
•
t .1.

•

Installed
User
Program

8H20·2076·0

LISP/370
Program Description/Operations Manual

Program Number: 5796-PKL

This manual is intended as a guide to the facilities and
capabilities of LI8P/370. As such, it contains principally
reference material describing the functions available in the
system.

--.- ------ ----- ~--- ~ _ -- -- -----_ .. -----_.-

PROGRAM SERVICES

During a specified number of months immediately following initial availability of each licensed
program, the customer may submit documentation to the designated IBM location below when
he/she encounters a problem which his/her diagnosis indicates is caused by a defect in the
licensed program. During this period only, IBM through the program sponsor(s), will, without
additional charge, respond to an error in the current unaltered release of the licensed program
by issuing known error correction information to the customer reporting the problem and/or
issuing corrected. or notice of availability of corrected code. However, IBM does not guarantee
service results or represent or warrant that all errors will be corrected. Any onsite program
services or assistance may be provided at a charge.

WARRANTY

THE LICENSED PROGRAM DESCRIBED IN THIS MANUAL IS DISTRIBUTED ON AN
'AS IS' BASIS WITHOUT WARRANTY OF ANY KIND EITHER EXPRESS OR IMPLIED.

Central Service Location: IBM Corporation
Detroit West Automotive Branch office
7700 Second Avenue
Detroit, Michigan 48202
Attention: Mr. A. E. Polcha

Central Service Available Until: April 27, 1980

First Edition (March 1978)

A form for readers' comments has been provided at the back of this publication. If this
form has been removed, address comments to: The Central Service Location.

© Copyright International Business Machines Corporation 1978

J

t

•

• CONTENTS

Introduction. ii

How to Access LISP 1370 on VM . 1

I
" Data Types. 5

• Standard Functions: 17

Basic Functions and Macros 18

List Functions 19

String Functions 27

Vector Functions . 32

State Handling and
Supervisory Functions. 37

110 Functions 52

• Arithmetic Functions 64

Property List and OBLIST Functions. 71

Other Functions 74

Debugging Facilities. 80

Definition Functions 84

Compiler. 97

-" LISP Assembly Program (LAP) 99

Appendix 1:
How to Access LISP/370 on TSO 119

Alphabetical Index of Functions. 128

• i.

LISP /370 Program Description and Operations Manual

INTRODUCTION

This manual is intended as a guide to the facilities and capabilities of LISP/370. As such, it
contains principally reference material describing the functions available in that system. It also
contains a certain amount of tutorial material intended to provide some motivation or explana
tion for why certain operations are performed in the way they are.

This manual is not intended as a basic primer for LISP. For that purpose, the reader should
consult another publication such as Let's Talk LISP by Laurent Siklossy (Prentice-Hall, 1976),
The Programmer's Introduction to LISP by W. D. Maurer (Elsevier, 1972), or LISP 1.5 Primer
by Clark Weissman (Dickenson 1967), all of which are textbooks presenting an introduction to
LISP for the beginning LISP programmer. Other: books, such as Artificial Intelligence by
Patrick Winston (Addison-Wesley, 1977) and Computational Semantics by E. Charniak and Y.
Wilks (Elsevier, 1976) contain chapters introducing LISP in the course of examining some of
the application areas where LISP programs have been significant.

This LISP system was originally developed in the VM/ CMS programming environment, and
this has affected the structure and facilities included in the implementation. Nevertheless, we
have tried to avoid any real dependencies on features unique to that environment. The
MVS/TSO implementation has packaged all of the system interface routines into a separately
assembled module, and extensions in this module to offer more sophisticated interface services
should be relatively straightforward.

The version of LISP /370 documented here is one of a series of systems produced during the
continuing development of LISP at the IBM Thomas J. Watson Research Center. This version
was selected for submission as an Installed User Program because it has been. used for more
than a year at that site, during which time we feel that most major implementation errors have
been detected and corrected. Since the time when this system was devised, our thoughts about
several aspects of LISP have evolved, but implementation of these ideas is still in an experi
mental stage.

Use of a screen display console, such as the IBM 3270 series of devices, is recommended for
program development in the LISP /370 system. Normal test and debugging activity profits
greatly from the rapid display capability of these devices. Once a LISP application has been
developed, the value of this type of terminal will depend upon the application itself rather than
any characteristic of LISP /370.

ii INTRODUCTION

•

•

•

•
.~
\

•
11*

I

•

LISP /370 Program Description and Operations Manual

HOW TO ACCESS LISP/370 FROM CMS

The programs and procedures for running LISP /370 are available on the 194 minidisk
belonging to the VM use rid LISP370. (It is possible that a disk other than 194 be used for
LISP, but this description is written assuming a specific address in order to provide examples
of the actual commands the user should enter.) The user must link to this disk before running
LISP, using the following commands or some EXEC procedure (such as GIME or LINK
WAIT) which performs similar functions:

CP LINK LISP370 194 2B4 RR
ACCESS 2B4N

Persons who frequently use LISP may wish to have their user directory extended to include
this link, or may update their PROFILE EXEC files to perform the necessary link and access.

There is nothing magical about the virtual device address 2B4 used in the example above. Any
convenient address may be used.

Once the necessary disk is accessed, LISP /370 may be loaded by invoking the EXEC proce
dure LISP370. This procedure loads the current LISP system, and leaves the user talking to a
LISP EVAL-type supervisor. To leave LISP, type (FIN) to this top-level supervisor. Control
returns to the LISP370 EXEC procedure, which then releases the storage used by the LISP
system. Alternatively, execution of the LISP function (RET) will produce an immediate return
to the caller of LISP. (RET) may be evaluated at any level, it need not be the top level
supervisor, to leave LISP.

If the user has saved a LISP system file image by using the FILELISP function, he may load
that saved system by specifying the file identifier as an argument of the LISP370 EXEC
procedure. For example, if the LISP system file image is named ASK FILEIM, it may be
invoked by the command:

LISP370 ASK FILEIM

When such a saved LISP system is invoked, execution will continue with a return from the
function FILELISP which saved the system. This mayor may not be the top-level supervisor
which receives control when the default system LISP370 FILEIM is invoked, depending upon
the manner in which that particular LISP system was saved.

There are several options available when loading a LISP /370 system. These options control
the allocation of storage for the system being loaded.

The principal option allows specifying how much storage will be used by the LISP system
(what is not used by LISP remains available to CMS for executing other programs, such as a
context editor). This may be specified either as an actual amount of space, for example 1600K
or 3M, or as a fraction of the CMS storage currently available, such as 85%. Thus, to allocate
900/0 of available storage to LISP, one may use this command:

HOW TO ACCESS LISP/370 1

LISP /370 Program Description and Operations Manual

LISP370 (90%

If an explicit specification of the amount of CMS storage to be used by LISP is made, it must
be the first option specified. Other storage allocation options come in pairs, the first indicating
which option follows, and the second the actual specification of amount of storage or percent
of available storage, as indicated above.

When LISP is loaded, a large chunk of CMS free storage is reserved by means of the
DMSFREE macro. This allocates space at the high end of the user area, immediately below
the space already used by eMS for disk directories, et cetera. In an effort to avoid storage
fragmentation, which may occur if additional storage requested by DMSFREE macros is
allocated below the LISP region (leaving a large hole when the LISP storage is released), the
LISP loader will release part of the storage it obtains from the high end of the LISP region.
The hope is that this storage will be sufficient for whatever processes may require it during and
after LISP execution. The amount of storage to be returned to CMS is controlled by the
CMSHIGH= option, and may be specified as an absolute amount, or as a percentage of the
free storage available when LISPGET is invoked.

The options NIL=, BPI=, and ST ACK= allow the user to control the allocation of free space
to the various parts of LISP. BPI= refers to the space reserved for new binary program
images linked into the LISP system as, a result of a COMP370 function or loaded from a
LISPLIB where they had been written by an earlier compilation. NIL= refers to that part of
the LISP system containing communication cells for quoted objects and shallow binding cells.
A shallow binding cell is required for all free variables referenced by a compiled program. For
this purpose, other functions referenced from within a compiled program count as free
variables.

This allocation is performed every time a LISP system is loaded. Thus, if it is found while
running LISP that a larger stack space in desirable, it is possible to use FILELISP to preserve
the current state of the LISP system, then to reload the saved system using the same, or a
different allocation of storage. Note that, since the division of space is performed each time
LISP is loaded, reloading a file image may change the amount of space allocated to the various
purposes because the amount of space which is actively used has changed or the amount of
space available from CMS has changed.

Note also that a percentage specification of CMSHIGH= refers to available CMS storage,
while percentage specifications of other options discussed in the previous paragraph refer to
available LISP storage, the difference between the amount of storage obtained from CMS and
that required for all LISP's active data.

If LISP storage allocation options are given as absolute amounts, they are satisfied if possible,
then percentage allocations are performed based upon the remaining available storage. A
request for too much storage will yield an error message and LISP will not run.

As an example of the use of these options, the following command represents the default
values assumed by LISPGET if none of these options are specified.

LISPGET (80% STACK= lOOK BPI= 5°A> NIL= 4°A> CMSHIGH= 20/0

2 HOW TO ACCESS LISP/370

•
• L

•

•

•
" I

•

LISP /370 Program Description and Operations Manual

At least one blank must follow the equal signs. If an invalid LISPGET syntax is used, a short
message showing the correct command format is written on the user's console.

Some more information about LISPGET, STRTLISP and LISPFREE

The LISP370 EXEC makes use of two utility programs in addition to LISPGET. LISPGET is
the first to be invoked, and it allocates a large piece of CMS storage into which it reads the
first, small part of a LISP file image. The starting address and length of the storage area is
recorded in the CMS nucleus, so that it my subsequently be retrieved by the programs
STRTLISP and LISPFREE. LISPGET then exits, returning to its caller.

STRTLISP is invoked when the LISP system whose loading and initialization has been started
by LISPGET is to actually receive control and start (or, more precisely, resume) executing.
This division of function may be useful in cases where the user'desires to allocate the storage
to be used by LISP before invoking other programs which also demand storage from CMS, and
might take a variable amount of storage large enough to preclude running LISP. A context
editor is typically such a program.

When STRTLIST is invoked, if retrieves the location of the LISP region from the CMS
nucleus, and branches to the entry point for LISP.

LISP may return to its caller either through (FIN), which implements a permanent exit from
the LISP system, or through (RET), which leaves LISP in such a manner that a subsequent
STRTLISP will resume LISP execution. It is possible, for example, to use LISPGET to load
LISP, then enter a context editor, then invoke an EXEC procedure from the editor (if the
editor supports this) which uses STR TLISP to resume execution in LISP. It is even possible to
make LISP communicate with the editor, either through the CMS console stack, or some more
efficient, direct mechanism, if the context editor supports it. The only precaution which must
be observed in doing this sort of thing is to avoid stepping on one's tail. That is, if
(OBEY ...) is used to leave LISP and enter a context editor, there must be a normal return
from the context editor to LISP, not an attempt to invoke LISP again through STR TLISP.

LISPFREE does what its name implies, it returns the storage currently occupied by LISP to
CMS. The cells in the CMS nucleus which' contained the starting address and length of the
LISP area are reset. To reinvoke LISP, it is then necessary to start with LISP GET again .

HOW TO ACCESS LISP/370 3

LISP /370 Program Description and Operations Manual

HOW TO ACCESS LISP/370 FROM TSO • See APPENDIX 1.

4 HOW TO ACCESS LISP/370 . •

•
f

\'

•

•

LISP /370 Program Description and Operations Manual

LISP/370 DATA TYPES

The following is intended to be an intuitive introduction to the various data objects supported
by LISP /370. Formal rigor is surrendered in favor of an effort to impart a sufficient opera
tional understanding of these LISP data objects to make the following sections describing the
standard LISP functions easier to use. For the programmer, the information presented here
should indicate the range of data types available in the LISP /370 system and allow him to
make some reasonable selections for use in describing his problems.

It is common, when speaking of LISP data objects, to talk about a vector, or an identifier, or
perhaps a list cell, when in fact the object being discussed is actually a pointer to that vector,
identifier, et cetera. This practice is ubiquitous in the LISP community, and will be employed
in this manual. Only in cases where it is vitally important to make a distinction will the more
cumbersome form "pointer to a vector" be used.

The pointers used by LISP /370 are full words (32 bits) and are rich pointers. This means that
in addition to a storage address, they contain (in their high-order byte) a code indicating the
type of object they point to. The reason for having these rich pointers, which do consume
more storage space than would otherwise be necessary, has to do with efficiency. Many of the
frequently occurring LISP operations require arguments of a specified type. Since the result of
an operation performed on an invalid type of argument may actually destroy the LISP system,
checking the types of arguments is essential, and this checking may be more efficiently
performed if the type code is part of the pointer.

While it doesn't occur very frequently, garbage collection is a very expensive operation
because of the quantity of data it processes. Having type codes associated with pointers makes
garbage collection more efficient.

To facilitate the process of garbage collection, pointer type codes are classified into two groups
-- pointers to stored objects and pointers to non-stored objects. A type code having a
high-order one bit indicates a stored object; a high-order zero bit indicates a non-stored
object.

This dichotomy is an artifact of the garbage collector and is somewhat misleading for the
programmer, as it classifies binary programs as non-stored objects.

Nevertheless, there is a distinction to be made between pointers which contain the address of
stored data, and pointers which might-b~ thought of as containing immediate data. In the
latter case, the type code in the pointer indicates the value of this data object is stored in the
pointer itself, not in some other storage location. For example, small integral numbers are
stored as part of a pointer with an appropriate type code, while floating point numbers are
always stored in a memory location whose address is part of a pointer with appropriate type
code.

The significance of this distinction between immediate data and stored data affects the
concepts of sharing and updating. Stored data may be updated, and if it is shared by several
structures, the updated data will also be shared (that is, all of the sharing structures are

DATA TYPES 5

LISP /370 Program Description and Operations Manual

simultaneously updated). Immediate data is intrinsically non-sharable; therefore, in this sense
it is not updatable.

PAIRS

A pair is a stored data object having two component objects which are referred to as the CAR
component and the CDR component (for historical and compatibility reasons). The storage
allocation for a pair is two contiguous full-words. Both of these words contain pointers. The
CAR component occupies the first word; the CDR component occupies the second word.
Since a pointer is used to represent any LISP data object, a pair is an association of two
completely arbitrary LISP data objects.

Two basic functions are provided for selecting part of a pair. CAR and CDR applied to a pair
return as their value the corresponding component of the pair.

The print representation of a pair is normally a left parenthesis followed by the print repre
sentation of the first element of the pair, a blank, a period, a blank, the print representation of
the second element of the pair, and finally a right parenthesis. In certain cases, however, a
simpler or more complex print representation is used. These abrogations of the above rule
occur because of the desire for a more readable print -representation for lists, or to explicitly
show shared substructure.

LISTS

Lists are composite objects created from pairs by applying a conventional interpretation to the
pair data type. Thus each pair is a list. The CAR component of the pair is interpreted as the
first element of that list, and the CDR component of the pair is interpreted as the remainder of
that list.

(Note: It is likewise possible to give an interpretation of pairs as trees or rooted directed
graphs.)

The distinguished object NIL is used to denote an empty list. Thus, if the CDR of a pair is
NIL, there are no remaining elements in that list.

Having NIL as its CDR component is only one way in which a pair may be the end of a list.
If the CDR of a pair is any LISP data object otherthan a pair, that pair terminates a list.

For the purposes of functions which operate on lists, the CDR component of the pair terminat
ing the list is not considered to be part of the list.

The print representation of a list is a modification of the representation of its component pairs
as described above. This modification is intended to improve readability by eliminating some
of the parentheses and divulging the sharing of data; however, the inclusion of some (or all)
of the deleted parentheses is always acceptable in input data. When a pair is pointed to from
the CDR of another pair in a list which is being printed, the separating period and blank of the

6 DATA TYPES

•

•

•

•
•

•
r

•

LISP /370 Program Description and Operations Manual

original pair and its terminating right parenthesis, and the initial left parenthesis of the pair
pointed to, are not printed. In addition, when the terminating pair of a list has NIL as its
CDR component, that NIL and the space, period and space which would separate it from the
CAR value are not printed. This seems more complicated when described in words than when
illustrated by example.

Thus, the list

(A . (B . (C . NIL»)

would appear as

(A B C)

when printed.

Since a pair is a perfectly reasonable element of a list, it is possible to create lists which
include themselves, or parts of themselves, as elements. LISP /370 uses a general scheme for
input/ output which indicates the sharing of data. This sharing scheme, as well as other aspects
of the LISP /370 input/output system, makes use of a break character which is defined in the
standard system as percent (%). An input expression written:

%LI =(A . %Ll)

generates a pair whose CAR component is a pointer to the identifier A and whose CDR
component is a pointer to the pair itself. The list interpretation of this pair would be a circular
list --effectively an infinite list of A's.

This sharing notation need not generate a circular list. For example, the expression:

(%LI=(A) %Ll)

generates a list containing two elements. The first element is the list containing a single
element -- the identifier A -- and the second element is another identical pointer. This is to be
distinguished from the expression:

«A) (A»

which also generates a list of two elements, each of which is a list containing the single
identifier A. In this case, however, the two elements are different pointers, although they
point to equal (but separately stored) lists.

For purposes of accessing the elements of the list, both expressions are equivalent (but note
that the list having the shared data requires less storage). These two lists are not equivalent
with respect to updating. That is, the product of updating one may not be the same as the
product achieved by the same updating operation applied to the other.

DATA TYPES 7

LISP /370 Program Description and Operations Manual

In general, if it is true of two structure that corresponding accesses yield equivalent values then
it can be said that the structures are equivalent trees (see EQUAL function). If it is true that
the products of some updating operation applied to two structures would leave them EQUAL,
then the structures can be said to be equivalent rooted directed graphs (see UEQUAL
function).

NUMBERS

LISP /370 operates on three basic types of numbers, and on several other types of numbers
formed through composition of these basic types. A basic numeric data item may be an
integer or a real (also called a floating point number, or simply a float). Integers are stored in
one of two possible formats, depending upon their value. In the range _226 to 226_1
(-67,108,864 to 67,108,863), the small integer format is used (see Figure 1). This format
stores the numeric value as part of a pointer address field, and so achieves greater efficiency in
computation and storage than the large integer format (see Figure 2) which is used for all other
integer values. All integers are stored exactly by LISP. The only limitation on size is the
available space in the heap.

Real numbers are stored using System/370 double precision floating point format, yielding 53
to 56 bits of precision for the mantissa and a range of up to (about) 1074 . Real numbers are
stored in a separate section of the heap used only for these data. This area is allocated at the
high address end of the space reserved for the heap, and extends toward lower addresses as
new real numbers are generated.

The print representation for a real number always includes a decimal point to distinguish reals
from integer values. This decimal point must be preceded by at least one decimal digit, to
avoid possible confusion with the period used in printing pairs. A minus sign may precede the
first digit to indicate a negative value.

Both integer and real numbers may be followed by a decimal exponent formed by the letter E,
a plus or minus sign (plus is optional), and the exponent magnitude expressed in decimal digits.

There are two parameters which control the way in which real numbers are translated into
their print representations for output. FUZZ refers to a value used to define the intended
precision of real number operations. Two real numbers, X and Y, are equal in the LISP
system if

I I X I - I Y I I < = FUZZ * maximum (I X I, I Y I)

Insofar as printing a real number, X, is concerned, a character representation is generated for
the value in the range

X-FUZZ* I X I to X+FUZZ* I X I

which results in the shortest character string. This print representation may include an
exponent, in which case there will be exactly one decimal digit before the decimal point, or in
cases where the number of digits (exclusive of decimal point and a possible minus sign) needed

8 DATA TYPES

•
,
•

•

t

•

•

•

•

LISP /370 Program Description and Operations Manual

Small Integer Pointer Format:

0011 1 S G - -I

S is a sign bit (1 for negative value, in two's complement form); G is a guard
bit (normally the same as the sign bit) used by the arithmetic routines for
detecting overflow (indicating conversion to a large integer is required);

- represents a data bit which is part of the actual numeric value.

Note that a small integer is actually a (non-stored) pointer value. It is not a
reference to another data object.

Figure 1

Large Integer Format:

LCBVTP I
Vector Length in Bytes

--

0 Low-order Digit (radix 231)

0 High-order digit (radix 231)

The structure pictured above defines the magnitude of a large integer. There
are two pointer type codes which designate large integers; one indicates a
positive large integer, the other indicates a negative large integer. Because
these type codes are not in the class of vectors, it is not possible to select an
element (digit) of a large integer with vector functions such as ELT.

Figure 2

to represent the numeric value is less than NDIGITS, no exponent will be printed and the
decimal point will be placed wherever is required.

The user may specify values for FUZZ and NDIGITS by using the function SETFUZZ .

DATA TYPES 9

LISP /370 Program Description and Operations Manual

Reference Vector Format:

LCRVTP I Vector Length in Bytes

Pointer for component 0

Pointer for component 1

Pointer for Last component

Figure 3

VECTORS

LISP /370 vectors may be classified into two general types: pointer vectors and non-pointer
vectors. Pointer vectors, as the name implies, may contain references to any LISP data objects
(including themselves, so circular structures are possible). Pointer vectors are further classified
as reference vectors and selector structures.

Non-pointer vectors contain binary information -- that is, data which cannot contain references
to other data objects. Thus, non-pointer vectors are non-descendable from the point of view
of the garbage collector and structure-dependent functions such as EQUAL and PRINT.
Non-pointer vectors are further classified as bit vectors, character vectors, word vectors and float
vectors.

Except for bit vectors, vectors may have any length for which sufficient space exists in the
heap. Bit vectors may have a maximum of 224_1 (16,777,215) elements (bits).

All vectors use zero-origin indexing for identification of their components. The function EL T
is a general vector accessing function, applicable to any type of vector. Thus

(EL T vector 0)

is always the first element of vector. Other accessing function~, tailored to a particular type of
vector, are provided because they are more efficient in execution, or because a more specific
check on the type of argument is desired. These are described in the section on vector
functions.

The print format of a reference vector uses angle brackets to delimit the extent of the vector
and blanks to separate elements of the vector:

10 DATA TYPES

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

Selector Structure Format:

____ ~~M.~T~ ______ ______________ y_~~tO! __ ~_~_~g!_~)_~ __ ~y~~~ __ _

Small integer length in bytes
______________________ of pq!nter se~!i()E ________ _

Pointer for Element 0

Pointer for Element 1

Pointer for Last Element

Unstructured binary data
which is accessible only via

a user-written function.

Figure 4

where comPn is the print representation of the LISP data object referenced as the n'th element
of the reference vector.

Selector structures present a more difficult problem for printing, because there is no standard
organization of the binary data section of a selector structure. Therefore, the print representa
tion of a selector structure is:

%S<compo ... comPn 0/0 X 'hex .. . hex' >

where comPn again indicates the print representation of an object referenced in the pointer
section of a selector structure. 'hex ... hex' is the binary data part of the selector structure,
printed as hexadecimal hex characters.

Character Vectors

Strings (character and bit vectors) share a special storage characteristic in the LISP /370
system. For reasons of economy (of both storage and processing time) they are stored in
contiguous blocks of storage. Nevertheless, because it is considered desirable to allow them to
vary in length, a compromise has been achieved which involves maintaining two separate

DATA TYPES 11

LISP /370 Program Description and Operations Manual

Character Vector Format:

LCBVTP I Vector Length in Bytes

Current length of string charo

char1 I char2 I ...

Figure 5

pieces of length information for each string. One length reflects the amount of storage
allocated for the string, in terms of the number of elements which may be put into the string
without having to allocate more storage for a larger string. The other length refers to the
current number of elements which are actually used, which is less than or equal to the capacity
of the string.

There are two input/output representations for character vectors. The more general format is:

% k 'char . .. char'

where 'k' is the maximum number of characters which could be put into the vector for the
character string being read or printed (see the figure depicting string formats below). The
actual contents of the character string 'char .. . char' reflects only the current length of the
string, and might be null. Any character may be included as part of a character string;
however, the string delimiter character and the letterizer character must be treated specially.
In order to avoid confusion about whether a string delimiter character actually delimits a string
or is intended as a data character in a string, every occurrence of the string delimiter character
as a data character in a string must be prefixed by a letterizer character. This letterizer
character is not part of the character string in storage; it is created during output by the print
routine, and discarded during input by the read routine. Likewise, every occurrence of the
letterizer character as a data character in a character string must be prefixed by the letterizer
character.

12 DATA TYPES

•

•

•

•

•

LISP /370 Program Description and Operations Manual

For example, the string

, I "

contains one character (a string delimiter), and the string

, I I I "

contains two characters (a letterizer and a string delimiter).

When it is necessary to represent a character string whose total capacity is not larger than the
shortest vector necessary to contain the characters specified, the simpler form:

'char . .. char'

may be used. This designates a character vector which may have zero, one, two or three
unused elements. Referring to Figure 5, it may be seen that if N is the number of real
characters in a string (letterizing characters are not counted), the number of unused elements
for this simplified notation is residue (N-l):4.

Example: to specify an eight-element character vector containing the letters 'FUNCTION',
write:

'FUNCTION'

This vector will have space for nine characters (see Figure 5) and a current length of eight.
To specify a vector with a capacity of 100 characters, but with a current length of zero, write:

0/0100' ,

Bit Vectors

The input/output format of bit vectors is similar to the format for character vectors; however,
4-bit segments are represented by one hexadecimal character and the current length field is a
count of the number of bits in the vector, not a count of the number of bytes (see Figure 6).
Only the characters 0 ... 9 and A ... F may be specified as part of a bit string.

There are variant input/output representations for bit vectors, depending upon the current
length of the vector being considered. For bit vectors whose length is a multiple of four bits,
the format is:

%Bk'hex ... hex'

where 'k' is the maximum number of bits which the specified vector could contain. The actual
contents of the bit string 'hex ... hex' reflects only the current length of the string, and might be
null .

DATA TYPES 13

LISP /370 Program Description and Operations Manual

Bit Vector Format:

LCBVTP _J_ Vector Length in Bytes

Current length of string I bits 0 _ 7
f-- ~in bits __ -:-T _ :

bits 8 - 15 ~ bits 16 -~ _____ -----1--. _________ _

--

Figure 6

As with character vectors, the maximum length field is optional and may be omitted when
representing a vector of length consistent with the explicitly specified data. A bit vector
specified without an explicit maximum length 'k' and with up to 28 unused elements has the
format:

%B'hex ... hex'

For bit vectors whose current length is not a multiple of four bits, the format is:

%Bk:c' hex ••• hex'

where 'k' is as previously defined and c is the current number of bits in the string. A bit
vector specified without a maximum 'k', but with a current length 'c' and with up to 31
unused elements has the format:

O/oB:c'hex ... hex'

FUNARGS

A FUNARG is a expression closure -- that is, the combination of a expression definition with
a specific environment in which that expression is to be executed. It is represented as a list of
three elements:

(FUNARG expression sd)

where the first element is the identifier FUNARG, the second element is the actual expression,
which will evaluate to an object which may be applied) and the third element is a state
descriptor which defines the environment.

14 DATA TYPES

•

•

•
It

•

LISP /370 Program Description and Operations Manual

WARNING: while it is possible to manipulate FUNARGS as if they were lists, the user is
strongly advised to refrain from this practice. There are two reasons for this:

(1) Binary programs are compiled with an understanding of their immediate
environment. By executing a BPI in another environment, unpredictable action
(including failure of the LISP /370 system) may occur.

(2) In view of 0), it is planned to make FUNARGS a special data type in the
future, at which time list processing functions will not accept them as argu
ments.

