
A Summary of

Functions and Flags

David S. Tex.etzky

August. 1978

This ,esea;ch was sponsorfld by the Defense Advanced Research Project. Agency (000). ARPA
Order No. 3591, monitored by the Ail Force Avionica laboratory Unde,Contract F33815-18-C-1561.

The views andcenclu$iON contained in this docunent ar., those of the author and IhouId not be
Interpreted •• repr.semlno the offici,l pollei •• , .il'* d or implied. of the DefeNe Advanced
"esearch Project. Agency or the US Qovemment.

The author. Was suppl)fted by • Fa""'e and Johp Hertz Fotn:Iation fellowlhip.

Table of Contents

1. Manipulating S-Exprcssions
1. ,. Ba~ic List Structure
1.2. Extracting Compon!.'nts of Lists
1.3. Predicates on S-Expressions
1.4. Searching and Substitution
1.5. Hashing List Structure
, .S. Sorting .
1.7. Hunk.s

2. Type Predicates
3. Atomic Symbols

3. t. Symbols As Variables
3.2. The Property List
3.3. Characters and Print-Names
3.4. The OBARRAV

4. Numbers
4.1. Predicates on Numbers
4.2. Conversion
4.3. Goneral Arithmetic
4.4. Fixnum Arithmeotic
4.5. Flonum Arithmeotic
4.S. Logs and Powors
4.7. Trigonometric Functions
4.8. Logical Operations on Numbers
4.9. Miscellaneous

5. Programs
5.1. The Evaluator
5.2. Evaluator Special Forms
5.3. PROG Forms
5.4. Conditionals
5.5. LEXPRS and lSUBRS
5.6. Non-Local Exits
5.7. Err~ Signalling

6. Mapping Functions
7. Arrays
8. Input/Output

8.1. Functions On Files
8.2. Functions on File$pecs and File

Objects

2
2
3
3
4
5
5
6
6
7
7
8
9

10
11

" 12

'3
'4
15

'5
16
16
17
17
17
'8
19
21
21
22
23
23
24
26
26
27

8.3. Basic I/O 28
8.4. Character I/O 29
8.5. General I/O Control 30
8.S. Terminal 1/031
8.7. Binary and Random Access I/O 32
8.8. Miscellaneous Functions 33
8.9. OLDIO Functions 33

9. Programming Tools 35
9.1. Common FUnctions 35
9.2. Packages 36

'0. Storage Mana{lement 36

"

10.1. Garbage Collection 36'
10.2. Storage Allocation Concepts 37
10.3. Storilgo Spacos 38
10.4. Allocation ' 39

jj

11. Status Functions

Index

11.1. Environment Enqueries
11.2. Garbage Collector Status
11.3. I/O Status
11.4. Time

39
39

4'
42
43

45

Preface

This document is a ~ummary of CMU MacLisp's

principle functions and flags. It is nol a complete list,

and certainly not a roference manual.

Many of the items listed here are laken from

chapter$ through 3 of the- MacLi5p Rl.'fNt'ncl.' Manual.

Since the manual is incomplete, the remainder are

drawn from information in a cumulative 'ilo of MacLisp

update nolicl.'s, ARCHIV.DOC[C380ML5P]/A.

A special notation is used to indicate the calling

syntax for functions:

- Evaluated argument.s aopt'ar as bare atoms,
such as X and V in (EQ X V).

- Unevalua ted argumonts, Le. argumonts
tak.en by foxprs and lert unevalualed,
appear in quotation m.uks, e.g. (SETQ ·X·
V).

- Arguments that are destructively modified
by a function are preceded by an asterisk,
as in (RPLACD ·X V).

- Optional afguments appear in brackets, e.o.
(TERPRI [FilE])

- Numbers in brad.ets rofer to pages of the
Maclisp Roforonce Manual.

Building a summary from a mostly non-existent

reference manual is a difficult task. To simplify things,

system-level features (such as the interrupt system,

pure pages, and the evalhook mechanism) have been

omitted. Also omitted are those features that are not

applicable to the version of Maclisp in use at CMU.

Please mail all corrections to this summary to

MacLisp(!CMUA.

2

1. Manipulating S-Exprcssions

1.1. Basic list Structure

(CONS X Y) [2-16)
Eg: (CONS 'A'S) = (A . S)

(NCONS X) [2-16]
Same as (CONS X NIL)

(XCONS X Y) [2-17]
Same as (CONS V X)

(LIST X, Xz ... XN) (2-19]

Returns a list containing the Xi' Eg: (LIST 'A '8
'C) = (A B C)

An Isubr version of CONS. Eg: (LISP 'A '8 'C)
= (A B • C)

(7]

(APPEND X, Xz .. ~ XN) (2-19)
• Returns a list of all the Xi appended together.

This is 4 non-destructive append: all but the lasl .
argument are copied at the top level. EIJ:
(APPEND '(A .B) '(C 0) '(E» = (A BCD E)

[2-20)

Similar to APPEND, but all XI except the last are
modified rather than copied. Returns· the modified
X,.

• (REVERSE L) [2-20)

Returns the reverse of tho top-level list L.

(NREVERSE ""L) [2-21)

Like REVERSE, but destructive.

(NRECONC ·X Y) [2-21J

Same as (NCONC (NREVERSE X) V)

3

(RPLIlCA ·X Y) [2-22]
Phy~ic3l1y rl'placos tho CAR portion of X with V,
roturOlng tho modifiod X.

(RPLIlCD ·X Y) [2-22]
PhY$ically rt"placos the COR portion of X with V,
roturnirw;! the modifiod X.

(LENGTH L) [2-18]
Returns the number of top-Iovel elomonts of the
Ii",' t.

1.2. Extracting Components of Lists

(CAR L) [2-15]

Eo: (CAR '(A B C» " A

(CDR L) [2-16]
EO: (COR '(A B C» " (B C)

(C .••• R L) (2-1S]

Composite CAR's and COR's. up to four deep. Eg:
(CAOOR L) = (CAR (COR (COR L)))

(NTH N L)

Re " ... ns the Nth -element of list l. with 0 being
the first element. EO: (NTH 1 '{A B Cn " B

(NTHCDR N L)

Returns .the result of tak.ing the COR I!)t list L.
repeated N times. EO: (NTHCOR 1 '(A B C» •
(8 C)

[7]

[1]

(LAST L) [2-18]
The last cons cell of the list L. EO: (LAST '(A B
e» " (e). (LAST '(A B • e» " (8 • C)

1.3. Predicates on S-Expressions

(EQ X Y) [2-3]

Returns T if objeeta X and V are the same
pointer. EQ will correctly c:ompare symbols and
lists. but not numbera. E91 (EQ 'A 'A) " T, but
(EQ '(A) '(A» " NIL .

4

(EOUAL X Y) [2-3)

Roturns T if objects X and V are identical
s-e-xpro$s;ons. Eg: (EQUAL '(FOa BAR) '(FOa
BAR» = T

(NULL X) (2-4]

Returns T jf X is NIL, otherWi:>e returns-NIL

(NOT X) [2-4)
Same as NULL. Returns T if X is NIL, otherwise
returns NIL.

(MEM8ER X L) [2-24]
If X is EQUAL to any top-Il'vel ~Icment of V.
then the tail of V starting with the- point whe-re X
is found is re-turned. Otherwise NIL is returned.
Eg: (MEMBER 'e '(A BCD E» = (C DE)

(MEMQ X L) [2-25)
Like MEMBER, but uses EQ instead of EQUAL.

1.4. Searching and Substitution

(SU8ST X Y L) • [2-22]
Substitutes X for all elem('nts EO to V in
l. Returns L.

(SUBLIS A L) [2-23]
Uses the list of dotted pairs A to make
substitutions in L. Eg: (SUBLIS '«A • FOO) (8 •
BAR» '(SETQ A 13» • (SETQ FOO BAR)

(DELETE X *l. eN]) , [2-25]
(DELETE X L) returns list L after all elements

" EQUAL to X have been destructively removed.
DELETE $hoUld be use-d with a SETQ. not by
itself, 8$ old pointors to the list L may be left
pointing to a deleted element. (DELETE X L N)
will dolete only the first N occ:urrences of X from
L.

(DELQ X 'ilL eN}) [2-28]

Like DELETE. but uses EO instoad of EQUAl.

6

(ASSOC x L) (2-27)
Search tho list of dotted pairs L for a pair whose
CAR is EQ to X. Roturns the first such pair found,
elso NIL. Eg: (ASSOC 'TWO '«ONE. 1) (TWO.
2) (THREE. 3») = (TWO. Z)

(ASSO X L) [Z-28]
like ASSOC, but uses EQ instt'ad of EQUAL.

(SASSOC X L FN) , (Z-28]
like ASSOC, but jf X can't be found in the
association list l. returns the value of a call to
function FN. a function of zero arguments •.

(SASSO X L FN) [2-29]
like ASSQ, but if X can't be found in the
association list l, returns the value of a call to
function FN, a function of zero arguments.

1.5. Hashing List Structure

(SXHIlSH x) [2-26)

Hashos an s-expression into a fixnum. eqUAL
s-expressions hash to the same number.

(MAKNUM x) [2-29J

Translatos an obj('tct into a fixnum, by returning
tho mt'mory address of object X.

(MUNKAM N) [2-29)
Opposite of MAKNUM. Returns the object which
was given to MAKNUM to get the m.mber
(memory address) N.

1.6. Sorting

(SORT ·X FN) [2-30J

Destructively sorts the list or array X, using FN
,as a predicate to compare pairs of elements. FN
should return T if the first arguement should
appear before the second in the sorted list. For
alphabetical sorting, Use ALPHALESSP as the
predicate.

