
Common LISP Cleanup

Larry Masinter

[P88-00041]

XEROX System Sciences Laboratory
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, California 94304

Common Lisp Cleanup

Larry Masinter

10 January 1988

This paper describes some of the activities of the "cleanupn sub-committee of the ANSI X3J13 group. It
describes some fundamental assumptions of our work in this sub-committee, the process we use to consider
changes, and a sampler of some of the changes we are considering.

1 Assumptions.

We believed the only reasonable way to obtain a standard for Lisp was to start with a known, wide4
implemented description, namely "Common Lisp the Languagen by Guy L. Steele Jr. (CLtL) and t o consid*
individually various clarifications, changes, additions, enhancements, modifications.

Common Lisp "worksn. It is widely implemented. Common Lisp has a relatively small kernel of semantics,
facilities for extensions, and a large library of data types and operations on them. I t is a good starting point
for a Lisp standard. We do not believe that it is necessary to start over to design a good Lisp standard.
Even if one favors modifications to the fundamentals of the language semantics (e.g., function and variable
name scoping), most of the library of data types and operations of Common Lisp will continue to form a
good basis for applications and it is valuable to clarify the operation of the library.

There are three kinds of problems with CLtL we would like to resolve in creating a standard.
First, CLtL had its roots in a user's level description of a programming system; although it is wonderfully

specific as user manuals go, there are numerous places that allow more implementation flexibility than is
desirable in a standard. In a standard, we would expect that ambiguities to be either eliminated or else em
explicitly allowed.

Secondly, CLtL was written and published without extensive prior use of some of its features; a few have
turned out to be unworkable or useless and not implemented. We hope to change or remove those features.

Third, we've discovered that there are features that exist in nearly in every implementation but with
different names and calling conventions or (in a very few instances) are logical extensions of the current
specification. We would like to augment the standard by providing access from the standard language to
those features.

2 The process.

The cleanup subcommittee considers those minor changes that are not being addressed by any of the other
single-topic subcommit tees of X3J 13 (objects, windows and graphics, characters, iteration, compilation,
validation, and a few others.)

We consider proposals both internally generated by members of the cleanup committee or are received
from members of the community.

Almost all work bf the committee is handled via electronic mail. We rarely meet as a group in person.
Most decisions are made by consensus. When we cannot agree by consensus whether to endorse a proposal,
we may present it to X3J13 for voting with the various points of view represented in the writeup; we believe
our responsibility is to fully describe the issues, and allow the larger community to vote.

We attempt to analyze the costs and benefits for each proposed modification. Each proposal, considered
individuallv, must make the language better-enough better to be worth the cost of' making a change. To

this end, we require that each proposal be accompanied by an analysis of the various costs and benefits. Of
course, there are conflicts in the interpretation of costs and benefits.

There &re some general principles of good programming language design: programs should be easy t o
read; programs should be easy to write; the language should allow users to write efficient programs. These
goals sometimes work against each other: for example, adding features makes the job easier for the program
writer, but harder for the reader. These conflicts in desired make the design process difficult, because it is
not possible to optimize all of the design goals simultaneously.

The process of explicitly addressing costs and benefits has successfully eliminated arguinents based merely
on personal preference. Most often, what initially seems like a matter of taste in fact has roots in a more
explicit judgment of benefit over cost. By adopting an explicit format for those items, we've managed t o
expose the underlying principles.

We only consider "complete" proposals. While we've discussed some open problems, we generally avoid
"design by committee.* Rather, after some initial discussion, a single individual will produce a proposal.

2.1 Elements of a proposal.

These are the important elements of the "cleanupn proposals we develop:

Category. We a t tempt to distinguish between a clarification (proposal to resolve an ambiguity or case t#
under-specified situation in CLtL), a change (proposal to make an incompatible change to t he languag
and an addition (proposal to add an upward compatible feature.) The category of a proposal wil l like
dictate what a responsible implamentor of Common Lisp would do prior to the acceptance of s new draft
standard; e.g., clarifications can be adopted immediately, while incompatible changes might wait until there
is an official standard or be implemented in a separate "packagen, a t which time incompatible changes can
be adopted all a t once.

