
, \

, ,

\

"

LISP for NOSjVE
Language Definition

Usage Supplement

(52)
CONT1\.0 L

DATA

60486213

o
o

o

o

o

I
o
0

1

I

Instructions for Updating This Manual December 1989

About This Packet

About This Revision

Instructions

Title:

Publication number:
Revision:
NOSNE Version:
PSR Level:

LISP for NOS/VE
Language Definition
Usage Supplement
60486213
B
1.5.1
739

This revision describes the support of the load-entry function.
This function allows you to improve the loading speed while
building large applications. This feature is described in chapter
27, Loading Speed.

To update this manual, make the following changes:

Remove

Title Page thru 7
1-1/1-2
25-3/25-4
25-7

E-11/E-12
Index-1 thru Index-3
Mailer/Comment Sheet

Insert

Title Page thru 9
1-1/1-2
25-3/25-4
25-7
Blue Fly Sheet, Chapter 27
27-1 thru 27-5
E-11/E-12
Index-1 thru Index-3
Mailer/Comment Sheet

Control Data Corporation • 5101 Patrick Henry Drive • Santa Clara, CA 95054

L

C)

C)

C)

C)
C

LISP for NOS/VE

Language Definition

U sage Supplement

This product is intended for use only as
described in this document. Control Data
cannot be responsible for the proper
functioning of undescribed features and
parameters.

Publication Number 60486213

Manual History

System Version/ Product
Revisions PSR Level Version Date

01 1.1.2/630 1.0 March 1985
02 1.1.3/644 1.1 October 1985
03 1.1.4/649 1.2 January 1986
04 1.2.1/664 1.3 September 1986
05 1.2.2/678 1.4 April 1987
06 1.2.3/688 1.5 September 1987
07 1.3.1/700 1.6 April 1988
A 1.4.1/716 1.7 December 1988
B 1.5.11739 1.8 December 1989

Revision B documents LISP for NOSIVE at release level 1.5.1 and at PSR level 739.
This manual was published in December 1989.

This revision describes the support of the load-entry function. This function allows you
to improve the loading speed while building large applications. This feature is described
in chapter 27, Loading Speed.

"1985, 1986, 1987, 1988, 1989 by Control Data Corporation
All rights reserved.
Printed in the United States of America.

2 USP for NOSIVE Language Definition Usage Suppleme~t 60486213 B

/-------,.

i---"-

\\". _/

C~)

c······
)

C~)

o

o
C

'···'·.\
I

.'

Contents

About This Manual 7

Acknowledgments 7
Audience 7
Organization 7
Conventions 8
Additional Related Manuals 8
Ordering Printed Manuals 9
Submitting Comments 9
In Case You Need Assistance 9

Introduction 1-1

Errors (5) 1-1
Entering LISP 1-1
Using NOSIVE or Other Software

From Within LISP........ 1-2
Leaving LISP 1-3
Leaving LISP Temporarily 1-3

Data Types 2-1

Data Type Support (11) 2-1
Integers (13) 2-1
Floating-Point Numbers (16) 2-2
Characters (20) 2-2
Lists and Conses (26) 2-3
Overlap, Inclusion, and

Disjointness of Types (33l 2-3

Scope and Extent 3-1

Support of Extent (36) 3-1

Type Specifiers 4-1

Type Specifiers That Specialize
(45)•...................... 4-1

Program Structure 5-1

Forms (54) 5-1

Predicates 6-1

Equality Predicates (77) 6-1

60486213 B .

Control Structure 7-1

Indefinite Iteration (121) 7-1
Multiple Values (133) 7-1

Macros ... ~ 8-1

Macro Support (143) 8-1

Declarations 9-1

Declaration Syntax (153) 9-1

Symbols 10-1

Creating Symbols (168) 10-1

Packages 11-1

Package Support (171) 11-1
Modules (188) 11-1

Numbers .. 12-1

Comparisons on Numbers (196) .. 12-1
Irrational and Transcendental

Functions (203l 12-1
Type Conversions and Component

Extractions on Numbers (214) ... 12-1
Logical Operations on Numbers

(220) 12-1
Implementation Parameters (231) . 12-1

Characters 13-1

Character Attributes (233) 13-1
Character Control-Bit Functions

(243) 13-1

Sequences -. 14-1

Simple Sequence Functions (247) .. 14-1

-Lists .. -.... ~ • .. 15-1

Lists (264) 15-1

Hash Tables 16-1

. Hash Table Support (282) 16-1
Hash Table Functions (283) 16-1

--COntents 3

Arrays ' 17-1

Array Creation (286) 17-1
Fill Pointers (295) 17-1

Strings .. 18-1

String Access (299) 18-1

Structures 19-1

Defstruct Options (311) " 19-1

The Evaluator 20-1

Run-Time Evaluation of Forms
(321) 20-1

The Top-Level Loop (324) 20-2

Streams 21-1

Standard Streams (327) -..... 21-1

Input/Output 22-1

Input Functions (374) 22-1
Output Functions (382) 22-1
Formatted Output to Character

Streams (385) "............ 22-1

File System Interface 23-1

File Names (409) 23-1
Opening and Closing Files (418) . 23-3
Renaming, Deleting, and Other

File Operations (423)............ 23-5
Loading Files (426) 23-6
Accessing Directories (427) 23-6

Errors ,24-1

General Error-Signalling
Functions (4291 24-1

Figures

F-l. Theorem-Prover Code ... ~ F-2

Specialized Error-Signalling
Forms and Macros (433) 24-1

Debugging Tools (440) 24-1

Miscellaneous Features 25-1

The Compiler (438) 25-1
Debugging Tools (440) 25-4
Environment Inquiries (443) 25-7

Error Handling and Debugging .. 26-1

Error Processing 26-1
Stepping 26-16
Tracing 26-17
Debugging 26-20

Loading Speed 27-1

,The Load-Entry Function 27-2

Glossary A-I

Related Manuals B-1

Ordering Printed Manuals B-1

Character Set C-l

Diagnostic Messages D-l

Errors D-1
Errors Encountered Less

Freque'ntly D-18

Index of LISP Symbols E-l

Tautology Proving Example F-l

Using Theorem-Prover ~ ~ F-8

Index Index-l

4 LISP foro NOSNE Language Definition Usage Supplement 60486213 B

C~')

(=)

C)

Tables

26-1. Step Commands 26-16
26-2. Debugger Commands 26-21
B-1. Related Manuals B-2

60486213 B

C-1. ASCII Character Set Table C-1

Contents 5

r , '

C,)
C)

C·\
\

.,/

o

About This Manual

List Processing (LISP) for NOSNE is a full implementation of the Common LISP
language dialect defined by the Carnegie-Mellon University Spice LISP project.
CONTROL DATA ® LISP is implemented from the description of the Spice project
results given in the commercial textbook Common LISP, The Language. CDC® LISP
uses this manual (referred to throughout this book as Common LISP) as the basis for
its usage manual with permission of Digital Press.

Within this manual, NOSNE LISP is referenced as LISP, and the Common LISP
language as Common LISP.

Acknowledgments

This document is based on Common LISP, The Language, written by Guy L. Steele,
Jr., published by Digital Press (Billerica, Massachusetts), copyright 1984 by Digital
Equipment Corporation. The original work constitutes the sole specification for the
Common LISP language, and any departures from that specification are the
responsibility of CDC.

Audience

This manual and Common LISP constitute the reference text for application
programmers familiar with Common LISP or another LISP dialect. We presume you
have read Common LISP and are familiar with the NOSNE operating system.

Organization

This manual is organized for use as a reference supplement to Common LISP. The
chapters in this manual have the same numbers and the section titles are the. same as
in Common LISP when possible. The page number where each corresponding discussion
in Common LISP begins is indicated in parentheses next to the titles in this manual.

60486213 B About This Manual 7

Conventions

This manual uses the same notational conventions as Common LISP, except for the use
of typefaces to define syntax. The following notational conventions are unique to this
manual.

~j UPPERCASE

lowercase

italics

computer font

(abbreviations)

numbers

Terms other than those in LISP forms appear in uppercase to
depict names of commands, functions, parameters, and their
abbreviations. Names of nonLISP variables, files, and system
constants also are shown in uppercase within text.

For consistency with Common LISP, required terms (function
names and so forth) in forms appear in lowercase.

Within command formats, italics indicates optional parameters.
For example, in the following format of. the LISP command, all
parameters are optional:

LISP
INPUT={ile reference
OUTPUT={ile reference
STATUS = status variable

Within text, italics indicates the title of a book. For example,
Common LISP.

Indicates examples.

Recognized abbreviations for parameter keyword names in
NOSIVE command parameter descriptions are indicated in
parentheses.

All numbers are base 10 unless otherwise noted.

Additional Related Manuals
The Related Manuals section, appendix B, shows you which manuals you should be
familiar with, and which manuals you might want to read following this one. In
addition, several commercial tutorials on LISP are available, including:

• LISP (Second Edition by Patrick Henry Winston and Berthold Klause Paul Horn,
copyright 1984 by Addison-Wesley Publishing Company, Reading, Massachusetts.)
This book uses the Common LISP dialect.

8 LISP for NOSIVE Language Definition Usage Supplement 60486213 B

(
'\1

__ -~J

C)

C)

o
C)

Ordering Printed Manuals
Control Data printed manuals are available through Control Data sales offices or by
sending an order to:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

When ordering a manual, please specify the complete manual title and the publication
number. For example, if you are ordering this manual, specify LISP for NOSNE
Language Definition Usage Supplement, publication number 60486213.

SUbmitting Comments
The last page of this manual is a comment sheet. Please use it to give us your opinion
of this manual's usability, to suggest specific improvements, and to report technical or
typographical errors. If the comment sheet has already been used, you can mail your
comments to:

Control Data Corporation
Technical Publications
5101 Patrick Henry Drive
Santa Clara, CA 95054

Please indicate whether you would like a written response.

If you have access to SOLVER, the Control Data online facility for reporting problems,
you can use it to submit your comments. You should specify LI8 when SOLVER
prompts you for a product identifier.

In Case You Need Assistance
Control Data's CYBER Software Support maintains a hotline to assist you if you have
trouble using our products. If you need help beyond that provided in the documentation
or fmd that the product does not perform as described, call us at one of the following
numbers and a support analyst will work with you.

From the USA and Canada: (800) 345-9903

From other countries: (612) 851-4131

The preceding numbers are for help on product usage. Address questions about the
physical packaging and/or distribution of printed manuals to Literature and Distribution
Services at the following address:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

or you can call (612) 292-2101. If you are a Control Data employee, call
CONTROLNET® 243-2100 or (612) 292-2100.

60486213 B About This Manual 9

I

(~
\

(~'

(---"
\,--../

Introduction 1

Errors (5) ... 1-1

Entering LISP ... 1-1

Using NOSNE or Other Software From Within LISP 1-2

Leaving LISP 1-3

Leaving LISP Temporarily ... 1-3

c,

c

(,'

o
C)

C)

o

Introduction

This . chapter supplements chapter 1 of Common LISP. The LISP command and
ve-command function unique to LISP are introduced.

Errors (5)

1

LISP signals all errors that Common LISP requires to be signaled. Many additional
errors are also signaled. Signaling an error causes the debugger to be entered if there
is no handler for the error. See chapter 26 for a description of the debugger's
capabilities.

Entering LISP
Use the following command to enter LISP:

LISP
INPUT=(ile reference
OUTPUT=(ile reference
STATUS = status variable

Parameters:

INPUT (1)

NOS/VE file containing valid LISP input statements. If you omit this parameter,
the file $INPUT is used, and you are prompted for input at your terminal.

OUTPUT (0)

NOSIVE file to receive LISP output values or diagnostic messages. If you omit this
parameter, the file $OUTPUT is used, and output appears at your terminal.

STATUS

See the NOSIVE System Usage manual for a description of the use of this optional
parameter.

LISP responds to the LISP command with the message:

LiSp/VE 1.8 89284

The Julian date is the date the LISP system was generated. The message is followed
by the currently-defined NOSIVE input prompt (usually a question mark).

The INPUT and OUTPUT parameters supplied on the call to LISP provide files to
which the two-way-stream *terminal-io* can connect. For example, if you need to enter
LISP, read some startup commands, and then connect input/output to a terminal, you
can write an SeL procedure containing the following commands:

DELFC $OUTPUT $LOCAL.OUTPUT
CREFC $OUTPUT $NULL
CREFC $INPUT TEST_INPUT_EXAMPLE
LISP

60486213 B Introduction 1·1

i

Using NOSIVE or Other Software From Within LISP

The TEST _INPUT _EXAMPLE file contains the LISP commands to execute. To
eliminate extraneous output to the terminal, the last LISP command in the TEST_
INPUT _EXAMPLE file must be the following:

(progn
(ve-conrnand IICREFC $OUTPUT $LOCAL.OUTPUT")
(ve-command "DELFC $INPUT TEST_INPUT_EXAMPLE")
(values»

Using NOSNE or Other Software From Within LISP
You can use any NOSIVE command, or NOSIVE software that can be started with a
NOSIVE command, from within LISP. To start and use other software or issue a
NOSIVE command, use the following function:

(ve-command string)

Parameters:

string

Any string containing a valid NOSIVE command and its parameters, enclosed in
quotation marks ("), or any valid form that evaluates to such a string. The LISP
syntax for strings requires quotation marks, rather than the apostrophes used
within a NOSIVE command.

Example:

or

(ve-command "EDIF MY_SOURCE I=COMMANDn)

(setQ a IIATTACH_FILE FILE=$USER.theorem_prover")
(ve-comnand a)

When you use this function, LISP submits the string to the NOSIVE command
interpreter. If the command executes other software, LISP is pushed down on the job
stack and subsequent dialog occurs with the executed software, such as an editor.
When you leave that software, the job stack ~s pushed back up, and execution of LISP
resumes.

LISP returns a NIL value after a normal return from ve-command execution, including
any command that detaches the job; an abnormal return produces a non-NIL value
containing an informative message.

1-2 LISP for NOSIVE Language Definition Usage Supplement 60486213 B

(~~'

(,-:~

---------------- --

(j

o

o

ell

o
o

Leaving LISP

Leaving LISP

Use either of the following functions to leave LISP:

(exit)

or

(qU it)

You cannot omit the parentheses when you type (quit) or (exit).

-
If you use the NAM (255x Network Processing Unit) network user-break-2 character or
the NOSNE terminate_break_character, you abort LISP execution. The NAM
user-break-l character or the NOSNE pause_break_character can be used to interrupt
and discard unwanted input and output.

Leaving LISP Temporarily
If you wish to leave an interactive LISP session temporarily, and return to it at a
later time (anytime before the next system deadstart), you may do so by detaching the
job. With the job detached, you are free to do whatever other work you choose (and
even logoffi. When you are ready to resume the LISP session, just reattach the job and
resume the LISP command. Resuming LISP is preferable to a (quit), which ends your
LISP session irretrievably, in two ways:

1. The environment that existed when the job was detached is preserved.

2. Reentering LISP in this way is considerably faster than initiating a new LISP
session.

An example of how to detach and attach a job follows:

Type in:

<NCC>d

<Nce> is your Network Command Character (usually % if you use the CDCNET
Communications Network).

A new login and a message such as the following is displayed, containing the number
of the detached job:

You have the following detached jobs:
$0855_7777_AAI_7654

For further reference, write down the last four digits of the above message preceded by
a $, in this case $7654. When you are ready to reactivate the LISP session, use the
NOSNE command ATTACH_JOB or ATTJ and the job number you wrote down earlier.
For example:

ATTJ $7654

Introduct~~I1 ___ 1-:1-______ ,
- .- ----- -.- --- ',,,-,,,

Revision A

-----~----------
~"'"

Leaving LISP Temporarily

The following prompt appears:

Job has been reconnected to this terminal
·Suspended - 1·
pI

Respond to this prompt by typing:

or

RESC

and your LISP session is now reactivated.

If you use the Control Data Distributed Communications Network (CDCNET), you can
also switch between your LISP session and other tasks by establishing multiple
connections.

For example, suppose you create a connection by using the CDCNET command
CREATE_CONNECTION or CREC:

%CREC SYSl LISPVE

and enter LISP. Then, you can create another connection as follows:

%CREC SYS2 LISPVE

and log in.

For more information on how to access services, such as NOSNE and NOS, through
CDCNET, refer to the CDCNET Access Guide.

-. T ,SlDguage Definition Usage Supplement Revision A

'\ ... " / .

r-"
(

CI

C~:
(~

c

Data Types 2

Data Type Support (11) 2-1

Integers (13) .. 2-1

Floating-Point Numbers (16) .. 2-2

Characters (20) .. 2-2
Standard Characters (20) .. 2-2
Line Divisions (21) .. 2-2
Non-standard Characters (23) .. 2-3
Character Attributes (23) .. 2-3

Lists and Conses (26) .. 2-3

Overlap, Inclusion, and Disjointness of Types (33) 2-3

o
C::

Data Types 2

This chapter supplements chapter 2 of Common LISP. LISP implementation of data
types is described.

LISP stores every data object as a LISP-object. A LISP-object contains:

• The type of the data (such as integer, character, or array).

• The actual data or a pointer to the location of the actual data.

Data Type Support (11)

LISP supports the following four array data types, specified through the :element-type
keyword of the make-array function:

o General (arrays of LISP-objects created without an :element-type keyword argument,
or with the :element-type keyword of T).

• Character (character string arrays created with an :element-type keyword argument
of character).

o Short-float (floating-point number arrays created with an :element-type keyword
argument of float).

o Bit (single-bit boolean variable arrays created with an :element-type keyword
argument of bit).

Integers (13)

LISP uses two's-complement for internal representation. The internal radix used is 2;
the external radix used is 10. Fixnums are stored in LISP-objects and accessed directly;
fixnum use is faster than use of floating-point numbers.

LISP supports fixnum integers between -80000000 hexadecimal (-2147483648 decimal)
and 7FFFFFFF hexadecimal (2147483647 decimal), inclusive. This restricted range
permits a fixnum integer to fit into a LISP-object. The integer -0 does not exist as an
entity distinct from + o.

LISP supports the bignum infinite-magnitude integer.

Revision A Data Types 2-1

Floating-Point Numbers (16)

Floating-Point Numbers (16)

Short-format (short-float) floating-point numbers use the representation of a
signed-magnitude fraction. These 64-bit floating-point numbers consist of a I-bit sign, a
I-bit exponent sign, a 48-bit mantissa and a 14-bit exponent. The binary point is
implied to the left of the mantissa. Approximate precision is 13 decimal digits. The
number -0.0 is not distinguished from + 0.0.

LISP supports short-float numbers between B00080000000 hexadecimal and
4FFFFFFFFFFF hexadecimal, inclusive. The smallest positive value is
3000800000000000 hexadecimal. The smallest negative value is CFFFFFFFFFFFFFFF
hexadecimal. The following table provides the decimal equivalents: '

Hexadecimal Number

B00080000000

4FFFFFFFFFFF

3000800000000000

CFFFFFFFFFFFFFFF

Decimal Equivalent

-0.4787488730476 x 10-1233

0.5221944407065 x 101233

0.4787488730476 x 10- 1233

-0.5221944407065 x 101233

LISP supports only one format for floating-point numbers, which is as described above.
LISP does not support 128-bit floating-point numbers. All of the formats (short, single,
double, and long) are identical.

Floating-point numbers are stored as LISP-objects with pointers to the actual numbers;
floating-point use is slower than fixnum use.

Characters (20)

LISP supports the Common LISP definition of character data types, as noted in the
following subsections and in chapter 13.

Standard Characters (20)

LISP uses the following definitions for semi-standard Common LISP characters:

Common LISP Character

#\Backspace
#\Linefeed
#\Page
#\Return
#\Rubout
#\Space
#\Tab

Line Divisions (21)

ASCII Character

BS
LF
FF
CR
DEL
space
HT

LISP uses the ASCII US' character for the Common LISP #\newline character. This is
compatible with CDC network software and allows use of that software's
terminal-dependent output formatting features. The sequences #\newline #\return or
#\return #\newline produce output effects dependent on the terminal you use and on
the network's definition of that terminal.

2-2 LISP for NOSIVE Language Definition Usage Supplement Revision A

C"
..... / I

o ---
o

o

o
o

Lists and Conses (26)

Non-standard Characters (23)

LISP does not support non-standard characters.

Character Attributes (23)

LISP does not support the non-zero font attribute or the non-zero bits attribute. The
char-font-limit constant is 1. The char-hits-limit constant is 1.

Lists and Conses (26)

LISP does not use the equivalent of endp to test for the end of a list. LISP does not
signal an error when a list is terminated by a non-NIL atom.

Overlap, Inclusion, and Disjointness of Types (33)

LISP has no extensions to the types number or array that exclude them as subtypes of
type common.

Revision A Data Types 2·3

(\
,._ '

c,:

Scope and Extent 3

Support of Extent (36) ... 3-1

o

C)

Scope and Extent 3

This chapter supplements chapter 3 of Common LISP. LISP support of the concepts of
scope and extent are described. The Glossary appendix contains definitions useful when
reading this chapter.

Support of Extent (36)

If an entity has indefinite extent, LISP destroys the entity when reference is no longer
possible.

LISP does not support multiprogramming or multiprocessing.

Revision A Scope and Extent 3·1

Type Specifiers 4

Type Specifiers That Specialize (45) .. 4-1

c·

c

C~

/'

o
o

o

_ _ _._----_ .. _--

Type Specifiers 4

This chapter supplements chapter 4 of Common LISP. LISP support of type specifiers is
described.

Type Specifiers That Specialize (45)

LISP supports only array specializations. You can specify the following specialized data
types through the :element-type keyword of the make-array function:

• Character (created with a keyword argument of character); this is a specialized
representation of arrays of characters of the data type character.

• Floating-point (created with a keyword argument of float); this is a specialized
representation of arrays of short-float numbers of the data type float.

• Boolean (created with a keyword argument of bit); this is a specialized
representation of arrays of boolean variables of the data type bit.

General arrays are created by omitting the :element-type keyword or by specifying the
:element-type keyword with an argument of T. Such arrays are nonspecialized and have
the data type T.

Revision A Type Specifiers 4-1

'. ' .. - .'

C'~~,
(-~',
'-----/

Program Structure 5

Forms (54) .. 5-1
Special Forms (56) .. 5-1
Macros (57) .. 5-1

c

c·

c.

/

")
\~-"

o
c

o

o
o

Program Structure

This chapter supplements chapter 5 of Common LISP. LISP support of program
structures is described.

Forms (54)

The LISP evaluator has no extensions.

LISP signals an error for an attempt to evaluate an array or other invalid form.

Special Forms (56)

Appendix E lists all predefined special forms that LISP supports. Some special forms
are implemented as macros within LISP, as indicated in the appendix.

Macros (57)

5

No LISP macro expansions contain data objects not considered to be forms in Common
LISP. Some LISP macros have expansions that contain LISP-defined special forms.

Revision A Program Structure 5-1

)

,_

C/
--'

Predicates 6

Equality Predicates (77) .. 6-1

c

C
O

_-:

~-

r--"

L.

C_~

o
"'0

o

o
o

Predicates 6

This chapter supplements chapter 6 of Common LISP. LISP support of predicates is
described.

Equality Predicates (77)

For the eq function, fixnum and character instances can be true. The following
statement evaluations occur:

Statement Value Returned

(eq 3 3) T
(eq 3.0 3.0) NIL
(eq #c(3 -4) #c(3 -4» NIL
(eq , (a . b) , (a . b» NIL
(eq #\A #\A) T
(eq "Foo" "Foo") NIL

For the eql function, the following statement evaluations occur:

Statement

(eql '(a. b) '(a. b»
(eql 0.0 -0.0)
(eql "Foo" "Foo")

Revision A

Value Returned

NIL
T­
NIL

Predicates 6·1

\"

(r-" .,
\

r '-. ••• ,,1

c·'
c/

C
'·'
--'

Control Structure 7

Indefinite Iteration (121) ... 7-1

Multiple Values (133) .. 7-1

/'

o
o

o

o
o

Control Structure

This chapter supplements chapter 7 of Common LISP. LISP support of control
structures is described.