6

(SORTCAR *X FN) (2-31)
Like SORT, but calls the predicate on the CAR's
of the elements.

1.7. Hunks

[2-32)
Builds a hunk from the Xi' Note that the O'th
element appears last in the argument list. Hunk
sizes are always a power of two, no matter how
many arguments are actually given.

(CXR N H) (2-33)

Returns the Nth component of hunk H.

(RPLACX N *H X) (2-33]
Physically replaces the Nth component of hunk. H
with X. and returns H.

(MAKHUNK N) (2-33)
Creates and returns an N-etlement hunk, filled
with NILs. (MAKIoIUNK l), where L is a list,
creates a. hunk of the appropriate sile and
Initalizes it from L.

(HUNKS/ZE H) [2-33)

Returns the number of compononts in hunk H.

HUNKP [2-33)

If the global variable HUNKP is NI!.., the fUl'lCtioni
PRINT, eQUAL and PURCOPV II eat hunks as
conses. If non-NIL (the default), hunks are
treated as hunks,

2. Type Predicates

(ATOM x) (2-1]

Returns T if argument is any kind of atomic
object, such u a symbol or a number, otherwise
NIL.

(SYMBOL" X)

Returns T if X Is an atomic symbol, otherwise
NIL.

7

(FlXPX) [2-1]
R('Iurns T If X j$ a flxnum or bignum. otherwise
NIl.

(fLaMP X) (2-1)
At-turns T if X is a flonum, otherwise Nil.

(BIGP X) [2-1]
Returns T if X js a bigrn.rn. otherwise NIl.

(NUMBERP X) [2-2]
Returns T if X is any kind of number, otherwise
NIL.

(HUNKP X) [2-2]
Returns T jf X is a hunk, othNwise Nil.

(TYPEP X) [2-2]
Returns an atomic symbol describing 1M type of
object X. Possible values are FIXNUM, FLONUM,
BIGNUM, LIST, SYMBOl, STRING, ARRAV, and
RANDOM.

3. Atomic Symbols

3.1. Symbols As Variables

(SETQ "X· Y) [2-49)
The canonical assignment stalement. Sets the
value of variable X to Y. X is lett unevaluated, V
is not. More than one variable may be aet at
once, e9 (SETQ X 3 Z 4).

(SET X Y) [2-50]

like SETQ, but X is evaluated and must yield an
atomic symbol.

(PUSH X -L-) [1]

Equivalent to (snQ L (CONS XL». U",. whore
l is acting as a stacie..

8

(POP "L" ["X"})

R~turns CAR or l. ~(1'''ng l to CDR of l. (I.e.
pops Iho top ol<'ll1<.'Ot off a stack and rolurns It.)
A~,\lgn, Iho popp!.'d valuo to the (optional)
variablo X.

(?)

(SYMEVAL X) (2-50]

Roturns the value of atomic symbol X. More
efficient than doing an ordilliJry EVAl.

(BOUNDP X) (2-51)
Roturns T if atom X has a value, otherwise NIL.

(MAKUNlJOUND X) [2-51]
Removes any value. associated wilh atomic
symbol X.

3.2. The Property List

(GET X p) [2-53J
Returns Ihe P property of atomic symbol X, or
NIL if there is no such properly.

" (GETL XL) [2-53)
Returns a portion of the property list of symbol X
beginning with the first propNty in Ihe list l, or
NIL if X haa no properties in l.

(PUTPROP X V p) [2-54)
For atomic symbol X, make V be the P property.

(DEFPROP "X" "V" "P") [2-54]

like PUTPROP, but ar9UfTlents are left
unevaluated. Eg: (DEFPROP JOHN MALE SEX) •
(PUTPROP'JOHN'MAlE'SEX)

(REMPIWP X p) [2-55]

Remove X's P property. Returns a portion of 1M
property lis\ beginning with property X. or Nil. X
may be an atomic symbol or any list thai loolls
like a property list.

(PLIST X) [2-55]
Returns the property liat of atomic symbol
X. Note that in MacLisp 1M value cell and
print-name are not kept on the property list.

9

(SETPLIST X L) [2-55)

Sots the proporty list of atomic symbol X tooL.

3.3. Characters and Print-Names

(ASCII N) [2-83]
Returns the character object for ASCII code N.

(GETCHAR X N) [2-83J
Returns the Nth character of X's print-name,
starting from 1. The cholr acter is returned as a
character object.

(GETCHARN X N) [2-83J
Same as GETCHAR, except the character ia
returned as a fixnum instead of • character
object.

(PNGET X N) [2-67]
Returns the print-name of atom X as a li$1 of
fixnums containing packt'd N-bit bytes. N may be
6 or 7.

(PNPUT L FLAG) [2-67]
Creatos a new symbol whose print-name is
de-fined by the list of fixnums L, and int(\rns it if
FLAG is non-NIL. L is assumed to contain packed
7-bit bytes.

(EXPLODE X) [2-85J
Returns a list of characters, which are the
characters that would be typod out if (PRIN' X)
were done, including slashes for $pecial
characters but not including extra newlines that
PRIN' would insert to prev.nt exc.eding the
page width. Each character i, represented by a
character object.

(EXPLOOEC X) [2-85)
Lik. EXPLOOE, but in the form of PRINC rather
than PAIN', i... special characters aren't

. slashified.

(EXPLOOEN X) [2-85]
Like EXPLOOEC. but returns • list offlxnums
rather than character objects.

10

(FLATSIZE X) [2-85]
Roturns the number of characters PAIN1 would
use to print X.

(FLATC X) [2-85]
Roturns the number of characters PAINe would
use to print X, i.e. without slashirying spl."cial
characters.

(MAKNAM L) [2-84]
Creates an uninterncd atomic symbol whose
print-name is created from the charact~rs in tho
list L.

(IMPLODE L) [2-84]
Same as MAKNAM. except the atom is intorned.

(REAOLIST L) [2-84]
Creates a new atom or list by parsing tho
character sequence in the list L. All atoms ar.
interned. Inverse of EXPLODE.

(SAMEPNAMEP X Y) [2-56]
. Returns T if atoms X and V have the same
print-name.

(ALPHALESSP X Y) [Z-56)

Returns T if the print-name of atom X is lowe, in
the ASCII collating soquence than the print-name
of atom V.

3.4. The OBARRAY

'(INTERN x) [2-58]

Returns from tho obarray tho unique atomic:
symbol whose print-name is identical to that of
X. If there is no such symbol. X ibelf is added to
the obarray and returnod as value.

(IfEMOB X) [2-59)

Removes atomic symbol X from the obarray •

(COPYSMBOL X FLAG)

Creates and returns a new. uninterned symbol
whose print-name is the same as that of X. If
FLAG is non-NIL. X's value and properties .re
also copied into the new atom.

11

(GENSYM X) [2-59]

GenN",tes and roturns it new, unintorned atomic
symbol. whos(.'l nameo is dl"riv~d from • counter
and a oneo-I(.'I\tor prt'lfix. (GENSVM) returns the
n«'Kt s.uch s.ymbol. (GENSVM N) ~els the cOlMlter
to N and Il'turns a nl'W ,ymbol. (GENSVM X)
sots the Pfohx to the •• filS' chalactor 0' X',
print-name and fl'turns a now symbol.

4. Numbers

4.1. Predicates on Numbers

(ZEROP x) [2-63]
Return, T if X i, zero.

(PLUSP X)

Retwns T if X is orellter than ,er ••

(MINUS,. X) [2-63]
Retwos T is X is less than zero.

(ooop X) [2-63]
Aetwos T I' X i$ odd. X mus' b. a fixnurn 01

biJ7lUlft.

(SIGNP ·C· X) [2-63]
- General predicat. for testing the sign of •

number. C i. not evaluated; it must be one of l.
LE, E, N. GE. Ott G. Aeturns T if the apecified

- relation betwe.., X and zero is true.

(= X 'I) [2-65]

Retwn. T if X and V are numerically equal. X and
Y may be fbcnurn. or flonurns, but mus' be of the
ume type.

(> X 'I) [2-65]

Retwns T If X is numerically greater than V. X
and Y may be fixnurN .01 flonum.t. bu' IllU$t be of
the same type.

12

« X y) [2-66)

Returns T if X is numt'fically leu than V. X and V
may be fixnums or 'Ionums, but must be of the
S3me type.

(GREATERP X, Xz --. XN) (2-fj5]

Compares tho Xi from left to righI, and relurns T
if each is groaler than the noxl_

[2-65]
Compares the Xi from loft 10 right, and roturns T
if each is less than the nex'.

[2-66]
Returns the largest of the Xi' If any argum.nt is
a flonum, the result ,-.. ill be a flonum; othorwise
the result is either a fixnum or • bignum.

[2-66]

R.twns the smallest of the Xi' If any argument i.
• flonum, the result will be " florun; otherwise
the r.~ult is either a fixnum or • bignurn.

(HAULONG X) [2-64]

Returns the number of signifigant bib in X, which
must be a fixnum 0; bignum. The result is the
least integer not less than the b.se-2 log of
.bs(X)-1.

4.2. Conversion

(FIX x) [2-67]

Convert. X to a. fixnum or bignum, deponding on
f its magnitude.

(IFIX X) [2-67J
ConverU X from a flonum 10 a fixnurn. IFIX never
returns • bignum; this allows it to compile more
efficiently. Rounding is alway. down, aa in the
Algol ENTlER function.

(FLOAT X) [2-67]

Converts X to a flonum.

13

(ABS X) [2-67]
Returns the absolute value of X.