ST ATE DESCRIPTOR

A state descriptor is an elementary data object generated by the STATE basic macro. It is
conceptually a pointer to a particular stack frame, which serves to define either an environ
ment (a set of identifier -value associations) or a previous state, which denotes a specific point
in the application of a FUNARG. Practically, state descriptors have the capacity to contain
some control information, since this is required by the garbage collector and by their use to
determine validity of shallow bindings. Thus they are five-word objects and are processed only
by a limited set of functions which are prepared to maintain their structure.

Creation of a state descriptor ensures that the related stack frame will be retained until the
state descriptor is deleted by the garbage collector when there are no references to it.

State descriptors serve two purposes. First, they define an environment which may be used to
create function closures. Second, they are actually saved states which may applied in order to
effect a transfer from the current state to the saved state. Execution will subsequently proceed
in the environment of the saved state, at the point immediately following the STATE operation
which created the saved state. When a state descriptor is applied, it must have an argument,
which is evaluated in the environment initiating the application. The value resulting from this
evaluation becomes the value of ST ATE when execution resumes in the saved state.

BINARY PROGRAM IMAGES

It is not possible to print binary program images in a form which would permit them to be
subsequently read by LISP and used like the original object. There are several reasons for
this, the major difficulty being the relationship between the binary program and the entire
LISP system, which makes the s,ame program printed at one time from a particular LISP
system incompatible with another LISP system, or possibly even with the same LISP system at
a different point in time.

Therefore, since it frequently occurs that an object being printed contains references to binary
programs (e.g. in a backtrace), a convention is used which incorporates the name of a binary
program (that is, the identifier assQciated with the BPI when it was compiled) in the form:

%SUBR.BPINAME or %MSUBR.BPINAME

DATA TYPES 15

LISP /370 Program Description and Operations Manual

where SUBR is used for functions with evaluated arguments{ and MSUBR is used for macros
(functions with unevaluated arguments).

If an attempt is made to read such a form, the read program will emit an error message and
use the .NOVAL object instead of a binary program.

16 DATA TYPES

•

•

•
I'

I

•

•

LISP/370 Program Description and Operations Manual

STANDARD FUNCTIONS

The discussion of standard functions is organized into several sections according to the
intended application of the functions being described. Standard, in this context, means the
function which is supplied in the LISP /370 system as supported by the Yorktown Computing
Center. Most of these functions may be redefined by the user should his requirements demand
it. Some applications must do this (generally those concerned with programs written for a
foreign LISP system), but it is hoped that the user will find the standard versions acceptable.
Their use will contribute to the exchange of programs between applications and generally aid
in the understanding and debugging of programs throughout the LISP community.

In each of the following sections describing various groups of functions'- the functions are
treated alphabetically .

STANDARD FUNCTIONS 17

LISP /370 Program Description and Operations Manual

BASIC FUNCTIONS AND MACROS

Basic function and basic macro, are terms used to indicate operations whose meanings have
been built into the LISP /370 system in such a manner as to make them immutable. There are
two reasons for having any such functions at all. The first is that there comes a time when an
operation cannot be readily defined in terms of more primitive operations, but instead is said
to have an, understood meaning. Basic macros are commonly of this sort. The second reason
is a consideration of efficiency. ' Particularly in the compiler, certain optimizations can be made
based upon the knowledge that an operation's meaning and implementation is unchanging.

Basic functions are described in the sections which follow, along with other functions having
similar applications. All of the basic functions and macros are listed below for ease of
reference.

The identifiers designating basic functions and basic macros have different type codes than
other identifiers. The function HEXEXP prints the hexadecimal representation of its (pointer)
argument value, and may be used to exhibit the difference to a conversational user. Inside a
function~ the type testing functions FRP and MRP will test if their argument is a basic function
or basic macro, respectively.

18

APPLX
ATOM
BITSTRINGP
CAR
CDR
CONS
EQ
EVAI
EVAL
FIXP

Basic Functions

FLOATP
FRP
GENSYMP
IDENTP
LINTP
LISTP
MDEFX
MRP
NTUPLEP
NULL

Basic Macros

NUMBERP
PAIRP
PLEXP
RPLACA
RPLACD
SET
SMINTP
STATEP
STRINGP
VECP

*CODE
COND
EXIT

(obsolescent: function is performed by application of FR *CODE expression)
'LAMBDA

FR*CODE
FUNARG
FUNCTION
GO
LABEL

'MLAMBDA
QUOTE
RETURN
SEQ
SETQ
STATE

BASIC FUNCTIONS AND MACROS

•
-I

•

•

•

•

LISP /370 Program Description and Operations Manual

STANDARD LIST FUNCTIONS

(APPEND list item)

If the argument list is non-pair, the value of APPEND is item. If list is a list, then a
top-level copy of list is made, and the final CDR of the copied list is set to item. The
value of APPEND then becomes this copied list. If list is circular, the function will
loop.

A top-level copy me·ans that new pairs are CONSed into a list, with their CAR
components being the corresponding values from the list list. There is no copying of
the structure below this top level, which would be accessed by descending the elements
of list.

(ATOM x)

This function returns the value NIL if x is a pair; otherwise, value is *T*.

It is unfortunate that the word ATOM is wasted as the not-pair predicate, but to
change this tradition would lead to considerable confusion and problems of compatibil
ity.

(CAR x)

One of the two basic selection functions defined on pairs. Its value is the CAR
component of the pair x. In its list interpretation, the value of (CAR x) is the first
element of the list x.

If x is not a pair, an error results.

(C ... R x)

There are sixteen macros defined in LISP /370 which give meaning to expressions of
this form, where ... designates any sequence of one to four As or Ds. For example,
(CADDR x) is equivalent to

(CAR (CDR (CDR x»)

and so on. This is literally true for interpreting such a macro, but if the macro is
expanded by the LISP compiler, it is smarter than that and achieves the complete
operation with only one call to an appropriate subroutine. In fact, this subroutine is
capable of handling strings of CARs and CDRs up to 256 levels deep, and the macro
will economize (CADR (CDR x» to (CADDR x), and will even do well by (C .. R
(C ... R x» where .. is two, three or four letters, and ... is any number such that total

STANDARD LIST FUNCTIONS 19

LISP /370 Program Description and Operations Manual

depth is less than 256.

(CDR x)

One of the two basic selection functions defined on pairs. Its value is the CDR
component of the pair x. If x is not a pair, an error results.

The value of (CDR x) is usually the list containing all but the first element of the list
x; however, this is not the case when x is the terminating pair of a list. In that case,
(CDR x) is the terminating atom, usually NIL.

The use of the words CAR and CDR is also one of those laments of history, and while
FIRST and REST might be preferred (and may be defined by the user), a certain
tenacious tradition causes the use of CAR and CDR to thrive.

(CONC list) ... listn)

This is a macro which expands into an expression which uses APPEND to create a list
from several lists. It will accept an arbitrary number of lists as arguments. For
example,

(CONC list) Iist2 Iist3)

= (APPEND list) (APPEND list2 Iist3»

Note that the last argument toCONC appears as the second argument to APPEND, so
that it is not copied at the first level as are the other arguments to CONC, which
appear as first arguments to APPEND.

(CONS x y)

CONS is the basic list-forming function. Its value is the new pair constructed with x
as its 'CAR component and y as its CDR component. Of particular interest is the case
where y is a pair. Then the value of CONS is the list formed by adding x to the
beginning of the list y.

(EFFACE item list)

20

Uses EQUAL to searcp. list for the first occurrence of item. If item is not found, or if
list is atomic, returns list as its value. If item is found, it is removed from list by
updating via RPLACD, and the updated list is returned as the value of EFFACE.
Only the first occurrence of item will be removed from list.

STANDARD LIST FUNCTIONS

•

•

•
,~

•

LISP /370 Program Description and Operations Manual

(EQSUBSTLIST newlist oldlist structure)

This function substitutes corresponding elements of newlist for those elements of oldlist
occurring in structure. The original structure is unchanged and EQSUBSTLIST
constructs and returns a new object having the same form as structure. structure is
searched recursively, atom by atom, using the EQ test, for each element of oldlist;
therefore, only atoms are meaningful as elements of oldlist. It is possible to replace an
atom in structure with any expression, including a list, in newlist; however, the
replacing value from newlist is not scanned for other possible replacement. If the same
(that is, EQ) atom appears more than once in oldlist, only the first occurrence is
meaningful.

If newlist and oldlist are both NIL, EQSUBSTLIST returns a copy of structure as its
value. Otherwise, newlist and oldlist must both be pairs and must be of the same
length. If structure is circular, the function will loop.

The value of EQSUBSTLIST is a new list containing old atoms -- that is, new pairs are
allocated to contain pointers to the existing objects in structure or newlist. Note the
exception indicated above, however, if any elements of new list are pairs.

(INTERSECTION Iist1 list2)

Constructs a new list containing only those elements appearing (at the top level) in
both Iist

1
and list

2
• The order of elements in this new list is the reverse order of their

occurrence in Iist1• If either argument is not a pair, it is treated as if it were the only
element in a list of length one. .

(LAST list)

Returns as value the last element of list (Le. the CAR of the last pair comprising list).
If list is non-pair, the value of LAST is O.

This function will loop if given a circular list as an argument. (See also LASTNODE.)

(LASTNODE list)

This function returns as its value the last pair forming the list list. It will loop endless
ly if list is circular. If list is non-pair, an error break is taken. (See also LAST.)

(LENGTH x)

If x is a pair, LENGTH returns the number of elements in the list beginning with that
pair. If x is not a pair, the value of LENGTH is zero .

STANDARD LIST FUNCTIONS 21

LISP /370 Program Description and Operations Manual

NOTE : SIZE is the general function which computes t~e length of vectors as well as
lists.

Returns as value a list of n elements, the first element being the value of the expres
sion e J' et cetera.

(LISTOFSAME list)

Returns NIL if list isn't a pair, or if the final CDR of list is not NIL, or if the elements
of list have differing type codes. Otherwise, returns true.

(LISTP x)

This function returns the value *T* is x is a list; otherwise, it returns the value NIL.
The value of LISTP applied to NIL (the empty list) is *T*.

(MAP list funct)

This is the historical LISP MAP function which applies funct to list, then to (CDR list),
then to (CDDR list), et cetera, until (CD ... R list) is not a pair. The value of MAP is
list, the <?riginal argument.

In LISP/370, MAP is implemented by a macro which invokes the more general
operation MMAP by creating the expression (MMAP funct list). See the discussion of
MMAP.

(MAPCAR list funet)

22

This is the historical LISP MAPCAR function, which applies funet to (CAR list), then
to (CADR list), then to (CADDR list), et cetera, until (CD ... R list) is non-pair. As
the values of funet applied to the various elements of list are computed, they are
CONSed into a new list which becomes the value of MAPCAR. The first element of
this new list is the value of (funet (CAR list», the next element is the value of (funct
(CADR list», et cetera.

In LISP/370, MAPCAR is implemented by a macro which generates the expression
(MMAPCAR funet list) invoking the more general MMAPCAR operation. See also
the discussion of MMAP.

STANDARD LIST FUNCTIONS

•

•

•

•

•

LISP /370 Program Description and Operations Manual

(MAPLIST list funct)

This is the historical LISP MAPLIST function which applies funet to list, then to (CDR
list), then (CDDR list) until (CD ... R list) becomes non-pair. As funet is applied to the
consecutive tails of list, the values issuing from those applications are CONSed into a
new list which becomes the value of MAPLIST. The first element of this new list is
the value of (funet list), et cetera.

In LISP /370, MAPLIST is implemented as a macro which invokes the more general
MMAPLIST operation by creating the expression (MMAPLIST· funet list). See also
the discussion of MMAP.

(MEMBER item list)

This function searches the list list for the object item, using EQUAL testing for
identity. It item is not found, or if list is not a pair, the value of MEMBER is NIL. If
item is found, the value of MEMBER is that portion of list beginning with item. list is
searched on the top level only.

(MEMQ item list)

This function is similar to MEMBER, except that it uses EQ testing for identity instead
of EQUAL testing.

(MMAP funct list} ... listn)

Establish an iteration which evaluates (funct list} ... Iistn) , (funet (CDR list}) ... (CDR
list

n
» , ... (funet (CD ... R list}) ... (CD ... R listn». The iteration stops whenever the

CDR of any list becomes non-pair, which is to say that the number of iterations is
equal to the number of items in the shortest list. If there are zero iterations (one of
the list arguments was non-pair), the value of MMAP is NIL. Otherwise, the value of
MMAP is the original argument list}.)

In LISP /370, the MMAP ... functions are implemented by macros which generate
in-line a PROG expression implementing the iteration over list}, ... listn• In the
macro-generated expression, funet appears in operator position in order to effect the
necessary function application. Because of this, it is possible to specify funet as an
unquoted lambda expression yet avoid the construction of a FUNARG which would
happen in the case of a lambda expression evaluated as the operand of a function. It
also allows specifying a macro or MLAMBDA expression as funet, since the normal
LISP /370 operator evaluation semantics will be used when 10Qking at funet instead of
operand evaluation semantics .

STANDARD LIST FUNCTIONS 23

LISP /370 Program Description and Operations Manual

(MMAPC funet list t ••• listn)

This is similar to MMAP, except that (funet (CAR, listt) ... (CAR listn» , ... (funet
(CAD ... R list.> ... (CAD ... R listn» is evaluated. MMAPC is implemented by a macro
in LISP/370 (see discussion of MMAP).

(MMAPCAN funet listt ••. listn)

This is similar to MMAPCAR, except that the values computed by funet are
NCONCed together, rather than CONSed into a list. For example,

(MMAPCAN list (QUOTE (1 2» (QUOTE (3 4»)
= (1 3 2 4).

This function is implemented by a macro in LISP/370 (see the discussion of MMAP).

(MMAPCAR funet list. . .. listn)

An iteration is established which evaluates (funet (CAR list l) ... (CAR listn»' (funet
(CADR list.) ... , (CADR listn»' et cetera, until (CD ... R list) is non-pair, which is to
say that the iteration continues for the number of elements in the shortest list. If any
list is non-pair, the value of MMAPCAR is NIL. Otherwise, a new list is made as the
iteration progresses, whose first element is (funet (CAR list t) ••• (CAR listn» , et
cetera. For example,

(MMAPCAR list (QUOTE (1 2» (QUOTE (3 4»)
= «(1 3) (2 4».

This function is implemented in LISP /370 by a macro (see the discussion of MMAP).

(MMAPCON funet list l ... listn)

This function is similar to MMAPLIST, except that the values computed by funet are
NCONCed together, rather than being CONSed into a list. For example,

(MMAPCON list (QUOTE (1 2» (QUOTE (3 4»)
= «(1 2) (3 4) (2) (4».

This function is implemented by a macro in LISP /370 (see the discussion of MMAP).

(MMAPLIST funet Iist1 ••• listn)

24

This function i~ similar to MMAP; except that the value returned is a new list made by
CONSing the values computed by funet. The first element of the value list is (funet

STANDARD LIST FUNCTIONS

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

list 1 ••• listn), et cetera. For example,

(MMAPLIST list (QUOTE (1 2» (QUOTE (3 4»)
= «(1 2) (3 4» «2) (4»).

(NCONC list item)

If list is non-pair, the value of NCONC is item. If list is a circular list, this function
will loop indefinitely. Otherwise, RPLACD is used to replace the final CDR of list
with item, and the updated list is returned as the value of NCONC.

(NREVERSE list)

This function shuffles the CDR components of the pairs making up list so that the
CDR of the last pair in list points to the nex-to-Iast pair, et cetera. The CDR of the
first pair is made NIL, and the value of NREVERSE is the last pair of list, which is
now the first pair of a list containing exactly the same elements as list, but in reversed
order. See also REVERSE, which constructs a new list in reversed order instead of
reusing the pairs in the original list.

(NULL x)

This function has the value *T* if x is NIL; otherwise, it returns the value NIL.

(PAIRP x)

This function returns x if x is a pair; otherwise, it returns the value NIL. It is distin
guished from LISTP by the fact that (LISTP NIL) = *T*, whereas (PAIRP NIL) =
NIL.

(REVERSE list)

This function returns as its value anew, top-level copy of the list list where the
elements of this new list are in the inverse order of their occurrence in list. See also
NREVERSE.

(RPLACA x y)

This is one of the two basic functions for updating pairs. Its value is the updated pair
which results when the CAR component of the pair x is replaced by y. An error is
indicated if x is not a pair .

STANDARD LIST FUNCTIONS 25

LISP /370 Program Description and Operations Manual

(RPLACD x y)

This is the other basic function which updates pairs. Its value is the updated pair
which results when the CDR component of the pair x is replaced by y. An error is
indicated if x is not a pair.

SELECT evaluates the en following the first e' n EQ to the value of e' o. It is a macro
which generates the expression

«LAMBDA (%Gn) (COND «EQ °;6Gn e' 1) e,) ...
«EQ %Gn e' n) en)
(1 eo») e' 0)

where %Gn is a unique GENSYM and eo must appear. en may be a SEQ or PROGN
sequence.

(SUBST new old list)

26

This function substitutes new for old in list. The original list is unchanged and SUBST
constructs and returns a new object having the same form as list with each element
EQUAL to old replaced by the value of the argument new.

If new and old are both NIL, SUBST returns a copy of list as its value. IF the value of
list is not a pair, then the value of SUBST will be list. No substitution is done and no
new structure is created. If there are no occurrences of old in list, the effect is to make
a top-level copy of list.

See also EQSUBSTLIST.

This function constructs a new list contains all the elements appearing in either of the
lists list 1 and Iist2• Each element appears only ·once in the value list. MEMBER is
used to detect whether an element appears in a list.

STANDARD LIST FUNCTIONS

•
,I'>,

•

•

•
'.

•
-,

•

LISP /370 Program Description and Operations Manual

STANDARD STRING FUNCTIONS

(ANDBIT str I str 2 ... str n)

ANDs the bit strings str I ... str n and returns as value the resultant string. The opera
tion is performed left .to right: the result of the AND of str t and str2 is ANDed with
str

3
, that result is ANDed with str4 , and so on. None of the argument strings is

changed by the operation.

An error is indicated if the strings are not equal in length.

(BITG REA TERP str I str 2)

Compares two bit strings, and returns true if strl is greater than str2• If the strings are
unequal in length, the shorter string is considered to be padded on the right with zeros
for purposes of comparison. The argument strings are not changed by this function,
even the bits beyond the current length of the strings are preserved.

If str I or str 2 is not a bit string, an error break occurs .

(BITSTRINGP x)

This function returns the value x if x is a bit string (i.e. a vector of bits); otherwise, it
returns the value NIL. This is a basic function and is therefore not redefinable.

(CHANGELENGTH str n)

The length of the string str is updated to be the value n. An error is indicated if str is
not a character or bit string, or if the value of n exceeds the maximum potential length
of str. The value of CHANGELENGTH is the string str with its new length.

(FETCHCHAR str n)

Returns as value the character object (identifier whose print name is a single charac
ter) corresponding to the nth element of the character string str. An error is indicated
if str is not a string, or if n is negative or exceeds the current length of the string str.

This function is slightly more efficient than the general vector selection function EL T
when the argument is a character string .

STANDARD STRING FUNCTIONS 27

LISP /370 Program Description and Operations Manual

(GETBITSTR x)

Allocates a bit vector with a capacity of at least x bits.- The new vector is returned as
the value of GETBITSTR. Vectors are allocated in increments of full words: for a bit
vector, the first word includes only the first 8 bits of the string, prefaced by a 3-byte
current length field (see Figure 6). Therefore, the actual capacity of the vector is
defined by

«(x + (31 +(3*8») / 32) * 32) - 24 bits.

x

1-8
9-40
41-72

Maximum Capacity of Allocated Vector

8
40
72

(GETFULLSTR length fill)

Similar to GETSTR in that a new character vector is allocated and returned as the
value of GETFULLSTR. The new string, however, contains length instead of zero
characters. The fill argument is optional. If it is specified as an identifier, the new
string will be initialized so that each character is the initial letter of the P-name of fill.
If fill is not specified, the string will be initialized to blank characters.

(GETSTR x)

28

Allocates a character vector With. a capacity of at least x characters. The new vector is
returned as the value of GETSTR. Vectors are allocated in increments of full-words:
for a character vector, the first word includes only the first character of the string,
prefaced by a 3-byte current length field (see Figure 5). Therefore, the actual capacity
of the vector is defined by

«(x + 6) / 4) * 4) - 3 - characters.

x Maximum Capacity of Allocated Vector

1 1
2-5 5
6-9 9

Zero or negative numbers are invalid values for x and will cause an error break. The
character string returned by GETSTR is initialized to the null string.

STANDARD STRING FUNCTIONS

•
•

•

•

•
,

•

•

LISP /370 Program Description and Operations Manual

(lDENTP x)

This function returns the value x if x is an identifier; otherwise, it returns the value
NIL. Note that there is a possibility for confusion in one case: (lDENTP NIL) =
NIL, because NIL is actually an identifier.

This is a basic function, therefore it is not redefinable.

ORs the bit strings strt ... str n and returns as value the resultant string. The operation
is performed left to right: the result of the OR of str t and str2 is ORed with str3 , that
result is ORed with str

4
, and so on. None of the argument strings is changed by the

operation.

An error is indicated if the strings are not equal in length.

This is an efficient, generalized string modification routine. It can replace any part of
str t with any part of str2, making any necessary adjustment in the length of str t
because the replacement characters from str2 are greater or fewer than the characters
being replaced in str t. Furthermore, it can insert str 2' or some specified substring of
str2, into strt .

str t must be a character vector, else an error is indicated. str2 may be either a charac
ter vector, or it may be a stored identifier (not a GENSYM). In the latter case, the
print name of the identifier (which is a character string) will be used as str2, and index2
and len2 refer to this string. If str t or str2 are not ad described, an error is indicated.

indext specifies the index of the first character in str t to be replaced. lent specifies the
number of consecutive characters, beginning with the indext character, to be replaced.
index2 and len2 specify the location and number of characters from str2 which are to
replace the designated characters in str t·

indext, index2' lent and len2 may be either integer values or NIL; an error is indicated if
they are not.

In general, an index may vary from zero to the current length-I. If NIL is specified
for an index, the numeric value zero is used. If indext is equal to the current length,
lent must be zero: by use of this convention, str2 can be appended to the end of strt·

If zero is specified for lent' str2 is inserted in str t before the position specified by
indext. If NIL is specified for a length, all of the characters from the related index
value to the end of the string are used. In effect,using NIL for the value of lenx is an
efficient way of specifying the value:

STANDARD STRING FUNCTIONS 29

. LISP /370 Program Description and Operations Manual

(DIFFERENCE (STRINGLENGTH str x) indexx)

len2 and index2 are optional arguments. If they are not specified, a value of NIL will
be assumed.

Whenever possible, RPLACSTR will update the original strp and return as its value
the updated string. However, if len2 is greater than leop it is possible that str

1
does

not have sufficient space for the result string. In this case, a new string is constructed
and this new string is returned as the value of RPLACSTR.

The user may test whether the updated string is the original str 1 or a copy by an
expression such as:

(EQ str1 (SETQ temp (RPLACSTR str t ••• »)

which will be true if str t has been updateQ in place, and false if a new string had to be
created. The purpose of the SETQ operation is to preserve the value of RPLACSTR
in case a new string was created.

(STORE CHAR str 0 chr)

Updates the character string str by replacing the nth character with the first character
of the print name of the stored identifier chr. An error is indicated if str is not a
character vector, or if n is negative or exceeds the current length of the string str, or if
chr is not a regular identifier.

The value of STORECHAR is the last argument to STORE CHAR, the value used to
update the designated character of the string.

(STRCONC strt ••• str n)

This function returns as its value a new string made by concatenating all of the strings
str t ••• strn • st.rx may be either a character vector or a stored identifier (not a GEN
SYM). In the second case, the print name of the identifier is concatenated into the
result string. If str x is not a character string or stored identifier, an error is indicated.

(STRGREATERP str t str2)

30

This functions compares two character strings and returns true if str 1 is greater than
str 2' otherwise it returns NIL.

If the two strings are of unequal length, the shorter string is considered to. be padded
on the right with binary zeros for purposes of comparison. If an argument is not a
character string, an error break occurs.

STANDARD STRING FUNCTIONS

•

•

•

•
l'

•

•

LISP /370 Program Description and Operations Manual

(STRINGLENGTH str)

This function returns as its value the current length of the character or bit string str.
An error is indicated if str is not a character or bit string.

(STRINGP x)

This function returns the value x if x is a character string (that is, a vector of charac
ters); otherwise, it returns the value NIL. This is a basic function, therefore it is not
redefinable.

(SUBSTRING string index length)

This macro returns a copy of part (or all) of the character string STRING. The
returned value starts with the index character of STRING (remember, index zero is the
first character) and is length characters long. If length is specified as 0, that desig
nates the end of the string.

(SUFFIX chr str)

Updates the character string str by adding the first character of the print name of the
stored identifier chr to the end of the string. chr is usually a character object, but may
be any stored identifier. This function increments the length of the character string by
one, or causes an error break if there is not sufficient space in the string str for this
additional character.

(XORBIT str t str2 ... strn)

Exclusive ORs the bit strings str t ... str n and returns as value the resultant string. The
operation is performed left to right: the result of the XOR (Exclusive OR) of str t and
str

2
is XORed with str3, that result is XORed with str4 , and so on. None of the

argument strings is changed by the operation.

An error is indicated if the strings are not equal in length .

STANDARD STRING FUNCTIONS 31

LISP /370 Program Descriptiori and Operations Manual

STANDARD VECTOR FUNCTIONS •
A Tabular Index to Primitive Vector Functions

Type Value Specific Specific
of of Selection Updating Allocating
Vector Predicate ELT Function Function Function --
Reference REFVECP Anything ELT SETELT GETREFV

Selector
Structure SSVECP Anything ELT SETELT GETSELS

Character STRINGP Identifier FETCHCHAR STORE CHAR GETSTR

Bit BITSTRINGP Truth Value ELT SETELT GETBITSTR

Word WORDVECP Integer ELT SETELT GETWORDV

Real REALVECP Real ELT SETELT GETREALV

Analogous functions for pairs are listed below for comparison. • Pair PAIRP CAR RPLACA CONS
CDR RPLACD

List LISTP Anything ELT SETELT LIST

Figure 7

32 STANDARD VECTOR FUNCTIONS •

•

•

•

LISP/370 Program Description and Operations Manual

(ELT object index)

This is the general selection function for vectors and lists. Its value is the index
element of object, where the type of qbject returned by EL T is indicated in Figure 7
for various types of objects.

If index is not within the bounds of object, an error is indicated. If object is not a
vector or a list, an error is indicated.

The first element of a vector or a list is selected by using zero as the index value.
Note: ELT applied to NIL will always produce a bounds error, as NIL is interpreted
as the empty list.

If object is a vector of reals, EL T will allocate a new real number into which the value
of the selected element is copied, and return this new real to the caller. This is
necessary (although not very efficient) because pointers pointing inside a vector are
not allowed (they confuse the garbage collector). Thus, if a collection of real numbers
are to be assembled into a vector, it is better to have a reference vector when access to
these reals is made on an individual basis using ELT. The vector of reals exists for
applications where the user has implemented arithmetic processes requiring the
contiguous storage of real data in order to execute efficiently.

If object is a word vector, EL T may have to build a new large integer and return it as
the value of ELT for certain values in the word vector. Any value within the range of
a LISP small integer will be returned as a small integer, and will not require allocation
of heap space. Values outside the range of small integers must be converted by ELT
into large integers.

(GETREALV n)

Allocates and returns as value a real vector containing n elements. Each of the
floating point values (elements) are initialized to zero.

(GETREFV n)

Returns as value a new reference vector containing n elements. The initial value of
each element is NIL. This is the basic allocating function for reference vectors.

(GETWORDV n)

Allocates and returns as value a word vector containing n elements. The elements of
the allocated vector are not initialized. See also GETZEROVEC .

