COMPUTATION CENTER Fage 1 of 19

Mapsachusetts Institute of Technology
Cambridge 39, Massachusetts

To: P, ¥, Horse
From: J, McCarthy
Date: December 13, 1957

SUBJECT: A PROPOSAL FOR A COMPILER

ABSTRACT
This memorandum contains the first versiom of
the first two chapters of a proposal for a compiler,
Comments on the points raised so far and complaints
about ambiguities are earnestly solicited,

CHAPTER 1

1. Introduction

The purpose of an automatic coding system in scientific
computing is to reduce the elapsed time betwsen the decision to make
a computation and getting the results, It can make feasible computa-
tions which, without it, would be tooc complicated to undertake,

This report describes a proposed new automatic coding system
which I hope will be & sufficient advance over those now available or
soon to be available to justify the effort of writing the required
translation program, The specifications for the gystem are presented
in sufficient detail for evaluation of its merits, but would be subject
to modification in the course of writing the translation program. A
number of the ideas to be presented have been suggested by the Fortran
system for the IBM 704, the proposed Scat system for the IBM 709, and
the Flowmatic system for the UNIVAC, The source language fs mainly
independent of the machine being used, except that‘the provigions for
referring directly to machine registers and their parts, which we
believe must be included in any powerful source language, have been worked
out only for the IBM 704,

In what follows, underlined terms are defined by the sentences
in vhich they occur.

1.1 Vhat is an Automatic Coding System

An aﬁtomatic coding system has twe parts. These are

1, a source language in which procedures for solving

CC-58 2

problems can be described more conveniently than im machine language, and
2, 8 tramslation program which translates programs written
in the source language into machine language,
Thus we have to do with lthree programs: the gource program

written in the sourcé language, the-obgect program which is the result
of translating this program into mnéhine language, and the transiator or
compiler which does_the translating, i

Progragmers io-etimes lose sight of the distinction betwsen a
problem and a procedure for solving it; this sometimes causes them to
talk sbout having written a problem im Portran, The distinction is im-
portant 1n‘decid1ng what it is possible to make automatic codiﬁg systems
do for us, A problem is defined by a ﬁrocedure for telling whether oné
has a solution, not by a procedure for getting one, For example, the
problem of proving or disproving Fermat's last theorem in one of the
known systems of formalized arithmetic is well defined since an alleged
proff one way or the other can readily be tested, but there is no known
procedure for getting a proof, The artificial intelligence problem is
that of getting & procedure which is geood at solving problems in general
and is much harder than the automatic coding problem which is merely
that of translating already formulated procedures from one language to
another, The automatic coding problem may admit a fairly satisfactory
generel solution although we don't expect to achieve a fully general
solution in this system.,

1.2 Vvhat Should & Good Source Lamguage Be Like?

It has often been said that if only we could program the

calculator in English, the automatic coding problem would be solved,
The English language has features which have not as yet been incorporated

in any pregramming language and which programmers covet, such as a very

rich vocabulary and provisions for introducing new terminology; nevertheless
it is a priori no more likely that English is very well suited for de-
scribing complicated procedures, tham it is that English is well suited

for describing the theorcme of an advanced branch of mathematics or the

laws of physics. In fact, English is a very poor language for giving
complicated instr;ctions. Some programming systems for business use have
been advertised as allowing the programmer to write in English, It secems

to me that these claims are somevhat fraudulent, It is, of course, easy

to make a system in vhich the instructions are English sentences. To take

CC-58 3

an extreme example, we could require the programmer to write 'put the
number in register 1000 in the accumulator” instead of 'CLA 1000".

However, to really be able to claim that English is being used as a pro-
gramming language, one would have to be able to accept amy reasonable
synonym for a sentence, and even more important one would have to have

the facility available in English of being able to define new teorminology.
One may hazard-a guess, that were such a facility available, the pro-
grammer vuuld quickly use it to establish & jargon that would iéok almost
as inconprehensiplo to the uninitiaté as the present programming languages,

It might be surmised that perhaps mathematics has already pro-
vided us with the symbolic tools necessary to describe procedures, This
turns out not to be the case for two reasoms, First mathematical symbol-
ism is mainly used for the expression of declarative sentences; program-
ming deals in imperative sentences, 8ec0nd1y; defining new terminology
is almost always carried out informally in the natural language, so that
mathematics doesn't give too much help in this important problem,