Indefinite Iteration (121)

LISP has no extensions to the Common LISP syntax of the loop function.

Multiple Values (133)

LISP does not limit the number of multiple values that can be received by a special
form.

7

Revision A Control Structure 7-1

~-'---"

I

~
(
\ ... , ",.

c'

c'

(=~',

c.,

C'"
/

c'

Macros 8

Macro Support (143) ... 8-1

o
G

" c I J

o

o
o

Macros

This chapter supplements chapter 8 of Common LISP. LISP support of macros is
described.

Macro Support (143)

8

LISP must encounter a macro definition before that macro is first used. In interpreted
code, a macro is expanded each time it is encountered.

Revision A Macros 8·1

~\
(
',,-- .. '

Declarations 9

Declaration Syntax (153) ... 9-1
Declaration Specifiers (157) .. 9-1

,/

o
Cj

o

o
,--...,.

U

.. --------_._-------

Declarations 9

This chapter supplements chapter 9 of Common LISP. LISP support of declarations is
described.

Declaration Syntax (153)

LISP allows the full set of Common LISP declarations in the declare special form.

Declaration Specifiers (157)

LISP provides no additional declaration specifiers.

The interpreter ignores all declarations except special.

The compiler ignores the following declaration specifiers:

ftype
function
compilation-speed

The compiler does not ignore the following declaration specifiers:

type
in line
notinline
ignore
optimize
declaration
space

For the optimize declaration, the qualities recognized are speed and safety. The values
are relative. For example, specifying a value of 3 for both speed and safety has the
same meaning as specifying a value of 1 for both speed and safety. It does not cause a
trade-off between speed and safety. However, the following declaration:

(declare (optimize (speed 3) (safety 1»)

does optimize for speed at the expense of safety.

If you use an optimize declaration specifying a r~latively high value for space, LISP
ignores the inline declaration.

Revision A Declarations 9-1

r-',
I
I.,

(,'
Symbols 10

Creating Symbols (168) .. 10-1

--'.
l"
C_/'

C)

c)

r--,
'(')

"---/

C)
C:~,

Symbols 10

This chapter supplements chapter 10 of Common LISP. LISP support of symbols is
described.

Creating Symbols (168)

The LISP make-symbol function installs a string in a symbol's print-name component
that is the given print-name string. The string is not copied to a read-only area.

Revision A Symbols 10-1

Packages 11

Package Support (171) .. 11-1

Modules (188) .. 11-1

.. - '\ C
·_-

Packages 11

This chapter supplements chapter 11 of Common LISP. LISP support of packages is
described.

Package Support (171)

LISP supports packages as described in Common LISP.

Modules (188)

For the require function, the value of the *module-file-translations* variable is an
association list Calist) holding a mapping of module names to files.

The default value of *module-file-translations* is NIL. The default value of
modules-file is the file $USER.LISP _MODULES.

If *module-file-translations* is NIL, the value of *modules-file* is the location of a file
whose first expression is an alist to which *module-file-translations* is set. When the
pathname argument to the require function is NIL or not provided, the
module-file-translations variable is used to locate the files needed by the module. For
example, if the file $USER.LISP _MODULES holds the following list:

«nfoo" "$user.foo_file")
("gooD "$user .goo_fi le"»

and if the value of *modules-file* is "$USER.LISP _MODULES"; and you evaluate the
following:

(require "fOOD)

then the *module-file-translations* variable is set to:

« "foo" "$user. foo_fi le ll)
("gooll "$user .goo_fi le"»

and the file $USER.FOO_FILE is loaded. If FOO had not been found in the
module-file-translations variable, the require function would have attempted to load
the file FOO.

Revision A Packages 11-1

J
\

'~,

Numbers 12

Comparisons on Numbers (196) .. 12-1

Irrational and Transcendental Functions (203) 12-1

Type Conversions. and Component Extractions on Numbers (214) 12-1

Logical Operations on Numbers (220) .. 12-1

Implementation Parameters (231) .. 12-1

c

C
·
--

'-.

--------------------- - --

o
o

o

o

Numbers 12

This chapter supplements chapter 12 of Common LISP. LISP support of numbers is
described.

Comparisons on Numbers (196)

For the max and min functions, LISP returns the argument in its current format.
(LISP has only one floating-point format.)

Irrational and Transcendental Functions (203)

LISP uses the NOSNE Common Math Library for these functions. For more
information on Math Library functions, see the Math Library Usage manual.

Type Conversions and Component Extractions on
Numbers (214)

All floats are normalized; they have precision 64 and radix 2.

Logical Operations on Numbers (220)

LISP uses two's-complement for representation when performing the integer-length
computation.

Implementation Parameters (231)

The constants are defined, but because LISP provides only one floating-point format,
the following constants are set to 0.0:

least-negati ve-double-float
least-negative-Iong-float
least-negati ve-short-float
least-negative-single-float

least-positive-double-float
least-positive-Iong-float
leas t-posi ti ve-short-floa t
least-positive-single-float

Revision A Numbers 12-1

c

(~',

.... " ... _- "

c/

C~',I

(

c,

Characters 13

Character Attributes (233) ... 13-1

Character Control-Bit Functions (243) .. 13-1

/'

\-,

'.

o
o

o

o

o

o

Characters 13

This chapter supplements chapter 13 of Common LISP. LISP support of characters is
described.

LISP characters use standard 7-bit ASCII cha"racter codes. Characters are held directly
in LISP-objects.

Character Attributes (233)

LISP does not support the font or bits attributes. The char-font-limit constant is 1. The
char-bits-limit constant is 1.

Character Control-Bit Functions (243)

All of the following LISP constants are zero:

char-control-bit
char-hyper-bit
char-meta-bit
char-super-bit

Revision A Characters 13·1

(-'-'
\ " ... ,'

c

C~

c
C~.

(' .
I I

\ - "

Sequences 14

Simple Sequence Functions (247) 14-1

c

'"''''

/"

./

\'-

o

Sequences 14

This chapter supplements chapter 14 of Common LISP. LISP support of sequences is
described.

LISP supports every sequence function listed in Common LISP.

Simple Sequence Functions (247)

A type defined via the deftype function is not permissible for the type argument of
make-sequence.

Revision A Sequences 14·1

~
I

c

,~

i"
"-... /

~',
(

(..
Lists 15

Lists (264) .. 15-1

c/

'.J

o
G

o

Lists

This chapter supplements chapter 15 of Common LISP. LISP support of lists is
described.

Lists (264)

LISP supports lists as described in Common LISP.

Revision A

15

Lists 15-1

c

C
----'
,

r
I
\ '-- "

C~ ,

C~

Hash Tables 16

Hash Table Support (282) 16-1

Hash Table Functions (283) 16-1

/

o
C~j

o
o

Hash Tables 16

This chapter supplements chapter 16 of Common LISP. LISP support of hash tables is
described.

Hash Table Support (282)

LISP supports hash tables.

Hash Table Functions (283)

The rehash-size argument has a default value of 100.

The rehash-threshold argument has a default value of NIL.

Revision A Hash Tables 16-1

\

.. J

c.-­
C.

Arrays 17

Array Creation (286) .. 17-1

Fill Pointers (295) .. 17-1

/'

/'

('
"--.)

o

Arrays 17

This chapter supplements chapter 17 of Common LISP. LISP support of arrays is
described.

LISP supports arrays of up to 65,000 dimensions.

Array Creation (286)

LISP supports the following four array data types, specified through the :element-type
keyword of the make-array function:

• General (arrays of LISP-objects created without an :element-type keyword argument;
the :element-type parameter cannot have a value of T for general arrays).

• Character (character string arrays created with an :element-type keyword argument
of character).

• Short-float (floating-point number arrays created with an :element-type keyword
argument of float).

• Bit (single-bit boolean variable arrays created with an :element-type keyword
argument of bit).

Fill Pointers (295)

vector-push

It is an error for new-element not to be the correct type for the vector.

vector-push-extend

The optional argument extension defaults to the size of the vector.

Revision A Arrays 17·1

c

r· " -

C,':

Strings 18

String Access (299) ... 18-1

C~:~;

C-.. ,'

o

o
(:J.

... _ .. _------_ .. _. __ . __ .----_._ ...•.. _--_ _-------------------

Strings 18

This chapter supplements chapter 18 of Common LISP. LISP support of strings is
described.

String Access (299)

The LISP char and schar functions execute at the same speed.

Revision A Strings 18·1

'--"

(~'

C-_~','

C._ .

(r-.
'--.-'

Structures 19

Defstruct Options (311) .. 19-1

",--,

o
C)

f'.
~)

o

Structures 19

This chapter supplements chapter 19 of Common LISP. LISP support of structures is
described.

Defstruct Options (311)

If a type is specified for a slot, it must be the same as, or a subset of, the type
specified in the included structure. If it is a strict subtype, LISP does not check
assignments for errors.

LISP specifies an array to represent the structure if the type option is not specified.

Revision A Structures 19-1

C

1'....---. \
(

C
1

ci

I

L
r-
~.

The Evaluator 20

Run-Time Evaluation of Forms (321) .. 20-1

The Top-Level Loop (324) ... 20-2

1'--
I

''---

.~ ..

The Evaluator

This chapter supplements chapter 20 of Common LISP. The LISP evaluator is
described.

20

The LISP evaluator is a recursive interpreter, performing each step as it is
encountered. Forms are evaluated from left to right. Macros are expanded each time
encountered.

Run-Time Evaluation of Forms (321)

The example on pages 323 and 324 works as follows:

(defvar *hooklevel* 0)
(declare (special *ncalls*»
(setQ *ncalls* 0)
(defun hook (x)

(let « *evalhook* 'eval-hook-function» (eval x»)

(defun eval-hook-function (form &optional env)
(let «*hooklevel* (+ *hooklevel* 1»)

(setQ *ncalls* (+ *ncalls* 1»
(format *trace-output* 1I-%-V~HForm: -S"

(* *hooklevel* 2) form)
(let «values (multiple-value-list

(evalhook form
U'eval-hook-function
nil
env» »

(format *trace-output* 1I-%-VttTValue: { -S-}"
(* *hooklevel* 2) values)

(values-list values»»

The above routines display the following:

(hook '(cons (floor *print-base* 3) 'b»
Form: (EVAL X)

Form:
Value:
Form:

X
(CONS (FLOOR *PRINT-BASE* 3) (QUOTE B»
(CONS (FLOOR *PRINT-BASE* 3) (QUOTE B»

Form: *PRINT-BASE*
Value: 10
Form: 3
Value: 3

Value: 3 1
Form: (QUOTE B)
Value: B

Value: (3 B)
Value: (3. B)

Revision A The Evaluator 20-1

The Top-Level Loop (324)

The Top-Level Loop (324)

The top-level loop in LISP requires input in one or more continued lines and uses the
user's currently specified terminal prompting character for each line. The value
resulting from evaluation of the last-entered form always appears on a separate line. If
multiple values are returned, each one appears on a separate line beginning on the
first line after the last entered form.

You can view the top-level loop as the bottom of LISP's binding stack. As each
occurrence of a form is encountered and evaluated, it pushes down any prior values
bound to the same variables in the stack. This is most meaningful when recursion
occurs. An error in LISP causes the debugger to be entered, if there is no handler for
the error.

The prompt ? is printed whenever the top level loop requires input. Only one prompt is
printed for each form. This differs from the previous versions of LISP where a prompt
was printed at the start of each input line. .

20-2 LISP for NOSNE Language Definition Usage Supplement Revision A

r·
....... ,

(--)

(-:

c

c'

C_-, ,

C~-,

Streams 21

Standard Streams (327) ... 21-1
terminal-io (328) .. 21-1

't,

o

c!

C)

Streams

This chapter supplements chapter 21 of Common LISP. LISP support of streams is
described.

Standard Streams (327)

LISP stream special variables have the following values:

standard-input
standard-output

#<STREAM TO NIL>
#<STREAM TO NIL>

NIL specifies that the streams are not directly connected to files.

terminal-io (328)

21

If other users need to use your LISP application without directly interacting with LISP,
you can use an SeL procedure as shown in Entering LISP, chapter 1.

Revision A Streams 21-1

'~,-.. ~ ,

r ~'

r"----'

LI

l

C~-·/

C/

Input/Output· 22

Input Functions (374) ... 22-1
Input From Binary Streams (382) ... 22-1

Output Functions (382) : .. 22-1
Output to Character Streams (382) .. 22-1
Output to Binary Streams (385) ... 22-1

Formatted Output to Character Streams (385) 22-1

\.

/

\---"

.. _------_. __ _ .. _----------_ .. _------_ .. __ .. _-_ •.......• _._ ..•.. _-._ .• _ .•. ----------------------------------

o

Input/Output 22

This chapter supplements chapter 22 of Common LISP. LISP support of input and
output is described.

Input Functions (374)

LISP supports character and binary streams inputs.

Input From Binary Streams (382)

LISP allows input from binary streams. It supports the read-byte function.

For the read-byte function, the number of bits to transfer is determined in the same
way as in the write-byte function. LISP transfers the appropriate number of bits from
the stream to the integer. If the :element-type of the stream is a signed quantity, the
highest bit is extended.

Output Functions (382)

LISP supports character and binary streams outputs.

Output to Character Streams (382)

If you print something and do not see it displayed immediately at the terminal, the
reason may be the operating system's buffering of output. The finish-output function
can be used to cause the buffer to be flushed. For example, the following function
displays the question: What do you want?

(defunprompter ()
(print "What do you want? ")
(finish-output)
(read»

Calling finish-output is necessary in order to force the question to be displayed and
read the user's response from the same line.

Output to Binary Streams (385)

LISP allows output to binary streams. It supports the write-byte function.

For the write-byte function, LISP looks at the :element-type of the stream and
calculates the number of bits to send to the stream. It then transfers the appropriate
number of the low order bits of the integer to the stream.

Formatted Output to Character Streams (385)

Common LISP, in describing the -F and -E formats says that when rounding up and
rounding down would produce printed values equidistant from the scaled value of arg,
the implementation is free to use either one. LISP rounds down in this situation.

Revision A InpuUOutput 22-1

...... ~ .' '

File System Interface 23

File Names (409) ... 23-1
Pathnames (410) .. 23-1

Opening and Closing Files (418) ... 23-3

Renaming, Deleting, and Other File Operations (423) .. 23-5

Loading Files (426) ... 23-6

Accessing Directories (427) .. 23-6

c,

\"

· ... _--_. __ .. - .. _---_ ...•... __ ._ .. -------_._--_ .. _-_ _._--_ .. _- ... _ --_. __ •.. __ . __ ._ _ ..•.. _.- -----------------------------

~.
, I

"--/

File System Interface 23

This chapter supplements chapter 23 of Common LISP. The LISP interface with the
NOSIVE file system is described. For more information on the NOSNE file system, see
the NOSIVE System Usage manual.

File Names (409)

The filenames that are accepted by LISP pathnames are any valid NOSIVE file path.
The definition for a filename is:

:family _name. user _name.catalog.file_name.cycle_reference.file_ position

where catalog is specified as:

name. name.name

where each name is a subcatalog in a permanent file catalog hierarchy.

Pathnames (410)

The components of a LISP pathname consists of six required components and two
additional components unique to NOSIVE (family_name and file_position). The
contents of each of the components are described as follows:

Host

Device

Family _name

Directory

Name

Revision A

The name of the file system, that is, NOSIVE.

This slot contains a keyword that describes the nature of the .file
reference. If the reference begins with the family _name, the device
component contains : family _name. If the file reference is absolute
(such as, beginning with '.' as in .lisp_maintenance), then the device
component contains :absolute. For a file reference that is relative
(such as, a filename or a reference that starts with a catalog name
such as $SYSTEM), the device component contains NIL.

NOTE

The value of this component is assigned by the system; it should not
be assigned by the user.

This component contains a string containing the family _name, if
present; otherwise, it contains NIL.

If there are catalog names in the file reference, this component
contains an array whose elements are strings corresponding to the
individual catalog names. If the file reference contained .lisp. test, the
directory component contains a two-element array whose first element
is the string 'lisp' and whose second element is the string 'test'. If the
file reference contains no catalogs, this component is NIL.

This component contains a string that corresponds to the name of the
file if a filename is given in the reference. If no name is specified,
this component is NIL.

File System Interface 23-1

File Names (409)

Version

File_position

If an explicit cycle number is specified, this component contains an
integer corresponding to that cycle. If one of the special designators
for file cycles is used, the appropriate keyword from the following list
is placed in the version component:

Designator

$HIGH
$LOW
$NEXT

Keyword

:newest
:oldest
:next

If there is no cycle specified, this component is NIL.

If a file position is specified in the file reference, the correct keyword
from the following list appears in the file_position component:

Designator Keyword

ASIS :asis
BOI :boi
EOI :eoi

If no file_position is specified, this component is NIL.

There is no provision for a :wild keyword as NOSNE does not provide a wildcard
facility.

23·2 LISP for NOSNE Language Definition Usage Supplement Revision A

~

\. -- .. /
I

/"...--.....",

....... _.-'.

(~
"_ ... ,<'

---------------- ------ - - ------- -------------- ---

CI

(----',
l \ '--)

u

C)
o

Opening and Closing Files (418)

Opening and Closing Files (418)

All LISP input/output functions use standard NOSNE files. For example:

(open "$USER.filename")

This statement opens the permanent NOSNEfile named filename. The open function
file reference parameter must be a namestring.

LISP does not override access modes assigned at the operating system level. An action
or assignment within LISP which conflicts with the assigned NOSNE access modes is
not detected when LISP opens a file. For example:

(ve-conmand "ATTACH_FILE FILE=$USER. fi lename ACCESS_MODE=READ ")
(setq an-output-stream (open "filename" :direction :output»

As requested by the ATTACH_FILE command, the named file is attached by NOSNE
as a read-only file. However, the open function gives a conflicting file direction
(:output). This error goes undetected until a LISP action invokes an output function,
such as:

(setq a-string "Please enter a form")
(print a-string an-output-stream)

LISP supports the open function keywords as described in Common LISP, with the
exceptions mentioned in the following paragraphs.

: direction

To open an existing file for direction :output or :io, either use $NEXT in the filename
or specify :if-exists to be something other than :error (which is the default).

:element-type

If :element-type is not string-char or character, the file opens as a segment access file.
The file is random access, and it can be read or written using read-byte or write-byte.
You can also use the file-position function on such files.

The byte sizes supported in the specification of :element-type are:

(:signed-byte n)
where n= 1, 2, 3, 4, 5, 6, 7, 8, 16, 24, or 32.

(:unsigned-byte n)
where n= 1, 2, 3, 4, 5, 6, 7, 8, 16, or 24.

(mod n)
where n=2, 4, 8, 16, 32, 64, 128, 256, 65536, or 16777216.

If you want to read or write segment access files with read-char and write-char, use
the :element-type of (:unsigned-byte 8).)

: if-exists

If :if-exists is :rename the file's new name is the same as the old name with _old
appended. It is an error if both of the files already exist.

Revision A File System Interface 23-3

Opening and Closing Files (418)

In Common LISP, the description of the open function with :direction :io and :if-exists
:overwrite states that the file is not truncated back to length zero when it is opened.
LISP, however, truncates the file back to its current position when the file is closed.
For example, if you create a file ZX containing the following:

(1 2 3)

(4 5 6)

(7 8 9)

and then enter LISP and type the following:

(let «str (open "zx" :direction :io :if-exists :overwrite»)
(print (file-length str»
(close str»

(let «str (open "zx" :direction :io :if-exists :overwrite»)
(print (file-length str»
(close str»

the first length printed is 63. The second length printed is 28 because the file was
truncated as a result of the first close.

23-4 LISP for NOSIVE Language Definition Usage Supplement Revision A

c"

o
\ C"'"

Renaming, Deleting, and Other File Operations (423)

Renaming, Deleting, and Other File Operations (423)

rename-file

You cannot rename NOSIVE files in the $LOCAL catalog. You can only rename
permanent files using the function rename-file.

delete-file

The delete-file function deletes a file immediately. For a permanent file, if cycle is not
specified, the lowest cycle is deleted immediately. Because NOSIVE does not allow
deletion of an open file, using the delete-file function with an argument that is an open
stream associated with a file is not successful. An attempt to delete a nonexistent file
is also not successful.

file-write-date

For the file-write-date function, LISP returns the date of the file's last modification.

file-author

The file-author function returns the user information field of the file's directory entry.

file-position

Binary files are allocated a page at a time. EOF (and therefore the :end designation
for file position) extends past the number of bytes actually written to the file unless
the number of bytes written is a multiple of the system page size. For example, if the
system page size is 8192 and 8000 bytes are written, the following form:

(file-position file-stream :end)

sets the position within file-stream to be 8192. In the preceding example, end-of-file is
8192 although only 8000 bytes are written.

For the file-position function of an :element-type of a C:signed-byte 8) segment-access
file, performing a single read-char or write-char operation does not increase the file
position by more than one.

Revision A File System Interface 23-5

Loading Files (426)

Loading Files (426)

load

The *default-pathname-defaults* variable allows you to establish defaults for the
components of a pathname. If you do a SET_WORKING_CATALOG and then specify a
relative pathname for the filename parameter of the load function, the loaded file is
the same file referenced by a NOSIVE command using the same relative path name. If
the filename is a string instead of a pathname, the string is treated as a full path
name with no defaults taken from *default-pathname-defaults*.

You can reset the value of *default-pathname-defaults* to cause pathname components
to default to values of your choice. For example, if you do:

(setQ *default-pathname-defaults* (pathname ".abc.def.gh1"»

then the following form:

(merge-pathnames "xyz")

returns the following:

#.(pathname ".abc.def.xyz")

Accessing Directories (427)

LISP supports the directory function. The ve-command function and the NOSIVE
command DISPLAY_CATALOG can also be used for this operation.

The argument to the directory function must specify a directory, or it is an error. The
:wild keyword cannot be used in the pathname argument.

23-6 LISP for NOSNE Language Definition Usage Supplement Revision A

.........

('"

(-_.-,

c

/--

L.

(~-:

Errors 24

General Error-Signalling Functions (429) .. 24-1

Specialized Error-Signalling Forms and Macros (433) 24-1

Debugging Tools (440) ... 24-1

,/

Errors

This chapter supplements chapter 24 of Common LISP. LISP handling of errors is
described.

24

LISP signals an error for the first encountered" incorrect argument of a form. If there
is no handler for the error, the debugger is entered.

Appendix D lists all diagnostic messages generated by LISP. LISP does not use the
SCL STATUS variable for diagnostic messages.

General Error-Signalling Functions (429)

LISP error message indentation is uniform.

The warn function advances to a new line before and after output; the name of the
function calling warn does not appear.

Specialized Error-Signalling Forms and Macros (433)

The check-type macro does not issue messages in a form dependent on the recognition
of a particular form.

Debugging Tools (440)

The debugging tools supported by LISP are described in chapter 26, Error Handling
and Debugging.

Revision A Errors 24-1

Miscellaneous Features 25

The Compiler (438) ... 25-1
compile (439) , ' 25-1
compile-file (439) ... 25-1

input-path name .. 25-1
:module~name .. 25-2
:output-file ... 25-2
:error-file .. 25-2
:errors-to-terminal 25-2
:load ... 25-2

disassemble (439) ... 25-3
compile time environment ... 25-3

Debugging Tools (440) ... 25-4
$save-lisp .. 25-4
Substituting for the ed Function (442) ... 25-4
Miscellaneous Debugging Tools .. 25-5

The Time Macro ... 25-5
The Describe Function ... 25-6
The Inspect Function 25-6
The Dribble Function .. 25-6

Environment Inquiries (443) ... 25-7
Other Environment Inquiries (447) .. 25-7

/

Miscellaneous Features 25

This chapter supplements chapter 25 of Common LISP. The remaining features of LISP
are described.