STANDARD VECTOR FUNCTIONS 33

LISP /370 Program Description and Operations Manual

(GETZEROVEC n)

Like GETWORDVEC, except the elements of the word vector are initialized to zero.

(LENGTH CODE x)

LENGTHCODE returns as its value the size, in bytes, of the vector x~ If x is a
character or bit vector, this value is the maximum size specified, including the 3-byte
current string length field (see Figures 5 and 6)

An error is indicated if x is not a vector.

(LIST2FL TVEC list)

This function is similar to LIST2REFVEC but for the fact that the resulting vector is a
vector of floating point (real) numbers. The elements of list mayor may not already
be real numbers. If they are not real, they are floated. If any element of list is not a
number, or cannot be converted into a floating point number, the FLOAT function
which is called by LIST2FL TVEC will take an error break.

(LIST2IVEC list)

This function is similar to LIST2REFVEC but for the facts that its value is an integer
vector and the elements of list must be integers within the range acceptable for' integer
(word) vectors. This range is 231 > value ~ _231.

(LIST2REFVEC list)

This function constructs a new reference vector from the elements of list. If list is
non-pair, the value of LIST2REFVEC is a reference vector with zero elements. If list
is a circular list, the function loops. Otherwise, the value is a reference vector of the
form:

«CAR list) (CADR list) ... (CAD ... R list»

(MAXINDEX vector)

34

Returns as value the maximum allowed index for the given vector. This function 'is
defined as (SUBl (SIZE vector», so while its principal use concerns vectors, it could
be applied to other objects as well. See also LENGTHCODE, LENGTH, SIZE.

STANDARD VECTOR FUNCTIONS

•

•

•

•

•
,"

..

•

LISP /370 Program Description and Operations Manual

(MOVEVEC to from)

Copies the contents of vector from into vector to. Both arguments must have the same
capacity, and they must be both reference vectors or both binary (character, bit, real
or word) vectors.

(REFVECP x)

Returns x if it is a reference vector, else returns NIL.

(SETELT obj index value)

This is the inverse function of EL T -- it updates the index element of obj to be value.
The nature of value for various types of obj is indicated in Figure 7.

SETEL T will take an error break if obj is not updatable, if index is out of range, or if
value is not compatible with the type of obj.

SETELT may be used to update the index element of a list. For example,

(SETELT list 3 value)

is equivalent to:

(RPLACA (CDR (CDR (CDR list))) value)

The value of SETELT is the last argument for SETELT, the value to be used in
updating the specified object.

(SIZE x)

The size function is the analog for vector arguments of LENGTH which applies to list
arguments. SIZE returns as its value the current number of elements in its argument -
that is, one more than the maximum valid index which may be used to address an
element of this vector. SIZE may also be applied to lists, in which case it performs
exactly as does LENGTH. If SIZE is given an argument other than a pair or vector, it
returns the value zero.

Note that string vectors (either character or bit) may have a capacity larger than the
number of elements currently in the vector. See also LENGTH, LENGTHCODE,
MAXINDEX .

STANDARD VECTOR FUNCTIONS 35

LISP /370 Program Description and Operations Manual

(VECP x)

36

This function returns the value x if xis any variety of vector; otherwise, it returns the
value NIL. This is a basic function, therefore it is not redefinable.

STANDARD VECTOR FUNCTIONS

•

•

•

•

•

LISP /370 Program Description and Operations Manual

SUPERVISORY FUNCTIONS

(,SETGLOFN x)

This function is used to update the glonof component of the current global environ
ment. The value of x should be either NIL or a pair. The value of ,SETGLOFN is the
value of glonof before replacement.

The glonof component of a global environment is originally specified by optional
arguments to the ST ATE function which created the state having that global environ
ment. There are two such arguments, termed gloval and gloalo. When a binding is
sought for a variable which has no binding in the current environment, gloval is applied
to the identifier for which a binding is sought (first argument) and the glolsf (global
environment binding structure, typically an association list) of the current global
environment. The value of this application will become the value of the binding to be
created for this variable. It is permissible for this application to have other effects,
such as generating an error break, et cetera. If gloval is NIL, the default action of
assuming the identifier itself to be the binding value will be taken.

Once a value is available, gloalo is applied to the binding value, the identifier, and the
glolsf of the current global environment. The value of this application must be a pair
(id . value) defining the new binding. Optionally, gloalo may have side effects such as
updating the glolsf structure. If gloalo is NIL, the default action of adding another
element to glolsf (assumed to be an association list) is taken.

The value of x, the argument of ,SETGLOFN, is the pair (gloval . gloalo). If x is NIL,
the system default action will be taken.

(ADDOPTIONS option t value t ••• optionn valuen)

This function augments the free variable OPTIONLIST by APPENDing
«option t • value t) ••• (optionn . valuen» to the current OPTIONLIST. OPTIONLIST is
an association list referenced by various functions such as DEFINE and COMP370,
and is discussed in the section titled Define, Compile and Assemble.

For example, to set the NOLINK flag true, one might use:

(ADDOPTIONS (QUOTE NOLINK) 1)

(AERROR x)

This function is simply the compiled expansion of the macro (ERROR x). It is useful
when it is necessary or convenient to apply a normal function (instead of a macro) in
order to effect an error break. This happens most frequently in LAP-coded functions,
because the compiler is very happy· to expand the ERROR macro and compile the

SUPERVISORY FUNCTIONS 37

LISP /370 Program Description and Operations Manual

resulting code, making it easy to change the definition of ERROR by simply recompil
ing. If, however, the expanded code were included in a LAP program, it would not be
sufficient to reassemble that program with a changed ERROR macro definition
because LAP does not expand such macros.

Also see AERRORR, ERROR and ERRORR.

(AERRORR x)

This function is simply the compiled expansion of the macro (ERRORR x). See the
description of AERROR for a discussion of its use, and ERRORR and ERROR.

(BOUNDP id)

If there exists a binding for the identifier id anywhere in the current environment
(including the current global environment), BOUNDP returns id as its value. If there
is no such binding, BOUNDP returns NIL. No binding will be created for id by
executing this function.

(ED name) ... namen)

This is a macro which constructs a character string from the arguments namel' ... ,
namen and invokes OBEY to pass control from LISP to a context editor. The charac
ter string created is:

IE name) ... namen I

where name p etc. are exactly as provided as arguments to the macro (they are not
evaluated). ED is thus· intended to be used from the top level of LISP, where it is
typed by the user.

Which context editor is invoked is controlled by the user, since he may use a variety of
facilities to define exactly what program or command procedure is invoked under the
name E.

(EMBED id form)

38

This function replaces the current value of id with a new value' consisting of a lambda
expression which has a modified form as its body. The modification consists of
substituting the original value of id wherever id appears in FORM.

Also see MONITOR, which uses EMBED in a standard way to implement a TRACE
facility.

SUPERVISORY FUNCTIONS

•

•

•

•

•

LISP /370 Program Description and Operations Manual

Example: if FOO is a function of two arguments and it is desired to (temporarily, in
lieu of redefining FOO) print the value of FOO and return NIL as its value regardless
of its arguments, the following may be done:

(EMBED "Faa" (LAMBDA (X Y) (SEQ (PRINT (FOO X Y» (EXIT 0)))

The value of EMBED is the identifier id. If id is not an identifier, an error will be
detected when EMBED tries to do a SET.

(EMBEDDED)

The value of this function is a list of all ids under control of EMBED.

(ERROR ...)

This macro causes a channel 14 error break. It may have an indefinite number of
arguments, which are put into a list which is bound to the variable ? ARGS?, which is
available in the environment of the error break to define the particular nature of the
error. Error channel 14 does not allow the invoking function to be continued, but
requires an UNWIND. Also see ERRORR, which permits continuation from the point
of invoking the error break, and AERROR and AERRORR.

ERRORINSTREAM

A fluid variable bound to a console input stream and used by the standard error break.
It may be bound to a different stream by the user if it is desired to vary the operation
of the error break.

Also see ERROROUTSTREAM.

(ERRORN ...)

This is a function of an indefinite number of arguments which is present. for compati
bility with the earlier LISP /360 system. It builds a character string by concatenating
the string representations (see STRINGIMAGE) of the several arguments into one
string which is used as an argument for ERROR.

ERROROUTSTREAM

A fluid variable bound to a console output stream and used by the standard error
break code. It may be bound to a different stream by the user if it is desired to
modify the action of the error break .

SUPERVISORY FUNCTIONS 39

LISP /370 Program Description and Operations Manual

Also see ERRORINSTREAM.

(ERRORR ...)

This function causes a channel 12 error break. There may be an indefinite number of
arguments supplied, which are put into a list which is bound to the variable ? ARGS? in
the environment of the error break. This variable can be examined from the break
loop to secure a precise idea of the nature of cause of the error. Error channel 12
permits continuation of the invoking function. This is achieved by invoking FIN. The
first argument of FIN (or NIL if none is specified) is evaluated and becomes the value
of ERRORR.

(ERROR2 ...)

A macro which expands into (ERRORN ...). It is present for compatibility with
LISP/360.

(ERROR3 ...)

A macro which expands into (ERRORN ...).
LISP/360.

It is present for compatibility with

(ERR2 channel-number)

A macro which expands into an expression suitable for invoking the specified error
channel. Correct usage involves applying this value to an expression describing the
details of this error, which will be bound to the variable ? ARGS? For example, to
invoke error channel 12, one might write:

«ERR2 12) 'Sample of channel 12 error')

(ERR4 channel sd ...)

40

Part of the error break machinery. channel is used to look up (via ASSQ) an appropri
ate error channel in the fluid variable PROGRAM-EVENTS. This normally produces
a list (chann~1 errorfunction . channelid). In this case, errorfunction is applied to the
three arguments channel, message and sd, where message is the list (...) containing. all
of the trailing arguments of ERR4.

In the atypical case where the requested channel cannot be found in PROGRAM
EVENTS, the standard errorfunction S,ERRORLOOP is used in lieu of an errorfunc
tion obtained from PROGRAM-EVENTS.

SUPERVISORY FUNCTIONS

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

(EXF instream outstream options ...)

This function is intended as a convenience for the interactive user wishing to process
disk files using SUPV. After processing options ... , EXF will invoke SUPV:

(SUPV (DEFIOSTREAM ...) (DEFIOSTREAM ... »

where the arguments of the calls to DEFIOSTREAM are prepared using the disk file
identification information given by instream and outstream.

If outstream is not specified, or is specified as NIL, the current value of CUROUT
STREAM (which is initially a console output stream) will be used for outstream. If
instream is not specified, or is specified as NIL, the current value of CURINSTREAM
(which is initially a console input stream) will be used for instream.

EXF is defined by a LAM so that it receives an indefinite number of unevaluated
arguments. This is deemed appropriate for its intended use by an interactive terminal
user.

in stream and outstream may be specified as either a single identifier, which will be
taken as the primary disk file name component, or as a list of file name components.
If outstream is specified as the character object =, then an output disk file is defined
using the filename of the input file, and a filetype of EXF. If instream is defaulted,
and an output filename is required but not explicitly specified, the current value of
CURINSTREAM will be used as the filename .

For example, if there exists a file IN1 LISP370,

(EXF IN1)

will invoke SUPV as follows:

(SUPV (DEFIOSTREAM (QUOTE «FILE IN1 LISP370»)
o 1) CUROUTSTREAM)

Another example:

(EXF (IN2 LISP D1) =»
will invoke SUPV as follows:

(SUPV (DEFIOSTREAM (QUOTE «FILE IN2 LISP D1))
o 1) (DEFIOSTREAM (QUOTE «FILE IN2 EXF»)

(CALLBELOW (QUOTE TOULL» 1)

where (CALLBELOW (QUOTE TOULL» yields the current terminal output line
length .

SUPERVISORY FUNCTIONS 41

LISP /370 Program Description and Operations Manual

If any options are specified, there should be an even number of arguments. In general,
EXF will use the ADDOPTIONS function to augment the current value of the fluid
variable OPTIONLIST, which contains various data directing the operation of such
functions as the LISP compiler and LAP (see the section titled DEFINE, COMPILE
and ASSEMBLE for OPTIONLIST values specifically affecting these functions).

In addition to the option values specifically coded by the user, EXF adds a PUSH
option to OPTIONLIST, whose value is the current OPTIONLIST before it is aug
mented by EXF. This value is used after SUPV has completed to restore OPTION
LIST to the value it had when EXF was entered.

Several option values also have special meaning for EXF. If an output disk file is
being produced, and the value of CUROUTSTREAM when EXF is entered is a
console stream, then EXF adds the MESSAGE option to OPTIONLIST, where the
value of the MESSAGE option is this console stream. The purpose of this is to make
any error or warning messages generated by the compiler or LAP appear on the user's
console as well as in the output

If the value of the FILE option is the character object = (after any explicitly written
options have been added to OPTIONLIST by EXF), then a disk output stream is
defined by EXF with fixed-format records of length 80 and a fileid composed of the
filename from instream and a file type of LISP LIB. Then a new FILE option whose
value is this stream is added to OPTIONLIST.

If an output disk file is specified by outstream, the characteristics of that file may be
set in several ways. In the absence of any other specification, the record format is
defaulted (Le. whatever DEFIOSTREAM does is what you get) and record length is
obtained as indicated by the example above for console output. If there is an OUT
PUTLENGTH property on OPTIONLIST, whose value is a small integer (after options
... have been added to OPTIONLIST by EXF), then this becomes the record length of
the output file. A FILEDESCRIPTOR property is looked for on the property list of
the identifier designating the file type of the output file. The value of this property, if
it exists, should be a list whose first two elements are record format (F or V) and
record length". respectively. If a FILEDESCRIPTOR property is found, its record
format specification is used for outstream and its record length specification is used if
there is no OUTPUTLENGTH value on OPTIONLIST.

Different users have individual preferences in the matter of EXF, and a variety of
similar functions have been written. If this version of EXF is displeasing, seek out one
of these alternatives, or write something tailored to your personal tastes, or, if this
version of EXF is not too far from what you want, simply modify it to do what you
want (and please call it something other than EXF if users of your system are likely to
get into trouble should they expect it to perform as described here).

EXTERNAL-EVENTS...;CHANNELS

42

Fluid variable serving to parameterize the operation of the external interrupt process
ing program, DISPATCHER. It is bound to a reference vector containing the names

SUPERVISORY FUNCTIONS

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

of the proper functions to be invoked for the corresponding external interrupt channel.

(EXTERNAL-INTERRUPT)

The standard function used to process an external interrupt produced by intervention
of the user from his console.

In the case of VM, this is done through use of the CP command EXT which generates
an external interrupt for the user's virtual machine. When LISP was loaded, it estab
lished an interface with CMS to obtain control in the event of such an interrupt, and
the LISP system-dependent routine which receives control posts a LISP control
structure indicating there is an interrupt pending which must be synchronized with the
operation of the LISP system. The next time a LISP function executes an interrupt
poll, control passes to the DISPATCHER program, which scans the LISP external
interrupt control structure to determine which interrupt channel requires service, plucks
the name of the corresponding service program from the EXTERNAL-EVENTS
CHANNELS vector and invokes it.

(FILELISP fileid)

Performs a garbage collection, then uses a system-dependent routine to write a
complete copy of the current LISP system into an external file identified by fileid. If
this file already exists, it is replaced by the new file.

The file image produced by FILELISP may be subsequently loaded by the LISPGET
program (not a LISP program, but the program which loads and initializes the LISP
system), whereupon the effect in the newly loaded system is of a return from the
FILELISP function with a small integer value denoting the number of times in the
history of this particular LISP system that a FILELISP has been performed.

FILELISP does not imply the abandoning of a running LISP system. After it has
completed the writing of a file image onto external storage, it returns to its caller with
a value which is a list of the fileid components (in the form of character strings) which
were used to write the file image.

Example:

(FILELISP "(TEST FILEIM AI»

writes an image of the current LISP system into the designated file, then returns the
value

('TEST "FILEIM' %9'Al ')

SUPERVISORY FUNCTIONS 43

LISP /370 Program Description and Operations Manual

There are several things which may go wrong with the FILELISP operation, ranging
from I/O errors to missing parameters. If an error is detected, a channel 15 (LISP
machine check) error break is taken and the variable ? ARGS? will be bound to some
explanatory message.

(FIN value)

Used to exit from a LISP supervisor. The argument is optional, and a value of NIL
will be assumed if no explicit value is provided. If the top-level supervisor encounters
a FIN, it will leave LISP and return control to the program invoking LISP. Other uses
of FIN involve nested invocations of the LISP supervisor SUPV, for example while
using EXF.

Another use is in an error break loop, where control may be returned to the caller of
the function entering the error break and value then appears as the value of the called
function which entered the error break loop. To illustrate this latter use, assume the
following expression is being evaluated:

(SETQ FOO (PLUS 2 '9'))

This is obviously invalid, as PLUS will not be able to cope with the character string
argument. Thus an error break will be entered from PLUS, from which the user may
exit with (FIN 11), which will supply 11 as the value of the PLUS expression which
becomes the value of FOO.

(FUNARGST ATE funarg)

Returns as its value the environment (saved state) of its argument. If the argument
value is not a FUNARG, an error break occurs.

(GCMSG code)

44

This function sets or resets the bits controlling typing of messages on the user's
console after each LISP garbage collection. If code is NIL or 0, no messages are
typed. If code is the identifier IND or 2, then data from a CP IND USER * command
is typed (when running under VM/370). If code is 1 or anything else, a message
indicating date and time, amount of heap and stack space before and after garbage
collection, and cumulative CPU time is typed.

The value of GCMSG is a small integer indicating the argument value used for the
previous call to GCMSG. It is possible to use this value to restore the previous
condition when a temporary change is to be made.

SUPERVISORY FUNCTIONS

•
f

•

•

•

•

LISP /370 Program Description and Operations Manual

(NILBOUNDP x)

This function returns true if there exists a NIL-environment binding for the identifier
x. If there is no NIL-environment binding for x, NILBOUNDP returns NIL, without
creating any NIL-environment binding. If x is a gensym, or is not an identifier, value
of NILBOUNDP is NIL.

(NILSD)

This function returns as its value a state descriptor for the initial LISP state, before
any bindings were made on the stack. Bindings made in the global environment are
present, of course. One use of this state is to achieve what used to be called a "big
unwind". For example, application of this state will pass control to HIGHLORD, the
function which starts the LISP supervisor:

«NILSD) 0)

Another use of this state is as an argument to EV AL, when it is desirable to perform
an evaluation which doesn't see any current LAMBDA-bindings. Thus,

(EV AL EXP (NILSD»

computes the value of EXP in the global environment.

(J AUNT sd value)

This is a macro which expands into the expression (sd value). value is optional, and if
not specified, the value NIL is used as a default. Other than this optional default
value, the only purpose of the macro is to provide a specific, mnemonic indication that
the user intends to jump to a new state without allowing a' return to the calling
function. See also STATE and EV AL.

(LERR4 message channel sd)

This is a binary program which invokes the specified error channel. Normally, the
macro ERR4 (which uses a different order of arguments) would be used by the LISP
programmer. LERR4 exists because a system programmer writing a LAP program has
no macro expansion facility capable of dealing with the ERR4 macro, but may write
code which invokes LERR4. See also LERROR.

(LOADVOL fn ft fm)

This function loads an entire lisp library file into the LISP /370 system. fn is the CMS
file name, ft is the file type, and fm the file mode of the library file to be loaded. fm

SUPERVISORY FUNCTIONS 45

LISP /370 Program Description and Operations Manual

and ft are optional. The default values are fm=* and ft=LISPLIB. All argument
values should be identifiers.

LISP library files are most commonly constructed in toto from source files through use
of the EXF macro. The process of loading items from a library file is essentially a
series of assignments of values read from the file (a special reader is used which is very
efficient because it doesn't have to parse symbolic expressions) to variables which are
to have these values. The names of these variables are also recorded in the library file.

For detailed specification of the format of library file records, see the initial DSECTs
in the LISP /370 assembly listing.

See also FETCH, RDEFIOSTREAM, FILEQ and SETANDFILEQ.

(OBEY x)

OBEY passes the character string x to CMS, or to CP, for execution as a command.
The value of OBEY is the LISP small integer equivalent of the value returned by CMS
or CP in register 15.

Any CMS or CP command may be set up by the character string. Moreover, the
command may be the name of some EXEC procedure.

Examples:

•

(OBEY 'Q TIME')
(OBEY 'SET IMPEX OFF') •
(OBEY 'LISTFILE * SCRIPT AI')

Note that abbreviations and synonyms are valid for both EXEC procedures and
CMS/ CP commands. The search hierarchy for file names is the same as defined for
CMS.

These CMS/ CP return codes are of special interest:

o successful completion of the command
1 not EXEC procedure or CMS or CP command

-3 not EXEC procedure or CMS command, and
IMPCP control set OFF

45 invalid option on command, or
command abbreviated and ABBREV control set OFF

801: explicit EXEC with abbreviated file name when no
USER synonym table in effect

(OUT -OF-HEAP)

46

Function invoked when there is insufficient space left in heap after a garbage collec
tion. The motivation here is to allow the user to redefine this variable so that such a

SUPERVISORY FUNCTIONS •

•
•

•

•

LISP /370 Program Description and Operations Manual

condition would invoke a function to perform an UNWIND, or perhaps operate on a
data structure to create more space by deleting some data. The original definition for
this function explicitly invokes an error break.

(OUT -OF-STACK)

Function invoked when there is insufficient space left for stack frame after a garbage
collection. The motivation here is to allow the user to redefine this variable so that
such a condition would invoke a function to perform an UNWIND, or perhaps operate
on a data structure to create more space by deleting some data. The original definition
for this function explicitly invokes an error break.

(POST k data)

This function sets an interrupt pending in external events channel k. The LISP /370
system will not allow LISP interrupts to be processed at arbitrary times, but only when
it is safe to do so. Thus, a poll is made for pending interrupts on entry to most
functions (the only exceptions are some system functions which are non-interruptible
because of their esoteric character, such as the garbage collector), and whenever an
upward branch is to be executed, to afford an opportunity· to interrupt program loops.
Machine interrupts which do not require interruption of the normal sequencing of LISP
programs, such as I/O interrupts and the like, are invisible to LISP and are controlled
by programs external to the LISP system.

The data argument to POST may be any LISP expression, whose value is to be associ
ated with the interrupt set by this call to POST. The definition of what actions are to
be taken to service this interrupt are contained in the structure bound to the variable
EXTERNAL-EVENTS-CHANNELS. In servicing an interrupt, the routine DIS
PATCHER applies the value of the proper channel's expression in EXTERNAL
EVENTS-CHANNELS to the value of POST's data argument.

This takes care of asynchronous interrupts, which may be posted not only by the
routine POST, but by other processes external to the LISP system if suitable code is
written by the user. LISP uses a special purpose data structure for queuing external
interrupts, and the code for POST provides an example of how to find it and how it
may be used.

There is another data structure analogous to EXTERNAL-EVENTS-CHANNELS,
bound to the variable PROGRAM-EVENTS, which handles synchronous interrupts.
These interrupts are invoked explicitly by LISP programs, so no queuing or provision
for interaction with external processes is necessary. Functions such as ERROR make
use of this latter mechanism .

SUPERVISORY FUNCTIONS 47

LISP /370 Program Description and Operations Manual

This macro implements the traditional LISP prog expression by expanding into

«LAMBDA bv (SEQ e1 .•• en» 0 ...)

A macro which expands into (SEQ e1 ... en)'

A macro which expands into (SEQ e1 (EXIT e2».

(PRY ...)

A function which intentionally causes a program interrupt in order to enter a debug
ging sub-system. Execution of LISP may be continued by loading the old PSW stored
at the time of the interrupt.

(RECLAIM)

This function explicitly invokes the LISP garbage collector. Its value is a reference
vector which contains as its third and fourth elements (indices 2 and 3 because of
zero-origin indexing) the number of bytes of heap space and stack space remaining
after garbage collection. See also GCMSG.

(RET x y)

48

A function for passing control back to the caller of LISP, in a manner such that LISP
may be reentered and resume execution following the call to RET. Both arguments are
optional. x, if specified, must be a small integer which designates the return code
(value in register 15) which will be provided to the caller of LISP. y is meaningful
only if LISP has been invoked directly by means of a branch from another program
instead of normally through the command interpreter. In the former situation, y may
specify any LISP expression, and the pointer value of y will be returned to LISP's
caller in register 1. .

RET is most commonly used after LISP has been invoked to return to command level,
whence a subsequent STRTLISP command will resume execution in LISP.

SUPERVISORY FUNCTIONS

•

•

•

•

•

•

LISP/370 Program Description and Operations Manual

This is a special form in LISP /370 which establishes a statement context and denotes
that the expressions el' ... , en are to be evaluated in sequence. If any of the e j are
identifiers, they are taken as labels which may be the arguments of a GO statement. It
is possible to nest sequences within sequences, however it is not possible to GO from
one sequence to a label defined in an internal sequence. It is possible to GO from an
internal sequence to a surrounding sequence, provided the sequences are directly
nested and no intervening expression context exists. For example,

(SEQ ... A ... (SEQ ... (GO A) ...))

is fine, but

(SEQ ... A ... «LAMBDA 0 (SEQ ... (GO A) ... »»
is not valid, for the lambda expression raises a contour between the GO statement and
its target label.

Frequently, a SEQ is used in a COND expression. For example,
(COND (MUMBLETYPEG

(SEQ (PRINT MUM) (PRINT PEG) (PRINT N» »

(SETFUZZ (CONS fuzz ndigits»

Use this function to set or examine the values of fuzz (which specifies the desired
precision of floating point operations) and ndigits (which specifies the criterion used by
the print routine to determine whether to print a real number with or without an
explicit exponent).

SETFUZZ takes one argument, which is a pair whose CAR component is a positive
real number which will become the new value of fuzz, and whose CDR ~omponent is a
positive integer which will become the new value of ndigits. The value of SETFUZZ is
a similar pair containing the previous values of fuzz and ndigits, so that

(SETFUZZ (SETFUZZ (CONS fuzz ndigits»)

restores the original values of fuzz and ndigits.

The use of the values of fuzz and ndigits is discussed in the section on data types.

(STATE [[glonot] glolst])

Saves the current state or a modified form of it in the case that optional arguments
were supplied. The modified form of the current state may differ only in the global
environment gloE component of the environment E. The value is a state descriptor sd

SUPERVISORY FUNCTIONS 49

LISP /370 Program Description and Operations Manual

which denotes the state. This sd may be used as an argument to EV AL to provide the
environment of the above state as the bindings context for the evaluation. The sd may
be applied to a message argument causing the saved state to. continue. In that case the
value of the STATE operator is not the sd but the message.

The optional arguments gloval and glonot describe the modifications to the gloE.
A gloE is a special object with two components: .

glonot the not present prescription for this gloE
is a pair (gloval • gloalo) where

gloval is NIL or else a two argument function
from the id in question and the glolst of the current gloE,
to the s-exp value for that variable in this global environ
ment.

gloalo is NIL or a three argument function
from s-exp, id, and glolst to globnd values. Often the side
effect of updating glolst is accomplished.

and glolst the global data list structure environment is
({glodat I globnd} • {glolst I glotrm}) ,

and globnd the global binding is a pair (id • s-exp) ,
and glodat the global own data, is any s-exp which is not a pair,
and glotrm the global environment terminator is, {NIL I sd}.

(SUPERMAN)

This function is actually a continuation of the initialization performed by HIGHLORD.
Fluid bindings for CUROUTSTREAM, et cetera, are made and SUPV is invoked.

(SUPV instream outstream)

50

This is the usual LISP supervisor for LISP /370. Its first argument is the input stream
from which expressions will be read and evaluated. SUPV binds the fluid variable
,NEWSTATE to an appropriate state so as to set up for a subsequent (UNWIND) in
the event of an error while reading an expression, evaluating it, or printing its value.