(HA/PART X N) [2-68]
Returns the N leading bits of the internal
representation of abs(X). X must be a fixnum or
bignum. If N is negative, the N trailing bits of
abs(X) are returned.

4.3. General Arithmetic

[2-69)
Returns the sum of 0 or more arguments, which
may be any type of numbers.

(DIFFERENCE X, Xz ... XN) [2-69]
Returns the first argument minus the rest of the
arguments. Works for any type of number.

(MINUS X) [2-68]
Returns the negative of its argument.

[2-69]

Returns the product of 0 or more arguments,
which may be any type of numbers.

[2-69]

Roturns the first argument divided by the rest of
the arguments. Works for any kind of numbers.

(ADDt X)

Adds 1 to X.

(SUB1 X)

Subtracts 1 from X.

(REMAINDER X Y)

(2-70]

[2-70]

[2-70]
Returns the romainder after dividing X by V. The
sign of the remail')der will bo the same as that of
X. Works for fixnums or bignums.

(GCD X Y) [2-70)
Returns the greatest common divisor of X and
V. Arguments must be fixnums or bignums.

14

(EXPT X Y) (2-70]
Raises X to the V power. If Y is a blgnum. X
must be 0, 1 or -1. If V is a flonum, X is
converted to floating point and the exponentiation
is done using logarithms.

("'DIF X Y) [2-70)
Obsolete, 2-argument version of DifFERENCE.

.("'QUO X Y)

Obsolete, 2-argument vl."rsion of QUOTIENT.

4.4. Fixnum Arithmetic

(* X t X2 ... XN)

Returns the sum of tr-:; integers Xi'

(- X, Xz ... XN)

Returns the first argument minus the
must be integers. If callcd with
argument, returns it~" ncgation.

('" X, X z .. :xN)

Returns the product of the int<'g('rs Xi'

(II X, Xz ..• XN)

rest.
only

[2-71)

[2-72)

(2-72)
All

one

[2-72)

(2·73]

Integer division. Roturns the first argument
divided by the rest. If called with only one
argument, returns its integer reciprocal, which is
-1, 0, 1, or undefinod. -

(7* X) (2-73]

Adds 1 to the integer X.

(t- X) [2-73)
Subtracts 1 from tho integor X.

(\ X y)

Returns tho rt'maindt'r of tho inlogeor division of X
by V. The result will havo tht' sign of X.

(\\ X Y) [2-73)
Fixnum version of the gcd function. Returns the
greatest common divisor of X and V.

15

(A X V) (2-74J
Fixnum exponf'ntiation. Always U$l!'S fixnum,
arithmetic; will be incorrect if the result is too
large.

4.5. flonum Arithmetic

(#$ X, Xz ... XN) [2-75]
Returns the floating point sum of the Xi'

[2-76]
Floating point subtraction. Roturns the first
argument minus the rest. When called with only
one argument, returns its neg.ition.

(*$ X, X2 ••• XN) [2-75]
Returns the floating point product of the Xi'

[2-76]
Floating point division. Returns the first argument
divided by the rest. When called with only one
arQumeht, retl..lTM its rec:iproc:al.

(I #$ X) [2-76]
Adds 1:0 to X, which must be a flonum.

(I-S' X) (2-76)
Subtr acts 1.0 from X, which must be a flonum.

(2-1'6J

Floating point ey.ponentiation. The first argument
must be a rtonum, the sec:ond must be a fjxnum.
To raise a flonum to a floating power. lise (EXPT
X V) or (EXP (-$ V (lOG X))).

4.6. Logs and Powers

(LOG x)

Returns the natural log of X.

(EXP X)

Returns eX.

[2-77]

[2-77]

16

(SQRT X) (2-77)

Returns the square root of X. Moro accurate than
(EXPT X 0.5)

4.7. Trlggnometric Functions

(SIN X) [2-78)

Returns the trigonomE'tric sine of X, which may
be a fi)(num or flonum. X is in radians.

(cos X) [2-78]
Returns the c:osine of X, which may b. ill fixnum
or flonum. X is in radians.

(ATAN X Y) [2-78)
Returns the arctangont of x/y, in radians. X and '
V may be fixnurns or flonums. V may be 0 as
long as X is nol "Iso O.

4.8. Logical Operations on Numbers

(BOOLE /(X Y) [2-80J

Computes a bil-by-bit Boolean function on X and
V. The function is specified by K, which must be
a fixnum between 0 and 15. The four bitl of K,
from left to right, sp~cify the result of the
Boolean function wh('n (X. Y) il (0,0). (1.0),
(0,1). and (1,1). If BOOLE il callod with more
than three argumentl, the function il applied to
the fiut two numbors, then to tho result and the
third number, etc. Some common values for K
are: 1 for logic:al And, 7 for logical Or, and 6 for
logical Xor.

(LSH X Y) (2-81)
logically shi'tJ the bits of X by V placlIs, to the
left jf V is positive, else to the right. X and V
must be 'ixnums. The result is tMldefined if
abs(Y) exceeds 36.

(ROT X Y) (2-81J
Rotates tho bits of X by V places, to the left if V
is positive, else to the right. X and Y must be
fixnums. The result is undefined if abl(V)
exceeds 36.

17

(FSC X Y) [2-82]

Performs an FSC instruction on the floating point
numbers X and Y. Consult the PDP- to processor
manual for details.

4.9. Miscellaneous

(RANDOM x) [2-79]

(RANDOM X) returns a random fixnum belwun 0
and X- 1 inclusive. Also. (RANDOM) returns a
random fixnum. (RANDOM X Y) uses X and Y to
set the random number seed. and (RANDOM NIL)
restarts the random st'qut'ncl!' from the begiming.

ZUNDERFLOW [2-79]
If the global variable ZUNDERFLOW is non-NIL.
floating point underflows will return 0.0 as a
result. If NIL. floating point unde-rflows will be
treated as errors. Tho initial value of
ZUNOERFLOW is NIL. This flag has no t'ffect on
compiled arithmetic operations that were
open-coded. Also see (SSTATUS OIVOV), which
controls division by zero.

5. Programs

5.1. The Evaluator

(EVALX[PJ) (2-7]

Evaluates x as a LISP form and returns the result.
(EVAL X P) evaluates X using binding context
pointer P. Eg: (EVAl '(CONS 'A 'B» = (A • B)

(APPLY FN L (p]) [2-7)

Applies function FN to argume""t list L. The
arguments in the list L are used without further
evaluation. (APPLY FN l P) applies function FN
to argument list L using binding context pointer P.

(FUNCALL FN X, Xz ... XN) . [2-13]

Calls function FN with arguments Xi' Similar to
APPl Y. except the arQUments are specified
individually ins toad of u a list. Should not be
used with fexprs or fsubrs.

18

(SUBRCIlLL "TYPE" P X, Xz ... XN) (2-13J

U~<.'d to invoke a subr pointNdirl'ctly rathN than
through an atomiC .symbol With a .subr propNty.
All argumc-nls excc-pl the first are ~valuatl'd.
TYPE is the typo of rc.sull expected, olther
FIXNUM. FLONUM, or NIL (any type). P.s the
subr pointer to bo called; the Xi are ils
arguments.

(LSUBRCALL "TYPE" P X, X2 ... XN) (2-13]

Like SUBRCALL. except tht' pointer P musl be to
an Isubf ins lead of a subr.

(IlRRAYCALL "TYPE" P X, Xz ... XN) [2-13)

Like SUBRCALL. except an array pointer is used
instead of a subr pointer. TYPE must match the
type of the array when it was crt'ated. An
ARRAYCALl moly be used as a first argument to
STORE.

5.2. Evaluator Special Forms

(QUOTE "X") [2-7)
Returns X without evaluating it. This is the
standard way to include s-expression constants
in a LISP form. (QUOTE X) is entir~ly equivalent
to 'X. Eg: (QUOTE (FOO BAR» or '(FOQ BAR)
evals to (FOO BAR)

(FUNCTION "X") [2-8]

like QUOTE, but indicates that the expression is
a LISP form that may be compiled. Useful for
passing functional arguments to map funcliOO$ and
the like. FUNCTION does not worry about the
·funarg problem-.

("'FUNCTION "X") (2-9] .
Like FUNCTION. but handles the -tunar\! problem
by generating a binding contoxt point or thaI i,
passed along with the functional argument.

8ACKQUOTE [7]

like QUOTE, but a comma within tho argumC'nt
causes the following S-f'xprt'ssion \0 be
evaluatod. and the sequence .<! caust's the- next
s-expression to be evaluatod and spliced In.
Implemented via it macro character (') callt'd the
backquote. Eg: Let A = FOO and B = (BAR SAZ).
Then '(ALL ,A ARE .(CAR B» :: (ALL FOO ARE
BAA). and '(,A .<!B) = (FOO BAR SAZ). The
comma is a reserved character used by
backquote.

19

[1-15]
The m~chanism for binding formal to actual
parameters in a funcleon call. ARGS is the
argumeont list. the forms Fi are evaluated in
sequence and the value of f N returned. If ARGS
IS an atom ins toad of a list. the atom will be
bound to the number of actual arguments passed.
and the function is called a Ic.-xpr. LAMBDA isn't
itsolf a function. it is a "pecial form that i.
recognized by tho ovaluator as denoting a
functional form. Thus a lambda exprossion may
appear wht'r(!'vc.-r an atomic function name could
appear. Eg: «LAMBDA (X) (TIMES X X» 5) = Z5

(LABEL NAME LAMBDA-EXPRESSION) [1-17]
A somewhat obscure nlf'thod of writing rocursive
expressions. rather than the uSU.l1 recursive
functions. During tho interpretation of the LASEL
special form, NAME is a local variable bound to
the- given lambda expression. However, Mac Lisp
dOf's not allow variables in function position. so
APPL V or FUNCALL must be used to call the
expression.