The Compiler (438)

LISP supports compilation.

Several features that speed up compiled code slow down interpreted code. For instance,
a macro is much more efficient when used in compiled code, where it is only expanded
once at compile time; in interpreted code, it must be expanded each time it is
encountered.

The LISPIVE compiler deletes and creates some files, whose names begin with the
characters LIF$, in the $LOCAL catalog. To avoid damage to your $LOCAL files by
the LISPIVE compiler, you are advised to not create files whose names have LIF$ as
the first four characters.

compile (439)

The compile function compiles a lambda expression into object code. The format is:

compile name &optional definition [Function]

If definition is supplied, it should be a lambda-expression; if it is not supplied, then
name should be a symbol with a definition that is a lambda expression. If name is a
non-NIL symbol, then the compiled function object is installed as the global function
definition of the symbol, and the symbol is returned; if name is NIL, then the compiled
function itself is returned.

compile-file (439)

This function compiles the contents of the file specified as input-pathname and writes
the compiled code to a NOSIVE object library whose name is specified by the
:output-file argument. The result returned by compile-file is NIL. For arguments
:output-file and :error-file, it is an error to specify an existing permanent file; it is not
an error to specify the next cycle of an existing permanent file. The format of
compile-file is:

compile-file &optional input-pathname &key :module-name
:output-file :error-file
:errors-to-terminal :load

input-pathname

[Function]

This should be a LISP source file; its contents are compiled. If supplied, the
input-path name must be a valid file specifier acceptable to OPEN. If not supplied, the
compiler prompts the user for the name. The input-pathname must not be the same as
any name accessible in your program attribute libraries.

An error can occur if you compile a function and load it; then modify the· function to
have a different number of arguments but the same function name, and recompile and
load it.

Revision A Miscellaneous Features 25·1

The Compiler (438)

:module-name

This module-name is used as the name of the load module. The module-name must not
be the same as the name of any of the other arguments, the pname of any symbol
naming a function to be compiled, and any name accessible in your program attribute
libraries. The module-name can consist of 1 to 20 upper case characters not including a
dash (-), but including:

• letters
• digits

• #
• @ •
If the module name is not supplied, the compiler prompts you for the name. An error
can occur if multiple compilations are done in one LISP session, reusing the same
module name.

The use of the term module has no relation with the *module* variable or the require
and provide functions.

:output-file

The :output-file argument is used to specify an output pathname for the object library
that the compiler produces. This file can be loaded using the load function or by
specifying T for the :load argument of compile-file. If the output-file is specified, it
must be a valid file specifier to OPEN. The default is LISP _LGO. An error can occur
if multiple compilations are done in one LISP session, reusing the same output file
name.

:error~file

Error messages for any of the errors detected by the compiler are written. to :error-file
if :errors-to-terminal is NIL. If the error-file is specified, it must be T, NIL, or a valid
file specifier acceptable to OPEN. If the error-file is specified as NIL or not specified,
then no error-file is generated. If the error-file is specified as T; then the file name is
constructed by adding the characters _ERRORS to the input-pathnames' true name.

:errors-to-terminal

If T is specified, error messages are sent to the terminal; if NIL is specified, error
messages are written to the error-file. The default is T.

:load

If T is specified, the compiled code is loaded; if NIL is specified, the compiled code is
not loaded. The default is NIL.

25·2 LISP for NOSIVE Language Definition Usage Supplement Revision A

'~

C~,':

c,~

C)

c~
C\

The Compiler (438)

disassemble (439)

The disassemble function takes a symbol with a lambda expression as a function
definition and produces a CYBIL listing. The result of the disassemble function is the
location of such a listing.

The disassemble function does not accept an already compiled function as an argument.
It is an error to pass a function object or a lambda-expression to the disassemble
function.

compile time environment

Certain features of LISP that occur automatically in the interpreter are not included in
compiled code unless explicitly requested by the user. These features alter the
environment in which compiled code is loaded. For example, a DEFSTRUCT in the
interpreter creates setf-methods to set the structure's slot values. Each method is
associated with the slot-accessor function for that slot. Consider this example:

(defstruct ship size speed)

(setQ s (make-ship :size 100 :speed 20»

(setf (ship-speed s) 30)

When this DEFSTRUCT is executed by the interpreter, setf-method's are created for
SHIP-SIZE and SHIP-SPEED, thus altering the interpreter environment for all ensuing
processing. This alteration is not made when compiled code is loaded (unless the user
requests it). A subsequent call to SETF with one of these slot-accessors returns an
error signaling that a bad location specifier has been used for SETF, since there is no
setf-method for the slot-accessor in the current environment.

To specify that the environment be altered to include the setf-methods for
slot-accessors, execute the DEFSTRUCT within an EVAL-WHEN that specifies all
changes in environment be made during compilation, loading, and evaluation, as in:

(eval-when (compile load eval)
(defstruct ship size speed)

This form of EVAL-WHEN can be used whenever it is desirable to have all changes in
environment implicit in compiled code be made when the code is used.

60486213 B Miscellaneous Features 25-3

Debugging Tools (440)

Debugging Tools (440)

For the room function, the degree of memory compaction of the internal data types and
the format of the printed information are as follows:

Memory Compaction Format

Conses allocated Integer

Conses reclaimed Integer

Array blocks allocated Integer

Array blocks reclaimed Integer

Array bytes allocated Integer

The optional argument for the room function is ignored; thus, LISP prints the same
information whether the room function is called with the argument or without it.

$save-lisp

This function allows you to save a LISP workspace between terminal sessions (however,
~j~ a workspace created under LispNE 1.7 cannot be used under LispNE 1.8). $save-lisp

has the form:

($ save-lisp)

$save-lisp creates an executable NOSNE file called $LOCAL.LISP _BASE_
SYSTEM _SPACES, containing the state of the LISP system. This file can be made
permanent for subsequent sessions.

$LOCAL.LISP .BASE _SYSTEM _SPACES does not contain any of your loaded compiled
code. If you want to use the compiled code, the code has to be reloaded.

Please remember that $LOCAL.LISP _BASE _SYSTEM _SPACES will not execute
properly under future versions of LISP. To execute this file, use the following NOSNE
commands:

SET_PROGRAM_ATTRIBUTES ADO_LIBRARY=$SYSTEM.LISP.BOUNO_PROOUCT
EXET LISP_BASE_SYSTEM_SPACES SP=LIP$LISP_SYSTEM TEL=FATAL

You can include these commands in your user prolog file for convenience.

Substituting for the ed Function (442)

LISP does not have anin~ernal editor. The ed function calls EDIT_FILE, the full
screen editor of NOSNE from within LISP. To do this, enter the function:

(ed "EOIT_FILE-)

or

(ve-command -EOIT_FILE FILE=f11ename INPUT=COMMANO-)

The argument to the ed -function is required and must be a string specifying the file to
edit.

25-4 LISP for NOSIVE Language Definition Usage Supplement 60486213 B

(
'\..../

o
C':I

o

o

Debugging Tools (440)

LISP returns a NIL value after a normal return from ve-command execution; an
abnormal return produces a value other than NIL containing an informative message.

More information about the NOSIVE EDIT_FILE command and the full screen editor
can be found in the NOSIVE File Editor TutoriallU sage manual.

Files edited with the full screen editor can be subsequently loaded by LISP using the
load function. For example:

(load "EDIT_FILE")

The argument to the load function is a NOSIVE file reference (not a Common LISP
pathname) and must be a name string, enclosed in quotation marks.

You can debug your program the same way with any system-supplied editor available
at your site. A convenient way to work is to enter code into a text file, which you then
load into the LISP system using the load function.

Miscellaneous Debugging Tools

The time macro and the describe, inspect, and dribble functions are miscellaneous
debugging tools that allow access to information about timing the evaluation of LISP
expressions, internal storage management, program objects, and program input and
output. These tools are described in the following paragraphs.

The Time Macro

time form [Macro]

Time is a macro which evaluates form and returns what form returns. However, as a
side effect, timing data are printed to the stream that is the value of *trace-output*.

? (time (car '(i 0»)

Evaluation times (in microseconds)

I

JOB time 6814
MONITOR time
REAL time

9872
8.01690000000000E+OOOS

The time macro is only accurate to within 50,000 microseconds. The job and monitor
times are obtained from the operating system function:

and real time is obtained from operating system function:

Revision A Miscellaneous Features 25·5

Debugging Tools (440)

The Describe Function

describe object [Function]

The describe function prints, to the stream in the variable *standard-output*,
information about the object. Sometimes it describes something that it finds inside
something else; such recursive descriptions are' indented appropriately. For instance,
describe of a symbol exhibits the symbol's value, its definition, and each of its
properties. Describe of a floating-point number exhibits its internal representation in a
way that is useful for tracking down round-off errors. The describe function returns no
values.

The Inspect Function

inspect object [Function]

The inspect function is an interactive version of describe. It allows you to examine and
modify data structures.

The Dribble Function

dribble pathname [Function]

(dribble pathname) rebinds *standard-input* and *standard-output* to send a record of
the input/output interaction to a file named by pathname. The primary purpose of this
is to create a readable record of an interactive session. Because of a NOSIVE
limitation, only the output actually gets recorded on the file.

(dribble) terminates the recording of input and output and closes the dribble file.

25-6 LISP for NOSIVE Language Definition Usage Supplement Revision A

\ " .

(')

Environment Inquiries (443)

Environment Inquiries (443)

LISP provides several environment inquiry functions that identify the NOSNE software
and CDC's computer hardware. These functions are described below.

Other Environment Inquiries (447)

LISP returns the following values for functions in this section:

Function

lisp-implementation-type

lisp-implementation-version

long-site-name

machine-instance

machine-type

machine-version

short-site-name

software:..type

software-version

features

Value

"LISPNE"

"Lisp/VE 1.8 89286"

"CONTROL-DATA­
CORPORATION-SITE"

A string

A string

Comments

Obtained from released code.

Where 89286 is the Julian
date on which the LISP
system was built.

Obtained from released code.

The string contains the
CYBER 180 serial number
known to NOSIVE.

The string contains the
CYBER 180 model type
known to NOSIVE.

"CDC CYBER 800 series" Obtained from released code.

"CDC-SITE" Obtained from released code.

"NOSIVE"

A string

(:CDC :VE :CYBER)

Obtained from released code.

The string contains the
operating system and product
set levels.

Obtained from released code.

All symbols placed on the *features* list must be in the keyword package.

60486213 B Miscellaneous Features 25·7

I

/'

to -------

/O~.

I

"

"

C~,

Error Handling and Debugging 26

Error Processing .. 26-1
Conditions .. 26-1
Defining Conditions and Creating Condition, Objects 26-2

The Define-Condition Macro .. 26-2
The Make-Condition Function " 26-4

Invoking the Signal and Debug Facilities 26-4
The Signal Function .. 26-5
The Debug Function .. 26-6
The Error Function .. 26-6
The Cerror Function ... 26-6
The Warn Function .. 26-7
The Break Function .. 26-7

Proceeding a Condition ... 26-8
The Proceed-Case Form .. 26-8
The Condition-Case Form .. " 26-12
The Catch-Error-Abort Macro .. 26-12
The Error-Abort Function _ 26-13
The Ignore-Errors Macro .. 26-13

Specialized Error-Signalling Macros .. 26-13
The Check-Type Macro " .. 26-13
The Assert Macro " ... 26-13
The Etypecase Macro .. 26-14
The Ctypecase Macro .. 26-14
The Ecase Macro .. 26-14
The Ccase Macro .. 26-14

Predefined Condition Types .. 26-15

Stepping .. 26-16

Tracing .. 26-17
The Trace Macro .. 26-17
The Untrace Macro , 26-19

Debugging ... 26-20
The Debug Function ... 26-20
The Debugger Commands .. 26-20

Control Commands ... 26-22
Stack Examination Commands, ... 26-22
Frame Movement Commands .. 26-24
Print Commands .. 26-24
Modification Commands ... 26-25
Miscellaneous Commands .. 26-25

/

""' ..

/
\
\

o

C
-···\

\

)

o
o

Error Handling and Debugging 26

This chapter discusses the handling of errors in and debugging of LISP programs.
Topics discussed include defining errors (what is an error and what can you do with
it), the LISP representation of errors, and how to find and fix unexpected errors. The
error handling package includes:

• A set of error functions that allow detection and, where possible, correction of
errors that you anticipate.

.. A step facility that allows you to examine the control flow of a program one step at
a time.

• A trace facility that allows you to watch the calling pattern of a specified set of
functions.

• A debugger that allows you to examine and, where possible, correct the system
state interactively when an error occurs.

• A set of debugging tools which allow access to information about timing the
evaluation of Lisp expressions, internal storage management, program objects, and
program input and output.

The following sections describe these capabilities.

Error Processing

The following description of error processing in LISP extends the current Common Lisp
capabilities in this area. This debugger attempts to follow proposals now being
considered by the ANSI Standard Committee.

Conditions

A condition is a LISP-object used to represent an exceptional situation which arises
during execution of a program. The situation discussed here is the error: a condition
which results from an incorrect program or incorrect data. Errors are not the only
types of conditions however. Storage conditions are examples of serious conditions that
are not errors. For example, the control stack may legitimately overflow without a
program being in error.

Some types of conditions are predefined by the system. The predefined condition types
are described in the section Predefined Condition Types. Condition types form an
inheritance hierarchy in which each type has one parent type and each type can be the
parent of any number of children. All types of conditions are subtypes of the predefined
type condition; therefore, (typep c ' condition) is true only if c is a condition. All
conditions inherit the properties of the condition type.

You are free to define any additional condition types necessary for a particular
application. Condition types are defined using the define-condition function. Creating a
condition object of a specified type is accomplished using the make-condition function.
These functions are described in detail in this chapter.

Revision A Error Handling and Debugging 26-1

Error Processing

Once a condition is created, it is common to signal it. To signal a condition means to
attempt to locate and invoke a function, called a handler, which is specifically designed
to deal with the type of situation represented by the condition. When a condition is
signaled, handlers that may be appropriate are tried in a predefined order until one
decides to handle the condition or until no more handlers are found. A condition is said
to have been handled if a handler performs a non-local transfer of control to exit the
signaling process. -

Although non-local transfers may be accomplished using traditional Lisp mechanisms
such as catch and throw, block and return, or tagbody and go, the condition system
also provides a structured method for proceeding a condition. Proceeding a condition
means resuming execution of the program that signaled the condition from some
pre specified point. The use of structured primitives for proceeding allows a more
integrated relationship between the user program and the interactive debugger.

It is not necessary that all conditions be handled. Some conditions are trivial enough
that a failure to handle them may be disregarded. Other serious conditions must be
handled in order to assure correct program behavior. If a serious condition is signaled
but no handler is found, the interactive debugger is invoked so that the user may
examine the state of the program and, in some cases, continue execution. An error is a
serious condition.

It is usually useful to report a condition to the user or a log file of some sort. When
the printer is invoked on a condition while *print-escape* is NIL, its report function is
invoked. In particular, this means that an expression like (format t "-A" condition)
invokes condition's report function. The report -function is specified at the time the
condition type is defined.

Defining Conditions and Creating Condition Objects

The define-condition macro is used to define a new condition type. The make-condition
function is used to create an instance of a given type.

The Define-Condition Macro

define-condition name parent-type [keyword value]* &rest slots [Macro]

The define-condition macro defines a new condition type with the given name.
Parent-type is the name of the super type. Slots is a sequence of symbol slot names or
lists of slot names and default values, with the same syntax as the slots of a defstruct.
For example:

(define-condition bad-food-color error food (color 'green»

creates a new type of condition called bad-food-color. Its parent type is error so it
would inherit all the slots of error.

The slots specific to this condition are food and color. The color slot is initialized to
the value green each time a bad-food-color condition is created unless some other value
is supplied at the time of creation.

Slot accessor functions are generated automatically for each slot name that is unique to
this condition type. If a _ slot name is specified which is also a slot name of one of
name's ancestors, only one slot is created in the condition object. However, if a default
is specified for this slot in the definition of name, it will override any ancestors'
defaults.

26·2 LISP for NOSIVE Language Definition Usage Supplement Revision A

' "

r~
,--._- .'

o

L)
o

Error Processing

The keyword and value pairs are:

:CONC-NAME symbol-or-string

The conc-name keyword specifies a prefix for the slot accessor functions of a
condition. The default behavior for generating the accessor functions is to use the
name of the new type, name, followed by a hyphen and the name of the slot. For
example:

(define-condition incredibly-obscure-error obscure-error
:conc-name ioe-
date message)

defines a new condition type called incredibly-obscure-error with slots of date and
message. The accessor functions are ioe-date and ioe-message rather than the
default accessor functions incredibly-obscure-error-date and
incredibly-obscure-error-message.

:REPORT-FUNCTION expression

Expression should be a suitable argument to the function special form, either a
symbol or a lambda expression. It designates a function of two arguments, a
condition and a stream, which prints the condition to the stream when
print-escape is NIL.

:REPORT form

A short form of :report-function to cover two common cases. If form is a string, this
is equivalent to:

:report-function
(lambda (ignore stream) (write-string form stream»

Otherwise, if form is not a string, it is equivalent to:

:report-function
(lambda (condition -standard-output-) form)

In the latter case, form describes how to print objects of the type being defined. It
should send output to *standard-output*. The condition being printed is bound to a
variable called condition during execution of the form.

:HANDLE form

Form is an expression to be used as the body of a default handler for this type of
condition. Form may refer to a variable called condition; this is bound to the
condition being handled during the execution of form.

NOTE

It is an error to specify both :REPORT-FUNCTION and :REPORT in the same
define-condition. If neither is specified, the report method is inherited from a parent
type.

Revision A Error Handling and Debugging 26-3

Error Processing

The following examples define condition types. First, a condition called machine-error is
defined which inherits from error:

(define-condition machine-error error
:report (format t "There is a problem with -A."

(machine-error-machine-name condition»
machine-name)

The following defines a new error condition (a subtype of machine-error) for use when
machines are not available:

(define-condition machine-not-available-error machine-error
:report (format t "The machine -A is not available."

(machine-error-machine-name condition»)

And finally, the following defines a still more specific condition, built upon
machine-not-available-error which provides a default for machine-name but does not
provide any new slots:

(define-condition my-favorite-machine-not-available-error
machine-not-available-error

(machine-name "CDC CYBER 830"»

This gives the machine-name slot a default initialization. Since no :report clause was
given, the format information supplied in the definition of machine-not-available-error
is used if a condition of this type is printed while *print-escape* is NIL.

The Make-Condition Function

make-condition type &rest slot-initializations [Function]

The make-condition function calls the appropriate constructor function for the given
type, passing along the given slot initializations to the constructor, and returning an
instantiated condition. Slot-initializations are given in alternating keyword and value
pairs, such as:

(make-condition 'bad-food-color :food my-food :color my-color)

Invoking the Signal and Debug Facilities

When a condition object is created, the most common operation to be performed upon it
is to signal it. Signaling a condition means that the system tries to locate the most
appropriate handler for the condition and invoke that handler. Signaling is done by
invoking the signal function. Handlers are located according to the following rules:

• Check for locally bound handlers.

• If no appropriate bound handler is found, check for a default handler: first for the
signaled type and then for each of its ancestors' types.

• If a handler is found, it is called. In some circumstances (to be described later), the
handler may decline by simply returning without performing a non-local transfer of
control. In such cases, the search for an appropriate handler is picked up where it
left off, as if the called handler was not present.

26-4 LISP for NOSIVE Language Definition Usage Supplement Revision A

;'-------
I
\

~'''''''' ."

......... ~., ...

c

o
C~:

Error Processing

• If no bound handler or default handler is found, or if all handlers which were found
decline, signaling returns the condition which was signaled.

A handler is a function of one argument, the condition to be handled. The handler may
inspect the condition to be sure it is interested in handling it. Mter inspecting the
condition, the handler must take one of the following actions:

• It may decline to handle the condition by simply returning. When this happens, the
returned values are ignored and the effect is the same as if the handler had been
invisible to the mechanism seeking to find a handler. The next handler in line is
tried, or if there is no such handler, the condition is returned.

• It may perform some non-local transfer of control using go, return, throw, abort,
invoke-proceed-case, or a defined proceed function (described in the section
Proceeding a Condition).

• I t may signal another condition.

o It may invoke the interactive debugger.

It was stated above that the first step in signaling a condition is to look for a locally
bound handler. Handlers are locally bound using the special form condition-bind.

condition-bind bindings &rest forms [Special Form]

Condition-bind executes forms in a dynamic context where the given local handler
bindings are in effect. Bindings is a list of binding elements where each element takes
the form:

(type handler)

Type may be a condition type or a list of condition types. Handler should evaluate to a
function to be used to handle conditions of type(s) during execution of forms.

There are· three common situations in which the signal facility is invoked: during the
execution of the error, cerror, and warn functions. The debugger can also be invoked in
these situations, as well as during the execution of the break function. Signaling is
accomplished by calling the signal function. The debugger is invoked by calling the
debug function.

The Signal Function

signal datum &rest arguments [Function]

The signal function searches for a handler for a condition. If a handler is found which
handles the condition, control does not return to signal. If the condition is not handled,
signal returns the condition object it was attempting to handle.

If datum is a condition, then that condition is used directly. In this case, it is an error
for arguments to be non-NIL.

If datum is a condition type, then the condition used is the result of doing:

(apply #'make-condition datum arguments)

Revision A Error Handling and Debugging 26·5

Error Processing

If datum is a string, then the condition used is the result of doing:

make-condition 'simple-condition
:format-string datum
:format-arguments arguments)

The Debug Function

debug condition

The debug function enters the debugger directly.

[Function]

If the special variable *abort-debug* has the value t, condition is printed out and
control is returned to the top level Lisp.

If *abort-debug* is NIL, condition is printed out and the interactive debugger is
entered.

The Error Function

error datum &rest arguments [Function]

The error function invokes the signal facility on a condition. If the condition is not
handled, the debugger is invoked. Control never returns to error from the debugger
which means that error never returns to its calling program.

If datum is a condition, then that condition is used directly. In this case, it is an error
for arguments to be non-NIL.

If datum is a condition type, then the condition used is the result of doing:

(apply #'make-condition datum arguments)

If datum is a string, then the condition used is the result of doing:

(make-condition 'simple-error
:format-string datum
:format-arguments arguments)

The Cerror Function

cerror proceed-format-string datum &rest arguments [Function]

The cerror function invokes the signal facility on a condition. If the condition is not
handled, the debugger is called. While signaling is going on, and while in the debugger
if it is reached, it is possible to proceed this condition using the function proceed. The
value returned by cerror is the condition which was signaled.

If datum is a condition, then that condition is used directly. In this case, arguments
are used only with the proceed-format-string and are not used to initialize datum.

If datum is a condition type, then the condition used is the result of doing:

(apply #'make-condition datum arguments)

26-6 LISP for NOSNE Language Definition Usage Supplement Revision A

,~,.... --~ -

:, ..• -

\

'~ ---... ,

/~----,

(-"' ... --/

c

o

- --

If datum is a string, then the condition used is the result of doing:

(make-condition 'simple-error
:format-string datum
:format-arguments arguments).

Error Processing

The proceed-format-string must be a string. Note that if datum is not a string, then
the format arguments used by the proceed-format-string are still the arguments (in the
keyword format as specified). In this case, some care may be necessary to set up the
proceed-format-string correctly. The format operator -* may be particularly useful in
this situation.

The Warn Function

warn datum &rest arguments [Function]

The warn function invokes the signal facility on a condition. If the condition is not
handled, the text of the warning is output to the stream that is the value of
error-output and, if the global variable *break-on-warnings* is true, the debugger is
entered. In this case, warn returns only if proceed is done from the debugger. The
value returned is the condition which was signaled.

If datum is a condition, then that condition is used directly. In this case, it is an error
for arguments to be non-NIL.