Two free variables control the prolixity of SUPV. If ,ECHOSW is true, then SUPV
will print the expressions it reads on outstream. If, V ALUSW is true, SUPV will print
the values of the expressions on outstream.

Before invoking READ, SUPV tries to get a character from the input stream. If a null
line is encountered at this point, SUPV prints the message LISP on the output stream
and tries again to get a character. Once SUPV has started reading an expression,
control resides in the READ function and null lines will be ignored.

Upon detecting an end of stream condition for instream, SUPV returns with the value
1. Otherwise, SUPV will return only when it reads the expression (FIN exp), where
exp is optional. If exp is specified, it will be evaluated and its value returned as the

SUPERVISORY FUNCTIONS

•

•

•

•

•

LISP /370 Program Description and Operations Manual

value of SUPV. If exp is not specified, NIL is returned as the value of SUPV. In
either case, when SUPV returns, INFILE and OUTFILE have been SHUT.

A typical use of SUPV to read and evaluate expressions from the disk file 'TEST
LISP' is:

(SUPV (DEFIOSTREAM (QUOTE «FILE TEST LISP») 0 1)
CUROUTSTREAM)

where output is to be written onto the default output stream, which is initially LISPOT
(a console output stream).

(SYSID)

This function returns a code indicating which operating system is running LISP /370.
A value of 1 indicates VM/CMS, a value of 2 indicates MVS/TSO.

SYSID is used by some standard functions such as ERASE and lOST ATE, which are
implemented by various calls to the OBEY function, depending upon the underlying
operating system. SYSID may similarly be used by user functions which which to
maintain some degree of operating system independence by tailoring their action
according to the operating system which is running LISP.

(UNEMBED id)

Undoes the effect of a previous EMBED for id in the current environment. The value
of UNEMBED is the identifier id if id was previously EMBEDDED. If not previously
EMBEDDED, the value of UNEMBED is NIL .

SUPERVISORY FUNCTIONS 51

LISP /370 Program Description and Operations Manual

STANDARD I/O FUNCTIONS

(,FILEIN stream)

Stream specific function for fast disk input streams.

(,FILEOUT x stream)

Stream specific function for fast disk output streams.

(CONVERSATIONAL)

This function uses a system-dependent portal to determine whether LISP is running
with an on-line, connected terminal (at which there is presumably a user ready to
interact with the LISP system), or whether LISP is running in batch mode or without a
connected terminal. The value of CONVERSATIONAL is true if an interactive
terminal is present, otherwise the value is NIL.

CURINSTREAM

This fluid variable is bound by SUPV to the current input stream. It is used by the
READ macro to provide the necessary value for the stream from which an expression
is to be read when an explicit value is not provided by the invocation of READ.

CUROUTSTREAM

This fluid variable is bound by SUPV to the current output stream. It is used by the
various PRINT macros to provide the necessary stream value when an output stream is
not explicitly provided by the invocation of PRINT.

(CURRINDEX x)

If x is a fast stream (the type of stream generated by DEFIOSTREAM), the current
index is returned as the value of CURRINDEX. If x is not a fast stream, the value of
CURRINDEX is NIL.

(DEFIOSTREAM alist buffersize itemnumber)

52

This function constructs a standard structure usable as an input/output stream by the
normal READ and PRINT programs. It is not intended to be capable of building all

STANDARD I/O FUNCTIONS

•

•

•

•

LISP /370 Program Description and Operations Manual

possible streams, merely those which are most commonly used. The structure which is
created and returned as the value of DEFIOSTREAM is not checked for validity by
DEFIOSTREAM. The first use of the stream will typically involve initialization and
verification of the data in the structure according to the needs of the using function.

For INPUT mode the structure created by DEFIOSTREAM has the following general
structure:

%Ll = (%Ll. < rfn
< 0 0 buffersize buffersize >
alist
o
itemnumber>)

For OUTPUT mode the structure created is:

%Ll = (%Ll. < rfn
< %n' ... ' 0 0 buffersize >
alist
o
itemnumber>)

alist is an association list which defines some of the characteristics of the stream being
created. buffersize is an integer defining the length of the lines for which buffer space
is to be provided. This represents a maximum length; shorter lines may be produced
by using TERPRI for output, and shorter lines may be emitted by whatever source an
input stream uses. A line buffer is not allocated by DEFIOSTREAM, but will be
allocated the first time the stream is used by READ or PRINT. itemnumber designates
a particular record within a data seL A value of zero means use the first record if an
input stream, or the next record if an output stream.

Streams may be defined by this function based either on a disk file or console as an
input/ output device. The alist value is examined to determine which of these devices
is to be used, and an appropriate program is selected and stored as the value of rfn in
the stream structure.

In order to implement commonly-needed default stream attributes, DEFIOSTREAM
makes the following modifications to alist:

If no MODE property is already part of alist, (MODE . INPUT) is added to
alist by non-destructive CONSing.

If (MODE. I) or (MODE. 0) is specified, I or 0 is RPLACDed by INPUT or
OUTPUT, respectively. .

Following is a description of the properties and meanings which are most commonly
used for alist. Additional properties are ignored by the standard stream processing

STANDARD I/O FUNCTIONS 53

LISP/370 Program Description and Operations Manual

functions, but may be added to provide additional information to be used by the user's
programs.

(DEVICE. CONSOLE)- is specified to indicate this stream is defined on the
user's console.

(FILE filename file type) or (FILE filename file type file mode) is specified to
indicate this stream is defined on the designated disk file. Values for filename
and file type may be specified either as identifiers or character strings.

(MODE . INPUT) or (MODE . OUTPUT) designates an input or output
stream, respectively. (This attribute was discussed above.)

(RECFM . V) or (RECFM . F) designates whether a disk file referenced in an
output stream is to have fixed or varying length records in it. Varying length
records is the default assumption.

(QUAL. S or T or U or V or X) designates the type of CMS read operation
to be used in obtaining records from the console for this stream. The letters
have the following meanings:

S = pad records with blanks to 120' characters.
T = read a logical line (the default operation).
U = pad with blanks and translate to upper case.
V = translate to upper case.
X = read a physical line.

(QUAL. LIFO or FIFO or NOEDIT) specifies for console output files that no
editing is to be performed on output lines (Le. for typewriter consoles, trailing
blanks are not deleted and a carriage return is not automatically appended to
the line). LIFO and FIFO designate that output lines are to be placed into the
console input stack, rather than be written to the console.

(DIGIT x)

Returns x if it is one of the character objects (identifiers) 0, 1, 2, 3, 4, 5 ,6 ,7, 8 or 9.
Otherwise, returns NIL. This is a macro which expands into in-line code for compiled
programs.

(DOMINATE STREAM topstream bottomstream)

54

This function requires two fast streams as arguments, and causes each line which is
subsequently written into the first stream to also be written into the second stream.
topstream is termed the dominated stream, and bottomstream is said to be the dominat
ing stream. This piece of· prestidigitation is achieved by modifying the stream-specific

STANDARD I/O FUNCTIONS

•

•

•

•

•

LISP /370 Program Description and Operations Manual

function of topstream, so that whenever it would have been invoked, the modified
function is used which copies the topstream buffer into bottomstream and TERPRI's
bottomstream, as well as performing the function of the original topstream stream
specific function. bottomstream is not modified by this process, and topstream may be
restored to its original state by use of the function UNDOMINATESTREAM.

There are some limitations. First, as already indicated, both streams must be fast
streams (in order that the buffer copying code may do the right thing). This concept
of stream domination is applicable to slow streams also, but the function
DOMINATE STREAM will not implement it. Second, the buffer size of the dominated
stream, topstream, must be no larger than the buffer size of the dominating stream.

(ERASE fname ftype [fmode]) or

(ERASE (fname ftype [fmode])

This function erases a file, or group of files, to which the user has write access. The
value of the function is true if a file is successfully erased; otherwise, the value of the

. function is NIL.

fname and ftype must be specified. If fmode is omitted, the primary read/write disk
A t is the only disk searched. If both fname and ftype are specified by an *, fmode
must be specified by other than an *. Note that the erasure of the entire At disk is
not permitted, and care is advised whenever an asterisk is used as an argument so that
files are not inadvertently erased.

ERASE constructs a character string containing a suitable command and OBEYs it.
To provide a more similar operation with the ERASE function of an earlier LISP
system, this character string is printed on CUROUTSTREAM.

(F ASTSTREAMP str)

This function returns true if str is a fast stream -- that is, a pair whose CDR is a
reference vector of length at least 3. Otherwise, the value of FASTSTREAMP is NIL.

(FILEQ id value)

Similar in intent to SETQ, except that instead of binding value to (the "quoted" i.e.
unevaluated identifier) id, value is written into the LISPLIB currently accessible
through the stream which is the value of the FILE property on OPTIONLIST. This
provides a convenient method for writing more general objects into a LISPLIB than
simply the proto-modules which are the output of LAP and indirectly of the LISP
compiler .

STANDARD I/O FUNCTIONS 55

LISP /370 Program Description and Operations Manual

There are some limitations on the types of objects which can be written into a LIS
PLIB. In effect, anything which cannot be printed in a form which can then be read
back into the· LISP system cannot be written into a LISPLIB. These are binary
program images (not proto-modules, but the result of linking a proto-module into
LISP's binary program space) and state descriptors, the value of the STATE function.
It follows that any composite structure containing a pointer to one of these objects
cannot be written into a LISPLIB.

Circular structures present no intrinsic problem, and may be written into LISPLIBs
provided they do not contain any of the proscribed data objects.

FILEQ is of course a macro, in order to get a hold of id before it is evaluated. value,
however, is evaluated to obtain the object to be written into the LISPLIB. Like
SETQ, value is returned as the value of FILEQ.

(HEXEXP x)

Returns as value a character string containing the EBCDIC codes for the hexadecimal
value of the pointer which is the value of x. For example,

(HEXEXP 10) = '0300000A'

(HEXNUM x)

Returns as value a character string containing the hexadecimal digits representing the
value of x. For example,

(HEXNUM 10) = 'OOOOOOOA'

The argument value, x, must be either a small integer or a single-word large integer,
otherwise an error break is taken. See also HEXEXP.

(HEXSTRINGPART string index length)

56

Returns as value a new string which contains the hexadecimal character representation
of the length characters of string beginning with the character selected by index. For
example,

(HEXSTRINGPART 'ABCDE' 1 2) = 'C2C3'

STANDARD I/O FUNCTIONS

•

•

•

•

•

LISP /370 Program Description and Operations Manual

(lOSTATE fname [ftype [fmode]]) or

(IOSTATE (fname [ftype [fmode]]»

This function returns the value true if a file exists with the name ftype, type ftype and
mode fmode; otherwise, its value is NIL.

Only fname need be specified. If ftype is omitted, the first file encountered with the
name fname, of any type, will result in the value true.

If fmode is omitted, all disks are searched. If fname is *, ftype or fmode must be
specified for the search to be meaningful.

(lOSTATEW fname [ftype [fmode]]) or

(lOST ATEW (fname [ftype [fmode]]»

This function returns the value true if

1. a file exists with the name fname, type ftype and mode fmode, and
2. the user has write access to that file;

otherwise, the value of the function is NIL.

Only fname need be specified. If ftype is omitted, the first file encountered with the
name fname, of any type, and to which the user has write access, will result in the
value true.

If fmode is omitted, all disks are searched. If fname is *, ftype or fmode must be
specified for the search to be meaningful.

(IS-CONSOLE stream)

This function returns NIL as its value if stream is not a fast console stream. If stream
is such a stream, it is returned as the value of the function.

(lTEM-N-ADV stream)

Returns as value the current object at the head of the steam stream, then advances
stream using NEXT. This function discards line end indications, so the caller will see
only actual data values from stream .

STANDARD I/O FUNCTIONS 57

LISP /370 Program Description and Operations Manual

(LISPITTIN stream)

Stream specific function for fast console input streams.

(LISPOTOUT x stream)

Stream specific function for fast console output streams.

(NEXT stream)

(NUD)

This is a basic function for manipulating streams. It advances, stream to the next
character and returns the updated stream as its value; the CAR of the stream is this
next character. For more information, see t4e section on the LISP destructive stream
facility. See also WRITE, TEREAD, TERPRI.

This is the principal function used by READ for parsing LISP symbolic expressions.
Changes of syntax for the print representations of s-expressions usually involve
changing this function, or one of its accessory functions.

(PRETTYPRINT x stream)

Similar to PRINT, except a more complicated program is invoked which understands
many of the more common forms of symbolic expressions and prints them in a struc
tured format. Unlike PRINT, PRETTYPRINT will not try to print structures with
cycles in them. If a cycle exists in x, the regular PRINT function is invoked.
PRETTYPRINT does not attempt to evidence shared structures as does PRINT, but
prints each shared substructure in full.

The stream argument is optional. If it is not provided, the current value of the variable
CUROUTSTREAM is used. PRETTYPRINT uses a free variable, PRETTYWIDTH,
to define for it the maximum length of output lines.

(PRETTYPRINO x stream)

This is a sub function of PRETTYPRINT which takes the same arguments (stream is
optional), but does not perform a TERPRI after x has been printed.

(PRINM x stream)

58

A specialized print function which expects x to be a pair (otherwise it is CONSed with
NIL and this pair is treated as x) and prints each element of the list x. There are no

STANDARD I/O FUNCTIONS

•

•

•

•

•

LISP /370 Program Description and Operations Manual

top level parentheses printed, and if any element of the list x is a character string, it is
printed by PRINTEXP instead of the normal PRINO routine, so that its delimiting
characters are not printed. This function exists for purposes of compatibility with
LISP /360, where it was used principally for printing error messages.

(PRINT x stream)

This is a macro which supplies the identifier CUROUTSTREAM if there is no explicit
stream argument provided. It invokes the standard LISP /370 print routine, which
writes the canonical output representation of the value of x into stream. This repre
sentation shows all shared substructure, including cyclical structure. The final opera
tion of PRINT is to perform a TERPRI on stream. The value of PRINT is x.

(PRINTCH char stream)

This is a macro which makes optional the argument value for stream. If none is
supplied, CUROUTSTREAM is used. The expansion of PRINTCH is

(WRITE char stream)

(PRINTEXP string stream)

This macro makes optional the argument value stream. If none is supplied, the value
CUROUTSTREAM is used. The function ,PRINTEXP invoked by this macro requires
string to be a character string, and writes this string into stream without string delimit
ing or letterizing characters.

(PRINTEXPPNAME string stream)

This function is used for the normal printing of print names of identifiers, where string
is the print name to be printed. Necessary letterizing characters are inserted.

(PRINTV AL x stream)

Prints "VALUE =" then PRETTYPRINTs x into stream.

(PRINO x stream)

This macro is similar to PRINT, except the final TERPRI is not performed. stream is
an optional argument, and CUROUTSTREAM will be used if no explicit value is
supplied. The value of PRINO is x .

STANDARD I/O FUNCTIONS 59

LISP /370 Program Description and Operations Manual

(PRINI x stream)

This macro makes optional the argument stream. If no value is explicitly supplied,
CUROUTSTREAM will be used. The function invoked by this macro will print only
non-descendable objects (i.e. no pairs or reference vectors). No blank is printed after
x. The value of PRIN 1 is x.

(PRINIB x stream)

,This macro is similar to PRIN 1, but a blank character is written into stream after x is
printed.

(PUTBACK x stream)

One of the functions for manipulating input streams. The value of x is pushed onto
the head of the stream, where it becomes the current object at the head of the stream.
This is meaningful only for input streams, and finds application in the READ pro
grams, where a delimiter is encountered by an auxiliary function ofNUD using
ITEM-N-ADVANCE, and the delimiter is PUTBACK onto the stream where it will be
subsequently seen by that part of the READ operation which is equipped to interpret
it.

(RDeHR stream)

This is a macro which expands into an invocation of ITEM-N-ADVANCE, where the
optional stream, if not explicitly specified, is given the value CURINSTREAM.

(RDEFIOSTREAM alist)

60

This function constructs a standard structure usable as an input/output stream by the
RREAD and R WRITE programs~ It is not intended to be capable of building all
possible streams, merely that which is needed for simple random-access I/O in the
LISP system. The structure which is created and returned as the value of RDEFIO
STREAM is not checked for validity, the first use of the stream will typically involve
verification according to the needs of the using function.

The stream created has the following general structure:

%Ll = (%Ll. < rfn
< 0/01< ... > 0 4 80 >
alist

position-key· >)

STANDARD I/O FUNCTIONS

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

(RDS stream)

This macro expands into (SETQ CURINSTREAM stream), and exists for compatibility
with LISP /360 usage.

(READ stream)

This macro invokes the basic LISP symbolic expression reader. The stream argument
is optional. If is is not explicitly supplied, CURINSTREAM is used.

READ references three free variables which control the parsing of input data. These
are QUOTEIZER, STRINGIZER and LETTERIZER. Each should be bound to the
character object which is to signal the READ program to perform an appropriate
operation. The QUOTEIZER character indicates that the symbolic expression immedi
ately following (there may be no intervening blanks before the first character of this
expression) is to become the second element in a list whose first element is the
identifier QUOTE. This is a particularly useful facility when typing expressions
interactively from a terminal. The STRINGIZER character is simply the character
designated to act as a string delimiter, and LETTERIZER is the character used to
signal that the immediately following character is to be considered a data character
rather than a control character.

The LETTERIZER character is needed for designating, for example, the identifier
having the print name '999', or the character object left parenthesis or blank.

(READPLACEGEN)

Returns as value a unique read place holder. These objects are used by the READ
programs to cope with input expressions which designate shared structure. See also

PLACEP.

(RREAD key stream)

This function reads one record identified by key from the file specified by stream. key
must be a character string. stream must have have been defined by RDEFIO
STREAM. If input is needed from a file written after stream was defined, the file
must first be closed with RSHUT and the stream must be redefined. This is necessary
in order to access the new data via the updated DIRECTORY of keys.

The value of RREAD is the record read.

STANDARD I/O FUNCTIONS 61

LISP /370 Program Description and Operations Manual

(RSHUT stream) •

SHUT, or close, the file specified by stream. The value of RSHUT is the updated
stream looped to itself.

%Ll =(%Ll . %Ll)

(RWRITE key item stream)

Write one item identified by key into the file specified by stream. key must be a
character string. Each item is written as an 80 character fixed-length record. Every
write updates a DIRECTORY which is an association list of keys and record position
numbers.

The value of R WRITE is item.

(SETANDFILEQ id value)

This macro is useful in source files to be processed by EXF. or a similar mechanism
where it is desired to both write value into a LISPLIB file as the value associated with
the label id (which need not be quoted as the macro does not evaluate it), and to
achieve a current assignment by performing a (SETQ id value). In effect, this is the
combination of FILEQ and SETQ.

(SHUT stream)

This function invokes a system-dependent routine to close any file related to the
argument stream. If no file is actually in need of closing, the action of SHUT is
effectively a no-operation. The value of SHUT is the (possibly updated) stream.

(SKIP n stream)

This macro issues n TERPRI's to stream. If stream is not specified, CUROUT
STREAM is assumed. The value of SKIP is NIL.

(STRINGIMAGE x)

62

This function uses a specialized stream to accumulate a character string containing the
print representation of x, which becomes the value of STRINGIMAGE. This may be
useful in a variety of ways. For example, th obtain the character equivalent of an
integer, one can write

(STRINGIMAGE integer)

STANDARD I/O FUNCTIONS

•

•

•

•

•

LISP /370 Program Description and Operations Manual

x may be any LISP value.

(STRINGIZE x)

This function also computes a string representation for x. If x is a string, it is returned
unchanged as the value of STRINGIZE. If x is not a list, the value of STRINGIZE is
(STRINGIMAGE x). If x is a list, the value of STRINGIZE is the concatenation of
the STRINGIMAGEs of the elements of x.

(TAB n stream)

This macro causes sufficient blanks to be written into stream so that the last character
in the stream output buffer is a byte position n. If there are already more than n bytes
in the current output buffer, a TERPRI is performed, and n blanks inserted into an
empty output buffer.

(TEREAD stream)

This macro forces an end of line condition in the fast stream stream. Any characters
left in the current input buffer are lost. stream is an optional argument. If it is not
specified, CURINSTREAM is used .

(TERPRI stream)

This macro forces output of the current line in stream.

(UNDOMINATESTREAM topstream)

Removes the effect of the DOMINA TESTREAM function. The argument must be the
stream which was the topstream argument to DOMINATESTREAM, i.e. the dominated
stream.

(WRS stream)

This macro expands into (SETQ CUROUTSTREAM stream), and exists for compati
bility with LISP /360 usage .

STANDARD I/O FUNCTIONS 63

LISP /370 Program Description and Operations Manual

STANDARD ARITHMETIC FUNCTIONS

(*MAX x y)

Returns as value the algebraically greater of the two numeric arguments x and y. This
is a function of exactly two arguments. It is used by MAX, a macro which performs a
similar operation for an indefinite number of arguments.

(*MIN x y)

Returns as value the lesser of the two numeric arguments x and y. This is a function
of exactly two arguments. It is used by MIN, a macro which performs a similar
operation for an indefinite number of arguments.

(ABSVAL x)

Returns the absolute value of x, if x is a number. If x is not a number, an error break
is taken.

(ADDI x)

Returns as its value (PLUS x 1). ADDI is implemented as a macro which expands
(for the compiler) into in-line code to compute the value if x and the result are both
small integers, and calls a separate function (LPLUS) if one or both are not small
integers. If x is not numeric, LPLUS will take an error break.

(ALINE n k)

Value is the small integer n rounded up to the nearest multiple of the small integer k,
where k is a power of 2. If n or k are not small integers or are negative, an error
break is taken. If n is zero or one, returns N unchanged. If k is not a power of 2,
result is unpredictable ..

Example: (ALINE 15 4) = 16.

(DIFFERENCE x y)

64

This is a macro which expands into the expression (LDIFFERENCE x y). LDIFFER
ENCE computes the numerical difference between two numbers. If any argument is
real, the result is real. Otherwise, the result is an integer.

STANDARD ARITHMETIC FUNCTIONS

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

There is no strong reason for having a macro here. It does make for greater uniformi
ty with PLUS, where the macro is needed to produce the expansion for more than two
arguments, and may one day expand into different forms according to additional
information defining the possible values of the arguments.

See also QSDIFFERENCE.

(DIVIDE x y)

This is a macro which expands into (LDIVIDE x y). LDIVIDE computes the quotient
of x divided by y, and returns as value a list: (quotient remainder). The first element
of this list is the quotient and the second element is the remainder. If both x and yare
integers, the quotient and remainder will be integers. If any argument is real, the
quotient and remainder will be real. The remainder for a real quotient is peculiar
because it exists only because of the approximation needed for representing real
numbers as floating point numbers in the computer. A real remainder is computed as

(DIFFERENCE x (TIMES y quotient».

(EQUALN x y)

The value of this function is the value of (EQUAL x y) when the floating point fuzz
factor is ze~o. The fuzz factor is temporarily made zero while EQUAL is invoked,
then restored to its original value.

(EXPT x y)

(FIX x)

Returns the value of x raised to the y power. The value is an integer if x is an integer
and y is a positive integer; otherwise, the value is a floating point number.

x cannot be negative if y is not a positive integer.

If x is a real (floating point) number, returns the integral part of that value as an
integer. If x is already an integer number, it is returned as the value of FIX; For other
values of x, an error break is taken.

(FLOAT x)

If x is an integer number, the value is the closest real approximation to that number,
unless x exceeds the range of floating point numbers (approximately the 80th power of

STANDARD ARITHMETIC FUNCTIONS 65

LISP /370 Program Description and Operations Manual

10), in which case an error break is taken. An error break occurs also if x is not
numeric. If x is already a real number, it is returned as the value of FLOAT.

(FLOATP x)

This function returns the value x if x is a floating point number; otherwise, its value is
NIL.

(GETFLT)

This macro expands into code which will allocate a new real (floating point) number
cell when it is executed. It is used by functions such as EXP which need a new cell in
which to return their value. The initial value in the new cell is zero.

(GREATERP x y)

For x and y numeric values, compares them and returns true if x is greater than y, or
NIL if x is not greater than y. Should either x or y be a floating point value, the real
fuzz factor may affect the comparison. There is a discussion of this in the section on
data types. Basically, the fuzz factor allows two real values which are close in value to
be considered equal, thus neither is greater than the other. The value of the real fuzz
factor defines what close means. See also EQUAL, EQUALN.

(LDIFFERENCE x y)

This function computes the value x minus y, where x and yare numeric values. If
either x or y is not numeric, an error break is taken. If both x and yare integers, the
value of LDIFFERENCE will be an integer. Otherwise, the result value is real.

See also QSDIFFERENCE.

(LDIVIDE x y)

66

This function computes the quotient and remainder of x divided by y, and returns as
value a two element list: (quotient remainder). The first element of this list is the
quotient, the second element is the remainder. If either x or y is not numeric, an error
break is taken. If both x and yare integers, the quotient and remainder will be
integers. Otherwise, the quotient and remainder will be real.

If the quotient is real, the remainder will be somewhat peculiar since it exists only as a
result of the limited accuracy with which real numbers are stored in the computer. In
this case, the remainder is computed as

STANDARD ARITHMETIC FUNCTIONS

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

(DIFFERENCE x (TIMES y quotient»

See also QUOTIENT.

(LEFTSHIFT number count)

If number is a small integer or one word large integer, the value of this function is the
number (limited to the range of a one word large integer) obtained by a binary shift of
count bits. Positive values of count denote a left shift, negative values a right shift.
Any bits shifted outside of a 32 bit word are lost, and zero bits are supplied as needed.
If number is not within the described range, an error break is taken. See also RIGHT ..
SHIFT.

(LESSP x y)

(LN x)

This is a macro which expands into the expression (GREATERP y x).

Function for computing natural logarithm of x. x may be either integer or real, but it
must be within the range of a real number. The result is a real number. See also
LOG, LOG2 .

(LOG x)

Computes common (base ten) logarithm of x. x may be either integer or real, but
must be within the range of a real number. See also LN, LOG2.

(LOG2 x)

Computes the logarithm to the base 2 of x. x may be either integer or real, but must
be within the range of a real number. See also LN, LOG.

(LPLUS x y)

This function computes the sum of x and y, where these arguments are numeric values.
If either x or y is not numeric, an error break is taken. If both x and yare integers,
the result is an integer. Otherwise, the result is real.

See also QSPLUS and PLUS .

STANDARD ARITHMETIC FUNCTIONS 67

, LISP /370 Program Description and Operations Manual

(LTIMES x y)

This function computes the product of x and y, where these arguments are numeric
values. If either x or y is not numeric, an error break is taken. If both x and yare
integers, the result in an integer. Otherwise, the result is real.

See also QSTIMES and TIMES.

(MASKNUM number nbits)

When number is a small integer or a one word large integer, a new number is computed
as the value of MASKNUM which consists of only the rightmost nbits of number, the
remaining high-order bits being set to zero.

If number is not is the valid range, an error break occurs. See also LEFTSHIFT.

This is a macro which expands into a nest of applications of *MAX. The value of this
expression is the algebraically largest argument value. If any of the arguments is not a
number, an error break occurs.

A macro which expands into a nest of applications of *MIN. The value of this
expression is the algebraically smallest argument value. If any of the arguments is not
a number, an error break occurs.

(MINUS x)

Unary minus operation; x may be any number. Value returned is minus x.

(MINUSP x)

Returns NIL if x is positive or zero, true if x is negative.

(NUMBERP x)

68

This function returns the value x if x is any type of number. If x is n9t a number, the
value NIL is returned.