For this reason, it seems most likely that a special symbolic
language will be developed for the expression of procedures which will
contain those features of the natural and mathematical languages which
are the most valuable, This language will not be dependent on & parti-
cular calculator, although it will have .facilities for describing calcu-
lators and taking special account of their peculiarities, It is not
likely that the language will be as easy to learn to use as present com-
puter languages, because one will be able to express in a primitive way
concepts which are expressed im a very compliéated way in present systems,

One may regard a programming language as a co-ordinate system
in the space of procedures. From this point of view, we can see that
one of the desirata for a language is that those aspects of a program
one would most like to vary are expressed as changes in one or just a
few co-ordinates, We shall call the various attributes of a program
variables, These variables may, in a given system be divided into four
categories:"Systén variables, program variables, program segment vari-
ables, and computational variables., A sjstem variable is one which
can be changed only bj changing the programming system, a program variable
one which is set by the programmer and which does not change during the
course of the calculation, a program segment variable is one whichbcan
be different for different segments of the same program, and a coupnfétion

CC-56 4

veriable is one which changes 1its value durimg the course of the program.
As Perlis emphasizes, a2 system can be more poverful than another simply
by making & system variable in the one system a program variable j;n
another., Some of the most important differences between this system and
Fortran can be expressed as saying that certaim attributes of a Fortran
program which can only be changed by changing the system, are program
segment variables in our system, BSome of Fortran's program variables are
program segment ami even computation variables ‘in this system. The sim-
plest examples of this are that the kinds of arithmetic available and
with thea the meanings of the operation symbois are program segment vari-
ables since new kinds of quantity amd new meanings for the operations
can be defimed within the system, The typographical conventiocams are
also program segment variables, The statements themselves which are
progran variables in Fortran are computational variables here since the
program can generate more source langusage progras in the course of opera-
tion and can call in the compiler to compile it,

The source language is general enough to express the compiler
itself, This will enable the compiler to be written in a sort of boot-
strapping way wherein early inefficient versions are used to compile
later more efficient ones with added features,

1,3 Features of the Source Language

The most important feature of the source language of this

systen is the freedom it gives the programmer to define new ways of ex-
pressing himself, This ability is provided by several features,

1, A typeo of statemaent called the equivalence statement which
provides for the introduction of abbreviations for any kind of expression,

2, The translator starts with certain tables giving the rela-
tion between statements in the source language and the successive
languages through vwhich the translation goes, BMuch of the tramslation
is accomplished by compiling tables comprising information taken from
the source program, Either set of tables can be directly enlarged or
altered by suitable gource program statements, This of course includes
the tables which determime how table altoration instructions are obeyed,

3. The above two features should suffice for most oxtemsions
of the languege, However, im addition; certain points in the compiling
program are accessible to the programmer in the semse that he himself

can describe program to be executed at these points under appropriate

CC-56 5

conditions, The writing of such program is made easy by providiag
convenient ways to refer to parts of a statement in variocus stages of
translation and to entries im the tables,

4, The ability to describe a computaticn by giving fimal
state of the machine in terms of the initial state without havimg to
vorry about intermediate changes to the variables used in the compu-
tation,

5. An extended set of basic quantities and operations com-
pared to Fortran including fixed-point full words, logical words, and
1-bit quantities which play an especially important role in the system,

6. A direct way of handling propositions and predicates and
conditional functions which eliminates much branching in the socurce
program,

7. A large generalization of the concept of subscripted vari-
able where the set of subscripts can be any ordered set and not Jjust the
set of integera, Subscripts in expressions can be arbitrary expressions,

8., A way of describing flow apart from the computation state-
ments,

9, The ability to compile statemeants referring to lists and
tables,

10, The ability to define functions and other open and closed
subroutines in a powerful way,

11, The ability to refer to the machine registers,

12, The ability to compile statements vhich modify others,

13, The ability to compile iaterpreters and interpretive
coding

14, The ability to define one's own typqgraphical conventions
including the ability to define what is to be dome in cases where nothing
is stated, These conventions can be program or program segment variables,

Because the system as a whole has so many features it will not
be as quick to learn fully as previocus systems, However, simplified sub-
systems will be available, which will be easier to learn if less powerful.