If datum is a condition type, then the condition used is the result of doing:

(apply #'make-condition datum arguments)

If datum is a string, then the condition used is the result of doing:

(make-condition 'simple-warning
:format-string datum
:format-arguments arguments)

The Break Function

break &optional datum &rest arguments [Function]

The break function directly enters the debugger with a condition without trying to
invoke the signal facility. Executing the function proceed while in the debugger causes
a return from break. The value returned is the condition that was used.

If datum is a condition, then that condition is used directly. In this case, it is an error
for arguments to be non-NIL. If datum is a condition type, then the condition used is
the result of doing:

(apply #'make-condition datum arguments)

If datum is a string, then the condition used is the result of doing:

(make-condition 'simple-condition
:format-string datum
:format-arguments arguments)

Revision A Error Handling and Debugging 26·7

Error Processing

Proceeding a Condition

Conditions are proceeded by error handlers or, in the cases of the warn, break, and
cerror functions, you can proceed from the debugger. Proceeding a condition means
passing control to some pre specified point in the program and resuming execution from
that point. There are two special forms which are used to set up these points:
proceed-case and condition-case. There is also °a macro, catch-error-abort which is
similar to proceed-case but is used only in a specific context. These forms are described
below.

The Proceed-Case Form

proceed-case form &rest clauses [Special Form]

The proceed-case form passes control to some pre specified point in the program and
resumes execution from that point.

Form is evaluated in a dynamic context where clauses specify points to which control
may be transferred in the event that a condition is signaled. If form runs to completion
without signaling a condition, all values it returns are simply returned by proceed-case.
Otherwise, a handler may transfer control to one of the clauses. A proceed-case-clause
has the form:

(proceed-function-name arglist [keyword value]* [body-form]*)

Each proceed case clause defines a proceed case structure. Proceed case structures are
objects which behave similarly to catch tags. They serve as points to which control
may be transferred by error handlers or by the debugger. In the following discussion,
proceed case refers to a proceed case structure. The special form proceed-case is
referred to as the proceed case form.

When 0 control is transferred to a clause, body-formes) is evaluated and any values
returned by the last form is returned by the proceed-case form.

Proceed-function-name may be NIL, it may be the name of a defined proceed function
(see define-proceed-function), or it may be any symbol which can be an argument to
invoke-proceed-case.

Arglist is a list of variables to be bound during the execution of body-forms. Arglist
may be NIL if you don't care about any of the arguments; otherwise, the variables
must be compatible with the arguments of the proceed function or the values passed by
invoke-proceed-case. The first variable is always the condition that was signaled.

26-8 LISP for NOSlVELanguage 0 Definition Usage Supplement Revision A

.._ .. _---_ _---_ _---------------------------------

o

o

Error Processing

The valid keyword and value pairs are:

:TEST function

Function is a function of one argument, the condition, which must return true for
this clause to be visible to handlers. The function should be in a form which is
acceptable as an argument to function.

:CONDITION type

Shorthand for the common case of :test in which the type of a condition is being
tested to determine the visibility of the handler. The following two forms are
equivalent:

: condit ion faa

:test (lambda (condition) (typep condition 'fool)

:REPORT-FUNCTION expression

Expression must be an appropriate argument to function and should designate a
function of two arguments, a proceed case and a stream. The function should print
a message which summarizes the action that proceed case will take.

:REPORT form

This is a shorthand for two important special cases of :report-function. If form is a
string, then this is the same as:

:report-function
(lambda (ignore stream) (write-string form stream»

If form is not a string, this is the same as:

: report-funct10n
(lambda (condition *standard-output*) form)

In the latter case, form must send output to *standard-output* and should
summarize the action that this proceed case clause will take.

NOTE

Only one of :test or :condition and only one of :report or :report-function may be
specified.

Keyword values specified in the proceed case clause override any defaults given in the
definition of a defined proceed function.

If proceed-function-name is NIL, it is an error if report information is not supplied.
Otherwise, default report information is generated if necessary using the proceed
function name.

When the printer is invoked on a proceed case while *print-escape* is NIL, the report
function for that structure is invoked. In particular this means that an expression like
(format t "-A" proceed-case) invokes proceed case's report function.

Revision A Error Handling and Debugging 26-9

Error Processing

The following example demonstrates the use of the proceed case form; the function
break can be defined as follows:

(defun break (datum &rest arguments)
(proceed-case

(debug (cond «typep datum 'condition) datum)
«symbolp datum)
(apply #'make-condition datum arguments»

«stringp datum)
(make-condit10n 'simple-condition

:format-string datum
:form-arguments arguments»

(t (error "Bad argument to Break: -S" datum»»
(proceed (condition)

:test (lambda (ignore) t)
:report "Return from Break."
condit ion»)

The following are auxiliary functions to be used with the proceed-case form:

proceed-case-name proceed-case [Function]

The proceed-case-name function returns the name of proceed-case or NIL if it is not
named.

compute-proceed-cases [Function]

The compute-proceed-cases function returns a list of proceed cases which are
available in the current dynamic extent.

The list which results from a call to compute-proceed-cases is ordered so that the
innermost (that is, most recently established) proceed cases are nearer the head of
the list.

find-proceed-case name [Function]

The find-proceed-case function searches for a proceed case structure with name as
its proceed-function-name and which is in the current dynamic extent.

If name is a defined proceed function name, then the most recently established
proceed case with that name is returned. NIL is returned if no such proceed case is
found.

If name is a proceed case, then it is simply returned unless it is not currently valid
for use. In that case, NIL is returned.

invoke-proceed-case proceed-case condition &rest values [Function]

The invoke-proceed-case function transfers control to the given proceed-case, passing
values as arguments. Proceed-case must be a proceed case structure or the name of
a defined proceed function which is valid in the current dynamic context. If the
argument is not valid, an error is signaled.

define-proceed-function name [keyword value]* &rest variables [Special Form]

The define-proceed-function special form defines a function called name which will
proceed a condition. The proceed function takes a required argument of a condition
and optional arguments which are given by variables.'

26·10 LISP for NOSIVE Language Definition Usage Supplement Revision A

/'~
I,
\ _, , ,./'

''-,._

c

C""
/

c) /

o
u

Error Processing

The variable condition is bound to the condition object so that it is accessible
during the initialization of the optional arguments.

Each element of variables is either:

1. variable-name
2. (variable-name initial-value)

If initial-value is not supplied, it defaults to NIL.

Keyword and value pairs are the same as those which are defined for clauses of the
proceed case form: :TEST, :CONDITION, :REPORT-FUNCTION, and :REPORT.

The following examples demonstrate some possible proceed functions which might be
useful in conjunction with a bad-food-color error:

(define-condition bad-food-color error food (color 'green»

(define-proceed-function use-food
:report "Use another food."
(food (read-typed-object 'food "Food to use instead: "»)

(define-proceed-function use-color
:report "Change the food's color."
(color (read-typed-object 'food "Color to make the food: "»)

The following sample condition handler uses the use-food function defined above. Notice
that, although the define-proceed-function only specifies one variable, food, the
invocation of the use-food function can take two variables, a condition and food.
Condition is an optional argument. If it is not provided, it defaults to NIL.

(defun maybe-use-water (condition)
(if (eQ (bad-food-color-food condition) 'milk)

(use-food condition 'water»)

The handler defined above might be associated with the bad-food-color condition using
condition-bind: .

(condition-bind «bad-food-color #'maybe-use-water»
(some-computation»

If during the execution of some-computation a bad-food-color condition is signaled, the
handler maybe-use-water inspects the condition and, if the food specified in the
condition is milk, it invokes the proceed function use-food.

If a named proceed function is invoked in a context in which there is no active proceed
case by that name, the proceed function simply returns NIL. So, for example, in the
following pair of handlers, the first is equivalent to the second except that it is less
efficient:

#'(lambda (condition)
(cond «find-proceed-case 'use-food condition)

(use-food condition 'chocolate»
«find-proceed-case 'use-color condition)
(use-color condition 'orange»»

Revision A Error Handling and Debugging 26·11

Error Processing

#'(lambda (condition)
(use-food condition 'chocolate)
(use-color condition 'orange»

The Condition -Case Form

condition-case form &rest clauses

The condition-case executes the given form. Each clause has the form:

(type [var] . body)

[Special Form]

If a condition is signaled during the execution of form which is not handled by an
intervening handler, and if there is an appropriate clause for that condition, that is,
one for which (typep condition type) is true, then control is transferred to the body of
the relevant clause. Var is bound to the condition which was signaled. If no condition
is signaled, the values returned from the execution of form are returned by
condition-case.

If var is not needed, it may be omitted.

Type may also be a list of types, in which case it catches conditions of any of the
specified types.

The following example demonstrates the use of condition-case:

(condition-case (open *the-file* :direction :1nput)
(file-error (condition)

(format t "-&Open failed: -A-%" condition»)

The Catch-Error-Abort Macro

catch-error-abort print-form &body forms [Macro]

The catch-error-abort macro sets up a proceed-case context for the proceed function
error-abort (described later in this chapter).

If no error-abort is done while executing forms, all values returned by the last form in
forms are returned. If an error-abort transfers control to this catch-error-abort, two
values are returned: NIL and the condition which was given to error-abort (or NIL if
none was given).

catch-error-abort could be defined by:

(defmacro catch-error-abort (print-form &rest forms)
'(proceed-case (progn .~forms)

(error-abort (condition)
:report .print-form
:test (lambda (ignore) t)
(values nil condition»»

26-12 LISP for NOSIVE Language Definition Usage Supplement Revision A

.,-.--".

(~
' ,/'

c

o

c

o
(

_."

~;

Error Processing

The Error-Abort Function

error-abort &optional condition [Function]

The error-abort function transfers control to the innermost catch-error-abort form,
causing it to return NIL immediately.

It is not usually useful to specify condition. This is because the default test for
error-abort unconditionally returns true and all catch-error-abort forms are therefore
likely to be visible. The only such forms which might not be visible are those which
override the default test. In that rare case, specifying condition might make a
difference.

error-abort could be defined as:

(define-proceed-function error-abort
:report HAbort.-
:test (lambda (ignore) t»

The Ignore-Errors Macro

ignore-errors & body forms [Macro]

The ignore-errors macro executes its body in a context which handles errors of type
error by returning control to this form. If no error is signaled, any values returned by
the last form are returned by ignore-errors. Otherwise NIL is returned. This is the
same as:

(condition-case (progn forms)
(error () n1 l»

Specialized Error-Signalling Macros

The check-type, assert, etypecase, ctypecase, ecase, and cease macros are designed to
make it convenient for you to insert error checks into code. The following descriptions
are brief summaries of the information in Common LISP, The Language. For a
complete description, refer to that source.

The Check-Type Macro

check-type place typespec &optional string [Macro]

The check-type macro signals an error if the contents of place are not of the desired
type. If you continue from this error, you are asked for a new value; check-type stores
the new value in place and starts over, checking the type of the new value and
signaling another error if it is still not of the desired type. Subforms of place can be
evaluated multiple times because of the implicit loop generated. Check-type returns
NIL.

The Assert Macro

assert test-form [({place}*) [string {arg}*]] [Macro]

The assert macro signals an error if the value of test-form is NIL. Continuing from
this error allows you to alter the values of some variables, and assert then starts over,
evaluating test-form again. The assert macro returns NIL.

Revision A Error Handling and Debugging 26-13

Error Processing

The Etypecase Macro

etypecase keyform {(type {form}*)}* [Macro]

This control construct is similar to type case , but no explicit otherwise or t clause is
permitted. If no clause is satisfied, etypecase signals an error. You cannot continue
from this error. The name of this function stands for "exhaustive type case".

The Ctypecase Macro

ctypecase keyplace {(type {form}*)}* [Macro]

This control construct is similar to typecase, but no explicit otherwise or t clause is
permitted. The keyplace must be a generalized variable reference acceptable to setf. If
no clause is satisfied, ctypecase signals an error. Continuing from this error causes
ctypecase to accept a new value from you, store it into keyplace, and start over,
making the type tests again. Subforms of keyplace can be evaluated multiple times.
The name of this function stands for "continuable exhaustive type case".

The Ecase Macro

ecase keyform {({({key}*) I key} {form}*)}* [Macro]

This control construct is similar to case, but no explicit otherwise or t clause is
permitted. If no clause is satisfied, ecase signals an error. You cannot continue from
this error. The name of this function stands for "exhaustive case".

The Cease Macro

ccase keyform {({({key}*) I key} {form}*)}* [Macro]

This control construct is similar to case, but no explicit otherwise or t clause is
permitted. ·The keyplace must be a generalized variable reference acceptable to setf. If
no clause is satisfied, ccase signals an error. Continuing from this error causes ccase to
accept a new value from you, store it into keyplace, and start over, making the clause
tests again. Subforms of keyplace may be evaluated multiple times. The name of this
function stands for "continuable exhaustive case".

26-14 LISP for NOSIVE Language Definition Usage Supplement Revision A

/' "-,

c'

c'

C)

Predefined Condition Types

Predefined condition types are supplied to the user. The default condition type for
signal and break is simple-condition, for warning is simple-warning and for error and
cerror is simple-error. The predefined condition types are described as follows:

Condition [Type]

All types of conditions, whether error or non-error must inherit from this type.

Warning [Type]

All types of warnings should inherit from this type. This is a subtype of condition.

Serious-condition [Type]

Any condition, whether error or non-error, which should enter the debugger when
signaled but not handled, should inherit from this type. This is a subtype of
condition.

Error

All types of error conditions inherit from this condition. This is a subtype of
condition.

Simple-condition

Conditions signaled by signal or break when given a format string as a first
argument are of this type. This is a subtype of condition. The init keywords
:FORMAT-STRING and :FORMAT-ARGUMENTS are supported.

[Type]

[Type]

Simple-warning [Type]

Conditions signaled by warn when given a format string as a first argument are of
this type. This is a subtype of warning. The init keywords :FORMAT-STRING and
:FORMAT-ARGUMENTS are supported.

Simple-error

Conditions signaled by error and cerror when given a format string as a first
argument are of this type. This is a subtype of error. The init keywords
:FORMAT-STRING and :FORMAT-ARGUMENTS are supported.

[Type]

Revision A Error Handling and Debugging 26-15

Stepping

Stepping

step form [Macro]

Step is a macro which allows you to interactively single-step through the evaluation of
forms. When step is turned on, each successive sub-form is evaluated by a
read-eval-print loop. Before each cycle of the loop, information about the current step is
printed out, and the stepper enters a break where you have available several
alte~natives about how to proceed. These are shown in table 26-1.

If step is called with the argument t, single step evaluation is turned on globally. Any
subsequent forms which are read from the terminal (or a file) are evaluated using
single step mode until the stepper is turned off.

If step is called with the argument NIL, single step evaluation is turned off globally.

If step is called with the argument function-name + (one or more function names),
single step evaluation is turned on each time one of the specified functions is invoked,
but is off during all other evaluations.

If step is called with any expression (cons object) as its argument, that expression is
evaluated in single step mode.

Table 26·1. Step Commands

Command Name

N (next)

S (skip)

M (macro)

Q (quit)

P (print)

B (break)

E (eva})

H (help)

R (return)

A (abort)

Action

Evaluate current expression in step mode.

Evaluate current expression without stepping.

Step through a macroexpansion.

Turn stepper off and finish evaluation.

Print the current expression.

Enter debugger break loop.

Prompt for an arbitrary expression which is evaluated in the
current environment.

Print the list of available commands.

Prompt for an arbitrary value to return as the result of
evaluating the current expression.

Throw to the top level, abandoning the current computation.

26-16 LISP for NOSIVE Language Definition Usage Supplement Revision A

-......

"-... ..'

-----_._----_._---_._---

c

Tracing

Tracing
When a function is traced, invoking that function causes information about the call, the
arguments, and the eventually returned values to be printed to the stream that is the
value of *trace-output*. The value of *trace-output* can be initialized by setting it to
an open stream or by using the Common LISP command with-open-file. The default
stream for *trace-output* is *standard-output*. To trace a function, the trace macro is
used. To stop tracing of a function, the untrace macro is used.

The Trace Macro

trace {function-name I (function-name option-list)}* [Macro]

The trace macro is used to trace a function.

Calling trace with no arguments returns the list of currently traced functions. For
example, if there are currently two functions being traced, foo and bar, the call and
response is:

> (trace)
(foo bar)

Calling trace with one or more function names causes those functions to be traced and
to be added to the list of traced functions. As an example of the information provided
by tracing a function, given the following defined functions:

(defun testfun (number1 number2)
(cond «> number1 0)

(highest number1 number2»
(t 0»)

(defun highest (num1 num2)
(if (>= num1 num2)

num1
num2»

if the functions testfun and highest are traced:

>(trace testfun highest)

then invoking testfun:

>(testfun 3 5)

produces the following output:

5

1: (TESTFUN 3 5)
2: (HIGHEST 3 5)
2: returned 5

1: returned 5

Revision A Error Handling and Debugging 26·17

Tracing

Trace also allows a number of options to be associated with a traced function. These
options are described below:

The syntax for trace is:

(trace function-name-) or

(trace function-with-option-list-).

The syntax for function-with-option-list is:

(function-name {:keyword value}+).

An example of a complex trace invocation is:

(trace (highest :wherein testfun :print ("From testfun"»)

The optional keywords and values are:

:condition

Specifies a form to evaluate at each entry to the function. If the form evaluates to
true, the normal trace information is printed. If it evaluates to false, nothing is
printed.

:break

Specifies a form to evaluate at each entry to the function. If the form evaluates to
true, a break occurs and the system enters the debugger. If it evaluates to false,
execution continues normally.

: break-after

Specifies a form to evaluate before exiting from a function. If the form evaluates to
true, a break occurs and the system enters the debugger. If it evaluates to false,
execution continues normally.

:break-all

Specifies a form to be used as an argument to both the break and break-after
options.

: wherein

Specifies a function name or a list of function names. The traced function only
prints its normal trace information when it is called by one of the specified
functions. When it is called from any other function, no trace occurs.

To illustrate, in the example above if the call to trace is:

(trace (highest :wherein testfun»

then invoking testfun: (testfun 3 5), produces:

5

1: (HIGHEST 3 5)
1: returned 5

26-18 LISP for NOSIVE Language Definition Usage Supplement Revision A

". --,

r ,._-

o

Tracing

However, if highest is invoked directly: (highest 3 5), no trace information is printed,
since the call did not occur from within the testfun function.

:print

Specifies a list of forms to evaluate and display at each entry to the function.

:print-after

Specifies a list of forms to evaluate and display at each exit from the function.

:print-all

Specifies a list of forms to be used both as an argument to both the print and
print-after options.

Tracing a function which is already traced does not have a noticeable effect unless
there are options associated with the trace. Only options specified by the new trace are
in effect; any old options are cancelled.

The Untrace Macro

untrace function-name [Macro]

The untrace macro specifies that the function or functions be no longer traced.

Calling untrace with no arguments causes all currently traced functions to be no longer
traced.

Calling untrace with one or more function names causes those functions to be no
longer traced.

U ntracing a function that is not currently being traced displays a message but does not
affect the function or any traced functions.

Revision A Error Handling and Debugging 26-19

Debugging

Debugging

LISP enters the debugger when a condition is signaled that is not handled by a
condition handler, when a break occurs, or when the function user-break-2 is invoked.
The entry point to the debugger is through the debug function.

The debugger has two main capabilities:

• Assisting you in examining the state of the system at the time of an error or call
to the debugger. You must be able to examine the calling stack and variable
values.

• Allowing you to modify the state of the system and/or continue execution in cases
where this is feasible. This gives you the ability to interactively "tryout"
hypotheses about what is wrong.

The Debug Function

debug condition [Function]

The debug function enters the debugger directly.

If the special variable *abort-debug* has the value t, condition is printed out and
control is returned to the top level Lisp.

If *abort-debug* is NIL, condition is printed out and the interactive debugger is
entered.

The Debugger Commands

Common Lisp does not completely define the functionality of an interactive debugger.
The following paragraphs describe a set of debugger commands which provide the
ability to examine and modify the system state. The commands and their abbreviations
are shown in table 26-2.

26-20 LISP for NOSNE Language Definition Usage Supplement Revision A

,/"".---... "

c' '--

C

o

Debugging

Table 26-2. Debugger Commands

Command Name

Abort-debugger

Backtrace

Backtrace-all

Backtrace-full

Change-argument

Change-variable

E val uate-expression

Help

Go-to-frame

Make-in visible-to-backtrace

Make-visible-to-backtrace

Move-bottom

Move-down

Move-down-all

Move-top

Move-up

Move-up-all

Print-arguments

Print-condition

Print-frame

Print-full-frame

Print-variables

Proceed-de bugger

Proceed-with-returned-value

Search-frame

Throw-to-a-tag

Quit-debugger

Revision A

Command Abbreviations

abort a

bact bt

baca ba

bacf bf

chaa ca

chav cv

evale eval e

help h

goto go g

makib invis i

makvb vis v

movb bottom b

movd down d

movda da

movt top t

movu up u

movua ua

pria pa

pric pc

prif pf

priff pff

priv pv

proc proceed p

prowrv rv

search s

thrtt throw tt

quit q

Error Handling and Debugging 26-21

Debugging

Control Commands

The debugger control commands are as follows:

Quit-debugger

Leave the current debugger computation and return control to the last
read-eval-print loop. This may be the top ievel of Lisp, or some other
read-eval-print loop, such as an earlier invocation of the debugger.

Abort-debugger

Returns control to Lisp command level.

Proceed-debugger

Attempts to continue execution of the program.

Proceed-with-returned-value &optional frame-name value

The program continues executing with value used as the return value of the
function frame-name. If frame-name or value is not supplied, you are prompted for
it. Frame-name is restricted to be the name of an interpreted function currently on
the stack. You cannot return from a compiled function in this way. Appropriate
functions can be determined by looking for frames labeled as "blocks" in the
debugger's backtrace (described below).

Throw-to-tag &optional tag value

Throws value to tag. If the arguments are not supplied, you are prompted for them.
Attempting to throw to a non-existent or illegal tag causes an error.

Stack Examination Commands

These commands allow you to examine the calling sequence of functions. Normally, you
are not interested in system functions, and these are not visible. However, they can be
examined by using the backtrace-all command. The commands
make-invisible-to-backtrace and make-visible-to-backtrace allow you to make any
function invisible or visible to the normal backtrace command. The stack examination
commands are as follows:

Make-invisible-to-backtrace &rest names

Makes the functions specified by names invisible to the backtrace function.

Make-visible-to-backtrace &rest names

Makes the functions names visible to the backtrace function.

Backtrace &optional frame-number

Prints names of visible functions on the stack, starting with frame-number. If
frame-number is not specified, it defaults to the current frame. For example: .

debug1? bt
primt #30 : BREAK

block #19 : FUNCTION2
block #4 : FUNCTION1

26-22 LISP for NOSIVE Language Definition Usage Supplement Revision A

.. r-.....'

\.

~ (,

i
\ _"".'

,~,.... "',

(-
'- _.,-

(
\ -,- ... /

-------------------- ------- -------------------------------

Debugging

indicates that the debugger was entered while the program was executing the
primitive function break which was called from within the function function2, which
was in turn called from function function!. Primitive functions are system functions
or compiled functions and are indicated in the backtrace by the primt heading,
while interpreted functions are indicated by the block heading.