STANDARD ARITHMETIC FUNCTIONS

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

This is a macro which expands into the expression

(LPLUS Xl (LPLUS X2 ... (LPLUS Xn _l Xn) ... »
LPLUS is a function of two numeric arguments which returns their sum as value. See
also QSPLUS.

(QSDIFFERENCE X y)

This macro expands during compilation into in-line code to compute as its value the
difference of x and y, under the assumption that x, y, and the result value are small
integers. If interpreted, the macro expands into the expression (LDIFFERENCE X y).
If the assumption of small integers is violated in compiled code, the result will be a
small integer of incorrect value.

(QSPLUS x y)

This is a macro which expands during compilation into in-line code to compute as its
value the sum of x and y, under the assumption that x, y, and the resulting sum are
small integers. If interpreted, it is equivalent to (LPLUS x y). If the assumption of
small integers is violated in compiled code, the result will be a small integer of incor
rect value .

(QSTIMES x y)

This macro expands during compilation into in-line code which computes as its value
the product of x and y, under the assumption that x, y and the result are all small
integers. If interpreted, the macro is equivalent to (L TIMES x y). If the assumption
of small integers is violated in compiled code, the result will ba a small integer of
incorrect value.

(QUOTIENT x y)

This function is similar to LDIVIDE in that it computes the quotient of x divided by y,
but differs in that it returns that quotient as a number rather than CONS'ing it into a
list with the remainder of the division. If x and yare both integers, the quotient will
be an integer. Otherwise, the quotient is real.

(REMAINDER x y)

Returns as value the remainder of x divided by y. If both x and yare integers, the
remainder is computed from an integer division. If either x or y is floating point, the

ST ANDARD ARITHMETIC FUNCTIONS 69

LISP / 3 70 Program Description and Operations Manual

remainder is computed by subtracting y times the real quotient from x.

(RIGHTSHIFT x n)

This macro expands into a call on LEFT SHIFT , where the sign of the shift amount, N
is changed.

(SMINTP x)

This function returns x as its value if x is a small integer; otherwise, its value is NIL.
This is a basic function, therefore it is not redefinable.

(SUBl x)

Returns as its value (DIFFERENCE x 1). SUBl is implemented as a macro which
expands (for the compiler) into in-line code to compute the value if x and the result
are both small integers, and calls a separate function (LDIFFERENCE) if one or both
are not small integers. If x is not numeric, LDIFFERENCE will take an error break.

(TIMES Xl ... xn)

70

This is a macro which expands into the expression

(LTIMES Xl (LTIMES X2 •.• (LTIMES Xn_l Xn) •.• »

L TIMES is a function of two numeric arguments which computes as its value the
product of those arguments. If all of the arguments of TIMES are integers, the value
will also be an integer. Otherwise, the value of TIMES will be real.

See also QSTIMES.

STANDARD ARITHMETIC FUNCTIONS

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

PROPERTY LIST AND OBLIST FUNCTIONS

(ASSOC item alist)

This is the standard LISP ASSOC function.
alist is a list of pairs, ((s-exPt . VI) (s-exP2 . v2) ...). ASSOC compares item with
s-expl' then s-exP2' ... , using EQUAL to perform the comparison. If alist is not a list,
or if item is not found in alist, the value of ASSOC is NIL. Otherwise, the value of
ASSOC is the first pair (s-exp . v) such that (EQUAL item (QUOTE s-exp» is true.
If there are elements of alist which are not pairs, they are skipped and the next element
of alist is examined.

Also see SASSOC, ASSOCN, and ASSQ.

(ASSOCN item alist)

This function is very similar to ASSOC, except that EQUALN is used instead of
EQUAL for comparing item with the CARs of elements in alist. Also see ASSQ and
SASSOC.

(ASSQ item alist)

This function is similar to ASSOC, except it uses EQ rather than EQUAL to compare
item with the CARs of elements in alist. Also see ASSOCN and SASSOC.

(DEFLIST pairlist property)

This function expects pairlist to be a list. of pairs whose CARs are identifiers and
whose CDRs are arbitrary values. For each of these pairs,
(MAKEPROP id property value) is performed, assigning the CDR value from the pair
as the value of the property property in the identifier's property list.

The value of DEFLIST is a new list containing the property values (the CDRs of the
elements of pairlist).

(GET id propname)

If id is not an identifier or a pair, value is NIL. Otherwise the property list of id (or id
itself, if it is a pair) is searched for the first occurrence of an element such that

(EQ prop (CAR element»

is true. When found, the value of GET becomes (CDR element). If such an element

PROPERTY LIST AND OBLIST FUNCTIONS 71

LISP /370 Program Description and Operations Manual

is not found, the 'value of GET is NIL.

Also see PROPLIST, MAKEPROP, REMPROP, REMALLPROPS.

(INTERN string)

This function' is used to augment the object list (actually a hash table, but the name
object list has historical roots). The character string string is sought in the oblist, and
if found, the identifier having the given string is returned as the value of INTERN. If
a string equal to string cannot be found in the oblist, a new identifier structure is
created with a print name equal to string, and the newly created identifier is returned
as the value of INTERN. If string is not a character string, an error break occurs.

(MAKEPROP id propname propvalue)

Function to update the property list of the identifier id. If the propname property
already exists, its associated value is changed to propvalue. If the propname property
does not currently exist, a new property with this name is put at the beginning of the
property list.

The value of id must be an identifier, but propname and propvalue may be any expres
sions. See also REMPROP, PROPLIST, REMALLPROPS and GET.

(MAPOBLIST funct)

This function uses (OBARRA Y) to access OBLIST, the LISP data structure which
remembers all INTERN'ed identifiers, then applies funct to all of the identifiers in
OBLIST. The value of MAPOBLIST is NIL.

(OBARRAY)

Returns as value a copy of the current LISP object array. This is a reference vector
containing elements which are either identifiers (INTERN'ed variables) or small
integers. A small integer zero indicates an available cell in this hash table, a small
integer minus one indicates a deleted identifier (result of a use of the REMOB func
tion).

Because the value of OBARRA Y is a copy of the actual object array, it may be
modified in any way by the user.

(PNAME id)

72

Returns a copy of the print name of id. If the value of id is not an identifier, an error
break is taken. The print name is a character string.

PROPERTY LIST AND OBLIST FUNCTIONS

•

•
j,.

•

•

•

•

LISP /370 Program Description and Operations Manual

(PROPLIST ideot)

The value of ideot must be an identifier. Returns the property list associated with that
identifier. The property list is a standard LISP association list. The final CDR of the
property list is reserved for LISP/370 system use. See also GET, MAKEPROP,
REMPROP, REMALLPROPS.

(REMALLPROPS ideot)

The value of the argument ideot must be a normal identifier, not a GENSYM. All
properties on the property list of this identifier are removed. The value of REMALL
PROPS is ideot. See also REMPROP, GET, MAKEPROP, PROPLIST.

(REMPROP ideot oame)

The oame property of the identifier ideot is removed from the property list of ideot.
The value of REMPROP is NIL if there is no oame property. If the property exists,
the value of REMPROP is the value associated with that property. See also MAKE
PROP, REMALLPROPS, GET, PROPLIST .

(SASSOC item alist fo)

This function is similar to ASSQ, but requires three arguments and if item is not
matched, it returns the result of applying fo to no arguments, instead of the NIL value
returned by ASSOC.

(UASSOC item alist)

This function is identical to ASSOC except that UEQUAL, rather than EQUAL, is
used for the comparison of item with the alist .

PROPERTY LIST AND OBLIST FUNCTIONS 73

LISP /370 Program Description and Operations Manual

OTHER FUNCTIONS

This is a macro which expands into a COND expression implementing the logical and
of el' e2, ; •• , en' For example,

(CHARP x)

This is a macro which expands into code to test whether x is a character object: one
of 256 identifiers defined at system generation time which span the total range of
possible single character print names. The value of CHARP is NIL if x is not one of
these objects, otherwise the value is x.

When interpreted, (CHARP x) is implemented by (,CHARP x) where ,CHARP is the
binary program which· was obtained by compiling the macro expansion.

(COpy x)

This function copies the structure x, including all of its substructure, and returns the
copied structure as its value. COpy will correctly copy any looped, circular structure.
This is the function to use when a top-level copy (such as is made by APPEND) is
inadequate, or when circular structure is involved.

(CYCLES x)

This function examines an arbitrary object, x, for circular structure. If no cycles are
found in x, the value of CYCLES is NIL. If any cycles are found, the value of
CYCLES is a reference vector containing two elements for each cycle. The 0, 2, 4, ...
elements of the vector are pointers to the list node or vector of a cycle which is closest
to the root of the structure, x. The 1, 3, 5, ... elements of the vector are zero and are
provided for the caller to use for his own purposes.

See also the description of SHAREDITEMS, which will discover shared substructure
not in a cycle as well as cycles.

(CYCLESP x)

74

This function examines x for circular structure, and returns NIL if there is none, or T
if there is some circular structure.

OTHER FUNCTIONS

•

•

•

•

•

LISP /370 Program Description and Operations Manual

(EQ x y)

EQ tests for pointer identity between its two arguments. Its value is the identifier *T*
if x and yare identical pointers. This means that the pointer type codes as well as the
pointer address fields are identical. If these fields are not identical, the value of EQ is
NIL.

EQ may be used for quick tests of equivalence. If two expressions are EQ, then they
are necessarily EQUAL; however, the converse is not true. Two expressions which
are not EQ may nevertheless be EQUAL.

Note that two copies of a given object will not be EQ because they are stored at
different locations. Similarly, it is possible to have different representations of the
same numeric value which are EQUAL, but which are not EQ.

(EQUAL x y)

This is a generalized equality testing function applicable to any LISP objects, including
circular structures and numeric quantities.

For numeric quantities to be EQUAL, they must represent the same value. For tests
involving one or two real (floating point) numbers, a fuzz factor may be relevant.
This is explained in the section of this manual discussing data types. If an integer is to
be compared with a real number, the integer is converted to a real value for the
comparison.

Two vectors are EQUAL if they are of the same type, the same length, and their
absolute parts are identical and their pointer parts are EQUAL.

For composite arguments, EQUAL implements access-equivalent equality testing. This
means that two structures are EQUAL if every part of one structure which can be
reached by a composition of accessing functions is EQUAL to the corresponding part
of the the other structure reached through the same composition of accessing func
tions. Intuitively, two structures are EQUAL if they denote the same (possibly
infinite) tree.

The value of EQUAL is either NIL or *T*.

See the discussion under LISTS in the Data Type section for an example and further
commentary.

(FUNARGP x)

If x is a funarg data object, returns x as its value; otherwise returns NIL .

OTHER FUNCTIONS 75

LISP /370 Program Description and Operations Manual

(GENLABEL)

The value of this function is a non-stored constant suitable for use as a statement label
inside of a PROG expression or in a LAP contour. These constants are generated in a
series which is reset to its starting value by the COMP370 function so that the same
values may be reused. The principal use of GENLABEL is by macro definitions which
require a locally unique label to be incorporated into their expansion.

GENLABEL's share the peculiar nature of GENSYM's with respect to READ. They
are never read in verbatim, but rather each distinct GENLABEL in an expression
being read is replaced in the new structure READ produces by a newly generated
GENLABEL.

Also see GENSYM.

(GENSYM)

76

This function constructs anew, unique identifier. This identifier is returned as the
value of the GENSYM function, and may be used in any of the contexts suitable for
an identifier. In particular, it may be used as a variable (either fluid or lexical).

These GENSYM identifiers are treated specially by the standard PRINT and READ
routines, in that they are identifiable as GENSYM's in printed output and when one is
read, it is replaced by a new GENSYM in the structure created by the READ program.
Thus, if the same expression is read several times, it will contain unique GENSYM's in
each copy read, although there will be only one new. GENSYM created for each
distinct GENSYM in the expression being read. If the same GENSYM occurs more
than one time in the input expression, the same newly created replacement GENSYM
will be referenced every place the original GENSYM was referenced.

The mechanism used to insure unique ID's is simply to have a counter which is
incremented every time a new GENSYM is required and to incorporate this counter's
value into the print name of the identifier. A super garbage collector will compact all
currently active GENSYM's are reset this counter to the next available number.

There are several factors governing the number of possible GENSYM's possible using
this approach, depending upon the exact implementation. Since this will probably
change once a super garbage collector is available, it seems prudent to state at this
time only that there is a maximum of no less than 786,433 of these GENSYM's before
any implementation limit is reached.

Because there are a limited number of GENSYM's, it is recommended that
GENLABEL's be used whenever they are appropriate rather than the more costly
GENSYM's.

OTHER FUNCTIONS

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

(MSUBRP x)

Returns x it x is a compiled macro (MLAMBDA ...) expression, otherwise returns
NIL.

This is a macro which generates a COND expression implementing the logical "or" of
el' e2 , ... , en' For example,

(NONSTOREDP x)

Returns x if x is not a stored object. This means, in a somewhat arbitrary way, that
the type code of x has a zero in its high-order bit. Thus, small integers, generated
symbols, binary programs are examples of non-stored objects.

(PLACEP x)

Returns x as its value if x is a read-place-holder, else returns NIL. The usual applica
tion of this function is to detect when READ has encountered an end of stream
condition, since this is the only condition under which READ will return a read-place
holder as its value. In other circumstances, READ uses these objects internally to
mark where in the structure it is building a substitution must be made to establish the
required sharing. Thus, in these normal cases, all read-place-holders have been
replaced with their proper values.

(RESETQ id value)

This macro expands into code which returns the current value of the variable id while
assigning to it the value of value. The id argument is not evaluated, so use of this
macro resembles SETQ except for the value of the expression.

This macro is typically invoked when the user wishes to pass some large data structure
to a subfunction which will operate on it, and the calling function has no further need
for the original value. Using RESETQ may achieve an economy in the maximum
storage required at one time for LISP data. For example,

(RETURN (foo (RESETQ a 0»)

invokes the function foo with the current value of a, but assigns NIL to a before
passing control to foo. Thus, if foo during the course of its execution were to assign
some other value to the variable used to bind its argument value, there might be no

OTHER FUNCTIONS 77

LISP /370 Program Description and Operations Manual

outstanding references to the original value of a, and a garbage collection would
recover the storage which would otherwise be retained by the variable a in the calling
function.

(SHAREDITEMS x)

This function examines the arbitrary structure x for shared substructure. If there is
only Qne possible path from the root, x, to every part of x, then the value NIL is
returned. If there is some shared substructure, the value of SHARED ITEMS is a
reference vector whose 0, 2, 4, ... elements are pointers to the shared nodes (either
vectors or list cells), and whose 1, 3, 5, ... elements are small integers indicating the
minimum nesting depth of the corresponding node from the root of the structure.

Since any cycle must be shared, this function subsumes CYCLES, which is useful when
only circular structure is of interest.

(SUBRP x)

Returns x if x is a compiled function, otherwise returns NIL.

(TEMPUS-FUGIT)

This function returns as value the amount of CPU time, in milliseconds, used by the
user in the current logon. Its value is a small integer.

(TYPEBYTE x)

This function returns as a small integer the eight bit type code ofx.

(UEQUAL x y)

78

This is a general~zed update-equality testing function applicable to any LISP object in
the same sense as EQUAL. It differs from EQUAL in that for two structures to be
UEQUAL, not only must corresponding parts of the structures be EQUAL through the
access functions, but there must be the same number of unique parts and if any of
these parts were to be updated in one structure and the same update operation per
formed on the corresponding part of the other, then the structures would still be
EQUAL.

In addition, numeric values are considered UEQUAL only if they are of the same type
and numerically equivalent. Bit and character strings are UEQUAL only if they have
the same capacity as well as the same type, length, and contents.

OTHER FUNCTIONS

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

Intuitively, two structures are UEQUAL if and only if they denote equivalent rooted
directed graphs, i.e. if they denote EQUAL structures which also have the same
acyclical and cyclical sharing structure.

The value of UEQUAL is either NIL or *T*.

See the discussion under LISTS in the Data Type section for an example and further
commentary .

OTHER FUNCTIONS 79

LISP/370 Program Description and Operations Manual

DEBUGGING FACILITIES

(? "commana [" A] ["NPP] [stream] [smintl [smint2 I *]] [sell [~]])

80

EXAMINE STACK FRAMES

The ? function controls the examination of stack frames created by the execution
process. It is possible to look at arguments of functions, to determine bindings of
variables, and to display variable values.

Only the first argument is required; the order of the remainder is not significant.

ARGl: command:

IDENTIFIER

INDEX

FULL

BIND

ARGS

an identifier specifying the command, i.e., the
kind of stack examination desired. The possi
bilities are:

RESULT

Series of stack frame identifications sequential
ly indexed with a small integer. These appear
in a LIFO order (last in execution, first in list
ing). The form of each frame identification is:

1 index, or frame number
2 frame name, or NIL
3 frame type
4 contour level, if not outermost

Stack frame identification followed by

1 argument names, if any arguments exist
2 all variables, with their values, which have
been bound at this frame.

Stack frame identification for only those
frames at which some binding information ex
ists; following each identification are all the
variables bound at that frame.

Stack frame identification for only those
frames representing functions to which argu
ments have been passed; following each identi
fication are all the argument names and their
values.

DEBUGGING FACILITIES

•

•

•

•

•

LISP /370 Program Description and Operations Manual

ARG2:

ARG3:

ARG4:

ARG5:

LEX

FLUID

SECD

(list of identifiers)

"A

"NPP

stream

Stack frame identification for only those
frames at which lexical binding information
exists; following each identification are all the
variables, and their values, bound lexically at
that frame.

Stack frame identification for only those
frames at which fluid binding information ex
ists; following each identification are all the
variables, and their values, with FLUID bind
ings at that frame.

Stack frame identification for only those
frames associated with SECD (interpretive)
execution and which also have some elements
on the SECD control or stack; there follows
the elements of the control and stack.

For every identifier there is an indication of
lexical or fluid binding, stack frame identifica
tion, and value.

If the identifier refers to a generated symbol,
i.e. one in the form °lbGn, only the numeric
part, i.e. n, should appear in the list.

Indicates that the Access chain of frames is to
be examined. If not present, the control chain
is examined.

Indicates that No ~retty ~rinting is to be done.
This option is useful when condensed output is
desirable. It is essential when examining stack
frames after detection of an "insufficient heap"
condition.

Specifies the stream to which output from the ?
function is to be directed. For example, by use
of an appropriately defined stream, output
could be directed to a disk file. When conven
ient, this file can be printed off-line or other
wise examined.

Specifies the first stack frame which is to be
examined .

DEBUGGING FACILITIES 81

LISP /370 Program Description and Operations Manual

ARG6:

*

ARG7:

ARG8:

Specifies the last stack frame which is to
examined.

Specifies that the stack examination should
continue through to the highest level.

Specifies that the stack examination should be
relative to the stack frame referred to by this
State Descriptor.

Specifies that the stack examination should
terminate with this frame; this is true even if
the value set by the integer specifying the last
frame is deeper into the stack.

Actually, the stop condition is more complex
than this. The display terminates whenever a
frame is encountered which is also part of the
control or access chain (according to the IN
DEX argument of ?) emanating from sd2 •

The termination test is performed in the fol
lowing way. Each time a new stack frame is to
be displayed, a search is made starting at the
stack frame referenced by sd2 • The search fol
lows either the control or access chain back
from this starting frame, comparing the head
of-environment in the new frame to be dis
played with the head-of-environment of the
current frame in the sd2 chain. If the heads-of
environment are identical, the stop criterion is
met and the stack display function is finished.
If the heads-of-environment are not identical,
the search continues with the next frame up the
chain designated by sd2 until either the stop
condition is met, or the end of stack is reached.
In the latter case, the new frame is displayed,
the access or control chain from that frame is
ascended, and the process iterates.

(MONITOR id [entry-list [exit-list]])

82

MONITOR is a simple call tracing function. The first argument is the id, the value of
which is the function or macro to be traced. Once MONITOR has been executed, all
calls to idwill be intercepted and the values of the arguments, followed by the value of
the call to id, or the expansion of id if it is a macro, will be printed on CUROUT
STREAM. If id is MONITORed in compiled code, the id of the calling program will

DEBUGGING FACILITIES

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

also be printed.

The two optional arguments are lists of ids. If they are present and non-NIL the fluid
bindings of the ids in the entry-list will be printed before the MONITORed function is
actually called, while those in the exit-list will be printed after the function returns.

The affect of MONITOR is removed by (UNEMBED id).

NOTE: EQUAL and UEQUAL may not be MONITORed; a system error will result if
an attempt is made to do so .

DEBUGGING FACILITIES 83

LISP /370 Program Description and Operations Manual

DEFINE, COMPILE, and ASSEMBLE

The two basic "operators" (actually basic macros) used for fmiction and macro representation
are, respectively LAMBDA and MLAMBDA. A number of auxiliary functions and a macro
exist in the LISP370 system to aid in function definition. In addition, there exists a fluid
variable, OPTIONLIST, the value (and binding) of which both affects and is affected by the
definition functions.

The relevant functions are:

The macro is:

DEFINE
TEMPDEFINE
COMP370
LAP370

LAM

LAMBDA and MLAMBDA

Both LAMBDA and MLAMBDA expressions have the form

([M]LAMBDA bv body)

where body represents any LISP expression and .bv represents a bound variable structure.

The form and meaning of the bv part of the LAMBDA expression, simply called bv in 'what
follows, has been extended in LISP370. (The following discussion applies directly to LAMB
DAs. With slight modification, to be set forth below, it also applies to MLAMBDAs.)

We will define "variable designator" to mean either an identifier or one of the special forms

(FLUID id)
(LEX id)

The bv of a LAMBDA expression is a variable designator, a constant or any non cyclic list
structure of variable designators and constants.

When a LAMBDA expression (or its compiled surrogate, a binary program image, or bpi) is
APPLXed to a list of values (arguments), the list or its elements are placed in correspondence
with the bv or its elements. This can best be explicated by a set of examples, all of which will
be described with respect to the argument list:

(QUOTE «A B) C «D E . F) G»)

84 DEFINE,.COMPILE, AND ASSEMBLE

•

•

•

•

•

LISP /370 Program Description and Operations Manual

bv = NIL

variable value
none

No binding takes place. No variable is named in the bv, and thus no binding is made and the
argument list is discarded. This is not dependent on the bv being NIL, any constant value for
the bv, e. g. 12, would result in the same behavior.

bv = X

variable
X

value
«A B) C «D E . F) G»

A bv consisting of a single variable designator causes the entire argument list to be bound to
the designated variable.

bv = (FLUID V AR)

variable
VAR

value
«A B) C «D E . F) G»

If the variable designator is of this form the resulting binding is fluid. That is, free occur
rences of this variable farther down the access chain evaluate to the binding mentioned here,
providing no further FLUID bindings of this variable intervene.

bv = (X)

variable
X

value
(A B)

Remembering that (X) is a shorthand for (X . NIL) we have the CAR of the argument list
matched with and bound to X, while the CDR of the argument list is matched with NIL, a
constant, and therefore discarded.

bv= (X . Y)

variable
X
Y

value
(A B)
(C «D E . F) G»

In this case the CDR of the argument list is matched with, and thus bound to Y, the CDR of
the bv .

DEFINE, COMPILE, AND ASSEMBLE 85

bv = (U V W)

variable
U
V·
W

LISP /370 Program Description and Operations Manual

value
(A B)
C
«D E . F) G)

This is the most usual case (and the only case in "traditional" LISP). The bv is a list of
identifiers, with one identifier for each item in the argument list.

bv = «FLUID THIS) (LEX FLUID) THAT)

variable
THIS
FLUID
THAT

value
(A B)
C
«D E . F) G)

Here the binding of THIS is accessible from below. The need for the form (LEX id) is shown,
as only thus can a variable named FLUID be bound (see the next example).

bv = (THIS FLUID THAT)

variable
THIS
THAT

value
(A B)
(C «D E . F) G»

The catch here is that (THIS FLUID THAT) is a short hand for (THIS. (FLUID THAT».
Thus, given the definition of variable designators, (FLUID THAT) is a variable designator
which matches the CDR of the argument list, rather than the second and third variable names.

bv = «U . V) W «NIL NIL . X) . Y»

variable value
U A
V (B)
W C
X F
Y (G)

Here we have the general case of argument decomposition. Note that items in the argument
list corresponding to NILs (constants) in the bv are simply dropped.

86 DEFINE, COMPILE, AND ASSEMBLE

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

bv = (W (X . Y) Z)

variable value
not conformal

No binding takes place. This case results in an error, as the form (X . Y) in the bv is matched
to an atom in the argument list, and thus the required decomposition cannot be made.

bv = (W X Y Z)

variable value
not conformal

No binding takes place. This also results in an error, in theory the same as in the last case
(the variable designator Z in the bv is being matched with the CADDDR of the argument list,
which does not exist as the CDDDR is NIL), but in practice the two errors are distinguished in
compiled code, this being the "non-conformal application" error, the previous being "illegal
CAR" error. The interpreter, which is not bothered by the problem of generating code at one
time for execution later, treats both errors as "non-conformal applications".

bv = (X Y Z 1)

variable value
not conformal

No binding takes place. This results in the identical error as the previous example. Even
though the fourth item in the bv is a constant and thus does not result in a binding, the bv and
the argument list must still be conformable.

All of the above applies to MLAMBDAs with the understanding that the argument list is the
original form whose CAR gave rise to the MLAMBDA (or mbpi). Thus to obtain this form
itself (as in the old LISP system) the expression

(MLAMBDA [id I (FLUID id) I (LEX id)] body)

must be used.

LAM

Nominally SETQ should be sufficient for function definition. Since the interpreter applies the
value of the operator, rather than using EXPR, FEXPR, etc. properties, the assignment of a
LAMBDA expression to a variable serves to establish that variable as a function. It would
seem, then, that DEFINE is not needed in this system. Efficiency (by a rather devious
argument) makes such a function desirable .

DEFINE, COMPILE, AND ASSEMBLE 87

LISP /370 Program Description and Operations Manual

One feature of most existing LISP systems which is not fundamental in LISP370 is the
function which receives its arguments unevaluated. These are usually known as FEXPRs or
FLAMBDAs. Such functions can be realized via LISP macros; however, such macros are
both stereotyped and somewhat complex, a combination of properties which lends itself to
automatic generation. To achieve this, a single macro, LAM, is provided.

Expressions can be written of the form (LAM bv* body), where bv* represents an augmented
bound variable list, containing various types of declarative information. The LAM macro
expands to a MLAMBDA expression (not· in all cases, the exceptions will be dealt with
shortly) which processes the variables according to the declarations in the bv list and then
applies a LAMBDA expression incorporating the body from the original LAM.

For example:

«LAM «QUOTE X) Y) (LIST X Y» A B)

would first expand to:

«MLAMBDA L e) A B)

(where e is a tailored expression based on the exact form of the bound variable list and the
body of the LAM), which in turn would become:

«LAMBDA (X Y) (LIST X Y» (QUOTE A) B)

The form:

(LAM «QUOTE U) (QUOTE V) (QUOTE W» body)

is identical in affect to the old form:

(FLAMBDA (U V W) body)

The catch in this story is that the form (LAM bv body) is not recognized by the interpreter as a
unusual object. Thus, if an identifier,say Q, were to be given (LAM bv body) as its value the
evaluation of (Q argi arg2 ...) would result in a "dynamic macros not allowed" error. If the
value of Q were the value of the LAM expression this would work, as the value would be a
FUNARG with the appropriate MLAMBDA expression for its expression part.

The creation of a FUNARG, however, involves saving a state, which in turn impacts (albeit
slightly) the performance of the system. Furthermore, if the resulting MLAMBDA were to be
compiled it would contain the entire body of the original LAM as a QUOTEd s-expression.
This would not only consume heap space, but would, upon compilation of instances of Q,
replicate the code resulting from the evaluation of the body.

