus any operations performed 

on those streams will go to the tenninal. 

No user program should ever change the value of * te rm ina 1 - i 0 *. A program that wants (for example) 

to divert output to a file should do so ·bybinding the value of *standard-output*; that way error 

messages sent to*error-output* can still get to the user by going through*termtnal -;0*, which is 

usually what is desired 

t 



CHAPTER 21: STREAMS 275 

21.2. Creating New Streams 

Perhaps the most important constructs for creating new streams are those that open files; see 

wi th-open-fi 1 e (page 348) and open (page 345). The following functions constnlct streams without 

reference to a file system. 

make - synonym- s tre am symbol [Function] 
make-synonym-stream creates and returns a "synonym stream". Any operations on the new 

stream will be perfonned on the stream that is then the value of the dynamic variable named by the 

symbol. If the value of the variable should change or be bound, then the synonym stream will 

operate on the new stre~. 

make -broadcas t -s t ream &res t streams [Function] 
Returns a stream that only works in the output direction. Any output sent to this stream will be 

sent to all of the streams given. The set of operations that may be performed on the new stream is 

the intersection of those for the given streams. The results returned by a stream operation are the 

values resulting from performing the operation on the last stream in streams; the results· of 

performing the operation on all preceding streams are discarded. If no streams are given as 
arguments, then the result is a "bit sink"; all output is discarded, and every operation results in 

niL 

make -concatena ted - stream &res t streams [Function] 
Returns a stream that only works in the input direction. Input is taken from the first of the streams 
until it reaches end-of-file; then that stream is discarded, and input is taken from the next of the 

streams, and so on. If no arguments are given, the result is a stream with" no content; any input 

attempt will result in end-of-file. 

make-two-way-stream input-stream output-stream [Function] 
Returns a bidirectional stream that gets its input from input-stream and sends its output to 

output-stream. 

make-echo-stream input-stream output-stream [Function] 
Returns a bidirectional stream that gets its input from input-stream and sends its output to 
output-stream. In addition, all input taken from input-stream is echoed to output-stream. L 

make-string-input-stream string &optional start end [Function] 
Returns an input stream that will supply, in order,the characters in the substring of string delimited 

by start and end, and then signal end-of-file. 



276 COMMON LISP REFERENCE MANUAL 

make-s tr i ng -output - stream [Fullction] 
Returns an output stream that will accumulate all output given it for the benefit of the function 

get-output-stream-string. 

ge t -output - s tream- s tr i ng string-output-stream [Function] 
Given a stream produced by make-s tr i ng -output- stream, this returns a string containing all 

the characters output to the stream so far. The stream is then reset; thus each call to 

get -output - s tream-s tr i ng gets only the characters since the last such call (or the creation of 

the stream, if no such previous call has been made). 

wi th-open-s tream (var stream) {declarationJ* {fonn}* [Macro] 

The form stream is evaluated and must produce a stream. The variable var is bound with the stream 

as its value, and then the forms of the body are executed as an implicit pro 9 n; the results of 

evaluating the last form are returned as the value of the wit h - 0 pen - s t ream form. The stream is 

automatically closed on exit from the wit h - 0 pen - s t ream form, no matter whether the exit is 

normal or abnormal; see close (page 278). The stream should be regarded as having dynamic 

, extent. 

with-input-from-string (var string {keyword value}*) {declaratioll}* {fonn}* [Alacro] 
The body is executed as an implicit progn with the variable varbound to a character input stream 

that supplies successive characters from the value' of the form string. 
wi th - input - f rom- s tr in 9 returns the results from the lastfonn of the body. 

The inpu't stream is automatically closed on exit from the wi th - input -f rom- str in 9 form, no 

matter whether the exit is normal or abnormal. The stream should be regarded as having dynamic 

extent. 

The following keyword options may be used: 

: index 

:start 

:end 

For example: 

The form after the : i n d e x keyword should be a place acceptable to set f. If 
the with-input~from-string form is exited normally, then the place will 
have stored into it the index into the string indicating the first character not read: 
(the length of the string if all characters were used). The place is not updated as 
reading progresses, but only at the end of the operation. 

The : start keyword takes an argument indicating, in the manner usual for 
sequence functions, the beginning of a substring of string to be used. 

The : end keyword takes an argument indicating, in the manner usual for 
sequence functions, the end of a substring of string to be used. 

(with-input-from-string (s "Animal Crackers" :index j :start 6) 
(read- s») => crackers 

• As a side effect, the variable j is se't to 15. 

The : s tart and: index keywords ma~ both specify the same variable, which is a pointer within 



CHAPTER 21: STREAMS 277 

the string to be advanced, perhaps repeatedly by some containing loop. 

with-output-to-string (var [string]) {declaration}* {fonn}~ [Alaero] 
The body is executed as an implicit progn with the variable var bound to a character output 

stream. All o~tput to that stream is saved in a string. If no string argument is provided, then thr. 

value of wi th -ou tp ut - from- s tr i ng is a string containing all the collected output. If string is 
specified, it must be a string with a fill pointer, and the output is incrcmentally appended to the 

string (as if using vector-push-extend (page 245) if the string is adjustable, and otherwise 

vector -push); in this case wi th -output - to - s tr i ng returns the results from the last/ann of 

the body. 

The output stream is automatically closed on exit from the with -output -from- s tr i ng form, 

no matter whether the exit is normal or abnormal. The stream should be regarded as having 
dynamic extent. 

21.3. Operations on Streams 

This section contains discussion of only those operations that are common to all streams. Input and output 

is rather complicated, and is discussed separately in chapter 22. The interface between streams and the file 

system is discussed in chapter 23. 

s t r e amp object 
s t r e amp is true if its argument is a stream, and otherwise is false. 

(streamp x) <=> (typep x 'stream) 

[Function] 

input - s tream-p stream [Function] 
This predicate is true if its argument (which must be a stream) can handle input operations, and 

otherwise is false. 

output-stream-p stream [Function) 
This predicate is true if its argument (which must be a stream) can handle output operations, and 

otherwise is false. 

stream-el ement-type stream [Functioh] 
A type specifier is returned to indicate what objects may be read from or written to the argument 

stream, which must be a stream. Streams created by open (page 345) will have an element type 

restricted to a subset of character or integer, but in principle a stream may conduct 

transactions using any LISP objects. 



278 COMMON LISP REFERENCE MANUAL 

close stream &key : abort" [Function] 
The argument must be a stream. ~estream is closed. No further input/output operations may be 

performed on it. However, certain inquiry operations may still be performed, and it is permissible 
to close ~n already-closed stream. 

If the : abort parameter is not nil (it defaults to nil), it indicates an abnormal tennination of 

the use of the stream. An attempt is made to clean up any side effects of having created the stream 

in the first place. For example, if the stream perfonns output to a file that was newly created when 

the stream was created, then if possible the file is deleted and any previously existing file is not 
superseded. 

• 



Chapter 22 

Input/Output 

22.1. Printed Representation of LISP Objects 

LISP objects in general are not text strings, but complex data structures. They have very different properties 

from text strings as a consequence of their internal representation. However, to make it possible to get at and 

talk about LISP objects, LISP provides a representation of most objects in the fonn of printed text; this is 

called the printed representation, which is used for input/output purposes and in the examples throughout this 

manual. Functions such as p r i n t (page 316) take a LISP object and send the characters of its printed 

representation to a stream. The collection of routines that does this is known as the (LISP) printer. The read 

function takes characters from a stream, interprets them as a printed representation of a LISP object, builds a 

corresponding object, and returns it; the collection of routines that does this is called the (LISP) reader. 

Ideally, one could print a LISP object and then read the printed representation back in, and so obtain the 

same identical object. In practice this is difficult, and for some purposes not even desirable. Instead, reading 

a printed representation produces an object that is (with obscure technical exceptions) equa 1 (page 66) to 

the originally printed object. 

Most LISP objects have more than one possible printed representation. For example, the integer twenty

seven can be written in any of these ways: 
27 27. #033" #xlB #bl101l #.(. 3 3 3) 

A list of two symbols·A and B can be printed in many, many ways: 

(A B) (a b) (a b) (\A I B I ) 
(I \AI 

B 
) 

The last example, which is spread over three lines, may be ugly, but it is legitimate. In general, wherever 
4 . 

whitespace is pexmissible in a printed representation, any number of spaces and newlines may appear. 

When pr; nt produces· a printed representation, it must choose arbitrarily from among many possible 

printed representations. It attempts to choose one that is readable. There are a number of global variables 

that can be used to control the actions of p r i nt, and a number of different printing functions. 

This section describes in detail what is the standard printed representation for any Lisp object, and also 

describes how rea d operates. 

- 279-



280 COMMON USP REFERENCE MANUAL 

22.1.1. What the Read Function Accepts 

The purpose of the LISP reader is to accept characters, interpret them as the printed representation of a LISP 

object, and construct and return such an object. The reader cannot accept everything that the printer 

produces: for example, the printed representations of compiled code objects cannot be read in. However, the 

reader has many features that are not used by the output of the printer at all, such as comments, alternative 

representations, and convenient abbreviations for frequently-used unwieldy constructs. The reader is also 

parameterized in such a way that it can be used as a lexical analyzer for a more general user-written parser. 

)Vhen the reader is invoked, it reads a character from the input stream and dispatches according to the 

syntactic type of that character. Every character that can appear in the input stream must be of exactly one of 

the following kinds: whitespace, constituent, single escape, multiple escape, or macro. Macro characters are 

further divided into the types temzinating and non-temzinaling (of tokens). (Note that macro characters have. 

nothing whatever to do with macros in their operation. There is a superfieial similarity in that macros allow 

the useJo extend the syntax of COMMON LISP at the level of forms, while macro characters allow the user to 

extend :the syntax at the level of characters.) Constituents additionally have one or more attributes, the most 

important of which is alphabetic; these attributes are discussed funher in section 22.1.2. 
~~ , 

The ~rSing of COMMON LISP expressions is discussed in terms of these syntactic character types because 

the types are not fixed, but may be altered by the user (see set-syntax-from-char (page 300) and 

set-macro-character (page 300». The characters of the standard character set initially have the 

syntactic types s~own in Table 22-1. Note that the brackets, braces, question mark, and exclamation point 

(that is~ "[", "r', "{", "}", "1", and" !") are normally defined to be constituents, but are not used for any 

purpose in stanciar<i COMMON LISP syntax and do not occur in the names ofbuHt-in COMMON LISP functions 

or variables. These characters are explicitly reserved to the user; the primary intent is that they be used as 

macro characters, but one might choose, for example, to make" 1" be a single escape character (as it is in 
PORTABLE STANDARD LISP). 

The algorithm performed by the COMMON LISP reader is roughly as follows: 

1. If at end of file, perfonn end-of-file processi~g (as specified by the caller of the read (page 
310) funCtion). Otherwise read one .character from the input stream, call it "x", and dispatch 
according to the syntactic type of x to one of steps 2 to 6. 

2. If.x is a whites pace charaGter, then discard it and return to step 1. 

3. If x is a macro character (at this point the distinction between terminating and non-terminating 
macro characters does not matter), then execute the function associated with that character. The 
fu'CtiOn may return zero values or one value (see val ue s (page 110». 

The macro-character function may of course read characters from the input stream; if it does, it 
will see those characters following the macro character. The function may even invoke the reader 
recursively. This is how the . macro-character" (" constructs a list: by invoking the reader 
rerrsivelY to read the elements of the list. 

If one value is returned, then return that value as the result pf the read operation; the algorithm is 



CHAPTER 22: INPUT /OUTPUf 

done. If zero values are returned, then go to step 1. 

4. If x is a single escape character (rionnally "\ "), then read the next character (but if at end of file, 
signal an error instead). Ignore the usual syntax of that character, and pretend it is a constituent 
whose only attribute is alphabetic. (Do not convert a lower-case letter to upper case.) Use it to 
begin a token, and go to step 7. 

5. If x is a multiple escape character (nonnally "I "), then begin a token (initially containing no 
characters) and go to step 8. 

6. If x is a constituent character, then it begins an extended token. After the entire token is read in, it 
will be interpreted either as representing a LISP object such as a symbol or number (in which· case 
that object is returned as the-result of the read operation), or as being of illegal syntax (in which 
case an error is signalled). Convert x to upper case if it is a lower-case letter. Use x to begin a 
token, and go on to step 7. 

7. (At this point a token is being accumulated, and an even number of multiple escape characters 
have been encountered.) If at end of tile, go to step 9. Otherwise read a character (call it "y"), and 
perfonn one of the following actions according to its syntactic type: 

• If y is a constituent or non-tenninating macro character, then do the following. Convert y to 
upper case if it is a lower-case letter. Append y to the token being built, and repeat step 7. 

• If y is a single escape character, then read the next character (but if at end of file,.signal an 
error instead). Ignore the usual syntax of that character, and pretend it is a constituent 
whose only attribute is alphabetic. (Do not convert a lower-case letter to upper case.) 
Append it to the token being built, and repeat step 7. 

• If y is a multiple escape character, then go to step 8. 

• If y is a tenninating macro character, then it tenninates the token. First "unread" the 
character y(see unread-char (page 314», and then go to step 9. 

• If y is a whitespace character, then it tenninates the token. First "unread" the character y if 
appropriate (see read-pres erv i ng-wh i tes pace (page 311», and then go to step 9. 

8. (At this point a token is being accumulated, and an odd number of multiple escape characters have 
been encountered.) If at end of file, signal an error. Otherwise read a character (call it "y"), and 
perform one of the following actions according to its syntactic type: 

• If y is a constituent, macro, or whiiespace character, then ignore the usual syntax of that 
character, and pretend it is a constituent whose only attribute is alphabetic. (Do not convert 
a lower-case letter to upper case.) Append it to the token being built, and repeat step 8. 

• If y is a single escape character, then read the next character. Ignore the usual syntax of that 
character, and pretend it is a constituent whose only attribute is alphabetic. (Do not convert 
a lower-case letter to upper casc.) Append it to the token being built, and repeat step 8. 

• If y is a multiple escape character, then go to step 7. 

281 



282 COMMON LISP REFERENCE MANUAL 

9. An entire token has been accumulated. Interpret it as'representing a LISP object and return that 
object as the result of the read operation, or signal an etTor if the token is not oflegal syntax. 

As a 'rule" a single escape character never stands for itself, but always serves to cause the following character 
to be treated as a simple alphabetic character. A single escape character can be included in a token only if 
preceded by another single escape character. 

A multiple escape character also never stands for itself. The characters between a pair of multiple escape 
characters are all treated as simple alphabetic characters, except that single escape and multiple escape 
characters must nevertheless be preceded by a single escape character to be included. 

Compatibility note: In MACLISP. the "I" character is implemented as a macro character. that reads characters up to the next 
unescaped "I " and then makes a token; no characters are ever read beyond the second "I" of a matching pair. In CoMMON 
LISP. the second "'" docs not terminate the token being read. but merely reverts to the ordinary (rather than multiple
escape) mode of token accumulation. This results in. some differences in the way certain character sequences are 
interPreted. For example, the sequence "I foo II bar I" would be read in MAC LISP as two distinct tokens I faa I and 
f b a'r I. whe.eas in COMMON LISP it would be treated as a single token equivalent to I foobar I. The sequence 
,. I faa I bar I b az I" would be read in ~1ACLISP as three distinct tokens I faa I. bar. and I b az I. whereas in CoMMON LISP 

tt~would be treated as a single token equivalent to I fooBA~Rbaz I; note that the middle three letters are converted to upper 
tse as they do not fall within a matching pair of vertical bars. . 

One reason for the different treatment of "I" in COMMON LISP lies in the syntax for package-quali-fied symbol names. A 
sequence such as "I faa: bar I" ought to be interpreted as a symbol whose name is "faa: bar"; the colon should be 
treated as a simple alphabetic character because it lies within a pair of vertical bars. The symbol I bar I within the package 
'I faa, can be notated. not-as I foo: bar I. but as I faa I: I bar I; the colon can serve as a package marker because it falls 
outside the vertical bars. and yet the notation is treated as a single token thanks to the new rules adopted in COMMON LISP. 

Compatibility note: In MACLISP, the parentheses are treated as additional character types. In COMMON LISP they are simply 
macro characters, as described in section 22.1.3. 

Compatibility note: What MACLISP calls a "single character object" (tokens of type single) are not provided for explicitly in 
COMMON LIsp. ,They can be viewed as simply a kind of macro character. That is. the effect of 

(setsyntax '$ 'single nil) 
(setsyntax '% 'Single nil) 

in MAcLIsp can be achieved in COMMON CISP by 
(defun single-macro-character (stream char) 

(declare (ignore stream» 
(intern (string char») 

(set-macro-character '$ #'single-ma~ro-character) 
(set-macro-character '% #'single-macro-character) 

22el.2. Parsing of Numbers and Symbols 

\Vhen an extended token is read, it is interpreted as a nUIllber or symbol. The characters of the extended 
token may serve various syntactic functions as shown in Table 22-3, but it must be remembered that any 
character included in a token under the control of ~n escap~ character is treated as alphabetic rather than 
according to the attributes shown in the table. One consequence of this rule is that a whitespace, macro, or 
escape character will always be treated as alphabetic within an extended token, because such a character 
cannot be included in an extended token except under the control of an escape character. 

~ 

To allow for extensions to the syntax ofnu~bers, a syntax for potential numbers is defined in COMMON LISP 

that is more general than the actual syntax for num~ers. Any token that is not a potential number and does 
not consist entirely of dots will always be taken to be a symbol, now and in the future: programs may rely on 
this fact. Any token that is a potential number but does not fit the actual number syntax defined below is a 



CHAPTER 22: INPUT/OUTPUT 283 

/--

e 
<tab) whitespace <page) whitespace <newline) whitespace 
<space) whitespace @ constituent terminating macro character 

constituent* A constituent a ·constituent 
" terminating macro character B constituent b constituent 
# non-tenninating macro chqracter C constituent c constituent 
$ constituent 0 constituent .d constituent 
% constituent E constituent e constituent 
& constituent F constituent f constituent 

terminating macro character G constituent 9 constituent 
( temlinating macro character H constituent h constituent 
) terminating macro character I constituent constituent 

* constituent J constituent j constituent 
+ constituent K constituent k constituent 

terminating macro character L constituent constituent 
constituent M constituent m constituent 
constituent N constituelZl n constituent 

/ constituent a constituent 0 constituent 
0 constituent P constituent p constituent 
1 constituent Q constituent q constituent 
2 constituent R constituent r constituent 
3 constituent S constituent s constituent 
4 constituent T constituent t constituent e 5 constituent U constituent u constituent 
6 constituent V constituent v constituent 
7 constituent W constituent w constituent 
8 constituent X constituent x constituent 
9 constituent y constituent y constituent 

constituent Z constituent z constituent 
terminating macro character· [ constituenl* { constituent* 

< constituent \ single escape ·1 multiple escape 
= constituent ] constituent* } constituent* 
> constituent constituent constituent 
? constituent* constituent <rubout> constituent 
<backspace) constituent <return> whitespace <linefeed> whites pace 

• The characters marked with an asterisk are initially constituents, but are reserved to the user for use as macro Characters or for any other 
desired purpose. 

Table 22-1: Standard Character Syntax Types 



284 

; 
\, 

number': = integer I ratio I floating-point-number 
integer :!: = [sign] {digit} + [decimal-point] 
ratio :: = [sign] {digit} + I {digit} + 

COMMON USP REFERENCE MANUAL 

floating-point-number:: = [sign] {digit}* decimal-point {digit} + [exponent] 
I [sign] {digit} + [decimal-point {digit}*] exponent 

sign:: = + 1-
decimal-point:: = . 
digit: : = 0 1 1 1 21 3 1 41 5 f 6 I 7 I 8 I 9 
exponent :: = exponent-marker [sign] {digit} + 
exponent-marker:: =e 1 s 1 f I d 11 I E I S I FlO I L 

The notation "{x}·" means zero or more occurrences of "x", the notation "{x} +" means one or more occurrences of "x", and the 
notation "[x]" means~zero or one occurrences of "x', 

Table 22-4: Actual Syntax of Numbers 

reserved token, and has an implementation-dependent interpretation; an implementation may signal an error, 
quietly treat the token as a symbol, or take some other action. Programmers should avoid the use of such 
reserved tokens. (A symbol whose name looks like a reserved token can always be written using one or more 
escape characters.) 

A token is a potential number if it satisfies the following requirements: 

• It consists entirely of digits, signs ("+" or "_"), ratio markers ("I"), decimal points (". "), 
extension characters ("A" or "_"), and number markers. (A number marker is a letter. Whether a 
letter may be treated as a number marker depends on context, but no letter that is adjacent to . 
another letter may. ever be treated as a number marker. Floating-point exponent markers are 
instances of number markers.) 

• It contains at least one digit. (Letters may be considered to be digits, depending on the value of 
* rea d - bas e * (page 287), but only in tokens containing no decimal points.) 

• It begins wifh a digit, sign, decimal point, or extension character. 

• It does not end with a sign: 

As examples, the following tokens are potential numbers, but are not actually numbers as defined below, and 
so are reserved tokens. (They do indicate some interesting possibilities for future extensions.) 

Ib5000 711777q \.7J -3/4+6.7J 12125/83 
27 A 19 3A 4/5 6117 3.1.2.6 A-43 A 

3~141_592_653_589_793_238_4 -3.7+2.6i-6.17j+t9.6k 
The following tokens are not potential numbers, but are always treated as symbols: 

I 15 + 1+ 1-
foo+ ab.cd A/_ 

The following tokens are potential numbers if the value of *read-base* is 16 (an abnormal situation), but 
are always treated as symbols if the val~e of *read,-base* is 10 (the usual.value): 



---------------------------~----------

CHAPTER 22: INPUT/OUTPUT 285 

bad-face 25-dec-83 alb 
It is possible for there to be an ambiguity as to whether a letter should be treated as a digit or as a number 

marker. In such a case the letter is always treated as a digit rather than as a number marker: 

Note that the printed representation for a potential number may not contain any escape characters. An 

escape charact.er robs the following character of all syntactic qualities, forcing it to be strictly alphabetic, and 

so unsuitable for use in a potential number. For example, all of the following representations are interpreted 

as symbols, not numbers: 
\256 25\64 1.0\E6 11001 3\.14159 13/4 1 3\/4 

In each case, removing the escape characters would allow the token to be treated as a number. 

If a potential number can in fact be interpreted as a number according to the BNF syntax in Table 22-2, then 

a number object of the appropriate type is constructed and returned. It should be noted that in a given 

implementation it may be that not all tokens confonning to the actual syntax for numbers can actually be 

converted into nUlnber objects. For example, specifying too large or too small an exponent for a floating

point number may make the number impossible to represent in the implementation. Similarly, a ratio with 

denominator zero (such as "-3 5 / 0 0 0") cannot be represented in any implementation. In any such 

circumstance where a token with the syntax of a number cannot be converted to an internal number object, an 

error is signalled. (On the other hand, an error must not be signalled for specifying too many significant digits 

for a floating-point number; an appropriately truncated or rounded value should be produced.) 

There is an omission in the syntax of numbers described in Table 22-2, in that the syntax does not account 

for the possible use of letters as digits. The radix used for reading integers and ratios is nonnally decimal. 

However, this radix is actually detennined by the value of the variable '" rea d - bas e '" (page 287), whose 

initial value is 10. "'read-base'" may take on any integral value between 2 and 36; let this value be n. 
Then a token x is interpreted as an integer or ratio in base n if it could: be properly so interpreted in the syntax 

"#nRx" (see section 22.1.4). So, for example, if the value of "'read-base'" is 16, then the printed 

representation 
(a small face in a bad place) 

would be interpreted as if the following representation had been read with : rea d - bas e '" set to ten: 
(10 small 64206 in 10 2989 place) 

because four of the seven tokens in the list can be interpreted as hexadecimal numbers. This facility is

intended to be used in reading files of data that for some reason contain numbers not in decimal radix; it may 

also be used for reading programs written in LISP dialects (such as MAC LISP) whose default number radi~is 

not decimal. Non-decimal constants in COMMON LISP programs or portable COMMON LISP data files sh~qld 

be written using #0, IX, #8, or #nR syntax. 

When * rea d - bas e '" has a value greater than ten, an ambiguity is introduced into the actual syntax for 

numbers, because a letter can serve as either a digit or an exponent marker; a simple example is 1 E 0 when the 

value of '" rea d - b a s-e * is 16. The ambiguity is resolved in accordance with the general principle that 

interpretation as a digit is preferred to· interpretation as a number marker. The consequence in this case is 

that if a token can be interpreted as either an integer or a floating-point number, then it is taken to be an 

integer. 



286 COMMON USP REFERENCE MANUAL 

If a token consists solely of dots (with no escape characters), then an error is signalled, except in one 

circumstance: if the token is a single dot. and occurs in a situation appropriate to "dotted list" syntax, then it is 

accepted as a part of such syntax. (Signalling an error catches not only misplaced dots in dotted list syntax, 

but also lists that were truncated by * p r i n t -1 eng t h * (page 308) cutoff.} Examples: 

(a . b) ; A dotted pair of a and b. 
(a. b) ; A list of one element, the symbol named "a. bU. 
(a. b) ; A list of two elements "a." and "bU. 
(a . b) ; A list of two elements "a" and" . bU. 
(a \. b) ; A list of three elements "a", " . ", and "bU. 
(a I. I b) ; A list of three elements "a", " . ", and "b". 
(a \... b) ; A list of three' elements "a", " ... ", and "b". 
(a I ... I b) ; A list of three elements "a", " ... ", and "b". 
(a b . c ) ; A dotted list of a and b with c at the end . 
. i ot ; The symbol whose name is" . i at". 
(. b) ; Illegal; an error is signalled. 
(a .) ; Illegal; an error is signalled. 
( a b) ; Illegal; an error is signalled. 
(a . . b) ; Illegal; an error is signalled. 
(a b c ... ) ; Illegal; an error is signalled. 

In all other cases the token is construed to be the name of a symbol. If there are any package markers 

(colons) in the token, they divide the token into pieces used to control the lookup and creation of the symbol. 

If there is a single package marker, and it occurs at the beginning of the token, then the token is interpreted 
as a keyword, that is, a symbol in the keyword package. The part of the token after the package marker must 
not have the syntaxof a number. 

If there is a single package marker not at the beginning or end of the token, then it divides the token into 

two parts. The first part specifies a package; the second part is the name of an external symbol available in 
that package. Neither of the two parts may have the syntax of a number. 

If there is are two adjacent package markers not at the beginning or end of the token, then they divide the 

token into two parts. The first part specifies a package; the second part is the name of a symbol within that 

package (possibly an internal symbol). Neither of the two parts may have the syntax of a number. 

If a symbol token contains no package markers, then the entire token is the name of the symbol. The 
symbol is looked up in the default package; see *package* (page 149). 

All other patterns of package markers, including the cases where there are more ~an two package markers, 

or where a package marker appears at the end of the token, presently do not mean anything in COMMON 

LISP; see chapter 11. It is therefore currently an error to use such patterns in a COMMON. LISP program. The 
valid patterns for tokens may be summarized as follows: 



CHAPTER 22: INPUT /OUIPUT 

nnnnn 
xxxxx 
:xxxxx 

ppppp: xxxxx 
ppppp: : xxxxx 

a number 
a symbol in the current package 
a symbol in the keyword package 
an external symbol in the ppppp package 

• 

a (possibly internal) symbol in the ppppp package 

where nnnnn has the syntax of a number, and xxxxx and ppppp do not have the syntax of a number. 

287 

*read-base* [Variable] 
The value of *read-base* controls the interpretation of tokens by read (page 310) as being 

integers or ratios. Its value is the radix in which integers and ratios are to be read; the value may qe 
any integer from 2 to 36. (inclusive), and is nonnally 10 (decimal radix). Its value affects only the 

reading of integers and ratios. In particular, floating-point numbers are always read in decimal 

radix. The value of *read-base* does not affect the radix for rational numbers whose radix is 

explicitly indicated by #0, #X,. #B, or #nR syntax, or by a trailing decimal point. 

Care should be taken when setting *read-base* to a value larger than 10, because tokens that 

would nonnally be interpreted as symbols may be interpreted as numbers instead. For example, 

with *read-base* set to 16 (hexadecimal radix), variables with names such as a, b, f, bad, and 

f ace will be treated by the reader as numbers (with decimal values 10, 11, 12, 2989, and 64206, 

respectively). The ability to alter the input radix is provided in COMMON LISP primarily for the 

purpose of reading data files in special fonnats, rather than for the purpose of altering the default 

radix in which to read programs. The ~ser is strongly encouraged to use #0, nx, #8, or #nR syntax 

when notating non-decimal constants in programs. 
Compatibility note: This variable corresponds to the variable called i base in MACLlSP. and to the function 
called r ad i x in INTERLIsp . 

.. read- suppress" [Variable] 
When the value of * rea d - sup pre s s .. is nil, the LISP reader operates normally. When it is not 

nil, then most of the interesting operations of the reader are suppressed; input characters are 

parsed, but much of what is read is not interpreted. 

The primary purpose of * rea d - sup pre s s .. is to support the operation of the read-time 

conditional cons~cts "#+" and "#-" (see section 22.1.4). It is important for these constructs to be 

able to skip over the printed representation of a LISP expression despite the possibility that tl\e 

syntax of the skipped expression may not be entirely legal for the current implementation; this ~s 

because a primary application of "#+". and "#-" is to allow the same program to be shared amOllg 

several LISP implementations despite small incompatibilities of syntax.) 

A non-n i 1 value of .. rea d - sup pre s s.. has the following specific effects on the COMMON LISP 

reader: 

• All extended tokens are completely uninterpreted. It matters not whether the token 
looks like a number, much less like a valid number; the pattern of package markers also 
does not matter. An extended token is simply discarded and treated as if it were n i 1 ; 
that is, reading an extended token when .. rea d - sup pre s s * is non-nil simply 



288 COMMON LISP REFERENCE MANUAL 

<space> illegal * { alphabetic 
<newline> illegal * I alphabetic * 
<linefeecD illegal * } alphabetic 
<return> illegal * alphabetic * 
<tab> illegal * @ alphabetic 
! alphabetic A,a alphadigit 

" alphabetic * B,b alphadigit 
/I alphabetic * C, c alphadigit 
$ alphabetic D, d alphadigit, double-float exponent marker 
% alphabetic E,e alphadigit, float exponent marker 
& alphabetic F, f alphadigit, single-float exponent marker 

alphabetic * G,g alphadigit 
( alphabetic * H,h alphadigit 
) alphabetic * I, i alphadigit 
• alphabetic J, j alphadigit 
+ alphabetic, plus sign K, k alphadigit 

alphabetic * L, 1 alphadigit, long-float exponent marker 
alphabetic. minus sign M.m alphadigit 
alphabetic, dot, decimal point N. n alphadigit 

/ alphabetic, ratio marker 0,0 alphadigit 
0 digit, alphadigit P,p alphadigit 
1 digit, alphadigit Q,q alphadigit 
2 digit, alphadigit R, r alphadigit 
3 digit, alphadigit S,S alphadigit, short-jloat exponent marker 
4 digit,alphadigit T, t alphadigit 
5 digit, alphadigit U, u alphadigit 
6 digit, alphadigit V,V alphadigit 
7 digit, alphadigit W,W alphadigit 
8 digit, alphadigit X"X alphadigit 
9 digit, alphadigit Y,Y alphadigit 

package marker Z,Z alphadigit 
alphabetic * [ alphabetic 

< alphabetic \ alphabetic * 
= alphabetic •• J alphabetic 
> alphabetic alphabetic . 
? alphabetic alphabetic 
<rubout> illegal alphabetic 
<backspace> illegal (page) illegal 

The interpretations in this table apply only to characters whose syntactic type is constituent. Entries marked with an asterisk u." are 

nonnally shadowed because the indicated characters are of syntactic type whites pace, macro, single escape, or multiple escape. Characters 
with the alphadigit attribute are interpreted as having the digit or alphabetic attribute according to whether or not the character is a valid 

,digit in the radix specified by ·read-base· (page 287). Characters with the illegal attribute cannot ever appear in a token except 

under the control of an escape character. An attempt to use an illegal character as an unescaped token constituent causes an error to be 

signalled 

Table 22·3: Standard Constituent Character Attributes' 

~ 



CHAPTER 22: INPUT/OUTPUT 

returns n; 1. (One consequence of this is that the error concerning improper dotted-list 
syntax will not be signalled.) 

• Any sharp.;sign macro construction that requires, permits, or disallows an infix 
numerical argument, such as "#nR", will not enforce any constraint on the presence, 
absence, or value of such an argument 

• The "#\" construction always produces the value n i 1. It will not signal an error even if 
an unknown character name is seen. 

• Each of the "#B", "#0", "#X", and "#R" constructions always scans over a following 
token and produces the value n i 1. It will not signal an error even if the token does not 
have the syntax of a rational number. 

• The "#*" construction always scans over a following token and produces the value nil. 
It will not signal an error even if the token does not consist solely of the characters "0" 
and" 1". 

• Each of the "#." and "#," constructions reads the following form (in suppressed 
mode, of course). but does not evaluate it. The form is discarded and n; 1 is produced. 

• Each of the "#A", "#S", and "#:" constructions reads the following form (in 
suppressed mode, of course). but does not interpret it in any way; it need not even be a 
list in the case of "#S", or a symbol in the case of"#:": The form is discarded and n i 1 
is produced. 

• The "#=" construction is totally ignored. It does not read a following form. It produces 
no object, but is treated as whitespace. 

• The "##" construction always produces n i 1. 

• The "#+" and "#-" constructions skip over one form (the foature descriptor) but not 
over a second form (the conditionalized form). Neither produces an object; both are 
treated as whitespace. 

289 

Note that, no matter what the value of * rea d - ~ up pre s s *, parentheses still continue to delimit 

(and construct) lists; the "#(" construction continues to delimit vectors; and comments, strings, and 

the quote and backquote constructions continue to be interpreted properly. Furthermore, su~b 

situations as'" )'\ "#<","#)", and "#<space>", continue to signal errors. r 
I 

In some cases it may be appropriate for a user-written macro-character definition to check the val~~ 

of * rea d - sup pre s s * and avoid certain computations or side effects if its value is not n i 1. 



290 COMMON LISP REFERENCE MANUAL 

22.1.3. Macro Characters 
If the reader encounters a macro character, then the function associated with that macro character is called, 

and may produce an object to be returned. This function may read following characters in the stream in 

whatever syntax it likes (it may even call read recursively) and returns the object represented by that syntax. 

Macro characters may not be recognized, of course, when read as part of other special syntaxes (such as for 

strings). 

The reader is therefore organized into two parts: the basic dispatch loop, which also distinguishes symbols 

and numbers, and the collection of macro characters. Any character can be reprogrammed as a macro 

character; this is a means by which the reader can be extended. The macro characters normally defined are: 

The left parenthesis character initiates reading ofa pair or list The function read (page 310) is called 
recursively to read successive objects, until a right parenthesis is found to be next in the input stream. A . 
list of the objects read is returned. Thus 

(a b c) 

is read as a list of three objects (the symbols a, b, and c). The right parenthesis need not follow the 
printed representation of the last object immediately; whitespace characters and comments may precede 
it. This can be useful for putting one object on each line and making it easy to add new objects: -

(defun traffic-light (color) 
(case color 

(green) 
( red ( s top ) ) 
( amb e r (a c eel era t e ) ) ; Insert more colors after this line. 
) ) 

It may be that no objects precede the right parenthesis, as in "( )" or" ( )"; this reads as a list of zero 
objects (the empty list). 

If a token is read between objects that is just a dot" . ", not preceded by an escape character, then exactly 
one more object must follow (possibly followed by whitespace), and then the right parenthesis: 

(a be. d) 

This means that the cdr of the last pair in the list is not nil, but rather the object whose representation 
followed the dot. The above example might have been the result of evaluating 

(cons 'a (cons 'b (cons 'c 'd») => (a be. d) 

Similarly, we have 
(cons 'znets 'wolq-zorbitan) => (znets . wolq-zorbitan) 

It is permissible for the object following the dot to be a list 

(a bed . {e f . (g ) ) ) is the same as (a bed e f g) 

but this is a non-standard form that p r i n t will ~ever produce. 

The right-parenthesis character is part of various constructs (such as the syntax for lists) using the 
left-parenthesis character, and is invalid except when used in such a construct 

The single-quote (accent acute) character provides an abbreviation to make it easier to put constants in 
programs. 'faa reads the s?me as ( quo t e faa): a list of the symbol quo t e and foo. 

Semicolon is used to write comments. The semicolon and all characters up to and including the next 
newline are ignored. Thus a c?mment can be put at .the end of any line without affecting ~e reader. (A 



CHAPTER 22: INPUT /OUfPUT 291 

" 

comment will terminate a token, but a newline would terminate the token anyway.) 

For example: 

;;;; COMMENT-EXAMPLE and related nonsense. 
'" This function is useless except to demonstrate comments. 

(Actually, this example is much too cluttered with them.) 
'" Notice that there are several kinds of comments. 

(defun comment-example (x y) ;X is anything; Y is an a-list. 
(cond «listp x) x) ;If X is a list, use that. 

;; X is·now not a list. There are two other cases. 
«symbolp x) 
;; Look up a symbol in the a':"list. 
(cdr (assoc x y).» ; Remember I (cdr ni 1) is ni 1 . 

" Do this when all else fails: 
(t (cons x ;Add x to a default list. 

'«lisp t) ;LISP is okay. 
(fortran nil) ;FORTRAN is not. 
(pl/i -500) ;Note that you can put comments ;n 
(ada .001) ; "data" as well as in "programs". 
;; COBOL?? 
(teco -1.0e9»»» 

. This example illustrates a few conventions for comments in common use. Comments may begin with 
one to four semicolons. 

• Single-semicolon comments ar~ all aligned to the same column at the right; usually each 
comments about only the line it is on. Occasionally two or three contain a single sentence 
together; this is indicated by indenting all but the first by a space (after the semicolon). 

• Double-semicolon comments are aligned to the level of indentation of the code. A space 
follows the two semicolons. Usually each describes the state of the program at that point, or 
describes the section that follows. 

• Triple-semicolon comments are aligned to the left margin. Usually they are not used within 
function definitions, but precede them in large blocks. 

• Quadruple-semicolon comments are interpreted as subheadings. 

Compatibility note: These conventions arose among users of MACUSP, and have been found to be very useful. The 
conventions are conveniently exploited by certain software togls. such as the EMACS editor and the ATSIGN listing 
program developed at MIT. 