Backtrace-full &optional frame-number

Displays the name of the function, argument names and values, and variable names
and values for each frame on the stack starting with frame-number. If
frame-number is not specified, it defaults to the current frame. For example, given
the following function definitions:

(defun test1 (z)
(let «local-var (+ z 5»)

(test2 local-var z»)
(defun test2 (var1 var2)

(break)
(+ var1 var2»

and the function call: (test! 5), the full backtrace -is:

debug1? bf
primt #30 : BREAK
block #19 : TEST2

Arguments:
VAR1: 10
VAR2: 5

block #4 : TEST1
Arguments:

Z: 5
Local variables:

LOCAL-VAR: 10

Arguments and variables are not shown for the function which caused entry to the
debugger (in this case, break). The names of arguments for primitive frames are
not known; therefore they are referred to by number only. For example, if test2
was a compiled function, the print-out for that frame would be:

primt #19: TEST2
Arguments:

ARG #1: 10
ARG #2: 5

Backtrace-all &optional frame-number

Displays the names of all active functions starting with frame-number on the stack,
including those on the invisible function list. If frame-number is not specified, it
defaults to the current frame. For example, with the same function' definitions
shown above, the backtrace-all command would produce the following output:

debug1? ba
primt #30
primt #26
block #19

BREAK
BLOCK
TEST2

primt #12 LET
primt #8 BLOCK
block #4 : TEST1

Revision A Error Handling and Debugging 26·23

Debugging

Frame Movement Commands

Several commands allow you to move to any frame on the stack. Moving to a frame
makes that frame the debugger's current frame. The frame movement commands are as
follows:

Go to frame &optional frame-number

Makes the frame associated with frame-number the current frame. You are
prompted for a number if it is not supplied.

Move down &optional n

Moves down the stack n frames, or one frame if n is not supplied.

Move down all &optional n

Moves down the stack n frames, including 'invisible' frames. If n is not specified, it
defaults to 1.

Move up &optional n

Moves up the stack n frames or to the next frame if n is not specified.

Move up all &optional n

Moves up the stack n frames, including 'invisible' frames. If n is not specified, it
defaults to 1.

Move top

Moves to the top of the stack. Normally the functions called from within the
debugger are not visible to you.

Move bottom

Moves to the bottom of the stack.

Search-frame &optional function-name

Attempts to find a frame for function-name. Function-name can be a string or
symbol. If no symbol or string is supplied, you are prompted to supply one. Search
sets the current frame to the highest level frame which satisfies the search.

Print Commands

The print commands used while in the debugger are as follows:

Print condition

Prints the original message that was given when the debugger was invoked.

Print frame &optional frame-number

Prints the name of the frame at frame-number. If frame-number is not supplied, it
defaults to the current frame.

Print arguments &optional frame-number

Prints the argument names and values of the frame specified by frame-number. If
frame-number is not supplied, it defaults to the current frame.

26-24 LISP for NOSIVE Language Definition Usage Supplement Revision A

/ --- "-

'- ...

''--.. ,.

c .. ·,
('-~,

""'--~/

c)
c\

o

') c ... -......,'

Debugging

Print full frame &optional frame-number

Prints information about the frame specified by frame-number: the frame name, its
argument names and values, and its local variable names and values. If
frame-number is not specified, it defaults to the current frame.

Print variables &optional frame-number

Prints the local variable names and values of the frame at frame-number or, if
frame-number isn't specified, the current frame.

Modification Commands

Several commands allow you to modify values in the stack and either recompute or
continue with the modified values. The modification commands are as follows:

Change-argument &optional n value

Allows you to change the value of the nth argument of the current frame to value.
If n and value are not supplied, you are prompted for them. This command is
included primarily because you don't always know the names of the arguments to
system functions or primitive functions and can't easily use the change-variable
command which requires a name.

Change-variable &optional variable-name value

Allows you to change the value of the named variable variable-name to value. If
the arguments are not supplied, you are prompted for them. Any special or lexical
variable can be modified.

Miscellaneous Commands

A few miscellaneous commands can be used while in the debugger. They are as follows:

Evaluate-expression &optional expression frame-number

The expression is evaluated in the context of the frame specified by frame-number.
If frame-number is not specified, it defaults to the current frame. If no expression
is supplied, you are prompted for it.

Help &optional option

Prints out help information on debugger commands. If option is not supplied, a list
of debugger commands and their abbreviations is printed. If option is the word 'full',
all commands are printed with a description of their functionality. If option is the
name or abbreviation of a specific command, a description of that command is
printed.

Revision A Error Handling and Debugging 26-25

'"

r--'
~.

C~i

Loading Speed " 27

The Load-Entry Function .. 27-2
Example of Using the Load-Entry Function 27-4

C",

60486213 B

C:'~'

C~',~

C)

C)

c::
C~\

Loading Speed 27

This chapter discusses improving the loading speed of large LISP applications.

When you are creating a large LISP application, the goal is to save the state of the
LISP application after it is initialized so that the loading is faster. Do this by following
these steps:

1. Load the application.

2. Initialize the application.

3. Save the state of the LISP system at that point.

By following these steps when the application is built, loading is faster because you do
not need to repeat the initialization. You can build your application in this way by
using the load-entry function, in conjunction with the $save-lisp function described in
chapter 25, Miscellaneous Features.

The following section describes the load-entry function.

60486213 B Loading Speed 27-1

The Load-Entry Function

The Load-Entry Function
The load-entry function allows you to improve the loading speed while building large
applications. The format of the function is:

load-entry object-library entry-point-name [Function]

The load-entry function executes the entry point in the object library specified. Both
arguments of the function must be strings; you must capitalize the letters in the
entry-point-name argument.

The compiler produces an object library holding one module. Multiple libraries can be
combined to produce a single library. Such libraries can be loaded using the load
function.

The compiler divides its loading activity into three parts. The load function flrst
executes a procedure that has the same name as the MODULE on the library. Then,
this procedure calls two more routines. These routines are named the same as the
MODULE name with $SLOW and $FAST appended to the end.

For example, if you compile a flle with the :module-name of "MYMOD", the object
library module MYMOD contains three procedures called MYMOD, MYMOD$FAST, and
MYMOD$SLOW:

The procedure MYMOD just calls MYMOD$FAST and MYMOD$SLOW.

The procedure MYMOD$FAST loads the parts that the $save-lisp function cannot
preserve. Addresses of compiled code in the symbol table cannot be saved by
$save-lisp because in the CYBER 180 architecture those addresses are not valid
when the $save-lisp image is later executed. MYMOD$FAST is responsible for
populating the symbol table with addresses of compiled code.

• The procedure MYMOD$SLOW loads the parts that the $save-lisp function can
preserve. Since MYMOD$SLOW will probably use functions initialized by
MYMOD$FAST, MYMOD$SLOW cannot be executed prior to MYMOD$FAST. You
should never use the load-entry function to load MYMOD$SLOW.

To save the work done by the initialization of the application, you may want to load
and initialize large chunks of code and then perform the $save-lisp function. When you
reenter LISP, you then only need to initialize the pieces not saveable by $save-lisp.
This can be done by either loading the flIes again or by just executing the $FAST
procedures. You can use the load-entry function to execute the $FAST procedures.

27-2 LISP for NOSIVE Language Definition Usage Supplement 60486213 B

(
\ .I
'-. .-'

c)
l:"

C)

C)

c_~

C)

The Load-Entry Function

When loading an application, keep in mind the following:

• If a file is changed and recompiled, you must create a new $save-lisp image. Also,
you must recreate the $save-lisp image whenever a new version of LISP is
installed.

• LISP currently does no timestamp checking to ensure that the core image and the
object libraries match. You can, however, create an object library that holds all the
loaded code and the result of $save-lisp on the same library.

• When compiling the application, you should use valid names for the :module-name
argument on every call to the compile-file function. For more information about
valid names, see chapter 25, Miscellaneous Features. If a module name is invalid,
the compiler renames the module; you must use this new name as the second
argument of the load-entry function. LISP prints a compiler warning message with
the new name assigned to the module. When in doubt, use the NOSNE command
DISPLAY_aBJECT_LIBRARY with DISPLAY_OPTION = ENTRY_POINT to find
the module name that the compiler assigned.

60486213 B Loading Speed 27-3

The Load·Entry Function

11 Example of Using the Load-Entry Function

Assume that the source code for your LISP application is in two files named FILEA
and FILEB, and that the start-application function initializes the application to be
ready to use. You have two choices for building and invoking the application:

1. The slower method:

a. Compile the application.

b. Invoke the application by loading the compiled code and calling the
start-application function.

2. The faster method:

a. Compile the application, by calling the start-application and $save-lisp functions.

b. Invoke the application by executing the file created by $save-lisp and using
load-entry to complete the loading.

The following example illustrates the faster method:

27-4 LISP for NOSIVE Language Definition Usage Supplement . 60486213 B

(~
I

c-~)

(-/

()

C '~\,
. ,/

collect_text f1lea
(DEFUN AFUN (X)

••

(FORMAT T a-" AFUN was called with arg= -S" X)

(FORCE-OUTPUT»

collect_text f11eb
(DEFUN BFUN (X)

(FORMAT T n-" BFUN was called with arg= -sa X)

(FORCE-OUTPUT»
(DEFUN START-APPLICATION ()

The Load-Entry Function

(FORMAT T "-" Starting a 60 Second initialization ... a) (FORCE-OUTPUT)
(SLEEP 60) (SETQ ·PRINT-BASE· 16)
(FORMAT T "-" Initialization is finally finished. a) (FORCE-OUTPUT»

The (SLEEP 60) is just used to illustrate a lengthy
initialization function .

••

collect_text build
(compile-file afilea H :module-name aaamod" :output-file "liba" ":load t)
(compile-file "fileba :module-name IIBBMC)Da :output-file "libba : load t)
(start-application)
(Ssave-lisP)
(exit)
••
11 sp t cbu i 1 d

creol
addm liba
conm libb
conm $local.lisp_base_system_spaces
genl mylib
Quit

NOTE: Before the following steps. check the output from LISP
compilations to find the names that LISP assigned your modules.
Be sure to use those (if they differ from the names you specified) •
as the second argument of the calls to lisp::load-entry.

collect_text in
(lisp::load-entry "mylib a aMN$1SFASTn)
(1 i sp: : load-entry "myli ba aMN32FAST")
(AFUN 15) (FORCE-OUTPUT)

Notice that the 60 seconds for initialization does not occur. but
the installation done before IS in effect ... as you can see by
the fact that the result of (AFUN 15) prints as F instead of 15
(initialization had set ·print-radix· to 16).

(Qui t)
••

exet mylib l=$system.lisp.bound_product sp=lip$lisp_system p='i=in'

60486213 B Loading Speed 27·5

("~

\

"

('
\"

Appendixes

Glossary .. A-I

Related Manuals ... B-1

Character Set . C-I

Diagnostic Messages .. D-I

Index of LISP Symbols ... E-I

Tautology Proving Example ~ F-I

c

c

c.

\ ..

Array Dotted Pair

Glossary

This appendix defines terms used in Common LISP specifications. There is no
corresponding chapter in Common LISP.

A

Array

A

A multidimensional collection of data elements. Each element is accessed using unique
positional descriptors called indices.

Atom

A general term for a symbol, number, string, or array. Anything that is not a cons.

B

Binding

(1) The LISP-object currently associated with a symbol. (2) The process of associating a
LISP-object with a symbol.

Bound Symbol

A symbol that is associated with a LISP-object. A bound symbol that can be evaluated
because it is currently associated with a value.

c

CAR

The first portion of a cons cell. The CAR contains a LISP-object.

CDR

The portion of a cons cell not included in the CAR. The CDR contains a LISP-object.

Cons Cell

The fundamental structure of data storage. A cons cell is an object having two
components called the CAR and CDR.

Constant

A symbol whose binding does not change.

D

Dotted List

A list whose final CDR is not NIL.

Dotted Pair

A cons cell construct whose CDR is not a cons cell.

Revision A Glossary A·1

Dynamic Extent Indefinite Scoping

Dynamic Extent

When an entity can be referenced any time between its establishment and when it
completes or is terminated. Entities with dynamic extent obey stacking rules
paralleling the nested executions of their establishing constructs.

Dynamic Scoping

Having indefinite scope and dynamic extent.

E

Element

The basic unit of data within a list. An element can be another list (including the
empty list NIL), a cons cell, an atom, or an array. Any LISP-object can be an element.

Environment

The present state of the LISP system. The environment includes all bindings of
LISP-objects.

Evaluation

The process of determining the value of a LISP-object.

Extent

See Dynamic Extent and Indefinite Extent.

F

Form

The fundamental entity of LISP syntax. A LISP-object meant to be evaluated. When
evaluated, .forms produce values and side effects. There are three types of forms:
self-evaluating (such as numbers), symbols, and lists.

Function

An instance of an algorithm. Functions accept zero or more LISP-objects as arguments
and produce a LISP-object as a result.

G

Garbage Collection

Process of reclaiming LISP-objects that have been discarded by LISP.

I

Indefinite Extent

When an entity exists as long as it is possible to reference it. Compare to Dynamic
Extent.

Indefinite Scoping

Scoping that is not lexical. References can occur anywhere within a program.

A·2 LISP for NOSIVE Language Definition Usage Supplement Revision A

"

c~

o

Lambda Notation Pseudo Function

L

Lambda Notation

(1) A method of defining a function in-place. The function definition is temporary and
does not exist outside of the form in which it appears. (2) A function type within LISP.

Lexical Scoping

When a variable must appear textually within a function. Embedded lambda
expressions do not effect the scope of variables.

LISP·Object

A general term referring to any LISP data item.

List

The basic unit of data grouping within LISP, and the most common data type. A list is
a cons.

M

Macro

Mechanism that replaces one list with another.

N

NIL

The empty list, designated by O. The empty list contains an infinite number of empty
lists. NIL is used to represent logical falsehood.

p

Package

Group of logically related LISP-objects. Packages provide restricted access to secure
objects and allow name hiding. In effect, a package is a subspace within a LISP
workspace. Access to objects within a package is under the control of the package.

Primitive Function

A function that is built into LISP. Primitive functions are associated with a LISP
symbol.

Print Name

A string holding the external representation of a symbol; for example, the characters
displayed on a user's terminal screen. Sometimes referred to as pname.

Property List

Traditionally, a list that holds user-defined attributes of a symbol. A globally accessible
LISP-object associated with each symbol, and sometimes referred to as plist.

Pseudo Function

A function executed for side effects and not for the value returned.

Revision A Glossary A-3

Quote Syntax

Q

Quote

A special form that returns its input without evaluation. Also, a syntax that allows
symbols to be manipulated without evaluation.

R

Reader

The portion of the LISP evaluator code that processes input for correct syntax, and so
forth. The reader collects input characters into a printed representation of a LISP-object
builds the object, and returns its value.

Recursion

The process of invoking a function from within that function. Recursion is closely
related to mathematical induction.

s

S-Expression

A synonym for symbolic expression and LISP-object.

Scope

See Indefinite Scoping or Lexical Scoping.

Semantics

The meaning of a syntactically correct statement. LISP has semantic rules which are
used to decide whether functions can be applied to arguments.

Side Effects

When a function causes a change in the LISP environment that remains in effect after
the function completes and the effect is not returned as an explicit result.

Special Form

A form that does not have its arguments automatically evaluated.

String

A finite ordered sequence of characters. Under NOSIVE, a string cannot exceed 256
characters.

Symbol

A fundamental data type. A symbol is associated with a value, a print name, a
property list, a function definition, and a package.

Syntax

Rules defining whether a statement is well formed.

A-4 LISP for NOSIVE Language Definition Usage Supplement Revision A

... - .. ---~-~---- .. --.---~------. - .. -_. .. --- - -- --,-----_._---------_ ... _-_ .. _-_._-.. _-_. -_ .. _--_ .. _-_ -.-----------.--.-.----.- .. -----~-- --

~
(..

C~

o

C)
o

True List Variable

T

True List

A list whose final CDR is NIL.

v

Value

(1) The LISP-object bound to a symbol. (2) The LISP-object returned by evaluating a
function.

Variable

A symbol with an associated value.

Revision A Glossary A·5

c

(--":

"--'~

C~

(--- "

I

~/

r-'

U

o

Related Manuals B

Table B-1 lists all manuals that are referenced in this manual or that contain
background information. A complete list of NOSNE manuals is given in the NOSNE
System Usage manual. If your site has installed the online manuals, you can find an
abstract for each NOSNE manual in the online System Information manual. To access
this manual, enter:

/explain

Ordering Printed Manuals
You can order Control Data manuals through Control Data sales offices or through:

Control Data Corporation
Literature and Distribution Services
308 North Dale Street
St. Paul, Minnesota 55103

Revision A Related Manuals B·1

Ordering Printed Manuals

Table B-1. Related Manuals

Man ual Title

LISP Manuals:

Common LISP, The Language

LISP Language Definition Usage Supplement

Background Material (Access as Needed):

NOSIVE System Usage

NOSIVE Commands and Functions

Additional References:

NOSIVE File Editor Tutorial/Usage

CDCNET Access Guide

NOSIVE Object Code Management

Math Library for NOSIVE

B·2 LISP for NOSNE Language Definition Usage Supplement

Publication
Number

60486201

60486213

60464014

60464018

60464015

60463830

60464413

60486513

Online Title

SCL

CDCNET_ACCESS

OCM

Revision A

("
'--.

C.,: ..

C)
C,

c) ..

'I, C

C ;1

C)
0

Character Set c
This appendix defines the ASCII character set as used by NOSNE software and LISP.
There is no corresponding chapter in Common LISP.

NOSNE supports the American National Standards Institute (ANSI) standard ASCII
character set (ANSI X3.17-1977). NOSNE represents each 7-bit ASCII code in an 8-bit
byte. The 7 bits are right-justified in each byte. For ASCII characters, the leftmost bit
is always zero.

In addition to the 128 ASCII characters, NOSNE allows use of the leftmost bit in an
8-bit byte for 256 characters. The use and interpretation of the additional 128
characters is user-defined.

LISP uses ASCII characters as described in chapter 22 of Common LISP. For your
convenience, the following table indicates implementation-dependent #\ definitions.

Table C-l. ASCII Character Set Table

ASCII
Code

. Hexa- Graphic or
Decimal decimal Octal Mnemonic

000 00 000 NUL
001 01 001 SOH
002 02 002 STX
003 03 003 ETX

004 04 004 EOT
005 05 005 ENQ
006 06 006 ACK
007 07 007 BEL

008 08 010 BS
009 09 011 HT
010 OA 012 LF
011 OB 013 VT

012 OC 014 FF
013 OD 015 CR
014 OE 016 SO
015 OF 017 SI

016 10 020 DLE
017 11 021 DC1
018 12 022 DC2
019 13 023 DC3

020 14 024 DC4
021 15 025 NAK
022 16 026 SYN
023 17 027 ETB

Revision A

ASCII Name or
Meaning

Null
Start of heading
Start of text
End of text

End of transmission
Enquiry
Acknowledge
Bell

Backspace
Horizontal tabulation
Line feed
Vertical tabulation

Form feed
Carriage return
Shift out
Shift in

Data link escape
Device control 1
Device control 2
Device control 3

Device control 4
Negative acknowledge
Synchronous idle
End of transmission
block

LISP
Definition

#\Backspace
#\Tab
#\Linefeed

#\Page
#\Return

(Continued)

Character Set C-l

Character Set

/ . .---.....,

Table C-I. ASCII Character Set Table (Continued)

ASCII
Code
Hexa- Graphic or ASCII Name or LISP

Decimal decimal Octal Mnemonic Meaning Definition

024 18 030 CAN Cancel
025 19 031 EM End of medium
026 1A 032 SUB Substitute
027 1B 033 ESC Escape

028 1C 034 FS File separator
029 ID 035 GS Group separator
030 IE 036 RS Record separator
031 IF 037 US Unit separator #\Newline

032 20 040 SP Space #\Space
033 21 041 Exclamation point /-------
034 22 042 " Quotation marks

I

035 23 043 # Number sign

036 24 044 $ Dollar sign
037 25 045 % Percent sign
038 26 046 & Ampersand
030 27 047 Apostrophe

040 28 050 (Opening parenthesis
041 29 051) Closing parenthesis (-" 042 2A 052 * Asterisk

" 043 2B 053 + Plus /

044 2C 054 Comma
045 _2D 055 Hyphen
046 2E 056 Period
047 2F 057 / Slant

048 30 060 0 Zero
049 31 061 1 One (~',
050 32 062 2 Two
051 33 063 3 Three \,-_....-"

052 34 064 4 Four
053 35 065 5 Five
054 36 066 6 Six
055 37 067 7 Seven

056 38 070 8 Eight
057 39 071 9 Nine
058 3A 072 Colon
059 3B 073 Semicolon

060 3C 074 < Less than
061 3D 075 = Equals
062 3E 076 > Greater than
063 3F 077 ? Question mark (r-"

(Continued) ' , ..

C'"
~,'/

C-2 LISP for NOSIVE Language Definition Usage Supplement Revision A

-.-"-.--~--.---~-. -------... - -_ .. __ ._._------

-------- ---

Character Set

C) Table C-l. ASCII Character Set Table (Continued)

C,I ASCII
Code
Hexa- Graphic or ASCII Name or LISP

Decimal decimal Octal Mnemonic Meaning Definition

064 40 100 @ Commercial at
065 41 101 A Uppercase A
066 42 102 B Uppercase B
067 43 103 C Uppercase C

068 44 104 D Uppercase D
069 45 105 E Uppercase E
070 46 106 F Uppercase F
071 47 107 G Uppercase G

072 48 110 H Uppercase H
073 49 111 I Uppercase I

.,r", .. ,
074 4A 112 J Uppercase J

~~) 075 4B 113 K Uppercase K

076 4C 114 L Uppercase L
077 4D 115 M Uppercase M
078 4E 116 N Uppercase N
079 4F 117 0 Uppercase 0

080 50 120 P Uppercase P

C) 081 51 121 Q Uppercase Q
082 52 122 R Uppercase R
083 53 123 S Uppercase S

084 54 124 T Uppercase T
085 55 125 U Uppercase U
086 56 126 V Uppercase V
087 57 127 W Uppercase W

088 58 130 X Uppercase X

C:I 089 59 131 Y Uppercase Y
090 5A 132 Z Uppercase Z
091 5B 133 [Opening bracket

092 5C 134 \ Reverse slant
093 5D 135] Closing bracket
094 5E 136 Circumflex
095 5F 137 Underline

096 60 140 Gra ve accent
097 61 141 a Lowercase a
098 62 142 b Lowercase b
099 63 143 c Lowercase c

100 64 144 d Lowercase d
101 65 145 e Lowercase e
102 66 146 f Lowercase f

0 103 67 147 g Lowercase g

(Continued)

C)
Revision A Character Set C-3

Character Set

/"--,,

Table C-l. ASCII Character Set Table (Continued)
,

ASCII
Code ',-

Hexa- Graphic or ASCII Name or LISP
Decimal decimal Octal Mnemonic Meaning Definition

104 68 150 h Lowercase h
105 69 151 i Lowercase i
106 6A 152 j Lowercase j
107 6B 153 k Lowercase k

108 6C 154 Lowercase I
109 6D 155 m Lowercase m
110 6E 156 n Lowercase n
111 6F 157 0 Lowercase 0

112 70 160 P Lowercase p
113 71 161 q Lowercase q /"-----....,
114 72 162 r Lowercase r .'

115 73 163 s Lowercase s

116 74 164 t Lowercase t
117 75 165 u Lowercase u
118 76 166 v Lowercase v
119 77 167 w Lowercase w

120 78 170 x Lowercase x
121 79 171 Y Lowercase y ~
122 7A 172 z Lowercase z (
123 7B 173 { Opening brace

i
...... ~- ./

124 7C 174 I Vertical line
125 7D 175 } Closing brace
126 7E 176 Tilde
127 7F 177 DEL Delete #\Rubout

('
\..,-- >

C-4 LISP for NOSNE Language Definition Usage Supplement Revision A

("'\
~'

o

Diagnostic Messages D

This appendix describes all diagnostic messages issued by LISP. There is no
corresponding chapter in Common LISP.

LISP sends the diagnostic messages described' in this appendix to the output (0 =) file
specified in the command to enter LISP. The output file also receives information
summarizing such things as variable bindings in effect when the error was detected.

The NOSIVE $ERRORS file name function is not used.

No errors will abort LISP, except stack overflow.