The alternative to these conditions is to write a DEFINE function to "mess" with the
MLAMBDA generated by the LAM. The LAM is expanded (by use of the system operator
MDEFX) and the QUOTEd LAMBDA expression is extracted from it. A system generated

88 DEFINE, COMPILE, AND ASSEMBLE

•

•

•

•

•

LISP /370 Program Description and Operations Manual

name is generated and inserted in place of the LAMBDA expression and the system generated
name is then given the LAMBDA expression as its value.

Taking the example given above;

(LAM «QUOTE X) Y) (LIST X Y»

is the value of Q. The result will be to define Q as

(MLAMBDA L e)

as before, but the body of the MLAMBDA, e, will differ from the previous case. In addition a
new identifier, U,Q,23 say, will be created and given a value of

(LAMBDA (X Y) (LIST X Y»

The expansion of an instance of (Q A B) will now become, due to the modified MLAMBDA,

(U,Q,23 (QUOTE A) B)

Both DEFINE and the compiler know about the peculiarities of LAM and both perform this
transformation. Note that LAM may be re-defined by the user, but only at his peril. There
are var..ious interactions between LAM, DEFINE, and various parts of the compiler which must
all be considered if any change is to be made.

As was stated above LAM does not always expand to a MLAMBDA. In such cases the
transformation described is not possible, and the expansion (which ultimately results in a
LAMBDA expression) is assigned to the name (in the case of DEFINE) or compiled.

(LAM bv body)

The LAM macro is used in defining functions having declarative information in their
bound variable lists. At the moment three types of such information is processed,
QUOTEd arguments, restricted variables and equated variables.

Although the bv part of LAMBDA expressions has been generalized from a simple list
to an arbitrary tree structure, there is still (as its name implies) a basic "listness" about
the argument list. For each item in the argument list, or for the CD*R of the list there
must correspond an element, either a variable designator or a structure, in the bv. In
order that an argument be passed unevaluated to the binding mechanism the structure
in the bv corresponding to that argument must be "wrapped" in a QUOTE (see the
following examples). Thus:

(LAM (QUOTE X) e) indefinite number of arguments, all QUOTEd

(LAM (X (QUOTE V»~ e) two arguments, the first· evaluated, the second
QUOTEd .

DEFINE, COMPILE, AND ASSEMBLE 89

LISP /370 Program Description and Operations Manual

(LAM «QUOTE (X . Y») e) one unevaluated argument which is to be.
decomposed, with its CAR bound to X and its
CDR to Y

(LAM (X . (QUOTE Y» e) one evaluated argument, indefinite number of
trailing QUOTEd arguments

Note that the last case (as the trailing FLUID binding discussed under LAMBDA) would print
as

(LAM (X QUOTE Y) e)

a fact which sometimes causes consternation in the ranks.

The second type of declarative information processed by the LAM macro is restrictions on
variables. (In fact, restrictions and equatings are processed by two other macros, LAM,! and
LAM,2; however, they can be safely ignored and only the top level LAM used in all cases.) In
order to introduce restrictions (and the soon-to-be-described equated variables) we introduce
two new forms which behave like variable descriptors in the basic bv.

A restricted variable is declared by writing the form

(: var-des e)

•
where var-des is a variable designator, and e is any LISP expression. This form is matched to
a part of the argument list (as if it were a variable designator in its own right) and the binding
takes place as if the contained variable descriptor had stood in the place of the form. After
the binding the expression is evaluated and if its value is NIL an ERROR call is made. Note
that the e can (and almost always will) contain references to the variable being bound.
Further, as it may be any LISP expression, it can change the value of the binding.

Other variables bound in the bv should, in general, not be referenced in the expression, as the
order of binding and testing of restrictions is highly dependent on the exact structure of the bv.

For example

(LAM «: X (PAIRP X» (: Y (NUMBERP Y») e)

will bind two arguments to X and Y, test the first for pair-ness and the second for number
ness, and signal an error if either fails its test.

(LAM «: X (COND «ATOM X) (SETQ X (LIST X») (T T»» e)

binds one argument to X and, if X is bound to an atom, CONSs X to NIL. The restriction is
always satisfied, and, during the evaluation of e, X is always bound to a pair, whatever the
original argument's value.

The final declarative form processed by LAM is an equated variable.

90 DEFINE, COMPILE, AND ASSEMBLE

•

•

•

•

•

LISP/370 Program Description and Operations Manual

An equated variable allows a part of the argument list to be bound to more than one variable,
or for a part of the argument list to be both bound to a variable and to be decomposed and
bound to a structure of variables. The form for an equated variable is

(= {var-des I restriction} bv}

As in the restricted variable, this form acts as a variable designator in the matching process.
The corresponding part of the argument list is bound to the variable indicated by the var-des
or restriction element of the equating form. If a restriction is present, it is tested and (if
successful) the part of the argument list which has been bound to the variable is then bound to
the bv part of the equating form, as if they were the argument list and bv of a LAM (save that
(QUOTE structure) forms are not allowed}.

(LAM (= X (Y Z» e)

Causes the entire argument list to be bound to X while the first two arguments are bound to Y
and Z respectively. Note that an error will occur if the argument list has fewer than two
members.

(LAM «= (: X (PAIRP X» (A . B}» e)

binds a single argument to X and tests it for pair-ness. If it is, not a pair an error is signalled;
if it is, its CAR is bound to A and its CDR to B. This is a case where the restriction demon
strated above, which forces pair-ness on its variable, could be used. Thus

(LAM «=
(: X (COND «ATOM X) (SETQ X (LIST X}» (T T»}
(A . B)) }

e}

OPTIONLIST

The values of various properties on this augmented list control various aspects of definition,
compilation and assembly. GET is used to search OPTIONLIST, thus NIL is the default value
for any property not explicitly present. Currently meaningful properties are:

EXPANSIONSTATE

The state in which macros are to be expanded by the compiler. The use of EXPAN
SIONST ATE protects from conflict between variables bound by the compiler and the
bindings of macros used in expressions being compiled. If the value is NIL, the initial
state (where only nil-environment bindings are present) is used .

DEFINE, COMPILE, AND ASSEMBLE 91

LISP /370 Program Description and Operations Manual

NOLINK

If the NOLINK property has a non-NIL value the result of an assembly is not made into a
bpi. The default is to creat a bpi and assign it to the name with which it was paired in the
specification list.

INITSYMTAB

The value of this property should be an association list (or NIL, which is an empty
association list) which will be searched by the assembler (LAP) for operation code values,
symbolic register names, symbolic immediate operand names and symbolic literals. The
values in INITSYMT AB override the build-in values of the assembler, and are overridden
in turn by symbols established by EQU statements in the LAP code.

NONINTERRUPTIBLE

If the NONINTERRUPTIBLEproperty is non-NIL, no polling for interrupts is inserted in
the bpi by the assembler. Explicit POLL statements will be assembled. The default value
is NIL, i. e. the bpi is interruptible.

SOURCELIST

If SOURCELIST has a non-NIL value the source program (either LISP or LAP) is
PRETTYPRINTed by the definition functions. The default is NIL. When running with
SOURCELIST non-NIL it should be remembered that the printing by the supervisor can
be controlled by the settings of the fluid variables ,ECHOSW and/or ,VALUSW.

TRANSLIST

A non-NIL value for TRANSLIST causes the output of pass one of the compiler to be
PRETTYPRINTed. This is the "transformed" LISP, with all macros expanded and with
various other changes, which will be made into a bpi by pass two, of the compiler and the
assembler. A number of forms internal to the compiler appear in this listing. If defini
tions of these internal forms existed (unfortunately impossible in some cases) interpreta
tion of this transformed LISP would duplicate the behavior of the bpi which results from
the full compilation/assembly process. The default value is NIL.

LAPLIST

Anon-NIL value for LAPLIST causes the assembly code produced by the compiler to be
PRETTYPRINTed. This property does not control the printing of LAP source code,
which is under the control of the SOURCELIST property. The default value is NIL.

BPILIST

92

A non-NIL value for BPILIST causes an assembly listing to be produced. This listing
contains the hexadecimal System/370 machine code produced by the assembler, together
with a variable amount of symbolic LAP code.

DEFINE, COMPILE, AND ASSEMBLE

•

•

•

•

•

LISP /370 Program Description and Operations Manual

If BPILIST is non-numeric or if it is greater than 3 a full listing is produced. This
includes all instructions generated by the assembler or by LAPMACROs, all comments
and all source instructions.

A value of 3 causes intermediate instructions to be dropped from the listing. That is,
instructions generated by the assembler or LAPMACROs which in turn resulted in the
generation of further instructions rather than in object code.

A value of 2 causes comments to be dropped from the listing.

A value of 1 causes only source instructions to be printed symbolicly, although the object
code (hexadecimal) is printed in full.

LISTING

The value of LISTING should be NIL or a fast stream. " If LISTING is a stream the
output produced as a result of the preceding four options (SOURCELIST, TRANSLIST,
LAPLIST and BPILIST) will be written onto that stream. If LISTING is NIL it defaults
to the value of the fluid CUROUTSTREAM.

MESSAGE

The value of MESSAGE should be NIL or a fast stream. All error and warning messages
from the definition functions are written onto the MESSAGE stream. If the MESSAGE
and LISTING streams are not EO the MESSAGE steam is made to dominate the LIST-
1NG stream. (See the DOMINATE STREAM function.) If the value of MESSAGE is NIL
it defaults to CUROUTSTREAM.

FILE

The value of FILE should be NIL or a stream. If FILE is non-NIL a loadable bpi-image
will be written onto it. If FILE is NIL no action is taken.

By use of the FILE and NOLINK options programs can be compiled and/or assembled
for future loading without their being defined in the running system. (See LOADFILE
function.) The resulting file, when loaded, causes the same assignments and/or MAKE
PROPs to take place as would have resulted if the NOLINK option were NIL. The
current form of a loadable file may be changed in the future, however this is still a matter
of dispute and discussion.

TYPE

The TYPE option is set internally by the definition functions and is used to control the
final disposition of the resulting bpi, whether it is to be a function, a LAPMACRO, etc .

DEFINE, COMPILE, AND ASSEMBLE 93

LISP /370 Program Description and Operations Manual

DEFINITION FUNCTIONS

The definition functions all need the same general arguments, a required list of function
specifications and an optional local parameter list.

The function specification list in turn has two forms (solely for convenience), either a list of
length two consisting of a identifier (name) and an expression (form), or a list of such lists.
The latter is analogous to the argument to COMP360, MACRO and DEFINE in the LISP /360
system. The allowed value for the form portion of the specification and the processing it
undergoes is dependent on which of the definition functions is being called.

The local parameter list, which may be omitted, is used to augment and override the value of
the current binding of OPTIONLIST". In the definition functions OPTIONLIST is bound, as a
fluid, to the local option list, APPENDed to the front of the existing fluid binding of OPTI
ONLIST. Thus, when a parameter value is required from OPTIONLIST, the local values take
precedence over previously present values.

(D EFINE specification-list [option-list])

Uses free:
OPTIONLIST

Binds fluid:
OPTIONLIST OUTER STATE EXPANSIONSTATE LISTSTREAM
MESSAGESTREAM SOURCELIST TRANSLIST LAPLIST BPILIST

DEFINE tests the form parts of its specification list for (LAM bv body), and if any are
found they are "split" as discussed above. The resulting forms (or the original forms if
not LAMs) are then assigned as values to the corresponding name parts of
specification-list. This assignment takes place in the caller's environment. The forms
can be any s-expression.

(TEMPDEFINE specification-list [option-list])

94

Uses free:
OPTIONLIST

Binds fluid:
OPTIONLIST EXPANSIONSTATE LIST STREAM MESSAGESTREAM
SOURCELIST TRANSLIST LAPLIST BPILIST

TEMPDEFINE adds a new EXP ANSIONST ATE property to the current fluid binding
of OPTIONLIST. It is added by CONSing rather than by MAKEPROP, thus not
disturbing any previous EXP ANSIONST A TE property. This new state is the previous
EXP ANSIONST A TE property augmented by bindings of each of the names in
specification-list to the corresponding forms. The effect is to make these definitions

DEFINE, COMPILE, AND ASSEMBLE

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

available during the macro expansion process of any compilations done while this
EXP ANSIONST A TE property is accessible. (See the discussion of macro expansion
under COMP370 as well as the explanation of the use of OPTIONLIST.)

(COMP370 specification-list [option-list])

COMP370 is the function used to produce bpis and mbpis from LISP expressions. The
exact processing to be done on specification-list is dependent both on the forms in the
list and on the values of various properties on the local option list (if any) and on the
current fluid binding of OPTIONLIST.

First the EXP ANSIONST ATE is augmented by bindings of each of the forms to its
corresponding name. This is to allow the functions and macros being compiled to be
available during macro expansion. Then each name/form pair is processed in turn. If
the form is a LAMBDA or MLAMBDA expression the compilation proceeds.

If the form is an LLAMBDA, i.e.,

(LLAMBDA bv body)

the form

(LAMBDA bv body)

is constructed and compiled, and the resulting value is a form

(LLAMBDA bpi).

Otherwise the CAR of the form is examined. If it is an identifier bound to a
MLAMBDA-expression or a mbpi in the EXPANSIONSTATE or if it is an explicit
MLAMBDA-expression the form is macro expanded and the processing is repeated. If
it is not a LAMBDA or MLAMBDA expression and fails to macro expand to one it is
treated as an expression.

To compile an expressio~ form is replaced by

(LAMBDA 0 form)

which is then compiled. the resulting bpi is not made the value of the corresponding
name, unlike the case for a compiled LAMBDA or MLAMBDA expression. Rather,
the name is given as its value the single element list

(LIST bpi),

where bpi is the result of the compilation process on the constructed LAMBDA
expression. The bpi is compiled "open", that is, it has access to lexically bound
variables in the environment from which it is invoked, in contrast to normal LAMBDA

DEFINE, COMPILE, AND ASSEMBLE 95

LISP /370 Program Description and Operations Manual

expressions which have access only to fluid bound variables. When the name is
applied the interpreter is. entered and the value of the name is re-evaluated, resulting in
the value which the original expression would have yielded.

In all cases the compilation proceeds though both passes and the result is assembled.
If errors occur during either the compilation or assembly neither bpi nor bpi-image is
created, regardless of the values in OPTIONLIST.

(LAP3 70 specification-list [option-list])

96

Uses free:
OPTIONLIST

Binds fluid:
OPTIONLIST
SOURCELIST
,LABELNUM

EXPANSIONST ATE LISTSTREAM MESSAGESTREAM
TRANSLIST LAPLIST BPILIST S,ERRORLOOP

LAP370 assembles and may, depending on the values in OPTIONLIST, create bpis
and/ or loadable bpi-images of the assembly language (LAP) programs in its specifica
tion list. See the section on LAP370 for a description of valid LAP programs.

DEFINE, COMPILE, AND ASSEMBLE

•

•

•

•

•

LISP/370 Program Description and Operations Manual

The LISP Compiler

"'CODE and FR"'CODE Expressions

These are expressions designed to allow the inclusion of LISP Assembly Program statements in
a LISP program which is to be compiled. They are extensively used in the system implementa
tion, but because there is no way for the compiler to check on the reasonableness of the LAP
instructions given, it is very easy to violate some convention of the LISP execution environ
ment, leading to failure of the LISP system.

The reason for using such dangerous constructions at all is based on the argument for efficien
cy. Many of the primitive LISP functions are implemented by such expressions.

("'CODE e free-list LAP-stmt'" ...)

When interpreted, the value of this form is the value of the expression e. The remainder of the
form is ignored.

When compiled, the (expression e is ignored and the value of the form is the contents of
register "'SI following execution of the LAP statement(s). The free-list may have any of three
formats:

NIL - indicates that the LAP code is "safe" (i.e. no state-saving may occur) .

("'T"')- indicates that the LAP code is "unsafe"; state saving may occur. This is the
typical value if a normal LISP function call is made, and forces the surrounding
contour to be raised.

(s-flag id ...) - The LAP code is "safe" or "unsafe" if s-flag is NIL or non-NIL,
respectively. The identifier(s) following s-flag are referenced "free" by the LAP code
(i.e. they are not bound by the innermost surrounding contour).

"'CODE expressions are just that: expressions. Thus a form such as:

«"'CODE ...) e1 e2 •••)

causes the value of the "'CODE expression to be APPLYed to the arguments el' e2, ••••

«FR"'CODE eo f-list LAP-stmt ...) et ••• en)

The effect is the same as interpreting

The LISP Compiler 97

LISP/370 Program Description and Operations Manual

where the limitations on the nature of eo arise from the fact that all of the arguments el' ... en
are evaluated before eo is applied.

When compiled, the arguments are evaluated and all but the last are pushed onto the stack.
The last argument is left in register *S 1. Following the evaluation of the arguments, the LAP
statement(s) are executed. Finally, a POP of n-l is assembled (automatically). Thus the LAP
code should reference the PUSHed arguments (if any -- the most common use of this construc
tion is when there is but one argument, in which case it is not PUSHed onto the stack) by the
(TOP n) notation (see the section describing LAP).

The [-list element has the same use as in a *CODE expression. Note that an FR *CODE
expression is valid only in operator position.

98 The LISP Compiler

•

•

•

•

•

LISP /370 Program Description and Operations Manual

LAP -- The LISP Assembly Program

LAP /370 (to be called simply LAP from here on out) is a mid-level assembly language for
programs which are to run the LISP /370 environment on an IBM System/370. LAP produces
modules which can be transformed by the LISP /370 Module Loader into bpis (binary program
images) for use in the LISP system.

LAP programs have the same general structure as LISP programs (see LISP documentation).
The basic LAP program is a CONTOUR which corresponds to a LISP (PROG ...) or
(LAMBDA ...). It establishes a set of variable bindings, and may combine the functions of
the LAMBDA and the PROG by defining both pre-valued variables (arguments) and local,
initially NIL-valued variables (PROG variables).

CONTOURS may be nested. When they are, they establish scope for both variables and
labels (a label, in this description of LAP, is an identifier used to reference a storage location
within a LAP program). A CONTOUR is said to create a contour, which may be either raised
or flat. This distinction is dealt with below, in the discussion of the augmented machine.
Code within a contour may not reference labels defined in either an enclosing or an enclosed
contour. It may reference variables bound by an enclosing contour, provided they have
different names than any variables it itself has bound, but it cannot reference variables bound
by an enclosed contour. These are the same restrictions as hold for LISP programs, with
LAMBDAs and PROGs defining contours.

A LAP program may also include SECTIONs. Their meaning is analogous to the SEQ of
LISP: they establish scope for labels, but have no effect on variables. Thus code in a SEC
TION may reference labels defined in an enclosing SECTION (a CONTOUR subsumes the
semantics of a SECTION), but may not reference labels defined in an enclosed SECTION.
Of course, labels defined in another contour cannot be referenced in any case. A SECTION is
said to define a level.

The machine which is the target for LAP code is a S/370 with the LISP stack and environ
ment added, with a predetermined register usage, and with the basic LISP system installed.
This basic LISP system includes a number of addressable (EXTERNAL) constants and "foul
called" routines (i.e. routines not called by the standard evaluator and a standard calling
mechanism). LAP assumes the burden of housekeeping for the environment and the stack.

The world seen by a LAP program upon its being entered is as follows.

REGISTERS

Upon entry certain of the general purpose registers have pre-defined values, while others have
undefined values. These values, together with the normal usage of the registers, is outlined in
the accompanying table.

The registers *BASE, *HEADE, *TAILE, *DUMP, *FIX, *NIL and *HEAP should be
valid at all times .

LAP -- The LISP Assembly Program 99

LISP /370 Program Description and Operations Manual

General Purpose Registers • Register LAP name initial contents normal use

0 *RO undefined unrestricted

1 *FRJ offset pointer to last word indicates the current
allocated in stack ST ACK frontier

2 * SCRATCH undefined unrestricted

3 *BASE address of beginning of bpi addressing for the first
4096 bytes of the program

4 *HEADE offset pointer to addressing for· arguments
environment head and most local variables

5 *TAILE offset pointer to DUMP of access to variables bound
predecessor in the by programs up the
environment chain environment chain

6 * DUMP offset pointer to the stack access to the absolute
* STACK stack and the pointer stack

7 *NIL pointer to the NILSEC, access to NILSEC, the
the object NIL object NIL

8 * RET undefined linkage register for
CALL's, addressing in
code beyond the beyond
the first. 4096 bytes • 9 *FIX address of FIXEDSEC, access to the FIXEDSEC

R/O constants and code routine and constants

10 *SCR2 undefined unrestricted

11 *Sl undefined unrestricted internally,
value on exit

12 *S2 undefined unrestricted

13 *S3 undefined unrestricted

14 *S4 undefined unrestricted

15 * HEAP address of the first unused used for al!ocating space· in
byte in the heap the heap

Figure 8

The register * FRT must be valid at function call time, whenever the garbage collector is

100 LAP -- The LISP Assembly Program •

•

•

•

LISP /370 Program Description and Operations Manual

called, and whenever an interrupt can be serviced (see TRA, below). The register *FRT is
changed by every normal LISP function call. Its value at the time of the call is preserved in
the caller's stack frame, but it is not restored by the function exit routine when a return is
made to the calling program. The reason for this is simply that, even "if * FRT were restored,
it is highly likely that the stack frontier would change (due to a PUSH or POP instruction)
before the next time the contents of * FRT were required to be valid. Therefore, * FRT is not
restored, but rather it is assumed a correct value will be loaded into' this register before any
operation which may require it to be valid.

The register * RET may only be used freely on the zeroth page of a program, and will be
changed by any function call.

The floating point registers (LAP names: * FO, * F2, * F4 and * F6) are freely available within
a contour. Their value is undefined upon program entry and may be lost on crossing a
contour.

The only registers automatically preserved by the function linking routine across function calls
are *BASE, *HEADE, *TAILE and *DUMP. There is a system-wide assumption (which is
violated at the risk of complete loss of system integrity) that the values in registers * NIL,
* FIX and * HEAP are always correct.

HEAD OF ENVIRONMENT

The head of environment (or hE) is a block of 2048 or fewer bytes' of storage containing eight
bytes (two words) of "housekeeping" information, and the values of all variables bound by the
last raised contour. The byte beyond the high (in the machine's address space) end of the hE
is 2048+4 bytes beyond the address in register * HEADE. The resolution of references to
variables in the hE is done automatically by the LAP assembler.

Note that a new hE and a new stack are created every time a raised contour is entered, and
are discarded upon exiting from such a contour. An associated hE and stack are called a
stack-frame.

STACK

The stack (or DUMP) contains 32 bytes (eight words) of "housekeeping" information (see the
DSECTs in the LISP source code for more data). It also contains arguments being prepared
for further program calls, indirect pointers to variables bound on enclosing raised contours, or
by calling programs, and the saved, previous, values of FLUID variables bound by this
contour. If this is a flat contour, the stack contains the values of any variables bound by it.
Thus no new hE and stack are created when a flat contour is entered.

The stack is also addressed via an offset register, *DUMP (or *STACK), but the register
points 2048+4 bytes below the stack's low end, thus allowing the stack to grow upwards.
LAP provides constructs for referencing objects on the stack, but only in a static way. This
will be expanded upon when the PUSH and POP pseudo-op/arguments are discussed. There is

LAP -- The LISP Assembly Program 101

LISP /370 Program Description and Operations Manual

also a construct called the abstack (absolute stack) which is used to hold non-pointer objects
during computations. The abstack is implemented as a section at the base of the pointer stack,
however in a LAP program it can be thought of as an independent entity. It is also managed
statically', using PUSHA and POPA pseudo-op/arguments.

BPI (Binary Program Image)

The result of a LAP assembly is a bpi. This is a LISP binary vector containing the S/370
object program, certain information needed during the call, and a display, which provides a
mapping from variable names to locations in the hE and the stack.

The header information, which is generated by LAP, comprizes the first 32 (20x) bytes of the
bpi. The display is located at the end of the bpi, and is accessible via a pointer (relative to the
origin of the bpi) in the header. Neither of these areas need concern anyone programming in
LAP. For detailed informatio~ see the DSECTs in the LISP system source listing.

Upon entry the register *BASE (3) is used asa base register. LAP programs may be longer
than 4096 bytes, however, and the register *RET (8) is used for addressability in those cases.
As * RET is also used for function calls some care must be taken in its handling. LAP
provides certain services in this regard, see TRA, CALL and FIXRET below, in the section on
extended instructions.

At the end of each page (4096 byte section of program), or immediately before the display on
the final (or only) page., there is a literal area. These literals are of two types, first simple
constants needed in the program, and secondly pointers to communication cells in NILSEC, e.
g. QUOTE cells, value cells, and shallow binding cells. The forms which generate these literals
are described below. As all pages of a program have addressability to themselves and to the
zeroth page, sharing of literal~ is provided to the greatest extent possible, with literals existing
on page zero being shared with all other pages.

102 LAP -- The LISP Assembly Program

•

•

•

•

•

LISP /370 Program Description and Operations Manual

LAP STATEMENTS

CONTOUR

Every LAP program has the form

(CONTOUR
declaration
lap-statement *)

The declaration is a list of items specifying various properties of the LAP code which
follows. Its form is

(function-type
result-type
argument-variable-list
local- variable-list
free-variable-list
contour-type)

The elements of the declaration are interpreted as follows.

function-type
either SUBR or MSUBR. This field specifies whether the program is to be a
function, (fbpi), or a LISP macro, (mbpi). (Only meaningful for top-level CON
TOURs.)

result-type
Specifies the type (ANY, PAIR, NUMBER, etc.) of the value of this program
(only meaningful for top-level CONTOURs).

argument -variable-list
The list of identifiers which will be used within the contour defined by this
CONTOUR as names for the arguments bound at call-time. These identifiers may
be restricted (using the forms defined for LISP), though the restrictions will only
be checked on top-level CONTOURs, and they may be marked as FLUID.
(Restrictions are not currently implemented.) An example of an
argument-variable-list is

(At (FLUID A2) A3)

local- variable-list
The list of identifiers used to reference locally bound variables (analogous to
PROG variables). These, also, may be marked as FLUID. Code is automatically
generated to set these variables to NIL upon entry to the contour defined by this
CONTOUR .

LAP -- The LISP Assembly Program 103

104

LISP /370 Program Description and Operations· Manual

free-variable-list
A list of variable names used "free" in this contour (i.e. referenced, but not
bound). Any variables in the list which are bound by surrounding contours may
be marked as REMOTE, however this is not required, as the assembler will detect
this case on its own.

contour-type
May be NIL, CLOSED, ENCLOSED, OPEN or an arbitrary non-NIL object. In
a top-level contour a value which is not one of the distinguished ids CLOSED,
ENCLOSED, OPEN or NIL is forced to CLOSED, internal contours it is forced
to ENCLOSED.

A value of NIL causes a flat contour to be defined, with the argument and local
variables bound on the existing stack. A flat contour is safe in two cases; if no
variables are bound by this CONTOUR; or if no FLUID variables are bound by
this CONTOUR and no state saving occurs in this contour, in any enclosed
contour, or any function called, at any depth, from this contour or any enclosed
contour.

A non-NIL value causes a raised contour to be defined, with the concomitant
creation of a new stack-frame.

Values of CLOSED and OPEN are meaningful only in a top level contour. A
CLOSED contour, the usual case, is one with a zero ancestor field. This protects
the lexical bindings i~ the calling function from access by this function. A OPEN
contour, on the other hand, has access to the lexical bindings in the calling
function.