P r o b l e m Descript ion. Suprisingly, requiring an explicit description of the problem, indpendent of some
design for its solution, has been most helpful in avoiding unnecessary changes to the language. Why does
anything need to happen a t all? ("If it ain't broke, don't fix it.")

Proposa l . We expect proposals to separate out the description of the proposal from the arguments for it.
Again, this simple measure helps lend a great deal of objectivity to the process. While our proposals are
expected to be precise and accompanied by test cases and examples, we generally look to the editor and
editorial committee of X3J 13 to actually produce the specification that reflects the proposal.

C u r r e n t practice. What do current Common Lisp implementations do? Current implementations (at
least implementation that attempt to be faithful to CLtL) often give us good indication of what implementors
believed CLtL to mean. We put some faith that they attempted a reasonable interpretation. In cases where
no implementation exactly matches CLt L, this is a good indication that CLt L's description is flawed.

Costs. Every change or resolution costs something to adopt: to implementors (What does it take t o
change a non-conforming implementation to a conforming one? Does this affect some, one, many functions?
Is public-domain code available?), and to current users (to convert existing user code or tools.) We hope t o
give a measure of whether the changes required for each are small or large. In general, we take cost to users
more seriously than cost to implementors.

Benefits. Benefits are diverse: our goals are to improve the portability of the language, its performance,
the cleanliness of its semantics, and its aesthetics. Our major concern is with allowing important applications
of Common Lisp to work well across many different implementations.

3 Open issues.

This section lists most of the prolposals currently being considered, in an extremely abbreviated form. Many
of these issues have not been adopted and many will not be; they are listed here to give a n idea of the kinds of
issues the cleanup commit tee is currently addressing. New issues-especially that has affected the portability
of any current program-are welaome.

Reminder: these proposals have not been accepted; they are not part of any standard. This is a l k t of
issues conaidered, not of issues paased. While some have been endorsed by X3J13, others are likely to be
rejected.

Clarifications. These are cases where CLtL does not specify behavior; usually these are also cases where
implementations actually differ and users have found code non-portable.

APPEND-DOTTED: (APPEND (A . B) ' (E F)) is not an error, returns (A E F).

COLON-NUMBER: : 123 is an error and not a keyword symbol.

DECLARATION-SCOPE : Specify more precisely the scope of declarations.

COMPILER-WARNING-BREAK: *lBREAK-ON-VARNINGS* applies to compiler warnings too.

FLET-IMPLICIT-BLOCK: The bodies of functions defined in FLET, MACROLET and LABELS have implicit BLOC@
wrapped around them in the same manner as DEFUN and DEFHACRO bodies.

DEFVAR-DOCUMENTATION: In (DEFVAR x y documentation), documentation is not evaluated.

DEFVAR-INITIALIZATION: In (DEFVAR x y) , y is evaluated when DEFVAR is.

PATHNAME-STREAM: Pathnames can be obtained only from streams opened with pathnames (or synonym
streams.

PUSH-EVALUATION-ORDER: (PUSH (A) (CAR (B))) evaluates(A) before (8) .

REMF-DESTRUCTION-UNSPECIFI~D: What side effects are allowed/possible by REMF, NREVERSE etc.?

SETF-MET HOD-FOR-SYMBOLS: Examples in CLtL of SETF-method for symbols and LDB are inconsistent
with left- to-right evaluatioh order. Change them.

SHADOW-ALREADY-PRESENT: What does SHADOW do if symbol is already there?

SHARPSIGN-PLUS-MINUS-PACKAGE: Elements of *FEATURES* are in the keyword package.

SHARPSIGN-PLUS-MINUS-NUMBER: Numeric *FEATURES* are not allowed.

UNWIND-PROTECT-NON-LOCAL-$XIT: Exit from cleanup clause of UNWIND-PROTECT overrides any unwind
in progress.

ADJUST-ARRAY-DISPLACEMENT: More precise rules for interaction of ADJUST-ARRAY and displaced arrays.

DO-SYMBOLS-DUPLICATES: Can DO-SYMBOLS visit a symbol more than once?