Where - S or - A appears in the messages that follow, LISP fills in the appropriate
information. See the description of the control-string of the format function, starting on
page 385 of Common LISP, for the meaning of the information.

Errors

The following are possible errors that can be generated by LISPIVE.

Apply of -S not understood as a location for Setf.

Description:

User Action:

You cannot specify the directive -S as the location argument symbol
in a setf macro call.

Redesign your program.

Argument is not a cons. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated requires a cons cell for the argument
indicated by xxxxxxxx.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement. If the argument is another form, check
the value it returns.

Argument is not a character. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated requires a character for the argument
indicated by xxxxxxxx.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement. If the argument is another form, check
the value it returns.

Argument is not a list. Argument encountered is xxxxxxxx

Description:

User Action:

Revision A

The form being evaluated requires a list for the argument indicated
by xxxxxxxx.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement. If the argument is another form, check
the value it returns.

Diagnostic Messages D-l

Errors

Argument is not a number. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated requires a number for the argument
indicated by xxxxxxxx.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement .. If the argument is another form, check
the value it returns.

Argument is not a positive number or zero. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated returns a negative number or a nonnumeric
value for the argument indicated by xxxxxxxx. The form requires a
positive or zero number.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement. If the argument is another form, check
the value it returns.

Argument is not a positive integer. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated returns a negative number, a zero, or a
nonnumeric value for the argument indicated by xxxxxxxx. The form
requires a positive number.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement. If the argument is another form, check
the value it returns.

Argument is not a primitive. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated contains another form or a value as the
argument indicated by xxxxxxxx. The form requires that argument to
be a Common LISP primitive.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement. If the argument is another form, check
the value it returns.

Argument is not a proper list. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated requires a list for the argument indicated
by xxxxxxxx. The argument is recognizable as a list but is improperly
structured and might be infinitely recursive. The final CDR of the list
is not NIL.

Correct the argument; check the list structure pointers.

Argument is not a read table. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated requires a read table for the argument
indicated by xxxxxxxx.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement.

D·2 LISP for NOSIVE Language Definition Usage Supplement Revision A

I'~

C
~

,-_

C __ .:'
C,!

C
C':

Errors

Argument is not a stream. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated requires a stream name for the argument
indicated by xxxxxxxx.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement ..

Argument is not a string. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated requires a string for the argument indicated
by xxxxxxxx.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement. One or both quotation marks might be
missing.

Argument is not a symbol. Argument encountered is xxxxxxxx

-Description:

User Action:

The form being evaluated requires a symbol for the argument
indicated by xxxxxxxx.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement. The argument might begin with an
unneeded apostrophe or might need to be quoted.

Argument is not an array. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated requires an array for the argument
indicated by xxxxxxxx.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement.

Argument is not an integer. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated requires an integer for the argument
indicated by xxxxxxxx.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement.

Argument is not real. Argument encountered is xxxxxxxx

Description:

User Action:

The form being evaluated requires a real number for the argument
indicated by xxxxxxxx.

Correct the argument; check the argument for a syntax error or the
form for incorrect placement. A decimal point might be missing.

Argument list is poorly formed. Argument list encountered is xxxxxxxx

Description:

User Action:

Revision A

The arguments specified do not follow the rules of Common LISP.

Check the arguments specified to be sure they are within the bounds
of the function. Reenter the argument list correctly.

Diagnostic Messages D-3

Errors

Arguments are contradictory.

Description: A conflict exists in the arguments specified.

User Action: Check to see if an argument is out of bounds for the function used.

Argument must be an integer.

Description: The form being evaluated requires an integer for the argument.

User Action: Change the argument to an integer.

Arguments must be integers.

Description: The form being evaluated requires integers for the arguments.

User Action: Change the arguments to integers.

Arithmetic overflow was encountered.

Description:

User Action:

Evaluation of the current form (usually a function from the NOSNE
Common Math Library) stopped because the form's value cannot be
properly calculated or returned.

Examine the data used by the form and correct it if possible.

Array index not recognized. Array index encountered is nnnnn

Description:

User Action:

The form being evaluated requires a valid integer within the array
bounds for an array index. The value represented by nnnnn was found
instead.

Check the index for a typographical error or transposition of index
values. Check the original definition of the array's index for an error.
Ensure that the index specified is within bounds for the array.

Array space is full.

Description:

User Action:

The number of arrays LISP can handle is determined by the data
types used. The space available for arrays is full and your program
attempted to define or extend an array.

Simplify your program's data use to reduce memory usage. Check for
infinite recursion.

ASH, shift argument is not a fIxnum.

Description:

User Action:

The shift argument to ASH must be a f'ixnum.

Change the shift argument to a f'ixnum.

D-4 LISP for NOS/VE Language Definition Usage Supplement Revision A

.

~,
I

~----

",--.
/

o

o
o

Errors

Attempt to replacd or replaca nil is encountered.

Description:

User Action:

You cannot perform this operation.

Rewrite your program so that it does not use replaca or replacd on
NIL.

Bad &rest or & body arg in - S. errloc

Description:

User Action:

Further
Information:

The value indicated by errloc identifies the unrecognized argument.

Replace or remove the argument.

See Common LISP, page 60.

CAR only works on a CONS or NIL.

Description:

User Action:

The argument to CAR must be a CONS or NIL.

Change the argument to be a CONS or NIL.

CDR only works on a CONS or NIL.

Description:

User Action:

The argument to CDR must be a CONS or NIL.

Change the argument to be a CONS or NIL.

Comma used outside of backquote.

Description:

User Action:

This is incorrect syntax. Commas are allowed only within a
backquoted form.

Correctly place the comma.

Cons space is full.

Description:

User Action:

The number of conses LISP allows depends on all of the data types
used by the program. That space is full and you attempted to define
another cons.

Simplify your program's data use to reduce memory usage.

COUNT must be a fixnum.

Description: The COUNT argument to ASH must be a fixnum.

User Action: Change the argument to a fixnum.

Division by zero.

Description: Division by zero is not allowed.

User Action: Correct the divisor so that it is not zero.

Revision A Diagnostic Messages D·5

Errors

Dotted arglist after &AUX in -8.

Description:

User Action:

You cannot use a dotted list as an argument in this position.

Change the list or reposition the argument.

Dotted arglist after &KEY in - S.

Description:

User Action:

You cannot use a dotted list as an argument in this position.

Change the list or reposition the argument.

Dotted arglist terminator after &rest arg in -8.

Description:

User Action:

You cannot use a dotted list as an argument in this position.

Change the list or reposition the argument.

Dotted list on stream is poorly formed.

Description:

User Action:

The reader found zero or more LISP objects after a dot.

Check for a typographical error in the list.

Dual wildcard mode not implemented for ABBREV.

Description:

User Action:

The current version of LISP does not support more than one wildcard
matching character in an abbreviation.

Restate the abbreviation.

File already exists.

Description:

User Action:

The open function attempted to create a file that already exists.

Create another file.

File cannot be opened. xxxxxxxx

Description:

User Action:

Further
Information:

The open function attempted to process the file identified by the
namestring xxxxxxxx. That file is not attached to the LISP job, or is
attached without a needed permission. For example, the file might be
attached with only read permission and open attempted to open the
file for output or for input and output.

Use the' NOSIVE ATTACH_FILE SCL command to reattach the file
properly.

See the NOSIVE System Usage manual.

D-6 LISP for NOSNE Language Definition Usage Supplement Revision A

,--- '

o

Errors

File does not exist or is attached in write mode.

Description:

User Action:

The open function attempted to process a file that does not exist, or
the file is open in write mode.

If the file does not exist, you must create the file. If the file is open
in write mode, close the file· before processing it again.

File system resources exceeded.

Description:

User Action:

The total number of files NOSNE allows you to have at the same
time has been exceeded.

See the NOSNE System Usage manual.

Function is not defined. fffff

Description:

User Action:

LISP has reserved the function name indicated by fflTf for future
implementation of an intrinsic function.

Check to see if a typographical error occurred in entering the
function's name, or if the defun entry that defined the function
contained an error. If you are referencing a user-defined function,
rename that function.

Function is not recognized.

Description:

User Action:

The form being evaluated must be a valid function; LISP found the
entity indicated by fflTf. LISP does not have an intrinsic function and
cannot find a user-defined one by that name.

Check to see if a typographical error occurred in entering the
function's name, or if the defun entry that defined the function
contained an error.

GCD - argument not an integer.

Description: Argument to GCD must be an integer.

User Action: Change the argument to an integer.

Go to unseened compiled tag.

Description:

User Action:

Go was called with an unseen tag.

Correct the program to make the matching tag lexically visible to the
point of the GO.

Illegal or ill-formed DEFSETF for -S.

Description:

User Action:

Revision A

The format directive cannot be evaluated because the defsetf macro it
references is improperly defined.

Check that the body of a complex form defsetf is correctly specified.

Diagnostic Messages D·7

Errors

Illegal or ill-formed &whole arg in -S.

Description:

User Action:

The format directive cannot be evaluated because of the &whole
argument.

Check the function body for the proper use of the corresponding
parameter.

Illegal character name encountered in reading a #\.

Description:

User Action:

A #\ construct can only contain a name of (string-upcase name) and
the name must have the syntax of a symbol.

Check that the name you specified has a defined character object.

Illegal sharp-sign syntax.

Description:

User Action:

LISP does not support the # construct you specified.

Check that a font number does not appear after the #. Check for use
of an unimplemented feature.

Illegal stuff after &rest arg in Define-Modify-Macro.

Description:

User Action:

You can specify only a symbol after an &rest lambda-list keyword.
You might have omitted a subsequent lambda-list keyword.

See Common LISP, page 60. Reenter the macro form without extra
trailing information.

Improper bounds for string comparison.

Description:

User Action:

The referenced strings cannot be compared within the bounds
specified.

Check that you correctly specified the bounds.

Index is out of bounds.

Description: An array index is out of bounds.

User Action: Ensure that the index specified is within the array bounds.

Index must be a nonnegative integer.

Description: The array index must be a nonnegative integer.

User Action: Correct the index of the array.

Initial closing parenthesis encountered in stre~m zzzzzzzz

Description: This results from unbalanced parentheses. If a form with an extra
closing parenthesis is entered, then following evaluation of that form,
the read function finds an initial closing parenthesis.

User Action: Delete any extra closing parentheses.

D·8 LISP for NOSIVE Language Definition Usage Supplement Revision A

~-.,

I' '

r~
(
"'---_/

C-":
--'

c'

o
o

Errors

Invalid argument to :direction keyword.

Description:

User Action:

The argument to :direction keyword is invalid. Could also be signaled
by a poorly formed keyword argument to the open function. For
example:

(open <filename>extra-arg :<keyword> :<keyword-value»

See Common LISP, page 418, for valid keywords.

Invalid argument to :if-does-not-exist keyword is invalid.

Description:

User Action:

The argument to :if-does-not-exist keyword is invalid. Could also be
signaled by a poorly formed keyword argument to the open function.
For example:

(open <filename> extra-arg :<keyword> :<keyword-value»

See Common LISP, page 418, for valid keywords.

Invalid argument to :if-exists keyword.

Description:

User Action:

The argument to :if-exists keyword is invalid. Could also be signaled
by a poorly formed keyword argument to the open function. For
example:

(open <filename> extra-arg :<keyword> :<keyword-value»

See Common LISP, page 420, for valid keywords.

ISQRT: -S argument must be a nonnegative integer.

Description:

User Action:

The argument to ISQRT must be a nonnegative integer. You are
raising a rational number to a bignum power. Raising a rational
number to a bignum power requires a large amount of cpu time and
storage to calculate and store the result.

Use a nonnegative integer as the argument to ISQRT.

LCM: argument not an integer.

Description:

User Action:

Argument to LCM must be an integer.

Change the argument to an integer.

Macro -8 cannot be called with -S args.

Description: You cannot nest these directives.

User Action: Redesign your program.

No bits attributes in character objects.

Description: LISP character objects do not have bit attributes.

User Action: Redesign your program.

Revision A Diagnostic Messages D·9

Errors

Non-symbol &rest arg in definition of -S.

Description:

User Action:

You can specify only a symbol after an &rest lambda-list keyword.
You might have omitted a subsequent lambda-list keyword.

See Common LISP, page 60.

Non-symbol variable name in -S.

Description:

User Action:

Variable names referenced by these directives must be valid LISP
symbols.

Check for a syntax error. Properly define the variable name as a
symbol.

Odd number of args to PSETF.

Description: The psetf macro requires an even number of arguments.

User Action: Check the form for a missing argument or a misplaced parenthesis.

Odd number of args to setf.

Description:

User Action:

The setf macro requires an even number of arguments.

Check the form for a missing argument or misplaced parenthesis.
Reenter the macro form correctly.

Odd-list-length property list in REMF.

Description:

User Action:

Property lists must contain an even number of elements. The one
used in the remf macro form does not meet this requirement.

Correct the list content.

Only one new-value variable allowed in DEFSETF.

Description:

User Action:

You specified more than one such variable in a defsetf macro form.
Check for a misplaced parenthesis.

Respecify the form without extra variables.

Pathname specified is too long.

Description:

User Action:

The argument (usually a string) given, to the open function has too
many characters for a NOSNE filename. The NOSNE System
Command Language allows a maximum of 31 characters.

Correct the argument to contain no more than 31 characters.

D·IO LISP for NOSIVE Language Definition Usage Supplement Revision A

... ,~.. .

'/~"

c

c
(=~~

c>
c/

C)

o
o

Errors

Poorly formed function encountered. Function is xxx xxx xx

Description:

User Action:

The form in the function position of the input statement is not
recognized.

Ensure that the CAR of the statement is lambda and that the lambda
list is properly constructed.

Poorly formed plist encountered. Plist is xxxxxxxx

Description:

User Action:

The property list identified as xxxxxxxx does not have the correct
structure for the use made of it in the form currently being evaluated.
The list might have an odd number of elements (the number of
elements must always be even).

Count the elements in the property list. Correct the property list
structure. Check to be sure that symbol-plist is not modified by setf.

POSITION argument must be non-negative.

Description: The POSITION argument must be a fixnum.

User Action: Change the argument to a fixnum.

Read macro context error encountered on stream zzzzzzzz

Description: A syntax error probably occurred.

User Action: Check for a missing backquote (..).

Redundant &optional flag in varlist of -S.

Description:

User Action:

More than one &optional lambda-list keyword exists in the form. The
beginning of the next form might be missing.

Delete the extra lambda-list keyword and any related symbol. See
Common LISP, page 60.

Return from unseened compiled block.

Description:

User Action:

Call to return-from specified on block.

Correct the program to make a block construct with the specified
name lexically enclose the occurrence of the return-from.

SIZE argument must be non-negative.

Description:

User Action:

The SIZE argument must be a fixnum.

Change the argument to a fixnum.

Size is out of bounds.

Description: The SIZE argument is out of bounds.

User Action: Correct the argument to ensure that the size is within bounds.

Revision A Diagnostic Messages D-ll

Errors

Space for real numbers is exhausted.

Description:

User Action:

The number of real numbers LISP can handle is determined by all
the data types used. The space available for real numbers is full and
your program attempted to define one.

Simplify your program's data: use to reduce memory usage. Reduce the
number of real numbers used. Check for infinite recursion.

Space for streams is exhausted.

Description:

User Action:

The number of streams LISP can handle is determined by all the data
types used. The space available for streams is full and your program
attempted to define one.

Simplify your program's data use to reduce memory usage. Reduce the
number of streams used. Check for infinite recursion.

Space for symbols is exhausted.

Description:

User Action:

The number of symbols LISP can handle is determined by all the data
types used. The space available for symbols is full and your program
attempted to define one.

Simplify your program's data use to reduce memory usage. Reduce the
number of symbols used. Check for infinite recursion.

Space for the stack is exhausted.

Description:

User Action:

The number of stack entries LISP can handle is determined by all the
data types used. The space available for entries is full and your
program attempted to add one.

Simplify your program's data use to reduce memory usage. Reduce the
number of forms used. Check for infinite recursion.

Stray &ALLOW-OTHER-KEYS in arglist of -S.

Description:

User Action:

The &allow-other-keys lambda-list keyword must follow all other
symbols after the &key lambda-list keyword and must precede
subsequent lambda-list keywords.

Reorder the arguments in the form. See Common LISP page 60.

Stream does not exist.

Description:

User Action:

The stream argument given to the open function is a non-existent
stream.

Change the code to create the correct stream before you use it as an
argument.

D·12 LISP for NOStVE Language Definition Usage Supplement Revision A

/--...

r--,

(,-

C~,

C
-·~ '\

)

C:

o

o
C)

Errors

Stream is not recognized. fffff

Description:

User Action:

The form being evaluated requires a valid stream name where fffff
was used. LISP does not recognize fffff as the name of a defined
stream.

Check for an omitted or incorrect function call to define the stream.

Symbol does not have a global value.

Description: The symbol used does not have a global value.

User Action: Check for a typographical error.

Symbol is not defined. fffff

Description:

User Action:

The symbol indicated by fffff exists but has no value defined to LISP.

Check the entered form for a possible typographical error. Correct the
form if necessary, or define the symbol to LISP before reentering the
form.

The lists of keys and data are of unequal length.

Description:

User Action:

These lists must contain the same number of elements. An element
might have been omitted or entered twice.

Correct the lists.

Too few argument forms to a SHIFTF.

Description:

User Action:

The shiftf macro requires an argument for at least one place form and
for a new value.

Check for an omitted argument or a misplaced parenthesis.

Unexpected end-of-stream encountered on stream zzzzzzzz

Description:

User Action:

You attempted to input an incomplete LISP object. The load function
could not match an opening parenthesis (() with a closing
parenthesis before the end of information occurred on the stream
indicated as zzzzzzzzz. The file you attempted to load is either
incomplete or contains a syntax error.

Check for a missing closing parenthesis. Correct the file and reload it.

Unexpected go encountered.

Description:

User Action:

Revision A

You used go outside of a tagbody.

Enclose go within a tagbody.

Diagnostic Messages D·13

Errors

Unexpected return encountered.

Description:

User Action:

You entered the return function when you were not within the named
block. The return function can only work from within the named
block.

Check for a typographical error in the block name.

Unfound catch-tag in compiled code.

Description:

User Action:

A throw was done for which there was no suitable catch tag.

Check for a typographical error.

Unpaired item in keyword portion of macro call.

Description:

User Action:

Each keyword parameter must have a corresponding symbol. You
might have omitted a keyword or symbol.

Correct the macro form.

Unreadable object encountered in stream.

Description:

User Action:

An entity that is not a valid LISP object was found in the file being
read.

Ensure that the stream is associated with the correct file. You might
be reading a binary file. Check that the file is not damaged.

User break encountered.

Description:

User Action:

One of the break conditions identified to NOSNE for your terminal
was detected.

Depends on the cause of the break. This message is informative only.

Wrong number of arguments encountered in form xxxxxxxx

Description:

User Action:

There are too many or too few arguments in the form indicated by
xxxxxxxx.

Check for misplaced parentheses.

- A is not a reasonable value for *Print-Base*.

Description:

User Action:

The value referenced by the directive is outside the range permitted
for the radix currently defined as *print-base*.

Check for a nondecimal digit (possibly a hexadecimal digit) in the
value. The default for *print-base* is 10; to use a nondecimal number,
you must change *print-base*.

D·14 LISP for NOSIVE Language Definition Usage Supplement Revision A

\ " ., .. '

"

.~
I .

\
,,,,--~ .. ,

c
(--~',

....... ----/

C)
c/

\ U
--,·,

c)

o
o

.. _ ...•. __ ._--_._-_._------------

-S Bad clause in CASE.

Description:

User Action:

One of the clauses is not a proper LISP form.

Check for an omitted or extra argument, or for a misplaced
parenthesis.

- S Macro too short to be legal.

Description:

User Action:

The full form of the directive was used but at least one of the
required parameters cannot be found.

Check for a missing comma.

-S Macro-name not a symbol.

Description: The argument found must be a valid LISP symbol.

User Action: Check the macro name for a typographical error.

- Scan 't be converted to type - S.

Description: You cannot nest these forms.

User Action: Redesign your program.

-S cannot be coerced to a string.

Errors

Description: The value referenced by the directive cannot be used in a context that
evaluates to a string.

User Action: Redesign your program.

-S illegal atomic form for get-setf-method.

Description:

User Action:

The form referenced in the get-setf-method function must be a
generalized variable (a list cons).

Check that the form is not a number, an array, or a string.

- S is a bad thing in a DO varlist.

Description:

User Action:

The form referenced by the directive produces a do loop with
potentially dangerous consequences.

Check for incorrect nesting or potential binding problems. Check that
setq does not change the var argument within the loop.

-S is a bad type specifier for sequence functions.

Description:

User Action:

Revision A

LISP does not recognize the form referenced by the directive as a
valid type specifier.

Check for a typographical error.

Diagnostic Messages D·15

Errors

-S is a bad type specifier for sequences.

Description:

User Action:

LISP does not recognize the form referenced by the directive as a
valid type specifier.

Check for a typographical error.

- S is a malformed property list.

Description:

User Action:

Property lists must contain an even number of items. Each property
object must have a unique indicator symbol.

Check for a missing item. Check that the correct object is specified as
a property list. Check for an indicator symbol that is used twice.

-S is an ill-formed do.

Description:

User Action:

The object referenced by the directive does not conform to the
requirements of a Common LISP do macro.

Check for a missing argument or a misplaced parenthesis.

-S is an illegal N for SETF of NTH.

Description:

User Action:

The argument referenced by the directive as n is a negative integer
or a noninteger.

Correct the n argument. Check for a hexadecimal digit used in a
decimal integer.

- S is· an illegal size for MAKE-LIST.

Description: The size argument must be a nonnegative integer.

User Action: Check for a noninteger used as the size argument.

-S is not a known location specifier for setf.

Description:

User Action:

-S is not a list.

Description:

User Action:

The form referenced by the directive as the setf place argument does
not access a LISP data object.

Check for a typographical error in the argument.

The argument referenced by the directive must be a true list.

Check that the object is not a dotted list. Check for a typographical
error in the symbol.

D-16 LISP for NOSIVE Language Definition Usage Supplement Revision A

c
C'

c)
C~,

L
"-----"':

/

" 0
,

c'

Errors

-8 is not a sequence.

Description:

User Action:

The argument referenced by the directive is not recognized by LISP as
a valid sequence. A sequence must be a true list or a vector.

Check that the object is not a dotted list. Check for a typographical
error in the symbol.

-8 is not of type (mod 16).

Description: The OP argument to BOOLE is not valid.

User Action: Correct the argument.

-8 is too large an index for 8ETF of NTH.

Description:,

User Action:

The argument referenced by the directive as n is either equal to or
greater than the length of the list.

Check for a hexadecimal digit in a decimal integer.

-S is too short to be a legal do.

Description:

User Action:

The form referenced by the directive as a do macro does not contain
enough arguments to define a functional do loop. At least one of the
optional arguments must be present.

Redesign the loop.

-S is too short to be a legal dotimes.

Description:

User Action:

The form referenced by the directive as a dotimes macro does not
contain enough arguments to define a functional do loop. At least one
of the optional arguments must be present.

Redesign the loop.

-S is too short to be a legal dolist.

Description:

User Action:

The form referenced by the directive as a dolist macro does not
contain enough arguments to define a functional do loop. At least one
of the optional arguments must be present.

Check for a missing declaration or statement argument.

-8: invalid output type specification.

Description:

User Action:

Revision A

The argument referenced by the directive cannot be used as an output
type specification.

Check for a missing argument before the argument indicated.

Diagnostic Messages D-17

Errors Encountered Less Frequently

Errors Encountered Less Frequently

The following are possible errors that can be generated by user code. You need to
inspect your program to correct the errors described below. Note that error messages
from the compiler that are prefixed with WARNING are just informative; not fatal to
the compilation. A warning is something suspi~ious in the code that probably means
some form of loss, but that may be ignored if you understand and accept the possible
consequences.