The double-quote character begins the printed representation of a string. Characters are read from the 
input stream and accumulated until another double-quote is encountered, except that if an escape 
character is seen, it is discarded, the next character is accumulated, and accumulation continues. When a 
matching double-quote is seen, all the accumulated characters up to but not including the matching 
double-quote are made into a simple string and returned. 

The backquote (accent grave) character makes it easier to write programs to construct complex data 
structures by using a template. As.an example, writing 

t(cond «numberp .x) ,@y) .(t (print .x) .@y» . 
is roughly equivalent to writing 



292 

(list 'cond 
(cons (list 'numberp x) y) 
(list* 't (list 'print x) y» 

COMMON USP REFERENCE MANUAL 

The general idea is that the backquote is followed by a template, a picture of a data structure to be built 
lbis template is copied, except that within the template commas can appear. Where a comma occurs, 
the form following the comma is to be evaluated to produce an object to be inserted at that point 
Assume b has the value 3, for. example, then evaluating the form denoted by " , (a b , b t (+ b 1 ) 
b )" produces the result (a b 3 4 b). 

If a comma is immediately followed by an at-sign ("@"), then the form following the at-sign is evaluated 
to produce a list of objects. These objects are then "spliced" into place in the template. For exaiilple, if 
x has the value (a b c), then , 

'(x ,x ,@x foo ,(cadr x) bar ,(cdr x) baz ,@(cdr x» 
=> (x (a b c) abc foo b bar (b c) baz b c) 

The backquote syntax can be 'summarized formally as follows. For each of several situations in which· 
backquote can be used, a possible interpretation of that situation as an equivalent form is given. Note 
that the form is equivalent only in the sense that when it is evaluated it will calculate the correct result 
An implementation is quite free to ~nterpret backquote in any way such that a backquoted form, when 
evaluated, will produce a result equa 1 to that produced by the interpretation shown here. 

• 'basic is the same as 'basic, that is, ( quo te basic), for any form basic that is not a list or a 
general vector. 

• ' .form is the same as form. for any fonn, provided that the representation of form does not 
begin with "@" or" .". (A similar caveat holds for all occurrences of a form after a comma.) 

• ' • @form is an error. 

• '( xl x2 x3 ... xn . atom) may be interpreted to mean (append xl x2 x3 
xn (q uo te atom», where the underscore indicates a transformation of an' xj as follows: 

o fOrm is interpreted as (1 ; s t t form), which contains a backquoted form that must 
then be further interpreted. 

o , form is interpreted as ( 1 i s t form). 

o , @form is interpreted sunply asJorm. 

• t (xl x2 x3 ... xn) may be interpreted to mean the same as the backquoted form t ( xl . . 

x2 x3 ... xn .' nil ), thereby reducing it to the previous case. 

• '( xl x2 x3 ... xn . ,form) may be interpreted to.mean (append J1 x2 ~ 
~ form), where the underscore indicates a transformatiop of an xj as above. 

• t (xl x2 x3 ... xn . ,@form) is an error. 

• • #( xl x2 x3 ... xn) may be interpreted to mean (app 1 Y' #' vector t (xl x2 x3 
... xn». 

No other uses of comma are permitted; in particular, it may not appear within the #.A or #S syntax. 

Anywhere",@" may be used, the syntax ", ." may be used instead to indicate that it is pennissible to _ 



O-IAPTER 22: INPUT /OUfPUT 293 

destroy the list produ'ced by the form following the " , ."; this may permit more efficient code, using 
nconc (page 221) instead of app"end (page 220), for example. 

If the backquote syntax is nested, the innermost backquoted form should be expanded first. This means 
that if several commas occur in a row, the leftmost one belongs to the innermost backquote. 

Once again, it is emphasized that an implementation is free to interpret a backquoted form as any fonn 
that, when evaluated, will produce a result that is e qua 1 to the result implied by the above definition. 
In particular, no guarantees are made as to whether the constructed copy of the template will or will not 
share list structure "with the template itself. As an example, the above definition implies that 

'«,a b) ,e ,@d) 

will be interpreted as if it were 
(append (list (append (list a) (list 'b) 'nil» (list c) d 'nil) 

but it could also be legitimately interpreted to mean any of the following: 
(append (list (append (list a) (list 'b») (list c) d) 
(append (list (append (list a) '(b») (list c) d) 
(append (list (cons.a '(b») (list c) d) 
(list* (cons a '(b» c d) 
(list* (cons a (list 'b» c d) 
(list* (cons a '(b» c (copy-list d» 

(There is no good reason why copy -1 i s t should be performed, but it is not prohibited.) 

The comma character is part of the backquote syntax and is invalid ifused other than inside the body of 
a backquote construction as described above. 

# The sharp-sign character is a dispatching macro character. It reads an optional digit string and then one 
more character, and uses that character to select a function to run as a macro-character function. 

The sharp-sign character also happens to be a non-terminating macro character. This is completely 
independent of the fact that it is a dispatching macro character; it is a coincidence that the only standard 
~ispatching macro character in COMMON LISP is also the only standard non-terminating macro ~haracter. 

See the next section for predefined sharp-sign macro characters. 

22.1.4. Sharp-Sign Macro Character Syntax 

The standard syntax includes forms introduced by a sharp sign ("I"), These take the general form of a 

sharp sign, a second character that identifies the syntax, and following arguments in some form. If the second 

character is a letter, then ca~e is not important; #0 and #0 are considered to be equivalent, for example. 

Certain sharp-sign forms allow an unsigned decimal number to appear between the sharp sign andfue 

second character; some other forms even require it Those forms that do not expliCitly permit such a number 

to appear forbid it. 

The currently-defined sharp-sign constructs are described below and summarized in Table 22-4; more are 

likely to be added in the future. However, the constructs UI!", "#?", "#[", "#]", "#{", and "I}" are 

explicitly reserved for the user and will never be defined by the COMMON LISP standard 

#\ '\x reads in as a character object that represents the character x. Also, '\name reads in" as the 



294 COMMON USP REFERENCE MANUAL 

#<space> signals error H{ undefined * 
#<newline> signals en-or HI balanced comment 
#<linefeed> signals en-or H} undefined * 
#<return> signals en-OT It undefined 
#<tab> signals en-or I@ undefined 
#! undefined * #A,#a array 
#" undefined #B,#b binary rational 
## reference to #= label #C,#e complex number 
#$ undefined #D,#d undefined 
#% undefined #E,#e undefined 
#& undefined #F,#f undefined 
Ht funct; on abbreviation #G,#g undefined 
#( simple vecto,r . #H,#h undefined 
#) signals en-or #1,#; undefined 
#* bit-vector #J,#j undefined 
#+ read-lime conditional #K,#k undefined 
D, load-lime evaluation #L,#l undefined 
#- read-lime cQndilional #M,#m undefined 
#. read-lime evaluation #N,#n undefined 
#1 undefined #0,#0 oclal rational 
#0 usedfor infi;x arguments #P,#p undefined 
#1 used for infix arguments #Q,#q undefined 
#2 usedfor infl;x arguments IR,#r radix-n rational 
#3 usedfor illfl~ arguments #S,#s structure 
#4 used for infix arguments #T,#t undefined 
#5 used for infix arguments #U,#u undefined 
#6 used for infi~ arguments #V,#v undefined 
#7 used for infix arguments #W,#w undefined 
#8 used for infix arguments #X,#x hexadecimal rational 
#9 used for infl~ arguments #Y,#y undefined 
#: uninterned S1mbol #Z,#z undefined 
#; undefined [ undefined * 
#< signals en-or #\ character object 
#= kibei following object ] undefined * 
#> undefined #A undefined 
#1 undefined * #- undefined 
#<rubout> undefined #- undefined 
#<backspace> signals en-or #<page> signals en-or 

* The combinations marked by an asterisk are explicitly reserved to the user and will never be defined by COMMON uSP. 

Table 22-4: Standard Sharp-Sign Macro Character Syntax 



, Of APTER 22: INPUT/OUTPUT 295 

character object whose name is name. Note that the backslash "\" allows this construct to be parsed 
easily by EMACS-like editors. 

In the single-character case, the character x must be followed by a non-constituent character, lest a 
name appear to follow the "#\". A good model of what happens is that after" #\ " is read, the reader 
backs up over the "\" and then reads an extended token, treating the initial "\" as an escape.~ 
character (whether it really is or not in the current readtable). 

Upper-case and lower-case letters are distinguished after "#\"; "#\A" and "#\a" denote different 
character objects. Any character works after #\, even those that are normally special to rea d, such 
as parentheses. Non-printing characters may be used after #\, although for them names are 
generally preferred. 

#\name reads in as a character object whose name is name (actually, whose name is 
( s t r i n 9 - u pea s e name); therefore the syntax is case-insensitive). The following names are
standard across all implementations: 

newline 

space 

The character that represents the division between lines. ' 

The space or blank character. 

The following names are semi-standard; if an implementation supports them, they should be used for 
the described characters and no others. 

The rubout or delete character. rubout 

page 

tab 

backspace 

return 

linefeed 

The formfeed or page-separator character. 

The tabulate character. 

The backspace character. 

TIle carriage return character. 

The line feed character. 

(In some implementations one or more of these characters might be a synonym for a standard 
character; for example, #\L inefeed might be the same as #\Newl ine.) The' name should have 
the syntax of a symbol. ' 

When the LISP printer types out the name of a special character, it uses the same table as the #\ 
reader; therefore any character name you see typed out is acceptable as input (in that 
implementatio~). Standard names are always preferred over non-standard names for printing. 

The following convention is' used in implementations that support non-zero bits attributes for 
character objects. If a name after #\ is longer than one character and has a hyphen in it, then it may 
be split into the two parts preceding and following the first hyphen; the first part (actually, 
string-upcas'e of the first part) may then be interpreted as the name or initial ofa bit, and the 
second part as the name of the character (which may in tum contain a hyphen and be subject to 
further splitting). 

For example: 
#\Control-Space 
#\C-M-Return 

#\Control-Meta-Tab 
#\H-S-M-C-~ubout 

If the character name consists of a single character, then that character is used. Another "\U may be 
necessary to quote the character. 

#\Control-% 
#\Control-\a 

#\Control-Meta-\" 
,#\Meta-> 

If an unsigned decimal integer appears between the "#ot and "\ ", it is interpreted as a font number, 



296 COMMON LISP REFERENCE MANUAL 

to become the c h a r - f 0 n t (page 196) of the character object. 

II t # t /00 is an abbreviation for (f u n c.t ion /00). foo may be the printed representation of any LISP 

object. This abbreviation may be remembered by analogy with the t macro-character, since the 
fun c t ion and quo t e special forms are similar in fonn. 

#( A series of representations. of objects enclosed by "#(" and")" is read as a simple vector of those 
objects. This is analogous to tIle notation for lists. 

If an unsigned decimal integer appears between the u#" and" ( ", it specifies explicitly the 1ep3th of 
the vector. In that case, it is an error if too many objects are specified before the closing ")", and if 
too few are specified the last object (it is an error if there are none in this case) is used to fill all 
remaining elements of the vector. 

For example: 
#(a b c c c c) 
#6(a b c c c c) 
#6(a b c) 
#6(a b c c) 

all mean the same thing: a vector of length 6 with elements a, b, and four instances of c. The 
notation "#( )" denotes an empty vector, as does "#O()" (which is legitimate because it is not the 
case that too few elements are specified). 

#* A series of binary digits (0 and 1) preceded by "#*" is read as a ~imple bit-vector containing those 
bits, the leftmost bit in the series being bit 0 of the bit-vector. 

If an unsigned decimal integer appears between the "#" and "*", it specifies explicitly the length of 
the vector~. In that case, it is a.n error if too many bits are specified, and if too few are specified the 
last one (it is an error if there are none in this case) is used to fill all remaining elements of the 
bit-vector. 

For example: 
#*101111 
#6.*101111 
#6*101 
116*10~1 

all mean the same thing: a vector of length 6 with elements 1, 0, 1, 1, 1, and 1. The notatation "li
n denotes an empty bit-vector, as does "#0 * "(which is legitimate because it is not the case that too 
few elements are specified). 

II:. # :foo requires foo to· have the syntax of an unqualified symbol name (no embedded colons). It 
denotes an unintemed symbol whose name is/oo. Every time> this syntax is encountered a different 
unintemed symbol is Greated. 

M. # .foo is read as the object resulting from the evaluation of the LISP object represented by foo, which 
may be the printed representation of any LISP object. The evaluation is done during the read 
process, when tbe "#. " construct is encountered. This, therefore, performs a "read-time" evaluation 
offoo. By contrast, "#, " (see oelow)perfonnsa "load-time" evaluation. 

Both "# . " and" # , " allow you, to inclu.<ie, in an expression being read, an object that does not have a 
convenient printed representation; instead of writing a representation for the object, you write an 
el!:pfC$ion that will compute lJle objc:ct. e 

'--' 



CHAPTER 22: INPUT/OUTPUT 297 

#, # ./00 is read as the object resulting from the evaluation of the LISP object represented by faa, which 
may be the printed representation of any LISP object. The evaluation is done during the read 
process, unless the compiler is doing the reading, in which case it is arranged that faa will be 
evaluated when the file of compiled code is loaded. This, therefore, perfonns a "load-time" 
evaluation of faa. By contrast. #. (see above) pcrfonns a "read-time" evaluation. In a sense, #, is 
like specifying (e vallo ad) to e val -w hen (page 57), while #. is more like specifying (e val 
comp i 1 e). It makes no difference when loading interpreted code, but when code is to be compiled, 
#. specifies compile-time evaluation and #, specifies load-time evaluation. 

#8 #brational reads rational in binary (radix 2). For example, #81101 <=> 13, and #b 10 1/ 11 <=> 
5/3. 

#0 #orational reads rational ih octal (radix 8). For example, #037/15 <=> 31/13, and #0777 <=> 
511. 

#X #xrational reads rational in hexadecimal (radix 16). The digits above 9 are the letters A through F 
(the lower-case letters a through f are also acceptable). For example, #x FOO <=> 3840. 

# nR # radixr rational reads rational in radix radix. radix· must consist of only digits, and it is read in 
decimal; its value must be between 2 and 36 (inclusive). 

#nA 

For example, #3 r 1 02 is another way of writing 11, and #11R32 is another way of writing 35. For 
radices larger than 10, letters of the alphabet are used in order for the digits after 9. 

The syntax #nAobject constructs an n-dimensional array, using object as·the value of the 
: in i t i al-contents argument to make-array (page 237). 

For example, "#2A( (0 1 5) (foo 2 (hot dog»)" represents a 2-by-3 matrix: 
015 
foo 2 (hot dog) 

Similarly. "#OAfoo" (or, more readably', "#OA foo") represents a zero-dimensional array whose 
sole element is the symbol foo. 

#5 The syntax #s (name slotl value! slot2 value2 ... ) denotes a structure. This is legal only if 
name is the name of a structure already defined by de f s t r u c t (page 255), and if the structure has a 
standard constructor macro, which it normally will. Let em stand for the name of this constructor 
macro; then this syntax is equivalent to 

#n= 

#. (em keyword! 'value! keyword2 • value2 .•• ) 

where each keywordj is the result of computing 

( ; n tern (s tr i n9 slotj) 'keyword) 

Obis computation is made so that one need not write a colon in front of every slot name.) The net 
effect is that the constructor macro is called with the specified slots having the specified ~alues (note 
that one does not write quote-marks in the #5 syntax). Whatever object the constructor macro 
returns is returned by the #S syntax. 

The syntax #n=object reads as whatever LISP object has object as its printed representation. However, 
that object is labelled by n, a required unsigned decimal integer, for possible reference by the syntax 
#n# (below). The scope of the label is the expression being read by the outermost call to read. 
Within this expression the same label may not appear twice. 



298 COMMON LISP REFERENCE MANUAL 

#Il# The syntax Inn, where n is a required unsigned decimal integer, serves as a reference to some object 
labelled by #n=; that is, #n# represents a pointer to the same identicar(eq) object labelled by #n=. 
This pennits notation of structures with shared or circular substructure. For example, a structure 
created in the variable y by this code: 

(setq x (list 'p 'q» 
(setq y (list (list 'a 'b) x 'foo x» 
(rplacd (last y) (cdr y» 

could be represented in this way: . 
«a b) . #1=(#2=(p q) foo #2# . #1#» 

Without this notation, but with * p r i n t -1 eng t h * (page 308) set to 10, the structure would print 
in this way: 

«a b) (p q) foo (p q) (p q) foo (p q) (p q) foo (p q) ... ) 

A reference #n# may only occur after a label #n=; forward references are not pennitted. In addition, 
the reference may not appear as the labelled object itself (that is, one may not write "#n= #n#"), 
because the object labelled by #n= is not well defined in this case: 

#+ The #+ syntax provides a read-time conditionalization facility; the syntax is "#+ feature form". If 
feature is "true", then this syntax represents a LISP object whose printed representation is form. If 
feature is "false", then this syntax is effectively whitespace; it is as if it did not appear. 

#-

The feature should be the printed representation of a symbol or list. If feature is a symbol, then it is 
true if and only if it is a member of the list that is the value of the global variable * f eat u res * 
(page 369). 

Compatibility note: MAc LISP uses the status special fonn for this purpose, and Lisp Machine LISP duplicates 
st a t us essentially only for the sake of ( s tat us f eat u res). The use of a variable allows one to bind the 
features list, for example when compiling. 

Otherwise/feature should be a boolean expression composed of and, or, and not operators on 
(recursive) feature expressions. 

For example, suppose that in implementation A the features sp; ce and perq are true, and in 
implementation B the feature 1 i s pm is true. Then the expressions on the left below are read the 
same as those on the right in implementation A: 

(cons #+spice "Spice" #+lispm "Lispm" x) 
(setq a '(1 2 #+perq 43 #+(not perq) 27» 
(let «a 3) #+(or spice lispm) (b 3» 

(foo ~» . 

In implementation B, however, they are read in this way: 
(cons #+spice "Spice" #+lispm "Lispm"· x) 
(setq a '(1 2 #+perq 43 #+(not perq) 27» 
(let «a 3) #+(or spice lispm) (b 3» 

(foo a» 

(cons "Spice" x) 
(setq a '(1 2 43» 
(let «a 3) (b 3» 

(foo a» 

(cons "Lispm" x) 
(setqa '(1 2 27» 
{let «a 3) (b 3» 

(foo a» 

The #+ construction must be used judiciously if unreadable code is not to result The user should 
make a careful choice between read-time conditionalization and run-time conditionalization. 

The #+ syntax operates by firs~ reading the feature specification, and then skipping over the /onn if 
the feature is "false". This skipping of a form is a bit tricky because of the possibility of user-defined 
macro characters and side effects caused by the "#." and u#, "constructions. It is accomplished by 
binding the variable * r ea d - sup P f e s s * to a non-nil value and then calling the read function. 
See the description of * rea d - sup pre s s * (page 287) for the details of this operation. 

#-feature fonn is equivalent to #+( not feature) form. 



CHAPTER 22: INPUT fOUTPUT 299 

#1 # I ... I # is treated as a comment by the reader,· just as everything from· a semicolon to the next 
newline is treated as a comment. Anything may appear in the comment, except that it must be 
balanced with respect to other occurrences of "# I" and ., I #". Except for this nesting rule, the 
comment may contain any characters whatsoever. 

The main purpose of this construct is to allow "commenting out" of blocks of code or data. The 
balancing rule allows such blocks to contain pieces already so commented out. In this respect the 
# I ... I # syntax of COMMON LISP differs from the / * ... * / comment syntax used by PLfI and c. 

#< This is not legal reader syntax. It is used in the printed representation of objects that cannot be read 
back in. Attempting to read a #< will cause an error. (More precisely, it is legal syntax, but the 
macro-character function for it signals an error.) 

#<space>, #<tab>, #<retum>, #<page> 
A # followed by a standard whitespace character is not legal read~r syntax. This is so that 
abbreviated forms produced via * p r in t -1 eve 1 * (page 308) cutoff will not read in again; this 
serves as a safeguard against losing information. (More precisely, it is legal syntax, but the macro
character function for it signals an error.) 

# ) This is not legal reader syntax. This is so that abbreviated forms produced via * p r i n t -1 eve 1 * 
(page 308) cutoff will not read in again; this serves as a safeguard against losing information. (More 
precisely, it is legal syntax, but the macro-character function for it signals an error.) 

22.1.5. The Readtable 

Previous sections have described the standard syntax accepted by the read function. This section discusses 

the advanced topic of altering the standard syntax, either to provide extended syntax for LISP objects or to aid 

the writing of other parsers. 

There is a data structure called the readtable that is used to control the reader. It contains information about 

the syntax of each character equivalent to that in Table 22-1. , Initially it is set up exactly as in Table 22-1 to 

give the standard COMMON LISP meanings to all the characters, but the user can change the meanings of 

characters to alter and customize the syntax of characters. It is also possible to have several readtabl~s 

describing different syntaxes and to .switch from ·one to another by binding the variable * rea d tab 1 e * . 

Even if an implementation supports characters with non-zero bits and font attributes, it need not (but may) 

allow for such characters. to have syntax descriptions in the readtable. However, every character of type 

stri ng-char must be represented in the readtable. 

*readtabl e* [Variable] 

The value of * readtab 1 e* is the current readtable. The initial value of this is a readtable set up 

for standard COMMON LISP syntax. You can bind this variable to temporarily change the readtable 

being used. 

To program the reader for a different syntax, a set of functions are provided for manipulating readtables. 

Nonnally, you should begin with a copy of the standard COMMON LISP readtable and then customize the 



300 COMMON USP REFERENCE MANUAL 

individual characters within that ·copy. 

copy-readtable &optional from-readtable to-readtable [Function] 
A copy is made of from-readtable, which defaults to the current readtable (the value of the global 

variable *readtable*). If from-readtable is nil, then a copy of a standard COMMON LIsp 
readtable is made. For example, 

(setq *readtable* (copy-readtable nil» 

will restore the input syntax to standard COMMON LISP syntax. even if the original readtable has 

been clobbered (assuming it is not so badly clobbered that you cannot type in the above 

expression!). On the other hand, 

(setq *readtable~ (copy-readtable» 

will merely replace the current readtable with a copy of itself. 

If to-readtable is unsupplied or nil; a fresh copy is made. Otherwise to-readtable must be a 

• readtable, which is destructively copied into. 

read tab 1 ep object 
re adtab 1 ep is true if its argument is a readtable, and otherwise is false. 

(readtablep x) <=> (typep x 'readtable) 

[Function] 

se t- syn tax -from-char to-char from-char &opt i on a 1 to-readtable 'from-readtable [Function] 
Makes the syntax of to-char in to-readtable be the same as the syntax of from-char infrom-readtable. 
The to-readtable defaults to the current readtable (the value of the global variable *readtabl e* 

(page 299», andfrom-readtable defaults to ni 1; meaning to use the syntaxes from the standard LISP 

readtable. 

Only attributes as shown in Table 22-1 are copied; moreover, if a macro character is copied, ,the 

macro definition function is copied also. However, attributes as shown in Table 22-3 are not 

copied; they are "hard-wired" into the extended-token parser. For example, if the definition of"S" 

is copied to "*", then "*" will become a constituent, but will be simply alphabetic and cannot be 

used as an exponent indicator for short-format floating-point number syntax. ' 

It "works" to copy a ,macro definition from a character such as "I" to another character; the 

standard definition for "I " looks for another character that is the same as the character that invoked 

it. It doesn't "work" to copy the definition of" (" to "{", for example; it can be done, but it lets 

one write lists in the form "{ abc ) ~', not. "{ abc} ", because the definition always looks for a 

closing ")". See the function read-del imited-l ist (page 312), which is useful in this 

connection. 

set-macro-character char jUnction &opt ;ona1 non-terminating-p readtable 
get-macro-character char &opt ional readtable 

[Function] 

[Function] 
set-macro-character causes char to be a macro character that when seen by read causes 

jUnction to be called., If non-tenninating-p is not nil (it defaults to nil), then it will be a 

non-terminating macro character: it may be embedded within extended tokens. 



O-IAPTER 22: INPUT /OUfPUT 301 

set-macro-character returns t. 

get-macro-character returns the function associated with char, and as a second value returns 

the non-terminating-p flag; it returns nil if char does not have macro-character syntax. In each 

case, readtable defaults to the current readtable. 

function is called with two arguments, stream and char. The stream is the input stream, and char is 
the macro-character itself. In the simplest case, jUnction may return a LISP object. This object is 

taken to be that whose printed representation was the macro character and any following characters 

read by the function. As an example, a plausible definition of the standard single-quote character 

is: 
(defun single-quote-reader (stream char) 

(declare (ignore char» 
(list 'quote (read stream t nil t») 

(set-macro-character #\' #'single-quote-reader) 

(Note that t is specified for the recursive-p argument to read; see section 22.2.1.) The function 

reads an object following the single-quote and returns a list of the symbol quo t e and that object. 

The char argument is ignored. 

The function may choose instead to return zero values (for example, by using (val u e s) as the 

return expression). In this case the macro character and whatever it may have read contribute 

nothing to the object being read. As an example, here is a plausible definition for the standard. 

semicolon (comment) character: 
(defun semicolon-reader (stream char) 

(declare (ignore char» 
;; First swallow the rest of the current input line. 
;; End-of-file is acceptable for terminating the comment. 
(do () «char= (read-char stream nil #\Newline t) #\Newline») 
;; Return zero values. 
(values» 

(set-macro-character #\; #'semicolon-reader) 

(Note that t is specified for the recursive-p argument to read-char; see section 22.2.1.) 

The function should not have any side-effects other than on the stream. Front ends (such as ed~tors 
and rubout handlers) to the reader may cause jUnction to be called repeatedly during the reading of 

a single expression in which the macro character oniy appears once, because of backtracking and 

restarting of the read operation. 

make-dispatch-macro-character char &optioilal non-terminating-p read table [Function] 
This causes the character char to be a dispatching macro character in read table (which defaults to 

the current readtable). If non-terminating-p is not ni 1 (it defaults to ni 1), then it will be a 

non-terminating macro character: it may be embedded within extended tokens. 

make-d i spatch-macro-character returns t. 

Initially every character in the dispatch table has a character-macro function that signals an error. 

Use set-di spatch-macro-character to define entries in the dispatch table. 



302 COMMON LISP REFERENCE MANUAL 

set-di spatch-macro-character disp-char sub-char function &opt iona1 readtable [Function] 
get-d is pa tch -macro-character disp-char sub-char &opt i ona 1 readtable [Function] 

I 

se t - dis pa tch -mac ro- ch aracte r causesfunction to be called when the disp-char followed by 

sub-char is read. The readtable defaults to the current readtable. The arguments and return values 

for function are the same as for normal macro characters, documented above under 

set-macro-charact~r (page 300), except thatfimction gets sub-char as its second argument, 

and also receives a third argument that is the non-negative integer whose decimal representation 

appeared between disp-char and sub-char, or nil if there was none. 

The sub-char may not be one of the ten decimal digits; they are always reserved for specifying an 

infix integer argument. Moreover, if sub-char is a lower-case character (see lower-case-p (page 

193»), its upper-case equivalent is used instead. (This is how the rule is enforced that the case of a 
dispatch sub-character doesn't matter.) 

set-di spatch-macro-character returns t. 

9 e t- dis pat c h- rna c r 0 - c h a rae t e r returns the macro-character function for sub-char under 

disp-char, or nil if there is no function associated with sub-char. 

If the sub-char is one of the ten decimal digits, get-d i spa tch -macro-ch aracter always 
returns nil. If sub-char is a lower-case character, its upper-case equivalent is used instead. 

For either function, an error is signalled if the specified disp-char is not in facta dispatch character 
in the specified readtable. It is necessary to use make-d i sp atch -macro-character (page 

301) to set up the dispatch character before specifying its sub-characters. 

As an example, suppose one would like #$foo to be read as if it were ( doll a r s foo). One might 
say: 

(defuo sharp-dollar-reader (stream subchar arg) 
(declare (ignore subchar arg» 
(list 'dollars (read stream toil t») 

(set-dispatch-macro-character #,# #'$ #'sharp-dollar-reader) 

Compatibility note: This macro-character- mechanism is· different from those in MAcLIsp, INTER LIsp, and Lisp Machine 
, LIsp. Recently LIsp systems have implemented very general readers. even readers so programmable that they can parse 

arbitrary compiled BNF grammars. Unfortunately, these readers can be complicated to use. This design is. an attempt to 
make the reader as simple as possible to understand, use, and implement Splicing macros have been eliminated; a recent 
informal poll indicates that no one uses them to produce other than zero or one value. The ability to access parts of the 
object preceding the macro character have been eliminated The MAcusp single-character-object feature has been 
eliminated, because it is seldom used and trivially obtainable by defining a macro. 

The user is encouraged to tum off most macro characters, tum others into single-character-object macros, and then use 
read purely as a lexical analyzer on top of which to build a parser. lt is unnecessary. however. to cater to more complex 
lexical analysis or parsing than that needed for CoMMON LIsP. 

e _. 



CHAPTER 22: INPUT/OUTPUT 303 

22.1.6. What the Print Function Produces 

The COM~10N LISP printer is controlled by a number of special variables. These are referred to in passing 

in the following discussion, and are documented fully at the end of this section. 

How an expression is printed depends on its data type, as described in the following paragraphs. 

Integers 
If appropriate, a radix specifier may be printed; see the variable * p r i n t - r a d i x * (page 307). If an 
integer is negative, a minus sign is printed and then the absolute value of the integer is printed. Integers 
are printed in the radix specified by the variable * p r i n t - bas e * (page 307) in the usual positional 
notation, most significant digit first. The number zero is represented by the single digit 0, and never has a 
sign. A decimal point may then.be printed, depending on the value of *p r in t - rad;'x * (page 307). 

Ratios 
If appropriate, a radix specifier may be printed; see the variable * p r in t - r ad i x * (page 307). If the 
ratio is negative, a minus sign is printed. Then the absolute value of the numerator is printed, as for an 
integer; then a "/"; then the denominator. The numerator and denominator are both printed in the radix 
specified by the variable * p r in t - bas e * (page 307); they are obtained as if by the n ume rat 0 r (page 
175) and denomi nator (page 175) functions, and so ratios are always printed in reduced form (lowest 
terms). 

Floating-poinl numbers 
If the sign of the number (as determined by the function fl oat-os i gn (page 177») is negative, then a 
minus sign is printed. Then the magnitude is printed in one of two ways. If the magnitude of the floating 
point number is zero, or between 10-3 (inclUSIve) and 107 (exclusive), it may be printed as the integer part 
of the number, then a decimal point, followed by the fractional part of the number; "there is always at least 
one digit on each side of the decimal point. If the format of the number does not match that specified by 
the variable *read-defaul t-fl oat-format* (page 311), then the exponent marker for that format 
and the digit "0" are also printed. For example, the base of the natural logarithms as a short-format 
floating-point number might be printed as "2 . 7182850". 

For non-zero magnitudes outside of the range 10-3 to 107, a floating-point number will be printed in 
"computerized scientific notation". The representation of the number is scaled to be between 1 (inclusive) 
and 10 (exclusive) and then printed, with one digit before the decimal point and at least one digit after the 
decimal point Next the exponent marker for the fonnat is printed, except that if the format of the 
number matches that specified by the variable *read-defau1 t-f1 oat-format* (page 311), then 
the exponent marker "E" is used. Finally, the power of ten by which the fraction must be multiplied to 
equal the original number is printed as a decimal integer. For example, Avogadro's number as a short
fonnat floating-point number might be printed as "6.02523". 

C omp/ex numbers 
A complex number is printed as "#C", an open parenthesis "( ", the printed representation of its real part, 
a space, the printed representation of its imaginary part, and finally a close parenthesis" ) ". 

Characters 
When * p r i n t - esc a p" e * (page 307) is nil, a character prints as itself: it is sent directly to the output 
stream. When ·print-escape* is not nil, then #\ syntax is used. For example, the printed 
representation of the character #\A with control and meta bits on would be "#\CONTROL -META-A", and 



304 COMMON USP REFERENCE MANUAL 

that of#\a with control and meta bits on would be "#\CONTROL -META-\a". 

Symbols 
When * p r i n t - esc ape * (page 307) is n i 1, only the characters of the print name of the symbol are 
output (but the case in which to print any upper-case characters in the print name is controlled by the 
variable *pr i nt -case* (page 308». 

The remaining paragraphs describing the printin& of symbols cover the situation· when 
* p r i n t - esc ape * is not n i 1 . 

Backslashes "\" and vertical bars" I" are included as required. In particular, backslash or vertical-bar 
syntax is used when the name of the symbol would be otherwise treated by the reader as a potential 
number (see section 22.1.2). . In making this decision, it is assumed that the value of * p r i n t - bas e * 
(page 307) being used for printing would be used as the value of * rea d - bas e * (page 287) used for 
reading; the value of *read-base* at the time of printing is irrelevant. For example, if the value of 
*pri nt-base* were 16 when printing the symbol face, it would have to be printed as "\FACE" or 
"\Face" or "I FACE I ", because the token "face" would be read as a hexadecimal number (decimal 
value 64206)if*read-base* were 16. 

The case in which to print any upper-case characters in the print name is controlled by the variable 
* p r i n t - cas e * . As a special case, n i 1 may sometimes be printed as "()" instead, when 
*print-escape* and *print-pretty* are both not ni 1. 

Package prefixes may be printed (using colon " : " syntax) if necessary. The rules for package qualifiers are 
as follows. When the symbol is printed, if it is in the keyword package then it is printed with a preceding 
colon; otherwise, if it is accessible in the cu~ent package, it is printed without any qualification; otherwise, 
it is printed with qualification. See *package* (page 149). 

A symbol that is uninterned (has no home package) is printed preceded by u#:" if the variables 
*pri nt-gensym* (page 308) and *print-escape* (page 307) are both non-ni 1; if it is ni 1, then 
the symbol is printed without a prefix, as if it were in the current package. 

Implementation note: Because the U#:" syntax does not intern the following symbol, it is necessary to use circular-list 
syntax if * p r i n t - c ire 1 e· (page 307) is not nil and the same unintemed symbol appears several times in an 
expression to be printed. For example, the result of 

(let «x .(make-symbol "FOO"») (list x x» 

would be printed as "(#:foo #:foo)" if ·print-circ1e* were nil, but as "(1I1-II:foo #1#)" if 
·pr i nt-ci rcl e* were not ni 1. 

The case in which symbols are printed is controlled by the variable * p r ; n t - cas e • (page 308). 

Strings 
The characters of the string are output in order. If· p r i n t - esc ape * (page 307) is not nil, a double 
quote""" is output beforehand and afterward, and all double quotes and escape characters are preceded 
by "\". The printing of strings is not affected by *print-array· (page 309). If the string has a fill 
pointer, then only those characters below the fill pointer are printed. 

Conses 
Wherever possible, list notation is preferred over dot notation. Therefore the following algorithm is used: 



CHAPTER 22: INPUT /OUfPUT 305 

1. Print an open parenthesis "(". 
2. Print the car of the cons. 
3. If the cdr is a con~, make it the current cons, print a space, and go to step 2. 
4. If the cdr is not null, print a space, a dot ., . "', a space, and the cdr. 
5. Print a close parenthesis")". 

This form of printing is clearer than showing each individual cons cell. Although the two expressions 
below are equivalent, and the reader will accept either one and produce the same data stmcture, the 
printer will always print such a data structure in the second fonn. 

(a . (b . «c. (d . nil» . (e . nil»» 
(a b (c d) e) 

The printing of conses is affected by the variables * p r i n t - 1 eve 1 * (page 308) and * p r i n t - 1 eng t h * 
(page 308). 

Bit-vectors 
A bit-vector is printed as "# *" followed by the bits of the bit-vector in order. If * p r i n t - a r r ay * (page . 
309) is n i 1, however, then the bit-vector is printed in a format (using "#<") that is concise but not 
readable. If the bit-vector has a fill pointer, then only those bits below the fill pointer are printed. 

Vectors 
Any vector other than a string or bit-vector is printed using general-vector syntax; this means that 
information about specialized vector representations will be lost. The printed representation of a zero
length vector is "#()". The printed representation of a non-zero-length vector begins with "#C'. 
Following that is printed the first element of the vector. If there are any other clements, they are printed 
in tum, with a space printed before each additional element. A close parenthesis H) " after the last element 
terminates the printed representation of the vector. The printing of vectors is affected by the variables 
,.. p r i nt -1 eve 1 * (page 308) and *p r i nt -1 eng th* (page 308). If the vector has a fill pointer, then 
only those elements below the fill pointer are printed. 

If * p r 1 n t - a r ray * (page 309) is n' i 1 , however, then the vector is not printed as described above, but in 
a fonnat (using "#<") that is concise but not readable. 

Arrays 
Nonnally any array other than ~ vector is printed using "#nA" fonnat. Let n be the rank of the array. 
Then "#" is printed, then n as a decimal integer, then "A", then n open parentheses. Next the elements are 
scanned in row-major order. Imagine the array indices being enumerated in odometer fashion, recalling 
that the dimensions are numbered from 0 to n-1. Every time the index for dimension j is incremented. 
the following actions are taken: 

1. If j < n -1, then print a close parenthesis. 

2. If incrementing the index for dimension Icaused it to equal dimension j, reset that index to 
zero and increment dimension j-I (thereby performing these three steps recursively), unless 
j=O, in which case simply terminate the entire algorithm. If incrementing the index for 
dimension j did not cause it to equal dimension j, then print a space. 

3. Ifj < n-I, then print an open parenthesis. 

This causes the contents to be printed in a fonnat suitable for the : in;"t 1 a 1 - con ten t s (page 



306 COMMON USP REFERENCE MANUAL 

238)argument to make-array. The lists effectively printed by this procedure are subject to truncation 
by * p r i n t - 1 eve 1 * (page 308) and * p'r i n t - 1 eng t h * (page 308). 

If the array is~of a specialized type, containing bits or string-characters, then the innermost lists generated 
by the algorithm given above may instead be printed using bit-vector or string syntax, provided that these 
innermost lists would not be subject to truncation by pr i n 1 ength. For example, a 3-by-2-by-4 array of 
string-characters that would ordinary be printed as 

#3A(((#\s #\t #\0 #\p) (#\s #\p #\0 #\t» 
((#\p #\0 #\s #\t) (#\p #\0 #\t #\s» 

; ((#\t #\0 #\p #\s) (#\0 #\p #\t #\s») 

may instead be printed more concisely as 
#3A(("stop" "spot") ("post" "pots") ("tops" "opts"» 

If * p r in t - ar ray * (page 309) is nil, then the array is printed in a format (using "#<") that is concise 
but not readable. 