The library fape of the system can contain not only open and
closed subroutines, but also the sets of definitions for introducing new
kinds of quantity or for defining simplified subsystems,

CC-56 6

1.4 Objectives in Designing the Tramslator

iven the scurce language amdé the computer on vwhich the
object programs are to be run, there are a number of desirable properties
for the translator, These include:

1, The object programs should be efficient, This system will
carry out several kinds of optimization on the program including, taking
calculations out of loops when possible, calculating common sub~expressions
only once, straight lining parts of tight loops, deciding whether certain
quantities should be recalculated or updated, deciding whether tables
should be formed of certain auxiliary quantities, and fimally, taking
advantage of certain special situations,

2, It should be possible to impose constraints on the object
program as to where it finds certain variables and what regions of storage
it occupies, Other comnstraints may also help optimization,

3, The time required for compiling should not be excessive,
This can be accomplished by putting less effort into optimizing the rarer
parts of the program., This compiler will also have facilities for com-
piling very smell programs entirely in high spesed storage,

4., It should be possible to make small changes expressed in
the source language without recompiling the whole program,

5, It should have good facilities for detecting as many
errors as possible in the source program and printing out a complaint
about all errors that cam be found, If possible, the machine should go
on to other vork while an error is being corrected and then take up from
vhere it left off rather than sterting the compilation from the beginning,

6, It should make a report on the translation which should in-~
clude the correspondénces between the source program and the object pro-
granm, changéa the compiler has made in the source program for optimization
purposes, the location of quantities in storage, information about the
object program including lists of the instructions referring to perticu-
lar storage addresses and the times required for all subcomputations for
which this can be determined, '

7. The compiler should fit into a complete system for operating
the machine which should be so designed as to minimize the elapsed time
between submitting a request for computation and getting correct results,

CC-56 7

1.5 Plan of this Report
The next chapter, chapter 2, describes the kinds cf compute
statersnts allowved in the system, Compute statements are those which

cause new values to be computed for certain quantities, The important
concept of mon-recursive program segment which is a natural unit of
program is introduced and discussed,

Chapter 3 discusses the statements which determine the flow of
control. These include the conditional branches, indexing over ordered
sets, and the algebraic way of describing flow separated from the compu-
tations,

Chapter 4 takes up the statements by which the language can
be extended, These include a kind of statement called the equivalence
statement which makes abbreviations and changes of motation easy, table
entry statements which alter the tables used by the compiler im making
the translation, and finally the facility for introducing program at
strategic places in the compiling process, An example is given of how
these facilities can be used to provide new kinds of quantity such as
complex numbers or quaternions in terms of which algebraic formulas can
then be written,

Chapter 5 takes up the manipulation of symbolic quantities such
as algebraic formulas or statements in a compiler, This is important
in itself for making the compiler do caleculus and other symbolic com-
putations and also because this kind of computation is performed by the
compiler itself and hence will be needed im the boot-strapping operation
of writing the compiler in the language of the compiler and using the
simpler parts to tramslate the more difficult parts,

Chapter 6 takes up input and output,

Chapter 7 takes up the detailed design of the compiler and
ths facilities provided for optimizing programs and also the fitting
of the compiler im an operator system,

CC-58 9 8

2, GQuantities, Symbols, Compute Statcments, and Non-Recursive
Progran Segments

This chapter takes up a kind of statameant vhich is basic in
any compiler and which we csll the compute statement, Compute state-
ments, vhich corvespond in function to the arithmetic statements in
Fortran, are compiled into program vwhich computes new values for certain
quantities. An example of a compute statsment is

A =B+ C/A,
The program compiled from this causes the expressiom on the right of
the equality sign to be computed using the current values of the quan-
tities denoted by the symbols A, B, and C., The result becomes the
new value of the quantity demoted by the symbol A,

Before describing compute statements, we first discuss quanti-
ties in general, the symbols which are the handles with which we hold
them, and the functional expressions (called algebraic expressions in
Fortran) in functions, pseudo-functions and operations which describe
the computations, The particular importance of propositional quantities
is discussed., Fimally, we introduce the new concept of non-recursive

program segment., For many purposes including common sub-expressiocn
optimization by the compiler this is a natural unit of program,