A package named -S already exists.

Argument can't be zero.

Argument is excluded from the domain of ATAN.

Argument is excluded from the domain of ATANH.

Argument must be a non-complex number.

Argument must be a non-negative, non-complex number.

Arguments must be numbers.

Array values must be a list.

Bad argument to -S: -S

Bad argument, - A, for RANDOM-STATE.

Bad clause in CCASE - -So

Bad clause in CTYPECASE - - S.

Bad option in included slot spec: -So

Base can't be 1 in this case.

Bit vector is longer than specified length #-A *-A

Bogus function type: -S

Bogus item on *BENV* list.

Cannot find description of structure -S to use for inclusion.

Cannot generate object for form:

Can't coerce - S to type - S.

Comma not inside a backquote.

Compilation source holds no function definitions.

Complex arguments not allowed.

Complex numbers cannot have complex components.

Complex numbers can't be coerced into floats.

Constant - S being redefined.

D-18 LISP for· NOSIVE Language Definition Usage Supplement Revision A

~'" (,

"----,.

c·

(-'
'-._.

C~/

C'~,·

(~/

c

o

Errors Encountered Less Frequently

Control string is not a string

Debug requires a condition as its argument.

Deftype - S cannot be called with - S args.

Denominator cannot be zero.

Dimensions argument to #A not a non-negative integer: -S

Dispatch character already exists.

Dot context error.

Ecase key must be one of - S

End of file encountered after reading a colon.

End-of-file after escape character.

End-of-file inside dispatch character.

Escape character appeared after #*

Escape character appears in number.

Etypecase key must be one of these types: - S

Flaming PPrint death

For two argument case, args must be non-complex.

Form not a cybil-atomic:

Frame -S not found FIND-LEXICAL-BOUNDARY.

Garbage in dispatch vector - -S

Illegal action - s

Illegal atomic form to eval: - S

Illegal complex number format.

Illegal complex-number syntax.

Illegal digits - S for radix - S

Illegal element given for - bitvector #-A *-A

Illegal sharp character - S

Illegal stuff in lambda list of Define-Modify-Macro.

Illegal terminating character after a colon, -S

Ill-formed condition bindings: -A

I'm not yet implemented.

Initial contents for #A is inconsistent with -

Revision A Diagnostic Messages D-19

Errors Encountered Less Frequently

Internal error in floating point reader.

Internal error - validation of boolean incorrect: - 8

Internal error - validation of fixnum incorrect: -S

INTERNAL- assoc-list not nil

Log of zero undefined.

Meaningless bit name in character name: - A

Meaningless character name - A

More than one object follows . in list.

No dimensions argument to #A.

No dispatch function defined for -8.

No dispatch table for dispatch char.

No frame found on stack with name - 8.

No non-whitespace characters in number.

Non-integer label #-8=

Non-integer label #-8#

Non-list following #8

Non-list following #8: -8

N on-positive argument, -A, to RANDOM.

Non-symbol variable name in -8.

Not a condition type: -8

Nothing appears after . in list.

Nothing appears before . in list.

Numerator and denominator must be integers.

Object is not labelled #-8#

Odd number of setf-args to 8ETF.

Package - 8 not found.

Prepare-for-fast-read-char might GC stream.

Real part of power of zero must be strictly positive.

Redundant bit name in character name: -A

Strange file-position - s.

Strange version - s.

D-20 LISP for NOSIVE Language. Definition Usage Supplement

r" --.,

\ ...

c:

Revision A

o

o
o

----- ---------------------------

Errors Encountered Less Frequently

Structure type is not a symbol: - S

Symbol following #: contains a # : - S

Symbol - S not found in the - A package.

T or OTHERWISE clause is not permitted in CCASE.

T or OTHERWISE clause is not permitted in CTYPECASE.

T or Otherwise clause is not permitted in ECASE.

T or Otherwise clause is not permitted in ETYPECASE.

The Defstruct option :NAMED takes no arguments.

The Defstruct option -S cannot be used with 0 arguments.

THE expected type - A and got type - A.

The file - S does not exist.

The type -S does not inherit from CONDITION.

The -S structure does not have a default constructor.

There's junk in this string: -So

There's no digits in this string: -S

This is a bad thing for a directory name: - S

Too many colons after - S:

Too many colons in - S

Too many dots.

Undefined read-macro character - S

Unexpected end-of-file encountered.

Unmatched right parenthesis.

Unreadable object encountered in stream.

U se-lisp-reader needs to be compiled

Vector longer than specified length: #-S-S

Wrong number of arguments to CATCH-ERROR-ABORT.

Wrong type argument, -A, to RANDOM.

You have to give a little bit for non-zero #* bit-vectors.

Zero invalid as a divisor.

&REST keyword is missing.

- A is an ill-formed function object for -A

Revision A Diagnostic Messages D-21

Errors Encountered Less Frequently

- A not a valid number for *read-base*.

- A should be a function object.

-S -- Bad clause in CASE.

-S -- Deftype form too short to be legal.

-S -- Illegal type specifier to TYPEP.

-S -- Type-name not a symbol.

-S -- ill-formed keyword arg in -So

- S -- non-symbol variable name in arglist of - S.

- S already compiled.

-S has illegal definition.
r-------

I

- 8 is a bad :TYPE for Defstruct.

-S is a lexical closure. Cannot compile it alone.

-S is an ill-formed function object for -S

-8 is an illegal :Test for hash tables.

-8 is an inappropriate type of object for coerce.

- 8 is an unknown Defstruct option.

- S is neither a symbol nor a list of symbols.

- S is not a defined structure type.

-S is not a dispatch char.

- S is not a sequence.

-S is not a subtype of SEQUENCE.

- S is not a symbol.

- S is not accessible in the - A package.

- S is not of type

-S is not of type integer.

-S not allowed in Define-Modify-Macro lambda list.

-S not declared or bound, assuming special.

-S should be a function object.

-S should be a list or nil.

-S should have been a function object.

-S: index too large.

D-22 LISP for NOSIVE Language Definition Usage Supplement Revision A

o
o

.•............ _. __ _--

-8: index too small.

-8: invalid output type specifier.

- s is not a frame boundary type.

-s is not a primitive frame.

,. after backquote in -8

,. after dot in -8

,@ after backquote in -8

,@ after dot in -S

Revision A

Errors Encountered Less Frequently

Diagnostic Messages D-23

' _ ...

o

Index of LISP Symbols E

This appendix lists all functions, macros, special forms, special variables, and constants
supported by LISP. There is no corresponding chapter in Common LISP.

This appendix lists the page in Common LISP of the primary description for each LISP
symbol. The symbols are listed alphabetically, in ASCII collating sequence order.

NOTE

There is no guarantee that only functions listed in this index are defined in the LISP
system. There may be some Common LISP functions which are partially implemented,
but not yet ready for use. There may also be some functions that are part of LISP and
are never intended for your use. These are not supported and may not be accessible in
later versions of the product.

Revision A Index of LISP Symbols E·l

Index of LISP Symbols

Common
LISP

Symbol Type Page

* function 199
* variable 325
** variable 325
*** variable 325

+ function 199
+ variable 325
++ variable 325
+++ variable 325

function 199
variable 325

I function 200
I variable 325
/I variable 325
III variable 325
1= function 196

1+ function 200
1- function 200

< function 196
<= function 196
= function 196
> function 196
>= function 196

" read macro 347
read macro 351

read macro 347
(read macro 346
) read macro 347

read macro 351
read macro 355
read macro 347
read macro 349

E·2 LISP for NOSIVE Language Definition Usage Supplement

Notes or LISP Page

Revision A

/,,----.,.

/"'---"

,,------...
(

' "

("
\-

(',
\,-~",/

C'-­

('l
-..... _ ... ,;'

(
..........

'- ---'

(~_/

C':

C)

C~:,

I C;
C

Symbol

abs
acons
acos
acosh
adjoin

adjust-array
adjustable-array-p
alpha-char-p
alphanumericp
and

append
apply
applyhook
applyhook
apropos

apropos-list
aref
array-dimension
array-dimension-limit
array-dimensions

array-element-type
array-has-fill-pointer-p
array-in-bounds-p
array-rank
array-rank-limit

array-row-major-index
array-total-size
array-total-size-limit
arrayp
ash

asin
asinh
assert
as soc
as soc-if

assoc-if-not
atan
atanh
atom

Revision A

Index of LISP Symbols

Common
LISP

Type Page Notes or LISP Page

function 205
function 279
function 207
function 209
function 276

function 297
function 293
function 235
function 236
macro 82

function 268
function 107
function 323
variable 322
function 443

function 443
function 290
function 292
constant 290
function 292

function 291
function 296
function 292
function 292
constant 289

function 293
function 292
constant 290
function 76
function 224

function 207
function 209
macro 434 26-13
function 280
function 280

function 280
function 207
function 209
function 73

Index of LISP Symbols E-3

Index of LISP Symbols

.----

Common
LISP

Symbol Type Page Notes or LISP Page

bit function 293
bit-and function 294
bit-andc1 function 294
bit-andc2 function 294
bit-eqv function 294

bit-ior function 294
bit-nand function 294
bit-nor function 294
bit-not function 295
bit-ore 1 function 294

bit-orc2 function 294
bit-vector-p function 75
bit-xor function 294 /~"

block special form 119
boole function 222 ',_ .. "

boole-1 constant 222
boole-2 constant 222
boole-and constant 222
boole-andc1 constant 222
boole-andc2 constant 222

boole-c1 constant 222 i--",
boole-c2 constant 222 ~
boole-cIr constant 222 '-_, .• J

boole-eqv constant 222
boole-ior constant 222

boo Ie-nand constant 222
boole-nor constant 222
boole-orc1 constant 222
boole-orc2 constant 222
boo Ie-set constant 222 l

".----,

(

boole-xor constant 222 '-/

both-case-p function 235
boundp function 90
break function 432 26-7
*break -on-warnings * variable 432

butlast function 271
byte function 225
byte-position function 226
byte-size function 226

E-4 LISP for NOSIVE Language Definition Usage Supplement Revision A

· ------ -"•. _ ... ---_. --_ .. __ ._--_ .. -, _- -~--.. --.-.---.

Index of LISP Symbols

C") Common /

LISP

C' I Symbol Type Page Notes or LISP Page
I

c----r function 263 caaaar thru cddddr
call-arguments-limit constant 108
car function 262
case macro 117
catch special form 139

catch-error-abort macro 26-12
ccase macro 437 26-14
cdr function 262
ceiling function 217
cerror function 430 26-6

char function 300
char-bit function 243

C) char-bits function 243
char-bits-limit constant 234
char-code function 239

char-code-limit constant 233
char-control-bit constant 243
char-downcase function 241
char-equal function 239
char-font function 240

0
char-font-limit constant 234
char-greaterp function 239
char-hyper-bit constant 243
char-int function 242
char-Ie ssp function 239

char-meta-bit constant 243
char-name function 242
char-not-equal function 239
char-not-greaterp function 239

(-" char-not-Iessp function 239
"

"---)
char-super-bit constant 241
char-upcase function 241
charI = function 237
char < function 237
char < = function 237

char = function 237
char> function 237
char> = function 237
character function 241
characterp function 75

C\
)

o
Revision A Index of LISP Symbols E-5

Index of LISP. Symbols

,/

Common
LISP ,,'-' ,

Symbol Type Page Notes or LISP Page

check-type macro 433 26-13
cis function 207
clear-input function 380
clear-output function 384
close function 332

clrhash function 285
code-char function 240
coerce function 51
commonp function 76
compile function 438

compile-file function 439
compiled-function-p function 76
compiler-let special form 112 ,r---.....

complex function 220
complexp function 75

compute-proceed-cases function 26-10
concatenate function 249
cond macro 116
condi tion-bind special form 26-5
condition-case special form 26-12

conjugate function 201 (' cons function 266
function 74

\"'._-'
consp
constantp function 324
copy-alist function 268

copy-list function 268
copy-readtable function 361
copy-seq function 248
copy-symbol function 169
copy-tree function 269 I

""------.....,,

'\
'~ ... -........ '

cos function 105
cosh function 209
count function 257
count-if function 257
count-if-not function 257
ctypecase macro 436 26-14

(-,.
"-

(~/
E-6 LISP for NOSIVE Language Definition Usage Supplement Revision A

_"~ __ "M. ____ • ________ "" ____ " __ • -----"---_ ..•

Index of LISP Symbols

,-

(
... , Common

(--" LISP
I Symbol Type Page Notes or LISP Page
'---'

debug function 26-6, 26-20
debug-io variable 328
decf macro 201
declaration declaration 160
declare special form 153

decode-floa t function 218
decode-uni versal-time function 445
default-pathname-defaults variable 416
defconstant macro 68
define-condition macro 26-2

define-modify-macro macro 101
define-proceed-function special form 26-10

C
define-setf-method macro 105

I defmacro macro 145
defparameter macro 68

defsetf macro 102
defstruct macro 307
deftype macro 50
defun macro 67
defvar macro 68

C) delete function 254
delete-duplicates function 254
delete-file function 424
delete~if function 254
delete-if-not function 254

denominator function 215
deposit-field function 227
describe function 441 25-6
digit-char function 241

C'/ digit-char-p function 236
~'

directory function 427
directory-name string funtion 417
disassemble function 439
do macro 122
do* macro 122

do-all-symbo Is macro 187
do-external-symbols macro 186
do-symbols macro 186
documentation function 440
dolist macro 126

Revision" A Index of LISP Symbols E-7

Index of LISP Symbols

Common
LISP

Symbol Type Page

dotimes macro 126
double-float-epsilon constant 232
double-floa t-nega ti ve-epsilon constant 232
dpb function 227
dribble function 443

ecase macro 436
ed function 442
eighth function 266
elt function 248
encode-universal-time function 446

endp function 264
enough-name string function 417
eq function 77
eql function 78
equal function 80

equalp function 81
error function 429
error-abort function
error-output variable 328
etypecase macro 435

eval function 321
eval-when special form 69
evalhook function 323
evalhook variable 322
evenp function 196

every function 250
exp function 203
export function 185
expt function 203

fboundp function 90
fceiling function 217
features variable 448 '
moor function 217
futh function 266

file-author function 424
file-length function 425
file-namestring function 417
file-posi tion function 425
file-write-date function 424

fill function 252
fill-pointer function 296
find function 257
find-alI-symbols function 186
find-if function 257

E-8 LISP for NOSIVE Language Definition Usage Supplement

Notes or LISP Page

25-6

26-14

26-6
26-13

26-14

Revision A

,,,---.... ,

'-'

(~
.'

\ ,
'--"

Index of LISP Symbols

,,.,-...,
I

\.._/ Common
LISP

J
r'~'

Symbol Type Page Notes or LISP Page I

"_. J

function find-if-not 257
find-package function 183
find-proceed-case function 26-10
find-symbol function 185
finish-output function 384

first function 266
flet special form 113
float function 214
float-digits function 218
float-precision function 218

float-radix function 218
float-sign function 218

(-'\
floatp function 75
floor function 215

~/ fmakunbound function 92

force-output function 384
format function 385
fourth function 266
fresh-line function 384
fround function 217

C') ftruncate function 217
ftype declaration 158
funcall function 108
function declaration 159
function special form 87
functionp function 76

gcd function 202
gensym function 169
gentemp function 170

C:I get function 164
getf function 166

gethash function 284
get-decoded-time function 445
get-dispatch-macro-character function 364
get-internal-real-time function 446
get-internal-run-time function 446

get-macro-character function 362
get-output-stream-string function 336
get-properties function 167
get-setf-method function 106
get-setf-method-multiple-value function 107

Revision A Index of LISP Symbols E·9

Index of LISP Symbols

----,

Common
LISP

----~

Symbol Type Page Notes or LISP Page
/

get-universal-time function 445
go special form 133
graphic-char-p function 234

hash-table-count function 285
hash-table-p function 284
host-namestring function 417

identity function 448
if special form 115
ignore declaration 160
ignore-errors macro 26-13
imagpart function 220

import function 185
"r----"

in-package function 183
incf macro 201
inline declaration 159
input-stream-p function 332

inspect function 442 25-6
int-char function 242
integer-decode-float function 218
integer-length function 224
integerp function 74 r
intern function 184 , -.~

internal-time-units-per-second constant 446
intersection function 277
in voke-proceed-case function 26-10
isqrt function 205

keywordp function 170

labels special form 113 r-......,
lambda expression 59 (

lamba-list-keywords constant 65
\ _/.'

lambda-parameters-limit constant 66
last function 267

lcm function 202
ldb function 226
ldb-test function 226
ldiff function 272
least-negative-double-float constant 232

E·I0 LISP for NOSIVE Language Definition Usage Supplement Revision A

·_---._ .. ,- .. _----_ -----,-------

Index of LISP Symbols

C~~I
Common

C~
LISP

Symbol Type Page Notes or LISP Page

least-negative-Iong-float constant 232
least-negative-short-float constant 231
least-negative-single-float constant 232
least-positive-double-float constant 232
least-positive-Iong-float . constant 232

least-positive-short-float constant 231
least-positive-single-float constant 232
length function 248
let special form 110
let* special form 111

lisp-implementation-type function 447
lisp-implementation-version function 447

C) list function 267
list* function 267
list-alI-packages function 184

list-length function 265
listen function 380
listp function 74
load function 426
load-entry function 27-2 :::

i:~

load-verbose variable 426

C) locally macro 156
log function 204
logand function 221
logandc1 function 221
logandc2 function 221

logbitp function 224
logcount function 224
logeqv function 221

C_~ logior function 221
lognand function 221,

lognor function 221
lognot function 223
logorcl function 221
logorc2 function 221
logtest function 223

logxor function 221
long-float-epsilon constant 232
long-float-negative-epsilon constant 232
long-site-name function 448
loop macro 121
lower-case-p function 235

C~'
C~)

60486213 B Index of LISP Symbols E·l1

Index of LISP Symbols

/~

Common
LISP /'

Symbol Type Page Notes or LISP Page '-.

machine-instance function 447
machine-type function 447
machine-version function 447
macro-function function 144
macroexpand function 151

macroexpand-1 function 151
macroexpand-hook variable 152
macrolet special form 113
make-array function 286
make-broadcast-stream function 329

make-char function 240
make-concatenated-stream function 329
make-condition function 26-4 /

---...

make-dispatch-macro-character function 363
make-echo-stream function 330

make-hash-table function 283
make-list function 268
make-package function 183
make-pathname function 416
make-random-state function 230

make-sequence function 249 (----......

make-string function' 302 \

make-string-input-stream function 330
make-string-output-stream . function 330
make-symbol function 168

make-synonym-stream function 329
make-two-way-stream function 329
makunbound function 92
map function 249

(~
mapc function 128

\\.

mapcan function 128
mapcar function 128
mapcon function 128
maphash function 285
mapl function 128

maplist function 128
mask-field function 226
max function 198
member function 275
member-if function 275

(-,
-......... _ .. /

E-12 LISP for NOSIVE Language Definition Usage Supplement 60486213 B

C)
C)

~ ... ,
(,
'---'

0

('"
"---'-)

o
o

---------.------- -------

Symbol

member-if-not
merge
merge-pathnames
min
minusp

mismatch
mod
modules
most-negati ve-double-float
most-negative-fixnum

most-negati ve-Iong-float
most-negati ve-short-float
most-nega ti ve-sing Ie-float
most-positive-double-float
most-positive-fixnum

most-positive-Iong-float
most-positive-short-float
most-positive-single-float
multiple-value-bind
multiple-value-call

multiple-val ue-list
multiple-value-prog1
multiple-value-setq
multiple-values-limit

name-char
name string
nbutlast
nconc
nil

nin tersection
ninth
not
notany
notevery

notinline
nreconc
nreverse
nset-difference
nset-excl usi ve-or
nstring-capitalize

Revision A

Index of LISP Symbols

Common
LISP

Type Page Notes or LISP Page

function 275
function 260
function 415
function 198
function 196

function 257
function 217
variable 188
constant 232
constant 231

constant 232
constant 231
constant 232
constant 232
constant 231

constant 232
constant 231
constant 232
macro 136
special form 135

macro 135
macro 136
macro 136
constant 135

function 243
function 417
function 269
function 269
constant 72

function 277
function 266
function 82
function 250
function 250

declaration 159
function 269
function 248
function 278
function 278
function 304

Index of LISP Symbols E-13

Index of LISP Symbols

"r---....,

Common
LISP r"

Symbol Type Page Notes or LISP Page \

"
nstring-downcase function 304
nstring-upcase function 304
nsublis function 275
nsubst function 274
nsubst-if function 274

nsubst-if-not function 274
nsubstitute function 256
nsubstitute-if function 256
nsubstitute-if-not function 256
nth function 265

nthcdr function 267
null function 73
numberp function 74 1".,...-.............

numerator function 215
nunion function 276

oddp function 196
open function 418
optimize declaration 160
or macro 83
output-stream-p function 332

package variable ,183

" package-name function 184
package-nicknames function 184

,,~-~

package-shadowing-symbols function 184
package-use-list function 184

package-used-by-list function 184
packagep function 76
pairlis function 280
parse-integer function 381
parse-name string function 414 (~

'-_ /
pathname function 413
pathname-device function 417
pathname-directory function 417
pathname-host function 417
path name-name function 417

pathname-type function 417
pathname-version function 417
pathnamep function 416
peek-char function 379
phase function 206

E·14 LISP for NOSIVE Language Definition Usage Supplement Revision A

·,~ ---..... --..• -----.-------~- .. -----... __ ._ .. _-------_ .. _----------

Index of LISP Symbols

C~,
Common

C
LISP

/
Symbol Type Page Notes or LISP Page

pi constant 209
plusp function 196
pop macro 271
position function 257
position-if function 257

position-if-not function 256
pprint function 383
prin1 function 383
prin1-to-string function 383
princ function 383

princ-to-string function 383
print function 383

C,' *print-array* variable 373
print-base variable 371
print-case variable 372

print-circle variable 371
print-escape variable 370
print-gensym variable 372
print-Iength . variable 372
print-Ievel variable 372

0 *print-pretty* variable 371
print-radix variable 371
probe-file function 424
proceed-case special form 26-8
proceed-case-name function 26-10

proclaim function 156
prog macro 131
prog* macro 131
prog1 macro 109

C~I; prog2 macro 109

progn special form 109
progv special form 112
provide function 188
psetf macro 97
psetq macro 92

push macro 269
pushnew macro 270

Revision A Index of LISP Symbols E-15

Index of LISP Symbols

/","""-'--~'"

Common
LISP ,1"'---,

Symbol Type Page Notes or LISP Page

query-io variable 328
quit function 1-3
quote special form· 86

random function 228
random-state variable 230
random-state-p function 231
rassoc function 281
rassoc-if function 281

rassoc-if-not function 281
rational function 214
rationalize function 214
ration alp function 74
read function 375 .~

read-base variable 344
read-byte function 382
read-char function 379
read-char-no-hang function 380
read-default-float-format variable 375

read-delimited-list function 377
read-from-string function 380
read-line function 378 (~~
read-preserving-whitespace function 376
read-suppress variable 345 \ '

readtable variable ?61
readtablep function 361
realpart function 220
reduce function 251
rem function 217

remf macro 167 r---'\
remhash function 284 \'-. .. /'
remove function 253
remove-duplicates function 254
remove-if function 253

remove-if-not function 253
.remprop function 166
rename-file function 423
rename-package function 184
replace function 252

E-16 LISP for NOSIVE Language Definition Usage Supplement Revision A

-- ----_ _--_.