An ENCLOSED contours is used for internal, raised contours and for QUOTEd
bpix, that is, bpi corresponding to LAMBDA expressions occurring as operands in
LISP expressions. The code which results from the assembly of an ENCLOSED
contour "knows" about the environment in which it will be running, and accesses
variables bound in its immediate environment directly rather than via FINDBIND.
Such a bpi will cause havoc if it is ever run in the wrong environment, and thus it
should never be "cut loose" from the FUNARO in which it will be wrapped.

lap-statement
A lap statement may be a

CONTOUR
SECTION
comment
label
pseudo instruction
machine instruction
extended instruction
LAP macro instruction

LAP -- The LISP Assembly Program

•

•

•

•

•

SECTION

LISP /370 Program Description and Operations Manual

These will be dealt with below (except, of course, the CONTOUR, which is being
dealt with right now). A CONTOUR defines both a new contour and a new
level. A contour establishes a new set of variable bindings. It acts as a semi
permeable (one way) barrier to variable references and acts as an impermeable
barrier to label references. That is, any variable defined within a contour is
unknown to code outside, while a variable defined outside a contour (but within
the same LAP program) is known to code within (unless a new variable with the
same name is defined on the new contour). A label, however, defined on either
side of a contour is unknown to any code on the other side. A level acts as a
semi-permeable barrier to label references, that is, any label defined outside a
level is accessible to code within that level. In the case of a CONTOUR this is of
little interest, as the simultaneously created contour frustrates any outward label
references, but an independent level can be established by a SECTION (see the
next section).

A SECTION has the form

(SECTION lap-instruction*).

A SECTION defines a new level in the program. Labels defined within a SECTION
are inaccessible to code outside of the SECTION, but are accessible to code within
nested SECTIONs (but not nested CONTOURs). All. variables bound by enclosing
CONTOURs are accessible, and an SECTION binds no variables itself. Thus, one
may branch (TRA) out of a SECTION, but one can only enter a SECTION by "falling
into" it, i.e., by encountering it in the flow of control. A SECTION may have a label
preceding it, in which case the label is defined in the enclosing level. While it will
have the same value as a label occurring as the first item in the SECTION, it will have
different scope.

COMMENTS

There are three forms of comments in LAP programs. First, a string (' any
characters') is taken as a comment and printed in the listing, offset from the surround
ing code by blank lines.
Second, any form with an * as its CAR, i.e. (* any items) will be printed in the
listing, with the * appearing in the flag column (see the section on LAP listings).
Finally, any form with a CAR of * * * will be printed at the left margin. This is the
form used for LAP error messages.

LABELS

Identifiers are taken to be LABELs. They always refer to the next storage-allocating
LAP statement to be encountered. Thus, comments occurring between a label and an

LAP -- The LISP Assembly Program 105

LISP /370 Program Description and Operations Manual

instruction will not affect the value of the label. The scope rules for labels are
outlined under CONTOUR and SECTION, above.

PSUEDO INSTRUCTIONS

106

Under the heading of pseudo instructions are grouped two different sets of forms,
those which are used to write constants, and those which affect the assembly process.
(The distinction between pseudo instructions and extended instructions is hazy at best.
Thus, PUSH will generate code but is listed, here, while FIXRET may not, but is
included with the extended instructions).

Constants

The forms used to write constants are shown in Figure 9. In the (=C string) form
the characters comprising string are laid down in the bpi at the current location.
If this would cross a page boundary a new page is forced. The maximum length
string which can be used is 4090 bytes long.

In the other forms datum is evaluated and laid down with the indicated alignment.
datum may be a number or any of the following:

(LABEL I)
The value will be the location of the label I, relative to the beginning of the
bpi. The scope rules for labels hold.

(DISPLAY. n)
The value will, be the location of the display for contour number n, relative to
the beginning of the bpi.

(= > P progname)
The value will be the location of the associated program named progname.,
relative to the beginning of this bpi. (see the description of LAP370 argu
ments).

Once datum has been evaluated the right hand "n" bytes are stored in the bpi,
where "n" is the length given in the table above.

Control instructions

These forms affect the assembly of the program. One of them, USE, will some
times appear on listings, generated by LAP itself; however, it cannot be used by
the programmer, and is only listed here for completeness.

LAP -- The LISP Assembly Program

•

•

•

•

•

LISP /370 Program Description and Operations Manual

Form

(=C string)
(=B datum)
(=H datum)
(=F datum)
(=D datum)
(= V datum length)

(BQU id n)

LAP Constant Forms:

Alignment

1
2
4
4
1

Figure 9

Length

(strlength string)
1
2
4
8
length

Uses of the identifier id will be equivalent to the number n. This affects
op-codes, register names, length codes, and masks in machine instructions.
Thus the form

(BQU *SI 14)

would cause * S 1 to name register 14 rat~er than 11. An BQU anywhere in a
CONTOUR affects all code directly included or nested in the CONTOUR,
unless overridden by another BQU. It will not affect code in an enclosing
CONTOUR. If two or more BQUs occur for the same identifier within the
same CONTOUR the last one encountered will be the only one effective.
Care should be taken in changing op codes, that the BQU precedes any use
of the op. If this is not done erroneous lengths may be computed for such
instances.

(PUSH [nD
PUSH extends the pointer stack n (or 1, if n is not specified) words, generat
ing code to store NIL in the newly allocated slots. This allocation is static,
that is, the location relative to the base of the stack is determined at assem
bly time, and if the PUSH pseudo instruction occurs in a loop the same
location will be used over.

(PUSHA [id] [length I (length alignment) D
PUSHA allocates length bytes of space on the abstack, with an alignment of
alignment. If neither length nor alignment are specified they both default to
4. If alignment is not specified it defaults to 1. If id is present it can be
used in the address fields of machine instructions to reference the allocated
slot in the abstack .

LAP -- The LISP Assembly Program 107

LISP /370 Program Description and Operations Manual

The caveat on the static nature of stack allocation given. above holds here as
well.

(POP [n])
POP de-allocates n (or 1) slots on the pointer stack. If more POPs are
issued than PUSHs an error message is given, and they are no-oped.

(POPA [n])
POPA de-allocates n (or 1) slots on the abstack. If any of the "popped"
slots have ids associated with them, that association is dropped, and any
reference to that id after the POP A is an error. Over popping can occur.

If there are PUSHAs without corresponding POP As in a CONTOUR, LAP
will add the needed POP As at the end of that CONTOUR, thus preventing
references to abstack variable from outside the CONTOUR in which they
were established. Reference can be made from within an embedded, flat
tened, CONTOUR.

MACHINE INSTRUCTIONS

108

LAP accepts three basic statement forms for machine instructions, with minor varia
tions caused by omission of optional, trailing, arguments.

For RR instructions the form is

(op [r 1 [r2]])

for RX, RS, SI, and S instructions it is

(op [r 1 [a1 [x2]]])

and for SS instructions it is

(op [ll [a1 [12 [a2]]]])

During the assembly process (a particularly fitting term in this case) the various fields
are evaluated and "or'ed" together as shown in Figure 10.

Three types of evaluation are performed, OPV AL, LAPV AL, and RAND V AL.
OPVAL is applied to the op field; LAPVAL to the ll, 12, r1, r2 and x2 fields; and
RANDVAL to the a1 and a2 fields. After the evaluation the various fields are
masked, only the rightmost 4 bits being retained for the r1 and II fields, the rightmost
8 for the r2, 12 and x2, and the rightmost 16 for the op, a1 and a2. Any omitted fields
are assumed to have a value of zero.

LAP -- The LISP Assembly Program

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

Machine Instruction Composition

RR Instructions

op

00000000 r1 0000

00000000 r2

RX, RS, SI, S Instructions

op

00000000 r1 0000

00000000 x2

a1 I

SS Instructions

op

00000000 11 0000

00000000 12

a1

a2 I

Figure 10

As you may note, this limited set of forms can cause a certain amount of inconven
ience. For example, though the I field of an SI instruction may be written as a unit, in
the 12 field, the 11 field must be present, although with a value of zero in this case .

LAP -- The LISP Assembly Program 109

110

LISP /370 Program Description and Operations Manual

Thus the instruction

TM X(4),X'37'

may be written

(TM 0 (4 X) %X37)

or, in the older (LAP360) form

(TM 3 (4 X) 7)

As LAP is primarily produced by the LISP compiler, rather than by humans, this is felt
to be a price which can be paid, to buy a simpler format.

LAPVAL

We will describe LAP V AL first, as both OPV AL and RANDV AL may default to
LAPVAL in certain cases. We will list the forms for which LAPVAL is defined,
together with their values.

numbers
Numbers have themselves as LAP values.

identifiers
If an identifier has been given a value by an EQU pseudo instruction or by
an initial symbol table (see LAP370 arguments, below) that will be its LAP
value. Otherwise we check for an INTSYM property on the identifier, and if
it is present, its value becomes the LAP V AL. If no such property exists, the
value is zero. .

(- item)
The LAPVAL is the negation (that is, (- item) + item = 0) of the LAPV AL
of item.

(LABEL label)
If we are in the scope of definition of label, the LAPVAL- is the location
defined by that label, relative to the beginning of the bpi.

OPVAL

To find the OPVAL of an item (used for op fields only) we first check for a value
defined by an EQU or an initial symbol table. If none exists we then check for
the property OPSYM, returning its value, if any. If no such property exists we
default to the S/370 machine code, which is built in, as a table, in the OPVAL

LAP -- The LISP Assembly Program

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

function. The final result, what ever its provenance, is masked to its rightmost
sixteen bits.

RANDVAL

The address field(s) of the instruction is evaluated by RANDVAL. It can have
anyone of a number of forms.

(b d)
This is a base, displacement pair. The LAPVALs of band d are found and
that of b is multiplied by 4096 (to shift it to the base position in the address
half word of the instruction) and added to the LAPVAL of d.

(b d [inc*])
This is simply an extension of the previous case. Here the displacement is
computed by summing the LAP V ALs of d ~md the various incs.

identifier
identifier must be a variable known in the current scope, otherwise this is
treated as an error. A reference to the variable will be constructed, with the
proper index depending on whether identifier is bound on the hE, the stack,
or is defined on the abstack. If identifier is a FREE variable an indirect
reference is constructed, via a "foul" pointer in the stack, and the necessary
additional code to establish address ability is inserted into the LAP program.
Register * SCRATCH will be used.

(HEAD identifier)
(FL UID identifier)

If identifier is bound in the hE, this is the same as identifier, otherwise it is an
error. HEAD is used for lexical bindings, while FLUID is used for fluid
bindings.

(STACK identifier)
(AST ACK identifier)
(FREE identifier)

As above.

(INDIRECT identifier)
This form evaluates to a reference to the "foul" pointer which, in turn, points
to the current binding of identifier. This is the first half of the indirect
reference to a FREE variable. For example, the form

LAP -- The LISP Assembly Program 111

112

LISP /370 Program Description and Operations Manual

(L *SI X)

where X is a fluid variable being used FREE, would expand into

(PUSH)

(L * SCRATCH (INDIRECT X»
(L *SI (*SCRATCH 0»

Causes LAP to allocate a new slot on the pointer stack, and assembles to a
reference to that slot. This form is only proper in full word store, or four
byte move, instructions. In any other context the execution of the instruction
will have unpredictable, even catastrophic results. No checking for proper
usage is done by LAP.

(POP)
Assembles to a reference to the last slot allocated on the pointer stack, and
de-allocates same. Once a datum has been fetched from the stack or' exam
ined on the stack using a POP it is effectively lost (unless retained in a
register).

(TOP [n [inc*]])
(TOP) allows references to items in the pointer stack without changing its
status. The form (TOP) refers to the last item PUSHed onto the stack.
(TOP n) refers to the nth item back on the stack, thus (TOP 0) is equivalent
to (TOP). Any increment is added to the displacement of the address. Thus
(TOP 0 3) would address the rightmost byte of the last pointer PUSHed on
the stack.

(BASE [n [inc*]])
Like TOP, but the indexes from the first item pushed on the stack, rather
than the last. Note that the first item(s) on the stack may be saved shallow
bindings or dump/foul pointer pairs, for free references, so beware.

(PUSHA [id] [I I (l a)])
This acts the same as the PUSHA pseudo instruction, while assembling into
the address of the newly created abstack entry.

(POPA)
Assembles to an access to the last item PUSHAed onto the abstack, while
de allocating the item. Note that only one item may be dropped at a time
when using POP A as an address field rather than as a pseudo instruction.

LAP -~ The LISP Assembly Program

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

(TOPA [n [inc]])

Same as (TOP). but refers to items on the abstack. This can be used if
identifiers were not attached to the items. (TOP n) adjusts for gaps in the
abstack caused by alignment.

(LABEL label)
Assembles to a reference to the label label, if it is both within the scope of
the current context and accessible. Any label defined on the zeroth page of
the bpi is accessible from anywhere in the bpi, while a label defined on any
other page of the bpi is accessible only from that same page. LAP assumes,
for labels not on the zeroth page, that * RET contains the page base. Any
other case is considered an error.

(=>T label)
If label is on the same page and at a higher address than the instruction
containing this form, it is equivalent to (LABEL label). Otherwise it assem
bles to an entry in the trampoline area at the foot of the current page. For
off-page branches, the trampoline area contains code which establishes
addressability on the new page, and an unconditional branch to the label
label. For "upward" branches (i. E. Branches to lower addresses, whether
on the same page or not) code is included to make interrupt servicing possi
ble.. Thus code using = > T branches will contain no uninterruptible loops .

. Use of the form (= > T label) in any but a branch instruction will have
unexpected results.

(EXTERNAL id)
The identifier id is checked for an EXSYM property. if such exists it is
returned as the value of the address field, otherwise an error is indicated.
The value of the EXSYM is expected to be a sixteen bit number, with the
proper base register bits in its high four bits. The base will normally be
either * FIX or * NIL.

(=C item)
(=B item)
(=H item)
(=F item)
(=D item)
(=V item n)

Causes a constant (see pseudo instructions) to be assembled at the foot of
the current page, and assembles a reference to it as the address of the in
struction. Literals are shared whenever possible. The same rules for accessi
bility apply as hold for labels .

LAP -- The LISP Assembly Program 113

114

LISP /370 Program Description and Operations Manual

(QUOTE s-expression)
Causes s-expression to be constructed in the heap, with a communication cell
pointing to it, and assembles the code needed to reference that cell. The
code needed will vary, depending on the instruction in which the QUOTE
occurs, see = >Q below. Use of (QUOTE ...) in any instruction which
modifies storage will cause unpredictable results.

(= >Q s-expression)
Causes a word to be assembled, at the foot of the page, containing the
address, relative to * NIL, of the communication cell pointing to s-expression.
If s-expression is a small integer, the small integer itself is assembled at the
foot of the current page, and a direct reference to it is given as the address.
=>Q is used in the expansions of instructions containing (QUOTE' ...)
forms. RX instructions having no explicit X fields, such as

(L *SI (QUOTE sexp»

become

(L * SCRATCH (=>Q sexp»)
(L *SI (*SCRATCH 0) *NIL)

SS instructions use the ·same logic as RX instructions with X fields, thus

(MVC 0 (PUSH) 4 (QUOTE sexp)

becomes

(L * SCRATCH (=>Q sexp»
(ALR * SCRATCH *NIL)
(MVC 0 (PUSH) 4 (*SCRATCH 0»

(=>FL id*)
Causes a cell (or cellsj) to be assembled at the foot of the current page with a
pointer(s), relative to * NIL, to the shallow binding cell(s) of the variable(s)
id.

(= >FN fn ([type*]) type)
Assembles two contiguous words at the foot of the current page containing
the offset, relative to * NIL, of the value cell (shallow binding cell) pointing
to the function fn, and the argument type code corresponding to the types in
the form. The address assembled is that of the first word.

LAP .:.- The LISP Assembly Program

•

•

'.

•

•

•

•

LISP /370 Program Description and Operations Manual

(b (HEADP id»
(b (STACKP id»
(b (INDIRECTP id»

Similar to (HEAD id), etc., but uses the base register specified by b.

EXTENDED INSTRUCTIONS

There are a number of forms acceptable to LAP which are not S/370 machine instruc
tions nor assembly control (pseudo) instructions. In form and behavior they resemble
LAP macros but they are built into the assembler rather than being defined as LISP
functions. They are grouped here for convenience.

(TRA cond label)
TRA expands into a branch instruction, with an a field (=>T label). The cond
can be a number, the letter U, or any letter or combination of letters which, when
prefaced by B, form a legal LAP branch instruction. If cond if a number a BC is
produced, while a U results in an unconditional branch.

(LOAD rl al)
In most cases a LOAD will simply be transformed into the corresponding L
instruction. However the al field is allowed to have one form which is not
allowed in a machine instruction, that of a CONTOUR. If the al field is a
CONTOUR it is assembled separately, with its display chained to the program
currently being assembled, and the value loaded will be a pointer to the bpi so
produced. This form is used for LAMBDAs in operand position.

(STORE rl al)
Exactly equivalent to

(ST rJ al)

In the future both the STORE and the LOAD may be given more "intelligence",
to allow them to cope with floating point numbers, half word values, and/or other
data types.

(RETURN)
Assembles into the code needed to exit from the current contour. It is up to the
programmer to provide a value in register * S 1.

(CALL In (arg-type·) res-type)
Assembles as the code needed to call the function In. The type checking code is
derived from the arg-type(s) and the res-type (result type) .

LAP -- The LISP Assembly Program 115

116

LISP / 370 Program Description and Operations Manual

(CALLAC (arg-type+) res-type)
Assembles into the code to apply the object pointed to by * S 1 to the last n (n =
number of arg-type items) values PUSHed on the stack.

(SKPNXTcond)
Assembles into code to skip the next LAP instruction (machine or extended) if
the condition cond holds. cond may be any value appropriate to the cond field of
a TRA extended instruction.

(SKPTRU cond)
equivalent to

(TRA cond label)
(LOAD *SI (EXTERNAL TRUE»
label

(SKPNIL cond)
equivalent to

(TRA cond label)
(LR *SI *NIL)
label

(FIXRET)
On the zeroth page of a program, FIXRET is a no-op. On subsequent pages it
must follow a

(BAL *RET ...)

or a

(BALR * RET ...)

It assembles as code to reset the * RET register' to the beginning of the current
page. This allows the dual use of * RET, as both a base register and a function
linkage register.

LAP -- The LISP Assembly Program

•

•

•

•

•

LISP /370 Program Description and Operations Manual

(GOlF [tmpreg] var type. label)
(GOIFNOT [tmpreg] var type label)
(GOIFR reg type label)
(GOIFNOTR reg type label)

These are conditional branches, based on the LISP type of an argument. In the
case of GOlF and GOIFNOT the argument is a variable var, in storage. In the
case of GOIFR and GOIFNOTR the argument is the contents of the register reg.
The optional first argument in the storage forms is a register to be used, if needed,
for the type. test. If this is omitted * SCRATCH will be used. The types which
can be tested are:

ATOM
BVEC
FIX
FLOAT
FR
FVEC
GENSYM
IDENT
IVEC
LINT

LIST
MKID
MR
MSUBR
NLINT
NTUPLE
NULL
NUMBER
PAIR
PLEX

PLINT
RVEC
SMINT
STATE
STREAM
STRING
SUBR
VEC

Thus, to branch to the label FLOATING if the variable X is a floating point
number, one would write

(GOlF X FLOAT FLOATING)

while to branch to the label ELEMENT if register * S3 did not contain a pair
pointer one would write

(GOIFNOTR *S3 PAIR ELEMENT)

If the type field is a number rather than one of the key words listed above the low
order eight bits of the number will be compared with the type byte of the argu
ment, and the branch taken accordingly. Thus to test for a rational number one
could write

(GOlF Y %XBO RATIONAL)

(LOADVECL reg 1 var)
(LOADVECLR reg1 reg2)

These forms generate code to load the register reg 1 with the length (as a S /370
integer, not a LISP number) of the vector pointed to by the second argument.
The length code type byte will be deleted .

LAP -- The LISP Assembly Program 117

LISP /370 Program Description and Operations Manual

(RECLAIM)
Generates the code to cause a garbage collection.

(POLL)
Generates code to poll for an interrupt.

(LERROR)
Generates code to enter the error break loop with an error-channel of 12 (return
expected) and with the current contents of * S 1 bound to ? ARGS?

(SA VESTATE)
Generates code to save the current state and load * S 1 with a pointer to the
resulting SD.

(SETFRT)
Generates code to make * FR T correct.

LAP MACRO INSTRUCTIONS

118

As each form is processed by LAP its CAR is examined. If the CAR is and
identifier which is bound in the current EXP ANSIONST A TE it is evaluated. If
the value is a LLAMBDA form it is APPLYed to the original form, and the value
returned is "spliced" into the LAP program in place of the form. The value of
the macro must be a list of LAP statements. It may include labels as well as other
LAP macros. (Note that pseudo instructions and extended instructions are
processed before LAP macros, and thus may not be redefined.)

LAP -- The LISP Assembly Program

•

•

•

•

•

•

LISP /370 Program Description and Operations Manual

APPENDIX 1

LISP /370 in the TSO Environment

Information about the operation of LISP /370 under TSO is presented in this section. Infor
mation is gathered in this one place in order to provide a more coherent description than
would be possible with various details scattered about in this publication.

Unlike eMS, where the user is a world unto himself in his own virtual machine, the TSO user
operates in a larger environment which he shares with other TSO users and MVS batch
operations. This larger environment usually needs more in the way of operating conventions
and procedures to which the local user population must adhere in order to preserve order and
communiCate among themselves. To run LISP in this environment, the user must know
something about how LISP input/output operates in the TSO environment, and the relation
ship between LISP and the rest of TSO. The remainder of this section discusses these items,
and defines how several LISP functions cannot perform in the normal manner in this environ
ment.

There are versions of LISPGET, STRTLISP and LISPFREE programs written specifically for
the TSO environment. These reside in an MVS load library called LISP. LOAD (the name of
the library is at the user's discretion; this name is used here). This dataset must be allocated
with ddname LISPLOAD. The user must allocate the desired LISP /370 file image dataset
with ddname FILEIM, then invoke the LISPGET program. This program processes parameters
which may be supplied to designate the desired allocation of space to various LISP purposes,
then obtains a large element of storage in subpo91 78. This subpool is shared by the TSO
command processor with the programs it invokes as subtasks (LISPGET in this case). LISP
GET bootstraps the LISP file image into this area, and passes control to it to complete reading
of . the file image file and start LISP. When loading the file image distributed as part of
LISP /370, the function SUPV will be invoked with input and output streams defined for the
user's console, and on initial entry will write the message: LISP.

To return to the TSO environment from the LISP environment, use the function application
(RET). Because LISP has been loaded into shared storage, it will remain there until it is
explicitly freed by the program LISPFREE. To resum~ execution in the previously loaded
LISP system, use the STRTLISP program. Thus a typical terminal session might go like this:

LISP /370 in the TSO Environment 119

LISP /370 Program Description and Operations Manual

ALLOC FI(FILEIM) DA(LISP370.FILEIM) SHR
ALLOC FI(LISPLOAD) DA(LISP.LOAD) SHR
CALL LISP.LOAD(LISPGET)

(RET)

(LISP expressions read,
evaluated, and printed by SUPV)

TSO commands such as
file allocation or editing

CALL LISP .LOAD(STRTLISP)

... (More LISP expressions)

(RET)
CALL LISP.LOAD(FREELISP)

You will probably wish to define TSO CLIST's to perform these functions, so that the entire
allocation and invocation of LISPGET might be achieved by use of the single command LISP,
et cetera.

The options which may be specified for LISPGET are discussed in the sectiion titled "How to
Access LISP /370". For TSO, the CMSHIGH= parameter is not recognized, and no space is
used between the parameter names and values. Thus, to allocate 2 megabytes for running
LISP, and specify that 400K bytes of storage be reserved for additional binary programs, the
appropriate ·command is:

CALLLISP.LOAD(LISPGET) '2M,BPI=400K'

A note about the Structured Programming Facility. SPF does not share subpool 78 with
subtasks which it attaches for invoking TSO commands. Therefore, if LISPGET is invoked
from SPF, the LISP· system loaded will be lost when a return is made to SPF. LISP. may be
loaded first, then (RET) used to return control to TSO, where SPF may then be initiated.
Then it will be possible to reenter LISP when an exit is made from SPF.

Allocation of datasets in TSO may be a complex process, depending upon the nature of the
dataset involved and the device(s) on which it is located. To avoid this complexity as much as
possible, LISP does not perform dynamic allocation of datasets. Rather, the procedure
described above for exiting to TSO then reentering LISP makes it possible for the user to take
advantage of all of the commands available for dataset allocation in the TSO environment, plus
the extensive error diagnostic and informational facilities also available there.

LISP /370 streams defined on files give the user direct access to records in those files, in
whatever order he chooses, not necessarily sequential. This ability to directly access data
records is used principally in processing LISPLIB files, but is present for other types of
data sets too. To support this direct access to data records, LISP files are stored as VSAM

120 LISP/370 in the TSO Environment

•

•

•

•

•

LISP /370 Program Description and Operations Manual

keyed datasets. This has t'he additional advantage of making the structure of the files device
independent, and giving the user a large variety of commands (through Access Method
Services) for defining and manipulating these files.

The MAKEKEY2 utility, supplied with LISP /370, will copy a sequential file into an indexed
VSAM cluster while generating appropriate keys. Thus, suitable models for LISP VSAM
datasets might be defined by commands such as these:

DEFINE CLUSTER(NAME(MODEL.LISP370) VOLUMES(MVS278) -
INDEXED KEYS(4 0) RECORDS(100 200) RECORDSIZE(60 256) -
SPEED)

DEFINE CLUSTER(NAME(MODEL.LISPLIB) VOLUMES(MVS278) -
INDEXED KEYS(4 0) RECORDS(100 200) RECORDSIZE(80 80) -
SPEED)

Then, if a user has a sequential dataset named IT. FUNCTION , he could define and load it into
a VSAM cluster with the commands:

DEFINE CLUSTER(NAME(lT.LISP370) MODEL(MODEL.LISP370»
ALLOC FI(KEY) DA(IT.LISP370) OLD
ALLOC FI(SEQ) DA(lT.LISP370) SHR
CALL LISP.LOAD(MAKEKEY2)

All of the routines which interface LISP with MVS/TSO are in the module LISPVS. This
module is separately generated and, should the user have a need for his own system-dependent
functions, he may modify or add code to LISPVS and replace this module in LISP.LOAD.
Since LISPVS is dynamically loaded by LISPGET, it may be changed independently of storing
a new LISP file image. With the exception of LISPVS, all programs and data active in the
LISP system will be written by (FILELISP) into the file image file so that they are recovered
by the next LISPGET referencing that file.

LISP file images are sequential files created by the LISP FILELISP function. This function
uses ddname FILELISP to define an appropriate output dataset. This dataset must have
F-format, 800-byte records, blocked as the user wishes. To change the output dataset for a
LISP file image, leave LISP using (RET), allocate ddname FILELISP as desired, then return to
LISP and issue (FILEIM).

LISPVS will dynamically match dataset names provided by LISP functions with ddnames
currently defined. Except for the ddnames mentioned explicitly above, the actual ddname used
has no significance. Since TSO installations often have certain conventions regarding compos
ition of dataset names, this dsname-to-ddname process will succeed even if given only partial
dsnames. The match algorithm takes the dsname qualifiers in the order they are given (in the
FILE attribute of a call to DEFIOSTREAM, for example), and will select a ddname for any
dataset which matches the given qualifiers with zero or more additional, prefix dsname
qualifiers. For example, if the argument (FILE X LISP370) is given to DEFIOSTREAM, a
match will be found for a ddname allocated to the dataset RYNIKER.V.X.LISP370. The first
acceptable ddname found is used. A voidance of ambiguities is the responsibility of the user.

LISP /370 in the TSO Environment 121

LISP 1310 Program Description and Operations Manual

One of the benefits obtained by this partial matching scheme is that LISP programs may be
written to operate with certain datasets independent of the use rid prefix commonly used by
TSO. The presence (or absence) of the qualifier RYNIKER in the above example is not
relevent.