Random-states 
COMMON LISP does not specify a specific syntax for printing objects of type random-state. However, 
every implementation must arrange to print a random-state object in such a way that, within the same 
implementation of COMMON LISP, the function read (page 310) can construct from the printed 
representation a copy of the random-state object as if the copy had been made by make-random-state 
(page 188). 

Pathnames 
COMMON LISP does not specify a specific syntax for printing objects of type pat h name. However, every 
implementation must arrange to print a pathname in such a way that, within the same implementation of 
COMMON LISP, the function read (page 310) can construct from the printed representation an equivalent 
instance of the pathname object. 

Structures defined by defstruct (page 255) are printed under the control of the :print-funct;'on 

option to defstruct. If the user does not provide a printing function explicitly, then a default printing 

function is supplied that prints the structure using #S syntax (see section 22.1.4). 

Any other types are printed in an implementation-dependent manner. It is recommended that 'printed 

represeqtations of all such objec,ts begin with the characters "#<" and end with ">" so that the reader will 
catch sU'ch objects and not permit them to be read under normal circumstances. It is specifically and 

purpose~y not required that a COMMON LISP implementation be able to print an object of type hash-tabl e, 

rea d t a: b 1 e, pac k age, s t ream, or fun c t io n in a way that can be read back in successfully by rea d; the 

use of"#<" syntax is especially recommended for the printing of such objects. 

When debugging or when frequently dealing with large or deep objects at top level, the user may wish to 

restrict the printer from printing large amounts of infonnation. "The variables • p r i n t -1 eve 1 * and 

* p r i n t - 1 eng t h * allow the user to control how deep the printer will print, and how many elements at a 

given level the printer will print Thus the user can see enough of the object to identify it without having to 

wade through the entire expression. 



CHAPTER 22: INPUT/OUTPUT 307 

*pri nt-escape* [Variable] 
When this flag is nil, then escape characters are not output when an expression is printed. In 

particular. a symbol is printed by simply printing the characters of its print name. The function 

pr i nc (page 316) effectively binds * pr i nt -es cape* to n i 1. 

When this flag is not nil, then an attempt is made to print an expression in such a way that it can 

be read again to produce an equa 1 structure. The function pr i n 1 (page 316) effectively binds 
*p r i n t -escape* to t .. 

Compatibility note: This flag controls what was called slashification in MAcusp. 

The initial value of this variable is t. 

*pri nt-pretty* [Variable] 
When this flag is nil, then only a small amount of whitcspace is output when printing an 

expression, as described above. 

When this flag is not nil, then the printer will endeavor to insert extra whitespace where 

appropriate to make the expression more readable. 

The initial value of * p r in t - pre t ty * is implcnlentation-dependent 

*pri nt-ci rcl e* [Variable] 
When this flag is nil (the default), then the printing process proceeds by recursive descent; an 

attempt to print a circular structure may lead to looping behavior and failure to terminate. 

When this flag is not nil, then the printer will endeavor to detect cycles in the structure to be 

printed, and to use #n= and #n# syntax to indicate the circularities. 

*pri nt-base* [Variable] 
The value of * p r i n t - bas e * determines in what radix the printer will print rationals. This may 

be any integer from 2 to 36, inclusive; the default value is 10 (decimal radix). For radices above 

'10, letters of the alphabet are used to represent digits above "9". 
Compatibility Dote: MACUSP calls this variable base, and its default value is 8, not 10. 

In both MACLISP and COMMON LISP, floating-point numbers are always printed in decimal, no 

matter what the value of*pri nt-base*. 

*print-radix* [VariaQle] 
If the variable * p r i n t - r ad i x * is non-nil, the printer will print a radix specifier to indicate the 

radix in which it is printing a rational number. To prevent confusion of the letter "0" and the digit 
"0", and of the letter "B" with the digit "8", the radix specifier is always printed using lower-case 

letters. For example, if the current base is twenty-four (decimal), the decimal integer twenty-three 

would printas "#24rN". If*pri nt-base* is 2.8, or 16, then the radix specifier used is #b, #0, 

or #x. For integers, base ten is indicated by a trailing decimal point, instead of using a leading 

radix specifier; for ratios, "# 1 0 r" is used. The default value of * p r i n t - r ad i x * is n i 1. 



308 COMMON LISP REFERENCE MANUAL 

*pr i nt -case~ [Variable] 
The read (page 310) function normal'ly converts lower-case letters appearing in symbols to upper 
case, sb that internally print names normally contain only upper-case characters. However, users 
may prefer to see output in lower case or mixed case. This variable controls the case (upper or 
lower) in which to print any upper-case characters in the names of symbols when vertical-bar syntax 
is not used. The value or. *pri nt-case* should be one of the keywords: upcase, : downcase, 
or : cap; ta' i ze; the initial value is : upcase. 

Lower-case characters in the internal print name are always printed in lower case, and are preceded 
by an escape character. Upper-case characters in the internal print name are printed in upper case, 
lower case, or in mixed case so as to capitalize words, according to the value of * p r ; n t - cas e * . 
The convention for what constitutes a "word" is the same as for the function 

s t r i n 9 - cap ita' i z e (page 250). 

*pri nt-gensym* [Variable] 
The *pri nt-gensym* variable controls whether the prefix "#:" is printed before symbols that 
have no home package. The prefix is printed if the variable is not n;'. The initial value of 
*print-gensym* is t. 

*p r i nt -, eve' * [Variable] 
* p r i nt -, ength* [Variable] 

The * p r i n t - , eve' * variable controls how many levels deep a nested data object will print If 
* p r ; n t- , eve' * is n;' (the initial value), then no control is exercised. Otherwise the value 
should be an integer, indicating the maximum level to be printed. An object to be printed is at. level 
0; its components (as of a list or vector) are at level 1; and so on. If an object to be recursively 
printed has components and is at a level equal or greater to the value of * p r i n t - , eve 1 *, then 
the object is printed as simply "II". 

The * p r ; n t - , eng t h * variable controls how many elements at a given level are printed. A value 
of n i 1 (the initial value) indicates that there be no limit to the number of components printed. 
Otherwise the value of * p r i nt -.' eng t h" should be an integer. Should the number of elements 
of a data object exceed the value * p r ; n t -1 eng t h *, the printer will print three dots " ... " in 
place of those elements beyond the number specified by * p r i n t - , eng t h *. (In the case of a 
'dotted list, if the list-contains exactly as many elements as the value of * p r i n t - , eng t h * , and in 
addition has the non-null atom terminating it, that terminating atom is printed, rather than printing 
" " ) .... 
* p r i n t - , eve' * and * p r i n t - , eng t h * affect the printing not only of lists, but also of vectors, 
arrays, and any other object printed with a list-like syntax. They do not affect the printing of 
symbols, strings, and bit-vectors. 

The LISP reader will normally signal an error when reading an expression that has been abbreviated 
because of level or length limits. This is because the "II" dispatch character normally signals an 
error when followed by whitespace or .. ) ", and because ..... " is defmed to be an illegal token, as e 

......."" 



CHAPTER 22: INPUT IOUfPUT 

are all tokens consisting entirely of periods (other than the single dot used in dot notation). 

As an example, here are the ways the object 
(if (member x items) (+ (car x) "3) '{foo . #(a bed "Baz"») 

would be printed for various values of *p r i nt -1 eve 1 * = v and * pr i nt -1 ength * = n. 
v n Outll.ut 
0 1 # 
1 1 (if ... ) 
1 2 (if # ... ) 
1 3 (if # # ... ) 
1 4 (if # # #) 
2 1 (if ... ) 
2 2 (if (memper x ... ) ... ) 
2 3 (if (member x items) (+ # 3) ... ) 
3 2 (if (member x ... ) ... ) 
3 3 (if (member x items) (+ (car x) 3) ... ) 

309 

3 4 (if (member.x items) (+ (car x) 3) '( foo #(a bed ... ») 

*pri nt-array* [Variable] 
If p r i n t - ar ray is n i 1 , then the contents of arrays other than strings are never printed. Instea<L 

arrays are printed in a concise form using "#<" that gives enough information for the user to be 

able to identify the array, but does not include the entire array contents. If p r i n t - a r r ay is not 

n i 1, non-string arrays are printed using "H( ", "H*", or. "HnA" syntax. The initial value of 

*print-array* is implementation-dependent 

22.2. Input Functions 

22.2.1. Input from Character Streams 

Many input functions take optional arguments called input-stream, eoferror-p, and eofvalue. The 

input-stream argument is the stream from which to obtain input; if unsupplied or n i 1 it defaults to' the value 

of the special variable *standard-input* (page 273). One may also specify t as a stream, meaning the 

value of the special variable * term; n a 1 ... i 0 * (page 274). 

The eoferror-p argument. controls what happens if input is from a file (or any other input source that has a 

definite end) and the end of the file is reached If eoferror-p is true (the default), an error will be signalled at 

end of file. If it is false, then no error is signalled, and instead the function returns eofvalue. 

Functions such as read (page 310) that read an "object" rather than a single character will always signal an 

error, regardless of eoferror-p, if the file ends in the middle of an object For example, if a file does not 

contain enough right parentheses to balance the left parentheses in it, read will complain. If a file ends in a 

symbol or a number immediately followed by end-of-file, read will read the symbol or number successfully 

and when called again will see the end-of-file and only then act according to eoferror-p. Similarly, the 

function read-1; ne (page 313) will successfully read the last lineofa file even if that line is terminated by 

end-of-file rather than the newline character. If a file contains ignorable text at the end. such as blank lines 

and comments, read will not consider it to end in the middle of an object. Thus an eQferror-p argument 



310 COMMON USP REFERENCE MANUAL 

controls what happens when the file ends between objects. 

Many input functions also take an argument called recursive-po If specified and not nil, this argument 

specifics that this call is not a "top-level" call to read, but an imbedded call, typically from the function for a 

macro-character. It is important to distinguish such recursive calls for three reasons. 

First, a top-level call establishes the context within which the #n= and #n# syntax is seoped. Consider, for 

example, the expression 
(cons '#3=(p q r) '(x y . #3#» 

If the single-quote macro-character were defined in this way: 
(set-macro-character 

#\' 
#'(lambda (stream char) 

(declare (ignored char» 
(list 'quote (read stream»» 

then the expression could not be read properly, because there would be no way to know when read is called 
recursively by the first occurrence of " ,,, that the label #3 = would be referred to later in the containing 

expression; there is no way to know because read could not know that it was called by a macro-character 
function rather than from "top level". The correct way to define the single-quote macro character uses the 

recursive-p argument: 
(set-macro-character 

#\' 

#'(lambda (stream char) 
(declare (ignored char» 
( lj s t 'q u 0 t e (r e ads t r ~ am nil nil t ) ) ) ) 

Second, a recursive call does not alter whether the reading process is to preserve whitespace or not (as 

determined by whether the top-level call was to read or read-preserving-whitespace). Suppose 

again that single-quote had· the first, incorrect, macro-character definition shown above. Then a call to 

read-p res erv i ng-wh i tespace that read the expression'" foo "would fail to preserve the space 
character following the symbol "foo" because the single-quote macro-character function calls read, not 
read':'preserv i ng-wh i tespace,. to read the following expression (in this case "foo"). The correct 

definition, which passes the value t for the recursive-p argument to read, allows the top-level call to: 

determine whether whitespace is preserved. 

Third, when end-of-file is encountered and the eofe"o,..p argument is not nil, the kind of error that is 
signalled may depend on the value of recursive-po If recursive-p is not nil, then the end-of-file is deemed to 

have occurred within the middle of a printed representation; if recursive-p is nil, then the end-of-file niay be 
deemed to have occurred between objects rather than within the middle of one. 

read &opt ional input-stream eofe"o,..p eofvalue recursive-p (Function] 
read reads in the printed represeI}.tation of a LISP object from input-stream, builds a corresponding 

LISP object, and returns the object. The details are explained above. 

Note that when the variable *read-suppress* (page 287) is not ni 1, then read reads in a 



CHAPTER 22: INPtJT IOUTPur 311 

. printed representation as best it can, but most of the work of interpreting the representation is 

avoided (the intent being that the result is to be discarded anyway); for example, all extended 

tokens produce the result n i 1. regardless of their syntax. 

*read-default-float-format* [Variable] 
The value of this vaIjable must be a type specifier symbol for a specific floating-point format; these 

include short-float, single-float, double-float, long-float, and may include 

implementation-specific types as well. The default value is s i ngl e-fl oat. 

*read-defaul t-float-format* indicates the floating-point fonnat to be used for reading 

floating-point numbers that have no exponent marker or have "e" or HE" for an exponent marker. 

(Other exponent markers explicitly prescribe the floating-point fonnat to be used.) The printer also 

uses this variable to guide the choice of exponent markers when plinting floating-point numbers. 

read - p reserv i n g-wh i te space &opt i on a 1 in-stream eoferror-p eofvalue recursive-p [Function] 
Certain printed representations given to read, notably those of symbols and numbers, require a 

delimiting character after them. (Lists do not, because the close parenthesis marks the end of the 

list) Normally read will throwaway the delimiting character if it is a white-space character, but 

will preserve it (using unread-char (page 314» if the character is syntactically meaningful, since 

it may be the start of the next expression. 

The function rea d - pre s e r v i n g - wh i t e spa c e is provided for some specjalized situations 

where it is desirable to determine precisely what character terminated the extended token. 

As an example, consider this macro-character definition: 
{defun slash-reader (stream char) 

(declare (ignore char» 
(do «path (list (read-preserving-whitespace stream» 

. (cons (progn (read-char stream nil nil t) 
(read-preserving-whitespace 

stream nil nil t» 
path») 

«not (char= (peek-char nil stream nil nil t) '\/» 
(cons 'path (nreverse path»») 

(set-macro-character '\1 "slash-reader) 

(This is actually a rather dangerous definition to make, because expressions such as (I x 3) will 

no longer be read properly. The ability to reprogram the reader syntax is very powerful and must 

be used with caution. This redefinition of" I" is shown here purely for the sake of example.} 

Consider now calling read on this expression: 

(zyedh lusr/games/zork lusr/games/boggle) 

The "I" macro reads objects separated by more u/" characters; thus' lusr/games/zork is 

intended to read as (path usr games zork). The entire example expression should therefore 

be read as . 

(zyedh (path usr games zork) (path usr games boggle» 

However, if read had been used instead of read-preserving-whi tespace, then after the 



312 COMMON LISP REFERENCE MANUAL 

reading of the symbol zork, the following space would be discarded. and then the next call to 

peek-char would see the foI.lowing "I", and the loop would continue, producing this 

in terpretation: 
(zyedh (path usr games zork usr games boggle» 

On the other hand, there are times when whitespace should be discarded. If one has a command 

interpreter that takes single-character commands, but occasionally reads a LISP object, then if the 

whitespace after a symbol were not discarded it might be interpreted as a command some time later 

after the symbol had been read. 

Note that read-preserving-whitespace behaves exactly like read when the recursive-p 
argument is not nil. The distinction is established only by calls with recursive-p equal to nil or 

omitted. 

read-de 1 i mi ted -1 is t char &opt i ona 1 input-stream recursive-p [Function] 
This reads objects from stream un'til the next character after an object's representation (ignoring 

whitcspace characters and comments) is char. (The char should not have whitespace syntax in the 

current readtable.) A list of the objects read is returned. 

To be more precise, read-delimited-1ist looks ahead at each step for the next non

whitespace character and peeks at it as if with pee k - c h a r . If it is char, then the character is 

consumed and the list of objects is returned. ,If it is a constituent ~r escape character, then rea d is 

used to read an object, which is added to the end of the list' If it is a macro character, the associated 

macro function is called; if the function returns a value, that value is added to the list The 

peek-ahead process is then repeated. 

This function is particularly useful for defining new macro-characters. Usually it is desirable for the 

terminating character char to be a terminating macro character so that it may be used to delimit 

tokens; however, read - de 1 i mited-1 is t makes no attempt to alter the syntax specified for char 
by the current readtable. The user must make any necessary changes to the readtable syntax 

explicitly. The following example illustrates this. 

Suppose one were to want "#{ abc ... z}" to read as a list of all pairs of the elements a, b, c, 
.•• , z; for example: 

#{ p q z a} , reads as ( (p q) (p z) (p a) (q z) (q a) (z a» 

This can be done by specifying a macro-character definition for "#f' that does two things: read in 

all the items up to the "r', and construct the pairs. read-del imited-1 ist performs the first 

task. 



CHAPTER 22: INPUT /OUfPur· 

(defun sharp-leftbrace-reader (stream char arg) 
(declare (ignore char arg» 
(mapcon #'(lambda (x) 

313 

(mapcar #'(lambda (y) (list (car x) y» (cdr x»), 
(read-delimited-list #'} stream t») 

(set-dispatch-macro-character #,# #'{ 
#'sharp-leftbrace-reader) 

(set-macro-character #'} (get-macro-character #') nil» 

(Note that t is specified for the recursive-p argument) 

It is necessary here to giv~ a definition to the character "}" as well to prevent it from being a 

constituent. If the.line 
(set-macro-character #'} (get-macro-character #') nil» 

shown above were not included, then the "}" in 
#{p q z a} 

would be considered a constituent character, part of the symbol named" a}". One could correct for 

this by putting a space before the "}", but it is better simply to use the call to 

set-macro-character. 

Giving "}" the same definition as the standard definition of the character" )" has the twin benefit 

of making it terminate tokens for use with read-de 1 i mi ted -1; stand also making it illegal for 

use in any other context (that is, attempting to read a stray"}" will signal an error). 

Note that read-del imited-l ist does not take an eoferror-p (or eofvalue) argument. The 

reason for this is that it is' always an error to hit end-of-file during the operation of 

read-delimited-list. 

read-line &optional input-stream eofe"or-p eofvalue recursive-p [Function] 
read -1 i n e reads in a line of text, terminated by a newline. It returns the line as a character string 

(without the newline character). This function is usually used to get a line of input from the user. A 

second returned value is a flag that is false if the line was terminated normally, or true if end-of-file 

terminated .the (non-empty) line. If end-of-file is encountered immediately (that is, appea~ to 

tenninate an empty line), then end-of-file processing is controlled in the usual way by the 

eoferror-p, eofvalue, and recursive-p arguments. 

The corresponding output function is wr i te-l i ne (page 317). 

read-char &opt ional input-stream eofe"or-p eofvalue' recursive-p [Function] 
read-char inputs one character from input-stream and returns it as a character object 

The corresponding output function is wr i te-char (page 317). 



314 COMMON USP REFERENCE MANUAL 

unread-char character &opt ional input-stream [Function] 
unread-char puts the character onto the front of input-stream. The character must be the same 

character that was most recently read from the input-stream. The, input-stream "backs up" over this 

character; when a character is next read (rom input-stream, it will be the specified character, 

followed by the previous contents of input-stream. un re ad - ch ar returns n i 1. 

One may only apply unread-char to the character most recently read from input-stream; 
moreover, one may not invoke un rOe ad - ch ar twice consecutively without an intervening 

read -ch ar operation. The result is that one may back up only by one character, and one may not 

insert any characters into the input stream that were not already there. 
Rationale: This is not intended to be a general mechanism, but rather an efficient mechanism for allowing the 
LISP reader and other parsers to perform one-character lookahead in the input stream. This protocol admits a 
wide variety of efficient implementations, such as simply decrementing a buffer pointer. To have to specify the 
character in the call to unread-char is admittedly redundant, since at any given time there is only one 
character that may be legally specified. The redundancy is intentional, again to give the implementation 
14titude. 

peek -ch ar &opt i on a 1 peek-type input-stream eoferror-p eofvalue recursive-p [Function] 
What pee k - c h a r does depends on the peek-type, which defaults to n i ,. With a peek-type of 

n i', peek -char returns the next character to be read from input-stream, without actually 

removing it from rhe input stream. The next time input is done from input-stream the character will 
still be there. It is as if one had called re ad - char and then un r~ ad - ch ar in succession. 

If peek"'" type is t, then peek -ch ar skips over whitcspace characters (but not comments!). and then 

performs the peeking operation on the next character. This is useful for finding the (possible) 

beginning of the next printed representation of a Lisp object. As above, the last character (the one 

that starts an object) is not removed from the input stream. 

If peek-type is a character object, then peek - c h a r skips over input characters until a character that 

is ch ar = (page 194) 'to that object is found; that character is left in the input stream. 

1 i sten &opt iona' input-stream [Function] 
The predicate lis ten is true if ~ere is a character immediately available from input-stream, and is 

false if not. This is particularly useful when the stream obtains characters from an interactive device 

such as a keyboard; a call to read-char (page 313) would simply wait until a character was 

available, but 1 is ten can sense whether o~ not input is available and allow the program to decide 

whether or not to attempt input On a non-interactive 'stream. the general rule is that 1 is ten is 
true except when at ~nd-of-file. 

read-char-no-hang &optional input-stream eoferror-p eofvalue recursive-p [Function] 
This function is exactly like read-char (page 313), except that if it would be necessary to wait in: 
order to get a character (as from a keyboard), nil is immediately returned without waiting. This 

allows one efficiently to check for input being available and get the input if it is. This is different 

from the listen (page 3,14) operation in two ways. First, read-char-no-hang potentially 

actually reads a character, while , i S ten never inputs a character. Second,' i s ten does not 



CHAPTER 22: INPUT /OUfPUf 315 

distinguish between end-of-file and no input being available, while read-char-no-hang does 

make that distinction, rcturn~ng eofvalue at end-of-file (or signalling an error if no eoferror-p is 

true), but always returning nil if no input is available. 

clear-input &optional input-stream [Function] 
This clears any buffered input associated with input-stream. It is primarily useful for clearing 

type-ahead from keyboards when some kind of asynchronous error has occurred. If this operation 

doesn't make sense for the stream involved, then c1 ear- input does nothing. c1 ear- input 

returns nil. 

read-fram-string string &optional eoferror-p eofvalue &key :start :end [Functibn] 
:preserve-whitespace 

The characters of string are given successively to the LISP reader, and the LISP object built by the 

reader is returned. Macro characters and so on will all take effect. 

The arguments: s tart and: end delimit a substring of string beginning at the character indexed 

by : s tar t and up to but not including the character indexed by : end. By default : s tar t is 0 

(the beginning of the string) and : end is ( 1 eng t h string). This is as for other string functions. 

The flag : pre s e r v e - w hit e spa c e, if provided and not nil, indicates that the operation should 

preserve whitespace as for re ad - pres er vi n g-wh i te s pace (page 311). It defaults to nil. 

The arguments eoferror-p and eofvalue control the action if the end of the (sub)string is reached 

before the operation is completed, as with other reading functions; reaching the end of the string is 

treated as any other end-of-file event. 

read - from - s t r i n 9 returns two values; the first is the object read and the second is· the index of 

the first character in the string not read. If the entire string was read. this will be either the ~ength of 

the string or one greater than the length of the string. The parameter: preserve-wh i tespace 

may affect this second value. 

For example: 

(read-fram-string "(a be)") => (a b c) and 7 

parse-integer string &key :start :end :radix :junk-a11owed [Function] 
This function examines the substring of string delimited by : start and: end (which defaul~~to 

the beginning and end of the string). It skips over whitespace characters and then attempts to paJ;se 

an integer. The : rad i x parameter defaults to 10, and must be an integer between 2 and 36. ~ 

If : j un k - a 11 owed is not n; 1, then the first value returned is the integer parsed, or n; 1 if no 

syntactically correct integer was seen. 

If: junk-allowed is n; 1 (the default), then the entire substring is scanned. The returned value 

is the number parsed. An error is signalled if the substring does not consist entirely of the 

representation of an integer, possibly surrounded on either side by whitespace characters. 



316 COMMON LISP REFERENCE MANUAL 

In either case, the second value is the, index into the string of the delimiter that tenninated the 

parse, or the index beyond the substring if the parse terminated at the end of the substring (as will 

always be the case if junk-allowed is false). 

Note that parse-integer does not recognize the syntactic radix-specifier prefixes #0, #8, #X, 

and #nR, nor does it recognize a trailing decimal point. It pennits only an optional sign ("+" or 

"-") followed by a non-empty sequence of digits in the specified radix. 

22.2.2. Input from Binary Streams 

re ad -byte binary input-stream &op t i on a 1 eoferror-p eofvalue [Fullction] 
rea d - by t e reads one ·byte from the binary input-stream and returns it in the fonn of an integer. 

22.3. Output Functions. 

22.3.1. Output to Character Streams 

These functions all take an optional argument called output-stream, which is where to send the output. If 

unsupplied or nil, output-stream defaults to the value of the variable *s tandard-output * (page 273). If 
it is t, the value of the variable * te rmi n a 1 - i 0 * (page 274) is used. 

write object &key :stream :escape :radix :base 
:circle :pretty :level :length 
:case :gensym :array 

[function] 

The printed representation of object is written to the output stream specified by : stream, which 
defaults to the value of *standard-output* (page 273). 

The other keyword, arguments specify values used to control the generation of the printed 

representation. 5th defaults to the value of the corresponding global variable: see 
*pr i nt-escape* (pag~ 307), *p r i nt - radi x * (page 307), *p r i nt -base* (page 307), 
*print-circ~e* (page 307), *print-pretty* (page 307), *print-level* (page 308), 
*print-length* (page 308), *print-case* (page 308), *pri"!t-gensym* (page 308),· 
and * p r i n t - a r ray * (page 309). (This is the means ·by which these variables affect printing 
operations: supplying default values for the wr i t e function.) Note that the ·printing of symbols is 
also affected by the value of the variable *package* (page 149). 

w r i t e returns object. 

PI" i n 1 object &opt i ona 1 output-stream 
p r i n t object &0 p t ion a 1 output-stream 

[Function] 
[Function] 

pprint object &optional output-stream [Function] 
princ object &optional output-stream [Function] 

p r i n 1 outputs the printed representation of object to output-stream, using escape characters. 

Roughly speaking, the output from pI" in 1 is suitable for input to the function read (page 310). e --



CHAPTER 22: INPUT/OUTPUT 317 

. p r i n 1 returns object. 

( p r in 1 object output-stream) 
<-> (write object :stream output-stream:eseape t) 

p r i ntis just like p r i n 1 except that the printed representation of object is preceded by a newline 

(see terpri (page 318» and fol1ow~d by a space. pr i nt returns object. 

p p r in t is just like p r i n t except that the trailing space is omitted, and the object is printed with 

the * p r in t - pre t ty * (page 307) flag non-n i 1 to produce "pretty" output. p p r in t returns no 

values (that is, it returns what the expression (val ues ) returns: zero values}. 

p r i n e is just like p r i n 1 except that the output has no escape characters. A symbol is printed ~ 

simply the characters of its print name; a string is printed without surrounding double-quotes; ana -

there may be differences for other data types as well. The general rule is that output from p r i n e is 
intended to look good to people, while output from p r i n 1 is intended to be acceptable to the 

function read (page 310). prine returns object. 
(pri ne object output-stream) 

<-> (write object :streamoutput-stream :eseape nil) 
Compatibility note: In MACLIsp. the functions p r i n 1. p r i n t. and p r inc return t, not the argument object. 

write-to-string object &key :eseape :radix :base [Funtlioll] 
:eirele :pretty :level ~length 

:ease :gensym :array 

p r i n 1- to - s t r i n 9 object [Function] 
p r i n e - to - s tr i n 9 object [Function] 

The object is effectively printed, as ifby wr i te (page 316), pr in 1 (page 316), or pr inc (page 

316), and the characters that would be output are made into a string, which is returned. 

wr i te-char character &opt i ona 1 output-stream [Function] 
wr i te-ehar outputs the character to output-stream, and returns character. 

write-string string &optional.output-stream &key :start :end [Function] 
write-line string &optional output-stream &I<ey :start :end . [Function] 

wr i te - s t r in g writes the characters of the specified substring of string to the output-stream. The 

: start and : end parameters delimit a substring of string in the usual manner (see chapter 14J. 

write-l ine does the same thing, but then outputs a newline afterwards. (See read-lin& 
~ 

(page 313).) In either case, the string is returned (not the substring delimited by : s tart and 

: end). 

In some implementations these may be significantly more efficient than an explicit loop using 

write-char. 



318 COMMON LISP REFERENCE MANUAL 

terpri &opt ;ona1 output-stream 
fresh-1 ine &opt iona1 output-stream 

[Function] 
[Fullction] 

terpri outputs a newline to output-stream. It is identical in effect to 

(write-char #\Newl ine output-stream) 

t e r p r; returns n i 1. 

f res h -1 in e is similar to te r p r;, but outputs a newline only if the stream is not already at the 

start of a line. (If for some reason this cannot be determined, then a newline is output anyway.) 

This guarantees that the stream will be on a "fresh line" while consuming as little vertical di:;tance 

as possible. f res h -1 i ne is a (side-effecting) predicate that is true if it output a newline, and 

otherwise false. 

finish-output &optiona1 output-stream [Function] 
force-output &opt i onal output-stream [Function] 
clear-output &opt ional output-stream [Function] 

Some streams may be implemented in an asynchronous or buffered manner. The function 

finish-output attempts to ensure that all output sent to output-stream has reached its 

destination, and only then returns nil. force-output initiates the emptying of any internal 

buffers, but returns nil without waiting for completion or acknowledgement. 

The function cl ear-output, on the other hand, attempts to abort any outstanding output 

operation in progress, to allow as little output as possible to continue to the destination: This is 

useful, for example, to abort a lengthy output to the terminal when an asynchronous error occurs. 

c 1 ear - 0 u t put returns nil. 

The precise actions of all three of these operations are implementation-dependent. 

The function format (page 318) is very useful for producing nicely formatted text, producing good~ 

looking messages, and so on. forma t can generate a string or output to a stream. 

22.3.2. Output to Binary Streams 

wr i te-byte integer binary-out put-stream [Function] 
wri te- byte writes one byte, the value of integer. It is an error if integer is not of the type 

specified as the : e1 ement-type argument to open (page 345) when the stream was created. 

22.3.3. Formatted Output to CbaracterStreams 

format destination control-string &res t arguments [Function] 
format is used to produce formatted output. format outputs the characters of control-string, 
except that a tilde (""''') introduces a directive. The character after the tilde, possibly preceded by 

prefix parameters and modifiers, specifies what kind of formatting is desired; Most directives use _ 

one or more elements of arguments to create their output; the typical directive puts the next _ 



CHAPTER 22: INPUT /OUfPUT 319 

element of arguments into the output, fonnatted in some special way. It is an error if no argument 

remains for a directive requiring an argument, but it is not an error if one or more arguments 

remain unprocessed by a directive. 

The output is sent to destination. If destination is nil, a string is, created that contains the output; 

this string is returned as the value of the call to forma t. In all other cases forma t returns nil, 

perfonning output to destination as a side effect. If destination is a stream, the output is sent to it. 

If destination is t, the' output is sent to the stream .that is the value of the variable 

*standard-output* (page 273). If destination is a string with a fill pointer, then in effect the 

output characters are added to the end of the string (as if by use of vee tor - pus h - ext end (page 

245)). 

The forma t function includes some extremely complicated and specialized features. It is not necessary to 

understand all or even most of its features to use forma t effectively. The beginner should skip over 

anything in the following documentation that is not immediately useful or clear. The more sophisticated 

features are there for the convenience of programs with complicated formatting requirements. 

A forma t directive consists of a tilde ("-"), optional prefix parameters separated by commas,' optional 

colon C' :") and atsign ("@") modifiers, and a single character indicating what kind of directive this is. The 

alphabetic case of the directive character is ignored. The prefix parameters are generally integers, notated as 

optionally signed decimal numbers. Examples of control strings: 

"-S" ; This is an S directive with no parameters or modifiers. 
,,-3 , - 4 : @ S " ; This is an S directive with two parameters, 3 and -:- 4, 

; and both the colon and atsign flags. 
" .... t +4S" ; Here the first prefix parameter is omitted and takes 

on its default value, while the second parameter is' 4. 

Sometimes a prefix parameter is used to specify a character, for instap.ce the padding character in a right- or 

left-justifying operation. In this case a single quote (" t ") followed by the desired charactef may be used as 

a prefix parameter, to mean the character object that is the character following the single quote. For example, 

you can use "-5, 'Od" to print an integer in decimal radix in five columns with leading zeros, or """5 t '*d" 

to get leading asterisks. 

In place of a prefix parameter to a directive, you can put the letter "V", which takes an argument from 

arguments as a parameter to the directive. Normally this should be an integer or character object, as 

appropriate. This feature allows variable column-widths and the like. If the argument used by a V parameter 

is nil, the effect is as if the parameter had been omitted. You may also use the character "#" in place of a 

parameter; it represents the number of arguments remaining to be processed. 

It is an error to give a format directive more parameters than it is described here as accepting. It is an also 

error to give colon or atsig1'\ modifiers to a directive in a combination not specifically described here as being 

meaningfuI. 

Here are some relatively simple examples to give you the general flavor of how forma t is used. 



320 COMMON LISP REFERENCE MANUAL 

(format nil "foo") => "foo" 
(setq x 5) 
{format nil 
(format nil 
{format nil 
(format nil 

"The 
"The 
"The 
"The 

answer is 
answer is 
answer is 
answer is 

-D. " x) => 
-3D. " x) => 
-3, 'OD. " x) 
.... :0. " (expt 

"The answer is 5." 
"The answer is 5." 
=> "The answer is 005. " 
47 x) ) 

=> "The answer is 229,345,007. 
(setq y "elephant") . 
(format nil "Look at the -A!" y) => "Look at the elephant!" 
(format nil "Type -:C to -A." 

(set-char-bit #\D :control t) 
"delete all your files") 

=> "Type Control-D to delete all your files." 
(setq n 3) 
(format nil "-0 item-:P found." n) => "3 items found." 
(format nil "-R dog-:[s are-; is-] here." n (= n 1» 

=> "three dogs are here." 
(format nil "-R dog-:*-[s are-; is .... :;s are-] here." n) 

=> "three dogs are here." 
(format nil "Here -[are-;is-: ;are-] -:*-R pupp-:@P." n) 

=> "Here are three puppies." 

" 

The directives will now be described. The term arg in general refers to the next item of the set of arguments 
to be processed. The word or phrase at the beginning of each description is a mnemonic (not necessarily an 
<.lCCur3te one!) for the directive. 

Ascii. An arg, any LISP object, is printed without escape characters (as by p r inc (page 316». In 
particular, if arg is a string, its characters will be output verbatim. If arg is n 11 it will be printed as 
"n1 1"; the colon modifier (-:A) will cause an arg of ni 1 to be printed as "( )", but if arg is a 

. composite structure such as a list or vector any contained occurrences of nil will still be printed as 
"n i 1 ". 

- mincolA inserts spaces on the right, if necessary, to make the width at least mincoi columns. The @ 

modifier causes t;he spa<;es to be inserted pn the left rather than the right. 

- minco/ , colinc , minpad, padcharA is the full fonn of --A, which allows elaborate control of the 
padding. The string is padded on the right (or on the left if the @ modifier is used) with at least 
min pad copies of padcha~ padding Gharacters are then inserted colinc characters at a time until the 
total width i$ at least mincol. The defaults are 0 for mincoi and minpad, 1 for colinc, and the space 
character for pa.dchtir. 

-S . S-expression. This is just like -A, but arg is; printed wlth escape characters (as by p r i n 1 (page 
316) rath~r than p r 1 n c). The output is therefore suitable for input to r'ead (page 310). -5 
accepts all the arguro~nts, <md modifi~rs that -'fA does. 

~Q' DecimaL. An arg, which should: be an integer, is printed in decimal radiXL -0 will never put a 
q.eciInal point after the number. 

"!!minco/D uses a column width of mincoi; spaces are. inserted on the left if the number requires 
fewer than mincol columns. for its digits and sign. If the number doesn't fit in: mincol column~ 
additional columns are usecl as needed .. 

-minco/. padcharfJ uses padchqr as the pad character instead of space. 

'-



CHAPTER 22: INPUT/OUTPUT 321 

-s 

..... 0 

-x 

If arg is not an integer, it is priilted in ..... A fonnat and decimal base. 

The @ modifier causes the number's sign to be printed always~ the default is to print it only if the 
number is negative. The : modifier causes commas to be printed between groups of three digits; 
the third prefix parameter may be used to change the character used as the comma. Thus the most 
general fonn of ..... O is -minco!, padehar, eommachaTO. 

Binary. This is just like ..... 0 but prints in binary radix (radix 2) instead of decimal. The full form is 
therefore .... mineo!, padehar, eommaeharB. 

Octal. TIlis is just like -0 but prints in octal radix (radix 8) instead of decimal. The full form is 
therefore ..... mincol ,padehar , eommaeharO. 

Hexadecimal. TIlis is just like ..... 0 but prints in hexadecimal radix (radix 16) instead of decimal. 
The full form is therefore"'" minco!, padchar, commacharX. 

Radix. - nR prints arg in radix n. The modifier flags and any remaining parameters are used as for 
the .... 0 directive. Indeed, ..... O is the same as ""'1 OR. The full form here is therefore 
.... radix, minco!, padchar, commacharR. 

If no arguments are given to -R, then an entirely different interpretation is given. The argument 
should be an integer; suppose it is 4. 

• -R prints arg as a cardinal English number: "four". 

• - : R prints arg as an ordipal Engli~h number: "f 0 u r t h ". 

• -@R prints arg as a Roman numeral: "IV". 

• - : @ R prints arg as an old Roman numeral: "I I I I ". 

-P Plural. If arg is not eq 1 to the integer 1, a lower-case "s" is printed; if arg is eq 1 to 1, nothing is 
printed. (Notice that if argis a floating-point 1. 0, the "s" is printed.) 

... : P does the same thing, after doing a .... : * to back up one argument; that is, it prints a lower-case 
"s" if the last argument was not 1. This is useful after printing a number using -0. 

-@P prints" y" if the argument is 1, or "i e s" if it is not. -: @P does the same thing, but backs up 
first. 

(format nil "-0 tr-:@P/-O win-:P" 7 1) => "7 tries/l win" 
(format nil "-0 tr-:@P/-O win-:P" 1 0) => "1 try/O wins" 
(format nil "-0 tr-:@P/-O win-:P" 1 3) => "1 try/3 wins" t 

J.:, 

-C Character. The next arg should be a character; it is printed according to the modifier flags. 