Index of LISP Symbols

C) Common

C" ,;
LISP

Symbol Type Page Notes or LISP Page

-----" require function 188
rest function 266
return macro 120
return-from special form 120
revappend function 269

reverse function 248
room function 442
rotatef macro 99
round function 215
rplaca function 272
rplacd function 272

$save-lisp function 25-4

C: shit function 293
scale-float function 218
schar function 300
search function 258

second function 266
set function 92
set-char-hit function 244
set-difference function 278
set-dispa tch-macro-character function 364

0 set-exclusive-or function 278
set-macro-character function 362
set-syntax-from-char function 361
setf macro 94
setq special form 91

seventh function 266
shadow function 185
shadowing-import function 186

C) shiftf macro 97
short-float-epsilon constant 232

short-float-negati ve-epsilon constant 232
short-site-name function 448
signal function 26-5
signum function 206
simple-hit-vector-p function 76

simple-string-p function 75
simple-vector-p function 75
sin function 207
sing le-floa t-epsilon constant 232
single-float-negati ve-epsilon constant 232

Revision A Index of LISP Symbols E-17

Index of LISP Symbols

~

Common
LISP

~---".

Symbol Type Page Notes or LISP Page

sinh function 209
sixth function 266
sleep function 447
software-type function 448
software-version function 448

some function 250
sort function 250
special declaration 157
special-form-p function 91
sqrt function 205

stable-sort function 258
standard-char-p function 234
standard-input variable 327 '---'.
standard-output variable 327
step macro - 441 26-16

streamp function 332
stream-element-type function 332
string function 304
string-capitalize function 303
string-char-p function 235

string-downcase function 303 /~

string-equal function 301 ~-- ... string-greaterp function 302
string-left-trim function 302
string-Ie ssp function 302

string-not-equal function 302
string-not-grea terp function 302
string-not-lessp function 302
string-right-trim function 302
string-trim function 302 ('
string-upcase function 303 '--.. -/

string/= function 301
string < function 301
string< = function 301
string = function 300

string> function 301
string> = function 301
stringp function 75
sublis function 274
sub seq function 248

E·18 LISP for NOSIVE Language Definition Usage Supplement Revision A

C";:
"

Cj

C/

C)

C

o
o

Symbol

subsetp
subst
subst-if
subst-if-not
substitute

substitute-if
substitute-if-not
subtypep
svref
sxhash

symbol-function
symbol-name
symbol-package
symbol-plist
symbol-value

symbolp

t
tagbody
tailp
tan
tanh

tenth
terminal-io
terpri
the
third

throw
time
trace
trace-output
tree-equal

true name
truncate
type
type-Df
typecase
typep

Revision A

----._-_ _ .. -------- -_ ... _- ---_._--_._-_._._---

Index of LISP Symbols

Common
LISP

Type Page Notes or LISP Page

function 279
function 273
function 273
function 273
function 255

function 255
function 255
function 72
function 291
function 285

function 90
function 168
function 170
function 166
function 90

function 73

constant 72
special form 130
function 275
function 105
function 209

function 266
variable 328
function 384
special form 161
function 266

special form 142
macro 441 25-5
macro 440 26-17
variable 328
function 264

function 413
function 215
declaration 158
function 52
macro 118
function 72

Index of LISP Symbols E-19

Index of LISP Symbols

,,/-~-

Common
LISP /-"

Symbol Type Page Notes or LISP Page I
\

\' _ "".

unexport function 186
unintern function 185
union function 276
unless macro 115
unread-char function 379

untrace macro 440 26-19
unuse-package function 187
unwind-protect special form 140
upper-case-p function 135
use-package function 187
user-homedir-pathname function 418

values function 134
values-list function 135 r--,

vector function 290
vectorp function 75
vector-pop function 296

vector-push function 296
vector-push-extend function 296
ve-command function 1-2
warn function 432 26-7
when macro 115

~,

with-input-from-string macro 330 (,
with-open-file 422

'-. ... ,,'

macro
wi th-open-steam macro 330
with-output-to-string function 331
write function 382

write-byte function 385
write-char function 384
write-line function 384
write-string function 384 r----,
wri te-to-string function 383 (" .. _./

y-or-n-p function 407
yes-or-no-p function 408

zerop function 195

E-20 LISP for NOSIVE Language Definition Usage Supplement Revision A

o

Tautology Proving Example F

This appendix contains an example of LISP use. There is no corresponding chapter in
Common LISP.

The sample LISP statement file shown in figure F-l is a tautology proving program
called theorem-prover, written to illustrate LISP features. It is not intended to teach a
specific LISP programming style. This program uses a Gentzen implication algorithm.

Revision A Tautology Proving Example F·l

Tautology Proving Example

The basic data structures are the LHS (lefthand side) and the RHS
(righthand side). These represent the respective sides of an
implication.

The RHS is a list representing a disjunction of clause.
The LHS is a list representing a conjunction of clauses.
The goal is to find something on the LHS which is also on the RHS.

First, the input clause is placed on the RHS. A clause is extracted
from either the LHS or the RHS. The operator of the clause
is examined. One of several productions are applied to the RHS and
the LHS to produce an equivalent simpler form.

This process is repeated until either the intersection
of the RHS and LHS is not empty, or until all clauses are simplified.

For example:

==> P -> (- Q -> - (P -> Q»
P ==> (- Q -> - (P -> Q»

P . - Q ==> - (p -> Q)

;P • (P -> Q) ==> Q

P ==> P,Q P,Q ==> Q

* *

reduces to
reduces to
reduces to
split into
simplifies to

The theorem-prover function is the read eva1 print loop.
The formula is read in from the terminal. It is then reduced
and the result is printed.

(DEFUN THEOREM-PROVER
NIL

(LET «FORMULA NIL»
(TAGBODY A (PRINe II TP?") (FINISH-OUTPUT) (SETQ FORMULA (READ»

(IF (MEMBER FORMULA '(END BYE QUIT STOP HALT EXIT»
(GO B»

(THEOREM-PROVER-PRINTER (REDUCE NIL (LIST FORMULA»)
(GO A)

B (PRINT "Thank yOU"»)

Figure F-l. Theorem-Prover Code

F-2 LISP for NOSIVE Language Definition Usage Supplement

,,--"

-',_ .. ,.""

(Continued)

Revision A

c'

Tautology Proving Example

(Continued)

The reduce function is the workhorse of the theorem prover.

Arguments - LHS the lefthand side if the GENTZEN implication
RHS the righthand side of the GENTZEN implication

The data (theorem) is represented as a list. The list is in prefix notation.
If a sublist is itself a list, then it is a candidate for simplification.
The algorithm used takes the first possible simplification on the left.
If none exists on the left, it checks the righthand side. If none exists
there, it checks for trivial validation.

Reduce returns NIL if the statement is valid; otherwise, it returns
a list whose CAR is the lefthand side that did not resolve
and the list's CDR is the righthand side.

(DE FUN REDUCE
(LHS RHS)

(COND «NOT-SIMPLIFIED LHS) (REDUCE-LHS LHS RHS»
«NOT-SIMPLIFIED RHS) (REDUCE-RHS LHS RHS»
(T (CHECK-SIMPLE-CASE LHS RHS»»

(DEFUN REDUCE-LHS
(LHS RHS)

(REDUCE-LHS2 (GET-REDUCTION LHS) (REMOVE-REDUCTION LHS) RHS»

(DEFUN RenUCE-LHS2
(REDUCTION LHS RHS)

(APPLY (GET 'LHS (CAR REDUCTION» (LIST (CDR REDUCTION) LHS RHS»)

REDUCE-RHS retrieves the subtheorem to be reduced, extracts the
subtheorem from the lefthand side and does the reduction

(DEFUN REDUCE-RHS
(LHS RHS)

(REDUCE-RHS2 (GET-REDUCTION RHS) LHS (REMOVE-REDUCTION RHS»)

(DEFUN REDUCE-RHS2
(REDUCTION LHS RHS)

(APPLY (GET 'RHS (CAR REDUCTION» (LIST (CDR REDUCTION) LHS RHS»)

Figure F-l. Theorem-Prover Code
(Continued)

Revision A Tautology Proving Example F·3

Tautology Proving Example

(Continued)

The setf function stores the intelligence of the system with symbol-plist.
As each operator is detected in REDUCE-LHS, the information on how to
process the information 1s retrieved from this p11st. To add more
operators, just add the code here with the operator name as the plist
indicator. See REDUCE-LHS2 for how the properties are executed.

Arguments - ARG is a list of arguments for this operation. The operator must
indicate how long the list is to be.
LHS is the lefthand side with what is being simplified removed.
RHS is the righthand side of the implication.

(SETF (SYMBOL-PLIST 'LHS)
, (NOT

(LAMBDA (ARG LHS RHS)
(COND «MEMBER (CAR ARG) LHS) NIL)

(T (REDUCE LHS (CONS (CAR ARG) RHS»»)
AND
(LAMBDA (ARGS LHS RHS)

(COND «MEMBER (CAR ARGS) RHS) NIL)
«MEMBER (CADR ARGS) RHS) NIL)
(T (REDUCE (APPEND ARGS LHS) RHS»»

IMPLIES
(LAMBDA (ARGS LHS RHS)

IF

(COND
«MEMBER (CAR ARGS) (CONS (CADR ARGS) LHS» NIL)
«MEMBER (CADR ARGS) (CONS (CAR ARGS) RHS» NIL)
(T (OR (REDUCE LHS (CONS (CAR ARGS) RHS»

(REDUCE (CONS (CADR ARGS) LHS) RHS»»)

(LAMBDA (ARGS LHS RHS)
(REDUCE

(CONS (LIST 'AND
(LIST 'IMPLIES (CAR ARGS) (CADR ARGS»
(LIST 'IMPLIES (LIST 'NOT (CAR ARGS» (CADDR ARGS»)

LHS)
RHS))

OR
(LAMBDA (ARGS LHS RHS)

(COND
«MEMBER (CAR ARGS) RHS) NIL)
«MEMBER (CADR ARGS) RHS) NIL)
(T (OR (REDUCE (CONS (CAR ARGS) LHS) RHS)

(REDUCE (CONS (CADR ARGS) LHS) RHS»»»

Figure F-l. Theorem-Prover Code

F-4 LISP for NOSNE Language Definition Usage Supplement

(Continued)

Revision A

"r-""",

i
,,-. __ .-.'

r
'---'

c,:'

CI

C'

._. __ ... _-_ _ .. _---

Tautology Proving Example

(Continued)

; The following code is the complement of LHS (see above.)

(SETF (SYMBOL-PLIST 'RHS)
, (NOT

(LAMBDA (ARG LHS RHS)
(COND «MEMBER (CAR ARG) RHS) NIL)

(T (REDUCE (CONS (CAR ARG) LHS) RHS»»
AND
(LAMBDA (ARGS LHS RHS)

(COND
«MEMBER (CAR ARGS) LHS) NIL)
«MEMBER (CADR ARGS) LHS) NIL)
(T (OR (REDUCE LHS (CONS (CAR ARGS) RHS»

(REDUCE LHS (CONS (CADR ARGS) RHS»»»
IMPLIES
(LAMBDA (ARGS LHS RHS)

IF

(COND
«EQ (CAR ARGS) (CADR ARGS» NIL)
«MEMBER (CAR ARGS) RHS) NIL)
«MEMBER (CADR ARGS) LHS) NIL)
(T (REDUCE (CONS (CAR ARGS) LHS) (CONS (CADR ARGS) RHS»»)

(LAMBDA (ARGS LHS RHS)
(REDUCE

OR

LHS
(CONS (LIST 'AND

(LIST 'IMPLIES (CAR ARGS) (CADR ARGS»
(LIST 'IMPLIES (LIST 'NOT (CAR ARGS» (CADDR ARGS»)

RHS»)

(LAMBDA (ARGS LHS RHS)
(COND «MEMBER (CAR ARGS) LHS) NIL)

«MEMBER (CADR ARGS) LHS) NIL)
(T (REDUCE LHS (APPEND ARGS RHS»»»

The function below checks for success when no other reductions can
be made. All failures must end here. Individual
operator processing can detect success earlier, however.

(DEFUN CHECK-SIMPLE-CASE
(LHS RHS)

(COND «INTERSECT LHS RHS) NIL)
(T (CONS LHS RHS»»

(DEFUN GET-REDUCTION
(LST)

(COND «NULL LST) NIL)
«LISTP (CAR LST» (CAR LST»
(T (GET-REDUCTION (CDR LST»»)

Figure F-l. Theorem-Prover Code
(Continued)

Revision A Tautology Proving Example F·5

Tautology Proving Example

(Continued)

Do a set intersection to determine if anything on the right appears
on the left. Right represents the disjunction and left a
conjunction. Therefore if anything on the left is also on the
right. the theorem is valid.

(DEFUN INTERSECT
(SET1 SET2)

(REMALL NIL
(MAPCAR

(LAMBDA (x) (COND «MEMBER X SET2) X) (T NIL»)
SET1»)

Not-simplified returns T if there exists an expression that can be
simplified; otherwise. it returns NIL.
Arguments - LST is a list representing one side of the implication; any

element that is a list can be simplified.

(DEFUN NOT-SIMPLIFIED
(LST)

(COND «NULL LST) NIL)
«LISTP (CAR LST» T)
(T (NOT-SIMPLIFIED (CDR LST»»)

(DEFUN REMALL
(ELEMENT LST)

(COND «NULL LST) NIL)
«EQ ELEMENT (CAR LST» (REMALL ELEMENT (CDR LST»)
(T (CONS (CAR LST) (REMALL ELEMENT (CDR LST»»»

(DEFUN REMOVE-REDUCTION
(LST)

(COND «NULL LST) NIL)
«LISTP (CAR LST» (CDR LST»
(T (CONS (CAR LST) (REMOVE-REDUCTION (CDR LST»»»

Figure F-l. Theorem-Prover Code

F-6 LISP for NOSIVE Language Definition Usage Supplement

(Continued)

Revision A

C
.. ,'

\

/

C

o

o
o

--,-_ ... -- -., _---

Tautology Proving Example

(Continued)

The following decodes the result of REDUCE and prints knowledgeable
information. NIL means success. A list means failure.
The CAR is the lefthand side. The CADR is the RHS.

(DEFUN THEOREM-PROVER-PRINTER
(RESULT)

(COND
«NULL RESULT) (PRINC " --VALID--") (TERPRI»
(T (PRINC " --INVALID--")

(TERPRI)
(PRINC II LEFT-HAND-SIDE __ >n)

(PRINC (CAR RESULT»
(TERPRI)
(PRINC " RIGHT-HAND-SIDE --> ")

(PRINC (CADR RESULT»
(TERPRI)
(TERPRI» »

Figure F-l. Theorem-Prover Code

Revision A Tautology Proving Example F-7

Using Theorem-Prover

Using Theorem-Prover

To execute theorem-prover, type:

(t heorem-,prover)

Respond to each TP?? prompt with a logical function in prefix normal form. The
theorem-prover recognizes the logical operators OR, AND, IMPLIES, NOT, and IF. For
example, you can enter the clause

(a =>b) -=> (-a OR b)

by typing

(1 mp 11 es (i mp 11 es a b) (OR (NOT a) b»

which returns

--VALID--

To stop the theorem-prover, type

end

F-8 LISP for NOSNE Language Definition· Usage Supplement Revision A

c-'
(-~/

(~-'

C.. 1 _n __ de_x ______________________________ __

C
'
./

('
r'"
~/

/

r·,·

~)

()

C~;

(" \,
I

../

---- ... __ ._._--_ ... _----

Index

A
About this manual 3
Accessing directories 23-5
Acknowledgments 3
Additional related manuals 4
Array A-1
Array creation 17-1
Arrays 17-1
Assert macro 26-13
Atom A-I
Audience 3

B
Binding A-1
Bound symbol A-I
Break function 26-7

C
CAR A-I
Catch-error-abort macro 26-12
Ccase macro 26-14
CDR A-I
Cerror function 26-6
Character attributes 2-3; 13-1
Character control-bit functions 13-1
Character set C-l
Characters 2-2; 13-1
Check-type macro 26-13
Comparisons on numbers 12-1
Compile 25-1
Compile file 25-1
Compile time environment 25-3
Compiler 25-1
Condition

Defining a 26-2
Preceeding a 26-8

Condition case form 26-12
Conditions 26-1
Cons cell A-I
Constant A-1
Control commands 26-22
Control structure 7-1
Conventions 4
Creating symbols 10-1
Ctypecase macro 26-14

D
Data type support 2-1
Data types 2-1
Debug function 26-6, 20
Debugger commands 26-20
Debugging 26-20
Debugging tools 24-1; 25-4

Declaration specifiers 9-1
Declaration syntax 9-1
Declarations 9-1
Define-condition macro 26-2
Defining conditions and creating

condition objects 26-2
Defstruct options 19-1
Describe function 25-6
Diagnostic messages D-1
:direction 23-3
Disassemble 25-3
Dotted list A-I
Dotted pair A-I
Dribble function 25-6
Dynamic extent A-2
Dynamic scoping A-2

E
Ecase macro 26-14
Element A-2
: element-type 23-3
Entering LISP 1-1
Environment A-2
Environment inquiries 25-7
Equality predicates 6-1
Error-abort function 26-13
: error-file 25-2
Error function 26-6
Error handling and debugging 26-1
Error processing 26-1
Errors 1-1; 24-1; D-l
Errors encountered less frequently D-18
:errors-to-terminal 25-2
Etypecase macro 26-14
Evaluation A-2
Extent 3-1; A-2

F
File names 23-1
File system interface 23-1
Fill pointers 17-1
Floating-point numbers 2-2
Form A-2
Formatted output to character

streams 22-1
Forms 5-1
Frame movement commands 26-24
Function A-2

G
Garbage collection A-2
General error-signalling functions 24-1
Glossary A-1

60486213 B LISP for NOSIVE Language Definition Usage Supplement Index-!

----._---_ ...• -.. _---._---

Hash table functions

H
Hash table functions 16-1
Hash table support 16-1
Hash tables 16-1

I
: if-exists 23-3
Ignore-errors macro 26-13
Implementation parameters 12-1
In case you need assistance 5
Indefinite extent A-2
Indefinite iteration 7-1
Indefinite scoping A-2
Index of LISP symbols E-l
Input from binary streams 22-1
Input functions 22-1
Input/output 22-1
input-pathname 25-1
Inspect function 25-6
Integers 2-1
Introduction 1-1
Invoking the signal and debug

facilities 26-4
Irrational and transcendental

functions 12-1

L
Lambda notation A-3
Leaving LISP 1-3

"Leaving LISP temporarily 1-3
Lexical scoping A-3
Line divisions 2-2
LISP-Object A-3
List A-3
Lists 15-1
Lists and conses 2-3
:load 25-2
Load-entry

example 27-4
function 27-2

Loading files 23-5
Loading speed 27-1
Logical operations on numbers 12-1

M
Macro A-3
Macro support 8-1
Macros 5-1; 8-1
Make-condition function 26-4
Miscellaneous commands 26-25
Miscellaneous debugging tools 25-5
Miscellaneous features 25-1
Modification commands 26-25
:module-name 25-2
Modules 11-1
Multiple values 7-1

Simple sequence functions

N
NIL A-3
Non-standard characters 2-3
Numbers 12-1

o
Opening and closing files 23-3
Ordering printed manuals 5; B-1
Organization 3
Other environment inquiries 25-7
: output-file 25-2
Output functions 22-1
Output to binary streams 22-1
Output to character streams 22-1
Overlap, inclusion, and disjointness of

types 2-3

p

Package A-3
Package support 11-1
Packages 11-1
Pathnames 23-1
Predefmed condition types 26-15
Predicates 6-1
Primitive function A-3
Print commands 26-24
Print name A-3
Proceed-case form 26-8
Program structure 5-1
Property list A-3
Pseudo function A-3

Q
Quote A-4

R
Reader A-4
Recursion A-4
Related manuals B-1
Renaming, deleting, and other file

operations 23-5
Run-time evaluation of forms 20-1

s
S-expression A-4
$sa ve-lisp 25-4
Scope A-4
Scope and extent 3-1
Semantics A-4
Sequences 14-1
Side effects A-4
Signal function 26-5
Simple sequence functions 14-1

Index-2 LISP for NOSNE Language Definition Usage Supplement 60486213 B

/" ,

(' .""""

('

\.

c_~

("'"

./

C)

o
C'j

Special form

Special form A-4
Special forms 5-1
Specialized error-signalling forms and

macros 24-1
Specialized error-signalling macros 26-13
Stack examination commands 26-22
Standard characters 2-2
Standard streams 21-1
Stepping 26-16
Streams 21-1
String A-4
String access 18-1
Strings 18-1
Structures 19-1
Submitting comments 5
Substituting for the ed function 25-4
Support of extent 3-1
Symbol A-4
Symbols 10-1
Syntax A-4

T
Tautology proving example F-1
terminal-io 21-1
The compiler 25-1
The evaluator 20-1
The top-level loop 20-2

Theorem-Prover code F-2
Time macro 25-5
Trace macro 26-17
Tracing 26-17
True list A-5

Warn function

Type conversions and component
extractions on numbers 12-1

Type specifiers 4-1
Type specifiers that specialize 4-1

u
Untrace macro 26-19
Using NOSIVE or other software from

within LISP 1-2
Using Theorem-Prover F-8

V
Value A-5
Variable A-5
ve-command 1-1

w
Warn function 26-7

60486213 B LISP for NOSIVE Language Definition Usage Supplement Index-3

,/ --

i­
I,

Comments <continued from other side)

o
Please fold on dotted line;
seal edges with tape only.

C) FOLD

o
o

BUSINESS REPLY MAIL
First-Class Mail Permit No. 8241 Minneapolis, MN

POSTAGE WILL BE PAID BY ADDRESSEE

CONTROL DATA
Technical Publications
SVLF45
5101 Patrick Henry Drive
Santa Clara, CA 95054-1111

11.1.111.1. ~1.1 •• I •• I.IIII.IIII.IIIIIIIII •• I1.1

NO POSTAGE
NECESSARY
IF MAILED

FOLD

FOLD

IN THE
UNITED STATES

LISP for NOSNE Language Definition Usage Supplement 60486213 B

We would like your comments on this manual to help us improve it. Please take a few minutes to fill out
this form.

Who are you? How do you use this manual?

o Manager o As an overview
o Systems analyst or programmer o To learn the produc~ or system
o Applications programmer o For comprehensive reference
o Operator o For quick look-up o Other ____________________________ __ DOther ______________________________ _

What programming languages do you use? _________________________ _

How do lOU like this manual? Answer the guestions that al!Ely.

Yes Somewhat No
0 0 0 Does it tell you what you need to know about the topic?

0 0 0 Is the technical information accurate?

0 0 0 Is it easy to understand?

0 0 0 Is the order of topics logical?

0 0 0 Can you easily find what you want?

0 0 0 Are there enough examples?

0 0 0 Are the examples helpful? (0 Too simple? o Too complex?)

0 0 0 Do the illustrations help you?

0 0 0 Is the manual easy to read (print size, page layout, and so on)?

0 0 0 Do you use this manual frequently?

Comments? If al!l!licable, note I!age and I!aragral!h. Use other side ifneeded.

Check here if you want a reply: 0

Name Company

Address Date

Phone

Please send program listing and output if applicable to your comment.

/'

('

'.

(

(

o
o

o

o

o

o
o

· @:~. CONTI\.OL DATA

	Contents

	1 Introduction

	2 Data Types

	3 Scope and Extent

	4 Type Specifiers

	5 Program Structure

	6 Predicates

	7 Control Structure

	8 Macros

	9 Declarations

	10 Symbols

	11 Packages

	12 Numbers

	13 Characters

	14 Sequences

	15 Lists

	16 Hash Tables

	17 Arrays

	18 Strings

	19 Structures

	20 The Evaluator

	21 Streams

	22 Input/Output

	23 File System Interface

	24 Errors

	25 Conditions

	26 Error Handling and Debugging

	27 Loading Speed

	Appendixes

	A Glossary

	B Related Manuals

	C Character Set

	D Diagnostic Messages

	E Index of LISP Symbols

	F Tautology Proving Example

	Index