(COMMENT •••) [1]
The comment furlCtion. Ignores its arguments. and
returns COMMENT. This i. not the same as
semicolon-slyle comments.

(DECLARE DECL, DECLZ ••• DECLN)

In the interpreter, DECLARE is treated as a
comment. In the compilor, oach of the DECLj .e
interpretod as declarations or. compiler directives,
generally by ovaluating thom.

5.3. PROG forms

[1]

[2-11]

Evaluates the 'orms Fi In sequence and returN
the value 0' tho lut one.

[2-10]

Like PROGN. but returns the valu. of F2 no
matter how many arqumonts it reoceoives. Useful
for hacking obscure side offocts.

20

[2-11]
Evaluatos VARS to got a vario1ble list o1nd VALS
to got a list of values. Binds the valu('s to the
variables, thon eVo1luatos tho Fj and roturns the
last result. Useful for "upN-powerful bindinq
control.

(PROG VAnS F, Fz ... FN) [Z·38]
The -program" s~cial form. VARS is a li$t or
local variables which are initialized to NIL whon
the PROG is entered. The Fi are evaluated
sequentially unless a function such as GO is
called to alter the flow of conlrol. Atomic Fi are
taken as proqram labels. PRDG roturns NIL
unles.s an oxplicit RETURN function i. executed.

(GO "TAG") [2-4Z]
Alters the flow of control 0' a 00 or PROG to
proceed 'rom the point named by TAG. If TAG i.
not an atom it will be evaluated and should yield
one. GO may not be used to branch outside the
ClKront PROG.

(RETURN X) [2-43]
Forcos the current DO,. or PROG to return with
value X.

(DO VARL/ST EX'TL'~r F, F z." FN) [2-40]
All-powerful iteration fatility. VARLIST is a list
of entries (VAR INIT REPEAT). where VAR is a·
variable namo, IN IT an expreuion yielding an
initial value. and REPEAT an expreouion for
itorating that variablt"s value. EXITLIST is a list
(E 1 E Z ... En)' where E 1 is a termination
predicate. If E 1 reoturns a non-NIL value tho rest
of, the Ei aro evaluated and tho va1uo 0' the last
is returned. Otherwise the forms Fi are
evaluated in sequenco UP to FN.' _ then the 00
variables are iterated, etc. The- 00 body is like
that of a PROG, i.e. it may include labels and GO
and RETURN statements. See the Mac Lisp
Reference Manual for oxamples.

(DO VAR INIT REPEAT TEST F 1 F Z .oo F N) [2-41]

The old 00. less genoral than the one described
above. The VAR bound by the 00, a singlo
variable, receives initial value INIT and i.
iterated until TEST roturns non-NIL. The Fj .r.
evaluated on each iteration. Eg: the following
prints the numbers 1 through 10: (00 I 1 (1+ I)
(> I 10) (PRINT I»

21

5.4. Conditionals

(2-36]

Evaluates the Fi in sequence. If anyone returns
NIL, AND returns NIL without evaluating the rest.
Otherwise the value of F N is returned. Eg:
(AND (NOT (ZEROP X» (QUOTIENT 1 X»

(2-26]

Evaluates the Fi in sequence. If anyone returns
a non-NIL valuo, that value is returned
immediately. Otherwise NIL is returned. Eg: (OR
(NULL X) (PRINT (CAR X»)

{CONO (P, EI ,I E"Z ...) ...) [2-36]

G{'Ineralized conditional facility. Thl' Pi are
ovaluated in sequence until one is found that
returns a non-NIL value, then all Ei j of that Pi
are evaluated and the value of 'lhe last is
returned. If there are no Ej j for that Pi' the
value of Pi itself is returned. 'If no Pj evaluates
to non-NIL, the COND rehsns NIL.

{CASEO SEL ("A," EI ,1 E"Z ...) •••) (7)

SEl is evaluated and yields an atom. If the atom
is EQ to any unevalu.\ted atom A., tho E· \. of that

I I,
Ai are evaluated and the value of the las one is
returned. If an Ai is a list, the test is MEMO
instead of EQ. An -else- clause can be obtained
by making AN be the atom T. If no test is
satisfied, CASEQ returns NIL.

5.5. LEXPRS and LSUBRS

(ARG N) [2-12]

(ARG N) where N is a number returns the value
of the Nth argument to the le.Kpr. (ARG NIL)
returns the number of arguments that were
pused. This is also the value that the I.xpr's
single lambda variable is bound to.

(SETARG N X) [2-12]

Sets the lexpr's Nth argument to X. This is the
equivalent of doing an assignment to a lambda
variable of an expr or foxpr.

22

(LISTIFY N) [2-13J

Returns a list of tho Icxpr's first N argumonts. If
N is negative, returns A list of the le)(pr's la$t N
arguments.

-5.6. Non-Local Exits

(""'CATCH TAG E, EZ '" EN) [?J

Receiving half of the non-local {'.Kit mt'chanism.
Evaluates the Ei in s(lqut'nce and returns Ihe
value of the last one if no non-local tlxit i.s
forced_ If a -THROW (or THROW) who~E' tag
matcheos the first argumt'nt to thl' ·CATCH is
executod by one of tho Ei , tho value roturned is
the the value of the -THROW. If tho tilg doesn't
match the first argument, th~ non-local e.Klt
searcheos down the stack for the n.,xt ·CATCH.
CATCH, CATCHALL, or CATCH-BARRIER.

(*THROW TAG VAL) [7]

Forces a non-local exit to occur, pauing along
both the tag and thp return value. At some higher
level the exit will be caught. If it is by •
·CA TCH (or CATCH). the value i.s p.und to the
catcher. If by CATCHALL, both the tag And the
value are passed.

(CATCHALL FN E, EZ ... EN) (?)

Has the same .semantics as ·CA TCH, e)(ctlpt that
all -THROWs, independent of tag. will be caught.
FN must be a function of two argumtlnts. If.
non-local oxit occurs, FN will be called on the
tag and value passed by the -THROW. FN may
itself issue a -THROW, in which cuo the
CATCHALL acts like!' a filter between the (I.Kiting
function and higher levol.s.

(CATCIi-BARRIER TAGLIST E, EZ '" EN) [7]

Similar to -CATCH, but if a -THROW is e.Kecutod
whose tag is not in the tag list, an Un.s.,en Throw
Tag error is signalled insteAd of searching further
down Ihe stack for another calch.r.

(UNWIND-PROTECT E U, Uz ... UN) [1]

Evaluate. the form E, then the forms U 1 through
UN' If, durinq the evailJation of E, an event
occurs that causes the stack. to be unwound (e.g.
a non-local exit. an error. a QUIT, etc.), the
unwinding will pause at the point of the
UNWIND-PROTECT and the Uj will be tlvaluated.
NOINTERRUPT is set to T beforo the Ui are
evaluated. so asynchronous conditions can't
interefere with the cleanup routines.

23

(CATCH X ["TAG"]) (2-44]

Older form of ·CATCH, being phased out.
EVolluiltes X, coltching all THROWs with a
matching tao. If tho tag is omitted, all THROWs
are caught.

(THROW X ["TAG"]) (2-45]

Older form of -THROW, bt'ing pholsed out.
Forces a non-local exit, roturning X as value, to
a CATCH wilh mollchi"9 lag or no lag at all. If
the seocond ilfgument is omille-d, THROW returns
10 the nearest enclosing CATCH.

5.7. Error Signalling

(ERROR [MSG] [DATUM] [UINT-CHNJ) [2-46)

(ERROR) is the ~3m. as (ERR). (ERROR MSG)
signals a simple error and prints the errOf'
messolge. (ERROR MSG DATUM) signa!.' an
error with iln object to be prinlC'd and an error
messolg., (ERROR MSG OATUM UlNT-CHN)
signal~ an error but first signals a user interrupt
on the specifiod chamel. The value returned by
the user intl'frupt handler dt"tormines how the.
error will beo . trealed. All argument .. to ERROR
ar. ·evaluat.e-d.

(ERRSET FORM [FLAG})' [2-46]

Evaluates FORM and return .. ils value in a list. If
FORM signals an error, lhe error is trapped and
ERRSET returns NIL: If FLAG is specified and is
NIL, the error message is suppreued as well.

(ERR (FORM] (FLAG]) [2-47]

(ERR) causes a fe-gular LISP error with no
meuag. and no user interrupt. (ERR X) causes
the surrounding ERRSET to return X, or signals an
error if there i$ no ERRSET. (ERR X T) is lik.
(ERR X), except that X is not evaluated until just
before the ~nclo$ing ERRSET returns, i.e. after
the pdf has boen unwOUld.

6. Mapping Functions

(MAPC FN L) [Z·99]
Applie. function FN to successive elements of
the list L. Returns L.

24

(MAPCAR FN L) (2·99)

Applies function FN to successive elflm~nts of
the list L. Returns a list of the results.

(MAPCAN FN L) (2-99)

Applies function FN to succf\ssive el~ment$ of
the list L. Returns NCONC of the results.

(MAP FN L) (2-99]

Applies function FN to successive subslist. of the
list L. Returns L.

(MAPLIST FN L)

Appliets function FN to successive sublists of the
list L. Returns a list of the r~su"s.

(MAPCON FN L) [2-99J
Applies function fN to successive subhsts of the
list L. Returns NCONC of tho results. •

(MAPATOMS FN X) (2-99)
(MAPATOMS FN) applies function FN to all atoms
in the current obarray. (MAPA TOMS FN X)
applies FN to all atoms in obarray X.