-C prints the character in an implementation-dependent abbreviated formal This format should 
be culturally compatible with the host environment. 

- : C spells out the names of the control bits, and represents non-printing characters by their names: 
"Control -Meta-F", "Control -Return", "Space". This is a "pretty" format for printing 
characters. t 
-: @C prints what -: C would, and then if the character requires unusual shift keys on the keyboard 
to type it, this fact is mentioned: "Contro 1 -8 (Top - F) n. This is the format.used for telling the 



322 COMMON USP REFERENCE MANUAL 

user about a key he is expected to type, for instance in prompt, messages. The precise output may 
depend not only on the implementation, but on the particular liD devices in use . 

.... @C prints the character in a way that the LISP reader can understand, using "#\" syntax. 

Rationale: In some implementations the -S directive would accomplish this also, but the -c directive is 
compatible with LISP dialects that do not have a character data type. 

-F Fixed-jormatjloating-point. The next arg is printed as a floating-point number. 

The full form is .... w, d t k, overjlowehar t padeharF. The parameter w is the width of the field to be 
printed; d is the number of digits to print after the decimal point; k is a scale factor that defaUlts to 
zero. 

Exactly w characters will be output. First leading copies of the character padehar (which defaults'to 
a space) are printed, iflJ,ecessary to pad the field on the left. If the arg is negative, then a minus sign 
"-" is printed; if the arg is not negative, then" a plus sign" +" is printed if and only if the @ modifier 
was specified. Then a sequence of digits, containing a single embedded decimal point" . ", is 
printed; this represents the magnitude of the value of arg times 10k, rounded to d fractional digits. 
(When rounding up and rounding down would produce printed values equidistant from the scaled 
value of arg, then the implementation is free to use either one. For example, printing the argument 
6.375 using the format -4, 2F may correctly produce either"6. 37" or "6.38".) Leading zeros 
are not permitted, except that a single zero digit is output before the decimal point if the printed 
value is less than one, except that this single zero digit is not output after all if w= d+ 1. 

If it is impossible to print the value in the required format in a field of width w, then one of two 
actions is taken. If the parameter overflowehar is specified, then w copies of that parameter are 
printed instead of printing the scaled value of argo If the overflowchar parameter is omitted, then 
the scaled value is printed using more than w characters, as many more as may be needed. 

If the w pararnetcr is omitted, then 1h:e field is of variable width. In effect a value is chosen for" win 
such a way that no leading pad characters need to be printed and exactly d characters will follow the 
decimal point. For example, the directive .... t 2 F will print exactly two digits after the decimal point 
and as many as necessary before the decimal point 

If the parameter d is omitted, then there is no constraint on the number of digits to appear after the 
decimal point. A value is chosen. for d in such a way that as many digits as possible may be prin'ted 
subject to the width constraint imposed by the parameter wand the constraint that no trailing zero 
digits may appear in the fraction, except that if the fraction to be plinted is zero then a single zero 
digit should appear after the decimal point, if permitted by the width constraint 

If both wand d are omitted, then the effect is to print the value using ordinary free-fonnat output; :. 
pr i n 1 (page 316) uses this format for numbers whose magnitude is between 10-3 (inclusive) and 
107 (exclusive). 

If w is omitted, then if the magnitude of arg is so large (or, if d is also omitted, so small) that more 
than 100 digits would have to be printed, then an implementation is free, at its discretion, to print 
the number using exponential notation instead, as if by the directive "-E" (with all parameters to 
-E defaulted, not taking their values from the -F directive). 

If arg is a rational number, then it is coerced to be a sin 9 1 e - flo a t and then printed. 
(Alternatively, an implementation is permitted to process a rational number by any other method 
that has essentially th<e same behavior but avoids such hazards as loss of precision or overflow 
because of the coercion. ,However" note that if wand dare unspecified and the number has no exC!ct 
decimal representation, for example 1/3, some precision cutoff must be chosen by the 
implem~ntation: only a finite number of digits may be printed.) 

If arg is a complex number or som.e non-numeric object, then it is printed using the fonnat directive 



CHAPTER 22: INPUT/OUTPUT 323 

. -M), thereby printing it in decimal radix and a minimum field width of w. (If it is desired to print 
each of the real part and imaginary part of a complex number using a -F directive, then this must 
be done explicitly with two -F directives and code to extract the two parts of the complex number.) 

Examples: 
(defun foo (x) 

(format nil "-6,2FI-6,2,1, '*FI-6,2" '?FI-6FI-,2FI-F" 
.x x x x x x» 

(foo 
(foo 
(foo 
(foo 
(foo 

3.14159) 
-3.14159) 
100.0) 
1234.0) 
0.006) 

=>" 3.141 31.421 3.1413.141613.1413.14159" 
=> " -3.141-31.421 -3.141-3.1421-3.141~3.14159" 
=> "100.001******1100.001 100.01100.001100.0" 

=> "1234.001******17777771 1234.01 1234.001 1234.0" 
=>" 0.011 0.061 0.011 0.00610.0110.006" 

Compatibility notc: The -F directive is similar to the "F w. ef' edit descriptor in FORTRAN. 

The presence or absence of the @ modifier corresponds to the effect of the FORTRAN SS or SP edit descriptor; 
nothing in CoMMON LISP corresponds to the FORTRAN S edit descriptor. 

The scale factor specified by the parameter k corresponds to the scale factor k specified by the FORTRAN kP edit 
descriptor. 

In FORTRAN the leading zero that precedes the decimal point when the printed value is less than one is optional; 
in COMMON LISP the implementation is required to print that zero digit 

In COMMON LISP, the wand d parameters are optional; in FORTRAN they are required 

In COMMON LISP, the pad character and overflow character are user-specifiable; in FORTRAN they are always 
space and asterisk, respectively. 

A FORTRAN implementation is prohibited from printing a representation of negative zero: COMMON LIsp 
permits the printing of such a representation when appropriate. 

In MAcLISP and Lisp Machine LISP, the -f format directive takes a single parameter, the number of digits to· 
use in the printed representation. This incompatibility between COMMON LISP and MAC LISP was introduced for 
the sake of cultural compatibility with FORTRAN. 

Exponential floating-point. The next arg is printed as a floating-point number in exponential 
notation. 

The full fonn is -w,d,e,k,overjlowehar,padchar,exponentcharE. The parameter wis the width 
of the field to be printed; d is the number of digits to print after the decimal point; e is the number 
of digits to use when printing the exponent; k is a scale factor that defaults to one (not zero). 

Exactly w characters will be output. First leading copies of the character padehar (which defaults to 
a space) are printed, if necessary to pad the field on the left .. If the arg is negative, then a minus sign 
"-" is printed; if the arg is not negative, then a plus sign "+" is printed if and only if the @ modifier 
was specified. . Then a sequence of digits, containing a single embedded decimal point ".", is 
printed. The form of this sequence of digits depends on the scale factor k. If k is zero, then d digit§ 
are printed after the decimal point, and a single zero digit appears before the decimal point if the 
total field width will permit it. If k is positive, then it. must be strictly less than d+ 2; k significant 
digits are printed before the decimal point, and d- k+ 1 digits are printed after the decimal point. 
If k is negative, then it must be strictly greater than - d; a single zero. digit appears before the 
decimal point if the total field width will permit it, and after the decimal point are printed first - k 
zeros and then d+ k significant digits. The printed fraction must be properly rounded. (When 
rounding up and rounding down would produce printed values equidistant from the scaled value of 
arg, then the implementation is free to use either one. For example, printing the argument 637. 5 
using the fonnat -8, 2E may correctly produce either "6.3 7E+02" or "6. 38E+02") 



324 COMMON USP REFERENCE MANUAL 

Following the digit sequence, the exponent is printed. First the character parameter exponenlchar 
is printed; if this parameter is omitted, then the exponent marker that p r i n 1 (page 316) would use 
is printed, as determined from tlie type of the floating-point number and the current value of 
* read-def au 1 t-fl oat -format * (page 311). Next either a plus sign "+" or a minus sign "-" 
is printed, followed by e digits representing the power of ten by which the printed fraction must be 
multiplied to properly represent the rounded value of argo 

If it is impossible to print the value in the required format in a field of width w, possibly because k 
is too large or too small, or because the exponent cannot be printed in e character positions, then 
one of two actions is taken. If the parameter overflowchar is specified, then w copies of that 
parameter are printed instead of printing the scaled value of argo If the overjlowchar parameter is 
omitted, then the scaled value is printed using more than w characters, as many more as may be 
needed; if the problem is that d is too small for the specified k, or that e is too small, then a larger 
value is used for d or e as may be needed. 

If the lV parameter is omitted, then the field is of variable width. In effect a value is chosen for win 
such a way that no leading pad characters need to be printed. 

If the parameter d is omitted, then there is no constraint on the number of digits to appear. A value 
is chosen for d in such a way that as many digits as possible may be printed subject to the width 
constraint imposed by the parameter lV, the constraint of the scale factork, and the constraint that 
no trailing zero digits may appear in the fraction, except that if the fraction to be printed is zero 
then a single zero digit should appear after the decimal point. 

If the parameter e is omitted, then the exponent is printed using the smallest number of digits 
necessary to represent its value. 

If all of lV, d, and e are omitted, then the effect is to print the. value using ordinary free-format 
exponential-notation output; pr; n 1 (page 316) uses this format for numbers whose magnitude is 
less thanl0- 3 or greater than or equal to 107. 

If arg is a rational number, then it is coerced to be as; ngl e-fl oat and then printed. 
(Alternatively, an implementation is permitted to process a rational number by any other method 
that has essentially the same behavior but avoids such hazards as loss of precision or overflow 
because of the coercion. However, note that if w and d are unspecified and the number has no exact 
decimal representation, for example 1/3, some precision cutoff must be chosen by the 
implementation:. only a finite number of digits may be printed.) 

If arg is a complex number or some non-numeric object, then it is printed using the fonnat directive 
.... WO. thereby printing it in decimal radix and a minimum field width of w. (If it is desired to print 
each of the real part and imaginary part of a complex number using a -E directive. then this must 
be done explicitly wifh: two -E directives and code to extract the two parts of the complex number.) 

Examples: 
(defun foo (x) 

(format nil 
"-9,2,1" ·*EI-I0·,3.2,2, '1" '$EI-9.3,2,-2, '%@EI-9,2E" 
x x x x» 

(foo 3.14159) => " 3.14E+01 31.42$-011+·003E+031 3.14E+O" 
(f~ -3.14159) => " -3.14E+01-31.42$-911-·003E+031 -3.14E+0" 
(foo 1100.0) => " 1.10E+31 11.00$+021+·00 1E+061 1.10E+3" 
(foo 1100.0LO) => " 1.10L+31 11.00$+021+·001L+061 1.10L+3" 
(foo 1.1E13) => "*********1 11.00$+121+·001E+161 1.10E+13" 
(foo 1.1L120) => "******-**I????1?????I%%%%%%%%%ll.10L+120" 
(foo 1.lL1200) => "*********I??????????I%%%%%%%%%ll.10L+1200" e 

~ 



CHAPTER 22: INPUT/OUTPUT 

As an example of the effects of varying the scale factor, the code 
(dotimes (k 13) 

(format t "-%Scale factor -20: 1-13,6,2,VEI" 
(- k 5) 3.14159)) 

produces the following output: 
Scale factor -5: 0.00OO03E+06 
Scale factor -4: 0.OOOO31E+05 
Scale factor -3: 0.000314E+04 
Scale factor -2: 0.003142E+03 
Scale factor -1: 0.031416E+02 
Scale factor 0: 0.314159E+01 
Scale factor 1 : 3.141590E+OO 
Scale factor 2: 31.41590E-Ol 
Scale factor 3: 314.1590E-02 
Scale factor 4: 3141.590E-03 
Scale factor 5: 31415.90E-04 
Scale factor 6: 314159.0E-05 
Scale factor 7 : 3141590. E-06 
Compatibility note: lbe -E directive is similar to the hEw. d' and HEw. dEe" edit descriptors in FORTRAN. 

The presence or absence of the @ modifier corresponds to the effect of the FORTRAN 55 or 5P edit descriptor; 
nothing in CoMMON LIsp corresponds to the FORTRAN 5 edit descriptor. 

The scale factor specified by the parameter k corresponds to the scale factor k specified by the FORTRA:S kP edit 
descriptor: note, however. that the default value for k is one in COMMON LISP, as opposed to the default value 
of zero in FORTRAN. (On the other hand, note that a scale factor of one is used for FORTRAN list-directed output, 
which is roughly equivalent to using -E with the w, d, e. and ove1jlowcharparameters omitteq.) 

In COMMON LISP, the wand dparameters are optional; in FORTRAN they are required. 

In FORTRAN, omitting e causes the exponent to be printed using either two or three digits, and if three digits are 
required. then the exponent marker is omitted. In COMMON LISP, omitting e causes the exponent to be printed 
using as few digits as possible: the exponent marker is never omitted 

In COMMON LIsp, the pad character and overflow character are user-specifiable: in FORTRAN they are always 
space and asterisk, respectively. 

A FORTRAN implementation is prohibited from printing a representation of negative zero; CoMMON LIsp 
pennits the printing of such a representation when appropriate. 

In MAcLIsp and Lisp Machine Lisp, the -E fonnat directive takes a single parameter, the number of digits to 
-use in the printed representation. This incompatibility between CoMMON Lisp and MAcLIsp was introduced for 
the sa~e of cultural compatibility with FORTRAN. 

325 

-G General floating-point. The next arg is printed as a floating-point number in either fixed-format or 
exponential notation as appropriate. 

.. The full fonn is -w, d, e, k, overjlowelzar, padehar, exponenteharG. The format in which to print 
arg depends on the magnitude (absolute value) of the argo Let n be an integer such that 
lOn-1::Sarg<lOn. Let ee equal e+ 2, or 4 if e is o·mitted. Let ww equal w- ee, or nil if w is omitted. 
If d is omitted, first let q be the number of digits needed to print arg with no loss of infonnation and 
without leading <?r trailing zeros; then let d equal (max q (m inn 7». Let tid equal d- n. 

IfO::sdd::sd, then arg is printed as ifbythe format directives 

-ww ,. dd, , overjlowchar. padcharF-ee@T 

Note that the scale factor k "is not passed to the - F directive. For all other values of dd, arg is 
printed as if by the fonnat directive 

-w, d, e, k, overj1owehar, padehar, exponenteharE 



326 COMMON LISP REFERENCE MANUAL 

In either case, an @ modifier is specified to the - F or ..... E directive if and only if one was specified to 
the ..... G directive. 

Examples: 
(defun foo (x) 

(format nil "-9,2,1" '*GI-9,3,2,3,'?" '$GI-g,3,2,0, '%GI-9,2G" 
x x x» 

(foo 0.0314159) =>" 3.14E-21314.2$-0410.314E-Oll 3.14E-2" 
(foo 0.314159) =>" 0.31 10.314 10.314 1 0.31 " 
(foo 3.14159) =>" 3.1 1 3.14 1 3.14 I 3.1 " 
(foo 31.4159) =>" 31. 1 31.4 1 31.4 1 31. " 
(foo 314.159) =>" 3.14E+21 314. 1 314. I 3.14E+2" 
(foo 3141.59) =>" 3.14E+31314.2$+01Io.314E+041 3.14E+3" 
(foo 3141.59LO) =>" 3.14L+31314.2$+0110.314L+041 3.14L+3" 
(foo 3.14E12) => "*********1314.2$+1010.314E+131 3.14L+12" 
(foo 3.14LI20) => "*********I~????????I%%%%%%%%%13.14L+120" 
(foo 3.14L1200) ~> "*********I?????????I%%%%%%%%%13.14L+1200" 
Compatibility note:. The -G directive is similar to the "Gw. t/' edit descriptor in FORTRAN. 

'!be COMMON LISP ru les for deciding between the us~ of ... F and - E are' compa.tible With the rules used by 
FORTRAN, but have been extended to cover the cases where word is omitted or where e is specified 

In MAcLIsp and Lisp Machine LIsp, the .... G format directive is equivalent to the COMMON LISP -@* directive. 
This incompatibility between COMMON LISP and MACLISP was introduced for the sake of cultural compatibility 
with FORTRAN • 

..... $ Dollars jloaling-po in t. The next arg is printed as a floating-point number in fixed-format notation. 
This format is particularly convenient for printing a value as dollars and cents. 

The full form is ..... d, n, w, padehar$. The parameter d is the number of digits to print after the 
decimal point (default value 2); n is the minimum number of digits to print before the decimal 
point (default value 1); w is the minimum total width of the field to be printed (default value 0). 

First padding and the sign are output. If the arg is negative, then a minus sign "-" is printed; if the 
arg is not negative, then a plus sign "+" is printed if and only if the @ modifier was specified. If the 
: Illodifier is used, the sign appears before any padding, and otherwise after the padding. If w is 
specified and the number of other characters to be output is less than w, then copics of padehar 
(which defaults to a space) are output to make the total field width equal w. Then n digits are 
printed for the integer part of arg, with leading zeros if necessary; then a decimal point; then d 
digits of fraction, properly roundeCt. 

If the magnitude of arg is so large that more than m digits would have to be printed; where m is the 
larger of wand 100,. then an implementation is free, at its discretion, to print the number using 
exponential notation instead, as if by the directive "-w, q, , , , padeharE", where wand padehar are 
present or omitted according to whether they were present or omitted in the -$ directive, and 
whereq= d+ n -1, where d and n are the (possibly default) values given to the -$ directive. 

If arg is a rational number, then it is coerced to be a s i n9 1 e - flo a t and then printed. 
(Alternatively, an . implementation is permitted to process a rational number by any other method 
that has essentially the same behavior but avoids such hazards as loss of precision or overflow 
because of the coercion.) 

If arg is a complex number or some non-numeric object, then it is printed using the fonnat directive 
.... WO, thereby printing it in decimal radix and a minimum field width of w. (If it is desired to print 
each of the real part and imaginary part of a complex number using a "'$ directive, then this must 
be done explicitly with. two -$ directives and code to extract the two parts of the complex numb~r.) e -



CHAPTER 22: INPUT/OUTPUT 327 

Outputs a #\Newl i ne character, thereby tenninating the current output line and beginning a new 
one (see terpri (page 318». -n% outputs n newlines. No arg is used. Simply putting a newline 
in the control string would work, but -% is often used because it makes the control string look nicer 
in the middle of a LISP program. 

-& Unless the stream knows that it is already at the beginning of a line, this outputs a newline (see 
fresh-l ine (page 318)). -11& calls fresh-l ine and then outputs n-l newlincs. -0& does 
nothing. 

-I Outputs a page separator character, if possible. - n 1 does this n times. 1 is vertical bar, not capital 
1. 

Tilde. Outputs a tilde. -~-.outputs n·til<ies. 

-newline> 
Tilde immediately followed by a newline ignores the newline and any following non-newline 
whitespace. With a :, the newline is ignored but any following whitespace is left in place. \Vith an 
@, the newline is left in place but any following whitespacc is ignored. This directive is typically 
used when a fonnat control string is too long to fit nicely into one line of the program: 

(defun pet-rock-w~rning (rock friend amount) 
(unless (equalp rock friend) 

(format t U-&Warning! Your pet rock -A just -
bit your friend -.A,-% .and
-:[he-;she-] is suing you for $-01" 

rock friend (femalep friend) amount») 
(pet-rack-warning "Fred" "Susan" 500) prints: 
Warning: Your pet rock Fred just bit your friend Susan, 

and she is suing you for $500! 

Tabulate. Spaces over to a given column. -colnum, colincT will output sufficient spaces to move 
the cursor to column colnum. If the cursor is already at or beyond column colnum, it will output 
spaces to move it to column colnum+ k*colinc, for the smallest positive integer k possible, unless 
coline is zero, in which case no spaces are output if the cursor is already at or beyond column 
colnum. eolnum and coline default to 1. 

Ideally, the current column position is determined by examination of the destination, whether a 
stream or string. (Although no user-level operation for determining the column position of a stream 
is defined by COMMON LISP, such a facility may exist at the implementation level.) If for some 
reason the current absolute column position cannot be detennined by direct inquiry, format may 
be able to deduce the current column position by noting that certain directives, such as -%, or - -&, 
or ,.. A with the argument being a string containing a newline, cause the column position to be reset 
zero, and counting the number of characters emitted since that point. If that fails, forma t may 
attempt a similar deduction on the riskier assumption that the destination was at column zero when 
forma t was invoked. If even this heuristic fails or is implementationally inconvenient, at worst the 
-T operation will simply output two spaces. (All this implies that code that uses forma t is more 
likely to be portable if all fonnat control strings that use the -T directive either begin with -% or 
-&, or are designed to be used only when the destination is known from other considerations to be 
at column zero.) 

-@T performs relative tabulation. - colrel ,colinc@T outputs colrel spaces," and then outputs the 
smallest non-negative number of additional spaces necessary to move the cursor to a column that is 



328 COMMON LISP REFERENCE MANUAL 

a multiple of coline. For example, the directive -3, 8@T outputs three spaces and then moves the 
cursor to a "standard multiple-of-eight tab stop" if not at one already. 'If the current output column 
cannot be determined. however. then coline is ignored, and exactly colrel spaces are output. 

-* The next Qrg is ignored. -n* ignores the next n arguments. 

-:* "ignores backwards"; that is, it backs up in the list of arguments so that the argument last 
processed will be processed again. - n : * backs up 11 arguments. 

When within a - { construct (see below), the ignoring (in either direction) is relative to the list of 
arguments being processed by the iteration. 

-n@* is an "absolute goto" rather than a "relative goto": it goes to the nth arg, where 0 means ~e 
first one; n defaults to 0, so ~@ * goes back to the first argo Directives after a - n@* will take 
arguments in sequence ,beginning with the one gone to. When within a .... { construct, the "goto" is 
relative to the list of arguments being processed by the iteration. 

-? Indirection. The next arg must be a string, and the one after it a list~ both are consumed by the -? -
directive. The string is processed as a form a t control string, with the elements of the list as the 
arguments. Once the recursive processing of the control,string has been finished, then processing of 
the control string containing the ,.,.? directive is resumed. Example: ' 

(format nil "-? -0" "<-A -0>" '("foo" 5) 7) => "<Foo 5> 7" 
(format nil "-? -0" "<-A -0>" '("Foo" 5 14) 7) => "<Foo 5> 7" 

Note that in the second example three arguments are supplied to the control string "<-A -D>", 
but only two are processed and the third is therefore ignored. 

With the @ modifier, only one arg is directly consumed .. The arg must be a string; it is processed as 
part of the control string as if it had appeared in place of the -@? constnlct, and any directives in 
the recurSively processed control string may consume arguments of the control string containing the 
-@?directive. Example: 

(format nil "-@? -0" "<-A -0>" "Foo" 5 7) => "~Foo 5> 7" 
(format nil "-@? -0" "<-A -0>" "Foo" 5 14 7) => "<Foo 5> 14" 

As a rather sophisticated example, the forma t function itself, as implemented at one time in Lisp 
Machine LISP, used a routine internal to the format package called format-error to signal 
error messages; format-error in turn used error, which used format recursively. Now 
format-error took a string and arguments, just like format, but also printed the control string 
to format (which at this point was available in the global variable *ctl-stri ng*) and a little 
arrow showing where in the processing of the control string the error occurred. The variable'
* c t 1 - i n de x * pointed one character after the place of the error. 

(defun format-error (string &rest args) ;Example 
(error nil "-?-%-V@T~-%~3@T\"-A\"-%" 

string args (+ ctl-index 3) ctl-string» 

(The character set used in the Lisp Machine LISP implementation contains a down-arrow character 
".", which is not a standard COMMON LlSP character.) This first processed the given string and 
arguments using -1, then output a newline, tabbed a variable amount for printing the down-arrow, 
and printed the control string between double-quotes (note the use of "\ "" to include double 
quotes within the control string). The effect was something like this: 



CHAPTER 22: INPlrf IOUTPUT 

(format t "The item is a -[Foo-;Bar-;Loser-]." 'quux) 
»ERROR: The argument to the FORMAT "-[" command 

must be a number . 
.£, 

"The item is a -[Foo-;Bar-;Los&r-]." 

Implementation note: Implementors may wish to report errors occurring within format control strings in the 
manner outlined here. It looks pretty flashy when done properly. 

329 

The fonnat directives after this point are much more complicated than the foregoing; they constitute 

"control structures" that can perform case conversion, conditional selection, iteration, justification, and non

local exits. Used with restraint, they can perform powerful tasks. Used with wild abandon, they can produce 

completely unreadable and unmaintainable code. 

The case-conversion, conditional, iteration, and justification constructs can contain other formatting 

constructs by bracketing them. These constructs must nest properly with respect to each other. For example, 

it is not legitimate to put the start of a case-conversion construct in each arm of a conditional and the end of 

the case-conversion construct outside the conditional: 

; Illegal! 

One might expect this to produce either" abcDE FMr~o" or II gh i JKLMNO", dep~nding on whether x is false 

or true. but in fact the construction is illegal because the - [ ... -; . ~ ..... ] and - ( ....... ) constnlcts are not 

properly nested. 

The processing indirection caused by the -? directive is also a kind of nesting for the purposes of this rule 

of proper nesting. It is not permitted to start a bracketing construct within a string processed under control of 

a -? directive and end the construct at some point after the -1 construct in the string containing that 

construct, or vice versa. For example, this situation is illegal: 

(format nil "-?ghi-)" "aoc-@(def") ; Illegal I 

One might expect it to produce II abcDE FGH I", but in fact the construction is illegal because the -1 and 

- ( . . . -) constructs are not properly nested. 

- (sir) Case conversion. The contained control string sir is processed, and what it produces is subject to 
case conversion. With no flags, all case-modifiable characters are forced to lower case. .... : ( 
capitalizes all words, as if by s t r i n g - cap ita 1 i z e (page 250). -@ ( capitalizes just the firSt 
word, and force~ the rest to lower case. -: @ ( forces all case-modifiable characters to upper case. 

For example: 

(format nil "-@R -(-@R-)" 14 14) => "XIV xiv" 
(defun f (n) (format nil "-@(-R-).error-:P detected." n» 
(f 0) => "Zero errors detected." 
(f 1) => "One error detected." 
(f 23) => "Twenty-three errors detected." 

-[SI1()-; strl-; ... -; strn-] 
Conditional expression. Th~s is a set of control strings, called clauses, one of which is chosen and 
used. The clauses are separated by -;. and the construct is terminated by -]. Eor example, 

"-[Siamese-;Manx-;Persian-] Cat" 



330 COMMON USP REFERENCE MANUAL 

TIle argth clause is selected, where ·the first clause is number O. If a prefix parameter is given (as 
-nO, then the parameter is used instead of an argument (this is useful only if the parameter is 
specified by"''', to dispatch on tile number of arguments remaining to be processed). If arg is out 
of range then no clause is selected (and no error is signalled.). After the selected alternative has 
been processed, the control string continues after the -]. 

-[sl1ft'-; slrl-; ...... ; strn"': ; defaulr] has a default case. If the last " .... ;" used to separate clauses is 
instead ..... : ; ", then the last clause is an "else" clause, which is performed if no other clause is 
selected. For example: 

"-[Siamese-;Manx"';Persian-:;Alley-] Cat" 

... : [false- ; lrue-] selects the false control string if arg isn i 1, and selects the true control string 
otherwise. 

-@[true-] tests the argument If it is not nil, then the argument is not used up by the -@[ 
command, but remains as the next one to be processed, and the one clause true is processed. If the 
arg is nil, then the argument is used up, and the clause is not processed. The clause therefore 
should normally use exactly one argument, and may expect it to be non·n i 1. For example: 

(setq *print-level* nil *print-length* 5) 
(format nil 

"-@[ print level = -D-]-@[ print length = -0-]" 
*print-level* *print-length*) 

=> "print length = 5" 

The combination of - [ and , is useful. for example, for dealing with English conventions for 
printing lists: 

(setq foo "Items:-'[ none-; -S-; -S and -S
-:;-@{-'[-; and-] -S-A,-}-].") 

(format nil foo) 
=> "Items: none." 

(format nil foo 'fool 
=> "Items: FDa." 

(format nil foo 'foo 'bar) 
=> "Items: fDa and BAR." 

(format nil foo 'foo 'bar 'baz) 
=> "Items: FOO, BAR, ~nd BAZ." 

(format nil foo 'foo 'bar 'baz 'quux) 
=> "Items: FOO, BAR, BAl, and QUUX." 

Separ~tes clauses in -[ and'" < constructions. It is an error elsewhere. 

-] Terminates a ... [. It is an error elsewhere. 

- {Sl'-} Iteration. This is an iteration construct The argument should be a list, which is used as a set of 
arguments as if for a recursive call to format. The string sIr is used repeatedly as the control 
string. Each iteration can absorb as many elements of the list as it likes as arguments; if sIr uses up 
two arguments by itself, then two elements of the list will get used up each time around the loop. If 
before any iteration step the list is empty, then the iteration is terminated. Also, if a pr~fix 
param~ter 1Z is given, then there will be at most n repetitions of processing of sIr. Finally, the -A 

directive can be used to terminate the iteration prematurely. 

Here are some simple examples: 



,,~ 

• 
CHAPTER 22: INPUT/OUTPUT 

(format nil "The winners are:-{ -S-}." 
'(fred harry jill» 

=> "The winners are: FRED HARRY JILL." 
( for mat nil " P air s : - { <-S , .... S > ..... } ." , (a 1 b 2 c 3» 

=> "Pairs: <A,1> <B,2> <e,3>." 

331 

..... : {st,.-} is similar, but the argument should be a list of sublists. At each repetition step one sublist 
is used as the set of arguments for processing sIr, on the next repetition a new sublist is used, 
whether or not all of the last sub list had been processed. Example: 

(format nil npairs:-:{ <-S,-S>-}." 
'«a 1) (b 2) (c 3») 

=> "Pairs: <A,1> <B,2> <e,3>." 

-@{Sl"-} is similar to - {SI"-}, but instead of using one argument that is a list. all the remaini~g 
arguments are used as the list of arguments for the iteration. Example: 

(format nil "Pairs:-@{ <-S,""'S>-}." 
'a 1 'b 2 'c 3) 

=> "Pairs: <A,1> <B,2> <e,3>." 
If the iteration is terminated before all the remaining arguments are consumed, then any arguments 
not processed by the iteration remain to be processed by any directives following the iteration 

construct 
-: @{st,..-} combines the features of -: {st,..-} and -@{SI,..-}. All the remaining arguments are 
used, and each one must be a list On each iteration the next argument is used as a list of arguments 

to sIr. Example: 

(format nil "Pairs:-:@{ <-S,-S>-}." 
'(a 1) '(b 2) '(c 3» 

=> "Pairs: <A,1> <B,2> <e,3>." 

Terminating the repetition construct with -:} instead of -} forces sIr to be processed at least o~ce 
even if the initial list of arguments is null (however, it will not override an explicit prefix parameter 

of zero). 
If sIr is empty, then an argument is used as sIr. It must bOe a string, and precedes any arguments 
processed by the iteration. As an example, the following are equivalent: 

(funcall* #'format stream string arguments) 
(format stream "-1{-:)" string arguments) 

This will u~e s t r i n g as a formatting string. The -1 { says it will be processed at most once, and 
the -:} says it will be processed at least once. Therefore it is' processed exactly once, using 
arguments as the arguments. This case may be handled more clearly by the -1 directive, but this 
general feature of-{ is more powerful than -1. ~ 

Terminates a - {. It is an error elsewhere . 

... mineol , coline, minpad, padehar<str> 
Justification. This justifies the text produced by processing sIr within a field at least mincol columns 
wide. sIr may be divided up into segments with "';, in which case the spacing is evenly divided 

between the text segments. 

With no modifiers. the leftmost text segment is left justified in the field, and the righunost text 
segment right justified; if there is 'only one, as a special case, it is right justified. The : modifier 
causes spacing to be introduced before the first text segment; lhe @ modifier causes spacing to be 
added after the last The minpad . parameter (default 0) is the minimum number of padding 

.. 



332 COMMON LISP REFERENCE MANUAL 

characters to be output between each segment. The padding character is specified by padehar, 
which defaults to the space character. If the total width needed to satisfy these constraints is greater 
than milleo!, then the width used i~ mineo!+ k*eolinc for the smallest possible non-negative integer 
value k; coline defaults to 1, and minco/ defaults to o. 
Examples: 

(format nil "-10<foo-;bar->") => "foo bar" 
(format nil "-10:<foo-;bar .... >") => " foo bar" 
(format nil ...... 10:@<foo-;bar .... >") => " foo bar" 
(format nil "-10<foobar->") =>" foobar" 
(format nil "-10:<foobar->") =>" foobar" 
(format nil "-10@<foobar->") => "foobar " 
(format nil "-10:@<foobar->") => " foobar " 

Note that sir may include forma t directives. All the clauses in sir are processed in order; it is the 
resulting pieces of text that are justified. 

The -A directive may be used to terminate processing of the clauses prematurely, in which case 
only the completely processed clauses are justified. 

If the first clause of a - < is terminated with -: ; instead of"';, then it is used in a special way. All 
of the clauses are processed (subject to -A, of course), but the first one is not used in performing the 
spacing and padding. When the padded result has been determined, then if it will fit on the current 
line of output, -it is output, and the text for the first clause is discarded. If, however, the padded text 
will not fit on the "current line, then the text segment for the first clause is output before the padded 
text. The first clause ought to contain a newline (such as a -% directive). The first clause is always 
processed, and so any arguments it refers (0 will be used; the decision is whether to use the resulting 
segment of text, not whether to process the first clause. If the -: ; has a prefix parameter n, then 
the padded text must fit on the current line with n character positions to spare to avoid outputting 
the first clause's text. For example, the control string 

"-X" -{-<-% .. -1" -S->-A -} -%" t to, t • , ,. 0 

can be used to print a list of items separated by commas, without breaking items over line 
boundaries, and beginning each line with" ;; ". The prefix parameter 1 in -1: ; accounts for the 
width of the comma that wlll follow the justified item if it is not the last element in the list, or the 
period if it is. If -: : has a second prefix parameter, then it is used as the width of the line, thus 
overriding the natural line width of the output stream. To make the preceding example use a line 
width of 50, one would write 

If the second argument is not specified, then. form a t uses the line width of the output stream. If 
this cannot be determined (for example, when producing a string result), then format uses 72 as 
the line length. 

-> Terminates a .... <. It is an error elsewhere. 

Up and out. This is an escape construct. If there are no more arguments remaining to be processed, 
then the immediately enclosing - { or - < construct is terminated. If there is no such enclosing 
construct, then the entire formatting operation is terminated. In the -<case, the formatting is 
performed, but no more segments are processed before doing the justification. The -A should 
appear only at the beginning of a -<clause, because it aborts the entire clause it appears in (as well 
as all following clauses). -A may appear anywhere in a - { construct • 



• 

r-, • 

CHAPTER 22: INPlIT /OUTPUf 

(setq donestr "Done ...... " ..... 0 warning ..... :P.-" ..... 0 error ..... :P.") 
(format nil donestr) => "Done." 
(format nil don~str 3) => "Done. 3 warnings." 
(format nil donestr 1 5) => "Done. 1 warning. 5 errors." 

333 

If a prefix parameter is given, then termination occurs if the parameter is zero. (Hence -" is 
equivalent to -#".) If two parameters are given, termination occurs if they are equal. If three 
parameters are given. telmination occurs if the first is less than or equal to the second, and the 
second is less than or equal to the third. Of course, this is useless if all the prefix parameters are 
constants; at least one of them should be a # or a V parameter. 

If -" is used within a ..... : { construct, then it merely terminates the current iteration step (because in 
the standard case it tests for remaining arguments. of the current step only); the next iteration step 
commences immediately. To terminate the entire iteration process, use -: ". 

If -" appears within a control string being processed under the control of a -? directive, but riot 
within any -{or - < construct within that string, then the string being processed will be terminated, 
thereby ending processing of the -? directive, and processing then continues within the string 
containing the -? directive at the point following that directive. 

If-'" appears within a -[ or -( construct, then all the commands up to the -" are properly selected 
or case-converted, the - [ or - ( processing is terminated, and the outward search continues for a .... { 
or - < construct to be terminated. For example: 

(setq tellstr " ..... @(-@[-R-r .. " ""A.-)") 
(format nil tellstr 23) => "Twenty-three." 
(format nil tellstr nil "losers") => "Losers." 
(format nil tellstr 23 "losers") => "Twenty-three 10sers.1t 

Here are some examples of the use of-" within a -< construct 

(format nil 1t-15<-S-;-"-S-;-""-S->1t 'fool 
=> It FDD" 

(format nil 1t-15<-S-;-"-S-;-""-S->1t 'foo 'bar) 
=> "FDD BAR" 

(format nil "-15<-S-;-"-S-;-""-S->" 'foo 'bar 'bail 
=> "FDD BAR BAl" 

Compatibility note: The -Q directive and user-defined directives have been omitted here, as well as control lists (as opposed 
to strings), which are rumored to be changing in meaning. 

22.4. Querying the User 

The following functions provide a convenient and consistent interface for asking questions of the user. 

Questions are printed and the answers are read using the stream *query-; 0* (page 274), which normall¥ is 
synonymous with *termi na 1- i 0* (page 274), but can be rebound to another stream for speCial 

applications. 

y-or-n-p &opt ;onal format-string &rest arguments [Function] 
This predicate is for asking the user a question whose answer is either "yes" or "no". It types out a 

message (if supplied), reads an answer in some implementation-dependent manner (intended to be 

short and simple, like reading a single character such as "Y"" or "N"), and is true if the answer was 

"yes" or false if the answer was "no". 



334 COMMON LISP REFERENCE MANUAL 

Ifthejonnat-stringargument is supplied and not ni 1, then a fresh-l ine (page 318) operation 

is performed, and then a message is printed as if the jormat-string and argumenls were given to • 

forma t (page 318). Otherwise it is assumed that any message has already been printed by other 

means. If you want a question mark at the end of the message, you must put it there yourself; 

y-or-n-p will not add it. However, the message should not contain an exp~anatory note such as 

.. ( Y 0 r N ) ", because the nature of the interface provided for y - 0 r - n - p by a given 

implementation might not involve typing a character on a keyboard; y-or-n-p will provide such a 

note if appropriate. 

All input and output are performed using the stream in the global variable *query- io* (page 

274). 

