A

Artificial Inbtelligence Project---RLE and MIT Computation Center
Symbol Manipulating Language---Memo 3---Revisions of the Language
John MeCarthy

This memo supersedes the earlier memoranda of the same
title in almost all matters of detail, but some of the general
remarks in the first memo are not repeated here and should be
read for an explanation of the motivation for the development o
the language.

1. PRepresentation of Symbolic Expressions by List Structures

The kinds of expression the language is designed to manipu-
late include functional expressions as in elementary calculus,
calculator programs either in machine language or in an algebraic
language such as this one or Fortran, and the expressions for
propositions as they occur in the propositiocnal calculus, the
functional calculi, and other formal languages of mathematical
logic. It should be emphasized that we are presently concerned
with a language of imperative statements for describing processes
Tor manipulating such expressions and not with a declarative

language for malting assercions about the expressions. The
preblem of expressing assertions aboubt expressions will be. stu-
died

later in connection with the advice taker.
The
machine in a special way which facilitates the description of

)

xpressions to be manipulated are represented in the

their manipulation. The translation between the internal repre-
sentation and more or less conventional ways of representing
the expressions outside fthe machine is handled by the read and

print programs. The preliminary version of these programs which
prog 3

is presently being debugged {(Oct. 21, 1958) translates between

the internal notation and a rcstricted specizlized external nctetion.

The direction in which the allowed external notation will be
generalized in later versions willl be described in connection
with the descriptlons of the read and print programs; at present
it seems that very little compromlse will be required with the
conventional notatlons beyond that required by the need to write
expressions linearly with a limited set of characters.
1.1 External form of expressions

We shall first describe the pegtricted external

N

nctation by the following recursive tTules. First we define
a symbol ag one of the fclliowing:

1. A sequence of letters and dligits coutaining at least one
letter. The length of the expression is limited. to 120 characters
though 1f there should be any reason to do sc there 1s no diffi-
culty about extending this slimply by increasing the length of an
array in the read routine f{rom its present length of 20 words.

2. A sequence of diglits which may contaln at most one
decimal polnt in the interior. These symbols represent numbers
and thelr length is not limited by the read routine or print
routine, but will be limited by the kinds of number arithmetic
included in the program and by the conversion routines which are
not part of the read and print package.

We can now define the exvernal expressions allowed:

1. A symbol is an expression.

2. If ey,e,,...,e are expressions, so 1s (el,ea,..,,en);
that 18, a zsequence of expressions is an expressicn. The gpecial

Q

ase of a gequence of one element ig allowed and the reguliing
expression is censicdered to be dlfferent from the element itsell,
e. we distinguish between e and (e).

Ls an exawmple, we shall describe how elementary functlonal
expressions are represented in this notation. The rule is simply
that a Tunctlonal form is represented by a sequence consisting
firgt of the name of the fuunctlon followed by the list of lis
arguments. Thus the expresslon that is represented in ordinary
mathemnatical notation by

x({x+1)sin(y)
is represented in ocur notation by

(times,x,(plus,x,1),(sin,y)).

This resembles the Polish notation used in mathematical logic
except that parentheses are explicitly lIncluded 7Tni: permits
symbols of varying numbers of characters and functions of varylng

numbers of arguments.

(Note: this supersedes the notation gilven in the descriptions
of elther of the previous versions of the differentiation routine.
In particular the gymbols const and var of these notvatlons are no
longer needed or rather may be relegated to the properiy lists)

-3

1.2 Internal form of expressions. _
gExpressions are represented internally by lists. A 1list
is a sequence of TO4 words arbitrarily ordered in memory except
that reglster zero 1s excluded. Each word contains in its 15
bit decrement part the location = of the word containing the next
element of the list. The decrement part of the last element of
a list contains O. The 15 bit address pari of the word contains
the datum of the element of the 1is€i

There are two kinds of list element. Namely an element
may elther be a sublist or 1t may be a symbol. When the element
1s a sublist the address part of the word contains the location
of the flrst word of the subligt. Hhen the element is a symbol
the acdress part of the word contalng the location of ¢he prop-
criy 1ist of the gbject the symbcl repfesents. Thils property 1list
whose wmeaning and format will be dezecribed in the next section
hes zere in the address part of lts first word. Thus the routines
which manipulate list structures can tell when they have reached
the botiom of an exprvession, cipce the property list of the

object represented by a symbol is not considered part of an

*1 The location is represented by the 2's complement of the
address of the reglster containing the address of the next
element. Thig vse cf the word location conflicts with the
usual one in which the location of a word is the address of its
register, but it does not seem deslrable to choose another
word. The 2's complewent notation which is made convenient by
the subtractive nature of indexing on the 704 need be consider-
ed only in connection with machine language programs. The

vser of the system need only conslder that each word contains
the location of the next word and nezed not worry about how this
location is represented.