2.1 Guantities

Previous compilers admit a fixed set of kinds of quantity,
Ia particular, Fortran admits two: the floating point number and the
integer of 186 bits plus sign., The present compiler admits an arbitrary
set of kinds of quantity, since there is 2 process by which mew kinds of
quantity cam be defined and used, The compiler language will have the
important conservative property that the major kinds of expression which
can be used with the kinds of quantities origimally provided for can also
be used with the nevly defined kinds of quantity. In particular,
functional expressions can be used with all kinds of quantity,

Basic to this compiler will be the two kinds of quantity sllowed
in Portran and the full lemgth fixed-point quantity, the full length
logiczl word of the 704, and the one-bit propositional quantity., Other
kinds of quantity can be defined in terms of the basic omes or else by
giving the programs which define what the operation and function symbols
mean when applied to these quantities,

CC-~56 e

In general, a type of quantity is defined by describing how it
is represented in the machine and vhat operations combine quantities of
this type with others of the same type and also with quantities of other
types, Ve give some examples of kinds of quantity which may be used,

1, Hultiple precision numbers

2, Complex numbers

3, Quaternioms

4, Vectors

5, Clifford numbers

6., FPunctions represented in some way, either by a table, a
formula, or perhaps by a sequence of empansion coefficients, More
generally, elememts of function spaces,

7. Strings of characters, This kind is especially important
since the compiler itself tnnctiohs by manipulating strings of charac-
ters,

8, Lists, described in the manner used by Newell, Shaw, and
Simon, We shzall have more to say about these later, .

) Quantities can be objects quite different from numbers such as
algebraic and functional expressions, differential equations, shapes,
colors, programs (in some particular language) or electrical networks,
It is worth vwhile to define a new kind of quantity if enough examples
will occur in the program and useful operations can be defined involv-
ing quantities of this kind and other kinds, For example, the cperations
of simplification, substitution and differentiation with respect to a
variable may be defined for algebraic expressions, An operation of
soluticn might be defined for a class of differential equations, Opera-
tions of combination, identification of variables, and compilation might
be defined for programs, Operations of combination might be defined
for electrical networks as might operation of solution combining & net-
work with initial conditioms,

None of the above kinds of quantity will be explicitly pro-
vided for in the system, though once the statements defining them have
been made, the definitions can be included in the library tape,

2.2 Symbols

We describe computations involving quantities by expres-
sions in the symbols representing these quantities, The connection
between & symbol and the quantity of quantities it represents is

CC-56 10

determined by conventions which in this compiler are usually program
variables, but sometimes program segment variables, and even computation
varisbles, In SAP symbols represent the numbers of storage registers
and sometimes program parameters, That this is s0 is best indicated by
the meaning of arithmetic expressions im the symbols, However, the
asterisk (*) represemnting the current value of the location counter in
the new SAP is an example of a symbol whose connection with numbers is
quite different,

In Fortran a symbol represents the contents of a register except
that a symbol used only as an index may never have a fixed home register,
The meaning of arithmetic expressions in the symbols bears out this inter-
pretation,

In the course of the later chapters, the reader will see that
a symbol may be conmected with the quentities it reopresents in quite a
variety of ways,

Typographically, we shall allow sequences of letters and digits
beginning with a letter to represent a symbol, We shall not make a re-
striction on the length of symbols and we will avoid system conventions
such as that in Fortran that symbols beginning with I,...,N represent
fixed point variables, We will, however, reserve tentatively special
symbols for the contents of the machine registers AC, MQ, ILC, IRl, IR2,
IR4, SL1, SWl, etc, By "tentatively” I mean that the programmer can
reject this usage by an appropriate statement and keep these symbols
uncommitted, The conventions defining a duffers' system might contain
such a statement in order to keep the duffers uncontaminated by any
actual knowledge of the machine. We shall give some examples of the use
of the symbols for the machine registers later.

2.3 Algebraic Expressicns and Simple Compute Statements

The points we want to make first are best illustrated by
giving an example of a simple compute statement which is what Fortran
calls an arithmetic statement. In our opimion the Fortran term prejudges
the question of what such statements are good for. Our example is

A = A + B#C + COS(D)

This formula is an imperative to the computer to compile instructions
that will replace the value of the quantity A by the result of evaluating

the formula on the right side using the current values of the quantities

CC-56 11

represented by the symbols in it.