Examples: 
(y-or-n-p "Produce listing file?") 
(y-or-n-p "Cannot connect to network host -So Retry?" host) 

y - 0 r - n - p should only be used for questions that the user knows are coming, or in situations 

where the user is known to be waiting for a response of some kind. If the user is unlikely to 

anticipate the question, or if the consequences of the answer might be grave and irreparable, then 
y - 0 r - n - p should not be used, because the user might type ahead and thereby accidentally answer 

the question. For such questions as "Shall I delete all of your files?", it is better to use 

yes-or-no-p. 

yes-or-no-p &optional jormat-string &rest arguments [FUhCtion]. 

This predicate, like y - 0 r - n - p, is for asking the user a question whose answer is either "Yes" or 

"No". It types out a message (if supplied), attracts the user's attention (for example, by ringing the 

terminal's bell), and reads a reply in some implementation-dependent manner. It is intended that 
the reply require the user to take more action than just a single keystroke, such as typing the full 

word "yes" or "n 0" followed by a newline. 

Ifthejonnat-stringargument is supplied and not ni 1, then a fresh-l ine (page 318) operation 

is performed, and then a message is printed as if the jormat-string and arguments were given to 

format (page 318). Otherwise it is assumed that any message has already been printed by other: 

means. If you want a question mark at the end of the message, you must put it there yourself; 

yes-or-no-p will not add it However, the message should not contain an.explanatory note such 

as "( Yes 0 r No) ", because the nature of the interface provided for yes - 0 r - n 0 - p by a given 

implementation might not involve typing the repl~ on a keyboard; yes-or-no-p will provide 

such a note if appropriate. 

All input and output are performed using the stream in the glo~al variable * que r y - i 0 * (page 

274). 

To allow the user t') answer a yes-or-no question with a single character, use y-or-n-p. 

yes - 0 r - no - p should be used for unanticipated or momentous questions; this is why it attracts 

attention and why it requires a multiple-action sequence to answer it 



• 
CHAPTER 22: INPUT/OUTPUT 335 

*** 244 Add item about automatically defined copier function: 

A function called copy-ship of one argument is defined that, when given a ship object. will create a new ship 

object that is a copy of the given one. This function is called the copier function. 

*** 245 Augment first sentence oflast paragraph: 

Besides defining an access function for each slot, defstruct arranges for setf to work properly on such access 

functions, defines a predicate named "name"-p, defines a constructor function named make-"name", and 

defines a copier function named copy-"name". 

*** 249 Add new defstruct option :copier. 

:copier This option takes one argument, a symbol, which specifies the name of the constructor function. If 

the argument is not provided or if the option itself is not provided, the name of the constructor is produced by 

concatenating the string "copy-" and the name of the structure, putting the name in whatever package is 

current at the time the defstruct declaration is processed (see *package*). If the argument is provided and is 

nil, no copier function is defined. 

The automatically defined copier function simply makes a new structure and transfers all components 

verbatim from the argument into the newly created structure. No attempt is made to make copies of the 

components. Corresponding components of the old and new structures will therefore be eq1. 



336 COMMON LISP REFERENCE MANUAL 

• 

• -



• 

r' . • 

Chapter 23' 

. File System Interface 

A frequent use of streams is to communicate with a file system to which groups of data (files) can be written 

and from which files can be retrieved. 

COMMON LISP defines a standard interface for dealing with such a file system. This interface is designed to 

be simple and general enough to accommodate the facilities provided by "typical" operating system 

environments within which COMMON LISP is likely to be implemented. The goal is to make COMMON LISP 

programs that perform only simple operations on files reasonably portable. 

To this end COMMON LISP assumes that files are named, that given a name one can construct a stream 

connected to a file of that name, and that the names can be fit into a certain canonical, implementation

independent form called a pathname. 

Facilities are provided for manipulating pathnames, for creating streams connected to files. and for 

manipulating the file system through pathnames and streams. 

23.1. File Names 

COMMON LISP programs need to use names to designate files. The main difficulty in dealing with names of 

files is that different file systems have different naming formats for files. For example, here is a table of 

several file systems (actually, operating systems that provide file systems) and what the "same" file name 

might look like for each one: 

System 
TOPS-20 
TOPS-10 
ITS 
MULTICS 
TENEX 
VAX VMS 

UNIX 

File name 
<LISPIO>FORMAT.FASL.13 
FORMAT.FAS[1.4] 
LISPIO;FORMAT FASL 
>udd>LispIO>format.fasl 
<LISPIO>FORMAT.FASL;13 
[LISPIO]FORMAT.FAS;13 
lusr/lispio/format.fasl 

It would be impossible for each program that deals with file names to krtowabout each different file name 

format that exists; a new COMMON LISP ,implementation might usc a format different from any of its 

predecessors. Therefore COMMON LISP provides two ways to represent file names: namestrings, which are 

- 337-



338 COMMON LISP REFERENCE MANUAL 

strings in the- implementation-dependent form customary for -the file system, and palhnames, which are 
special data objects that represent file names in an implementation-independent way. Functions are provided 
to convert between these two representations. and all manipulations of fIles can be expressed in machine
independent terms by using path names. 

In order to allow COMMON LISP programs to operate in a network environment that may have more than 
one kind of file system. the path name facility allows a file name to specify which file system is to be used. In 
this context, each file system is called a host, in keeping with the usual networking terminology. 

23.1.1. Pathnames 

All file systems dealt with by COMMON LISP are forced. into a common framework, in which files are named 
by a LISP data object,Oftype pathname. 

A path name always has six components, described below. These components are the common interface 
that allows programs to work the same way with different file systems; the mapping of the pathname 
components into the concepts peculiar to each file system is taken care of by the COMMON Lisp 

im plementation. 

host 

device 

directory 

name 

type 

version 

The name of the file system on which -me file resides. 

Corresponds to the "device" or "file structure" concept in many host file systems: the 
name of a (logical or physical) device containing files. 

Corresponds to the "directory" concept in many host file systems: the name of a group of -
related files (typically those belonging to a single user or project). 

The name of a group of files that can be thought of as conceptually the "same" file. 

Corresponds to the "filetype" or "ext(;~nsion" concept in many host file systems. This says 
what kind of fil~ this is. Files with th(~ same" name but different type are usually related in 
some specific way, such as one being a source file, another the compiled form of that 
source, and a third the lis?ng of error rnessages from the compiler. -

Corresponds to the "version number" concept in many host file systems. Typically this is a 
number tha~ is incremented every time the file is modified. 

Note that a path name is not necessarily the name of a specific file. Rather, it is a specification (possibly 
only a partial specification) of how to access a file. A p'athname need not correspond to any file that actually 
exists, and more than one pathname can refer to the same file. For example, the pathname with a version of 
"newest" may refer to the same file as a pathname with the same components except a certain number as the 
version. Indeed, a pathname with version "newest" may rerer to different files as time passes, because the 
meaning of such a pathname d~pends on the state of th,e file system. In file systems with such facilities as 
'~1inks", mUltiple file names, logical devices, and so on, two pathnames that look quite different may tum out 

• 

to address the same file. To access a file given a pathnarne one must do a file system operation such as open • 
(page 345). 

-' 



• 

• 

CHAPTER 23: ALE SYSTE.\1 INTERFACE 339 

Two important operations involving pathnames are parsing and merging. Parsing is the conversion of a 

namestring (which might be something. supplied interactively by the user when asked to supply the name of a 

file) into a pathname object. This operation is implementation-dependent, because the format of namestrings 

is implementation-dependent. 1v1erging takes a pathname with missing components and supplies values for 

those components from a source of defaults. 

Not all of the components of a pathname need to be specified. If a component of a pathname is missing, its 

value is n i 1. Before the file system interface can do anything interesting with a file, such as opening the file, 

all the missing components of a pathname must be filled in (typically from a set of defaults). Path names with 

missing components may used internally for various purposes~ in particular, parsing a namestring that does 

not specify certain components will. result in a pathname with missing components. 

A component of a pathname can also be the keyword: wi 1 d. This is only useful when the pathname. is 

being used with a directory-manipulating operation, where it means that the pathname component matches 

anything. The printed representation of a pathname typically designates: wi 1 d by an asterisk; however, this 

is host-dependent 

What values are allowed for components of a pathname depends, in general, on the pathname's host. 

However, in order for pathnames to be usable in a system-independent way certain global conventions are 

adhered to. These conventions are stronger for the type and version than for the other components, since the 

type and version are explicitly manipulated by many programs, while the other components are usually 

treated as somethiilg supplied by the user that just needs to be remembered and copied from place to place. 

The type is always a string or nil or : wi 1 d. Many programs that deal with files have an idea of what type 

they want to use. 

The version is either a positive integer or a special symbol. The meanings of n; 1 and : wi 1 d have been 

explained above. The keyword: newes t refers to the largest version number that already exists in the file 

system when reading a file, or a version number greater than any already existing in the file system when 

writing a new file. Some COMMON LISP implementors may choose to define other special version symbols. 

Some semi-standard names (suggested but not required to be supported by every COMMON LISP 

implementation): : 01 de,S t, to refer to the smallest version number that exists in the file system; 

: prey i,ous, to refer to the version previous to the newest version; and : ins ta 11 ed, to refer to a version 

that is officially installed'for users (as opposed to a working or development version. Some COMMON LISP 

implementors may also choose to attach a meaning to non-positive version numbers (a typical conventiol} is 
:;;. 

that 0 is synonymous with : newes t and -1 with : prey i ous), but such interpretations are 

implementation-dependent 

The host may be a string, indicating a file system, or a list of strings, of which the first names the file system 

and the rest may be used for such a purpose as,inter-network routing. 

The device, directory, and name also can each be a string (with host-dependent rules on allowed characters 

and length) or possibly some other COMMON LISP data structure (in which case such a c<?mponent is said to 



340 COMMON LISP REFERENCE MANUAL 

be structured. and has an implementation-dependent format). Stnlctured components may be used to handle 

such fi1e system features as hierarchical directories. COMMON LISP programs· do not need to know about 

structured components unless they do host-dependent operations. Specifying a string as a pathname 

component for a host that requires a structured component will cause conversion of the string to the 

appropriate fonn. 

The best way to compare two pathnames for equality is with equa 1 (page 66), not eql. (On pathnames, 

eql is simply the same as eq.) Two pathname objects are equa 1 if and only if all the cor~esponding 
components (host, device, and so on) are equivalent. (Whether or not upper-case and lower-case letters are 

considered equivalent in strings appearing in components depends oil the file name conventions of the file 

system.) Pathnames that are equa 1 should be functionally equivalent 

Some host file systems have features that do not fit into this pathname model. For instance, directories 

might be accessible as files, there might be complicated structure in the directories or names, or there might 

be relative directories, such as the "<" syntax in MULTICS or the special" .. " file name of UNIX. Such 

features~are not allowed for by the standard COMMON LISP file system interface. An implementation is free to 

accommodate such· features· in its pathname representation and provide a parser that can process such 

specifications in namestrings; such features are then :likely to work within that single implementation. 

However, note that once your program depends explicitly on any such features, it will not be portable. 

23.1.2. Pathname Functions 

These functions are what programs use to parse and dcHmlt file names that have been typed in or otherwise 

supplied by the user. 

Any argument called pathname in this document may actually be a pathname, a string or symbol, or a 

stream, and any argument called defaults may likewise be a path name, a string or symbol, or a stream. 

In the examples, it is assumed that the host named CMLJC runs the TOPS-20 operating system, and therefore 

uses TOPS-20 file system syntax; furthermore, an explicit host name is indicated by following it with a double 

colon. . Remember, however, that namestring syntax is implementation-dependent, and this syntax is used 

purely for the sake of examples. 

pathname pathname [Function] 

The pathname function converts its argument to be a pathname. The argument may be a 

pathname, a string or symbol, or a stream; the result is always a pathname. 

truename pathname [Function] 

~The truename and endeavors to discover the ''l:rue name" of the file associated with the pathname 
~ . 
"within the file system. If the pathname is an open stream already associated with a file in the file 

system, that file is· used. The "true name" is returned as a pathname. An error is signalled if an 

appropriate file cannot be located within the file system for the given patfmame. 

The t rue name function may be used to account for any file-name translations perfonned by the • 



• 
CHAPTER23:ALESYSTB~INTERFACE 341 

. file system, for example. 

For example, suppose that "DOC:" is a TOPS-20 logical device name that is translated by the TOPS~20 

file system to be "PS: <DOCUMENTATION>". 
(setq file (open "CMUC::DOC:DUMPER.HLP"» 
(namestring (pathname file» => "CMUC: :DOC:DUMPER.HLP" 
(namestring (truename file» 

=> "CMOC::PS:<OOCUMENTATION>DUMPER.HLP.13" 

parse-namestring thing &optional host defaults &key :start :end 

:junk-a11owed 

[Function] 

This turns thing into a pathname. The thing is usually a string (that is, a namestring), but it may be . 

a symbol (in which case the print name is used) or a pathname or stream (in which case no parsi~g 
is needed, but an error check may be made for matching hosts). 

This function does not, in general, do defaulting of pathname components, even though it has an 

argument named defaults; it only does parsing. The host and defaults arguments are present 

because in some implementations it may be that a namestring can only be parsed with reference to a 

particular file name syntax of several available in the implementation. If host is non-n i 1, it must 

be a host naIlle that could appear in the host component of a pathname, or n i 1 ; if host is n ; 1 then 

the host name is extracted from the default pathname in defaults and used to determine the syntax 

convention. The defaults argument defaults to the value of * d e fa u 1 t - pat h n arne - d e fa u 1 t s * 
(page 343). 

For a string (or symbol) argument, parse-namestr i ng parses a file name within it in the range 

delimited by the: s tart and: end arguments (which are integer indices into string, defaulting to 

the beginning and end of the string). 

If : j un k - a 11 owe d is not nil, then the first value returned is the pathname parsed, or n ; 1 if no 

syntactically correct integer was seen. 

If: junk-allowed is n; 1 (the default), then the entire substring is scanned. The returned value 

. is the pathname parsed.. An error is signalled if the substring does not consist entirely of the 

representation of a pathname, possibly surrounded on either side by whitespace characters if that is 
appropriate to the cultural conventions of the implementation. 

In either case, the second value is the index into the string of the delimiter that terminated tpe 

parse, or the index beyond the substring if the parse terminated at the end of the substring (as will 
always be the case if junk-allowed is false). 

If thing is not a string or symbol, then start (which defaults to zero in any case) is always returned as 

the second value. 

Parsing an empty string always succeeds, producing a pathname with all components (except the 

host) equal to nil. 

Note that if host is specified and not n; 1, and thing contains a manifest host name, an error is 
signalled if the hosts do not match. 



342 COMMON LISP REFERENCE MANUAL 

If thing contains an explicit host name and no explicit device name, then it may be appropriate, 

depending on the implementatio~ environment, for par s e - n arne s t r in 9 to supply the standard 

default device for that host as the device component of the resulting pathname. 

merge-pathnarnes pathname &opt lonal defaults default-version [Function] 

This is the function that most programs should call to process a file name supplied by the user. It 

fills in unspecified components of pathname from the defaults, and returns a new pathname. The 

pathname and defaults arguments may each be a pathname, stream, string, or symbol. The returned 

value will always be a path name. 

defaults defaults to the value of * de f au 1 t - P a. t h n arne - de fa u 1 t s * (page 343). default-version 

defaults to : newes t. 

For exainple: 
(merge-pathnames "CMUC: : FORMAT" 

"CMUC: : PS: <L.ISPIO>. FASL") 
= > a pathname object that re.,expressed as a namestring would be 

"CMUC: :PS:<LISPIO>FORMAT.FASL.O" 

Defaulting of pathname components is done by filling in components taken from another 

pathname. This is especially useful for cases such as a program that has an input file and an output 

file. and asks the user for the name of both, letting the unsupplied components of one name default 

from the other. UnspeCified components of the output pathname will come from the input 
pathname, except that the type should default not to the type of the input but to the appropriate 

default type for output from this program. . 

The pathname merging operation takes as input'a given pathname, a defaults pathname, and a 

default version, and returns a new pathname, Basically, the missing compoQcnts in the ~iven 
pathname are filled in from the defaults pathname, except that if no version is specified the default 

version is used. The default version is usually :'newest; if no version is specified the newest 

version in existence should be used. The default version can be nil, to preserve the information 

that it was missing in the input pathname. 

The full details of the merging rules are as follows. If the given pathname explicitly specifies a host 

and does not supply a device, then if the host component of the defaults matches the host 

component of the given pathname, then the device is taken from the defaults; otherwise the device 

will be the default file device for that host N.~xt, if the given pathname does not specify a host; 

device, directory, name, or type, each such cODlponent is copied from the defaults. The merging 

rules for the version are more complicated, and depend on whether the pathname specifies a name. 

If the pathname doesn't specify a name, then the version, if not provided, will come from the 

. defaults, just like the other components. However, if the pathname does specify a name, then the 

version is not affected by the defaults. The reason for this is that the version "belongs to" some 

other file name, and is unlikely to have anything to do with the new one. Finally, if this process 

leaves the version miss~ng, the default version is used. 

The effect of all this is that if the user supplies just a name, the host, device, directory, and type will 
come from the defaults, but the version will come ffom the default version argument to the merging • _. 



~ .. 

• 

• 

CHAPTER 23: F1LE SYSTEM INTERFACE 343 

operation. If the user supplies nothing, or just a directory, the name, type, and version will come 

over from the defaults together. If the host's file name syntax· provides a way to input a version 

without a name or type, the user can let the name and type default but supply a version version 

different from the one in the defaults. 

*def aul t - pa thname -def aul ts· [Variable] 
This is the default pathname-defaults pathname; if any pathname primitive that needs a set of 

defaults is not given one, it uses this onc. As a general rule, however, each program should have its 

own path name defaults rather than using this one. 

make-pathname &key :host :device :directory :name [Function] 
:type :version :defaults 

Given some components, make-pathname constructs and returns a pathname. After the 

components specified explicitly by the :host, :device, :directory, :name, :type, and 

: vers i on arguments are filled in, the merging rules used by merge-pathnames (page 342) are 

used to fill in any missing components from the defaults specified by the : def au 1 ts argument. 

The default value of the : de fa u 1 t s argument is a pathname whose host component is the same as 

the host component of the value of *def aul t-pathname-def aul ts *. (page 343), and whose 

other components are all n i 1. 

Whenever a pathname is constructed, whether by make-pathname or some/other function, the 

components may be canonica1ized if appropriate. For example, if a file system is insensitive to case, 

then alphabetic characters may ?e forced to upper case or lower case by the implementati~n. 

pathnamep object 
This predicate is true if object is a pathname, and otherwise. is false. 

(pathnamep x) <=> (typep x 'pathname) 

[Function] 

pathname-host path name [Function] 
pathname-devi ce pathname [Function] 
pathname-di rectory pathname [Function) 
pathname-name pathname [Function] 
pathname-type pathname [Funttion] 
pathname-vers i on pathname [Functi~n) 

These return the components of the argument pathname, which may be a pathname, string '·or 

symbol, or stream. The returned values can be strings, special symbols, or lists of strings in the case 

of structured components. The type will always be a string or a symbo1. The version will always be 

a number or a symbol. 



344" COMMON USP REFERENCE MANUAL 

names tr i ng pathname [Function] 

[Function] fi 1 e - name s t r i n 9 pathname 

d i rectory-n arnestr i ng pathname [Function] 

host -n arne s tr i n 9 pathname [Function] 

enough - namestr i ng pathname ~opt i ona1 defaults [Function] 

The pathname argument !!lay be a pathname. a string or symbol, or a stream that is or was open to a 

file. The name represented by pathname is returned as a namelist in canonical form. 

If pathname is a stream, the name returned represents the name used to open the file, which may 

not be the actual name of the file (see truenarne (page 340». 

n arne s t r i n 9 returns the full form of the pathname as a string. f i 1 e - n arne s t r i n 9 returns a 
string representing just the name, type, and version components of the pathname; the result of 

d; r e c tor y - n arne s t r ; n 9 represents just the directory-name portion; and h 0 s t - n arne s t r i n 9 

returns a string for just the host-name portion. Note that a valid naIIlestring cannot necessarily be 

constructed simply by concatenating some of the three shorter strings in some order. 

en ough - n arne s tr i r-g takes another argument, defaults. It returns an abbreviated name string 
that is just su~cient to identify the file named by pathname when considered relative to the defaults 

(which defaults to the value of *defau1t-pathnarne-defau1ts* (page 343)4 That is, it is 
required that 

(merge -pa thname- def aul ts (en ough -n ames tr 1 ng pathname defaults) 
defaults) 

<=> (~erge-pathname~defau1ts 
(parse-namestring pathname) defaults) 

in all cases; and the result of en 0 ugh - name s t r i n 9 is, roughly speaking, the shortest reasonable 

string that will still satisfy this criterion. 

user-homed; r-pathname &opt"ional host [Function] 

Returns a pathname for the user's "home directory" on host. The host argument defaults in some 
appropriate implementation-dependent manner. The concept of "home directory" is itself 
somewhat implementation-dependent, 'but from the point of view of COMMON' LISP it is the 

directory where the user keeps personal files such as initialization files and mail. If it is impossible 
to determine this information, then nil is returned instead of a patbname; however, 

use r - home d i r - p ~ t h name never returns 11 i 1 if the host argument is not specified. This 

function returns a pathname without any nam€!, type, or version component (those components are 
all nil). 

23.2. Opening and Closing Files 

When a file is opened, a stream object is constructed to serve as the file system's ambassador to the LISP 

enviroDJllent; operations on the stream are reflected by operations on the file in the file system. The act of 

closing the file (actually, the stream) ends the association; the transaction with the file system is terminated, 

and input/output may no longer be performed on the stream. The stream function close (page 278) may • 

-



• 
CHAPTER 23: ALE SYSTEM INTERFACE 345 

be used to close a file; the functions described below may be used to open them. The basic operation is 

ope n, but wit h - 0 pen - f i 1 e is usual~y lnore convenient for most applications. 

open filename &key :direction :element-type . [Function] 
:if-exists :if-does-not-exist 

Returns a strcam that is connected to the file specified by filename. The filename is thc name of the 

file to be opened; it may be a string, a pat!tname, or a stream. (If the filename is a stream, then it is 

not closed first or otherwise affected; it is used merely to provide a file name for the opening of a 
new stream.) 

The keyword arguments specify what kind of stream to produce and how to handle errors: 

:direction 

:element-type 

This argument specifies whether the stream should handle input, output~~or 
both. 

: input 

:output 

:io 

:probe 

The result will be an input stream. This is the default. 

The result will be an output stream. 

The result will be a bidirectional stream. 

The result will be a no-directional stream (in effect, the stream 
is created and then closed). This is useful fordeterni.ining 
whether a file exists ~ithout actually setting up a complete 
stream. 

This argument specifies the type of the unit of transaction for the stream. 
Anything that can be recognized as being a finite subtype of character or 
i n t e g e r is acceptable. In particular, the following types are recognized: 

s t r i n g :- C h a r The unit of transaction is a string-character. The Juncti~ns 
read-char (page 313) and/or wr i te-char (p'age 
317) may be used on the stream. This is the default 

character The unit of transaction is any character, not just a string
character. The functions read-char (page 313) andlor 
wr i t e- c h a I' (page 317) may be used on the stream. 

(unsigned-byte n) ~ 

unsigned-byte 

The unit of transaction is an unsigned byte (a- non-nega(jve 
integer) of size n. The functions read-byte (pfge 
316) andlor wr i te-byte (page 318) may be used on the 
stream. 

The unit of tran~ction is an unsigned byte (a non-negative 
integer); the size of the byte is determined by the file system. 
The functions read-byte (page 316) andlor wr i te-byte 
(page 318) may be used on the stream. 

(signed-byte n) 
The unit of transaction is a signed by.te of size n. The 



346 

:if-exists 

COMMON LISP REFERENCE MANUAL 

functions read-byte (page 316) and/or wr i te-byte • 
(page 318) may be used on the stream. 

Signed-byte The unit of transaction is a signed byte of size n. the size of 
the byte is detennined by the file system. The functions 
read-byte (page 316) and/or wr i te-byte ' (page 
318) may be used on the stream. 

bit 

(mod n) 

:default 

The unit of transaction is a bit (values 0 and 1). The 
functions read-byte (page 316) and/or write-byte 
(page 318) may be used on the stream. 

The unit of transaction is a non-negative integer less than n. 
The functions read-byte (page 316) and/or wr i te-byte 
(page 318) may be used on the stream. 

The unit of transaction is to be determined by the file system, 
based on the file it finds. The type can be detennined by 
using the' function stream-el ement-type (page 277). 

This argument specifies the action to be taken if the : d ire c t ion is : 0 u t put 
or : i 0 and a file of the specified name already exists. If the direction is :i n put 
or : pro be, this argument is ignored. 

:error Signal an error. This is the default when the version 
compon€~nt ofthejilename is not: newes t. 

: new-vers i on Create a new file with the same file name, but with a larger • 
version number. This is the default when the version·. 
compone'ntofthejilename is : newest. 

:rename Rename the existing file to some other name, and then create 
a new file with the specified name. 

:rename-and-delete 

:overwrite 

:append 

Rename the existing file to some other name and then delete 
it (but don't expunge it, on those systems that distinguish 
deleti.on from expunging). Then create a new file with the 
specified name. 

The existing file is used, and output operations on the stream 
will destructively. modify the file. If the : d ire c t ion is : i 0, 

the file is opened in a bidirectional mode that allows both 
reading and writing. The file pointer is initially positioned at 
the beginning of the file; however, the file is not truncated 
back to length zero when it is opened. This mode is most 
useful when the f i 1 e - p 0 sit ion (page 350) function can 
be used on the stream. 

The existing file is used, and output operations on the stream 
will destructively modify the file. The file pointer is initially 
positioned at the end of the file. If the : direct ion is : i 0, 

the file ig opened in a bidirectional mpde that allows both 
reading and writing. • 



• 
CHAPTER23:RLESYSTEMINTERFACE 

:supersede 

nil 

347 

Supersede the existing file. If possible, the implementation 
should- arrange not to destroy the old file until the new stream 
is closed, against the possibility that the stream will be closed 
in "abort" mode (see close (page 278». This differs from 
:, n ew-ve rs; on in that: super s ede creates a new file with 
the same name as the old one, rather than a file name with a 
higher version number. 

Do not create a file or even a stream. Instead, simply return 
n ; 1 to indicate failure. 

If the : d ; r e c t ; 0 n is : 0 U t put or :; 0 and the value of :; f - ex; s t s is 
: new-vers ion, then the version of the (newly created) file that is opened will 
be a version greater than that of any other file in the file system whose other 
pathname components are the same as those of filename. 

If the : d ; r e c t ion is : i n put or : pro b e or the value of : i f - ex i s t s is not 
: new - v e r s ion, and the version component of me jilename is : n ewe s t, then 
the file opened is that file already existing in the file system that has a version 
greater than that of any other file in the file system whose other pathnarne 
components are the. same as those ofjilename. 

Implementation note: The various file systems in existence today have widely differing 
capabilities. A given implementation may not be able to support all of these options in 
exactly the manner stated. An implementation is required to recognize all of these 
option keywords and to try to do something "reasonable" in the context of the host 
operating system. Implementors are encouraged to approximate th9 semantics specified 
here as closely as possible. 

As an example, suppose that a file system does not support distinct file versions and 
docs not distinguish the notions of deletion and expunging (in some file systems file 
deletion is reversible until an expunge operation is performed). Then: new-ver s i on 
might be treated the same as : rename or : supersede, and : rename-and-d.e 1 ete 
might be treated the same as : supersede. 

If it is utterly impossible for an implementation to handle some option in a manner ~ 
close to what is specified here, it may simply signal an error. The opening of files is an 
area where complete portability is too much to hope for; the intent here is simply to 
make things as portable as possible by providing specific names for a range of . 
commonly supportable options. 

:;f-does-not-exist 
This argument specifies the action to be taken if a file of the specified name does 

- not already exist 

:error 

:create 

nil 

Signal an error. This is the default if the : d ire c t i 0 nis 
=-input, or if the : if-exists argument is :overwr;fe 
or: append. 

Create an empty file with the specified name, and then 
proceed as if it had already existed (but do not perfonn any 
processing directed by the : i f - ex i s t s argument). This is 
the default if the : direct i on is : output or : i 0, and the 
: if-exists argument is anything but :overwrite or 
: append. 

Do not create a file or even a stream. Instea<L simply return _ 



348 COMMON LISP REFERENCE MANUAL 

nil to indicate failure. This is the default if the 
: d ire c t ion is : pro be. 

When the caller is finished with the stream, it should close the file by using the c los e (page 

278) function. The wi th -open -f i 1 e (page 348) fonn does this automatically, and so is 

preferred for most purposes. open should be used only when the control structure of the program 

necessitates opening and closing of a file in some way more complex than provided by 

wit h - 0 pen - f i 1 e. It is suggested that any program that uses 0 pen directly should use the 

special form un win d - pro tee t (page 115) to close the file if an abnonnal exit occurs. 

wi th -open -fi 1 e (stream filename {options}*) {d~'claration}* {fonn}* [Macro] 
wi th -open -f 11 e evaluates the /onns of tl:le body (an implicit progn) with the variable stream 
bound to a stream that reads or writes the file named by the value of filename. The, options are 

evaluated, and are used as keyword arguments to the function 0 pen (page 345). 

When control leaves the body, either nonnally or abnormally (such as by use of th row (page 

116», the, file is automatically closed. If a n1ew output file is being written, and control leaves 

abnonnally, the file is aborted and the file system is left, so far as possible, as if the file had never 

been opened. Because wi th-open-f 11 e always closes the file, even when an error exit is taken, 
it is preferred over open for most applications. 

filename is the name of the file to be opened; it may be a string, a pathname, or a stream. 

For example: 
(w1th-open-file (ifile name :direction :input) 

{with-open-file (of11e (merge-pathname-defaults ifile 
nil 

:direction :output 
: if--exists :supersede) 

(transduce-file if11e ofi1e») 

"out") 

Implementation note: While with - 0 pen - f i 1 e tries to automatically close the stream on exit from the construct, for 
robustness it is helpful if the garbage collector can detect discarded streams and automatically close them. 

23.3. Renaming, Deleting, and Other Operations 

rename-fi 1 e file new-name [Function] 
The specifiedjile is renamed to new-name (which must be a filename). The file may be a string. a 
pathname, or a stream. If it is an open stream associated with a file, then the stream itself and the 
file associated with it ~e affected (if the file syst,em pennits). 

r en ame - f i 1 e returns three values if successful. The first value is the new-name with any missing 

components filled in by performi~g a merge-Ilathnames (page 342) operation using file as the 

defaults. The second value is the t rue name (page 340) of the file before it was renamed. The 

third value is the truename (page 340) of the tile after it was renamed. • 
~ 



• 
CHAPTER 23: FlLE SYSTEM INTERFACE 349 

If the renaming operation is not successful, an error is signalled. 

It is an error to specify a filename containing a : w i 1 d component, for file to contain ani 1 

component where the file system does not permit ani 1 component, or for the result of defaulting 

missing components of new-name from file to contain ani 1 component where the file system does 

not pennit ani 1 component. 
Compatibility not-e: This corresponds to the function called renamef in MACLISP and Lisp Machine LIsP. The 
name "renamef" is not used in COMMON LISP because the convention that a trailing "f" means "file" conflicts 
with the use of a trailing "f" for forms related to set f (page 78). 

de 1 ete-f i 1 e file [Function] 
The specified file is deleted. The file may be a string, a pathname, or a stream. If it is an op~n 

stream associated with a file, then the stream itself and the file associated with it are affected (if the 

file·system permits), in which case the stream mayor may not be closed immediately, and the 

deletion may be immediate or delayed until the stream is explicitly closed, depending on the 

requirements of the file system. 

de 1 e te -f i 1 e returns t if successful. It is left to the discretion of the implementation whether an 

attempt to delete a nonexistent file is considered to be successful. If the deleting operation is not 

successful, an error is signalled. 

It is an error to specify a file name containing a : wi 1 d .component, or one containing ani 1 

component where the file system does not permit ani 1 component. 
Compatibility note: This corresponds to the function called de 1 etef in MAC LISP and Lisp Machine uSP. 

probe-fi 1 e file [Function) 

This predicate is' false if there is no file named file, and otherwise returns a pathname that is the true 

name of the file (which may be different from file because of file links, version numbers, or other 

artifacts of the file system). Note that if the file is an open stream associated with a file, then 

pro b e - f i 1 e cannot return nil, but will produce the true name of the associated file. See 

t rue n arne (page 340), and the : pro b e value for the : d; r e c t ion (page 345) argument to 

open. 
Compatibility note: This corresponds to the function called probef in MACLIsP and Lisp Machine uSP. 

file-write-date fi~ [FunctioP] 
file can be a filename or a stream that is open to a file. This returns the' time at which the file w6s 
created or last written as an integer in universal time format (see section 25.4.1), or ni 1 if thIS 
cannot be determined. 

fi 1 e-author file [Function] 
file can be a filename or a stream that is open to a file. This returns the name of the author of the 

file as a string, or nil if this cannot be determined. 



350 COMMON LISP REFERENCE MANUAL 

fi' e-pos it i'on file-stream &opt ional ·position [Function] 
f i' e -pas i t ion returns or sets ~e current position within a random-access file. 

(f i' e- pas it i on file-stream) returns a non-negative integer indicating the current position 

within the file- stream, or nil if this cannot be determined. The file position at the start of a file will 

be zero. The value returned by f i 1 e - pas. i t ion increases monotonically as input or output 

operations are performed. For a character file, performing a single read-char (page 313) or 

wr i te-char (page 317) operation may cause the file position to be in.crcased by more than 1 
because of character-set translations (such as translating between the COMMON LISP #\New' i ne 

character and an external ASCII carriage-return/line-feed sequence) and other aspects of the 

implementation. For a binary file, every read-byte or wr i te-byte operation increases the file 

position by 1. 

(f i' e- pos i t i on file-stream position) sets the position within file-stream to be position. The 

position may be an integer, or : st.art for the· beginning of the stream, or : end for the end of the 

stream. If the integer is too large or otherwise inappropriate, an error is signalled (the 

fi 1 e-1 ength (page 350) function returns the length beyond which fi' e-posit ion may not 
access). An integer returned by f i 1 e "'pas it i on of one argument should, in general, be 

acceptable as a second argument for use with the same file. With two arguments. 
f i 1 e - pas i t ion returns t if the repositioning was performed successfully, or n i 1 . if it was not 

(for example. because the file was not random-access). 
Implementation note: Implementations that have character files represented as a sequence of records of 
bounded size might choose . to encode the file position as, for example. 
record-number*256 + character-within-record. This is a valid encoding because it increases monotonically as 
each character is read or written, though not necessarily by 1 at each step. An integer might then be considered 
"inappropriate" as a second argument to f; 1 e - p 0 sit; 0 n if, when decoded into record number and 
character number, it turned out that the specified :record was too shon for the specified character number. 

Compatibility note: This corresponds to the function called fi 1 epos in MAcLISP and Lisp Machine LIsp. 

f i 1 e -1 el1gth file-stream [Function] 
file- stream must be a stream that is open to .l file. The length of the file is returned as a non

negative integer, or n i 1 if the length cannot be determined. For a binary file, the length is 
specifically measured in units of the : element-type specified when the file was opened (see 

ope n (page 345». 
Compatibility note: ' This corresponds to the function called 1 eng th f in MACLISP and Lisp Machine LIsp. 

23.4. Loading Files 

To load a file is to read through the file~ evaluating each fonn in it. Programs are typically stored in files; 

the expressions in the file are mostly special forms such as defun (page 55), defmacro (page 118), and 

de f va r . (page 56), which define the functions and variables of the program. 

Loadi~g a compiled ("fasload") tile is similar; except that the file does not contain text, but rather pre
digested expressions created by the compiler that can be loaded more quickly. 

• 

• 

• _. 



• 

r-• 

CHAPTER 23: FILE SYSTEM INTERFACE 351 

load filename &key :verbose :print :if-does-not-exist [Function] 
This function loads the file named by filename into the Lisp envi"ronment. It is assumed that a text 

(character file) can be automatically distinguished from an object (binary) file by some appropriate 

implementation-dependent means, possibly by the file type. The defaults for filename are taken 

from the variable *def au 1 t -pa thname -def au' ts * (page 343). If the filename (after the 

merging in of the defaults) does not explicitly specify a type, and both text and object types of the 

file are available in the file system, , oad should try to select the more appropriate file by some 

implementation-dependent means. 

If the first argument is a stream rather than a pathname~ then loa d determines what kind of stream 
'1\, 

it is and loads directly from the stream. ' 

The : verbose argument (which defaults to the value of *1 oad-verbose* (page 351»), if true. 
permits' oad to print a message in the form of a comment (that is, with a leading semicolon) to 

*standard-output* (page 273) indicating what file is being loaded and other useful 

information. 

The : p r ; n t argument (default n i 1), if true, causes the value of each expression loaded' to be 

printed to * stand ard -ou tp u t * (page 273). If a binary file is being loaded, then what is printed 

may not reflect precisely the contents of the source file, but nevertheless some information will be 

printed. 

If a file is successfully loaded, 1 oad always returns a non-n;' value. If: if - does - no t - ex is t 

is specified and is nil, 1 oad just returns n i' rather than signalling an error if the file does not 

exist. 

*1oad-verbose· [Variable] 
This variable provides the default for the : verbose argument to , oad (page 351). Its initial 

value is implementation-dependent 

23.5. Accessing Directories 

di rectory pathname &key [Functi0J:Z] 
; 

A list of path names is returned, one for each file in the file system that matches the given pathnant. 
(The pathname argument may be a pathname, a string, or a stream associated with a file.) For ~e 
that matches, the truename (page 340) for that file appears in the result list If no file matc~~ 
the pathname, it is not an error; d; r e c tor y simply returns n i " the list of no results. . Keywords 

such as : wi 1 d and : n ewe.s t may be used in pathname to indicate the search space. 

It is anticipated that an implementation may need to provide additional parameters to control the 
directory search. Therefore d ire c tor y is specified to take additional keyword arguments, so that 

implementations may experiment with extensions, even though no particular keywords are 

specified here. (As a simple example of such an extension, for a file system that supports the notion 

of cross-directory file links, a keyword argument : li n k s might, if non-n i , , specify that such links 



. 352 COMMON LISP REFERENCE MANUAL 

be included in the result list) 

'--

• 



• 

• 

~ • 

Chapter 24 

Errors 

24.1. Handling Errors 

When an error is signalled, either explicitly by calling one of the functions documented in this section, or 

implicitly by the LISP system, it is handled in an implementation-dependent way. It is expected that each 

implementation of COMMON LISP will provide an interactive debugger that prints the error message, along 

with suitable contextual information such as which function detected the error. The user may interact with 

the debuggcr to examine Of modify the state of the program in various ways, including abandoning the 

current computation ("aborting to top lcvel") and continuing from the error. What "continuing" means 

depends on how the error is signalled; the details of this are specified below for each error signalling·function . 