7. Arrays

ARRAY BOUNDS (2-90]

The bounds of an ~rray, denoted in this section
as 6i' give the number of distinct subscript values
for each dim~n.sion Arrays in MacLi$p are
zero-based. Thf'r~fore, the maximum subscript

f along any dimension is one less than the bound.

(2-92}

Creates an N-dimensional array namt'd X of type
V with bounds 6, through BN• Only tho Bi are
evaluated. The type code V may be T for an
ordinary array, FIXNUM or FLONUM for numeric
array., NIL for un-garbage-collocted array5, or
OBARRAV or REAOTABLE. Roturns X. X may be
NIL, in which case an anonymous array is created
and an array pointer is r.turned.

25

(JirARRAY X Y 8 , ... 8 N) [2-92)

like ARRAY, but all arguments are evaluated.

(JirREARRAY '1rX TYPE 8, ... BN) (2-93]
Redefine$ array X, copying the contents of the
old array into the new array in row-major order.
(-REARRAV X) kills array pointer X.

(STORE ARRAY-REF VALUE) [2-93]

Stores VALUE in the specifed array element.
ARRAY-REF must be a subscripted array
reference, or an arfaycall.

(ARRAYDIMS X) (2-93)
Returns a list of the type and bounds of array
X. X must be an array pointer or an atomic
symbol with an ARRAV property.

(FILLARRAY JlrX Y) [2-94]

Fills array X from object Y, which may be a list
or another array. Exira olom('nts are ignored. If
thore are too few ('Ie-me-nts to fill X, the
romaining elemonts of X are unchanged.

(LiSTARRAY A [N])

Creates a list of the first N elome-nts of array A,
starting with tho zerolh element. (LISTARRAV
A) creates a list of all elements 0' A. A may be
either an array pointer or an atomic: symbol with
an array properly.

(DUMPARRAYS ARRAYLIST FILESPEC)

ARRAVLlST is a list of array names. Dumps
specified fixnum or flonum arrays to file named
by filespec.

(LOADARRAYS FILESPEC) [2-95

Reloads tho arrays in the file named by filespec.
Returns a list of triplets of form (NEWNAME
OlDNAME SIZE), where NEWNAM£! is a new
gensym'ed atom, OLDNAME is the name the array
had when it wu dumped, and SIZE is the number
of elements in the array.

26

8. Input/Output

In this section, tho torm FILESPEC rofNS to a
n"me for a filo. A FILESPEC m"y be a li~I, a
string, or the- nam{' part of a fill!' obj{'ct. If a list,
it may be in NEWIO formal: «dt'v dir) name oxt),
or OLDIO format: (name- ext oC!'v Oir).

A file object is a special lI.ind of array thai
contains information about an opon or closeod file.
When open, tho filo objoct is tho channel through
which i/o operations arC!' direcled 10 the file. In
this section, whon the symbol FILE appC!';u s in an
argument ~pl'cification it indicatt's a fill.' objt-ct.
Some functions (e.g. PRINT) can tak.e a list of
file objocts instoad. Also, most i/o funclions
will do i/o to the torminal if the fiLE argument is
omitted. Pa.ssing T instead of • file objecl lells
Maclisp to ust' Ihe terminal.

8.1. Functions On Files

(OPEN FILESPEC [MODELlST]) [1)

Opens Ihe file in the specified mode and returns a
file object. Available mode options are IN, OUT,
APPEND~ ASCII, FIXNUM, IMAGE, DSK, TTY,
BLOCK, and SINGLE. The do fault mode i6 (IN
ASCII DSK BLOCK).

(Cl.OSE FILE) (7)

Closes the specified file. FILE must be • file
object, as roturned by OPEN.

(PROBEF FILESPEC) (?)

Te$ts for the existence of tile specified file.
Returns a completed filospec if fO\lfld, C!'lse NIL.

(DELETEF FILESPEC)

Deletes the specified file.
completed filespec if succeuful.

(RENAMEF FROMFILESPEC TOFILESPEC)

Renames a file. Returns the completed filt'sp8c
if successful.

(1)

[1]

27

(UNGTUF FILE)

Given a filo objoct. r('turns tho longth of the filo
in words or bytos, dE'pending on how tho filo was
ope-ned.

[1]

(fASLP fiLESPEC) (7)

Returns T if the spocifiod file is a FASl.
(compiled LISP) file, els. NIL.

8.2. Functions on Filespecs and File
Objects

(NAMELIST FILESPEC)

Converts tho given fil.spoc to list form.

(NAMESTRING fiLESPEC)

Converts the given filespec to string form.

(SHORTNAM£STRING FILESPEC)

Returns the file name portion 01 the given
filespec, in string form. (Omits the device and
directory.)

[7]

[1]

(1)

(TRUENAME FILE) [7)

Returns a filespoc for the actu.1 name of the file
associatod with tho given file object.

(DEFAULTF FILESPEC)

Sets the DEFAUl TF variable from the given
filespec.

(1)

DEFAULTF [1]

.Global variable containing dofaults for each
component of a filE'Spoc. Used by various ilo
functions to complete partially $pecifit'd filespec
arguments.

(MERGEF FILESPEC, FlLESPECZ'

Merges two filespeocs and retu-ns the result. An
asterisk is used as the wildcard character.

(7)

(CNAMEF "FILE FILESPEC) [1J
ChangE's the name of the closed file object FILE
"to that given in FILESPEC. Used to avoid
creating e)ttra file arrays. ObsCU'e.

28

(FILEP FILE) (7]

Returns T if its argument is a file object,
otherwise NIL.

8.3. Basic 1/0

(READ [FILE1 [EOFVAL])

Reads one s-flxpression from the specified file.
Returns EOFVAL if end of fil. is encountered.

[7]

("READ) [7)

like READ with no arguments. Compiles faster.

(PRIN' X [FILE])

Prints .-expression X on th41 specified fil ••
Special characters are slashiried. Eg: (PRINC
'IFOO BARI) prints IFOa BARI.

(PRINT X [FILE])

Like PRIN1, but does a TERPRI first and prints it
space afterwards.

[1]

[1]

(PRINe X [FILE}) [1)
. ..

Like PRIN 1, but does not slashify special
characters. Eg: (PRINC 'IFOO BARI) prints Faa
BAR.

(TERPRI [FILE])

Writes a carriage return to tho specifi~d file.

BASE

The· global variable BASE controls the output
radix for displaying numbt'rs. In a bar. MacLisp,
BASe defaults to 8. With a CMU IISP.INI file, it

.is set to 10. SeUill''' BASE to ROMAN causes
numbers to be output as roman numorals

IBASE

The global variable IBASE controls tho input radix
for reading numbers. In a baro MacLisp, IBASE
defaults to 8. With a CMU IISP.lNI file, it is set
to 10. Setting IBASE to ROMAN causos number.
to be input in roman numeral form.

(7]

[7]

(7)

29

"'NOPOINT (7)

30

TYO

Global variable containing the tty output file
object.

[?]
If the- global vari<lblc "NOPOINT is Nil. numbers
will b<." written with dt'cimal points when BASE is
set to 10. If non-NIL, d('cimal points will be
omilled. (.,.TYO N [FILE)) [?)

(*NOPOINT FILE)

InhIbits printing of decimal points when outputting
to the specified file.

8.4. Character I/O

(7)

(READCH [FILE] [EOFVALJ) (7)

Reads one character from the specified file, and
returns a character object. EOFVAL is returned if
end of file is encountered.

("'READCH) (7)

Like REAOCH with no arguments. Compiles
faster.

(TVI [FILE] [EOFVAL]) (7)

like REAOCH. but returns a fixnum instead of a
character objoct.

TVI (1]

Super-fast TVO. Does not ch~ck. line length.
FILE must be a single file object, not T or a list.

8.5. General 1/0 Control

(LiNEL FilE [N})

With one argument, returns the
associated with the filo object.
arguments, sots the line length.

(PAGEL FILE [N))

line length
With two

With one argument. roturns the page It''n9th
associated with the file object. With two
arguments, sots tho page length.

(LiNENUM FILE [N})

With one argunv-nt, returns the current line
number as stored in the file object. With two
arguments, sets the line number.

(PAGENUM FilE [N])

Global variable containing the tty input file With one argum<."nt. returns the current page
obj"ct. number as stored in the file object. With two

arguments, sets the p;sgo number.
(*TYI) [7]

Like TVI with no ;srguments. Compiles faster.

(TV/PEEK [PEEKMODE] [FILE] [EOFVALJ) (7]

(CHARPOS FILE [N]) •

With one argument, returns tho current char actor
position-as stored In the fitt' object. With two
arguments, sets tht' character position.

(7]

(7J

(7J

(7]

(7]

ReturN the fixnum representation of the next
character in the input buffor of FILE. without
removing the character. PEEKMOOE defaults to
NIL.

(EOFFN FILE [FNJ) (7J

(READLINE [FILE)) [?]

Reads a line of toxt, dolimitod by a carriage
return, and roturns it as a symbol.

(TVa N [FILE))

Writes the ASCII character denoted by fixnum N
to the specified file.

With one argument, returns theo ~nd-of-file

function associated WIth the sp')ciliE'd lile object.
With two argum!'nts, sets FN to be the function
called when end-uf file is eneO\.Wltered on the
file object. If FILE is NIL, sets the default
end-of-file function. If FN is NIL. clurs lhe eof
function.

31

(ENDPIlGEFN FILE [FN])

Lik.e EOHN, but tht' function is called on evory
t'nd-of -page interrupt, Lt.'. wh('n('vt'r Ihe line
count e)(cceds Iht" page length. Useful for doing
--MORE·· modo processing.