FORMAT-UPARROW-SCOPE: What is the scope of * - in FORMAT loops?

FUNCTION-ARGUMENT-TYPE-SEMANTICS: What are the semantics of argument types in FUNCTION declara-
tions?

LISP-SYMBOL-REDEFINITION: It is illegal (non-portable) to redefine or shadow with FLET, MACROLET, LABELS
functions defined in CLt L.

PRINC-CHARACTER: (PRINC #\C) prints C.

IMPORT-SETF-SYMBOL-PACKAGE: IMPORT has no effect on a symbol's home package.

FORMAT-OP-C: (format t "'C" '# \C) prints C.

DISASSEMBLE-SIDE-EFFECT: DZSASSEMBLE has no side-effects.

Additions. These are some naw features we are considering adding to Common Lisp.

AREF-ID: Add (ROW-MA JOR-AR,EF X N) to reference n-th row-major element of an array.

FORMAT-COMMA-INTERVAL: Add option to FORMAT to specify intervals other than 3 between digit delimiter
character.

GET-SETF-METHOD-ENVIRONMENT: Add an environment argument to GET-SEW-METHOD.

KEYWORD-ARGUMENT-NAME-PACKAGE: Allow arbitrary symbols as keyword-argument tokens.

SEQUENCE-FUNCTIONS-EXCLUDE-ARRAYS: Allow some sequence functions to work on multi-dimensional
arrays.

ASSOC-RASSOC-IF-KEY: Add : IOEY argument to ASSOC-IF.

REDUCE-ARGUMENT-EXTRACTION: Add :KEY argument to REDUCE.

SETF-FUNCTION-vs-MACRO: Auow (DEFUN (SETF FN) (VALUE ARGUMENTS . . .) . . .) to define what
(SETF (FN . . .) value) means.

PATHNAME-SUBDIRECTORY-LIST: Recommend that directory component of a pathname be a list in a hier-
archical file system.

FORMAT-ATSIGN-COLON: a: and :(O are the same in format directives.

STREAM-CLASS-ACCESS: Add f~nct ions for finding out stream class, accessing parts.

STRUCTURE-DEFINITION-ACCESS: Add functions for getting a t DEFSTRUCT accessor slots.

TRACE-FUNCTION-ONLY: Enhance TRACE arguments.

Changes . These proposals are generally incompatible changes to the language, although in some cases
they are consistent with CLtL.

: Require STREAM, PACKAGE, P A ~ H N A M E , READTABLE, RANDOM-STATE be disjoint types.

PATHNAME-SYMBOL: Symbols do not automatically coerce to pat hnames, e.g., (LOAD ' F I L E) is not dowed.

DECLARE-MACROS: (LET (A B) (MY-DECLARE) . . .) Disallow macros expanding into declarations.

FUNCTION-TYPE: Change the FlUNCTION type to be distinct from any other type, and change FUlCTIONP to
accept only FUNCTION objdcts (not symbols or lists that begin with LAMBDA.). Require the F U l C T I O l
always returns a FUNCTION object. Disallow automatic coercion from symbols to functions by FUICALL,
APPLY, etc.

DEFMACRO-BODY-LEXICAL-ENVIRONMENT: Allow DEFMACRO and DEFTYPE bodies to have a lexical emiron-
ment.

4 Open problems.

There are a number of areas tha~t are currently not being addressed, either by the cleanup committee or by
other current committee's of X3lJ13. We would like to see some attempts a t standardizing on those areas
that are most concern to users attempting to write portable code.

One is that with the acceptance of a reasonable signal system, the hard work of specifying the signals
which may be raised by various error conditions remain. We would like to make a part of the standard
interface to functions the classes of errors they can invoke under various circumstances.

No work is currently going on in the area of specifying reference to multi-programming features, although
many implementations of Common Lisp include them.

There are several problems ili the language specification for which we have no good proposals. Most of
these involve interactions of the many functions in the Common Lisp library, e.g., how EQUAL behaves on
DEFSTRUCT objects. We believe these items need to be standardized, but have not found a reasonable design.