An implementation may also choose to provide.means (such as the errset special fonn in MACLISP) for a 

program to trap all errors and prevent the debugger from stepping in for certain errors. 
Rationale: Error-handling of adequate flexibility and power for all systems written in COMMON LISP jppears to require a 
complex error classification system. E.xperience with several error-handling systems in such dialects as MACLISP and Usp 
Machine LIsp indicates that further experimentation is needed in this area: it is too early to define a·standard error-handling 
mechanism. Therefore CoMMON LISP provides standard ways to signal errors, but no standard ways to handle errors. Of 
course a complete LISP system requires error-handling mechanisms, but many useful portable programs do not r~quire 
them. It is expected that a future revision of COMMON LISP will address the problem of portable error-handling 
mechanisms. 

Compatibility Dote: What is here called "continuing", Usp Machine LIsp calls "proceeding" from an error. 

24.2. General Error Signalling Functions 

The functions in this section provide various mechanisms for signalling warnings, breaks, continuable 

errors, and fatal errors. 
.~ 

In each case the caller specifies an error message (a string) that may be processed (and perhaps displayed to 

the user) by the error-handling mechanism. All messages are constructed by applying the function format 
(page 318) to the quantities nil, format-string, and all the args to produce a string. 

An error message string should not contain a newline character at either the beginning or end, and should 

not contain any sort of herald indicating that it is an error. The system will take care of these according to 

whatever its preferred style may be. 

;... 353-



'. 
354 COMMON LISP REFERENCE MANUAL 

Conventionally, error messages are complete English sentences, ending with a period. Newlines in the 

middle of long messages are acceptable. There should be no indentation after a newline in the middle of an 

error message. The error message need not mention the name of the function that signals the error; it is 

assumed that the debugger will make this information available. 
Implementation· note: If the debugger in a particular imp leme ntation displays error messages indented from the prevailing 
left margin (for example, indented by seven spaces because they are prefixed by the herald "Error: "), then the debugger 
should take care of inserting the appropriate indentation into a multi-line error message. Similarly. a debugger that prefixes 
error messages with semicolons so that they appear to be comments should take care of inserting a semicolon at the 
beginning of each line in a multi-line error message. These rules are suggested because, even within a single 
implementation. there may be more than one program that pfl!sents error messages to the user, and they may use different 
styles of presentation. The caller of error cannot anticipate all such possible styles, and so it is incumbent upon the 
presenter of the message to make any necessary adjustments. 

COMMON LISP does not specify' the manner in which·elTor messages and other messages are displayed. For 

the purposes of exposition, a fairly simple style of textual presentation will be used in the examples in this 

chapter. The character ">" is used to represent the command prompt symbol for a debugger. 

error format-string &rest args [Function] 
This function signals a fatal error. It is impossible to continue from this kind of error; thus e r ro r 

will never return to its caller. 

The debugger printout in the following example is typical of what an implementation might print 
when error is called. Suppose that the symbol emergnecy-shutdown has no property named 

command (all too likely, as it is probably a typographical error for "'emergency-shutdown"). 
(defun command-dispatch (cmd) 

(1 et « fn (get cmd .. commanlj) ) ) 
(if (not (nullfn» 

(funcall fn» 
(error "The command -S is unrecognized." cmd»» 

(command-dispatch 'emergriecy-shutdown) 
Er ror: The command EMERGNECY ··SHUTDOWN is unrecogn i zed. 
E,rror signalled by function Co.MMAND-DISPATCH. 
> 
Compatibility note: Lisp Machine LIsp calls this function fer r 0 r. MACUSP has a function named er r 0 r that 
takes different arguments and can signal either a fatal or a continuable error. 

. cerror continue-format-string error-format-string &rest args [Function] 
c err 0 r is used to signal continuable errors. Like err 0 r, it signals an error and enters the 

debugger. However, cerror allows the program to be continued from the debugger after 

resolving the error. 

If the program is co~tinued after encountering the error, c err 0 r returns nil. The code that 

follows the call to cerror will then be executc!d. This' code should correct the problem, perhaps 

by accepting a new value from the user if a variable was invalid. 

If the code that corrects the problem interacts with the program's use and might possibly be misled, 

it should make sure the error has really been corrected before continuing. One way to do this is to • -



• 

• 

CHAPTER 24: ERRORS 355 

. put the call to c err 0 r and the correction code in a loop, checking each time to see if the error has 

been corrected before tenninating the loop. 

The continue-jonnat-string argumen.t, like the error-jonna{-string argument, is given as a control 

string to format (page 318) along with the args to construct a message string. The error message 

string is used in the same way that err 0 r uses it. The continue message string should describe the 

effect of continuing-. The intent is that this message can be displayed as an aid to the user in 

deciding whether and how to continue. For example, it might be used by an interactive debugger 

as pan of the documentation of its "continue" command. 

The content of the continue message should adhere to the rules of style for errors messages. It 

should not include any statement of how the "continue" command is given, since this may be 

different for each debugger. (It is up to the debugger to supply this infonnation according to its 

own particular style of presentation and user interaction.) 

Here is an example where the caller of ce r r 0 r, if continued, fixes the problem without any further 

user interaction: 
(let «nvals (list-length vals») 

(unless (= nvals 3) 
(cond «< nvals 3) 

(cerror "Assume missing values are. zero." 
"Too few values in -5;-%
three are required, -
but ~R -:[were-;was-] supplied~" 

nvals (= nvals i)} 
(setq vals (append vals (subseq '(0 0 O) nvals 3})) 

(t (cerror "Ignore all values after the first three." 
"Too many values in -5;-%
three are required, -
but -R were supplied." 
nvals) 

(setq vals (subseq vals 0 3»»» 
If val s were the list ( - 4 7 ), the interaction might look like this: 

Error: Too few values in (-47); 
three ~re requi·red, but one was supplied. 

Error Signalled-by function EXAMPLE. 
If continued: Assume missing values are zero. 
> 

In this example; a loop is used to enSure that a test is satisfied. (This example could be written mo~e 

succinctly using assert (page 357) or check-type, which indeed supply such loops.) ; 
(do () 

«known-wordp word) word) 
(cerror "You will be prompted for a replacement word." 

"-5 is an unknown word (possibly ~isspelled)." 
word} 

(format *query-io* "-&New word: ") 
(setq word (read *query-io*») 

In complex cases where the error-fonnat- string uses some of the args and the continue-format-string 

uses others, it may be necessary to use the format directives -* and -@* to skip over unwanted 



356 COMMON USP REFERENCE MANUAL 

arguments in one or both of the format control strings. 
Compatibility note: The Lisp Machine LIsp function fsigna1 is similar to this, but returns :no-action 
rather than nil, and fails to distinguish between Inc error message and the continue message. 

warn format-string &rest args [Function] 
warn prints an error message, but normally doesn't go into the debugger. (However, this may be 

controlled by the variable *break -on-warn i ng5* (page 356).) warn returns ni 1. 

This function would be just the same as format (page 318) with the output directed to the stream 

in *error-output* (page 274), except that warn may perform various implementation

dependent formatting and other actions. For example, an implementation of warn should take 

care of advancing to a fresh line before and after the error message and perhaps supplying the name 

of the function that called wa r n. 
Compatibility note: The Usp Machine LlSP function C omp ; 1 e r : war n is an approximate equivalent to this. 

* b rea k - 0 n - warn i n 9 s * [ Variable] 
If *break-on-warn ing5* is not ni 1, then the function warn behaves like break. It prints its 

message and. then goes to the debugger or break loop. Continuing causes warn to return n i 1. 

This flag is intended primarily for use when the user is debugging programs that issue warnings; in 

"production" use the value of * b rea k - on - war n i n 9 5 * should be nil. 

break &optional format-string &rest args [Function] 
break prints the message and goes directly into the debugger, without allowing any possibility of 

interception' by programmed error-handling tlcilities. (Right now there aren't any error-handling 

facilities defined in COMMON LISP, but there might be in particular implementati~ns, and there will 

be some defined by COMMON LISP in the future.) When continued, break returns n i 1. It is 
permissible to call break with no arguments; .a suitable default message will be provided. 

break is presumed to be used as a way of inserting temporary debugging "breakpoints" in a 

program, not as a way of signalling err9rs; it is expected that continuing from a b rea k will not 

trigger any unusual recovery action. For this reason break does not take the additional format 

control-string argument that ce r r or takes. lhis and the lack of any possibility of interception by 

programmed error-handling are the only program-visible differences between break and cerror 

(page 354). The interactive debugger may I:hoose to display them differently; for instance~ a 

cerror message might be prefixed with the herald uError: n and a break message with 

"Break: ". This depends on the user:-interface style of the particular implementation. A 
particular implementation may choose~ according to its own style and needs, when break is called 

to go into a debugger different from the one used for handling errors. For example, it might go into 

an ordinary "rea&·eval-print" loop identical to the top-level one except· for the provision of a 

"continue" command that causes break to return ni 1. 
Compatibility note: In MAcLISP. break is a special form (FEXPR) that takes two optional arguments. The first 
is a symbol (it would be a string if MAcLISP had strings). which is not evaluated. The second is evaluated to 
produce a truth value specifying whether break should break (true) or return immediately (false). In 
COMMON LISP one makes a call to break conditional by putting it inside a conditional form such as when 
(page 95) or un 1 e s s (page 95). • 



• 

.---• 

CHAPTER 24: ERRORS 357 

24.3. Specialized Error-Signalling Forms and Macros 

check-type place Iypespec &opt ional sIring [Alaero] 
check-type signals an error if the contents of place are not of the desired type. If the user 

continues from this error, he will be asked for a new value, and check-type will store it in plaee 
and start over, checking the type of the new value and signalling another error if it is still not of the 

desired type. Subforms of place may be evaluated multiple times, because of the implicit loop 

generated. c h e c k - t Y P e returns n i 1. 

The place must be a generalized variable reference acceptable to set f (page 78). The typespec 
must be a type specifier; it is not evaluated. The string should be an English description of the type,: 

starting with an indefinite article ("a". or "an"); it is evaluated. If string is not supplied, it fs 
computed automatically from typespee. (The optional string argument is allowed because. some 

applications of check-type may require a more specific description of what is wanted than can 

be generated automatically from the type specifier.) 

The error message will mention place, its contents, and the desired type. 
Implementation note: An implementation may choose to generate a somewhat differently· worded error 
message if it recognizes that place is of a particular form. such as one of the arguments to the function that 
called check -type. 

Examples: 
(setq aardvarks '(sam harry fred» 
{check-type aardvarks (vector integer» 
Error: The value of AARDVARKS, (SAM HARRY FRED), 

is not a vector of integers. 

(setq naards 'fool 
(check-type naards (integer 0 *) "a positive integer"} 
Error: The value of NAARDS, FOO, is not a positive integer. 
Compatibility note: In Usp Machine Lisp the equivalent facility is called check-arg-type. 

ass e r t test-form [{ {place}* } [string. {arg}*]] [Macro] 

as s e r t signals an error if the value of test-form is nil. Continuing from this error will allow: the 

user to ~ter the values of some variables, and assert will then start over, evaluati~g test-form 
. again. assert returns nil. 

test-form is any fonn. Each place (there may be any number of ~em, or none) must be ~ 
generalized-variable reference acceptable to set f (page 78). These should be variables on wbicp 

test-form depends, whose values may sensibly be changed by the user in attempting to correct th~ 
error. Subfonns of each place are only evaluated if an error is signalled, and may be re-evaluated if 
the error is re-signalled (after continuing without actually fixing the problem). 

The string is an error message string, and the args are additonal arguments; they are evaluated only 

if an error is signalled, and re .. evaluated if the error is signalled again. The function forma t (page 

318) is applied in the usual way to string and args to produce the actual error message. If string is 
omitted (and therefore also the args), a default error message is used.: , 



358 COMMON LISP REFERENCE MANUAL 

Implcmcnt~tion note: The debugger need not include the -test-form and places should not be included in the 
error message, but O\~ght to make them available for the user's perusal, If the user gives the "continue" 
command. he should be presented with the 0PPoltunity to alter the values of any or all of the references. The 
details of this depend on the implementation's style of user interface. of course. 

Examples: 
(assert (valve-closed-p v1») 

(assert (valve-closed-p vI) () ~Live stea~ is escaping!") 

(assert (valve-closect-p vi) 
«valve-manual-control vi» 
"Live steam is escaping!") 

;; Note here that the user is invited to change BASE, 
;; but not the bounds MINBASE an-d MAXB,ASE. 
(assert «= minbase base maxbase) 

(base) 
"Base -0 is not in the range [-0, -OJ" 
base minbase maxbase) 

" Note here that it is probably not desirable to include the 
entire contents of the two matrices in the error me-ssage. 

I! It is reasonable to assume that the debugger will give 
" the user access to the values of.the places A -and B. 
(assert (= (array-aimens.ion a 1) 

(array-dimension bO),) 
(a b) 
"Cannot multiply a -D-by--O matrix -

and a -O-by--f) m.at.r ix. " 
(array-dimension a 0) 
{array-dd.me·ns.i,o.n a 1) 
(array-ddme,n.s i,on b 0) 
( a r r ay ~ dime n,S t o·n b 1 ) }; 

24.4. Special Forms for Exhaustive Case Analysis 

The syntax for etypecase and ct,Ypecase is the same as for .typecase (page 97), except that no 
. ot h e rw; s e clause is permitteci. Sitnilarly, the syntax for ec as.e and cease is the same as ~orca"s e (page 

96) except for the otherwise clause. 

etypecase and ecas,e are similar to typeCaSJl aIld" case, respectively, but. signal a non-continuable 
error rather than returning'·n:tl ifno)c1ause.is~seleetem 

c ty pee as e and c ca se· are' similarly similar~ but signal a'continuable errOl if no clause is selected. 



f' • 

r--• 

CHAPTER 24: ERRORS 359 

etypecase keyfonn {(rype ({onn}*)}* [Alaero] 
This control construct is simi~ar to typecase (page 97), but no explicit otherwi se or t clause is 

permitted. If no clause is satisfied. etypecase signals an error with a message constructed from 

the clauses. It is not permissible to continue from this error. To supply his own error message, the 

user should use typecase with an otherwi se clause containing a call to error. The name of 

this function stands for "exhaustive type case" or "error-checking type case". 

For,example: 
(setq x 1/3) 
(etypecase x 

(integer x) 
(symbol (symbol-value x») 

Error: The value of x, 1/3, is neither 
an integer nor a symbol. 

> 

ctypecase keyplace {(type ffonn}*)}* r~[acro] 

This control construct is similar to ty p e case (page 97), but no explicit 0 the rw i s e or t clause is 
pennitted. The keyplace must be a generalized variable reference acceptable to set f. If lio clause 

is satisfied, ctypecase signals an error with a message constructed from the clauses. Continuing 

from this error causes ctyp~case to accept a new value from the user, store it into keyplace, and 

start over, making the type tests again. Subforms of keyplace,may be evaluated multiple times. The 

name of this function stands for "continuable exhaustive type case" . 

ecase keyfomt' {( {{ {key}*) I key} <{fonn}*)}* [A-laero] 
This control construct is similar to ease (page 96), but no explicit otherwi se or t clause is 
permitted. If no clause is satisfied, e cas e signals an error with a message constructed from the 

clauses. It is not permissible to continue from this error. To supply an error message, the user 

should use case with an otherwi se clause containing a call to error. The name of this 

function stands for "exhaustive case" or "error-checking case". 

For example: 
(setq x 1/3) 
(ecase x 

(alpha (faa» 
(omega (bar» 
«zeta phi) (baz») 

Error: The value of X, 1/3, is not 
ALPHA, OMEGA, ZETA, or PHI. 

ccase keyplace {( {( {key}*) I key} {fonn}*)}* [Macro] 

This control construct is similar to case (page 96), -but no explicit otherwi se or t clause is 
'permitted. The keyplace must be a generalized variable reference acceptable to set f. If no clause 

is satisfied, cease signals an error with a message constructed from f:he clauses. Continuing from 
this error causes cease to accept a new value from the user, store it into keyplace, and start over, 

making the clause tests again. Subforms of keyplace may be evaluated multiple times. The name of 



360 COMMON USP REFERENCE MANUAL 

this function stands for "continuable exhaustive case". 

Rationale: The special forms etypecase. ctypecase, ecase. and cca,se are included in COMMON LISP. even though a 
user Could write them himself using the other standard fad] ities provided. because it is likely that many users will want 
these. COMMON LIsp therefore provides a standard consistent set rather than allowing a variety of incompatible dialects to 
develop. " 

In addition, experience has shown that some LIsp programmE!rs are too lazy to put an appropriate otherwise clause into 
every case (page 96) statement to check for cases they didn't anticipate. even if they would agree that it will probably hurt 
them later. If an 0 the r wi s e cla~se can be included very easily, by adding one character to the name of the construct, it is 
perhaps more likely that programmers will take the trouble to do it 

The "e" versions do nothing more than supply automatically-generated otherwise clauses. but the "c" versions require 
some thought to be implemented correctly: it is. especially important that these be provided by the system so users don't ' 
have to puzzle them out on their own. IndividuaI'implementalions may be able to do a better job of supporting these special 
forms, using their own idiosyncratic facilities, than can be do~e using the error-signalling facilities defined by COMMON USP. 

• 



r---• 
Chapter 25 

Miscellaneous Features 

25.1. The Compiler 

The compiler is a program that may make code run faster, by translating programs into an implementation

dependent form that can be executed more efficiently by the computer. Most of the time you can write 

programs without worrying about the compiler~ compiling a file of code should produce an equivalent but 

more efficient program. When doing more esoteric things, one may need to think carefully about what 

happens at "compile time" and what happens at "load time". Then the difference between the syntaxes u#." 

and H# , " becomes important, and the e val -w hen (page 57) construct becomes particularly useful. 

Most declarations are not used by tile COMMON LISP interpreter; they may be used to give advice to the 

compiler. The compiler may attempt to check your advice and warn you if it is inconsistent. 

U nUke most other LISP dialects, COMMON LISP recognizes s pee; a 1 declarations in interpreted code as 

well as compiled code. This potential source of incompatibility between interpreted and compiled code is 

thereby eliminated in COMMON LISP. 

The internal workings of a compiler will of course be highly implementation-dependent The following 

functions provide a standard interface to the compiler, however. 

c omp ; 1 e name &0 p t ion a 1 definition [Function] 
If definition 'is supplied, it should be a lambda-expression, the interpreted function to be compiled. 

If it is not supplied, then name should be a symbol with a definition that is a lambda-expression; 

that definition is compiled and the, resulting compiled code is put back into the symbol as' its 
function definition. 

The definition is compiled and a compiled-function object produced. If name is a non-n i 1 symbol, 

then the compiled-function object is installed as the global function definition of the symbol and 

the symbol is returned. If name is ni 1, then the compiled-function object 'itself is returned. 

For example: 

- 361-



362 

(defun foo·· ... ) :> foo 
(compile 'foo) => foo 

. ; Now f 0 0 runs faster. 

COMMON LISP REFERENCE MANUAL 

; A function definition. 
; Compile it. 

{compile nil '(lambda (a b c) {- (* b b) (* 4 a c»» 
=> a compiled function of three arguments that computes b2-4ac 

compile-file input-path name.· &key :output-file [Function] 
TIle input-pathname must be a valid file specifier, such as a pathname. The defaults for 

input-filename are taken from the variable *def au 1 t -pa thname-def aul ts * (page 343). The 

file should be a LISP source file; its contents are compiled and written as a binary object (" F AS L") 

file. 

The : 0 u t put - file argument may be uSf!d to specify an output pathname; it defaults in a 

manner appropriate to the implementation's file system conventions. 

dis as s emb 1 e name-or-compiled-junction [Function) 
The argument should be either a function object, a lambda-expression, or a symbol with a function 

definition. If the relevant function is not a compiled function, it is first compiled. In any case, the 

compiled code is then "reverse-assembled" and printed out in a symbolic format. This is primarily 

useful for debugging the compiler, but also often of use to the novice who wishes to understand the 

workings of compiled code. 
Implementation note: Implcmentors are encouraged to make the output readable, preferably with helpful 
comments. 

25.2. Documentation 

A simple facility is provided for attaching strings to symbols for the purpose of on-line documentation. 

Rather than using the property list of the symbol, a separate function doc ume n tat ion is provided so that 

implementations can optimize ~e storage of documentation strings. 

documentat iun symbol doc-type [Functio.n] 
This function returns the documentation string of type doc-type for the symbol, or nil if none 

exists. Both argumen~ must be symbols. Some kinds of documentation are provided automatically 

by certain COMMON LISP constructs if the user writes an optional documentation string within 

them: 

Construct 
defvar (page 56) 
defparameter (page 56) 
defconstant (page 56) 
defun (page 55) 
defmacro (page 118) 
defs truct (page 255) 
deftype (page 41) 
defsetf (page 84) 

Documentation Type 
variab"!e 
variab"le 
variable 
f.uncti()n 
function 
structure 
type 
setf 

• 

• 



·' 

~ • 

CHAPTER 25: MISCELLANEOUS FEA. TURES 363 

In addition. names of special forms may also have fun c t ion documentation. (Macros and special 

forms are not really functions, of course, but it is convenient to group them with functions for 

documentation purposes.) 

setf (page 78) may be used with documentat; on to update documentation information. 

25.3. Debugging Tools 

The utilities described in this section are sufficiently complex and sufficiently dependent on the host 

environment that their complete definition necessarily belongs to either the yellow pages or the reG pages~ 

However, they are also sufficiently useful as to warrant mention here, to ensure that every implernentatio~ 

provides some version of them, however clever or however simple. 

trace {jUnction-name}* [Alacro] 
untrace {jUnction-name}* [i\lacro] 

Invoking trace with one or more function names (symbols) causes the functions named to be 

"traced". Henceforth, whenever such a function is invoked, information about the call, the 

arguments passed, and the eventually returned values, if any. will be printed to the stream that is 

the value of *trace-output * (page 274). 

For example: 
(trace fft gcd chase-pacman) 

If a function call is open-coded (possibly as a result of an in 1 ; n e declaration), then such a call may 

not produce trace output. 

In voking un t r ace with one or more function names will cause those functions not to be traced 

anymore. 

Tracing an already-traced function~ or untracing a function not currently being traced, should 

produce no harmful effects, but may produce awarning message. 

Calling t r ace with no argument fOfIlls will return a list of functions currently being traced. 

Calling un t rae e with no argument forms will cause all currently traced functions to be no longer 

traced. 

trace and untrace may also accept additional implementation-dependent argument formatsi 

The fonnat of the trace output is implementation-dependent " 

step form [Macro] 

This evaluates form, and returns· what form returns. However, the user is allowed to interactively 

"single-step" through the evaluation of form, at least through those evaluation steps that are 

performed interpretively. The nature of the interaction is implementation-dependent However, 

implementations are encouraged to respond to the typing of the character "1" by providing help 

inc1i)(llng a list of commands. 



364 COMMON LISP REFERENCE MANUAL 

time form [A/aero] 
This evaluates fonn, and rcturns what fonn returns. However, as a side effect various timing da'ta 

and other information is printed to the strcmn that is the value of *trate-output* (page 274). 

The nature and fonnat of the printed infQ:nnation is implementation-dependent However, 

implementations are encouraged to provide such infonnation as elapsed real time, machine run 

time, storage managemen~ statistics, and so on. 
Compatibility note: This facility is inspired by the INTER LISP facility of the same name. Note that the 
MACLISP/Lisp Machine LISP function time docs something else entirely. namely return a quantity indicating 
relative elapsed real time. 

describe object [Function] 
des c r ; be prints, to the stream in the variable * s ta n d a r,:d - ou t put * (page 273), information 

-I about the object. Sometimes it will describe something that it finds inside something else; such· 

I recursive descriptions are indented appropriately. For instance, ·desc r i be ofa symbol will exhibit 

the symbol's value, its definition, and each of its properties. de sc r ; be of a floating-point number 

. will exhibit its internal representation in a way that is useful for tracking down roundoff errors and 

the like. The nature and format of the output is implementation-dependent 

des c rib e returns no values (that is, it retu rns what the expression (val ues) returns: zero 

values). 

inspect object [Function] 
; n s pee t is an interactive version of des c rib e. The nature of the interaction is implementation

dependent, but the purpose of ins pe c t is to make it easy to wander through a data structure, 

examining and modifying parts of it. Implementations are encouraged to respond to the typing of 

the character "?" by providing help, including a list of commands. 

room &optional x [Function] 
room prints, to the stream in the variable * s tan dar d - 0 u tp u t * (page 273), information about 

the state of internal storage and its management. This might include descriptions of the amount of 

memory in use and the degree .of !I1emory compaction, possibly broken down by internal data type 

if that is appropriate. The nature and format of the printedinform~tion is implementation

dependent The intent is to provide information that may help a user to tune his program to a 

particular implementation. 

(room nil) prints out a minimal amount of information. (room t) prints out a maximal 

. amount of information. Simply ( room) prints out an in~rmediate amount of information that is 
. likely to be useful. 

ed &optionai x [Function] 
If the implementation provides a resident editor, this function should invoke it 

( e d) or ( e d nil) simply enters the editor, lea,ving you in the same state as the last time you were 

in the editor. 



• 

/"'""', • 

CHAPTER 25: MISCELLANEOUS FEATURES 365 

( e d palhname)' edits the contents of the file specified by pathname. The palhname may be an 

actual pathname or a string. 

( e d symbol) tries to let you edit the text for the function named symbol. The means by which the 

function text is obtained is implementation-dependent; it might involve searching the file system, 

or pretty-printing resident interpreted code, for example. 

dribble &optional pathname [Function] 
(dribble pathname) rebinds *standard-input* (page 273) and *standard-output* 

(page 273), and/or takes other appropriate action, so as to send a record of the input/output 

interaction to a file named by palhname. The primary purpose of this is to create a readable record 

of an interactive session. 

( d r i bb 1 e) terminates the recording of input and output and closes the dribble file. 

apropos string &opt ional package 
apropos-l ist string &optional package 

[Function] 
[Function] 

(apropos string) tries to find all available symbols whose print names contain string as a 
substring. (A symbol may be supplied for the string, in which case the print name of the symbol is 

used.) \Vhenever apropos finds a symbol, it prints out the symbol's name; in addition, 

information about the function definition and dynamic value of the symbol. if any, is printed. If 

package is specified and not nil, then only symbols available in that package are examined; 

otherwise "all" packages are searched, as ifby do-all-symbol s (page 153). Because a symbol 

may be available by way of more than one inheritance path, apropos may print information about 

the same symbol more than once. The information is printed to the stream that is the value of 

*standard-output* (page 273). apropos returns no values (that is, it returns 'what the 

expression ( val ue s ) returns: zero values). 

apr 0 p 0 s -1 i s t performs the same search that apr 0 p 0 s does, but prints nothing. I t returns a list 

of the symbols whose print names contain string as a substring. 

25.4. Environment Inquiries 

25.4.1. Time Functions 

Time is represented in three different wayS in COMMON LISP: Decoded Time, Universal Time, and 

Internal Time. The first two representations are used primarily to represent "real" (calendar) time, and are 

precise only to the second. Internal Time is used primarily to represent measurements of "computer" time 

(such as run time), and is precise to some implementation-dependent fraction of a second, as specified by 

internal-time-units-per-second (page 367). Decoded Time format is used only for absolute time 

indications. Universal Time and Internal Time formats are used ror both absolute and relative times. 

Decoded Time format represents calendar time as a number of components: 

• Second: an integer betw~en 0 and 59,incIusive. 



366 COMMON USP REFERENCE MANUAL 

• Alinute: an integer between 0 and 59, inc1usive~ 

• Hour. an integer between 0 and 23, inclusive. 

• Date: an integer between 1 and 31, inclusive (the upper limit actually depends on the month and 
year, of course). 

• Month: an integer between 1 and 12, inclusive; 1 means January, 12 means. December. 

• Year. an integer indicating the year A.D'. However, if this integer is between 0 and 99, the 
"obvious" year is used; more precisely. that year is. assumed that is eq.ual to the integer modulo 
100 and within fifty years of the current year (inclusive backwards and exclusive forwards). Thus, 
in the year 1978, year 28, is. 1928 but year 27 is,2027. (Functions that return time in this format 
always return a full year number.) 

Compatibility note: This is incompatible with the Usp Machine LISP definition in two ways. First, in Usp 
Machine LISP a year between 0 and 99 always has 1900< added to it. Second, in Lisp Machine LISP time 
functions return the abbreviated year number between. 0 and 99, rather' than the full year number. The 
incompatibility is prompted by the imminent arrival of the twenty-first century. Note that (rno d year 100) 
always reliably converts a year number to the abbreviated form, while the inverse conversion can be very 
difficult 

• Day-ofweek: an integer betwen 0 and 6, inclusive; 0 means Monday, 1 means Tuesday, and so on, 
and 6 means Sunday. 

• Daylight-savings-lime-p: a flag that,. ifnot n i 1~ indic::ates that daylight savings time is in effect 

• Time-zone: an integer specified as the number of hours west of GlVIT (Greenwich Mean Time). 
For example, in Massachusetts the time-zone is 5, and in California it is 8. Any adjustment for' 
daylight savings time is separate from this. 

Universal Time represents time as a single non·negative integer. For relative time purposes, this is a 
number of seconds. For absolute time, this is the numbe:r of seconds since midnight, January 1, 1900 GMT. 
Thus the· time 1 is 00:00:01 (that is, 12:00:01 AM) on January l~ 1900 GMT. Similarly, the time 2398291201 
corresponds to time 00:00:01 on January 1, 1976 GMT. Recall that the year 1900 was not a leap year; for the 
purposes of COMMON LIS~, a year is a leap year if and only if its number is divisible by 4, except that years 
divisible by 100 are not leap years, except that years divisible by 400 are leap years. Therefore the year 2000: 
will be a leap year. (Note that the "leap seconds" that are sporadically inserted by the world's official 
timekeepers as an additional correction are ignored; COMMON LISP assumes that every day is exactly 86400 
secondsJong.) Universal Time format is used as a standard time representation within the ARPANET; see (8). 
Because the COMMON LISP Universal Time representatio:n uses only non-negative integers, times before the 
base time of midnight, January l~ 1900 GMT cannot be pr,ocessed by COMMON LISP. 

Internal Time also representS time as a single integer, in terms of an implementation-dependent unit 
Relative time is measured as a number of these units. Absolute time is relative to an arbitrary time base, 
typically the time at which the system began .running. 

• '~ 



• 
CHAPTER 25: MISCELLANEOUS FEATURES 367 

get-decoded-time [Fullction] 
The current time is returned in Decoded Time format. Nine values are returned: second, minute, 
hour, date, month, year, day-ofweek, daylight-savings-time-p,.and time-zone. 

Compatibility note: In Lisp Machine LISP the time-zone is not currently returned. Consider, however, the use 
of CoMMON LISP in some mobile vehicle. It is entirely plausible that the time-zone might change from time to 
time. 

get-universal-time [Function] 
The current time of day is returned as a single integer in Universal Time format. 

decode-universal-time universal-time &optional time-zone [Function) 
The time specified by universal-time in Universal Time format is converted to Decoded Time 

format. Nine values are returned: se.cond, minute, hour, date, month, year, day-of week, 
daylight-savings-time-p, and time-zone. 

Compatibility note: In Lisp Machine LISP the time-zone is not currently returned. Consider, however, the use 
of CoMMON LISP in some mobile vehicle. It is entirely plausible that the time-zone might change from time to 
time. 

The time-zone argument defaults to the current time-zone. 

encode-universa,'-time second minute hour date month year &optional time-zone [Function] 
The time specified by the given components of Decoded Time fonnat is encoded into Universal 

Time fonnat and returned. If you don't specify time-zone, it defaults to the current time-zone 

adjusted for daylight savings time. If you provide time-zone explicitly, no adjustment for daylight 

savings time is perfonned. 

in te rna l-t ime-un i ts -per-second. [Constant) 
This value is an integer, the implementation-dependent number of internal time units in a second. 

(The internal time unit must be chosen so that one second is an integral multiple of it) 
Rationale: The reason for allowing the internal time units to be implementation-dependent is so that 
get- i nterna l-run-t ime (page 367) and get- internal-real-t ime (page 368) can execute with 
minimum overhead. The idea is that it should be very likely that a fixnum will suffice as the returned value 
from these functions. This probability can be tuned to the implementation by trading off the speed of the 
machine against the word· size. Any particular unit will be inappropriate for some implementations: a 
microsecond is too long for a very fast machine such as an S-1, while a much smaller unit would force many 
implementations to return bignums for most calls to get - ; n t ern a 1- t ; me. rendering that function less 
useful for accurate timing measurements. 

get- i nterna l-run-t ime [Function] 
The current run time is returned as a single integer in Internal Time fonnat. The precise meaning 

of this quantity is implementation-dependent; it may measure real time, run time, CPU cycles, or 

some other quantity. The intent is that the difference between the values of two calls to this 

function be the amount of time between the two calls during which the computational effort was 

expended on behalf of the executing program. 



368 COMMON LISP REFERENCE MANUAL 

get-internal-real-time' [Function] 
The current time is returned as a .~ingle integf~r in Internal Time format. This lime is relative to an .. 

arbitrary time base, but the difference between the values of two caBs to this function will be the 

amount of elapsed real time between the two calls, measured in the units defined by 
in terna l-t ime-un i ts -per-$e,cond (page 3(7). 

sleep seconds [Function] 
( s 1 e e p n) causes execution to cease and becQme donnant for appr{)ximately n seconds of real 

time, whereupon execution is res~med. Thl~ argument may be any non-negative non-complex 

number. s 1 e e p returns n i 1 . 

. 25.4.2. Other Environment Inquiries 

For any of the following functions, if no appropriate and relevant result can be produced, nil is returned 

instead of a string. 
Rationale: These inquiry facilities are. fu;nctions rather than variables against the possibility that a COMMON LISP process 
might migrate from machine t.o machine.· This 'need not happen in a distrib.\lted environment; consicier, for example, 
dumping a core image file containing a eompiler an~ tllep shipping it to another site. 

1 i sp-impl eme.ntat ion-type [Function] 
A string is returned that identifies the generic name of the particular COMMON LISP 

implementation. Examples: "Spi ce ~ I SP" ," Ze ta 1 is p" . 

1 i sp - imp 1 ementat ion -vers ion [Function] 
A string is returned that identifies :the version of the particular COMMON LISP implementation; this 
information should be of use to maintainers of the implementation. Examples:·.tt 1192", "5'3. 7 

with complex numbers"~"t746.9A. NEWIO 53. ETHER 5.3". 

machine-type [Function] 
A string is retumedthat identifies the generic name of the computer hardware on which COMMO'N 

LISP is running. Examples: "OEC POP-tO·' ,"DEC VAX-tt/780". 

mach i ne-vers i on [Function] 
A string is returned thatidentifies the version of the computerhard,ware on which COMMON LISP is 
running. Example; "KlI0 ~ mi cr()code'g" . 

mach ine- ins tance [Function] 
A string is reUlmen that identifies the particular instance of the computer hardware on which 
COMMON LISP is running; tJ:tis might be a local nickname; for example, and/or a serial number. 
Examples: "MIT -Me" ~'tCMU GP-VAX". 



• 

r---. • 

r-. • 

CHAPTER 25: MISCELLANEOUS FEATURES 369 

software-type [Function] 
A string is returned that identifies the generic name of any relevant supporting software. Examples: 

"Spice", "TOPS-20","ITS". 

software-versi on [Function] 
A suing is returned that identifies the version of any relevant supporting software; this infonnation 

should be of use to maintainers of the implementation. 

shor t - s ; te-name [Function] 
1 ong-s i te-name [Function] 

A string is returned that identifies the physical location of the computer hardware. Examples of 

short names: "MIT AI Lab", "eMU-eSD". ExampTes oflong names: 
"MIT Artificial Intelligence Laboratory" 
"Massachusetts Institute of Technology 
Artificial Intelligence Laboratory" . 
"Carnegie-Mellon University Computer Science Department" 

See also user-homedi r -pathname (page 344). 

* f ea tures * [Variable] 
The value of the variable *features* should be a list of symbols that name ·'features" provided 

by the implementation. Most such names will be implementation-specific; typically a name for the 

implementation will be included. One standard feature nrone is i e e e - flo a tin 9 - poi nt, which 

should be present if and only if full IEEE proposed floating-point arithmetic [9] is supported. 

The value of this variable is used by the #+ and #- reader syntax; see page 298. 

25.5. Identity Function 

identity object [Function] 
The object Is returned as the value of i dent i ty . This function is useful primarily as an argument 

to other functions. 