Vhat is the advantage to the programmer of being able to

write such an expression rather than the sequence of expressions

X = C08S (D)

Y = B%C

Z=X+Y

A=A+12
especially comnsidering the fact the first thing the compiler does with
the original formula 18 to translate it into something corresponding to
the sequence of four elementary formulas? The following are some of the
advantages:

1, This is the way non-programmers are used to writing

2., The programmer saves writing a number of characters. This
has to be balanced against the fact that the program consisting of a
sequence of elementary formulas is more easily changed than the sinmgle
more complicated formula,

3. The programmer avoids having to invent the auxiliary
quantities X, Y, and Z, We regard this last as the most importamt ad-
vantage because experience has shown that it is in the inventing and
handling of auxiliary quantities that errors are most oftem made.

4, There is an additional advantage that the compiler can plan
the sharing 6f temporary storage better than the programmer can.

The ability to make the output of one calculation the imput of
another without heving to give the intermediate result any other name
than the name of the calculation that produces it is of use in other
than numerical computation. Certainly it is useful in describing symbolic
manipulations as we shall show later in this paper, and we believe it will
also be useful in data processing.

Algebraic expressions are obtained by combining the symbols rep-
resenting constants, quantities, operations, and functions together with
commas and parentheses a&s punctuation according to recursive rules which
are too familiar to need repetition here« Just as in Fortran we shall
use the symbols + -~ ¢ / and ** to rqpresont the elementary operations of
addition, subtraction, multiplication, division, and exponentiation.

We shall also want symbols for the elementary Boolean operations, and
additional symbols for the elementary Boolean cperations, and additional

symbols are desirable . We shall also establish as tentative conventions

CC-56 12

the same seniority rules betveen the operation symbols, It should be
understood that since functional notation is provided for, the operation
synbols are a concession to custom; a worthwhile one in teyms of the
legibility of programs,

The calculations represented by the particular operation and
function symbols depend on the kinds of quantity the quantity symbols
in the expression represent. However, the first step in compiling a
formula which transforms an algebraic expression into a sequence of
elementary expressions, is independent of what the operations represent.
It is only after this transformation has taken place that the rules
established by the programmer which define the operations on his kinds
of quantities affect the compilation process by determining the trans-
lation of the elementary algebraic statements, The translation rules
may have several effects. First they may give rise to sequences of
machine operations., Thus A = B + C may give rise to one of the four
sequences

CLA A ClA A

ADD B ADD B ADD B ADD B

8TO C STO C
depending on the neighboring formulas. Second, a transfer to a
subroutine may be compiled. Third, the elementary expressions may be
replaced by complex expressions in symbols representing more primitive
yuantities, We do not discuss how the programmer indicates what kind
of quentity a given symbol represents in this section.

2.4 Pseudo-functions

Programming has not yet reached a state where all kinds
of calculations can be described with no regard at all for the fact
that the machine has a storage which is divided into numbered registers,
In this language we provide certain pseudo-functions which allow one to
connect numbers with the contents of the corresponding registers, They
are called pseudo-functions because while they compose like functionms,
the value of a pseudo-function of a number depends not merely on the
number but also on the contents of the memory of the results of the
assembly process, Here are & few such pseudo-functions:

1. CAR CAR(X) denotes the contents of the address part of register

number X, Thus CAR(3) is the 15 bit quantity stored in the address part

CC-56 13

of register number 3, ¥We have several pseudo-functions similar to CAR.

2. CDR contents of the decrement part ofcgegister number
3. CuWR contents of the whole of register number

4. BITS8(Y,Z,Z) denotes the ¥Y-X+1 bit quantity in bits X through Y
of register number Z.{(¥his pseudo-function should be distinguished from
the function EXBIT(X,Y,Z) whose value is the Y-X+1 bit quantity consis-
ting of bits X through Y of the 36 bit quantity Z. It is related to the
pseudo function BITS by BITS(X,Y,Z) = EXBIT (X,Y,CWR(Z)). Both BITS
and EXBIT have their uses.)

Additional pseudo functions of this kind can be defined as system
or program variables.

5. L’C(X) This pseudo-function for those quantities for which it
makes sense, gives the address of the first register assigned by the com-
piler for its storage. In the compiled program it will gemerally be a
constant.