In an effort to make it easier to write LISP functions which can operate in a similar manner in
both TSO and CMS environments, another abbreviation mechanism is implemented in the
dsname-ddname matcher. If exactly three dsname qualifiers are supplied by the user's
program, and the third has a valid form for a CMS filemode (i.e. it is either *, or a single
capital letter, or a capital letter followed by a digit from 0 to 5), a match will be declared if a
ddname is found allocated to a dsname meeting the above matching algorithm without the final
qualifier. For instance, the above example would also succeed if the argument value was
(FILE X LISP310 Al).

Because LISP does not perform dynamic allocation in TSO, the functions lOST ATE, 10-
STATEW, and ERASE are effectively constants in the TSO environment. They have no
explicit side effects and return the value O. These functions do, however, cause control to
pass into the system interface module LISPVS, so they could be given meaning by local
modification of that program.

OBEY also is inhibited in the TSO environment. Its function can be achieved by exiting to
TSO through (RET), then reentering LISP with STRTLISP.

FILELISP always uses ddname FILELISP for its output file. Dataset name will be whatever
was specified in the allocation for that ddname. The argument(s) of FILELISP are not
relevent.

Printed below is the contents of the first file on the distribution tape. This JCL defines the
contents and format of the tape, and provides an outline of the steps required to retrieve
information from the tape. Only the contents of files two and three on the distribution tape
are required for running LISP under TSO. The other files contain source and documentary
materials. It is recommended that the programmer installing LISP generate a source library
from the fourth file, since often questions regarding the detailed behavior of a LISP function
can be answered by a brief examination of its definition. Generation of this library may be
done at the user's convenience, however. It is not necessary to have this available before
running LISP.

I 1* SAMPLE JCL TO READ LISP 1310 DISTRIBUTION TAPE.
11*
I 1* FILE 1 IS COPYRIGHT NOTICE.
11*
I 1* FILE 2 IS JCL DEFINING DISTRIBUTION TAPE.
11*
I 1* NOTE: THE PURPOSE OF THIS IS PRIMARILY DESCRIPTIVE.
I 1* ADJUSTMENTS WILL HAVE TO BE MADE TO REFLECT

122 LISP I 31 0 in the TSO Environment

•

•

•

•

•

LISP 1370 Program Description and Operations Manual

11* THE INDIVIDUAL CHARACTERISTICS OF THE USER'S
11* INSTALLATION.
11*
IIFILE2 EXEC PGM=IEBGENER
11*
IISYSPRINT DD SYSOUT=A
IISYSUTI DD UNIT=T APE,DISP= (OLD,PASS),VOL= (PRIV ATE,RETAIN ,SER=XXXX),
1 1 LABEL= (2,NL),DCB= (LRECL=80,RECFM=FB,BLKSIZE= 14400,DEN =4)
IISYSUT2 DD DSN=LISP.JCL,UNIT=SYSDA,DISP=(,CATLG),
II DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),
II SPACE=(TRK,(1,l)
1 ISYSIN DD DUMMY
11*
11*
11* FILE 3 CONTAINS LINK EDITOR INPUT TO CREATE LISP LOAD LIBRARY.
11*
IIFILE3 EXEC PGM=IEWL,PARM='LIST'
IISYSPRINT DD SYSOUT=A
IISYSUTI DD UNIT=SYSDA,SPACE=(TRK,(10,10»
1 ISYSLMOD DD UNIT=SYSDA,DSN=LISP.LOAD,SPACE=(TRK,(10,5,13»,
1 1 DISP=(,CATLG)
IISYSLIN DD VOL=(PRIVATE,RETAIN,REF=*.FILE2.SYSUTl),LABEL=(3,NL),
1 1 DCB= (RECFM=FB,LRECL=80,BLKSIZE=3200),DISP= (OLD,PASS)
11*
1/*
11* FILE 4 CONTAINS A LISP370 FILE IMAGE.
11*
IIFILE4 EXEC PGM=IEBGENER
IISYSPRINT DD SYSOUT=A
IISYSUTI DD VOL=(PRIVATE,RETAIN,REF=*.FILE2.SYSUTl),LABEL=(4,NL),
1 1 DCB=(LRECL=800,RECFM=FB,BLKSIZE= 12800),DISP= (OLD,PASS)
IISYSUT2 DD UNIT=SYSDA,DSN=LISP370.FILEIM,DISP=(,CATLG),
1 1 SPACE=(800,(750,50)),DCB= (LRECL=800,RECFM=FB,BLKSIZE= 12800)
IISYSIN DD DUMMY
11*
11*
11* THAT'S THE END OF THE DATA REQUIRED TO RUN LISP/370.
11* THE REMAINING FILES CONTAIN OPTIONAL MATERIALS
11* SUCH AS SOURCE PROGRAMS AND LISTINGS.
11*
11*
/1* FILE 5 CONTAINS SOURCE CODE FOR PROGRAMS CODED IN
11* EITHER LISP OR LAP. MAKING A PARTITIONED DATASET
11* CONTAINING V-FORMAT RECORDS PRESENTS SOME PROBLEMS
1 1* BECAUSE WE DON'T HAVE A PRECISELY RIGHT UTILITY
1/* PROGRAM. THEREFORE, THE V-FORMAT RECORDS HAVE BEEN
11* PACKED INTO 80-BYTE FIXED-FORMAT RECORDS, AND THE
11* COPYV PROGRAM (IN LISP.LOAD) WILL RECONSTRUCT THEM

LISP 1370 in the TSO Environment 123

//*
//*
//*
//*

LISP /370 Program Description and Operations Manual

INTO THE ORIGINAL V-FORMAT RECORDS.
A SAMPLE JOB STEP TO PRINT ONE MEMBER OF THIS
LIBRARY APPEARS BELOW WITH THE STEP NAME COPYV.

/ /FILE5 EXEC PGM=IEBUPDTE,PARM='NEW'
/ /SYSPRINT DD DUMMY
/ /SYSUT2 DD DSN=LISP370.S0URCE,UNIT=SYSDA,
/ / SPACE=(3120,(360,30,15)",ROUND),
/ / DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120),DISP=(,CATLG)
/ /SYSIN DD VOL=(PRIVATE,RETAIN,REF=*.FILE2.SYSUTl),LABEL=(5,NL),
/ / DCB=(LRECL=80,BLKSIZE=14400,RECFM=FB),DISP=(OLD,PASS)
//*
//*
//*
//*
//*
//*

FILE 6 CONTAINS INPUT TO CREATE LIBRARY OFLISPLIB FILES.
THESE WILL HAVE TO BE PROCESSED BY MAKEKEY2 BEFORE THEY
CAN BE READ BY A LISP PROGRAM.

/ /FILE6 EXEC PGM=IEBUPDTE,PARM='NEW'
/ /SYSPRINT DD DUMMY
/ /SYSUT2 DD UNIT=SYSDA,DSN =LISP370.LISPLIB,
/ / SPACE=(3120,(334,30,15)",ROUND),
/ / DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),PISP=(,CATLG)
/ /SYSIN DD VOL=(PRIVATE,RETAIN,REF=*.FILE2.SYSUTl),LABEL=(6,NL),
/ / DCB=(LRECL=80,RECFM=FB,BLKSIZE= 14400),DISP=(OLD,PASS)
//*
//*
//*
//*
//*
//*

FILE 7 CONTAINS INPUT DATA TO CREATE LISP MACRO LIBRARY.
THIS LIBRARY IS REQUIRED FOR ASSEMBLING THE MODULES
IN LISP.LOAD.

/ /FILE7 EXEC PGM=IEBUPDTE,PARM='NEW'
/ /SYSPRINT DD DUMMY
/ /SYSUT2 DD DSN=LISP.MACLIB,DISP=(,CATLG),
/ / SPACE=(3120,(120,10,15)",ROUND),
/ / DCB=SYSl.MACLIB,UNIT=SYSDA
/ /SYSIN DD VOL=(PRIVATE,RETAIN,REF=*.FILE2.SYSUTl),LABEL=(7,NL),
/ / DCB=(LRECL=80,BLKSIZE= 14400,RECFM=FB),DISP=(OLD,PASS)
//*
//*
//*
//*
//*
//*
//*

FILE 8 CONTAINS DIRECTORY/CROSS-REFERENCE OF LISP FUNCTIONS.
THESE RECORDS DO NOT CONTAIN PRINTER CARRIAGE CONTROL
INFORMATION, BUT THEY DO CONTAIN SOME LOWER CASE CHARACTERS
AND SO SHOULD BE PRINTED ON AN APPROPRIATE PRINTER.

/ /FILE8 EXEC PGM=IEBGENER
/ /SYSPRINT DD SYSOUT=A
/ /SYSUTI DD VOL=(PRIVATE,RETAIN,REF=*.FILE2.SYSUTl),LABEL=(8,NL),
/ / DCB=(LRECL=84,RECFM=VB,BLKSIZE=3156),DISP=(OLD,PASS)

124 LISP /370 in the TSO Environment

•

•

•

•

•

•

•

•

LISP 1370 Program Description and Operations Manual

IISYSUT2 DD SYSOUT=A
IISYSIN DD DUMMY
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*

FILE 9 CONTAINS THE SOURCE CODE FOR ALL OF THE ASSEMBLY
LANGUAGE MODULES SUPPLIED WITH LISP/370.

AN EXAMPLE OF THE JCL NEEDED TO ASSEMBLE THE LISP370
MODULE (THE ONLY ONE WHICH REQUIRES MORE THAN THE
TRIVIAL ONE-MODULE INPUT, SIMPLE LINKEDIT) APPEARS
LATER WITH STEP NAME LISPASM.

ASSEMBLY OF THE LISP370 MODULE REQUIRES THE PROGRAM PRODUCT
ASSEMBLER-H. THE OTHER MODULES NECESSARY ~O OPERATING LISP
(LISPGET, LISPFREE, AND STRTLISP) MAY BE ASSEMBLED WITH
ASSEMBLER-F.

IIFILE9 EXEC PGM=IEBUPDTE,PARM='NEW'
IISYSPRINT DD DUMMY
IISYSIN DD VOL=(PRIVATE,RETAIN,REF=*.FILE2.SYSUTl),LABEL=(9,NL),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE= 14400),DISP=(OLD,PASS)
IISYSUT2 DD DSN=LISP370.ASM,DISP=(,CATLG),UNIT=SYSDA,
II SPACE=(3120,(1080,60,15)",ROUND),
1 1 DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
11*
11*
11* FILE 10 CONTAINS THE LISTING FILE PRODUCED BY AN ASSEMBLY OF
11* THE LISP370 NUCLEUS .
11*
IIFILEI0 EXEC PGM=IEBGENER .
IISYSPRINT DD SYSOUT=A
IISYSUTI DD VOL= (PRIVATE,REF= * .FILE2.SYSUTl),LABEL=(10,NL),
II DCB=(RECFM=FBM,LRECL=121,BLKSIZE=12100),DISP=OLD
IISYSUT2 DD SYSOUT=A
IISYSIN DD DUMMY
11*
11*
11* THE REMAINING FILES ON THE DISTRIBUTION TAPE CONTAIN SIMILAR
11* DATA IN A FORMAT SUITABLE FOR THE VM/370-CMS USER .
11*
11*
11* TO RUN THE COPYV PROGRAM TO GENERATE A LISP SOURCE MODULE.
11*
IICOPYV EXEC PGM=COPYV
IISTEPLIB DD DSN=LISP.LOAD,DISP=SHR
IISYSIN DD DSN =LISP370.S0URCE(DEFINE),DISP=SHR
IIPRINT DD UNIT=SYSDA,DSN=&©,DISP=(,PASS),
II SPACE=(3120,(20,10)",ROUND),
1 1 DCB=(RECFM=VB,LRECL=137,BLKSIZE=3120)
11*

LISP 1370 in the TSO Environment 125

LISP 1370 Program Description and Operations Manual

11*
11* TO DEFINE VSAM DATASETS FOR SOURCE AND LISPLIB FILES.
11* NOTE: THIS IS A MINIMAL DEFINITION ... BETTER PERFORMANCE
11* COULD UNDOUBTEDLY BE OBTAINED BY EXPERT SPECIFICATION OF
11* THE VARIOUS VSAM PARAMETERS TO MATCH THE CHARACTERISTICS OF
11* THE OPERATING SYSTEM.
11*
I 1* NOTE THAT ONCE THE MODELS ARE DEFINED, IT IS SIMPLE TO
I 1* DEFINE ADDITIONAL CLUSTERS USING THE MODEL.
11*
II AMS EXEC PGM=IDCAMS
IISYSPRINT DD SYSOUT=A
IISYSIN DD *

DEFINE CLUSTER(NAME(V.MODEL.LISP370) VOLUMES(MVS278) - .
INDEXED KEYS(4 0) RECORDS(400 400) RECORDSIZE(60 256) -
SPEED)

DEFINE CLUSTER(NAME(V.MODEL.LISPLIB) VOLUMES(MVS278) -
INDEXED KEYS(4 0) RECORDS(400 200) RECORDSIZE(80 80) -
SPEED) ,

DEFINE CLUSTER(NAME(V.DEFINE.LISP370) MODEL(V.MODEL.LISP370»
DEFINE CLUSTER(NAME(V.DEFINE.LISPLIB) MODEL(V.MODEL.LISPLIB»

1*
11*
11*
1/* NOW FOR A SAMPLE USE OF MAKEKEY2.
11*
IIMAKEKEY EXEC PGM=MAKEKEY2
IISTEPLIB DD DSN=LISP.LOAD,DISP=SHR
IISEQ DD DSN=&©,DISP=(OLD,DELETE)
IIKEY DD DSN=V.DEFINE.LISP370,DISP=OLD
11*
11*
I 1* TO ASSEMBLE THE LISP NUCLEUS.
I 1* (PROPER LINKEDIT PROCEDURE IS SHOWN IN FILE 2.)
11*
IILISPASM EXEC ASH,PARM.C=(,XREF(FULL)','FLAG(5)"
I I NODECK,ESD,NORLD,OBJECT,'SYSPARM=MVS')
I I C.SYSLIB DD
I I DD DSN=LISP.MACLIB,DISP=SHR
IIC.SYSLIN DD DSN=LISP.OBJ(LISP370),DISP=(,CATLG),UNIT=SYSDA,
I I SPACE=(3120,(64,10,10)",ROUND),
I I DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120)
IIC.SYSIN DD DSN=LISP370.ASM(DUMMYSEC),DISP=SHR
I I DD DSN=LISP370.ASM(LLOADER),DISP=SHR
I I DD DSN=LISP370.ASM(SYSDEPV),DISP=SHR
I I DD DSN=LISP370.ASM(NILSEC),DISP=SHR
I I DD DSN=LISP370.ASM(FIXEDl),DISP=SHR
I I DD DSN=LISP370.ASM(FIXED2),DISP=SHR

126 LISP 1370 in the TSO Environment

•

•

•

,.

•

•

•
,

•

LISP 1370 Program Description and Operations Manual

I I DD DSN=LISP370.ASM(FIXED3),DISP=SHR
I I DD DSN=LISP370.ASM(FIXED3$),DISP=SHR
I I DD DSN=LISP370.ASM(FIXED3A),DISP=SHR
I I DD DSN=LISP370.ASM(FIXED3B),DISP=SHR
I I DD DSN=LISP370.ASM(FIXED4),DISP=SHR
I I DD DSN=LISP370.ASM(RECLAIM),DISP=SHR
I I DD DSN=LISP370.ASM(BPISEC),DISP=SHR
I I DD DSN=LISP370.ASM(LOADVOL),DISP=SHR
I I DD DSN=LISP370.ASM(STACK),DISP=SHR
I I DD DSN=LISP370.ASM(HEAPSEC),DISP=SHR
I I DD DSN=LISP370.ASM(STORAGE),DISP=SHR
11*
11*
II

LISP 1370 in the TSO Environment 127

LISP /370 Program Description and Operations Manual

Index to Function Descriptions

Note': the notation (system function) after a function name indicates a function which is
considered of no general interest, or which requires some special knowledge about the details
of LISP /370 implementation in order to be correctly used. These functions are not document
ed in this publication but are included in this index where there is a possibility they might be
inadvertently redefined by the general user.

An attempt has been made to adhere to a naming convention allowing the' casual user to avoid
problems involving his names conflicting with the names of system functions or system
variables. This convention is that the names of system functions will include a comma, thereby
allowing the user to concoct arbitrary names which do not contain commas and also do not
appear in this index.

*CODE 97
*FOUL-ERROR (system function)
*MAX. 64
*MIN 64
,FILEIN . 52
,FILEOUT. 52
,SETGLOFN. 37
? func (examine stack frames) 80
ABSVAL. 64
ADDOPTIONS . 37
ADD1 . 64
AERROR 37
AERRORR. 38
ALINE. 64
AND. 74
ANDBIT. 27
APPEND. 19
ASSOC 71
ASSOCN. 71
ASSQ 71
ATOM. 19
Basic functions and macros. 18
BITGREATERP 27
BITSTRINGP. 27
BOUNDP 38
BUFFERPREFIXP (system function)
C ... R 19
CALL (LAP extnded instruction). 115
CAR. 19
CDR. 19
CHANGELENGTH. 27
CHARP . 74

128 Index to Function De~criptions

•

•
t

•

•

•

•

LISP /370 Program Description and Operations Manual

COMP370.
CONC .. .
CONS .. .
CONTOUR (LAP form) .
CONVERSATIONAL ..
CONVERTLONGINTEGER (system function)
COPY
CURINSTREAM (fluid variable). .
CUROUTSTREAM (fluid variable) ..
CURRINDEX
CYCLES ..
CYCLESP ..
DEFINE
DEFIOSTREAM .
DEFLIST ...
DIFFERENCE .
DIGIT
DISP A TCHER (system function)
DIVIDE
DOMINATESTREAM.
DEFLIST
ED ...
EFFACE.
ELT ...
EMBED.
EMBEDDED.
EQ
EQSUBSTLIST .
EQUAL.
EQUALN .. .
ERASE
ERASE (in TSO environment) .
ERROR
ERRORINSTREAM. .
ERROROUTSTREAM
ERRORN
ERRORR
ERROR2.
ERROR3.
ERR2 ..
ERR4 ..
Examine stack frames . .
EXF
EXPT
EXTERNAL-EVENTS-CHANNELS .
EXTERN AL-INTERRUPT
FASTSTREAMP
FETCHCHAR ~

Index to Function Descriptions

95
20
20
103
52

74
52

. . 52
52
74
74
94

. 52
71
64
54

65
54
71
38
20

. 33
38
39
74
20
75
65
55
122
39
39
39
39
40
40
40
40
40
80
40
65
42
43
55
27

129

LISP /370 Program Description and Operations Manual

Figures: • 1 Small Integer Format . 9
2 Large Integer Format. 9
3 Reference Vector Format 10
4 Selector Structure Format 11
5 Character Vector Format 12
6 Bit Vector Format 14
7 Standard Vector Functions. 32
8 General Purpose Registers . 100
9 LAP Constant Forms . 107
10 Machine Instruction Composition. 109

FILELISP 43
FILEQ. 55
FIN . 44
FIX. 65
FLOAT 65
FIXRET. 116
FLOATP. 66
FR*CODE. 97
FUNARG (data type) . 14
FUNARGP. 75
FUNARGSTATE. 44
GCMSG. 44
GENLABEL. 75
GENSYM 76
GET. 71 • GET -FILE-PLIST (system function)
GETBITSTR. 27
GETCH (synonym for FETCHCHAR)
GETFLT. 66
GETFULLSTRING . 28
GETIVEC (synonym for GETWORDV)
GETREALV. 33
GETREFV. 33
GETSTR. 28
GETWORDV. 33
GETZEROVEC. 33
GOlF, GOIFNOT (LAP extended instructions) 116
GREATERP 66
HEXEXP 56
HEXNUM. 56
HEXSTRINGPART. 56
IDENTP. 28
INITIALOPEN (system function)
INTERN. 72
INTERSECTION . 21
IOSTATE 56
IOSTATE (in TSO environment) . 122

130 Index to Function Descriptions •

•

•
,

•

LISP /370 Program Description and Operations Manual

IOSTATEW
lOST A TEW (in TSO environment) .
IS-CONSOLE . .
ISSAFE (system function)
ITEM-N-ADV
JAUNT
LAM.
LAMBDA

Discussion of bv
LAP370 .
LAST.. ..
LASTNODE ..
LDIFFERENCE
LDIVIDE
LEFTSHIFT ..
LENGTH
LENGTH CODE
LERROR (LAP extended instruction).
LERR4 ..
LESSP.
LETTERIZER
LISTP ...
LISPITTIN.
LISPOTOUT.
LIST.
List functions.
LISTOFSAME
LIST2FLTVEC .
LIST2IVEC ..
LIST2REFVEC .
LLAMBDA (system function)
LN
LOG.
LOG2 .
LOADVOL.
LOGBITV (system function)
LPLUS .. .
LTIMES .. .
MAKEPROP.
MAP.
MAPCAR .
MAPLIST .
MAPOBLIST.
MASKNUM
MAX ...
MAXINDEX.
MEMBER
MEMQ ...

Index to Function Descriptions

57
122
57

57
45
87, 89

84
96
21
21
66
66
67
21
34
118
45
67
12,61
22
57
58
22
19
22
34
34
34

67
67
67
45

67
67
72
22
22
22
72
68
68
34
23
23

131

LISP /J70 Program Description and Operations Manual

MIN. · . 68 • MINUS 68
MINUSP. 68
MOVEVEC 34
MSUBRP .. 76
MLAMBDA

Discussion of bv 84
MMAP .. 23 i<'

MMAPC. 23
MMAPCAN 24
MMAPCAR 24
MMAPCON 24
MMAPLIST 24
MONITOR. 82
NCONC. 25
NEWQUEUE (system function)
NEXT .. 58
NILBOUNDP. 44
NILSD. 45
NONSTOREDP. 77
NOT (synonym for NULL)
NREVERSE 25
NUD. · . 58
NULL .. 25
NUMBERP. 68
OBARRAY. 72 • OBEY .. 46
OBEY (in TSO environment) 122
OPTIONLIST. 91
OR · . 77
ORBIT .. 29
OUTOFHEAP 46
OUTOFSTACK. 47
PNAME. 72
PAIRP .. 25
PLACEP. 77
PLUS 68 J

POP. · . 108, 112
POST .. 47
PRETTYPRINT. 58
PRETTYPRINO. 58
PRINM ' 58
PRINT .. 59
PRINTCH . 59
PRINTEXP. 59
PRINTEXPPNAME. 59
PRINTMESS, (synonym for PRINT)
PRINTVAL 59

132 Index to Function Descriptions •

LISP /370 Program Description and Operations Manual

• PRINTW ARN (synonym for PRINT)
PRINO. 59
PRINI . 59
PRINIB 60
PROG. 47
PROGN 48
PROG2 48
PROGRAM-EVENTS. 47
PROPLIST. 73
PRY ... 48
PUTBACK. 60

A'
PUSH .. 107, 112
QSDIFFERENCE. 69
QSPLUS. · ... 69
QSTIMES · ... 69
QUOTEIZER /61
QUOTIENT ... 69
RDCHR. · ... 60
RDEFIOSTREAM 60
RDS 60
READ 61
READ A TOR (system function)
READPLACEGEN . 61
RECLAIM 48
REFVECP 35

• Register Assignments: LAP 101
REMAINDER .. 69
REMALLPROPS . 73
REMPROP. 73
RESETQ .. 77
RET 48
REVERSE. 25
RETURN (LAP form). 115
RIGHTSHIFT 70
RPLACA .. 25
RPLACD .. 25
RPLACSTR 29

t RREAD. 61
RSHUT 61
RWRITE. 62
SASSOC. 73
SECTION (LAP form) 105
SELECT 26
SETANDFILEQ 62
SEQ ... 48
SETELT 35
SETFUZZ ... 49
SHAREDITEMS 78

• Index to Function Descriptions 133

134

LISP /370 Program Description and Operations Manual

SHUT
SKIP
STRING IMAGE
STRINGIZE
SIZE
SMINTP
State Descriptor.
State Saving .
STATE
STORECHAR
STRCONC ..
STRGREATERP
String functions .

Bit representation
Character ,representation

STRINGIZER
STRING LENGTH
STRLENGTH (synonym for STRINGLENGTH)
SUBSTRING.
SUPERMAN.
STRINGP
SUBRP.
SUBST.
SUBI .
SUFFIX
SUPV.
SYSID.
TAB ..
TEMPDEFINE .
TEMPUS-FUGIT .
TEREAD.
TIMES
TOP
TRACE (See MONITOR)
TSO LISP .
TYPEBYTE
UASSOC ..
UEQUAL .
UNDOMINATESTREAM.
UNION ..
UNEMBED
VECP ...
Vectors ..

Vector Functions
Input/ Output representation .

Character string vectors .
Bit string vectors

XORBIT

"

Index to Function Descriptions

62
62
62
63
35
70
15
15
49
30
30
30
27, 32
13
11
12,61
30

31
50
31
78
26
70
31
50
51
63
94
78
63
70
112

119
78
73
78
63
26
51
35
9, 32
32
10
11
13
31

•

•

•

•

•

• •

SH20-2076-0

==-= =(Ii; - ----- ---- ---- - - ----------_.-
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

.IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

•
"

~.

r-
oo
~
" 0

." a
CQ
~
C»
3
0
CD
en
(')
~ -s.
~ s·
:::J
0
"C
CD ...
C»
~ s·
:::J

~. en

3:
C»
:::J
C
!!..

." ...
:i"
[
:r
c
en
~
en
J:
N ,
0
N
0

" CD
6

•

•

Q)
~ o
Z

t

•

LlSP/370
Program Description/Operations Manual

SH20-2076-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication .
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information,
in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest
is appreciated. .
Note: Copies 0/ IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies o/publications, or /orassistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

(Optional Wording)

What is your occupation? _________________________ __

Number of latest Newsletter associated with this pUblication: _____________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SH20-2076-Q

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

... ,

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 825
1133 Westchester Avenue
White Plains, New York 10604

First Class
Permit 40
Armonk
New York

I
(')

S.
Q
'T1
o
c:
»
0'
:::I
\0

r
5°
co

..
Fold and tape Please Do Not Staple

=.=-= =® - ----- ---- --.. ---- -- ----------_.-
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

•
.. ~~

r-
C;;
'"0
W
~
0

'"0 ..,
0
cc ..,
0)

3
c
(I)
en
0 ..,
-0'
r+ o·
:::l

0
'0
(I) ..,
~ • o·
:::l
en

s:
0)
:::l
C
~

'"0 ..,
:;'
r+
(I)
C.

:;'
c
en
;t>
en

J ::I:
I\)
0
~
0
~
0') " 6

•

•
1.

~ o
Z

I

•

LlSP/370
Program Description/Operations Manual

SH20-2076-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication .
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information,
in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest
is appreciated.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

(Optional Wording)

Whatisyouroccupation? ___ ~ ______ ~

Number of latest Newsletter associated with this pUblication: _____________ ...,....-....,.--..,.--__________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SH20-2076-0

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

I
(')

s.
g

" o
c:
))
0'
~
\0

r
:;'
(1)

I
I
I

... 1
1

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

International Business Machines Corporation
Department 825
1133 Westchester Avenue
White Plains, New York 10604

First Class
Permit 40
Armonk
New York

I
I
I

1 " I a
I ~
1 Q)

I 3
I ~
I ~

1
I
I
I
I
I
1
I

..,
-C.
r+ o·
::J o
"C
(I) ..,
~ o·
::J
en

I 5'
I c

, .. .1 en ~
Fold and tape Please 00 Not Staple

==-=. =® - ----- ---- - ---- - - ----------_.-
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

Fold and tape

•

•

I •

•