370 COMMON LISP REFERENCE MANUAL 

• 

•• 



• 

,r---. • 

References 
1. ANSI X3J3 Committee. "Draft Proposcd American National Standard FORTRAN." ACAl SIGPLAN 
Notices 11,3 (March 1976). 
2. American National Standard Programming Language FORTRAN. ANSI X3.9-1978 edition. American 
National Standards Institute, Inc. (New York, New York, 1978). 
3. Brooks, Rodney A.; Gabriel, Richard P.; and Steele, Guy L. Jr. "An Optimizing Compiler for Lexically 
Scoped LISP." Proceedings oIthe 1982 Symposium on Compiler COllstruction. ACM SIGPLAN (Boston, 
June 1982),261-275. Proceedings published as ACAI SIGPLAN Notices 17,6 (June 1982). 
4. Cody, William 1., Jr., and Waitc, William. Software Manual for the Elementary Functions. Prentice-Hall 
(Englewood Cliffs, New Jcrsey, 1980). 
5. Coonen, Jerome T. "An Implementation Guide to a Proposed Standard for Floating-Point Arithmetic." 
Computer 13, 1 (Jan. 1980),68-79. Errata for this papcr appeared as (6). 
6. Cooncn, Jerome T. "Errata for 'An Implementation Guide to a Proposed Standard for Floating-Point 
Arithmetic'." Computer 14,3 (March 1981),62. These are errata for [5]. 
7. Fateman, Richard 1. "Reply to an E~itoria1." AC!d SIGSAAI Bulletin 25 (March 1973), 9-11. 
8. Harrenstien, Kenneth L. Time Server. Request for Comments (RFC) 738 (NIC 42218), ARPANET 
Network Working Group (Oct. 1977). Available from the ARPANET Network Infonnation Center. 
9. IEEE Computer Society Standard Committee, Microprocessor Standards Subcommittee, Floating-Point 
Working Group. "A Proposed Standard for Binary Floating-Point Arithmetic." Computer 14, 3 (March 
1981), 51-62. 
10. Knuth, Donald E .. The Art of Computer Programming. Volume 2: Seminumerical Algorithms. Addison
Wesley (Reading, Massachusetts, 1969). 
11. Marti, 1.; Hearn, A.C.; Griss, M.L.; and Griss, C. "Standard LISP Report." SIGPLAN Notices 14, 10 
(Oct. 1979), 48-68. 
12. Moon, David. lvlacLISP Reference Afanual, Revision O. M.LT. Project MAC (Cambridge, Massachusetts, 
April 1974). 
13. Moon, David; Stallman, Richard; and Weinreb, Daniel. LISP At/achine l\1anu:a/, Fifth Edition. MIT 
Artificial Intelligence Lab. (Cambridge, tvlassachusetts, January 1983). . 
14. PenfielcL Paul, Jr. "Principal Values and Branch Cuts in Complex APL." APL 81 Conference 
Proceedings. ACM SIGAPL (San Francisco, Sept 1981), 248-256. Proceedings published as APL Quote 
Quad 12, 1 (September 1981). 
15. Pitman, Kent M. The Revised MacLISP Manual. MIT/LCRITR 295, MIT Lab. for Computer Science 
(Cambridge, Massachusetts, May 1983). 
16. Reiser, John F. Analysis 0/ Additive Random Number Generators. Tech. Rept STAN-CS-77-601, 
Stanford University Computer Science Department (March 1977). 
17. Steele, Guy Lewis Jr., and Sussman, Gerald Jay. The Revised Report on SCHEME: A Dialect o/LISP. 
AI Memo 452, MIT Artificial Intelligence Lab. (Cambridge, Massachusetts, Jan. 1978). 
18. Suzuki, Norihisa. "Analysis of Pointer 'Rotation'." Comm. ACM 25,5 (May 1982),330-335. 
19. Teitelman, Warren, et aI. InterLISPReference Manual Xerox Palo Alto Research Center (palo Alto, 
California, 1978). Third revision. 
20. Weinreb, Daniel, and Moon, David. LISP Machine Manual, Fourth Edition. MIT Artificial Intelligence 
Lab. (Cambridge, Massachusetts, July 1981). 

-371--



372 COMMON USP REFERENCE MANUAL 

.-e 

• '-"" 



• 

r----• 

Index 
• function 164 
• variable 270 
•• variable 210 
••• variable 270 

+ function 164 
+ variable 270 
++ variable 270 
+++ variable 210 

- function 164 
- variable 270 

I function 164 
I variable 271 
II variable 271 
III variable 271 
I = function 162 

1 + function 165 
1- function 165 

< function 162: 194 
. <= fu~ction 162 

= function 162: 65. 159. 194 

> function 162 
> = function 162 

,.", 
J 

Compatibility note 11.21.36.37.43.55.61.66.86,89.97.102. 
106.107.112. 115.116.126. 132.134. 137,138.151,163. 
164,170.172, 176.177.184.185,187.205 •. 206.208.218. 
219.224.226.230.234.239.241.256.282,287.291.298. 
302.301.317,323.325,326,333,349.350.353.354,356. 
357.364,366,367 

Implementation note 12, 13. lS. 17, 18, 22. 31.45.48.64,100. 
116,137.148.154,165.167.168.169.170.171.179.186. 
187.188,191.192.217.244,249,304.329.347.348.350. 
354.357.358.362 

Ratioaale 23.27.28.51.81. 85.93.100.159.163.165.179.188. 
191. 314. 322. 353. 360.367. ~ 

-X (new line) format directive 326 
-& (fresh line) format directive 3ZJ. 
-( (case conversion) format directive 329 
-* (ignore argument) format directive 328 
... < (justification) fonnat directive 331 
-<newl i ne> (ignore whitespace) format directive 327 
-7 (indirection) format directive 328 . 
-- (Tilde) format directive 327 
-[ (conditional) fonnat directive 329 
-,. (loop escape) format directive 332 
-A (Ascii) format directive 320 
-8 (Binary) format directive 321 
-c (Character) format directive 321 
-0 (Decima/) format directive 320 
-E (Exponentialj1oating-point) format directive 323 
-F (Fixed-jormatjloaling-point) format directive 322 

"'G . (Dollars) format directive 326 
-G (Generalfloating-point) format directive 325 
-0 (Octal) fonnat directive 321 
-P (Plural) format directive 321 
-R (RadiX) format directive 321 
-5 (S-expression) format directive 320 
NT (Tabulate) fonrtat directive 327 
-x ·(heXadecimal) format directive 321 
'" { (iteration) format directive 330 
-I (new page) format directive 327 
" macro character 291 
1# macro character 293 
• macro character 290 
( . ·macro character 290 
) macro character 290 
• macro character 293 

macro character 290 
• macro character 291 

a-list 229 
: abort keyword 

Cor close 278 
abs function 168 
access functions 254 
aeons function 229: Ij3 
aeas function ·169; 160 
aeosh funCtion 171: 160 
ADA 11.68 
ad j 0; n function 226; 222 
adjust-array function 245 
: adjustabl e keyword 

for make-array.238 
adjustable-array-p function 242; 246 
AlJ)OL 30.47.107.176 
alpha-ehar-p function 193; 197 
alphanumeriep function 194 
and macro 68: 37.95.113 
API. 22. 171. 172. 206 
append function 220; 221.293 
: append keyword 

for if-ex lsts option to open 346 
apply function 89; 26.49.111117.118; 241. 268 
applyhook function 268 
*applyhook· variable 267 
apropos function 36S 
apropos,..list function 36S 
aref function 240; 22. 79. 203. 242. 243. 244. 248 
array 22 

predicate 63 
:arraykeyword 

for .r i te 316 
for write-to-string.317 

array-dimens ion function 241: 244 
array-dimens ion-l imit constant 240: 237 
array-dimensions function 241 
array-element-type function 241: 38 
array-has-fi 11-.pointer-p function 245 

- 373-



374 

array- i n-bounds,-p function 242 
array-rank function 241 
array-rank -1 imit constant 240: 22. 237. 241 
array-row-major- index function 242 
array-tota1-size function 241; 239 
array-total-size-l imit constant 240; 237 
a r r ay p' function 63 
ash function 183 
as i n function 169; 160 
as i nh function 171 
assert macro 357: 82. 355 
assoc function 230; 229,231 
ass oc - i f function 230 
assoc-if-not function 230 
association list 103.229 

as a su bstitution table 22S 
compared to hash table 233 

a tan function 170 
a tanh function 171; 160 
atom 

predicate 61 
a t om function 61; 22. 102 

: base keyword 
for wr i te 316 
for write-to-string 317 

bignum 11 
bit function 243; 79 
bit string 

infinite 179 
integer represention 179 

b ; t - an d function 243 
bit-andcl function 243 
b it-andc2 function 243 
bi t-eqv function 243 
b it - i 0 r function 243 
b it-nand function 243 
b it-nor function 243 
bit - no t function 244 
bit-ore 1 function 243 
b it - 0 r c 2 function 243 
bit-vector 

predicate 62 
b ; t-vector-p function 62 
bit - xo r function 243 
block special fonn 98; 32.47.55. 71.99.102.103.107. lOS. 

109,113,114 
, boo 1 e function 182 
f;b 001 e -1 constant 182 

boo 1 e-2 constant 182 
boo 1 e- and constant 182 
boole-andcl constant 182 
boo 1 e-andc2 constant 182 
boo 1 e-c I constant 182,* 
boo 1 e-c2 constant 182 
boo 1 e-c 1 r constant 182 
boo 1 e-eqv constaBt 182 
boole-iorconstant 182 
boo 1 e-n an dconstant 182 
boo 1 a-nor constant 182 

COMMON USP REFERENCE MANUAL 

bool a-ore 1 constant 182 
. bool a-orc2 constant 182 

bool a-set constant 182 
bool e-xor constant 182 
both-case-p function 193 
boundp function 75; 74 
break function 356 
-break -on-warn i ngs - variable 356 
but 1 as t function 223 
byte 184 
byte function 184 
byte specifiers 184 
by t e - po sit; 0 n function 185 
byta-s ;ze function 185 

c language 17. 299 
caaaar function 216; 78 
caaadr function 216; 78 
caaar function 216; 78 
c a a dar function 216; 78 
caaddr function 216; 78 
caadr function 216; 78 
c a a r function 216; 78 
cadaar function 216; 78 
cadadr function 216; 78 
cad a r function 216; 78 
caddar function 216; 78 
cadddr function 216; 78 
cad d r function· 216; 78 
cadr function 216; 78 
call-arguments-l imit constant 90; 54.111 
car 21.215 
car function 215; 77.78,218 
: case keyword 

for wr i te 316 
for write-to-string 317 

case macro 96; 91. 98.113, 358, 359,360 
catch 114 
catch special fonn 114; 31,47. 71. 113 
cease macro 359; 82, 97.113 
cd a a a r function 216; 78 
cd a a d r function 216; 78 
cd a a r function 216; 78 
cdadar function 216; 78 
cdaddr function 216; 79 
cd a d r function 216; 78 
cd a r function 216; 78 
cddaar function 216; 78 
cddadr function 216; 78 
cddar function 216; 78 
cd d dar function 216; 78 
cddddr function 216; 78 
cd~dt' function 216; 79 
cddr function 216; 78 
cdr ,21, 215 
cdr function 215; 78,223 
cail ing functign'175 
cerror function 354; 4. 356 . 
cha,r function 247; 79, 243 
char-bit function 199; 79 



• 

• 

.r--

INDEX 

c h a r - bits function 196; 192 
char-b.its-l imit constant 192: 18, 196 
char-code function 196; 43,191 
char-code-l imit constant 191; 196 
c h a r - con t r 0 1 - b it constant 199 
char-downcase function 197; 193.250 
char-equal function 196; 67,248 
char-font function 196; 191,295 
char-font-1 imit constant 191; 18,196 
char-greaterp function 196 
char-hype r-b it constant 199 
char-int function 198: 43.195 
c h a r -1 e ssp function 196; 214. 249 
char-meta-bit constant 199 
c h a r - n arne function 198 
char- not- equa 1 function 196 
char-not-grea terp function 196 
char- not-l essp function 196 
char -super-b it constant 199 
char-upcase function 197; 193,250 
c h a r / = function 194 
char< function 194; 17.249 
c h a r < = function 194 
char= function 194; 314 
c h a r > function 194 
c h a r > = function 194 
character 

coercion to string 251 
predicate 62 

char ac ter. function 196; 42 
character syntax 293 
characterp function 62; 192 
check-type macro 357 
: c i r c 1 e keyword 

for wr ite 316 
for write-to-string 317 

cis function 169 
cleanup handler 115 
c 1 ear- i npu·t function 315 
clear-output function 318 
close function 278; 276, 344. 347.348 
closure 72 
c 1 rhash function 235 
code-char function 197 
coerce function 42; 43.174,196. 204. 205. 213.251 
comments 290 
common data type 

predicate 63 
c ommo n p function 63 
comp i 1 e function 361; 63 
comp i 1 e-f i 1 e function 362 
compiled function 

predicate 63 
compiled-function-p function 63 
comp i 1 er-l et special form 92; 47 
c omp 1 e x function 179; 16. 39 
complex number 

predicate 62 
c omp 1 ex p function 62; 161 
: conc-name keyword 

for defstruct 258 
concateniite function 204: 220 
cond macro 95: 59,68,69,97,101,113 
conditional 

and 68 
or 68 
during read 298 

conjugate function 165 
cons 21,215 

predicate 61 
cons function 217: 39 
con s p function 61 
cons tantp function 269; 138 
constructor function 254 
; cons tructor keyword 

for defstruct 258; 256,261 
control structure 71 
copier function 255 
; cop i er keyword 

for defs truct 258 
cop y - ali s t function 220 
copy-l is t function 220 
copy-read tab 1 e function 300 
copy-seq function 203; 220 
copy-symbo 1 function 137 
copy-tree function 221; 220. 224 
COS function 169 
cos h function 171 
co u n t function 211 
: coun t keyword 

for de.l ete 208 
for del ete- if 208 
for de 1 ete- if -not 208 
for nsubstitute 210 
for n sub s t it ute - if 210 
for nsubs t itute- if-not 210 
for remove 207 
for remova- if 207 
for remove-if-not 207 
for subs t ituta 209 
for subs t i tute- if 209 
for substitute-if-not ~ 

coun t - i f function 211 
count- if-not function 211 
: create keyword 

for if-does-not-exist option to open 347 
ctypecase macro 359; 82. 98. ill 

data type 
predicates 60 

*debug-io* variable 274 
deef macro 165; 82 
declaration· 

declaration 130 
function 129 
function type 129 
ignore 130 
inUne 129 
notinline 130 
optimize 130 

375 



376 

special 128 
type 129 

declaration declaration 130 
declarations 125 
decl are special form 125; 9,47, SO, 92.102 
decode-float function 177 
decode-universal-time function 367 
: default keyword 

for type option to open 346 
*defaul t-pathname-defaul tsl' variable 343; 341,342, 

343,344.351,362 
: def au 1 ts keyword 

for make-pathname 343 
defconstant macro 56; 46,142, 269. 362 
def i ne-:-mod ify-macro macro 84 
define-setf-method macro 87; 80, 84 
defmacro macro 1l8; 41,48,54.55,85,87,94,113,123,125, 

350,362 
defparameter macro 56; 128, 362 
defsetf macro 84; 80,125, 255, 362 
defstruct 253 
defstruct macro 255; 10,26.28,35,41,79,188,212; 213, 

216,297,306,362 
deftype macro 41: 36. 113,125,362 
defun macro 55: 26,49.53,93,98,113.117.118,125,129, 

350. 362 
defvar macro 56; 50, 128. 129,350,362 
de 1 ete function 208; 223 
delete-duplicates function 209 
de 1 ete-J i1 e function ·349 
del e t e -i f function 208. 
delete-if-not function 208 
denominator 12 
denominator function 175; 303 
de p os it - fie 1 d function 186; 79, 185 
descr i be function 364 
destructuring 119 
device (path name component) 338 
: device keyword 

for make-pathname 343 
dig it - c h a r function 198 
dig it -;c h a r - p function 193; 198 
: direct i on keyword 

for open 345; 349 
directory (path name component) 338 
d ire c tor y function 351 
: di rectory keyword 

fur make-pathname 343 
di rectory-namestr i ng function 344 
disassemble function 362 
displaced array 238 
: displaced-index"'offset keyword 

for adjust-array 245 
for make-array 238 

: di spl aced-to keyword 
for adjost-array 245 
for make-arra'y 238 

do macro 100: 32,71,76.99,107.113; 125 
do· macro 100; 99, 125 
do-all-symbols macro 153; 105,125,365 

COMMON USP REFERENCE MANUAL 

do-external-symbols macro 153; 105,125 
do-symbol s macro 152: 105. 125 
documentat ion function 362; 41, 55,57,79,118,255 
dol ist macro 104; 99, 113, 119.125 
dot imes macro ~04: 99, 113, 125 
dOlted list 215 
daub 1 e-f1 oat-eps i 1 on constant 189 
daub 1 e-fl oat-negat; ve-eps i 1 on constant 190 
dpb functio~ 186; 79, 185 
dr i bb 1 e function 365 
dynamic exit 114 

ecase macro 359; 97,113 
ed function 364 
eighth function 218; 78 
: e1 ement-type keyword 

for adjust-array 245 
fur make-array n7 
for open 345 

e 1 t function 203; 79,218, 240.248 
empty list 

predicate 61 
en cod e - un ive r sal - time function 367 
: end keyword 

for count 211 
for count-if 211 
for count-if-not 211 
for del ete 208 
for delete-dupl icates 209 
for de 1 ete- if 208 
for delete-if-not 208 
for fi 11 207 
for find ,,210 
for find;';'if 210 
for find-if-not 210· 
for nstring-capita1 ize 251 
for nstring-downcase 251 
for nstring-upcase 251 
for nsubst Hute 210 
for n sub s t ; t ute - if 210 
for nsubstitute-if-not 210 
for parse-integer 315 
for parse-namestring 341 
for pas it i on 211 
for pas it ion- if 211 
for pas it ion- if-not 211 
for read-from-string 315 
for reduce 206 
for remove 207 
for remove-dup1 icates 209 
for remove- i f .207 
for remove-if-not 207 
for string-capital ize 250 
for string-downcase 2SO 
for string-upcase 250 
for substitute 209 
for substitute-if 209 
for subst itute-if-not 209 
for wr i te-l i ne .317 
for write-string 317 

• 



• 

• 

• 

INDEX 

fur with-input-from-string D6 
argument to file-position 350 

: end1 keyword 
for mi smatch 211 
for rep 1 ace 2JJ7 
for search 211 
for s tr i ng-equa 1 248 
for string-greaterp 249 
for s t r i n 9 -1 e ssp 249 
for string-not-equal 249 
for string-not-greaterp 249 
for string-not-lessp 249 
for s tri ng/a 249 
for s tr i ng< 249 
for string<a 249 
for s tr i ng= 248 
for string> 249 

. for s tr i ng>- 249 
: end2 keyword 

for mi sma tch 211 
for rep 1 ace 207 
for search 211 
for s t r i n 9 - e qua 1 248 
for s tr i ng-greaterp 249 
for string-1essp 249 
for string-not-equal 249 
for string-not-greaterp 249 
fur string-not-1essp 249 
for s t r i n 9 / = 249 
for s tr i ng< 249 
for string<= 249 
for s tri ng= 248 
for stri ng> 249 
for stri ng>= 249 

endp function 217; 22, 102, 215 
enough-sames tring function 344 
environment structure 71 
eq function, 63; 65 

compared to equa 1 64 
eql function 65; 36,159,163,191,195 
equa 1 function 66; 195,217,248.279.340 
equal p function 67: 227 
err 0 r function 354; 4 
: error keyword 

for if-does-not-exist option to open 347 
for if-exists optionto open 346 

*error-output* variable 274; 356 
: escape keyword 

for wr i te 316 
for write-to-string 317 

etypecase macro 359: '98.113 
eval function 267; 112, 117.123 
eva l-when special form 57; 47.113. 119.126.148.297.361 
eva 1 hook function 268; 123. 268 
-eva1 hook· variable 267 
evenp function 161 
every function 2JJ5; 68 
exp function 167 
export function 151; 144.146 
ex p t function 167; 160 

extent 29 
:external keyword 

for second value from i n t ern 150 

false 
when a predicate is 59 

fboundp function 7S 
feei 1 fng function 177 
*features * variable 369; 298 
ffl oor function 177 
f if t h function 218; 78 
f i 1 e-author function 349 
f i 1 e- 1 eng th function 350 
file-namestring function 344 
file - p 0 s it ion function 350; 346 
f i 1 e-wr ite- date function 349 
f i 11 function 207 
fill pointer 244 
fill-pointer function 245;79.247 
: f i 11 - poi n t e r keyword 

for adjust-array 245 
for make-array 238 

find function 210; 226,229.230 
find-all-symbo1s function 152 
f i nd- i f function 210 
f i nd- if-no t function 210 
find-package function 149; 141 
find-symbol function 151 
finish-output ,function 318 
fir s t function 218; 78, 215 
fixnum 11 
f 1 et special form 93; 47,49, 75,117,125,129.130 
fl oat function 174; 171 ' 
float-digits function 177 
f1 oat-prec is ion function 177 
f loa t - r ad i x function 171; 13 
float-sign function 171; 161,303 
floating-point number 13 

predicate 62 
flo a t p function 62; 161 
floor function 175; 43, 110. 171 
flow of control 71 
fmakunbound function 77: 75 
force-output function 318 
forma t function 318; 251, 318. 334. 353. 355. 356. 3S7 
formatted output 318 
FORTRAN 2,11,16,107,120.170.176.323.325.326 
fourth function 218:'8 
f res h -1 i n'e function 318; 327. 333. 334 
: from-end keyword 

for count 211 
for count-if 211 
for count- if-not 21l 
for de 1 ete 208 
fur delete-duplicates ~ 
for de 1 ete- i f 208 
for delete-if-not 2JJ8 
for find 210 
for find-if 210 
for f i nd- if-not 210 

377 



378 

for mi smatch 211 
for nsubstitute 210 
for nsubstitute-if 210 
for nsubs t itute- if-not 210 
for pos it ion 211 
for position-if 211 
for position-H-not 211 
for reduce 206 
for remove 207 
for remove-duplicates ~ 
for remove- H 207 
for remove- if-not W7 
for search 211 
for subs t i tute 209 
for subs t itute- i f W9 
for subst itute- if-not ~ 

fround function 177 
ftruncate function 177 
fun call function 89; 26, 49. 60, 112, 117, 123,268 
function 

predicate 63 
function declaration 129 
fun c t i on function 63. 260 
function special form 72; 26, 33.47.49.52 
function type declaration 129 . 
function,p function 63; 49 

9 c d function 166 
general array 237 
9 ens ymfunction 137; 85. 86. 120. 138 
: gensym keyword 

for wr i te 316 
for write-to-string 317 

gentemp function 138; 85,86,138 
get function 134; 78, 79,134.135 
'get -decoded-t ime function 367 
get -d i spa tch-macro-characterfunctipn 302 
get-inter na l-rea l-t imefunction 368; 367 
get - i nterna l-run-t tme function 367 
get-macro-character function 300 
get-outpu t-s tream- str i ng function 276 
get - pro p er ties function 136 
get-setf-methodfu~ction 88 
get-setf-method-multip1 e-va1 ue function 88 
get-un iversa l-t imefunction 367 
get f function 135; ,79. 82.134.135.136 
gethashfunction 235; 79 
go special Jorm 109: 32, 47, 99. 101.103.108. 115 
9 r a'ph i c -c ha r -p function 192; 194~ 198 

'hash table 233,236 
predicate 234 

~hash-table-count function 236 
has\h-tab 1 e-pfunction 234;63 
home directory 344 
'host (pathnamc component) 338 
: host keyword 

forma;ke-pat'hname 343 
'ho 5 t- names trin'g 'function 344 

COMMON LISP REFERENCE MANUAL 

ident·ity function 369 
H special form 95: 47.59.68.69.95.113,121 
:if-does-not-ex ist keyword 

for load 351 . 
for open 347 

: i f - e xis t s keyword 
for. open 346 

ignore declaration 130 
imagpart function 179 
implicit progn 71.91,92.93,95,96,101 
import function lSI; 143, 145 
in-package function 149 
incf macro 165;82,84 
.: inc lude keyword 

for defstruct 258; 28,264 
: inde.xkeyword 

for with-i npu t-from-string 276 
index offset 239 
indicator 133 
indirectarray 238 
: i nhe rite d keyword 

for second value from i n t ern 150 
: i n it i a 1 - con ten t s keyword 

for ad ju s t -ar ray 245 
for make-array 238; 305 

: in iti a 1 - e 1 emen t keyword 
for adjust-array 245 
for mai<e-l ist 220 
for make-sequence 204 
for make-string 249 
for make-array 238 

: i n it i a 1 -0 ff s e tkeyword 
for defstruct 261; 264 

: in it i a 1 - val u ekcyword 
fqr reduce 206 

inline declaration 129 
: input keyword 

for direction optionto open 345 
i np u t - s t re am- p function 277 
i ns pee tfunction 364 

. int-char function 198 
integer 11 

predicate 61 
integer-decode-float function 177 
integer-l ength function 184; 187 
integerp function 61; 161 
INTERUSP 1,2, 11. 36, 37. 89, 107. 132, 134. 138.170.176.177. 

205.206.218.219,234,287,302,364 
ire tern function 150;63,137,138.140.146 
: j,nterna1 keyword 

for seanid value from in ter n 150 
int~erna l-,t ime-units-per-second constant 367; 365. 

368 
intersect i.on function 227 
.: i o keyword 

for direction option to ope.n345 
isq,r tfunction 168 
iteration 99 

: j.unk -a 11 owed 'keyword 



INDEX 

• for parse- integer 315 
for parse-namestring 341 

: key keyword 
for adjoin 226 
for count 211 
for count-if 211 
for count-if-not 211 
for delete 208 
for delete-dupl icates 209 
for del ete- if 208 
for delete-if-not 208 
for find 210 
for find-if 210 
for fin d - if - not 210 
for intersection 227 
for memb e r- 226 
for memb e r - if 226 
for member-if-not 226 
for merge 213 
for mi smatch 21L 
for nintersection 227 
for nset-difference 228 
for nset-exel us ive-or 228 
for nsubl is 226 
for nsubst 225 
for nsubst-if 225 
for nsubst-if-not 225 

""....... for nsubst itute 210 • for nsubs t itu te- if 210 
for n sub s t it ute - if - not 210 
for nunio,n 227 
for pos it i on 211 
for position-if 211 
for position-if-not 211 
for remove 207 
for remove-duplicates ~ 
for remove- i f W7 
for remove-if-not 207 
for search 211 
for set-difference 228 
for set-exclusive-or 228 
for sort 2U 
for stable-sort 212 
for subl is 22S 
for subsetp 229 
for subst 224 
for subst-if 224 
for subst-if-not 224 
for subs t itute W9 
for substitute-if ~ 
for substitute-if-not ~ 
for union 227 

keywordp function 138 
Keywords 

for de f s t r u c t slot-descriptions 257 
for second value from ; n t ern 150 .--- 1 abe 1 s special fonn 93; 47,49, 75, 117, 125, 129. 130 

lambda-expression 49 

1 ambda-l i st-keywords constant 54; 119 
1 ambda-parameters-l imit constant 54; 90, III 
1 as t function 219 
1 em function 166 
1 db function 185; 79, 87 
1 db-tes t function 185 
1 d i ff function 223; 226 
1 east-negat ; ve-doub 1 e-f1 oat constant 189 
1 e a s t - neg a t i v e - 1 0 n 9 - f1 0 a t constant 189 
1 eas t-nega t i ve- short-float constant 189 
1 e a s t - neg at i v e - sin 9 1 e - f1 0 a t constant 189 
1 eas t-pos it i ve-doub 1 e-fl oa t constant 189 
1 east-pas it i ve-l on g-fl oat constant 189 
1 eas t-pos it i ve- s hort-f 1 oat constant 189 
1 eas t-pos it i ve- sin 9 1 e-fl oa t constant 189 
1 ength function 204: 203,217,218,241 
: 1 ength keyword 

for wr i te 316 
for write-to-string 317 

379 

1 et special form 91: 31,46,47,92,93,99,103,107,108,109, 
113,125 

1 e t * special form 92; 47, 52, 86, 109, 113, 125 
: 1 evel keyword 

for wr ite 316 
for write-to-string 317 

LISP 1.5 106, 205 
Lisp Machine LISP 1,2.11,21,66,86,97,100,107,112,134, 

137,139,147,164,165,170,176,205,206,218,234,239" 
241, 256, 298, 302, 323. 325, 326. 328. 349, 350, 353, 354, 
356,357,364,366,367 

lisp-implementation-type function 368 
1 i s P - imp 1 erne n tat ion - v e r s ion function 368 
list 21,215 

predicate 61 
See also: dotted list 

1 ,i s t function 219 
list syntax 290 
1 i s t * function 219; 89 
1 is t';'a ll-packages function 150 
1 ist-length function217 
1 is ten function 314 
1 is tp function 61; 215 
load function 351; 149.351 
.1oad-verbose· variable 351 
1 oca 11 y macro 127; 125 
log function 167; 160 
log and function 180; 244 
logandcl function 180 
logandc2 function 180 
10gb i tp function 183 
logcount function 183 
logeqv function 180 
logical operators 

on ni 1 and nOIi-n i 1 values 67 
1 0 9 i 0 r function 180 
lognand function 180 
lognor function 180 
lognot function 183; 244 
logorcl function 180 
logorc2 function 180 



380 

logtest function 183 
10gxor function 180 
1 0 n 9 - flo a t - e psi 1 0 n constant 189 
1 0 n 9 - fl 0 a t - neg a t i v e - e psi 1 0 n constant 190 
1 ong- site -name function 369 
loop macro 100; 99.101, 103 
lower-case-p function 193; 195,197.302 

mach i ne- i ns tance function 368 
mach i ne-type function 368 
mach i ne-vers ion function 368 
MAcLIsp 1, 2, 11. 21. 23, 43. 55, 59. 61. 97. 102, 107, 115, 116, 

126. 128. 132. 134. 138. 151. 159, 163, 164,165, 170, 176, 
177,184.185,187,202,205,208,218,224,226,230,234, 
241. 270. 282. 285. 287, 291, 298. 302, 307, 317, "323. 325, 
326,349,350,353,354,356.364 

macro character 290 
macro-function function 118; 47.75 
macroexpand function 123; 48, 117,118, 119,268 
macroexpand-l function 123; 124 
*macroexpand-hook· variable 124: 123 
mac ro 1 et special form 93; 47.117, U8, 119,120,123.125 
make-array function 237; 37, 38,54,245,249,297 
make-broadcast-stream function 275 
make-char function 197 
make-concatenated-stream function 275 
make-dispatch-macro-character function 301; 302 
make-echo-stream function 275 
make-hash-table function 234 
make-1 ist function 220 
make-pack age function 149 
make-pathname function 343 
mak e - r an d om- s tate function 188; 306 
make-sequence function 204 
make-string function 249 
make-s tr i ng- i nput- stream function 275 
make-s tr i ng-output-s tream function 276 
make-symbol function 137·. 
make-synonym-stream function 275; 274 
make-two-way-stream function 275 
makunbound function 77; 46, 74. 75. 93 
map function 205; 43, 105, 117. 268 
mapc function 106; 205 
mapcan function 106 
mapcar function 106 
map con function 106 
maphash function 235 
map 1 function 106; 205 
map 1 is t function 106 
mapping 105 
mask-field function 185;79 
max function 163 
member function 226; 59.229 
memb er - i f function 226 
member- if-not function 226 
me r 9 e function 213 . 
merge-pathnames function 342; 343. 348 
merging 

of path names 338 
sorted sequences 213 

COMMON liSP REFERENCE MANUAL 

min function 163 
m; nus p function 161 
mismatch function 211; 227 
mod function 177 
*modules* variable 153 
most-negat i ve-doub 1 e-fl oat constant 189 
most-negative-fixnum constant 188; 11,40 
mos t-nega t i ve-l ong-fl oat constant 189 
most-nega t i ve-shor t-fl oat constant 189 
most-nega t i ve- sing 1 e-fl oat constant 189 
most-pos it i ve-doub 1 e-fl oa t constant 189 
most-positive-fixnum constant 188: 11,40,57 
most-positive-long-float constant 189 
mo s t - po sit i v e - s h 0 r t - flo a t constant 189 
most-pos i t i ve-s i ng 1 e-fl oat constant 189 
Multiple values 
multiple values 110 

returned by read-from-s tr i ng 315 
mult i p 1 e-va 1 ue-bi nd macro 112: 110,113,125,176 
multiple-value-ca11 special form 111;39,47,110,112 
mu It i P 1 e-va 1 ue-1 is t macro Ill; 110 
multiple-value-progl special form 112; 47,90.110, 

113 
multiple-value-setq macro 112; 110,114 
mu It i P 1 e - val u e s -1 i m it constant Ill; 90 

name (pathname component) 338 
: name keyword 

for make-pathname 343 
name - c h a r function 199 
: named keyword 

for defstruct 261; 258 
name s t r i n 9 function 344 
naming· conventions 

predicates 59 
n but 1 as t function 223 
nconc function 221; 106,220,223.293 
: new-ver s i on keyword 

for if-ex i s ts option to open 346 
NIL (New Implementation of LISP 1,107.134,137.176.218 
nil constant 60; 3. 32, 269 
n intersect ion function 227 
n i nth functi~!l 218; 78 
non-local exit 114 
not function 67; 61 
not a ny function 205 
notevery function 205 
notinline declaration 130 
nreconcfunction 221, 223 
nreverse function 204; 102, 212, 223 
nset-difference function 228 
nset -exc 1 us i ve-or function 228 
nstring-capital ize function 251 
nstring-dow.ncase function 251 
nstr i ng-upcase function 251 
nsub 1 is function 226 
nsubst function 225; 210 
nsubs t- if function 225 
nsubst-if-not function 22S 
nsubst itute function 210 

• '........,.. 

• 



• 

.-. 

INDEX 

nsubs t ittl te- if function 210 
nsub s t itu te- if-not function 210 
nth function 218; 79, 218 
nth cdr function 219 
nu 11 function 61; 67, 102 
number ,159 

floating-point 13 
predicate {il 

numberp function 61; 161 
numerator 12 
numerator function 175; 303 
nun i on function 227 

odd p function 161 
open function 345; 25,275,277,318,338,348,350 
optimize declaration 130 
or macro 68; 113 
: output keyword 

for d i rec t i on option to open 345 
: 0 u t put - f i 1 e keyword 

for comp i 1 e-f i 1 e 362 
output-stream-p function 277 
: overwr ite keyword 

for if-exists optionto open 346 

package 
predicate 63 

package cell 133 
·package· variable 149; 138,256,258,286,304,316 
package-name function 150; 141 
package-nicknames function 150; 141 
package-shadowing-symbols function ~O 
pack age- u s e-l is t function 150 
package-u sed-by-l is t function ISO 
packagep function 63 
p a ; r 1 i s function 229; l33 
parse-integer function 3~ 
parse-namestring function 341 
parsing 290 

of pathnames 338 
PASCAL 26,68.163 
pat h n arne function 340 
pathname-device function 343 
pathname-d i rectory function 343 
pathname-host function 343 
pat h name - n arne function 343 
pathname-type function 343 
pathname-version function 343 
pathnamep function 343; 63 
peek -char function 314 
ph as e function 168 
p i constant 171; 32. 269 
PLII 16, 170, 176.244, 299 
plist 133 
p 1 us p function 161 
pop macro 222; 82 
PORTABLE STANDARD LIsp 280 
position 

ofa byte 184 
pos i t ion function 211; 37,226.230 

p-o sit; 0 n - ; f function 211 
po s it ion - if - not function 211 
p p r i n t function 316 
predicate 59 . 
:predicate keyword 

for defstruct 258 
predicates 

true and false 59 
:preserve-whitespace keYword 

for read-from-string 315 
: pretty keyword 

for wr ite 316 
for write-to-string 317 

prin1 function 316; 12,307,317,320,322,324 
prinl-to-string function 317; 251 
prine function 316: 307,317,320 
prirlc-to-string function 317; 251 
p r in t function 316; 188, 273, 279 
: p r i n t keyword 

for 10ad 351 
print name l33, 136, 247 

coercion to string 251 
• p r i n t - a r ray· variable 309; 304, 305, 306, 316 
·print-base· variable 307; 303, 304,316 
·print-case· variable 308; 304,316 
·pr i nt-c i rc 1 e· variable 307; 221, 304, 316 
·print-escape· variable 307; 260,303,304,316 
: p r i n t - fun c t ion keyword 

for defstruct 260; 26 
·print-gensym· variable 308; 304,316 
• p r i n t -1 eng t h· variable 308; 286, 298, 305, 306, 316 
·print-leve1· variable 308; 260. 299, 305, 306, 316 
·print-pretty· variable 307; 260,316,317 
·print-radix· variable 307; 303,316 
printed representation 279 
printer 279, 303 
: probe keyword 

for d i rec t i on option to open 345 
probe-f i 1 e function 349 
pro c 1 aim function 127; 50, 56 
proclamation 127 
prog macro 108; 32,99,113.125 
prog* macro 108; 113.l2S 
progl macro 90; 71, 112.113.114 
prog2 macro 91; 71.114 
progn special form 90; 47,55.71,98.99.101.113 
progv special form 93; 47,77.113 
property 133 
property list .133 

compared to association list 133 
compared to hash table 233 

provide function 153 
psetf macro 80; 76 
psetq macro 76; 101.103 
push macro 221; 82 
pushnew macro 222; 226 

*query-io* variable 274,333.334 
querying the user 333 
quote character 290 

381 



382 

quote special form 72; 47.64. 75 

: r ad ix keyword 
for parse-integer 315 
for wr ite 316 
for write-to-string 317 

ran d om function 186 
rand~m-state . 

predicate 188 
·random-state· variable 187 
random-state-p function 188; 63 
rank 22 
rassoc function 231; 229 
rassoc-if function 231 
rassoc- if-not function 231 
ratio 12 
rational 12 

predicate 62 
rational function 174;43 
rationalize function 174 
rat i on alp function 62; 161 
read function 310: 6,10,23,57. 72, 74, 136, 137, 188.273, 

274,280,287,290,306,308,309,316,317,320 
*read-base* variable 287;284,285,287,304 
read-byte function 316; 345, 346 
read-char function 313; 273, 274, 314, 345,350 
read-char-no-hang function 314 
*read-defaul t-float-format· variable 311; 14,303, 

324 
read-de 1 imited-l is t function 312; 300 
read-from-string function 315 
read-l i ne function 313; 309, 317 
: read-on ly keyword 

for defstruct slot-descriptions 257 
read-preserving-whitespace function 311; 281,315 
·read-suppress· variable 287; 298, 310 
reader 279,280 
readtable 299 

predicate 300 
• rea d tab 1 e * variable 299; 300 
read tab 1 ep function 300; 63 
rea 1 par t function 179 
record structure 253 
reduce function 206; 268 
: rehash-size keyword 

for make-hash-table 234 
:rehash-thresho1d keyword 

for make-hash-table 234 
rem function 177 
r emf macro 136; 82, 134 
remhash function 235 
remove function 207; 202 
remove-dupl icates function 209 
r emo v e - i f function 207 
remove- if-not function 207; 107 
remprop function 135; 136 
: rename keyword 

for if-ex i sts option to open 346 
:rename-and-delete keyword 

for if-exists option to open 346 

COMMON USP REFERENCE MANUAL 

rename-fi 1e function 348 
rename-package function 150; 141 
rep 1 ace function 207; 79, 203 
requ i re function 153 
reserved token 282 
res t function 219; 78, 215 
return macro 99; 48,71,100,101,102, 103,108, 113, 114, 

152 
return-from special form 99; 4,32,47,55, 71, 99,101,110, 

113,115 
rev append function 221 
reverse function 204 
room function 364 
rotatef macro 82 
round function 175; 164 
rpl aca function 224; 77,85,215 
rp 1 acd function 224; 215 

S-l LISP 1,2 
samp 1 e-constant constant 4 
sample-function function 4 
samp 1 e-macro macro 4 
sample-special-form specialfonn 4 
*sample-variable* variable 4 
s bit function 243; 79, 242 
sca 1 e-fl oat function 177 
schar function 247;79,242,243 
SCHEME 1 
scope 29· 
sea r c h function 211; 203 
second function 218; 78 
set 

list representation 226 
set function 76; 74. 75, 77 

.. set-char-bit function 200; 79.199 . 
set-d i fferenee function 228 
set-d i spatch-macro-charaeter function 302 
set-exe los ive-or function 228 
set-macro-character function 300; 58.280,302 
set-syntax-from-char function 300; 280 
setf macro 78; 74,75,76,81,82,118,134,135.136,165. 