6. RAME(X), This is mainly useful in input-output statement
wvhen X is an index which runs over a list of quantities, Its value is
the string of letters used by the programmer to mame the quantity, Its
use can greatly simplify output statements,

2.5 Propositional Quantities and Punctions
A propositional quantity is & one bit quantity gemerally
asgsociated with the truth of falsity of a proposition, The value 1 of
the quantity is associated with the truth of the proposition and 0 with

its falsity, This system provides a number of operations and functions
which can be used to combine propositional quantities with each other
and with other kinds of quantity,

First of all, we have the predicates = , < and £ vhich are
used to compute propositional quantities from numbers. A predicate is
a function which takes on the values "true” and "false" which here are
represented by the bits 1 and 0, A typical example of a compute state-
ment involving a predicate is

P=(A=B+ C)
which calls for the quantity P to be replaced by 1 if the value of the
yuantity A is equal to the sum of the values of the quantities B and C.
Notice in this statement the character = is used both as a predicate
operation and as a symbol for the operation of replacement, We can
probably get by with this dual usage, although if there were plenty of
character symbols it might be worth while to use something like a left

CL-d0
14

pointing arrow as a symbol for replacement and reserve the = sign for
use 28 a predicate,

Secondly, we have the Boolean operations by which propositions
are combined. The symbols for these operations are A for "amd", \/
for "inclusive or”, A for "mot”, (¥)for "exclusive or", D for
"materially implies”, and even ' for "not both". A typical statement
using these operations is

P=uQA ((A=B)YP)

‘Thirdly, for using propositional quantities to compute quan-
tities of "othcr kinds, we have the function IF, An example of compute
statement involving the IF-function is

A=IF(P, X+ Y:Q U+ V: (A=B), A+ B: CTHERWISE, R)
The execution of this statement causes the variable A to be replaced by
X+ Yif P is true, If P is not true and Q is true, them A is replaced
by U-V, If neither P mor Q is true and A = B, A is to be replaced by
A + B, PFinally, if none of the preceding predicates is true, A is to
be replaced by R :

(1f the IF and Boolean functions are to be compiled into
efficient programs, the usual way of compiling algebraic statements,
vhich involves computing all the arguments of a function bofore trying
to compute its value, cavmot be followed, Consider the statement dis-
cussed in the previous paragraph, If P turns out to be true, it is un-
nececessary to compute Q, (A=B), or the quantities corresponding to
them, A similar circumstance holds im the case of the previous example,
Ramely, if Q is false, nothing else need be computed,)

Propositional quantities will play an important role in our
later discussion of coatrol statememts,

Propositional quantities have not been explicitly used in com~
putation as much as their importance warrants, This is probably because
the machine facilities for dealing with them conveniently have not usually
been provided,

It may be possible to introduce explicitly some propositional
pseudo-functions which occur frequently in informal descriptioms of
programs, One example 18 ""A has been done already’ where A demotes a
certain action,

CL-do 15

2,6 Hon-Recursive Program Segments and Compound Compute
Statemeats

It is frequently possible, when planning a part of a
computation, to regard the segment of program as changing the machine
from a situation A to & situation B where the differemce between the
twvo situations is that certain quantities have new values in situation
B, If each of these new values can conveniently be expressed directly
in terms of the values of the quantities in situation A we say that we
are dealing with a mom-recursive program segment, We shall give three
examples of mon-recursive program segments,

1, A program to interchange the values of two quantities X
and Y,

2, A program to perform one step of a prediction operation,
in the solution of a system of ordinary differeamtial equations by
kMilne's method.

3. The following operation with list structures which requires
a digression to describe a method of storing lists which has been developed
most fully by Newell, Simon, and Shaw in their Information Processing
Languages. In that system a list comsists of a number of machine words,
In each word of the 1ist is the address of the next word of the list as
well as a datum, (This assumes that the lemgth of a word is such that a

word can contain an address and still have room for a datum.) In addi-
tion to the data lists there is a free storage 1list in which all the
registers not filled with data are connected together, The situation

ia shown in figure 2.6,1 sherein an arrow from a symbol to a register
indicates that the value of the symbol is the number of the register,

In the case of the 704 we put the address of the next element of a list
in the decrement part of a 1list register and put the datum in the address
part, The last item on a list has zero in its decrement part,

Figure 2,6.1

A\——-ﬂmfl\x TN .. ETT

CC-56 16

The main advantage of such’a way of handling list is when the
length of a given list is a computation variable such that it is not
feasible to assign enough storage perﬁénently to each list to take care
of the largest numbsr of elemeants 1t;may ever have, In addition it is
convenient to imnsert items in the middle of such a list or to delete
items from it.