W2 The tag and prefix parts of the word are not used and are
preszumed to be zero. Thus the use of an indicator field as in
the earller versions of the system is abolished. This is done
by removing type 1 words from list structures and relegating
them to property lists. The distinction between what were
formerly called type O and type 2 words is accomplished in a
wmanner presently to be described.

i
expression 1n the scnse that i€ is no¢ erased when the ex-
pression 1s erased, 1t 1s not copied when the expression is
copled, Bnd it is not printad when the expression 1s printed.

We shall use the terms list and list structure in

slightly different senses. When we say list structure we are
referring to the entire expressions down to the object symbols
compoging 1t, while when we say list we are veferring to the
top level.

As an example, we shall describe the 1list structure
corresponding to the functlonal expressién

x(x+1)sin(y)
which was represented in our restricted extvernal notation by

(times,x, (plus,x,1),(sin,y))
We use a pictorial notation in which a word is represented by
a rectangular box divided into.a left and right'sub~box in
vhich are ptut the address and decrement parts of the contents

of the regilster represented by the box. (Note that the address
occurs to the left of the decrement in this notatlion as in SAP
which is the reverse of their positions in the 704 word.) An
arrow from a sub-box ©0 a box means that the corresponding
field of the word contalins the lcocatlion of the word represented
by the box to which the arrow points. When a box is left blank
and no arrow issuves from it the corresponding fleld contailns
zero., I the reader is puzzled by this description perhaps a
picture will be worth 10,000 words. Here is the picture of the
above expression.

' —

times| —aP{ | Lé‘ | >[;._.J_;J

C%glus T x| PR T x \\%,sin[|y 1 x

The symbols times, blus, X, ¥, sin reprcsent the locations of
the property liste of the objects represented by these symbols.
It is important ©o note in the case pf the congtant 1 in
the expression that the number 1 is not in the 1list structure

1tself. The fact that a given symbol represents a constant

-5

which has the numericzal value 1 will be found on the prop-
erty 1list of the object associated with that sywmbol,
1.3 Objects and Their Property Lists.

In the paper on the advice taker an object was defined
as an entity about which we wish to record something that
cannot be deduced from the form in which 1t is represented
or at least do not wish to deduce from this form. Although
the system being described here ig not as ambitious as the
proposed advice taker gystem, 1t turns out that the concepts
of object and propervy list are quite useful. The first use

S

of the property list ls to represent the correspondence

between the symbol used for an object inside the computer

and the symbol ysed in external media. In this respect it is
a generalization of the symbel table of 3AP with the added
feature that it is designed to be used by the program at running
time as well ags during compllation. Conceptually, we should
not identify the object elther with the external symbol or
with the location used vo repregent it In 1list structures. In
fact, it may be worih while To consider an object which we
vefer to as s8in or x as a "thing in itself" which is not
identical with any repregentation of it. In the present
system we shall lnclude the followlng kinds of information
about objects in their property lists whenever 1t is appro-
priate to do so.

1, The internal name of the object 1s the location of its
property list.

2. The external name of the object (if it has one, and
until routines are cyreated which invent objects all objects
will be introduced from the outside and therefore will have
external names).

3. Whether the object represents a number, and if so
whether the number is a constant or is changed by the progran
and also what the current valuve of the number is.

£

A,

. If the obJject ig a function this fact will be notved
and such facts as the location and calling sequence of program
for evaluating the functlon will be given. I it is appropri-

ate,formulas for differentiating or integrating the function

may be given.
5. Adjectives which are applicable to the object may
“be noted on its property list.

Except for {he fact that the address field of its first
word contains O, the information on a property list is not
stored in a fixed order. It 1s a 1list of items each of which
is identified by an object symbol in the list itself. The
order in which items will be repiresented has been determined
only in the case of the external name. We shall give the re-
presentation of the external name of the term DIFFERENTIATION
as an example of the convention adopted.

CL__LJ—,\L;LA--- - {BREme] (T T e, . — G

E) QENTIEY <S[ToNTE]

n the above diagram the address field of the first word on the

symbol prame vepresentg the location of the property list

of the congept of external name, and the words contalning
capital letters contain 6 characters in standard TO4 notation
except that ? represents the i1llegal character whose octal form
is 77. The print routine recognizes the 1lllegal characters as
termninating the word.

From the way extvernal names are represgsented it should be
clear that property lists do not meet all the conditions for
lists prescribed in the previous section. Thils is inevitable
since they must be able to refer to non-list quantities such
as external names, numbers in integer or floating point form
and algo programs. This means that not all the routines to be
described in subseqguent sections of this report can be ‘applied
to property lists without disaster. However, because the
conventions are preserved on the top line at least, some of these
routines and in particular the search routine is applicable
to property lists.

\ "7"’

1.% The Free Storage List

o =l

ne of the main advantages of a syztem of repreaenting
expressicns by list structures ig that the structures can be
extenned or collapsed at any polnt. This is accomplighed

with the aid of a certain list called the free storage list
which contains those reglsters which do not contaln infor-
mation at any given time. Initialily, this list way have

20,000 registers and as ligt structures are extended they

grow at the expense of the free storage list. When an express-
icn 1s no longer necded the erase routine returns its

registers to the free storage list. We shall illustirate the use
of the free storage list by giving dlagrams showing the situ-
ations before and after an ltem x 1s inserted in a list by
putitling it in a word taken from the free storage 1list.

| Before
free__ 5| fl] 10T] 5.,
list s 2 | Laf PJ Feof B b, 5 .