185,199,203,215,217,218,219,221. 222, 223,233.235. 
240.242,243,245.248,257.349,357.363 

setq special form 76; 46.47. 76, 77,91.92, 100.101. 105. 
114.129 

sets 
bit-vector representation 179 
infinite 179 
integer representation 179 

seventh function 218; 78 
shadow function 152; 141.145 
shadowing 30 
shadowing-import function 152; 141.144.145 
shared array 2-38 
sharp-sign macro characters 293 
shiftf macro 81 
short-fl oat-eps i 1 on constant 189 
short-fl oat-negat i ve-eps i 1 on constant 190 
short-site~name function 369 
signum function 169 • 



• 
INDEX 

simple bit-vector 
predicate 62 

simple string 
predicate 62 

simple-bH-vector-p function 62 
simp1e-string-p function 62 
simp1e-vector-p function 62 
sin function 169 
sin 9 1 e - flo a t - e psi 1 0 n constant 189 
s i ng1 e-f1 oat-neg at i ve-eps i 1 on constant 190 
sinh function 171 
s ix t h function 218; 78 
size 

ofa byte 184 
: size keyword 

for make-hash-tabl e 234 . 
s 1 e ep function 368 
software-type function 369 
software-vers ion function 369 
some function 205; 69 ~'. 
sort function 2U 
sorting 2U 
special declaration 128 
specia1-form-p function 75.118 
specialized array 237 
SPICE LISP 1, 134 
s q r t function 168; 160 
stable-sort function 212 
STANDARD LISP 2, 176 
standard-char-pfunction 192; 63 
*standard-input* variable 273; 309. 365 
*standard-output· variable 273; 316.319,351.364,365 
: start keyword 

for count 211 
for count-if 211 
for count-if-not 211 
for del ete 208 
for delete-duplicates ~ 
for del ete- if 208 
fur de1ete-if-not W8 
for f i 11 '2111 
for find 210 
for find-if 210 
for find-,if-not 210 
for nstring-capitalize 251 
for nstring-downcase 251 
for nstring-upcase 251 
for nsubstitute 210 
for nsubst itute-if 210 
for nsubstitute-if-not 210 
for parse-integer 315 
for parse-namestring 341 
for position 211 
for pas i t ion- if 211 
for position-if-not 211 
for read-from-string 315 
for reduce W6 
for remove W7 
for remove-duplicates ~ 
for remove- i f 207 

for remove- if-not 207 
for s tri ng-cap ita 1 i ze 250 
for s tr i ng-downcase 250 
for s t r i n 9 - u pc as e 250 
for Subst Hute 209 
fur substitute-if W9 
for subst itute- if-not W9 
for write-1 ine 317 
for write-string 317 
fur with-input-from-string 216 
argument to f 11 e-pos it ion 350 

: startl keyword 
for ~ismatch 211 
for repl ace 207 
for search 211 
for string-equal 248 
for string.-greaterp 249 
for s t r i n 9 -1 e ssp 249 
for s tr i ng-not-equa 1 249 
for string-not-greaterp 249 
fur string-not-1essp 249 
for s t r i n 9 / = 249 
for s tr i ng< 249 
for string<- 249 
for s t r i n 9 = 248 
for string> 249 
for s tr i ng>= 249 

: s tart2 keyword 
for mismatch 211 

, for repl ace '207 
for search 211 
for s t r i n 9 - e qua 1 248 
for string-greaterp 249 
for s t r i n 9 -1 e ssp 249 
for string-not-equal 249 
for stri ng-not-greaterp 249 
for string-not-1essp 249 
for stri ng/= 249 
for s tr i ng< 249 
for string<- 249 
for string- 248 
for string> 249 
for string>- 249 

step macro 363; 268 
: stream keyword 

for wr i te 316 
stream-el ement-type function 277; 346 
streamp function 277; 63 
string.247 

predicate 62 
string function 251; 199.247 
string syntax 291 
string-capital ize function 250; 251. 308,329 
string-char-p mnction 192; 63,247 
string-downcase function 2SO 
string-equa 1 function 248; 65,199 
string-greaterp function 249 
string-left-trim function 2SO 
string-l essp function 249 
string-not-equal function 249 

383 



384 

s t r i n 9 - not - 9 rea t e r p function 249 
string-not-lessp function 249 
s t r i n 9 - rig h t - t rim function 2SO 
string-trim function 250 
s tr i ng-upcase function 250 
s tr i ng/= function 249 
s tr i n9< function 249 
s tr i ng<= function 249 
s tr i ng;" function 248; 65, 149 
s t r i n g> function 249 
s tr i ng>= function249 
s t r i n 9 p function 62; 247 
structure 253 
structured pathname components 339 
sub 1 i s function 225 
subseq function 203; 79 
subsetp function 229 
sub s t function 224; 210, 225 
sub s t - if function 224 
subs t- if-not function 224 
sub s t it ute function 209; 225 
sub s t it ute - if function 209 
subst itute- if-not function 209 

. substitution 224 
subtypep function 60; 241 . 
: supersede keyword 

for if - e xis t s option to 0 pen 346 
svref function 242; 79 
s x has h function 236 
symbol 9, 133 

coercion to a string 247 
coercion to stIing 251 
predicate 61 

symbol':'function function 75;26,72,75,79,133 
symbol-name function 136 
symbol-package function 138; 142 
symbol-pl ist function 135; 79 
symbol-value function 74; 77.79.133.261 
symbo 1 p function 61 

t constant 60; 57. 269 
tagbody special fOIm 107; 32, 47, 99. 100.101,103.107.108. 

109 -
t ail p function 226 
tan function 169 
tan h function 171 
tenth function 218; 78 
*termi na 1- io* variable 214; 309,316.333 
terpr i function 318: 317.327 
: test keyword 

for adjoi n 226 
for assot 230 
for count 211 
for de 1 ete 208 
fat delete-duplicates 209 
fat find 210 
fur intersection 227 
fat make-hash-tab 1 e 234 
for member 226 
for mismatch 211 

COMMON LISP REFERENCE MANUAL 

for- nintersection 227 
fur nset-difference 228 
for nset-excl us; ve-or 228 
for n sub 1 i s 226 
for nsubs t 225 
for nsubstitute 210 
for nunion 227 
for pas it ion 211 
for rassoc 231 
for remove 207 
for remove-dupl icates 209 
for search 211 
for set-difference 2~ 
for set-excl us ive-or 228 
for subl is 22S 
for subsetp 229 
for subst 224 
for subs t itute 209 
for tree-equal 217 
for un i on 227 

: tes t-not keyword 
for adjo; n 226 
for assoc 230 
for count 211 
for delete 208 
for delete-duplicates 209 
for find 210 
for intersect ion 227 
for member 226 
for mi smatch 211 
for nintersection 227 
for nset-d i fference 228 
for nset-excl usive-or 228 
for nsubl is 226 
for nsubst 225 
for nsubst Hute 210 
for nunion 227 
for position 211 
for rassoc 231 
for remove 207' 
for remove-duplicates 209 
for search 211 
for set-difference 228 
for set-exclusive-or 228 
for subl is 22S 
for subsetp 229 
for subst 224 
for subst; tute 209 
for tree-equal 217 
for union 227 

the sptcial ronn 131; 39.47. 79. 113 
t Ii; r d function 218; 78 
throw U4 
throw special fonn 116; 31.47.48. i1. 100.101.113. US. 348 
t ; me macro 364 
trace macro 363: 274 
*trace-output * variable 274; 363,364 
tree 22 
tree-equa 1 function 217: 66 
tt'iJe 

• 

• 



• 

• 

.' 

INDEX 

when a predicate is 59 
truename function 340: 344,348,349,351 
truncate function 175: 39,164, 177 
type (pathname component) 338 
type declaration 129 
: type keyword 

fur make-pathname ~3 
for de f s t r u c t slot-descriptions 257 
for defstruct 260; 258,260,262 

type specifiers 35 
type-of function 43: 9,263 
typecase macro 97; 43, 113,358,359 
typep function 60; 9, 37, 39, 42,43,60, 254, 255, 259, 260. 

263 

unexport function 151; 141,145 
un i n t ern function 151; 140, 141, 143, 144 
un ion function 227 
un 1 ess macro 95; 59, 69, 113, 356 
unread-char function 314; 281,311 
untrace macro 363 
unuse-package function 152; 141 
unwind protection 115 
unwind-protect special form 115; 31,47,113,348 
upper-case-p function 193; 197 
use-package function 152; 144,145 
user-homed i r-pathn arne function 344; 369 

val u e s function 110; 48, 71, 90, 96, 110, 280 
val u e s - 1 i s t function 111 
vector 

predicate 62 
v e c tor function 240 
vector-pop function 245 
vector -push function 245 
vector-push-extend function 245; 277. 319 
vectorp function 62 
: verbose keyword 

for load 351 
version (pathname component) 338 
.: ver s i on keyword 

for make-pathname 343 

warn function 356 
when macro 95; 59,68,95, 113. 356 
with-input-from-string macro 276 
with-open-file macro 348; 30; 275. 348 
with-open-stream maao276 
with-output-to-string maao 277 
wr i te function 316; 317 
write-byte function 318; 345.346 
write-char function 317; 273.313.345.350 
write-l ine function 317: 313 
write-string function 317 
write-to-string function 317 

y-or-n-p function 333 
yes-or-no functions 333 
yes-or-no-p function 334: 274 

385 

z e r 0 p function 161 



• 

• 

• 


	Steele_CLRM-Mary_Poppins-Nov_19830001_a
	Steele_CLRM-Mary_Poppins-Nov_19830001_b
	Steele_CLRM-Mary_Poppins-Nov_19830002_a
	Steele_CLRM-Mary_Poppins-Nov_19830002_b
	Steele_CLRM-Mary_Poppins-Nov_19830003_a
	Steele_CLRM-Mary_Poppins-Nov_19830003_b
	Steele_CLRM-Mary_Poppins-Nov_19830004_a
	Steele_CLRM-Mary_Poppins-Nov_19830004_b
	Steele_CLRM-Mary_Poppins-Nov_19830005_a
	Steele_CLRM-Mary_Poppins-Nov_19830005_b
	Steele_CLRM-Mary_Poppins-Nov_19830006_a
	Steele_CLRM-Mary_Poppins-Nov_19830006_b
	Steele_CLRM-Mary_Poppins-Nov_19830007_a
	Steele_CLRM-Mary_Poppins-Nov_19830007_b
	Steele_CLRM-Mary_Poppins-Nov_19830008_a
	Steele_CLRM-Mary_Poppins-Nov_19830008_b
	Steele_CLRM-Mary_Poppins-Nov_19830009_a
	Steele_CLRM-Mary_Poppins-Nov_19830009_b
	Steele_CLRM-Mary_Poppins-Nov_19830010_a
	Steele_CLRM-Mary_Poppins-Nov_19830010_b
	Steele_CLRM-Mary_Poppins-Nov_19830011_a
	Steele_CLRM-Mary_Poppins-Nov_19830011_b
	Steele_CLRM-Mary_Poppins-Nov_19830012_a
	Steele_CLRM-Mary_Poppins-Nov_19830012_b
	Steele_CLRM-Mary_Poppins-Nov_19830013_a
	Steele_CLRM-Mary_Poppins-Nov_19830013_b
	Steele_CLRM-Mary_Poppins-Nov_19830014_a
	Steele_CLRM-Mary_Poppins-Nov_19830014_b
	Steele_CLRM-Mary_Poppins-Nov_19830015_a
	Steele_CLRM-Mary_Poppins-Nov_19830015_b
	Steele_CLRM-Mary_Poppins-Nov_19830016_a
	Steele_CLRM-Mary_Poppins-Nov_19830016_b
	Steele_CLRM-Mary_Poppins-Nov_19830017_a
	Steele_CLRM-Mary_Poppins-Nov_19830017_b
	Steele_CLRM-Mary_Poppins-Nov_19830018_a
	Steele_CLRM-Mary_Poppins-Nov_19830018_b
	Steele_CLRM-Mary_Poppins-Nov_19830019_a
	Steele_CLRM-Mary_Poppins-Nov_19830019_b
	Steele_CLRM-Mary_Poppins-Nov_19830020_a
	Steele_CLRM-Mary_Poppins-Nov_19830020_b
	Steele_CLRM-Mary_Poppins-Nov_19830021_a
	Steele_CLRM-Mary_Poppins-Nov_19830021_b
	Steele_CLRM-Mary_Poppins-Nov_19830022_a
	Steele_CLRM-Mary_Poppins-Nov_19830022_b
	Steele_CLRM-Mary_Poppins-Nov_19830023_a
	Steele_CLRM-Mary_Poppins-Nov_19830023_b
	Steele_CLRM-Mary_Poppins-Nov_19830024_a
	Steele_CLRM-Mary_Poppins-Nov_19830024_b
	Steele_CLRM-Mary_Poppins-Nov_19830025_a
	Steele_CLRM-Mary_Poppins-Nov_19830025_b
	Steele_CLRM-Mary_Poppins-Nov_19830026_a
	Steele_CLRM-Mary_Poppins-Nov_19830026_b
	Steele_CLRM-Mary_Poppins-Nov_19830027_a
	Steele_CLRM-Mary_Poppins-Nov_19830027_b
	Steele_CLRM-Mary_Poppins-Nov_19830028_a
	Steele_CLRM-Mary_Poppins-Nov_19830028_b
	Steele_CLRM-Mary_Poppins-Nov_19830029_a
	Steele_CLRM-Mary_Poppins-Nov_19830029_b
	Steele_CLRM-Mary_Poppins-Nov_19830030_a
	Steele_CLRM-Mary_Poppins-Nov_19830030_b
	Steele_CLRM-Mary_Poppins-Nov_19830031_a
	Steele_CLRM-Mary_Poppins-Nov_19830031_b
	Steele_CLRM-Mary_Poppins-Nov_19830032_a
	Steele_CLRM-Mary_Poppins-Nov_19830032_b
	Steele_CLRM-Mary_Poppins-Nov_19830033_a
	Steele_CLRM-Mary_Poppins-Nov_19830033_b
	Steele_CLRM-Mary_Poppins-Nov_19830034_a
	Steele_CLRM-Mary_Poppins-Nov_19830034_b
	Steele_CLRM-Mary_Poppins-Nov_19830035_a
	Steele_CLRM-Mary_Poppins-Nov_19830035_b
	Steele_CLRM-Mary_Poppins-Nov_19830036_a
	Steele_CLRM-Mary_Poppins-Nov_19830036_b
	Steele_CLRM-Mary_Poppins-Nov_19830037_a
	Steele_CLRM-Mary_Poppins-Nov_19830037_b
	Steele_CLRM-Mary_Poppins-Nov_19830038_a
	Steele_CLRM-Mary_Poppins-Nov_19830038_b
	Steele_CLRM-Mary_Poppins-Nov_19830039_a
	Steele_CLRM-Mary_Poppins-Nov_19830039_b
	Steele_CLRM-Mary_Poppins-Nov_19830040_a
	Steele_CLRM-Mary_Poppins-Nov_19830040_b
	Steele_CLRM-Mary_Poppins-Nov_19830041_a
	Steele_CLRM-Mary_Poppins-Nov_19830041_b
	Steele_CLRM-Mary_Poppins-Nov_19830042_a
	Steele_CLRM-Mary_Poppins-Nov_19830042_b
	Steele_CLRM-Mary_Poppins-Nov_19830043_a
	Steele_CLRM-Mary_Poppins-Nov_19830043_b
	Steele_CLRM-Mary_Poppins-Nov_19830044_a
	Steele_CLRM-Mary_Poppins-Nov_19830044_b
	Steele_CLRM-Mary_Poppins-Nov_19830045_a
	Steele_CLRM-Mary_Poppins-Nov_19830045_b
	Steele_CLRM-Mary_Poppins-Nov_19830046_a
	Steele_CLRM-Mary_Poppins-Nov_19830046_b
	Steele_CLRM-Mary_Poppins-Nov_19830047_a
	Steele_CLRM-Mary_Poppins-Nov_19830047_b
	Steele_CLRM-Mary_Poppins-Nov_19830048_a
	Steele_CLRM-Mary_Poppins-Nov_19830048_b
	Steele_CLRM-Mary_Poppins-Nov_19830049_a
	Steele_CLRM-Mary_Poppins-Nov_19830049_b
	Steele_CLRM-Mary_Poppins-Nov_19830050_a
	Steele_CLRM-Mary_Poppins-Nov_19830050_b
	Steele_CLRM-Mary_Poppins-Nov_19830051_a
	Steele_CLRM-Mary_Poppins-Nov_19830051_b
	Steele_CLRM-Mary_Poppins-Nov_19830052_a
	Steele_CLRM-Mary_Poppins-Nov_19830052_b
	Steele_CLRM-Mary_Poppins-Nov_19830053_a
	Steele_CLRM-Mary_Poppins-Nov_19830053_b
	Steele_CLRM-Mary_Poppins-Nov_19830054_a
	Steele_CLRM-Mary_Poppins-Nov_19830054_b
	Steele_CLRM-Mary_Poppins-Nov_19830055_a
	Steele_CLRM-Mary_Poppins-Nov_19830055_b
	Steele_CLRM-Mary_Poppins-Nov_19830056_a
	Steele_CLRM-Mary_Poppins-Nov_19830056_b
	Steele_CLRM-Mary_Poppins-Nov_19830057_a
	Steele_CLRM-Mary_Poppins-Nov_19830057_b
	Steele_CLRM-Mary_Poppins-Nov_19830058_a
	Steele_CLRM-Mary_Poppins-Nov_19830058_b
	Steele_CLRM-Mary_Poppins-Nov_19830059_a
	Steele_CLRM-Mary_Poppins-Nov_19830059_b
	Steele_CLRM-Mary_Poppins-Nov_19830060_a
	Steele_CLRM-Mary_Poppins-Nov_19830060_b
	Steele_CLRM-Mary_Poppins-Nov_19830061_a
	Steele_CLRM-Mary_Poppins-Nov_19830061_b
	Steele_CLRM-Mary_Poppins-Nov_19830062_a
	Steele_CLRM-Mary_Poppins-Nov_19830062_b
	Steele_CLRM-Mary_Poppins-Nov_19830063_a
	Steele_CLRM-Mary_Poppins-Nov_19830063_b
	Steele_CLRM-Mary_Poppins-Nov_19830064_a
	Steele_CLRM-Mary_Poppins-Nov_19830064_b
	Steele_CLRM-Mary_Poppins-Nov_19830065_a
	Steele_CLRM-Mary_Poppins-Nov_19830065_b
	Steele_CLRM-Mary_Poppins-Nov_19830066_a
	Steele_CLRM-Mary_Poppins-Nov_19830066_b
	Steele_CLRM-Mary_Poppins-Nov_19830067_a
	Steele_CLRM-Mary_Poppins-Nov_19830067_b
	Steele_CLRM-Mary_Poppins-Nov_19830068_a
	Steele_CLRM-Mary_Poppins-Nov_19830068_b
	Steele_CLRM-Mary_Poppins-Nov_19830069_a
	Steele_CLRM-Mary_Poppins-Nov_19830069_b
	Steele_CLRM-Mary_Poppins-Nov_19830070_a
	Steele_CLRM-Mary_Poppins-Nov_19830070_b
	Steele_CLRM-Mary_Poppins-Nov_19830071_a
	Steele_CLRM-Mary_Poppins-Nov_19830071_b
	Steele_CLRM-Mary_Poppins-Nov_19830072_a
	Steele_CLRM-Mary_Poppins-Nov_19830072_b
	Steele_CLRM-Mary_Poppins-Nov_19830073_a
	Steele_CLRM-Mary_Poppins-Nov_19830073_b
	Steele_CLRM-Mary_Poppins-Nov_19830074_a
	Steele_CLRM-Mary_Poppins-Nov_19830074_b
	Steele_CLRM-Mary_Poppins-Nov_19830075_a
	Steele_CLRM-Mary_Poppins-Nov_19830075_b
	Steele_CLRM-Mary_Poppins-Nov_19830076_a
	Steele_CLRM-Mary_Poppins-Nov_19830076_b
	Steele_CLRM-Mary_Poppins-Nov_19830077_a
	Steele_CLRM-Mary_Poppins-Nov_19830077_b
	Steele_CLRM-Mary_Poppins-Nov_19830078_a
	Steele_CLRM-Mary_Poppins-Nov_19830078_b
	Steele_CLRM-Mary_Poppins-Nov_19830079_a
	Steele_CLRM-Mary_Poppins-Nov_19830079_b
	Steele_CLRM-Mary_Poppins-Nov_19830080_a
	Steele_CLRM-Mary_Poppins-Nov_19830080_b
	Steele_CLRM-Mary_Poppins-Nov_19830081_a
	Steele_CLRM-Mary_Poppins-Nov_19830081_b
	Steele_CLRM-Mary_Poppins-Nov_19830082_a
	Steele_CLRM-Mary_Poppins-Nov_19830082_b
	Steele_CLRM-Mary_Poppins-Nov_19830083_a
	Steele_CLRM-Mary_Poppins-Nov_19830083_b
	Steele_CLRM-Mary_Poppins-Nov_19830084_a
	Steele_CLRM-Mary_Poppins-Nov_19830084_b
	Steele_CLRM-Mary_Poppins-Nov_19830085_a
	Steele_CLRM-Mary_Poppins-Nov_19830085_b
	Steele_CLRM-Mary_Poppins-Nov_19830086_a
	Steele_CLRM-Mary_Poppins-Nov_19830086_b
	Steele_CLRM-Mary_Poppins-Nov_19830087_a
	Steele_CLRM-Mary_Poppins-Nov_19830087_b
	Steele_CLRM-Mary_Poppins-Nov_19830088_a
	Steele_CLRM-Mary_Poppins-Nov_19830088_b
	Steele_CLRM-Mary_Poppins-Nov_19830089_a
	Steele_CLRM-Mary_Poppins-Nov_19830089_b
	Steele_CLRM-Mary_Poppins-Nov_19830090_a
	Steele_CLRM-Mary_Poppins-Nov_19830090_b
	Steele_CLRM-Mary_Poppins-Nov_19830091_a
	Steele_CLRM-Mary_Poppins-Nov_19830091_b
	Steele_CLRM-Mary_Poppins-Nov_19830092_a
	Steele_CLRM-Mary_Poppins-Nov_19830092_b
	Steele_CLRM-Mary_Poppins-Nov_19830093_a
	Steele_CLRM-Mary_Poppins-Nov_19830093_b
	Steele_CLRM-Mary_Poppins-Nov_19830094_a
	Steele_CLRM-Mary_Poppins-Nov_19830094_b
	Steele_CLRM-Mary_Poppins-Nov_19830095_a
	Steele_CLRM-Mary_Poppins-Nov_19830095_b
	Steele_CLRM-Mary_Poppins-Nov_19830096_a
	Steele_CLRM-Mary_Poppins-Nov_19830096_b
	Steele_CLRM-Mary_Poppins-Nov_19830097_a
	Steele_CLRM-Mary_Poppins-Nov_19830097_b
	Steele_CLRM-Mary_Poppins-Nov_19830098_a
	Steele_CLRM-Mary_Poppins-Nov_19830098_b
	Steele_CLRM-Mary_Poppins-Nov_19830099_a
	Steele_CLRM-Mary_Poppins-Nov_19830099_b
	Steele_CLRM-Mary_Poppins-Nov_19830100_a
	Steele_CLRM-Mary_Poppins-Nov_19830100_b
	Steele_CLRM-Mary_Poppins-Nov_19830101_a
	Steele_CLRM-Mary_Poppins-Nov_19830101_b
	Steele_CLRM-Mary_Poppins-Nov_19830102_a
	Steele_CLRM-Mary_Poppins-Nov_19830102_b
	Steele_CLRM-Mary_Poppins-Nov_19830103_a
	Steele_CLRM-Mary_Poppins-Nov_19830103_b
	Steele_CLRM-Mary_Poppins-Nov_19830104_a
	Steele_CLRM-Mary_Poppins-Nov_19830104_b
	Steele_CLRM-Mary_Poppins-Nov_19830105_a
	Steele_CLRM-Mary_Poppins-Nov_19830105_b
	Steele_CLRM-Mary_Poppins-Nov_19830106_a
	Steele_CLRM-Mary_Poppins-Nov_19830106_b
	Steele_CLRM-Mary_Poppins-Nov_19830107_a
	Steele_CLRM-Mary_Poppins-Nov_19830107_b
	Steele_CLRM-Mary_Poppins-Nov_19830108_a
	Steele_CLRM-Mary_Poppins-Nov_19830108_b
	Steele_CLRM-Mary_Poppins-Nov_19830109_a
	Steele_CLRM-Mary_Poppins-Nov_19830109_b
	Steele_CLRM-Mary_Poppins-Nov_19830110_a
	Steele_CLRM-Mary_Poppins-Nov_19830110_b
	Steele_CLRM-Mary_Poppins-Nov_19830111_a
	Steele_CLRM-Mary_Poppins-Nov_19830111_b
	Steele_CLRM-Mary_Poppins-Nov_19830112_a
	Steele_CLRM-Mary_Poppins-Nov_19830112_b
	Steele_CLRM-Mary_Poppins-Nov_19830113_a
	Steele_CLRM-Mary_Poppins-Nov_19830113_b
	Steele_CLRM-Mary_Poppins-Nov_19830114_a
	Steele_CLRM-Mary_Poppins-Nov_19830114_b
	Steele_CLRM-Mary_Poppins-Nov_19830115_a
	Steele_CLRM-Mary_Poppins-Nov_19830115_b
	Steele_CLRM-Mary_Poppins-Nov_19830116_a
	Steele_CLRM-Mary_Poppins-Nov_19830116_b
	Steele_CLRM-Mary_Poppins-Nov_19830117_a
	Steele_CLRM-Mary_Poppins-Nov_19830117_b
	Steele_CLRM-Mary_Poppins-Nov_19830118_a
	Steele_CLRM-Mary_Poppins-Nov_19830118_b
	Steele_CLRM-Mary_Poppins-Nov_19830119_a
	Steele_CLRM-Mary_Poppins-Nov_19830119_b
	Steele_CLRM-Mary_Poppins-Nov_19830120_a
	Steele_CLRM-Mary_Poppins-Nov_19830120_b
	Steele_CLRM-Mary_Poppins-Nov_19830121_a
	Steele_CLRM-Mary_Poppins-Nov_19830121_b
	Steele_CLRM-Mary_Poppins-Nov_19830122_a
	Steele_CLRM-Mary_Poppins-Nov_19830122_b
	Steele_CLRM-Mary_Poppins-Nov_19830123_a
	Steele_CLRM-Mary_Poppins-Nov_19830123_b
	Steele_CLRM-Mary_Poppins-Nov_19830124_a
	Steele_CLRM-Mary_Poppins-Nov_19830124_b
	Steele_CLRM-Mary_Poppins-Nov_19830125_a
	Steele_CLRM-Mary_Poppins-Nov_19830125_b
	Steele_CLRM-Mary_Poppins-Nov_19830126_a
	Steele_CLRM-Mary_Poppins-Nov_19830126_b
	Steele_CLRM-Mary_Poppins-Nov_19830127_a
	Steele_CLRM-Mary_Poppins-Nov_19830127_b
	Steele_CLRM-Mary_Poppins-Nov_19830128_a
	Steele_CLRM-Mary_Poppins-Nov_19830128_b
	Steele_CLRM-Mary_Poppins-Nov_19830129_a
	Steele_CLRM-Mary_Poppins-Nov_19830129_b
	Steele_CLRM-Mary_Poppins-Nov_19830130_a
	Steele_CLRM-Mary_Poppins-Nov_19830130_b
	Steele_CLRM-Mary_Poppins-Nov_19830131_a
	Steele_CLRM-Mary_Poppins-Nov_19830131_b
	Steele_CLRM-Mary_Poppins-Nov_19830132_a
	Steele_CLRM-Mary_Poppins-Nov_19830132_b
	Steele_CLRM-Mary_Poppins-Nov_19830133_a
	Steele_CLRM-Mary_Poppins-Nov_19830133_b
	Steele_CLRM-Mary_Poppins-Nov_19830134_a
	Steele_CLRM-Mary_Poppins-Nov_19830134_b
	Steele_CLRM-Mary_Poppins-Nov_19830135_a
	Steele_CLRM-Mary_Poppins-Nov_19830135_b
	Steele_CLRM-Mary_Poppins-Nov_19830136_a
	Steele_CLRM-Mary_Poppins-Nov_19830136_b
	Steele_CLRM-Mary_Poppins-Nov_19830137_a
	Steele_CLRM-Mary_Poppins-Nov_19830137_b
	Steele_CLRM-Mary_Poppins-Nov_19830138_a
	Steele_CLRM-Mary_Poppins-Nov_19830138_b
	Steele_CLRM-Mary_Poppins-Nov_19830139_a
	Steele_CLRM-Mary_Poppins-Nov_19830139_b
	Steele_CLRM-Mary_Poppins-Nov_19830140_a
	Steele_CLRM-Mary_Poppins-Nov_19830140_b
	Steele_CLRM-Mary_Poppins-Nov_19830141_a
	Steele_CLRM-Mary_Poppins-Nov_19830141_b
	Steele_CLRM-Mary_Poppins-Nov_19830142_a
	Steele_CLRM-Mary_Poppins-Nov_19830142_b
	Steele_CLRM-Mary_Poppins-Nov_19830143_a
	Steele_CLRM-Mary_Poppins-Nov_19830143_b
	Steele_CLRM-Mary_Poppins-Nov_19830144_a
	Steele_CLRM-Mary_Poppins-Nov_19830144_b
	Steele_CLRM-Mary_Poppins-Nov_19830145_a
	Steele_CLRM-Mary_Poppins-Nov_19830145_b
	Steele_CLRM-Mary_Poppins-Nov_19830146_a
	Steele_CLRM-Mary_Poppins-Nov_19830146_b
	Steele_CLRM-Mary_Poppins-Nov_19830147_a
	Steele_CLRM-Mary_Poppins-Nov_19830147_b
	Steele_CLRM-Mary_Poppins-Nov_19830148_a
	Steele_CLRM-Mary_Poppins-Nov_19830148_b
	Steele_CLRM-Mary_Poppins-Nov_19830149_a
	Steele_CLRM-Mary_Poppins-Nov_19830149_b
	Steele_CLRM-Mary_Poppins-Nov_19830150_a
	Steele_CLRM-Mary_Poppins-Nov_19830150_b
	Steele_CLRM-Mary_Poppins-Nov_19830151_a
	Steele_CLRM-Mary_Poppins-Nov_19830151_b
	Steele_CLRM-Mary_Poppins-Nov_19830152_a
	Steele_CLRM-Mary_Poppins-Nov_19830152_b
	Steele_CLRM-Mary_Poppins-Nov_19830153_a
	Steele_CLRM-Mary_Poppins-Nov_19830153_b
	Steele_CLRM-Mary_Poppins-Nov_19830154_a
	Steele_CLRM-Mary_Poppins-Nov_19830154_b
	Steele_CLRM-Mary_Poppins-Nov_19830155_a
	Steele_CLRM-Mary_Poppins-Nov_19830155_b
	Steele_CLRM-Mary_Poppins-Nov_19830156_a
	Steele_CLRM-Mary_Poppins-Nov_19830156_b
	Steele_CLRM-Mary_Poppins-Nov_19830157_a
	Steele_CLRM-Mary_Poppins-Nov_19830157_b
	Steele_CLRM-Mary_Poppins-Nov_19830158_a
	Steele_CLRM-Mary_Poppins-Nov_19830158_b
	Steele_CLRM-Mary_Poppins-Nov_19830159_a
	Steele_CLRM-Mary_Poppins-Nov_19830159_b
	Steele_CLRM-Mary_Poppins-Nov_19830160_a
	Steele_CLRM-Mary_Poppins-Nov_19830160_b
	Steele_CLRM-Mary_Poppins-Nov_19830161_a
	Steele_CLRM-Mary_Poppins-Nov_19830161_b
	Steele_CLRM-Mary_Poppins-Nov_19830162_a
	Steele_CLRM-Mary_Poppins-Nov_19830162_b
	Steele_CLRM-Mary_Poppins-Nov_19830163_a
	Steele_CLRM-Mary_Poppins-Nov_19830163_b
	Steele_CLRM-Mary_Poppins-Nov_19830164_a
	Steele_CLRM-Mary_Poppins-Nov_19830164_b
	Steele_CLRM-Mary_Poppins-Nov_19830165_a
	Steele_CLRM-Mary_Poppins-Nov_19830165_b
	Steele_CLRM-Mary_Poppins-Nov_19830166_a
	Steele_CLRM-Mary_Poppins-Nov_19830166_b
	Steele_CLRM-Mary_Poppins-Nov_19830167_a
	Steele_CLRM-Mary_Poppins-Nov_19830167_b
	Steele_CLRM-Mary_Poppins-Nov_19830168_a
	Steele_CLRM-Mary_Poppins-Nov_19830168_b
	Steele_CLRM-Mary_Poppins-Nov_19830169_a
	Steele_CLRM-Mary_Poppins-Nov_19830169_b
	Steele_CLRM-Mary_Poppins-Nov_19830170_a
	Steele_CLRM-Mary_Poppins-Nov_19830170_b
	Steele_CLRM-Mary_Poppins-Nov_19830171_a
	Steele_CLRM-Mary_Poppins-Nov_19830171_b
	Steele_CLRM-Mary_Poppins-Nov_19830172_a
	Steele_CLRM-Mary_Poppins-Nov_19830172_b
	Steele_CLRM-Mary_Poppins-Nov_19830173_a
	Steele_CLRM-Mary_Poppins-Nov_19830173_b
	Steele_CLRM-Mary_Poppins-Nov_19830174_a
	Steele_CLRM-Mary_Poppins-Nov_19830174_b
	Steele_CLRM-Mary_Poppins-Nov_19830175_a
	Steele_CLRM-Mary_Poppins-Nov_19830175_b
	Steele_CLRM-Mary_Poppins-Nov_19830176_a
	Steele_CLRM-Mary_Poppins-Nov_19830176_b
	Steele_CLRM-Mary_Poppins-Nov_19830177_a
	Steele_CLRM-Mary_Poppins-Nov_19830177_b
	Steele_CLRM-Mary_Poppins-Nov_19830178_a
	Steele_CLRM-Mary_Poppins-Nov_19830178_b
	Steele_CLRM-Mary_Poppins-Nov_19830179_a
	Steele_CLRM-Mary_Poppins-Nov_19830179_b
	Steele_CLRM-Mary_Poppins-Nov_19830180_a
	Steele_CLRM-Mary_Poppins-Nov_19830180_b
	Steele_CLRM-Mary_Poppins-Nov_19830181_a
	Steele_CLRM-Mary_Poppins-Nov_19830181_b
	Steele_CLRM-Mary_Poppins-Nov_19830182_a
	Steele_CLRM-Mary_Poppins-Nov_19830182_b
	Steele_CLRM-Mary_Poppins-Nov_19830183_a
	Steele_CLRM-Mary_Poppins-Nov_19830183_b
	Steele_CLRM-Mary_Poppins-Nov_19830184_a
	Steele_CLRM-Mary_Poppins-Nov_19830184_b
	Steele_CLRM-Mary_Poppins-Nov_19830185_a
	Steele_CLRM-Mary_Poppins-Nov_19830185_b
	Steele_CLRM-Mary_Poppins-Nov_19830186_a
	Steele_CLRM-Mary_Poppins-Nov_19830186_b
	Steele_CLRM-Mary_Poppins-Nov_19830187_a
	Steele_CLRM-Mary_Poppins-Nov_19830187_b
	Steele_CLRM-Mary_Poppins-Nov_19830188_a
	Steele_CLRM-Mary_Poppins-Nov_19830188_b
	Steele_CLRM-Mary_Poppins-Nov_19830189_a
	Steele_CLRM-Mary_Poppins-Nov_19830189_b
	Steele_CLRM-Mary_Poppins-Nov_19830190_a
	Steele_CLRM-Mary_Poppins-Nov_19830190_b
	Steele_CLRM-Mary_Poppins-Nov_19830191_a
	Steele_CLRM-Mary_Poppins-Nov_19830191_b
	Steele_CLRM-Mary_Poppins-Nov_19830192_a
	Steele_CLRM-Mary_Poppins-Nov_19830192_b
	Steele_CLRM-Mary_Poppins-Nov_19830193_a
	Steele_CLRM-Mary_Poppins-Nov_19830193_b
	Steele_CLRM-Mary_Poppins-Nov_19830194_a
	Steele_CLRM-Mary_Poppins-Nov_19830194_b
	Steele_CLRM-Mary_Poppins-Nov_19830195_a
	Steele_CLRM-Mary_Poppins-Nov_19830195_b
	Steele_CLRM-Mary_Poppins-Nov_19830196_a
	Steele_CLRM-Mary_Poppins-Nov_19830196_b
	Steele_CLRM-Mary_Poppins-Nov_19830197_a
	Steele_CLRM-Mary_Poppins-Nov_19830197_b
	Steele_CLRM-Mary_Poppins-Nov_19830198_a
	Steele_CLRM-Mary_Poppins-Nov_19830198_b
	Steele_CLRM-Mary_Poppins-Nov_19830199_a
	Steele_CLRM-Mary_Poppins-Nov_19830199_b
	Steele_CLRM-Mary_Poppins-Nov_19830200_a
	Steele_CLRM-Mary_Poppins-Nov_19830200_b