The i:ogram segment we wish to describe dealing with these
lists is needed when one wishes to insert am olement at the beginning
of a 1list, getting the register for this element from the free storage
1ist, i

The programs for the above three examples are alllconvaniently
described by means of a compound compute statement and are givem in
Figure 2.6.2

Figure 2.6,.2

1. X v
Y IX
2. YOP[Al3Y1+Bl3Y1P+rA2#%Y2+B2¥T2P+A3%Y3+B3%Y3P
Yl |Y0
*Y1P|YOP
Y2 N1
Y2P{Y1P
¥3 [¥2
¥3pP{¥Y2P
3. FREESTO CDR(FREESTO)
CDR(FREESTO) A
CAR(FREESTO) B
A FREESTO

As can be seen from the examples, 8 compound compute statement
consists of two columns, Corresponding to each quantity im the left
column is the value it is to assume in the right column, The nomen-
clature of the quantities and their values are all assumed to be given
in terms of the values of these quantities as of the beginning of the
execution of the compound statement,

A more elaborate kind of compound compute statement is also
allowed in which there are three columms: the quantity to be calculated,
a condition, and a value, An example of this is givem im figure 2.6.3,

CC-58 17

Figure 2.,6,3

Gl A B>0 A+l
Bw0 A
A-1
B (B20) P 0
C Csl
P Ao Q
EEXT A>0 a

The name of the statement is Gl, The first line states that
if B>0, A is to be replaced by A+l, The second line states that if
B=0, A is to be left as is, while in the remaining case, A is to be
replaced by A-1, The next line says that if (B<O) P, B is to be
replaced by 0, 8ince there are no other statements made about B it
is assumed that if the above condition does not hold, B will be
unchanged, The last line illustrates the use of another special
symbol: NEXT denotes the next statement to be executed, and in this
compound compute statement, we have that if A0 the present statement
Gl is to be executed again, If the condition 1s not satisfied the
physically next statement in the program will be executed mnext,

Thig illustrates another possibility which will be more fully
explored in subsequent chapters, the concept of the normal procedure,
Cne can set up conventions as to what is normally done in certain
situations vhen the program does not say otherwise, These conventions
will be under the control of the programmer,

2,7 Universal Quantifiers

Vhat calc\llat:lone can be written as non-recursive program

segments depends on the richness of the language and in particular on
what functions and operations have been defined in the system, To
teke a trivial example, if square root function has not been defined in
the system, then any program segment which requires the extractiom of
a8 square root is recursive, Of course, if 2 square root functiom is
used in a compound compute statement, the method of calculating the
square root will be taken for granted and will not be subject to further
optimization in the compiling process,

Iin this section we present another of the concepts of compound
compute statement which will emsble more program segments to be writtenm

CC-56 18

in this form, This exiension changes the previous three columm format
to 2 four column one where in the additional columm which is to be
written on the left contains an index and a set over which the index
is to vary, An example of such a statement is givem in figure 2.7.1.

Figure 2.7,1
Quantifier Quantity Condition Value
kieny | am B(I)+C(1)
JeL A(B(J)+C(3)) B(J3)>S R(J)*8(J)
A B>0 A+l
1¢ (1 to N) L
k% @ toW) | ca,p Jz_l A4, MIRD

The most obvious domain of variation of an index is a segment
of the integers, but others are possible, For example, an index may
vary over the elemeats of a Nowell list,

2.8 Multiplet-Valued Functions and Their Composition

It is convenient to be able to use subroutines which
take several inputs and produce several quantities as cutputs, ¥We
shall call such routines multiplet-valued functions., (The multiply
valued function in mathematics is something differemt., There the
emphasis is on the ambiguity of the value rather tham on the value
being an ordered collection of quantities,) The problem of composing
meltiplet valued functions is best illustrated by the example shown
in figure 2.8.1,

Figure 2.8.1

In the figure F, G, H, K, and M represent multiplet valued
functions, For example, M has 4 inputs and 3 cutputs., The arrows
show the flow of data and the diagram represents & multiplet valued
function with 5 inputs and 2 outputs which is a sort of composition of
F, G, H, K, and H, It is tempting to try to devise a notation to repre-
soent this kind of composition and which will include the ordinary com-
position of functicns 8s a special case, because if we can, we can write