(CLEAR-INPUT FILE)

Clear s the input buffer associated with FILE,

(7]

(7]

(CLEAR-OUTPUT FILE) (7)

Clears the output buffer associated with FILE.

(FORCE-OUTPUT FILE) (7)

Forces the output buffer of the specified file
object to be written.

8.6. Terminal 1/0

INFlU [1)

Global variable containing the current console
input filo object. Usually T. Console input will be
dono through IN FILE only when tht.' global variable
AQ is non-NIl.

~Q (7)

Console input switch. If the global variable AQ
(two characters) is non-NIL. input is from tho
source solected by the global variabl. INFILE.
otherwiso input is frOl1' the TVI file objoct. In th.
reader control-Q is a macro character which sots
the variable "'Q to T. .

(lNPUSH FILE) [7J
Pushes the currt"nt valUt" of IN FILE onto the input
staek, and makes FILE be the new value of
INFILE. (INPUSH -1) POP$ the input stack..

INSTACI([1J
A global variable containing the curront Input
stack, u maintained by INPUSH.

OUTF/US

A list of console output file objects. Usually NIL.
Consolo output will go to tho specified files, in
addition to Ihe TVO file object, only when lhe
global variable AR is non-NIL.

[1]

32

Con~ole output ~witch. If th(\ glob.ll vari.lbl(' ~R
(two characters) is non-NIL, conlole output is
dirocted to the files specified in tho glob.ll
variablo OUTFILES, as WE'll as 10 thE' INmrnal. In
the readN control-R is a macro character whIch
sets the variable AR 10 T.

"'w
Terminal output switch. If the global variilblE' 'VI
(two characters) is non-NIL, terminal output is
suppressed. May be used in conjunction with
OUTFILES and AR to redirect output to a file
instead of the terminal. In the reoadeor, control-W
is a macro character which sets the variable 'VI
to T.

MSGFILES

A global variable similar to OUTFILES, but used
fo system-type meslages, i.e. those g('nerated
by ERRORs, BREAKs, and sy!olom packages, U

well as user-gonerated console output. Dofaults
to (T). Not controllE'd by the AR switch.

ECHOFILES

Global vlIriqblc containing a list of file objt'clS
for echoing terminal input to. Usually NIL.
Useful in dribble packages lhat rf'cord a LISP
sossion.

(7J

[7]

(1]

(?J

(LISTEN [FILE]) [?J

Returns 1 if Ihere are characters in the tty input
buffer of FILE, else O.

8.7. Binary and Random Access 1/0

(IN FILE) [1J
Reads one word from FILE nnd relurns it as a
fixnum. The file must have been opened in
FIXNUM mode.

(OUT FILE X)

Writes one word to w file. The file must have
been opened in FIXNUM mode.

[?J

33

(FILEPOS FILE [N])

With ono arguml'nt, returns Iho curront position in
the file (char actors or words.) With two
arguments, sots tho curront position to N. Tho
file may be opened in ASCII, FIXNUM, or IMAGE
mode. An error will be signalled if N is greater
than the length of tho file. A position of NIL
means "begiming of file", and T means "ond of
file".

8.8. Miscellaneous Functions

(1]

(RUCJOUT CHAR [FILE]) [1]

Rubs one charactor out of FILE's input buffer.
Returns T if the rubout was succo$Sful, else NIL.
Usoful for writing your own tty scanner.

(ERRPRINT P [FILE})

Reprints tho nearest error down the stack from P,
which must be a pdl pointer. If P is NIL, the
latest error is printed.

[7]

(FASLOAD "(DEV D/R)" "FlLE" "EXT·) [7]
Loads a eompiled LISP file, callod a fasl file.
The extension defaults to FAS. FASlOAO .lso
accopU file names in OLDIO format. All the
arguments are optional; Maclisp tries to fipo
out the filespec and uses DEFAULTF to complete
unspecified field$.

8.9. OLDIO Functions

Thtue are functions letl over 'rom the old
MacLisp i/o system. They are retained for
compatibility ,with existing code. All the
arguments are optional; MacLisp tries to f9Ke
out the filespec and uses DEFAULTF to complete
unspecified fields. OLDIO functions also accept
filespocs in the NEWIO format, o.g. (dey dir)
name oxt.

(UREAD "NAME" ·EXT" "DEV" ·DII''') [7]
opens the specified file and pushes it onto the
i~t stack. The "'Q switch mu$t be turned on
before the file will actually be read.

34

UREAD

Global variable containing tho file object for the
file currently opcml'd by UAEAD.

(7]

(UCLOSE) (7]

Closes the current input file opened by UREAD.

(UWRITE "DEV" "D/R") [7]
Open$ a file for output on the speocified device
and directory, pushing the filo object onto
OUT FILES. The ~R switch must be turned on
before output will actually bt' dirocted to the file.

UWRITE

Global variable containing tho filo obj(\ct for the
file currently opened by UWAITE.

[?J

(UFILE "NAME" "EXT") [1]

Closos the current output file opened by UWAITE
and renames it to the specified filo name.-

(UAPPEND "NAME" -EXT" -DEV" "D/R") [7]

Opens the specified file for output in APPEND
mode. pushing the file object onto OUTFllES.
The "'R switch mu!t bo turnod on bofore output
will actually be directed to the file.

(UK.ILL "NAME" "EXT" "DEV" -DIR") [7J

OLDIO equivalent of DELETEF. Deletes lhe
specified file.

(UPROSE "NAME" "EXT" "DEV" "DIR") [7J

,
OLDIO equivalent of PROBEF. Returns T if the
specified file e""ists, else NIL.

(CRUNIT "DEV" "DIR") [?)
With no arguments, returns the- current device and
directory. OLDIO functions update this by selling
DEFAUl TF. With arguments, set. the current
device and directory.

35

9. Programming Tools

9.1. Common Functions

(DE.FUN NAME TYPE ARGS BODY •••)

Special form for do fining a function. TYPE should
be one of EXPR, FEXPR, or MACRO; it do faults
10 eXPR if omitted. ARGS is the argument list.
It is followed by one or morc s-exprossions that
m.lt..e ~ th~ function body. Eg: (DEFUN KWOTE
FEXPR (X) (CAR X»

(GRINDEF "FN," ·FHZ" ••• "FNN")

Pretty-prints tho dofinitions of tho specified
functions.

[7]

(EDITF "FN") [7]
Invokos the oditor on tho named function. See
tho oditor section of the CMU TOPS Lisp manual
for details.

(3-35]

Special formi traces th" named functions. See
tho Maclisp R~~erence Mal'Ul' for information
about fancy trace options.

(UNT'!ACE FN, FN Z ... FNN) (3-38)

Untraces the named functioO$. If callt'd with no
arguments, untraces all trac(ld functions. See the
MacLisp Reference Manual for more details.

(STEP) [3-40]

The Maclisp single-stepper. See the Maclisp
Referenee Manua. for instructions.

(DEBUG) [7]

Tho CMU Maclisp df'bugger. Se. th. fil.
fIXIT.DOC[C380Ml5P]/A for details.

36

9.2. Packages

XPRINT

The Walers printer. Conlains the prellyprinler
and many other print funclions.

LET

The lET package conlains two u~eful prog forms,
LET and lET-. It also conlains a dt!structuring
assi9nment function called OESETQ. See
ARCHIV.OOC[C380ML5P)1 A for details.

(7)

(7]

DEFVST [1)

The MacLisp structure package. Used to define
and access hairy record structures.

DEFMAC

An extension to DE fUN's syntax that provides
more flexible argument definitions. Also, some
funetions for defining macros conveniently. See
ARCHIV.DOC(C380ML5P]/A for details.

FORMAT

The FORMAT paekago provides functions for
formatting numbers and atoms into more complelle
messages ••

10. Storage Management

10.1. Garbage Collection

f

(7)

[1]

(GC) [3-59)

Cause. a garbage colleetion to take place.
Returns NIL.

(GCTWA ["FLAG" J) [3-59]

Controls the Garbage Collection of Truly
Worthleu Atoms. (GCTWA) causes truly
worthless atoms to be removed on the next
garbage collection. (GCTWA T) causes truly
worthless atoms to be removed on all subsequent
garbage collections. (GCTWA NIL) turO$ off
removal of truly worthless atoms for all garbage>
colloctions aftor the next ono. The value
returned is a fixnum indicating the current
GCTWA status.

37

[3-60)
The global variable ·0 (two characters) controls
tht!' printing of messages after garb3ge
collections. If non-NIL, mOSS.lges will bo printed
whenever a space is e)',p3nded or 93rbage
collected. In the readN control-O is a macro
character which sets the varj,\\ble ·0 to T.

10.2. Storage Allocation Concepts

GCMAX (3-62)
The maximum size to which a space be should be
allowed to grow. If the space exceeds this size,
an error is signalled.

GCSIZE [3-62]
The expected size of the space. Garbage
collections will be performed to keep the space
within this size. If g:ub.lge collt\ction fails to
free enough storago, the space will be expanded
as long as it does not exceed GCMAX.

GCMIN (3-62)
The minimum amount of free space that should be
left afler a garbage collection. It may be either
a fixnum. indicating the size in words, or •
flonum. indicating a percentage.

POLSIZE [3-62]
The number of' words of valid data in a pdl at the
moment.

POLMAX (3-62)

The maximum size to which a pdt may grow
before intervention is required. Used to de teet
infinite recursion.

POLROOM [3-62]

The size beyond which a pdl may not grow no
matter what. This is slightly larger than the
pdlmax, so that there will be some room left in
'which an error handling routine can run.

38

10.3. Storage Spaces

LIST [3-60

Cons cells.

FIXNUM (3-60

36-bit integers.