{ 7 - .
1list 3 a]—ﬂ b VA ¢ 1 13
After the basic routines have been defined which take words

from the free storage list and put them back tThere, it will
not be necessary to mention the free storage list explicitly
any more. Houever, its existence is one of the main reasons
for the flexibility of the system.

The use of llist structures for representing symbolic
expressions was flrst put to extensive use by Newell, Simon,
and Shaw in their Information Processing Languagegi

Ly Sa

2. Changes in the Elementary Fuactions of the System.

This section referg to the first memorandum of this title.
The revisions 1n fthe system described in the previous section
and some experience in programming in the system and hand-

Compiling the resulting programs suggest some changes in the

~

-8-

set of elementary functlons.

1. The functions which refer to parts of the word other
than the address and the decrement can be omitted.

2. The functions referring to whole words are retalned
but will be used only lnside property iists.

3. The distinction between consel and consis is
abolished so we wlll call the new function cons.

I, The storage and pointer functions have not been used
so far and hence are teanbatvively dropped.

The runctions which operate on whole giructures all
have had ©o be cowmpletely revised and are degcribed in the
following sections ailong with the present veraions of the
elementary functions.

-g-

Descriptions of Subroutines

The following subroutines have been adopted for use in
the systen.
1. add (w),dec(w).

These extract the 15 bit address and decrement parts
respectively of a 36 bit quantity. They are coded as open
subroutings.

2. comb(a,d) combines two 15 bit gquantities to make a 36
bit quantity. It 1s coded ag an open subroutine.
3. cwr(n).

The value of cwr(n) is the 36 bit contents of the
reglster in location n. (Remember that the location is the
2's complement of the address of the regilster). cur 1s
coded as an open subroutine.

4, car{n), cdr(n).

The values of car(n) and cdr(n) are the 15 bit contents
of the address and decrenent paris respectively of the
regigter In locatlon n. They are coded as open subroutines.
They are related to previously defined routlnes by the
formulas

add(cwr(n)) and
dec{cur(n))

car(n)
cdr(n)

Ll

5. consw(w).

This function takes the first word in the free storage
list, puts w in it and returns with the location of the word
as the value of consw(w). The situations before and after
the execution of a program step

A = cousw(w)

-

e shown in the figure.

Before

A

free — 5[] 5[T 5..-ete.
Af'ter

Py
fl:::'J—-———:u"

consw is available as a debugged SAP language routine.

EiGE

6. cons(a,d)

This puts comb(a,d) into a reglster taken from free
storage and returns with the location of the register. We
have the re¢lation.

cons{a,d) - consw(comb{a,d))

cons has been debugged.
7. erase (L)

Execution of erase (L) returns the word in locatlon
L to the free storage list. Its value 1s the former
contents of the erased word.

Thls concludes the Jiat of functlons deallng with single
words. The remaining functlons deal with whole lists and
list structures
8. copy (L)

The 1list strucuvure gtarting in L is copied into free
gtorage and the value of copy (L) is the location of the

ad word of the copled structure. The program for copy

iz copy (L) = (L=0- 0,car(L) =0-L,1-s cons{copy(car(L),
copy {edr(L))))
g. egual (11,L2)
e list strucovures starting in L1 and 12 are compared
and the regult is 1 1f the structures agree both as to form
and &g to the identities of the cobjects iIn corresponding
places. The program is

equal(Lll,12) = (Ll=I2-1, car{Ll) = O V car(l2) = 0-0,
I~ egual(car(Ll), car(L2))A equal {(cdr(Ll),cdr(L2)))
10. eralis (L) :

This routine erases the list structure starting in L.
it3 progranm is

subroutine (eralis(L))
/ L = 0y car(L) = 0 —yreturn
M = evase (L)
evs”us (add(M)
=valis (fec(M))

v Tweturn
11. wmaplist (L,T)

maplist constructs a list in free storage whose elements
are in 1-1 correspondence with the elements of the list L.

3
s

i

=11
The element corresponding to the element of L in location
J ie £(J3). maplist is described more fully elsewhere in the
memorandum.

maplist is debugged (Cect. 29)
12 print (L)

print (L) prints the list structure L in the restricted
external notation. 119 character lines are used. Location
of output is controlled by the sense switches as 1in UASPH2.
print is debugged (Oct. 29)
13 read

The value of read is the locatlon of a 1ist read from

cards oy off-line tape according to the sense switch controls
of UNSH2. The 1list 1s written in the restricted external
notation. If the external name read 1is not found on any
property list a new object wilth that name 1ls created.

The azfore-mentioned roubtines are sufficient for the
differentiation program. The descriptions of additional
routines follow