FLONUM [3-60

36-bit floating point numbers.

BIGNUM [3-60:

Signum headers. Signums al$o occupy fixnum and
list space.

SYMBOL

Atomic symbols.

HUNKn

Hunk space of size n, which n.Jst be a power of
2. Thus there exists HUNK2 spaee, HUNK4
space, HUNK8 space, etc.

ARRAY [3-6(

Special arrayocells.

REGPol

The regular pushdown list, used for passing
arguments and doi"9 recursion.

SPECPDL (3-61

The special pushdown ,list, used for bindi"9.

FXPDL (3-61

The fixnum pushdown list, used for temporary
numeric values.

FLPOL [3-61

The flonum pushdown list, used for temporary
numeric values.

BPS

Binary program space.
code, and also arrays.
initialization time.

10.4. Allocation

(ALLoe SPACELIST)

39

[3-61]

Us('d for compiled LISP
Must be a\locatod at

Sots storage managt'ment param~tors for various
spaces. The argument should be a list of form
(5, L1 52 L2 ... >, whore the Sj aro space names
and the Li are fixnums or 3-lists. A fixnum
spocifies the pdlmax for a pdl, or Qcsize and
gcmax for other spaces. A 3-list is interpreted
• s (gcsiz. gcmax gem;n). NIL in any position
means -don't change that paramle". (ALLOC T)
return. a list of space names and their current
parameters.

ALLOCATION PSEUDOCOMMENT [7]

Binary program space can't be expanded once
MaeLis.p starts up. Thus it musr be allocated in
the LlSP.lNI file. This is done with a COMMENT
that must appear as the first expression in the
fit.. Tho COMMENT should contain a series of
space names followed by initial allocations, e.o.
(COMMENT BP5 10000 SYMBOL 5000).

11. Status Functions

(STATUS FUNCTION IIRG, ARGZ .0. ARGN) [3-77]

Special form for interrogating various system
parameters. The arguments depend on the
particular status function being executed.

(SSTATUS FUNCTION AAG, ARGZ ... ARGN) [3-77)

Special form for setting various system
parameters. The arguments depend on the
particular sstatus function being executed.

11.1. Environment Enquerles

DATE
f

(5T ATU5 DATE) returns the date 8S a 3-lis\ of
fixnurns, representing the date as (yy mm dd).

40

DOW [3-89]'

(ST AT US DOW) rl'lurns Ihl' day of tho wl'('k II
an atomic symbol.

DAYTIME [3-89]
(STATUS DAVTlME) returns the time of day as •
3-list of fixnums, representing the time aa (hh
mm ss).

LlSPVERSION [3-owl
(STATUS LISPVER510N) roturns the version
number of this MaeLisp as an atomic symbol.

UDIR [3-90]

(ST ATUS UDIR) returns the name of the fiI.
directory the Job is connt'cted to, usually the
user's own •

UNAME [3-90)

(ST A TUS UNAME) r.turns the user's ppn. •• g.
C410HBOO.

USERID [3-90J
(ST A TUS U5ERID) returns the user's name, e.g.
BOVIK.

JNAME (3-90)

(STATUS JNAME) returns a job identifier of form
nnnLSP, where nnn is a TOPS-10 Job runber.

SEGLOG [3-90)

(ST A TUS 5EGlOG) returns the log base 2 of ..
segment, i.e. one unit of space allocation. On
TOPS- 10 systems this is one page (512 words),
so the status call returns 9,

FEATURES

(ST ATUS FEATURES) returns a list of symbols
indicating features of the current LISP system.

FEATURE (3-98)
(STATUS FEATURE X) returns T if the atom)(is
in the features list, else nil. (SSTATUS
FEATURE X) adds X to the foature list. X is not
e,valuated.

41

NOFEATURE (3-98]

(SSTATUS NOFEATURE X) removes X from the
feature list. (STATUS NOFEATUAE X) is
equivalent 10 (NOT (STATUS FEATURE X». X is
not evaluated.

STATUS (3-98J

(STATUS STATUS) returns a list of valid status
functions. (STATUS STATUS X) returns T if X is
a valid status function, else NIL. X is not
evaluated.

SSTATUS [3-98)

(ST ATUS SST ATUS) returns a list of valid
sstatus functions. (STATUS SSTATUS X) returns
T if X is a valid sstatus fun<::tion, else NIL. X is
not evaluated.

11.2. Garbage Collector Status

GCT/ME [3-87]

(ST ATUS GCTIME) roturll$ the number of
microseconds splint garbage. colll'cting.
(SSTATUS GCTlME N) resets th. time countor to
N, and returns the previous value of the counter.

SPCNAMES [3-87]

(STATUS SPCNAMES) returns a list of space
names, which may be used with ALLOC or with
ST ATUS calls described below.

SPCSIZE [3-88]

(ST ATUS SPCSIZE SPACE) returns the actu.1
size of SPACE in words. SPACE is evaluated.

GCMAX [3-88]

(STATUS GCMAX SPACE) returns the gcmax
param~tor for SPACE. (SSTATUS GCMAX
SPACE N) sots the gcmax parameter to
N. SPACE and N are l'valuated.

GCMIN [3-88]

(ST ATUS GCMIN SPACE) returns lhe gemin
parameler for SPACE. (SSTATUS GCMIN SPACE
N) sets the gcmin paramoter to N. SPACE and N
are evaluated.

42

GCSIZE [3-88]

(STATUS GCSIZE SPACE) returns the gcsize
parameter for SPACE. (SST ATUS GCSIZE
SPACE N) sots the gcsiz.:e parameter to
N. SPACE and N are evaluated.

PURSPCNAMES [3-88]

(STATUS PURSPCNAMES) returns a list of
spaces that have purl' vt'rsions.

PURSIZE (3-88]

(STATUS PURSIZE SPACE) rehxns the actual
size of the pure vorsion of SPACE. SPACE is
evaluated.

PDLNAMES [3-88]

(ST ATUS POlNAMES) rollXns a list of all the
pdls used by this LISP. These nam!.'s may btl
used in the STATUS calls df.'Scribod below.

PDLSIZE [3-88)

(STATUS POlSIZE POL) roturns the ClXront
number 0' words on the pdt. POL i. evaluated.

PDLMAX [3-88]

(STATUS. POLRMAX POL) returns the pdllThlx
paramotor of the pdl. POL is evaluated.

PDLROOM [3-88]

(STATUS POLROOM POL) returns the IThlxinun
siz.e of the pdl. POL is evaluated.

MEMFREE (3-Sg)

(STATUS MEMFAEE) returns the number of
words of address space not yet allocoltod 'or any
purpose.

11.3. 1/0 Status

FILEMODE (3-80)

(STATUS FILEMOOE FILE) returns a list of form
(MOOELIST • FEATURE LIST), wht'fe MOOELIST
j$ a description of the mode in which the file i.
opened and FEATURELIST is a (possibly null) list
of foatures from the set CURSORPOS, FILEPOS,
RUBOUT, and SAIL.

43

TABSIZE [3-77)

(ST ATUS T ABSIZE) rt'turns' tho number of
ch.uaclor positions auumt'd belwt"on tab stops.
for TOPS-10 syslonl3, Ih(' numbor is 8.

NEWLINE [3-77]

(STATUS NEWLINE) u.'turns a 'ixnum which is
the ASCII code for the system's ond-ol-line
character. For TOPS-10 syslems, this runbe, is
15 octal, i.e. carriage ret ... n.

UNMODE [3-78)

(ST ATUS UNMODE) ret ... ns T if tbe termiNI is in
line-at-a-lime input mode, or NIL if it is in
character-at-I-time input mode. (SSTATUS
LINMOOE X) sets the linmode to X. This
status/ntatus call may take a lile object as an
additional argument.

TTY/NT [3-78]

(SSTATUS TTVINT CHAR FUNC FilE) t ... na on.
tty interrupt character. See the MacLisp
Reference manual for details.

TTYSCAN [3-81]

(SSTATUS TTVSCAN FUNC FilE) seta up •
function to porform initial proc:ening of terminal
input. Soe ARCHIV.OOC[C380ML6P]/A and the
Mac Lisp Reforonce Maoo.ll 'or delails.

TTYCONS [3-79]

(SST ATUS TTVCONS TTV 1 TTV 2) binds two tty
files into a console • .' See tho Macli$p reference
manual for details.

11.4. Time

(RUNTIME) [3-99]
Returns the amount of cpu time used by the Job,
in microseconds, since the lut call to RUNTIME.

(TIME) [3-99]
Ret ... ns the time (in seconds) the system haa
been up, as a flonum.

45 46

Index
BASE [?) 28
BIGNUM [3-60] 38

) BIGP [2-1] 7
BOOLE (2-80) 16

• [2-72] 14 BOUNDP [2-51) 8
-$ [2-75] 15 BPS [3-61) 39

-ARRAY [2-92J 25
-CATCH (7] 22 C R [2~16] 3
wOlF [2-70] 14 CAR [2-15] 3

-FUNCTION [2-9) 18 CASEQ (7) Zl
-NOPOINT (7] 29 CATCH [2-44] 23

-QUO (2-71) 14 CA TCH - BARRIER [7) 2Z
-READ [7) 28 CATCHALL [7] 22

-READCH [?) 29 CDR (Z-15] 3
-REARRAY (2-93] 25 CHARPOS (7) 30

-THROW (7) 22 CLEAR-INPUT (7) 31

-TYI (7) 29 CLEAR-OUTPUT [?] 31
CLOSE [?] 26

+ (2-72] 14 CNAMEF [7] 27

+$ [2-75) 15 COMMENT [7J 19

+TYO [7) 30 COND (2-36] 21
CONS [2-16J 2

[2-72) 14 COPYSMBOL [2-59) 10

-$ (2-75) 15 COS [2-78] 16
CRUNIT (7) 34

II [2-73] 14 CXR [2-33) 6

11$ [2-76) 15
DATE [3-89] 39

1+ (2-73) 14 DAYTIME [3-89J 40

1+$ [2-76) 15. DEBUG (7] 35

1- (2-73] 14 DECLARE (7] 19

,-$ [2-76] 16 DEFAULTF (7] 27
DEFMAC [7) 36

< [2-66J 12 DEFPROP (2-54.1 a
DEFUN [7] 35

= [2-65] 11 DEFVST [7] 36
DELETE [2-25] 4

> [2-65] 11 DELETEF [7] - 26
DELQ (2-26) 4

ABS [2-67] 13 DIFFERENCE (2-69J 13

ADD1 [2-70] 13 00 (2-40J 20

ALLOC [3-63) 39 00 (2-41) 20

ALLOCA TlON PSEUDOCOMMENT (7] 39 DOW (3-89) 40

ALPHALESSP [2-56J 10 DUMPARRAYS (2-95] 25

AND [2-36) 21
APPEND [2-19) 2 ECHOFILES [7) 32 .

APPLY [2-7J 17 EDITF (7] 35
ARG [2-12] 21 ENDPAGEFN (7) 31
ARRAY [2-92) 24 EOFFN [7] 30
ARRAY [3-51] 38 EQ [2-3] 3
ARRAY BOUNDS [2-90] 24 EQUAL [2-3] 4

ARRAYCALL [2-13] 18 ERR [2-47] 23

ARAAYDIMS [2-~3] 25 ERROR [2-46] 23

ASCII [2-83J 9 ERRPRINT [7] 33

ASSOC [2-27) .5 ERRSET [2-46] 23

ASSQ [2-28) 6 EVAL (2-7) 17

ATAN (2-78] 16 EXP [2-77) 15

ATOM [2-1) 6 EXPLODE [2-85] 9
EXPLODEC [2-85] 9

BACKQUOTE (7) 18 EXPLODEN [2-85] 9
EXPT [2-70] 14

47 48

JNAME [3-90] 40
FASlOAD [7] 33
FASLP (7] 27 LABEL [1-17J 19
FEATURE [3-98) 40 LAMBDA (1-15) 19
FEATURES [3-96) 40 LAST [2-18) 3
FILE MODE [3-80] 42 LENGTH [2-18] 3
FILEP [7] 28 LENGTHF (7] 27
FllEPOS [7] 33 LESSP [2-65) 12
FillAAAAV (2-94] 25 LET (7) 36
FIX [2-(7) 12 LINEL [?) 30
FIXNUM [3-60] 38 LINENUM (?) 30
FIXP [2-1]

.,
LIN MODE (3-78] 43

FLATC [2-85] 10 LISPVEASION [3-89] 40
FLATSIZE [2-85] 10 LIST [2-19] 2
FLOAT [2-67) 12 LIST [3-GO] 38
FLOATP (2-1] 7 LIST- [?) 2
FlONUM [3-60) 38 lISTAAAAV [2-94J 25
FLPDL [3-61] 38 LISTEN [?] 32
FORCE-OUTPUT [7] 31 USTIFV [2-13] 22
FOAMAT [7] 38 LOADAAAAVS [2-95] 25
FSC [2-82] 17 LOG [2-77] 15
FUNCALL [2-13] 17 LSH [2-81] 16
FUNCTION [2-8] 18 LSUBACALl [2-13] 18
FXPOL [3-61] 38

MAKHUNK [2-33] 6
GC [3-59] 36 MAKNAM [2-84] 10
GCD [2-70] 13 MAKNUM (2-29] 5
GCMAX [3-62] 37 MAKUNBOUND [2-51] 8
GCMAX [3-88J 41 MAP [2-99] 24
GCMIN [3-62] 37 MAPATOMS [2-99] 24
GCMIN [3-88] 41 MAPC [2-99] 23
GCSIZE [3-62] 37 MAPCAN [2-99] 24
GCSIZE [3-88] 42 MAPCAA [2-99] 24
GCTIME [3-87] 41 MAPCON [2-99] 24
GCTWA e-59]

38 MAPLIST [2-99] 24
GENSVM 2-59] "

MAX [2-66] 12
GET [2-53] a MEMBER [2-24] 4
GETCHAA [2-83] 9 MEMFAEE [3-89) 42
GETCHAAN [2-83J 9 MEMQ [2-25) 4
GETL [2-53] 8 MERGEF (7] 27
GO [2-42] 20 MIN [2-66J 12
GREATERP [2-65] 12 MINUS [2-68] 13
GRINOEF [7) 35 MINUSP [2-63] 11

MSGFILES [7] 32
HAl PART [2-68] 13 MUNKAM [2-29) 5
I:iAULONG [2-64] 12
HUNK [2-32] 6 NAMELIST [?] 27
HUNKn [3-61] 38 NAMESTAING [7] 27
HUNKP [2-33] 6 NCONC [2-20] 2
HUNKP (2-2J 7 NCONS [2-16] . 2
HUNKSIZE [2-33] 6 NEWLINE [3-77] 43

NOFEATURE [3-98] 41
IBASE [7] 28 NOT [2-4) 4
IF IX [2-67] 12 NRECONC [2-21] 2
IMPLOOE [2-84J 10 NREVERSE [2-21] 2
IN [1] 32 NTH [?] 3
INFILE [?] 31 NTHCOR [7] 3
INPUSH [7] 31 NULL [2-4J .,
INSTACK [?] 31 NUMBERP [2-2] 7
INTEAN [2-58] 10

OOOP [2-63] 11

./

/

,//
49

50

.i/ r '~1 ..
OPEN [7] 26 SETPLIST (2-55) 9

OR [2-26) 21 SETQ [2-49) 7

OUT [7] 32 SHORTNAMESTRINO (1) 27

OUT FILES (7) 31 SIGNP [2-63) " SIN (2-78) 16

PAGEL [7] 30 SORT (2-30] 5

PAGENUM (7] 30 SORTCAR (2-31] 6

PDLMAX [3-62) 37 SPCNAMES [3-87] 41

PDLMAX (3-88) 42 SPCSIZE [3-88] 41

PDLNAMES [3-88] 42 SPECPDL (3-61] 38

PDLROOM [3-62] 37 SQRT [2-77) 16

PDLROOM [3-88) 42 SSTATUS [3-77) 39

PDLSIZE (3-62] 37 SSTATUS [3-98] 41

PDLSIZE [3-88) 42 STATUS [3-77) 39

PLiST [2-55] 8 STATUS [3-98) 41

PLUS (2-69] 13 STEP [3-40) 35

PLUSP [2-63] 11 STORE [2-93] 25

PNGET [2-57J 9 SUB1 [2-70] 13

PNPUT [2-57] 9 SUBLIS (2-23) 4

POP [1] 8 SUBRCALL [2- 13] 18

PRIN1 [7] 28 SUBST (2-22] 4

PRINC [7] 28 SXHASH (2-26) 5

PRINT [7] 28 SYMBOL (3-61] 38

PROBEF (7] 26 SYMBOLP (2-1] 6

PROG (2-38) 20 SYMEVAL [2-50] 8

PROG2 [2-10] 19

PROGN [2-11) 19 TABSIZE [3-77] 43

PROGV [2-11] 20 TERPRI • (7] 28

PURSIZE (3-88] 42 THROW . [2- 45) 23

PURSPCNAMES (3-88] 42 TIME (3-99) 43

PUSH (1] 7 TIMES (2-69) 13

PUT PROP [2-54] 8 TRACE [3-35] 35

TRUENAME [7] 27

QIJOTE (2-7] 18 TTYCONS [3-79] 43

QUOTIENT (2-69) 13 TTYINT (3-78] 43

TTYSCAN (3-81) 43

RANDOM [2-79J 17 TVI (1] 29

READ (1) 28 TYIPEEK [7] 29

READCH [1] 29
, TVO (7) 29,30

READLINE (1) 29 .- TVPEP [2-2] 7

READLIST (2-84] 10

REGPDL [3-61) 38 UAPPEND (7) 34

REMAINDER [2-70) 13 UCLOSE (7] 34

REMOB (2-59) 10 UDIR [3-90) 40

REMPROP (2-55] 8 UflLE [1] 34

RENAMEF [7) 26 UKllL [7] 34

RETURN (2-43] 20 UNAME [3-90] 40

REVERSE (2-20) 2 UNTRACE (3-38] 35

ROT [2-81] 16 UNWIND-PROTECT [?] 22

RPLACA [2-22) 3 UPROBE (7) 34

RPLACD (2-22) 3 UREAD (1] 33, 34

RPLACX [2-33] 6 USE RID (3-90] 40

RUBOUT (1) 33 UWAITE (7] 34

RUNTIME [3-99) 43
XCONS (2-17] 2

SAMEPNAMEP [2-56] 10 XPRINT (7) 36

SASSOC (2-28] 5

SASSQ [2-29] 5 ZEROP [2-63] 1 1

SEGLOG [3-90] 40 ZUNDERFLOW [2-79] 17

SET [2-50] 7

SETARO [2-12) 21 \ [2-73] 14

..

	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0001_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0002_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0003_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0004_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0005_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0006_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0007_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0008_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0009_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0010_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0011_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0012_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0013_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0014_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0015_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0016_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0017_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0018_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0019_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0020_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0021_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0022_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0023_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0024_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0025_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0026_a
	Touretzky-Summary_of_MacLisp_Functions_and_Flags-1979-600dpi0027_a

